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Abstract	
	
The	mammalian	olfactory	bulb	(OB)	generates	gamma	(40	–	100	Hz)	and	beta	(15	–	

30	Hz)	oscillations	of	the	local	field	potential	(LFP).	Beta	oscillations	occur	in	

response	to	odorants	in	learning	or	odor	sensitization	paradigms,	but	their	

generation	mechanism	is	still	poorly	understood.	When	centrifugal	inputs	to	the	OB	

are	blocked,	beta	oscillations	disappear,	but	gamma	oscillations	persist.	These	

inputs	primarily	target	GABAergic	granule	cells	(GC)	in	the	GC	layer	(GCL)	and	

regulate	their	excitability.	This	leads	us	to	the	central	question	motivating	this	work:	

What	role	does	GC	excitability	play	in	generating	beta	oscillations?	To	answer	this	

question	we	first	developed	a	computational	model	incorporating	the	biophysical	

properties	of	the	reciprocal	dendrodendritic	synapses	between	glutamatergic	mitral	

cells	(MC)	and	GCs.	The	model	predicted	that	beta	oscillations	emerge	only	when	

inhibition	of	MCs,	due	to	heightened	GC	excitability,	and	the	excitation	of	MCs	due	to	

sensory	input	is	sufficiently	balanced.	Because	of	this	balance	of	excitation	and	

inhibition,	the	model	predicted	that	beta	oscillations	could	also	be	supported	in	the	

absence	of	heightened	GC	excitability	provided	that	the	input	strength	was	also	low.	

The	model	also	predicted	that	beta	oscillations	are	sustained	by	voltage	dependent	

calcium	channel	(VDCC)	mediated	GABA	release,	independently	of	NMDA	channels.	

We	tested	the	predictions	of	this	model	using	pharmacology	in	the	OBs	of	

rats.	Infusion	of	scopolamine,	a	muscarinic	antagonist	known	to	decrease	GC	

excitability,	decreased	or	completely	suppressed	odor-evoked	beta	in	response	to	a	

strong	stimulus,	but	increased	beta	power	in	response	to	a	weak	stimulus,	as	

predicted	by	our	model.	APV,	an	NMDA	receptor	antagonist,	suppressed	gamma	



	 xvi	

oscillations	selectively	(in	OB	and	piriform	cortex),	lending	support	to	the	model’s	

prediction	that	beta	oscillations	can	be	supported	by	VDCC	currents.	

In	another	set	of	experiments	we	recorded	extracellular	potentials	in	the	GCL	

of	rats	using	multichannel	silicon	(Si)	probes.	Because	these	were	the	first	

recordings	of	GCs	and	other	GCL	interneurons	in	awake,	freely	behaving	rats,	the	

nature	of	these	experiments	was	exploratory.	We	found	that	many	GCL	neurons	

fired	at	the	onset	of	beta	oscillations,	which	is	consistent	with	our	model,	because	

GC	excitability	increases	can	be	triggered	by	GC	somatic	spikes.	We	also	found	a	rich	

diversity	of	excitatory	and	inhibitory	responses	that	showed	odor	selectivity	and	

phase	locking	to	different	LFP	frequency	bands.	Some	responses	evolved	over	the	

course	of	multiple	days.	By	classifying	responses	to	different	odors	using	a	distance	

metric	analysis,	we	showed	that	some	cells	were	better	at	distinguishing	between	

odors	based	on	their	firing	rates,	while	others	were	better	based	on	spike	timing.	

Intriguingly,	the	timescales	at	which	most	of	these	spike-timing	cells	best	

distinguished	between	odors	were	in	the	theta	and	beta	frequency	ranges.	In	a	final	

set	of	experiments	we	trained	two	rats	implanted	with	Si	probes	to	poke	their	noses	

into	an	odor	port	to	receive	sugar	pellet	rewards.	We	found	that	some	GCL	neurons	

fired	precisely	at	the	time	when	a	rat	poked	its	nose	into	the	odor	port,	while	others	

fired	only	at	the	onset	of	beta	oscillations.	In	one	rat	we	also	found	cells	that	

appeared	to	change	their	response	when	reward	was	discontinued.	Together,	these	

experiments	lend	strong	support	for	the	main	predictions	of	the	model,	and	also	

provide	exciting	preliminary	data	for	future	studies	regarding	the	involvement	of	

GCL	neurons	in	contextual	representations	of	odors	during	motivated	behaviors.	
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Introduction	
	
	

Local	field	potential	(LFP)	oscillations	in	the	mammalian	olfactory	bulb	(OB)	

represent	coordinated	neural	activity	that	is	dynamically	regulated	during	olfactory	

processing.	These	oscillations	are	classified	into	three	bands:	theta	(1-12	Hz),	

gamma	(40-100	Hz),	and	beta	(15-30	Hz).	The	theta	rhythm	is	coupled	to	

respiratory	and	sniffing	frequencies	(Rojas-Líbano	et	al.,	2014).	The	gamma	and	

beta	rhythms	strongly	depend	on	behavioral	context	and	odor	quality	(for	a	review	

see	Kay	et	al.,	2009	and	Kay,	2014).	The	generation	mechanism	for	OB	gamma	

oscillations	has	been	studied	extensively	and	explained	from	the	mechanistic	to	the	

functional	level	(Rall	&	Shepherd,	1968;	Freeman,	1975;	Nusser	et	al.,	2001;	

Friedman	&	Strowbridge,	2003;	Lagier	et	al.,	2004;	Bathellier	et	al.,	2006;	Rojas-

Líbano	&	Kay,	2008;	Brea	et	al.,	2009;	Lepousez	&	Lledo,	2013;	Peace	et	al.	2017),	

but	the	generation	mechanism	for	OB	beta	oscillations	has	received	considerably	

less	attention.	Beta	oscillations	increase	in	power	with	the	onset	of	learning	in	

operant	tasks	(Martin	et	al.,	2004,	2007a;	Frederick	et	al.,	2016a)	and	require	intact	

cortical	feedback	to	the	olfactory	bulb	(Neville	and	Haberly,	2003a;	Martin	et	al.,	

2006a)	and	thus	are	likely	to	be	involved	in	mediating	the	contextual	meaning	of	

odors.	Beta	oscillations	are	also	highly	coherent	across	olfactory	and	hippocampal	

regions	(Martin	et	al.,	2007b;	Gourévitch	et	al.,	2010)	and	may	be	involved	in	the	

formation	or	retrieval	of	olfactory	memory	as	well	as	initiation	of	odor-related	
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actions	(Martin	and	Ravel,	2014).		These	oscillations	overwhelm	the	olfactory	bulb	

(OB)	and	pyriform	cortex	(PC)	LFP	during	odor	sampling,	and	yet	they	remain	

mechanistically	and	functionally	enigmatic.	The	primary	aim	of	this	work,	and	the	

focus	of	Chapters	2	&	3,	is	to	better	understand	the	generation	of	beta	oscillations	

through	computational	modeling	and	electrophysiological	recordings.	As	the	work	

progressed	we	found	that	OB	granule	cells	(GCs)	played	a	central	role	in	the	

generation	of	these	oscillations,	so	a	secondary	aim	of	this	work	emerged,	which	

was	to	explore	and	catalogue	the	responses	of	these	neurons	during	odor	evoked	

beta	oscillations.	This	is	the	focus	of	Chapter	4.	Before	we	present	the	research	we	

first	provide	some	background	on	the	olfactory	bulb	and	its	LFP	oscillations.	
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1.	Background	on	olfactory	system	LFP	oscillations	
	

1.1	Synaptic	organization	of	the	olfactory	bulb	

The	OB	is	a	three-layered	paleocortex	and	is	part	of	the	limbic	system.	The	

outermost	layer,	called	the	glomerular	layer,	is	almost	completely	covered	by	

glomeruli	(GLO),	which	are	spherical	dendritic	structures	(visible	in	Figure	1.1A).	

The	GLO	receive	odorant	stimuli	registered	by	olfactory	receptor	neurons	(ORN)	

embedded	in	the	nasal	sensory	epithelium.	In	rodents,	the	majority	of	ORNs	express	

a	single	type	of	the	over	1000	receptor	proteins	(Chess	et	al.,	1994;	Malnic	et	al.,	

1999),	and	ORNs	expressing	the	same	receptor	type	converge	to	the	same	pair	of	

glomeruli	(GLO)	on	opposing	sides	of	a	single	OB	(Mombaerts	et	al.,	1996).	Thus,	the	

GLO	layer	is	often	represented	as	an	odorant	map	or	mosaic.	GLO	are	innervated	by	

M/T	dendrites	and	contain	GABAergic	periglomerular	cells,	which	modulate	M/T	

cells	as	part	of	the	larger	class	of	juxtaglomerular	cells,	resting	in	the	space	between	

GLO,	which	can	couple	one	glomerulus	to	another.	This	outermost	layer	is	capable	of	

performing	contrast	enhancement	to	decorrelate	similar	olfactory	stimulation	

patterns,	and	normalization	(gain	control)	so	that	M/T	cells	are	not	overwhelmed	by	

too	broad	a	range	of	stimulation	strengths	(Linster	&	Cleland,	2009).	

Below	the	GLO	layer	is	the	mitral/tufted	cell	layer	(MCL),	containing	the	

bodies	of	the	principal	excitatory	output	neurons	of	the	OB,	the	M/T	cells.	In	

addition	to	the	apical	dendrites	that	receive	inputs	from	the	sensory	nerve	in	the	

glomeruli,	these	cells	also	possess	long	lateral	dendrites	spanning	almost	all	the	way	

across	the	bulb,	a	morphological	feature	unique	to	the	OB	(Migliore	et	al.,	2014).	
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Figure	1.1.	OB	architecture.	(A)	Sagittal	section	through	a	rodent	OB.	The	olfactory	nerve	
has	been	removed,	although	in	the	anterior	surface	of	the	bulb	some	remnants	can	be	seen.	
Glomerular	layer	(GL)	and	mitral	cell	layer	(MCL)	are	seen	clearly.	Axons	of	mitral	cells,	
stained	in	blue	(Nissl	stain),	exit	the	OB	through	the	LOT.	AOB:	Accessory	OB;	GCL:	Granule	
cell	layer;	LOT:	Lateral	olfactory	tract;	D,	V,	R,	C:	Dorso-Ventral	and	Rostro-Caudal	axes.	
(B)	Simplified	OB	network	connectivity.	Green,	red,	and	blue	arrows	represent	excitatory,	
inhibitory,	and	neuromodulatory	synaptic	interactions	respectively.	Glomeruli	(GLO)	are	
innervated	by	olfactory	receptor	neurons	(ORN)	expressing	only	one	type	of	receptor	
(represented	by	circle	or	pentagon).	Mitral/Tufted	(M/T)	cells	form	reciprocal	synapses	
with	spines	(small	black	dots)	on	granule	cell	dendrites.	Mutual	inhibition	exists	between	
granule	cells	(GC).	Cortical	feedback	largely	targets	GCs.	ORN:	Olfactory	receptor	neurons;	
GL:	Glomerular	layer;	EPL:	External	plexiform	layer;	MCL:	Mitral	cell	layer;	IPL:	Internal	
plexiform	layer;	GCL:	granule	cell	layer;	LOT:	Lateral	olfactory	tract.	(C)	Zooming	in	on	a	
reciprocal	synapse	between	a	single	GC	dendritic	spine	and	a	MC	lateral	dendrite.		(A)	
adapted	from	(Elsaesser	and	Paysan	2007)	(publisher:	BioMed	Central)	
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The	innermost	layer	of	the	OB,	called	the	granule	cell	layer	(GCL),	contains	

millions	of	inhibitory	granule	cells	(GCs),	which	comprise	the	most	abundant	cell	

type	in	the	OB.	Although	GCs	express	GABA	receptors	(Nusser	et	al.,	2001a)(Fig.	

1.1B,	red	arrows),	and	the	GCL	also	contains	several	other	inhibitory	subtypes,	such	

as	Blanes	and	deep-short-axon	cells,	the	bulk	of	this	work	only	concerns	the	

excitatory-inhibitory	interaction	between	GCs	and	MCs,	which	is	depicted	

schematically	in	Figure	1.1B.	GCs	project	long	proximal	dendrites	towards	M/T	cell	

lateral	dendrites.	These	projections	end	in	a	granule	cell	dendritic	tree,	which	is	

peppered	by	small	dendritic	spines,	each	of	which	form	reciprocal	dendrodendritic	

synapses	with	MC	lateral	dendrites	in	the	external	plexiform	layer	(EPL)	(Shepherd,	

1972).	M/T	cells	excite	GC	spines	by	glutamate	release,	which	in	turn	inhibit	M/T	

cells	by	GABA	release	(Fig.	1.1C).	Individual	GC	spines	can	release	GABA	onto	MC	

dendrites	in	a	graded	fashion	independently	of	one	another,	or	all	at	once,	

depending	on	the	strength	of	M/T	cell	input	and	the	spread	of	GC	somatic	action	

potentials	(Egger	2005).	The	graded	release	of	GABA	from	GC	spines	depends	on	

Ca2+	flow	through	NMDA	receptors	(NMDARs)	and	other	voltage-dependent	calcium	

Ca2+	channels	(VDCCs)	expressed	on	GC	spines	(Chen	et	al.,	2000;	Isaacson	&	

Strowbridge,	1998;	Schoppa	et	al.,	1998).	The	M/T	cells	project	through	the	lateral	

olfactory	tract	(LOT)	densely	to	the	anterior	olfactory	nucleus	(AON)	and	pyriform	

cortex	(PC),	among	other	areas.	The	PC,	like	the	bulb	is	also	a	3-layered	paleocortex.	

M/T	cells	also	project	to	many	other	limbic	system	regions,	including	the	entorhinal	

cortex	and	amygdala.	
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The	OB	receives	more	cortical	and	neuromodulatory	feedback	inputs	than	it	

sends	out,	and	the	majority	of	this	feedback	targets	the	GCL	(Fig.	1.1B	left-pointing	

arrows).	PC	pyramidal	cells	send	excitatory	inputs	to	the	OB	(Fig.	1.1B	green	

arrows).	Interestingly	the	horizontal	limb	of	the	diagonal	band	of	Broca	sends	both	

GABAergic	(Fig.	1.1B	red	arrows)	and	cholinergic	(Fig.	1.1B	blue	arrows)	inputs	that	

target	GCs.	Neuromodulatory	systems	of	all	types	project	to	the	OB.	For	example,	

serotonin	from	the	raphe	nuclei,	noradrenaline	from	the	locus	coeruleus	(Devore	

and	Linster,	2012a),	and	oxytocin	from	the	hypothalamus	(Yu	et	al.,	1996).	

Immediately	caudal	to	the	main	OB	is	the	accessory	OB	(AOB),	seen	in	Figure	1.1A.	

This	region	also	has	a	similar	organization	of	M/T	cells	and	GCs	as	the	main	OB	but,	

curiously	enough,	may	respond	in	an	opposite	way	to	cholinergic	modulation	(see	

Chapter	3	Discussion).	

	

1.2	A	short	review	of	olfactory	gamma	oscillations	

1.2.1	General	properties	of	gamma	oscillations	

Olfactory	bulb	gamma	oscillations	were	first	recorded	by	Lord	Edgar	Douglas	

Adrian	(1942),	who	noted	that	they	were	associated	with	increased	firing	of	M/T	

cells.	Later	research	showed	that	M/T	cells	tend	to	fire	at	a	preferred	phase	of	the	

gamma	oscillations	(Fig.	1.2A)	(Eeckman	and	Freeman,	1990;	Buonviso	et	al.,	2003a;	

Bathellier	et	al.,	2006).	Assuming	a	phase	convention	with,	the	preferred	phase	of	

M/T	cells	is	90o,	as	shown	in	Figure	1.2B.	M/T	cells	do	not	fire	on	every	cycle	of	the	

gamma	oscillation,	and	thus	individual	cells	may	be	highly	phase	locked	to	the	LFP	
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while	not	firing	synchronously	with	each	other	(Eeckman	and	Freeman,	1990).	

Walter	Freeman,	at	the	University	of	California	Berkley,	was	among	the	first	to	

describe	the	coupling	between	gamma	oscillations	and	respiration	(Freeman,	1975).	

This	produces	a	nested	theta-gamma	coupling	that	characterizes	the	intrinsic	

resting	state	of	the	OB	LFP,	as	shown	in	Figure	1.2C.	

	

	

1.2.2	Gamma	oscillation	generation	mechanism	

It	is	generally	agreed	that	intrinsic	gamma	oscillations	arises	from	synaptic	

currents	flowing	across	the	reciprocal	dendrodendritic	synapses	(Rall	and	

B 

	A 

C 

theta 

gamma 

Figure	1.2.	Basic	properties	of	gamma	oscillations.	A:	OB	LFP	(top)	and	single	M/T	cell	
response	following	olfactory	nerve	stimulation.	Stimulation	time	indicated	by	star.	MCs	tend	to	
fire	on	descending	phase	of	gamma	oscillation.	B:	Spike	firing	probability	of	16	M/T	cells	for	
different	LFP	gamma	phases.	C:	Raw	(green)	LFP	(1-475	Hz)	recorded	from	awake,	freely	
behaving	rat	displays	respiration-locked	gamma	oscillations.	The	same	trace	filtered	for	theta	(1	–	
12	Hz)	and	gamma	(65	–	100	Hz)	frequency	ranges	are	shown	in	blue.	(A)	and	(B)	from	Bathellier	
et	al.	(2006),	(C)	from	Rojas-Libano	&	Kay	(2008).	
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Shepherd,	1968)	formed	between	excitatory	glutamatergic	mitral	cell	M/T	cell	

lateral	dendrites	and	inhibitory	GABAergic	GC	distal	dendritic	spines	in	the	EPL	(Fig.	

1.1B).	These	synapses	form	a	negative	feedback	loop,	which	bears	similarities	to	a	

pyramidal-interneuron	network	gamma	(PING)	mechanism.	Some	models	of	OB	

oscillations	were	based	on	this	assumption	(Li	and	Hopfield,	1989).	However,	PING	

networks	lack	cellular	resonance	properties,	such	as	the	intrinsic	sub-threshold	

oscillations	(STOs)	of	MCs	(Desmaisons	et	al.,	1999).	A	computational	model	by	Brea	

et	al.	(2009)	proposed	that	MC	STOs	are	capable	of	driving	gamma	oscillations.	This	

model	resolved	some	limitations	of	the	PING	mechanism,	because	it	supported	a	

stable	gamma	oscillation	frequency	in	the	presence	of	fluctuating	sensory	input.	

Importantly,	this	model	also	used	graded	inhibition,	which	is	a	unique	feature	of	the	

MC-GC	synapse	(Schoppa	et	al.,	1998a),	but	this	model	was	not	compatible	with	

experimentally	recorded	low	GC	firing	rates	(Cang	and	Isaacson,	2003a)	and	did	not	

provide	a	mechanism	for	controlling	the	spatial	extent	of	gamma	coherence	across	

the	OB.	Recently,	a	network	based	on	inhibition-coupled	intrinsic	cellular	oscillators	

has	been	proposed	(Peace	et	al.,	2017;	Li	&	Cleland,	2017).	In	this	hybrid	network,	

intrinsic	MC	STOs	are	transiently	coupled	during	olfactory	stimulation	into	a	

coherent	oscillatory	network	controlled	by	GC-mediated	inhibition	that	periodically	

resets	the	slower	MC	STOs.	This	gamma	generation	mechanism,	termed	pyramidal	

resonance	interneuron	network	gamma	(PRING),	exhibits	key	PING-like	properties	

(e.g.,	the	population	oscillation	frequency	depends	on	the	decay	time	constant	of	the	

GABA(A)	receptor	conductance),	but	also	retains	the	dependence	on	STO	dynamics	

of	mitral	cells	(Li	and	Cleland,	2017).	The	PRING	mechanism	is	consistent	with	
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known	physiological	MC	and	GC	properties,	as	well	as	the	changes	in	spatial	extent	

of	gamma	coherence	across	the	bulb	noted	by	Freeman	and	Schneider	(1982).	

	

1.2.3	Sub-bands	of	gamma	oscillations	

Although	olfactory	LFP	oscillations	between	40	–	100	Hz	are	all	considered	

gamma	oscillations,	many	studies	suggest	that	there	are	distinct	sub-bands	in	this	

frequency	range.	Rats	trained	to	discriminate	between	two	odors	display	high	

frequency	gamma	(60	–	100	Hz),	dubbed	gamma	1,	during	odor	periods	and	low	

frequency	gamma	(40	–	65	Hz),	dubbed	gamma	2,	during	the	waiting	periods	(Kay,	

2003a).	The	onset	of	gamma	1	bursts	is	tightly	locked	to	inspiration,	whereas	

gamma	2	activity	tends	to	occur	between	inhalations	and	during	periods	of	slow	

breathing	in	attentive	behavior	and	grooming	(Fig.	1.3A).	Odor-induced	gamma	

oscillations	sweep	from	high	to	low	frequency	on	each	sniff	(Buonviso	et	al.,	2003a;	

Manabe	and	Mori,	2013)(Fig.	1.3B).	Recordings	in	rats	and	mice	show	that	odor	

inhalation	induces	early-onset	high-frequency	burst	(∼100-Hz)	discharges	of	tufted	

cells	at	the	middle	of	inhalation	(roughly	coinciding	with	onset	of	fast	high	

frequency	gamma)	followed	by	later-onset	low-frequency	burst	(∼45	Hz)	

discharges	of	mitral	cells	(Nagayama	et	al.,	2004;	Igarashi	et	al.,	2012).	Together,	

these	results	suggest	that	the	early-onset	fast	gamma-oscillations	are	generated	

mainly	by	the	tufted	cell	subsystem,	whereas	later-onset	slow	gamma-oscillations	

are	supported	mainly	by	mitral	cells.	
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Figure	1.3.	Properties	of	gamma	sub-bands.	(A)	Raw	(green)	LFP	(1-475	Hz)	recorded	from	
awake,	freely	behaving	rat.	The	same	trace	filtered	for	low	and	high	gamma	frequency	ranges	are	
shown	in	blue.	High	gamma	dominates	during	fast	sniffing,	but	low	gamma	is	enhanced	during	
grooming.	(B)	Time	course	of	respiration-locked	gamma	oscillations	during	two	active	sniffs	(left),	
and	one	sniff	during	resting	condition	(right).	Black	traces	show	respiration	rhythm	(top),	raw	LFP	
(middle),	and	gamma	filtered	(40	–	140	Hz)	LFP	(bottom).	Wavelet	analysis	shows	instantaneous	
gamma	frequency	sweeping	from	high	to	low.	Color	scale	indicates	normalized	power.	Dashed	lines	
indicate	sniff	onset.	f:	Fast	gamma-oscillation;	s:	slow	gamma-oscillation;	exh-s:	Slow	gamma-
oscillation	during	exhalation.	C:	Frequency	distributions	of	several	million	gamma	wavepackets.	(A)	
from	Rojas-Libano	&	Kay	(2008),	(B)	from	Manabe	&	Mori	(2013),	(C)	from	Frederick	et	al.	(2016).	
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Another	distinction	been	gamma	1	and	gamma	2	comes	from	genetic	

knockout	studies	in	mice.	Interestingly,	mice	missing	the	β3	subunit	of	GABAA	

receptors	on	GCs	do	not	generate	gamma	2,	suggesting	that	the	switch	from	gamma	

1	to	gamma	2	may	be	initiated	by	a	change	in	inhibitory	coupling	of	GCs.	Recent	

work	suggests	that	the	gamma	1	band	itself	is	also	subdivided	into	two	bands,	as	the	

distribution	of	gamma	1	wavepackets	has	been	found	to	be	bimodal	(Frederick	et	al.,	

2016a;	Fig.	1.3C).	Because	the	gamma	1	and	gamma	2	nomenclature	is	not	common	

in	the	field	and	the	function	of	these	distinct	bands	is	still	being	researched,	we	refer	

to	the	lower	and	higher	gamma	bands	as	low	gamma	(40	–	60	Hz)	and	high	gamma	

(60	–	100	Hz).	

	

1.3	Known	properties	of	Beta	oscillations	

Unlike	gamma	oscillations,	beta	oscillations	only	occur	when	an	odorant	

stimulus	is	presented.	Beta	oscillations	follow	gamma	oscillations	during	odor	

sampling	(Martin	et	al.,	2006;	Martin	&	Ravel,	2014;	Fig.	1.4A,B).	In	anesthetized	

rats	gamma	and	beta	oscillations	alternate	on	each	sniff,	with	beta	oscillations	

occurring	during	exhalation	(Buonviso	et	al.,	2003;	Cenier	et	al.,	2009;	David	et	al.,	

2015;	Fourcaud-Trocmé	et	al.,	2011).		In	waking	rats,	beta	oscillations	can	persist	

across	sniff	cycles	(as	shown	in	Fig.	1.4A),	and	can	also	occur	during	periods	of	low	

respiratory	drive	in	late	odor	sampling	(Martin	et	al.,	2007b;	Rojas-Líbano	and	Kay,	

2012).	The	transition	from	gamma	to	beta	can	be	very	fast	(Fig.	1.4A,	top),	indicating	

a	state-like	transition	in	a	system	variable.	They	can	also	be	very	large	in	amplitude		
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Figure	1.4.	Known	properties	of	beta	oscillations.	(A)	Example	beta	oscillations	in	2	different	rats.	Each	
plot	shows	raw	(1–300	Hz),	low-gamma	filtered	(Low	γ;	40–60	Hz),	high-gamma	(High	γ;	60–100	Hz)	
filtered,	and	beta	(β;	15–30	Hz)	filtered	LFP.	(top)	A	rat	trained	in	a	2-alternative	choice	task	with	diluted	
high-volatility	odors	pokes	into	odor	port	at	time	t	=	0	(black	vertical	line)	and	exits	after	~1.5	s	(dashed	
black	vertical	line).	Nose	poke	is	followed	by	4	sniffs	(gray	horizontal	bars)	and	a	beta	oscillation	near	24	Hz	
(black	horizontal	bar).	The	onset	of	beta	roughly	coincides	with	the	end	of	the	last	gamma	burst,	indicating	a	
very	fast	transition.	(bottom)	same	markings	as	in	(top).	A	freely	behaving	rat	was	presented	with	a	cotton	
swab	soaked	in	an	undiluted	high-volatility	odor	(ethyl	butyrate).	This	odor	evokes	a	large	beta	oscillation	
near	18	Hz.	(B)	Gamma	(blue)	and	beta	(red)	wavepackets	are	plotted	for	each	trial	of	a	Go-No-Go	
experiment.	Black	vertical	line	marks	time	at	which	rat	pokes	into	odor	port.	(C)	Normalized	OB	beta	band	
power	induced	by	odors	in	order	of	increasing	vapor	pressure	(volatility).	(D)	Spectrograms	show	an	odor	
(heptanol)	induced	increase	in	beta	(15–35	Hz)	power	(left)	in	OB,	and	dorsal	&	ventral	parts	of	the	
hippocampus	(dHPC	&	vHPC)	accompanied	by	an	increase	in	coherence	(right)	between	these	regions	in	the	
same	frequency	band.	Odor	onset	is	indicated	by	the	vertical	white	line	at	0	s.	Color	scales	represent	signal	
power	(μV2,	right)	and	coherence	(left).	(E)	Example	raw	LFP	signals	(1	–	300	Hz)	from	OB	and	PC	during	
control	(left)	and	lidocaine	(right)	sessions	in	expert	rats.	Beta	oscillations	are	extinguished	after	lidocaine	
injection	into	LOT,	but	gamma	oscillations	are	enhanced.	Horizontal	bars	under	each	trace	indicate	odor	
sampling.	(A)	from	Osinski	and	Kay	(2016),	(C)	from	Lowry	and	Kay	(2007),	(D)	from	Martin	et	al.	(2006).	

Expert	(Control) Lidocaine 
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(Fig.	1.4A,	bottom),	suggesting	the	presence	of	highly	synchronized	synaptic	

currents.	

Beta	oscillation	power	scales	with	odor	volatility	(Lowry	&	Kay,	2007;	Fig.	

1.4C),	and	thus	represents	to	some	degree	the	strength	of	odor	input.	But	beta	

oscillations	also	depend	critically	on	centrifugal	feedback	into	the	bulb	from	other	

brain	regions.	When	this	centrifugal	input	to	the	bulb	is	surgically	lesioned	(Neville	

and	Haberly,	2003)	or	pharmacologically	blocked	by	lidocaine	injection	into	the	LOT	

(Martin	et	al.,	2006),	beta	oscillations	are	completely	extinguished,	but	gamma	

oscillations	persist	and	are	even	enhanced	(Fig.	1.4E).	Furthermore	beta	oscillation	

power	increases	with	the	onset	of	learning	in	odor	discrimination	operant	tasks	

(Martin	et	al.,	2004,	2006,	2007;	Frederick	et	al.,	2016;	Ravel	et	al.,	2003).		

The dependence of OB beta oscillations on cortical feedback and increase in 

power with learning odor associations suggest that these oscillations may	be	more	

involved	in	mediating	the	subjective	contextual	meaning	of	an	odor OB rather than 

the	objective	representation	of	an	odor	during	early	sensory	processing. Beta 

oscillations are also highly coherent with PC and also the entorhinal cortex and 

hippocampus (Martin et al., 2007a; Gourévitch et al., 2010; Kay and Beshel, 2010; Fig. 

1.4D).	This	high	degree	of	coherence	across	the	olfacto-cortical-hippocampal	

network	also	suggests	that	beta	oscillations	may	coordinate	distinct	brain	regions	to	

carry	out	actions	associated	with	odorant	meaning.	

Although	when	we	began	this	work	there	were	no	existing	models	of	beta	

oscillations,	a	few	models	of	beta	oscillations	from	other	groups	have	been	

published	during	the	course	of	this	work	(Fourcaud-Trocmé	et	al.,	2011b;	David	et	
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al.,	2015a).	These	models	are	addressed	and	compared	to	our	own	model	in	the	

discussions	of	Chapters	2	&	3.	While	there	are	significant	differences	between	these	

models	and	our	own,	one	feature	that	stands	out	in	common	across	all	the	models	is	

the	dependence	on	GC	excitability.	Because	GCs	receive	the	bulk	of	centrifugal	

inputs,	they	gate	incoming	input	to	the	MCs,	and	this	activity	across	the	

dendrodendritic	synapses	of	large	MC	and	GC	populations	emerges	as	beta	

oscillations.	
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2.	Granule	cell	excitability	regulates	gamma	and	
beta	oscillations	in	a	model	of	the	olfactory	bulb	
dendrodendritic	microcircuit	

	

2.1	Introduction	

The	network	mechanism	that	generates	OB	beta	oscillation	has	received	

much	less	attention	than	gamma	oscillations.	Current	source	density	analysis	in	

anaesthetized,	tracheotomized	rats	has	shown	that	while	gamma	and	beta	

oscillations	never	occur	simultaneously,	both	oscillations	have	dipoles	centered	in	

the	OB	external	plexiform	layer	(EPL)	(Fig.	2.1A;	Neville	and	Haberly,	2003),	

suggesting	that	both	oscillations	are	generated	by	the	same	synaptic	currents	

between	MC	and	GC	dendrites.	More	recent	analysis	has	revealed	that	gamma	and	

beta	oscillations	may	arise	from	distinct	EPL	sublaminae	(Fourcaud-Trocmé	et	al.,	

2014).	Nonetheless,	it	is	unclear	how	dendrodendritic	inhibition	(DDI)	between	MCs	

and	GCs	can	support	both	gamma	and	beta	frequencies.	

An	important	clue	to	the	origins	of	beta	oscillations	comes	from	lesion	

experiments.	When	centrifugal	input	to	the	OB	is	blocked,	odor	evoked	beta	

oscillations	are	extinguished	or	reduced,	while	gamma	oscillations	persist	and	can	

be	enhanced	(Gray	and	Skinner,	1988;	Neville	and	Haberly,	2003;	Martin	et	al.,	

2006;	see	Fig.	1.4E).	Analogous	to	cortical	feedback	control	of	thalamic	reticular	

nucleus	neurons,	feedback	from	MC	cortical	projection	areas	primarily	targets	the	

GC	layer	with	excitatory	synapses	onto	GABAergic	GCs	and	other	interneurons	(Balu	

et	al.,	2007;	Boyd	et	al.,	2012;	Kay	&	Sherman,	2007).	Gamma	oscillations	have	been	
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shown	to	persist	even	after	GC	somata	are	surgically	disconnected	from	their	distal	

dendrites	(Lagier	et	al.,	2004).	Thus,	there	is	strong	evidence	that	centrifugal	inputs	

near	GC	somata	may	be	critical	for	beta	but	not	gamma	generation.	

Under	certain	conditions	GCs	enter	periods	of	increased	excitability	

following	a	somatic	spike.	For	example,	activation	of	M1	muscarinic	receptors	in	GCs	

transforms	the	afterhyperpolarization	(AHP)	following	GC	spikes	into	an	

afterdepolarization	(ADP)	lasting	several	hundred	milliseconds	(Fig.	2.1B;	Pressler	

et	al.,	2007),	which	may	trigger	quasipersistent	firing	modes	lasting	several	seconds	

(Inoue	and	Strowbridge,	2008).	The	GC	ADP	propagates	faithfully	into	distal	

dendrites,	leading	to	increased	Ca2+	influx	(Egger	et	al.,	2003).	GCs	may	also	undergo	

a	long-lasting	depolarization	(LLD)	that	can	last	well	over	1s	(Fig.	2.1C)	when	a	GC	

somatic	spike	is	triggered	by	strong	glomerular	input	(Egger,	2008a).	We	propose	

that	a	convergence	of	sensory,	cortical,	and	neuromodulatory	inputs	onto	GCs	may	

help	explain	the	observed	dependence	of	beta	oscillations	on	odorant	

characteristics	and	centrifugal	feedback.	

To	test	this	hypothesis	we	developed	a	model	of	the	MC-GC	reciprocal	

dendrodendritic	synaptic	network	with	graded	inhibition	dependent	on	NMDA	and	

N-type	Ca2+	currents.	In	our	model	we	summarize	the	cortical,	local	

inhibitory/excitatory,	and	neuromodulatory	sources	of	GC	excitability	control	by	a	

single	parameter,	Vrest,GC,	the	granule	cell	dendritic	(GCD)	resting	membrane	

potential.	To	investigate	the	individual	contributions	of	NMDA	and	N-type	currents	

we	also	create	two	additional	models,	one	with	only	NMDA	and	the	other	with	only	

N-type	channels	included	in	the	GCDs.	Our	model	predicts	that	a	sudden	
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depolarization	of	the	membrane	potential	of	a	subpopulation	of	GCs	can	drive	an	

increase	of	Ca2+	dependent	graded	inhibition	that	will	switch	the	frequency	from	a	

gamma	to	a	beta	regime.	The	model	also	argues	that	high	power	beta	oscillations	

observed	in	vivo	(Fig.	1.4A)	are	primarily	mediated	by	N-type	currents.	

	

	

	

Figure	2.1	Experimental	results	motivating	the	model	A)	CSD	analysis	of	an	odor	
evoked	gamma	oscillation	(left)	followed	by	a	beta	oscillation	(right)	shows	that	both	
oscillations	arise	at	the	same	layer	of	the	OB.	B)	Muscarinic	agonists	convert	GC	AHP	to	
ADP,	which	increases	GC	excitability.	C)	Sufficiently	strong	glomerular	stimulations	
trigger	GC	ADP	that	can	last	over	1	s.	(A)	from	Neville	&	Haberly	(2003),	(B)	from	
Pressler	et	al	(2007),	(C)	from	Egger	(2008)		
	

time	(ms)	
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2.2	Methods	
	

2.2.1	Model	Architecture	
	

In	the	rat	OB,	excitatory	MCs	form	reciprocal	dendrodendritic	connections	

between	their	lateral	dendrites	and	the	spines	on	GCDs.	MC	lateral	dendrites	extend	

broadly	across	the	OB	and	support	bi-directional	action	potential	propagation,	

allowing	MCs	and	GCs	on	opposite	sides	of	the	OB	to	be	synaptically	connected.	Our	

model	represents	a	subset	of	this	network,	with	45	MCs	and	720	GCDs.	Each	MC	is	

reciprocally	connected	to	30%	of	the	GCD	population	(Fig.	2.2),	similar	to	previous	

models	(De	Almeida	et	al.,	2013;	Linster	et	al.,	2009),	yielding	a	total	of	9,720	MC-GC	

dendrodendritic	synapses.	Our	model	MCs	do	not	represent	individual	cells,	but	

rather	the	population	of	MCs	associated	with	a	particular	GLO.	Although	the	density	

of	Na+	channels	is	known	to	vary	slightly	along	the	length	of	MC	lateral	dendrites	

(Migliore	and	Shepherd,	2002),	in	our	model	all	excitatory	synaptic	weights	from	

MCs	to	GCs	are	equal.	

Our	model	architecture	is	motivated	by	five	key	experimental	findings:	1)	

Gamma	and	beta	oscillations	both	have	dipoles	centered	in	the	EPL	where	MC-GC	

dendrodendritic	synapses	are	formed	(Neville	and	Haberly,	2003a);	2)	GCs	can	

release	GABA	in	a	graded	(spike-independent)	fashion	dependent	on	NMDA	and	

VDCC	Ca2+	currents	(Isaacson	and	Strowbridge,	1998;	Schoppa	et	al.,	1998a;	

Isaacson,	2001);	3)	GCs	spike	at	very	low	rates	in	awake	animals	compared	to	

cortical	interneurons	(Cazakoff	et	al.,	2014);	4)	Beta	oscillations	require	intact	

centrifugal	projections	to	the	olfactory	bulb	(Neville	and	Haberly,	2003a;	Martin	et	

al.,	2006a),	many	of	which	target	the	GC	layer	and	regulate	GC	excitability;	5)	GCs	
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can	undergo	periods	of	increased	excitability	with	sustained	elevated	membrane	

potentials	propagating	faithfully	into	their	distal	dendrites	(Pressler	et	al.,	2007a;	

Egger,	2008a).	We	represent	all	these	sources	of	excitability	control	by	a	single	

parameter,	the	GCD	resting	potential	Vrest,GC.	Because	we	have	direct	control	over	the	

excitability	of	the	GCDs,	we	do	not	explicitly	model	the	GC	soma,	whose	synaptic	

integration	and	bidirectional	signal	propagation	properties	are	complex	and	not	yet	

fully	understood	(Balu	et	al.,	2007;	Egger	et	al.,	2005;	Inoue	&	Strowbridge,	2008).	

Instead,	we	only	model	the	entire	GC	dendritic	tree	as	a	single	unit,	which	receives	

inputs	from	multiple	MCs	(Fig.	2.2).	In	the	real	system,	GC	dendritic	spines	can	act	

GC excitability 
controlled by 

Vrest, GC 

	

MC/GCD 
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Figure	2.2.	Schematic	of	the	reciprocal	dendrodendritic	MC-GC	model.	There	are	45	
MCs,	and	720	GCDs.	Each	MC	represents	the	population	of	MCs	associated	with	a	glomerulus	
(GLO).	The	GLO	and	GC	soma,	represented	by	empty	circles,	are	not	explicitly	modeled.	Each	
MC	is	randomly	connected	to	216	GCDs	(30%	of	the	population).	MCs	only	express	GABARs,	
while	GCs	express	AMPARs,	NMDARs,	and	N-Type	channels.	Ca2+	flow	through	NMDA	and	N-
Type	receptors	drives	release	of	GABA	vesicles,	modeled	as	a	graded	inhibitory	current.	
NMDA	and	AMPA	currents	have	a	spike-triggered	activation,	which	represents	the	binding	
of	glutamate	released	from	MCs	following	a	spike.		
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independently	of	one	another	and	influence	each	other	via	low-threshold	Ca2+	

spikes	(Egger	et	al.,	2005;	Egger,	2008),	but	this	scenario	is	not	captured	by	our	

model.	Inhibitory	coupling	between	GCs	is	also	omitted	for	simplicity.	All	

simulations	were	implemented	in	MATLAB®	R2014b,	with	a	forward	Euler	

integration	time	step	of	0.1	ms.	Simulations	with	forward	and	backward	Euler	

methods	were	found	to	give	identical	results.	The	code	for	has	been	made	available	

through	the	ModelDB	under	accession	number	185464	(Hines	et	al.,	2004).	

	

2.2.2	Neuron	and	Synapse	Equations	

MCs	and	GCDs	are	modeled	as	single	compartments	whose	membrane	

potentials	evolve	in	time	according	to		

𝜏𝑉 = −𝑉 +𝑊!!!" ∗ 𝐼!!!" + 𝑉!"#$                                                              (2.1)	

where	𝜏	is	the	membrane	time	constant,	Wchan	is	a	dimensionless	synaptic	weight	

representing	the	ratio	of	maximum	conductance	of	a	particular	channel	to	the	

membrane	leak	conductance	(from	here	on	referred	to	as	synaptic	weight),	𝐼!!!"	is	

the	synaptic	current	through	a	particular	channel,	and	Vrest	is	the	resting	membrane	

potential.	We	have	chosen	units	such	that	resistance	=	1,	and	therefore	the	currents	

and	membrane	voltages	are	in	the	same	units,	but	are	not	in	SI	units.	The	critical	

parameter	in	this	model	is	Vrest,GC	,	the	resting	potential	of	the	GC	dendritic	tree.	The	

MCs	obey	leaky	integrate	and	fire	dynamics	with	a	hard	threshold	7	mV	above	

resting	potential.	Probabilistic	firing	is	achieved	by	introducing	noise	into	the	MC	

external	inputs.	Although	recent	experiments	have	detected	regenerative	Na2+	

NMDAR	
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spikes	in	GC	dendrites	(Bywalez	et	al.,	2015),	the	GCDs	do	not	fire	action	potentials	

in	this	model.	

All	synaptic	currents	in	the	model	are	conductance-based	currents	that	obey	

the	general	form	

𝐼 = 𝛼 𝑡,𝑉, 𝐶𝑎 𝐸 − 𝑉                                                      (2.2)	

where	𝛼(𝑡,𝑉, 𝐶𝑎 )	is	the	product	of	normalized	channel	activation	and	inactivation	

variables	(may	depend	on	time,	membrane	voltage,	and	internal	calcium	

concentration	 𝐶𝑎 ),	and	E	is	the	Nernst	potential	of	the	ionic	species	flowing	

through	the	channel.		

Each	MC	receives	two	currents:	1)	Iext,	an	external	sensory	input;	2)	IGABA,	a	

graded	inhibitory	GABA	(Cl-)	current	from	GCs.	Each	GCD	receives	three	currents:	1)	

IAMPA,	an	AMPA	(Na2+)	current	with	MC	spike-triggered	conductance;	2)	INMDA,	an	

NMDA	(Ca2+)	current	with	MC	spike-triggered	conductance	and	voltage-dependent	

Mg2+	block	(Jahr	and	Stevens,	1990;	Baszczak	and	Kasicki,	2005);	3)	IN,	an	N-Type	

(Ca2+)	current	with	voltage-dependent	activation	and	Ca2+	dependent	inactivation	

(Amini	et	al.,	1999;	Zeng	et	al.,	2009).	The	mathematical	details	of	the	currents	are	

summarized	in	Table	2.1.	

	

2.2.3	External	excitatory	input	to	MCs	

Following	De	Almeida	et	al.	(2013),	the	external	input	𝐼!"#	to	each	MC	is	

modeled	by	a	continuous	variable	that	represents	the	average	instantaneous	firing	

probability	of	the	population	of	olfactory	sensory	neurons	innervating	a	given	GLO.	

We	do	not	model	respiration	because	the	inhibitory	circuits	mediating	gamma/beta		
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oscillations	are	dissociable	from	those	mediating	theta	(Fukunaga	et	al.,	2014)	and	

because	we	are	interested	in	investigating	the	effect	that	GC	excitability	alone	has	on	

MC	synchronization,	which	to	our	knowledge	has	not	yet	been	done.	To	make	MC	

spike	firing	probabilistic	we	include	an	input	noise	𝜎!"#𝜂!"#,! 	where	𝜎!"#	is	a	scalar	

and	𝜂!"#,! 	is	drawn	from	the	standard	normal	distribution	for	the	i’th	MC	on	each	

Table	2.1.	MC	and	GCD	synaptic	current	equations.	The	index	i	always	refers	to	MCs	and	
index	j	always	refers	to	a	GCDs.	[Ca2+]	represents	GCD	internal	calcium	concentration.	
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timestep.	Each	MC	represents	the	average	activities	of	all	the	MCs	innervating	a	

particular	GLO	and	therefore	this	model	does	not	capture	variations	in	the	activity	

of	individual	MCs	innervating	the	same	GLO.	Periglomerular	cells,	which	normally	

gate	sensory	inputs	to	MCs,	are	not	included	in	the	model,	because	we	are	interested	

only	in	the	modulation	of	MC	activity	by	GCDs.	Instead,	continuous	sensory	input	is	

fed	directly	into	MCs.	The	input	weight	to	the	i’th	MC	Wext,i	(Table	2.1)	is	determined	

by	a	scalar	𝜎! ,	a	number	𝜂!,! 	chosen	randomly	from	a	uniform	distribution	on	[0	1],	

and	a	minimum	weight	Wmin,ext.	For	most	simulations	we	set	𝜎!"#	=	0.001	and	

𝑊!"#,!"#	=	0.013,	resulting	in	uniformly	distributed	free	running	(uninhibited)	MC	

firing	rates	between	130	and	150	Hz.	These	uninhibited	firing	rates	are	much	higher	

than	experimentally	recorded	firing	rates	of	individual	MCs	when	inhibition	is	

blocked	(Lepousez	and	Lledo,	2013a).	However,	each	of	our	model	MCs	represents	a	

population	of	MCs	associated	with	an	individual	GLO,	and	not	a	single	MC.	Thus,	high	

unsynchronized	firing	rates	are	expected.	Furthermore,	our	model	aims	to	simulate	

the	beta	oscillations	induced	by	high	volatility	odors,	which	may	bind	OSNs	quickly	

and	uniformly,	causing	stronger	convergent	inputs	onto	MCs.	We	find	that	the	

network	requires	this	strong	external	drive	in	order	to	generate	the	full	gamma	to	

beta	range	as	GC	excitability	is	varied.	

	

2.2.4	Graded	inhibitory	input	to	MCs	

We	assume	a	graded	form	of	inhibition	from	GCDs	onto	MCs,	which	is	

proportional	to	the	probability	of	GABA	vesicle	release	𝑃!"#"$%" .	The	release	
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probability	is	only	dependent	on	intracellular	[Ca2+]	(Table	2.1).	Thus,	the	AMPA	

current	can	only	drive	graded	inhibition	indirectly	by	activating	NMDA	and	N-type	

channels.	Much	like	MC	IPSCs	recorded	in	slice	(Schoppa	et	al.,	1998),	the	time-

course	of	the	model	MC	IPSCs	follows	the	slow	exponential	decay	of	NMDA	and	N-

type	channels.	The	proportionality	𝜌!"	between	Ca2+	current	and	Ca2+	concentration	

is	chosen	such	that	[Ca2+]	is	typically	between	0.1	and	1	μM,	a	physiologically	

realistic	range	for	[Ca2+]	in	a	dendritic	spine	(Higley	and	Sabatini,	2012).	The	

threshold	for	maximum	Ca2+	release,	 𝐶𝑎 !! ,	is	chosen	so	that	the	maximum	𝑃!"#"$%" 	

is	near	1	in	the	high	excitability	condition.	Experiments	have	shown	that	DDI	is	

largely	unaffected	by	intracellularly	injected	Ca2+	chelators,	suggesting	that	the	

GABA	release	machinery	in	GC	dendrites	is	tightly	coupled	to	the	Ca2+	influx	

following	MC	spikes	(Isaacson,	2001).	Because	the	model	N-type	current	admits	a	

constant	Ca2+	influx	due	to	nonzero	voltage-dependent	activation	even	in	the	

absence	of	MC	spikes	there	is	a	constant	internal	baseline	[Ca2+],	which	we	call	

𝐶𝑎 !"#$%&'$ 	(see	Appendix	I	for	derivation	of	 𝐶𝑎 !"#$%&'$).	We	subtract	 𝐶𝑎 !"#$%&'$ 	in	

the	calculation	of	𝑃!"#"$%" 	to	ensure	that	tonic	inhibition	is	not	released	onto	MCs	in	

the	absence	of	MC	spikes	(Fig.	2.3D).	

	

2.2.5	Excitatory	and	Ca2+	currents	in	GCDs	

The	model	GCDs	include	AMPAR,	NMDA,	and	N-type	currents.	The	synaptic	

time	course	𝑠(𝑡)	of	the	AMPA	and	NMDA	currents	is	modeled	as	a	difference	of	

exponentials	with	rise	and	decay	times	that	represent	the	opening	and	closing	of	the	

channels	following	glutamate	binding	(Brunel	and	Wang,	2003).	The	NMDA	current	
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INMDA	also	contains	an	additional	voltage-dependent	activation	𝐵(𝑉!"#)	(Table	2.1)	

which	represents	the	Mg2+	block	as	determined	by	Jahr	&	Stevens	(1990).	Because	

the	connections	are	probabilistic,	some	GCDs	may	be	connected	to	as	few	as	4	MCs	

while	others	may	be	connected	to	as	many	as	22.	The	synaptic	weight	of	the	AMPA	

current	WAMPA,GC	is	chosen	such	that	the	magnitude	of	membrane	depolarization	for	

A B 

Iext	

C D 

Figure	2.3.	Model	currents	A:	AMPA,	NMDA,	and	N-type	currents	of	a	single	GCD	connected	to	14	
MCs	are	plotted.	A	5	ms	long	current	pulse	(Iext,	amplitude	not	to	scale)	was	initiated	at	t	=	50	ms,	
causing	all	14	MCs	to	fire	a	single	action	potential	almost	simultaneously.	The	latency	of	the	currents	
from	onset	of	Iext	corresponds	to	the	integration	time	of	the	MCs	before	spikes.	Simulations	were	
performed	under	low	(Vrest,GC	=	-70	mV,	blue)	and	high	(Vrest,GC	=	-60	mV,	red)	GC	excitability	
conditions.	The	N-type	current	was	simulated	with	(solid	lines)	and	without	(dashed	lines)	CDI.	B:	N-
type	activation	(m)	and	inactivation	(h)	variables	and	their	product	(m*h)	for	the	N-type	currents	
shown	in	A	are	plotted.	CDI	is	prevented	by	evaluating	h	at	[Ca2+]baseline,	leaving	it	constant.	Deflections	
near	t	=	0	are	transients	which	can	be	ignored.	CDI	greatly	reduces	the	magnitude	of	the	deflections	
from	the	baseline	in	m	*	h,	but	does	not	change	their	overall	shape.	C:	Internal	[Ca2+]	traces	resulting	
from	the	NMDA	and	N-type	currents	shown	in	part	A	are	plotted.	Dotted	lines	indicate	[Ca2+]baseline	for	
low	and	high	excitability	conditions.	D:	The	Prelease	traces	derived	from	the	internal	[Ca2+]	traces	
shown	in	part	C	are	plotted.	Subtraction	of	[Ca2+]baseline	from	[Ca2+]	ensures	that	Prelease	is	0	until	a	MC	
spike	is	fired.	The	presence	of	CDI	significantly	decreases	Prelease,	but	does	not	change	the	temporal	
structure	of	GABA	release.	
	



	 26	

a	GCD	connected	to	an	average	number	of	14	MCs	is	near	7	mV,	which	is	comparable	

to	the	experimentally	measured	average	size	of	AMPA-mediated	depolarization	of	

GC	dendrites	(Cang	and	Isaacson,	2003a).	The	experimentally	recorded	amplitude	of	

NMDA	current	is	usually	smaller	than	the	AMPA	current,	though	this	is	not	always	

the	case	(Schoppa	et	al.,	1998).	For	our	simulations	WNMDA,GC	is	chosen	such	that	the	

amplitude	of	INMDA	is	~	1/4	that	of	IAMPA	(Fig.	2.3A).	The	NMDA	decay	time	constant	

is	75	ms	in	most	of	our	simulations,	close	to	the	value	reported	in	physiological	

concentrations	of	Mg2+	(Isaacson,	2001;	Schoppa	et	al.,	1998).	With	these	

parameters,	GCD	membrane	depolarization	closely	resembles	that	which	is	seen	in	

experiments,	with	fast	decaying	AMPA-mediated	and	slow	decaying	NMDA-

mediated	components.	

	 The	N-type	current	IN	includes	a	voltage-dependent	activation	variable,	𝑚! ,	

and	a	Ca2+	dependent	inactivation	(CDI)	variable,	ℎ! .	The	activation	curves	of	N-type	

channels	reported	in	the	literature	are	not	the	same	across	all	neuronal	cell	types,	

with	half	activation	voltages	ranging	from	-45	mV	(Amini	et	al.,	1999;	Zeng	et	al.,	

2009)	to	-3	mV	(Evans	et	al.,	2013).	To	our	knowledge	the	activation	curve	of	N-type	

channels	in	OB	GCs	has	not	yet	been	measured.	We	choose	to	use	a	model	that	

begins	to	activate	at	relatively	low	potentials	so	that	IN	is	sensitive	to	increases	in	GC	

excitability,	which	are	at	most	only	about	25	mV	above	the	resting	potential.	This	

ensures	that	IN	alone	can	drive	slowly	decaying	dendrodendritic	inhibition	when	

excitability	is	increased,	as	has	been	shown	in	slice	(Isaacson,	2001).	For	most	of	our	

simulations	WN,GC	is	chosen	so	that	the	N-type	current	is	approximately	1/3	the	

magnitude	of	the	NMDA	current	(Fig.	2.3	A),	a	choice	that	is	motivated	by	Ca2+	
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imaging	studies	which	have	shown	that	although	NMDA	channels	mediate	the	

majority	of	Ca2+	entry,	VDCCs	still	mediate	a	sizeable	portion	(Egger,	2008a;	

Bywalez	et	al.,	2015).	WN,GC	is	so	much	greater	than	WNMDA,GC	because	the	product	of	

the	N-type	activation	and	inactivation	terms	is	on	order	of	10-5,	while	the	NMDA	

activation	term	is	on	the	order	of	1.This	model	does	not	include	voltage-dependent	

inactivation.	Because	in	most	of	our	simulations	the	GC	membrane	potential	does	

not	exceed	-40mV	and	inactivation	only	becomes	significant	above	-20	mV	

(Johnston	&	Wu,	1995;	Evans	et	al.,	2013),	voltage-dependent	inactivation	would	

not	make	a	large	contribution	here	even	if	it	were	included.	

The	effect	of	CDI	is	to	drive	the	N-type	inactivation	variable	in	the	opposite	

direction	of	the	activation	variable,	as	shown	in	Figure	2.3B,	causing	a	net	negative	

deflection	of	IN	shown	in	Figure	2.3A.	Without	CDI,	both	INMDA	and	IN	fully	contribute	

to	the	internal	[Ca2+]	buildup,	resulting	in	a	high	amplitude	GABA	release	profile	that	

saturates	in	the	high	excitability	condition	(Fig.	2.3D).	When	CDI	is	present	INMDA	

becomes	the	dominant	source	of	Ca2+	for	driving	graded	inhibition	of	MCs.	Even	

though	CDI	significantly	reduces	the	[Ca2+]	amplitude	and	reverses	the	direction	of	

the	N-type	current	deflection,	it	does	not	change	the	temporal	structure	of	graded	

inhibition	(Fig.	2.3C,	D).	Therefore,	the	model	is	capable	of	generating	the	full	

gamma	to	beta	range	with	and	without	CDI	as	long	as	the	excitatory	and	inhibitory	

weights	are	adjusted	accordingly.	CDI	is	included	in	all	subsequent	simulations.	

Due	to	low	internal	Ca2+	concentrations,	the	Nernst	potential	for	Ca2+	is	

sensitive	to	changes	in	intracellular	Ca2+	and	is	calculated	on	each	step	of	the	

simulation	by	the	Nernst	equation	
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𝐸!" =
𝑅𝑇
𝑧𝐹 𝑙𝑛

[𝐶𝑎]!"#
[𝐶𝑎]!"

                                                        (2.3)	

where	R	=	8.31	J/(mole	*	K)	is	the	ideal	gas	constant,	T	=	300	K	is	the	temperature,	z	

=	2	is	the	valence	of	the	Ca2+	ion,	and	F	=	96,485	Coul/mole	is	Faraday’s	constant.	

Assuming	an	extracellular	calcium	concentration	[𝐶𝑎]!"#=	1.5	mM	(Higley	and	

Sabatini,	2012)	𝐸!"	is	typically	near	100	mV.	

	

2.2.6	Simulation	and	spectral	analysis	of	local	field	potential	

The	model	is	simulated	for	700	ms.	The	LFP	is	generated	by	smoothing	and	

averaging	the	MC	IPSCs	(ILFP)	or	MC	membrane	voltages	(VLFP)	using	MATLAB’s	

built	in	smoothts	function	with	a	box	filter	width	of	5	ms.	The	ILFP	and	VLFP	have	

nearly	identical	frequencies,	but	differ	notably	in	phase	and	power,	which	we	

discuss	in	Figures	2.4	and	2.5.	Only	simulation	data	after	100	ms	is	used	in	order	to	

avoid	transients	due	to	initial	conditions	of	the	simulation.	For	most	of	our	

simulations	we	only	present	the	ILFP.	Recent	work	has	shown	that	in	vivo	LFPs	

correlate	more	strongly	with	IPSCs	and	EPSCs	than	with	membrane	potentials	

(Atallah	and	Scanziani,	2009;	Mazzoni	et	al.,	2015).	Unless	otherwise	stated,	the	

power	spectra	are	computed	by	MATLAB’s	fft	function	on	the	mean-subtracted	

LFP	and	we	report	the	LFP	frequency	as	the	peak	frequency	of	the	power	spectrum	

between	7	Hz	and	100	Hz.		For	reference,	all	power	plots	indicate	the	maximum	

power	of	the	noise	floor,	which	we	define	as	the	maximum	power	of	the	residual	

oscillation	due	to	common	inputs	to	MCs	when	inhibition	is	removed.	In	Figure	2.6	

we	perform	a	continuous	Morlet	wavelet	transform	with	MATLAB’s	cwt	function	in	
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order	to	display	the	instantaneous	LFP	frequency	in	response	to	sudden	changes	in	

GC	excitability.	We	use	a	frequency	range	of	frange	=	5	–	80	Hz	and	the	standard	

frequency–scale	relation,	fc*sf/frange	(where	fc	is	central	frequency	of	wavelet	and	sf	

is	sampling	frequency),	to	define	the	scale	range.	

Using	the	frequency	obtained	from	the	FFT	of	the	LFP	(𝐿𝐹𝑃!")	we	also	define	

a	simply	spike	synchrony	measure,	which	we	call	the	spike-frequency	deviation	

(SFD),	as	

𝑆𝐹𝐷 =  𝑁!"#$%! −  𝑁!" 0.6𝐿𝐹𝑃!"                                             (2.4)	

where	𝑁!"#$%!	is	the	actual	number	of	spikes	fired	in	the	last	0.6	s	of	simulation	and	

the	second	term	is	the	number	of	spikes	that	would	be	fired	in	0.6	s	if	each	MC	fired	

at	exactly	the	LFP	frequency	𝐿𝐹𝑃!" .	The	deviation	is	0	when	each	MC	fires	exactly	

once	per	LFP	oscillation	cycle,	and	is	greater	than	0,	due	to	the	absolute	value,	when	

MCs	fire	more	often	or	less	often	than	once	per	cycle.	

We	also	compute	the	spike-field	coherence	(SFC)	using	the	coherencycpt	

function	included	in	the	Chronux	version	2.11	toolbox	for	MATLAB	(Bokil	et	al.,	

2010a).	We	used	a	time-half-bandwidth	of	5	with	9	tapers	over	a	frequency	range	of	

5	Hz	to	120	Hz.	Finite	sampling	corrections	were	included,	although	they	did	not	

significantly	alter	the	results.	The	SFC	produces	a	coherence	spectrum	between	each	

MC	and	the	LFP,	so	we	report	the	peak	coherence	averaged	over	the	45	MCs.	The	

SFD	and	SFC	measures	are	both	used	in	Figure	2.5.	
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Figure	2.4.	Simulations	in	low,	moderate,	and	high	GC	excitability	regimes	A:	The	MC-GC	
dendrodendritic	network	activity	was	simulated	under	low	(A.i),	moderate	(A.ii),	and	high	(A.iii)	
GC	excitability	conditions	in	response	to	constant	ORN	input	current	for	500	ms.	The	top	three	
rows	show	the	AMPA,	NMDA,	and	N-type	currents	of	all	720	GCDs	for	each	condition.	The	AMPA	
current	is	scaled	by	½	so	that	all	axes	fit	on	the	same	scale.	The	N-type	current	has	a	constant	
offset	that	increases	with	Vrest,GC	due	its	voltage-dependent	activation.	The	fourth	row	shows	the	
GABA	release	probabilities,	Prelease,	for	each	of	the	720	GCDs	resulting	from	the	inward	Ca2+	
currents	(INMDA	and	IN).	The	fifth	row	shows	MC	raster	plots	with	cells	ordered	from	bottom	to	top	
by	increasing	input	strength.	The	bottom	row	shows	the	LFP	calculated	from	the	average	MC	
IPSCS	(ILFP,	black)	and	MC	membrane	voltages	(VLFP,	gray).	B:	For	each	of	the	three	conditions	
power	spectra	were	calculated	from	the	ILFP	generated	by	the	global	population	as	well	as	from	
the	top	15	MCs	receiving	the	strongest	external	input,	the	bottom	15	MCs	receiving	the	weakest	
external	input,	and	the	VLFP	of	the	global	population.	The	y-axes	of	the	three	plots	are	the	same,	
but	the	x	axes	differ.	The	horizontal	dashed	black	line	indicates	the	maximum	power	of	the	noise	
floor.	
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Figure	2.5.	Population	activity	as	a	function	of	GC	excitability	(Vrest,GC)	A.i:	The	simulated	ILFP	(pink)	
and	VLFP	(black)	frequencies	of	the	full	model	decrease	continuously	with	increased	GC	excitability,	
represented	by	Vrest,GC.	Shaded	regions	denote	the	standard	deviation	from	the	mean	from	ten	simulations.	
Approximate	frequency	ranges	for	high/low	gamma	and	beta	states	are	indicated	to	the	left.	A.ii:	The	
voltage-dependent	activation	curves	of	N-type	and	NMDA	channels	are	plotted.	A	schematic	showing	the	
average	AMPA	depolarization	from	the	GCD	resting	potential	(7mV)	is	shown	for	low	excitability	(blue)	
and	high	excitability	(red)	conditions.	In	the	excited	state	the	depolarization	is	high	enough	to	significantly	
activate	both	NMDA	and	N-type	currents	(see	where	the	vertical	dotted	red	line	crosses	the	activation	
curves).	A.iii:	The	power	of	the	ILFP	and	VLFP	from	Ai	is	shown.	The	horizontal	dashed	line	represents	the	
power	of	the	noise	floor,	where	inhibition	can	no	longer	sustain	oscillations.	B:		The	means	of	the	spike-
frequency	deviation	(SFD,	dashed	line,	left	axis)	and	average	maximum	spike-field	coherence	(SFC,	dotted	
curve,	right	axis)	for	the	simulations	in	A	are	shown.	Standard	deviations	are	omitted	for	clarity.	The	
minimum	of	the	SFD	is	marked	by	the	vertical	dashed	line	and	labeled	Vbal.	To	the	left	of	Vbal	some	MCs	are	
over	excited,	while	to	the	right	of	Vbal	some	MCs	are	over	inhibited.	The	maximum	of	the	SFC	spectrum	
between	each	MC	spike	train	and	the	global	ILFP	was	averaged	across	all	45MCs	to	obtain	each	point	of	
the	plot.	C.i:	The	excitability	of	a	randomly	chosen	subpopulation	of	GCDs	is	varied	while	holding	the	
remainder	at	a	resting	potential	of	-75	mV.	Each	of	the	curves	converges	to	the	point	where	the	entire	GCD	
population	is	in	the	same	state	at	-75	mV.	The	parameters	for	this	simulation	are	shown	in	Table	2.2.	Each	
of	the	7	curves	corresponds	to	a	randomly	selected	subpopulation	ranging	from	30%	(light	gray)	to	100%	
(black).	Dotted	lines	indicate	the	borders	of	the	beta	regime.	C.ii:	The	peak	power	of	curves	in	C.i.	The	
black	dashed	line	indicates	the	maximum	power	of	the	noise	floor.	The	inset	shows	the	cross	section	of	
power	at	Vrest,GC	=	-63	mV.	The	power	is	highest	when	only	30%	of	the	GCDs	are	in	a	high	excitability	state.	
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2.3	Modeling	Results	
	

Waking	rats	and	mice	show	stereotypic	transitions	from	gamma	to	beta	

oscillations	after	a	few	trials	sniffing	highly	volatile	odorants	or	after	learning	to	

correctly	discriminate	odors	in	operant	tasks	(Fig.	1.4A).	Both	oscillations	occur	in	a	

single	sampling	bout,	and	the	switch	can	be	very	fast	(10-100	ms).	This	has	led	us	to	

propose	that	a	fast	change	in	a	parameter	value,	such	as	GC	excitability,	could	

produce	a	fast	change	in	temporal	properties.	We	propose	a	mechanism	by	which	

the	same	circuit	can	generate	both	gamma	and	beta	oscillations	with	a	fast	change	in	

GC	excitability.	

	

2.3.1	GC	excitability	controls	LFP	frequency	through	activation	of	NMDA	

and	N-type	currents	

We	show	the	activity	of	the	full	model	under	low,	moderate,	and	high	GC	

excitability	conditions	in	Figure	2.4.	The	model	parameters	for	this	simulation	are	

presented	in	Table	2.2.	There	is	a	large	variation	in	synaptic	current	amplitude	

among	the	720	GCDs	(Fig.	2.4A,	rows	1-3).	This	variation	is	due	to	differences	in	the	

number	of	MCs	connected	to	each	GCD,	with	the	fewest	numbering	near	4	and	the	

most	near	22.	GCDs	connected	to	higher	numbers	of	MCs	produce	higher	values	of	

Prelease	and	contribute	more	to	the	MC	IPSCs	than	GCDs	with	fewer	connections	(Fig.	

2.4A,	fourth	row).	For	the	choices	of	[Ca]th	and	𝜌!"	used	in	this	simulation	(see	Table	

2.2),	the	maximum	GABA	release	nearly	saturates	in	the	high	excitability	regime	

(Prelease	=	1;	Fig.	2.4A.iii).	The	N-type	current	(third	row)	has	a	non-zero	baseline	that	
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Parameter	 Value	(units)	 Description	 Reference	
Input	
Wext	
𝜎!"#	
MC	
𝜏!" 	
𝜏!"#!!,!" 	
𝜏!"#!!,!" 	
EAMPA	
𝜏!"#"!,!" 	
𝜏!"#"!,!" 	
EGABA	
Vrest,MC	
Vth,MC	
Vhyper	
WGABA,MC	
GCD	
𝜏!" 	
𝜏!"#!!,!" 	
𝜏!"#!!,!" 	
𝜏!"#$!,!" 	
𝜏!!"#!,!" 	
𝜏!"#$	
EAMPA	
ENMDA	
ECa(N)	
[Ca]out	
[Ca]th	
𝜌!"	
Vrest,GC	
WAMPA,GC	
WNMDA,GC	
WN,GC	

	
See	METHODS	
5	(mV/R)	
	
5	(ms-1)	
1	(ms-1)	
2	(ms-1)	
0	(mV)	
0.5	(ms-1)	
5	(ms-1)	
-80	(mV)	
-70	(mV)	
-63	(mV)	
-80	(mV)	
0.0125	
	
5	(ms-1)	
1	(ms-1)	
2	(ms-1)	
2	(ms-1)	
75	(ms-1)	
18	(ms-1)	
0	(mV)	
0	(mV)	
~	120	(mV)	
1500	(μM)	
1.5	(μM)	
100	
Varied	
0.03	
0.04	
250	

	
Input	current	weights	
Input	current	variability	
	
MC	membrane	time	constant	
MC	AMPA	rise	time	
MC	AMPA	decay	time	
MC	AMPA	reversal	potential	
MC	GABA	rise	time	
MC	GABA	decay	time	
GABA	reversal	potential	
MC	resting	potential	
MC	firing	threshold	
MC/GCD	hyperpolarization	potential	
MC	GABA	inhibitory	weight	
	
GCD	membrane	time	constant	
GCD	AMPA	rise	time	
GCD	AMPA	decay	time	
GCD	NMDA	rise	time	
GCD	NMDA	decay	time	
GCD	N-type	activation	time	constant	
GC	AMPA	reversal	potential	
GC	NMDA	reversal	potential	
GC	N-type	reversal	potential	
External	Ca2+	concentration	
Ca2+	threshold	for	maximum	GABA	rel.	
Proportionality	between	ICa	and	[Ca2+]	
GCD	resting	potential	
GCD	AMPA	excitatory	weight	
GCD	NMDA	excitatory	weight	
GCD	N-type	excitatory	weight	

	
N/A	
N/A	
	
De	Almeida	et	al.,	2013	
De	Almeida	et	al.,	2013	
De	Almeida	et	al.,	2013	
Brunel	&	Wang,	2003	
Brunel	&	Wang,	2003	
Brunel	&	Wang,	2003	
Cang	&	Isaacson,	2003	
De	Almeida	et	al.,	2013*	
Cang	&	Isaacson,	2003	
De	Almeida	et	al.,	2013*	
N/A	(Varied	in	Fig.	6,	8)	
	
De	Almeida	et	al.,	2013	
De	Almeida	et	al.,	2013	
De	Almeida	et	al.,	2013	
N/A	(Varied	in	Fig.	9)	
N/A	(Varied	in	Fig.	9)	
Amini	et	al.,	1999	
Brunel	&	Wang,	2003	
De	Almeida	et	al.,	2013	
Calculated	each	time	step	
Zeng	et	al.,	2009	
N/A	
N/A	
N/A	(Varied	in	most	Figs)	
Cang	&	Isaacson,	2003	
N/A	(Varied	in	Fig.	8)	
N/A	(Varied	in	Fig.	8)	

	

	

	

	

	 	

Table	2.2.	Parameters	for	the	full	model	simulation	presented	in	Figure	2.4.		
*	Voltages	are	shifted	down	by	-70	mV	from	De	Almeida	et	al.,	2013,	but	remain	the	same	
relative	distance	from	each	other.	
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increases	with	Vrest,GC	due	to	voltage-dependent	activation,	and	causes	tonically	

elevated	internal	[Ca2+].	This	[Ca2+]	baseline	is	subtracted	for	each	GCD	individually	

so	that	non-physiological	tonic	inhibition	is	prevented	(see	Appendix	I).	

	 Spike	rasters	line	up	with	LFP	fluctuations	in	each	frequency	range	(Fig.	2.4A,	

fifth	row).	Field	potential	can	be	simulated	either	from	current	or	voltage	(ILFP,	

VLFP);	the	two	oscillate	at	the	same	frequency,	but	are	phase	shifted	by	180o	(Fig.	

2.4A,	bottom	row).	We	can	understand	this	phase	shift	by	considering	what	happens	

after	a	MC	spike.	Immediately	following	a	spike	the	MC	membrane	voltage	

undergoes	hyperpolarization,	producing	a	trough	in	the	VLFP.	At	the	same	time,	

GCDs	experience	a	strong	inward	Ca2+	current	that	in	turn	triggers	a	strong	MC	IPSC,	

producing	a	peak	in	the	ILFP.	

GC	excitability	alone	can	control	the	frequency	of	network	oscillations	

through	activation	of	NMDA	and	N-Type	currents.	Under	low	excitability	conditions	

(Vrest,GC	=	-74	mV,	Fig.	2.4A.ii)	the	NMDA	and	N-type	currents	are	not	strongly	

activated,	so	inhibition	is	low	and	MCs	are	not	fully	synchronized	across	the	

population.	Physiological	MCs	are	known	to	skip	cycles	of	the	gamma	oscillation	

(Lagier	et	al.,	2004,	2007;	Bathellier	et	al.,	2006),	however	our	model	MCs	represent	

populations	of	MCs	associated	with	particular	glomeruli	and	thus	are	expected	to	

fire	on	each	cycle.	The	MCs	receiving	the	weakest	external	inputs,	towards	the	

bottom	of	the	raster	plot	in	Figure	2.4A.i,	are	able	to	synchronize,	but	those	

receiving	stronger	inputs	are	over-excited	and	fire	multiple	spikes	per	cycle.	This	

produces	low	amplitude	oscillations	falling	within	the	high	gamma	band	as	shown	in	

the	power	spectrum	(Fig.	2.4B.i).	When	Vrest,GC	is	increased	to	-68	mV	the	network	
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oscillation	frequency	falls	into	the	low	gamma	band.	The	increased	inhibition	

synchronizes	all	the	MCs	(representing	populations	associated	with	individual	

glomeruli),	which	leads	to	higher	power	LFPs	(Fig.	2.4A.ii,	fifth	row	&	2.4B.ii).	

Finally,	when	Vrest,GC	is	further	increased	to	-60	mV	the	network	oscillates	at	beta	

frequencies.	The	power	of	this	beta	state	is	lower	than	the	low	gamma	state	(Fig.	

2.4B.ii),	because	the	MCs	receiving	the	weakest	external	excitation	become	over-

inhibited	and	cease	firing	spikes.	

Shifts	in	the	balance	of	excitation	and	inhibition	to	MCs	explain	the	

differences	in	power.	When	GC	excitability,	and	hence	MC	inhibition,	is	low,	the	least	

excited	MCs	generate	the	largest	ILFP	signal	(Figure	2.4B.i).	In	contrast,	during	high	

GC	excitability,	the	most	excited	MCs	generate	the	largest	ILFP	signal	(Figure	

2.4B.iii).	This	is	because	when	GC	excitability	is	low	the	MCs	are	over	excited,	firing	

on	average	more	than	one	spike	per	LFP	cycle,	but	when	GC	excitability	is	high	the	

MCs	are	over-inhibited,	firing	on	average	less	than	one	spike	per	LFP	cycle.	Under	

moderate	GC	excitability	conditions,	excitation	and	inhibition	are	balanced	such	that	

nearly	all	the	MCs	become	synchronized	and	therefore	the	simulated	LFP	power	of	

any	subset	of	cells	is	very	close	to	the	global	LFP.	The	maximum	synchronization	at	

low	gamma	frequencies	in	our	model	agrees	with	recordings	in	awake	mice	which	

found	that	long	range	LFP	coherency	and	MC	spike	synchronization	occurs	at	low	

gamma,	but	not	high	gamma	frequencies	(Lepousez	and	Lledo,	2013a).	We	will	

show	later	that	the	balance	of	excitation	and	inhibition	causing	peak	power	in	the	

low	gamma	band	is	primarily	a	property	of	the	NMDA	currents,	while	N-type	

currents	show	a	balance	of	excitation	and	inhibition	in	the	beta	band	(see	2.3.5	
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Relative	contributions	of	NMDAR-	and	N-type	currents).	

	

2.3.2	Network	response	to	continuous	changes	in	GC	excitability	

A	continuous	change	in	GC	excitability	is	not	physiological,	but	it	gives	us	a	

qualitative	understanding	of	the	relationship	between	network	frequency	and	GC	

excitability.	As	Vrest,GC	sweeps	from	-75	mV	to	-55	mV,	LFP	frequency	changes	

continuously	(Fig.	2.5A.i).		The	ILFP	and	VLFP	frequencies	span	the	full	range	from	

high	gamma	to	beta	(approximate	frequency	ranges	indicated	to	the	left)	and	have	

nearly	identical	dependence	on	Vrest,GC,	differing	only	in	the	high	excitability	

condition	where	over-inhibition	tends	to	make	the	VLFP	frequency	slightly	lower	

than	the	ILFP.	The	curves	are	steeper	in	the	gamma	than	the	beta	regime,	indicating	

that	beta	frequencies	are	more	stable	with	respect	to	small	changes	in	Vrest,GC.	The	

decrease	in	LFP	frequency	in	response	to	an	increase	in	Vrest,GC	is	caused	by	

activation	of	NMDA	and	N-Type	currents	(Fig.	2.5A.ii).	The	average	AMPA-mediated	

membrane	depolarization	(7	mV)	from	Vrest,GC	=	-73	mV	(Fig.	2.5A.ii,	blue	curve)	

barely	activates	the	currents	(see	vertical	blue	dotted	line).	However,	the	same	

depolarization	from	Vrest,GC	=	-60	mV	(red	curve)	significantly	activates	the	currents	

(see	vertical	red	dotted	line).	Depending	on	how	many	MCs	are	connected	to	a	

particular	GCD,	the	AMPA-mediated	membrane	depolarization	can	range	from	

approximately	2	mV	to	18	mV,	thus	activating	NMDA	and	N-Type	currents	to	

varying	degrees.	

	 The	ILFP	and	VLFP	power	plots	overlap	much	less	than	their	frequencies	

(Fig.	2.5A.iii).	The	ILFP	and	VLFP	power	values	are	nearly	identical	in	the	high	
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gamma	regime,	increasing	dramatically	with	Vrest,GC	as	increased	inhibition	

synchronizes	the	entire	MC	population.	The	power	peaks	in	the	low	gamma	regime,	

when	there	is	a	balance	of	excitation	and	inhibition	onto	MCs	such	that	all	MCs	are	

synchronized	(as	described	in	Fig.	2.4).	Finally,	as	the	system	approaches	the	beta	

regime,	some	MCs	become	over-inhibited	and	ILFP	and	VLFP	power	drops	off,	with	

the	VLFP	falling	more	sharply	than	the	ILFP.	Not	all	of	the	oscillations	generated	by	

the	model	are	physiological,	because	we	explore	a	wider	parameter	space	than	what	

is	available	to	the	real	system;	such	high	power	in	the	low	gamma	regime	is	rarely	

seen	in	vivo.	However,	this	parameter	exploration	allows	us	to	characterize	

properties	of	the	system	that	otherwise	may	not	be	understood.	In	a	later	section	we	

show	the	model	response	to	a	more	physiologically	realistic	fast	change	in	GC	

excitability	(see	2.3.4	Network	response	to	fast	change	in	GC	excitability).	

To	show	that	the	power	peak	in	the	low	gamma	band	is	indeed	due	to	a	

balance	of	excitation	and	inhibition,	where	the	MC	population	fires	close	to	one	

spike	per	cycle,	we	devise	a	simple	measure	that	we	call	the	spike-frequency	

deviation	(SFD;	see	Methods	Eq.	2.4).	The	SFD	measures	the	deviation	from	the	

number	of	spikes	expected	if	all	MCs	fire	exactly	once	per	LFP	cycle	(SFD	=	0	if	all	

MCs	fire	exactly	1	spike	per	cycle).	In	addition,	we	also	calculate	the	spike-field	

coherence	(SFC),	which	measures	the	phase	locking	between	spikes	and	LFPs	(see	

Methods).	We	use	the	ILFP	in	calculating	the	SFD	and	SFC	measures,	though	using	

the	VLFP	produces	nearly	indistinguishable	curves.	

The	SFC	and	SFD	measure	spiking	coherence	with	the	LFP	and	deviations	in	

spike	rate,	respectively,	associated	with	changing	GC	excitability	(Fig.	2.5B).	The	
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population	averaged	SFC	is	at	a	maximum	when	SFD	is	at	a	minimum	and	MCs	are	

closest	to	the	balanced	condition	(Vbal	~	-71	mV).	MCs	are	over-excited	when	Vrest,GC	

<	Vbal	and	over-inhibited	when	Vrest,GC	>	Vbal.	When	the	number	of	MC	spikes	deviates	

from	the	number	expected	at	maximum	synchrony,	the	VLFP	is	decreased,	and	

therefore	the	SFD	looks	almost	like	a	mirror	reflection	of	the	VLFP.	The	SFC,	on	the	

other	hand	has	a	much	broader	peak	similar	to	the	ILFP,	because	it	only	measures	

synchrony,	not	the	number	of	firing	MCs.	The	peaks	of	ILFP	and	VLFP	power	in	

Figure	2.5A.iii	both	correspond	to	maximally	synchronous	conditions,	but	by	

construction	the	VLFP	is	more	sensitive	to	MC	spiking,	while	the	ILFP	is	more	

sensitive	to	synchronized	current	flow.	Overall,	the	ILFP	and	VLFP	are	quite	similar.	

However,	physiological	LFP	signals	have	been	shown	to	follow	synaptic	currents	

more	closely	than	membrane	voltages	(Atallah	and	Scanziani,	2009;	Mazzoni	et	al.,	

2015),	and	so	we	choose	to	report	the	frequency	and	power	of	the	maximum	peak	in	

the	ILFP	spectrum	for	the	remainder	of	the	paper,	unless	otherwise	stated.	

So	far	we	have	modulated	the	excitability	of	the	entire	population	of	GCDs.	

Such	a	broad	modulation	of	excitability	could	potentially	be	mediated	by	diffusion	of	

acetylcholine	released	from	cholinergic	fibers	(Pressler	et	al.,	2007a;	Ma	and	Luo,	

2012)	or	other	neuromodulators.	However,	odorants	excite	only	a	fraction	of	

downstream	cortical	neurons,	which	in	turn	feed	back	onto	a	subpopulation	of	GCs	

(Mouret	et	al.,	2009;	Poo	&	Isaacson,	2009);	thus,	the	excitability	of	only	a	

subpopulation	of	GCs	may	be	modulated.	We	therefore	continuously	vary	the	

excitability	of	randomly	chosen	GCD	subpopulations	of	decreasing	size	while	

holding	the	remainder	at	a	resting	potential	of	-75	mV	in	Figure	2.5C.	Modulating	
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the	excitability	of	subpopulations	as	small	as	40%	produces	LFP	oscillations	that	

still	span	the	full	gamma	to	beta	range	(Fig.	2.5C.i).	Beta	oscillation	power	is	actually	

higher	when	the	size	of	the	excited	GCD	population	is	reduced	(inset	of	Fig.	2.5C.ii).	

This	is	because	MCs	in	the	beta	state	are	over-inhibited,	and	reducing	the	population	

of	excited	GCDs	reduces	inhibition,	allowing	more	MCs	to	participate	in	the	

oscillation.	On	the	other	hand,	the	high	and	low	gamma	power	is	lower	for	smaller	

excited	GCD	populations,	because	now	MCs	are	not	receiving	enough	inhibition.	In	

the	real	system,	beta	power	tends	to	be	higher	than	gamma.	Therefore,	not	only	can	

modulation	of	the	excitability	of	a	GCDs	subpopulation	generate	oscillations	that	

span	the	high	gamma	to	beta	range,	but	the	simulated	oscillations	appear	more	

physiological.	

	

2.3.3	Beta	frequency	is	highly	stable	with	respect	to	changes	in	MC	

excitation	and	inhibition	

In	Figure	2.5	we	showed	that	the	ILFP	power	of	the	full	model	peaks	in	the	

low	gamma	band,	which	corresponds	to	a	state	where	excitation	and	inhibition	are	

balanced	such	that	the	all	the	MCs	are	synchronized.	We	next	explore	how	network	

oscillations	respond	to	changes	in	excitatory-inhibitory	balance	by	directly	

manipulating	MC	excitatory	and	inhibitory	weights.	Increasing	MC	excitation,	by	

increasing	the	minimum	excitatory	weight	Wmin,ext,	raises	the	LFP	frequency	in	the	

low	excitability	regime	(Fig.	2.6A.i)	and	dramatically	increases	the	maximum	power	

peak	while	shifting	the	peak	towards	higher	excitabilities	(Fig.	2.6A.ii).	The	pink		
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Figure	2.6.	Beta	oscillation	dependence	on	GC	excitability,	sensory	input,	and	MC	
inhibition.	
A:	The	frequency	(A.i)	and	power	(A.ii)	of	the	ILFP	is	plotted	for	varying	strengths	of	MC	
excitation	(Wmin,ext).	The	pink	curves	correspond	to	parameters	used	in	Figures	4	and	5.	B:	
Same	as	in	A	but	strength	of	MC	inhibition	(WGABA,MC)	is	varied.	WGABA,MC	is	varied	over	the	same	
range	as	Wmin,ext	(0.007),	so	that	the	plots	in	A	and	B	are	visually	comparable.		C:	The	ILFP	
frequency	(left	column)	and	power	(right	column)	are	plotted	with	Vrest,GC	=	-70	mV	(top	row)	
and		Vrest,GC	=	-60	mV	(bottom	row)	as	the	MC	inhibitory	weight	WGABA,MC,	and	minimum	
excitatory	weight	Wmin,ext	are	varied.	Red	lines	mark	the	borders	of	the	beta	regime	(20-30	Hz).	
Regions	where	ILFP	power	is	less	than	or	equal	to	the	baseline	power	are	colored	white.	Pink	
circles	indicate	the	parameter	values	used	for	the	simulations	in	Figures	4	and	5.	D:	Vertical	
cross	sections	of	the	plots	in	C	fixed	at	Wmin,ext	=	0.0134	(pink	dot	location)	are	shown	for	low	
(blue	connected	stars,	Vrest,GC	=	-70	mV)	and	high	(red	connected	circles,	Vrest,GC	=	-60	mV)	
excitability	conditions.	The	gray	shaded	region	in	D.i	marks	the	region	where	network	
oscillations	are	considered	part	of	the	noise	floor.	The	horizontal	black	dashed	line	in	D.ii	
indicates	the	maximum	power	of	the	noise	floor.	
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curve	corresponds	to	Wmin,ext	=	0.0134	(used	in	Figs.	2.4	and	2.5).	Note	that	the	shift	

is	such	that	the	frequency	at	maximum	power	is	still	in	the	low	gamma	band,	

because	the	balance	of	excitation	is	still	maintained	at	low	gamma	frequencies.	

Interestingly,	the	frequency	curves	converge	at	beta	frequencies	because	beta	

frequencies	are	stable	with	respect	to	MC	excitation.	However,	beta	power	is	very	

sensitive	to	Wmin,ext.	We	routinely	observe	beta	oscillations	with	drastically	different	

amplitudes	in	awake	animals.	In	particular,	low	volatility	odors	produce	lower	

power	beta	oscillations	than	high	volatility	odors	(Lowry	and	Kay,	2007a).	In	our	

model,	differences	in	MC	excitation	are	sufficient	to	explain	this	phenomenon.	

If	we	hold	MC	excitation	constant	and	instead	vary	MC	inhibition	(Fig.	2.6B),	

we	find	that	increasing	WGABA,MC	reduces	the	ILFP	frequency	in	the	low	excitability	

regime	and	shifts	the	power	peak	towards	lower	excitability	(Fig.	2.6B.i).	The	shift	

towards	lower	excitability	is	such	that	the	peak	power	is	in	the	low	gamma	band,	

much	like	before.	However,	unlike	changes	in	Wmin,ext,	changes	in	WGABA,MC	do	not	

significantly	alter	the	maximum	power	amplitude.	Excitatory	modulation	essentially	

adds	energy	to	the	system,	setting	the	overall	scale	for	how	high	the	power	can	be.	

Inhibition,	on	the	other	hand,	gates	how	much	of	this	power	is	accessible	at	a	

particular	frequency.	The	frequencies	in	Figure	2.6B.i	also	converge	to	beta	

frequencies	in	the	high	excitability	regime,	indicating	that	beta	frequency	is	also	

stable	with	respect	to	inhibition.	

To	further	explore	the	extent	of	beta	regime	stability	we	co-varied	MC	

excitation	and	inhibition	under	low	and	high	GC	excitability	conditions	(Fig.	2.6C).	

The	beta	frequency	is	quite	stable	over	a	wide	parameter	range	under	both	low	and	
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high	excitability	conditions.	The	gamma	regime	(blue-green-orange	colors	on	the	

frequency	scale)	occupies	a	sizeable	region	of	parameter	space	under	low	

excitability,	but	becomes	very	narrow	under	high	excitability.	Under	high	

excitability,	the	lower	boundary	of	the	beta	regime	becomes	more	horizontal,	

indicating	that	beta	frequency	becomes	less	sensitive	to	changes	in	Wmin,ext.	The	

power	(Fig.	2.6C,	right	columns)	increases	with	Wmin,ext	and	peaks	just	outside	of	the	

beta	regime,	in	the	low	gamma	regime.	These	plots	show	us	that	overall,	beta	is	less	

sensitive	to	changes	in	excitation	and	inhibition	than	gamma.	This	agrees	

qualitatively	with	in	vivo	recordings	which	have	found	beta	oscillations	to	occupy	a	

narrower	frequency	band	than	gamma	(Neville	and	Haberly,	2003a;	Kay,	2014a)	

In	this	model,	inhibition–mediated	gamma	frequency	oscillations	only	occur	

below	~80	Hz,	because	higher	frequencies	(gray	shaded	region	in	Fig.	2.6D.i)	are	so	

low	in	power	that	they	are	essentially	indistinguishable	from	the	noise	floor	(dashed	

line	in	Fig.	2.6D.ii).	Under	high	excitability	(red	connected	circles),	the	beta	

frequency	is	remarkably	stable	and	insensitive	to	changes	in	WGABA,MC.	However,	if	

WGABA,MC	is	too	low,	the	network	frequency	sharply	rises	and	quickly	becomes	part	of	

the	noise	floor,	which	is	why	the	gamma	regime	is	so	narrow	in	the	bottom	panels	of	

Figure	6C.	Under	low	excitability,	as	WGABA,MC	increases,	the	frequency	falls	more	

gradually	through	the	gamma	range	until	eventually	a	stable	beta	frequency	is	

reached	(Fig.	2.6D.i	blue	connected	stars).	

The	power	(Fig.	2.6D.ii)	exhibits	the	same	low	gamma	frequency	peak	as	

described	earlier	(Figures	2.4	and	2.5).	Pharmacological	manipulations	in	awake	

mice	have	shown	that	gamma	oscillation	power	is	reduced	by	high	concentrations	of	
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picrotoxin	(a	GABA	antagonist),	but	is	increased	by	low	concentrations	(Lepousez	

and	Lledo,	2013a).	The	peak	in	the	simulated	LFP	power	vs	WGABA,MC	curve	for	low	

excitability	in	Figure	2.6D.ii	(blue	connected	stars)	can	account	for	such	a	

concentration-dependent	effect.	If	the	initial	degree	of	inhibition	puts	the	system	

just	to	the	right	of	the	peak	power	(for	example	WGABA,MC	=	0.018	in	Figure	2.6D.ii),	

then	a	small	concentration	of	picrotoxin	would	only	slightly	decrease	WGABA,MC,	thus	

increasing	the	power.	But	a	high	concentration	would	put	WGABA,MC	to	the	left	of	the	

peak,	resulting	in	lower	gamma	power.	It	is	interesting	to	note	that	the	

concentration-dependent	power	modulation	was	restricted	primarily	to	low	gamma	

frequencies	in	the	Lepousez	and	Lledo	(2013)	study,	and	in	our	model	the	peak	

power	is	in	the	low	gamma	band.	However,	the	same	study	also	showed	that	high	

concentrations	of	picrotoxin	(represented	in	our	model	as	a	decrease	in	WGABA,MC)	

reduced	gamma	frequency,	but	in	our	model	a	decrease	in	WGABA,MC	only	increases	

gamma	frequency.	Indeed,	there	are	other	factors	that	our	model	does	not	include,	

such	as	asynchronous	GABA	release	(Bathellier	et	al.,	2006)	and	sub	threshold	

resonance	(Brea	et	al.,	2009),	which	likely	play	an	important	role	in	gamma	

generation.	

	

2.3.4	Network	response	to	fast	change	in	GC	excitability	

In	the	living	system,	changes	in	the	excitability	of	GC	dendritic	spines	leading	

to	activation	of	dendritic	Ca2+	channels	are	not	gradual	as	in	Figure	2.5,	but	occur	

very	rapidly	(Egger,	2008;	Pressler,	et	al.,	2007).	Therefore,	we	explore	how	the	

computational	model	reacts	to	such	a	fast	transition.	Because	the	exact	cellular	
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dynamics	driving	excitability	changes	in	GC	dendritic	spines	are	highly	complex	and	

still	being	studied	(Egger	et	al.,	2005a;	Egger,	2008a;	Bywalez	et	al.,	2015),	they	are	

beyond	the	scope	of	this	model.	Instead,	we	simulate	a	rapid	change	in	the	

excitability	of	the	entire	GC	dendritic	arbor	by	forcing	Vrest,GC	to	vary	from	-74	mV	to	

-60	mV	following	a	sigmoid	defined	as	Vrest,GC	=	-74mV	+	14mV/(1	+	exp(αt)),	where	

α	defines	the	steepness	of	the	transition	and	t	is	the	time	over	which	the	transition	

occurs.	

The	speed	of	transition	in	Vrest,GC	may	account	for	the	fast	changes	in	

frequency	we	see	in	waking	animals	(Fig.	1.4A).	For	the	slowest	changes	(Fig.	2.7,	

top	two	traces)	the	ILFP	frequency	changes	continuously,	while	for	the	fastest	

changes	(bottom	two	traces)	the	transition	from	gamma	to	beta	frequencies	is	sharp	

but	is	accompanied	by	a	large	low	frequency	artifact.	The	gamma	to	beta	transitions	

observed	in	vivo	(Fig.	1.4A)	are	sharp	(i.e.,	there	are	no	intermediate	frequencies)	

but	also	spectrally	clean	(i.e.,	there	are	no	sudden	artifacts).	Therefore,	the	closest	

qualitative	match	between	our	model	and	experimental	observation	is	found	in	the	

middle	row	of	Figure	2.7,	where	the	gamma	to	beta	transition	is	sharp,	and	no	

artifacts	are	produced.	The	change	in	excitability	does	not	have	to	be	instantaneous	

in	order	to	elicit	an	apparent	sharp	gamma	to	beta	transition.	When	the	excitability	

switch	is	fast,	the	intermediate	values	of	GC	excitability	shown	in	Figures	2.4	and	2.5	

are	skipped,	and	therefore	high	power	oscillations	in	the	low	gamma	regime	are	

skipped.	This	may	explain	why	high	power	oscillations	in	the	low	gamma	band	are	

rarely	observed	in	vivo	(although	see	Kay,	2003).	
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The	simulations	producing	sharp	and	clean	gamma	to	beta	transitions	have	

sigmoidal	widths	of	approximately	60	-	80	ms	(Fig.	2.7,	middle	trace).	This	is	slow	

relative	to	the	onset	of	ADP	and	LLD	in	individual	spines,	which	is	on	the	order	of	1	

ms	(Pressler	et	al.,	2007a;	Egger,	2008a),	but	relatively	fast	on	a	behavioral	time	

scale	(i.e.,	less	than	one	sniff).	Thus,	our	model	predicts	that	the	excitability	

transitions	of	a	population	of	dendritic	spines	should	take	place	over	roughly	60	-	80	

ms	to	drive	a	gamma	to	beta	transition	during	odor	sampling.	
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Figure	2.7.	Simulated	ILFP	in	response	to	changing	Vrest,GC.	Simulated	ILFP	(black	left	y-
scale)	in	response	to	changing	Vrest,GC	(red	right	y-scale)	from	-74	mV	to	-60	mV	over	1s	with	
varying	speeds	(slowest	at	top,	fastest	at	bottom).	In	the	middle	row,	the	dotted	vertical	lines	
indicate	the	duration	of	the	excitability	transition	for	that	plot,	which	is	roughly	80	ms.	(Right)	
A	Morlet	wavelet	transform	spectrogram	(see	Methods)	gives	the	instantaneous	frequency	(y-
axis)	and	power	(color	scale)	of	the	ILFP	traces.	
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2.3.5	Relative	contributions	of	NMDA-	and	N-type	currents	

In	the	full	model,	graded	inhibition	of	MCs	is	mediated	by	NMDA	and	N-type	

Ca2+	currents	(Figs.	2.4	&	2.5).	Slice	studies	have	shown	that	Ca2+	flow	through	

NDMARs	alone	can	drive	DDI	(Schoppa	et	al.,	1998).	However,	with	NMDAR	current	

pharmacologically	blocked,	slowly	decaying	DDI	can	also	be	evoked	solely	by	

AMPAR	activation	under	pharmacological	conditions	that	increase	GC	excitability	

(Isaacson,	2001),	and	thus	the	activation	of	N-	and	P/Q-	type	VDCCs	by	AMPA-

mediated	depolarization	alone	can	trigger	GABA	release.	Furthermore,	

pharmacological	manipulations	of	OB	activity	in	awake	mice	have	shown	that	odor-

evoked	beta	oscillation	frequency	and	power	are	not	very	sensitive	to	NMDAR	

antagonists	(Fig.	3	in	Lepousez	&	Lledo,	2013),	providing	evidence	that	beta	

oscillations	may	depend	on	Ca2+	flow	through	N-	and	P/Q-	type	VDCCs,	but	not	

through	NMDARs.	

In	order	to	test	the	relative	contributions	of	Ca2+	flow	through	NMDARs	and	

VDCCs	to	the	network	oscillations	we	simulate	a	complete	pharmacological	block	of	

NMDAR	or	N-type	currents	by	setting	the	weight	of	either	current	equal	to	0	(Fig.	

2.8A,B).	In	these	simulations	the	[Ca2+]	threshold	for	maximum	GABA	release	

([Ca]th),	the	GCD	AMPA	weight	(WAMPA,GC),	and	external	inputs	to	MCs	(Wmin,ext)	are	

identical	to	the	full	model,	but	MC	inhibition	(WGABA,MC)	and	the	GCD	NMDA/N-Type	

excitatory	weights	(WNMDA,GC	and	WN,GC)	are	varied.	For	both	pure	NMDA	and	pure	N-

type	models	WGABA,MC	is	varied	from	0.01	to	0.07.	The	minimum	and	maximum	

WNMDA,GC	and	WN,GC	are	chosen	such	that	the	transition	to	the	unsynchronized	state,	

where	the	power	is	below	the	noise	floor,	happens	near	the	midpoint	on	the	
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horizontal	and	vertical	axes.	This	allows	for	a	visual	comparison	of	the	two	models,	

despite	WN,GC	being	approximately	105	greater	than	WNMDA,GC.	

The	frequency	of	both	pure	models	decreases	with	increased	Vrest,GC,	as	is	

evident	when	comparing	the	same	points	from	low	and	high	excitability	conditions,	

and	both	models	generate	oscillations	spanning	the	gamma	to	beta	range.	The	

power	of	the	pure	NMDA	model	is	highest	at	low	gamma	frequencies	(right	panels	

Fig.	2.8A),	and	the	gamma	regime	under	high	excitability	is	very	narrow	(bottom	left	

panel	Fig.	2.8A),	much	like	in	the	full	model	(see	Fig.	2.6D).	The	pure	N-type	model,	

on	the	other	hand,	generates	peak	power	within	the	20	–	30	Hz	beta	regime	

(outlined	by	red	lines)	and	even	for	frequencies	below	the	beta	regime	(Fig.	2.8B,	

bottom	right	panel).	Why	does	the	full	model	behave	more	like	the	pure	NMDA	

model	than	the	pure	N-type	model?	One	factor	is	the	CDI	of	the	N-type	current	by	

the	NMDA	Ca2+	current,	which	reduces	the	N-type	current	as	NMDA	current	

increases.	Another	factor	is	the	balance	of	excitation	and	inhibition.	In	the	pure	N-

type	model	there	is	a	balance	at	beta	frequencies,	but	in	the	pure	NMDA	model	the	

balance	is	in	the	low	gamma	regime	and	the	MCs	in	the	beta	regime	are	already	

over-inhibited.	Therefore,	when	the	two	pure	currents	are	combined,	the	MCs	

continue	to	be	over-inhibited	in	the	beta	state	and	only	the	peak	at	low	gamma	

power	remains.	

The	maximum	power	of	the	ILFP	oscillations	generated	by	the	pure	NMDA	

model	is	much	lower	than	the	maximum	power	of	the	pure	N-Type	model	(Fig.	

2.8A.i,	B.i).	By	systematically	exploring	parameters	we	found	that	the	main	cause	for	

this	difference	is	the	difference	in	decay	time	constants	of	the	two	models.	The		
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Figure	2.8.	Parameter	exploration	of	pure	NMDA	and	N-type	models.	A:	The	ILFP	frequency	(left	
column)	and	power	(right	column)	of	the	pure	NMDA	model	are	plotted	with	Vrest,GC	=	-70	mV	(top	row)	
and		Vrest,GC	=	-60	mV	(bottom	row)	as	the	MC	inhibitory	WGABA,MC	and	GC	excitatory	NMDA	weights	WNMDA,GC	
are	varied.	Red	lines	mark	the	borders	of	the	beta	regime	(20-30	Hz).	Regions	where	ILFP	power	is	less	
than	or	equal	to	the	baseline	power	are	colored	white.	In	A.i	we	simulated	the	default	NMDA	model	with	
𝜏!"#$!	=	75	ms.	In	A.ii	we	switched	the	NMDA	and	N-type	constants,	so	that	𝜏!"#$!	=	18	ms.	B:	Same	
layout	as	A,	but	for	the	pure	N-type	model	with	𝜏!"#$!	=	18	ms	(B.i,	default	N-type	model),	with	𝜏!"#$!	=	
75	ms	(B.ii,	switched	decay	time	constant	with	NMDA	model),	without	CDI	(B.iii),	and	with	N-type	Nernst	
potential	lowered	to	~20	mV	by	reducing	the	external	Ca2+	concentration	(B.iv).	C.i:	A	gradual	NMDA	
block	was	simulated	by	reducing	WNMDA,GC	with	GCDs	fixed	at	Vrest,GC	=	-60	mV.	The	maximum	frequency	
during	the	gradual	NMDA	block	is	plotted	for	three	values	of	WN,GC,	showing	that	beta	frequency	can	be	
sustained	by	N-type	currents	as	NMDA	currents	are	reduced.	C.ii:	The	maximum	power	of	the	same	three	
curves	increases	as	WNMDA,GC	is	decreased	because	the	MCs	are	over	inhibited	when	WNMDA,GC	is	maximum.	
D.i:	The	mean	N-type	activation	(mN)	is	shown	for	the	same	three	curves	in	C.	Because	mN	is	oscillatory	we	
include	the	shaded	regions	to	indicate	the	minimum	and	maximum	extent	of	the	oscillations.	D.ii:	Same	as	
in	D.i,	but	for	N-type	inactivation	(hN).	D.iii:	Same	as	in	D.i,	but	for	the	product	(mN*hN).	
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default	decay	times	of	the	NMDA	and	N-type	currents	are	𝜏!"#$!	=	75	ms	and	𝜏!"#$	

=	18	ms.	If	we	switch	the	values	of	the	time	constants	we	find	that	the	pure	NMDA	

power	increases	dramatically	(Fig.	2.8A.ii),	while	the	pure	N-type	power	decreases	

to	levels	close	to	the	original	pure	NMDA	model	(Fig.	2.8B.ii).	The	maximum	power	

of	the	oscillations	is	inversely	proportional	to	the	decay	time	constant,	because	

inhibitory	current	pulses	with	short	decay	times	will	decay	fully	each	cycle,	causing	

a	high	amplitude	between	peaks	and	troughs	of	the	inhibitory	current	oscillation,	

but	for	longer	decay	times	the	pulses	fall	off	more	slowly	and	the	difference	between	

peaks	and	troughs	is	smaller.	With	a	shorter	decay	time	the	pure	NMDA	model	

releases	less	GABA	over	time,	so	higher	excitatory/inhibitory	weights	are	required	

to	sustain	beta	oscillations	(note	the	shift	of	beta	regime	towards	higher	WGABA,MC	

and	WNMDA,GC	in	Fig	2.8A.ii	compared	to	Fig	2.8A.i).	Interestingly,	this	shift	towards	

higher	weights	is	accompanied	by	a	greater	stability	in	both	gamma	and	beta	

regimes.	Furthermore,	the	maximum	power	is	shifted	into	the	beta	regime,	as	was	

the	case	for	the	original	pure	N-type	model	(Fig.	2.8B.i).	Therefore,	the	peak	power	

at	low	gamma	is	not	a	specific	consequence	of	the	NMDA	model,	but	a	general	

consequence	of	a	long	time	constant.	

We	explored	the	sensitivity	of	the	N-type	model’s	frequency	and	power	

landscapes	to	the	absence	of	CDI.	Removal	of	CDI	results	in	dramatically	higher	

graded	inhibitory	release	probability	(Fig.	2.3D),	which	causes	the	pure	N-type	

model	to	be	highly	over-inhibited	for	large	WN,GC	in	the	high	excitability	condition	

(bottom	panels	Fig.	2.8B.iii).	Curiously,	the	absence	of	CDI	caused	a	broadening	of	

the	gamma	and	beta	regimes	under	low	excitability	(bottom	panels	Fig.	2.8B.iii).	
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This	shows	that	the	N-type	model	has	a	substantial	amount	of	self	induced	CDI,	and	

that	CDI	prevents	the	inhibitory	current	from	getting	too	large	too	quickly	as	

excitability	is	increased.	

We	also	explored	the	effect	of	changing	the	reversal	potential	on	the	

frequency	and	power	landscapes.	Glutamate	receptors	such	as	AMPARs	and	

NMDARs	tend	to	have	Nernst	potentials	near	0	mV,	while	VDCCs	tend	to	have	

Nernst	potentials	at	the	Ca2+	reversal	potential,	ECa.	In	our	model	ECa	oscillates	with	

the	network	near	120	mV,	because	it	is	calculated	on	each	time	step,	but	its	mean	

value	is	controlled	by	the	extracellular	Ca2+	concentration	[𝐶𝑎]!"#	(see	Eq.	2.3).	

When	[𝐶𝑎]!"#	is	reduced	to	5	μM,	the	Nernst	potential	of	ECa	oscillates	near	~	25	mV.	

This	manipulation	does	not	significantly	alter	the	maximum	power,	but	it	shifts	the	

beta	regime	of	the	pure	N-type	model	towards	higher	weights	(Fig	2.8B.iv).	This	is	

because	a	lower	(positive)	Ca2+	reversal	potential	causes	the	Ca2+	current	to	reverse	

more	quickly,	so	that	less	inhibition	is	released	over	time	and	higher	weights	are	

needed	to	sustain	beta	oscillations.	In	contrast,	we	increased	the	NMDA	reversal	

potential	from	0	to	100	mV	(not	shown).	This	also	had	little	effect	on	the	ILFP	

power,	but	the	beta	regime	was	now	shifted	towards	lower	weights,	as	higher	

reversal	potential	allow	more	graded	inhibition	to	be	released.	

Our	models	show	that	NMDARs	or	N-type	VDCCs	alone	can	mediate	graded	

DDI,	confirming	what	has	been	found	empirically	(Isaacson	and	Strowbridge,	1998;	

Schoppa	et	al.,	1998a;	Isaacson,	2001).	Furthermore,	they	suggest	that	Ca2+	flow	

through	N-type	channels	may	be	responsible	for	generating	the	high	power	beta	

oscillations	we	record	in	experiments	(Fig.	1.4A)	due	to	the	shorter	decay	time	of	
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the	N-type	current	compared	to	the	NMDA	current.	The	parameter	exploration	in	

Figure	2.8A,	B	also	shows	that	the	gamma	and	beta	regimes	can	always	be	reached	

by	sufficiently	increasing	the	excitatory/inhibitory	weights.	There	can	be	multiple	

paths	to	generating	beta	as	long	as	inhibitory	current	is	sufficiently	strong.	This	

suggests	that	potentiation	of	the	MC-GC	synapse	could	lead	to	beta	oscillations,	

although	this	is	not	explicitly	modeled	here.	

We	were	curious	to	see	how	the	network	responds	to	a	gradual	block	of	the	

NMDA	current,	since	infusion	of	pharmacological	blockers	in	vivo	likely	results	in	

only	a	partial	block.	Figure	2.8C	shows	the	network	response	to	decreasing	WNMDA,GC	

under	high	GC	excitability	conditions	(Vrest,GC	=	-60	mV)	for	three	different	values	of	

WN,GC.	For	these	simulations	the	MC	inhibitory	weight	WGABA,MC	was	increased	to	

0.015	in	order	to	maintain	a	strong	inhibitory	current	when	NMDA	is	completely	

removed.	We	point	out	that	models	with	higher	WGABA,MC	still	generate	the	full	

gamma	to	beta	range	(see	Fig.	2.6B.i).	With	this	arrangement,	the	beta	frequency	is	

quite	stable	with	decreasing	WNMDA,GC	(Fig.	2.8C.ii).	For	the	lowest	WN,GC	the	LFP	

frequency	rises	out	of	the	low	gamma	regime	as	WNMDA,GC	approaches	0,	but	for	

higher	WN,GC	the	frequency	remains	in	the	beta	regime	even	when	the	NMDA	current	

is	completely	blocked.	Interestingly,	the	gradual	reduction	of	NMDA	current	actually	

increases	beta	power	(Fig.	2.8C.ii),	because	we	are	reducing	the	degree	of	MC	over-

inhibition.	We	saw	a	similar	effect	when	reducing	the	fraction	of	excited	GCs	in	

Figure	2.5C.ii.		

We	also	investigated	the	effect	that	the	gradual	NMDA	block	has	on	the	

inactivation	of	N-type	current	through	CDI.	Recall	that	the	inactivation	variable,	hN,	
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has	an	inverse	dependence	on	internal	[Ca2+]	(Table	2.1).	We	expected	that	a	

reduction	in	NMDA	current	would	lower	internal	[Ca2+],	and	therefore	raise	the	

overall	N-type	activation	by	raising	hN.	As	shown	in	Figure	2.8D.iii,	the	overall	N-

type	activation	does	increase	with	decreased	NMDA	current,	but	not	because	of	an	

increase	in	hN,	which	is	largely	flat	(Fig.	2.8D.ii).	Instead,	the	voltage-dependent	

activation	variable	mN,	is	responsible	for	the	overall	increased	N-type	activation,	

while	hN	only	reflects	the	background	level	of	Ca2+	influx	due	to	the	increased	

excitatory	weights	WN,GC.	The	reduction	of	MC	over-inhibition	results	in	more	MC	

spikes,	which	drives	higher	GCD	membrane	depolarization	through	the	AMPA	

current,	thus	raising	mN.	The	increased	internal	[Ca2+]	nearly	balances	the	reduction	

of	[Ca2+]	due	to	blocking	the	NMDA	current,	resulting	in	a	nearly	flat	hN.	These	

simulated	results	provide	a	possible	explanation	for	in	vivo	experiments	which	have	

shown	that	NMDA	blockers	have	little	effect	on	beta	frequency	(Fig.	3	in	Lepousez	&	

Lledo,	2013).	Namely,	blocking	the	NMDA	current	results	in	a	higher	activation	of	N-

Type	current	through	reducing	MC	over-inhibition,	which	keeps	the	beta	frequency	

stable.	However,	there	is	only	partial	agreement	with	the	model	as	these	

pharmacological	experiments	also	found	the	beta	power	to	be	relatively	unchanged	

while	the	beta	power	in	the	model	is	sensitive	to	NMDA	current.		

2.3.6	Beta	frequency	dependence	on	rise	and	fall	time	constants	of	Ca2+	

currents	

In	this	model	the	beta	frequency	emerges	as	a	consequence	of	strong	graded	

inhibition	when	the	NMDAR	and	N-type	channels	are	sufficiently	activated	under	
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high	GC	excitability	conditions.	In	Figure	2.8	we	showed	that	the	beta	regime	shifted	

towards	higher	W	when	the	decay	time	constants	are	decreased.	In	Figure	2.9	we	

explore	the	dependence	of	the	model	response	on	the	time	constants	alone,	holding	

everything	else	fixed.	The	literature	reports	a	wide	range	of	MC	IPSC	decay	times,	

from	about	50	ms	to	several	hundred	ms,	which	may	reflect	varying	concentrations	

of	Mg2+	at	synaptic	clefts	as	well	as	varying	proportions	of	NMDARs	and	VDCCs	

expressed	on	individual	GCDs	(Isaacson	and	Strowbridge,	1998;	Schoppa	et	al.,	

1998a;	Isaacson,	2001;	Urban	and	Sakmann,	2002).	As	described	in	the	Methods,	

NMDA	activation	is	governed	by	two	time	constants,	the	rise	time	𝜏!"#$!	and	the	

decay	time	𝜏!"#$!.	For	simulations	in	which	𝜏!"#$!	is	varied,	𝜏!"#$! 	is	fixed	at	75	

ms	(Fig.	2.9A.i,	ii),	and	for	simulations	in	which	𝜏!"#$!	is	varied,	𝜏!"#$!	is	fixed	at	2	

ms	(Fig.	2.9A.iii,	iv),	which	are	the	default	values	used	throughout	this	work.	The	

NMDA	rise	and	decay	times	are	close	to	those	used	in	other	models	(Bathellier	et	al.,	

2006;	de	Almeida	et	al.,	2013a).	The	N-type	model	only	has	one	time	constant,	𝜏! .	

Because	𝜏!	itself	is	dependent	on	Vrest,GC	we	vary	its	maximum	value	𝜏!"#$ .	The	

default	value	of		𝜏!"#$	=	18	ms	is	taken	from	Amini	et	al.	(1999)	and	Zeng	et	al.	

(2009).	

NMDA	rise	times	as	high	as	10	ms	have	been	reported	in	slice	(Schoppa	et	al.,	

1998;	Isaacson	&	Strowbridge,	1998).	When	the	rise	time	𝜏!"#$! 	of	the	pure	NMDA	

model	is	increased,	the	LFP	frequency	is	driven	down	(Fig.	2.9A.i).	If	the	excitability	

is	too	low,	the	slower	rise	times	generate	a	slower	MC	IPSC	that	fails	to	sufficiently	

inhibit	the	MC	before	a	spike	is	elicited	by	the	constant	ORN	stimulation.	This	

prohibits	MC	synchronization,	and	the	frequency	shoots	upwards	while	the	power	
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falls	to	noise	floor	levels	(Fig.	2.9A.ii).	For	sufficiently	fast	rise	times	(<	3	ms)	the	full	

gamma	to	beta	range	can	be	generated.	Interestingly,	longer	rise	times	create	higher	

power	in	the	beta	regime	because	the	slower	rise	time	increases	the	inhibition	

released	over	time.	Increasing	the	decay	time	𝜏!"#$!	also	decreases	LFP	frequency,	

but	for	short	decay	times	(<	30	ms)	beta	oscillations	cannot	be	sustained	because	

the	inhibition	is	not	strong	enough	to	sufficiently	delay	MC	spikes	(Fig.	2.9A.iii).	As	

𝜏!"#$!	is	increased,	the	LFP	frequency	in	the	high	excitability	condition	enters	the	

beta	regime.	The	beta	frequency	becomes	nearly	stable	after	𝜏!"#$!	>	50	ms,	

Pure NMDA 
τNMDA2 = 75 ms 
 

τNMDA1 = 2 ms 
 

Pure N-type 

Low 
excit. 

High 
excit. 

-75 mV -55 mV A.i A.ii 

A.iii A.iv 

B.i B.ii 

Figure	2.9	Network	oscillation	dependence	on	NMDA	and	N-type	time	constants	.	
A:	Dependence	of	the	LFP	frequency	and	power	on	rise	time	𝜏!"#$!	and	decay	time	
𝜏!"#$!	of	the	pure	NMDA	model.	In	A.i	and	A.ii	𝜏!"#$!	is	fixed	at	75	ms.	In	A.iii	and	A.iv	
𝜏!"#$! 	is	fixed	at	2	ms.	B:	Dependence	of	the	LFP	frequency	and	power	on	the	N-type	
activation	time	constant	maximum	𝜏!"#$ 	of	the	pure	N-type	model.	Each	plot	shows	20	
curves	calculated	for	uniformly	spaced	values	of	Vrest,GC	ranging	from	-75mV	(blue)	to	-
55mV	(red),	as	indicated	by	the	color	scale.	
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because	lengthening	the	tail	of	the	inhibitory	pulse	decay	does	not	significantly	

change	the	overall	inhibition	of	MCs	each	cycle.	Therefore,	in	the	pure	NMDA	model	

the	beta	frequency	only	emerges	if	the	decay	time	is	long	enough,	but	beta	is	not	

very	sensitive	to	the	exact	value.	

A	slightly	different	picture	arises	for	the	pure	N-type	model	ILFP	oscillations;	

the	frequency	changes	very	gradually	with	a	nearly	constant	slope	over	the	entire	

range	of	decay	times	(Fig.	2.9B.i),	and	for	higher	excitabilities	the	frequency	is	

nearly	constant.	The	NMDA	model	only	showed	such	constant	frequency	

dependence	for	𝜏!"#$!	>	50	ms.	This	difference	between	the	models	is	due	to	the	

absence	of	separate	rise	and	fall	times	for	the	N-type	model,	which	has	a	single,	

dynamic	time	constant	that	effectively	produces	rise	and	fall	times	that	adapt	to	GC	

excitability	conditions.	Therefore,	the	frequency	of	pure	N-type	ILFP	oscillations	is	

much	more	sensitive	to	GC	excitability	and	choice	of	inhibitory	excitatory	weights	

than	to	𝜏!"#$ .	However,	as	was	shown	earlier	in	Figure	2.8B,	the	power	is	quite	

sensitive	to	𝜏!"#$	(Fig.	2.9B.ii).	We	find	that	both	pure	NMDA	and	pure	N-type	

models	are	capable	of	generating	beta	oscillations	when	graded	inhibition	is	

sufficiently	strong,	but	near	their	physiological	parameter	regimes	the	pure	N-type	

model	generates	higher	power	beta	oscillations	that	are	more	invariant	to	

parameter	changes.	
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2.4	Discussion	
	

We	demonstrate	that	GC	excitability	could	play	a	pivotal	role	in	regulating	OB	

oscillations,	thus	closely	linking	ADPs	and	LLDs	in	GCs	to	beta	generation.	We	

hypothesized	that	GC	excitability	could	control	the	strength	of	graded	inhibition	

through	NMDA	and	N-type	Ca2+	currents,	allowing	MC-GC	dendrodendritic	synapses	

to	support	both	gamma	and	beta	oscillations.	Our	model	generates	LFP	oscillations	

ranging	from	high	gamma	to	beta	by	varying	GC	excitability	over	a	range	of	~15	mV.	

Gradual	increases	in	GC	excitability	cause	monotonic	decreases	in	LFP	frequency	

due	to	graded	inhibitory	release	through	activation	of	NMDA	and	N-type	currents	

(Fig.	2.5).	This	contrasts	with	spiking	inhibitory	systems	where	increased	

interneuron	excitability	leads	to	increased	firing	rates	and	higher	synchronization	

frequencies	(Fisahn	et	al.,	2004;	Lakatos	et	al.,	2005).	Interestingly,	beta	power	

increased	with	smaller	GCD	populations	(Fig.	2.5C),	suggesting	that	high	power	beta	

oscillations	may	only	recruit	a	subpopulation	of	GCs	in	high	excitability	states.	Such	

subpopulations	of	excited	GCs	may	arise	from	intrinsic	individual	GC	differences	in	

plateau	currents	(Egger	et	al.,	2005a)	and	cortical/neuromodulatory	inputs	to	GCs	

associated	with	odor	selective	MCs	(Matsutani	and	Yamamoto,	2008).		

GC	excitability	exerts	control	over	LFP	frequency	by	shifting	the	excitation-

inhibition	balance	such	that	low	GC	excitability	induces	over-excitation	and	high	GC	

excitability	induces	over-inhibition	(Fig.	2.4B).	With	intermediate	GC	excitability	all	

the	MCs	fire	at	low	gamma	frequencies	(Fig.	2.4,	2.5),	reminiscent	of	type	2	gamma	

(35-65	Hz)	oscillations	which	have	high	coherence	across	the	OB	and	PC	in	vivo	

(Kay,	2003;	Lepousez	&	Lledo,	2013).	We	found	that	maximum	power	at	low	gamma	
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frequencies	was	primarily	due	to	the	long	NMDA	decay	times	(Fig.	2.8A).	

Interestingly,	high	power	low	frequency	gamma	oscillations	are	routinely	seen	in	

slice	(Friedman	and	Strowbridge,	2003;	Bathellier	et	al.,	2006;	Gire	&	Schoppa,	

2008)	where	Mg2+	concentrations	are	often	low	and	NMDA	currents	may	contribute	

more	to	DDI	than	they	do	in	vivo.	A	more	realistic	fast	change	in	GC	excitability	

drives	a	transition	from	high	gamma	to	beta,	skipping	the	low	gamma	regime	(Fig.	

2.7).	A	change	in	GC	excitability	as	slow	as	100	ms	can	produce	a	sudden	switch	

from	gamma	to	beta	frequencies,	rather	than	a	gradual	shift.		

In	a	pure	N-type	model,	the	maximum	power	is	in	the	beta	band	and	is	much	

higher	than	the	pure	NMDA	due	to	its	shorter	decay	time	(Fig.	2.8B),	suggesting	that	

high	power	beta	oscillations	(Fig.	1.4A)	triggered	by	high	volatility	odors	(Lowry	

and	Kay,	2007a)	and	learning	(Ravel	et	al.,	2003;	Martin	et	al.,	2006a)	may	depend	

on	VDCCs	more	than	NMDA	currents.	Starting	with	both	NMDA	and	N-type	currents,	

we	showed	that	beta	oscillations	can	be	sustained	as	NMDA	is	blocked	(Fig.	2.8C),	in	

agreement	with	past	experiments	(Fig.	3	in	Lepousez	&	Lledo,	2013).	Comparison	of	

LFP	power	between	models	and	experiments	should	be	done	with	care	because	our	

simple	model	is	only	a	caricature	of	the	LFP,	and	experimentally	recorded	LFPs	can	

vary	in	amplitude	depending	on	electrode	position	and	placement.	Because	we	

assume	that	the	same	synaptic	currents	produce	both	gamma	and	beta	oscillations,	

we	compare	the	relative	size	of	the	beta	and	gamma	oscillations	in	the	model	as	we	

do	in	experiment.	

In	the	full	model	we	found	that	beta	frequencies	are	more	stable	than	gamma	

with	respect	to	MC	inhibitory	and	excitatory	weights	(Fig.	2.6),	but	beta	power	
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increased	dramatically	with	MC	excitatory	weight	(Fig.	2.6A).	If	high	volatility	

odorants	represent	stronger	inputs,	this	may	explain	the	high	power	beta	

oscillations	produced	by	these	odors	(Lowry	and	Kay,	2007a).	In	the	pure	NMDA	

and	N-type	models	the	beta	regime	became	more	stable	as	their	excitatory	synaptic	

decay	times	were	shortened	(Fig.	2.8).	We	found	that	CDI	is	critical	to	maintaining	

beta	oscillations	in	the	high	excitability	of	the	pure	N-type	model,	since	without	CDI	

the	MCs	became	over-inhibited.	Finally,	long	decay	times	are	critical	to	sustaining	

beta	oscillations	in	the	pure	NMDA	model,	but	not	the	pure	N-type	model	(Fig.	2.9).	

Together	these	results	argue	that	the	odor-evoked	gamma	to	beta	transition	could	

be	triggered	by	an	increase	in	GC	excitability,	which	drives	an	increase	in	VDCC-

mediated	graded	inhibition.	

	

2.4.1	Multiple	factors	may	contribute	to	odor-evoked	gamma	to	beta	

transition	

Our	model	shows	that	increased	GC	excitability	can	drive	beta	oscillations,	

but	it	is	agnostic	as	to	which	inputs	control	GC	excitability.	Because	GC	excitability	is	

regulated	by	centrifugal,	neuromodulatory,	and	local	inputs,	beta	oscillations	may	

be	supported	by	a	convergence	of	inputs	onto	GCs,	which	we	summarize	in	Figure	

2.10.	For	example,	cholinergic	inputs	could	transform	the	AHP	current	to	an	ADP	

current	(Pressler	et	al.,	2007a)	so	that	cortical	inputs	could	trigger	excitability	

increases	in	GCs	and	hence	generate	odor-evoked	beta	oscillations.	This	could	

potentially	explain	why	beta	oscillations	are	dependent	on	such	varied	
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circumstances		as	stimulus	characteristics,	the	state	of	the	animal,	and	behavioral	

context	(Martin	et	al.,	2006;	Lowry	&	Kay,	2007;	Cenier	et	al.,	2008,	2009).	Because	

many	factors	influence	the	strength	of	inhibition,	such	as	the	inhibitory/excitatory	

weights	and	even	the	external	Ca2+	concentration	(Fig.	2.8),	our	model	argues	that	

there	can	be	multiple	paths	to	generating	beta	oscillations,	as	long	as	there	is	

sufficiently	strong	inhibition.		

Respiration	may	also	influence	beta	generation	(Fig.	2.10).	Fast	airflow	

during	inhalation	coincides	with	gamma	oscillations	and	decreased	airflow	during	

Convergent 
Sensory Input 

Cortical inputs 

Neuro -
modulation 

Cortico-bulbar 
loops 

ORN 
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Respiratory 
airflow 
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GC 

Figure	2.10.	Summary	of	possible	factors	contributing	to	the	gamma	to	beta	
transition.	Those	that	explicitly	control	GC	excitability	are	marked	in	bold	with	gray	
arrows.	GC	excitability	can	be	regulated	by	at	least	three	distinct	inputs	to	GCs,	all	of	which	
may	cooperate	in	the	generation	of	beta	oscillations.	Neuromodulatory	fibers	may	target	
the	soma	and	GC	dendritic	arbors	and	gate	excitatory	inputs	from	MCs	and	cortical	
neurons.	Our	model	summarizes	these	different	sources	of	GC	excitability	control	by	a	
single	parameter,	the	GC	resting	potential,	to	show	that	GC	excitability	has	a	direct	
influence	on	the	LFP	frequency.	However,	our	model	does	not	include	respiratory	
modulation,	ORN	adaptation,	and	cortico-bulbar	loops,	which	may	also	contribute	to	beta	
generation.		
	



	 60	

exhalation	coincides	with	beta	oscillations	in	urethane-anesthetized	rats	(Cenier	et	

al.,	2008,	2009;	Fourcaud-Trocmé	et	al.,	2011).		Waking	rats	also	slow	their	

respiration	during	late	odor	sampling	when	beta	emerges	(Rojas-Líbano	&	Kay,	

2012).		

The	gamma	to	beta	sequence	recorded	in	rats	resembles	the	transition	from	

fast	to	slow	oscillations	detected	in	moth	olfactory	LFPs	associated	with	firing	rate	

adaptation	of	peripheral	ORNs	(Ito	et	al.,	2009).	Firing	rate	adaption	also	occurs	in	

rat	and	amphibian	ORNs	(Laing	&	MacKay-Sim,	1975;	Kurahashi	&	Menini,	1997;	

Zufall,	2000).	It	is	possible	that	ORN	firing	rate	adaptation	plays	a	role	in	the	gamma	

to	beta	transition	in	rats	(Fig.	2.10).	

	

2.4.2	Comparison	with	other	theories	of	olfactory	beta	generation	

Beta	oscillations	are	highly	coherent	between	the	OB	and	PC,	and	it	has	been	

proposed	that	beta	oscillations	may	be	generated	by	long	distance	action	potential	

propagation	within	the	loop	encompassing	MCs,	PC	pyramidal	neurons,	and	GCs	

(Neville	and	Haberly,	2003a;	Martin	et	al.,	2006a).	However,	PC	pyramidal	neurons	

also	target	deep	short	axon	cells	which	strongly	inhibit	GCs	(Boyd	et	al.,	2012).	

Furthermore,	beta	oscillations	are	also	coherent	between	the	OB	and	the	entorhinal	

cortex	and	hippocampus	(Gourévitch	et	al.,	2010;	Kay	&	Beshel,	2010;	Martin	et	al.,	

2007),	so	it	is	unclear	which	of	these	loops	would	be	responsible	for	beta.	Our	model	

generates	beta	oscillations	intrinsically	in	the	OB	and	relies	on	centrifugal	

innervation	solely	for	the	regulation	of	GC	excitability,	reminiscent	of	the	role	that	

OB	input	to	PC	plays	in	the	generating	PC	oscillations	(Freeman,	1968a).	The	model	
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predicts	beta	band	directional	influence	from	the	OB	to	other	cortical	areas	as	we	

have	shown	experimentally	(Gourévitch	et	al.,	2010;	Kay	&	Beshel,	2010).	

Nonetheless,	it	is	possible	that	a	combination	of	GC	excitability	regulation	and	long	

distance	action	potential	propagation	stabilizes	the	beta	frequency.	

To	our	knowledge	there	are	only	two	other	computational	models	of	OB	beta	

(Fourcaud-Trocmé	et	al.,	2011b;	David	et	al.,	2015a).	Both	of	these	models,	like	ours,	

infer	that	the	mutual	exclusivity	of	gamma	and	beta	oscillations	suggests	a	common	

mechanism,	namely	the	ionic	currents	at	the	dendrodendritic	MC-GC	synapses.	The	

Fourcaud-Trocmé	et	al.	model	also	uses	graded	inhibition,	but	argues	that	the	

critical	parameter	in	switching	from	gamma	to	beta	is	the	excitatory	synaptic	

conductance	to	the	MCs.	The	David	et	al.	model	argues	that	the	switch	between	

gamma	and	beta	depends	on	non-spiking	(graded)	and	spiking	states	of	the	GCs	

respectively.	Our	model	is	closer	to	the	David	et	al.	model	in	spirit	as	both	models	

assume	a	switch	in	the	state	of	the	GCs.	Although	experiments	have	shown	that	the	

majority	of	DDI	is	mediated	by	Ca2+	currents	through	NMDARs	and	VDCCs	(Isaacson	

and	Strowbridge,	1998;	Schoppa	et	al.,	1998a;	Chen	et	al.,	2000),	neither	of	the	other	

models	include	Ca2+	currents,	which	are	essential	to	beta	generation	in	our	model.		

Differences	between	modeling	approaches	are	to	some	extent	motivated	by	

differences	in	experimental	data.	While	the	other	models	aim	to	reproduce	

experimental	data	showing	gamma	to	beta	transitions	within	a	single	sniff	in	

anesthetized	rats	(Cenier	et	al.,	2009),	we	reproduce	high	power	beta	epochs	lasting	

several	sniffs	that	occur	during	both	learning	and	passive	exposure	to	high	volatility	

odorants	(Fig.1.4A).	These	models	together	suggest	that	beta	oscillations	arise	from	
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an	appropriate	convergence	of	sensory	stimulation	and	centrifugal	feedback	onto	

GCs.	

Recent	current	source	density	analysis	has	suggested	that	gamma	and	beta	

are	generated	by	distinct	sublaminar	networks	within	the	EPL	(Fourcaud-Trocmé	et	

al.,	2014).	Distinct	sublaminar	networks	are	compatible	with	our	GC	excitability-

based	hypothesis,	because	different	sublaminae	may	represent	distinct	

developmental	stages	of	GCs	with	different	excitability	characteristics	(Lepousez	et	

al.,	2013;	Petreanu	&	Alvarez-Buylla,	2002).	

	

2.4.3	Limitations	of	the	model	

Every	model	must	trade	off	simplicity	with	accuracy.	We	used	a	standard	

NMDA	current	model	(Jahr	and	Stevens,	1990),	which	does	not	include	CDI,	but	

NMDA	channels	can	also	exhibit	CDI	(Legendre	et	al.,	1993;	Zhang	et	al.,	1998),	

which	could	dynamically	compete	with	VDCC	currents.	Our	model	also	excludes	the	

GC	soma	and	relies	on	graded	inhibition	alone.	However,	somatic	spikes	could	

propagate	through	the	entire	dendritic	arbor	of	a	GC	to	trigger	global	lateral	

inhibition	of	MCs	(Mouret	et	al.,	2009a).	We	do	not	include	this	in	our	model,	

because	it	would	require	simulating	bidirectional	conductance	along	GC	primary	

dendrites,	the	properties	of	which	are	still	being	studied	(Egger	et	al.,	2005a;	Balu	et	

al.,	2007).	Nonetheless,	our	model	implicitly	depends	on	GC	spikes,	because	spikes	

trigger	the	ADP	(Pressler	et	al.,	2007a)	or	LLD	(Egger,	2008a)	that	provides	the	

mechanism	for	transition	between	gamma	and	beta	oscillations.	Although	GC	spikes	
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have	recently	been	recorded	for	the	first	time	in	awake	animals	(Cazakoff	et	al.,	

2014),	they	have	yet	to	be	recorded	during	beta	oscillations.	

Our	GCDs	are	modeled	as	single	compartments,	but	recent	experiments	have	

shown	that	GC	dendritic	spines	can	independently	support	Na+	spike	generation	

(Bywalez	et	al.,	2015)	and	that	locally	produced	Ca2+	spikes	mediated	by	T-type	

VDCCs	can	spread	activity	across	the	entire	dendritic	arbor	to	synchronize	GABA	

release	from	all	the	dendritic	spines	of	a	given	GC	cell	(Egger	et	al.,	2005a).	Our	

model	does	not	capture	this	fine-grained	activity	because	we	aimed	to	model	

population	activity.	However,	it	remains	an	interesting	and	open	question	how	this	

fine-grained	activity	influences	population	activity.	
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3.	Pharmacological	manipulation	of	olfactory	bulb	
granule	cell	excitability	modulates	beta	oscillations:	
Testing	a	model	

	

3.1	Introduction	

3.1.1	Model	Predictions	

In	a	Chapter	2,	I	introduced	a	model	that	addressed	the	role	of	granule	cell	(GC)	

excitability	in	generating	beta	oscillations	(Osinski	and	Kay,	2016).	This	model	was	

inspired	by	three	lines	of	evidence:	(1)	Beta	oscillations	cannot	be	generated	

without	intact	centrifugal	input	to	the	OB	(Fig.	1.4E;	Neville	and	Haberly,	2003;	

Martin	et	al.,	2006);	(2)	centrifugal	input	largely	targets	the	GC	layer	and	synapses	

onto	GCs	are	perisomatic	(Fig	3.1A;	Mouret	et	al.	2009,	but	see	Illig,	2011);	(3)	GCs	

can	undergo	at	least	two	types	of	long	lasting	afterdepolarizations,	one	dependent	

on	GC	muscarinic	receptor	activation	(Castillo	et	al.,	1999;	Pressler	et	al.,	2007b)	

and	the	other	on	an	appropriate	convergence	of	mitral	cell	(feedforward)	and	

cortical	(feedback)	inputs	onto	GCs	(Egger	et	al.,	2005b).	Another	model	also	

predicted	that	OB	beta	oscillations	can	only	occur	when	GCs	are	in	high	states	of	

excitability	and	relied	on	spiking	GCs	(David	et	al.,	2015b).	Some	studies	have	

shown	that	GCs	spike	rarely	and	can	release	GABA	in	a	graded	fashion	at	the	

dendrodendritic	reciprocal	synapse	(Schoppa	et	al.,	1998b;	Cang	and	Isaacson,	

2003b).	We	therefore	interpreted	excitability	not	as	a	tendency	to	spike	but	rather	a	

tendency	to	drive	graded	inhibition	(model	summarized	in	Figure	3.1).		
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Figure	3.1.	Modeling	predictions.	A:	Schematic	of	olfactory	bulb	circuitry.	Glomeruli	(GLO)	
innervated	by	unique	receptors	receive	sensory	inputs	which	are	conveyed	to	mitral	cells	
(MCs).	Sensory	(thick	gray	arrows)	and	cortical/neuromodulatory	feedback	(thin	black	
arrows)	both	converge	onto	granule	cells	(GCs).	B:	Modeling	results	(Osinski	and	Kay,	2016)	
showing	odor-induced	LFP	power	and	frequency	landscapes	under	normal	(top)	and	impaired	
(bottom)	GC	excitability	conditions.	The	y-axis	is	inhibitory	weight,	which	represents	the	
strength	of	inhibition	from	GCs	to	MCs,	and	the	x-axis	shows	excitatory	weight,	which	
represents	the	strength	of	sensory	input	to	MCs.	The	boundary	of	the	beta	regime	(20	–	30	Hz)	
is	drawn	in	red.	White	regions	had	power	less	than	or	equal	to	the	noise	floor,	which	was	
defined	as	the	maximum	power	of	the	residual	oscillation	due	to	common	inputs	to	MCs	when	
inhibition	is	removed.	The	MC	stimulation	due	to	strong	(high	volatility)	and	weak	(low	
volatility)	odorant	stimuli	at	constant	inhibitory	weight	are	marked	by	a	green	square	and	
gray	triangle,	respectively.	In	the	normal	condition	(top)	the	evoked	beta	frequency	is	fairly	
stable	with	respect	to	sensory	input	strength	and	both	low	(gray	triangle)	and	high	(green	
square)	volatility	odorants	induce	beta	oscillations.	In	the	impaired	condition	(bottom)	the	GC	
resting	potential	(Vrest,GC	in	the	model)	remains	at	-70	mV,	and	the	evoked	beta	frequency	is	
less	stable	over	the	same	range	of	inputs.	In	this	condition,	the	high	volatility	odorant	(green	
square)	generates	high	power	low	gamma	oscillations,	while	the	low	volatility	odorant	(gray	
triangle)	induces	higher	power	beta	oscillations	that	it	did	in	the	normal	condition.	C:	(Top)	
Beta	oscillation	frequency	remains	stable	as	the	strength	of	the	NMDA	current	from	GC	to	MC	
(WNMDA,GC	in	the	model)	is	gradually	reduced	to	0,	because	they	are	sustained	by	the	N-type	
voltage	gated	channel	current.	(Bottom)	In	this	particular	simulation,	the	LFP	power	increases	
as	NMDA	is	reduced	because	the	system	is	over-inhibited	for	high	values	of	WNMDA,GC.	The	
dashed	line	indicates	power	of	the	noise	floor	due	to	common	excitation	without	inhibition.	
(Figures	adapted	and	edited	from	Osinski	and	Kay	(2016),	with	permission.)	
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The	model	predicted	that	GC	excitability	influences	the	stability	of	OB	LFP	

oscillation	frequency.	Beta	oscillations	were	generated	over	a	wide	range	of	

parameters	when	GCs	were	in	a	high	state	of	excitability,	providing	sustained	

graded	inhibition	onto	MCs.	Decreasing	GC	excitability	destabilized	the	LFP	

frequency,	such	that	stronger	stimuli	would	drive	oscillations	out	of	the	beta	regime,	

while	weaker	stimuli	could	actually	induce	higher	power	beta.	The	bi-directional	

effect	on	beta	oscillation	power	was	a	consequence	of	shifting	the	balance	of	

excitation	and	inhibition	onto	MCs.	This	is	illustrated	in	Figure	3.1B,	which	shows	

the	range	of	LFP	frequencies	generated	by	the	simulated	MC-GC	dendrodendritic	

network	as	a	function	of	sensory	input	to	MCs	and	strength	of	GC-MC	inhibition	in	

normal	and	impaired	GC	excitability	conditions.	Two	points	illustrate	the	predicted	

effects	of	low	volatility	(weak	odor,	low	excitatory	weight)	and	high	volatility	

(strong	odor,	high	excitatory	weight)	odorants	on	the	LFP	under	these	two	

conditions.	Under	normal	conditions,	a	high	volatility	odorant	(green	square)	

induces	beta	oscillations	with	relatively	high	power,	and	a	low	volatility	odorant	

(gray	triangle)	induces	lower	power	beta	oscillations	(Figure	3.1,B	top).	Under	

impaired	GC	excitability	conditions,	the	strong	odorant	induces	high	power	low	

gamma	frequency	oscillations	instead	of	beta	oscillations	(Figure	3.1,B	bottom).	

Conversely,	the	weak	odorant	induces	higher	power	beta	oscillations	than	it	did	

under	normal	GC	excitability.	Thus,	the	model	predicts	that	for	strong	odors,	a	drug	

that	lowers	GC	excitability	should	attenuate	the	power	of	beta	oscillations,	but	for	

weak	odors	the	same	drug	should	enhance	the	evoked	beta	oscillations.	
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Our	model	also	predicted	which	channels	and	currents	maintain	beta	vs.	gamma	

oscillations.	Beta	oscillations	could	be	sustained	in	the	model	by	graded	inhibitory	

currents,	mediated	primarily	by	voltage-dependent	calcium	channels	(VDCCs),	even	

when	NMDA	currents	were	blocked	(Figure	3.1C).	Gamma	oscillations,	however,	

could	not	be	maintained	in	the	model	without	intact	NMDARs,	which	matched	

results	showing	that	APV,	an	NMDAR	antagonist,	blocks	gamma	oscillations	in	the	

OB	of	waking	mice	(Lepousez	and	Lledo,	2013b).	

	

3.1.2	Overview	of	pharmacological	experiments	

We	tested	the	predictions	of	our	model	experimentally	by	infusing	drugs	into	the	

OB	that	modulate	GC	excitability	in	several	ways.	Muscarinic	receptors	are	found	in	

high	density	in	the	EPL,	where	GCs	synapse	onto	MC	lateral	dendrites	and	at	

moderate	densities	in	the	GC	layer	(Fonseca	et	al.,	1991;	Lein	et	al.,	2007).	

Muscarinic	receptor	agonists	can	both	inhibit	or	excite	GCs	by	differential	activation	

of	M1	or	M2	receptors	(Castillo	et	al.,	1999;	Mandairon	et	al.,	2006;	Smith	and	

Araneda,	2010;	Li	and	Cleland,	2013)	and	can	influence	their	excitability	by	

modulating	afterdepolarization	(Nickell	and	Shipley,	1993;	Pressler	et	al.,	2007b).	

When	we	infused	scopolamine,	a	muscarinic	antagonist,	into	the	ventromedial	OB	

prior	to	an	odor	sampling	session,	beta	oscillations	were	decreased	in	response	to	a	

high	volatility	odorant	and	increased	in	response	to	a	low	volatility	odorant.	

Furthermore,	we	found	that	infusion	of	APV,	an	NMDAR	antagonist,	suppressed	

gamma	but	not	beta	oscillations.	Both	of	these	results	align	well	with	the	model’s	

predictions.	Injection	of	oxotremorine,	a	muscarinic	agonist	produced	more	variable	
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results,	but	in	some	rats	we	observed	a	tendency	for	OB	gamma	and	beta	to	be	

suppressed,	possibly	due	to	over-inhibition.	Although	beta	oscillations	require	

intact	connections	between	OB	and	PC	(Neville	and	Haberly,	2003b;	Martin	et	al.,	

2006b),	we	found	that	PC	beta	oscillations	show	a	degree	of	independence	in	power,	

and	coherence	between	the	OB	and	PC	is	relatively	unaffected	by	decreasing	beta	in	

the	OB.	Together,	these	results	confirm	our	model	predictions	and	reveal	a	more	

nuanced	picture	of	the	generation	of	beta	oscillations	in	the	olfactory	system	than	

was	previously	understood.	

	

3.2	Methods	

Subjects	were	8	adult	male	Sprague-Dawley	rats	(350	-	450	g;	purchased	from	

Envigo	(Harlan)),	maintained	in	the	colony	room	on	a	14	–10	h	light/dark	schedule	

(lights	on	at	08:00	CST).	Two	rats	were	used	for	pilot	studies	to	determine	drug	

dosages.	Six	rats	were	used	for	the	data	as	reported.	Rats	were	housed	singly	after	

electrode	implantation	and	had	access	to	unlimited	food	and	water	for	the	course	of	

the	experiments.	All	animal	procedures	were	done	with	approval	and	oversight	by	

the	University	of	Chicago	Animal	Care	and	Use	Committee	with	strict	adherence	to	

AAALAC	standards.	

	

3.2.1	Electrode	implants	

Before	each	surgery,	rats	were	given	a	subcutaneous	injection	of	ketamine	

cocktail	(35	mg/kg	ketamine,	5	mg/kg	xylazine,	and	0.75	mg/kg	acepromazine).	
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Anesthesia	was	maintained	by	checking	for	reflexes	every	15	min	and	administering	

intraperitoneal	injections	of	ketamine.	Bipolar	stainless	steel	formvar	insulated	

electrodes	(100	μm	wire;	~1	mm	vertical	tip	separation)	were	placed	in	the	left	

anterior	OB	(8.9	mm	anterior	to	bregma,	1.5	mm	lateral,	average	depth	3	mm),	left	

aPC	(0.5	mm	anterior	to	bregma,	3.0	mm	lateral,	15°	angle,	average	depth	8	mm),	

and	right	ventromedial	OB	(8.5	mm	anterior	to	bregma,	1.5	mm	lateral,	average	

depth	4	mm)	as	shown	in	Figure	2A.	A	cannula	guide	(Plastics	One	C315,	26	gauge,	5	

mm	guide	with	0.75	mm	internal	injection	cannula	projection)	with	two	stainless	

steel	electrodes	attached	on	either	side	of	the	shaft	was	implanted	in	the	left	

ventromedial	OB	(8.2	mm	anterior	to	bregma,	1.5	mm	lateral,	average	depth	2.5	

mm).	Bipolar	electrodes	were	vertically	positioned	across	the	ventral	mitral	cell	

layer	in	the	OB	and	across	the	layer	2/3	pyramidal	cell	layer	in	the	aPC	by	orienting	

the	electrode	perpendicular	to	the	cell	layer	and	lowering	it	until	the	LFP	was	

reversed	across	the	two	leads	of	the	bipolar	electrode.	The	cannula	was	inserted	

into	the	GCL	by	observing	a	reduction	in	the	amplitude	of	the	LFP	after	lowering	

past	the	dorsal	mitral	cell	layer.	Internal	cannula	depths	determined	post	mortem	

are	shown	in	Figure	2D.	Reference	and	ground	wires	attached	to	stainless	steel	

screws	were	secured	to	the	skull	over	the	left	cerebellum	and	right	occipital	lobe	

respectively	(see	REF	&	GND	Fig.	2A).	Additional	screws	were	used	for	securing	the	

headstage	to	the	skull.	Connector	pins	for	each	lead	were	inserted	into	a	round	

plastic	receptacle	(Ginder	Scientific,	Ottawa,	Canada),	and	the	assembly	was	

embedded	in	dental	acrylic	(See	Fig.	3.2E).	Rats	were	allowed	to	recover	for	2	weeks	

after	surgery	before	beginning	the	experimental	protocol.	
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Figure	3.2.	Electrode	placement	and	drug	spread.	A:	Schematic	showing	electrode	and	
cannula	placements.	B:	Two	representative	examples	showing	spread	of	methylene	blue	
dye	(injected	just	before	perfusion)	localized	to	the	left	OB.	C:	Schematic	sagittal	slice	
showing	approximate	anterior-posterior	spread	of	drug	(blue	lines)	as	determined	by	
spread	of	methylene	blue	dye.	(The	two	green	lines	correspond	to	the	two	rats	with	large	
contralateral	scopolamine	effects	whose	means	are	colored	green	in	Figure	6C.)	D:	
Schematic	coronal	section	of	LmOB	showing	approximate	internal	cannula	tip	depths	
determined	via	Prussian	Blue	reaction.	E:	Close-up	of	of	cannula	guide,	internal	cannula	
projection,	and	cannula	electrodes.	F:	Fully	recovered	rat	with	wireless	transmitter	
plugged	into	implant.	A	metal	collar	is	tightened	to	ensure	a	firm	connection.	A	battery	is	
taped	to	the	top	of	the	wireless	transmitter.	The	cannula	cap	is	indicated.	
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3.2.2	Verification	of	electrode	placements	and	drug	spread	

After	experiments	were	complete,	rats	were	deeply	anesthetized	with	a	

euthanizing	dose	of	Urethane	(1g/kg),	and	methylene	blue	dye	was	injected	into	the	

cannula	at	the	same	rate	and	volume	used	for	drugs	during	experiments	(4	μL,	at	1	

μL/min).	Dye	could	not	be	injected	into	one	rat	due	to	cannula	blockage.	Current	

was	passed	between	each	electrode	and	the	ground	screw,	thus	depositing	iron	

residue	at	the	tips	of	the	stainless	steel	wires.	The	brain	was	fixed	via	intracardial	

perfusion,	and	electrode	tips	were	marked	using	the	Prussian	Blue	reaction.	Prior	to	

sectioning,	brains	were	extracted	from	the	skull,	the	electrode	array	was	removed,	

and	the	brains	were	sunk	in	30%	sucrose	(0.1	M	phosphate	buffered	formal	saline)	

for	two	days	and	then	flash	frozen	in	isopentane	cooled	to	-40deg.	OB	cannula	

placements	were	confirmed	by	visual	examination	of	coronal	slices	showing	

electrode	tracks	and	the	blue	stain	marking	the	electrode	tips	(Fig.	3.2D).	The	

spread	of	methylene	blue	dye	across	rats	is	shown	in	in	Fig.	3.2B,C.	

	

3.2.3	Drugs	and	dosages	

We	used	three	drugs	in	this	study:	scopolamine	(Sigma	Aldrich,	MW	

339.81g/mol),	oxotremorine	(Sigma	Aldrich,	MW	322.19	g/mol),	and	APV	(Sigma	

Aldrich,	197.13	g/mol).	We	ran	pilot	experiments	on	2	rats	(not	including	the	6	rats	

used	for	the	study)	to	determine	the	appropriate	dose	of	these	drugs.	For	our	initial	

choice	of	Scopolamine	dose	we	followed	(Mandairon	et	al.,	2006),	who	used	a	low	

concentration	of	7	mM	and	a	high	concentration	of	38	mM.	In	our	pilot	experiments,	
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we	found	no	effect	of	low	concentration	on	beta	power	and	small	effects	at	the	

higher	dose.	We	found	that	a	slight	increase	to	50	mM	produced	much	stronger	

effects.	In	this	study	we	refer	to	38mM	as	the	low	concentration	and	50mM	as	the	

high	concentration.	We	did	not	use	the	7	mM	dose,	because	we	wanted	to	limit	the	

number	of	drug	conditions	planned	for	each	subject.	For	APV	we	tried	to	follow	

Leposez	&	Lledo	(2013)	who	infused	0.25	mM	and	1	mM	for	high	and	low	

concentrations.	However,	both	of	these	doses	caused	seizures	in	our	rats.	We	found	

that	100	μM	was	a	safe	dose	that	still	produced	significant	effects.	For	oxotremorine,	

we	followed	Bendahmane	et	al.	(2016)	and	Smith	et	al.	(2015)	who	used	10	μM	and	

30	μM	doses.	No	significant	effects	were	seen	at	10	μM,	but	30	μM	produced	strong	

effects	(though	they	were	not	always	consistent,	see	Results).	Higher	concentrations	

tended	to	induce	seizures.	

Initially,	we	intended	to	use	low	and	high	doses	of	each	drug,	but	because	

oxotremorine	and	APV	produced	seizures	at	higher	doses	and	showed	little	effect	at	

lower	doses	in	our	pilot	study,	and	the	need	to	limit	the	number	of	infusions	for	each	

subject,	we	only	used	low	doses	of	oxotremorine	and	APV	for	this	study.	There	were	

no	seizures	induced	by	scopolamine	in	our	pilot	rats,	even	at	concentrations	higher	

than	those	used	in	the	present	study.	

	

3.2.4	Experimental	design	

After	full	recovery	from	surgery,	rats	were	habituated	to	odors	for	one	day	

before	the	start	of	experiments	to	eliminate	novelty	effects.	Drugs	were	freshly	

mixed	immediately	before	each	experiment.	At	the	start	of	the	experiment,	rats	
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were	plugged	into	a	Multichannel	Systems	wireless	transmitter	headstage	(W16-HS)	

and	then	placed	in	a	clean	polycarbonate	cage	with	fresh	bedding.	A	battery	to	

power	the	headstage	was	taped	to	the	top	of	the	assembly	as	shown	in	Figure	3.2E.	

Each	experiment	started	with	5	minutes	of	free	behavior	recording	to	obtain	a	

baseline	LFP	used	to	normalize	the	odor	evoked	gamma	and	beta	oscillations.	

Afterwards,	4	μL	of	drug	or	saline	was	infused	into	the	left	OB	at	a	rate	of	1	μL/min.	

If	the	cannula	was	clogged,	then	2	μL	of	saline	was	carefully	injected	by	hand	to	clear	

the	blockage.	In	some	cases	the	cannula	became	permanently	clogged	(possibly	due	

to	scar	tissue	and	glial	cell	buildup)	and	no	further	sessions	could	be	run,	resulting	

in	partial	data	for	those	subjects.	A	control	session	with	saline	injection	was	

performed	after	every	two	drug	sessions	to	track	any	systematic	changes	in	the	LFP	

from	day	to	day.	The	order	of	drug	sessions	was	balanced	across	rats.	

Drug	effects	often	started	immediately	after	or	even	during	the	infusion	(Fig.	

3.3C),	so	we	began	odor	presentations	immediately	after	infusion.	Two	odorants	

were	used	in	this	study,	Ethyl-2-methylbutyrate	(EMB,	Sigma	Aldrich)	and	Geraniol	

(GER,	Sigma	Aldrich).	EMB	has	a	high	volatility	(theoretical	vapor	pressure-VP-	at	

25o	C	of	7.86	mm	Hg)	and	elicits	high	amplitude	beta	oscillations,	while	GER	has	a	

low	volatility	(VP	0.0133	mm	Hg)	and	elicits	smaller	beta	oscillations	(Lowry	and	

Kay,	2007b).	Odors	were	presented	in	blocks	of	24	trials	with	~20	s	between	trials	

(total	48	trials).	These	odor	blocks	spanned	the	two	phases	of	an	apparent	biphasic	

scopolamine	effect	(see	Figs	3.3	&	3.4).	For	each	trial,	an	odor	soaked	cotton	swab	

was	held	under	the	rat’s	nose	for	two	or	three	sniffs	(as	judged	by	the	presenter).	In	

two	of	the	rats,	we	also	used	an	interleaved	odor	presentation	design,	where	EMB	
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and	GER	were	alternated	on	each	presentation	for	a	total	of	48	trials,	producing	12	

trials	of	a	given	odor	for	each	half	of	the	experiment.	Interleaving	the	odor	

presentations	did	not	change	the	main	results	of	the	experiment.	The	drug	and	odor	

order	were	balanced	across	all	6	rats.	The	timeline	of	the	odor	block	presentation	

experiment	is	depicted	in	Figure	3.4B.	

	

3.2.5	Electrophysiology	

All	data	were	recorded	wirelessly	using	Multichannel	Systems	32-channel	basic	

wireless	recording	system,	using	a	16-channel	headstage	(W16-HS)	with	a	digital	

sampling	rate	of	2	kHz.	To	power	the	headstage	a	small	battery	was	secured	to	the	

top	of	the	assembly	with	tape	as	shown	in	Figure	3.2E.	Each	lead	was	recorded	with	

reference	to	a	skull	screw	above	the	left	cerebellum	(see	REF	in	Fig.	3.2A).	A	ground	

screw	was	placed	over	the	right	posterior	cortex.	Approximate	odor	onset	times	

were	recorded	with	a	5V	TTL	pulse	triggered	by	the	experimenter	pressing	a	button	

just	before	the	rat	took	its	first	sniff.	Brain	signals	and	events	were	recorded	with	

MC	Rack	software	(http://www.multichannelsystems.com/downloads/software).	

	

3.2.6	Spectral	analysis	

For	each	rat,	we	assessed	the	quality	of	signals	from	the	two	leads	from	each	

brain	area.	We	chose	the	lead	with	the	cleanest	signals	and	most	prominent	beta	

oscillations	from	each	pair	and	used	this	lead	for	analysis	across	the	entire	set	of	

experiments.	All	analysis	was	performed	in	MATLAB®	R2015b.	We	filtered	out	
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movement	artifact	(MATLAB	‘designfilt’	function	using	‘lowpassfir’	with	pass	4Hz,	

stop	8Hz,	then	applied	with	the	filtfilt	function)	and	subtracted	it	from	the	original	

data.	We	found	that	finite	impulse	response	filters	produced	less	prominent	edge	

effects	than	infinite	impulse	response.	We	then	extracted	the	odor	presentation	

trials	from	the	continuous	LFP	trace	in	4-second	windows	starting	from	the	button	

press	at	the	start	of	each	trial.	We	calculated	power	spectra	for	each	trial	using	the	

multitaper	method	implemented	in	the	Chronux	version	2.11	toolbox	for	MATLAB	

(Bokil	et	al.,	2010b),	with	a	time-half-bandwidth	of	2	and	3	tapers	over	a	frequency	

range	of	1	Hz	to	100	Hz.	This	method	multiplies	each	LFP	trace	with	a	series	of	

tapers	(Slepian	sequences)	and	then	averages	them,	which	has	the	effect	reducing	

spurious	noise	contributions.	The	Slepian	sequences	also	possess	desirable	spectral	

concentration	properties,	which	produce	a	more	accurate	measure	of	the	underlying	

power	spectrum	(Bokil	et	al.,	2010b).	We	divided	the	LFP	power	spectra	into	three	

bands:	beta	(15	–	30	Hz),	low	gamma	(40	–	60	Hz),	and	high	gamma	(60	–	100	Hz).	

We	discarded	the	first	4	trials	of	each	24	trial	odor	block,	because	beta	often	only	

comes	on	after	the	3rd	or	4th	odor	presentation,	consistent	with	findings	in	Lowry	

and	Kay	(2007).	We	then	averaged	the	power	in	each	frequency	band	across	the	

remaining	20	trials,	and	report	the	peak	beta	band	power	from	the	averaged	power	

spectra.	

To	calculate	coherence	between	OB	and	PC	signals	we	used	the	coherencyc	

function	in	the	Chronux	toolbox.	This	function	applies	a	multitaper	coherence	

calculation	to	the	entire	4s	odor	period	for	each	trial	and	then	averages	across	trials.	

We	used	9	tapers	with	a	time-half	bandwidth	of	5.	We	then	applied	Fisher's	Z	
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transform	of	the	coherence	(Kay	and	Freeman,	1998;	Kay	and	Beshel,	2010b),	

defined	as	tanh-1(coherence),	to	distribute	the	values	from	zero	to	infinity	instead	of	

zero	to	one.	

	

3.2.7	Double	normalization	of	power	spectra	

The	LFP	amplitudes	differed	across	subjects	and	days,	primarily	due	to	

differences	in	electrode	placement	and	condition	across	subjects,	electrode	drift	

within	subjects,	and	effects	of	repeated	infusions.	Normalizing	the	LFP	power	during	

odor	presentations	by	baseline	power	alone	was	not	sufficient	to	put	the	power	

values	of	different	rats	on	the	same	scale	for	meaningful	statistical	comparisons,	

because	different	rats	may	show	different	degrees	of	odor-evoked	oscillatory	power	

increase	even	under	normal	conditions.	These	differences	are	often	due	to	

differences	in	electrode	placement	or	quality.	Therefore,	we	also	compare	the	

relative	odor-evoked	power	changes	under	drug	vs.	saline	conditions.	Thus,	we	

normalized	each	power	spectrum	first	by	the	power	in	the	5	min	baseline	before	the	

infusion	and	then	by	the	power	during	odor	presentations	in	the	most	recent	saline	

session.	The	power	in	the	5	min	baseline	period	was	determined	by	dividing	it	into	4	

s	long	non-overlapping	windows	and	averaging	the	power	of	all	these	windows.	

Using	the	same	length	windows	as	for	odor	presentation	ensured	that	the	baseline	

spectrum	had	the	same	frequency	resolution	as	the	power	of	the	odor	presentation	

trials.	Windows	with	significant	movement	artifacts	were	discarded.	The	saline	

sessions	were	also	normalized	by	their	baselines	before	being	used	as	

normalizations	for	the	drug	sessions.	
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3.2.8	Statistical	methods	

5-way	unbalanced	ANOVA	was	conducted	for	scopolamine	and	oxotremorine	

sessions	separately	using	the	MATLAB	anovan	function.	Factors	were	subject,	

saline/drug,	odor	identity,	odor	block,	and	frequency	band.	For	APV	sessions	we	

conducted	a	4-way	ANOVA,	because	odor	blocks	were	combined	for	analysis	of	

these	sessions.	An	unbalanced	design	was	used	because	some	rats	had	missing	

sessions,	either	due	to	the	cannula	becoming	permanently	blocked	or	a	drug	causing	

seizures	even	at	lower	doses	(these	data	were	excluded).		In	addition,	in	some	cases	

there	were	different	numbers	of	repetitions	(uniform	odor	blocks	had	rep	=	20,	

interleaved	odor	blocks	had	rep	=	10,	after	excluding	the	first	4	trials	in	each	block).	

When	ANOVAs	were	significant,	we	performed	post-hoc	t-tests	between	each	

saline	and	drug	pair	using	the	mean	for	each	rat.	There	were	2	(odors)	x	2	(odor	

blocks)	x	3	(frequency	ranges)	=	12	comparisons	for	each	drug,	giving	us	a	

Bonferroni	correction	factor	of	12,	and	setting	the	significance	threshold	at	p	<	

0.05/12	≈	0.004.	(For	APV,	we	found	no	differences	across	odor	blocks,	so	the	trials	

were	treated	as	a	single	block,	with	the	number	of	comparisons	reduced	to	6,	p	<	

0.008.	See	Results-	Effects	of	drugs	on	baseline	LFP.)	Throughout	the	paper	we	

present	the	data	in	violin	plots	(using	MATLAB	File	Exchange	function	violin.m),	

which	show	a	smoothed	probability	density	distribution	(using	a	Gaussian	kernel)	

of	the	normalized	power	in	beta,	low	gamma,	and	high	gamma	frequency	bands	

averaged	across	all	rats.	 	
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3.3	Results	of	pharmacological	experiments	
	

We	designed	the	experiments	to	test	the	hypothesis	that	manipulating	GC	

excitability	would	affect	the	amplitude	of	beta	oscillations	as	predicted	by	our	model	

(Fig.	3.1).	Two	drugs,	scopolamine	and	oxotremorine,	tested	the	effects	of	GC	

modulation	by	the	muscarinic	ACh	receptor.	A	third	drug,	APV,	tested	our	model’s	

prediction	that	blocking	NMDA	receptors	would	decrease	gamma	but	not	beta	

oscillations.		

	

3.3.1	Effects	of	drugs	on	baseline	LFP	

We	timed	odorant	presentation	to	occur	within	the	duration	of	the	drug	effects.	

To	measure	the	duration	of	the	drug	effects,	we	recorded	LFPs	from	3	rats	for	45	

min	after	infusion	without	any	odor	presentations.	Representative	effects	on	the	left	

medial	OB	(where	the	drug	was	infused)	and	right	medial	OB	(a	control)	of	a	single	

rat	are	shown	in	Fig.	3.3A,B	(end	of	infusion	marked	by	vertical	dashed	line).	To	

visualize	the	average	effect	we	aligned	the	LFPs	of	each	session	to	the	end	of	

infusion	time,	and	averaged	the	40	–	80	Hz	gamma	band	power	across	subjects	(Fig.	

3.3C,	gray	traces).	All	three	drugs	typically	began	to	take	effect	during	infusion.	APV	

(100	μM)	had	a	highly	consistent	effect	in	every	session,	nearly	abolishing	gamma	

for	over	20	minutes	post	infusion	(Fig.	3.3Ciii).	The	muscarinic	drugs,	however,	had	

more	complex	effects.		
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		 Scopolamine	infusion	produced	a	consistent	biphasic	effect	on	the	LFP,	

starting	with	a	strong	suppression	of	LFP	power	across	gamma	and	beta	

frequencies,	followed	by	a	“rebound”	boost	in	low	gamma	power,	which	slowly	

dissipated	as	gamma	crept	up	to	the	baseline	gamma	frequency	over	about	20	min	

(Figures	3.3Ai	and	3.3Ci).	We	measured	the	duration	of	the	early	phase	as	the	time	

that	the	average	broadband	gamma	(40	–	80	Hz)	power	took	to	return	to	pre-

infusion	baseline	gamma	power	levels,	which	we	found	to	be	~7-8	mins	after	the	

Figure	3.3.	Temporal	effects	of	drugs	on	OB	LFP	power.	A:	Representative	spectrograms	
of	LmOB	LFP	after	infusion	of	scopolamine	(Ai),	oxotremorine	(Aii),	and	APV	(Aiii)	into	the	
LmOB	without	any	odor	presentations.	Vertical	dashed	lines	indicate	end	of	infusion	(time	to	
complete	the	infusion	varied	slightly	from	session	to	session).	B:	Spectrograms	of	
contralateral	(RmOB)	LFP	activity	corresponding	to	the	sessions	in	A.	C:	Mean	gamma	(40	–	
80	Hz)	power	averaged	over	no	odor	(gray)	and	odor	presentation	(pink)	sessions	aligned	to	
end	of	infusion	time	(vertical	dashed	lines	indicate	end	of	infusion).	Power	was	normalized	
by	the	average	baseline	power	(indicated	by	horizontal	dashed	line).	Scopolamine	and	APV	
had	fairly	consistent	effects	across	subjects,	but	oxotremorine	effects	were	highly	variable.	
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end	of	infusion	(Fig.	3.4A).	Because	of	this	biphasic	effect	we	designed	the	odor	

presentations	to	fit	into	two	blocks,	each	lasting	about	7-8	minutes	(24	

presentations	spaced	by	roughly	20s	each),	so	that	the	first	block	covers	the	first	

phase	while	the	second	block	covers	the	second	phase.	In	Figure	3.4C	we	show	the	

spectrograms	of	scopolamine	(50	mM)	infusion	followed	by	odor	presentation	

sessions	in	4	rats	to	confirm	that	the	first	odor	block	(green	line)	and	second	odor	

block	(red	line)	bracketed	this	transition.	We	used	the	same	odor	block	design	for	all	

sessions	to	avoid	introducing	new	variables,	but	since	APV	did	not	show	biphasic	

Figure	3.4.	Determining	average	duration	of	early	phase	scopolamine	effect	in	LmOB.	A:	Mean	
normalized	power	in	the	LmOB	gamma	band	(40-80Hz)	from	all	scopolamine	sessions	aligned	by	the	
end	of	infusion	time-points.	The	infusion	period	(gray	block)	differed	in	duration	from	session	to	
session	(see	methods).	Dashed	horizontal	line	is	the	baseline	gamma	power	before	infusion	(power	
was	normalized	by	baseline,	so	baseline	is	at	1).	We	interpret	the	early	phase	of	scopolamine	as	the	
time	post	infusion	it	takes	for	mean	gamma	power	to	return	to	baseline	(marked	by	vertical	line),	
which	is	about	7-8min	B:	Odor	presentation	experimental	timeline.	The	1st	block	overlaps	with	the	
early	phase	of	scopolamine	effect,	the	2nd	block	with	the	late	phase.	C:	Example	spectrograms	of	
scopolamine	(50	mM)	sessions	in	4	rats.	Vertical	black	dashed	lines	indicate	end	of	infusion.	Colored	
lines	at	the	top	of	each	plot	indicate	the	duration	of	each	step	in	the	experiment	using	same	color	
scheme	as	the	timeline	in	B.	In	each	of	these	plots,	the	1st	(green)	and	2nd	(red)	odor	blocks	bracket	the	
transition	between	the	two	phases	of	the	scopolamine	effect.	Odor	evoked	beta	and	gamma	
oscillations	can	be	seen	in	some	of	the	plots.	In	these	plots,	the	2nd	odor	block	starts	just	before	the	
onset	of	the	rebound	gamma	(scopolamine	effect	phase	2).	
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effects	we	combined	the	APV	data	from	both	blocks.	

While	the	scopolamine	and	APV	effects	were	fairly	consistent	from	session	to	

session,	the	oxotremorine	effects	were	highly	variable.	In	the	early	sessions	without	

odor	presentations,	oxotremorine	tended	to	increase	gamma	power	(Fig.	3.3Cii,	gray	

trace),	but	in	70%	of	the	odor	presentation	sessions	oxotremorine	reduced	gamma	

power	(Fig.	3.3Cii,	pink	trace).	In	those	sessions,	gamma	suppression	was	followed	

by	a	rebound	gamma	increase,	similar	to	the	scopolamine	sessions.	Because	of	this,	

we	used	the	same	odor	block	design	for	oxotremorine	as	scopolamine.	

Oxotremorine	is	known	to	produce	excitatory	and	inhibitory	effects	in	the	OB	

through	differential	activation	of	M1	and	M2	receptors	(Smith	et	al.,	2015,	see	

Discussion),	and	this	may	in	part	be	responsible	for	the	highly	variable	effects	on	

gamma.	We	include	oxotremorine	data	here	for	completeness,	but	we	admit	that	

more	work	must	be	done	to	dissect	its	effect	on	OB	oscillations.	

	

3.3.2	Muscarinic	receptors	

Our	previous	modeling	work	(Osinski	and	Kay,	2016)	predicted	that	reducing	GC	

excitability	would	lift	the	frequency	of	LFP	oscillations	induced	by	strong	odors	out	

of	the	beta	regime	into	the	low	gamma	range	but	would	leave	LFP	oscillations	

evoked	by	weak	odors	in	the	beta	regime	with	possibly	some	increase	in	power	(Fig.	

3.1B).	To	test	these	effects,	we	infused	scopolamine	(38	mM	&	50	mM),	a	

nonselective	muscarinic	antagonist	with	twice	the	affinity	for	M2	as	for	M1	

receptors	(Bolden	et	al.,	1992),	through	a	cannula	positioned	in	the	GC	layer	(Fig.	

3.2D).	Muscarinic	drugs	are	known	to	modulate	GC	excitability	in	a	complex	manner	



	 82	

(Castillo	et	al.,	1999;	Mandairon	et	al.,	2006;	Pressler	et	al.,	2007b;	Devore	and	

Linster,	2012b;	Li	and	Cleland,	2013;	Smith	et	al.,	2015).	With	scopolamine,	our	

intention	was	to	prevent	heightened	excitability	states	from	occurring,	thus	placing	

GCs	in	an	impaired	excitability	state,	as	described	in	the	modeling	results	in	Figure	

1B.	We	chose	one	high	volatility	odorant,	ethyl-2-methylbutyrate	(EMB),	and	one	

low	volatility	odorant,	geraniol	(GER),	to	probe	the	effects	induced	by	strong	and	

weak	odors,	respectively.	As	described	earlier	(Fig.	3.4),	we	divided	odor	

presentation	sessions	into	two	blocks	of	24	trials	each	lasting	~7-8	minutes	to	cover	

the	biphasic	scopolamine	effect	on	the	background	LFP.	

	

3.3.2i	Results	from	a	single	scopolamine	session	

We	first	take	a	close	look	at	a	representative	scopolamine	(50	mM)	session	and	

its	associated	saline	session	from	a	single	rat	(Fig.	3.5),	and	then	we	examine	the	

summary	statistics	of	all	the	scopolamine	sessions	across	all	rats	(Fig.	3.6).	Figure	

3.5A	shows	single	trials	of	EMB-	and	GER-evoked	oscillations	in	LaOB,	LmOB	

(infusion	site),	RmOB,	and	LaPC	after	saline	and	scopolamine	(50	mM)	infusions.	In	

these	sessions,	EMB	was	presented	in	the	1st	odor	block	and	GER	in	the	2nd.	EMB	

evoked	prominent	beta	oscillations	on	all	channels	after	saline	infusion	(labeled	β,	

Fig	3.5Ai).	LaOB	beta	was	typically	smaller	in	amplitude	than	LmOB,	consistent	with	

other	recordings	in	our	laboratory,	possibly	because	anterior	OB	receives	fewer	

feedback	fibers	than	more	posterior	parts	or	simply	because	the	increased	

curvature	in	the	anterior	end	of	the	bulb	reduces	the	coherence	of	the	laminar	

cortical	field.	After	scopolamine	50	mM	infusion,	the	EMB-evoked	LaOB	and	LmOB		
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Figure	3.5.	Representative	scopolamine	session	and	associated	saline	session	from	a	single	
rat.	A:	Representative	LFP	traces	during	EMB	(top)	and	GER	(bottom)	presentations	in	LaOB,	
LmOB,	RmOB,	and	LaPC	after	saline	(left)	and	scopolamine	(right)	infusions	from	a	single	rat.	
Twenty	such	trials	are	used	to	produce	the	power	spectra	in	B.	Odor	presentation	times	are	
indicated	by	dashed	vertical	lines.	In	this	session	the	EMB-induced	beta	in	the	LOB	(labeled	β)	was	
visibly	abolished	and	appeared	to	be	replaced	by	a	low	gamma	oscillation	(labeled	low	γ).	This	
occurred	in	9	out	of	12	of	the	scopolamine	(50	mM)	sessions	and	4	out	of	12	of	the	scopolamine	(38	
mM)	sessions	across	the	6	rats.	Beta	persisted	in	the	RmOB	after	scopolamine	infusion.	B:	Mean	
power	spectra	of	LaOB	(Bi),	LmOB	(Bii),	RmOB	(Biii),	and	LaPC	(Biv).	For	each	brain	region	we	
show	the	LFP	power	spectra	during	EMB	(top)	and	GER	(bottom)	presentation	after	saline	(black)	
and	scopolamine	(orange)	infusion.	Power	was	normalized	by	the	pre-infusion	baseline,	
represented	by	the	horizontal	dashed	line	at	1.	In	the	LmOB	EMB	spectrum	(Bii,	top)	we	annotate	
the	beta	(β),	low	gamma	(low	γ),	and	high	gamma	peaks	(high	γ).		
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beta	oscillations	were	abolished	and	appeared	to	be	replaced	with	a	high	power	low	

gamma	frequency	oscillation	(labeled	low	γ,	Fig.	3.5Aiii).	The	contralateral	(RmOB)	

beta	oscillation,	where	no	drug	was	delivered,	was	still	present	(labeled	β,	Fig.	

3.5Aiii).	GER	did	not	evoke	visible	beta	oscillations	under	the	saline	condition	(Fig.	

3.5Aii),	but	did	evoke	visible	beta	oscillations	after	scopolamine	infusion	(Fig.	

3.5Aiv).	In	these	trials	the	apparent	opposite	effect	of	scopolamine	on	EMB-	and	

GER-	evoked	beta	oscillations	followed	our	model	predictions	of	a	bidirectional	

effect	(Fig.	3.1B).	

Figure	3.5B	shows	the	average	power	spectra	(normalized	by	baseline)	of	the	

single	sessions	from	which	the	representative	trials	in	Figure	3.5A	were	taken.	The	

average	power	in	the	beta	frequency	range	for	LaOB	and	LmOB	during	the	1st	odor	

block	(EMB)	is	noticeably	reduced,	and	a	peak	in	the	low	gamma	frequency	band	

appears	after	scopolamine	infusion	(Fig	3.5Bi,ii,	top;	peak	at	~55	Hz).	This	low	

gamma	peak	represents	the	low	gamma	oscillation	that	appears	to	occur	in	place	of	

the	beta	oscillation,	seen	in	the	LFP	trace	in	Fig	4Bii.		There	is	also	an	increase	in	

broadband	low	gamma	in	the	2nd	odor	block	(GER).	Unlike	the	1st	odor	block	

however,	this	increase	in	low	gamma	is	most	likely	not	odor-evoked,	but	a	

consequence	of	the	rebound	gamma	increase	that	occurs	in	the	later	phase	of	the	

scopolamine	effect	as	shown	in	Figures	3.3	&	3.4.	The	distinction	between	the	

gamma	frequencies	in	the	EMB-	and	GER-induced	LFP	spectra	may	be	related	to	the	

two	different	gamma	subtypes,	gamma1	and	gamma2,	noted	by	Kay	(2003)	(see	

Discussion).	There	was	a	small	increase	in	GER-evoked	beta	under	scopolamine	in	

the	representative	trial	shown	in	Figure	3.5Aiv,	and,	on	average,	the	GER-evoked	
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beta	power	was	slightly	elevated	relative	to	baseline	for	this	session	(Fig.	3.5Bi,ii,	

bottom).	The	LaPC	showed	negligible	effects	of	EMB-evoked	(Fig.	3.5Biv,	top)	and	

GER-evoked	(Fig.	3.5Biv,	bottom)	beta	following	scopolamine	infusion.	Because	PC	

tends	to	produce	beta	frequency	activity	spontaneously	(Poo	and	Isaacson,	2009b),	

the	baseline	normalized	LaPC	beta	was	fairly	low	even	when	there	was	a	visibly	

evoked	beta	oscillation.	All	three	regions	in	the	left	hemisphere	show	a	persistent	

decrease	in	high	gamma	oscillations	lasting	through	both	phases	of	the	scopolamine	

effect.	Although	this	occurred	to	some	degree	in	4	of	6	rats,	the	effect	overall	was	not	

significant	(see	Fig.	3.6).	In	the	RmOB	there	was	no	effect	on	beta	power	but	a	

surprising	increase	in	low	gamma	power	following	scopolamine	infusion	in	this	rat	

(Fig.	3.5Biii).	There	were	prominent	contralateral	effects	in	approximately	half	of	

the	rats,	and	this	is	discussed	in	more	detail	later	(see	Fig.	3.6C).	We	present	this	

representative	data	set	from	a	single	rat	because	the	replacement	of	beta	by	low	

gamma	oscillations	following	scopolamine	infusion	could	only	be	inferred	by	

looking	at	the	individual	LFP	traces	themselves	(comparing	Fig.	3.5Bi	and	Fig.	

3.5Biii),	and	not	from	summary	statistics.	

	

3.3.2ii	Scopolamine	effects	in	the	OB	

We	now	turn	to	address	drug	effects	across	all	rats	for	low	and	high	doses	of	

scopolamine	on	the	beta	(15	–	30	Hz),	low	gamma	(40	–	60	Hz),	and	high	gamma	(60	

–	100	Hz)	frequency	bands.	In	order	to	put	power	values	from	different	rats	on	the	

same	scale	we	normalized	the	LFP	power	by	both	pre-infusion	baseline	and	saline	

power	(see	Methods).	5-way	ANOVAs	were	computed,	with	subject,	drug	treatment	
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(saline	vs.	drug),	odor,	frequency	band,	and	block	(early	vs.	late)	as	factors	for	each	

electrode	location	and	drug	concentration.	The	results	of	post	hoc	t-tests	between	

the	means	of	the	saline	and	drug	sessions	for	each	rat	and	electrode	location	are	

reported	in	Fig.	3.6.	As	described	in	Methods,	the	Bonferroni	correction	on	post	hoc	

tests	sets	the	significance	threshold	at	p	<	0.004	for	drugs	that	showed	a	biphasic	

effect.	For	these	and	all	subsequent	descriptions	of	the	drug	effects,	we	first	present	

the	results	of	our	ANOVA	analyses,	including	the	effects	of	all	factors.	After	that,	for	

electrode	locations	that	show	significant	main	effects	or	interactions	involving	the	

drug	treatment,	we	present	post	hoc	comparisons.	Other	effects	(odor,	subject,	

frequency	band)	have	been	extensively	covered	in	our	previous	reports	(Lowry	and	

Kay,	2007b;	Kay	et	al.,	2009b;	Kay,	2014b;	Frederick	et	al.,	2016a).	

Effects	on	the	left	OB	(treatment	side)	were	similar	across	the	two	drug	

concentrations.	For	the	low	concentration	(38	mM)	scopolamine	treatment,	we	

found	significant	main	effects	of	all	five	factors	on	LFP	power	in	both	sites	in	the	OB	

(LmOB:	subject	p=7.4e-8,	η2	0.16;	drug	p=0.0019,	η2	0.03;	odor	p=1.03e-7,	η2	0.11;	

block	p=0.0076,	η2	0.0003;	frequency	band	p=7.77e-5,	η2	0.07;	LaOB:	subject	

p=0.0324,	η2	0.05;	drug	p=0.0389,	η2	0.02;	odor	p=1.00e-6,	η2	0.12;	block	p=0.0434,	

η2	0.003;	frequency	band	p=0.00001,	η2	0.08).	Some	of	these	effects	were	expected	

because	of	our	prior	knowledge	about	how	the	volatility	of	odors	affects	the	power	

of	beta	oscillations	(odor,	band)	and	differences	in	electrode	placement	and	

therefore	power	of	different	oscillation	frequencies	across	subjects	(subject).	

Importantly,	there	was	also	a	significant	interaction	between	drug	and	odor	at	the	

injection	site	only	(LmOB:	p=0.0366,	η2	0.15),	plus	additional	interactions	at	that		
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Figure	3.6.	Scopolamine	effects	on	odor	induced	LFP	oscillations.	A:	Violin	plots	summarizing	
effects	of	low	(38	mM,	Ai)	and	high	(50	mM,	Aii)	scopolamine	doses	on	LmOB	(infusion	site)	in	all	6	
rats	for	presentation	of	EMB	(top)	and	GER	(bottom)	during	1st	and	2nd	odor	blocks.	White	circles	
represent	means	of	each	rat.	Power	for	each	session	was	doubly	normalized,	first	by	baseline	and	
then	by	its	closest	saline	session	(black	dashed	line).	A	value	of	1	indicates	no	difference	from	the	
saline	condition.	Black	solid	horizontal	lines	on	the	violins	show	means	for	all	rats;	red	horizontal	
lines	are	medians.	Asterisks	represent	p	<	0.004	for	the	post	hoc	comparisons	between	mean	saline	
and	drug	for	each	rat.	B,	C:	Violin	plots	summarizing	effects	of	scopolamine	(50	mM)	on	LaOB	and	
RmOB	(same	annotations	as	A).	Although	the	scopolamine	effect	in	RmOB	was	not	significant	in	the	
post	hoc	comparison	across	all	rats,	two	rats	showed	very	strong	low	gamma	power	(colored	green	
for	visualization).	Note	that	the	y-scale	is	increased	for	RmOB	to	fit	the	huge	increase	in	low	gamma	
power	that	occurred	in	one	rat.	D:	Z-coherence	between	LmOB	and	LaPC	under	saline	and	
scopolamine	(50	mM)	conditions	was	computed	fro	EMB	and	GER	in	both	odor	blocks.	
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site	between	subject	and	odor	(p=0.0249,	η2	0.04),	subject	and	frequency	band	

(p=8.76e-7,	η2	0.17),	odor	and	block	(p=0.0447,	η2	0.01),	and	odor	and	frequency	

band	(p=2.66e-6,	η2	0.10).	Significant	interaction	effects	for	the	LaOB	were	subject	x	

band	(p=2.04e-6,	,	η2	0.22),	odor	x	block	(p=0.005,	η2	0.03),	and	odor	x	band	

(p=0.0007,	η2	0.07).	

For	the	high	concentration	(50	mM)	scopolamine	treatment,	we	again	found	

significant	main	effects	for	all	five	factors	at	the	injection	site	(LmOB:	subject	

p=1.93e-7,	η2	0.15;	drug	p=0.0020,	η2	0.03;	odor	p=2.57e-7,	η2	0.09;	block	p=0.0114,	

η2	0.02;	frequency	band	p=5.24e-5,	η2	0.07).	We	also	found	significant	interactions	

between	drug	treatment	and	odor	(p=0.0043,	η2	0.03)	and	drug	treatment	and	block	

(p=0.0211,	η2	0.02),	in	addition	to	expected	subject	x	band	(p=1.93e-5,	η2	0.14)	and	

odor	x	band	(p=1.45e-6,	η2	0.09)	effects.	At	the	anterior	OB	recording	site	we	did	not	

find	significant	main	effects	of	subject	or	odor,	but	we	did	find	significant	main	

effects	of	drug,	block	and	frequency	band	(LaOB:	drug	p=0.0087,	η2	0.0001;	block	

p=0.0327,	η2	0.004;	band	p=2.58e-5,	η2	0.11).	At	this	site,	we	also	found	significant	

interaction	terms	involving	drug	treatment	(drug	x	odor,	p=	0.0154,	η2	0.03;	drug	x	

block,	p=0.0066,	η2	0.03;	drug	x	band,	p=0.0031,	η2	0.03),	plus	additional	

interactions	(subject	x	band,	p=0.0006,	η2	0.16,	and	odor	x	band,	p=0.0043,	η2	0.05)	

as	expected.		

Post	hoc	comparisons	of	drug	vs.	saline	effects	for	each	electrode	site	and	

frequency	band	shed	more	light	on	main	effects	and	interactions.	In	the	first	odor	

block,	LmOB	beta	power	was	significantly	reduced	for	the	high	volatility	odorant	

(EMB)	only	for	the	high	scopolamine	dose	(50	μM,	Fig.	3.6Aii	top)	but	was	
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significantly	reduced	for	both	low	and	high	doses	when	the	low	volatility	odorant	

(GER)	was	presented	(Fig.	3.6Ai,ii	bottom).	It	is	possible	that	the	strong	beta-

evoking	tendency	of	EMB	may	be	counteracting	the	beta	suppressing	effects	of	

scopolamine	only	at	the	low	dose.	GER	evokes	beta	oscillations	more	weakly,	and	

therefore	the	effect	of	scopolamine	dominates	even	in	the	low	dose.		

In	the	second	odor	block,	effects	on	beta	power	diverged	between	the	strong	and	

weak	odors,	confirming	the	bidirectional	effect	predicted	by	our	model.	For	the	high	

scopolamine	dose	in	the	second	block	(Fig.	3.6Aii),	EMB-evoked	beta	was	

suppressed	just	as	it	was	in	the	1st	odor	block,	but	GER-evoked	beta	power	was	

significantly	increased.	Similar	trends	are	seen	for	the	low	scopolamine	dose,	

though	they	did	not	pass	our	threshold	for	significance.	The	LaOB	LFP	power	

followed	a	pattern	similar	to	LmOB,	but	only	the	reduction	of	beta	in	the	1st	odor	

block	was	significant	(Fig.	3.6B).	The	weaker	effects	in	LaOB	may	be	attributed	to	

weaker	overall	beta	signals	in	the	anterior	OB	or	possibly	insufficient	spread	of	the	

drug	in	some	rats	(Fig.	3.2Bi).	The	complete	replacement	of	EMB-evoked	beta	by	

low	gamma	following	scopolamine	(50	mM)	infusion	(as	seen	in	the	single	trials	of	

Fig.	3.5A)	was	seen	in	4	out	of	12	scopolamine	(38	mM)	sessions	and	9	out	of	12	

scopolamine	(50	mM)	sessions	(sessions	from	both	odor	blocks),	while	in	the	

sessions	beta	amplitude	was	either	reduced	or	unaffected.	The	replacement	of	beta	

by	low	gamma	can	be	inferred	only	from	viewing	the	odor-evoked	periods,	not	from	

the	power	over	the	entire	4s	trial	periods.		

There	were	no	significant	effects	of	either	low	or	high	doses	of	scopolamine	on	

the	LmOB	gamma	bands	during	the	odor	exposure	periods,	though	there	was	a	
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tendency	for	high	gamma	to	be	suppressed	in	during	the	1st	odor	block,	consistent	

with	gamma	suppression	during	the	early	phase	of	scopolamine	in	the	no	odor	

condition	(Fig.	3.3).	There	was	a	significant	reduction	in	LaOB	high	gamma	power	

for	EMB	in	the	1st	odor	block	(Fig.	3.6B).	Four	of	the	6	rats	showed	enhanced	low	

gamma	power	in	the	2nd	odor	block	of	high	dose	scopolamine,	presumably	due	to	

the	rebound	low	gamma	intensification	described	in	Figures	3.3	&	3.4.	One	possible	

reason	why	rebound	gamma	did	not	show	a	significant	gamma	increase	in	all	rats	is	

that	odorants	tend	to	increase	beta	while	suppressing	gamma	(Buonviso	et	al.,	

2003b).	

	

3.3.2iii	Scopolamine	effects	in	contralateral	OB	

As	touched	upon	in	Figure	3.5Bii,	we	noticed	some	strong	but	inconsistent	

contralateral	effects	in	the	gamma	frequency	bands	following	scopolamine	infusion	

into	the	LmOB.	The	sessions	of	two	rats	in	particular	(both	sessions	where	EMB	was	

presented	in	block	1)	had	extremely	high	gamma	power	under	scopolamine,	

especially	in	the	low	gamma	band.	The	means	of	these	two	rats	are	colored	green	in	

the	low	gamma	power	bands	of	Figure	3.6C	for	the	EMB	1st	and	GER	2nd	odor	

blocks	(same	session).	These	are	the	same	two	rats	that	had	the	furthest	posterior	

spread	of	dye	in	post-mortem	inspection	(two	green	lines	in	Fig	3.2C).	

The	results	of	the	ANOVAs	at	the	two	different	scopolamine	concentrations	

showed	no	main	effect	of	drug	treatment	on	this	side,	but	did	show	other	significant	

main	effects,	as	would	be	expected	(38	mM	scopolamine:	odor,	p=1.65e-6,	η2	0.12;	

band,	p=7.63e-9,	η2	0.21;	50	mM	scopolamine:	odor,	p=0.007,	η2	0.04;	band,	
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p=0.0118,	η2	0.05).	At	both	concentrations	there	was	a	significant	interaction	

between	drug	and	frequency	band	(38	mM:	p=0.0025,	η2	0.06;	50	mM:	p=0.0015,	η2	

0.08),	which	is	likely	driven	by	the	increase	in	low	gamma	power.	We	also	found	a	

significant	odor	x	band	interaction	(38	mM:	p=0.4.25e-7,	η2	0.18;	50	mM:	p=0.0170,	

η2	0.05).	

The	increase	in	low	gamma	power	was	not	odor	evoked,	but	persisted	between	

odor	presentations	and	lasted	throughout	the	EMB	and	GER	odor	blocks.	While	the	

drug	x	band	interaction	was	significant	with	a	medium	effect	size,	post	hoc	t-tests	

were	not	significant	because	of	the	wide	variance	across	subjects.	When	the	increase	

in	low	frequency	gamma	did	occur,	it	was	obvious	to	the	eye,	even	during	data	

acquisition.	We	suspect	that	in	the	sessions	where	there	was	a	contralateral	effect,	

some	of	the	drug	spread	posteriorly	into	the	anterior	olfactory	nucleus	(AON).	

Contralateral	projections	through	the	anterior	commissure	linking	the	left	AON	to	

the	right	OB	are	known	to	exist	(Nickell	and	Shipley,	1993),	and	it	is	possible	that	

blocking	muscarinic	modulation	of	these	fibers	is	driving	the	contralateral	increase	

in	gamma.	

	

3.3.2iv	Scopolamine	effects	in	LaPC	

In	addition	to	LOB	and	ROB	activity,	LaPC	activity	was	also	recorded	in	each	rat	

(Fig.	3.5A,	bottom	trace).	One	rat’s	LaPC	data	had	to	be	discarded	due	to	poor	

quality	signals.	The	results	of	the	ANOVAs	showed	the	same	effects	for	both	drug	

doses.	There	were	no	significant	effects	of	drug	treatment,	either	as	main	effects	or	

interactions	(LaPC	38	mM:	subject,	p=2.23e-10,	η2	0.22;	odor,	p=4.25e-7,	η2	0.09;	
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band,	p=9.68e-9,	η2	0.14;	remaining	NS.	LaPC	50	mM:	subject,	p=3.29e-10,	η2	0.20;	

odor,	p=1.55e-5,	η2	0.06;	band,	p=5.40e-10,	η2	0.16;	remaining	NS.).	There	were	

expected	interactions	that	depend	on	differences	across	subjects	and	odors:	subject	

x	odor	(38	mM:	p=9.96e-6,	η2	0.09;	50	mM:	p=0.0014,	η2	0.06),	subject	x	band	(38	

mM:	p=3.67e-8,	η2	0.18;	50	mM:	p=1.31e-6,	η2	0.15),	and	odor	x	band	(38	mM:	

p=5.53e-7,	η2	0.10;	p=1.82e-6,	η2	0.09).	These	results	show	that	there	was	no	effect	

on	aPC	power	in	any	of	the	frequency	bands	due	to	scopolamine	action	in	the	OB.	

We	had	expected	that	a	reduction	in	OB	beta	power	by	scopolamine	would	also	

reduce	ipsilateral	aPC	beta	power,	because	beta	oscillations	require	intact	

bidirectional	OB-PC	connections	(Neville	and	Haberly,	2003b;	Martin	et	al.,	2006b),	

and	GCs	receive	most	of	their	cortical	inputs	from	the	ipsilateral	aPC.	The	results	

suggest	that	beta	oscillations	in	the	PC	can	be	generated	with	some	degree	of	

independence	from	the	OB,	even	though	they	still	require	intact	projections	from	

the	bulb	(at	least	under	anesthesia,	Neville	and	Haberly,	2003).	This	stability	could	

be	attributed	to	the	PC’s	own	tendency	to	generate	beta	frequency	oscillations	in	

response	to	odor	stimulation.	Indeed,	a	study	by	Poo	and	Isaacson	(2009)	found	

prominent	PC	beta	oscillations	in	urethane-anesthetized	rats,	even	when	anesthesia	

depresses	the	feedback	inputs	into	the	OB.	

We	also	computed	the	Z-coherence	between	OB	and	PC	for	scopolamine	(50	

mM)	sessions	and	the	associated	saline	sessions.	A	5-way	ANOVA	showed	significant	

main	effects	of	subject,	drug,	odor,	and	frequency	band	(subject,	p=1.44e-33,	η2	0.62;	

drug,	p=0.0003,	η2	0.05;	odor,	p=3.61e-7,	η2	0.04;	band,	p=1.14e-6,	η2	0.04;	block	

NS).	The	drug	effect	was	different	across	subjects	(subject	x	drug,	p=0.0066,	η2	
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0.02),	and	there	were	other	significant	interactions	not	involving	scopolamine	

treatment	(subject	x	band,	p=8.22e-6,	η2	0.06;	odor	x	band,	p=4.8e-7,	η2	0.04;	

remainder	NS).	While	there	was	a	significant	effect	of	scopolamine	overall	as	a	slight	

reduction	of	coherence,	none	of	the	post	hoc	comparisons	were	significant	(Fig.	

3.6D).	Thus,	OB-PC	beta	coherence	was	still	high	even	when	beta	was	seemingly	

eliminated	in	the	OB.	This	suggests	that	a	small	component	at	beta	frequency	

persisted	in	the	OB,	even	when	beta	power	was	suppressed	to	baseline	levels	by	

scopolamine,	and	that	this	is	enough	to	support	beta	band	coherence	with	the	aPC.	

	

3.3.2v	Oxotremorine	effects	

To	complement	the	antagonistic	effects	of	scopolamine,	we	also	infused	a	

muscarinic	agonist	into	the	OB.	We	chose	oxotremorine,	because	it	has	already	been	

used	in	several	studies	of	bulbar	cholinergic	modulation	(Mandairon	et	al.,	2006;	

Smith	et	al.,	2015).	We	expected	oxotremorine	and	scopolamine	to	have	opposite	

effects,	but	oxotremorine	produced	inconsistent	results	(Fig.	3.3).	While	the	results	

are	somewhat	equivocal,	we	include	them	here	for	completeness.		

Results	from	our	ANOVA	analysis	show	that	all	factors	show	significant	main	

effects	at	the	injection	site	(LmOB:	subject,	p=0.0002,	η2	0.11;	drug,	p=0.0033,	η2	

0.02;	odor,	p=1.46e-5,	η2	0.09;	block,	p=0.0173,	η2	0.02;	band,	p=0.0054,	η2	0.05).	

There	were	no	significant	interactions	of	any	of	the	other	factors	with	drug,	but	

there	were	some	other	significant	interactions:	subject	x	band	(p=0.0131,	η2	0.09),	

odor	x	block	(p=0.0013,	η2	0.05),	and	odor	x	band	(p=3.86e-5,	η2	0.05).	At	the	

anterior	OB	site,	there	were	main	effects	only	of	drug	and	odor	(LaOB:	drug,	
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p=0.0019,	η2	0.06;	odor,	p=0.0028,	η2	0.06),	no	significant	interactions	with	drug	

effects,	but	other	significant	interactions	(odor	x	band,	p=0.048,	η2	0.04;	subject	x	

band:	p=0.0122,	η2	0.12;	odor	x	band,	p=0.0021,	η2	0.08).		

As	opposed	to	scopolamine,	oxotremorine	did	significantly	affect	PC	activity.	We	

found	significant	main	effects	for	all	factors	except	odor	block	(LaPC:	subject,	

p=0.0003,	η2	0.11;	drug,	p=0.0156,	η2	0.03;	odor,	p=0.0007,	η2	0.06;	band,	p=0.0002,	

η2	0.10).	There	were	no	significant	interactions	with	drug	effects,	but	there	were	

interactions	between	subject	and	odor	(p=0.0360,	η2	0.04),	subject	and	frequency	

band	(p=0.0009,	η2	0.13),	odor	and	block	(p=0.0282,	η2	0.02),	and	odor	and	

frequency	band	(p=0.0003,	η2	0.09).	The	contralateral	OB	also	showed	significant	

main	effects,	including	a	drug	effect	(RmOB:	drug,	p=0.0226,	η2	0.02;	odor,	p=1.70e-

5,	η2	0.09;	band,	p=6.28e-11,	η2	0.25,	remaining	factors	NS).	No	factors	showed	

significant	interactions	with	drug,	but	other	interactions	were	significant:	odor	x	

block	(p=0.0139,	η2	0.03)	and	odor	x	band	(p=1.91e-7,	η2	0.15).	

These	effects	played	out	in	the	post	hoc	analysis	in	somewhat	confusing	ways.	

Following	oxotremorine	(30	μM)	infusion	into	LmOB,	there	was	a	significant	

decrease	in	LaOB	beta	power	during	presentation	of	GER	in	the	2nd	block	(Fig.	3.7A)	

and	LmOB	beta	power	during	EMB	in	the	1st	odor	block	(Fig.	3.7B).	This	was	

surprising,	because	scopolamine	also	blocked	beta	in	the	1st	EMB	odor	block,	but	

increased	beta	in	the	2nd	GER	odor	block	(Fig.	3.6Aii).	So,	the	two	drugs	produced	

the	same	effect	in	the	first	block	but	opposite	effects	on	GER	in	the	second	block.	

However,	while	scopolamine	may	have	blocked	EMB-induced	beta	by	reducing	GC	

GABA	release	to	the	point	that	oscillations	could	not	be	sustained,	oxotremorine	
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may	have	blocked	EMB-induced	beta	by	driving	excessive	GABA	release,	tipping	the	

balance	in	the	other	direction	where	inhibition	dampens	excitation	too	much.	Such	

an	effect	was	also	seen	in	our	model,	where	oscillations	were	only	sustained	in	a	

range	where	there	was	a	sufficient	balance	of	excitation	and	inhibition.	It	is	also	

possible	that	oxotremorine	may	inhibit	GCs	through	action	on	M2	receptors	or	

inhibit	MCs	themselves	(Smith	et	al.,	2015).	

LaOB	low	gamma	was	significantly	reduced	in	the	1st	EMB	odor	block	(close	to	

significance	in	LmOB),	and	high	gamma	was	reduced	in	the	1st	GER	odor	block.	As	

noted	in	Figure	3.3,	oxotremorine	tended	to	increase	gamma	power	when	no	odor	

was	present,	but	suppress	it	when	odor	was	present.	Interestingly,	gamma	
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* 

C 

* 

LmOB,	Oxotremorine	(30	μM) B A 

* * 

* 

1
st
 Odor 2

nd
 Odor Block 

LaOB,	Oxotremorine	(30	μM) 

EMB 

GER 
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Figure	3.7.	Oxotremorine	effects	on	odor-
induced	LFP	oscillations.	Violin	plots	
summarizing	the	effects	of	oxotremorine	on	
LaOB	(A),	LmOB	(B,	infusion	site),	and	LaPC	
(C)	during	presentation	of	EMB	(top)	and	
GER	(bottom).	(There	were	no	significant	
post	hoc	drug	effect	comparisons	for	RmOB.)	
White	circles	represent	means	of	each	rat.	
(Normalization,	color	codes,	and	significance	
asterisks	are	the	same	as	in	Fig.	6).	
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suppression	in	the	LaPC	was	significant	both	for	the	2nd	odor	block	EMB	

presentations	and	1st	odor	block	GER	presentations	(Fig.	3.7D).	Post	hoc	analyses	of	

RmOB	responses	to	oxotremorine	infusion	into	LmOB	showed	no	significant	

comparisons	between	saline	and	drug.	Because	of	the	inconsistent	effects	of	

oxotremorine	(Fig.	3.3	Cii)	and	its	likely	non-specific	effects	(see	Discussion)	we	

refrain	from	making	any	strong	conclusions	about	the	effects	of	oxotremorine	on	

beta	oscillation	generation	in	the	OB.	

	

3.3.3	NMDA	receptors	

We	also	tested	another	prediction	of	our	model,	that	beta	oscillations	can	be	

sustained	independently	of	NMDAR	currents,	but	that	NMDAR	currents	are	critical	

to	sustain	gamma	oscillations.	(In	our	model,	beta	oscillations	rely	critically	on	N-

Type	mediated	Ca2+	currents.)	We	tested	this	prediction	by	infusing	APV	(100	μM),	a	

selective	NMDAR	antagonist,	into	the	LmOB.	Because	APV	had	a	uniform	effect	

lasting	the	entire	session	(Fig.	3.3Ciii),	we	combined	data	from	the	1st	and	2nd	odor	

blocks,	the	results	of	which	are	summarized	in	Figure	3.8.		

We	analyzed	the	data	with	a	4-way	ANOVA	to	test	the	influence	of	subject,	drug,	

odor,	and	frequency	band.	At	the	injection	site,	all	four	factors	showed	significant	

main	effects	(LmOB:	subject,	p=0.0032,	η2	0.11;	drug,	p=0.0009,	η2	0.09;	odor:	

p=2.98e-5,	η2	0.16;	band,	p=0.0002,	η2	0.15).	APV	treatment	did	not	show	significant	

interactions	with	any	other	factors	at	this	site	(subject	x	band,	p=0.0137,	η2	0.13;	

odor	x	band,	p=0.0004,	η2	0.13;	remaining	interactions	NS).	The	main	effects	were	

somewhat	different	at	the	anterior	OB	site	(LaOB:	subject,	NS;	drug,	p=0.0077,	η2	
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0.02;	odor,	p=8.93e-5,	η2	0.11;	band,	p=1.19e-7,	η2	0.34).	APV	treatment	did	show	a	

significant	interaction	with	frequency	band	at	this	site	(p=0.0021,	η2	0.08),	and	

there	were	some	other	interactions	(subject	x	band,	p=0.0337,	η2	0.08;	odor	x	band,	

p=2.64e-5,	η2	0.17;	other	interactions	NS).	

As	predicted	by	our	model	and	in	agreement	with	studies	in	mice	(Lepousez	and	

Lledo,	2013b),	post	hoc	tests	showed	that	LaOB	and	LmOB	gamma	oscillations	were	

almost	completely	abolished	(Fig.	3.8A,B).	LaOB	and	LmOB	beta	power	was	largely	

unaffected,	except	for	the	LmOB	GER	presentations,	which	showed	a	small	but	

significant	decrease.	It	is	possible	that	the	decrease	in	LmOB	beta	for	GER	

presentations	reflects	a	stimulus	dependent	effect,	similar	to	the	contrasting	effects	

Figure	3.8.	APV	effects	on	odor-induced	LFP	oscillations.	A:	Violin	plots	summarizing	
effects	of	APV	infusion	into	LmOB	on	LaOB	in	all	6	rats	for	presentation	of	EMB	(top)	and	
GER	(bottom).	1st	and	2nd	odor	blocks	were	combined	for	analysis	of	APV	data	(Fig.	3).	
(Symbols	and	normalization	are	the	same	as	in	Figs.	6	and	7.)	Asterisks	represent	p	<	
0.008	(adjusted	for	6	comparisons)	for	the	post	hoc	T-tests	between	mean	saline	and	drug	
for	each	rat.	B,	C:	Violin	plots	summarizing	effects	of	APV	in	LmOB	(infusion	site)	and	LaPC	
(same	annotations	as	A).	APV	strongly	suppresses	gamma	in	all	left	hemisphere	locations.		
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of	EMB	and	GER	seen	during	scopolamine	infusion.	However,	we	did	not	address	

this	scenario	in	the	model.	

Analysis	of	the	contralateral	OB	data	showed	no	main	or	interaction	effect	of	

APV	treatment	(RmOB:	odor,	p=3.41e-5,	η2	0.11;	band,	p=1.51e-8,	η2	0.38;	subject	x	

band,	p=0.0093,	η2	0.10;	odor	x	band,	1.79e-6,	η2	0.22;	remainder	NS).	We	therefore	

omit	the	post	hoc	analysis.	The	ipsilateral	aPC	showed	significant	main	effects	for	all	

factors	(LaPC:	subject,	p=0.0011,	η2	0.13;	drug,	p=0.0344,	η2	0.03;	odor,	0.0003,	η2	

0.10;	band,	2.01e-5,	η2	0.20).	Interaction	effects	did	not	involve	APV	(subject	x	odor,	

p=0.0369,	η2	0.06;	subject	x	band,	p=0.0031,	η2	0.16;	odor	x	band,	p=0.0002,	η2	0.14;	

remainder	NS).		

Post	hoc	tests	show	that	in	contrast	to	the	relative	insensitivity	of	LaPC	beta	

oscillations	to	scopolamine	infusion	into	the	LmOB,	we	found	strong	gamma	

suppression	in	LaPC	after	APV	infusions	into	the	LmOB	(Fig.	3.8D),	mirroring	the	

effects	in	the	OB.	

	

3.4	Discussion	

We	tested	two	predictions	of	our	previously	published	computational	model	

(Osinski	and	Kay,	2016;	Fig.	3.1):	1)	beta	oscillations	are	produced	under	conditions	

of	heightened	GC	excitability,	2)	beta	oscillations	can	be	generated	independently	of	

NMDA	currents,	while	gamma	oscillations	cannot.	We	tested	the	first	prediction	by	

infusing	muscarinic	drugs	into	the	OB	(Figs.	3.3-3.7),	and	the	second	prediction	by	

infusing	APV,	a	selective	NMDA	antagonist	(Figs.	3.3	&	3.8).	
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We	found	that	scopolamine	(50	mM)	reduced	EMB-	and	GER-evoked	beta	

oscillations	in	the	1st	odor	block,	but	after	a	few	minutes	(in	the	2nd	odor	block)	we	

observed	a	divergent	effect,	where	EMB-induced	beta	was	suppressed	and	GER-

induced	beta	was	enhanced	(Fig.	3.5A).	The	divergent	effect	in	the	2nd	odor	block	

also	aligns	well	with	our	model’s	predictions,	that	reducing	GC	excitation	in	strong	

stimulus	input	regimes	(EMB)	would	decrease	beta	power	and	in	weak	stimulus	

input	regimes	(GER)	would	increase	beta	power.	In	9	out	of	12	of	the	scopolamine	

(50	mM)	sessions,	the	EMB-evoked	beta	oscillation	was	replaced	by	a	low	gamma	

oscillation	(Figs.	3.4A,	3.5Aii),	as	our	model	predicted	for	strong	odors	(green	

square	Fig.	3.1B).	The	results	of	APV	(100	μM)	infusions	also	closely	followed	our	

model	predictions	(Fig.	3.7),	knocking	out	gamma,	but	not	beta,	oscillations.	

However,	oxotremorine	(30	μM)	effects	were	more	difficult	to	interpret	(Fig.	3.2	&	

3.6).	By	also	recording	in	LaPC	and	RmOB	we	were	able	to	investigate	the	wider	

network	that	supports	and	is	impacted	by	these	oscillations	across	brain	regions	

beyond	the	scope	of	the	model.	We	found	that	PC	beta	oscillations	were	relatively	

insensitive	to	changes	in	OB	beta	power,	but	PC	gamma	oscillations	were	much	

more	sensitive	(Fig.	3.5D	&	3.7D).	

	

3.4.1	Complexity	of	muscarinic	drug	effects	

Many	studies	of	cholinergic	modulation	in	the	OB	treat	muscarinic	receptors	as	

modulators	of	GC	excitability	(Nickell	and	Shipley,	1993;	Castillo	et	al.,	1999;	Martin	

et	al.,	2006b;	Pressler	et	al.,	2007b;	Devore	and	Linster,	2012b;	de	Almeida	et	al.,	

2013b;	Li	and	Cleland,	2013).	Together	these	studies	give	the	impression	that	
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bulbar	muscarinic	receptors	are	exclusively	involved	in	regulation	of	GC	excitability,	

and	this	is	indeed	why	we	chose	to	use	muscarinic	drugs	in	this	study.	Although	M1	

and	M2	receptors	are	found	in	highest	density	in	the	GC	layer	and	external	plexiform	

layers	(where	GCs	form	dendrodendritic	synapses	with	MC	lateral	dendrites)	they	

can	be	found	throughout	the	OB	(see	Allen	Mouse	Brain	Atlas	CHRM1	&	CHRM2	

genes	online;	Fonseca	et	al.,	1991;	Lein	et	al.,	2007).	Therefore,	our	infusions	of	

scopolamine	are	mostly	targeting	GCs	and	GC	dendrites	but	to	a	lesser	degree	also	

targeting	other	cells	as	well.	

Oxotremorine	has	been	shown	to	have	strong	inhibitory	effects	on	GCs	and	MCs	

in	the	main	OB	and	excitatory	effects	on	MCs	and	GCs	in	the	accessory	OB	(AOB)	

through	differential	activation	of	M1	and	M2	receptors	(Smith	and	Araneda,	2010;	

Smith	et	al.,	2015).	Interestingly,	Smith	and	Araneda	also	hypothesized	that	the	

direction	of	the	effect	may	depend	on	the	strength	of	input	to	GCs.	They	argued	that	

when	excitatory	input	onto	GCs	is	weak,	M2-mediated	hyperpolarization	is	the	

predominant	effect,	reducing	inhibition	of	MCs,	but	when	excitatory	input	onto	GCs	

is	strong	(i.e.,	from	excited	MCs),	the	M1-mediated	afterdepolarization	will	prevail,	

prolonging	GC	activation	and	increasing	MC	inhibition.	There	may	be	an	interaction	

between	oxotremorine	effects	on	muscarinic	receptors	and	strong	odor	stimulation	

triggering	long	lasting	depolarizations	in	GCs	(Egger	et	al.,	2005b;	Pressler	et	al.,	

2007b).	These	competing	effects	may	explain	the	observed	tendency	for	

oxotremorine	to	increase	gamma	power	when	odors	were	absent,	but	decrease	

gamma	when	odors	were	present	(Figs.	3.3Cii,	3.7).	
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Besides	having	opposite	effects	on	M1	and	M2	receptors,	oxotremorine	is	also	

capable	of	activating	nicotinic	receptors,	even	though	it	is	classified	as	a	muscarinic	

agonist	(Akk	et	al.,	2005).	Given	the	complexity	of	interactions,	it	is	not	altogether	

surprising	that	a	drug	as	nonspecific	as	oxotremorine	produces	messy	effects	in	an	

awake	behaving	animal,	which	itself	is	also	most	certainly	releasing	endogenous	

ACh	during	the	recording	session.	

Scopolamine	produced	a	biphasic	effect	in	the	LFP,	first	reducing	broadband	

gamma	power	for	~7	min,	followed	by	an	intensification	of	low	gamma	while	high	

gamma	was	still	suppressed	(Figs	3.3	&	3.4).	The	opposite	effects	on	the	two	gamma	

bands	in	the	2nd	phase	may	reflect	the	distinction	between	type	1	gamma,	which	

depends	on	MC-GC	interactions,	and	type	2	gamma,	which	may	depend	on	

GABAergic	inhibition	of	GCs,	as	reported	by	Kay	(2003).	Although	we	ignored	

inhibition	of	GCs	in	our	model	for	simplicity,	it	is	quite	possible	that	in	reality	

scopolamine	influences	inhibition	of	GCs	to	produce	contrasting	effects	on	gamma	1	

and	gamma	2.	

	

3.4.2	Spatial	extent	of	gamma	and	beta	oscillations	

Gamma	oscillations	are	thought	to	be	more	spatially	localized	to	individual	

cortical	areas	and	even	parts	of	these	areas,	while	beta	oscillations	are	thought	to	

represent	a	coordinated	oscillation	supported	by	bidirectional	connections	between	

OB	and	PC	(Martin	et	al.,	2006b;	Kay	et	al.,	2009b;	Kay	and	Lazzara,	2010).	

Curiously,	we	found	that	aPC	beta	power	was	not	significantly	reduced	when	OB	

beta	was	reduced	by	scopolamine,	but	aPC	gamma	was	significantly	reduced	when	
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ipsilateral	OB	gamma	was	suppressed	by	infusion	of	APV	(Fig.	3.8D).	It	has	long	

been	known	that	oscillatory	evoked	potentials	in	PC	depend	on	but	are	not	driven	

by	OB	input	(Freeman,	1968b),	and	APV	desynchronizes	MCs	from	population	

gamma	coordination	but	does	not	suppress	their	firing.	Thus,	our	results	suggest	

that	this	input	must	be	coordinated	with	the	gamma	rhythm	in	order	for	the	PC	to	

be	capable	of	generating	gamma	spontaneously.	On	the	other	hand,	this	suggests	

that	PC	beta	oscillations	do	not	require	beta	band	synchronized	inputs	from	MCs,	

just	some	level	of	tonic	excitation,	or	that	the	PC	does	not	require	very	much	beta	

band	input	from	the	OB	(OB-aPC	coherence	was	hardly	affected	under	

scopolamine).	Future	studies	should	address	the	mechanisms	for	beta	vs.	gamma	

generation	in	the	aPC	in	order	to	understand	this	interesting	dichotomy.	

The	effect	of	APV	on	anterior	OB	is	very	similar	to	that	on	medial	OB,	but	with	

even	more	aggressive	suppression	of	both	gamma	frequency	bands	(Fig.	3.8A,B).	

Although	in	some	of	the	rats	the	drug	did	not	appear	to	spread	fully	to	the	LaOB	(see	

Fig.	3.2B),	the	gamma	suppression	was	seen	in	all	rats,	suggesting	that	GCs	in	the	

more	posterior	bulb	influence	the	activity	of	MCs	in	the	anterior	portion	of	the	bulb.	

This	aligns	well	with	studies	that	have	shown	GCs	to	mediate	between	distant	MCs	

via	the	long	MC	lateral	dendrites,	which	can	span	the	bulb	(Migliore	and	Shepherd,	

2008).	

	

3.4.3	Contralateral	effects	

In	some	of	the	rats	there	were	strong	contralateral	effects	following	scopolamine	

(Fig.	3.6C)	and	APV	(Fig.	3.8C)	infusions.	We	assume	that	these	effects	were	not	
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caused	by	drug	spreading	into	the	RmOB,	since	dye	spread	was	localized	to	the	left	

side	in	all	rats	(Fig.	3.5E).	Instead,	we	suspect	that	these	effects	were	caused	by	drug	

spreading	into	the	anterior	olfactory	nucleus	(AON),	which	is	innervated	by	fibers	

that	link	the	two	hemispheres	through	the	anterior	commissure.	Indeed,	those	rats	

that	had	the	most	posterior	dye	spread	(Fig.	3.2C)	had	the	largest	contralateral	

effects.	Muscarinic	modulation	of	anterior	commissure	fibers	was	reported	by	

Nickell	and	Shipley	(1993),	who	hypothesized	that	cholinergic	inputs	to	MOB	may	

modulate	cross-bulbar	information.	The	AON	is	known	to	densely	innervate	GCs	

(Price	and	Powell,	1970).	Therefore,	cross-bulbar	communication	may	be	regulated	

by	fibers	controlling	GC	excitability	in	both	hemispheres.	We	are	not	aware	of	any	

studies	relating	NMDA-dependent	modulation	of	cross-bulbar	information,	but	our	

study	suggests	that	this	may	also	be	possible.	Though	it	was	not	our	intention,	our	

study	provides	motivation	to	more	thoroughly	study	cross-bulbar	mediation	of	

gamma	oscillations	through	cholinergic	and	NMDA	dependent	effects	in	the	AON.	

	

3.4.4	Implications	for	odor	discrimination	

Bulbar	infusions	of	scopolamine	have	been	shown	to	reduce	spontaneous	odor	

discrimination	of	closely	related	odorants	(fine	odor	discrimination)	in	the	absence	

of	reinforcement	learning	(Mandairon	et	al.,	2006;	Chaudhury	et	al.,	2009).	Gamma	

and	gamma-like	oscillations	have	been	functionally	related	to	fine	odor	

discrimination	in	honeybees,	mice,	and	rats	(Stopfer	et	al.,	1997;	Nusser	et	al.,	

2001b;	Beshel	et	al.,	2007).	Therefore,	it	might	be	expected	that	bulbar	scopolamine	

would	reduce	gamma	oscillation	power.	Our	model	predicted,	and	we	found,	that	
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under	scopolamine	instead	of	gamma,	beta	oscillations	were	reduced	or	increased	

during	strong	or	weak	odor	exposure,	respectively.	Because	the	same	conditions	

that	increase	odor	generalization	(muscarinic	block)	also	manipulate	beta	

oscillations,	it	is	possible	that	beta	oscillations	are	also	involved	in	fine	odor	

discrimination.	Thus	far,	however,	the	evidence	does	not	support	this	inference;	in	

the	context	of	operant	tasks	under	reinforcement	learning,	beta	oscillations	are	

either	not	increased	or	suppressed	during	fine	odor	discrimination	(Beshel	et	al.,	

2007;	Frederick	et	al.,	2016a).	However,	it	should	be	noted	that	muscarinic	

antagonist	effects	on	odor	perception	appear	to	depend	on	the	context	of	the	

behavioral	evaluation	(Mandairon	et	al.,	2006).	

	

3.4.5	The	role	of	VDCCs	in	generating	beta	oscillations	

The	persistence	of	beta	oscillations	after	APV	infusion	implicates	VDCCs	in	

supporting	beta	oscillations,	because	AMPAR	currents	alone	could	probably	not	

maintain	sufficiently	strong	MC	inhibition	to	support	beta	oscillations	when	

NMDARs	are	blocked.	In	our	model	we	found	that	beta	power	would	stay	relatively	

constant	for	moderate	NMDA	current	suppression,	but	would	increase	for	stronger	

NMDA	current	suppression	(Fig.	3.1C,	bottom).	This	is	because	the	combination	of	

NMDA	and	VDCC	currents	over-inhibited	MCs,	and	a	reduction	of	NMDA	current	

shifted	the	system	closer	to	a	balance	of	excitation	and	inhibition,	resulting	in	higher	

power	oscillations.	Though	not	significant,	it	is	interesting	to	note	that	the	LaOB	

showed	some	beta	increases	(Fig.	3.8A),	which	could	potentially	be	attributed	to	a	
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decrease	in	over-inhibition	that	occurs	when	NMDA	is	significantly	blocked	

(assuming	the	system	started	in	an	over-inhibited	state	as	shown	in	Fig.	3.1C).	

An	obvious	next	step	would	be	to	directly	test	the	involvement	of	N-Type	VDCCs	

in	generating	beta	by	infusing	the	N-type	calcium	channel	blocker	ω-conotoxin,	but	

we	leave	this	for	future	experiments.	GCs	are	also	known	to	express	other	VDCC	

subtypes,	notably	T-type	channels	which	mediate	Ca2+	spikes	that	can	spread	

activity	across	the	entire	dendritic	arbor	to	synchronize	inhibition	of	all	MCs	

connected	to	a	given	GC	cell	(Egger	et	al.,	2005b).	The	role	that	VDCCs	play	in	OB	

oscillations	is	still	being	researched,	but	our	results	suggest	that	they	are	necessary	

for	switching	between	gamma	and	beta	oscillatory	states	in	OB	granule	cells.	

	

3.4.6	Concluding	Remarks	

In	summary,	we	found	confirmation	of	our	model’s	main	predictions,	that	

reduced	GC	excitability	can	have	a	bidirectional	effect	on	the	power	of	OB	beta	

oscillations,	and	that	OB	beta	oscillations	can	be	sustained	independently	of	

NMDARs.	Going	beyond	the	scope	of	our	model,	we	also	recorded	PC	beta	

oscillations.	Though	PC	and	OB	beta	oscillations	had	nearly	identical	frequency	

(Lowry	and	Kay,	2007b;	Kay	and	Beshel,	2010b),	we	found	that	reductions	in	OB	

beta	power	through	reduced	GC	excitability	were	not	accompanied	by	significant	

reduction	in	PC	beta	power.	Furthermore,	OB-PC	coherence	was	also	not	

significantly	reduced,	even	when	OB	beta	power	was	dramatically	reduced.	It	is	

possible	that	an	OB-PC	loop	was	sustaining	PC	beta,	even	though	the	beta	

component	in	the	OB	was	very	small	under	these	conditions.	The	drug	is	most	likely	
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not	targeting	all	GCs	in	the	bulb	equally,	and	some	might	be	able	to	maintain	an	

intact	OB-PC	loop.	It	is	also	possible	that	PC	is	just	driving	a	small	beta	signal	in	the	

OB.	Interestingly,	a	model	of	OB	beta	generation	from	a	different	group	did	not	

require	OB	and	PC	to	coherently	oscillate	at	beta	frequency,	but	rather	required	a	

slow	(theta	frequency)	modulation	of	GC	excitability	by	PC	inputs	(David	et	al.,	

2015b).	Our	model	also	did	not	involve	an	oscillating	PC,	and	the	persistent	beta	

coherence	we	found	in	experiments	suggests	that	the	existence	of	OB-PC	beta	

coherence	is	not	itself	sufficient	for	generating	full-blown	OB	beta	oscillations.	While	

intact	bidirectional	OB-PC	connections	are	required	to	generate	beta	oscillations,	

the	GCs	appear	to	control	OB	beta	power,	and	to	mediate	the	transition	from	gamma	

to	beta	oscillations.	

GCs	can	exert	at	least	four	distinct	types	of	inhibition	onto	MCs	(Mouret	et	al.,	

2009b).	Dendrodendritic	MC-GC	connections	can	support	local	recurrent	and	lateral	

graded	inhibition	without	GC	somatic	action	potentials.	But	when	GC	action	

potentials	are	triggered,	either	by	strong	distal	inputs	or	from	MC	or	cortical	inputs	

to	the	proximal	dendrites	near	the	soma,	it	is	hypothesized	that	GCs	switch	to	a	

global	inhibition	state,	characterized	by	synchronous	GABA	release	from	all	distal	

spines	(Egger	et	al.,	2005b;	Egger,	2008b).	The	model	developed	by	David	et	al.	

(2015)	showed	that	switching	between	local	and	global	inhibitory	spiking	GC	states	

could	drive	transitions	between	gamma	and	beta	oscillations,	though	the	

characteristics	of	GC	firing	patterns	during	beta	oscillations	have	yet	to	be	reported.	
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4.	Measurements	of	extracellular	potentials	of	
olfactory	bulb	granule	cell	layer	interneurons	in	
awake	behaving	arts	
	

4.1	Introduction	
	
The	modeling	work	(Osinski	and	Kay,	2016)	and	subsequent	pharmacological	

experiments	(Osinski	et	al.,	2017)	described	in	the	past	two	chapters	strongly	

argued	that	odor-evoked	beta	oscillations	should	occur	during	periods	of	

heightened	GC	excitability.	In	these	final	experiments,	we	set	out	to	characterize	the	

firing	patterns	of	individual	GCs	during	beta	oscillations.	Although	our	model	did	not	

explicitly	rely	on	spiking	GCs,	it	implicitly	assumed	that	GC	firing	would	trigger	the	

long	lasting	ADP	(LLD)	responsible	for	heightened	GC	excitability	driving	greater	

GABA	release	onto	MCs	resulting	in	sustained	beta	oscillations.	In	slice	experiments	

GCs	did	not	fire	action	potentials	during	the	LLD	(Egger	et	al.	2005;	Pressler	et	al.	

2007).	These	data,	together	with	our	model	predictions,	predict	that	GCs	should	fire	

at	the	onset	of	beta,	but	then	remain	inhibited	throughout	the	duration	of	the	

excitability	increase.	As	described	below,	we	did	indeed	find	such	cells,	but	we	also	

found	a	rich	diversity	of	firing	patterns	possibly	reflecting	plasticity	and	different	

GCL	cell	types.	

While	this	series	of	experiments	was	conducted	to	test	the	model’s	

predictions,	it	was	also	exploratory	in	nature,	as	GCs	have	never	been	recorded	in	

freely	behaving	rats	before.	The	only	recordings	of	GCs	in	awake	animals	to	date	

were	done	under	head-fixed	conditions,	and	the	correlation	of	firing	patterns	to	the	
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LFP	was	not	investigated	(Cazakoff	et	al.,	2014).	We	therefore	expected	these	

experiments	would	go	beyond	the	scope	of	our	model	and	reveal	novel	spike-field	

relationships	of	odor-evoked	inhibitory	cell	activity.	

	

4.2	Overview	of	experiments	

For	these	experiments,	3	rats	were	successively	implanted	(about	2	months	apart)	

with	32-channel	Si	probes	(Cambridge	Neurotech	[model	DBC2	probe]).	Because	the	

experiments	were	exploratory	in	nature,	the	experimental	design	evolved	as	more	

data	were	collected.	Thus,	not	every	rat	performed	the	same	experiments.	The	

experiments	are	grouped	into	four	categories,	which	are	presented	in	Table	4.1	

indicating	which	rats	were	used	for	each	experiment.	

	

Rat	
name	

Single	odor	
swab	pres.	

Multi-odor	
swab	pres.	

Nose-poke	1	
odor	full	
reward	

Nose-poke	2	
odor	half	
reward		

RK90	
(Rat1)	

EMB,	GER,	
PP	 	 	 	

RK97	
(Rat2)	

EMB,	GER,	
PP	 EMB,	GER,	NA	 EMB,GER	 	

RL16	
(Rat3)	 EMB,	GER	 EMB,	GER,	PP,	

NA	 EMB,	GER	 EMB,	PP	

	
	
	
	
	
	
	

Table	4.1	Table	of	Si	probe	experiments	showing	which	odors	were	used	for	
each	rat.	For	the	Multi-odor	swab	pres.	the	order	in	which	odors	were	presented	
is	shown.	EMB	-	Ethyl	2Methyl	Butyrate	(high	volatility,	VP	1.048	kPa),	GER	–	
Geraniol	(low	volatility,	VP	0.0018	kPa),	PP	–	Propyl	Propionate	(high	volatility,	
VP	1.333),	NA	–	Nonanoic	Acid	(low	volatility,	VP	0.0012	kPa).	
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The	Single	odor	swab	presentation	experiments	were	the	first	experiments	

run	on	the	rats	and	consisted	of	30	presentations	of	an	odorant-soaked	cotton	swab	

to	a	freely	behaving	rat	in	a	clean	cage	with	fresh	bedding,	much	like	the	

pharmacological	experiment	design	(only	one	of	the	odors	used	in	each	session).		

The	Multi-odor	swab	presentation	experiments	were	similar	except	that	multiple	

odorants	were	presented	in	a	fixed	interleaved	order	30	times	each	(all	odors	in	the	

same	session).	The	order	in	which	the	odors	were	presented	is	shown	in	Table	4.1.	

For	the	Nose-poke	experiments,	we	trained	rats	to	poke	their	noses	into	an	

odor	port,	which	delivered	odors	using	a	computer	controlled	vacuum	system	and	

allowed	us	to	measure	the	time	at	which	rats	poked	their	noses	with	an	IR	beam	

emitter-receiver	system	(see	Methods).	In	the	Nose-poke	1	odor	full	reward	

sessions,	only	a	single	odorant	was	used	per	session	and	each	nose-poke	was	

rewarded	by	a	sugar	pellet.	In	the	Nose-poke	2	odor	half	reward	sessions,	the	rat	

received	one	of	two	high	volatility	odors,	EMB	or	PP.	For	the	first	half	of	the	session	

both	odors	were	rewarded,	but	rewards	ceased	for	one	of	the	odors	half	way	

through	the	session.	This	change	in	the	experimental	paradigm	was	designed	to	test	

the	reward	contingency	of	GCL	neuron	responses.	

To	analyze	these	data,	I	developed	a	python-based	toolbox	of	analysis	

functions,	which	can	be	found	in	Appendix	II:	Spike-Field	Analysis	Functions.	

Wherever	a	specific	function	is	used,	I	provide	the	name	of	the	function	so	it	can	

quickly	be	referenced	in	the	toolbox.	
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4.3	Methods	

Subjects	were	3	adult	male	Sprague-Dawley	rats	(350	-	450	g;	purchased	from	

Envigo	(Harlan)),	maintained	in	the	colony	room	on	a	14	–10	h	light/dark	schedule	

(lights	on	at	08:00	CST).	Rats	were	housed	singly	after	electrode	implantation.	They	

had	access	to	unlimited	food	and	water	for	the	course	of	the	odor	swab	presentation	

experiments	and	were	put	on	a	restricted	diet	(80%	of	ad	libitum	weight)	during	the	

course	of	the	nose-poke	experiments.	All	animal	procedures	were	done	with	

approval	and	oversight	by	the	University	of	Chicago	Animal	Care	and	Use	Committee	

with	strict	adherence	to	AAALAC	standards.	

	

4.3.1	Electrode	implants	

32-channel	Si	probes	(pictured	in	Fig.	4.1)	were	obtained	from	Cambridge	

Neurotech.	Before	each	surgery,	rats	were	given	a	subcutaneous	injection	of	

ketamine	cocktail	(35	mg/kg	ketamine,	5	mg/kg	xylazine,	and	0.75	mg/kg	

acepromazine).	Anesthesia	was	maintained	by	checking	for	reflexes	every	15	min	

and	administering	intraperitoneal	injections	of	ketamine.	After	ear	bars	were	firmly	

in	place,	an	incision	was	made	along	the	sagittal	suture	from	the	anterior	OB	to	the	

cerebellum	and	the	skull	was	cleared	of	connective	tissue.	A	small	(~2	mm)	hole	

was	drilled	over	the	left	main	OB	and	all	bone	and	dura	fragments	carefully	

removed.	Another	hole	was	drilled	over	the	right	cerebellum	for	a	ground	screw	and	

four	more	additional	holes	were	drilled	for	support	screws.	All	screws	were	then	

inserted.	
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Prior	to	surgery,	a	tiny	amount	of	dental	wax	was	placed	in	the	rectangular	notch	

of	a	vacuum	chuck	(obtained	from	Cambridge	Neurotech)	to	improve	adhesion	to	

the	body	of	the	silicon	probe.	The	vacuum	chuck	was	fixed	to	a	stereotaxic	arm.	The	

probe	was	carefully	placed	onto	the	vacuum	chuck,	with	the	flex	cable	covering	all	

vacuum	holes,	and	the	probe	body	was	gently	nudged	to	adhere	to	the	dental	wax.	

Figure	4.1	Probe	channel	mapping	and	dimensions.	A)	The	Omnetics	connectors	of	the	
probes	(right)	and	connectors	of	the	Intan	headstages	(left)	use	different	numbering	
systems	so	one	must	be	mapped	to	another.	B)	Channel	mapping	of	probe	to	headstage	
connectors.	C)	Image	of	entire	probe-connector	assembly	with	ground	pins	marked.	Only	
two	ground	pins	were	used.	D)	Probe	dimensions	and	approximate	position	in	GCL	are	
shown.	(Probe	images	provided	by	Cambridge	Neurotech	www.cambridgeneurotech.com,	
Intan	headstage	image	from	intantech.com/RHD2132_RHD2216_amp_board.html	)	
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The	vacuum	alone	was	not	strong	enough	to	hold	the	omnetics	connector,	so	the	

connector	was	taped	to	the	arm	of	the	vacuum	chuck.	Minor	adjustments	were	made	

to	the	hinge	of	the	vacuum	chuck	to	ensure	the	probe	was	as	vertical	as	possible.	

The	probe	was	lowered	until	it	touched	the	surface	of	the	brain	and	zero	point	

was	recorded.	The	probe	shanks	were	so	thin	that	the	surface	vasculature	would	

often	cause	them	to	buckle,	so	micro	adjustments	were	made	to	the	stereotaxic	arm	

until	the	probe	slid	into	the	brain	tissue.	Because	the	probe	was	so	delicate,	we	

wanted	to	avoid	any	unwanted	movement	of	the	probe,	so	we	elected	not	to	plug	the	

probe	in	to	monitor	signals	during	probe	insertion.	Instead,	the	probe	was	inserted	

blindly	to	a	depth	of	1.5	mm	relative	to	the	zero	point,	which	should	place	it	within	

the	dorsal	GCL.	

After	placing	the	electrode,	a	few	drops	of	Dura-Gel	compound	were	mixed	at	1:1	

ratio.	A	droplet	of	the	compound	was	pipetted	into	the	hole	to	repair	and	reseal	the	

durotomy.	The	Dura-Gel	compound	dries	to	a	jelly-like	consistency,	cushioning	the	

probe,	and	preventing	dental	cement	from	flowing	into	the	hole.	After	the	Dura-Gel	

dried,	we	coated	the	exposed	probe	shafts	with	Gorilla	Glue,	which	improves	

adhesion	of	dental	cement.	Then	we	applied	dental	cement	to	the	fix	the	probe	in	

place,	securing	it	to	the	nearest	skull	anchor	screw.	

Once	the	dental	cement	securing	the	probe	had	dried,	a	thin	stainless	steel	wire,	

which	was	soldered	to	the	ground	pins	on	the	probe’s	PCB	board	prior	to	surgery,	

was	wrapped	around	the	ground	screw.	The	entire	area	was	then	encased	in	dental	

cement,	with	the	flex	cable	folded	inside	and	the	omnetics	connector	aligned	parallel	

to	the	rostral-caudal	axis.	After	drying,	the	wound	was	cleaned	and	sutured,	and	the	
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rat	received	0.1	mL	Buprenex	subcutaneously	before	being	placed	in	a	clean	

recovery	cage.	Rats	were	allowed	to	recover	for	2	weeks	after	surgery	before	

beginning	the	experimental	protocol.	

	

4.3.2	Data	Acquisition	

Raw	data	were	digitized	and	amplified	by	an	Intan	RHD2132	headstage	

(http://intantech.com/RHD2132_RHD2216_amp_board.html),	collected	with	an	

Open	Ephys	acquisition	board	(http://www.open-ephys.org/acq-board/)	and	

preprocessed	with	Open	Ephys	GUI	(http://www.open-ephys.org/gui/)	on	a	

computer	running	Windows	7.	The	32	raw	data	signals	were	high	pass	filtered	from	

300	–	6000	Hz.	One	of	these	channels	was	also	copied	and	low	pass	filtered	from	1	–	

300	Hz	to	obtain	an	LFP	signal	(see	top	of	Fig.	4.2).	We	only	used	one	channel	for	the	

LFP	because	the	low	pass	signals	from	all	the	channels	were	virtually	identical.	The	

full	data	processing	pipeline	is	depicted	in	Fig.	4.2.	

	

4.3.3	Noise	removal	

The	spike	recordings	suffered	from	several	types	of	noise:	Large	deflections	(>	20	

standard	deviations),	small	deflections	(<	20	standard	deviations),	oscillatory	noise,	

and	single	channel	noise.	Examples	of	each	type	of	noise	are	depicted	in	Fig.	4.3.	

These	had	to	be	removed	before	clustering	because	they	would	dominate	the	

principal	components	and	render	clustering	ineffective.	Below	we	describe	each	

type	of	noise	and	procedures	for	its	removal.	
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Figure	4.2	Spike	data	processing	pipeline	
High	and	Low	pass	filtering	were	performed	during	recording	by	Open	Ephys,	noise	
removal	was	performed	by	custom	written	python	scripts,	spike	clustering	was	performed	
by	the	Klusta	suite,	and	manual	spike	curating	was	performed	through	Phy	Kwik-GUI.	
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4.3.3.i	Large	artifact	removal	

Large	positive	and	negative	deflections,	several	hundred	std	above	the	mean	(Fig.	

4.3A),	were	detected	by	a	threshold	(usually	set	to	20	std	above	mean)	and	replaced	

by	zeroes	symmetrically	about	the	peak	of	the	artifact	up	until	the	data	reached	½	

the	standard	deviation	(ensuring	no	leftover	peaks).	The	noise	deflections	in	Figure	

4.3A	are	coincide	with	the	switching	of	the	solenoids	on	each	trial	of	the	nose-poke	

experiment.	We	modified	the	artifact	removal	algorithm	in	the	BARK	toolbox	

developed	by	Kyler	Brown	(https://github.com/kylerbrown/bark)	to	apply	the	

treatment	to	all	channels	simultaneously	since	large	amplitude	deflections	on	some	

channels	would	often	be	accompanied	by	smaller	amplitude	deflections	on	other	

channels	that	did	not	cross	the	threshold	for	removal.	

	

4.3.3.ii	Small	artifact,	oscillatory	noise,	and	single	channel	noise	removal	

There	were	three	types	of	noise	that	were	too	low	in	amplitude	to	be	removed	by	

thresholding:	Small	deflections	(Fig.	4.3B,	due	to	head	movement),	oscillatory	noise	

(Fig.	4.3C),	most	likely	originating	from	higher	harmonics	of	60	Hz	noise	that	

survived	the	high	pass	filter)	and	single	channel	noise	(Fig.	4.3D,	source	unknown).	

These	had	to	be	detected	by	hand.	Before	clustering,	the	traces	were	inspected	by	

eye	to	find	obvious	noisy	periods.	However,	in	many	cases	these	noisy	periods	were	

not	noticed	until	after	the	noise	showed	up	in	the	clusters,	leading	to	a	process	of	

clustering,	notating	noisy	periods	by	eye,	and	re-clustering	with	noisy	periods	

removed.	
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Sometimes	we	were	unlucky	to	find	a	channel	that	produced	many	good	

spikes	suddenly	becoming	noisy.	When	this	was	the	case	the	noisy	periods	would	be	

set	to	0.	Otherwise,	any	channel	with	substantial	single	channel	noise	was	deleted	

completely.	Removal	of	as	many	noise	periods	and	channels	as	possible	was	crucial	

Figure	4.3	Examples	of	noise	in	neural	recordings.	A)	High	amplitude	deflections	(black)	could	
easily	be	detected	and	removed	with	automated	scripts.	The	large	deflections	in	this	particular	
example	were	caused	by	the	switching	of	odor-delivery	solenoid	valves	during	a	nose-poke	
experiment.	The	remaining	small	deflections	after	artifact	removal	(red)	are	neural	spikes.	B,	C)	
Small	noise	deflections	(B)	and	oscillatory	noise	(C)	was	harder	to	remove	automatically	without	
jeopardizing	spikes	of	similar	size.	In	the	examples	shown,	these	deflections	are	incorrectly	
classified	as	spikes	(grouped	by	color).	We	therefore	had	to	remove	these	periods	by	hand,	often	
only	noticing	them	after	the	data	had	been	clustered.	D)	Single	channels	could	suddenly	become	
extremely	noisy.	If	the	noisy	channel	did	not	contribute	many	good	spikes,	it	was	deleted.	
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because	any	noise	skewed	the	principle	components,	leading	either	to	poor	

separation	of	clusters	or	to	merging	of	too	many	clusters.	The	2nd	shank	for	Rat	3	

appeared	damaged,	as	it	was	very	noisy	on	most	channels	and	only	produced	a	few	

small	amplitude	spike	clusters,	so	we	excluded	the	entire	shank	from	the	analysis.	

	

4.3.3.iii	Common	median	removal	

Spike	detection	pipelines	often	include	common	average	removal,	where	the	mean	

signal	at	all	time	points	is	subtracted	from	each	channel.	This	allows	spikes	to	be	

better	localized	to	individual	channels.	We	used	common	median	removal	because	

the	median	is	less	sensitive	than	the	mean	to	large	fluctuations	and	has	been	shown	

to	improve	action	potential	detection	on	multielectrode	arrays	(Rolston	et	al.,	2009).	

This	step	of	preprocessing	was	crucial	to	identifying	spatially	localized	spikes,	

because	the	high-passed	channels	covering	such	a	small	area	had	a	great	deal	of	

common	signal.	

	

4.3.4	Spike	detection	and	clustering	via	Klusta	Suite	

To	extract	unique	spike	clusters	from	our	multichannel	data,	we	used	Klusta	Suite	

(Rossant	et	al.,	2016),	a	spike	detection	and	clustering	toolbox	designed	to	cluster	

spikes	recorded	from	arrays	of	arbitrarily	large	size.	A	detailed	description	of	the	

toolbox	can	be	found	in	the	cited	paper.	Briefly,	spikes	are	detected	as	

spatiotemporally	connected	components	across	nearby	channels	via	a	two-

threshold	flood	fill	algorithm.	The	weak	threshold	defines	the	pool	of	channels	
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contributing	to	the	cluster,	while	the	strong	threshold	defines	the	largest	spike	in	

the	group.	The	dual-threshold	approach	avoids	spurious	detection	of	small	noise	

events	that	don’t	cross	the	strong	threshold	and	ensures	that	spikes	will	not	be	

erroneously	split	due	to	noise,	because	areas	joined	by	weak	threshold	crossings	are	

merged.	The	detected	spike	event	groups	are	then	clustered	with	the	klustakwik2	

algorithm,	which	employs	a	novel	statistical	method	for	high-dimensional	cluster	

analysis	termed	the	“masked	EM	algorithm.”	Much	like	the	traditional	EM	algorithm,	

it	fits	data	as	a	mixture	of	Gaussians,	typically	from	just	the	first	3	PCA	components,	

but	uses	a	channel	mask	so	that	channels	outside	the	mask	do	not	contribute	to	

cluster	alignment.	Once	finished,	klustakwik2	produces	.kwik	and	.kwx	files,	both	in	

HDF5	format,	which	contain	all	cluster	information	(see	bottom	of	Fig.	4.2).	

	 The	Klusta	suite	has	a	one-sided	threshold,	and	must	therefore	be	run	

separately	to	detect	negative	and	positive	spikes.	Although	the	Klusta	suite	authors	

found	optimal	values	of	4	and	2	times	the	standard	deviation	for	strong	and	weak	

spike	detection	thresholds,	I	found	these	values	produced	poor	positive	threshold	

clusters	that	appeared	in	small	islands	spread	across	the	entire	probe.	I	explored	the	

parameters	on	a	few	small	data	sets	and	found	better	looking	clusters	with	

strong/weak	values	of	4.5	and	2	for	negative	spike	detection	and	4.5	and	1.5	for	

positive	spike	detection.	

	

4.3.5	Probe	files	

The	Klusta	suite	requires	a	probe	file	(extension	.prb)	that	defines	the	probe	

geometry	in	order	to	group	deflection	from	nearby	channels	with	the	flood-fill	
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algorithm.	Although	probe	files	in	principle	are	able	to	contain	multiple	shanks,	we	

designed	separate	prb	files	for	each	probe	following	advice	on	the	

klustaviewas@groups.google.com	mailing	list,	which	identified	bugs	in	klustakwik2	

when	running	for	multiple	probes.	For	this	reason	we	run	the	entire	data	processing	

pipeline	(Fig.	4.2)	on	each	shank	separately.	

	

4.3.6	Manual	spike	sorting	and	merging	

The	clustering	results	must	be	inspected	manually	to	isolate	noise	clusters	from	true	

spike	clusters.	We	visualize	the	clustering	results	with	the	Phy	Kwik-GUI	

(https://github.com/kwikteam/phy),	which	is	designed	to	process	the	.kwik	and	

.kwx	files	(bottom	of	Fig.	4.2).	Noise	clusters	were	identified	on	the	basis	of	atypical	

waveforms,	overly	periodic	correlograms,	and	unusual	temporal	organization	(i.e.	

all	spikes	coming	from	a	2s	slice	of	time).	We	also	took	care	to	remove	misidentified	

positive/negative	spikes	(See	Fig.	4.4).	That	is,	when	running	for	negative	spikes,	

Figure	4.4	Negative	and	positive	spikes.	Example	traces	viewed	in	Phy	Kwik-GUI	
showing	negative	spikes	on	channel	8	(red),	and	positive	spikes	on	channel	5	(green)	
which	were	misclassified	as	negative.	In	this	example	positive	and	negative	spikes	occur	
on	different	channels,	but	they	are	also	often	found	on	the	same	channel.	
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any	positive	spike	clusters	that	happen	to	accumulate	are	discarded,	so	as	to	avoid	

double	counting	in	the	positive	spike	cluster	group.	

After	removing	noise	clusters	from	spike	clusters	we	identify	which	clusters	

should	possibly	be	merged	on	the	basis	of	waveform	similarity.	Although	the	Phy	

Kwik-GUI	has	cluster	merging	capabilities,	it	would	often	freeze	and	crash,	making	

the	process	overly	tedious.	Rather	than	endure	these	frustrations	we	performed	

cluster	merging	ourselves	(see	merge_clust	in	Appendix	II).	This	approach	proved	

superior	because	if	the	ISI	after	merging	were	to	produce	two	humps	instead	of	

merging	into	a	single	seamless	ISI,	then	the	clusters	could	easily	be	left	separate.	

Figure	4.5	Design	of	Butterworth	filters	for	gamma,	beta,	and	theta	frequency	
bands.	For	each	band	the	filter	order	that	gave	the	sharpest	noiseless	filter	was	chosen.	
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4.3.7	Design	of	Butterworth	filters	for	theta,	beta,	and	gamma	frequencies	

In	order	to	isolate	LFP	activity	in	the	theta,	beta,	and	hi/lo	gamma	bands	we	used	

the	butter	function	of	the	scipy.signal	package.	The	order	of	the	filters	had	to	be	

chosen	for	each	frequency	band	to	generate	smooth	gain	curves	with	the	sharpest	

edges	(Fig.	4.5).	Optimal	orders	were	theta:	3,	beta:	4,	hi/lo	gamma:	5.	After	filtering,	

the	envelope	of	the	filters	was	obtained	from	the	absolute	value	of	the	Hilbert	

transform	of	the	filtered	signals	(see	butter_env	in	Appendix	II).	

	

4.3.8	Spike-	LFP	phase	histograms	

To	obtain	the	LFP	oscillation	phase	we	first	filtered	the	LFP	signal	for	the	desired	

frequency	band:	either	theta	(4	–	15	Hz),	beta	(15	–	30	Hz),	low	(40	–	60	Hz)	or	high	

gamma	(60	–	100	Hz).	Then	we	took	the	Hilbert	transform	of	the	filtered	LFP,	

represented	as	𝐻 𝑥 .	The	instantaneous	phase	of	the	filtered	LFP	signal	was	then	

calculated	as	

𝜙!"#$ = tan!!
𝐼𝑚(𝐻 𝑥 )
𝑅𝑒(𝐻 𝑥 )	

		

The	strategy	for	obtaining	the	spike-LFP	phase	histograms	had	to	differ	

slightly	for	each	frequency	band	because	of	their	different	temporal	properties.	

Theta	oscillations	persist	throughout	the	entire	recording	session,	and	therefore	the	

spike-phase	product	was	calculated	for	spikes	in	the	entire	recording	session.	Low	

and	high	gamma	occur	intermittently	(usually	at	the	peaks	of	theta	oscillations),	but	

because	they	are	transitory,	we	had	to	restrict	the	calculation	to	periods	with	
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gamma	power	above	a	certain	threshold.	By	trial	and	error,	I	found	1.6	times	the	

median	gamma	power	to	be	a	good	threshold	for	gamma	power	strict	enough	to	

exclude	most	non-oscillatory	periods,	but	generous	enough	to	include	smaller	

amplitude	gamma	oscillations.	

Beta	oscillations	are	also	intermittent	and	transitory,	but	they	are	primarily	

odor	evoked.	Thus,	we	calculated	beta	phase	histograms	from	thresholded	regions	

restricted	to	odor	periods.	Since	the	power	of	beta	oscillations	spanned	a	narrower	

range	than	gamma,	we	used	a	stricter	power	threshold	than	for	gamma	of	0.4	times	

the	median	of	the	maximum	beta	power	of	each	odor	period.	This	ensured	that	only	

spikes	during	odor-evoked	beta	oscillations	were	used	for	the	analysis.	Reliable	

phase	histograms	could	not	be	produced	if	cells	fired	less	than	30	spikes	in	all	odor	

periods	combined	and	were	thus	excluded	for	this	analysis	(see	

spike_field_prod_with_rand	and	SPH_wrapper	in	Appendix	II).	

	

4.3.9	Finding	peak	LFP	phase	preference	of	spikes	

We	found	that	the	phase	histograms	(as	described	above)	were	often	sinusoidal	or	

Gaussian.	Rather	than	use	just	a	Gaussian	or	sinusoid	fit	to	find	the	phase	at	which	

cells	fired	the	most,	we	calculated	both	Gaussian	and	sine	fits,	and	chose	the	one	

with	the	lowest	error.	The	argmax	(x-value	at	which	a	function	is	maximum)	of	this	

fit	was	reported	of	the	preferred	phase	of	the	cell.	(See	get_peak_phase_sinORgauss	

in	Appendix	II)	
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Figure	4.6	Aligning	spikes	to	beta	onset.	A)	An	odor	(EMB)	presentation	time	window	
showing	bandpass	filtered	LFP	(blue),	beta	envelope	(green),	threshold	(light	blue),	and	
beta	onsets	(red	positive)	and	offsets	(red	negative).	When	multiple	beta	events	were	
detected,	only	the	first	crossing	of	the	beta	envelope	threshold	in	the	was	used	to	align	
spikes	(labeled	tβ).	B)	Representative	beta	filtered	LFP	envelopes	for	all	30	trials	of	EMB	
(left)	and	GER	(right)	presentations	aligned	to	beta	onset	as	described	in	A.	Even	though	
GER-induced	beta	oscillations	are	much	lower	in	amplitude,	most	trials	still	appear	well-
aligned.	C)	Alignment	of	spike	trains	to	beta	onset	(tβ)	from	7	simultaneously	recorded	GCL	
neurons.	In	this	example,	some	of	cells	were	inhibited	for	~1s	following	the	onset	of	the	
beta	oscillation.	
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4.3.10	Aligning	spikes	to	beta	oscillations	

In	the	absence	of	any	precise	measure	of	stimulus	onset	for	the	odor	swab	

presentation	experiments,	we	aligned	spikes	to	the	onset	of	odor-evoked	beta	

oscillations.	Our	procedure	for	aligning	spikes	to	beta	is	depicted	in	Figure	4.6.	For	

each	trial	we	filtered	the	LFP	to	obtain	the	beta	envelope	and	found	the	time	at	

which	the	envelope	first	crosses	a	threshold	in	the	window	(tβ	as	illustrated	in	Fig.	

4.6A).	Here	we	used	a	threshold	of	0.6	times	the	median	of	the	max	beta	power	in	all	

odor	periods,	which	was	stricter	than	the	one	used	for	spike-field	coherence	

calculations,	below.	The	stricter	threshold	was	primarily	chosen	because	it	resulted	

in	higher	peaks	of	the	beta-aligned	PSTH.	

As	can	be	seen	in	Fig.	4.6B,	this	alignment	strategy	produces	consistently	

aligned	beta	LFP	envelopes	across	all	trials	of	an	experiment	for	both	high	volatility	

and	low	volatility	odor	evoked	beta	oscillations	(see	align_spikes_to_beta	in	

Appendix	II).	

	

4.3.11	Spike	field	coherence	

Coherence	is	defined	as	

𝐶!,! =
𝑃!"!

𝑃!!𝑃!!
	

,	where	𝑃!"	is	the	cross	power	spectral	density	between	signals	X	and	Y,	and	𝑃!!	and	

𝑃!!	are	the	respective	power	spectral	densities.	This	produces	a	value	bounded	

between	0	and	1.	To	calculate	coherence	between	any	two	signals	both	signals	must	

have	the	same	time	resolution.	For	spike-field	coherence	(SFC),	we	bin	spikes	into	
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time	bins	of	the	time	resolution	of	the	LFP	signal,	which	in	our	case	is	3	kHz.	We	

computed	SFC	with	the	python	function	scipy.signal.coherence	(see	spike_field_coh	

in	Appendix	II).	

	 Because	gamma	and	beta	oscillations	are	transitory,	the	SFC	had	to	be	

calculated	during	power	thresholded	periods.	Our	procedure	for	calculating	SFC	is	

Figure	4.7	Diagram	illustrating	procedure	for	calculating	spike-field	coherence	for	beta	
oscillations.	A)	Beta	oscillation	periods	are	detected	by	threshold	crossing	of	beta	filtered	LFP	
envelope.	B)	The	LFP	oscillation	periods	are	stitched	into	a	one	dimensional	array.	The	same	is	
done	for	the	spike	times.	Spike	times	are	binned	into	same	time	resolution	as	LFP.	C)	The	
coherence	between	the	binned	spikes	and	LFP	is	computed	as	the	ratio	of	cross	spectral	density	to	
power	spectral	densities	of	LFP	and	spike	trains.	The	maximum	SFC	is	reported	(red	dot).	D)	The	
same	procedure	is	produced	for	50	random	shuffles	of	the	spikes.	A	1-sided	1-sample	T-test	is	
used	to	determine	if	the	true	SFC	is	significantly	higher	than	the	mean	SFC	of	the	random	shuffles.	
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schematically	shown	in	Figure	4.7.	The	same	thresholds	were	used	as	for	the	spike-

phase	histograms	(Fig.	4.7A).	We	found	that	calculating	the	SFC	for	each	thresholded	

period	individually	was	not	viable	because	most	of	the	periods	did	not	contain	

enough	spikes	to	produce	a	statistically	meaningful	measure.	Fixed	windows	could	

not	be	used	for	the	calculations	because	inclusion	of	spikes	during	non-oscillatory	

periods	drove	the	SFC	down	to	chance	levels.	Therefore,	we	stitched	all	the	

thresholded	LFP	periods	together,	taking	care	to	keep	track	of	the	cumulative	start	

times	of	each	period	to	adjust	the	corresponding	spike	times	accordingly	(Fig.	4.7B).	

The	SFC	was	then	computed	and	the	argmax	(x-value	at	which	a	function	is	

maximum)	of	the	coherence	spectrum	(Fig.	4.7C)	was	taken	as	the	SFC	of	that	cell	

(see	SFC_wrapper	in	Appendix	II).	

Statistical	significance	of	the	SFC	measure	was	measured	by	a	1-sample	T-

test	(scipy.stats.ttest_1samp)	to	determine	if	the	true	SFC	is	significantly	greater	

than	the	mean	SFC	of	50	random	shuffles	(Fig.	4.7D).	The	p-value	of	a	one-sided	T-

test	is	just	half	that	of	the	two-sided	T-test,	so	we	divided	the	output	of	

scipy.stats.ttest_1samp	by	2	and	cells	with	SFC	lower	than	the	mean	of	the	random	

shuffle	were	excluded.	A	significant	threshold	of	0.001	was	used,	though	most	cells	

that	were	significant	had	p-values	<	1e-10.	

We	noticed	that	SFC	calculations	for	low	amplitude	beta	oscillations	were	

biased	by	the	fact	that	the	low	amplitude	beta	events	were	typically	very	short,	

some	lasting	less	than	one	oscillatory	cycle.	When	stitching	together	many	such	

short	events,	as	described	above,	we	created	a	synthetic	signal	that	artificially	

inflated	the	value	of	the	SFC.	Thus	SFC	values	for	low	volatility	odors	GER	and	NA	
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were	higher	on	average	than	the	high	volatility	odors	EMB	and	PP,	even	though	

phase	histograms	for	the	high	volatility	odors	tended	to	appear	more	peaked.	SFC	

should	ideally	be	calculated	on	data	segments	of	equal	lengths,	but	because	the	GER	

and	NA	–	evoked	beta	oscillations	were	usually	brief	and	interspersed	with	gamma	

oscillations,	while	EMB	and	PP	evoked	beta	oscillations	appeared	in	long	stretches,	

the	data	itself	did	not	allow	a	fair	comparison.	For	this	reason,	we	only	present	SFC	

values	for	the	high	volatility	odors.	

	

4.3.12	Peri-stimulus	time	histograms	

To	calculate	peri-stimulus	time	histograms	(PSTH)	spikes	were	binned	into	uniform	

bins	over	a	window	spanning	each	odor	presentation.	The	spikes	in	each	window	

were	then	aligned	either	to	the	onset	of	the	beta	oscillation,	or	to	the	nose-poke	time	

if	the	rats	were	in	an	operant	box.	PSTHs	of	the	aligned	spikes	were	then	calculated	

by	binning	spikes,	averaging	across	trials,	and	dividing	by	the	bin	width	to	get	units	

of	rate	(Hz).	We	used	bin	width	of	200	ms	for	visualization	of	dynamics	over	several	

seconds,	and	50	ms	time	bins	for	visualization	of	faster	dynamics	(See	calc_PSTH	in	

Appendix	II).	

	

4.3.13	Spike-Distance	analysis	

A	spike	distance	metric	was	used	to	obtain	a	measure	of	the	prediction	accuracy	of	

each	cell	recorded	in	the	multi-odor	presentation	experiments.	These	experiments	

had	30	trials	per	odor,	giving	90	spike	trains	total	for	the	rat	with	3	odors,	and	120	
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spike	trains	total	for	the	rat	with	4	odors	(Rats	2	&	3	in	Table	4.1).	All	spike	times	

were	aligned	to	the	onset	of	the	odor	evoked	beta	oscillation,	and	a	2s	window	

starting	0.	2s	before	beta	onset	was	used	for	this	analysis.	A	python	implementation	

of	the	Victor	&	Purpura	(1993)	spike	distance	metric	was	used	to	calculate	the	

distance	between	every	pair	of	spike	trains	at	a	fixed	cost	q	(units	1/s),	producing	a	

symmetric	distance	matrix	for	each	cell	(see	Fig.	4.8A	for	example	distance	matrices	

and	distance_between_all_trials	in	Appendix	II).	

To	obtain	prediction	accuracy	from	each	distance	matrix,	the	distances	were	

grouped	by	odor	and	summed	them	for	each	trial,	reducing	a	matrix	of	dimension	

Ntrials	x	Ntrials	to	a	matrix	of	dimension	Ntrials	x	Nodors.	The	odor	giving	the	shortest	

distance	was	taken	as	the	predicted	odor	for	that	trial.	The	prediction	accuracy	is	

then	the	number	of	correctly	predicted	trials	divided	by	the	total	number	of	trials.	

This	was	repeated	for	a	range	of	cost	values	ranging	from	1/(0.1ms)	to	1/(2s)	(The	

cost	is	the	inverse	of	the	time	resolution).	

As	a	sanity	check,	an	alternative	method	of	spike	train	classification	based	on	

correlation	between	spike	trains	and	PSTHs	on	a	subset	of	cells	was	also	used.	For	

this	method,	we	first	bin	all	spike	times	into	0.1	ms	bins	and	then	calculate	the	PSTH	

for	each	odorant	(of	a	given	cell),	leaving	one	spike	train	out.	We	smooth	the	PSTH	

and	the	isolated	spike	train	with	a	Gaussian	of	width	W	and	compute	the	correlation	

coefficient	between	the	smoothed	spike	train	and	smoothed	PSTHs.	The	predicted	

odor	of	the	spike	train	is	the	odor	class	of	the	PSTH	with	highest	correlation	to	that	

spike	train.	If	it	is	the	same	as	the	odor	that	actually	produced	the	spike	train,	then	

the	classification	is	correct.	This	is	repeated	for	each	spike	train	for	a	range	of	
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Gaussian	bin	widths	W	ranging	from	1	ms	to	2	s	(the	entire	length	of	the	window).	

Taking	the	width	of	the	Gaussian	as	the	timing	resolution	and	calculating	prediction	

accuracy	as	before,	we	found	that	this	method	produced	results	similar	to	the	

Victor-Purpura	based	method	(Fig.	4.8B).	

	

Figure	4.8	Computing	odor	prediction	accuracy	of	individual	cells	using	a	spike	distance	
metric	analysis.	A)	Representative	Victor-Purpura	distance	matrices	for	a	cell	with	a	
preference	for	EMB	(left),	and	another	cell	that	showed	no	preference	for	the	3	odors	presented.	
Although	odors	were	interleaved	in	these	experiments,	the	trials	are	rearranged	to	be	grouped	
by	odor	in	the	distance	matrices	to	facilitate	the	analysis	and	for	visualization.	B)	Comparison	of	
prediction	accuracies	obtained	by	the	Victor-Purpura	method	(dashed)	and	alternate	PSTH	
correlation	based	method	(solid)	for	indeterminate	(blue),	timing	(green),	and	rate	(red)	cells.	
For	V-P	method	the	time	resolution	is	the	inverse	of	the	cost	(1/q),	but	for	PSTH	corr	method	
the	timing	resolution	is	the	width	of	the	smoothing	Gaussian.	
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4.3.14	Visualization	of	neural	population	response	trajectories	

In	order	to	visualize	the	evolution	of	the	population	response	over	time	we		

performed	dimensionality	reduction.	This	analysis	was	performed	for	the	multi-

odor	swab	presentation	experiments	(2nd	column	of	Table	4.1).	Because	individual	

trials	were	highly	variable,	we	performed	dimensionality	reduction	on	the	beta-	

onset-aligned	PSTH	instead	of	individual	trials.	PSTHs	were	computed	with	100	ms	

Figure	4.9	Comparison	of	dimensionality	reduction	techniques	for	visualizing	response	
trajectories.	Shown	are	Rat	2’s	neural	population	response	trajectories	to	3	odors	(EMB	–	orange,	
GER	–	green,	NA	–	blue)	on	Day	1	generated	by	standard	LLE	(A),	modified	LLE	(B),	t-SNE	(C),	and	
traditional	PCA	(D).	A	few	parameter	combinations	are	shown	to	illustrate	the	range	of	
visualizations	achieved	with	these	methods.	Color	legend	(in	D)	is	same	for	all	panels.	Transparent	
and	filled	colors	indicate	pre	and	post	beta	onset	respectively.	In	the	end	we	found	that	LLE	and	t-
SNE	created	trajectories	of	comparable	or	worse	quality	than	PCA,	so	we	decided	to	use	PCA.	
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time	bins	over	a	4s	period	from	2s	prior	to	and	2s	after	beta	onset.	All	PSTHs	from	a	

single	day	were	organized	into	a	single	matrix	with	length(PSTH)	x	Nodors	rows	and	

Ncells	columns.	

We	attempted	several	dimensionality	reduction	techniques	on	these	matrices	

to	find	the	best	visualization.	Following	Stopfer	et	al.	(2003),	we	tried	locally	linear	

embedding	(LLE)	and	the	more	recently	developed	modified	LLE	(Zhang	&	Wang	

(no	year	listed	on	manuscript))	for	a	range	of	number	of	neighbors	(see	Fig.	4.9A	,B).	

LLE	produced	nice	trajectories	for	25	–	35	neighbors,	but	the	modified	LLE	is	too	

aggressive,	so	trajectories	are	difficult	to	see.	We	also	tried	t-distributed	stochastic	

neighbor	embedding	(t-SNE)	with	many	different	parameter	combinations	

(examples	shown	in	Fig.	4.9C).	For	most	parameter	combinations	t-SNE	tended	to	fit	

the	trajectories	into	a	circular	space,	thus	compressing	them	undesirably.	We	found	

best	t-SNE	trajectories	using	a	PCA	initialization	and	a	low	learning	rate,	but	this	is	

effectively	the	same	as	simply	running	PCA	(compare	Fig.	4.9C,	right	and	Fig.	4.9D).	

In	the	end	we	found	that	LLE	and	straightforward	PCA	(Fig.	4.9D)	produced	

comparable	results.	We	chose	to	use	LLE,	and	chose	different	numbers	of	neighbors	

for	different	data	sets	to	obtain	optimal	separation	and	smoothness	of	trajectories.	

	

4.3.15	Event	time	management	

Event	times	for	the	cotton	swab	presentation	experiments	were	initiated	by	a	hand-

held	button.	Event	times	in	the	nosepoke	experiments	were	generated	by	a	Med	

Associates	SmartCTL	DIG-716B	control	box.	In	both	cases	the	events	were	5V	TTL	

pulses	that	were	fed	into	the	Open	Ephys	acquisition	box	via	BNC	cables.	
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Unfortunately,	the	event	signals	were	often	very	noisy,	perhaps	due	to	cable	noise	or	

a	fault	within	the	acquisition	box	itself,	resulting	in	repeated	pulses	rather	than	a	

single	pulse	at	the	onset	and	onset	of	each	event.	To	isolate	the	pulses	of	interest	we	

scanned	the	event	files	for	onsets	of	pulse	trains,	recorded	the	time,	then	skipped	

100	ms	(determined	by	eye	to	be	longer	than	all	of	the	pulse	noise	trains),	and	

continued	the	scan	(see	scandtrig_while	in	Appendix	II).	

In	the	nose-poke	experiments,	the	Open	Ephys	system	often	registered	

completely	spurious	events	when	triggered	by	the	Med	Associates	control	box.	

Therefore,	before	scanning	for	event	onsets,	the	nose-poke	event	times	gathered	by	

the	Open	Ephys	system	were	matched	to	the	event	times	stored	by	a	Med	Associates	

system	running	MedPC	IV	to	ensure	that	every	event	was	detected	properly.	The	

nose-poke	experiments	also	suffered	from	a	great	deal	of	60	Hz	noise.	We	deleted	

most	noisy	periods	while	keeping	most	of	the	odor	delivery	periods	intact.	Care	had	

to	be	taken	to	detect	any	overlaps	between	the	removed	periods	and	the	event	

durations	(see	trim_events	in	Appendix	II).	

	

4.3.16	Training	rats	to	nose-poke	

Rats	2	&	3	were	trained	to	poke	into	an	odor-port	to	receive	sugar	pellet	rewards.	

Both	rats	learned	the	behavior	in	3	days.	A	single	trial	consists	of	the	following	

sequence:	House	light	turns	on,	rat	pokes	nose,	reward	delivered	if	rat	holds	nose	in	

nose-port	for	over	500	ms	(or	not	if	unrewarded),	house	light	turns	off	2s	after	

nose-poke.	If	rat	fails	to	poke	nose	in	5s,	the	houselights	turns	off	for	a	6s	penalty	

and	then	another	trial	is	initiated.	The	odor	port	was	equipped	with	an	IR	sensor	
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that	recorded	times	of	nose-poke	and	nose-removal	from	the	odor	port.	All	

automation	was	controlled	by	MedPC	IV.	We	ran	rats	on	two	paradigms:	(1)	single	

odor	full	reward	(3rd	column	in	Table	4.1)	-	The	experiment	was	set	to	terminate	

after	100	attempts,	typically	producing	between	30	–	40	clean	trials	per	sessions.	

(2)	two	odor	half	reward	(4th	column	in	Table	4.1)	–	For	the	first	60	attempted	trials	

both	odors	were	fully	rewarded,	then	for	the	second	60	attempted	trials	the	reward	

was	removed	for	one	of	the	odors.	

We	noticed	that	the	60	Hz	noise	often	showed	up	between	trials	when	the	rat	

would	investigate	the	hole	through	which	the	cable	to	the	head-stage	came	in.	

Because	of	this	we	decided	to	delete	all	inter-trial	periods	and	only	cluster	on	trial	

periods,	which	are	defined	by	each	house-light	ON/OFF	event	pair.	Furthermore,	the	

Open	Ephys	system	tended	to	register	spurious	events,	so	we	intersected	Open	

Ephys	events	with	internally	generated	MedPC	IV	events	to	ensure	only	true	events	

were	counted	(as	described	in	4.3.13	Event	time	management).	

	

4.3.17	Odorant	Delivery	System	

The	odorant	delivery	system,	depicted	in	Figure	4.10	is	described	in	detail	in	

Frederick	et	al.	(2011).	This	system	splits	a	clean	air	stream	into	a	clean	air	stream	

and	two	odor	streams	gated	by	solenoids	which	pass	through	liquid	odorants	

housed	in	test	tubes.	The	solenoids	control	which	odor	is	used,	while	a	vacuum	line	

gated	by	a	different	solenoid	controls	delivery	to	the	odor	port.	Air	is	bubbled	

through	an	odor	tube	for	2	s	before	the	vacuum	line	is	closed	so	that	odor	delivery	is	
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almost	immediate	(estimated	delay	is	60-100	msec).	All	solenoids	are	controlled	by	

the	Med	Associates	system.	

	

	

	

	 	

Figure	4.10	Odorant	delivery	system.	Clean	air	enters	the	system	after	being	passed	
through	a	carbon	filter	(1).	The	clean	air	is	then	split	into	a	clean	air	stream	(2)	and	two	
odor	streams	(4).	An	exhaust	vent	(3)	prevents	pressure	problems.	The	odor	streams	pass	
through	the	odorants	(5),	which	are	housed	in	test	tubes	(A,	B).	The	odorant	streams	then	
meet	(6)	and	rejoin	the	clean	air	stream	(7)	at	which	point	the	odorized	air	has	
approximately	16%	saturated	vapor.	If	the	vacuum	line	is	open	(8),	the	odorized	air	is	
diverted	to	an	exhaust.	If	the	vacuum	line	is	closed,	then	the	odorized	air	is	able	to	flow	
into	the	odor	port	(9).	Arrows	indicate	the	direction	of	flow.	Solenoids	are	controlled	by	a	
computer.	All	connectors,	except	the	one	for	the	vacuum,	which	used	a	T-connector,	were	
Y-connectors.	Check	valves	ensured	flow	direction	throughout	the	system.	Reproduced	
from	Frederick	et	al.	(2011)	with	permission.	
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4.4	Results	of	high-density	Si	probe	recordings	

	

4.4.1	Spike	waveforms	and	baseline	firing	rates	

Because	each	of	the	32	channels	of	the	high-density	probes	tended	to	detect	at	least	

one	negative	and	one	positive	waveform,	a	typical	recording	session	produced	

around	64	spike	clusters.	Figure	4.11A	shows	representative	categories	of	negative	

spike	waveforms	obtained	after	successful	clustering	of	clean	data	periods.	Positive	

spikes	falling	into	the	same	categories	were	also	detected.	Whether	a	spike	is	

positive	or	negative	is	purely	a	consequence	of	geometry	(where	the	cell	is	relative	

to	the	probe),	as	shown	by	3D	simulations	of	extracellular	potentials	(Buzsáki	et	al.,	

2012).	We	did	not	see	any	biphasic	waveforms	characteristic	of	axonal	spikes,	and	

thus	we	assumed	that	most	recorded	action	potentials	were	somatic	spikes	in	the	

GCL	or	somatic	spikes	from	distant	M/T	cells.	

Most	of	the	detected	clusters	looked	like	the	small	single	channel	deflection	

shown	in	the	upper	left	of	Figure	4.11A.	Although	to	some	eyes	these	would	appear	

to	be	nothing	more	than	noise,	these	small	deflections	often	showed	strong	stimulus	

dependent	firing	patterns.	These	clusters	could	represent	distant	single	cells,	but	

more	likely	represent	multiunit	activity	mixed	with	noise,	because	these	types	of	

clusters	often	showed	sub-millisecond	ISIs.	Larger	spike	waveforms	usually	had	

cleaner	ISIs	and	correlograms	with	a	clear	refractory	period.	Unfortunately,	the	cells	

with	large	waveforms	did	not	always	respond	to	the	odors	we	chose	to	present.	
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We	attempted	to	classify	neural	identity	by	waveform,	but	we	found	no	

consistently	sortable	classes	of	waveforms.	This	is	probably	because	the	probes	are	

surrounded	by	GCL	neurons	from	every	angle,	and	the	shape	of	electrophysiological	

Figure	4.11	Spike	waveforms	and	baseline	firing	rates.	A)	Representative	negative	
action	potential	waveforms.	Positive	waveforms	also	can	be	organized	into	the	same	
general	categories.	No	biphasic	waveforms	characteristic	of	axons	were	found,	thus	we	
assume	that	most	action	potentials	come	form	cell	bodies	in	the	GCL.	B)	Histogram	of	
baseline	firing	rates	for	all	GCL	neurons	included	in	this	study	(620	cells	total,	206	from	
Rat	1,	260	from	Rat	2,	154	from	Rat	3).	The	majority	of	cells	had	baseline	firing	rates	
between	1	and	10	Hz.	Only	51	cells	had	firing	rates	higher	than	30	Hz	(right),	and	these	
are	most	likely	multiunit	recordings.	
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waveforms	changes	when	viewed	from	different	angles	(Buzsáki	et	al.,	2012).	We	

did	not	find	any	spatial	organization	of	different	waveforms	along	the	probe	shaft.	

That	is	to	say,	in	a	given	recording	session,	any	of	these	waveforms	could	be	found	

on	any	channel.	We	also	did	not	find	any	clustering	of	waveforms	by	any	of	the	

response	metrics	we	used	in	the	present	work.	

The	baseline	firing	rates	of	all	GCL	neurons	included	in	this	study	(620	total)	

were	calculated	by	averaging	the	rates	computed	from	a	1	s	window	2	s	before	each	

odor	presentation.	They	varied	quite	drastically	across	cells,	ranging	approximately	

from	0.5	Hz	to	70	Hz.	However,	as	can	be	seen	from	the	histogram	of	baseline	firing	

rates	shown	in	Figure	4.11B	(left),	the	majority	of	cells	fell	within	the	1	–	10	Hz	

range.	Approximately	2/3rds	of	the	cells	in	this	range	showed	clear	refractory	

periods.	Only	51	out	of	620	cells	total	had	baseline	firing	rates	>	30	Hz	(Fig.	4.11B	

right),	and	these	are	most	likely	multiunits	as	their	ISIs	did	not	have	clear	refractory	

periods.	The	firing	rates	of	GCs	in	slice	have	been	reported	to	be	very	low,	between	

0.5	–	5	Hz	(Cang	&	Isaacson,	2003),	and	recent	recordings	of	GCs	in	awake	head	

fixed	mice	showed	rates	of	1	–	10	Hz	(Cazakoff	et	al.	2014).	It	is	possible	that	the	

cells	we	recorded	with	lower	firing	rates	are	GCs,	while	those	with	moderate	firing	

rates	are	a	different	class	of	interneurons	or	distant	M/T	cells	(see	Discussion	4.5.1).	

	

4.4.2	Classification	of	spike	responses	during	passive	odor	presentations	

Because	we	did	not	have	a	precise	measure	of	stimulus	presentation	during	passive	

odor	presentations,	we	aligned	the	spike	responses	during	each	odor	presentation	

to	the	onset	of	the	beta	oscillation	(See	Methods	4.3.10	and	Fig.	4.6).	We	produced	
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peri-stimulus	time	histograms	(PSTH)	by	averaging	all	the	spike	trains	for	a	given	

odor	and	dividing	by	the	bin	width.	By	scanning	through	hundreds	of	PSTHs	of	

individual	cell	responses	from	all	three	rats	by	eye	we	found	that	responses	fell	

within	6	general	categories,	which	are	depicted	in	Figure	4.12.		These	categories	

consisted	of	two	excitatory	(E)	type	responses	(transient	Fig.	4.12A,	and	persistent	

Fig.	4.12B),	two	inhibitory	(I)	type	responses	(transient,	Fig.	4.12D	and	persistent	

Fig.	4.12E),	a	mixed	E/I	response	(Fig.	4.12C),	and	no	rate	modulation	(Fig.	4.12F).	

The	mixed	response	category	further	subdivided	into	three	subcategories,	E-I,	E-I-E,	

and	I-E,	but	only	E-I-E	is	shown	in	Figure	4.12C.	We	did	not	find	any	clustering	of	

response	type	with	waveform	or	baseline	firing	rate	because,	as	will	be	shown	later,	

individual	cells	showed	multiple	response	types	to	different	odors	and	over	

subsequent	days.	

	 As	mentioned	in	the	introduction	to	this	chapter,	our	model	implicitly	

assumes	that	GCs	would	fire	at	the	onset	of	beta,	but	remain	inhibited	for	the	

duration	of	the	beta	oscillation.	The	existence	of	E-I	and	E-I-E	responses	confirms	

that	this	behavior	really	does	occur	in	awake	behaving	rats	in	a	subset	of	GCL	

neurons.	Seven	such	cells	with	E-I	responses	to	EMB	are	shown	in	Figure	4.6C	along	

with	the	odor	evoked	beta	oscillation,	showing	that	cells	are	inhibited	for	~	1s	(most	

of	the	duration	of	the	beta	oscillation).	Interestingly,	the	same	cells	appear	to	regain	

firing	as	a	second	smaller	beta	oscillation	emerges,	indicating	that	the	inhibition	of	

these	cells	is	not	a	necessary	condition	for	beta	to	emerge.	The	remaining	response	

categories	define	a	broader	range	of	responses	than	the	model	could	have	predicted		
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Figure	4.12	General	response	categories	of	GCL	neurons.	GCL	neuron	odor	responses	
aligned	to	beta	onset	could	be	grouped	into	6	major	categories	(A	–	F).	Each	sub-figure	
includes	a	raster	plot	(top),	PSTH	(middle),	and	spike	–	beta	phase	histogram	(bottom).	In	
the	PSTH	plots,	the	dashed	line	and	gray	region	represent	the	mean	and	standard	deviation	
of	the	baseline	firing	rate	calculated	from	a	2	s	window	2	s	before	beta	onset.	For	the	phase	
histograms	the	white	line	and	gray	region	represents	the	mean	and	standard	deviation	of	
phase	histograms	calculated	from	50	random	shuffles	of	the	same	number	of	spikes.	
Subdivision	defining	the	mixed	response	E-I-E	are	indicated	on	the	PSTH	plot	(C).	
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and	may	reflect	the	diversity	of	inhibitory	cell	types	in	the	GCL.	The	excitatory	and	

inhibitory	responses	of	different	cells	to	the	same	odor	may	be	due	to	inhibitory	

connections	between	GCL	interneurons	(Pressler	&	Strowbridge,	2006).		

We	were	not	only	interested	in	the	modulation	of	firing	rate	during	beta	

oscillations,	but	also	the	modulation	of	spike	timing	in	the	form	of	phase	locking.	

Thus,	for	each	cell	we	also	calculated	spike-beta	phase	histograms	(see	Methods	

4.3.8),	which	are	shown	in	the	bottom	panel	of	each	subfigure	in	Figure	4.12.	In	this	

example,	all	cells	showed	strong	phase	locking	except	for	the	cell	with	the	tI	

response	(Fig.	4.12D).	Notably,	the	cell	that	showed	no	rate	modulation	(Fig.	4.12F)	

was	still	phase	locked	to	beta,	suggesting	that	cells	could	potentially	carry	

independent	information	in	their	rate	and	timing	by	participating	in	different	

dynamical	states.	

	

4.4.3	Variability	of	responses	of	well-isolated	cells	across	odors	and	days	

In	the	previous	sections,	we	discussed	experiments	in	which	we	presented	only	one	

odor	at	a	time,	thus	we	could	not	investigate	the	responses	of	individual	cells	to	

different	odors.	In	the	multi-odor	swab	presentation	experiments	(2nd	column	of	

Table	4.1),	we	interleaved	several	different	odors	per	session	in	a	fixed	order	(see	

2nd	column	of	Table	4.1	for	order	of	odor	presentations).	We	performed	sessions	on	

four	consecutive	days	to	investigate	the	day-to-day	variations	of	individual	cells	that	

might	be	held	across	days.	In	both	Rats	2	&	3	we	found	clusters	that	responded	

differently	to	different	odors.	
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Figure	4.13	GCL	neuron	responses	on	consecutive	days.	Example	odor	responses	on	
two	consecutive	days	of	a	cell	from	Rat	2	(A)	and	Rat	3	(B).	For	each	day	the	correlogram	
and	spike	waveforms	(top),	raster	plots	grouped	by	odor	(middle),	and	PSTH	per	odor	
(bottom)	are	shown.	Correlograms	were	calculated	1	ms	bins	in	a	50	window	ms.	
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To	illustrate	the	variability	of	responses	within	clusters	of	spikes	from	

individual	cells	or	multiunit	responses,	Rat	2	had	a	cluster	with	a	strong	persistent	

excitation	for	NA,	but	a	persistent	inhibition	for	EMB	and	GER	(Fig.	4.13A),	and	Rat	3	

had	a	cluster	with	strong	inhibition	to	EMB	and	PP,	a	slight	inhibition	to	GER,	and	no	

response	to	NA	(Fig.	4.13B).	The	responses	for	these	clusters	appeared	to	be	

maintained	on	the	2nd	day,	but	both	of	these	clusters	were	lost	after	the	2nd	day.	By	

the	presence	of	a	refractory	period	in	the	correlogram	for	the	Rat	2	example	(Fig.	

4.13A,	top)	we	feel	confident	that	all	the	spikes	in	this	cluster	came	from	the	same	

cell,	but	the	lack	of	a	clear	refractory	period	in	the	Rat	3	example	correlogram	

indicates	that	the	cluster	likely	contains	spikes	from	multiple	cells	or	possibly	some	

noise.	The	signals	in	Rat	3	were	generally	noisier,	and	the	clustering	procedure	

appeared	to	miss	some	spikes	on	Day	2,	resulting	in	gaps	in	the	raster	plots,	

although	the	shape	of	the	histogram	remained	the	same.	It	is	interesting	to	note	that	

the	Rat	2	cell	seemed	to	maintain	inhibition	after	odorant	was	presented,	because	

the	baseline	firing	rate	for	the	NA	presentation	was	lower	than	the	other	two	(NA	is	

the	last	in	the	sequence	for	this	rat).	Also,	it	is	interesting	that	the	example	cluster	

for	Rat	3	seems	to	scale	its	inhibitory	response	by	the	volatility	of	the	odorant	(see	

VP	of	each	odorant	in	Table	4.1).	

A	small	subset	of	clusters	maintained	the	same	waveform	and	correlogram	

over	3-4	days,	leading	us	to	believe	that	we	were	holding	the	same	cell	(or	small	

group	of	cells)	over	these	days.	Figure	4.14	shows	the	raster	plot,	PSTH,	and	phase	

histograms	of	one	such	cell	from	Rat	2.	This	cell	was	only	sensitive	to	EMB,	but	the	

response	of	this	cell	appeared	to	progress	from	an	I-E	type	response	on	Day	1,	to	a		
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Figure	4.14	Firing	rate	and	phase	locking	of	single	GCL	neuron	held	over	multiple	days.	
Waveforms	(A)	and	correlogram	(B)	of	a	single	cluster	appear	fairly	consistent	across	4	consecutive	
days.	Traces	included	in	this	cluster	are	colored	blue.	Correlogram	was	produced	with	bin	size	of	1	
ms	over	a	50	ms	window.	The	peak	at	small	correlation	time	reflects	the	tendency	of	these	spikes	to	
arise	in	bursts.	Lack	of	clear	refractory	periods	indicates	possible	noise	or	multiple	cells	contributing	
to	this	cluster.	C)	Beta	onset-aligned	spike	raster	plots	(top)	and	corresponding	PSTH	(bottom)	
grouped	and	colored	by	odor.	The	PSTH	on	Day	1	shows	an	inhibitory-excitatory	response	for	EMB	
(orange),	but	for	Days	2	and	3	the	response	is	purely	excitatory.	Day	4	still	shows	persistent	
excitatory	response,	but	firing	rate	is	over	twice	as	low	as	other	days,	probably	due	to	failure	of	spike	
detection	algorithm	to	detect	all	spikes.	D)	Spike	-	phase	histograms	of	beta,	high/low	gamma,	and	
theta	filtered	LFPs.	Spike	–	beta	phase	histograms	was	calculated	separately	for	each	odor	(colored	as	
in	the	raster	plots)	while	phase	histograms	for	gamma	and	theta	(in	black)	were	calculated	for	entire	
recording	session.	Best	fit	(red	line),	mean	(white	line)	and	standard	deviation	(gray	filled)	of	50	
random	shuffles.	
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persistent	excitatory	response	on	Day	2,	to	an	even	more	prominent	excitatory	

response	on	Day	3.	On	Day	4	the	firing	rate	was	much	lower,	most	likely	because	the	

cell	had	drifted	away	from	the	probe	so	that	not	every	spike	was	detected.	In	

addition	to	this	striking	evolution	of	the	odor	response	over	days,	this	cluster	

showed	changes	in	LFP	phase	preferences	across	days	(Fig.	4.14D).	The	beta	phase	

preference	for	EMB	(Fig.	4.14D	orange,	bottom)	was	near	90o	on	Day	1,	but	on	all	

other	days	was	clearly	negative.	It	is	not	likely	that	the	LFP	polarity	changed	due	to	

movement	between	days	because	the	probe	did	not	span	a	cortical	layer.	This	

cluster	did	not	show	a	strong	gamma	phase	preference,	except	for	high	gamma	on	

Day	2	and	a	low	gamma	preference	on	Day	4.	The	theta	phase	preference	appeared	

to	change	from	90o	on	Days	1&2	to	180o	on	Days	3&4.	Interestingly,	the	mean	beta	

Figure	4.15	Mean	odor	
evoked	beta	power	on	
consecutive	days.	
Mean	LFP	beta	band	(15	–	35	
Hz)	power	for	each	odor	and	
day	of	the	multi-odor	swab	
presentation	experiments	for	
Rat	2	(A)	and	Rat	3	(B).	
Error	bars	are	from	30	trials	
each.	
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power	recorded	during	each	odor	presentation	drops	significantly	after	Day	1	for	

high	volatility	odors,	while	the	beta	power	for	low	volatility	odors	remains	roughly	

the	same	across	all	days	(Fig.	4.15).	This	could	reflect	some	form	of	familiarization	

with	the	procedure,	or	a	change	in	odor	sampling	strategy,	perhaps	as	the	rats	learn	

to	take	shallower	or	shorter	sniffs	of	the	high	volatility	odors.	

	

4.4.4	Evolution	of	population	response	trajectories	over	time	

We	simultaneously	recorded	~60	–	80	neurons	per	session	in	Rat	2	and	~30	–	40	

neurons	per	session	in	Rat	3	(which	had	missing	shank	2	due	to	noise).	In	addition	

to	looking	at	the	responses	of	individual	cells,	we	wanted	to	investigate	the	

responses	at	the	population	level.	Inspired	by	work	of	Stopfer,	et	al.	(2003),	we	

computed	response	trajectories	and	visualized	them	using	locally	linear	embedding	

(LLE,	see	Methods	4.3.14).	Unlike	Stopfer	et	al.	(2003),	we	computed	the	trajectories	

using	PSTHs	across	all	trials	rather	than	individual	trials	or	averaged	triplets	as	they	

did.	The	number	of	neighbors	used	for	LLE	must	be	tuned	to	produce	the	most	

visually	clear	trajectories.	By	trial	and	error,	we	found	optimal	values	of	25	and	14	

numbers	of	neighbors	for	Rat	2	and	Rat	3	populations,	respectively.	Thus,	by	

reducing	dimensionality	across	a	large	number	of	cells	we	could	represent	the	

activity	of	all	cells	in	just	two	dimensions.	

	 The	trajectories	for	each	odor	used	in	the	multi-odor	swab	presentation	

experiments	are	shown	in	Figure	4.16.	Transparent	and	filled	colors	indicate	pre-	

and	post-beta	onset	respectively.	For	Rat	2,	LLE	produced	clearer	trajectories	than	

PCA.	On	Days	1	&	2	for	Rat	2	the	EMB-induced	population	trajectory	(orange)		
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Figure	4.16	Trajectories	obtained	from	LLE	decomposition	of	PSTHs	across	the	entire	
neural	population.	The	trajectories	cover	the	period	starting	2s	prior	to	beta	onset	(transparent	
colors)	to	2s	after	beta	onset	(filled	colors)	in	100	ms	time	steps.	Although	most	of	the	trajectories	
are	rather	noisy	and	angular,	a	relatively	smooth	path	emerges	for	EMB	(orange)	on	Day	1	of	Rat	2	
(left).	It	is	clear	in	this	plot	that	the	trajectory	diverges	at	the	onset	of	beta	oscillation	(transition	
from	light	to	filled	orange	color,	β	onset	marked	by	arrow).	After	~800	ms	the	trajectory	returns	
closer	to	its	original	starting	point,	but	continues	to	wander	away	from	it,	as	the	full	responses	can	
last	up	to	3s.	The	two	high	volatility	odors	(EMB	&	PP)	tend	to	overlap	for	Rat	3	(right).	
	

Rat 2 (3 odors) Rat 3 (4 odors) 

β	onset 

β	onset 

β	onset 

	

	

	

	

	

	

	

β	onset 
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clearly	diverges	from	its	pre-beta	onset	baseline	path	immediately	at	the	onset	of	

beta.	The	NA	trajectory	(blue)	also	tends	to	diverge,	but	it	does	so	more	slowly,	as	

can	be	seen	by	the	overlap	of	light	and	dark	blue	trajectories.	This	may	be	due	to	a	

genuine	later	onset	of	NA	activity,	or	simply	due	to	the	fact	that	NA	induced	much	

smaller	beta	oscillations	making	alignment	to	them	less	precise.	The	EMB	trajectory	

does	not	return	to	baseline	in	the	2s	post	beta	onset,	suggesting	that	the	population	

response	lasts	longer	than	2s.	GER	trajectories	do	not	diverge	much	from	pre-beta	

onset	paths,	because	most	of	the	cells	in	Rat	2	were	insensitive	to	GER.	On	Day	3,	the	

EMB	trajectory	(orange)	diverges	sharply	from	its	pre-beta	onset	path,	reflecting	a	

very	strong	excitatory	and	inhibitory	EMB	responses	by	many	cells	on	this	day.	We	

point	out	that	one	of	the	cells	in	this	population	is	the	same	cell	shown	in	Figure	

4.14	that	had	such	a	strong	excitatory	response	to	EMB	on	Day	3.	

	 Even	though	we	tried	to	optimize	the	visualizations,	the	best	trajectories	for	

Rat	3	(Fig.	4.16,	right)	were	noisier	and	more	angular	than	those	of	Rat	2.	This	is	

probably	due	to	the	lower	number	of	neurons	from	Rat	3	(only	30	–	40).	In	

comparison,	Stopfer	et	al.	2003	needed	over	100	cells	to	get	smooth	trajectories	

(personal	communication).	Nonetheless,	we	see	that	the	trajectories	for	the	two	

high	volatility	odorants,	EMB	(orange)	and	PP	(red),	tend	to	overlap	with	

themselves	more	than	the	two	low	volatility	odorants,	especially	in	Days	1	&	3.	This	

result	echoes	what	we	saw	for	the	individual	neuron	in	Fig.	4.13	B,	where	firing	

responses	to	both	high	volatility	odors	were	strong	inhibition.	The	Rat	3	EMB	and	

PP	responses	appear	shorter-lived	than	the	Rat	2	responses	to	EMB,	as	they	sharply	

diverge	and	then	return	close	to	baseline	within	the	2s.	The	Day	4	trajectories	are	
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overlapping,	possibly	due	to	signal	degradation	and	noise	that	led	to	poor	clustering.	

It	appears	that	on	a	population	level,	the	GCL	neuron	population	sampled	for	Rat	3	is	

more	sensitive	to	odor	volatility	than	odor	identity,	because	the	odors	within	each	

volatility	class	overlap.	This	supports	the	idea	that	GCL	neurons	might	be	broadly	

tuned	to	odors,	because	they	receive	inputs	from	MCs	from	across	the	bulb	and	

strong	centrifugal	drive	from	higher	order	areas.	

	

4.4.5	Cells	that	are	strongly	phase	locked	to	gamma	oscillations	tend	not	

to	be	phase	locked	to	beta	oscillations.	

As	seen	in	Figures	4.12	&	4.14	some	phase	histograms	are	obviously	peaked,	and	

others	are	not.	To	quantify	the	degree	of	phase	locking	across	our	entire	data	set	we	

computed	the	spike-field	coherence	(SFC)	between	spikes	and	the	LFP	filtered	for	

either	beta	or	gamma	bands	(see	Fig.	4.7	and	Methods	4.3.11).	In	Figure	4.17,	we	plot	

beta	SFC	vs	low	and	high	gamma	SFC	for	all	cells	in	the	data	set	responding	to	high	

volatility	odors.	Because	the	beta	SFC	for	low	volatility	odors	tended	to	be	biased	

due	to	short	beta	epochs	(explained	in	Methods	4.3.11)	we	only	present	high	

volatility	results.	Each	point	represents	a	cell	(or	multi-cell	cluster),	and	each	cell	

with	significant	beta	coherence	(as	determined	by	1	sided,	1	sample	T-test)	is	

colored	red.	For	each	of	these	plots,	the	upper	right	quadrant	tends	to	be	

unpopulated.	That	is,	cells	with	high	beta	coherence	tend	not	to	have	high	gamma	

coherence.	
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It	is	possible	that	cells	with	higher	beta	coherence	represent	a	different	

subtype	than	cells	with	higher	gamma	coherence,	but	they	did	not	cluster	with	any	

of	the	other	response	properties	that	we	measured.	Spike	–	gamma	coherence	was	

quite	low	(<	0.02)	for	all	cells	except	for	a	subpopulation	in	Rat	3,	which	had	much	

greater	low	gamma	SFC	than	the	other	rats	(Fig.	4.17	Aiii).	It	is	possible	that	the	cells	

with	greater	low	gamma	coherence	are	distant	MCs,	because	these	cells	are	known	

to	have	fairly	high	gamma	coherence.	

	

4.4.6	GCL	neurons	show	heterogeneous	beta	LFP	phase	preferences	

The	preferred	beta	phase	of	each	cell	(or	multi-cell	cluster)	was	calculated	by	fitting	

a	Gaussian	or	a	sinusoid	(whichever	gave	the	best	fit)	to	the	phase	histogram	and	

Rat 1 Rat 2 Rat 3 

Figure	4.17	Plotting	beta	SFC	vs	high	and	low	gamma	SFC.	Spike-beta	coherence	vs	
spike-low	gamma	(A)	and	spike-high	gamma	(B)	coherence	for	every	cell	in	the	data	set	
responding	to	high	volatility	odors.	Each	plot	is	divided	into	quadrants.	Very	few	cells	fall	
in	the	upper	right	quadrant.	Cells	with	significant	beta	coherence	are	colored	red.	
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taking	the	argmax	(see	red	curves	on	phase	histograms	in	Fig.	4.14	D	and	Methods	

4.3.9).	In	Figure	4.18A	we	count	the	preferred	phases	for	all	cells	recorded	in	each	

rat	(white	bars	count	only	those	cells	with	significant	SFC).	A	phase	of	0o	

corresponds	to	the	peaks	of	the	beta	oscillation,	while	180o	(±	π)	corresponds	to	the	

troughs	(Fig.	4.18B).	Curiously,	the	preferred	phases	for	Rat	1	were	all	peaked	

around	just	above	0o,	but	those	for	Rats	2	&	3	were	more	heterogeneous.	Although	

the	total	population	of	Rats	2	&	3	showed	preferred	phases	towards	180o	(±	π),	

most	of	the	phase	preferences	for	cells	with	significant	beta	SFC	were	between	0	and	

180o.	It	is	possible	that	the	LFP	in	Rat	1	was	reversed	relative	to	the	LFP	in	Rats	2	

and	3	if	the	probe	for	rat	one	was	somehow	crossing	a	layer,	but	it	is	unlikely	as	the	

probes	were	lowered	to	the	same	depth	for	all	rats,	and	the	GCL	LFP	should	be	of	

consistent	polarity	(phase	reverses	when	crossing	the	EPL).	

	 Figure	4.18	C	shows	that	cells	had	roughly	the	same	preferences	for	all	odor-

induced	beta	oscillations	in	Rat	1.	The	phase	preference	was	consistent	over	long	

time	intervals	as	well,	as	evidenced	by	the	two	EMB	sessions	that	were	recorded	3	

weeks	apart.	The	beta	phase	preferences	in	Rats	2	&	3	differed	more	across	odors.	

In	particular,	cells	in	Rat	3	responded	to	GER	and	NA	with	180o	phase	preferences,	

but	responded	to	PP	with	a	peak	phase	preference	just	under	90o.	This	suggests	that	

odors	of	different	volatilities	could	possibly	drive	some	GCL	neurons	at	different	

phases	of	beta	oscillations.	It	is	possible	that	phase	preferences	were	heterogeneous	

in	Rats	2	&	3	because	the	probes	detected	different	inhibitory	subtypes	in	the	GCL,	

while	the	phase	preferences	were	more	similar	in	Rat	1	because	the	probe	

happened	to	be	placed	near	a	nest	of	similar	cells	types.	Rat	1	only	had	single	odor	
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sessions,	while	Rats	2&3	had	multiple	odors	interleaved	in	a	session,	so	it	also	can’t	

be	ruled	out	that	the	succession	of	different	odors	caused	the	more	heterogeneous	

phase	preferences.		

	

Figure	4.18	Preferred	phases	for	all	recorded	cells	in	each	rat	A)	Preferred	phase	pooled	across	
all	odorants	for	each	rat.	Black	bars	represent	SFC	of	the	entire	cell	population.	White	bars	
represent	cells	with	significant	beta	SFC.	B)	Schematic	showing	phase	convention	used.	C)	Preferred	
phase	grouped	by	odor	for	each	rat.	Black	bars	represent	SFC	of	the	cell	population	recorded	for	
that	odor.	Colored	bars	represent	the	cells	with	significant	beta	SFC	for	that	odor.	For	these	plots,	
data	for	Rat	1	is	taken	from	single	odor	blocks	(only	one	day	per	odor).	Data	for	Rats	2	&	3	was	
pooled	across	the	four	days	of	interleaved	presentations	and	grouped	by	odor.	
	

EMB 3 weeks later 
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4.4.7	Prediction	accuracies	from	spike	distance	metrics	distinguish	

between	timing	and	rate	cells	

Continuing	with	the	multi-odor	swab	presentation	data	of	Rats	2	&	3,	we	next	

investigated	how	well	we	could	decode	odor	identity	from	the	neural	firing	patterns.	

We	chose	to	do	this	by	computing	the	Victor-Purpura	(1993)	distance	metric	

between	all	spike	train	pairs	and	then	determining	the	predicted	odor	of	each	spike	

train	as	the	odor	that	evoked	the	spike	trains	giving	the	shortest	average	distance	

(see	Methods	4.3.13	for	more	detail).	The	prediction	accuracy	was	then	simply	

calculated	as	the	number	of	correct	spike	train	predictions	divided	by	the	total	

number	of	spike	trains.	The	spike	distance	was	calculated	for	a	range	of	timing	

resolutions,	from	0.1ms	to	2s	(the	entire	spike	train	window).	At	fine	timing	

resolution,	the	timing	of	individual	cells	influences	the	distance	metric,	but	at	course	

timing	resolutions	only	the	total	number	of	spikes	contribute.	Therefore,	this	

analysis	allows	us	to	identify	cells	that	carry	odor	identity	information	in	the	timing	

of	their	responses	and	cells	that	carry	odor	information	only	in	the	number	of	spikes	

they	fire.	

	 Using	this	approach,	we	found	three	classes	of	odor	selectivity,	which	we	

refer	to	as	non-informative,	timing,	and	rate	cells.	Non-informative	selectivity	did	

not	successfully	distinguish	between	the	odors	presented.	Timing	selectivity	

showed	peak	prediction	accuracy	at	an	intermediate	timing	resolution.	Rate	

selectivity	had	peak	prediction	accuracy	when	the	timing	resolution	was	the	size	of	

the	window,	so	the	only	information	available	to	distinguish	between	odors	is	the	

number	of	spikes.	A	representative	of	each	of	these	types	is	shown	in	Figure	4.8B.	
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Because	we	used	a	very	small	stimulus	space	for	these	experiments	(only	3	odors	

for	Rat	2	and	4	odors	for	Rat	3),	it	is	likely	that	some	of	the	indeterminate	cells	

would	have	shown	discriminable	responses	had	we	used	more	odors.		

	 With	only	three	odors	used	for	Rat	2	and	four	odors	used	for	Rat	3,	the	

chance	prediction	accuracies	were	33%	and	25%	respectively.	Most	of	the	peak	

Figure	4.19	Prediction	accuracy	of	cell	populations	and	individual	cells.	A)	Odor	prediction	
accuracies	of	the	entire	recorded	population	recorded	in	Rat	2	(left)	and	Rat	3	(right)	were	
obtained	from	the	mean	distance	matrix	across	all	cells.	Dashed	black	line	represents	chance.	B)	
Prediction	accuracies	as	a	function	of	time	resolution	for	4	representative	timing	cells	in	Rat	2.	
The	time	resolution	and	corresponding	frequency	for	each	peak	prediction	accuracy	are	
indicated.	Dashed	black	line	represents	chance.	C)	Same	as	B,	but	for	Rat	3.	
	

Time resolution (log(ms)) 

Time resolution (log(ms)) 
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prediction	accuracies	for	rate	and	timing	cells	were	below	50%.	Rate	cells	produced	

the	highest	accuracies	with	a	maximum	of	only	60%.	These	values	are	rather	low	

when	compared	to	prediction	accuracies	using	similar	methods	in	cortical	neurons	

(Mackevicius	et	al.,	2012).	The	prediction	accuracies	for	the	entire	population,	

obtained	from	the	mean	distance	matrix	across	all	cells,	were	rate-like	for	Rat	2	(Fig.	

4.19A,	left).	The	population	prediction	accuracy	for	Rat	3	(Fig.	4.19A,	right)	cells	was	

poor	because	many	of	the	cells	have	accuracies	below	chance	due	to	temporary	

drops	in	spike	detection	(See	Discussion	section	4.5.4	for	explanation).	

Although	the	prediction	accuracies	from	the	whole	population	were	

maximum	for	rate-like	classification,	quite	a	few	individual	cells	in	both	rats	showed	

timing	selectivity	(23%	of	cells	in	Rat	2,	and	15%	of	cells	in	Rat	3).	Examples	of	four	

such	cells	are	shown	in	Figure	4.19B,C.	The	majority	of	these	timing	cells	showed	

peak	prediction	accuracies	at	timing	resolutions	corresponding	to	beta	and	theta	

frequencies,	and	some	even	at	gamma	frequencies	(like	the	rightmost	cell	in	Fig.	

4.19C).	This	means	that	for	these	cells,	variations	in	spike	timing	on	beta	and	theta	

time	scales	convey	the	most	information	about	odor	identity.	Although	these	

experiments	were	not	designed	with	this	analysis	in	mind,	this	analysis	reveals	a	

tantalizing	link	between	spike	timing,	LFP	frequencies,	and	odor	identity.	

	

4.4.8	Alignment	of	spikes	to	nose-poke	reveals	early	phase	of	GCL	neural	

responses	locked	to	behavior	
We	trained	Rats	2	&	3	to	poke	their	noses	into	an	odor	port	hooked	up	to	a	

computer	controlled	odorant	delivery	system	(Fig.	4.10,	and	see	Methods	4.3.17).	
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The	odor	port	was	equipped	with	an	IR	detector,	giving	us	a	behaviorally	relevant	

time	point	with	which	to	align	our	signals.	In	the	nose-poke	1	odor	full	reward	

sessions	(3rd	column	of	Table	4.1)	we	used	only	one	odor	per	session	and	rewarded	

each	successful	nose-poke	with	a	sugar	pellet.	For	these	sessions,	the	data	for	Rat	3	

was	contaminated	with	so	much	60	Hz	noise	that	very	few	trials	were	salvageable,	

so	we	only	present	results	for	Rat	2.	In	the	odor	swab	presentations	experiments,	

the	rats	stayed	plugged	into	their	headstages	because	the	cable	had	plenty	of	slack	

to	absorb	the	twists	caused	by	locomotion.	But	during	the	nose-poke	experiments	

the	rats	would	frequently	unplug	themselves	as	they	would	nudge	their	heads	into	

corners	and	press	the	headstage	against	the	wall	of	the	operant	cage.	The	unplugged	

periods	(Fig.	4.20A)	were	easily	removed	via	simple	thresholding	and	deletion,	but	

repeated	unplugging	and	re-plugging	could	slightly	shift	the	probe,	causing	some	

cells	to	be	lost	and	introducing	new	cells	over	the	duration	of	the	recording	session.	

	 Figure	4.20B	shows	that	beta	oscillations	were	reliably	evoked	by	EMB	

shortly	after	the	rat	poked	its	nose	into	the	odor	port.	The	average	latency	of	beta	

oscillation	onset	with	respect	to	nosepoke	time	was	~150	ms	for	EMB	and	~100	ms	

for	GER,	which	is	shorter	than	the	latency	our	lab	has	seen	when	rats	are	performing	

Go/No-Go	or	Two	Alternative	Choice	operant	tasks	(~250	msec).	The	decreased	

latency	may	be	related	to	the	absence	of	a	decision	period.	Figure	4.20B	also	shows	

a	period	of	fast	investigative	sniffing	roughly	coinciding	with	the	dark	period.	This	

behavior	was	more	common	in	the	nose-poke	experiments	than	the	cotton	swab	

presentation	experiments,	likely	because	rats	get	more	active	in	the	dark	periods	
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between	trials	and	the	operant	box	was	a	more	enriched	environment	than	the	cage	

in	which	swabs	were	presented.		

	 In	Figure	4.21A	we	show	representative	PSTHs	for	all	the	different	types	of	

nose-poke	aligned	responses	to	GER	(Fig.	21Ai)	and	EMB	(Fig.	21Aii).	For	these	

PSTHs	we	used	a	time	bin	of	50	ms	to	see	finer	grained	dynamics	than	the	PSTH	in	

previous	plots.	Using	this	finer	temporal	resolution,	we	saw	that	many	of	the	cells	

fired	spikes	that	were	precisely	timed	to	the	moment	of	nose-poke	(top	two	rows	of	

Fig.	4.21Ai,ii).	Most	cells	that	fired	at	nose-poke	showed	a	brief	return	to	baseline	

and	then	elevated	activity	for	some	portion	of	the	beta	period	(second	row	of	Fig.	

4.21Ai,ii).	Others	cells	were	excited	or	inhibited	only	with	the	onset	of	beta	(3rd	and		

Figure	4.20	Raw	LFP	and	event	times	during	a	nose-poke	experiment	A)	LFP	signal	during	the	
entire	duration	of	one	nose-poke	recording	session.	The	rat	would	frequently	come	unplugged	
from	the	tethered	headstage	as	it	explored	the	operant	box.	Individual	house-light	ON/OFF	events.	
B)	A	zoomed	in	15	s	trace	of	the	session	in	B	shows	that	beta	oscillations	are	reliably	evoked	
almost	immediately	after	the	rat	pokes	its	nose.	The	trace	also	shows	fast	investigatory	sniffing,	
which	often	initiates	when	the	house-light	turns	off.	
	

Time (min) 

A 

B 
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Figure	4.21	Average	nose-poke	aligned	responses	of	GCL	neurons	to	GER	and	EMB.	A)	
Representative	nose-poke	aligned	responses	of	individual	cells	for	GER	(Ai)	and	EMB	(Aii)	
stimulation.	Dashed	line	and	gray	area	represent	mean	and	standard	deviation	of	baseline	firing	
rate.	Responses	to	GER	did	not	show	any	prominent	inhibition.	B)	Comparison	of	mean	firing	
rates	of	cells	that	showed	excitatory	(E)	and	inhibitory	(I)	responses	to	GER	(Bi)	and	EMB	(Bii).	
Only	one	cell	had	an	inhibitory	response	to	GER.	
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4th	rows	from	the	top	of	Fig.	4.21Ai,ii),	and	yet	others	showed	mixed	responses	

(bottom	row	of	Fig.	4.21Aii).	The	EMB	session	produced	60	cells	(or	multi-cell	

clusters)	total,	22	of	which	had	no	response,	9	fired	at	nose-poke,	8	were	excited	at	

beta	onset,	and	21	showed	inhibitory	or	mixed	responses.	The	GER	session	

produced	68	cells	(or	multi-cell	clusters)	total,	42	of	which	had	no	change	in	firing	

rate,	12	fired	at	nose-poke,	13	were	excited	with	beta	onset,	and	only	1	showed	a	

slight	inhibitory	response.	Interestingly,	cells	that	showed	excitatory	responses	

(grouping	transient	and	persistent	responses	together)	tended	to	have	lower	

baseline	firing	rates	than	cells	that	showed	inhibitory	responses	(Fig.	21Bi,ii).	An	

exciting	possibility	is	that	the	higher	firing	rate	cells	are	being	inhibited	by	the	lower	

firing	rate	cells.	In	future	work	we	will	look	at	correlations	in	the	firing	patterns	of	

these	cells	to	see	if	such	a	relationship	exists.	

	 One	might	suspect	that	different	responses	might	occur	at	different	locations	

in	the	GCL.	Excitatory	and	inhibitory	responses	were	found	distributed	across	the	

probe	leads,	but	as	shown	in	Figure	4.22,	a	diverse	array	of	responses	was	detected	

within	a	localized	region	in	the	GCL.	Excitatory	and	inhibitory	responses	in	nearby	

GCL	neurons	could	arise	from	local	inhibitory	connections	between	the	cells.	

Although	we	have	not	yet	looked,	it	would	be	interesting	to	see	if	there	are	any	

correlations	in	the	firing	patterns	in	nearby	cells	with	such	opposing	responses.	

The	precise	locking	of	spikes	to	nose-poke	suggests	that	GCL	neurons	may	

not	only	be	odor	sensitive,	but	also	part	of	a	network	of	cells	involved	in	motivated	

behavior.	Our	model	predicted	that	GCs	should	spike	before	beta	onset	to	drive	the	

long	lasting	depolarization,	which	in	turn	increases	GC	excitability	and	sustains		
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Figure	4.22	Diverse	cell	responses	are	detected	in	a	small	region	of	the	probe.	
During	the	nose-poke	single	odor	full	reward	EMB	session	the	upper	region	of	one	of	the	
shanks	detected	a	particularly	diverse	collection	of	responses	and	waveforms.	This	
suggests	that	nearby	GCL	neurons	can	have	very	different	responses.	Approximate	size	
of	granule	cell	is	included	for	scale.	
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GABA	release.	Although	the	origins	of	the	impulse	that	excites	GCL	neurons	

precisely	at	nose-poke	are	unknown,	it	is	possible	that	it	originates	from	cortical	

top-down	inputs	rather	than	sensory	stimulation.	A	simple	control	to	test	this	idea	

would	be	to	include	some	blank	trials	during	the	session	to	check	if	the	nose-poke	

locked	GCL	responses	could	be	evoked	without	an	odorant	stimulus.	Such	a	result	

would	suggest	that	a	motivated	behavior	might	facilitate	beta	oscillation	generation	

by	centrifugally	stimulating	a	subpopulation	GCL	neurons.	

	

4.4.9	Results	of	Nose-poke	2-odor	half-reward	experiments	

In	a	final	set	of	nose-poke	experiments	we	used	two	high	volatility	odors,	EMB	and	

PP.	Both	odors	were	rewarded	fully	for	the	first	half	of	the	session,	but	the	reward	

for	PP	was	discontinued	for	the	second	half	of	the	session.	Only	Rat	3	performed	

these	sessions	(4th	column	of	Table	4.1).	The	goal	of	these	experiments	was	to	

answer	the	question,	does	the	presence	or	absence	of	a	reward	influence	odor	

evoked	GCL	neuron	activity?	

These	experiments	came	with	three	challenges:	(1)	They	were	designed	after	

the	rat	had	already	been	implanted	for	~4	months,	so	the	signal	quality	was	greatly	

reduced,	and	(2)	the	probe	in	Rat	3	was	particularly	sensitive	to	60	Hz	noise	which	

the	operant	box	frequently	introduced	into	the	signal.	This	had	to	be	removed	

before	clustering	or	else	clusters	were	themselves	composed	of	noise	(see	Methods).	

(3)	The	rat	would	frequently	unplug	itself,	and	this	caused	cells	to	be	lost	and	new	

ones	to	be	introduced	over	the	course	of	the	experiment.	This	can	be	seen	in	Figure	

4.23A,	which	shows	the	firing	rates	of	all	cell	across	the	entire	experiment	(with		
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noise	and	inter-trial	periods	removed).	It	appears	that	a	sudden	increase	in	most	of	

the	cells	firing	rates	occurs	just	before	the	2nd	unplugging	event,	but	this	may	just	be	

due	to	a	shifting	of	the	probe	closer	to	a	group	of	cells.		

Figure	4.23	Some	GCL	neuron	responses	show	reward	contingency	A)	Firing	rates	of	all	
clusters	recorded	for	the	nose-poke	2	odor	half	reward	session.	Although	a	few	clusters	show	more	
consistent	firing	rates	across	the	experiment,	the	firing	rates	for	most	of	the	clusters	starts	very	low	
(1	–	3	Hz).	The	overall	increases	in	firing	rate	seem	to	line	up	with	the	unplugging	events	(red	
vertical	lines),	which	suggests	that	most	of	the	clusters	are	corrupted	by	movement	of	the	probe.	A	
green	vertical	line	marks	the	point	at	which	PP	reward	was	discontinued.	B)	Example	PSTHs	of	two	
clusters	that	showed	similar	responses	for	both	EMB	and	PP	before	and	after	PP	reward	
discontinuation.	C)	Example	PSTHs	of	two	clusters	that	selectively	showed	inhibitory	responses	to	
PP-,	but	similar	response	for	EMB	pre	and	post	PP	reward	discontinuation.	PSTHs	computed	with	
200	ms	bins.	(PP+	rewarded	PP,	PP-	unrewarded	PP)	
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Despite	these	significant	limitations,	we	found	some	cells	that	showed	

compelling	responses.	In	Figure	4.23B,C	we	computed	PSTHs	from	trials	before	and	

after	discontinuing	PP	reward.	These	PSTHs	used	the	wider	200	ms	bins.	We	refer	to	

the	rewarded	PP	trials	as	PP+	and	unrewarded	PP	trials	as	PP-.	We	found	some	cells	

that	showed	similar	responses	for	both	EMB	and	PP	before	and	after	the	reward	

discontinuation,	so	these	cells	were	not	sensitive	to	the	change	in	reward	(Fig.	

4.23B).	But	surprisingly,	some	cells	appeared	to	be	inhibited	only	for	PP	after	the	

reward	was	removed	(Fig.	4.23C).	The	EMB	responses,	on	the	other	hand,	showed	

similar	trends	before	and	after	(except	for	an	overall	increase	in	firing	rate	due	to	

the	clustering	artifact	described	above).	Out	of	28	cells	recorded	for	this	session,	10	

of	them	selectively	showed	inhibition	for	PP-.	Although	the	data	quality	of	this	final	

experiment	was	poor,	the	results	provide	exciting	preliminary	data	to	serve	as	

motivation	for	future	experiments.	

	

4.5	Discussion	

	
In	this	series	of	experiments	we	recorded	extracellular	potentials	using	32-channel	

Si	probes	implanted	in	the	GCL	of	rats	who	participated	in	four	different	odor	

presentation	experiments	(Table	4.1).	The	results	of	our	experiments	show	that	GCL	

neurons	produce	odor	specific	responses	that	may	evolve	over	time	(Figs.	4.12-4.14	

&	4.16).	Cells	with	high	gamma	coherence	tend	to	have	low	beta	coherence	and	vice	

versa	(Fig.	4.17).	In	one	rat,	the	preferred	beta	oscillation	phase	across	the	whole	

recorded	population	was	close	to	90o,	but	the	other	two	rats	showed	more	
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heterogeneous	phase	preferences	across	GCL	neurons	(Fig.	4.18).	Interestingly,	

some	of	the	cells’	responses	carry	more	odor	identity	information	in	their	timing,	

while	others	carry	more	in	their	rate	(Fig.	4.19).	In	one	rat,	we	showed	that	reward	

contingency	may	also	influence	the	polarity	of	responses	(Fig.	4.23).	Together,	these	

results	demonstrate	that	GCL	neuron	responses	are	quite	diverse	and	may	help	

represent	the	meaning	of	odors	on	various	time	scales.	

	

4.5.1	Possible	approaches	to	identifying	GCL	neurons	

In	classical	multichannel	electrophysiology,	different	neurons	can	often	be	identified	

by	the	shape	of	their	waveforms	across	multiple	channels.	This	is	usually	possible	

because	cortical	neurons	are	organized	in	layers	and	the	probe	remains	a	fixed	

distance	from	the	layer	or	contains	channels	that	span	the	layer.	In	our	case	this	was	

not	viable	because	our	probes	were	located	within	the	GCL	and	were	surrounded	by	

GCL	neurons	from	all	sides.	Simulations	of	the	shape	of	extracellular	potentials	have	

shown	that	recorded	spike	shape	differs	greatly	depending	on	where	the	probe	is	

relative	to	the	soma	(Buzsáki	et	al.,	2012).	However,	the	relative	lack	of	clearly	

biphasic	waveforms	suggested	to	us	that	we	are	recording	from	GCL	neurons	and	

not	M/T	cell	axons.	We	could	not	be	sure	what	type	of	neuron	we	were	recording	

from	the	waveform	shape,	and	thus	we	referred	to	all	recorded	neurons	as	GCL	

neurons	to	avoid	misidentification.	

Although	identifying	neuronal	types	by	waveform	was	not	possible,	there	are	

other	features	that	may	differentiate	between	cell	types,	at	least	on	a	functional	

level.	One	such	feature	is	baseline	firing	rate.	Our	GCL	neurons	had	a	wide	range	of	
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baseline	firing	rates,	but	most	fell	within	1	–	10	Hz	as	shown	in	Figure	11B.	Unlike	

the	fast	spiking	interneurons	found	in	neocortex,	OB	GCs	typically	fire	at	low	rates	

(Cang	and	Isaacson,	2003a;	Cazakoff	et	al.,	2014).	Two	other	known	GCL	

interneuron	subtypes,	Blanes	cells	and	deep	short	axon	cells,	also	fire	at	similarly	

low	rates	(Pressler	and	Strowbridge,	2006;	Burton	and	Urban,	2015).	M/T	cells	

typically	fire	spontaneously	around	10	-	20	Hz	(Kay	&	Laurent,	1999),	though	some	

tufted	cells	may	fire	faster	around	30	-	40	Hz	(Fukunaga	et	al,	2012;	Igarashi	et	al.,	

2012).	Thus,	the	slowest	firing	cells	might	be	GABAergic	GCL	neurons,	cells	firing	at	

moderate	rates	and	clear	refractory	periods	might	be	distant	MCs	somatic	

potentials,	and	the	fastest	firing	cells	may	be	distant	tufted	cells,	if	a	refractory	

period	is	present,	or	otherwise	multiunit	combinations	of	the	mentioned	cell	types.	

Another	feature	that	may	help	us	distinguish	between	cell	types	is	phase	

locking	to	gamma	oscillations.	It	is	known	that	M/T	cells	can	be	strongly	phase	

locked	to	gamma	and	often	fire	in	bursts	(Eeckman	and	Freeman,	1990;	Kay	and	

Laurent,	1999).	Thus	a	cell	that	fires	10	–	30	Hz	bursts	locked	to	gamma	and	has	a	

refractory	period	in	its	ISI	might	be	a	M/T	cell.	We	noticed	that	cells	with	high	SFC	

between	spikes	and	gamma	oscillations	had	lower	SFC	between	spikes	and	beta	

(Fig.	4.17).	Some	cells	with	high	gamma	SFC	also	have	baseline	firing	rates	near	that	

of	MCs.	The	sub-population	of	cells	in	Rat	3	that	had	particularly	strong	low	gamma	

SFC	might	in	fact	be	M/T	cells.	
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4.5.2	Plasticity	of	GCL	neuron	responses	over	days	

Several	GCL	neurons	were	well	isolated	and	close	enough	to	the	probe	that	they	

could	be	recorded	over	days.	Some	of	these	cells	showed	the	same	response	from	

day	to	day,	but	others	showed	changes	in	both	their	firing	rate	and	LFP	phase	

preferences	(Fig.	4.14).	GCL	neurons	receive	dense	contralateral	innervation	and	

neuromodulatory	inputs	(Kiselycznyk	et	al.,	2006;	Mouret	et	al.,	2009a;	Illig,	2011),	

which	we	hypothesize	can	drive	context-dependent	changes	in	their	responses	that	

may	mirror	those	seen	in	mitral/tufted	cells	responses	(Pager,	1978;	Bhalla	&	

Bower,	1997;	Kay	&	Laurent,	1999;	Rinberg	et	al.,	2006;	Doucette	&	Restrepo,	

2008).	For	the	multi-odor	swab	presentation	experiments	conducted	on	consecutive	

days,	the	contextual	change	may	be	the	onset	of	familiarity	(especially	going	from	

day	1	to	day	2),	because	both	rats	were	unfamiliar	with	the	odor	presentation	

protocol	on	day	1.	This	hypothesis	may	be	supported	by	the	fact	that	the	mean	beta	

power	for	high	volatility	odors	(EMB	in	Rat	2,	EMB	&	PP	in	Rat	3)	was	high	on	the	

first	day,	then	dropped	significantly	on	days	2	&	3.	Since	beta	oscillations	are	

thought	to	increase	when	nasal	airflow	rate	is	high	(Fourcaud-Trocmé	et	al.,	2011b),	

the	decrease	in	beta	LFP	power	could	reflect	a	change	in	odor	sampling	strategy,	

perhaps	as	the	rats	learn	to	take	shallower	or	shorter	sniffs	of	high	volatility	odors.	

	

4.5.3	Tuning	of	GCL	neural	responses	to	odor	identity	vs	odor	volatility	

To	visualize	the	odor	response	of	the	entire	recorded	GCL	neuron	population	we	

performed	LLE,	following	Stopfer	et	al.	(2003),	which	produced	trajectories	in	a	2D	
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space	that	evolved	in	time	(Fig.	4.16).	Although	the	trajectories	for	Rat	3	are	

somewhat	messy,	it	appears	that	the	trajectories	for	the	two	high	volatility	odors	

overlapped	more	closely	with	each	other	than	with	the	two	low	volatility	odors.	This	

suggests	that	GCL	neural	responses	might	be	more	sensitive	to	odor	volatility	than	

odor	identity.	Unfortunately,	we	only	used	one	high	volatility	odor	for	Rat	2,	so	we	

cannot	confirm	this	in	another	rat.	The	only	other	study	to	date	that	recorded	GCs	in	

awake	rats	found	GC	responses	to	be	more	broadly	tuned	when	awake	than	under	

anesthesia	(Cazakoff	et	al.,	2014).	As	GCs	receive	inputs	from	M/T	cells	across	the	

bulb	due	to	the	long	M/T	cell	lateral	dendrites,	such	broad	odor	tuning	of	GCs	would	

be	expected.	

	

4.5.4	Reasons	for	relatively	low	prediction	accuracies	from	distance	metric	

Using	a	distance	metric	with	varying	temporal	resolution	to	compare	spike	trains	

elicited	by	different	odors,	some	cells	were	found	to	distinguish	better	between	

odors	when	distances	were	computed	at	fine	temporal	resolution	(which	we	called	

timing	cells),	while	others	performed	better	when	the	total	number	of	spikes	was	

counted	(which	we	called	rate	cells)	(Figs.	4.8,	4.19).	However,	as	described	in	the	

results,	these	values	are	rather	low	when	compared	to	studies	in	cortical	neurons,	

which	used	the	same	approach	(Mackevicius	et	al.,	2012),	especially	when	looking	at	

the	population	prediction	accuracy	(Fig.	4.19A),	which	is	close	to	100%	for	cortical	

neurons.	One	reason	this	may	be	the	case	is	that	these	cells,	being	presumed	

inhibitory	neurons	that	receive	inputs	from	many	MCs,	may	have	broad	response	

tuning,	as	was	found	to	be	the	case	for	GCs	(Cazakoff	et	al.	2014),	so	they	respond	
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similarly	to	multiple	odorants.	Indeed,	we	showed	an	example	of	such	a	cell	in	Fig.	

4.13B.	For	the	cells	that	showed	strong	responses	to	only	one	odor,	there	was	still	a	

great	deal	of	trial-to-trial	variability.	Because	rats	were	behaving	freely,	they	did	not	

always	sniff	the	odor	swabs	in	the	same	way,	sometimes	turning	their	heads	away	

while	other	times	trying	to	lick	or	bite	the	swab,	so	the	evoked	responses	could	be	

modulated	by	behavioral	factors	independent	of	the	odors,	causing	within	class	

spike	trains	to	vary	quite	a	bit.	

	 Another	reason	for	low	prediction	accuracies	is	that	many	of	the	clusters	

with	nice	waveforms	that	passed	our	criteria	for	inclusion	were	later	found	to	suffer	

from	a	clustering	artifact.	These	clusters	appeared	to	drop	out	or	drastically	reduce	

in	firing	rate	at	some	point	of	the	recording,	likely	due	to	movement	of	the	probe	

causing	the	waveform	to	change	and	thus	the	clustering	algorithm	to	lose	the	cell,	

and	then	come	back.	Such	artificial	changes	in	firing	rates	could	drive	prediction	

accuracies	below	chance,	as	spike	trains	elicited	by	different	odors	could	become	

more	similar	to	each	other	than	those	elicited	by	the	same	odor	simply	because	

spikes	are	missing.	In	future	work	we	will	remove	the	segments	of	time	where	cells	

drop	out.	

	

4.5.5	Reward	contingency	of	GCL	neuron	responses:	The	bigger	picture	

During	the	reward	modulation	experiment	some	GCL	neurons	appeared	to	switch	

the	polarity	of	their	response	from	excitatory	to	inhibitory	when	an	odor	became	

unrewarded	(Fig.	4.23).	Although	only	one	rat	participated	in	this	experiment,	this	
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result	provides	exciting	preliminary	data	for	future	studies.	Previous	studies	have	

shown	that	a	switch	between	which	of	the	two	odors	is	rewarded	in	a	Go/No-Go	

task	causes	MCs	to	switch	the	polarity	of	their	divergent	responses	(Doucette	and	

Restrepo,	2008).	Several	other	studies	have	also	shown	strong	context	modulation	

of	M/T	cells	responses	(Pager,	1978;	Bhalla	&	Bower,	1997;	Kay	&	Laurent,	1999).	

Although	we	used	a	simpler	task	than	these	studies	(most	studies	used	a	Go/No-Go	

task),	our	results	may	be	the	first	demonstration	of	context	modulation	of	GCL	

neurons	to	date.	Contextual	meaning	most	likely	arises	from	a	wider	neural	network	

than	the	OB	alone	and	probably	relies	on	centrifugal	inputs	into	the	OB	(Rinberg	et	

al.,	2006;	Mouret	et	al.,	2009a).	Since	most	of	these	inputs	target	the	GCL,	we	

expected	that	GCL	neurons	should	show	some	degree	of	context	modulation.	

Although	the	OB	is	known	to	host	adult	born	dopaminergic	cells	(Bonzano	et	al.,	

2016),	these	exist	primarily	in	the	GLO	layer	and	are	thought	to	be	involved	in	

sensory	gain	control	and	not	reward	modulation.	Rather,	OB	reward	modulation	

might	function	in	a	similar	way	as	it	does	in	the	basal	ganglia-thalamo-cortical	loop,	

with	the	OB	playing	a	similar	role	as	a	thalamus	(Kay	and	Sherman,	2007).	

	

	

	



	 169	

5.	Conclusion	

	

5.1	Summary	of	results	

I	have	presented	a	three-part	body	of	work	consisting	of	computational	modeling	

(Osinski	&	Kay,	2016),	pharmacological	experiments	(Osinski	et	al.	2017),	and	

electrophysiological	recordings	(manuscript	in	preparation).	The	common	thread	

through	each	of	these	is	the	role	that	OB	GCs	play	in	generating	beta	oscillations.	

The	modeling	work	showed	that	OB	beta	oscillations	could	be	sustained	by	VDCC-

mediated	synaptic	currents	in	the	MC-GC	dendrodendritic	network.	Importantly,	in	

this	model	beta	oscillations	could	not	be	sustained	by	heightened	GC	excitability	

alone,	but	relied	on	an	appropriate	convergence	of	sensory	input	and	centrifugal	

feedback	onto	GCs	that	increased	their	excitability.	The	model	led	to	two	main	

predictions.	The	first	prediction	suggested	that	there	can	be	a	divergent	influence	on	

the	power	of	beta	oscillations	for	low	and	high	sensory	input	regimes	when	GC	

excitability	is	reduced.	The	second	prediction	is	that	beta	oscillations	are	sustained	

primarily	through	VDCC-mediated	currents	independent	of	NMDA-mediated	

currents.	Although	the	model	didn’t	explicitly	include	GC	somatic	spikes,	it	implicitly	

assumed	that	GCs	should	fire	spikes	just	before	beta	oscillation	onset	because	their	

excitability	is	driven	by	an	afterdepolarization	current	following	a	somatic	spike.	

	 In	the	pharmacological	experiments,	we	found	evidence	for	the	two	

predictions.	Infusion	of	scopolamine,	which	depresses	GC	excitability	by	blocking	
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muscarinic	receptors,	reduced	the	power	of	beta	oscillations	elicited	by	a	strong	

(high	volatility)	odorant,	but	enhanced	beta	oscillations	evoked	by	a	weaker	(low	

volatility)	odorant	(Fig.	3.6).	The	agreement	with	the	model	was	not	exact,	because	

the	biphasic	effect	of	scopolamine	(Fig.	3.3	&	3.4)	was	not	captured	by	the	model.	

This	complex	effect	could	be	due	to	the	influence	of	scopolamine	on	other	

muscarinic	receptors	throughout	the	bulb.	Evidence	for	the	second	prediction	was	

found	when	infusion	of	the	NMDAR	receptor	antagonist	APV	did	not	significantly	

reduce	beta	oscillation	power,	but	aggressively	blocked	gamma	(Fig.	3.8).	

	 In	the	high-density	electrophysiological	recordings,	we	also	found	evidence	

for	the	implied	assumption	of	our	model,	namely	that	GCs	would	fire	just	before	or	

at	the	onset	of	beta	oscillations	(Figs.	4.6C,	4.12A,	4.21).	Some	of	the	cells	firing	

before	the	onset	of	beta	were	actually	tightly	locked	to	the	time	at	which	the	rat	

poked	its	nose	into	an	odor	port	(Fig.	4.21),	suggesting	that	GCL	neurons	are	

behaviorally	modulated.	A	rich	diversity	of	other	response	types	was	also	detected,	

indicating	that	our	model	assumptions	were	too	simplistic	(as	is	the	case	for	most	

models).	We	point	out	that,	in	our	model	only	a	fraction	of	GCs	had	to	participate	in	

the	beta	oscillation,	leaving	open	the	possibility	that	other	cells	could	be	involved	in	

another	process	during	the	beta	oscillation.	The	GCL	is	home	to	many	inhibitory	

subtypes,	which	may	lead	to	more	complex	inhibitory	cell	responses.	Interestingly,	

we	found	that	some	GCL	neurons	better	discriminated	between	odors	using	the	

number	of	spikes,	while	others	convey	more	information	in	the	timing	of	their	

responses	(Fig.	4.19),	which	we	referred	to	as	timing	cells	and	rate	cells.	In	
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experiments	where	rats	were	trained	to	poke	their	noses	into	an	odor	port	we	found	

evidence	for	behaviorally	modulated	GCL	responses.	

	

5.2	Future	directions	

Over	the	course	of	the	experiments	presented	here	I	left	many	stones	unturned,	

especially	for	the	high-density	multichannel	electrophysiological	recordings	of	GCL	

neurons.	I	now	discuss	some	avenues	for	continuing	this	work.	Some	of	the	contents	

of	this	section	are	redundant	with	what	was	said	in	previous	discussion	sections,	but	

are	included	here	for	completeness.	

	

5.2.1	Combining	pharmacology	and	high	density	probe	recordings	

High-density	Si	probes	attached	to	cannulas	already	exist,	thus	we	could	combine	

pharamacological	manipulation	and	high-density	recording	to	ensure	that	the	effect	

that	muscarinic	drugs	scopolamine	and	oxotremorine	actually	inhibit	and	excite	GCL	

neurons	as	we	expect.	We	could	also	expand	to	other	drugs	because	the	GCL	

receives	a	wide	array	of	neuromodulatory	inputs,	and	their	effects	on	GCL	activity	in	

awake	animals	are	not	yet	known.	One	such	drug	to	use	would	be	the	N-type	Ca2+	

channel	blocker,	ω-conotoxin.	Although	the	infusion	of	APV	supported	the	model	

prediction	that	N-type	VDCCs	drive	beta	oscillations,	it	was	not	direct.	To	directly	

test	the	involvement	of	N-Type	VDCCs	we	can	infuse	ω-conotoxin	and	then	present	

odors.	
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5.2.2	Identifying	GCL	neuron	types	

Although	I	was	not	able	to	successfully	identify	different	GCL	neuron	types	in	the	

present	work,	in	section	4.5.1	I	provided	some	suggestions	on	how	to	better	

discriminate	between	GCL	cell	types.	The	presence	of	rate	and	timing	cells	(as	

described	in	section	4.4.7),	suggests	a	functional	distinction	between	two	types	of	

GCL	neurons.	I	have	not	yet	attempted	to	cluster	timing	and	rate	cells	by	other	

features	such	as	waveform,	phase	preference,	or	baseline	firing	rates.	Furthermore,	I	

noticed	that	cells	with	inhibitory	type	responses	tended	to	have	higher	baseline	

firing	rates	(Fig.	4.21).	The	higher	firing	rate	cells	may	be	distant	M/T	cells,	and	if	

this	is	the	case	then,	they	should	also	be	phase	locked	to	gamma.	

	

5.2.3	Population	level	analysis	of	GCL	neural	responses:	can	we	find	cells	

working	together?	

Except	for	the	population	trajectories	described	in	section	4.4.4,	most	of	the	analysis	

of	the	GCL	neuron	responses	were	on	a	cell-by-cell	basis.	Because	we	have	many	

simultaneously	recorded	cells,	we	can	perform	a	great	deal	of	population	level	

analysis.	The	simplest	of	these	would	be	to	look	at	pairwise	correlations	especially	

between	nearby	cells	with	opposite	responses,	like	the	ones	shown	in	Figure	4.22.	

Does	one	always	fire	before	the	other?	Do	they	fire	on	complementary	phases	of	a	

beta	oscillation,	or	are	they	completely	uncorrelated?	

	 Another	possibility	is	to	take	an	information	theoretic	approach.	Such	an	

analysis	could	potentially	reveal	highly	informative	firing	patterns	across	cells,	
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suggesting	that	they	may	be	participating	in	a	dynamical	state.	It	could	also	tell	us	

whether	the	responses	of	cells	are	redundant,	independent,	or	synergistic	(carrying	

more	information	together	than	alone).	However,	because	we	don’t	have	many	trials	

(30	at	most),	there	is	a	lot	of	trial-to-trial	variability,	and	the	stimulus	space	used	in	

the	experiments	was	quite	small	(only	3	or	4	odors),	information	theoretic	analysis	

might	not	be	viable	for	these	recordings.	Because	the	cells	in	the	recorded	

population	are	not	sensitive	to	every	odor,	future	experiments	should	use	more	

odorants	to	make	it	more	likely	that	a	cell	will	respond.	Recordings	should	also	be	

performed	immediately	after	recovery	from	surgery	to	ensure	highest	signal	quality.	

	

5.2.4	Recording	GCL	neural	responses	during	reward	contingency	

experiments	

Although	the	reward	contingency	experiment	was	only	conducted	in	one	rat,	it	

served	as	a	preliminary	experiment	to	stimulate	future	work.	The	responses	of	OB	

M/T	cells	are	known	to	be	highly	contextually	modulated	(Pager,	1978;	Bhalla	&	

Bower,	1997;	Kay	&	Laurent,	1999).	Because	GCs	receive	dense	cortical	and	

neuromodulatory	inputs,	it	is	likely	that	this	contextual	modulation	is	mediated	by	

GCs.	Future	implanted	rats	will	be	trained	on	Go/No-Go	and	2-alternative	choice	

tasks,	which	involve	more	cognitive	processing	than	the	simple	rewarded	nose-poke	

task	used	in	this	work.	With	these	experiments,	we	will	come	closer	to	

understanding	the	neural	process	that	gives	meaning	to	odors.	
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APPENDIX	
	
	

Appendix	I:	Derivation	of	 𝑪𝒂 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆	

Because	 in	 the	 absence	of	MC	 spikes	𝐼!	has	 a	 non-zero	 activation	 even	 for	 resting	

potentials	 as	 low	 as	 -75	 mV	 there	 is	 a	 constant	 Ca2+	 current	 which	 sustains	 an	

internal	 𝐶𝑎 	which	we	call	 𝐶𝑎 !"#!"#$! .	In	order	to	prevent	 𝐶𝑎 !"#$%&'$ 	from	driving	

tonic	inhibition	of	MCs	we	subtract	it	in	the	calculation	of	𝑃!"#"$%" ,	as	shown	in	Table	

2.1.	We	derive	 𝐶𝑎 !"#$%&'$ 	by	solving	the	steady	state	equation	for	 𝐶𝑎 	evaluated	at	

𝑉!"#$,!"# ,	

𝜏!" 𝐶𝑎 = − 𝐶𝑎 + 𝜌!" 𝐼!"#$ + 𝐼! = 0                         (𝐴1)	

𝐶𝑎 = 𝜌!" ∙ 𝐼! = 𝜌!" ∙𝑊!𝑚!
10!!

10!! + [Ca] [𝐸!"(!) − 𝑉!"#$,!"#]	

Note	that	 in	 the	absence	of	MC	spikes	 the	steady	state	of	𝐼!"#$is	0	and	the	steady	

state	of	𝑚!	is	𝑚!	evaluated	at	𝑉!"#$,!"# .	Now	we	have	a	quadratic	expression	in	 𝐶𝑎 ,	

𝐶𝑎 ! + 10!! 𝐶𝑎 − 10!!𝜌!"𝑊!𝑚! 𝐸!!(!) − 𝑉!"#$,!"# = 0           (𝐴2)	

which	has	the	following	solution	

𝐶𝑎 =
−10!! ± 10!! − 4 ∗ 10!!𝜌!"𝑊!𝑚! 𝐸!"(!) − 𝑉!"#$,!"#

2                  (𝐴3)	

𝐶𝑎 ≈ ± −10!!𝜌!"𝑊!𝑚! 𝐸!!(!) − 𝑉!"#$,!"# 	

In	 the	 approximation	 we	 take	 advantage	 of	 the	 fact	 that	 the	 second	 term	 in	 the	

square	root	is	of	order	1	>>	10!!	>>	10!!.	Now	we	must	recognize	that	𝐸!"	itself	is	a	

logarithmic	 function	 of	 𝐶𝑎 ,	 and	 thus	 an	 analytical	 solution	 here	 is	 not	 tractable.	
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Instead,	 𝐶𝑎 !"#$%&'$ 	is	 found	 as	 the	 value	 for	 which	 the	 left	 hand	 side	 (LHS)	 and	

right	hand	side	(RHS)	of	the	following	equation	intersect	

𝑉!"#$,!"# +
𝐶𝑎 !

!"#$%&'$
10!!𝜌!"𝑊!𝑚!

=
𝑅𝑇
𝑧𝐹 𝑙𝑛

[𝐶𝑎]!"#
[𝐶𝑎]!"#$%&'$

                               (𝐴4)	

In	practice	this	is	achieved	by	finding	the	index	of	the	minimum	of	abs(LHS	–	RHS),	

giving	a	value	for	[𝐶𝑎]!"#$%&'$ 	which	agrees	well	with	the	steady	state	internal	[Ca]	of	

all	 720	 simulated	 GCDs.	 	 One	 should	 note	 that	 this	 method	 breaks	 down	 if	

[𝐶𝑎]!"#$%&'$ 	reaches	 or	 overshoots	[𝐶𝑎]!!	because	 in	 that	 case	𝑃!"#"$%" 	will	 be	 0	 or	

negative.	 We	 keep	 our	 model	 parameters	 in	 a	 range	 where	 this	 problem	 is	 not	

encountered.	
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Appendix	II:	Spike-Field	Analysis	Functions	

Available	on	github:	https://github.com/boleszek/NeuroAnalysisFunctionsPython	
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