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ABSTRACT

We explore some similarities between the theory of D-modules and that of quasi-coherent
sheaves of categories. The original motivation is to better understand several results on
the literature that relates vanishing cycles with some invariants of the category of matrix
factorizations like its periodic cyclic homology or its etale cohomology.

We propose the following explanation: given a function ¢ : X — Al the category of
matrix factorizations MF (X, ¢) can be thought as a higher categorical version of vanishing
cycles for the sheaf of categories corresponding to Perf(X). Here, the 2—periodic structure
on matrix factorizations corresponds to the monodromy of vanishing cycles.

A second goal is to find the general phenomena behind the work of A. Preygel that
uses derived algebraic geometry to construct MF(X, ¢) from a cohomological operation of
degree 2 on Coh(X(). We interpret this as the microlocalization of Perf(X) over T} Al and
extend it to arbitrary quasi-coherent sheaves of categories over smooth schemes.

To realize the above we need the theory of quasi-coherent sheaves of categories developed
by D.Gaitsgory, J.Lurie, B.Toen and G.Vessozzi. The basic formalism is quite recent and
contains pushforward and pullback. We slightly modify it to get an extraordinary pullback
for complete intersection morphisms. We also introduce the matrix factorizations functor.

The main result of this thesis is a comparison between the usual and the extraordinary
pullback. In rough terms, via Koszul duality, the extraordinary pullback localize over a
conormal bundle and the usual pullback correspond to the part supported on the zero section.

We study the case of the closed immersion of a point in a smooth scheme. This defines
for every quasi-coherent sheaf of categories its punctual singular support, analogous to the
singular support of a D-module. In the end we give a deformation theory interpretation.

This is part of joint work with G. Stefanich. In [dFS] we will define and study the global
singular support of a quasi-coherent sheaf of categories. This is a closed conical subset of

the cotangent bundle that measures the directions on which the sheaf is proper and smooth.
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CHAPTER 1
INTRODUCTION

In the following we explore some similarities between the theory of D-modules and that
of quasi-coherent sheaves of categories like in [Lurb|, [Gai] and [TV]. The motivation comes
from trying to understand the relation between vanishing cycles and matrix factorizations
suggested by [BRTV] and [Efi] as well as the general phenomena behind [AG] and [Pre].

Given a smooth scheme X, one can check if a D-module .7 is locally constant at a given
point x in a given codirection v*. The collection of all pairs where this does not happen
defines its singular support, a closed conical subset of the cotangent bundle 7% X, and ideally
one would like to microlocalize the D-module along it.

More precisley, consider a function ¢ : X — Al and let i : Xg — X be the closed
immersion of the special fiber. The vanishing cycles R®(.F) of .7 with respect to ¢ is a
sheaf on the special fiber X(. It comes with an automorphism, its monodromy, such that its

invariants fits into a short exact sequence

*(F)|=1] = i'(F)[1] » RO(F)Z. (1.1)

The D-module .# is locally constant at x in the codirection of the special fiber if and

only if the fiber at x of R®(.%) is trivial if and only if d;¢ is not in its singular support.

Remark 1.1. The invariants R®(F )Z are Koszul dual to the unipotent part of the sheaf of
vanishing cycles R®(F). In particular, they get a square-zero cohomological operation of

degree one, Koszul dual to the monodromy of the vanishing cycles.

Now we pass to a higher categorical version of the constant sheaf case. Lets recall that
for a given scheme, periodic cyclic homology relates its category of perfect complexes with its
de Rham cohomology and its category of coherent complexes with its Borel-Moore de Rham
cohomology. Moreover, for a pair (X, ¢), its vanishing cycles cohomology can be computed

from the periodic cyclic homology of its category of matrix factorizations [Efi].
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The above suggest that the short exact sequence

Perf(X() — Coh(Xy) — MF(X, ¢) (1.2)

for the sheaf of categories whose global sections equals to Perf(X), should be understood as
a higher categorical version of (1.1) for the constant sheaf.

This is our starting point. If we accept this interpretation of matrix factorizations as
categorical vanishing cycles, then it is natural to ask: what is the analogue on the category
of matrix factorizations of the monodromy on the term of the right of (1.1)7

For this, consider k[3] with |3| = 2. The category Coh(X) has a natural k[5]—linear
structure induced by a cohomological operation M — M|2]. An easy construction of this is
as the edge map in the well known distinguished triangle M[1] — i*i, M — M.

The key fact is that the cohomological operation is invertible on the matrix factorizations
category and hence gives an k[f, 5*1]—linear structure. This is the same as a 2—periodic

structure and should be interpreted as the monodromy on the term on the right of (1.2).

Remark 1.2. As a category, MF (X, ¢) depends only on Xy, is its singularity category, but its
monodromy remembers it is an hypersurface. This is why we talk about matrix factorizations

rather than singularity category: to emphasize that it comes with extra structure.

In order to make sense of the above interpretation of (1.2) we need a general formalism for

sheaves of categories. We will review precise definitions later, for now we use the following.

Definition 1.3. Given a scheme X, a quasi-coherent sheaf of categories on it is a small

idempotent complete stable category with a monoidal action of Perf(.X).

A quasi-coherent sheaf of categories over a scheme X is said to be perfect if it is proper
and smooth over Perf(X) and coherent if it is proper over Perf(X) and smooth over Perf(k).
In [Lur5] the basic definitions and properties of fx and f* are developed but unfortunately
we will need a little bit more: we want to have f ' For our purposes, it suffices to say that

the pushforward f is the forgetful functor and for f* and f ' we use the following definition.



Definition 1.4. For p : Y — X proper and finite tor-dimension and C a quasi-coherent
sheaf of categories on X we define p*(C) = Perf(Y) @ x C and p'(C) = Fun¥f (Perf(Y),C).
In sections 5 and 6 we check that this definitions works as expected. In particular, they
coincide with the left and right adjoint of p4x and we get base change and projection formula.
Ezample 1.5. In the notation above, p*(Perf(X)) = Perf(Y) and p'(Coh(X)) = Coh(Y). O
Lets point out here that for such definitions it is essential to work with small idempotent
complete categories because with their big cocomplete compactly generated counterparts,

both pullbacks would agree. In particular, p*(C) and P (C) fully faithful embed into the big

functor category

QCoh(Y) ®Qcioh(x) d(C) = FunéCOh( x)(QCoh(Y), Ind(C)).

the first as its compact objects and the second as the functors that preserve compact objects.

The hyphotesis on p implies that there is a fully faithful p*(C) — p'(C). In some situations
this is an equivalence, for example if p is smooth or if C is dualizable, but in general it is not.
Definition 1.6. For p : Y — X proper and finite tor-dimension and C a quasi-coherent

sheaf of categories on X we define MF,(C) as the cofiber of p*(C) — P(C).

This is arguably the most important definition in the text and is motivated by the
previous discussion. We will refer to it as the matrix factorizations of C with respect to p

and it comes with a short exact sequence
P*(€) = P'(C) = MF,(C). (13)

Example 1.7. If in the above X is smooth and C is equal to Perf(X) = Coh(X), then it
follows that the pullback p*(C) is equal to Perf(Y'), the exceptional pullback p'(C) to Coh(Y)
and, moreover, both fully faithful embeds into the big QCoh(Y"). In this case, the matrix

factorization category MF,(C) is equal to the singularity category Sing(Y"). O
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The next step is to define the monodromy in the exact sequence (1.3). For this, we need
the convolution groupoid Y X x Y = Y. The usual pull-push formalism gives a convolution

product of sheaves and we get a short exact sequence of monoidal categories
Perf(Y xx Y) — Coh(Y xx Y) — Sing(Y xx Y). (1.4)

Remark 1.8. We will review the main properties of the convolution groupoid in section 3.
The convolution groupoid naturally acts on the exact sequence (1.3). For example, there

is a natural monoidal action, by precomposition, of the monoidal category
Coh(Y x x Y) = Fun§f (Perf(Y), Perf(Y))  on p(C) = Fun¥ (Perf(Y"),C),

which induces all other actions. We will refer to this as the monodromy of (1.3).

In case p: Y — X is a complete intersection closed embedding, Koszul duality gives an
equivalence between Coh(Y x x V') with convolution and Perf(Ny- X[2]) with the usual tensor
product. In particular, the monodromy action can be interpreted as the microlocalization of

the short exact sequence (1.3) over the shifted conormal bundle Ny X[2].

Ezample 1.9. Consider p as the inclusion of the origin in Al. In this case, Coh(0 x 41 0) with
convolution, is the same as Perf(7} A1[2]) ~ Perf(k[5]) with the usual tensor product.

If C is Perf(Z) given by a proper map ¢ : Z — A, then (1.3) recovers (1.2) and moreover,
the monodromy on p'(C) ~ Coh(Zy) is an k[B]-linear structure on it. In [Pre] it is proved
that Perf(Zy) is the full subcategory of Coh(Zj) consisting of f—torsion objects and that

the matrix factorization category MF(Z, ¢) is the localization Coh(Zo) ®y) k[5, g1 O

The above is the key example which inspires everything. Let emphasize the following
point of view: given ¢ : Z — Al if we think of the category Perf(Z) as a quasi-coherent sheaf
of categories over A, then the k[f]—linear structure on Coh(Zp) is its microlocalization on

the cotangent fibre Tj; Al and MF(Z, ¢), with its 2—periodic structure, its vanishing cycles.



The next theorem is a direct generalization of 1.9 to arbitrary proper quasi-coherent
sheaves of categories over arbitrary smooth schemes. The proof of the claim about properness

in the case of a point in a line and an arbitrary sheaf was explained to me by G. Stefanich.

Theorem 1.10. Let p: Y — X be a complete intersection closed embedding in a smooth
scheme, then for every proper quasi-coherent sheaf C over X, we have that p! (C) is proper

over Coh(Y x x Y') and the short exact sequence
!
p*(C) = p'(C) — MFy(C)

is obtained from the short exact sequence (1.4) via — ®cp (¥ ) ' (©).

In the rest of this introduction we try to explain the meaning of the theorem and give

some examples. First, it implies that

p*(C) =~ Perf(Y xx Y) ®Coh(y x xY) p! (C),

which can be phrased, via Koszul duality, as “p*(C) is the part of p!(C) supported at the
zero section of the conormal bundle”. In particular, the usual and the exceptional pullback

coincide if and only if p! (C) is supported at the zero section of the conormal bundle.

Example 1.11. Consider p as the inclusion of the origin on A™ and C as the quasi-coherent
sheaf of categories Coh(Z) over A" given by a smooth scheme Z which is proper over A".
Then p*(C) = Perf(Zy), p'(C) = Coh(Zy) and MF,(C) = Sing(Zp). The monodromy are
the cohomological operations on the special fiber Zj like in the paper [AG].
The theorem explains two well known facts for complete intersection schemes: perfect
complexes are where the cohomological operations are nilpotent and endomorphisms of

coherent complexes are finitely generated over the cohomological operations. [J

Ezxample 1.12. For a smooth scheme X, the diagonal embedding X — X x X may not be a

complete intersection but the theorem still holds by [AC]. This will be study in [dFS]. O



Now, we focus on the closed embedding of a point ¢, : * — X. For simplicity, lets fix
an isomorphism of the formal completion of Oy , with k[ty,... t,]. Its Eo-Koszul dual is
hence naturally isomorphic to k[f1, ..., B,] with all §; of degree 2.

Given a quasi-coherent sheaf C over X, we will refer to i%(C) and i\ (C) as its fiber and
cofiber at . The monodromy is an action of Coh(£2,X) with convolution and Koszul duality

translates this into an action of Perf(T; X [2]) i.e. an k[f1, ..., Oy]—linear structure.

In section 9 we review the notion of support of a k[, ..., Bp]—linear category following
the expositions in [AG] and [BIK]. For the rest of the introduction it is enough to say the
following: for proper k[f1,..., Sp]—linear categories its support can be computed as the

support of the graded Homs of the associated triangulated category.

Definition 1.13. Given a point x in a smooth scheme X and a proper quasi-coherent sheaf

of categories C over it, we define 55, (C) as the k[B1, . . ., n]—linear support of i%(C).

The above defines the punctual singular support SS;(C) of a proper quasi-coherent sheaf
of categories C, as a closed conical subset of the cotangent fibre T X .
For the following recall that for proper k—linear categories there are different notions of

smoothness: smooth, regular and right saturated. For precise definitions check section 10.

Proposition 1.14. Given a coherent sheaf of categories C over a smooth scheme X, the

following conditions are all equivalent:
e The punctual singular support SS;(C) is contained in the zero section.
e The functor i%(C) — i%(C) is an equivalence.

e The k—linear category i%(C) is right saturated.

Ezxample 1.15. Consider a smooth scheme X. For a proper and smooth quasi-coherent sheaf
of categories C, all its fibers are also proper and smooth. In particular, such sheaves have

right saturated fibers and its punctual singular support is contained in the zero section. [



Now, we give criteria to decide when a covector (z,v*) is in the punctual singular support
of a coherent sheaf of categories. It is analogous to the vanishing cycles test. For a given

function ¢ : X — Al we denote by i¢ : Xo — X the closed immersion of the special fiber.

Proposition 1.16. Consider a smooth scheme X with a function ¢ : X — Al and a coherent
sheaf of categories C. Given a point z, if the fiber i}, XO(MFi¢> (C)) is non-trivial then the

covector (x,dg¢) is in SSz(C). If z!c y(C) has a compact generator the converse holds.

To finish we give a deformation theory interpretation. Recall that for a k—linear category,
its curved deformations over an Artinian Fp—algebra A are classified by KDo(A)—linear
structures on it, with KDo(A) the Fo-Koszul dual of A. The unobstructed objects are those
on which the augmentation ideal of KDo(A) acts trivially. This is in [Lur2].

The point is that the k[31, ..., 8p]—linear structure on the cofiber i%(C) is encoding a
deformation over Spf O Xz~ The unobstructed objects are those on which 31,..., 8, acts
trivially and the proof of 1.10 will show that the full subcategory generated by them is i (C).

In particular, 1.14 says that the punctual singular support is contained in the zero section
if and only if, the whole cofiber is generated by unobstructed objects. Moreover, in any
curved deformation of a right saturated category, every object is a retract of a finite colimit of
unobstructed object. The criteria in 1.16 says that when (x, v*) is not in the punctual singular

support SSz(C), if an object in ’L'x (C) is unobstructed along X, then it is unobstructed.

This is part of joint work with G. Stefanich. In [dFS] we will define a better invariant of
a coherent sheaf of categories: its global singular support which is a closed conical subset of
the cotangent bundle analogous to the singular support of a D-module.

Conventions and Notation

1. We fix a field & of characteristic 0.

2. We work as derived as possible. In particular, category means (oo, 1)—category,

groupoid means co—groupoid and scheme means derived scheme.

3. We denote by 62;500 the category of all categories and arbitrary functors.
7



4.

10.

11.

We will assume all small stable categories to be k—linear and idempotent complete

and all big stable categories to be k—linear and presentable.

. We denote by DG-Cat 4 the category whose objects are A—linear presentable stable

categories and whose morphisms are functors that preserve colimits. It is a closed

symmetric monodial category with the tensor product constructed by Lurie.

. We denote by DG-Cat%" the category whose objects are A—linear small idempotent

complete stable categories and whose morphisms are A—linear functors between them.

This category coincides with the subcategory of DG-Caty consisting of compactly

generated categories and functors whose right adjoint preserves colimits.

The category DG-Cat " is closed symmetric monoidal with tensor product the compact

objects of the tensor product of their ind-completions.

. We denote by PreStacks;, the category of all prestacks over Spec k.

All schemes are assumed of finite type over k. In particular, for every such scheme X,

we have QCoh(X) and IndCoh(X) with the usual functorialities [GR, 3.1.1].

For a closed subscheme S of a scheme X, we denote by Perfg(X) the full subcategory

of perfect complexes in Perf(X) that vanish on X — §.

For a scheme X, we use the notation (—) ®x (—) as a shorthand for the relative
tensor product over QCoh(X) or Perf(X) depending if we are dealing with big or

small categories respectively. Similarly we use Funy (—, —) for the relative inner Hom.

A morphism p : Y — X is complete intersection if p = i o f with ¢ a complete
intersection closed embedding and f a smooth map. The expression “Y is a complete

intersection in X7 means complete intersection closed embedding.



CHAPTER 2
PRELIMINARIES I: FOURIER-MUKAI TRANSFORM

We explain the tensor product and the functor category theorems. It will be important
to pay special attention to the difference between the versions with big and small categories.

Given amap p: Y — X and a QCoh(X)—linear category C, the Fourier-Mukai transform
is the functor

FM : QCoh(Y) ®x C — Funk (QCoh(Y),C)

such that for a compact object M of QCoh(Y) and a compact object C' of C we have
FM(M @x C)(=) = p+((—) @y M) ®x C. (2.1)

The Fourier-Mukai transform is an equivalence. This is because QCoh(Y) is dualizable

as a QCoh(X)—linear category, with dual canonically identified with itself via naive duality.

Remark 2.1. If p is proper and finite tor-dimension, the Fourier-Mukai transform is well
defined with small categories, but it is not an equivalence. For this we need to prove that for
compact bimodules, its associated functor preserves compact objects. This is because under

the hyphotesis of p proper and finite tor-dimension, ps preserves compact objects.

Ezample 2.2. If we consider C = QCoh(Z) with ¢ : Z — X, a straightforward computation

using base change and projection formula shows that
FM(M ®@x N)(=) = p«((=) ®y M) @x N = ¢"(p+((—) @y M)) @z N

FM(M @x N)(=) = p«(¢"((—) @y M)) @z N = p(¢" (=) @y x vz (M Rx N)),

which is the usual Fourier-Mukai transform. This is where the name comes from and it can

be checked that composition of functors can be interpreted as convolution of sheaves. [J



Ezample 2.3. 1If C = QCoh(Y) and M = C = Oy then

FM(Oy ®@x Oy )(—=) = p«p™ (=) = p"p«(—)

as can be checked using the last formula of the previous example. [

Now we state the two theorems. It is important to keep in mind that behind the scenes,

there is an identification of QCoh(Y") with its dual category QCoh(Y)°P.

Proposition 2.4. [BZFN, 1.2] Given schemes X,Y and Z and maps Y — X and Z — X,

we have the following identities:
QCoh(Y xx Z) = QCoh(Y) ®x QCoh(Z) = Fun (QCoh(Y), QCoh(Z)).

For a bimodule on the left, the composition is the following functor: for a quasi-coherent
sheaf in Y, we pullback to Y X x Z, then tensor with the bimodule and pushforward to Z.

The functor from the second to the third term is the Fourier-Mukai transform.

Example 2.5. Givenp: Y — X, if Z =Y the diagonal bimodule Oy in Y X x Y corresponds

to the identity functor and the bimodule Oy, .y to the functor p*ps«(—).

Finally we state the version with small categories. The first claim holds in general but

for the second we need Y — X to be proper. Several improvements are discussed in [BZNP].

Proposition 2.6. [BZNP 1.1.3] Given schemes X,Y and Z, a proper map ¥ — X and an

arbitrary map Z — X, we have the following identities:
Perf(Y x y Z) = Perf(Y) ® x Perf(Z) and Coh(Y xx Z) = Fun (Perf(Y"), Coh(Z)).

Remark 2.7. The difference between the two propositions is the main reason we will choose

to work with small categories later on. The point is that with small categories we see more.

10



CHAPTER 3
PRELIMINARIES II: CONVOLUTION

Consider a groupoid scheme G = S with m, p1,ps : G Xg G — G where m denotes the
multiplication and p; and po the projections. The convolution of two quasi-coherent sheaves

is defined by the formula
F1x Fy = mx(p1(F1) @ p3(F2)).

This gives QCoh(G) a monoidal structure. In case m, p; and py are proper the convolution
of coherent sheaves is coherent and if moreover they are finite tor-dimension, the convolution

of perfect sheaves is perfect. The only caveat is that the unit may not be perfect. [GR,5.5]

There are two examples of groupoids we care about: vector bundles and convolution

groupoids. We review its definitions and basic facts and state a version of Koszul duality.

Definition 3.1. Given a scheme X and a perfect sheaf .# cohomologically supported in

non-positive degrees, we define the vector bundle Vect x (7 ) as Specx (Symo,. (F)).

We refer to the above as the vector bundle associated with .%. The sum and multiplication
by scalars on its fibers gives vector bundles the structure of a group scheme over X and an

action of (g, respectively. In particular, they are groupoids schemes over X.

Remark 3.2. Although Vect x (%) makes no sense as a scheme if .# is not cohomologically
supported in non-positive degrees, we can define Perf(Vectx (.%)) in full generality as the

compact objects of the category of Symp, (#)—modules in QCoh(X).

Ezxample 3.3. Given a map Y — X with Ly, x[—1] alocally free sheaf, we define the normal
and conormal bundles Ny, x and N)*//X as Vecty (Ly)x[—1]) and Vecty(Lg/,/X[l]).
There are also shifted versions of the above. For instance we define the shifted normal

bundle Ny x[—1] as the vector bundle associated with the cotangent complex Ly x. O

11



Proposition 3.4. Given a locally free sheaf .% in a smooth scheme X, there are equivalences

Perf(Vect y (Z[1])) ~ Perfy (Vect x (F"[-2]))

and

Coh(Vect y (Z[1])) ~ Perf(Vect y (Z"[—2]))

which interchanges convolution with the usual tensor product.

Proof. The trick is that Coh(Vect x (.#[1])) is generated by Ox as a Perf(X)—linear category.

This is because any coherent sheaf is generated by sheaves scheme-theoretically supported

on the zero section and such sheaves are generated by Ox because X is smooth. [J

Definition 3.5. Given a map Y — X its convolution groupoid Y X x Y is its Cech Nerve.
The convolution unit in QCoh(Y x x Y) is Oy. If the map Y — X is proper and finite

tor-dimension, convolution is also defined for coherent and perfect sheaves. If we interpret

this categories via 2.4 and 2.6, convolution is composition of functors by 2.2 and we get

Perf(Y xx V) - - - = - >Coh(Y xxY) QCoh(Y xxY)

~ ~ ~

Perf(Y) @ x Perf(Y) — — = Funf (Perf(Y"), Perf(Y)) —— Fungf(QCoh(Y), QCoh(Y)).

Remark 3.6. The above functors are fully faithful and compatible with convolution.

Proposition 3.7. If Y is a complete intersection in X, then ¥ x x Y and Ny/X[—l] coincide

as groupoids schemes over Y. In particular, Y x x Y is a group and if Y is smooth:
(Coh(Y xx Y), %) = (Coh(Ny x[~1]), ¥) = (Perf(Ny. ¢ [2]), ).

Proof. The last sentence is a direct consequence of the first and 3.4. For the first observe
that the formation of convolution groupoids and normal bundles of a morphism commutes

with pullbacks on the base. This easily reduce us to the case of the origin on affine space.
12



The derived self intersection 0 x z» 0 can be computed via an explicit Koszul resolution
which shows the convolution groupoid and the shifted normal bundle agree as schemes.

To finish the proof, we need to show that in 0 xg» 0, the convolution product, which
is composition of loops, and the normal bundle product, which is pointwise addition using
the vector space sum of A" agree. The two products are compatible in the sense of the

argument of Eckmann-Hilton and hence they agree. The case n =1 is in [Pre, 3.1.1.1]. O

Proposition 3.8. Let Y be a complete intersection in X. Then, in QCoh(Y x x Y) the

convolution unit Oy, is a filtered colimit of finite colimits of shifts of the tensor unit Oy .y

Proof. The hyphotesis of complete intersection implies that via pullback we can reduce to the
case of the origin on A"™. This is because pullbacks are symmetric monoidal for convolution
and tensor product. In this case, the convolution groupoid 0 x z» 0 is affine and hence the
statement is trivial because everything is a colimit of the tensor unit. [J
Ezample 3.9. If the map Y — X is the inclusion of the origin on Al the above results can
be made explicit. The convolution groupoid 0 X 41 0 is the loop group QOAl which can be
described as the affine group scheme Spec k[A] with A of degree —1.

In 3.7, the cotangent fiber TgAl[Q] is given by Spec k[5] with 5 of degree 2 and the

equivalence is the Koszul duality
(Coh(QoAl), ) >~ (Coh(k[N]), ) ~ (Perf(k[5]), ®) ~ (Perf(TékAlp]), ®).

In 3.8, the convolution unit Op is k and the tensor unit Og 41 is k[A]. The resolution of

the convolution unit Oy is given by
coo = Ogoa1[2] = Ogai[l] = Og a1 in QCoh(QpA)

which is the usual Koszul resolution of k as a k[\]—module. [J
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CHAPTER 4
PRELIMINARIES III: QUASI-COHERENT SHEAVES OF
CATEGORIES

In this section we review the general formalism of quasi-coherent sheaves of categories
on schemes following the expositions [Gai], [Lur5] and [Lur6].
Definition 4.1. The functor 2 — QCoh : PreStacks; — @oo is the right Kan extension of
the functor that to any affine scheme Spec A associates the category DGCat 4.

For every prestack X, there is a category 2—QCoh(X) which can be seen to have all limits
and colimits. The objects can be described as quasi-coherent sheaves of categories, that is,

for every A—point we have an A—linear big stable category with the usual compatibilities.

Definition 4.2. We say that a quasi-coherent sheaf of categories is compactly generated if

for every A—point, the associated A—linear big stable category is compactly generated.

The category 2 — QCoh(X) is closed symmetric monoidal. In particular, a compactly
generated quasi-coherent sheaf of categories C is dualizable with C¥ ~ Ind((C¢)°?) and

moreover the internal Hom satisfies
Fun(C,D) ~ ¥ @ D.

Remark 4.3. We recall that since 2 — QCoh(X) contains all colimits, given an algebra A, a
right module C and a left module D, the relative tensor product C ® 4 D can be computed

via the cobar construction as the colimit of
== CRARARD=CRARD—=C®D.

For every map f : X — Y there is a symmetric monoidal pullback f*. It commutes with

limits and colimits and, for schemes, its right adjoint fx commutes with limits and colimits.

14



Remark 4.4. For a scheme X, the lax-monoidal functor of global sections gives an equivalence

between the category 2 — QCoh(X) and that of QCoh(X)—Modules in DGCaty, [Gai, 2.1.1].

Remark 4.5. The functor A — DGCaty is an etale sheaf. This implies quasi-coherent

sheaves of categories are fppf sheaves [Gai, 1.5.4] and 2 — QCoh is a fppf sheaf [Gai, 1.5.7].

Theorem 4.6. For schemes, the base change formula holds [Lurb, 1.5.3]. The same is also

true for the projection formula [Lurb, 2.6.6].

Recall that an A—linear big category is proper, respectively smooth, if it is compactly

generated and the evaluation, respectively the coevaluation, preserves compact objects.

Definition 4.7. A quasi-coherent sheaf of categories is proper, respectively smooth, if for

every A—point, the associated A—linear big stable category is proper, respectively smooth.

It is proved that for a scheme, a quasi-coherent sheaf of categories is compactly generated,
respectively proper, respectively smooth if and only if its global sections are compactly

generated [Lurb, 3.2.1], respectively proper [Lur6, 1.3.3], respectively smooth [Lur6, 3.4.7].

Definition 4.8. We define 2 — Perf(X) as the full subcategory of 2 — QCoh(X) of proper

and smooth quasi-coherent sheaves of categories i.e. perfect sheaves of categories.

It is easy to see that being proper or smooth is preserved by pullbacks. The pushforward
preserves being proper if and only if the map is proper and finite tor-dimension [Lur6, 1.4.1]

and preserves smoothness if and only if the map is smooth [Lur6, 3.6.1].

Remark 4.9. In the formalism described above it seems hopeless to have f ! because f*is
both, the left and the right adjoint of f,. It is instructive to explain why.

The category 2—QCoh(X) is a 2-category and the unit and counit of the adjunction that
presents f* as a left adjoint to fyx are right adjointable. This adjoint natural transformations
can be showed to work as counit and unit to present f* as the right adjoint to fx.

The above has another consequence which is a general fact for such an adjunction between
symmetric monoidal 2—category. If we restrict to the subcategory of dualizable objects with

only right adjointable morphism, the functor f* is still the left adjoint to fx.
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CHAPTER 5
THE SMALL VERSION OF 2 - QCOH(X)

Now we present a small modification of the formalism of the previous section. Later on,
this will be used to get f'. The idea, following remark 4.9, is to switch from 2 — QCoh(X)

to its subcategory of compactly generated sheaves and right adjointable morphisms.

Definition 5.1. We define 2— QCoh*"(X) as the subcategory of 2— QCoh(X) with objects
compactly generated quasi-coherent sheaves and morphisms compact-preserving functors.
The above is the formal definition but because of 2.7, we will think of it in a slightly
different way. Lets recall that compactly generated big stable categories corresponds to
small stable categories. Moreover, right adjointable functors between compactly generated

big stable categories corresponds to functors between their small counterparts.

From now on, we think of objects of 2 — QCoh®™(X) as an assigment of an A—linear
small stable category to every A—point of X with suitable compatibilities.
Proposition 5.2. The category 2 —QCoh®*"(X) is presentable, in particular it has all small

limits and all small colimits. Moreover the inclusion in 2 — QCoh(X) preserves colimits.

Proof. This reduces to the special case X = Spec k. To see it has all limits and filtered
colimits check [Lur4, 1.1.4.4] and [Lur4, 1.1.4.6]. The existence of colimits and that they are

preserved by the inclusion into presentable categories is [Lurl, 5.5.3.13]. O

Proposition 5.3. For a scheme X, the global sections functor gives an equivalence between

the category 2 — QCoh®"(X) and the category of Perf(X)—Modules in DGCaty,.

Proof. This is Gaitsgory’s theorem from 4.4 and the fact that since QCoh(X) is rigid there
is no difference between an action of QCoh(X) on a compactly generated big stable category

and an action of Perf(X') on its compact objects [Gai, 5.1.7, D.2.2]. O

Remark 5.4. For the rest of the text we will use the same notation for a quasi-coherent sheaf

on a scheme X and for its global sections as Perf(X)—linear small stable category.
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The category 2 — QCoh®”(X) has a tensor product: the compact objects of the tensor

product of their ind-completions. There is also an internal Hom: their functor category.

Proposition 5.5. For a scheme X, the category 2 — QCoh®"(X) is closed symmetric
monoidal and its tensor product commutes with colimits in each variable. Moreover, the

inclusion into QCoh(X) is a symmetric monoidal functor.

Proof. The last sentence is clear. To check that the tensor product and the internal Hom

defined above satisfies the right adjunction property we need to prove that
Funy (C ® D, &) = Funx (C,Funx (D, £)).

This follows from the same identity between their ind-completed versions, which is easy, and
the fact that the cartesian product C x D generates the compact objects of Ind(C) ® Ind(D).
The fact that the tensor product commutes with colimits in each variable can be checked
with big categories, in which case is clear, because the inclusion commutes with colimits. [J
In particular, 2 — QCoh®™(X) has a relative tensor product, the compact objects of the
relative tensor product of their ind-completions, and a relative Hom, the compact preserving
functors of the relative Hom between their ind-completions.
Ezample 5.6. Given an algebra A in 2—QCoh®"(X) we consider an A—module M, together
with an A—algebra B and a B—module N. Then Fun (M, N) = Fung(B® 4 M, N).
This amounts to show that the functor Ind(M) — Ind(N') preserves compact objects if
and only if the functor Ind(B® 4 M) — Ind(N) does. For this, its enough to check that the

unit and counit of the extensions of scalars adjunction,
Ind(M) = Ind(B) @p,q( 4y Ind(M)  and  Ind(B) @y, q( 4 Ind(N) — Ind(N),

preserve compact objects. This is true because the functor Ind(.A) — Ind(B) does and the

above unit and counit are easily constructed from it. [
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Definition 5.7. A quasi-coherent sheaf in 2 — QCoh®" (X)) is proper, respectively smooth,

if for every A—point, the corresponding A—linear category is proper, respectively smooth.

A quasi-coherent sheaf in 2 — QCoh®""(X), is proper or smooth if and only if its global
sections are. Moreover, proper and smooth is equivalent to being dualizable [Lur6, 4.0.2] or,
equivalently, to being fully dualizable in the bigger 2—category 2 — QCoh(X).
Proposition 5.8. For amap f : X — Y between schemes, we have that the enriched adjoint
pair of functors f* and fix between the big versions of quasi-coherent sheaves of categories
restricts to an enriched adjoint pair between the small versions. Moreover f* is symmetric

monodial and base change and projection formula holds.

Proof. The functors f* and f restricts to the small version because they preserve compactly
generated sheaves and compact preserving functors. The claim about the enriched adjunction

is 5.6 and the last sentence can be checked after the inclusion in the big version. [

Lemma 5.9. Given amap f: X — Y, an algebra A in 2 — QCoh®*"(Y), a left A—module D

and a right f*(A)—module C, there is an isomorphism
F(C®ps( ) [1(D)) = f(C) @4 D.

Proof. This is 4.3, the fact that fix commutes with colimits and the projection formula. [

Proposition 5.10. The functor f* preserves being proper or smooth. Moreover f, preserves

properness if f is proper and finite tor-dimension and smoothness if f is smooth.
Proof. This follows from the similar property but for big categories. [

Finally we introduce a finiteness condition on quasi-coherent sheaves which will be used

in the last section. It is milder than perfect but still is enough for some things.

Definition 5.11. A quasi-coherent sheaf of categories in 2 — QCoh®*"(X) is “coherent” if

it is proper relative to the scheme X and it is smooth relative to Spec k.
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CHAPTER 6
THE EXCEPTIONAL PULLBACK AND MATRIX
FACTORIZATIONS

We introduce the exceptional pullback p! for p proper and finite tor-dimension and we
compare it with the usual pullback p*. It can be defined as the right adjoint of p4 or by an

explicit formula inspired by [BZNP, 1.1.5]. We also define the matrix factorization functor.

Definition 6.1. For a proper and finite tor-dimension map p : ¥ — X, we define the

exceptional pullback functor p'(—) by the formula Funf (Perf(Y), —).

The formula is “what it should be”. That is, if we assume there is a right adjoint, it
should be given by the formula above. Lets check directly the enriched adjunction. For this,

we need to show that for every quasi-coherent sheaf D in Y we have
Fun¥ (D, C) = Fun{* (D, Fun¥ (Perf(Y'),C))
as full subcategories of
Funk (Ind(D), Ind(C)) = Fun (Ind(D), Fun¥ (QCoh(Y), Ind(C))).

On the left we have the full subcategory of functors that send D to C. Similarly, on the
right, we have the full subcategory of functors that send objects of D to functors that send
compact objects of QCoh(Y') to C. But because of the QCoh(Y)-linearity of the functors, to
check this last condition it is enough to do it for Oy. This shows both sides agree.
Ezample 6.2. [BZNP, 1.1.3] For a proper map p: Y — X, by 2.6, for any Z over X we have
that

p'(Coh(Z)) = Fun§ (Perf(Y'), Coh(Z)) = Coh(Y xx Z),

and in particular p'(Coh(X)) = Coh(Y) i.e. Coh(X) behaves as the dualizing sheaf. [J
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Proposition 6.3. If p : Y — X is proper and finite tor-dimension and f : Z — X is an

arbitrary morphism, then the natural transformation f*p! = p' f« is an equivalence.

!

Yxyz¥ 7 Yxy2z2¥- -2z
AN
Y ———=X Y<—;!——X.

Proof. This is a formal consequence of base change between f* and fy: in a 2—category a
square is horizontally right adjointable if and only if it is vertically left adjointable. We can

also give a direct proof. For every C on Z we have,
£ (C) = fo(Fun (Perf(Y x x Z),C)) = fu(Fun% (Perf(Y) Dperf(x) Perf(Z),C))
where the second equality is the formula for Perf on a fiber product, and hence
1 (€) = fo(FunZ (£ (Perf()),C)) = Funf (Perf(Y), £+(C)) = #'1+(C)

where the second equality is the enriched adjunction between f* and f,. O.
Now lets fix a proper and finite tor-dimension map p : ¥ — X and a quasi-coherent sheaf
of categories C and lets compare p*(C) and p!(C). The key observation is that both small

categories fully-faithfull embeds into the big functor category
QCoh(Y) ® x Ind(C) = Funk (QCoh(Y), Ind(C))

the first as its compact objects and the second as the functors that preserve compact objects.
Since p is proper and finite tor-dimension, ps preserves perfect complexes and 2.1 implies
that the Fourier-Mukai transform is defined for small categories. In particular, there is a

functor W (=) : p*(—=) — p'(=) that sends M ®y C to the functor p«((—) @y M) @x C.
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The above can be summarized in the following picture:

p*(C) - - pl(c) Perf(Y) @y C - — ~ % = Fun ¢ (Perf(Y), C)
Ind(p*(C)) Funf (QCoh(Y), Ind(C)).

The two vertical functors are fully faithful and hence also the horizontal one. The notation
is because the functor Ind(W7,) is left adjoint to the ind-extension of W.
Ezample 6.4. 1f p: Y — X is proper and smooth, then Perf(Y) ® x C = Fun§ (Perf(Y),C)
because Perf(Y) is dualizable over Perf(X). In this case VU, is an equivalence. [
Ezample 6.5. If p: Y — X is proper and C dualizable, Coh(Y) ® x C = Fun/ (Perf(Y"),C)
because Coh(Y) = Fun¥ (Perf(Y'), Perf(X)). If Y is smooth, then Wy, is an equivalence. [J
In the above examples, the fully faithful embedding between the two pullbacks is an
equivalence but in general it is not. This inspires the following definition.
Definition 6.6. For p : Y — X proper of finite tor-dimension and C a quasi-coherent sheaf
of categories over X we define MF,(C) as the cofiber of p*(C) — P (C).

We will refer to MF,(C) as the matrix factorizations of C with respect to p. This is

arguably the most important definition in the text and it comes with a short exact sequence
!
P*(C) = 1'(€) = MF,(0). (6.1)

The examples shows MF,(C), as a sheaf over Y, is trivial wherever the morphism p is
smooth or the category C is dualizable. In this sense, matrix factorizations is reminiscent of

vanishing cycles because it is supported in the singularities of the map p and of the sheaf C.

Ezample 6.7. If p: Y — X is proper and of finite tor-dimension and C = Coh(Z) for some
map Z — X, then (6.1) is Perf(Y x x Z) — Coh(Y xx Z) — Sing(Y xx Z). O
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CHAPTER 7
THE MONODROMY

We define, for every proper and finite tor-dimension p, the monodromy action on the

exceptional pullback p!. The main result is 7.3, which gives a relation between p* and p!.

For p : Y — X proper and finite tor-dimension, QCoh(Y X x Y) has a convolution
product, defined in 3.5, which restricts to a convolution on coherent and also on perfect
complexes. Under the Fourier-Mukai equivalence 2.4, it agrees with composition of functors.

Now, let C be a quasi-coherent sheaf of categories on X. The point is that the convolution
groupoid naturally acts on the different versions of the pullbacks by p. For example, there

is a natural monoidal action by precomposition of
Coh(Y x x Y) = Fun§f (Perf(Y), Perf(Y))  on p(C) = Fun§ (Perf(Y"),C),

and similarly, of Perf(Y x x Y) and QCoh(Y X x Y) on p*(C) and Ind(p*(C)) respectively.
We will refer to the above as the monodromy action of the convolution groupoid on the
different versions of the pullbacks. This can be summarized in the following picture where

the monoidal categories on the left acts on the categories on the right

Perf(Y xx V) = ~E = Coh(Y x x Y) P*(C) - - pl(c)
QCoh(Y xx Y) Ind(p*(C)).

Ezample 7.1. The monodromy of Oy .y on a functor F' in p(C) = Fun§f (Perf(Y’),C) can

be described explicitly by the formula

Oy xyy * F)(=) = F(p"(p«(=))) = p«(=) @x F(Oy) = ¥ (Oy @x F(Oy))(-),

with the first equality by 2.3, the second by F' being Perf(X)—linear and the last by (2.1). O
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Lemma 7.2. Let p: Y — X be proper and finite tor-dimension and C a quasi-coherent sheaf
of categories over X. The functor P* : C — Funy (Perf(Y'),C) with P*(c)(—) = p«(—) ® ¢
has a right adjoint P with Px(F) = F(Oy ). Moreover P*Py(F) = Oy .y * F.

Proof. The proof is a straightforward computation. It follows from the definitions and the

previous example, that the two compositions are
P.P*(c) =p«(Oy)®c and P*Pu(F)=p«(—)® F(Oy) = Oy yy * F.

The unit morphism comes from Ox — p«(Oy) and the counit from Oy, y — Oy. [
For the next proposition observe that, since the tensor product of categories preserves

short exact sequences, from (1.4) we have a fully faithful embedding
! !

Proposition 7.3. Let X be a smooth scheme and p : Y — X a proper complete intersection

morphism. Then, there is a canonical equivalence

Perf(Y x x Y) ®Coh(y x xY) P (€) = p*(C)

for every quasi-coherent sheaf of categories C over X.

Proof. The functor we are going to construct will be such that its composition with the
canonical p*(C) — p'(C) is the functor ® from (7.1). This rigidifies the problem and it
means that what we are trying to prove is that the image of ® is the full subcategory p*(C).
First lets assume Y — X is a complete intersection closed immersion. The convolution
groupoid Y X x Y is an affine group over Y by 3.7. This implies Perf(Y x x Y') is generated
as an Perf(Y')—linear category by Oy .y and the image of ® is contained in p*(C) by 7.1.
The above shows there is a functor as in the statement which moreover is fully faithful
because it is the corestriction of the fully faithful functor ® along ¥y : p*(C) — p'(C).
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To prove surjectivity we use 3.8 to write Oy as colimy M, with the colimit filtered and

each My, a finite colimit of shifts of Oy ,y. In particular, we get
¢ = Oy * ¢ = colimp My, x ¢ for every ¢ in Ind(p*(C)).

If ¢ is in p*(C), then it is compact and the identity ¢ — ¢ factors through some term of
the above filtered colimit. This implies c is a retract of some My, x ¢, which are finite colimits
of shifts of Oy vy * ¢. This objects are in the image of our functor and hence c is.

This proves the proposition for complete intersection closed immersions. For proper and
smooth maps it is obvious: the convolution groupoid is smooth and p* and p! agree by 6.5.

To finish we show that if the statement is true for ¢ : Z — Y and for p : Y — X then
it is also true for the composition po ¢ : Z — X. Indeed, since the functor ¢* is symmetric

monoidal, the data of two equivalences

Perf(Y x x Y) ®Coh(Y><XY)p'(_) — p*(—) and Perf(Z xy Z)®COh(Z><yZ) g(=)—q"(—)

naturally produce a third:

¢ (Perf(Y xx Y)) g (Coh(Y x xY)) Perf(Z xy Z) RCoh(Zxy 2) q!(p! C)) = ¢*(p*(C)).

This gives the claim in the statement for Z — X using that

q*(Perf(YXXY))®q*(COh(YXXy))(Perf(Z><yZ)®COh(ZXYZ)Coh(ZXXZ)) ~ Perf(Zx x Z),

which follows from Coh(Z x x Z) = (p o q)'(Coh(Z)) and the claim for p and ¢. O

Remark 7.4. The condition on p of being a proper complete intersection morphism is too
restrictive. For example, the statement is still true for the diagonal embedding of a smooth

scheme because X X x x X is a group and is affine over X by [AC] and 3.8 still holds.
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Finally, we want to prove p! (C) is proper over its monodromy and for this we need to
understand its mapping spaces. We compute them in Ind(p*(C)) and then restrict to p!(C ).
Ezample 7.5. [Pre, 3.1.2.1] Consider a smooth scheme X, an hypersurface i : Xg — X and
a quasi-coherent complex M on Xj. In loc. cit. it is shown that there is an St —action on
the complex i*i, M, whose S!—invariants equals to M. In particular, given quasi-coherent

sheaves M; and My, using the fact that Hom(—, Ms) commutes with colimits we get
HomCoh(Xo)(Mb M) = HomCOh(X0)<Z is My, My)® = Homcoh(X)(z*Ml,z*Mg) :

This is the formula we will try to imitate. Here the map p : Y — X is the inclusion of the
origin on Al and C is the proper quasi-coherent sheaf of categories Perf(X) corresponding
to a proper map ¢ : X — Al. We have p*(C) = Perf(Xy) and p'(C) = Coh(Xg). O

Lets fix p : Y — X proper and finite tor-dimension and a quasi-coherent sheaf of
categories C over X. For every F7 and Fy in Ind(p*(C)) and M in QCoh(Y xx Y) lets

observe that the complex
Hompy, g (cyy (M * F1, F2)  in QCoh(Y)

gets an action of Endy .y (M) via the first coordinate.

Lemma 7.6. It M can be written as a colimit of shifts of the tensor unit Oy, y in the

category QCoh(Y X x Y'), then we have the following equality

Hompy s (0)) (M * F1, F2) = Homqcop v« vy (M Hompp g )y (Oy s oy * 1, £2))

in the category of Endy y ..y (M)—modules in QCoh(Y).
Proof. As functors of M, from QCoh(Y x x Y) to QCoh(Y'), both sides commutes with
colimits and agree on Oy .y as well as on its endomorphisms. This proves the claim and

moreover the equality can be improved to an equality in End(M)—modules in QCoh(Y'). O
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We recall the Koszul duality from 3.7, if p : ¥ — X is a complete intersection closed
embedding, the functor Homy , ..y (Oy, —) gives an equivalence between coherent complexes

on the convolution grupoid Y X x Y and perfect complexes in the conormal bundle Ny X[2].

Theorem 7.7. Let p: Y — X be a locally complete intersection in a smooth X. For every

proper quasi-coherent sheaf C over X, we have p' (C) is proper over (Coh(Y x x Y), %).

Proof. We can easily assume that p is a complete intersection. Then by 3.8, for any two

objects Fy and F in the category p'(C), the lemma for M = Oy says that:

Homlnd(p*(c))(Fh Fy) = HomQCoh(yXxy)(OYa Homlnd(p*(c))(OYxXY * Iy, 1))

in QCoh(Ny-X[2]) which is the same as Endy .,y (Oy)—modules in QCoh(Y).
This can be rewritten, using the fully faithful embedding p'(C) — Ind(p*(C)) on the left

together with the equality Oy .y * (=) = P*Px(—) on the right, and we get

Hom 1 oy (F1, F2) = HomQy oy x vy (O Homyy g 0y) (P Pi(F1), F2))

in the category QCoh(Ny-X[2]).
The proposition asserts the term on the left is perfect. If we use Koszul duality from 3.7

and the adjunction from 7.2, it is enough to show that the following is coherent
Homyy, 4+ (¢)) (P Pe(F1), F) = Home (F1(Oy), F2(Oy)) in QCoh(Y xx V).

This is perfect over X because, by hyphotesis, C is proper over X. To finish we use that,
since Y X x Y — X is proper and affine, something is coherent over Y x x Y if and only if
its pushforward to X is coherent. This is true because by assumption, the quasi-coherent

sheaf of categories C is proper over X and hence its mapping spaces are perfect over X. [
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CHAPTER 8
THE FUNDAMENTAL DRINFELD-VERDIER SEQUENCE

Lets fix a proper and finite tor-dimension map p : ¥ — X. We explain the main
result about (6.1), its says that the whole short exact sequence can be recovered from the
exceptional pullback p' (C) and its monodromy by the convolution groupoid Y x x Y.

First, lets observe that for a morphism p : Y — X as above, we have the following short

exact sequence of monoidal categories
Perf(Y xx V) — Coh(Y xx Y) — Sing(Y xx Y). (8.1)

Before we state the theorem, we need the following lemma. We recall that a small

monoidal stable category is rigid if every object admits a left and a right dual.

Lemma 8.1. [Pre, 3.1.4.2] Suppose that A is a rigid monoidal stable category and the

following is a short exact sequence in A—RMod:
C1 — Cy —C3
then, for every D in A—LMod, the sequence
C14D —=Co4D —=C304D

is again a short exact sequence.

Proof. For the proof check the reference. There it is stated for symmetric monoidal categories
but the proof works in general. The main point is that A being a rigid monoidal stable
category, for any A—linear category D, we have that Ind(D) is dualizable as an Ind(.4)—linear

category. This easily implies that (—) DMnd(A) Ind(D) preserves colimits diagrams. [J
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The next theorem is the combination of the results of the previous section. The first part

of the statement is 7.7 and the second is 7.3 with the previous lemma.

Theorem 8.2. Let p: Y — X be a complete intersection in a smooth X. For every proper
quasi-coherent sheaf of categories C over X, we have that p'(C) is proper over Coh(Y x x Y)

and the short exact sequence

p*(C) — p(C) — MFp(C)

is obtained from (8.1) via — ®Coh(Y % xY) p!(C).

Example 8.3. Consider a complete intersection X inside a smooth X which is obtained as
the special fiber of a proper map X — A'™. If p is the inclusion of the origin in A" and we
think of C = Coh(X) as coherent sheaf of categories over A", then the exact sequence of the

statement is

Perf(Xy) — Coh(Xg) — Sing(Xj).

In this case, the convolution groupoid 0 x gn 0 is the loop group QpA". Its action on X
produce an action on Coh(Xg) by cohomological operations. This is the monodromy.

In particular, 8.2 shows Coh(Xj) is proper over Coh(£29A"). This is a reformulation of
the fact that for complete intersection schemes, the Ext algebras of coherent sheaves are
finitely generated over its cohomological operations. This is in [Gul] and in [AG, App DJ.

In [AG, 4.2.6] it is proved that for complete intersections, cohomological operations are
nilpotent exactly on the subcategory of perfect complexes. This is a reformulation of the
fact that

Perf(X() =~ Perf(QpA") ®COh(QOA") Coh(Xj).

The singularity category Sing(X() coincide with Sing(29A™) D Coh(pAn) Coh(Xy). O
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CHAPTER 9
SUPPORT FOR STABLE CATEGORIES

Fix an Fp-algebra A and a noetherian graded algebra A — @ H 2k(A). We explain how
to localize A—linear categories over Spec A. This will define its support as a closed conical

subset. We work with compactly generated big stable categories. This is in [AG] [BIK].

Definition 9.1. Given a stable category C, an object ¢ and a morphism ¢ : ¢ — c[k], we

define the localization Locg(c) as the colimit

colim(c — clk] = c[2k] — -+ = ¢[nk] — ---) in C.

In the case that ¢ comes from a cohomological endomorphism of the identity of C, this
defines a functor Loc¢ : C — C. We will refer to this as localization. Observe that this

functor is a filtered colimit and hence it commutes with functors that commutes with them.

Definition 9.2. Given a stable category C, an object ¢ and a morphism ¢ : ¢ — c[k], we say
that ¢ is ¢—torsion if there is a positive integer n such that ¢" : ¢ — ¢[nk] is nullhomotopic

and we say that it is locally ¢—torsion if Locg(c) = 0.

It is easy to see that if ¢ is torsion, then it is locally torsion. In turn, if ¢ is locally torsion,
then ¢ > cone(c — Locy(c)) = colim cone(c — c[nk]) and hence we can write c as a filtered
colimit of torsion objects using that cone(c — ¢[nk]) is torsion.

For some of the proofs that follows below, it will be very helpful to have a complementary

functor to the localization Locy(c). This will be the colocalization functor coLocg(c).

Definition 9.3. Given a stable category C, an object ¢ and a morphism ¢ : ¢ — c[k|, we

define the colocalization functor coLocg(c) as the fiber of the canonical map ¢ — Locg(c).
It follows from the definitions that for homogeneous @ and a’ in A, the localization

and colocalization functors Locg, coLocg, Locy, and coLoc, commutes with each other and

moreover, we have that coLoc, o Locg = Locg o coLocg = 0.
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The next lemma summarizes the main equivalences for being torsion or locally torsion
with respect to cohomological operations. We sketch the proof, the details can be checked

in the references. For compact objects we can be more precise.

Lemma 9.4. [AG, 3.4.4] [BIK, 5.3] Fix A and A as before. For an A—linear compactly
generated stable category C and an homogeneous a in A, the following conditions on an

object ¢ in C are equivalent to each other
e the object ¢ is locally a—torsion in C,
e the mapping space Homg (¢, ¢) is locally a—torsion in A — Mod for all compact ¢’ in C,
e the graded module Extc(c/, ¢) is locally a—torsion in A —Mod9" for all compact ¢’ in C,
and moreover, if ¢ is compact, we can add the following
e the graded module Exte(c, ¢) is locally a—torsion in A — Mod9",
e the graded module Exte(c, ¢) is a—torsion in A — Mod9",

e the object ¢ is a—torsion in C.

Proof. First, Locg(c) = 0 if and only if Hom(c', Locy(c)) = 0 for all compact ¢ which
is equivalent to the second condition because the functor that represent ¢’ commutes with
filtered colimits and hence also commutes with the localization functor.

The second and the third are equivalent because cohomology commutes with filtered
colimits and an object of A—Mod is trivial if its cohomology is trivial.

If ¢ is compact, the third condition implies the fourth. The fifth implies 1 in Ext¢(c, ¢) is
killed by some power of a and hence the sixth condition. The sixth easily implies the first.

We need to prove the fourth condition implies the fifth. If Exte(c, ¢) is locally a—torsion,
it can be written as a filtered colimit of a—torsion modules M,,. Now, because A is compact
as a graded module, the unit A — Exte(c, ¢) factors through some A — M,,. This implies

that the unit 1 in the A-algebra Exte(c, ¢) is a—torsion and hence the fifth condition. [
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We are ready to give the key definition. If we denote Spec A by X, the graduation on
the graded A defines a G;,—action on X. For every closed conical Y of X, we have the

homogeneous ideal I(Y') which is finitely generated by the noetherian assumption on A.

Definition 9.5. For an A-—linear category C, the support of an object ¢ is the minimal

closed conical subset Y of X, such that ¢ is locally a—torsion for all homogeneous a in I(Y").

It follows from the previous proposition that for a compact object ¢, its support coincides
with the support of Hom(c, ¢) in A—mod and with the support of Ext(c,¢) in A — Mod9".
Now we explain how to form the subcategory of objects supported on a closed conical

subset and how to restrict to its complement. We can also localize on closed conical subsets.

Definition 9.6. For an A—linear category C and a closed conical Y of X, let Cy denote the

full subcategory of objects with support contained in Y and let Cx _y be its right orthogonal.

For an A—linear category C, the colocalization and localization functors from above let
us decompose every object into a part in Cy-, its local cohomology, and a part in Cx_y-, its

restriction. In particular, the fully faithful embedding Cy — C has a right adjoint.

Proposition 9.7. [AG, 3.3.7] For an A—linear category C and closed conical subset Y of X

we have a short exact sequence of categories

CY —C— CX—Y-

Proof. First assume Y is cut out by an homogeneous a in A. In this case, the colocalization
functor coLoc, is the right adjoint of the fully faithful Cyy — C and the localization Loc, is
the left adjoint of the fully faithful Cx_y — C. This proves it in this particular case.

In general, if I(Y) = (aq, ..., ay) then coLocy, o coLocg, © - - -0 coLocy,, is the continuous
right adjoint to Cy — C. It is then a consequence of the following general fact: if the
embedding of a full subcategory has a continuous right adjoint then the embedding of its

right orthogonal admits a left adjoint and they fit into an exact sequence. [
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Observe that since we can restrict C to the complement of any closed conical subset, we

can also define the localization around a closed conical subset as an appropiate colimit.

Definition 9.8. For an A—linear category C and a closed conical subset Y of X, the

localization C(Y) is the filtered colimit of Cx_ 7 over all possible Z that does not contain Y.

It is easy to see that for every pair of closed conical subsets Y and Z of X, there is
an equivalence between (Cy)x_z and (Cx_z)y as full subcategories of C and hence, after

passing to appropiate filtered colimits, between (Cy)(y) and (C(Y))y.

Definition 9.9. For an A—linear category C and a closed conical subset Y of X we define

the generic fibre at Y as (Cy)(y) o~ (C(Y))y and denote it by Cy; .

For a closed conical subset Y of X, we define the following functors C — C which play
the role of local cohomology around Y, restriction to the complement of Y and localization

around Y respectively:
1. coLocy : C — C is the composition C — Cy — C,
2. Locx_y : C — C is the composition C - Cx_y — C,

3. Loc(y) : C — C is the composition C — C(Y) — C.

Proposition 9.10. [BIK, 5.5] For an A—linear category C and a compact object ¢ with
the graded group Exte(c, c) finitely generated as a graded module over A, a closed conical

subset Z is contained in the support of Extc(c, c) if and only if Locz) o coLocyz(c) # 0.

The special case of C equal to A — Mod plays an important role. In particular, it can be

proved that the general case can be constructed from this one.

Proposition 9.11. [AG, 3.5.5] For an A—linear category C and a given closed conical

subset Y of X, there are natural equivalences of categories
Cy ~A—Mody ® y_pjoqC and Cx_y ~A—Mody_ y ®4_\oq C-
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The next corollary says that for every closed conical subset Y, the restriction Cx_y can

be obtained from C by restricting the mapping spaces to X — Y.

Corollary 9.12. For every A—linear category C and closed conical subset Y of X, there is,

for every pair of objects ¢1 and c¢o, a natural isomorphism
Homg,, . (c1,¢2) = Locx _y(Home(cq, c2)) in A — Mod.

There are analogous versions of the proposition and the corollary for the localization

around a closed conical subset. We wont use any of them so we omit proofs.

Definition 9.13. For an A—linear category C, its support Y in X, is the minimal closed

conical subset of X such that Cx_y vanishes or, equivalently, Cyy — C is an equivalence.

In commutative algebra we can check if a point is in the support of a finitely generated
module by checking its fiber at that point. At this level of generality this wont make sense

for support of categories. Nevertheless we have a similar criteria using local cohomology.
Proposition 9.14. Consider an A—linear category C with a compact generator and such
that the mapping spaces are finitely generated as graded modules over A. For a closed

conical subset Z of X = Spec A, the following are equivalent
1. The closed conical subset Z is contained in the support of C.

2. The full subcategory C Z of C is non-empty.

Proof. Lets denote the compact generator by c¢. From 9.11, we see that Locx _y (c¢) generates
the category Cx _y and hence the support of ¢ coincides with the support of C. In particular,
the first condition is equivalent to Z being contained in the support of Ext¢(c, ¢).

In turn, by compactness and the properness assumption on the statement and 9.10, this

is equivalent to Loc(z) o coLocg(c) being non-trivial i.e. (Cz)(z) =~ Cz, is non-empty. [
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CHAPTER 10
PUNCTUAL SINGULAR SUPPORT

Now we come back to context of sections 6 and 7 in the special case of the closed
embedding of a point in a smooth scheme. In this case, we will see that the monodromy
defines a closed conical subset of the cotangent space of the point.

Lets fix the closed embedding of point 7, : * — X and an isomorphism of the formal

completion of Ox , with k[t1,...,ts]. The convolution groupoid is the loop group €2, X.
Definition 10.1. Given a quasi-coherent sheaf of categories C over a scheme X, the fiber and

cofiber at  are the pullbacks i%(C) and iL(C) together with its monodromies by Coh(£2,X).

The loop group Q,X is Koszul dual to the shifted cotangent space Ty X[2]. To be more

explicit we use the k—algebra k[31, ..., 8y] with all 8; of degree 2. By, 3.7 we have
Perf(2, X ) ~ Perfy(k[B1,...,06n]) and Coh(Q,X) ~ Perf(k[S1,...,5n)) (10.1)

and hence monodromy can be interpreted as a k[f1, ..., fp]—linear structure on the cofiber.

Definition 10.2. Given a point x in a smooth scheme X and a proper quasi-coherent sheaf

of categories C over it, we define SS;(C) as the k[S1, ..., Bn|—linear support of Z'I(C)

The above defines the punctual singular support S.S;(C) of a proper quasi-coherent sheaf
of categories C as a closed conical subset of the cotangent fiber T)x X. For proper and smooth

sheaves the punctual singular support is trivial i.e. is contained in the zero section.

Definition 10.3. A proper k—linear small stable category D is said to be right saturated,

as a k—linear category, if every exact functor D — Perf(k) is representable.

For a proper dg-algebra A, the category of perfect A—modules is right saturated if and
only if the forgetful map A — Mod — k — Mod detects compact objects. For proper k-linear
categories, smooth implies regular and regular implies right saturated [BvdB]. I dont know

in characteristic 0 an example of a right saturated category which is not smooth.
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Proposition 10.4. Given a coherent sheaf of categories C over a smooth scheme X, the

following conditions are all equivalent:
e The punctual singular support SS;(C) is contained in the zero section.
e The functor i%(C) — i,(C) is an equivalence.

e The k—linear category iy (C) is right saturated.

Proof. Tt follows from 9.11 and 9.13 that the first condition is equivalent to the natural fully

faithful functor

|

Perfo(k[B1, .- -, Bn]) @Pert(i(s,,....80)) in,(C) = i3(C)

being an equivalence. If we use 7.3, the above identifies with i%(C) — i%.(C) and hence it is
the same as the second condition. This proves the first two conditions are equivalent.

Lets prove that the second and the third conditions are equivalent. We can assume that
the scheme X corresponds to a k—algebra A, the point z to an augmentation A — k and the
coherent sheaf of categories C to B—mod with B a proper A-algebra, smooth as a k—algebra.

In the above, Ind(:*(C)) corresponds to k ® 4 B—Mod, the fiber i*(C) to perfect modules

and the cofiber i'(C) to modules that are perfect as B—modules.

k®4 B —Mod % B — Mod
8 g
J— Mod —2 A — Mod—"~k — Mod

The second condition on the statement is equivalent to a detecting compact objects, that
is, a bimodule is compact if it gives a functor which evaluated at k£ is compact and the third
is equivalent to § detecting compact objects, that is, Perf(k ® 4 B) being right saturated.

In conclusion, we need to prove that a detects compact objects if and only if 5 does.
Recall that if an R—algebra S is proper or smooth then the forgetful S — Mod — R — Mod

preserves or detects being compact respectively. [Lur4, 4.6.4] [Lur3, 4.7.5]
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Assume « detects compact objects. Then 3(M) compact implies 7 o o/ (3(M)) compact
and hence o3 (a(M)) is compact. But, by the previous paragraph, B smooth as a k—algebra
implies a(M) is compact and, since « detects compact objects, M is compact.

Assume 3 detects compact objects. Then a(M) compact implies 3’ («a(M)) is compact
because B is proper over A. This implies o/ (8(M)) is compact. This is a skyscraper and it

can be compact only if (M) is compact. By hyphotesis, this implies M is compact. O

For the following, given a function ¢ : X — Al, we denote by i+ Xo = X the closed
immersion of the special fiber. Moreover, for every point = in X let i, x, and i, x denote
its closed immersions into X and X respectively. The next lemma computes the fiber at a

given point x of MF;  in terms of the cofiber z'x For the notation in the lemma check 9.9.

Lemma 10.5. Consider a smooth scheme X, with an arbitrary function ¢ : X — Al and a
quasi-coherent sheaf of categories C. If ¢ denotes the line generated by d;¢ in T X', we have

an equivalence of categories
: B
iy, xo(MFi, (C)) =iy x(C)y, -

Proof. This is a straightforward computation. From (6.1) we get the following short exact

sequence of categories:
i x,15(C) = T xi5(C) = i x, MF; (C), (10.2)
and moreover, from 7.3 for i, x, and i, y, it follows that
i% xo15(C) = Perf(Q:X) ®Cop 0, x) i x (C)

and

i;Xoi!ab(c) = Perf(2:X0) ©oh(0, xo) i!z,X(C)'

36



This means that the first two terms of (10.2) corresponds to the part of Z'x  (C) supported

at 0 and ¢ respectively. In particular, they correspond to the first two terms of

ih x (€ = i x (€)= (i x(C)e)(e) = iy x (C),

9

and hence the third term of each exact sequence identify as desired. [J

Remark 10.6. This can be interpreted as follows: the fiber of MF; (C) at a given point x is
the generic fiber at d;¢ of the microlocalization of z'm y(C) along the cotangent T, X.
Now, we give criteria to decide when a covector (z,v*) is in the punctual singular support

of a coherent sheaf of categories. It is analogous to the vanishing cycle test.

Proposition 10.7. Consider a smooth scheme X with a function ¢ : X — Al and a coherent
sheaf of categories C. Given a point , if the fiber if v (MF; (C)) is non-trivial then the

covector (z,dz¢) is in SSz(C). If Z'x «(C) has a compact generator the converse holds.

Proof. If we use the lemma, the proposition reduce to the statement of 9.14. The hyphotesis

there are satisfied because by 7.7, the k[, ..., Bp]—linear category z; y(C) is proper. O

Remark 10.8. The cofiber z'x y(C) is expected to be a smooth category and in particular
it should have a compact generator. If C is Coh(Y') with the map ¥ — X proper and the

scheme Y smooth, the cofiber z'm y(C) is Coh(Yz) which is smooth by a theorem of Efimov.

To finish we give a deformation theory interpretation. Recall that for a k—linear category;,
its curved deformations over an Artinian Fs—algebra A are classified by KDg(A)—linear
structures on it, with KD9(A) the Fo-Koszul dual of A. The unobstructed objects are those
on which the augmentation ideal of KDo(A) acts trivially. This is in [Lur2].

The point is that the k[fy,. .., Bp]—linear structure on the cofiber z'x(C) is encoding a
deformation over Spf O X+ The unobstructed objects are those on which fy,..., 8, acts
trivially and the proof of 7.3 shows that the full subcategory generated by them is i} (C).

In particular, 10.4 says that the punctual singular support is contained in the zero section

if and only if, the whole cofiber is generated by unobstructed objects. Moreover, in any
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curved deformation of a right saturated category, every object is a retract of a finite colimit of
unobstructed object. The criteria in 10.7 says that when (z, v™) is not in the punctual singular

support SS;(C), if an object in Z'x (C) is unobstructed along X, then it is unobstructed.
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