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Abstract

The mammalian olfactory bulb (OB) generates gamma (40 - 100 Hz) and beta (15 -
30 Hz) oscillations of the local field potential (LFP). Beta oscillations occur in
response to odorants in learning or odor sensitization paradigms, but their
generation mechanism is still poorly understood. When centrifugal inputs to the OB
are blocked, beta oscillations disappear, but gamma oscillations persist. These
inputs primarily target GABAergic granule cells (GC) in the GC layer (GCL) and
regulate their excitability. This leads us to the central question motivating this work:
What role does GC excitability play in generating beta oscillations? To answer this
question we first developed a computational model incorporating the biophysical
properties of the reciprocal dendrodendritic synapses between glutamatergic mitral
cells (MC) and GCs. The model predicted that beta oscillations emerge only when
inhibition of MCs, due to heightened GC excitability, and the excitation of MCs due to
sensory input is sufficiently balanced. Because of this balance of excitation and
inhibition, the model predicted that beta oscillations could also be supported in the
absence of heightened GC excitability provided that the input strength was also low.
The model also predicted that beta oscillations are sustained by voltage dependent
calcium channel (VDCC) mediated GABA release, independently of NMDA channels.

We tested the predictions of this model using pharmacology in the OBs of
rats. Infusion of scopolamine, a muscarinic antagonist known to decrease GC
excitability, decreased or completely suppressed odor-evoked beta in response to a
strong stimulus, but increased beta power in response to a weak stimulus, as

predicted by our model. APV, an NMDA receptor antagonist, suppressed gamma

XV



oscillations selectively (in OB and piriform cortex), lending support to the model’s
prediction that beta oscillations can be supported by VDCC currents.

In another set of experiments we recorded extracellular potentials in the GCL
of rats using multichannel silicon (Si) probes. Because these were the first
recordings of GCs and other GCL interneurons in awake, freely behaving rats, the
nature of these experiments was exploratory. We found that many GCL neurons
fired at the onset of beta oscillations, which is consistent with our model, because
GC excitability increases can be triggered by GC somatic spikes. We also found a rich
diversity of excitatory and inhibitory responses that showed odor selectivity and
phase locking to different LFP frequency bands. Some responses evolved over the
course of multiple days. By classifying responses to different odors using a distance
metric analysis, we showed that some cells were better at distinguishing between
odors based on their firing rates, while others were better based on spike timing.
Intriguingly, the timescales at which most of these spike-timing cells best
distinguished between odors were in the theta and beta frequency ranges. In a final
set of experiments we trained two rats implanted with Si probes to poke their noses
into an odor port to receive sugar pellet rewards. We found that some GCL neurons
fired precisely at the time when a rat poked its nose into the odor port, while others
fired only at the onset of beta oscillations. In one rat we also found cells that
appeared to change their response when reward was discontinued. Together, these
experiments lend strong support for the main predictions of the model, and also
provide exciting preliminary data for future studies regarding the involvement of

GCL neurons in contextual representations of odors during motivated behaviors.
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Introduction

Local field potential (LFP) oscillations in the mammalian olfactory bulb (OB)
represent coordinated neural activity that is dynamically regulated during olfactory
processing. These oscillations are classified into three bands: theta (1-12 Hz),
gamma (40-100 Hz), and beta (15-30 Hz). The theta rhythm is coupled to
respiratory and sniffing frequencies (Rojas-Libano et al., 2014). The gamma and
beta rhythms strongly depend on behavioral context and odor quality (for a review
see Kay et al,, 2009 and Kay, 2014). The generation mechanism for OB gamma
oscillations has been studied extensively and explained from the mechanistic to the
functional level (Rall & Shepherd, 1968; Freeman, 1975; Nusser et al., 2001;
Friedman & Strowbridge, 2003; Lagier et al., 2004; Bathellier et al., 2006; Rojas-
Libano & Kay, 2008; Brea et al., 2009; Lepousez & Lledo, 2013; Peace et al. 2017),
but the generation mechanism for OB beta oscillations has received considerably
less attention. Beta oscillations increase in power with the onset of learning in
operant tasks (Martin et al., 2004, 2007a; Frederick et al., 2016a) and require intact
cortical feedback to the olfactory bulb (Neville and Haberly, 2003a; Martin et al.,
2006a) and thus are likely to be involved in mediating the contextual meaning of
odors. Beta oscillations are also highly coherent across olfactory and hippocampal
regions (Martin et al., 2007b; Gourévitch et al., 2010) and may be involved in the

formation or retrieval of olfactory memory as well as initiation of odor-related



actions (Martin and Ravel, 2014). These oscillations overwhelm the olfactory bulb
(OB) and pyriform cortex (PC) LFP during odor sampling, and yet they remain
mechanistically and functionally enigmatic. The primary aim of this work, and the
focus of Chapters 2 & 3, is to better understand the generation of beta oscillations
through computational modeling and electrophysiological recordings. As the work
progressed we found that OB granule cells (GCs) played a central role in the
generation of these oscillations, so a secondary aim of this work emerged, which
was to explore and catalogue the responses of these neurons during odor evoked
beta oscillations. This is the focus of Chapter 4. Before we present the research we

first provide some background on the olfactory bulb and its LFP oscillations.



1. Background on olfactory system LFP oscillations

1.1 Synaptic organization of the olfactory bulb

The OB is a three-layered paleocortex and is part of the limbic system. The
outermost layer, called the glomerular layer, is almost completely covered by
glomeruli (GLO), which are spherical dendritic structures (visible in Figure 1.1A).
The GLO receive odorant stimuli registered by olfactory receptor neurons (ORN)
embedded in the nasal sensory epithelium. In rodents, the majority of ORNs express
a single type of the over 1000 receptor proteins (Chess et al., 1994; Malnic et al.,
1999), and ORNs expressing the same receptor type converge to the same pair of
glomeruli (GLO) on opposing sides of a single OB (Mombaerts et al., 1996). Thus, the
GLO layer is often represented as an odorant map or mosaic. GLO are innervated by
M/T dendrites and contain GABAergic periglomerular cells, which modulate M/T
cells as part of the larger class of juxtaglomerular cells, resting in the space between
GLO, which can couple one glomerulus to another. This outermost layer is capable of
performing contrast enhancement to decorrelate similar olfactory stimulation
patterns, and normalization (gain control) so that M/T cells are not overwhelmed by
too broad a range of stimulation strengths (Linster & Cleland, 2009).

Below the GLO layer is the mitral/tufted cell layer (MCL), containing the
bodies of the principal excitatory output neurons of the OB, the M/T cells. In
addition to the apical dendrites that receive inputs from the sensory nerve in the
glomeruli, these cells also possess long lateral dendrites spanning almost all the way

across the bulb, a morphological feature unique to the OB (Migliore et al., 2014).
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Figure 1.1. OB architecture. (A) Sagittal section through a rodent OB. The olfactory nerve
has been removed, although in the anterior surface of the bulb some remnants can be seen.
Glomerular layer (GL) and mitral cell layer (MCL) are seen clearly. Axons of mitral cells,
stained in blue (Nissl stain), exit the OB through the LOT. AOB: Accessory OB; GCL: Granule
cell layer; LOT: Lateral olfactory tract; D, V, R, C: Dorso-Ventral and Rostro-Caudal axes.
(B) Simplified OB network connectivity. Green, red, and blue arrows represent excitatory,
inhibitory, and neuromodulatory synaptic interactions respectively. Glomeruli (GLO) are
innervated by olfactory receptor neurons (ORN) expressing only one type of receptor
(represented by circle or pentagon). Mitral/Tufted (M/T) cells form reciprocal synapses
with spines (small black dots) on granule cell dendrites. Mutual inhibition exists between
granule cells (GC). Cortical feedback largely targets GCs. ORN: Olfactory receptor neurons;
GL: Glomerular layer; EPL: External plexiform layer; MCL: Mitral cell layer; IPL: Internal
plexiform layer; GCL: granule cell layer; LOT: Lateral olfactory tract. (C) Zooming in on a
reciprocal synapse between a single GC dendritic spine and a MC lateral dendrite. (A)
adapted from (Elsaesser and Paysan 2007) (publisher: BioMed Central)



The innermost layer of the OB, called the granule cell layer (GCL), contains
millions of inhibitory granule cells (GCs), which comprise the most abundant cell
type in the OB. Although GCs express GABA receptors (Nusser et al., 2001a)(Fig.
1.1B, red arrows), and the GCL also contains several other inhibitory subtypes, such
as Blanes and deep-short-axon cells, the bulk of this work only concerns the
excitatory-inhibitory interaction between GCs and MCs, which is depicted
schematically in Figure 1.1B. GCs project long proximal dendrites towards M/T cell
lateral dendrites. These projections end in a granule cell dendritic tree, which is
peppered by small dendritic spines, each of which form reciprocal dendrodendritic
synapses with MC lateral dendrites in the external plexiform layer (EPL) (Shepherd,
1972). M/T cells excite GC spines by glutamate release, which in turn inhibit M/T
cells by GABA release (Fig. 1.1C). Individual GC spines can release GABA onto MC
dendrites in a graded fashion independently of one another, or all at once,
depending on the strength of M/T cell input and the spread of GC somatic action
potentials (Egger 2005). The graded release of GABA from GC spines depends on
Ca?* flow through NMDA receptors (NMDARs) and other voltage-dependent calcium
Ca?* channels (VDCCs) expressed on GC spines (Chen et al., 2000; [saacson &
Strowbridge, 1998; Schoppa et al,, 1998). The M/T cells project through the lateral
olfactory tract (LOT) densely to the anterior olfactory nucleus (AON) and pyriform
cortex (PC), among other areas. The PC, like the bulb is also a 3-layered paleocortex.
M/T cells also project to many other limbic system regions, including the entorhinal

cortex and amygdala.



The OB receives more cortical and neuromodulatory feedback inputs than it
sends out, and the majority of this feedback targets the GCL (Fig. 1.1B left-pointing
arrows). PC pyramidal cells send excitatory inputs to the OB (Fig. 1.1B green
arrows). Interestingly the horizontal limb of the diagonal band of Broca sends both
GABAergic (Fig. 1.1B red arrows) and cholinergic (Fig. 1.1B blue arrows) inputs that
target GCs. Neuromodulatory systems of all types project to the OB. For example,
serotonin from the raphe nuclei, noradrenaline from the locus coeruleus (Devore
and Linster, 2012a), and oxytocin from the hypothalamus (Yu et al., 1996).
Immediately caudal to the main OB is the accessory OB (AOB), seen in Figure 1.1A.
This region also has a similar organization of M/T cells and GCs as the main OB but,
curiously enough, may respond in an opposite way to cholinergic modulation (see

Chapter 3 Discussion).

1.2 A short review of olfactory gamma oscillations

1.2.1 General properties of gamma oscillations

Olfactory bulb gamma oscillations were first recorded by Lord Edgar Douglas
Adrian (1942), who noted that they were associated with increased firing of M/T
cells. Later research showed that M/T cells tend to fire at a preferred phase of the
gamma oscillations (Fig. 1.2A) (Eeckman and Freeman, 1990; Buonviso et al., 2003a;
Bathellier et al., 2006). Assuming a phase convention with, the preferred phase of
M/T cells is 900, as shown in Figure 1.2B. M/T cells do not fire on every cycle of the

gamma oscillation, and thus individual cells may be highly phase locked to the LFP



while not firing synchronously with each other (Eeckman and Freeman, 1990).
Walter Freeman, at the University of California Berkley, was among the first to
describe the coupling between gamma oscillations and respiration (Freeman, 1975).
This produces a nested theta-gamma coupling that characterizes the intrinsic

resting state of the OB LFP, as shown in Figure 1.2C.
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Figure 1.2. Basic properties of gamma oscillations. A: OB LFP (top) and single M/T cell
response following olfactory nerve stimulation. Stimulation time indicated by star. MCs tend to
fire on descending phase of gamma oscillation. B: Spike firing probability of 16 M/T cells for
different LFP gamma phases. C: Raw (green) LFP (1-475 Hz) recorded from awake, freely
behaving rat displays respiration-locked gamma oscillations. The same trace filtered for theta (1 -
12 Hz) and gamma (65 - 100 Hz) frequency ranges are shown in blue. (A) and (B) from Bathellier
et al. (2006), (C) from Rojas-Libano & Kay (2008).

1.2.2 Gamma oscillation generation mechanism

It is generally agreed that intrinsic gamma oscillations arises from synaptic

currents flowing across the reciprocal dendrodendritic synapses (Rall and



Shepherd, 1968) formed between excitatory glutamatergic mitral cell M/T cell
lateral dendrites and inhibitory GABAergic GC distal dendritic spines in the EPL (Fig.
1.1B). These synapses form a negative feedback loop, which bears similarities to a
pyramidal-interneuron network gamma (PING) mechanism. Some models of OB
oscillations were based on this assumption (Li and Hopfield, 1989). However, PING
networks lack cellular resonance properties, such as the intrinsic sub-threshold
oscillations (STOs) of MCs (Desmaisons et al.,, 1999). A computational model by Brea
et al. (2009) proposed that MC STOs are capable of driving gamma oscillations. This
model resolved some limitations of the PING mechanism, because it supported a
stable gamma oscillation frequency in the presence of fluctuating sensory input.
Importantly, this model also used graded inhibition, which is a unique feature of the
MC-GC synapse (Schoppa et al.,, 1998a), but this model was not compatible with
experimentally recorded low GC firing rates (Cang and Isaacson, 2003a) and did not
provide a mechanism for controlling the spatial extent of gamma coherence across
the OB. Recently, a network based on inhibition-coupled intrinsic cellular oscillators
has been proposed (Peace et al., 2017; Li & Cleland, 2017). In this hybrid network,
intrinsic MC STOs are transiently coupled during olfactory stimulation into a
coherent oscillatory network controlled by GC-mediated inhibition that periodically
resets the slower MC STOs. This gamma generation mechanism, termed pyramidal
resonance interneuron network gamma (PRING), exhibits key PING-like properties
(e.g., the population oscillation frequency depends on the decay time constant of the
GABA(A) receptor conductance), but also retains the dependence on STO dynamics

of mitral cells (Li and Cleland, 2017). The PRING mechanism is consistent with



known physiological MC and GC properties, as well as the changes in spatial extent

of gamma coherence across the bulb noted by Freeman and Schneider (1982).

1.2.3 Sub-bands of gamma oscillations

Although olfactory LFP oscillations between 40 - 100 Hz are all considered
gamma oscillations, many studies suggest that there are distinct sub-bands in this
frequency range. Rats trained to discriminate between two odors display high
frequency gamma (60 - 100 Hz), dubbed gamma 1, during odor periods and low
frequency gamma (40 - 65 Hz), dubbed gamma 2, during the waiting periods (Kay,
2003a). The onset of gamma 1 bursts is tightly locked to inspiration, whereas
gamma 2 activity tends to occur between inhalations and during periods of slow
breathing in attentive behavior and grooming (Fig. 1.3A). Odor-induced gamma
oscillations sweep from high to low frequency on each sniff (Buonviso et al., 2003a;
Manabe and Mori, 2013)(Fig. 1.3B). Recordings in rats and mice show that odor
inhalation induces early-onset high-frequency burst (~100-Hz) discharges of tufted
cells at the middle of inhalation (roughly coinciding with onset of fast high
frequency gamma) followed by later-onset low-frequency burst (~45 Hz)
discharges of mitral cells (Nagayama et al., 2004; Igarashi et al.,, 2012). Together,
these results suggest that the early-onset fast gamma-oscillations are generated
mainly by the tufted cell subsystem, whereas later-onset slow gamma-oscillations

are supported mainly by mitral cells.
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Figure 1.3. Properties of gamma sub-bands. (A) Raw (green) LFP (1-475 Hz) recorded from
awake, freely behaving rat. The same trace filtered for low and high gamma frequency ranges are
shown in blue. High gamma dominates during fast sniffing, but low gamma is enhanced during
grooming. (B) Time course of respiration-locked gamma oscillations during two active sniffs (left),
and one sniff during resting condition (right). Black traces show respiration rhythm (top), raw LFP
(middle), and gamma filtered (40 - 140 Hz) LFP (bottom). Wavelet analysis shows instantaneous
gamma frequency sweeping from high to low. Color scale indicates normalized power. Dashed lines
indicate sniff onset. f: Fast gamma-oscillation; s: slow gamma-oscillation; exh-s: Slow gamma-
oscillation during exhalation. C: Frequency distributions of several million gamma wavepackets. (A)
from Rojas-Libano & Kay (2008), (B) from Manabe & Mori (2013), (C) from Frederick et al. (2016).
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Another distinction been gamma 1 and gamma 2 comes from genetic
knockout studies in mice. Interestingly, mice missing the 3 subunit of GABAa
receptors on GCs do not generate gamma 2, suggesting that the switch from gamma
1 to gamma 2 may be initiated by a change in inhibitory coupling of GCs. Recent
work suggests that the gamma 1 band itself is also subdivided into two bands, as the
distribution of gamma 1 wavepackets has been found to be bimodal (Frederick et al.,
20164; Fig. 1.3C). Because the gamma 1 and gamma 2 nomenclature is not common
in the field and the function of these distinct bands is still being researched, we refer
to the lower and higher gamma bands as low gamma (40 - 60 Hz) and high gamma

(60 - 100 Hz).

1.3 Known properties of Beta oscillations

Unlike gamma oscillations, beta oscillations only occur when an odorant
stimulus is presented. Beta oscillations follow gamma oscillations during odor
sampling (Martin et al., 2006; Martin & Ravel, 2014; Fig. 1.4A,B). In anesthetized
rats gamma and beta oscillations alternate on each sniff, with beta oscillations
occurring during exhalation (Buonviso et al., 2003; Cenier et al., 2009; David et al.,
2015; Fourcaud-Trocmé et al., 2011). In waking rats, beta oscillations can persist
across sniff cycles (as shown in Fig. 1.4A), and can also occur during periods of low
respiratory drive in late odor sampling (Martin et al., 2007b; Rojas-Libano and Kay,
2012). The transition from gamma to beta can be very fast (Fig. 1.4A, top), indicating

a state-like transition in a system variable. They can also be very large in amplitude
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Figure 1.4. Known properties of beta oscillations. (A) Example beta oscillations in 2 different rats. Each
plot shows raw (1-300 Hz), low-gamma filtered (Low y; 40-60 Hz), high-gamma (High y; 60-100 Hz)
filtered, and beta (; 15-30 Hz) filtered LFP. (top) A rat trained in a 2-alternative choice task with diluted
high-volatility odors pokes into odor port at time t = 0 (black vertical line) and exits after ~1.5 s (dashed
black vertical line). Nose poke is followed by 4 sniffs (gray horizontal bars) and a beta oscillation near 24 Hz
(black horizontal bar). The onset of beta roughly coincides with the end of the last gamma burst, indicating a
very fast transition. (hottom) same markings as in (top). A freely behaving rat was presented with a cotton
swab soaked in an undiluted high-volatility odor (ethyl butyrate). This odor evokes a large beta oscillation
near 18 Hz. (B) Gamma (blue) and beta (red) wavepackets are plotted for each trial of a Go-No-Go
experiment. Black vertical line marks time at which rat pokes into odor port. (C) Normalized OB beta band
power induced by odors in order of increasing vapor pressure (volatility). (D) Spectrograms show an odor
(heptanol) induced increase in beta (15-35 Hz) power (left) in OB, and dorsal & ventral parts of the
hippocampus (dHPC & vHPC) accompanied by an increase in coherence (right) between these regions in the
same frequency band. Odor onset is indicated by the vertical white line at 0 s. Color scales represent signal
power (uV?, right) and coherence (left). (E) Example raw LFP signals (1 - 300 Hz) from OB and PC during
control (left) and lidocaine (right) sessions in expert rats. Beta oscillations are extinguished after lidocaine
injection into LOT, but gamma oscillations are enhanced. Horizontal bars under each trace indicate odor
sampling. (A) from Osinski and Kay (2016), (C) from Lowry and Kay (2007), (D) from Martin et al. (2006).
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(Fig. 1.4A, bottom), suggesting the presence of highly synchronized synaptic
currents.

Beta oscillation power scales with odor volatility (Lowry & Kay, 2007; Fig.
1.4C), and thus represents to some degree the strength of odor input. But beta
oscillations also depend critically on centrifugal feedback into the bulb from other
brain regions. When this centrifugal input to the bulb is surgically lesioned (Neville
and Haberly, 2003) or pharmacologically blocked by lidocaine injection into the LOT
(Martin et al., 2006), beta oscillations are completely extinguished, but gamma
oscillations persist and are even enhanced (Fig. 1.4E). Furthermore beta oscillation
power increases with the onset of learning in odor discrimination operant tasks
(Martin et al., 2004, 2006, 2007; Frederick et al., 2016; Ravel et al,, 2003).

The dependence of OB beta oscillations on cortical feedback and increase in
power with learning odor associations suggest that these oscillations may be more
involved in mediating the subjective contextual meaning of an odor OB rather than
the objective representation of an odor during early sensory processing. Beta
oscillations are also highly coherent with PC and also the entorhinal cortex and
hippocampus (Martin et al., 2007a; Gourévitch et al., 2010; Kay and Beshel, 2010; Fig.
1.4D). This high degree of coherence across the olfacto-cortical-hippocampal
network also suggests that beta oscillations may coordinate distinct brain regions to
carry out actions associated with odorant meaning.

Although when we began this work there were no existing models of beta
oscillations, a few models of beta oscillations from other groups have been

published during the course of this work (Fourcaud-Trocmé et al., 2011b; David et
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al,, 2015a). These models are addressed and compared to our own model in the
discussions of Chapters 2 & 3. While there are significant differences between these
models and our own, one feature that stands out in common across all the models is
the dependence on GC excitability. Because GCs receive the bulk of centrifugal
inputs, they gate incoming input to the MCs, and this activity across the
dendrodendritic synapses of large MC and GC populations emerges as beta

oscillations.
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2. Granule cell excitability regulates gamma and
beta oscillations in a model of the olfactory bulb
dendrodendritic microcircuit

2.1 Introduction

The network mechanism that generates OB beta oscillation has received
much less attention than gamma oscillations. Current source density analysis in
anaesthetized, tracheotomized rats has shown that while gamma and beta
oscillations never occur simultaneously, both oscillations have dipoles centered in
the OB external plexiform layer (EPL) (Fig. 2.1A; Neville and Haberly, 2003),
suggesting that both oscillations are generated by the same synaptic currents
between MC and GC dendrites. More recent analysis has revealed that gamma and
beta oscillations may arise from distinct EPL sublaminae (Fourcaud-Trocmé et al,,
2014). Nonetheless, it is unclear how dendrodendritic inhibition (DDI) between MCs
and GCs can support both gamma and beta frequencies.

An important clue to the origins of beta oscillations comes from lesion
experiments. When centrifugal input to the OB is blocked, odor evoked beta
oscillations are extinguished or reduced, while gamma oscillations persist and can
be enhanced (Gray and Skinner, 1988; Neville and Haberly, 2003; Martin et al.,
2006; see Fig. 1.4E). Analogous to cortical feedback control of thalamic reticular
nucleus neurons, feedback from MC cortical projection areas primarily targets the
GC layer with excitatory synapses onto GABAergic GCs and other interneurons (Balu

et al., 2007; Boyd et al., 2012; Kay & Sherman, 2007). Gamma oscillations have been
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shown to persist even after GC somata are surgically disconnected from their distal
dendrites (Lagier et al., 2004). Thus, there is strong evidence that centrifugal inputs
near GC somata may be critical for beta but not gamma generation.

Under certain conditions GCs enter periods of increased excitability
following a somatic spike. For example, activation of M1 muscarinic receptors in GCs
transforms the afterhyperpolarization (AHP) following GC spikes into an
afterdepolarization (ADP) lasting several hundred milliseconds (Fig. 2.1B; Pressler
et al.,, 2007), which may trigger quasipersistent firing modes lasting several seconds
(Inoue and Strowbridge, 2008). The GC ADP propagates faithfully into distal
dendrites, leading to increased Ca?* influx (Egger et al., 2003). GCs may also undergo
a long-lasting depolarization (LLD) that can last well over 1s (Fig. 2.1C) when a GC
somatic spike is triggered by strong glomerular input (Egger, 2008a). We propose
that a convergence of sensory, cortical, and neuromodulatory inputs onto GCs may
help explain the observed dependence of beta oscillations on odorant
characteristics and centrifugal feedback.

To test this hypothesis we developed a model of the MC-GC reciprocal
dendrodendritic synaptic network with graded inhibition dependent on NMDA and
N-type Ca?* currents. In our model we summarize the cortical, local
inhibitory/excitatory, and neuromodulatory sources of GC excitability control by a
single parameter, Viestac, the granule cell dendritic (GCD) resting membrane
potential. To investigate the individual contributions of NMDA and N-type currents
we also create two additional models, one with only NMDA and the other with only

N-type channels included in the GCDs. Our model predicts that a sudden
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depolarization of the membrane potential of a subpopulation of GCs can drive an
increase of Ca?* dependent graded inhibition that will switch the frequency from a
gamma to a beta regime. The model also argues that high power beta oscillations

observed in vivo (Fig. 1.4A) are primarily mediated by N-type currents.

]

~MCL
1P
GCL

C |20 mVv

Figure 2.1 Experimental results motivating the model A) CSD analysis of an odor
evoked gamma oscillation (left) followed by a beta oscillation (right) shows that both
oscillations arise at the same layer of the OB. B) Muscarinic agonists convert GC AHP to
ADP, which increases GC excitability. C) Sufficiently strong glomerular stimulations
trigger GC ADP that can last over 1 s. (A) from Neville & Haberly (2003), (B) from
Pressler et al (2007), (C) from Egger (2008)
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2.2 Methods

2.2.1 Model Architecture

In the rat OB, excitatory MCs form reciprocal dendrodendritic connections
between their lateral dendrites and the spines on GCDs. MC lateral dendrites extend
broadly across the OB and support bi-directional action potential propagation,
allowing MCs and GCs on opposite sides of the OB to be synaptically connected. Our
model represents a subset of this network, with 45 MCs and 720 GCDs. Each MC is
reciprocally connected to 30% of the GCD population (Fig. 2.2), similar to previous
models (De Almeida et al.,, 2013; Linster et al., 2009), yielding a total of 9,720 MC-GC
dendrodendritic synapses. Our model MCs do not represent individual cells, but
rather the population of MCs associated with a particular GLO. Although the density
of Na* channels is known to vary slightly along the length of MC lateral dendrites
(Migliore and Shepherd, 2002), in our model all excitatory synaptic weights from
MCs to GCs are equal.

Our model architecture is motivated by five key experimental findings: 1)
Gamma and beta oscillations both have dipoles centered in the EPL where MC-GC
dendrodendritic synapses are formed (Neville and Haberly, 2003a); 2) GCs can
release GABA in a graded (spike-independent) fashion dependent on NMDA and
VDCC Ca?* currents (Isaacson and Strowbridge, 1998; Schoppa et al., 1998a;
[saacson, 2001); 3) GCs spike at very low rates in awake animals compared to
cortical interneurons (Cazakoff et al., 2014); 4) Beta oscillations require intact
centrifugal projections to the olfactory bulb (Neville and Haberly, 2003a; Martin et

al,, 2006a), many of which target the GC layer and regulate GC excitability; 5) GCs
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can undergo periods of increased excitability with sustained elevated membrane
potentials propagating faithfully into their distal dendrites (Pressler et al,, 2007a;
Egger, 2008a). We represent all these sources of excitability control by a single
parameter, the GCD resting potential Vies;cc. Because we have direct control over the
excitability of the GCDs, we do not explicitly model the GC soma, whose synaptic
integration and bidirectional signal propagation properties are complex and not yet
fully understood (Balu et al.,, 2007; Egger et al., 2005; Inoue & Strowbridge, 2008).
Instead, we only model the entire GC dendritic tree as a single unit, which receives

inputs from multiple MCs (Fig. 2.2). In the real system, GC dendritic spines can act
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controlled by GC
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Figure 2.2. Schematic of the reciprocal dendrodendritic MC-GC model. There are 45
MCs, and 720 GCDs. Each MC represents the population of MCs associated with a glomerulus
(GLO). The GLO and GC soma, represented by empty circles, are not explicitly modeled. Each
MC is randomly connected to 216 GCDs (30% of the population). MCs only express GABARs,
while GCs express AMPARs, NMDARs, and N-Type channels. Ca2* flow through NMDA and N-
Type receptors drives release of GABA vesicles, modeled as a graded inhibitory current.
NMDA and AMPA currents have a spike-triggered activation, which represents the binding
of elutamate released from MCs following a spike.
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independently of one another and influence each other via low-threshold Ca?*
spikes (Egger et al,, 2005; Egger, 2008), but this scenario is not captured by our
model. Inhibitory coupling between GCs is also omitted for simplicity. All
simulations were implemented in MATLAB® R2014b, with a forward Euler
integration time step of 0.1 ms. Simulations with forward and backward Euler
methods were found to give identical results. The code for has been made available

through the ModelDB under accession number 185464 (Hines et al., 2004).

2.2.2 Neuron and Synapse Equations

MCs and GCDs are modeled as single compartments whose membrane

potentials evolve in time according to
WV =~V + Wepan * Icnan + Vrest (2.1)

where 7 is the membrane time constant, Wenan is a dimensionless synaptic weight
representing the ratio of maximum conductance of a particular channel to the
membrane leak conductance (from here on referred to as synaptic weight), I ;4 is
the synaptic current through a particular channel, and V;.s is the resting membrane
potential. We have chosen units such that resistance = 1, and therefore the currents
and membrane voltages are in the same units, but are not in SI units. The critical
parameter in this model is Vyes;cc, the resting potential of the GC dendritic tree. The
MCs obey leaky integrate and fire dynamics with a hard threshold 7 mV above
resting potential. Probabilistic firing is achieved by introducing noise into the MC

external inputs. Although recent experiments have detected regenerative Na2*
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spikes in GC dendrites (Bywalez et al., 2015), the GCDs do not fire action potentials
in this model.

All synaptic currents in the model are conductance-based currents that obey
the general form

[ =a(t,V,[Ca)[E —V] (2.2)
where a(t,V, [Ca])) is the product of normalized channel activation and inactivation
variables (may depend on time, membrane voltage, and internal calcium
concentration [Ca]), and E is the Nernst potential of the ionic species flowing
through the channel.

Each MC receives two currents: 1) lex, an external sensory input; 2) Igaps, a
graded inhibitory GABA (Cl-) current from GCs. Each GCD receives three currents: 1)
Lampa, an AMPA (Na?*) current with MC spike-triggered conductance; 2) Inmps, an
NMDA (Ca?*) current with MC spike-triggered conductance and voltage-dependent
Mg2* block (Jahr and Stevens, 1990; Baszczak and Kasicki, 2005); 3) Iy, an N-Type
(Ca?*) current with voltage-dependent activation and Ca?* dependent inactivation
(Amini et al., 1999; Zeng et al., 2009). The mathematical details of the currents are

summarized in Table 2.1.

2.2.3 External excitatory input to MCs

Following De Almeida et al. (2013), the external input I, to each MC is
modeled by a continuous variable that represents the average instantaneous firing
probability of the population of olfactory sensory neurons innervating a given GLO.

We do not model respiration because the inhibitory circuits mediating gamma/beta
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Table 2.1. MC and GCD synaptic current equations. The index i always refers to MCs and
index j always refers to a GCDs. [Ca2+] represents GCD internal calcium concentration.

oscillations are dissociable from those mediating theta (Fukunaga et al., 2014) and

because we are interested in investigating the effect that GC excitability alone has on

MC synchronization, which to our knowledge has not yet been done. To make MC

spike firing probabilistic we include an input noise 0,y 1ey¢; Where o,,, is a scalar

and 7,y ; is drawn from the standard normal distribution for the i"th MC on each
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timestep. Each MC represents the average activities of all the MCs innervating a
particular GLO and therefore this model does not capture variations in the activity
of individual MCs innervating the same GLO. Periglomerular cells, which normally
gate sensory inputs to MCs, are not included in the model, because we are interested
only in the modulation of MC activity by GCDs. Instead, continuous sensory input is
fed directly into MCs. The input weight to the i'th MC Wey.; (Table 2.1) is determined
by a scalar g,,, a number 1,,; chosen randomly from a uniform distribution on [0 1],
and a minimum weight Wiinex:. For most simulations we set g,,; = 0.001 and
Wininext = 0.013, resulting in uniformly distributed free running (uninhibited) MC
firing rates between 130 and 150 Hz. These uninhibited firing rates are much higher
than experimentally recorded firing rates of individual MCs when inhibition is
blocked (Lepousez and Lledo, 2013a). However, each of our model MCs represents a
population of MCs associated with an individual GLO, and not a single MC. Thus, high
unsynchronized firing rates are expected. Furthermore, our model aims to simulate
the beta oscillations induced by high volatility odors, which may bind OSNs quickly
and uniformly, causing stronger convergent inputs onto MCs. We find that the
network requires this strong external drive in order to generate the full gamma to

beta range as GC excitability is varied.

2.2.4 Graded inhibitory input to MCs

We assume a graded form of inhibition from GCDs onto MCs, which is

proportional to the probability of GABA vesicle release P,..joq5.- The release
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probability is only dependent on intracellular [Ca%*] (Table 2.1). Thus, the AMPA
current can only drive graded inhibition indirectly by activating NMDA and N-type
channels. Much like MC IPSCs recorded in slice (Schoppa et al., 1998), the time-
course of the model MC IPSCs follows the slow exponential decay of NMDA and N-
type channels. The proportionality p., between Ca?* current and Ca?* concentration
is chosen such that [Ca?*] is typically between 0.1 and 1 pM, a physiologically
realistic range for [Ca%*] in a dendritic spine (Higley and Sabatini, 2012). The
threshold for maximum Ca?* release, [Cal,, is chosen so that the maximum Py, 4.
is near 1 in the high excitability condition. Experiments have shown that DDI is
largely unaffected by intracellularly injected Ca?* chelators, suggesting that the
GABA release machinery in GC dendrites is tightly coupled to the Ca?* influx
following MC spikes (Isaacson, 2001). Because the model N-type current admits a
constant Ca?* influx due to nonzero voltage-dependent activation even in the
absence of MC spikes there is a constant internal baseline [Ca?*], which we call
[Calpasetine (Se€ Appendix I for derivation of [Calygserine)- We subtract [Calpgserine N
the calculation of P,,j.4s. to ensure that tonic inhibition is not released onto MCs in

the absence of MC spikes (Fig. 2.3D).

2.2.5 Excitatory and Ca?* currents in GCDs

The model GCDs include AMPAR, NMDA, and N-type currents. The synaptic
time course s(t) of the AMPA and NMDA currents is modeled as a difference of
exponentials with rise and decay times that represent the opening and closing of the

channels following glutamate binding (Brunel and Wang, 2003). The NMDA current
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Inmpa also contains an additional voltage-dependent activation B (V) (Table 2.1)
which represents the Mg?+ block as determined by Jahr & Stevens (1990). Because
the connections are probabilistic, some GCDs may be connected to as few as 4 MCs
while others may be connected to as many as 22. The synaptic weight of the AMPA

current Wawmpacc is chosen such that the magnitude of membrane depolarization for

A B
AMPA current N-type activation (m, V-dependent)
0.01 —Low Excitability (-70 mV) 0.2
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Figure 2.3. Model currents A: AMPA, NMDA, and N-type currents of a single GCD connected to 14
MCs are plotted. A 5 ms long current pulse (I, amplitude not to scale) was initiated at t = 50 ms,
causing all 14 MCs to fire a single action potential almost simultaneously. The latency of the currents
from onset of I« corresponds to the integration time of the MCs before spikes. Simulations were
performed under low (Vyestc = -70 mV, blue) and high (Vrestoc = -60 mV, red) GC excitability
conditions. The N-type current was simulated with (solid lines) and without (dashed lines) CDI. B: N-
type activation (m) and inactivation (h) variables and their product (m*h) for the N-type currents
shown in A are plotted. CDI is prevented by evaluating h at [CaZ*]paseiine, leaving it constant. Deflections
near t = 0 are transients which can be ignored. CDI greatly reduces the magnitude of the deflections
from the baseline in m * h, but does not change their overall shape. C: Internal [Ca2+] traces resulting
from the NMDA and N-type currents shown in part A are plotted. Dotted lines indicate [CaZ?*]pasetine fOr
low and high excitability conditions. D: The Prejease traces derived from the internal [Ca2+] traces
shown in part C are plotted. Subtraction of [CaZ*]paseline from [Ca2*] ensures that Prejeqse is 0 until a MC
spike is fired. The presence of CDI significantly decreases Prerease, but does not change the temporal
structure of GABA release.
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a GCD connected to an average number of 14 MCs is near 7 mV, which is comparable
to the experimentally measured average size of AMPA-mediated depolarization of
GC dendrites (Cang and Isaacson, 2003a). The experimentally recorded amplitude of
NMDA current is usually smaller than the AMPA current, though this is not always
the case (Schoppa et al., 1998). For our simulations Wnupa,cc is chosen such that the
amplitude of Inmpa is ~ 1/4 that of Iampa (Fig. 2.3A). The NMDA decay time constant
is 75 ms in most of our simulations, close to the value reported in physiological
concentrations of Mg?* (Isaacson, 2001; Schoppa et al., 1998). With these
parameters, GCD membrane depolarization closely resembles that which is seen in
experiments, with fast decaying AMPA-mediated and slow decaying NMDA-
mediated components.

The N-type current Iy includes a voltage-dependent activation variable, my,
and a Ca?* dependent inactivation (CDI) variable, hy. The activation curves of N-type
channels reported in the literature are not the same across all neuronal cell types,
with half activation voltages ranging from -45 mV (Amini et al., 1999; Zeng et al,,
2009) to -3 mV (Evans et al., 2013). To our knowledge the activation curve of N-type
channels in OB GCs has not yet been measured. We choose to use a model that
begins to activate at relatively low potentials so that Iy is sensitive to increases in GC
excitability, which are at most only about 25 mV above the resting potential. This
ensures that Iy alone can drive slowly decaying dendrodendritic inhibition when
excitability is increased, as has been shown in slice (Isaacson, 2001). For most of our
simulations Wy, is chosen so that the N-type current is approximately 1/3 the

magnitude of the NMDA current (Fig. 2.3 A), a choice that is motivated by Ca%*
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imaging studies which have shown that although NMDA channels mediate the
majority of Ca?* entry, VDCCs still mediate a sizeable portion (Egger, 2008a;
Bywalez et al., 2015). Wy ¢ is so much greater than Wnwmpa,cc because the product of
the N-type activation and inactivation terms is on order of 10-3, while the NMDA
activation term is on the order of 1.This model does not include voltage-dependent
inactivation. Because in most of our simulations the GC membrane potential does
not exceed -40mV and inactivation only becomes significant above -20 mV
(Johnston & Wu, 1995; Evans et al,, 2013), voltage-dependent inactivation would
not make a large contribution here even if it were included.

The effect of CDI is to drive the N-type inactivation variable in the opposite
direction of the activation variable, as shown in Figure 2.3B, causing a net negative
deflection of Iy shown in Figure 2.3A. Without CDI, both Iyupa and Iy fully contribute
to the internal [Ca?*] buildup, resulting in a high amplitude GABA release profile that
saturates in the high excitability condition (Fig. 2.3D). When CDI is present Inmpa
becomes the dominant source of Ca?* for driving graded inhibition of MCs. Even
though CDI significantly reduces the [Ca?*] amplitude and reverses the direction of
the N-type current deflection, it does not change the temporal structure of graded
inhibition (Fig. 2.3C, D). Therefore, the model is capable of generating the full
gamma to beta range with and without CDI as long as the excitatory and inhibitory
weights are adjusted accordingly. CDI is included in all subsequent simulations.

Due to low internal Ca%* concentrations, the Nernst potential for Ca?* is
sensitive to changes in intracellular Ca?* and is calculated on each step of the

simulation by the Nernst equation
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_RT | [Ca]ou:
ca = 2r " Cal,, (2:3)

where R = 8.31]/(mole * K) is the ideal gas constant, T = 300 K is the temperature, z
= 2 is the valence of the Ca?* ion, and F = 96,485 Coul/mole is Faraday’s constant.
Assuming an extracellular calcium concentration [Ca],,;= 1.5 mM (Higley and

Sabatini, 2012) E,, is typically near 100 mV.

2.2.6 Simulation and spectral analysis of local field potential

The model is simulated for 700 ms. The LFP is generated by smoothing and
averaging the MC IPSCs (ILFP) or MC membrane voltages (VLFP) using MATLAB's
built in smoothts function with a box filter width of 5 ms. The ILFP and VLFP have
nearly identical frequencies, but differ notably in phase and power, which we
discuss in Figures 2.4 and 2.5. Only simulation data after 100 ms is used in order to
avoid transients due to initial conditions of the simulation. For most of our
simulations we only present the ILFP. Recent work has shown that in vivo LFPs
correlate more strongly with IPSCs and EPSCs than with membrane potentials
(Atallah and Scanziani, 2009; Mazzoni et al.,, 2015). Unless otherwise stated, the
power spectra are computed by MATLAB’s £ £t function on the mean-subtracted
LFP and we report the LFP frequency as the peak frequency of the power spectrum
between 7 Hz and 100 Hz. For reference, all power plots indicate the maximum
power of the noise floor, which we define as the maximum power of the residual
oscillation due to common inputs to MCs when inhibition is removed. In Figure 2.6

we perform a continuous Morlet wavelet transform with MATLAB'’s cwt function in
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order to display the instantaneous LFP frequency in response to sudden changes in
GC excitability. We use a frequency range of frange = 5 — 80 Hz and the standard
frequency-scale relation, f.*sf/frange (Where f: is central frequency of wavelet and sf
is sampling frequency), to define the scale range.

Using the frequency obtained from the FFT of the LFP (LFP;,) we also define
a simply spike synchrony measure, which we call the spike-frequency deviation
(SFD), as

SFD = |Ngpikes — Nuc(0.6LFPy,)| (2.4)
where Nk is the actual number of spikes fired in the last 0.6 s of simulation and
the second term is the number of spikes that would be fired in 0.6 s if each MC fired
at exactly the LFP frequency LFPy,. The deviation is 0 when each MC fires exactly
once per LFP oscillation cycle, and is greater than 0, due to the absolute value, when
MCs fire more often or less often than once per cycle.

We also compute the spike-field coherence (SFC) using the coherencycpt
function included in the Chronux version 2.11 toolbox for MATLAB (Bokil et al.,
2010a). We used a time-half-bandwidth of 5 with 9 tapers over a frequency range of
5 Hz to 120 Hz. Finite sampling corrections were included, although they did not
significantly alter the results. The SFC produces a coherence spectrum between each
MC and the LFP, so we report the peak coherence averaged over the 45 MCs. The

SFD and SFC measures are both used in Figure 2.5.
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Figure 2.4. Simulations in low, moderate, and high GC excitability regimes A: The MC-GC
dendrodendritic network activity was simulated under low (A.i), moderate (A.ii), and high (A.iii)
GC excitability conditions in response to constant ORN input current for 500 ms. The top three
rows show the AMPA, NMDA, and N-type currents of all 720 GCDs for each condition. The AMPA
current is scaled by % so that all axes fit on the same scale. The N-type current has a constant
offset that increases with Vyes;¢c due its voltage-dependent activation. The fourth row shows the
GABA release probabilities, Prejease, for each of the 720 GCDs resulting from the inward Ca2+
currents (Inmpa and Iy). The fifth row shows MC raster plots with cells ordered from bottom to top
by increasing input strength. The bottom row shows the LFP calculated from the average MC
IPSCS (ILFP, black) and MC membrane voltages (VLFP, gray). B: For each of the three conditions
power spectra were calculated from the ILFP generated by the global population as well as from
the top 15 MCs receiving the strongest external input, the bottom 15 MCs receiving the weakest
external input, and the VLFP of the global population. The y-axes of the three plots are the same,
but the x axes differ. The horizontal dashed black line indicates the maximum power of the noise
floor.
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Figure 2.5. Population activity as a function of GC excitability (Vrestcc) A.i: The simulated ILFP (pink)
and VLFP (black) frequencies of the full model decrease continuously with increased GC excitability,
represented by V,.s.cc. Shaded regions denote the standard deviation from the mean from ten simulations.
Approximate frequency ranges for high/low gamma and beta states are indicated to the left. A.ii: The
voltage-dependent activation curves of N-type and NMDA channels are plotted. A schematic showing the
average AMPA depolarization from the GCD resting potential (7mV) is shown for low excitability (blue)
and high excitability (red) conditions. In the excited state the depolarization is high enough to significantly
activate both NMDA and N-type currents (see where the vertical dotted red line crosses the activation
curves). A.iii: The power of the ILFP and VLFP from Ai is shown. The horizontal dashed line represents the
power of the noise floor, where inhibition can no longer sustain oscillations. B: The means of the spike-
frequency deviation (SFD, dashed line, left axis) and average maximum spike-field coherence (SFC, dotted
curve, right axis) for the simulations in A are shown. Standard deviations are omitted for clarity. The
minimum of the SFD is marked by the vertical dashed line and labeled Vyq. To the left of Vi, some MCs are
over excited, while to the right of V, some MCs are over inhibited. The maximum of the SFC spectrum
between each MC spike train and the global ILFP was averaged across all 45MCs to obtain each point of
the plot. C.i: The excitability of a randomly chosen subpopulation of GCDs is varied while holding the
remainder at a resting potential of -75 mV. Each of the curves converges to the point where the entire GCD
population is in the same state at -75 mV. The parameters for this simulation are shown in Table 2.2. Each
of the 7 curves corresponds to a randomly selected subpopulation ranging from 30% (light gray) to 100%
(black). Dotted lines indicate the borders of the beta regime. C.ii: The peak power of curves in C.i. The
black dashed line indicates the maximum power of the noise floor. The inset shows the cross section of
power at Viessoc = -63 mV. The power is highest when only 30% of the GCDs are in a high excitability state.
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2.3 Modeling Results

Waking rats and mice show stereotypic transitions from gamma to beta
oscillations after a few trials sniffing highly volatile odorants or after learning to
correctly discriminate odors in operant tasks (Fig. 1.4A). Both oscillations occur in a
single sampling bout, and the switch can be very fast (10-100 ms). This has led us to
propose that a fast change in a parameter value, such as GC excitability, could
produce a fast change in temporal properties. We propose a mechanism by which
the same circuit can generate both gamma and beta oscillations with a fast change in

GC excitability.

2.3.1 GC excitability controls LFP frequency through activation of NMDA

and N-type currents

We show the activity of the full model under low, moderate, and high GC
excitability conditions in Figure 2.4. The model parameters for this simulation are
presented in Table 2.2. There is a large variation in synaptic current amplitude
among the 720 GCDs (Fig. 2.4A, rows 1-3). This variation is due to differences in the
number of MCs connected to each GCD, with the fewest numbering near 4 and the
most near 22. GCDs connected to higher numbers of MCs produce higher values of
Prelease and contribute more to the MC IPSCs than GCDs with fewer connections (Fig.
2.4A, fourth row). For the choices of [Ca]w and p., used in this simulation (see Table
2.2), the maximum GABA release nearly saturates in the high excitability regime

(Prelease = 1; Fig. 2.4A.iii). The N-type current (third row) has a non-zero baseline that
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Parameter Value (units) Description Reference

Input

Wext See METHODS | Input current weights N/A

Opxt 5 (mV/R) Input current variability N/A

MC

Tmc 5 (ms-1) MC membrane time constant De Almeida etal., 2013
TaMPA1MC 1 (ms1) MC AMPA rise time De Almeida et al.,, 2013
TAMPA2,MC 2 (ms1) MC AMPA decay time De Almeida et al,, 2013
Eampa 0 (mV) MC AMPA reversal potential Brunel & Wang, 2003
TGABALMC 0.5 (ms1) MC GABA rise time Brunel & Wang, 2003
TGABA2MC 5 (ms1) MC GABA decay time Brunel & Wang, 2003
Ecapa -80 (mV) GABA reversal potential Cang & Isaacson, 2003
Vrescmc -70 (mV) MC resting potential De Almeida et al., 2013*
Vinmc -63 (mV) MC firing threshold Cang & Isaacson, 2003
Vhyper -80 (mV) MC/GCD hyperpolarization potential De Almeida et al,, 2013*
Waamc 0.0125 MC GABA inhibitory weight N/A (Varied in Fig. 6, 8)
GCD

Tec 5 (ms?) GCD membrane time constant De Almeida et al.,, 2013
TAMPAL,GC 1 (ms1) GCD AMPA rise time De Almeida et al.,, 2013
TAMPA2,GC 2 (ms1) GCD AMPA decay time De Almeida et al., 2013
TNMDALGC 2 (ms1) GCD NMDA rise time N/A (Varied in Fig. 9)
TNMDA2,GC 75 (ms-1) GCD NMDA decay time N/A (Varied in Fig. 9)
TNmax 18 (ms1) GCD N-type activation time constant Amini et al,, 1999

Eampa 0 (mV) GC AMPA reversal potential Brunel & Wang, 2003
Enmpa 0 (mV) GC NMDA reversal potential De Almeida etal., 2013
Ecam) ~ 120 (mV) GC N-type reversal potential Calculated each time step
[Ca]out 1500 (u M) External Ca?* concentration Zengetal, 2009

[Ca]wm 1.5 (u M) Ca?* threshold for maximum GABA rel. | N/A

Pca 100 Proportionality between I¢c, and [Ca2*] | N/A

Vrestic Varied GCD resting potential N/A (Varied in most Figs)
Woampa,cc 0.03 GCD AMPA excitatory weight Cang & Isaacson, 2003
Wimpace 0.04 GCD NMDA excitatory weight N/A (Varied in Fig. 8)
Whee 250 GCD N-type excitatory weight N/A (Varied in Fig. 8)

Table 2.2. Parameters for the full model simulation presented in Figure 2.4.
* Voltages are shifted down by -70 mV from De Almeida et al., 2013, but remain the same
relative distance from each other.
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increases with Vies.6c due to voltage-dependent activation, and causes tonically
elevated internal [Ca?*]. This [Ca?*] baseline is subtracted for each GCD individually
so that non-physiological tonic inhibition is prevented (see Appendix I).

Spike rasters line up with LFP fluctuations in each frequency range (Fig. 2.4A4,
fifth row). Field potential can be simulated either from current or voltage (ILFP,
VLFP); the two oscillate at the same frequency, but are phase shifted by 180° (Fig.
2.4A, bottom row). We can understand this phase shift by considering what happens
after a MC spike. Immediately following a spike the MC membrane voltage
undergoes hyperpolarization, producing a trough in the VLFP. At the same time,
GCDs experience a strong inward Ca?* current that in turn triggers a strong MC IPSC,
producing a peak in the ILFP.

GC excitability alone can control the frequency of network oscillations
through activation of NMDA and N-Type currents. Under low excitability conditions
(Vrestee = -74 mV, Fig. 2.4A.ii) the NMDA and N-type currents are not strongly
activated, so inhibition is low and MCs are not fully synchronized across the
population. Physiological MCs are known to skip cycles of the gamma oscillation
(Lagier et al.,, 2004, 2007; Bathellier et al., 2006), however our model MCs represent
populations of MCs associated with particular glomeruli and thus are expected to
fire on each cycle. The MCs receiving the weakest external inputs, towards the
bottom of the raster plot in Figure 2.4A.i, are able to synchronize, but those
receiving stronger inputs are over-excited and fire multiple spikes per cycle. This
produces low amplitude oscillations falling within the high gamma band as shown in

the power spectrum (Fig. 2.4B.i). When Vies6c is increased to -68 mV the network
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oscillation frequency falls into the low gamma band. The increased inhibition
synchronizes all the MCs (representing populations associated with individual
glomeruli), which leads to higher power LFPs (Fig. 2.4A.ij, fifth row & 2.4B.ii).
Finally, when Viest6c is further increased to -60 mV the network oscillates at beta
frequencies. The power of this beta state is lower than the low gamma state (Fig.
2.4B.ii), because the MCs receiving the weakest external excitation become over-
inhibited and cease firing spikes.

Shifts in the balance of excitation and inhibition to MCs explain the
differences in power. When GC excitability, and hence MC inhibition, is low, the least
excited MCs generate the largest ILFP signal (Figure 2.4B.i). In contrast, during high
GC excitability, the most excited MCs generate the largest ILFP signal (Figure
2.4B.iii). This is because when GC excitability is low the MCs are over excited, firing
on average more than one spike per LFP cycle, but when GC excitability is high the
MCs are over-inhibited, firing on average less than one spike per LFP cycle. Under
moderate GC excitability conditions, excitation and inhibition are balanced such that
nearly all the MCs become synchronized and therefore the simulated LFP power of
any subset of cells is very close to the global LFP. The maximum synchronization at
low gamma frequencies in our model agrees with recordings in awake mice which
found that long range LFP coherency and MC spike synchronization occurs at low
gamma, but not high gamma frequencies (Lepousez and Lledo, 2013a). We will
show later that the balance of excitation and inhibition causing peak power in the
low gamma band is primarily a property of the NMDA currents, while N-type

currents show a balance of excitation and inhibition in the beta band (see 2.3.5
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Relative contributions of NMDAR- and N-type currents).

2.3.2 Network response to continuous changes in GC excitability

A continuous change in GC excitability is not physiological, but it gives us a
qualitative understanding of the relationship between network frequency and GC
excitability. As Viestcc sweeps from -75 mV to -55 mV, LFP frequency changes
continuously (Fig. 2.5A.i). The ILFP and VLFP frequencies span the full range from
high gamma to beta (approximate frequency ranges indicated to the left) and have
nearly identical dependence on Vies;cc, differing only in the high excitability
condition where over-inhibition tends to make the VLFP frequency slightly lower
than the ILFP. The curves are steeper in the gamma than the beta regime, indicating
that beta frequencies are more stable with respect to small changes in Viescc. The
decrease in LFP frequency in response to an increase in Vyes;cc is caused by
activation of NMDA and N-Type currents (Fig. 2.5A.ii). The average AMPA-mediated
membrane depolarization (7 mV) from Vyes;cc = -73 mV (Fig. 2.5A.ii, blue curve)
barely activates the currents (see vertical blue dotted line). However, the same
depolarization from Vyes;oc = -60 mV (red curve) significantly activates the currents
(see vertical red dotted line). Depending on how many MCs are connected to a
particular GCD, the AMPA-mediated membrane depolarization can range from
approximately 2 mV to 18 mV, thus activating NMDA and N-Type currents to
varying degrees.

The ILFP and VLFP power plots overlap much less than their frequencies

(Fig. 2.5A.iii). The ILFP and VLFP power values are nearly identical in the high
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gamma regime, increasing dramatically with Vies6c as increased inhibition
synchronizes the entire MC population. The power peaks in the low gamma regime,
when there is a balance of excitation and inhibition onto MCs such that all MCs are
synchronized (as described in Fig. 2.4). Finally, as the system approaches the beta
regime, some MCs become over-inhibited and ILFP and VLFP power drops off, with
the VLFP falling more sharply than the ILFP. Not all of the oscillations generated by
the model are physiological, because we explore a wider parameter space than what
is available to the real system; such high power in the low gamma regime is rarely
seen in vivo. However, this parameter exploration allows us to characterize
properties of the system that otherwise may not be understood. In a later section we
show the model response to a more physiologically realistic fast change in GC
excitability (see 2.3.4 Network response to fast change in GC excitability).

To show that the power peak in the low gamma band is indeed due to a
balance of excitation and inhibition, where the MC population fires close to one
spike per cycle, we devise a simple measure that we call the spike-frequency
deviation (SFD; see Methods Eq. 2.4). The SFD measures the deviation from the
number of spikes expected if all MCs fire exactly once per LFP cycle (SFD = 0 if all
MCs fire exactly 1 spike per cycle). In addition, we also calculate the spike-field
coherence (SFC), which measures the phase locking between spikes and LFPs (see
Methods). We use the ILFP in calculating the SFD and SFC measures, though using
the VLFP produces nearly indistinguishable curves.

The SFC and SFD measure spiking coherence with the LFP and deviations in

spike rate, respectively, associated with changing GC excitability (Fig. 2.5B). The
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population averaged SFC is at a maximum when SFD is at a minimum and MCs are
closest to the balanced condition (Vpar ~ -71 mV). MCs are over-excited when Vyes;cc
< Vpar and over-inhibited when Vyessec > Voa. When the number of MC spikes deviates
from the number expected at maximum synchrony, the VLFP is decreased, and
therefore the SFD looks almost like a mirror reflection of the VLFP. The SFC, on the
other hand has a much broader peak similar to the ILFP, because it only measures
synchrony, not the number of firing MCs. The peaks of ILFP and VLFP power in
Figure 2.5A.iii both correspond to maximally synchronous conditions, but by
construction the VLFP is more sensitive to MC spiking, while the ILFP is more
sensitive to synchronized current flow. Overall, the ILFP and VLFP are quite similar.
However, physiological LFP signals have been shown to follow synaptic currents
more closely than membrane voltages (Atallah and Scanziani, 2009; Mazzoni et al.,
2015), and so we choose to report the frequency and power of the maximum peak in
the ILFP spectrum for the remainder of the paper, unless otherwise stated.

So far we have modulated the excitability of the entire population of GCDs.
Such a broad modulation of excitability could potentially be mediated by diffusion of
acetylcholine released from cholinergic fibers (Pressler et al., 2007a; Ma and Luo,
2012) or other neuromodulators. However, odorants excite only a fraction of
downstream cortical neurons, which in turn feed back onto a subpopulation of GCs
(Mouret et al., 2009; Poo & Isaacson, 2009); thus, the excitability of only a
subpopulation of GCs may be modulated. We therefore continuously vary the
excitability of randomly chosen GCD subpopulations of decreasing size while

holding the remainder at a resting potential of -75 mV in Figure 2.5C. Modulating
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the excitability of subpopulations as small as 40% produces LFP oscillations that
still span the full gamma to beta range (Fig. 2.5C.i). Beta oscillation power is actually
higher when the size of the excited GCD population is reduced (inset of Fig. 2.5C.ii).
This is because MCs in the beta state are over-inhibited, and reducing the population
of excited GCDs reduces inhibition, allowing more MCs to participate in the
oscillation. On the other hand, the high and low gamma power is lower for smaller
excited GCD populations, because now MCs are not receiving enough inhibition. In
the real system, beta power tends to be higher than gamma. Therefore, not only can
modulation of the excitability of a GCDs subpopulation generate oscillations that
span the high gamma to beta range, but the simulated oscillations appear more

physiological.

2.3.3 Beta frequency is highly stable with respect to changes in MC

excitation and inhibition

In Figure 2.5 we showed that the ILFP power of the full model peaks in the
low gamma band, which corresponds to a state where excitation and inhibition are
balanced such that the all the MCs are synchronized. We next explore how network
oscillations respond to changes in excitatory-inhibitory balance by directly
manipulating MC excitatory and inhibitory weights. Increasing MC excitation, by
increasing the minimum excitatory weight Wiinex, raises the LFP frequency in the
low excitability regime (Fig. 2.6A.i) and dramatically increases the maximum power

peak while shifting the peak towards higher excitabilities (Fig. 2.6A.ii). The pink
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Figure 2.6. Beta oscillation dependence on GC excitability, sensory input, and MC
inhibition.

A: The frequency (A.i) and power (A.ii) of the ILFP is plotted for varying strengths of MC
excitation (Whinex:). The pink curves correspond to parameters used in Figures 4 and 5. B:
Same as in A but strength of MC inhibition (W¢apamc) is varied. Weapamc is varied over the same
range as Whinex: (0.007), so that the plots in A and B are visually comparable. C: The ILFP
frequency (left column) and power (right column) are plotted with Viescc = -70 mV (top row)
and Vyesee = -60 mV (bottom row) as the MC inhibitory weight Weapamc, and minimum
excitatory weight Woinex are varied. Red lines mark the borders of the beta regime (20-30 Hz).
Regions where ILFP power is less than or equal to the baseline power are colored white. Pink
circles indicate the parameter values used for the simulations in Figures 4 and 5. D: Vertical
cross sections of the plots in C fixed at Winex: = 0.0134 (pink dot location) are shown for low
(blue connected stars, Vyes;cc = -70 mV) and high (red connected circles, Vies;oc = -60 mV)
excitability conditions. The gray shaded region in D.i marks the region where network
oscillations are considered part of the noise floor. The horizontal black dashed line in D.ii
indicates the maximum power of the noise floor.
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curve corresponds to Whinex: = 0.0134 (used in Figs. 2.4 and 2.5). Note that the shift
is such that the frequency at maximum power is still in the low gamma band,
because the balance of excitation is still maintained at low gamma frequencies.
Interestingly, the frequency curves converge at beta frequencies because beta
frequencies are stable with respect to MC excitation. However, beta power is very
sensitive to Winext. We routinely observe beta oscillations with drastically different
amplitudes in awake animals. In particular, low volatility odors produce lower
power beta oscillations than high volatility odors (Lowry and Kay, 2007a). In our
model, differences in MC excitation are sufficient to explain this phenomenon.

If we hold MC excitation constant and instead vary MC inhibition (Fig. 2.6B),
we find that increasing Weapamc reduces the ILFP frequency in the low excitability
regime and shifts the power peak towards lower excitability (Fig. 2.6B.i). The shift
towards lower excitability is such that the peak power is in the low gamma band,
much like before. However, unlike changes in Wiinex:, changes in Weapamc do not
significantly alter the maximum power amplitude. Excitatory modulation essentially
adds energy to the system, setting the overall scale for how high the power can be.
Inhibition, on the other hand, gates how much of this power is accessible at a
particular frequency. The frequencies in Figure 2.6B.i also converge to beta
frequencies in the high excitability regime, indicating that beta frequency is also
stable with respect to inhibition.

To further explore the extent of beta regime stability we co-varied MC
excitation and inhibition under low and high GC excitability conditions (Fig. 2.6C).

The beta frequency is quite stable over a wide parameter range under both low and
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high excitability conditions. The gamma regime (blue-green-orange colors on the
frequency scale) occupies a sizeable region of parameter space under low
excitability, but becomes very narrow under high excitability. Under high
excitability, the lower boundary of the beta regime becomes more horizontal,
indicating that beta frequency becomes less sensitive to changes in Wiinext. The
power (Fig. 2.6C, right columns) increases with Wiinex: and peaks just outside of the
beta regime, in the low gamma regime. These plots show us that overall, beta is less
sensitive to changes in excitation and inhibition than gamma. This agrees
qualitatively with in vivo recordings which have found beta oscillations to occupy a
narrower frequency band than gamma (Neville and Haberly, 2003a; Kay, 2014a)

In this model, inhibition-mediated gamma frequency oscillations only occur
below ~80 Hz, because higher frequencies (gray shaded region in Fig. 2.6D.i) are so
low in power that they are essentially indistinguishable from the noise floor (dashed
line in Fig. 2.6D.ii). Under high excitability (red connected circles), the beta
frequency is remarkably stable and insensitive to changes in Weapauc. However, if
Weapamc is too low, the network frequency sharply rises and quickly becomes part of
the noise floor, which is why the gamma regime is so narrow in the bottom panels of
Figure 6C. Under low excitability, as Wesapamc increases, the frequency falls more
gradually through the gamma range until eventually a stable beta frequency is
reached (Fig. 2.6D.i blue connected stars).

The power (Fig. 2.6D.ii) exhibits the same low gamma frequency peak as
described earlier (Figures 2.4 and 2.5). Pharmacological manipulations in awake

mice have shown that gamma oscillation power is reduced by high concentrations of
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picrotoxin (a GABA antagonist), but is increased by low concentrations (Lepousez
and Lledo, 2013a). The peak in the simulated LFP power vs Weapauc curve for low
excitability in Figure 2.6D.ii (blue connected stars) can account for such a
concentration-dependent effect. If the initial degree of inhibition puts the system
just to the right of the peak power (for example Weapamc = 0.018 in Figure 2.6D.ii),
then a small concentration of picrotoxin would only slightly decrease We¢apamc, thus
increasing the power. But a high concentration would put Weaga mc to the left of the
peak, resulting in lower gamma power. It is interesting to note that the
concentration-dependent power modulation was restricted primarily to low gamma
frequencies in the Lepousez and Lledo (2013) study, and in our model the peak
power is in the low gamma band. However, the same study also showed that high
concentrations of picrotoxin (represented in our model as a decrease in Weapaumc)
reduced gamma frequency, but in our model a decrease in Wg4pamc only increases
gamma frequency. Indeed, there are other factors that our model does not include,
such as asynchronous GABA release (Bathellier et al., 2006) and sub threshold
resonance (Brea et al,, 2009), which likely play an important role in gamma

generation.

2.3.4 Network response to fast change in GC excitability

In the living system, changes in the excitability of GC dendritic spines leading
to activation of dendritic Ca?* channels are not gradual as in Figure 2.5, but occur
very rapidly (Egger, 2008; Pressler, et al., 2007). Therefore, we explore how the

computational model reacts to such a fast transition. Because the exact cellular
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dynamics driving excitability changes in GC dendritic spines are highly complex and
still being studied (Egger et al., 2005a; Egger, 2008a; Bywalez et al,, 2015), they are
beyond the scope of this model. Instead, we simulate a rapid change in the
excitability of the entire GC dendritic arbor by forcing Vyes;cc to vary from -74 mV to
-60 mV following a sigmoid defined as Viestec = -74mV + 14mV/(1 + exp(at)), where
a defines the steepness of the transition and t is the time over which the transition
occurs.

The speed of transition in Vyes;cc may account for the fast changes in
frequency we see in waking animals (Fig. 1.4A). For the slowest changes (Fig. 2.7,
top two traces) the ILFP frequency changes continuously, while for the fastest
changes (bottom two traces) the transition from gamma to beta frequencies is sharp
but is accompanied by a large low frequency artifact. The gamma to beta transitions
observed in vivo (Fig. 1.4A) are sharp (i.e., there are no intermediate frequencies)
but also spectrally clean (i.e., there are no sudden artifacts). Therefore, the closest
qualitative match between our model and experimental observation is found in the
middle row of Figure 2.7, where the gamma to beta transition is sharp, and no
artifacts are produced. The change in excitability does not have to be instantaneous
in order to elicit an apparent sharp gamma to beta transition. When the excitability
switch is fast, the intermediate values of GC excitability shown in Figures 2.4 and 2.5
are skipped, and therefore high power oscillations in the low gamma regime are
skipped. This may explain why high power oscillations in the low gamma band are

rarely observed in vivo (although see Kay, 2003).
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The simulations producing sharp and clean gamma to beta transitions have
sigmoidal widths of approximately 60 - 80 ms (Fig. 2.7, middle trace). This is slow
relative to the onset of ADP and LLD in individual spines, which is on the order of 1
ms (Pressler et al.,, 2007a; Egger, 2008a), but relatively fast on a behavioral time
scale (i.e., less than one sniff). Thus, our model predicts that the excitability
transitions of a population of dendritic spines should take place over roughly 60 - 80

ms to drive a gamma to beta transition during odor sampling.
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Figure 2.7. Simulated ILFP in response to changing Vi .s;¢c. Simulated ILFP (black left y-
scale) in response to changing V,escc (red right y-scale) from -74 mV to -60 mV over 1s with
varying speeds (slowest at top, fastest at bottom). In the middle row, the dotted vertical lines
indicate the duration of the excitability transition for that plot, which is roughly 80 ms. (Right)
A Morlet wavelet transform spectrogram (see Methods) gives the instantaneous frequency (y-
axis) and power (color scale) of the ILFP traces.
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2.3.5 Relative contributions of NMDA- and N-type currents

In the full model, graded inhibition of MCs is mediated by NMDA and N-type
Ca?* currents (Figs. 2.4 & 2.5). Slice studies have shown that Ca?* flow through
NDMARs alone can drive DDI (Schoppa et al,, 1998). However, with NMDAR current
pharmacologically blocked, slowly decaying DDI can also be evoked solely by
AMPAR activation under pharmacological conditions that increase GC excitability
(Isaacson, 2001), and thus the activation of N- and P/Q- type VDCCs by AMPA-
mediated depolarization alone can trigger GABA release. Furthermore,
pharmacological manipulations of OB activity in awake mice have shown that odor-
evoked beta oscillation frequency and power are not very sensitive to NMDAR
antagonists (Fig. 3 in Lepousez & Lledo, 2013), providing evidence that beta
oscillations may depend on Ca?* flow through N- and P/Q- type VDCCs, but not
through NMDARs.

In order to test the relative contributions of CaZ* flow through NMDARs and
VDCCs to the network oscillations we simulate a complete pharmacological block of
NMDAR or N-type currents by setting the weight of either current equal to 0 (Fig.
2.8A,B). In these simulations the [Ca?*] threshold for maximum GABA release
([Ca]e), the GCD AMPA weight (Wawmpacc), and external inputs to MCs (Wininext) are
identical to the full model, but MC inhibition (Wgapamc) and the GCD NMDA/N-Type
excitatory weights (Wnmpa,cc and Wh,gc) are varied. For both pure NMDA and pure N-
type models Weapamc is varied from 0.01 to 0.07. The minimum and maximum
Whnmpa,cc and Whygc are chosen such that the transition to the unsynchronized state,

where the power is below the noise floor, happens near the midpoint on the
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horizontal and vertical axes. This allows for a visual comparison of the two models,
despite Wnc being approximately 10° greater than Wympace.

The frequency of both pure models decreases with increased Vyestqc, as is
evident when comparing the same points from low and high excitability conditions,
and both models generate oscillations spanning the gamma to beta range. The
power of the pure NMDA model is highest at low gamma frequencies (right panels
Fig. 2.8A), and the gamma regime under high excitability is very narrow (bottom left
panel Fig. 2.8A), much like in the full model (see Fig. 2.6D). The pure N-type model,
on the other hand, generates peak power within the 20 - 30 Hz beta regime
(outlined by red lines) and even for frequencies below the beta regime (Fig. 2.8B,
bottom right panel). Why does the full model behave more like the pure NMDA
model than the pure N-type model? One factor is the CDI of the N-type current by
the NMDA Ca?* current, which reduces the N-type current as NMDA current
increases. Another factor is the balance of excitation and inhibition. In the pure N-
type model there is a balance at beta frequencies, but in the pure NMDA model the
balance is in the low gamma regime and the MCs in the beta regime are already
over-inhibited. Therefore, when the two pure currents are combined, the MCs
continue to be over-inhibited in the beta state and only the peak at low gamma
power remains.

The maximum power of the ILFP oscillations generated by the pure NMDA
model is much lower than the maximum power of the pure N-Type model (Fig.
2.8A., B.i). By systematically exploring parameters we found that the main cause for

this difference is the difference in decay time constants of the two models. The
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Figure 2.8. Parameter exploration of pure NMDA and N-type models. A: The ILFP frequency (left
column) and power (right column) of the pure NMDA model are plotted with Vyes;6c = -70 mV (top row)
and Vyeszoe =-60 mV (bottom row) as the MC inhibitory Weapamcand GC excitatory NMDA weights Wympa,ce
are varied. Red lines mark the borders of the beta regime (20-30 Hz). Regions where ILFP power is less
than or equal to the baseline power are colored white. In A.i we simulated the default NMDA model with
Tympaz = 75 ms. In A.ii we switched the NMDA and N-type constants, so that 7y p4, = 18 ms. B: Same
layout as A, but for the pure N-type model with Ty p4, = 18 ms (B.1i, default N-type model), with Ty paz =
75 ms (B.1i, switched decay time constant with NMDA model), without CDI (B.iii), and with N-type Nernst
potential lowered to ~20 mV by reducing the external Ca?* concentration (B.iv). C.i: A gradual NMDA
block was simulated by reducing Wmpa,cc with GCDs fixed at Vyestoc = -60 mV. The maximum frequency
during the gradual NMDA block is plotted for three values of Wy ¢c, showing that beta frequency can be
sustained by N-type currents as NMDA currents are reduced. C.ii: The maximum power of the same three
curves increases as Wympacc is decreased because the MCs are over inhibited when Wxumpa,cc is maximum.
D.i: The mean N-type activation (my) is shown for the same three curves in C. Because my is oscillatory we
include the shaded regions to indicate the minimum and maximum extent of the oscillations. D.ii: Same as
in D.j, but for N-type inactivation (hy). D.iii: Same as in D.i, but for the product (my*hy).
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default decay times of the NMDA and N-type currents are Tyypaz = 75 ms and Tymax
= 18 ms. If we switch the values of the time constants we find that the pure NMDA
power increases dramatically (Fig. 2.8A.ii), while the pure N-type power decreases
to levels close to the original pure NMDA model (Fig. 2.8B.ii). The maximum power
of the oscillations is inversely proportional to the decay time constant, because
inhibitory current pulses with short decay times will decay fully each cycle, causing
a high amplitude between peaks and troughs of the inhibitory current oscillation,
but for longer decay times the pulses fall off more slowly and the difference between
peaks and troughs is smaller. With a shorter decay time the pure NMDA model
releases less GABA over time, so higher excitatory/inhibitory weights are required
to sustain beta oscillations (note the shift of beta regime towards higher Weapamc
and Whxmpa,cc in Fig 2.8A.ii compared to Fig 2.8A.i). Interestingly, this shift towards
higher weights is accompanied by a greater stability in both gamma and beta
regimes. Furthermore, the maximum power is shifted into the beta regime, as was
the case for the original pure N-type model (Fig. 2.8B.i). Therefore, the peak power
at low gamma is not a specific consequence of the NMDA model, but a general
consequence of a long time constant.

We explored the sensitivity of the N-type model’s frequency and power
landscapes to the absence of CDI. Removal of CDI results in dramatically higher
graded inhibitory release probability (Fig. 2.3D), which causes the pure N-type
model to be highly over-inhibited for large Wiy ¢ in the high excitability condition
(bottom panels Fig. 2.8B.iii). Curiously, the absence of CDI caused a broadening of

the gamma and beta regimes under low excitability (bottom panels Fig. 2.8B.iii).
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This shows that the N-type model has a substantial amount of self induced CDI, and
that CDI prevents the inhibitory current from getting too large too quickly as
excitability is increased.

We also explored the effect of changing the reversal potential on the
frequency and power landscapes. Glutamate receptors such as AMPARs and
NMDARs tend to have Nernst potentials near 0 mV, while VDCCs tend to have
Nernst potentials at the Ca?* reversal potential, Ecq. In our model E¢, oscillates with
the network near 120 mV, because it is calculated on each time step, but its mean
value is controlled by the extracellular Ca* concentration [Ca],,; (see Eq. 2.3).
When [Ca],,; is reduced to 5 pM, the Nernst potential of E¢, oscillates near ~ 25 mV.
This manipulation does not significantly alter the maximum power, but it shifts the
beta regime of the pure N-type model towards higher weights (Fig 2.8B.iv). This is
because a lower (positive) Ca?* reversal potential causes the Ca?* current to reverse
more quickly, so that less inhibition is released over time and higher weights are
needed to sustain beta oscillations. In contrast, we increased the NMDA reversal
potential from 0 to 100 mV (not shown). This also had little effect on the ILFP
power, but the beta regime was now shifted towards lower weights, as higher
reversal potential allow more graded inhibition to be released.

Our models show that NMDARs or N-type VDCCs alone can mediate graded
DDI, confirming what has been found empirically (Isaacson and Strowbridge, 1998;
Schoppa et al,, 1998a; Isaacson, 2001). Furthermore, they suggest that Ca?* flow
through N-type channels may be responsible for generating the high power beta

oscillations we record in experiments (Fig. 1.4A) due to the shorter decay time of
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the N-type current compared to the NMDA current. The parameter exploration in
Figure 2.8A, B also shows that the gamma and beta regimes can always be reached
by sufficiently increasing the excitatory/inhibitory weights. There can be multiple
paths to generating beta as long as inhibitory current is sufficiently strong. This
suggests that potentiation of the MC-GC synapse could lead to beta oscillations,
although this is not explicitly modeled here.

We were curious to see how the network responds to a gradual block of the
NMDA current, since infusion of pharmacological blockers in vivo likely results in
only a partial block. Figure 2.8C shows the network response to decreasing Wmpa,ac
under high GC excitability conditions (Vres;cc = -60 mV) for three different values of
Wh,gc. For these simulations the MC inhibitory weight Weapamc was increased to
0.015 in order to maintain a strong inhibitory current when NMDA is completely
removed. We point out that models with higher Wg4ga uc still generate the full
gamma to beta range (see Fig. 2.6B.i). With this arrangement, the beta frequency is
quite stable with decreasing Wympa,cc (Fig. 2.8C.ii). For the lowest Wy gc the LFP
frequency rises out of the low gamma regime as Wympa,cc approaches 0, but for
higher Wy c the frequency remains in the beta regime even when the NMDA current
is completely blocked. Interestingly, the gradual reduction of NMDA current actually
increases beta power (Fig. 2.8C.ii), because we are reducing the degree of MC over-
inhibition. We saw a similar effect when reducing the fraction of excited GCs in
Figure 2.5C.ii.

We also investigated the effect that the gradual NMDA block has on the

inactivation of N-type current through CDI. Recall that the inactivation variable, hy,
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has an inverse dependence on internal [Ca?*] (Table 2.1). We expected that a
reduction in NMDA current would lower internal [Ca?*], and therefore raise the
overall N-type activation by raising hy. As shown in Figure 2.8D.iii, the overall N-
type activation does increase with decreased NMDA current, but not because of an
increase in hy, which is largely flat (Fig. 2.8D.ii). Instead, the voltage-dependent
activation variable my, is responsible for the overall increased N-type activation,
while hy only reflects the background level of Ca?* influx due to the increased
excitatory weights Wy,c. The reduction of MC over-inhibition results in more MC
spikes, which drives higher GCD membrane depolarization through the AMPA
current, thus raising my. The increased internal [Ca?*] nearly balances the reduction
of [Ca%*] due to blocking the NMDA current, resulting in a nearly flat hy. These
simulated results provide a possible explanation for in vivo experiments which have
shown that NMDA blockers have little effect on beta frequency (Fig. 3 in Lepousez &
Lledo, 2013). Namely, blocking the NMDA current results in a higher activation of N-
Type current through reducing MC over-inhibition, which keeps the beta frequency
stable. However, there is only partial agreement with the model as these
pharmacological experiments also found the beta power to be relatively unchanged

while the beta power in the model is sensitive to NMDA current.

2.3.6 Beta frequency dependence on rise and fall time constants of Ca?*

currents

In this model the beta frequency emerges as a consequence of strong graded

inhibition when the NMDAR and N-type channels are sufficiently activated under
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high GC excitability conditions. In Figure 2.8 we showed that the beta regime shifted
towards higher W when the decay time constants are decreased. In Figure 2.9 we
explore the dependence of the model response on the time constants alone, holding
everything else fixed. The literature reports a wide range of MC IPSC decay times,
from about 50 ms to several hundred ms, which may reflect varying concentrations
of Mg?* at synaptic clefts as well as varying proportions of NMDARs and VDCCs
expressed on individual GCDs (Isaacson and Strowbridge, 1998; Schoppa et al,,
1998a; Isaacson, 2001; Urban and Sakmann, 2002). As described in the Methodes,
NMDA activation is governed by two time constants, the rise time tyyp41 and the
decay time Typpa2- For simulations in which 7y,p 44 is varied, Tyypaz is fixed at 75
ms (Fig. 2.9A1, ii), and for simulations in which Ty p 4, is varied, Typypa1 is fixed at 2
ms (Fig. 2.9A.iij, iv), which are the default values used throughout this work. The
NMDA rise and decay times are close to those used in other models (Bathellier et al.,
2006; de Almeida et al,, 2013a). The N-type model only has one time constant, t.
Because 7y, itself is dependent on Viest,gc we vary its maximum value Ty,q45- The
default value of Ty;,4, = 18 ms is taken from Amini et al. (1999) and Zeng et al.
(2009).

NMDA rise times as high as 10 ms have been reported in slice (Schoppa et al,,
1998; Isaacson & Strowbridge, 1998). When the rise time 7y,p 41 of the pure NMDA
model is increased, the LFP frequency is driven down (Fig. 2.9A.i). If the excitability
is too low, the slower rise times generate a slower MC IPSC that fails to sufficiently
inhibit the MC before a spike is elicited by the constant ORN stimulation. This

prohibits MC synchronization, and the frequency shoots upwards while the power
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falls to noise floor levels (Fig. 2.9A.ii). For sufficiently fast rise times (< 3 ms) the full
gamma to beta range can be generated. Interestingly, longer rise times create higher
power in the beta regime because the slower rise time increases the inhibition
released over time. Increasing the decay time 742 also decreases LFP frequency,
but for short decay times (< 30 ms) beta oscillations cannot be sustained because
the inhibition is not strong enough to sufficiently delay MC spikes (Fig. 2.9A.iii). As
Tympaz 1S increased, the LFP frequency in the high excitability condition enters the

beta regime. The beta frequency becomes nearly stable after Ty p42 > 50 ms,
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Figure 2.9 Network oscillation dependence on NMDA and N-type time constants .
A: Dependence of the LFP frequency and power on rise time tyyp41 and decay time
Tympaz Of the pure NMDA model. In A.i and A.ii Typypy2 is fixed at 75 ms. In A.iii and A.iv
Tympan 1S fixed at 2 ms. B: Dependence of the LFP frequency and power on the N-type
activation time constant maximum Ty, ., of the pure N-type model. Each plot shows 20
curves calculated for uniformly spaced values of Vyes¢c ranging from -75mV (blue) to -
55mV (red), as indicated by the color scale.
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because lengthening the tail of the inhibitory pulse decay does not significantly
change the overall inhibition of MCs each cycle. Therefore, in the pure NMDA model
the beta frequency only emerges if the decay time is long enough, but beta is not
very sensitive to the exact value.

A slightly different picture arises for the pure N-type model ILFP oscillations;
the frequency changes very gradually with a nearly constant slope over the entire
range of decay times (Fig. 2.9B.i), and for higher excitabilities the frequency is
nearly constant. The NMDA model only showed such constant frequency
dependence for Ty pa2 > 50 ms. This difference between the models is due to the
absence of separate rise and fall times for the N-type model, which has a single,
dynamic time constant that effectively produces rise and fall times that adapt to GC
excitability conditions. Therefore, the frequency of pure N-type ILFP oscillations is
much more sensitive to GC excitability and choice of inhibitory excitatory weights
than to Ty;,q.- However, as was shown earlier in Figure 2.8B, the power is quite
sensitive to Ty, (Fig. 2.9B.ii). We find that both pure NMDA and pure N-type
models are capable of generating beta oscillations when graded inhibition is
sufficiently strong, but near their physiological parameter regimes the pure N-type
model generates higher power beta oscillations that are more invariant to

parameter changes.
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2.4 Discussion

We demonstrate that GC excitability could play a pivotal role in regulating OB
oscillations, thus closely linking ADPs and LLDs in GCs to beta generation. We
hypothesized that GC excitability could control the strength of graded inhibition
through NMDA and N-type Ca?* currents, allowing MC-GC dendrodendritic synapses
to support both gamma and beta oscillations. Our model generates LFP oscillations
ranging from high gamma to beta by varying GC excitability over a range of ~15 mV.
Gradual increases in GC excitability cause monotonic decreases in LFP frequency
due to graded inhibitory release through activation of NMDA and N-type currents
(Fig. 2.5). This contrasts with spiking inhibitory systems where increased
interneuron excitability leads to increased firing rates and higher synchronization
frequencies (Fisahn et al.,, 2004; Lakatos et al., 2005). Interestingly, beta power
increased with smaller GCD populations (Fig. 2.5C), suggesting that high power beta
oscillations may only recruit a subpopulation of GCs in high excitability states. Such
subpopulations of excited GCs may arise from intrinsic individual GC differences in
plateau currents (Egger et al., 2005a) and cortical/neuromodulatory inputs to GCs
associated with odor selective MCs (Matsutani and Yamamoto, 2008).

GC excitability exerts control over LFP frequency by shifting the excitation-
inhibition balance such that low GC excitability induces over-excitation and high GC
excitability induces over-inhibition (Fig. 2.4B). With intermediate GC excitability all
the MCs fire at low gamma frequencies (Fig. 2.4, 2.5), reminiscent of type 2 gamma
(35-65 Hz) oscillations which have high coherence across the OB and PC in vivo

(Kay, 2003; Lepousez & Lledo, 2013). We found that maximum power at low gamma
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frequencies was primarily due to the long NMDA decay times (Fig. 2.8A).
Interestingly, high power low frequency gamma oscillations are routinely seen in
slice (Friedman and Strowbridge, 2003; Bathellier et al., 2006; Gire & Schoppa,
2008) where Mg?* concentrations are often low and NMDA currents may contribute
more to DDI than they do in vivo. A more realistic fast change in GC excitability
drives a transition from high gamma to beta, skipping the low gamma regime (Fig.
2.7). A change in GC excitability as slow as 100 ms can produce a sudden switch
from gamma to beta frequencies, rather than a gradual shift.

In a pure N-type model, the maximum power is in the beta band and is much
higher than the pure NMDA due to its shorter decay time (Fig. 2.8B), suggesting that
high power beta oscillations (Fig. 1.4A) triggered by high volatility odors (Lowry
and Kay, 2007a) and learning (Ravel et al., 2003; Martin et al., 2006a) may depend
on VDCCs more than NMDA currents. Starting with both NMDA and N-type currents,
we showed that beta oscillations can be sustained as NMDA is blocked (Fig. 2.8C), in
agreement with past experiments (Fig. 3 in Lepousez & Lledo, 2013). Comparison of
LFP power between models and experiments should be done with care because our
simple model is only a caricature of the LFP, and experimentally recorded LFPs can
vary in amplitude depending on electrode position and placement. Because we
assume that the same synaptic currents produce both gamma and beta oscillations,
we compare the relative size of the beta and gamma oscillations in the model as we
do in experiment.

In the full model we found that beta frequencies are more stable than gamma

with respect to MC inhibitory and excitatory weights (Fig. 2.6), but beta power
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increased dramatically with MC excitatory weight (Fig. 2.6A). If high volatility
odorants represent stronger inputs, this may explain the high power beta
oscillations produced by these odors (Lowry and Kay, 2007a). In the pure NMDA
and N-type models the beta regime became more stable as their excitatory synaptic
decay times were shortened (Fig. 2.8). We found that CDI is critical to maintaining
beta oscillations in the high excitability of the pure N-type model, since without CDI
the MCs became over-inhibited. Finally, long decay times are critical to sustaining
beta oscillations in the pure NMDA model, but not the pure N-type model (Fig. 2.9).
Together these results argue that the odor-evoked gamma to beta transition could
be triggered by an increase in GC excitability, which drives an increase in VDCC-

mediated graded inhibition.

2.4.1 Multiple factors may contribute to odor-evoked gamma to beta

transition

Our model shows that increased GC excitability can drive beta oscillations,
but it is agnostic as to which inputs control GC excitability. Because GC excitability is
regulated by centrifugal, neuromodulatory, and local inputs, beta oscillations may
be supported by a convergence of inputs onto GCs, which we summarize in Figure
2.10. For example, cholinergic inputs could transform the AHP current to an ADP
current (Pressler et al., 2007a) so that cortical inputs could trigger excitability
increases in GCs and hence generate odor-evoked beta oscillations. This could

potentially explain why beta oscillations are dependent on such varied
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circumstances as stimulus characteristics, the state of the animal, and behavioral
context (Martin et al., 2006; Lowry & Kay, 2007; Cenier et al., 2008, 2009). Because
many factors influence the strength of inhibition, such as the inhibitory/excitatory
weights and even the external Ca?* concentration (Fig. 2.8), our model argues that
there can be multiple paths to generating beta oscillations, as long as there is
sufficiently strong inhibition.

Respiration may also influence beta generation (Fig. 2.10). Fast airflow

during inhalation coincides with gamma oscillations and decreased airflow during

Respiratory
airflow

PRSP

Neuro - \
modulation

Convergent Cortico-bulbar
Sensory Input loops

® o </

Cortical inputs

Figure 2.10. Summary of possible factors contributing to the gamma to beta
transition. Those that explicitly control GC excitability are marked in bold with gray
arrows. GC excitability can be regulated by at least three distinct inputs to GCs, all of which
may cooperate in the generation of beta oscillations. Neuromodulatory fibers may target
the soma and GC dendritic arbors and gate excitatory inputs from MCs and cortical
neurons. Our model summarizes these different sources of GC excitability control by a
single parameter, the GC resting potential, to show that GC excitability has a direct
influence on the LFP frequency. However, our model does not include respiratory
modulation, ORN adaptation, and cortico-bulbar loops, which may also contribute to beta
generation.
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exhalation coincides with beta oscillations in urethane-anesthetized rats (Cenier et
al,, 2008, 2009; Fourcaud-Trocmé et al., 2011). Waking rats also slow their
respiration during late odor sampling when beta emerges (Rojas-Libano & Kay,
2012).

The gamma to beta sequence recorded in rats resembles the transition from
fast to slow oscillations detected in moth olfactory LFPs associated with firing rate
adaptation of peripheral ORNs (Ito et al., 2009). Firing rate adaption also occurs in
rat and amphibian ORNs (Laing & MacKay-Sim, 1975; Kurahashi & Menini, 1997;
Zufall, 2000). It is possible that ORN firing rate adaptation plays a role in the gamma

to beta transition in rats (Fig. 2.10).

2.4.2 Comparison with other theories of olfactory beta generation

Beta oscillations are highly coherent between the OB and PC, and it has been
proposed that beta oscillations may be generated by long distance action potential
propagation within the loop encompassing MCs, PC pyramidal neurons, and GCs
(Neville and Haberly, 2003a; Martin et al., 2006a). However, PC pyramidal neurons
also target deep short axon cells which strongly inhibit GCs (Boyd et al., 2012).
Furthermore, beta oscillations are also coherent between the OB and the entorhinal
cortex and hippocampus (Gourévitch et al.,, 2010; Kay & Beshel, 2010; Martin et al,,
2007), so it is unclear which of these loops would be responsible for beta. Our model
generates beta oscillations intrinsically in the OB and relies on centrifugal
innervation solely for the regulation of GC excitability, reminiscent of the role that

OB input to PC plays in the generating PC oscillations (Freeman, 1968a). The model
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predicts beta band directional influence from the OB to other cortical areas as we
have shown experimentally (Gourévitch et al,, 2010; Kay & Beshel, 2010).
Nonetheless, it is possible that a combination of GC excitability regulation and long
distance action potential propagation stabilizes the beta frequency.

To our knowledge there are only two other computational models of OB beta
(Fourcaud-Trocmé et al., 2011b; David et al., 2015a). Both of these models, like ours,
infer that the mutual exclusivity of gamma and beta oscillations suggests a common
mechanism, namely the ionic currents at the dendrodendritic MC-GC synapses. The
Fourcaud-Trocmé et al. model also uses graded inhibition, but argues that the
critical parameter in switching from gamma to beta is the excitatory synaptic
conductance to the MCs. The David et al. model argues that the switch between
gamma and beta depends on non-spiking (graded) and spiking states of the GCs
respectively. Our model is closer to the David et al. model in spirit as both models
assume a switch in the state of the GCs. Although experiments have shown that the
majority of DDI is mediated by Ca?* currents through NMDARs and VDCCs (Isaacson
and Strowbridge, 1998; Schoppa et al., 1998a; Chen et al., 2000), neither of the other
models include Ca?* currents, which are essential to beta generation in our model.

Differences between modeling approaches are to some extent motivated by
differences in experimental data. While the other models aim to reproduce
experimental data showing gamma to beta transitions within a single sniff in
anesthetized rats (Cenier et al., 2009), we reproduce high power beta epochs lasting
several sniffs that occur during both learning and passive exposure to high volatility

odorants (Fig.1.4A). These models together suggest that beta oscillations arise from
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an appropriate convergence of sensory stimulation and centrifugal feedback onto
GCs.

Recent current source density analysis has suggested that gamma and beta
are generated by distinct sublaminar networks within the EPL (Fourcaud-Trocmé et
al,, 2014). Distinct sublaminar networks are compatible with our GC excitability-
based hypothesis, because different sublaminae may represent distinct
developmental stages of GCs with different excitability characteristics (Lepousez et

al,, 2013; Petreanu & Alvarez-Buylla, 2002).

2.4.3 Limitations of the model

Every model must trade off simplicity with accuracy. We used a standard
NMDA current model (Jahr and Stevens, 1990), which does not include CDI, but
NMDA channels can also exhibit CDI (Legendre et al., 1993; Zhang et al., 1998),
which could dynamically compete with VDCC currents. Our model also excludes the
GC soma and relies on graded inhibition alone. However, somatic spikes could
propagate through the entire dendritic arbor of a GC to trigger global lateral
inhibition of MCs (Mouret et al., 2009a). We do not include this in our model,
because it would require simulating bidirectional conductance along GC primary
dendrites, the properties of which are still being studied (Egger et al., 2005a; Balu et
al,, 2007). Nonetheless, our model implicitly depends on GC spikes, because spikes
trigger the ADP (Pressler et al,, 2007a) or LLD (Egger, 2008a) that provides the

mechanism for transition between gamma and beta oscillations. Although GC spikes
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have recently been recorded for the first time in awake animals (Cazakoff et al.,
2014), they have yet to be recorded during beta oscillations.

Our GCDs are modeled as single compartments, but recent experiments have
shown that GC dendritic spines can independently support Na* spike generation
(Bywalez et al., 2015) and that locally produced Ca?* spikes mediated by T-type
VDCCs can spread activity across the entire dendritic arbor to synchronize GABA
release from all the dendritic spines of a given GC cell (Egger et al., 2005a). Our
model does not capture this fine-grained activity because we aimed to model
population activity. However, it remains an interesting and open question how this

fine-grained activity influences population activity.
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3. Pharmacological manipulation of olfactory bulb
granule cell excitability modulates beta oscillations:
Testing a model

3.1 Introduction

3.1.1 Model Predictions

In a Chapter 2, I introduced a model that addressed the role of granule cell (GC)
excitability in generating beta oscillations (Osinski and Kay, 2016). This model was
inspired by three lines of evidence: (1) Beta oscillations cannot be generated
without intact centrifugal input to the OB (Fig. 1.4E; Neville and Haberly, 2003;
Martin et al,, 2006); (2) centrifugal input largely targets the GC layer and synapses
onto GCs are perisomatic (Fig 3.1A; Mouret et al. 2009, but see Illig, 2011); (3) GCs
can undergo at least two types of long lasting afterdepolarizations, one dependent
on GC muscarinic receptor activation (Castillo et al., 1999; Pressler et al., 2007b)
and the other on an appropriate convergence of mitral cell (feedforward) and
cortical (feedback) inputs onto GCs (Egger et al., 2005b). Another model also
predicted that OB beta oscillations can only occur when GCs are in high states of
excitability and relied on spiking GCs (David et al., 2015b). Some studies have
shown that GCs spike rarely and can release GABA in a graded fashion at the
dendrodendritic reciprocal synapse (Schoppa et al., 1998b; Cang and Isaacson,
2003b). We therefore interpreted excitability not as a tendency to spike but rather a

tendency to drive graded inhibition (model summarized in Figure 3.1).
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Figure 3.1. Modeling predictions. A: Schematic of olfactory bulb circuitry. Glomeruli (GLO)
innervated by unique receptors receive sensory inputs which are conveyed to mitral cells
(MCs). Sensory (thick gray arrows) and cortical/neuromodulatory feedback (thin black
arrows) both converge onto granule cells (GCs). B: Modeling results (Osinski and Kay, 2016)
showing odor-induced LFP power and frequency landscapes under normal (top) and impaired
(bottom) GC excitability conditions. The y-axis is inhibitory weight, which represents the
strength of inhibition from GCs to MCs, and the x-axis shows excitatory weight, which
represents the strength of sensory input to MCs. The boundary of the beta regime (20 - 30 Hz)
is drawn in red. White regions had power less than or equal to the noise floor, which was
defined as the maximum power of the residual oscillation due to common inputs to MCs when
inhibition is removed. The MC stimulation due to strong (high volatility) and weak (low
volatility) odorant stimuli at constant inhibitory weight are marked by a green square and
gray triangle, respectively. In the normal condition (top) the evoked beta frequency is fairly
stable with respect to sensory input strength and both low (gray triangle) and high (green
square) volatility odorants induce beta oscillations. In the impaired condition (bottom) the GC
resting potential (Vrest,cc in the model) remains at -70 mV, and the evoked beta frequency is
less stable over the same range of inputs. In this condition, the high volatility odorant (green
square) generates high power low gamma oscillations, while the low volatility odorant (gray
triangle) induces higher power beta oscillations that it did in the normal condition. C: (Top)
Beta oscillation frequency remains stable as the strength of the NMDA current from GC to MC
(Wnmba,ce in the model) is gradually reduced to 0, because they are sustained by the N-type
voltage gated channel current. (Bottom) In this particular simulation, the LFP power increases
as NMDA is reduced because the system is over-inhibited for high values of Wxmpacc. The
dashed line indicates power of the noise floor due to common excitation without inhibition.
(Figures adapted and edited from Osinski and Kay (2016), with permission.)
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The model predicted that GC excitability influences the stability of OB LFP
oscillation frequency. Beta oscillations were generated over a wide range of
parameters when GCs were in a high state of excitability, providing sustained
graded inhibition onto MCs. Decreasing GC excitability destabilized the LFP
frequency, such that stronger stimuli would drive oscillations out of the beta regime,
while weaker stimuli could actually induce higher power beta. The bi-directional
effect on beta oscillation power was a consequence of shifting the balance of
excitation and inhibition onto MCs. This is illustrated in Figure 3.1B, which shows
the range of LFP frequencies generated by the simulated MC-GC dendrodendritic
network as a function of sensory input to MCs and strength of GC-MC inhibition in
normal and impaired GC excitability conditions. Two points illustrate the predicted
effects of low volatility (weak odor, low excitatory weight) and high volatility
(strong odor, high excitatory weight) odorants on the LFP under these two
conditions. Under normal conditions, a high volatility odorant (green square)
induces beta oscillations with relatively high power, and a low volatility odorant
(gray triangle) induces lower power beta oscillations (Figure 3.1,B top). Under
impaired GC excitability conditions, the strong odorant induces high power low
gamma frequency oscillations instead of beta oscillations (Figure 3.1,B bottom).
Conversely, the weak odorant induces higher power beta oscillations than it did
under normal GC excitability. Thus, the model predicts that for strong odors, a drug
that lowers GC excitability should attenuate the power of beta oscillations, but for

weak odors the same drug should enhance the evoked beta oscillations.
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Our model also predicted which channels and currents maintain beta vs. gamma
oscillations. Beta oscillations could be sustained in the model by graded inhibitory
currents, mediated primarily by voltage-dependent calcium channels (VDCCs), even
when NMDA currents were blocked (Figure 3.1C). Gamma oscillations, however,
could not be maintained in the model without intact NMDARs, which matched
results showing that APV, an NMDAR antagonist, blocks gamma oscillations in the

OB of waking mice (Lepousez and Lledo, 2013b).

3.1.2 Overview of pharmacological experiments

We tested the predictions of our model experimentally by infusing drugs into the
OB that modulate GC excitability in several ways. Muscarinic receptors are found in
high density in the EPL, where GCs synapse onto MC lateral dendrites and at
moderate densities in the GC layer (Fonseca et al.,, 1991; Lein et al.,, 2007).
Muscarinic receptor agonists can both inhibit or excite GCs by differential activation
of M1 or M2 receptors (Castillo et al., 1999; Mandairon et al.,, 2006; Smith and
Araneda, 2010; Li and Cleland, 2013) and can influence their excitability by
modulating afterdepolarization (Nickell and Shipley, 1993; Pressler et al., 2007b).
When we infused scopolamine, a muscarinic antagonist, into the ventromedial OB
prior to an odor sampling session, beta oscillations were decreased in response to a
high volatility odorant and increased in response to a low volatility odorant.
Furthermore, we found that infusion of APV, an NMDAR antagonist, suppressed
gamma but not beta oscillations. Both of these results align well with the model’s

predictions. Injection of oxotremorine, a muscarinic agonist produced more variable
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results, but in some rats we observed a tendency for OB gamma and beta to be
suppressed, possibly due to over-inhibition. Although beta oscillations require
intact connections between OB and PC (Neville and Haberly, 2003b; Martin et al.,
2006b), we found that PC beta oscillations show a degree of independence in power,
and coherence between the OB and PC is relatively unaffected by decreasing beta in
the OB. Together, these results confirm our model predictions and reveal a more
nuanced picture of the generation of beta oscillations in the olfactory system than

was previously understood.

3.2 Methods

Subjects were 8 adult male Sprague-Dawley rats (350 - 450 g; purchased from
Envigo (Harlan)), maintained in the colony room on a 14 -10 h light/dark schedule
(lights on at 08:00 CST). Two rats were used for pilot studies to determine drug
dosages. Six rats were used for the data as reported. Rats were housed singly after
electrode implantation and had access to unlimited food and water for the course of
the experiments. All animal procedures were done with approval and oversight by
the University of Chicago Animal Care and Use Committee with strict adherence to

AAALAC standards.

3.2.1 Electrode implants

Before each surgery, rats were given a subcutaneous injection of ketamine

cocktail (35 mg/kg ketamine, 5 mg/kg xylazine, and 0.75 mg/kg acepromazine).
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Anesthesia was maintained by checking for reflexes every 15 min and administering
intraperitoneal injections of ketamine. Bipolar stainless steel formvar insulated
electrodes (100 um wire; ~1 mm vertical tip separation) were placed in the left
anterior OB (8.9 mm anterior to bregma, 1.5 mm lateral, average depth 3 mm), left
aPC (0.5 mm anterior to bregma, 3.0 mm lateral, 15° angle, average depth 8 mm),
and right ventromedial OB (8.5 mm anterior to bregma, 1.5 mm lateral, average
depth 4 mm) as shown in Figure 2A. A cannula guide (Plastics One C315, 26 gauge, 5
mm guide with 0.75 mm internal injection cannula projection) with two stainless
steel electrodes attached on either side of the shaft was implanted in the left
ventromedial OB (8.2 mm anterior to bregma, 1.5 mm lateral, average depth 2.5
mm). Bipolar electrodes were vertically positioned across the ventral mitral cell
layer in the OB and across the layer 2/3 pyramidal cell layer in the aPC by orienting
the electrode perpendicular to the cell layer and lowering it until the LFP was
reversed across the two leads of the bipolar electrode. The cannula was inserted
into the GCL by observing a reduction in the amplitude of the LFP after lowering
past the dorsal mitral cell layer. Internal cannula depths determined post mortem
are shown in Figure 2D. Reference and ground wires attached to stainless steel
screws were secured to the skull over the left cerebellum and right occipital lobe
respectively (see REF & GND Fig. 2A). Additional screws were used for securing the
headstage to the skull. Connector pins for each lead were inserted into a round
plastic receptacle (Ginder Scientific, Ottawa, Canada), and the assembly was
embedded in dental acrylic (See Fig. 3.2E). Rats were allowed to recover for 2 weeks

after surgery before beginning the experimental protocol.
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Figure 3.2. Electrode placement and drug spread. A: Schematic showing electrode and
cannula placements. B: Two representative examples showing spread of methylene blue
dye (injected just before perfusion) localized to the left OB. C: Schematic sagittal slice
showing approximate anterior-posterior spread of drug (blue lines) as determined by
spread of methylene blue dye. (The two green lines correspond to the two rats with large
contralateral scopolamine effects whose means are colored green in Figure 6C.) D:
Schematic coronal section of LmOB showing approximate internal cannula tip depths
determined via Prussian Blue reaction. E: Close-up of of cannula guide, internal cannula
projection, and cannula electrodes. F: Fully recovered rat with wireless transmitter
plugged into implant. A metal collar is tightened to ensure a firm connection. A battery is
taped to the top of the wireless transmitter. The cannula cap is indicated.
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3.2.2 Verification of electrode placements and drug spread

After experiments were complete, rats were deeply anesthetized with a
euthanizing dose of Urethane (1g/kg), and methylene blue dye was injected into the
cannula at the same rate and volume used for drugs during experiments (4 pL, at 1
pL/min). Dye could not be injected into one rat due to cannula blockage. Current
was passed between each electrode and the ground screw, thus depositing iron
residue at the tips of the stainless steel wires. The brain was fixed via intracardial
perfusion, and electrode tips were marked using the Prussian Blue reaction. Prior to
sectioning, brains were extracted from the skull, the electrode array was removed,
and the brains were sunk in 30% sucrose (0.1 M phosphate buffered formal saline)
for two days and then flash frozen in isopentane cooled to -40deg. OB cannula
placements were confirmed by visual examination of coronal slices showing
electrode tracks and the blue stain marking the electrode tips (Fig. 3.2D). The

spread of methylene blue dye across rats is shown in in Fig. 3.2B,C.

3.2.3 Drugs and dosages

We used three drugs in this study: scopolamine (Sigma Aldrich, MW
339.81g/mol), oxotremorine (Sigma Aldrich, MW 322.19 g/mol), and APV (Sigma
Aldrich, 197.13 g/mol). We ran pilot experiments on 2 rats (not including the 6 rats
used for the study) to determine the appropriate dose of these drugs. For our initial
choice of Scopolamine dose we followed (Mandairon et al., 2006), who used a low

concentration of 7 mM and a high concentration of 38 mM. In our pilot experiments,
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we found no effect of low concentration on beta power and small effects at the
higher dose. We found that a slight increase to 50 mM produced much stronger
effects. In this study we refer to 38mM as the low concentration and 50mM as the
high concentration. We did not use the 7 mM dose, because we wanted to limit the
number of drug conditions planned for each subject. For APV we tried to follow
Leposez & Lledo (2013) who infused 0.25 mM and 1 mM for high and low
concentrations. However, both of these doses caused seizures in our rats. We found
that 100 uM was a safe dose that still produced significant effects. For oxotremorine,
we followed Bendahmane et al. (2016) and Smith et al. (2015) who used 10 uM and
30 pM doses. No significant effects were seen at 10 pM, but 30 uM produced strong
effects (though they were not always consistent, see Results). Higher concentrations
tended to induce seizures.

Initially, we intended to use low and high doses of each drug, but because
oxotremorine and APV produced seizures at higher doses and showed little effect at
lower doses in our pilot study, and the need to limit the number of infusions for each
subject, we only used low doses of oxotremorine and APV for this study. There were
no seizures induced by scopolamine in our pilot rats, even at concentrations higher

than those used in the present study.

3.2.4 Experimental design

After full recovery from surgery, rats were habituated to odors for one day
before the start of experiments to eliminate novelty effects. Drugs were freshly

mixed immediately before each experiment. At the start of the experiment, rats
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were plugged into a Multichannel Systems wireless transmitter headstage (W16-HS)
and then placed in a clean polycarbonate cage with fresh bedding. A battery to
power the headstage was taped to the top of the assembly as shown in Figure 3.2E.
Each experiment started with 5 minutes of free behavior recording to obtain a
baseline LFP used to normalize the odor evoked gamma and beta oscillations.
Afterwards, 4 pL of drug or saline was infused into the left OB at a rate of 1 pL/min.
If the cannula was clogged, then 2 pL of saline was carefully injected by hand to clear
the blockage. In some cases the cannula became permanently clogged (possibly due
to scar tissue and glial cell buildup) and no further sessions could be run, resulting
in partial data for those subjects. A control session with saline injection was
performed after every two drug sessions to track any systematic changes in the LFP
from day to day. The order of drug sessions was balanced across rats.

Drug effects often started immediately after or even during the infusion (Fig.
3.3C), so we began odor presentations immediately after infusion. Two odorants
were used in this study, Ethyl-2-methylbutyrate (EMB, Sigma Aldrich) and Geraniol
(GER, Sigma Aldrich). EMB has a high volatility (theoretical vapor pressure-VP- at
250 C of 7.86 mm Hg) and elicits high amplitude beta oscillations, while GER has a
low volatility (VP 0.0133 mm Hg) and elicits smaller beta oscillations (Lowry and
Kay, 2007b). Odors were presented in blocks of 24 trials with ~20 s between trials
(total 48 trials). These odor blocks spanned the two phases of an apparent biphasic
scopolamine effect (see Figs 3.3 & 3.4). For each trial, an odor soaked cotton swab
was held under the rat’s nose for two or three sniffs (as judged by the presenter). In

two of the rats, we also used an interleaved odor presentation design, where EMB
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and GER were alternated on each presentation for a total of 48 trials, producing 12
trials of a given odor for each half of the experiment. Interleaving the odor
presentations did not change the main results of the experiment. The drug and odor
order were balanced across all 6 rats. The timeline of the odor block presentation

experiment is depicted in Figure 3.4B.

3.2.5 Electrophysiology

All data were recorded wirelessly using Multichannel Systems 32-channel basic
wireless recording system, using a 16-channel headstage (W16-HS) with a digital
sampling rate of 2 kHz. To power the headstage a small battery was secured to the
top of the assembly with tape as shown in Figure 3.2E. Each lead was recorded with
reference to a skull screw above the left cerebellum (see REF in Fig. 3.2A). A ground
screw was placed over the right posterior cortex. Approximate odor onset times
were recorded with a 5V TTL pulse triggered by the experimenter pressing a button
just before the rat took its first sniff. Brain signals and events were recorded with

MC Rack software (http://www.multichannelsystems.com/downloads/software).

3.2.6 Spectral analysis

For each rat, we assessed the quality of signals from the two leads from each
brain area. We chose the lead with the cleanest signals and most prominent beta
oscillations from each pair and used this lead for analysis across the entire set of

experiments. All analysis was performed in MATLAB® R2015b. We filtered out
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movement artifact (MATLAB ‘designfilt’ function using ‘lowpassfir’ with pass 4Hz,
stop 8Hz, then applied with the filtfilt function) and subtracted it from the original
data. We found that finite impulse response filters produced less prominent edge
effects than infinite impulse response. We then extracted the odor presentation
trials from the continuous LFP trace in 4-second windows starting from the button
press at the start of each trial. We calculated power spectra for each trial using the
multitaper method implemented in the Chronux version 2.11 toolbox for MATLAB
(Bokil et al., 2010b), with a time-half-bandwidth of 2 and 3 tapers over a frequency
range of 1 Hz to 100 Hz. This method multiplies each LFP trace with a series of
tapers (Slepian sequences) and then averages them, which has the effect reducing
spurious noise contributions. The Slepian sequences also possess desirable spectral
concentration properties, which produce a more accurate measure of the underlying
power spectrum (Bokil et al.,, 2010b). We divided the LFP power spectra into three
bands: beta (15 - 30 Hz), low gamma (40 - 60 Hz), and high gamma (60 - 100 Hz).
We discarded the first 4 trials of each 24 trial odor block, because beta often only
comes on after the 3 or 4t odor presentation, consistent with findings in Lowry
and Kay (2007). We then averaged the power in each frequency band across the
remaining 20 trials, and report the peak beta band power from the averaged power
spectra.

To calculate coherence between OB and PC signals we used the coherencyc
function in the Chronux toolbox. This function applies a multitaper coherence
calculation to the entire 4s odor period for each trial and then averages across trials.

We used 9 tapers with a time-half bandwidth of 5. We then applied Fisher's Z
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transform of the coherence (Kay and Freeman, 1998; Kay and Beshel, 2010b),
defined as tanh-1(coherence), to distribute the values from zero to infinity instead of

Zero to one.

3.2.7 Double normalization of power spectra

The LFP amplitudes differed across subjects and days, primarily due to
differences in electrode placement and condition across subjects, electrode drift
within subjects, and effects of repeated infusions. Normalizing the LFP power during
odor presentations by baseline power alone was not sufficient to put the power
values of different rats on the same scale for meaningful statistical comparisons,
because different rats may show different degrees of odor-evoked oscillatory power
increase even under normal conditions. These differences are often due to
differences in electrode placement or quality. Therefore, we also compare the
relative odor-evoked power changes under drug vs. saline conditions. Thus, we
normalized each power spectrum first by the power in the 5 min baseline before the
infusion and then by the power during odor presentations in the most recent saline
session. The power in the 5 min baseline period was determined by dividing it into 4
s long non-overlapping windows and averaging the power of all these windows.
Using the same length windows as for odor presentation ensured that the baseline
spectrum had the same frequency resolution as the power of the odor presentation
trials. Windows with significant movement artifacts were discarded. The saline
sessions were also normalized by their baselines before being used as

normalizations for the drug sessions.
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3.2.8 Statistical methods

5-way unbalanced ANOVA was conducted for scopolamine and oxotremorine
sessions separately using the MATLAB anovan function. Factors were subject,
saline/drug, odor identity, odor block, and frequency band. For APV sessions we
conducted a 4-way ANOVA, because odor blocks were combined for analysis of
these sessions. An unbalanced design was used because some rats had missing
sessions, either due to the cannula becoming permanently blocked or a drug causing
seizures even at lower doses (these data were excluded). In addition, in some cases
there were different numbers of repetitions (uniform odor blocks had rep = 20,
interleaved odor blocks had rep = 10, after excluding the first 4 trials in each block).

When ANOVAs were significant, we performed post-hoc t-tests between each
saline and drug pair using the mean for each rat. There were 2 (odors) x 2 (odor
blocks) x 3 (frequency ranges) = 12 comparisons for each drug, giving us a
Bonferroni correction factor of 12, and setting the significance threshold at p <
0.05/12 = 0.004. (For APV, we found no differences across odor blocks, so the trials
were treated as a single block, with the number of comparisons reduced to 6, p <
0.008. See Results- Effects of drugs on baseline LFP.) Throughout the paper we
present the data in violin plots (using MATLAB File Exchange function violin.m),
which show a smoothed probability density distribution (using a Gaussian kernel)
of the normalized power in beta, low gamma, and high gamma frequency bands

averaged across all rats.
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3.3 Results of pharmacological experiments

We designed the experiments to test the hypothesis that manipulating GC
excitability would affect the amplitude of beta oscillations as predicted by our model
(Fig. 3.1). Two drugs, scopolamine and oxotremorine, tested the effects of GC
modulation by the muscarinic ACh receptor. A third drug, APV, tested our model’s
prediction that blocking NMDA receptors would decrease gamma but not beta

oscillations.

3.3.1 Effects of drugs on baseline LFP

We timed odorant presentation to occur within the duration of the drug effects.
To measure the duration of the drug effects, we recorded LFPs from 3 rats for 45
min after infusion without any odor presentations. Representative effects on the left
medial OB (where the drug was infused) and right medial OB (a control) of a single
rat are shown in Fig. 3.3A,B (end of infusion marked by vertical dashed line). To
visualize the average effect we aligned the LFPs of each session to the end of
infusion time, and averaged the 40 - 80 Hz gamma band power across subjects (Fig.
3.3C, gray traces). All three drugs typically began to take effect during infusion. APV
(100 uM) had a highly consistent effect in every session, nearly abolishing gamma
for over 20 minutes post infusion (Fig. 3.3Ciii). The muscarinic drugs, however, had

more complex effects.
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Figure 3.3. Temporal effects of drugs on OB LFP power. A: Representative spectrograms
of LmOB LFP after infusion of scopolamine (Ai), oxotremorine (Aii), and APV (Aiii) into the
LmOB without any odor presentations. Vertical dashed lines indicate end of infusion (time to
complete the infusion varied slightly from session to session). B: Spectrograms of
contralateral (RmOB) LFP activity corresponding to the sessions in A. C: Mean gamma (40 -
80 Hz) power averaged over no odor (gray) and odor presentation (pink) sessions aligned to
end of infusion time (vertical dashed lines indicate end of infusion). Power was normalized
by the average baseline power (indicated by horizontal dashed line). Scopolamine and APV
had fairly consistent effects across subjects, but oxotremorine effects were highly variable.

Scopolamine infusion produced a consistent biphasic effect on the LFP,
starting with a strong suppression of LFP power across gamma and beta
frequencies, followed by a “rebound” boost in low gamma power, which slowly
dissipated as gamma crept up to the baseline gamma frequency over about 20 min
(Figures 3.3Ai and 3.3Ci). We measured the duration of the early phase as the time
that the average broadband gamma (40 - 80 Hz) power took to return to pre-

infusion baseline gamma power levels, which we found to be ~7-8 mins after the
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end of infusion (Fig. 3.4A). Because of this biphasic effect we designed the odor
presentations to fit into two blocks, each lasting about 7-8 minutes (24
presentations spaced by roughly 20s each), so that the first block covers the first
phase while the second block covers the second phase. In Figure 3.4C we show the
spectrograms of scopolamine (50 mM) infusion followed by odor presentation
sessions in 4 rats to confirm that the first odor block (green line) and second odor
block (red line) bracketed this transition. We used the same odor block design for all

sessions to avoid introducing new variables, but since APV did not show biphasic

A C log(Power)
825 100 100
c , N 80 80

©

£ = ;

g 15 60 60 ©
(O] 40 40

g e --z--------
205 20 20
g : Infusion Early Late ! '
=% 90 5 o0 5 10 15 20
Time post infusion (min)
B 100 B
80 |10

1stblock 2" block

drug /
AW |24 trials | 24 trials
NI Sedor 1 ' odor 2

60| |
40
20 [

~7min ~ 7min

10 0 10 20
Time post infusion (min)

Figure 3.4. Determining average duration of early phase scopolamine effect in LmOB. A: Mean
normalized power in the LmOB gamma band (40-80Hz) from all scopolamine sessions aligned by the
end of infusion time-points. The infusion period (gray block) differed in duration from session to
session (see methods). Dashed horizontal line is the baseline gamma power before infusion (power
was normalized by baseline, so baseline is at 1). We interpret the early phase of scopolamine as the
time post infusion it takes for mean gamma power to return to baseline (marked by vertical line),
which is about 7-8min B: Odor presentation experimental timeline. The 1st block overlaps with the
early phase of scopolamine effect, the 2nd block with the late phase. C: Example spectrograms of
scopolamine (50 mM) sessions in 4 rats. Vertical black dashed lines indicate end of infusion. Colored
lines at the top of each plot indicate the duration of each step in the experiment using same color
scheme as the timeline in B. In each of these plots, the 15t (green) and 2" (red) odor blocks bracket the
transition between the two phases of the scopolamine effect. Odor evoked beta and gamma
oscillations can be seen in some of the plots. In these plots, the 2n odor block starts just before the
onset of the rebound gamma (scopolamine effect phase 2).
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effects we combined the APV data from both blocks.

While the scopolamine and APV effects were fairly consistent from session to
session, the oxotremorine effects were highly variable. In the early sessions without
odor presentations, oxotremorine tended to increase gamma power (Fig. 3.3Cii, gray
trace), but in 70% of the odor presentation sessions oxotremorine reduced gamma
power (Fig. 3.3Cii, pink trace). In those sessions, gamma suppression was followed
by a rebound gamma increase, similar to the scopolamine sessions. Because of this,
we used the same odor block design for oxotremorine as scopolamine.
Oxotremorine is known to produce excitatory and inhibitory effects in the OB
through differential activation of M1 and M2 receptors (Smith et al.,, 2015, see
Discussion), and this may in part be responsible for the highly variable effects on
gamma. We include oxotremorine data here for completeness, but we admit that

more work must be done to dissect its effect on OB oscillations.

3.3.2 Muscarinic receptors

Our previous modeling work (Osinski and Kay, 2016) predicted that reducing GC
excitability would lift the frequency of LFP oscillations induced by strong odors out
of the beta regime into the low gamma range but would leave LFP oscillations
evoked by weak odors in the beta regime with possibly some increase in power (Fig.
3.1B). To test these effects, we infused scopolamine (38 mM & 50 mM), a
nonselective muscarinic antagonist with twice the affinity for M2 as for M1
receptors (Bolden et al.,, 1992), through a cannula positioned in the GC layer (Fig.

3.2D). Muscarinic drugs are known to modulate GC excitability in a complex manner
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(Castillo et al., 1999; Mandairon et al., 2006; Pressler et al., 2007b; Devore and
Linster, 2012b; Li and Cleland, 2013; Smith et al., 2015). With scopolamine, our
intention was to prevent heightened excitability states from occurring, thus placing
GCs in an impaired excitability state, as described in the modeling results in Figure
1B. We chose one high volatility odorant, ethyl-2-methylbutyrate (EMB), and one
low volatility odorant, geraniol (GER), to probe the effects induced by strong and
weak odors, respectively. As described earlier (Fig. 3.4), we divided odor
presentation sessions into two blocks of 24 trials each lasting ~7-8 minutes to cover

the biphasic scopolamine effect on the background LFP.

3.3.2i Results from a single scopolamine session

We first take a close look at a representative scopolamine (50 mM) session and
its associated saline session from a single rat (Fig. 3.5), and then we examine the
summary statistics of all the scopolamine sessions across all rats (Fig. 3.6). Figure
3.5A shows single trials of EMB- and GER-evoked oscillations in LaOB, LmOB
(infusion site), RmOB, and LaPC after saline and scopolamine (50 mM) infusions. In
these sessions, EMB was presented in the 1st odor block and GER in the 2rd. EMB
evoked prominent beta oscillations on all channels after saline infusion (labeled f3,
Fig 3.5Ai). LaOB beta was typically smaller in amplitude than LmOB, consistent with
other recordings in our laboratory, possibly because anterior OB receives fewer
feedback fibers than more posterior parts or simply because the increased
curvature in the anterior end of the bulb reduces the coherence of the laminar

cortical field. After scopolamine 50 mM infusion, the EMB-evoked LaOB and LmOB
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Figure 3.5. Representative scopolamine session and associated saline session from a single
rat. A: Representative LFP traces during EMB (top) and GER (bottom) presentations in LaOB,
LmOB, RmOB, and LaPC after saline (left) and scopolamine (right) infusions from a single rat.
Twenty such trials are used to produce the power spectra in B. Odor presentation times are
indicated by dashed vertical lines. In this session the EMB-induced beta in the LOB (labeled f3) was
visibly abolished and appeared to be replaced by a low gamma oscillation (labeled low y). This
occurred in 9 out of 12 of the scopolamine (50 mM) sessions and 4 out of 12 of the scopolamine (38
mM) sessions across the 6 rats. Beta persisted in the RmOB after scopolamine infusion. B: Mean
power spectra of LaOB (Bi), LmOB (Bii), RmOB (Biii), and LaPC (Biv). For each brain region we
show the LFP power spectra during EMB (top) and GER (bottom) presentation after saline (black)
and scopolamine (orange) infusion. Power was normalized by the pre-infusion baseline,
represented by the horizontal dashed line at 1. In the LmOB EMB spectrum (Bii, top) we annotate
the beta (f), low gamma (low y), and high gamma peaks (high y).
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beta oscillations were abolished and appeared to be replaced with a high power low
gamma frequency oscillation (labeled low vy, Fig. 3.5Aiii). The contralateral (RmOB)
beta oscillation, where no drug was delivered, was still present (labeled (3, Fig.
3.5Aiii). GER did not evoke visible beta oscillations under the saline condition (Fig.
3.5Aii), but did evoke visible beta oscillations after scopolamine infusion (Fig.
3.5Aiv). In these trials the apparent opposite effect of scopolamine on EMB- and
GER- evoked beta oscillations followed our model predictions of a bidirectional
effect (Fig. 3.1B).

Figure 3.5B shows the average power spectra (normalized by baseline) of the
single sessions from which the representative trials in Figure 3.5A were taken. The
average power in the beta frequency range for LaOB and LmOB during the 15t odor
block (EMB) is noticeably reduced, and a peak in the low gamma frequency band
appears after scopolamine infusion (Fig 3.5Bi,ii, top; peak at ~55 Hz). This low
gamma peak represents the low gamma oscillation that appears to occur in place of
the beta oscillation, seen in the LFP trace in Fig 4Bii. There is also an increase in
broadband low gamma in the 274 odor block (GER). Unlike the 1st odor block
however, this increase in low gamma is most likely not odor-evoked, but a
consequence of the rebound gamma increase that occurs in the later phase of the
scopolamine effect as shown in Figures 3.3 & 3.4. The distinction between the
gamma frequencies in the EMB- and GER-induced LFP spectra may be related to the
two different gamma subtypes, gammal and gamma2, noted by Kay (2003) (see
Discussion). There was a small increase in GER-evoked beta under scopolamine in

the representative trial shown in Figure 3.5Aiv, and, on average, the GER-evoked
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beta power was slightly elevated relative to baseline for this session (Fig. 3.5Bii,
bottom). The LaPC showed negligible effects of EMB-evoked (Fig. 3.5Biv, top) and
GER-evoked (Fig. 3.5Biv, bottom) beta following scopolamine infusion. Because PC
tends to produce beta frequency activity spontaneously (Poo and Isaacson, 2009b),
the baseline normalized LaPC beta was fairly low even when there was a visibly
evoked beta oscillation. All three regions in the left hemisphere show a persistent
decrease in high gamma oscillations lasting through both phases of the scopolamine
effect. Although this occurred to some degree in 4 of 6 rats, the effect overall was not
significant (see Fig. 3.6). In the RmOB there was no effect on beta power but a
surprising increase in low gamma power following scopolamine infusion in this rat
(Fig. 3.5Biii). There were prominent contralateral effects in approximately half of
the rats, and this is discussed in more detail later (see Fig. 3.6C). We present this
representative data set from a single rat because the replacement of beta by low
gamma oscillations following scopolamine infusion could only be inferred by
looking at the individual LFP traces themselves (comparing Fig. 3.5Bi and Fig.

3.5Biii), and not from summary statistics.

3.3.2ii Scopolamine effects in the OB

We now turn to address drug effects across all rats for low and high doses of
scopolamine on the beta (15 - 30 Hz), low gamma (40 - 60 Hz), and high gamma (60
- 100 Hz) frequency bands. In order to put power values from different rats on the
same scale we normalized the LFP power by both pre-infusion baseline and saline

power (see Methods). 5-way ANOVAs were computed, with subject, drug treatment
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(saline vs. drug), odor, frequency band, and block (early vs. late) as factors for each
electrode location and drug concentration. The results of post hoc t-tests between
the means of the saline and drug sessions for each rat and electrode location are
reported in Fig. 3.6. As described in Methods, the Bonferroni correction on post hoc
tests sets the significance threshold at p < 0.004 for drugs that showed a biphasic
effect. For these and all subsequent descriptions of the drug effects, we first present
the results of our ANOVA analyses, including the effects of all factors. After that, for
electrode locations that show significant main effects or interactions involving the
drug treatment, we present post hoc comparisons. Other effects (odor, subject,
frequency band) have been extensively covered in our previous reports (Lowry and
Kay, 2007b; Kay et al., 2009b; Kay, 2014b; Frederick et al., 2016a).

Effects on the left OB (treatment side) were similar across the two drug
concentrations. For the low concentration (38 mM) scopolamine treatment, we
found significant main effects of all five factors on LFP power in both sites in the OB
(LmOB: subject p=7.4e-8,1? 0.16; drug p=0.0019, 2 0.03; odor p=1.03e-7,12 0.11;
block p=0.0076, 12 0.0003; frequency band p=7.77e-5,1? 0.07; LaOB: subject
p=0.0324, 12 0.05; drug p=0.0389, 12 0.02; odor p=1.00e-6,n? 0.12; block p=0.0434,
12 0.003; frequency band p=0.00001, n? 0.08). Some of these effects were expected
because of our prior knowledge about how the volatility of odors affects the power
of beta oscillations (odor, band) and differences in electrode placement and
therefore power of different oscillation frequencies across subjects (subject).
Importantly, there was also a significant interaction between drug and odor at the

injection site only (LmOB: p=0.0366, n? 0.15), plus additional interactions at that
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Figure 3.6. Scopolamine effects on odor induced LFP oscillations. A: Violin plots summarizing
effects of low (38 mM, Ai) and high (50 mM, Aii) scopolamine doses on LmOB (infusion site) in all 6
rats for presentation of EMB (top) and GER (bottom) during 1stand 2 odor blocks. White circles
represent means of each rat. Power for each session was doubly normalized, first by baseline and
then by its closest saline session (black dashed line). A value of 1 indicates no difference from the
saline condition. Black solid horizontal lines on the violins show means for all rats; red horizontal
lines are medians. Asterisks represent p < 0.004 for the post hoc comparisons between mean saline
and drug for each rat. B, C: Violin plots summarizing effects of scopolamine (50 mM) on LaOB and
RmOB (same annotations as A). Although the scopolamine effect in RmOB was not significant in the
post hoc comparison across all rats, two rats showed very strong low gamma power (colored green
for visualization). Note that the y-scale is increased for RmOB to fit the huge increase in low gamma
power that occurred in one rat. D: Z-coherence between LmOB and LaPC under saline and
scopolamine (50 mM) conditions was computed fro EMB and GER in both odor blocks.
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site between subject and odor (p=0.0249, n? 0.04), subject and frequency band
(p=8.76e-7,1? 0.17), odor and block (p=0.0447,1? 0.01), and odor and frequency
band (p=2.66e-6, n? 0.10). Significant interaction effects for the LaOB were subject x
band (p=2.04e-6,,n? 0.22), odor x block (p=0.005,? 0.03), and odor x band
(p=0.0007,12 0.07).

For the high concentration (50 mM) scopolamine treatment, we again found
significant main effects for all five factors at the injection site (LmOB: subject
p=1.93e-7,1? 0.15; drug p=0.0020, n? 0.03; odor p=2.57e-7, 12 0.09; block p=0.0114,
12 0.02; frequency band p=5.24e-5, 1?2 0.07). We also found significant interactions
between drug treatment and odor (p=0.0043, n? 0.03) and drug treatment and block
(p=0.0211, 12 0.02), in addition to expected subject x band (p=1.93e-5,12 0.14) and
odor x band (p=1.45e-6,1? 0.09) effects. At the anterior OB recording site we did not
find significant main effects of subject or odor, but we did find significant main
effects of drug, block and frequency band (LaOB: drug p=0.0087, % 0.0001; block
p=0.0327,12 0.004; band p=2.58e-5,1n? 0.11). At this site, we also found significant
interaction terms involving drug treatment (drug x odor, p= 0.0154, 12 0.03; drug x
block, p=0.0066, n? 0.03; drug x band, p=0.0031, n? 0.03), plus additional
interactions (subject x band, p=0.0006, n? 0.16, and odor x band, p=0.0043, 2 0.05)
as expected.

Post hoc comparisons of drug vs. saline effects for each electrode site and
frequency band shed more light on main effects and interactions. In the first odor
block, LmOB beta power was significantly reduced for the high volatility odorant

(EMB) only for the high scopolamine dose (50 uM, Fig. 3.6Aii top) but was
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significantly reduced for both low and high doses when the low volatility odorant
(GER) was presented (Fig. 3.6Ai,ii bottom). It is possible that the strong beta-
evoking tendency of EMB may be counteracting the beta suppressing effects of
scopolamine only at the low dose. GER evokes beta oscillations more weakly, and
therefore the effect of scopolamine dominates even in the low dose.

In the second odor block, effects on beta power diverged between the strong and
weak odors, confirming the bidirectional effect predicted by our model. For the high
scopolamine dose in the second block (Fig. 3.6Aii), EMB-evoked beta was
suppressed just as it was in the 15t odor block, but GER-evoked beta power was
significantly increased. Similar trends are seen for the low scopolamine dose,
though they did not pass our threshold for significance. The LaOB LFP power
followed a pattern similar to LmOB, but only the reduction of beta in the 15t odor
block was significant (Fig. 3.6B). The weaker effects in LaOB may be attributed to
weaker overall beta signals in the anterior OB or possibly insufficient spread of the
drug in some rats (Fig. 3.2Bi). The complete replacement of EMB-evoked beta by
low gamma following scopolamine (50 mM) infusion (as seen in the single trials of
Fig. 3.5A) was seen in 4 out of 12 scopolamine (38 mM) sessions and 9 out of 12
scopolamine (50 mM) sessions (sessions from both odor blocks), while in the
sessions beta amplitude was either reduced or unaffected. The replacement of beta
by low gamma can be inferred only from viewing the odor-evoked periods, not from
the power over the entire 4s trial periods.

There were no significant effects of either low or high doses of scopolamine on

the LmOB gamma bands during the odor exposure periods, though there was a
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tendency for high gamma to be suppressed in during the 1st odor block, consistent
with gamma suppression during the early phase of scopolamine in the no odor
condition (Fig. 3.3). There was a significant reduction in LaOB high gamma power
for EMB in the 15t odor block (Fig. 3.6B). Four of the 6 rats showed enhanced low
gamma power in the 214 odor block of high dose scopolamine, presumably due to
the rebound low gamma intensification described in Figures 3.3 & 3.4. One possible
reason why rebound gamma did not show a significant gamma increase in all rats is

that odorants tend to increase beta while suppressing gamma (Buonviso et al.,

2003b).

3.3.2iii Scopolamine effects in contralateral OB

As touched upon in Figure 3.5Bii, we noticed some strong but inconsistent
contralateral effects in the gamma frequency bands following scopolamine infusion
into the LmOB. The sessions of two rats in particular (both sessions where EMB was
presented in block 1) had extremely high gamma power under scopolamine,
especially in the low gamma band. The means of these two rats are colored green in
the low gamma power bands of Figure 3.6C for the EMB 1st and GER 2nd odor
blocks (same session). These are the same two rats that had the furthest posterior
spread of dye in post-mortem inspection (two green lines in Fig 3.2C).

The results of the ANOVAs at the two different scopolamine concentrations
showed no main effect of drug treatment on this side, but did show other significant
main effects, as would be expected (38 mM scopolamine: odor, p=1.65e-6, 12 0.12;

band, p=7.63e-9,1? 0.21; 50 mM scopolamine: odor, p=0.007, n? 0.04; band,
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p=0.0118,1? 0.05). At both concentrations there was a significant interaction
between drug and frequency band (38 mM: p=0.0025, n? 0.06; 50 mM: p=0.0015, n?
0.08), which is likely driven by the increase in low gamma power. We also found a
significant odor x band interaction (38 mM: p=0.4.25e-7,1? 0.18; 50 mM: p=0.0170,
n? 0.05).

The increase in low gamma power was not odor evoked, but persisted between
odor presentations and lasted throughout the EMB and GER odor blocks. While the
drug x band interaction was significant with a medium effect size, post hoc t-tests
were not significant because of the wide variance across subjects. When the increase
in low frequency gamma did occur, it was obvious to the eye, even during data
acquisition. We suspect that in the sessions where there was a contralateral effect,
some of the drug spread posteriorly into the anterior olfactory nucleus (AON).
Contralateral projections through the anterior commissure linking the left AON to
the right OB are known to exist (Nickell and Shipley, 1993), and it is possible that
blocking muscarinic modulation of these fibers is driving the contralateral increase

in gamma.

3.3.2iv Scopolamine effects in LaPC

In addition to LOB and ROB activity, LaPC activity was also recorded in each rat
(Fig. 3.5A, bottom trace). One rat’s LaPC data had to be discarded due to poor
quality signals. The results of the ANOVAs showed the same effects for both drug
doses. There were no significant effects of drug treatment, either as main effects or

interactions (LaPC 38 mM: subject, p=2.23e-10, n? 0.22; odor, p=4.25e-7, 12 0.09;
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band, p=9.68e-9, n? 0.14; remaining NS. LaPC 50 mM: subject, p=3.29e-10,12 0.20;
odor, p=1.55e-5,1? 0.06; band, p=5.40e-10, n? 0.16; remaining NS.). There were
expected interactions that depend on differences across subjects and odors: subject
x odor (38 mM: p=9.96e-6, 1% 0.09; 50 mM: p=0.0014, n? 0.06), subject x band (38
mM: p=3.67e-8,1? 0.18; 50 mM: p=1.31e-6,1? 0.15), and odor x band (38 mM:
p=5.53e-7,1? 0.10; p=1.82e-6, % 0.09). These results show that there was no effect
on aPC power in any of the frequency bands due to scopolamine action in the OB.

We had expected that a reduction in OB beta power by scopolamine would also
reduce ipsilateral aPC beta power, because beta oscillations require intact
bidirectional OB-PC connections (Neville and Haberly, 2003b; Martin et al., 2006b),
and GCs receive most of their cortical inputs from the ipsilateral aPC. The results
suggest that beta oscillations in the PC can be generated with some degree of
independence from the OB, even though they still require intact projections from
the bulb (at least under anesthesia, Neville and Haberly, 2003). This stability could
be attributed to the PC’s own tendency to generate beta frequency oscillations in
response to odor stimulation. Indeed, a study by Poo and Isaacson (2009) found
prominent PC beta oscillations in urethane-anesthetized rats, even when anesthesia
depresses the feedback inputs into the OB.

We also computed the Z-coherence between OB and PC for scopolamine (50
mM) sessions and the associated saline sessions. A 5-way ANOVA showed significant
main effects of subject, drug, odor, and frequency band (subject, p=1.44e-33, 12 0.62;
drug, p=0.0003, n? 0.05; odor, p=3.61e-7,1? 0.04; band, p=1.14e-6, 12 0.04; block

NS). The drug effect was different across subjects (subject x drug, p=0.0066, n?
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0.02), and there were other significant interactions not involving scopolamine
treatment (subject x band, p=8.22e-6, 12 0.06; odor x band, p=4.8e-7, 12 0.04;
remainder NS). While there was a significant effect of scopolamine overall as a slight
reduction of coherence, none of the post hoc comparisons were significant (Fig.
3.6D). Thus, OB-PC beta coherence was still high even when beta was seemingly
eliminated in the OB. This suggests that a small component at beta frequency
persisted in the OB, even when beta power was suppressed to baseline levels by

scopolamine, and that this is enough to support beta band coherence with the aPC.

3.3.2v Oxotremorine effects

To complement the antagonistic effects of scopolamine, we also infused a
muscarinic agonist into the OB. We chose oxotremorine, because it has already been
used in several studies of bulbar cholinergic modulation (Mandairon et al., 2006;
Smith et al., 2015). We expected oxotremorine and scopolamine to have opposite
effects, but oxotremorine produced inconsistent results (Fig. 3.3). While the results
are somewhat equivocal, we include them here for completeness.

Results from our ANOVA analysis show that all factors show significant main
effects at the injection site (LmOB: subject, p=0.0002, n? 0.11; drug, p=0.0033, n?
0.02; odor, p=1.46e-5,12 0.09; block, p=0.0173, 12 0.02; band, p=0.0054, n? 0.05).
There were no significant interactions of any of the other factors with drug, but
there were some other significant interactions: subject x band (p=0.0131, n2 0.09),
odor x block (p=0.0013, 1% 0.05), and odor x band (p=3.86e-5,? 0.05). At the

anterior OB site, there were main effects only of drug and odor (LaOB: drug,
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p=0.0019, 1% 0.06; odor, p=0.0028,n? 0.06), no significant interactions with drug
effects, but other significant interactions (odor x band, p=0.048, n2 0.04; subject x
band: p=0.0122, 1?2 0.12; odor x band, p=0.0021, n? 0.08).

As opposed to scopolamine, oxotremorine did significantly affect PC activity. We
found significant main effects for all factors except odor block (LaPC: subject,
p=0.0003,1? 0.11; drug, p=0.0156,1? 0.03; odor, p=0.0007,n? 0.06; band, p=0.0002,
12 0.10). There were no significant interactions with drug effects, but there were
interactions between subject and odor (p=0.0360, n? 0.04), subject and frequency
band (p=0.0009, n? 0.13), odor and block (p=0.0282, % 0.02), and odor and
frequency band (p=0.0003, % 0.09). The contralateral OB also showed significant
main effects, including a drug effect (RmOB: drug, p=0.0226, n? 0.02; odor, p=1.70e-
5,712 0.09; band, p=6.28e-11, n? 0.25, remaining factors NS). No factors showed
significant interactions with drug, but other interactions were significant: odor x
block (p=0.0139, 1?2 0.03) and odor x band (p=1.91e-7, 1?2 0.15).

These effects played out in the post hoc analysis in somewhat confusing ways.
Following oxotremorine (30 uM) infusion into LmOB, there was a significant
decrease in LaOB beta power during presentation of GER in the 274 block (Fig. 3.7A)
and LmOB beta power during EMB in the 15t odor block (Fig. 3.7B). This was
surprising, because scopolamine also blocked beta in the 15t EMB odor block, but
increased beta in the 2nd GER odor block (Fig. 3.6Aii). So, the two drugs produced
the same effect in the first block but opposite effects on GER in the second block.
However, while scopolamine may have blocked EMB-induced beta by reducing GC

GABA release to the point that oscillations could not be sustained, oxotremorine
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Figure 3.7. Oxotremorine effects on odor-
induced LFP oscillations. Violin plots
summarizing the effects of oxotremorine on
LaOB (A), LmOB (B, infusion site), and LaPC
(C) during presentation of EMB (top) and
GER (bottom). (There were no significant
post hoc drug effect comparisons for RmOB.)
White circles represent means of each rat.
(Normalization, color codes, and significance
asterisks are the same as in Fig. 6).
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may have blocked EMB-induced beta by driving excessive GABA release, tipping the

balance in the other direction where inhibition dampens excitation too much. Such

an effect was also seen in our model, where oscillations were only sustained in a

range where there was a sufficient balance of excitation and inhibition. It is also

possible that oxotremorine may inhibit GCs through action on M2 receptors or

inhibit MCs themselves (Smith et al., 2015).

LaOB low gamma was significantly reduced in the 15t EMB odor block (close to

significance in LmOB), and high gamma was reduced in the 15t GER odor block. As

noted in Figure 3.3, oxotremorine tended to increase gamma power when no odor

was present, but suppress it when odor was present. Interestingly, gamma
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suppression in the LaPC was significant both for the 2d odor block EMB
presentations and 15t odor block GER presentations (Fig. 3.7D). Post hoc analyses of
RmOB responses to oxotremorine infusion into LmOB showed no significant
comparisons between saline and drug. Because of the inconsistent effects of
oxotremorine (Fig. 3.3 Cii) and its likely non-specific effects (see Discussion) we
refrain from making any strong conclusions about the effects of oxotremorine on

beta oscillation generation in the OB.

3.3.3 NMDA receptors

We also tested another prediction of our model, that beta oscillations can be
sustained independently of NMDAR currents, but that NMDAR currents are critical
to sustain gamma oscillations. (In our model, beta oscillations rely critically on N-
Type mediated Ca?* currents.) We tested this prediction by infusing APV (100 uM), a
selective NMDAR antagonist, into the LmOB. Because APV had a uniform effect
lasting the entire session (Fig. 3.3Ciii), we combined data from the 15t and 24 odor
blocks, the results of which are summarized in Figure 3.8.

We analyzed the data with a 4-way ANOVA to test the influence of subject, drug,
odor, and frequency band. At the injection site, all four factors showed significant
main effects (LmOB: subject, p=0.0032, 12 0.11; drug, p=0.0009, n? 0.09; odor:
p=2.98e-5,1? 0.16; band, p=0.0002, n? 0.15). APV treatment did not show significant
interactions with any other factors at this site (subject x band, p=0.0137,12 0.13;
odor x band, p=0.0004, n? 0.13; remaining interactions NS). The main effects were

somewhat different at the anterior OB site (LaOB: subject, NS; drug, p=0.0077, n?
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Figure 3.8. APV effects on odor-induced LFP oscillations. A: Violin plots summarizing
effects of APV infusion into LmOB on LaOB in all 6 rats for presentation of EMB (top) and
GER (bottom). 1stand 2nd odor blocks were combined for analysis of APV data (Fig. 3).
(Symbols and normalization are the same as in Figs. 6 and 7.) Asterisks represent p <
0.008 (adjusted for 6 comparisons) for the post hoc T-tests between mean saline and drug
for each rat. B, C: Violin plots summarizing effects of APV in LmOB (infusion site) and LaPC
(same annotations as A). APV strongly suppresses gamma in all left hemisphere locations.

0.02; odor, p=8.93e-5,12 0.11; band, p=1.19e-7, 12 0.34). APV treatment did show a
significant interaction with frequency band at this site (p=0.0021, n? 0.08), and
there were some other interactions (subject x band, p=0.0337,12 0.08; odor x band,
p=2.64e-5,1? 0.17; other interactions NS).

As predicted by our model and in agreement with studies in mice (Lepousez and
Lledo, 2013b), post hoc tests showed that LaOB and LmOB gamma oscillations were
almost completely abolished (Fig. 3.8A,B). LaOB and LmOB beta power was largely
unaffected, except for the LmOB GER presentations, which showed a small but
significant decrease. It is possible that the decrease in LmOB beta for GER

presentations reflects a stimulus dependent effect, similar to the contrasting effects
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of EMB and GER seen during scopolamine infusion. However, we did not address
this scenario in the model.

Analysis of the contralateral OB data showed no main or interaction effect of
APV treatment (RmOB: odor, p=3.41e-5,1? 0.11; band, p=1.51e-8,n? 0.38; subject x
band, p=0.0093, n? 0.10; odor x band, 1.79e-6, n? 0.22; remainder NS). We therefore
omit the post hoc analysis. The ipsilateral aPC showed significant main effects for all
factors (LaPC: subject, p=0.0011, n? 0.13; drug, p=0.0344, n? 0.03; odor, 0.0003, n?
0.10; band, 2.01e-5,1n? 0.20). Interaction effects did not involve APV (subject x odor,
p=0.0369, n? 0.06; subject x band, p=0.0031, 2 0.16; odor x band, p=0.0002,n? 0.14;
remainder NS).

Post hoc tests show that in contrast to the relative insensitivity of LaPC beta
oscillations to scopolamine infusion into the LmOB, we found strong gamma
suppression in LaPC after APV infusions into the LmOB (Fig. 3.8D), mirroring the

effects in the OB.

3.4 Discussion

We tested two predictions of our previously published computational model
(Osinski and Kay, 2016; Fig. 3.1): 1) beta oscillations are produced under conditions
of heightened GC excitability, 2) beta oscillations can be generated independently of
NMDA currents, while gamma oscillations cannot. We tested the first prediction by
infusing muscarinic drugs into the OB (Figs. 3.3-3.7), and the second prediction by

infusing APV, a selective NMDA antagonist (Figs. 3.3 & 3.8).
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We found that scopolamine (50 mM) reduced EMB- and GER-evoked beta
oscillations in the 1st odor block, but after a few minutes (in the 27 odor block) we
observed a divergent effect, where EMB-induced beta was suppressed and GER-
induced beta was enhanced (Fig. 3.5A). The divergent effect in the 2nd odor block
also aligns well with our model’s predictions, that reducing GC excitation in strong
stimulus input regimes (EMB) would decrease beta power and in weak stimulus
input regimes (GER) would increase beta power. In 9 out of 12 of the scopolamine
(50 mM) sessions, the EMB-evoked beta oscillation was replaced by a low gamma
oscillation (Figs. 3.44, 3.5Aii), as our model predicted for strong odors (green
square Fig. 3.1B). The results of APV (100 pM) infusions also closely followed our
model predictions (Fig. 3.7), knocking out gamma, but not beta, oscillations.
However, oxotremorine (30 uM) effects were more difficult to interpret (Fig. 3.2 &
3.6). By also recording in LaPC and RmOB we were able to investigate the wider
network that supports and is impacted by these oscillations across brain regions
beyond the scope of the model. We found that PC beta oscillations were relatively
insensitive to changes in OB beta power, but PC gamma oscillations were much

more sensitive (Fig. 3.5D & 3.7D).

3.4.1 Complexity of muscarinic drug effects

Many studies of cholinergic modulation in the OB treat muscarinic receptors as
modulators of GC excitability (Nickell and Shipley, 1993; Castillo et al., 1999; Martin
etal, 2006b; Pressler et al,, 2007b; Devore and Linster, 2012b; de Almeida et al,,

2013b; Li and Cleland, 2013). Together these studies give the impression that
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bulbar muscarinic receptors are exclusively involved in regulation of GC excitability,
and this is indeed why we chose to use muscarinic drugs in this study. Although M1
and M2 receptors are found in highest density in the GC layer and external plexiform
layers (where GCs form dendrodendritic synapses with MC lateral dendrites) they
can be found throughout the OB (see Allen Mouse Brain Atlas CHRM1 & CHRM2
genes online; Fonseca et al.,, 1991; Lein et al,, 2007). Therefore, our infusions of
scopolamine are mostly targeting GCs and GC dendrites but to a lesser degree also
targeting other cells as well.

Oxotremorine has been shown to have strong inhibitory effects on GCs and MCs
in the main OB and excitatory effects on MCs and GCs in the accessory OB (AOB)
through differential activation of M1 and M2 receptors (Smith and Araneda, 2010;
Smith et al., 2015). Interestingly, Smith and Araneda also hypothesized that the
direction of the effect may depend on the strength of input to GCs. They argued that
when excitatory input onto GCs is weak, M2-mediated hyperpolarization is the
predominant effect, reducing inhibition of MCs, but when excitatory input onto GCs
is strong (i.e., from excited MCs), the M1-mediated afterdepolarization will prevail,
prolonging GC activation and increasing MC inhibition. There may be an interaction
between oxotremorine effects on muscarinic receptors and strong odor stimulation
triggering long lasting depolarizations in GCs (Egger et al., 2005b; Pressler et al,,
2007b). These competing effects may explain the observed tendency for
oxotremorine to increase gamma power when odors were absent, but decrease

gamma when odors were present (Figs. 3.3Cii, 3.7).
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Besides having opposite effects on M1 and M2 receptors, oxotremorine is also
capable of activating nicotinic receptors, even though it is classified as a muscarinic
agonist (Akk et al,, 2005). Given the complexity of interactions, it is not altogether
surprising that a drug as nonspecific as oxotremorine produces messy effects in an
awake behaving animal, which itself is also most certainly releasing endogenous
ACh during the recording session.

Scopolamine produced a biphasic effect in the LFP, first reducing broadband
gamma power for ~7 min, followed by an intensification of low gamma while high
gamma was still suppressed (Figs 3.3 & 3.4). The opposite effects on the two gamma
bands in the 2nd phase may reflect the distinction between type 1 gamma, which
depends on MC-GC interactions, and type 2 gamma, which may depend on
GABAergic inhibition of GCs, as reported by Kay (2003). Although we ignored
inhibition of GCs in our model for simplicity, it is quite possible that in reality
scopolamine influences inhibition of GCs to produce contrasting effects on gamma 1

and gamma 2.

3.4.2 Spatial extent of gamma and beta oscillations

Gamma oscillations are thought to be more spatially localized to individual
cortical areas and even parts of these areas, while beta oscillations are thought to
represent a coordinated oscillation supported by bidirectional connections between
OB and PC (Martin et al., 2006b; Kay et al., 2009b; Kay and Lazzara, 2010).
Curiously, we found that aPC beta power was not significantly reduced when OB

beta was reduced by scopolamine, but aPC gamma was significantly reduced when
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ipsilateral OB gamma was suppressed by infusion of APV (Fig. 3.8D). It has long
been known that oscillatory evoked potentials in PC depend on but are not driven
by OB input (Freeman, 1968b), and APV desynchronizes MCs from population
gamma coordination but does not suppress their firing. Thus, our results suggest
that this input must be coordinated with the gamma rhythm in order for the PC to
be capable of generating gamma spontaneously. On the other hand, this suggests
that PC beta oscillations do not require beta band synchronized inputs from MCs,
just some level of tonic excitation, or that the PC does not require very much beta
band input from the OB (OB-aPC coherence was hardly affected under
scopolamine). Future studies should address the mechanisms for beta vs. gamma
generation in the aPC in order to understand this interesting dichotomy.

The effect of APV on anterior OB is very similar to that on medial OB, but with
even more aggressive suppression of both gamma frequency bands (Fig. 3.8A,B).
Although in some of the rats the drug did not appear to spread fully to the LaOB (see
Fig. 3.2B), the gamma suppression was seen in all rats, suggesting that GCs in the
more posterior bulb influence the activity of MCs in the anterior portion of the bulb.
This aligns well with studies that have shown GCs to mediate between distant MCs
via the long MC lateral dendrites, which can span the bulb (Migliore and Shepherd,

2008).

3.4.3 Contralateral effects

In some of the rats there were strong contralateral effects following scopolamine

(Fig. 3.6C) and APV (Fig. 3.8C) infusions. We assume that these effects were not
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caused by drug spreading into the RmOB, since dye spread was localized to the left
side in all rats (Fig. 3.5E). Instead, we suspect that these effects were caused by drug
spreading into the anterior olfactory nucleus (AON), which is innervated by fibers
that link the two hemispheres through the anterior commissure. Indeed, those rats
that had the most posterior dye spread (Fig. 3.2C) had the largest contralateral
effects. Muscarinic modulation of anterior commissure fibers was reported by
Nickell and Shipley (1993), who hypothesized that cholinergic inputs to MOB may
modulate cross-bulbar information. The AON is known to densely innervate GCs
(Price and Powell, 1970). Therefore, cross-bulbar communication may be regulated
by fibers controlling GC excitability in both hemispheres. We are not aware of any
studies relating NMDA-dependent modulation of cross-bulbar information, but our
study suggests that this may also be possible. Though it was not our intention, our
study provides motivation to more thoroughly study cross-bulbar mediation of

gamma oscillations through cholinergic and NMDA dependent effects in the AON.

3.4.4 Implications for odor discrimination

Bulbar infusions of scopolamine have been shown to reduce spontaneous odor
discrimination of closely related odorants (fine odor discrimination) in the absence
of reinforcement learning (Mandairon et al., 2006; Chaudhury et al., 2009). Gamma
and gamma-like oscillations have been functionally related to fine odor
discrimination in honeybees, mice, and rats (Stopfer et al., 1997; Nusser et al.,
2001b; Beshel et al., 2007). Therefore, it might be expected that bulbar scopolamine

would reduce gamma oscillation power. Our model predicted, and we found, that
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under scopolamine instead of gamma, beta oscillations were reduced or increased
during strong or weak odor exposure, respectively. Because the same conditions
that increase odor generalization (muscarinic block) also manipulate beta
oscillations, it is possible that beta oscillations are also involved in fine odor
discrimination. Thus far, however, the evidence does not support this inference; in
the context of operant tasks under reinforcement learning, beta oscillations are
either not increased or suppressed during fine odor discrimination (Beshel et al.,
2007; Frederick et al,, 2016a). However, it should be noted that muscarinic
antagonist effects on odor perception appear to depend on the context of the

behavioral evaluation (Mandairon et al., 2006).

3.4.5 The role of VDCCs in generating beta oscillations

The persistence of beta oscillations after APV infusion implicates VDCCs in
supporting beta oscillations, because AMPAR currents alone could probably not
maintain sufficiently strong MC inhibition to support beta oscillations when
NMDARs are blocked. In our model we found that beta power would stay relatively
constant for moderate NMDA current suppression, but would increase for stronger
NMDA current suppression (Fig. 3.1C, bottom). This is because the combination of
NMDA and VDCC currents over-inhibited MCs, and a reduction of NMDA current
shifted the system closer to a balance of excitation and inhibition, resulting in higher
power oscillations. Though not significant, it is interesting to note that the LaOB

showed some beta increases (Fig. 3.8A), which could potentially be attributed to a
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decrease in over-inhibition that occurs when NMDA is significantly blocked
(assuming the system started in an over-inhibited state as shown in Fig. 3.1C).

An obvious next step would be to directly test the involvement of N-Type VDCCs
in generating beta by infusing the N-type calcium channel blocker w-conotoxin, but
we leave this for future experiments. GCs are also known to express other VDCC
subtypes, notably T-type channels which mediate Ca?* spikes that can spread
activity across the entire dendritic arbor to synchronize inhibition of all MCs
connected to a given GC cell (Egger et al., 2005b). The role that VDCCs play in OB
oscillations is still being researched, but our results suggest that they are necessary

for switching between gamma and beta oscillatory states in OB granule cells.

3.4.6 Concluding Remarks

In summary, we found confirmation of our model’s main predictions, that
reduced GC excitability can have a bidirectional effect on the power of OB beta
oscillations, and that OB beta oscillations can be sustained independently of
NMDARSs. Going beyond the scope of our model, we also recorded PC beta
oscillations. Though PC and OB beta oscillations had nearly identical frequency
(Lowry and Kay, 2007b; Kay and Beshel, 2010b), we found that reductions in OB
beta power through reduced GC excitability were not accompanied by significant
reduction in PC beta power. Furthermore, OB-PC coherence was also not
significantly reduced, even when OB beta power was dramatically reduced. It is
possible that an OB-PC loop was sustaining PC beta, even though the beta

component in the OB was very small under these conditions. The drug is most likely
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not targeting all GCs in the bulb equally, and some might be able to maintain an
intact OB-PC loop. It is also possible that PC is just driving a small beta signal in the
OB. Interestingly, a model of OB beta generation from a different group did not
require OB and PC to coherently oscillate at beta frequency, but rather required a
slow (theta frequency) modulation of GC excitability by PC inputs (David et al.,
2015b). Our model also did not involve an oscillating PC, and the persistent beta
coherence we found in experiments suggests that the existence of OB-PC beta
coherence is not itself sufficient for generating full-blown OB beta oscillations. While
intact bidirectional OB-PC connections are required to generate beta oscillations,
the GCs appear to control OB beta power, and to mediate the transition from gamma
to beta oscillations.

GCs can exert at least four distinct types of inhibition onto MCs (Mouret et al.,
2009b). Dendrodendritic MC-GC connections can support local recurrent and lateral
graded inhibition without GC somatic action potentials. But when GC action
potentials are triggered, either by strong distal inputs or from MC or cortical inputs
to the proximal dendrites near the soma, it is hypothesized that GCs switch to a
global inhibition state, characterized by synchronous GABA release from all distal
spines (Egger et al., 2005b; Egger, 2008b). The model developed by David et al.
(2015) showed that switching between local and global inhibitory spiking GC states
could drive transitions between gamma and beta oscillations, though the

characteristics of GC firing patterns during beta oscillations have yet to be reported.
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4. Measurements of extracellular potentials of
olfactory bulb granule cell layer interneurons in
awake behaving arts

4.1 Introduction
The modeling work (Osinski and Kay, 2016) and subsequent pharmacological
experiments (Osinski et al., 2017) described in the past two chapters strongly
argued that odor-evoked beta oscillations should occur during periods of
heightened GC excitability. In these final experiments, we set out to characterize the
firing patterns of individual GCs during beta oscillations. Although our model did not
explicitly rely on spiking GCs, it implicitly assumed that GC firing would trigger the
long lasting ADP (LLD) responsible for heightened GC excitability driving greater
GABA release onto MCs resulting in sustained beta oscillations. In slice experiments
GCs did not fire action potentials during the LLD (Egger et al. 2005; Pressler et al.
2007). These data, together with our model predictions, predict that GCs should fire
at the onset of beta, but then remain inhibited throughout the duration of the
excitability increase. As described below, we did indeed find such cells, but we also
found a rich diversity of firing patterns possibly reflecting plasticity and different
GCL cell types.

While this series of experiments was conducted to test the model’s
predictions, it was also exploratory in nature, as GCs have never been recorded in
freely behaving rats before. The only recordings of GCs in awake animals to date

were done under head-fixed conditions, and the correlation of firing patterns to the
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LFP was not investigated (Cazakoff et al., 2014). We therefore expected these
experiments would go beyond the scope of our model and reveal novel spike-field

relationships of odor-evoked inhibitory cell activity.

4.2 Overview of experiments

For these experiments, 3 rats were successively implanted (about 2 months apart)
with 32-channel Si probes (Cambridge Neurotech [model DBC2 probe]). Because the
experiments were exploratory in nature, the experimental design evolved as more
data were collected. Thus, not every rat performed the same experiments. The
experiments are grouped into four categories, which are presented in Table 4.1

indicating which rats were used for each experiment.

Nose-poke 1 Nose-poke 2
odor full odor half
reward reward

Rat Single odor | Multi-odor

name | swab pres. swab pres.

RK90 EMB, GER,

(Ratl) PP

RK97  EMB, GER,

(Rat2) PP EMB, GER,NA  EMB,GER

RL16 EMB, GER, PP,

(Rat3) MPOER NA EMB, GER EMB, PP

Table 4.1 Table of Si probe experiments showing which odors were used for
each rat. For the Multi-odor swab pres. the order in which odors were presented
is shown. EMB - Ethyl 2Methyl Butyrate (high volatility, VP 1.048 kPa), GER -
Geraniol (low volatility, VP 0.0018 kPa), PP - Propyl Propionate (high volatility,
VP 1.333), NA - Nonanoic Acid (low volatility, VP 0.0012 kPa).
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The Single odor swab presentation experiments were the first experiments
run on the rats and consisted of 30 presentations of an odorant-soaked cotton swab
to a freely behaving rat in a clean cage with fresh bedding, much like the
pharmacological experiment design (only one of the odors used in each session).
The Multi-odor swab presentation experiments were similar except that multiple
odorants were presented in a fixed interleaved order 30 times each (all odors in the
same session). The order in which the odors were presented is shown in Table 4.1.

For the Nose-poke experiments, we trained rats to poke their noses into an
odor port, which delivered odors using a computer controlled vacuum system and
allowed us to measure the time at which rats poked their noses with an IR beam
emitter-receiver system (see Methods). In the Nose-poke 1 odor full reward
sessions, only a single odorant was used per session and each nose-poke was
rewarded by a sugar pellet. In the Nose-poke 2 odor half reward sessions, the rat
received one of two high volatility odors, EMB or PP. For the first half of the session
both odors were rewarded, but rewards ceased for one of the odors half way
through the session. This change in the experimental paradigm was designed to test
the reward contingency of GCL neuron responses.

To analyze these data, [ developed a python-based toolbox of analysis
functions, which can be found in Appendix II: Spike-Field Analysis Functions.
Wherever a specific function is used, I provide the name of the function so it can

quickly be referenced in the toolbox.
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4.3 Methods

Subjects were 3 adult male Sprague-Dawley rats (350 - 450 g; purchased from
Envigo (Harlan)), maintained in the colony room on a 14 -10 h light/dark schedule
(lights on at 08:00 CST). Rats were housed singly after electrode implantation. They
had access to unlimited food and water for the course of the odor swab presentation
experiments and were put on a restricted diet (80% of ad libitum weight) during the
course of the nose-poke experiments. All animal procedures were done with
approval and oversight by the University of Chicago Animal Care and Use Committee

with strict adherence to AAALAC standards.

4.3.1 Electrode implants

32-channel Si probes (pictured in Fig. 4.1) were obtained from Cambridge
Neurotech. Before each surgery, rats were given a subcutaneous injection of
ketamine cocktail (35 mg/kg ketamine, 5 mg/kg xylazine, and 0.75 mg/kg
acepromazine). Anesthesia was maintained by checking for reflexes every 15 min
and administering intraperitoneal injections of ketamine. After ear bars were firmly
in place, an incision was made along the sagittal suture from the anterior OB to the
cerebellum and the skull was cleared of connective tissue. A small (~2 mm) hole
was drilled over the left main OB and all bone and dura fragments carefully
removed. Another hole was drilled over the right cerebellum for a ground screw and
four more additional holes were drilled for support screws. All screws were then

inserted.
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Prior to surgery, a tiny amount of dental wax was placed in the rectangular notch
of a vacuum chuck (obtained from Cambridge Neurotech) to improve adhesion to
the body of the silicon probe. The vacuum chuck was fixed to a stereotaxic arm. The
probe was carefully placed onto the vacuum chuck, with the flex cable covering all

vacuum holes, and the probe body was gently nudged to adhere to the dental wax.
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Figure 4.1 Probe channel mapping and dimensions. A) The Omnetics connectors of the
probes (right) and connectors of the Intan headstages (left) use different numbering
systems so one must be mapped to another. B) Channel mapping of probe to headstage
connectors. C) Image of entire probe-connector assembly with ground pins marked. Only
two ground pins were used. D) Probe dimensions and approximate position in GCL are
shown. (Probe images provided by Cambridge Neurotech www.cambridgeneurotech.com,
Intan headstage image from intantech.com/RHD2132_RHD2216_amp_board.html )
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The vacuum alone was not strong enough to hold the omnetics connector, so the
connector was taped to the arm of the vacuum chuck. Minor adjustments were made
to the hinge of the vacuum chuck to ensure the probe was as vertical as possible.

The probe was lowered until it touched the surface of the brain and zero point
was recorded. The probe shanks were so thin that the surface vasculature would
often cause them to buckle, so micro adjustments were made to the stereotaxic arm
until the probe slid into the brain tissue. Because the probe was so delicate, we
wanted to avoid any unwanted movement of the probe, so we elected not to plug the
probe in to monitor signals during probe insertion. Instead, the probe was inserted
blindly to a depth of 1.5 mm relative to the zero point, which should place it within
the dorsal GCL.

After placing the electrode, a few drops of Dura-Gel compound were mixed at 1:1
ratio. A droplet of the compound was pipetted into the hole to repair and reseal the
durotomy. The Dura-Gel compound dries to a jelly-like consistency, cushioning the
probe, and preventing dental cement from flowing into the hole. After the Dura-Gel
dried, we coated the exposed probe shafts with Gorilla Glue, which improves
adhesion of dental cement. Then we applied dental cement to the fix the probe in
place, securing it to the nearest skull anchor screw.

Once the dental cement securing the probe had dried, a thin stainless steel wire,
which was soldered to the ground pins on the probe’s PCB board prior to surgery,
was wrapped around the ground screw. The entire area was then encased in dental
cement, with the flex cable folded inside and the omnetics connector aligned parallel

to the rostral-caudal axis. After drying, the wound was cleaned and sutured, and the
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rat received 0.1 mL Buprenex subcutaneously before being placed in a clean
recovery cage. Rats were allowed to recover for 2 weeks after surgery before

beginning the experimental protocol.

4.3.2 Data Acquisition

Raw data were digitized and amplified by an Intan RHD2132 headstage
(http://intantech.com/RHD2132_RHD2216_amp_board.html), collected with an
Open Ephys acquisition board (http://www.open-ephys.org/acq-board/) and
preprocessed with Open Ephys GUI (http://www.open-ephys.org/gui/) on a
computer running Windows 7. The 32 raw data signals were high pass filtered from
300 - 6000 Hz. One of these channels was also copied and low pass filtered from 1 -
300 Hz to obtain an LFP signal (see top of Fig. 4.2). We only used one channel for the
LFP because the low pass signals from all the channels were virtually identical. The

full data processing pipeline is depicted in Fig. 4.2.

4.3.3 Noise removal

The spike recordings suffered from several types of noise: Large deflections (> 20
standard deviations), small deflections (< 20 standard deviations), oscillatory noise,
and single channel noise. Examples of each type of noise are depicted in Fig. 4.3.
These had to be removed before clustering because they would dominate the
principal components and render clustering ineffective. Below we describe each

type of noise and procedures for its removal.
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Figure 4.2 Spike data processing pipeline
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High and Low pass filtering were performed during recording by Open Ephys, noise
removal was performed by custom written python scripts, spike clustering was performed
by the Klusta suite, and manual spike curating was performed through Phy Kwik-GUI.
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4.3.3.i Large artifact removal

Large positive and negative deflections, several hundred std above the mean (Fig.
4.3A), were detected by a threshold (usually set to 20 std above mean) and replaced
by zeroes symmetrically about the peak of the artifact up until the data reached %2
the standard deviation (ensuring no leftover peaks). The noise deflections in Figure
4.3A are coincide with the switching of the solenoids on each trial of the nose-poke
experiment. We modified the artifact removal algorithm in the BARK toolbox
developed by Kyler Brown (https://github.com/kylerbrown/bark) to apply the
treatment to all channels simultaneously since large amplitude deflections on some
channels would often be accompanied by smaller amplitude deflections on other

channels that did not cross the threshold for removal.

4.3.3.ii Small artifact, oscillatory noise, and single channel noise removal

There were three types of noise that were too low in amplitude to be removed by
thresholding: Small deflections (Fig. 4.3B, due to head movement), oscillatory noise
(Fig. 4.3C), most likely originating from higher harmonics of 60 Hz noise that
survived the high pass filter) and single channel noise (Fig. 4.3D, source unknown).
These had to be detected by hand. Before clustering, the traces were inspected by
eye to find obvious noisy periods. However, in many cases these noisy periods were
not noticed until after the noise showed up in the clusters, leading to a process of
clustering, notating noisy periods by eye, and re-clustering with noisy periods

removed.
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Sometimes we were unlucky to find a channel that produced many good
spikes suddenly becoming noisy. When this was the case the noisy periods would be
set to 0. Otherwise, any channel with substantial single channel noise was deleted

completely. Removal of as many noise periods and channels as possible was crucial
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Figure 4.3 Examples of noise in neural recordings. A) High amplitude deflections (black) could
easily be detected and removed with automated scripts. The large deflections in this particular
example were caused by the switching of odor-delivery solenoid valves during a nose-poke
experiment. The remaining small deflections after artifact removal (red) are neural spikes. B, C)
Small noise deflections (B) and oscillatory noise (C) was harder to remove automatically without
jeopardizing spikes of similar size. In the examples shown, these deflections are incorrectly
classified as spikes (grouped by color). We therefore had to remove these periods by hand, often
only noticing them after the data had been clustered. D) Single channels could suddenly become
extremely noisy. If the noisy channel did not contribute many good spikes, it was deleted.
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because any noise skewed the principle components, leading either to poor
separation of clusters or to merging of too many clusters. The 2" shank for Rat 3
appeared damaged, as it was very noisy on most channels and only produced a few

small amplitude spike clusters, so we excluded the entire shank from the analysis.

4.3.3.iii Common median removal

Spike detection pipelines often include common average removal, where the mean
signal at all time points is subtracted from each channel. This allows spikes to be
better localized to individual channels. We used common median removal because
the median is less sensitive than the mean to large fluctuations and has been shown
to improve action potential detection on multielectrode arrays (Rolston et al., 2009).
This step of preprocessing was crucial to identifying spatially localized spikes,
because the high-passed channels covering such a small area had a great deal of

common signal.

4.3.4 Spike detection and clustering via Klusta Suite

To extract unique spike clusters from our multichannel data, we used Klusta Suite
(Rossant et al., 2016), a spike detection and clustering toolbox designed to cluster
spikes recorded from arrays of arbitrarily large size. A detailed description of the
toolbox can be found in the cited paper. Briefly, spikes are detected as
spatiotemporally connected components across nearby channels via a two-

threshold flood fill algorithm. The weak threshold defines the pool of channels
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contributing to the cluster, while the strong threshold defines the largest spike in
the group. The dual-threshold approach avoids spurious detection of small noise
events that don’t cross the strong threshold and ensures that spikes will not be
erroneously split due to noise, because areas joined by weak threshold crossings are
merged. The detected spike event groups are then clustered with the klustakwik2
algorithm, which employs a novel statistical method for high-dimensional cluster
analysis termed the “masked EM algorithm.” Much like the traditional EM algorithm,
it fits data as a mixture of Gaussians, typically from just the first 3 PCA components,
but uses a channel mask so that channels outside the mask do not contribute to
cluster alignment. Once finished, klustakwik2 produces .kwik and .kwx files, both in
HDF5 format, which contain all cluster information (see bottom of Fig. 4.2).

The Klusta suite has a one-sided threshold, and must therefore be run
separately to detect negative and positive spikes. Although the Klusta suite authors
found optimal values of 4 and 2 times the standard deviation for strong and weak
spike detection thresholds, I found these values produced poor positive threshold
clusters that appeared in small islands spread across the entire probe. I explored the
parameters on a few small data sets and found better looking clusters with
strong/weak values of 4.5 and 2 for negative spike detection and 4.5 and 1.5 for

positive spike detection.

4.3.5 Probe files

The Klusta suite requires a probe file (extension .prb) that defines the probe

geometry in order to group deflection from nearby channels with the flood-fill
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algorithm. Although probe files in principle are able to contain multiple shanks, we
designed separate prb files for each probe following advice on the
klustaviewas@groups.google.com mailing list, which identified bugs in klustakwik2
when running for multiple probes. For this reason we run the entire data processing

pipeline (Fig. 4.2) on each shank separately.

4.3.6 Manual spike sorting and merging

The clustering results must be inspected manually to isolate noise clusters from true
spike clusters. We visualize the clustering results with the Phy Kwik-GUI
(https://github.com/kwikteam/phy), which is designed to process the .kwik and
kwx files (bottom of Fig. 4.2). Noise clusters were identified on the basis of atypical
waveforms, overly periodic correlograms, and unusual temporal organization (i.e.
all spikes coming from a 2Zs slice of time). We also took care to remove misidentified

positive/negative spikes (See Fig. 4.4). That is, when running for negative spikes,
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Figure 4.4 Negative and positive spikes. Example traces viewed in Phy Kwik-GUI
showing negative spikes on channel 8 (red), and positive spikes on channel 5 (green)
which were misclassified as negative. In this example positive and negative spikes occur
on different channels, but they are also often found on the same channel.
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any positive spike clusters that happen to accumulate are discarded, so as to avoid
double counting in the positive spike cluster group.

After removing noise clusters from spike clusters we identify which clusters
should possibly be merged on the basis of waveform similarity. Although the Phy
Kwik-GUI has cluster merging capabilities, it would often freeze and crash, making
the process overly tedious. Rather than endure these frustrations we performed
cluster merging ourselves (see merge_clust in Appendix II). This approach proved
superior because if the ISI after merging were to produce two humps instead of

merging into a single seamless IS, then the clusters could easily be left separate.
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Figure 4.5 Design of Butterworth filters for gamma, beta, and theta frequency
bands. For each band the filter order that gave the sharpest noiseless filter was chosen.

120



4.3.7 Design of Butterworth filters for theta, beta, and gamma frequencies

In order to isolate LFP activity in the theta, beta, and hi/lo gamma bands we used
the butter function of the scipy.signal package. The order of the filters had to be
chosen for each frequency band to generate smooth gain curves with the sharpest
edges (Fig. 4.5). Optimal orders were theta: 3, beta: 4, hi/lo gamma: 5. After filtering,
the envelope of the filters was obtained from the absolute value of the Hilbert

transform of the filtered signals (see butter_env in Appendix II).

4.3.8 Spike- LFP phase histograms

To obtain the LFP oscillation phase we first filtered the LFP signal for the desired
frequency band: either theta (4 - 15 Hz), beta (15 - 30 Hz), low (40 - 60 Hz) or high
gamma (60 - 100 Hz). Then we took the Hilbert transform of the filtered LFP,
represented as H (x). The instantaneous phase of the filtered LFP signal was then

calculated as

_y Im(H(x))
Re(H(x))

Pinse = tan
The strategy for obtaining the spike-LFP phase histograms had to differ
slightly for each frequency band because of their different temporal properties.
Theta oscillations persist throughout the entire recording session, and therefore the
spike-phase product was calculated for spikes in the entire recording session. Low
and high gamma occur intermittently (usually at the peaks of theta oscillations), but

because they are transitory, we had to restrict the calculation to periods with
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gamma power above a certain threshold. By trial and error, I found 1.6 times the
median gamma power to be a good threshold for gamma power strict enough to
exclude most non-oscillatory periods, but generous enough to include smaller
amplitude gamma oscillations.

Beta oscillations are also intermittent and transitory, but they are primarily
odor evoked. Thus, we calculated beta phase histograms from thresholded regions
restricted to odor periods. Since the power of beta oscillations spanned a narrower
range than gamma, we used a stricter power threshold than for gamma of 0.4 times
the median of the maximum beta power of each odor period. This ensured that only
spikes during odor-evoked beta oscillations were used for the analysis. Reliable
phase histograms could not be produced if cells fired less than 30 spikes in all odor
periods combined and were thus excluded for this analysis (see

spike_field_prod_with_rand and SPH_wrapper in Appendix II).

4.3.9 Finding peak LFP phase preference of spikes

We found that the phase histograms (as described above) were often sinusoidal or
Gaussian. Rather than use just a Gaussian or sinusoid fit to find the phase at which
cells fired the most, we calculated both Gaussian and sine fits, and chose the one
with the lowest error. The argmax (x-value at which a function is maximum) of this
fit was reported of the preferred phase of the cell. (See get_peak_phase_sinORgauss

in Appendix II)
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Figure 4.6 Aligning spikes to beta onset. A) An odor (EMB) presentation time window
showing bandpass filtered LFP (blue), beta envelope (green), threshold (light blue), and
beta onsets (red positive) and offsets (red negative). When multiple beta events were
detected, only the first crossing of the beta envelope threshold in the was used to align
spikes (labeled tg). B) Representative beta filtered LFP envelopes for all 30 trials of EMB
(left) and GER (right) presentations aligned to beta onset as described in A. Even though
GER-induced beta oscillations are much lower in amplitude, most trials still appear well-
aligned. C) Alignment of spike trains to beta onset (tg) from 7 simultaneously recorded GCL
neurons. In this example, some of cells were inhibited for ~1s following the onset of the
beta oscillation.
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4.3.10 Aligning spikes to beta oscillations

In the absence of any precise measure of stimulus onset for the odor swab
presentation experiments, we aligned spikes to the onset of odor-evoked beta
oscillations. Our procedure for aligning spikes to beta is depicted in Figure 4.6. For
each trial we filtered the LFP to obtain the beta envelope and found the time at
which the envelope first crosses a threshold in the window (tg as illustrated in Fig.
4.6A). Here we used a threshold of 0.6 times the median of the max beta power in all
odor periods, which was stricter than the one used for spike-field coherence
calculations, below. The stricter threshold was primarily chosen because it resulted
in higher peaks of the beta-aligned PSTH.

As can be seen in Fig. 4.6B, this alignment strategy produces consistently
aligned beta LFP envelopes across all trials of an experiment for both high volatility
and low volatility odor evoked beta oscillations (see align_spikes_to_beta in

Appendix II).

4.3.11 Spike field coherence

Coherence is defined as

2
PXY

C =
P xx Pry

, where Pyy is the cross power spectral density between signals X and Y, and Pxy and
Pyy are the respective power spectral densities. This produces a value bounded
between 0 and 1. To calculate coherence between any two signals both signals must

have the same time resolution. For spike-field coherence (SFC), we bin spikes into
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time bins of the time resolution of the LFP signal, which in our case is 3 kHz. We
computed SFC with the python function scipy.signal.coherence (see spike_field_coh
in Appendix II).

Because gamma and beta oscillations are transitory, the SFC had to be

calculated during power thresholded periods. Our procedure for calculating SFC is
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Figure 4.7 Diagram illustrating procedure for calculating spike-field coherence for beta
oscillations. A) Beta oscillation periods are detected by threshold crossing of beta filtered LFP
envelope. B) The LFP oscillation periods are stitched into a one dimensional array. The same is
done for the spike times. Spike times are binned into same time resolution as LFP. C) The
coherence between the binned spikes and LFP is computed as the ratio of cross spectral density to
power spectral densities of LFP and spike trains. The maximum SFC is reported (red dot). D) The
same procedure is produced for 50 random shuffles of the spikes. A 1-sided 1-sample T-test is
used to determine if the true SFC is significantly higher than the mean SFC of the random shulffles.
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schematically shown in Figure 4.7. The same thresholds were used as for the spike-
phase histograms (Fig. 4.7A). We found that calculating the SFC for each thresholded
period individually was not viable because most of the periods did not contain
enough spikes to produce a statistically meaningful measure. Fixed windows could
not be used for the calculations because inclusion of spikes during non-oscillatory
periods drove the SFC down to chance levels. Therefore, we stitched all the
thresholded LFP periods together, taking care to keep track of the cumulative start
times of each period to adjust the corresponding spike times accordingly (Fig. 4.7B).
The SFC was then computed and the argmax (x-value at which a function is
maximum) of the coherence spectrum (Fig. 4.7C) was taken as the SFC of that cell
(see SFC_wrapper in Appendix II).

Statistical significance of the SFC measure was measured by a 1-sample T-
test (scipy.stats.ttest_l1samp) to determine if the true SFC is significantly greater
than the mean SFC of 50 random shuffles (Fig. 4.7D). The p-value of a one-sided T-
test is just half that of the two-sided T-test, so we divided the output of
scipy.stats.ttest_1samp by 2 and cells with SFC lower than the mean of the random
shuffle were excluded. A significant threshold of 0.001 was used, though most cells
that were significant had p-values < 1e-10.

We noticed that SFC calculations for low amplitude beta oscillations were
biased by the fact that the low amplitude beta events were typically very short,
some lasting less than one oscillatory cycle. When stitching together many such
short events, as described above, we created a synthetic signal that artificially

inflated the value of the SFC. Thus SFC values for low volatility odors GER and NA
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were higher on average than the high volatility odors EMB and PP, even though
phase histograms for the high volatility odors tended to appear more peaked. SFC
should ideally be calculated on data segments of equal lengths, but because the GER
and NA - evoked beta oscillations were usually brief and interspersed with gamma
oscillations, while EMB and PP evoked beta oscillations appeared in long stretches,
the data itself did not allow a fair comparison. For this reason, we only present SFC

values for the high volatility odors.

4.3.12 Peri-stimulus time histograms

To calculate peri-stimulus time histograms (PSTH) spikes were binned into uniform
bins over a window spanning each odor presentation. The spikes in each window
were then aligned either to the onset of the beta oscillation, or to the nose-poke time
if the rats were in an operant box. PSTHs of the aligned spikes were then calculated
by binning spikes, averaging across trials, and dividing by the bin width to get units
of rate (Hz). We used bin width of 200 ms for visualization of dynamics over several
seconds, and 50 ms time bins for visualization of faster dynamics (See calc_PSTH in

Appendix II).

4.3.13 Spike-Distance analysis

A spike distance metric was used to obtain a measure of the prediction accuracy of
each cell recorded in the multi-odor presentation experiments. These experiments

had 30 trials per odor, giving 90 spike trains total for the rat with 3 odors, and 120
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spike trains total for the rat with 4 odors (Rats 2 & 3 in Table 4.1). All spike times
were aligned to the onset of the odor evoked beta oscillation, and a 2s window
starting 0. 2s before beta onset was used for this analysis. A python implementation
of the Victor & Purpura (1993) spike distance metric was used to calculate the
distance between every pair of spike trains at a fixed cost q (units 1/s), producing a
symmetric distance matrix for each cell (see Fig. 4.8A for example distance matrices
and distance_between_all_trials in Appendix II).

To obtain prediction accuracy from each distance matrix, the distances were
grouped by odor and summed them for each trial, reducing a matrix of dimension
Nirials X Nirials to @ matrix of dimension Nirials X Nodors. The odor giving the shortest
distance was taken as the predicted odor for that trial. The prediction accuracy is
then the number of correctly predicted trials divided by the total number of trials.
This was repeated for a range of cost values ranging from 1/(0.1ms) to 1/(2s) (The
cost is the inverse of the time resolution).

As a sanity check, an alternative method of spike train classification based on
correlation between spike trains and PSTHs on a subset of cells was also used. For
this method, we first bin all spike times into 0.1 ms bins and then calculate the PSTH
for each odorant (of a given cell), leaving one spike train out. We smooth the PSTH
and the isolated spike train with a Gaussian of width W and compute the correlation
coefficient between the smoothed spike train and smoothed PSTHs. The predicted
odor of the spike train is the odor class of the PSTH with highest correlation to that
spike train. If it is the same as the odor that actually produced the spike train, then

the classification is correct. This is repeated for each spike train for a range of
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Figure 4.8 Computing odor prediction accuracy of individual cells using a spike distance
metric analysis. A) Representative Victor-Purpura distance matrices for a cell with a
preference for EMB (left), and another cell that showed no preference for the 3 odors presented.
Although odors were interleaved in these experiments, the trials are rearranged to be grouped
by odor in the distance matrices to facilitate the analysis and for visualization. B) Comparison of
prediction accuracies obtained by the Victor-Purpura method (dashed) and alternate PSTH
correlation based method (solid) for indeterminate (blue), timing (green), and rate (red) cells.
For V-P method the time resolution is the inverse of the cost (1/q), but for PSTH corr method
the timing resolution is the width of the smoothing Gaussian.

Gaussian bin widths W ranging from 1 ms to 2 s (the entire length of the window).
Taking the width of the Gaussian as the timing resolution and calculating prediction
accuracy as before, we found that this method produced results similar to the

Victor-Purpura based method (Fig. 4.8B).
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4.3.14 Visualization of neural population response trajectories

In order to visualize the evolution of the population response over time we
performed dimensionality reduction. This analysis was performed for the multi-
odor swab presentation experiments (24 column of Table 4.1). Because individual
trials were highly variable, we performed dimensionality reduction on the beta-

onset-aligned PSTH instead of individual trials. PSTHs were computed with 100 ms
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Figure 4.9 Comparison of dimensionality reduction techniques for visualizing response
trajectories. Shown are Rat 2’s neural population response trajectories to 3 odors (EMB - orange,
GER - green, NA - blue) on Day 1 generated by standard LLE (A), modified LLE (B), t-SNE (C), and
traditional PCA (D). A few parameter combinations are shown to illustrate the range of
visualizations achieved with these methods. Color legend (in D) is same for all panels. Transparent
and filled colors indicate pre and post beta onset respectively. In the end we found that LLE and t-
SNE created trajectories of comparable or worse quality than PCA, so we decided to use PCA.
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time bins over a 4s period from 2s prior to and 2s after beta onset. All PSTHs from a
single day were organized into a single matrix with length(PSTH) X Nodors rows and
Neens columns.

We attempted several dimensionality reduction techniques on these matrices
to find the best visualization. Following Stopfer et al. (2003), we tried locally linear
embedding (LLE) and the more recently developed modified LLE (Zhang & Wang
(no year listed on manuscript)) for a range of number of neighbors (see Fig. 4.9A ,B).
LLE produced nice trajectories for 25 - 35 neighbors, but the modified LLE is too
aggressive, so trajectories are difficult to see. We also tried t-distributed stochastic
neighbor embedding (t-SNE) with many different parameter combinations
(examples shown in Fig. 4.9C). For most parameter combinations t-SNE tended to fit
the trajectories into a circular space, thus compressing them undesirably. We found
best t-SNE trajectories using a PCA initialization and a low learning rate, but this is
effectively the same as simply running PCA (compare Fig. 4.9C, right and Fig. 4.9D).
In the end we found that LLE and straightforward PCA (Fig. 4.9D) produced
comparable results. We chose to use LLE, and chose different numbers of neighbors

for different data sets to obtain optimal separation and smoothness of trajectories.

4.3.15 Event time management

Event times for the cotton swab presentation experiments were initiated by a hand-
held button. Event times in the nosepoke experiments were generated by a Med
Associates SmartCTL DIG-716B control box. In both cases the events were 5V TTL

pulses that were fed into the Open Ephys acquisition box via BNC cables.
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Unfortunately, the event signals were often very noisy, perhaps due to cable noise or
a fault within the acquisition box itself, resulting in repeated pulses rather than a
single pulse at the onset and onset of each event. To isolate the pulses of interest we
scanned the event files for onsets of pulse trains, recorded the time, then skipped
100 ms (determined by eye to be longer than all of the pulse noise trains), and
continued the scan (see scandtrig_while in Appendix II).

In the nose-poke experiments, the Open Ephys system often registered
completely spurious events when triggered by the Med Associates control box.
Therefore, before scanning for event onsets, the nose-poke event times gathered by
the Open Ephys system were matched to the event times stored by a Med Associates
system running MedPC IV to ensure that every event was detected properly. The
nose-poke experiments also suffered from a great deal of 60 Hz noise. We deleted
most noisy periods while keeping most of the odor delivery periods intact. Care had
to be taken to detect any overlaps between the removed periods and the event

durations (see trim_events in Appendix II).

4.3.16 Training rats to nose-poke

Rats 2 & 3 were trained to poke into an odor-port to receive sugar pellet rewards.
Both rats learned the behavior in 3 days. A single trial consists of the following
sequence: House light turns on, rat pokes nose, reward delivered if rat holds nose in
nose-port for over 500 ms (or not if unrewarded), house light turns off 2s after
nose-poke. If rat fails to poke nose in 5s, the houselights turns off for a 6s penalty

and then another trial is initiated. The odor port was equipped with an IR sensor
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that recorded times of nose-poke and nose-removal from the odor port. All
automation was controlled by MedPC IV. We ran rats on two paradigms: (1) single
odor full reward (34 column in Table 4.1) - The experiment was set to terminate
after 100 attempts, typically producing between 30 - 40 clean trials per sessions.
(2) two odor half reward (4t column in Table 4.1) - For the first 60 attempted trials
both odors were fully rewarded, then for the second 60 attempted trials the reward
was removed for one of the odors.

We noticed that the 60 Hz noise often showed up between trials when the rat
would investigate the hole through which the cable to the head-stage came in.
Because of this we decided to delete all inter-trial periods and only cluster on trial
periods, which are defined by each house-light ON/OFF event pair. Furthermore, the
Open Ephys system tended to register spurious events, so we intersected Open
Ephys events with internally generated MedPC IV events to ensure only true events

were counted (as described in 4.3.13 Event time management).

4.3.17 Odorant Delivery System

The odorant delivery system, depicted in Figure 4.10 is described in detail in
Frederick et al. (2011). This system splits a clean air stream into a clean air stream
and two odor streams gated by solenoids which pass through liquid odorants
housed in test tubes. The solenoids control which odor is used, while a vacuum line
gated by a different solenoid controls delivery to the odor port. Air is bubbled

through an odor tube for 2 s before the vacuum line is closed so that odor delivery is
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almost immediate (estimated delay is 60-100 msec). All solenoids are controlled by

the Med Associates system.
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Figure 4.10 Odorant delivery system. Clean air enters the system after being passed
through a carbon filter (1). The clean air is then split into a clean air stream (2) and two
odor streams (4). An exhaust vent (3) prevents pressure problems. The odor streams pass
through the odorants (5), which are housed in test tubes (A, B). The odorant streams then
meet (6) and rejoin the clean air stream (7) at which point the odorized air has
approximately 16% saturated vapor. If the vacuum line is open (8), the odorized air is
diverted to an exhaust. If the vacuum line is closed, then the odorized air is able to flow
into the odor port (9). Arrows indicate the direction of flow. Solenoids are controlled by a
computer. All connectors, except the one for the vacuum, which used a T-connector, were
Y-connectors. Check valves ensured flow direction throughout the system. Reproduced
from Frederick et al. (2011) with permission.
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4.4 Results of high-density Si probe recordings

4.4.1 Spike waveforms and baseline firing rates

Because each of the 32 channels of the high-density probes tended to detect at least
one negative and one positive waveform, a typical recording session produced
around 64 spike clusters. Figure 4.11A shows representative categories of negative
spike waveforms obtained after successful clustering of clean data periods. Positive
spikes falling into the same categories were also detected. Whether a spike is
positive or negative is purely a consequence of geometry (where the cell is relative
to the probe), as shown by 3D simulations of extracellular potentials (Buzsaki et al.,
2012). We did not see any biphasic waveforms characteristic of axonal spikes, and
thus we assumed that most recorded action potentials were somatic spikes in the
GCL or somatic spikes from distant M/T cells.

Most of the detected clusters looked like the small single channel deflection
shown in the upper left of Figure 4.11A. Although to some eyes these would appear
to be nothing more than noise, these small deflections often showed strong stimulus
dependent firing patterns. These clusters could represent distant single cells, but
more likely represent multiunit activity mixed with noise, because these types of
clusters often showed sub-millisecond ISIs. Larger spike waveforms usually had
cleaner ISIs and correlograms with a clear refractory period. Unfortunately, the cells

with large waveforms did not always respond to the odors we chose to present.
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Figure 4.11 Spike waveforms and baseline firing rates. A) Representative negative
action potential waveforms. Positive waveforms also can be organized into the same
general categories. No biphasic waveforms characteristic of axons were found, thus we
assume that most action potentials come form cell bodies in the GCL. B) Histogram of
baseline firing rates for all GCL neurons included in this study (620 cells total, 206 from
Rat 1, 260 from Rat 2, 154 from Rat 3). The majority of cells had baseline firing rates
between 1 and 10 Hz. Only 51 cells had firing rates higher than 30 Hz (right), and these
are most likely multiunit recordings.

We attempted to classify neural identity by waveform, but we found no
consistently sortable classes of waveforms. This is probably because the probes are

surrounded by GCL neurons from every angle, and the shape of electrophysiological
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waveforms changes when viewed from different angles (Buzsaki et al., 2012). We
did not find any spatial organization of different waveforms along the probe shaft.
That is to say, in a given recording session, any of these waveforms could be found
on any channel. We also did not find any clustering of waveforms by any of the
response metrics we used in the present work.

The baseline firing rates of all GCL neurons included in this study (620 total)
were calculated by averaging the rates computed from a 1 s window 2 s before each
odor presentation. They varied quite drastically across cells, ranging approximately
from 0.5 Hz to 70 Hz. However, as can be seen from the histogram of baseline firing
rates shown in Figure 4.11B (left), the majority of cells fell within the 1 - 10 Hz
range. Approximately 2/3rds of the cells in this range showed clear refractory
periods. Only 51 out of 620 cells total had baseline firing rates > 30 Hz (Fig. 4.11B
right), and these are most likely multiunits as their ISIs did not have clear refractory
periods. The firing rates of GCs in slice have been reported to be very low, between
0.5 - 5 Hz (Cang & Isaacson, 2003), and recent recordings of GCs in awake head
fixed mice showed rates of 1 - 10 Hz (Cazakoff et al. 2014). It is possible that the
cells we recorded with lower firing rates are GCs, while those with moderate firing

rates are a different class of interneurons or distant M/T cells (see Discussion 4.5.1).

4.4.2 Classification of spike responses during passive odor presentations

Because we did not have a precise measure of stimulus presentation during passive
odor presentations, we aligned the spike responses during each odor presentation

to the onset of the beta oscillation (See Methods 4.3.10 and Fig. 4.6). We produced
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peri-stimulus time histograms (PSTH) by averaging all the spike trains for a given
odor and dividing by the bin width. By scanning through hundreds of PSTHs of
individual cell responses from all three rats by eye we found that responses fell
within 6 general categories, which are depicted in Figure 4.12. These categories
consisted of two excitatory (E) type responses (transient Fig. 4.12A, and persistent
Fig. 4.12B), two inhibitory (I) type responses (transient, Fig. 4.12D and persistent
Fig. 4.12E), a mixed E/I response (Fig. 4.12C), and no rate modulation (Fig. 4.12F).
The mixed response category further subdivided into three subcategories, E-I, E-I-E,
and I-E, but only E-I-E is shown in Figure 4.12C. We did not find any clustering of
response type with waveform or baseline firing rate because, as will be shown later,
individual cells showed multiple response types to different odors and over
subsequent days.

As mentioned in the introduction to this chapter, our model implicitly
assumes that GCs would fire at the onset of beta, but remain inhibited for the
duration of the beta oscillation. The existence of E-I and E-I-E responses confirms
that this behavior really does occur in awake behaving rats in a subset of GCL
neurons. Seven such cells with E-I responses to EMB are shown in Figure 4.6C along
with the odor evoked beta oscillation, showing that cells are inhibited for ~ 1s (most
of the duration of the beta oscillation). Interestingly, the same cells appear to regain
firing as a second smaller beta oscillation emerges, indicating that the inhibition of
these cells is not a necessary condition for beta to emerge. The remaining response

categories define a broader range of responses than the model could have predicted
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Figure 4.12 General response categories of GCL neurons. GCL neuron odor responses
aligned to beta onset could be grouped into 6 major categories (A - F). Each sub-figure
includes a raster plot (top), PSTH (middle), and spike - beta phase histogram (bottom). In
the PSTH plots, the dashed line and gray region represent the mean and standard deviation
of the baseline firing rate calculated from a 2 s window 2 s before beta onset. For the phase
histograms the white line and gray region represents the mean and standard deviation of
phase histograms calculated from 50 random shuffles of the same number of spikes.
Subdivision defining the mixed response E-I-E are indicated on the PSTH plot (C).
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and may reflect the diversity of inhibitory cell types in the GCL. The excitatory and
inhibitory responses of different cells to the same odor may be due to inhibitory
connections between GCL interneurons (Pressler & Strowbridge, 2006).

We were not only interested in the modulation of firing rate during beta
oscillations, but also the modulation of spike timing in the form of phase locking.
Thus, for each cell we also calculated spike-beta phase histograms (see Methods
4.3.8), which are shown in the bottom panel of each subfigure in Figure 4.12. In this
example, all cells showed strong phase locking except for the cell with the tI
response (Fig. 4.12D). Notably, the cell that showed no rate modulation (Fig. 4.12F)
was still phase locked to beta, suggesting that cells could potentially carry
independent information in their rate and timing by participating in different

dynamical states.

4.4.3 Variability of responses of well-isolated cells across odors and days

In the previous sections, we discussed experiments in which we presented only one
odor at a time, thus we could not investigate the responses of individual cells to
different odors. In the multi-odor swab presentation experiments (2" column of
Table 4.1), we interleaved several different odors per session in a fixed order (see
2nd column of Table 4.1 for order of odor presentations). We performed sessions on
four consecutive days to investigate the day-to-day variations of individual cells that
might be held across days. In both Rats 2 & 3 we found clusters that responded

differently to different odors.
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Figure 4.13 GCL neuron responses on consecutive days. Example odor responses on
two consecutive days of a cell from Rat 2 (A) and Rat 3 (B). For each day the correlogram
and spike waveforms (top), raster plots grouped by odor (middle), and PSTH per odor
(bottom) are shown. Correlograms were calculated 1 ms bins in a 50 window ms.
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To illustrate the variability of responses within clusters of spikes from
individual cells or multiunit responses, Rat 2 had a cluster with a strong persistent
excitation for NA, but a persistent inhibition for EMB and GER (Fig. 4.13A), and Rat 3
had a cluster with strong inhibition to EMB and PP, a slight inhibition to GER, and no
response to NA (Fig. 4.13B). The responses for these clusters appeared to be
maintained on the 21d day, but both of these clusters were lost after the 2nd day. By
the presence of a refractory period in the correlogram for the Rat 2 example (Fig.
4.13A, top) we feel confident that all the spikes in this cluster came from the same
cell, but the lack of a clear refractory period in the Rat 3 example correlogram
indicates that the cluster likely contains spikes from multiple cells or possibly some
noise. The signals in Rat 3 were generally noisier, and the clustering procedure
appeared to miss some spikes on Day 2, resulting in gaps in the raster plots,
although the shape of the histogram remained the same. It is interesting to note that
the Rat 2 cell seemed to maintain inhibition after odorant was presented, because
the baseline firing rate for the NA presentation was lower than the other two (NA is
the last in the sequence for this rat). Also, it is interesting that the example cluster
for Rat 3 seems to scale its inhibitory response by the volatility of the odorant (see
VP of each odorant in Table 4.1).

A small subset of clusters maintained the same waveform and correlogram
over 3-4 days, leading us to believe that we were holding the same cell (or small
group of cells) over these days. Figure 4.14 shows the raster plot, PSTH, and phase
histograms of one such cell from Rat 2. This cell was only sensitive to EMB, but the

response of this cell appeared to progress from an I-E type response on Day 1, to a
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(orange), but for Days 2 and 3 the response is purely excitatory. Day 4 still shows persistent
excitatory response, but firing rate is over twice as low as other days, probably due to failure of spike
detection algorithm to detect all spikes. D) Spike - phase histograms of beta, high/low gamma, and
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persistent excitatory response on Day 2, to an even more prominent excitatory
response on Day 3. On Day 4 the firing rate was much lower, most likely because the
cell had drifted away from the probe so that not every spike was detected. In
addition to this striking evolution of the odor response over days, this cluster
showed changes in LFP phase preferences across days (Fig. 4.14D). The beta phase
preference for EMB (Fig. 4.14D orange, bottom) was near 90° on Day 1, but on all
other days was clearly negative. It is not likely that the LFP polarity changed due to
movement between days because the probe did not span a cortical layer. This
cluster did not show a strong gamma phase preference, except for high gamma on
Day 2 and a low gamma preference on Day 4. The theta phase preference appeared

to change from 90° on Days 1&2 to 180° on Days 3&4. Interestingly, the mean beta
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power recorded during each odor presentation drops significantly after Day 1 for
high volatility odors, while the beta power for low volatility odors remains roughly
the same across all days (Fig. 4.15). This could reflect some form of familiarization
with the procedure, or a change in odor sampling strategy, perhaps as the rats learn

to take shallower or shorter sniffs of the high volatility odors.

4.4.4 Evolution of population response trajectories over time

We simultaneously recorded ~60 - 80 neurons per session in Rat 2 and ~30 - 40
neurons per session in Rat 3 (which had missing shank 2 due to noise). In addition
to looking at the responses of individual cells, we wanted to investigate the
responses at the population level. Inspired by work of Stopfer, et al. (2003), we
computed response trajectories and visualized them using locally linear embedding
(LLE, see Methods 4.3.14). Unlike Stopfer et al. (2003), we computed the trajectories
using PSTHs across all trials rather than individual trials or averaged triplets as they
did. The number of neighbors used for LLE must be tuned to produce the most
visually clear trajectories. By trial and error, we found optimal values of 25 and 14
numbers of neighbors for Rat 2 and Rat 3 populations, respectively. Thus, by
reducing dimensionality across a large number of cells we could represent the
activity of all cells in just two dimensions.

The trajectories for each odor used in the multi-odor swab presentation
experiments are shown in Figure 4.16. Transparent and filled colors indicate pre-
and post-beta onset respectively. For Rat 2, LLE produced clearer trajectories than

PCA. On Days 1 & 2 for Rat 2 the EMB-induced population trajectory (orange)
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Figure 4.16 Trajectories obtained from LLE decomposition of PSTHs across the entire
neural population. The trajectories cover the period starting 2s prior to beta onset (transparent
colors) to 2s after beta onset (filled colors) in 100 ms time steps. Although most of the trajectories
are rather noisy and angular, a relatively smooth path emerges for EMB (orange) on Day 1 of Rat 2
(left). It is clear in this plot that the trajectory diverges at the onset of beta oscillation (transition
from light to filled orange color,  onset marked by arrow). After ~800 ms the trajectory returns
closer to its original starting point, but continues to wander away from it, as the full responses can

last up to 3s. The two high volatility odors (EMB & PP) tend to overlap for Rat 3 (right).
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clearly diverges from its pre-beta onset baseline path immediately at the onset of
beta. The NA trajectory (blue) also tends to diverge, but it does so more slowly, as
can be seen by the overlap of light and dark blue trajectories. This may be due to a
genuine later onset of NA activity, or simply due to the fact that NA induced much
smaller beta oscillations making alignment to them less precise. The EMB trajectory
does not return to baseline in the 2s post beta onset, suggesting that the population
response lasts longer than 2s. GER trajectories do not diverge much from pre-beta
onset paths, because most of the cells in Rat 2 were insensitive to GER. On Day 3, the
EMB trajectory (orange) diverges sharply from its pre-beta onset path, reflecting a
very strong excitatory and inhibitory EMB responses by many cells on this day. We
point out that one of the cells in this population is the same cell shown in Figure
4.14 that had such a strong excitatory response to EMB on Day 3.

Even though we tried to optimize the visualizations, the best trajectories for
Rat 3 (Fig. 4.16, right) were noisier and more angular than those of Rat 2. This is
probably due to the lower number of neurons from Rat 3 (only 30 - 40). In
comparison, Stopfer et al. 2003 needed over 100 cells to get smooth trajectories
(personal communication). Nonetheless, we see that the trajectories for the two
high volatility odorants, EMB (orange) and PP (red), tend to overlap with
themselves more than the two low volatility odorants, especially in Days 1 & 3. This
result echoes what we saw for the individual neuron in Fig. 4.13 B, where firing
responses to both high volatility odors were strong inhibition. The Rat 3 EMB and
PP responses appear shorter-lived than the Rat 2 responses to EMB, as they sharply

diverge and then return close to baseline within the 2s. The Day 4 trajectories are

147



overlapping, possibly due to signal degradation and noise that led to poor clustering.
[t appears that on a population level, the GCL neuron population sampled for Rat 3 is
more sensitive to odor volatility than odor identity, because the odors within each
volatility class overlap. This supports the idea that GCL neurons might be broadly
tuned to odors, because they receive inputs from MCs from across the bulb and

strong centrifugal drive from higher order areas.

4.4.5 Cells that are strongly phase locked to gamma oscillations tend not

to be phase locked to beta oscillations.

As seen in Figures 4.12 & 4.14 some phase histograms are obviously peaked, and
others are not. To quantify the degree of phase locking across our entire data set we
computed the spike-field coherence (SFC) between spikes and the LFP filtered for
either beta or gamma bands (see Fig. 4.7 and Methods 4.3.11). In Figure 4.17, we plot
beta SFC vs low and high gamma SFC for all cells in the data set responding to high
volatility odors. Because the beta SFC for low volatility odors tended to be biased
due to short beta epochs (explained in Methods 4.3.11) we only present high
volatility results. Each point represents a cell (or multi-cell cluster), and each cell
with significant beta coherence (as determined by 1 sided, 1 sample T-test) is
colored red. For each of these plots, the upper right quadrant tends to be
unpopulated. That is, cells with high beta coherence tend not to have high gamma

coherence.
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Figure 4.17 Plotting beta SFC vs high and low gamma SFC. Spike-beta coherence vs
spike-low gamma (A) and spike-high gamma (B) coherence for every cell in the data set
responding to high volatility odors. Each plot is divided into quadrants. Very few cells fall
in the upper right quadrant. Cells with significant beta coherence are colored red.

It is possible that cells with higher beta coherence represent a different
subtype than cells with higher gamma coherence, but they did not cluster with any
of the other response properties that we measured. Spike - gamma coherence was
quite low (< 0.02) for all cells except for a subpopulation in Rat 3, which had much
greater low gamma SFC than the other rats (Fig. 4.17 Aiii). It is possible that the cells
with greater low gamma coherence are distant MCs, because these cells are known

to have fairly high gamma coherence.

4.4.6 GCL neurons show heterogeneous beta LFP phase preferences

The preferred beta phase of each cell (or multi-cell cluster) was calculated by fitting

a Gaussian or a sinusoid (whichever gave the best fit) to the phase histogram and
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taking the argmax (see red curves on phase histograms in Fig. 4.14 D and Methods
4.3.9). In Figure 4.18A we count the preferred phases for all cells recorded in each
rat (white bars count only those cells with significant SFC). A phase of 0°
corresponds to the peaks of the beta oscillation, while 180° (* 1) corresponds to the
troughs (Fig. 4.18B). Curiously, the preferred phases for Rat 1 were all peaked
around just above 0°, but those for Rats 2 & 3 were more heterogeneous. Although
the total population of Rats 2 & 3 showed preferred phases towards 180° (* ),
most of the phase preferences for cells with significant beta SFC were between 0 and
1800. It is possible that the LFP in Rat 1 was reversed relative to the LFP in Rats 2
and 3 if the probe for rat one was somehow crossing a layer, but it is unlikely as the
probes were lowered to the same depth for all rats, and the GCL LFP should be of
consistent polarity (phase reverses when crossing the EPL).

Figure 4.18 C shows that cells had roughly the same preferences for all odor-
induced beta oscillations in Rat 1. The phase preference was consistent over long
time intervals as well, as evidenced by the two EMB sessions that were recorded 3
weeks apart. The beta phase preferences in Rats 2 & 3 differed more across odors.
In particular, cells in Rat 3 responded to GER and NA with 180° phase preferences,
but responded to PP with a peak phase preference just under 90°. This suggests that
odors of different volatilities could possibly drive some GCL neurons at different
phases of beta oscillations. It is possible that phase preferences were heterogeneous
in Rats 2 & 3 because the probes detected different inhibitory subtypes in the GCL,
while the phase preferences were more similar in Rat 1 because the probe

happened to be placed near a nest of similar cells types. Rat 1 only had single odor
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sessions, while Rats 2&3 had multiple odors interleaved in a session, so it also can’t
be ruled out that the succession of different odors caused the more heterogeneous

phase preferences.
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Figure 4.18 Preferred phases for all recorded cells in each rat A) Preferred phase pooled across
all odorants for each rat. Black bars represent SFC of the entire cell population. White bars
represent cells with significant beta SFC. B) Schematic showing phase convention used. C) Preferred
phase grouped by odor for each rat. Black bars represent SFC of the cell population recorded for
that odor. Colored bars represent the cells with significant beta SFC for that odor. For these plots,
data for Rat 1 is taken from single odor blocks (only one day per odor). Data for Rats 2 & 3 was
pooled across the four days of interleaved presentations and grouped by odor.
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4.4.7 Prediction accuracies from spike distance metrics distinguish

between timing and rate cells

Continuing with the multi-odor swab presentation data of Rats 2 & 3, we next
investigated how well we could decode odor identity from the neural firing patterns.
We chose to do this by computing the Victor-Purpura (1993) distance metric
between all spike train pairs and then determining the predicted odor of each spike
train as the odor that evoked the spike trains giving the shortest average distance
(see Methods 4.3.13 for more detail). The prediction accuracy was then simply
calculated as the number of correct spike train predictions divided by the total
number of spike trains. The spike distance was calculated for a range of timing
resolutions, from 0.1ms to 2s (the entire spike train window). At fine timing
resolution, the timing of individual cells influences the distance metric, but at course
timing resolutions only the total number of spikes contribute. Therefore, this
analysis allows us to identify cells that carry odor identity information in the timing
of their responses and cells that carry odor information only in the number of spikes
they fire.

Using this approach, we found three classes of odor selectivity, which we
refer to as non-informative, timing, and rate cells. Non-informative selectivity did
not successfully distinguish between the odors presented. Timing selectivity
showed peak prediction accuracy at an intermediate timing resolution. Rate
selectivity had peak prediction accuracy when the timing resolution was the size of
the window, so the only information available to distinguish between odors is the

number of spikes. A representative of each of these types is shown in Figure 4.8B.
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Figure 4.19 Prediction accuracy of cell populations and individual cells. A) Odor prediction
accuracies of the entire recorded population recorded in Rat 2 (left) and Rat 3 (right) were
obtained from the mean distance matrix across all cells. Dashed black line represents chance. B)
Prediction accuracies as a function of time resolution for 4 representative timing cells in Rat 2.
The time resolution and corresponding frequency for each peak prediction accuracy are
indicated. Dashed black line represents chance. C) Same as B, but for Rat 3.

Because we used a very small stimulus space for these experiments (only 3 odors
for Rat 2 and 4 odors for Rat 3), it is likely that some of the indeterminate cells
would have shown discriminable responses had we used more odors.

With only three odors used for Rat 2 and four odors used for Rat 3, the

chance prediction accuracies were 33% and 25% respectively. Most of the peak
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prediction accuracies for rate and timing cells were below 50%. Rate cells produced
the highest accuracies with a maximum of only 60%. These values are rather low
when compared to prediction accuracies using similar methods in cortical neurons
(Mackevicius et al., 2012). The prediction accuracies for the entire population,
obtained from the mean distance matrix across all cells, were rate-like for Rat 2 (Fig.
4.19A, left). The population prediction accuracy for Rat 3 (Fig. 4.19A, right) cells was
poor because many of the cells have accuracies below chance due to temporary
drops in spike detection (See Discussion section 4.5.4 for explanation).

Although the prediction accuracies from the whole population were
maximum for rate-like classification, quite a few individual cells in both rats showed
timing selectivity (23% of cells in Rat 2, and 15% of cells in Rat 3). Examples of four
such cells are shown in Figure 4.19B,C. The majority of these timing cells showed
peak prediction accuracies at timing resolutions corresponding to beta and theta
frequencies, and some even at gamma frequencies (like the rightmost cell in Fig.
4.19C). This means that for these cells, variations in spike timing on beta and theta
time scales convey the most information about odor identity. Although these
experiments were not designed with this analysis in mind, this analysis reveals a

tantalizing link between spike timing, LFP frequencies, and odor identity.

4.4.8 Alignment of spikes to nose-poke reveals early phase of GCL neural

responses locked to behavior

We trained Rats 2 & 3 to poke their noses into an odor port hooked up to a

computer controlled odorant delivery system (Fig. 4.10, and see Methods 4.3.17).
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The odor port was equipped with an IR detector, giving us a behaviorally relevant
time point with which to align our signals. In the nose-poke 1 odor full reward
sessions (3rd column of Table 4.1) we used only one odor per session and rewarded
each successful nose-poke with a sugar pellet. For these sessions, the data for Rat 3
was contaminated with so much 60 Hz noise that very few trials were salvageable,
so we only present results for Rat 2. In the odor swab presentations experiments,
the rats stayed plugged into their headstages because the cable had plenty of slack
to absorb the twists caused by locomotion. But during the nose-poke experiments
the rats would frequently unplug themselves as they would nudge their heads into
corners and press the headstage against the wall of the operant cage. The unplugged
periods (Fig. 4.20A) were easily removed via simple thresholding and deletion, but
repeated unplugging and re-plugging could slightly shift the probe, causing some
cells to be lost and introducing new cells over the duration of the recording session.
Figure 4.20B shows that beta oscillations were reliably evoked by EMB
shortly after the rat poked its nose into the odor port. The average latency of beta
oscillation onset with respect to nosepoke time was ~150 ms for EMB and ~100 ms
for GER, which is shorter than the latency our lab has seen when rats are performing
Go/No-Go or Two Alternative Choice operant tasks (~250 msec). The decreased
latency may be related to the absence of a decision period. Figure 4.20B also shows
a period of fast investigative sniffing roughly coinciding with the dark period. This
behavior was more common in the nose-poke experiments than the cotton swab

presentation experiments, likely because rats get more active in the dark periods
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Figure 4.20 Raw LFP and event times during a nose-poke experiment A) LFP signal during the
entire duration of one nose-poke recording session. The rat would frequently come unplugged
from the tethered headstage as it explored the operant box. Individual house-light ON/OFF events.
B) A zoomed in 15 s trace of the session in B shows that beta oscillations are reliably evoked
almost immediately after the rat pokes its nose. The trace also shows fast investigatory sniffing,
which often initiates when the house-light turns off.

between trials and the operant box was a more enriched environment than the cage
in which swabs were presented.

In Figure 4.21A we show representative PSTHs for all the different types of
nose-poke aligned responses to GER (Fig. 21Ai) and EMB (Fig. 21Aii). For these
PSTHs we used a time bin of 50 ms to see finer grained dynamics than the PSTH in
previous plots. Using this finer temporal resolution, we saw that many of the cells
fired spikes that were precisely timed to the moment of nose-poke (top two rows of
Fig. 4.21Ai,ii). Most cells that fired at nose-poke showed a brief return to baseline
and then elevated activity for some portion of the beta period (second row of Fig.

4.21Ai,ii). Others cells were excited or inhibited only with the onset of beta (3rd and
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Figure 4.21 Average nose-poke aligned responses of GCL neurons to GER and EMB. A)
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4th rows from the top of Fig. 4.21Ai,ii), and yet others showed mixed responses
(bottom row of Fig. 4.21Aii). The EMB session produced 60 cells (or multi-cell
clusters) total, 22 of which had no response, 9 fired at nose-poke, 8 were excited at
beta onset, and 21 showed inhibitory or mixed responses. The GER session
produced 68 cells (or multi-cell clusters) total, 42 of which had no change in firing
rate, 12 fired at nose-poke, 13 were excited with beta onset, and only 1 showed a
slight inhibitory response. Interestingly, cells that showed excitatory responses
(grouping transient and persistent responses together) tended to have lower
baseline firing rates than cells that showed inhibitory responses (Fig. 21Bi,ii). An
exciting possibility is that the higher firing rate cells are being inhibited by the lower
firing rate cells. In future work we will look at correlations in the firing patterns of
these cells to see if such a relationship exists.

One might suspect that different responses might occur at different locations
in the GCL. Excitatory and inhibitory responses were found distributed across the
probe leads, but as shown in Figure 4.22, a diverse array of responses was detected
within a localized region in the GCL. Excitatory and inhibitory responses in nearby
GCL neurons could arise from local inhibitory connections between the cells.
Although we have not yet looked, it would be interesting to see if there are any
correlations in the firing patterns in nearby cells with such opposing responses.

The precise locking of spikes to nose-poke suggests that GCL neurons may
not only be odor sensitive, but also part of a network of cells involved in motivated
behavior. Our model predicted that GCs should spike before beta onset to drive the

long lasting depolarization, which in turn increases GC excitability and sustains
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GABA release. Although the origins of the impulse that excites GCL neurons
precisely at nose-poke are unknown, it is possible that it originates from cortical
top-down inputs rather than sensory stimulation. A simple control to test this idea
would be to include some blank trials during the session to check if the nose-poke
locked GCL responses could be evoked without an odorant stimulus. Such a result
would suggest that a motivated behavior might facilitate beta oscillation generation

by centrifugally stimulating a subpopulation GCL neurons.

4.4.9 Results of Nose-poke 2-odor half-reward experiments

In a final set of nose-poke experiments we used two high volatility odors, EMB and
PP. Both odors were rewarded fully for the first half of the session, but the reward
for PP was discontinued for the second half of the session. Only Rat 3 performed
these sessions (4™ column of Table 4.1). The goal of these experiments was to
answer the question, does the presence or absence of a reward influence odor
evoked GCL neuron activity?

These experiments came with three challenges: (1) They were designed after
the rat had already been implanted for ~4 months, so the signal quality was greatly
reduced, and (2) the probe in Rat 3 was particularly sensitive to 60 Hz noise which
the operant box frequently introduced into the signal. This had to be removed
before clustering or else clusters were themselves composed of noise (see Methods).
(3) The rat would frequently unplug itself, and this caused cells to be lost and new
ones to be introduced over the course of the experiment. This can be seen in Figure

4.23A, which shows the firing rates of all cell across the entire experiment (with
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noise and inter-trial periods removed). [t appears that a sudden increase in most of

the cells firing rates occurs just before the 2nd unplugging event, but this may just be

due to a shifting of the probe closer to a group of cells.
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Figure 4.23 Some GCL neuron responses show reward contingency A) Firing rates of all
clusters recorded for the nose-poke 2 odor half reward session. Although a few clusters show more
consistent firing rates across the experiment, the firing rates for most of the clusters starts very low
(1 - 3 Hz). The overall increases in firing rate seem to line up with the unplugging events (red
vertical lines), which suggests that most of the clusters are corrupted by movement of the probe. A
green vertical line marks the point at which PP reward was discontinued. B) Example PSTHs of two
clusters that showed similar responses for both EMB and PP before and after PP reward
discontinuation. C) Example PSTHs of two clusters that selectively showed inhibitory responses to
PP-, but similar response for EMB pre and post PP reward discontinuation. PSTHs computed with
200 ms bins. (PP+ rewarded PP, PP- unrewarded PP)
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Despite these significant limitations, we found some cells that showed
compelling responses. In Figure 4.23B,C we computed PSTHs from trials before and
after discontinuing PP reward. These PSTHs used the wider 200 ms bins. We refer to
the rewarded PP trials as PP+ and unrewarded PP trials as PP-. We found some cells
that showed similar responses for both EMB and PP before and after the reward
discontinuation, so these cells were not sensitive to the change in reward (Fig.
4.23B). But surprisingly, some cells appeared to be inhibited only for PP after the
reward was removed (Fig. 4.23C). The EMB responses, on the other hand, showed
similar trends before and after (except for an overall increase in firing rate due to
the clustering artifact described above). Out of 28 cells recorded for this session, 10
of them selectively showed inhibition for PP-. Although the data quality of this final
experiment was poor, the results provide exciting preliminary data to serve as

motivation for future experiments.

4.5 Discussion

In this series of experiments we recorded extracellular potentials using 32-channel
Si probes implanted in the GCL of rats who participated in four different odor
presentation experiments (Table 4.1). The results of our experiments show that GCL
neurons produce odor specific responses that may evolve over time (Figs. 4.12-4.14
& 4.16). Cells with high gamma coherence tend to have low beta coherence and vice
versa (Fig. 4.17). In one rat, the preferred beta oscillation phase across the whole

recorded population was close to 90°, but the other two rats showed more
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heterogeneous phase preferences across GCL neurons (Fig. 4.18). Interestingly,
some of the cells’ responses carry more odor identity information in their timing,
while others carry more in their rate (Fig. 4.19). In one rat, we showed that reward
contingency may also influence the polarity of responses (Fig. 4.23). Together, these
results demonstrate that GCL neuron responses are quite diverse and may help

represent the meaning of odors on various time scales.

4.5.1 Possible approaches to identifying GCL neurons

In classical multichannel electrophysiology, different neurons can often be identified
by the shape of their waveforms across multiple channels. This is usually possible
because cortical neurons are organized in layers and the probe remains a fixed
distance from the layer or contains channels that span the layer. In our case this was
not viable because our probes were located within the GCL and were surrounded by
GCL neurons from all sides. Simulations of the shape of extracellular potentials have
shown that recorded spike shape differs greatly depending on where the probe is
relative to the soma (Buzsaki et al,, 2012). However, the relative lack of clearly
biphasic waveforms suggested to us that we are recording from GCL neurons and
not M/T cell axons. We could not be sure what type of neuron we were recording
from the waveform shape, and thus we referred to all recorded neurons as GCL
neurons to avoid misidentification.

Although identifying neuronal types by waveform was not possible, there are
other features that may differentiate between cell types, at least on a functional

level. One such feature is baseline firing rate. Our GCL neurons had a wide range of
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baseline firing rates, but most fell within 1 - 10 Hz as shown in Figure 11B. Unlike
the fast spiking interneurons found in neocortex, OB GCs typically fire at low rates
(Cang and Isaacson, 2003a; Cazakoff et al,, 2014). Two other known GCL
interneuron subtypes, Blanes cells and deep short axon cells, also fire at similarly
low rates (Pressler and Strowbridge, 2006; Burton and Urban, 2015). M/T cells
typically fire spontaneously around 10 - 20 Hz (Kay & Laurent, 1999), though some
tufted cells may fire faster around 30 - 40 Hz (Fukunaga et al, 2012; Igarashi et al,,
2012). Thus, the slowest firing cells might be GABAergic GCL neurons, cells firing at
moderate rates and clear refractory periods might be distant MCs somatic
potentials, and the fastest firing cells may be distant tufted cells, if a refractory
period is present, or otherwise multiunit combinations of the mentioned cell types.
Another feature that may help us distinguish between cell types is phase
locking to gamma oscillations. It is known that M/T cells can be strongly phase
locked to gamma and often fire in bursts (Eeckman and Freeman, 1990; Kay and
Laurent, 1999). Thus a cell that fires 10 - 30 Hz bursts locked to gamma and has a
refractory period in its ISI might be a M/T cell. We noticed that cells with high SFC
between spikes and gamma oscillations had lower SFC between spikes and beta
(Fig. 4.17). Some cells with high gamma SFC also have baseline firing rates near that
of MCs. The sub-population of cells in Rat 3 that had particularly strong low gamma

SFC might in fact be M/T cells.
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4.5.2 Plasticity of GCL neuron responses over days

Several GCL neurons were well isolated and close enough to the probe that they
could be recorded over days. Some of these cells showed the same response from
day to day, but others showed changes in both their firing rate and LFP phase
preferences (Fig. 4.14). GCL neurons receive dense contralateral innervation and
neuromodulatory inputs (Kiselycznyk et al., 2006; Mouret et al., 2009a; Illig, 2011),
which we hypothesize can drive context-dependent changes in their responses that
may mirror those seen in mitral/tufted cells responses (Pager, 1978; Bhalla &
Bower, 1997; Kay & Laurent, 1999; Rinberg et al., 2006; Doucette & Restrepo,
2008). For the multi-odor swab presentation experiments conducted on consecutive
days, the contextual change may be the onset of familiarity (especially going from
day 1 to day 2), because both rats were unfamiliar with the odor presentation
protocol on day 1. This hypothesis may be supported by the fact that the mean beta
power for high volatility odors (EMB in Rat 2, EMB & PP in Rat 3) was high on the
first day, then dropped significantly on days 2 & 3. Since beta oscillations are
thought to increase when nasal airflow rate is high (Fourcaud-Trocmé et al., 2011b),
the decrease in beta LFP power could reflect a change in odor sampling strategy,

perhaps as the rats learn to take shallower or shorter sniffs of high volatility odors.

4.5.3 Tuning of GCL neural responses to odor identity vs odor volatility

To visualize the odor response of the entire recorded GCL neuron population we

performed LLE, following Stopfer et al. (2003), which produced trajectories in a 2D
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space that evolved in time (Fig. 4.16). Although the trajectories for Rat 3 are
somewhat messy, it appears that the trajectories for the two high volatility odors
overlapped more closely with each other than with the two low volatility odors. This
suggests that GCL neural responses might be more sensitive to odor volatility than
odor identity. Unfortunately, we only used one high volatility odor for Rat 2, so we
cannot confirm this in another rat. The only other study to date that recorded GCs in
awake rats found GC responses to be more broadly tuned when awake than under
anesthesia (Cazakoff et al.,, 2014). As GCs receive inputs from M/T cells across the
bulb due to the long M/T cell lateral dendrites, such broad odor tuning of GCs would

be expected.

4.5.4 Reasons for relatively low prediction accuracies from distance metric

Using a distance metric with varying temporal resolution to compare spike trains
elicited by different odors, some cells were found to distinguish better between
odors when distances were computed at fine temporal resolution (which we called
timing cells), while others performed better when the total number of spikes was
counted (which we called rate cells) (Figs. 4.8, 4.19). However, as described in the
results, these values are rather low when compared to studies in cortical neurons,
which used the same approach (Mackevicius et al., 2012), especially when looking at
the population prediction accuracy (Fig. 4.19A), which is close to 100% for cortical
neurons. One reason this may be the case is that these cells, being presumed
inhibitory neurons that receive inputs from many MCs, may have broad response

tuning, as was found to be the case for GCs (Cazakoff et al. 2014), so they respond
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similarly to multiple odorants. Indeed, we showed an example of such a cell in Fig.
4.13B. For the cells that showed strong responses to only one odor, there was still a
great deal of trial-to-trial variability. Because rats were behaving freely, they did not
always sniff the odor swabs in the same way, sometimes turning their heads away
while other times trying to lick or bite the swab, so the evoked responses could be
modulated by behavioral factors independent of the odors, causing within class
spike trains to vary quite a bit.

Another reason for low prediction accuracies is that many of the clusters
with nice waveforms that passed our criteria for inclusion were later found to suffer
from a clustering artifact. These clusters appeared to drop out or drastically reduce
in firing rate at some point of the recording, likely due to movement of the probe
causing the waveform to change and thus the clustering algorithm to lose the cell,
and then come back. Such artificial changes in firing rates could drive prediction
accuracies below chance, as spike trains elicited by different odors could become
more similar to each other than those elicited by the same odor simply because
spikes are missing. In future work we will remove the segments of time where cells

drop out.

4.5.5 Reward contingency of GCL neuron responses: The bigger picture

During the reward modulation experiment some GCL neurons appeared to switch
the polarity of their response from excitatory to inhibitory when an odor became

unrewarded (Fig. 4.23). Although only one rat participated in this experiment, this
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result provides exciting preliminary data for future studies. Previous studies have
shown that a switch between which of the two odors is rewarded in a Go/No-Go
task causes MCs to switch the polarity of their divergent responses (Doucette and
Restrepo, 2008). Several other studies have also shown strong context modulation
of M/T cells responses (Pager, 1978; Bhalla & Bower, 1997; Kay & Laurent, 1999).
Although we used a simpler task than these studies (most studies used a Go/No-Go
task), our results may be the first demonstration of context modulation of GCL
neurons to date. Contextual meaning most likely arises from a wider neural network
than the OB alone and probably relies on centrifugal inputs into the OB (Rinberg et
al., 2006; Mouret et al., 2009a). Since most of these inputs target the GCL, we
expected that GCL neurons should show some degree of context modulation.
Although the OB is known to host adult born dopaminergic cells (Bonzano et al,,
2016), these exist primarily in the GLO layer and are thought to be involved in
sensory gain control and not reward modulation. Rather, OB reward modulation
might function in a similar way as it does in the basal ganglia-thalamo-cortical loop,

with the OB playing a similar role as a thalamus (Kay and Sherman, 2007).
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5. Conclusion

5.1 Summary of results

[ have presented a three-part body of work consisting of computational modeling
(Osinski & Kay, 2016), pharmacological experiments (Osinski et al. 2017), and
electrophysiological recordings (manuscript in preparation). The common thread
through each of these is the role that OB GCs play in generating beta oscillations.
The modeling work showed that OB beta oscillations could be sustained by VDCC-
mediated synaptic currents in the MC-GC dendrodendritic network. Importantly, in
this model beta oscillations could not be sustained by heightened GC excitability
alone, but relied on an appropriate convergence of sensory input and centrifugal
feedback onto GCs that increased their excitability. The model led to two main
predictions. The first prediction suggested that there can be a divergent influence on
the power of beta oscillations for low and high sensory input regimes when GC
excitability is reduced. The second prediction is that beta oscillations are sustained
primarily through VDCC-mediated currents independent of NMDA-mediated
currents. Although the model didn’t explicitly include GC somatic spikes, it implicitly
assumed that GCs should fire spikes just before beta oscillation onset because their
excitability is driven by an afterdepolarization current following a somatic spike.

In the pharmacological experiments, we found evidence for the two

predictions. Infusion of scopolamine, which depresses GC excitability by blocking
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muscarinic receptors, reduced the power of beta oscillations elicited by a strong
(high volatility) odorant, but enhanced beta oscillations evoked by a weaker (low
volatility) odorant (Fig. 3.6). The agreement with the model was not exact, because
the biphasic effect of scopolamine (Fig. 3.3 & 3.4) was not captured by the model.
This complex effect could be due to the influence of scopolamine on other
muscarinic receptors throughout the bulb. Evidence for the second prediction was
found when infusion of the NMDAR receptor antagonist APV did not significantly
reduce beta oscillation power, but aggressively blocked gamma (Fig. 3.8).

In the high-density electrophysiological recordings, we also found evidence
for the implied assumption of our model, namely that GCs would fire just before or
at the onset of beta oscillations (Figs. 4.6C, 4.12A, 4.21). Some of the cells firing
before the onset of beta were actually tightly locked to the time at which the rat
poked its nose into an odor port (Fig. 4.21), suggesting that GCL neurons are
behaviorally modulated. A rich diversity of other response types was also detected,
indicating that our model assumptions were too simplistic (as is the case for most
models). We point out that, in our model only a fraction of GCs had to participate in
the beta oscillation, leaving open the possibility that other cells could be involved in
another process during the beta oscillation. The GCL is home to many inhibitory
subtypes, which may lead to more complex inhibitory cell responses. Interestingly,
we found that some GCL neurons better discriminated between odors using the
number of spikes, while others convey more information in the timing of their

responses (Fig. 4.19), which we referred to as timing cells and rate cells. In
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experiments where rats were trained to poke their noses into an odor port we found

evidence for behaviorally modulated GCL responses.

5.2 Future directions

Over the course of the experiments presented here I left many stones unturned,
especially for the high-density multichannel electrophysiological recordings of GCL
neurons. [ now discuss some avenues for continuing this work. Some of the contents
of this section are redundant with what was said in previous discussion sections, but

are included here for completeness.

5.2.1 Combining pharmacology and high density probe recordings

High-density Si probes attached to cannulas already exist, thus we could combine
pharamacological manipulation and high-density recording to ensure that the effect
that muscarinic drugs scopolamine and oxotremorine actually inhibit and excite GCL
neurons as we expect. We could also expand to other drugs because the GCL
receives a wide array of neuromodulatory inputs, and their effects on GCL activity in
awake animals are not yet known. One such drug to use would be the N-type Ca?*
channel blocker, w-conotoxin. Although the infusion of APV supported the model
prediction that N-type VDCCs drive beta oscillations, it was not direct. To directly
test the involvement of N-Type VDCCs we can infuse w-conotoxin and then present

odors.
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5.2.2 Identifying GCL neuron types

Although I was not able to successfully identify different GCL neuron types in the
present work, in section 4.5.1 I provided some suggestions on how to better
discriminate between GCL cell types. The presence of rate and timing cells (as
described in section 4.4.7), suggests a functional distinction between two types of
GCL neurons. [ have not yet attempted to cluster timing and rate cells by other
features such as waveform, phase preference, or baseline firing rates. Furthermore, I
noticed that cells with inhibitory type responses tended to have higher baseline
firing rates (Fig. 4.21). The higher firing rate cells may be distant M/T cells, and if

this is the case then, they should also be phase locked to gamma.

5.2.3 Population level analysis of GCL neural responses: can we find cells

working together?

Except for the population trajectories described in section 4.4.4, most of the analysis
of the GCL neuron responses were on a cell-by-cell basis. Because we have many
simultaneously recorded cells, we can perform a great deal of population level
analysis. The simplest of these would be to look at pairwise correlations especially
between nearby cells with opposite responses, like the ones shown in Figure 4.22.
Does one always fire before the other? Do they fire on complementary phases of a
beta oscillation, or are they completely uncorrelated?

Another possibility is to take an information theoretic approach. Such an

analysis could potentially reveal highly informative firing patterns across cells,
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suggesting that they may be participating in a dynamical state. It could also tell us
whether the responses of cells are redundant, independent, or synergistic (carrying
more information together than alone). However, because we don’t have many trials
(30 at most), there is a lot of trial-to-trial variability, and the stimulus space used in
the experiments was quite small (only 3 or 4 odors), information theoretic analysis
might not be viable for these recordings. Because the cells in the recorded
population are not sensitive to every odor, future experiments should use more
odorants to make it more likely that a cell will respond. Recordings should also be

performed immediately after recovery from surgery to ensure highest signal quality.

5.2.4 Recording GCL neural responses during reward contingency

experiments

Although the reward contingency experiment was only conducted in one rat, it
served as a preliminary experiment to stimulate future work. The responses of OB
M/T cells are known to be highly contextually modulated (Pager, 1978; Bhalla &
Bower, 1997; Kay & Laurent, 1999). Because GCs receive dense cortical and
neuromodulatory inputs, it is likely that this contextual modulation is mediated by
GCs. Future implanted rats will be trained on Go/No-Go and 2-alternative choice
tasks, which involve more cognitive processing than the simple rewarded nose-poke
task used in this work. With these experiments, we will come closer to

understanding the neural process that gives meaning to odors.
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APPENDIX

Appendix I: Derivation of [Calp sciine

Because in the absence of MC spikes I has a non-zero activation even for resting
potentials as low as -75 mV there is a constant Ca?* current which sustains an
internal [Ca] which we call [Ca]pgseiine- In order to prevent [Calygserine from driving
tonic inhibition of MCs we subtract it in the calculation of P,..;.4s., @as shown in Table

2.1. We derive [Calpqserine DY solving the steady state equation for [Ca] evaluated at

Vrest,dGC'

tcalCal = —[Cal + peq(Iympa + Iv) = 0 (A1)

10
[Cal = pca * In = Pea - WyTny 107 + [Ca] [Ecany — Vrestacel

Note that in the absence of MC spikes the steady state of Iy p4is O and the steady
state of my is my evaluated at V;..5; g4cc. Now we have a quadratic expression in [Ca],
[Cal? + 107*[Cal = 10™*pcoWyiTin [Ecawy = Vrestacc] =0 (A2)

which has the following solution

—107* &+ \/ 1078 — 4 % 10~*pg, Wy iy [Ecaqwy = Vrestacc]

[Ca] = > (A3)

[Ca] ~ i\/_10_4pCaWNmN [ECa(N) - Vrest,dGC]

In the approximation we take advantage of the fact that the second term in the
square root is of order 1 >> 107* >> 1078, Now we must recognize that E, itself is a

logarithmic function of [Ca], and thus an analytical solution here is not tractable.
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Instead, [Calpqseiine is found as the value for which the left hand side (LHS) and

right hand side (RHS) of the following equation intersect

Vyoer e + [Ca]zbaseline _RT nM
t, — >
res 107 *pc,Wymy  zF  [Calpasetine

(A4)

In practice this is achieved by finding the index of the minimum of abs(LHS - RHS),
giving a value for [Ca]pserine Which agrees well with the steady state internal [Ca] of
all 720 simulated GCDs. One should note that this method breaks down if
[Ca]paseline T€AChes or overshoots [Cal:, because in that case Pygjpq5e Will be 0 or
negative. We keep our model parameters in a range where this problem is not

encountered.
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Appendix II: Spike-Field Analysis Functions

Available on github: https://github.com/boleszek/NeuroAnalysisFunctionsPython

Created on Sat Jun 24, 2017
@author: Boleszek Osinski, Kay Lab, University of Chicago

These functions were originaly designed to analyze spikes and LFPs
- detected with 32-channel 2-shank Si probes (Cambridge Neurotech)
- digitaly recorded using OpenEphys software

Data formats:
- Continuous data must be converted to flat binary .dat format to be analyzed
- Spike timing data are stroded in hdf5 format kwik files generated by klustakwik2

import numpy as np

from scipy.signal import butter, hilbert, filtfilt, coherence
from scipy import stats

import random

def align_spikes_to_beta(no,nop,thb_sc,LFPb_env,SPK,odor_periods,sf):

sssf = sf/10

scl = 0.8

sc2 = 2

start = odor_periods[0::2] - scl*sf

stop = odor_periods[1::2] + sc2*sf
LFPb_env_op = exctract_LFP_trials(start,stop,nop*no,LFPb_env)

for i in range(nop*no):
LFPb_env_op[i][0:50]
LFPb_env_op[i][-50:] =

nou
[\

if no == 1:

thb = thb_sc*np.median([np.max(LFPb_env_op[i]) for i in range(nop)])
startb_op = list()
for i in range(nop):
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yo = LFPb_env_op[i] >= thb

if sum(yo.nonzero()[@]) == 0O:

yo = LFPb_env_op[i] >= thb/2
if sum(yo.nonzero()[@]) == 0O:

yo = LFPb_env_op[i] >= thb/2.5
if sum(yo.nonzero()[@]) == 0O:

yo = LFPb_env_op[i] >= thb/3
startb_op.append(yo.nonzero()[0][0])

scextl 6

scext2 = 6

start = odor_periods[0::2] - scextl*sf

stop = odor_periods[1::2] + scext2*sf

LFPb_env_op_ext = exctract_LFP_trials(start,stop,nop,LFPb_env)

SPK_op_ext = exctract_SPK_trials(start,stop,nop,SPK)

startb_op_ext = [startb_op[i]+sssf*(scextl-scl) for i in range(nop)]

SPK_op_ext_aligned = []
for i in range(nop):
SPKtmp = list()
for s in range(len(SPK)):

SPKtmp.append(SPK_op_ext[i][s] - startb_op_ext[i]*10)
SPK_op_ext_aligned.append(SPKtmp)
else:

thb = []
for o in range(no):

thb.append(thb_sc[o]*np.median([np.max(LFPb_env_op[o::no][i]) for i in range(nop)])

startb_op = []
for o in range(no):
inds = np.arange(o,nop*no,no)
startb_op_temp = []
for i in range(nop):
yo = LFPb_env_op[inds[i]] >= thb[o]

if sum(yo.nonzero()[0]) == 0:

yo = LFPb_env_op[inds[i]] >= thb[o0]/2
if sum(yo.nonzero()[0]) == @:

yo = LFPb_env_op[inds[i]] >= thb[o0]/2.5
if sum(yo.nonzero()[0@]) ==

yo = LFPb_env_op[inds[i]] >= thb[o0]/3
startb_op_temp.append(yo.nonzero()[0][0])

startb_op.append(startb_op_temp)
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scextl 6

scext2 6

start = odor_periods[©::2] - scextl*sf

stop = odor_periods[1::2] + scext2*sf

LFPb_env_op_ext = exctract_LFP_trials(start,stop,nop*no,LFPb_env)

SPK_op_ext = exctract_SPK_trials(start,stop,nop*no,SPK)

startb_op_ext = []
for o in range(no):
startb_op_ext.append([startb_op[o][i]+sssf*(scextl-scl) for i in range(nop)])

SPK_op_ext_aligned = []
for o in range(no):
SPK_op_ext_aligned_temp = []
inds = np.arange(o,nop*no,no)
for i in range(nop):
SPKtmp = list()
for s in range(len(SPK)):

SPKtmp.append(SPK_op_ext[inds[i]][s] - startb_op_ext[o][i]*10)
SPK_op_ext_aligned_temp.append(SPKtmp)
SPK_op_ext_aligned.append(SPK_op_ext_aligned_temp)
return SPK_op_ext_aligned, LFPb_env_op, LFPb_env_op_ext, startb_op_ext

def align_spikes_to_beta_general(LFPb_env,SPK,thb_sc,op_start,op_stop,wind_restrict,wind_extend,

assert len(op_start) == len(op_stop)
nop = len(op_start)

sssf = sf/10

start = np.array(op_start) + wind_restrict[0]*sf
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stop = np.array(op_stop) + wind_restrict[1]*sf
LFPb_env_op_rest = exctract_LFP_trials(start,stop,nop,LFPb_env)

for i in range(nop):
LFPb_env_op_rest[i][0:50] =
LFPb_env_op_rest[i][-50:]

o
(G

thb = thb_sc*np.median([np.max(LFPb_env_op_rest[i]) for i in range(nop)])
startb_op = list()
for i in range(nop):

yo = LFPb_env_op_rest[i] >= thb

if sum(yo.nonzero()[@]) ==

yo = LFPb_env_op_rest[i] >= thb/2
if sum(yo.nonzero()[0]) == @:

yo = LFPb_env_op_rest[i] >= thb/2.5
if sum(yo.nonzero()[0]) ==

yo = LFPb_env_op_rest[i] >= thb/3
startb_op.append(yo.nonzero()[0][0])

start = np.array(op_start) + wind_extend[0]*sf
stop = np.array(op_stop) + wind_extend[1]*sf
LFPb_env_op_ext = exctract_LFP_trials(start,stop,nop,LFPb_env)
SPK_op_ext = exctract_SPK_trials(start,stop,nop,SPK)
startb_op_ext = [startb_op[i]+sssf*(-wind_extend[0@]-wind_restrict[@]) for i in range(nop)]
SPK_op_ext_aligned = []
for i in range(nop):
SPKtmp = list()
for s in range(len(SPK)):

SPKtmp.append(SPK_op_ext[i][s] - startb_op_ext[i]*10)
SPK_op_ext_aligned.append(SPKtmp)

return SPK_op_ext_aligned, LFPb_env_op_rest, LFPb_env_op_ext, startb_op_ext

def align_spikes_to_events(SPK_trials,event_times,event_ID = []):

assert len(SPK_trials) == len(event_times)
nc = len(SPK_trials[@])

if len(event_ID) == @:
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event_ind_list = [np.arange(9,len(event_times))]
uid = []
else:
assert len(SPK_trials) == len(event_ID)
uid = np.unique(event_ID)
event_ind_list = []
for i in range(len(uid)):
event_ind_list.append(np.where(event_ID == uid[i])[0])

SPK_trials_aligned = []
for i in range(len(event_ind_list)):
SPKtmp_group = list()
for j in event_ind_list[i]:
SPKtmp_cells = 1list()
for ¢ in range(nc):

SPKtmp_cells.append(SPK_trials[j][c] - event_times[j])
SPKtmp_group.append(SPKtmp_cells)
SPK_trials_aligned.append(SPKtmp_group)

return SPK_trials_aligned, uid

def butter_env(order, low, high, signal):

b, a = butter(order, [low, high], btype='bandpass"')
filt_signal = filtfilt(b, a, signal)

hilb_filt_signal = hilbert(filt_signal)
filt_signal_env = np.abs(hilb_filt_signal)

filt_signal_ph = np.angle(hilb_filt_signal)
return filt_signal, filt_signal_env, filt_signal_ph

def calc_PSTH(no,nop,bw,edges,SPK_op_ext_aligned):

if no == 1:
PSTH = []
PSTH_trim
PSTH_blmn =

non
—r—
——
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PSTH_blstd = []
trim = int(2/bw - 1)
for s in range(len(SPK_op_ext_aligned[0])):
hist_temp_sum = np.zeros(len(edges)-1)
for i in range(nop):
hist_temp,crap = np.histogram(SPK_op_ext_aligned[i][s],edges)
hist_temp_sum += hist_temp
PSTH.append(hist_temp_sum/(nop*bw))
PSTH_trim.append(PSTH[s][trim:-trim])
PSTH_blmn.append(np.mean(PSTH_trim[s][0:int(3/bw)]))
PSTH_blstd.append(np.std(PSTH_trim[s][@:int(3/bw)]))
else:
PSTH = []
PSTH_trim = []
PSTH_blmn []
PSTH_blstd = []
trim = int(2/bw - 1)
for o in range(no):
PSTH_temp = []
PSTH_trim_temp = []
PSTH_blmn_temp = []
PSTH_blstd_temp = []
for s in range(len(SPK_op_ext_aligned[@][@])):
hist_temp_sum = np.zeros(len(edges)-1)
for i in range(nop):
hist_temp,crap = np.histogram(SPK_op_ext_aligned[o][i][s],edges)
hist_temp_sum += hist_temp
PSTH_temp.append(hist_temp_sum/(nop*bw))
PSTH_trim_temp.append(PSTH_temp[s][trim:-trim])
PSTH_blmn_temp.append(np.mean(PSTH_trim_temp[s][@:int(3/bw)]))
PSTH_blstd_temp.append(np.std(PSTH_trim_temp[s][0:int(3/bw)]))
PSTH.append(PSTH_temp)
PSTH_trim.append(PSTH_trim_temp)
PSTH_blmn.append(PSTH_blmn_temp)
PSTH_blstd.append(PSTH_blstd_temp)

return PSTH, PSTH_trim, PSTH_blmn, PSTH_blstd

def calc_PSTH_general(nue,bw,edges,SPK_trials_aligned,blwin):

blstart = np.where(edges > blwin[@])[@][@]
blstop = np.where(edges < blwin[1])[0][-1]

if nue == 1:
SPK_trials_aligned = [SPK_trials_aligned]

PSTH = []

PSTH_blmn = []
PSTH_blstd = []

for n in range(nue):
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PSTH_temp = []
PSTH_blmn_temp = []
PSTH_blstd_temp = []
nev = len(SPK_trials_aligned[n])
for s in range(len(SPK_trials_aligned[n][@])):
hist_temp_sum = np.zeros(len(edges)-1)
for i in range(nev):
hist_temp,crap = np.histogram(SPK_trials_aligned[n][i][s],edges)
hist_temp_sum += hist_temp
PSTH_temp.append(hist_temp_sum/(nev*bw))
PSTH_blmn_temp.append(np.mean(PSTH_temp[s][blstart:blstop]))
PSTH_blstd_temp.append(np.std(PSTH_temp[s][blstart:blstop]))
PSTH.append(PSTH_temp)
PSTH_blmn.append(PSTH_blmn_temp)
PSTH_blstd.append(PSTH_blstd_temp)

return PSTH, PSTH_blmn, PSTH_blstd

def classify_ PSTH(PSTH,bw):

blmn = np.mean(PSTH[@:int(3/bw)])
blstd = np.std(PSTH[@:int(3/bw)])

half = int(len(PSTH)/2)

class_vec = [0,0,0]

t2 = 0.6

t3 = 2.2

if np.mean(PSTH[half-1:half+1]) > blmn + 1.3*blstd:
class_vec[0] = 1

if np.mean(PSTH[half-1:half+1]) < blmn - 1.3*blstd:
class_vec[0] = -1

if np.mean(PSTH[ (half+1):(half+1+int(t2/bw))]) > blmn + blstd:
class_vec[1] =1

if np.mean(PSTH[ (half+1): (half+1+int(t2/bw))]) < blmn - blstd:
class_vec[1] = -1

if np.mean(PSTH[ (half+1+int(t2/bw)): (half+1+int((t2+t3)/bw))]) > blmn + blstd:
class_vec[2] = 1

if np.mean(PSTH[ (half+1+int(t2/bw)): (half+1+int((t2+t3)/bw))]) < blmn - blstd:
class_vec[2] = -1
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[6,1,0] delayed transient excitation (dtE)

[6,-1,0] delayed transient inhibition (dtI)

[1,1,1] persistent excitation (pE)

[-1,-1,-1] persistent inhibition (pI)
[6,6,1],[06,1,1] delayed persistent excitation (dpE)
[e,e,-1],[0,-1,-1] delayed persistent inhibition (dpI)
[1,-1,0] EI

[1,-1,1] EIE

[-1,1,0] IE

[-1,1,-1] IET

remaining patterns might be ignored

HHEHHBHREHERERRSR

return class_vec

def distance_between_all_trials(SPK_op,ot_inds,start,stop,q,sf):
# This function uses the victor & purpura distance metric to produce a
# distance matrix between all spike train pairs in SPK_op within a window
# defined by start and stop.
# If List of multiple cells is provided then dist mat is calculated seperately for each cel
HARHARHARHARHARAABHARHARRH

# INPUTS:

# SPK_op - must be an embedded List with 1st level - odor, 2nd level - trials, 3rd Llevt
# ot_1inds - predifined 2 x no*ntr matrix of odor and trial indices

# start - start time of window (s)

# stop - stop time of window (s)

# q - cost per unit time to move a spike (as defined by victor & purpura)

# sf - sampling frequency (to convert spike trains to units of s)

HHHHHHHHH AT

from victor_purpura import distance # victor purpura.py must be in same directory!
# the victor_purpura module must be in path

nc = len(SPK_op[@][@])
nt = ot_inds.shape[1]
dist_mat = []
for ¢ in range(nc):
#print('Calculating all distances from cell '+str(c)+'...")
dist_mat_temp = np.zeros((nt,nt))
for i in range(nt):
si = SPK_op[int(ot_inds[©@,1i])][int(ot_inds[1,i])][c]/sf
si = si[np.logical_and(si > start,si < stop)]
for j in np.arange(i,nt):
sj = SPK_op[int(ot_inds[@,j])][int(ot_inds[1,j])][c]/sf
sj = sj[np.logical_and(sj > start,sj < stop)]

dist_mat_temp[i,j] = distance(si, sj, q)
dist_mat_temp[j,i] = dist_mat_temp[i,j] # matrix is symmetric
dist_mat.append(dist_mat_temp)
return dist_mat

def extract_from_mpc(mpc_fname,token, stop=None):

# This function extracts data from variable 'token' up until 'stop', and converts it into a
# INPUTS:

# mpc_fname - medPC file name

# token - sThe variable whose data is to be extracted

# stop - The variable at which to stop (if nothing provided the extraction will keep
# OUTPUTS:

# numdat - 1D numeric array

HHAAR BB AR AR R AR BB R

# load string data into strdat
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strdat = []
with open(mpc_fname, 'r') as f:
for line in f:
if token in line:
for line in f:
if stop in line:
break
else:
strdat.append(line)

numdat = np.empty(0)
for i in range(len(strdat)):
temp = strdat[i].split()[1:]
temp = np.array(temp,dtype = float)
numdat = np.concatenate((numdat,temp))
numdat = numdat[numdat>0]
return numdat

def exctract_LFP_trials(start,stop,nop,ssLFP):

ssLFP_op = list()
for i in range(nop):

sSLFP_op.append(ssLFP[int(start[i]/10):int(stop[i]/10)])
return ssLFP_op

def exctract_SPK_trials(start,stop,nop,SPK):

SPK_op = list()
for i in range(nop):
SPKtmp = list()
for s in range(len(SPK)):

sind = np.array(np.where((SPK[s] > start[i]) & (SPK[s] < (stop[i]-10))))
sind = sind.astype(int)
SPKtmp.append(SPK[s][sind]-start[i])
SPK_op.append (SPKtmp)
return SPK_op

def fft_integrate_power_in_band(signal,Fs,fstart,fstop):
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def

def

def

N = len(signal)

T=1.0/ Fs

signal FFT = np.fft.fft(signal)

signal PWR = 2.9/N * np.abs(signal FFT[@:int(N/2)])

f = np.linspace(0.0, 1.9/(2.0*T), N/2)
fstart_ind = np.where(f>fstart)[0][0]
fstop_ind = np.where(f>fstop)[0][0]

sumpwr = np.sum(signal_PWR[fstart_ind:fstop_ind])
return signal_PWR, sumpwr, f, fstart_ind, fstop_ind

find_matching_files(ddir,match_str_list):

import os
ddir_list = os.listdir(ddir)
dfold_list = []
for file in ddir_list:
for i in range(len(match_str_list)):
if match_str_list[i] in file:
dfold_list.append(file)
return dfold_list

get_FR(spikes,bw,sf,maxt):

bins = np.arange(0,maxt,bw)

[fr,bleh] = np.histogram(spikes/sf,bins)
fr = fr/bw

return fr

get_peak_phase_sinORgauss(data,edges):

from scipy.optimize import curve_fit
import math
def sinfunc(x, *p):
A, p, c=p
return A * np.sin(x + p) + ¢
def gauss(x, *p):
A, mu, sigma = p
return A*np.exp(-(x-mu)**2/(2.*sigma**2))
edge_step = edges[1]-edges[0]

hist, bin_edges = np.histogram(data, edges)
bin_centres = edges[0:-1]+edge_step/2
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posin = [np.max(hist)/2, 0, np.max(hist)]

pogauss = [np.max(hist), bin_centres[np.argmax(hist)], 0.5]

try:
coeff_sin, var_matrix_sin = curve_fit(sinfunc, bin_centres, hist, p@=p@sin, maxfev = 10
coeff_gauss, var_matrix_gauss = curve_fit(gauss, bin_centres, hist, p@=p@gauss, maxfev

hist_fit_sin = sinfunc(bin_centres, *coeff_sin)
hist_fit_gauss = gauss(bin_centres, *coeff_gauss)

mse_sin = np.mean(np.square(hist_fit_sin-hist))
mse_gauss = np.mean(np.square(hist_fit_gauss-hist))

if mse_sin < mse_gauss:
peak_phase = math.degrees(bin_centres[np.argmax(hist_fit_sin)])
mse = mse_sin
hist_fit = hist_fit_sin

else:
peak_phase = math.degrees(bin_centres[np.argmax(hist_fit_gauss)])
mse = mse_gauss
hist_fit = hist_fit_gauss

peak_phase = np.round(peak_phase,decimals=1)
except:

peak_phase = np.round(math.degrees(bin_centres[np.argmax(hist)]),decimals=1)
mse = np.nan
hist_fit = np.nan

if peak_phase ==
peak_phase = np.abs(peak_phase)

return peak_phase, mse, hist, hist_fit

def load_spikes_from_kwik(dfile, clust_choice, use_clust_choice):
Inputs : dfile - file directory (including filename)
clust_choice - list of cluster labels you want to extract
use_clust_choice - if 1 t

Outputs: SPK - list of spike times (in samples) for each cluster
import hS5py
with h5py.File(dfile, 'r') as D:

time_samples = D.get('/channel_groups/@/spikes/time_samples")
np_time_samples = np.array(time_samples)

cluster_labels = D.get('/channel_groups/@/spikes/clusters/main")
np_cluster_labels = np.array(cluster_labels)

cluster_names = D.get('/channel_groups/0/clusters/main")
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np_cluster_names = np.array(cluster_names)

np_cluster_names = np_cluster_names.astype('int32")

SPK = []
if use_clust_choice == 1:
for i in clust_choice:
temp_ind = np.squeeze(np.array(np.where(np_cluster_labels == i)))

SPK.append(np_time_samples[temp_ind])

np_cluster_names = clust_choice.copy()
else:
for i in range(len(np_cluster_names)):
temp_ind = np.squeeze(np.array(np.where(np_cluster_labels == np_cluster_names[i])))
SPK.append(np_time_samples[temp_ind])
return SPK, np_cluster_names

def load_waveforms_with_merge_and_down(foldername,cl_chan,cl_names,dlim):

if isinstance(cl_names,list):

WFfile_list = find_matching_files(foldername,[ 'wv_chan'+str(cl_chan)])
MSKfile_list = find_matching_files(foldername, [ 'msk_chan'+str(cl_chan)])
WV_list = []
MSK_list = []
for ¢ in range(len(cl_names)):
wv_name = WFfile_list[c]
msk_name = MSKfile_list[c]
WV_list.append(np.load(foldername+'/"'+wv_name))
MSK_list.append(np.load(foldername+'/"'+msk_name))

WV = WV_list[e]
MSK = MSK_list[e]
for i in np.arange(1,len(cl_names),1):
WV = np.vstack((WV,WVv_list[i]))
MSK = np.vstack((MSK,MSK_list[i]))
else:

wv_name = find_matching_files(foldername, [ 'wv_chan'+str(cl_chan)+'_clust'+str(cl_names)
msk_name = find_matching_files(foldername,[ 'msk_chan'+str(cl_chan)+' clust'+str(cl_name:
WV = np.load(foldername+'/"'+wv_name)

MSK = np.load(foldername+'/'+msk_name)

ns = len(MSK)
if ns > dlim:

rand_inds = random.sample(range(ns), dlim)
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def

def

WV = WV[rand_inds,:,:]
MSK = MSK[rand_inds,:]

return WV, MSK

merge_clust(SPK,clust_names,merge,cchan=[]):

ord_inds = []
for i in range(len(merge)):
temp_inds = []
for j in merge[i]:
temp_inds.append(clust_names.index(j))
ord_inds.append(clust_names.index(j))
SPK_merged = []
for d in temp_inds:
SPK_merged = np.sort(np.hstack((SPK_merged,SPK[d])))

SPK.append (SPK_merged)
clust_names.append(merge[i])

if isinstance(cchan,np.ndarray):
for i in range(len(merge)):

cchan = np.append(cchan,cchan[clust_names.index(merge[i][©])])
ord_inds = sorted(ord_inds,reverse=True)
for d in ord_inds:

cchan = np.delete(cchan,d)

ord_inds = sorted(ord_inds,reverse=True)
for d in ord_inds:

del SPK[d]

del clust_names[d]

return SPK, clust_names, cchan

prediction_accuracy_from_dist(dist_mat,no,nop):

nc
nt

len(dist_mat)
dist_mat[0].shape[Q]

accuracy = []
for ¢ in range(nc):
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correct_prediction = 0

for t in range(nt):
current_category = int(np.floor(t/nop))
total_dist = np.zeros((no,1))
for o in range(no):

total_dist[o] = sum(dist_mat[c][t,o*nop:(o+1)*nop])

if o == current_category:
total_dist[o] = total_dist[o]/(nop-1)
else:
total_dist[o] = total_dist[o]/nop
current_prediction = np.argmin(total_dist)
if current_prediction == current_category:

correct_prediction += 1

accuracy.append(correct_prediction/nt)
return accuracy

def predict_accuracy_from_PSTHcorr(SPK_op,ot_inds,start,stop,wg,sf):

from copy import deepcopy

bw = 1/10000
edges = np.arange(start, stop, bw)

gx = np.linspace((start-stop)/2,(stop-start)/2,len(edges)-1)
gaussian = np.exp(-(gx/wg)**2/2)

nc = len(SPK_op[@][@])

nt = ot_inds.shape[1]

no = len(np.unique(ot_inds[@]))
nop = np.sum(ot_inds[0]==0);

[]
[1

corr_mat
accuracy

for ¢ in range(nc):

SPK_matrices = [[] for o in range(no)]

for i in range(nt):
si = SPK_op[int(ot_inds[@,i])][int(ot_inds[1,i])][c]/sf
si = si[np.logical_and(si > start,si < stop)]
si = np.histogram(si,edges)[@]
SPK_matrices[int(ot_inds[@,1i])].append(si)
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correct_prediction = 0
corr_mat_temp = np.zeros((nt,no))
for i in range(nt):
current_category = int(np.floor(i/nop))

si = SPK_op[int(ot_inds[@,i])][int(ot_inds[1,i])][c]/sf
si = si[np.logical_and(si > start,si < stop)]
si = np hlstogram(51 edges)[9]

SPK_matrices_cpy = deepcopy (SPK_ matrlces)
del SPK_matrices cpy[1nt(ot 1nds[0 i) I[int(ot_ 1nds[1 il)]

for o in range(no):
PSTH = np.mean(np.array(SPK_matrices_cpy[o]),axis=0)
PSTH = np.convolve(PSTH,gaussian,mode = 'same')
si = np.convolve(si,gaussian,mode = 'same’)
corr_mat_temp[i,o] = np.corrcoef(si,PSTH)[0,1]

current_prediction = np.argmax(corr_mat_temp[i,:])
if current_prediction == current_category:
correct_prediction += 1
accuracy.append(correct_prediction/nt)
corr_mat.append(corr_mat_temp)

return corr_mat, accuracy

def scandtrig while(dtrig,skipdp):
Unfortunately, the TTL pulses sometimes have multiple closely spaced repeats.
This function scans the digital trigger (dtrig) to find the onsets of each
repeated pulse train, then skips a time skipdp (in samples) and starts

scanning again until no more triggers are detected

NOTE: This function is meant to analyze OpenEphys event data triggered by
MedPC TTL.

NOTE: skipdp must be big enough that the algorithm skips over the repeats
,but small enough that it does not skip too far and miss the next real pulse!

Boleszek Osinski (2017)
Kay Lab, University of Chicago

dtrig_clean = [dtrig[@]]
ind = dtrig_clean
ii =0
while len(ind)>0:
prev_ind = dtrig_clean[ii]
ind = np. where(dtr1g>(prev 1nd+sk1pdp))[0]
if len(ind)>e:
dtrig_clean.append(dtrig[ind[@]])
ii = ii+1
return dtrig_clean

def SFC_wrapper(SPK_op,LFPb_op,sssf,no,nop,startb_op,stopb_op,nrand):
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nspk = len(SPK_op[@])

if no == 1:

LFPb_cat = np.empty(0)

SPKb_cat = [None]*nspk

for s in range(nspk):
cumulative_time_shift = @
SPKb_cat[s] = np.empty(9)
for i in range(nop):

for b in range(startb_op[i].size):
if np.isscalar(startb_op[i]):
current_start = startb_op[i]
bool_array =(SPK_op[i][s] > startb_op[i]) & (SPK_op[i][s] < stopb_op[i]’
if s == 0:
LFPb_cat = np.append(LFPb_cat,LFPb_op[i][int(startb_op[i]/10):int(s]
else:
current_start = startb_op[i][b]
bool_array =(SPK_op[i][s] > startb_op[i][b]) & (SPK_op[i][s] < stopb_op
if s == 0:
LFPb_cat = np.append(LFPb_cat,LFPb_op[i][int(startb_op[i][b]/10):in
sind = np.array(np.where(np.squeeze(bool_array)))
if sind.size > O:

SPKb_cat[s] = np.append(SPKb_cat[s],SPK_op[i][s][@][sind]+cumulative_tir
if np.isscalar(startb_op[i]):

cumulative_time_shift = cumulative_time_shift+stopb_op[i]-startb_op[i]
else:

cumulative_time_shift = cumulative_time_shift+stopb_op[i][b]-startb_op[:

SFCb = []
SFCb_max = []
SFCb_rand = []
SFCb_rand_max = []
for i in range(nspk):
f, Cxy = spike_field_coh(SPKb_cat[i],LFPb_cat,sssf)
SFCb.append(Cxy)
Cxyrand = [];
for r in range(nrand):
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randSPK = 10*len(LFPb_cat)*np.random.random(SPKb_cat[i].size)
f, Cxy = spike_field_coh(randSPK,LFPb_cat,sssf)
Cxyrand.append(Cxy)

SFCb_rand.append(Cxyrand)

SFCb_max.append(np.max(SFCb[i][1:30]))

rand_max_tmp = []

for r in range(nrand):
rand_max_tmp.append(np.max(SFCb_rand[i][r][1:30]))

SFCb_rand_max.append(rand_max_tmp)

else:

LFPb_cat = []
SPKb_cat = []
for o in range(no):
LFPb_cat_o_temp = np.empty(0)
SPKb_cat_o_temp = [None]*nspk
inds = np.arange(o,nop*no,no)
for s in range(nspk):
cumulative_time_shift = ©
SPKb_cat_o_temp[s] = np.empty(0)
for i in range(nop):

for b in range(startb_op[o][i].size):
if np.isscalar(startb_op[o][i]):
current_start = startb_op[o][i]

bool_array =(SPK_op[inds[i]][s] > startb_op[o][i]) & (SPK_op[inds[i

if s == 0:

LFPb_cat_o_temp = np.append(LFPb_cat_o_temp,LFPb_op[inds[i]][ini

else:
current_start = startb_op[o][i][b]

bool_array =(SPK_op[inds[i]][s] > startb_op[o][i][b]) & (SPK_op[ind:

if s == 0:

LFPb_cat_o_temp = np.append(LFPb_cat_o_temp,LFPb_op[inds[i]][ini

sind = np.array(np.where(np.squeeze(bool_array)))
if sind.size > @:

SPKb_cat_o_temp[s] = np.append(SPKb_cat_o_temp[s],SPK_op[inds[i]][s

if np.isscalar(startb_op[o][i]):

cumulative_time_shift = cumulative_time_shift+stopb_op[o][i]-startb

else:

cumulative_time_shift = cumulative_time_shift+stopb_op[o][i][b]-sta

LFPb_cat.append(LFPb_cat_o_temp)
SPKb_cat.append(SPKb_cat_o_temp)

SFCb = []

SFCb_max = []

SFCb_rand = []

SFCb_rand_max = []

for o in range(no):
SFCb_o_temp = []
SFCb_max_o_temp = []
SFCb_rand_o_temp = []
SFCb_rand_max_o_temp = []
for i in range(nspk):
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f, Cxy = spike_field_coh(SPKb_cat[o][i],LFPb_cat[o],sssf)
SFCb_o_temp.append(Cxy)
Cxyrand = [];
for r in range(nrand):
randSPK = 10*len(LFPb_cat[o])*np.random.random(SPKb_cat[o][i].size)
f, Cxy = spike_field_coh(randSPK,LFPb_cat[o],sssf)
Cxyrand.append(Cxy)
SFCb_rand_o_temp.append(Cxyrand)
SFCb_max_o_temp.append(np.max(SFCb_o_temp[i][1:30]))
rand_max_tmp = []
for r in range(nrand):
rand_max_tmp.append(np.max(SFCb_rand_o_temp[i][r][1:30]))
SFCb_rand_max_o_temp.append(rand_max_tmp)
SFCb.append(SFCb_o_temp)
SFCb_max.append(SFCb_max_o_temp)
SFCb_rand.append(SFCb_rand_o_temp)
SFCb_rand_max.append(SFCb_rand_max_o_temp)

return SFCb, SFCb_max, SFCb_rand, SFCb_rand_max

def SPH_wrapper(SPK_op,LFPb_ph_op,sssf,no,nop,startb_op,stopb_op,nrand):

ncell = len(SPK_op[®@])

if no == 1:
SPHprod = list()
RPHprod = list()

for s in range(ncell):
SPHprod_temp = list()
RPHprod_temp = 1list()
for i in range(nop):

for b in range(startb_op[i].size):
if np.isscalar(startb_op[i]):
current_start = startb_op[i]
bool_array =(SPK_op[i][s] > startb_op[i]) & (SPK_op[i][s] < stopb_op[i].
else:
current_start = startb_op[i][b]
bool_array =(SPK_op[i][s] > startb_op[i][b]) & (SPK_op[i][s] < stopb_op
sind = np.array(np.where(np.squeeze(bool_array)))
if sind.size > 0:

[SFprod,RFprod] = spike_field_prod_with_rand(SPK_op[i][s][@][sind],LFPb_
SPHprod_temp.append(SFprod)
RPHprod_temp.append(RFprod)

if len(SPHprod_temp) == 0:
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SPHprod.append(np.empty( shape=(0, 0) ))
RPHprod.append(np.empty( shape=(0, 0) ))
else:
SPHprod.append(np.hstack(SPHprod_temp))
RPHprod.append(np.hstack(RPHprod_temp))
else:

SPHprod []
RPHprod = []
for o in range(no):
SPHprod_o_temp = list()
RPHprod_o_temp = list()
inds = np.arange(o,nop*no,no)
for s in range(ncell):
SPHprod_temp = list()
RPHprod_temp = list()
for i in range(nop):

]

for b in range(startb_op[o][i].size):
if np.isscalar(startb_op[o][i]):
current_start = startb_op[o][i]
bool_array =(SPK_op[inds[i]][s] > startb_op[o][i]) & (SPK_op[inds[i
else:
current_start = startb_op[o][i][b]
bool_array =(SPK_op[inds[i]][s] > startb_op[o][i][b]) & (SPK_op[ind:
sind = np.array(np.where(np.squeeze(bool_array)))
if sind.size > 0:

[SFprod,RFprod] = spike_field_prod_with_rand(SPK_op[inds[i]][s][@][:
SPHprod_temp.append(SFprod)
RPHprod_temp.append(RFprod)

if len(SPHprod_temp) == 0@:

SPHprod_o_temp.append(np.empty( shape=(0, 0) ))
RPHprod_o_temp.append(np.empty( shape=(0, 0) ))
else:
SPHprod_o_temp.append(np.hstack(SPHprod_temp))
RPHprod_o_temp.append(np.hstack(RPHprod_temp))
SPHprod. append(SPHprod_o_temp)
RPHprod.append(RPHprod_o_temp)

return SPHprod, RPHprod

def spike_field_coh(spike_times,field,sssf):

bw = 10

bins = np.arange(0,10*len(field),bw)

[binned_spikes,bleh] = np.histogram(spike_times,bins)

if len(binned_spikes) < len(field):
binned_spikes=np.append(binned_spikes,9)

elif len(binned_spikes) > len(field):
binned_spikes=np.delete(binned_spikes,0)

f, Cxy = coherence(binned_spikes, field, sssf, nperseg=2000)

return f, Cxy

def spike_field_prod_with_rand(spikes,field,nrand):
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ssinds = np.rint(@.1l*np.array(spikes))
ssinds = ssinds.astype(int)
SFprod = field[ssinds]

RFprod = []

for n in range(nrand):
randinds = field.size*np.random.sample(spikes.size)
randinds = randinds.astype(int)
RFprod.append(field[randinds])

return SFprod, RFprod

trim_events(odor_periods,trim):

from itertools import compress

ALLstart = odor_periods[0::2]
ALLstop = odor_periods[1::2]
for i in range(len(trim)):

ovlap = list(compress(ALLstart, (np.array(ALLstart) > trim[i][@]) & (np.array(ALLstart)
if ovlap != []:
print('Overlap detected! Setting odor period start '+str(ovlap)+' to trim start '+sf
yo=np.where(np.array(ALLstart) == ovlap)
ALLstart[int(yo[@])] = trim[i][@]-1

ALLstart_shift = [a - (trim[i][1]-trim[i][@]) for a in ALLstart if a > trim[i][1]]
ALLstart = list(compress(ALLstart,np.array(ALLstart) < trim[i][1]))
ALLstart = ALLstart + AlLLstart_shift

ovlap = list(compress(ALLstop, (np.array(ALLstop) > trim[i][@]) & (np.array(ALLstop) < i
if ovlap != []:
print('Overlap detected! Setting odor period stop '+str(ovlap)+' to trim start '+sti
yo=np.where(np.array(ALLstop) == ovlap)
ALLstop[int(yo[@])] = trim[i][0]-1

ALLstop_shift = [a - (trim[i][1]-trim[i][@]) for a in ALLstop if a > trim[i][1]]
ALLstop = list(compress(ALLstop,np.array(ALLstop) < trim[i][1]))
ALLstop = ALLstop + ALLstop_shift

odor_periods[0::2] np.array(ALLstart)
odor_periods[1::2] = np.array(ALLstop)
return odor_periods
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