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ABSTRACT

Free energy is the driving force behind countless processes ranging from the biological to

the industrial. Large differences in free energy drive processes forward, while large barri-

ers impede transitions. Accurate determination of these differences and barriers allow re-

searchers to calculate key properties. We begin with such an application. Using free energy

methods in molecular dynamics, we characterize a block copolymer that forms micelles via

crystallization-driven self-assembly. Through a range of free energy calculations where we

determine the relative stability of micelles as a function of size, we calculate the equilibrium

size, shape, and stability of these micelles. We then turn our attention to the methodology

that powers this kind of analysis: free energy calculations in molecular dynamics. Given that

free energy is often the quantity of interest in a system studied via molecular dynamics, the

length of time these methods take to estimate the free energy strongly influences the com-

putational cost of the studies. We present two methods that leverage self-regularizing neural

networks to very rapidly estimate underlying free energy during a molecular dynamics simu-

lation. The first method builds upon an already successful method, Adaptive Biasing Force

(ABF), by better handling the error inherent in its estimates and by providing exploratory

bias in unvisited regions. The second method further builds on the first by incorporating the

frequency of visits in phase space, in addition to the forces, to the final estimate of the free

energy for an even faster, more robust estimate. Finally, we seek to expand the reach of these

methods by introducing an easy-to-use, powerful and scalable framework for applying these

methods to first principles molecular dynamics, and a hierarchical transfer methodology to

rapidly converge such calculations.
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CHAPTER 1

INTRODUCTION

In Chapter 2, a mechanism for micelle formation is considered in which nanocrystalline do-

mains are formed at the core of the micelles from short ethylene sulfide oligomers, leading to

exceptionally stable, uniform micellar structures. The structure and thermodynamic prop-

erties of the resulting micelles are examined through a combination of experiments, theory,

and simulations. We find that in oligo(ethylene sulfide)-b-poly(ethylene glycol) amphiphiles,

as few as three ethylene sulfide monomers are sufficient to form a highly crystalline core,

surrounded by a water-soluble ethylene glycol corona of arbitrary size. Sulfur-sulfur interac-

tions induce formation of rhombohedral lattice crystalline regions, which exhibit well-defined

intramolecular and intermolecular order. An atomistic model is used to determine the free

energy of the micelles, and the critical micelle concentration (CMC) is found to be extremely

small, on the order of 10−8 mol/L. The size distribution of these micelles is nearly monodis-

perse. The crystalline core also includes amorphous regions that could serve as hosts for other

molecules. Taken together, these properties serve to underscore that controlled crystalliza-

tion provides a useful and under-exploited mechanism for assembly of ultra-stable micelles

in applications including drug delivery and immunology.

In chapter 3, a machine learning-assisted method is presented for molecular simulation

of systems with rugged free energy landscapes. The method is general and can be com-

bined with other advanced sampling techniques. In the specific implementation proposed

here, it is illustrated in the context of an Adaptive Biasing Force (ABF) approach where,

rather than relying on discrete force estimates, one can use a self-regularizing artificial neu-

ral network to generate continuous, estimated generalized forces. By doing so, the proposed

approach addresses several shortcomings common to adaptive biasing force and other algo-

rithms. Specifically, the neural network enables (1) smooth estimates of generalized forces

in sparsely-sampled regions, (2) force estimates in previously unexplored regions, and (3)

1



continuous force estimates with which to bias the simulation, as opposed to biases gener-

ated at specific points of a discrete grid. The usefulness of the method is illustrated with

three different examples, chosen to highlight the wide range of applicability of the underlying

concepts. In all three cases, the new method is found to enhance considerably the under-

lying traditional Adaptive Biasing Force approach. The method is also found to provide

improvements over previous implementations of neural network-assisted algorithms.

In chapter 4, another machine learning-based adaptive free energy method is described

for use in systems with complex, potentially high-dimensional free energy landscapes. This

method, Force-Biasing Using Neural Networks (FUNN), builds upon the one described in

the previous chapter. The method’s main strength lies in being able to learn both from

state visit frequencies and from the generalized force estimates of the system. To this end,

a self-integrating artificial neural network is described, which generates an estimate of the

free energy directly from its derivatives. This combined approach is found to be robust,

faster, and more accurate than relying only on frequency-based or generalized force-based

estimation. Combined with overfill protection and support for sparse data storage and

training, the method can safely ignore high energy regions and effectively scale to a large

number of collective variables.

In chapter 5, we present a seamless coupling of a suite of codes designed to perform

advanced sampling simulations, with a first principles molecular dynamics (MD) engine.

As an illustrative example, we discuss results for the free energy and potential surfaces

of the alanine dipeptide obtained using both local and hybrid density functionals (DFT),

and we compare them with those of a widely used classical force field, Amber99sb. In our

calculations, the efficiency of first principles MD using hybrid functionals is augmented by

hierarchical sampling, where hybrid free energy calculations are initiated using estimates

obtained with local functionals. We find that the free energy surfaces obtained from clas-

sical and first principles calculations differ. Compared to DFT results, the classical force

2



field overestimates the internal energy contribution of high free energy states, and it un-

derestimates the entropic contribution along the entire free energy profile. Using the string

method, we illustrate how these differences lead to different transition pathways connecting

the metastable minima of the alanine dipeptide. In larger peptides, those differences would

lead to qualitatively different results for the equilibrium structure and conformation of the

molecules.

3



CHAPTER 2

NANOCRYSTALLINE OLIGO(ETHYLENE

SULFIDE)-B-POLY(ETHYLENE GLYCOL) MICELLES:

STRUCTURE AND STABILITY

2.1 Introduction

Amphiphiles consist of at least two differently interacting domains, for example a hydropho-

bic and a hydrophilic region. Sodium dodecyl sulfate (SDS), a widely studied anionic surfac-

tant, is representative of such a system. Amphiphilic molecules can self-assemble in solution,

thereby providing a basis for their use as detergents[9, 17], drug delivery vehicles[95, 80],

immunomodulators[114], and molecular reporters[79]. An extensive body of theoretical,

experimental and, more recently, simulation work, has sought to arrive at a better under-

standing of micelle formation.

Block copolymers have also received considerable attention in the context of micelle for-

mation. A majority of past work, however, has focused on amphiphilic systems consisting

of an amorphous core, stabilized by hydrophobic or electrostatic interactions. These ”poly-

merosome” systems are of interest owing to their ability to self-assemble into multi-domain

structures, or to exhibit additional functionality through judicious modification of the under-

lying polymer chemistry [82, 66, 91]. Unfortunately, amorphous-core micelles are generally

susceptible to changes in concentration, leading to wide size distributions that render them

unsuitable for numerous applications. It is generally appreciated that block copolymers can

adopt ordered morphologies through a variety of mechanisms, some of which involve crystal-

lization. In that case, the micelles exhibit semi-crystalline cores, which impart remarkable

consistency in size and superior tunability of critical properties such as dissociation rate, ther-

modynamic stability, and critical micelle concentration (CMC)[38]. It has also been shown

that, in the context of polymers, crystallization driven self-assembly can lead to formation

4



Figure 2.1: The two blocks that make up the block copolymer of interest

of monodisperse and hierarchical structures [33, 37].

In this work, a combined experimental and computational strategy is adopted to describe

and understand the origin of self-assembly into semi-crystalline micelles. Specifically, we con-

sider diblock copolymers of oligo(ethylene sulfide)-b-poly(ethylene glycol), which have been

recently shown to form micelles, fibrils and hydrogels that exhibit crystalline signatures[10].

The small ethylene sulfide block has been hypothesized to induce crystal formation, yet re-

main water soluble at low repeat numbers (n=3-9). A longer PEG block (n=44-112) can

be manipulated to tune aggregation number, dissociation rate, size and shape (Fig. 2.1).

As such, these materials provide an easy-to-synthesize, well-controlled system for precision

assembly of water stable aggregates. The resulting structures are capable of hosting drugs

in their core, thereby lending themselves for applications in controlled drug delivery and

immunology.

The two overarching aims of this investigation are, first, to provide unambiguous evidence

of the crystallinity of OES-b-PEG micelles, and its role in aggregation. Note that in prior

work crystallinity was only hypothesized to be responsible for assembly[10]. Second, we seek

to understand and characterize the aggregation behavior, in order to determine the char-

acteristic sizes that are accessible in the context of ultra-small, ultra-stable micelles. Such

information is critical for potential applications in immunology, where penetration into spe-

cialized lymph node channels having a cutoff of approximately 8nm is necessary[94]. Third,

we calculate the CMC via statistical mechanical methods, as the CMC of previously synthe-

sized OES-b-PEG micelles could not be determined by standard experimental techniques.
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In what follows, we begin by showing that the molecular model of OES-b-PEG intro-

duced here is able to capture spontaneous self-assembly in water. We then characterize the

crystallinity of aggregate cores, and examine how it relates to the crystalline structure of

pure ethylene sulfide in the solid phase. We provide experimental evidence from grazing

incidence wide-angle X-ray scattering (GIWAXS) and from differential scanning calorimetry

that is consistent with theoretical predictions. By conducting simulations of the potential of

mean force required to extract individual molecules from a micelles, we examine the effects

of both PEG and OES block size on micelle stability. We also characterize the aggregation

behavior, and provide an estimate for the CMC as well as the average aggregate size and its

distribution as a function of concentration. We conclude with an analysis of the crystallinity

of the corresponding micelle cores, and how it affects micelle characteristics.

2.2 Results and Discussion

Aggregation of Copolymer

After the derivation of dihedral parameters and the validation of the forcefield (see Meth-

ods section), several different block-copolymers were simulated in water starting from initial

random configurations, thereby allowing us to follow the process of spontaneous self-assembly

(Fig. 2.2). All polymers considered here were found to self-assemble for all the conditions

examined (Fig. 2.2C); the OES blocks spontaneously formed semi-crystalline cores. Semi-

crystalline cores are consistent with previous observations, where some degree of crystallinity

was hypothesized to exist within the cores, yet the micelles were experimentally shown to

be capable of carrying small-molecule drugs - a feature that is consistent with the presence

of amorphous domains [10].

Brubaker et al.[10] inferred the formation of crystals in the micelle cores on the basis

of differential scanning calorimetry (DSC) measurements for pure SH-OES3-OH. To further

establish the link between pure SH-OES3-OH and OES-b-PEG crystallinity, we carried out
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A B

C
PEG3 PEG5 PEG10 PEG44

OES3 Self-Assembly Self-Assembly Self-Assembly Self-Assembly
OES5 Not Tested Self-Assembly Self-Assembly Not Tested

Figure 2.2: Spontaneous self-assembly of OES-b-PEG in water. PEG repeats are shown in red,
OES repeats are in yellow. Water molecules are hidden for clarity. A) OES3-b-PEG3 after 40ns,
starting from a random configuration. B) OES5-b-PEG5 after 40ns, starting from a random con-
figuration. C) Summary of conditions tested for spontaneous self-assembly.

all-atom simulations of both SH-OES3-OH and SH-OES5-OH. Both systems crystallized,

forming domains that closely resemble the structures that form in the micelle cores (Fig.

S2). We then performed a series of melting point simulations of SH-OES3-OH to compare

to experimental DSC data. Simulations of crystalline SH-OES3-OH were held at different

temperatures in 10K increments. Experimentally, SH-OES3-OH exhibits a first order tran-

sition in the range between 100-138C from a crystalline solid to a liquid. In our simulations,

we observe melting at a slightly higher temperature, 147C, but not at 137C (Fig. 2.3).

We attribute this difference to the different cooling and heating rates that are accessible in

experiments and simulations.

Crystalline Structure via GIWAXS

OES3-b-PEG44 was synthesized and spuncoat to verify the predicted crystalline structure.

GIWAXS is used as a powerful tool for experimental verification of the observed structures

7
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Figure 2.3: A) Average Debye-Waller Factor of SH-OES3-OH calculated at different temperatures
from separate simulations. A melting transition is observed between 410-420K (137-147C), which
is consistent with previous experimental findings. B) Comparison of S-S radial number density
distributions of pure, crystalline SH-OES3-OH and OES3-b-PEG10 micelles. Both show the same
hexagonal ordering (Fig. 2.4, S2). The decay in micelle distribution is due to the finite size of the
micelle core.

in simulation. The dominant coherent scattering came from sulfur sulfur events due to

sulfurs cross section, which is more than double that of either oxygen or carbon. The sulfur

- sulfur separation along the backbone of the polymer results in the first primary peak at

Q = 1.34Å−1 (Qc). Coinciding with this peak is also the PEG oxygen oxygen peak, which

appears at a similar spacing [77]. The PEG alone could not be responsible for such a large

peak, as is verified by the low intensity of the other PEG peaks which appear as a doublet at

Q = 1.82Å−1, 1.88Å−1. The sulfur sulfur separation between adjacent crystallized chains

appears as the second primary peak Q = 1.63Å−1 (Qcc). The additional peaks present

at Q = 2.6Å−1, 3.0Å−1 correspond to the underlying gold substrate. Both PEG peaks

and sulfur-sulfur peaks are fully consistent with the expected ordering and distances from

simulations of pure OES3, as well as the rhombohedral structure of sulfur atoms observed

in the micelle cores (Fig. 2.4). The Qc peak is sharper than that of Qcc, further validating

the simulated structures, which exhibit a looser hexagonal packing when viewed from above.

Simulations of micelles predict separations of 3.82± 0.042Å and 4.47± 0.016Å for Qcc and

Qc, respectively. Overall, structures observed in simulations are consistent with GIWAXS
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results, serving to validate the model and calculations of micelle cores presented in this work.

A B

C D

Figure 2.4: A) GIWAXS of OES3-b-PEG44 thin films. B) Integrated intensity and assigned
peaks. C, D) Top down (each node is a molecule, view is down the backbone) and side projections
(each angled rod is a polymer backbone from the side) of the crystalline OES3 from a simula-
tion configuration. GIWAXS results are consistent in spacing and arrangement with simulation
predictions.

Potential of Mean Force (PMF)

PMF simulations probe how a system’s energy changes as it progresses on a defined

’reaction coordinate’. First, to quantify the strength of the sulfur-sulfur interactions that

lead to micelle formation, we determined the free energy of interaction (or potential of

mean force, PMF) between two OES3 blocks in water, with and without a PEG10 tail. The

interactions are pronounced, on the order of 6 kT even in the absence of an ordered structure,

and the PEG tail does not significantly influence their magnitude (Fig. 2.5).
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Figure 2.5: Potential of Mean Force of two OES3 blocks in water, with and without a PEG10 tail.
The PEG10 tail does not significantly influence the PMF, which is mainly driven by the sulfur-sulfur
interactions.

In order to estimate how OES and PEG block sizes influenced the stability of the micelle,

we performed umbrella sampling on micelles formed from four different block copolymer

configurations. OES block size significantly affects the association strength of individual

molecules to the micelle. In contrast, the PEG block size does not significantly influence the

association strength (Fig. 2.6). The increased dependence of micelle crystallinity on OES

block size is due to the dipolar interactions between OES blocks, which are stronger than

those between PEG blocks. Compared to PEG, OES exhibits a much higher crystallinity

and melting point (210 ◦C vs 66 ◦C) [105, 97].

One can obtain an estimate for the CMC, given the association strength, via:

∆Gmicelle =

−RT
N

ln[micelle] +RTln(CMC) (2.1)

This equation provides a useful way to gauge how CMC depends on association strength

and therefore on block copolymer composition. However, a more in-depth analysis is required

for an accurate estimation of the CMC, necessitating the calculation of the size distribution

of micelles for a given block-copolymer configuration. With the goal of designing ultra-small

(<8nm diameter) and ultra-stable micelles, we turned to (OES)3-b-(PEG)10 as a potential
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A

B
(kT) OES3 OES5

PEG5 13.37 ± 0.38 30.8 ± 6.3
PEG10 16.98 ± 2.38 33.83 ± 10.08

Figure 2.6: A) A representative graph showing one umbrella sampling run from each different
configuration for Aggregation Number N=24 micelles. B) Free Energy of removing a single molecule
from an N=24 micelle for different block copolymer configurations. Each run was repeated three
times with different micelles.

candidate, based on preliminary experimental and simulation data. Given the remarkably

low expected CMC, simulating a true equilibrium system would require an unfeasibly large

system. Thus, we adopt the alternate approach described in the Methods section. In order

to estimate how micelle free energy of formation changes with aggregation number (N), a

series of umbrella sampling runs were performed at varying N. We obtain 1.4E-8 mol/L as

the CMC, consistent with previous observations that OES-b-PEG micelles have CMCs below

the experimental limit of detection (Fig. 2.7).

The final interpolation scheme used to estimate the free energy barrier to removing a

molecule at a given aggregation number N was simply linear, as the results were insensitive

to the choice of interpolation scheme. The results display classical CMC-like behavior. Below

1.4E-8 mol/L, all dissolved polymer exist as individual molecules. In contrast, starting at

1.4E-8 mol/L the molecule concentration is no longer one-to-one with total polymer concen-

tration, as most polymers start forming micelles. Mole fractions as a function of aggregation

number clearly show this behavior: for concentrations below the CMC, all polymers exist
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Figure 2.7: Calculation of the free energy of formation of OES3-b-PEG10 micelles for different
aggregation numbers N, from a micelle of N-1 and an individual molecule, and emergent CMC-like
behavior. A) Representative umbrella sampling runs a molecule is extracted from a OES3-b-PEG10

micelle at various aggregation numbers. Each run was repeated four times (not shown here). B)
Free energy for extraction of a molecule from a OES3-b-PEG10 micelle at various aggregation
numbers. C) Free molecules in solution as a function of total concentration of polymer. The CMC
is approximately 1.4E-8 mol/L. D) Mole fractions of different aggregate sizes, given at various total
concentrations as multiples of the CMC.

as isolated entities. Above the CMC, a peak at N=74 starts forming. It is remarkable how

insensitive the average aggregation size is to concentration the peak center at N=74 barely

shifts over five orders of magnitude. As expected from Cryo-EM images of other OES-b-PEG

micelles, the size distribution is extremely narrow [10]. These favorable characteristics are

absent from a chemically similar, but amorphous analogue of OES-b-PEG, poly(propylene

sulfide)-b-poly(ethylene glycol) (PPS-b-PEG). PPS-b-PEG exhibits a wealth of morpholo-

gies, but cannot form micelles that are as stable or as small as those formed by OES-b-PEG

[112]. Note, however, that despite these favorable characteristics that emerge from crys-
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Figure 2.8: Illustration of the method used to map the polymer backbone to rods for analysis of
micelle cores. A) A unimer with only (OES)3 visible. B) Backbone rods in blue, superimposed on
the unimer. C) A micelle core from a simulation snapshot with PEGs and waters removed. D)
Rods mapped onto the micelle core, color coded for amorphous (blue) and crystalline (red) regions.

tallinity, the cores of the micelles also exhibit significant amorphous domains. Existence of

these amorphous regions endows these micelles with drug and dye loading capabilities.

Crystallinity and Asphericity

In order to investigate micelle core compositions, we utilized two algorithms. First,

polymer backbones were mapped onto rods with well-defined lengths and orientations (Fig.

2.8). Then, a clustering algorithm that successfully detects different crystal grains in micelle

cores and their orientations was developed and utilized (Fig. 2.9).

Twenty micelles were simulated at N=74 for analysis of crystallinity, and its effect on

micelle shape and structure. First, crystalline and rodlike content, average ordering, and

size of each micelle were analyzed (Table 2.3).
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Figure 2.9: Illustration of results from the clustering algorithm. A) Core of a micelle after coarse-
graining, with amorphous regions in blue and crystalline regions in red. B) Clustering algorithm
results, with each crystal grain shown in a different color.

There is considerable variability in the crystalline content and relative order (S) from

micelle to micelle. However, the rod-like content is remarkably uniform. In our observations

of the system, most often it is only the free end and the OES-to-PEG linkage segments that

break the rod-like character. Indeed, the average rod-like character is 83.9%, which is close

to 8/10 = 80% - the theoretical percentage if each segment was rod-like everywhere except

at the end and the OES-b-PEG linkages. This indicates the strong preference of OES to

align in a straight line, regardless of its contribution to a well-formed crystal grain.

Our analysis of asphericity in OES3-b-PEG10 reveals highly spherical micelles within the

desired size constraints (Table 2.3). Given OES-b-PEGs tendency to form fibrils at other

configurations, we tried to establish a link between asphericity and various properties of

the micelle. Furthermore, asphericity could greatly hinder these micelles’ ability to enter

the 8nm channels they are designed to navigate in biomedical applications. It is therefore

critical to understand which properties affect asphericity in order to control it.

We hypothesized that shape, size and distribution of crystal grains within the core would
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significantly influence the shape of the micelle overall. Surprisingly, despite a strong rela-

tion between micelle core shape and overall micelle shape, we found no correlation between

crystalline percentage, crystal grain sizes, size distributions, or overall order of the core with

micelle asphericity. Thus, we further analyzed each micelle by binning the angle of each

crystalline rod with every other crystalline rod in a given micelle. This yields a distribution

of angles that deviates from the expected entropic curve of sin(a)/2 based on the crystal

grain orientation in the system. We fit the resulting histogram to a sine expansion of the

form (Fig. 2.10):

k1sin(x) + k3sin(3x) + k5sin(5x) + k7sin(7x) (2.2)

We found that the coefficients of this expansion, especially k1 and k3, hold information

about relative alignment of structures, and thus the asphericity (Fig. 2.10). We further define

the parallel factor as all the elements that contribute towards 0◦ and 180◦ configurations:

ParallelFactor = k3 + k5 + k7 (2.3)

Parallel factor is the best predictor of the asphericity of micelles and micelle cores in our

system (Fig. 2.10).

Our current hypothesis is that configurations that favor adjacent, perpendicular crystal

grains should favor more aspherical structures, and thus potentially fibrillar configurations

for different ratios of OES to PEG. Given that OES5 terminated polymers qualitatively favor

such structures over OES3 terminated ones and that, experimentally, increasing OES block

size favors fibrils over spherical micelles [10], a potential mechanism is that increasing OES

block size leads to larger, more adjacent and perpendicular crystal grains, which give rise

to increasingly aspherical structures. A more thorough investigation of formation of fibrillar

micelles, and the kinetic and thermodynamic properties of that process, and the effects of
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Figure 2.10: Analysis of 20 micelle simulations: Parallel factor correlation with core and micelle
asphericity, and two representative examples. A) Parallel factor correlates with core asphericity.
R2 = 0.47 B) Parallel factor correlates with micelle asphericity. R2 = 0.38 C) Simulation 3, which
has a large cluster. Large clusters lead to spherical micelles, and have rod angle distributions with
peaks corresponding to parallel alignment (inset). D) Simulation 7, which has several small clusters.
High number of grains tend to align perpendicular to each other, and form pancake micelles. Rod
angle distributions have peaks both in perpendicular and parallel arrangement (inset). The green
curve represents the expected entropic distribution of sin(a)/2, the red curve is the fitted sine
expansion.
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block sizes on spherical versus fibrillar structures is currently underway.

2.3 Conclusions

We performed all-atom simulations of crystallization-driven self-assembly of OES-b-PEG

copolymer micelles in water. These aggregates form ordered, semicrystalline cores with

regions of rhombohedral character. This ordering mirrors that of pure SH-OES3-OH and

SH-OES5-OH deduced from solid phase simulations, and is consistent with GIWAXS mea-

surements of spuncoat films of OES3-b-PEG44. As analysis of the effects of OES and PEG

block sizes on stability reveals an easily tunable behavior for both the CMC and mean escape

times from these micelles. Further examination of OES3-b-PEG10 micelles is indicative of

remarkable stability, extremely small sizes, and a narrow size distribution. The calculated

CMC of OES3-b-PEG10 is just 1.4E-8 mol/L, and the average size is 6.776 ± 0.214 nm in

diameter along the widest dimension. These characteristics should be contrasted with those

of OES-b-PEGs amorphous analogues, such as PPS-b-PEG. In spite of their large degree of

crystallinity, the remaining amorphous regions are sufficiently large to enable drug or dye

loading for applications [10]. These ultra-small, ultra-stable micelles have the potential to

enable novel applications in drug delivery and immunology due to their unprecedented size,

coupled with their stability and ability to solubilize drugs and fluorescent reporters. Moving

forward, there are multiple design avenues that one could pursue for alternative applications,

including cross-linking [82] or forming multi-block, multi-domain configurations [66].
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2.4 Methods

Derivation of OPLS-AA Parameters for the S-C-C-S and S-C-C-O Dihedral

Potentials

Atomistic simulations have been used in the past to calculate the free energy of associa-

tion and mean escape time from sodium dodecyl sulfate (SDS) micelles, finding good agree-

ment with experiment [117]. We also adopt an all-atom representation of the OES-b-PEG

molecules in this work. We begin by constructing a suitable force field for our simulations.

Parameters for S-C-C-S and S-C-C-O dihedral potentials, in particular, are necessary in order

to accurately model the behavior of OES-b-PEG. Ryckaert-Bellemans dihedral parameters

for S-C-C-S and S-C-C-O were derived from density functional theory (DFT) calculations

using Gaussian. [96] Energy as a function of dihedral angle was scanned using the b3lyp

functional and 6-311+g(d) basis set in two-degree increments for CH3-S-CH2-CH2-S-CH3

and CH3-S-CH2-CH2-O-CH3. Then, the same scan was performed in GROMACS 4.6.7 [48]

with available OPLS-AA parameters, with the dihedral potential disabled. Finally, the en-

ergy difference (Gaussian - GROMACS) was fitted to Ryckaert-Bellemans parameters using

least squares.

Table 2.1: Newly Derived Ryckaert-Bellemans Dihedral Potentials for S-C-C-S and S-C-C-O
C0 C1 C2 C3 C4 C5

S-C-C-S 4.066 -9.200 -10.568 8.783 6.188 -1.386
S-C-C-O -2.915 -15.110 -2.437 4.574 1.877 3.814

The new force field parameters were used in conjunction with the OPLS force field, and

were validated by reproducing the density and enthalpy of vaporization of B-Mercaptoethanol

and 1,2-ethanedithiol at several conditions. As shown in Table 2.2, the resulting parameters

provide a reasonable description of these two liquids.

Crystallization and Melting Point Simulations of OH-(OES)3-SH, OH-(OES)5-

SH
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Table 2.2: Comparison of Predictions from Simulations with Experimental Results
Parameter Temp (K) Pressure(atm) Experiment Simulation %Error

1,2-ethanedithiol
Density 298.15 1 1123 g/L 1152 ± 0.23 g/L 2.64

Enthalpy of Vap.
298.15 1 44.7 kJ/mol 45.94 ± 0.013 kJ/mol 2.77
418.2 1 37.93 kJ/mol 38.97 ± 0.014 kJ/mol 2.75

β-Mercaptoethanol
Density 298.15 1 1115 g/L 1147 ± 0.13 g/L 2.86

Enthalpy of Vap.
298.15 1 63.1134 kJ/mol

430 1 51.7159 kJ/mol
293 440 1 54.1 kJ/mol

In order to assess the ability of the force field to reproduce crystallinity in the systems

considered here, one hundred molecules of OH-(OES)3-SH or OH-(OES)5-SH were annealed

from 600K to 300K at 10K/ns and then held at 300K for 400ns using GROMACS 4.6.7.

In both systems, crystalline order was reached spontaneously. Several simulations were

then started from the crystalline configuration, and annealed at 10K/ns to a range of final,

physiologically relevant temperatures. Each simulation was held at its target temperature for

400ns. Simulations were performed in an NPT ensemble using a modified velocity rescaling

thermostat that preserves the correct underlying statistical-mechanical distribution[12] and

the Parrinello-Rahman barostat[85].

Micelle Formation in Water

For all configurations, copolymer molecules were randomly distributed in TIP4P water[1]

and were simulated in an NPT ensemble.

PMF Simulations

For calculations of the PMF of OES3, two molecules were solvated and equilibrated in

TIP4P water [1]. A reaction coordinate for PMF simulations was defined as the difference

between the center of mass of the OES3 blocks of each molecule. The PMF was then

calculated using the Artificial Neural Network sampling method[102] using GROMACS-
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2016.4 and SSAGES[99].

For calculations of the PMF in micelles, micelles of a given aggregation number were pre-

assembled, solvated, and equilibrated in TIP4P water [1]. A reaction coordinate for PMF

simulations was defined as the difference between the center of mass of a randomly selected

copolymer molecule and the center of mass of the remaining molecules in the micelle. The

selected copolymer molecule was pulled away from the center of a position-restrained micelle

by 5nm over 3.5ns to generate initial configurations. Umbrella sampling windows were formed

from configurations closest to 0.05nm apart from each other for the first 2.5 nanometers, then

0.1nm apart for the rest of the reaction coordinate. Window size selection was determined

by ensuring that sufficient overlap exists between adjacent histograms. A 5nm maximum

was deemed sufficient as the PMF flattened out. Pulling experiments were carried out using

umbrella sampling with built-in GROMACS tools [110]; a Weighted Histogram Analysis

Method (WHAM) was used to combine umbrellas into a potential of mean force[60].

Calculation of Critical Micelle Concentration and Average Aggregation Num-

ber

The free energy of association/dissociation of a molecule with a micelle was calculated

for different aggregation numbers, namely N = 24, 36, 48, 60, 72 via umbrella sampling

according to:

micelleN+1 
 micelleN + unimer (2.4)

The free energy was determined from:

∆GN = −RTln(KN ) =

−RTln
(

[micelleN ][unimer]

[micelleN+1]

)
(2.5)

We used linear interpolation to obtain values for all N in the range N=1-100. The N → large
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value was deduced from an infinite fibril simulation (See below). The results were not found

to change appreciably for different types of interpolation schemes. We then solved (2.5)

simultaneously for all N at several different concentrations of the polymers.

Infinite Fibril Simulation

To simulate a long fibril, 120 molecules of OES3-b-PEG10 were first solvated and equi-

librated from a semi-random configuration that was designed to favor an infinite, fibril-like

shape, connected to itself through the periodic boundary conditions. The fibril was simu-

lated for an additional 20ns using a semi-isotropic pressure coupling in the NPT ensemble,

thereby allowing it to adjust its thickness. Finally, umbrella sampling was performed as

described above to obtain the PMF of dissociation of individual molecules from the fibril.

Simulations for Studies of Asphericity and Crystallinity

Micelles of aggregation number N=74 were formed from OES3-b-PEG10 molecules in a

random configuration in water, where polymer molecules were initially biased to reside in

proximity. They were then allowed to aggregate over at least 200ns, and each system was

simulated for an additional 100ns as needed, until measured metrics were observed to be

converged over the last 100ns of simulation time.

Calculation of Asphericity

Asphericity was calculated as:

b =
(λx − λy)2 + (λx − λz)2 + (λy − λz)2

2(λ2
x + λ2

y + λ2
z)

(2.6)

where λ2
x, λ2

y, and λ2
z correspond to the principal moments of the gyration tensor.

Mapping of Polymers to Rod Segments for Analysis

For the analysis of packing and crystallinity, we mapped the polymer backbones onto
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rod segments that represent the molecules orientation. These rods were constructed by

connecting the midpoints of two adjacent C-C or C-S bonds along the backbone through

the molecule (Fig. 2.8). This yields a straight rod for a molecule that does not bend along

its backbone. For molecules that do bend, the resulting rod segments facilitate analysis by

virtue of their well-defined local orientation. This scheme maps 10 rod segments onto the

(OES)3-S- end of the OES3-b-PEG10 block copolymer.

Definition of Crystalline Regions and Construction of Crystal Grains

For each rod segment, a neighbor list was constructed that consisted of every other rod

within a radius X, which was chosen to be slightly larger than the hexagonal packing lattice

parameter determined from simulations and GIWAXS measurements. Then, each rod that

was aligned to within cos(a) > 0.96 with at least two other neighbors from different molecules

was labeled as crystalline (Fig. 2.8).

Furthermore, each segment was defined as rodlike if it was aligned to within cos(a) > 0.96

of the prior or following rod segment in the same molecule. The cutoff value was selected

by testing a range of values and picking the least error-prone cutoff via visual inspection for

several cases. Then, for each aggregate, regions of aligned rods were grouped into crystal

grains for further analysis using a clustering algorithm. Specifically, a seed pool from all

crystalline rods in the system is created; the algorithm then picks a seed at random and

initiates a new crystal grain. A recursive subroutine is launched that first removes the rod

from the seed pool, adds it to the crystal grain, and launches the same subroutine for each

neighbor of the rod. Thus, the algorithm crawls over individual crystal grains until all rods

are removed from the seed pool and added to the grain. The process is repeated starting

from another random seed until there are no more seeds left in the pool.
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Definition of the S Order Parameter The order parameter S was defined as follows:

S =

〈
3cos2θ − 1

2

〉
(2.7)

It was used to quantify overall order within the micelle cores. Here, θ corresponds to the

angle between any given two rods included in the analysis, and S ranges from -0.5 to 1, with

0 corresponding to random, uncorrelated directions, 1 to perfect angular alignment, and -0.5

to antiparallel alignment.

Synthesis of (OES)3-(PEG)44

Mono-methoxy-PEG-thioacetate (mPEG-TA) was transferred to a Schlenk tube under

argon and dissolved in tetrahydrofuran (THF). The solution was stirred at room tempera-

ture under nitrogen for 30 min following addition of sodium methoxide (0.5 M solution in

methanol, 1.1 equiv). After sodium methoxide activation, various equivalents of ethylene

sulfide monomer were added. The ring-opening oligomerization reaction was terminated

with excess glacial acetic acid. The block copolymer product was obtained with 80-90%

yield after washing, filtration, precipitation in diethyl ether, and vacuum drying. 1H NMR

spectroscopy was performed in CDCl3 on the Bruker AVANCE (500 MHz) platform with

Topspin software: δ = 3.83 - 3.44 (s, broad, OC-H2-CH2), 3.37(s, OCH3), 2.87 (m, CH2SH)

2.85-2.76 (m, SCH−2CH−2), 2.74 (td,CH2CH2SH).

X-Ray Characterization

Silicon wafers were obtained from WRS Materials and cleaned in hot piranha (Explosion

Danger) prior to use. To prepare thick films of micelles, a one weight percent solution of

block copolymer in THF was spun-coat onto a freshly cleaned wafer at 1k RPM. The film

thickness was determined to be nominally 100 nanometers by single angle ellipsometry using

a J.A. Woolam Alpha-SE ellipsometry with a Cauchy model. Within one day of preparation,
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Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) was performed at the 8-ID-E

line of the Advanced Photon Source, Argonne National Laboratory (Ref Jiang 2012). The

X-ray energy was 10.82 KeV (λ = 115pm), and the scattering was captured with a Pilatus

detector 228 mm from the sample. Samples were exposed for 30 seconds, as longer exposures

were found to result in significant degradation, and shorter exposures resulted in a signal-

to-noise ratio below 10. Data were analyzed using GIXSGUI, which allowed the correction

for flat field and air scattering [53]. A standard Lorentz correction for randomly oriented 3D

objects was also applied.

2.5 Appendix

Table 2.3: Crystallinity, Size and Ordering of N=74 OES3-b-PEG10 Micelles
Simulation % Crystalline % Rodlike S average Micelle Diameter (nm)

1 0.342 81.6 0.218 6.95
2 0.289 82.6 0.179 6.54
3 0.406 82.4 0.252 6.53
4 0.326 83.4 0.242 6.59
5 0.330 80.7 0.218 6.99
6 0.419 84.9 0.314 6.51
7 0.374 79.6 0.256 6.62
8 0.412 84.8 0.251 6.78
9 0.331 82.7 0.250 7.03
10 0.408 83.2 0.289 6.70
11 0.331 81.2 0.230 6.63
12 0.238 82.6 0.180 7.24
13 0.345 81.1 0.204 7.11
14 0.396 84.3 0.249 6.87
15 0.269 80.1 0.133 7.00
16 0.415 85.0 0.303 6.82
17 0.345 80.8 0.188 6.30
18 0.396 83.9 0.291 6.80
19 0.350 83.8 0.273 7.03
20 0.395 84.1 0.247 6.91

Average 0.356 83.9 0.238 6.80
St. Dev. 0.051 0.17 0.046 0.24
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Table 2.4: Normalized Principal Moments of Inertia, Asphericity of N=74 OES3-b-PEG10
Micelles

Simulation I1/Itot I2/Itot I3/Itot Asphericity
1 0.51 0.54 0.67 1.97E-02
2 0.47 0.60 0.65 2.42E-02
3 0.48 0.55 0.68 3.01E-02
4 0.51 0.55 0.66 1.85E-02
5 0.51 0.56 0.66 1.70E-02
6 0.50 0.55 0.67 2.15E-02
7 0.41 0.59 0.69 5.98E-02
8 0.50 0.53 0.69 2.96E-02
9 0.54 0.56 0.63 7.35E-03
10 0.47 0.59 0.59 1.58E-02
11 0.50 0.59 0.63 1.38E-02
12 0.47 0.60 0.65 2.59E-02
13 0.52 0.58 0.63 8.66E-03
14 0.49 0.60 0.64 1.81E-02
15 0.49 0.57 0.66 2.02E-02
16 0.49 0.61 0.62 1.50E-02
17 0.50 0.59 0.64 1.44E-02
18 0.53 0.58 0.62 7.04E-03
19 0.50 0.55 0.66 2.11E-02
20 0.47 0.59 0.54 7.35E-03

Average 0.49 0.57 0.65 2.11E-02
St. Dev. 0.03 0.02 0.03 1.17E-02

I1 = I2 = I3 I1 < I2 = I3 I1 << I2 = I3

Figure 2.11: Illustration of shapes with different magnitudes of principal moments of inertia.
Most micelles are closest to a sphere, with a few adopting shapes closer to a pancake.
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A1 A2

B1 B2

Figure 2.12: A) Comparison of a spontaneously formed micelle core of OES3-b-PEG5 and
crystalline SH-OES3-OH. Water molecules and PEG chains are removed from the first image
for clarity.
B) Comparison of a spontaneously formed micelle core of OES5-b-PEG5 and crystalline SH-
OES5-OH. Water molecules and PEG chains are removed from the first image for clarity.
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CHAPTER 3

FORCE-BIASING USING NEURAL NETWORKS

3.1 Introduction

Complex fluids, materials, or macromolecules are generally characterized by rugged free en-

ergy landscapes. Simulating such systems therefore requires that enhanced sampling meth-

ods be used to overcome the barriers that separate local free energy minima and explore

configuration space efficiently. Enhanced sampling methods can also provide a direct mea-

sure of the free energy landscape, thereby leading to a deeper understanding of systems of

interest. A good example of an algorithm that is commonly used to improve sampling is

provided by umbrella sampling [107], where it is possible to force a system to visit a dis-

tinct state by applying a harmonic restraint. Multiple restrained simulations may then be

stitched together (e.g. with a weighted histogram approach, or WHAM [59]) to generate an

estimate of the underlying free energy landscape. In systems characterized by a broad or

high-dimensional collective variable space, however, a näıve implementation of umbrella sam-

pling can quickly become intractable. More recent methods, such as metadynamics [61] and

its variants [89, 6, 24, 104], represent the free energy landscape as a sum of Gaussians, which

are generated on the fly as a simulation visits different regions of collective variable space.

In such approaches, it is important that judicious choices be made for the Gaussian heights,

widths, and deposition rates, lest the convergence of a calculation be hampered [104]. Other

techniques that circumvent the use of Gaussians include Basis Function Sampling (BFS)

[115], Green’s Function Sampling (GFS) [116], and Variationally Enhanced Sampling (VES)

[109], all of which express free energy landscapes in terms of a set of orthogonal basis func-

tions. Unfortunately, such methods are susceptible to errors near sharp features and near

boundaries of the free energy landscape [75]. Note that in all of the algorithms mentioned

above, an estimate of the free energy is constructed in terms of the frequency with which
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distinct states are visited.

Adaptive Biasing Force (ABF) methods adopt a fundamentally different approach in that

they seek to estimate the free energy landscape from its derivatives, which are given in the

form of generalized forces [20]. The local nature of these mean forces can improve consider-

ably the performance of ABF relative to that of algorithms that rely on histograms of visits

to different states. Various improvements of ABF have been proposed, including an extended

ABF method [63, 30] and a Metadynamics-ABF hybrid technique that is augmented with

Gaussian process regression (GPR) [78]. The use of GPR for free energy reconstruction in

[78] is representative of a trend to rely on machine learning techniques to enhance sampling in

molecular simulations; other recent examples include utilization of artificial neural networks

in the NN2B method [34] and in representation of high-dimensional free energy surfaces [98].

In this work, we build on the advantages of ABF and introduce a neural network to perform

force-biasing. More specifically, the mean forces involved in the proposed method, which is

referred to as “Force-bias Using Neural Networks” (FUNN) sampling, are estimated using

an artificial neural network.

3.2 Method Description

The details of the ABF method have been described in the literature [21, 31, 18]; here we

merely provide a brief summary on which to base our subsequent discussion. One starts

with an expression for the mean force given in [21]:

dA

dξ
= −

〈
d

dt
(w · p)

∣∣∣∣ξ〉 (3.1)

where A is the free energy, ξ is a collective variable, and p is the vector of atomic momenta.

w is an arbitrary vector field that satisfies
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w · ∇ξ = 1. (3.2)

Here ∇ξ is the gradient of the collective variable ξ with respect to the 3N atomic coordinates.

We choose wi =
∂xi
∂ξ

. This framework can be extended to multiple collective variables,

and Equation 3.2 recast as JξW = I, where entry [Jξ]ij =
∂ξi
∂xj

and where Jξ has 3N

columns corresponding to the atomic coordinates and Nξ rows corresponding to the number

of collective variables. In order to calculate W while satisfying JξW = I, we choose W to

be the right pseudoinverse of Jξ, or

W = Jξ
>(JξJξ

>)−1 (3.3)

Typically W is selected in such a way as to avoid performing tedious second derivatives of

collective variables with respect to Cartesian coordinates, which arise in the original ABF

formulation. While second derivatives of simple collective variables may be straightforward,

second order derivatives of complex collective variables may become much more difficult [18].

Note that this choice of W differs from that prescribed in [21], which is W = MξJξM
−1,

where M−1
ξ = JξM

−1J>ξ and M consists of the atomic masses along the diagonal. This

is equivalent to the expression in (3.3) weighted by mass. Equation (3.3) remains valid in

cases with ghost atoms or virtual sites, while the mass-weighted pseudoinverse is not. In our

experience, our choice of W works well in a variety of contexts and has been implemented in

the SSAGES enhanced sampling package (along with the mass-weighted alternative) [100].

In conventional ABF, the mean force
dA

dξ
is estimated as the running average of

d

dt
(W>p)

on a grid F(k), where the time derivative is calculated using a finite difference scheme; k

denotes the closest bin in grid F corresponding to collective variable ξ. Any previously

applied external bias is subtracted before updating the mean force estimates on the grid.

The next applied external bias is calculated from the estimated mean force as −F(k)∇ξ
n(k)

,
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where n(k) denotes the number of times that bin k has been visited.

As mentioned above, ABF cannot bias the system on the basis of states or configurations

that have not been observed yet. Furthermore, a system can easily diffuse away from a newly

encountered free energy barrier before successfully climbing that barrier. Also note that ABF

relies on a discrete grid to store local estimates of the mean force. Such a grid is used for both

biasing the system and for estimating the underlying free energy landscape. A choice must

therefore be made between precision and speed: a low resolution ABF grid may converge

more rapidly, but the mean force in a particular bin is then smeared across a broader region

of collective variable space, leading to errors. Estimates of the mean force are necessarily

poor in the early stages of ABF due to the low number of samples in any particular bin; in

some cases, fluctuations of the estimated mean forces may lead to instabilities and incorrect

biasing. In practice, force estimates are artificially suppressed when a particular bin has

been visited fewer than N0 times; for example, Darve et al. recommend that the mean force

estimate in the kth bin be multiplied by min(1,
n(k)

N0
), where N0 is typically chosen to be

100-200 samples [21], which we adopt in our conventional ABF implementation [100].

To circumvent these issues, we propose to generate estimates of the mean force that are

stored on a grid, as in ABF, but the grid is instead used to train an artificial neural network

that produces a continuous estimate of the mean force across collective variable space. This

estimate extends to regions that may not have been explored yet, thereby introducing a

“scouting” biasing force that can accelerate sampling. Following in the tradition of mountain

metaphors, a traveler in search of a mountain to climb does not turn around upon reaching

the piedmont to diffusively wander in the flat plain that preceded the hills. She notices the

slope changing beneath her feet, and anticipates that some mountains might lie somewhere

ahead, even if she does not yet see them with her own eyes. In this approach, biasing

forces are calculated from the continuous estimate of the mean force obtained via the neural

network, allowing for the biasing force to be adaptive beyond the resolution of the underlying
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grid. The use of a regularized neural network prevents the instabilities associated with noisy

mean force estimates in sparsely sampled bins that are encountered during the early stages

of ABF, without artificially tempering force estimates over the first N0 samples.

In practice, an initial sweep must be performed before training the neural network, where

d

dt
(W>p) in the kth bin is summed into F while tracking the number of visits to the bin

n(k). While this may be performed without an external bias, it is advantageous to carry

out the initial sweep with conventional ABF to avoid training the neural network with mean

force estimates from a narrow strip of collective variable space; we liken the use of ABF in the

initial sweep to giving the estimated mean forces a “push” before the bias supplied through

the neural network takes over. The mean force estimate in the kth bin is simply
F(k)

n(k)
. The

entire grid of estimated mean forces and their k locations in collective variable space serve as

our training set. Although there are countless possible neural network topologies, we choose

to use a fully connected network.

The activation φmi of any particular layer m is given by

φmi = f

 M∑
j=1

wmjiφ
m−1
j + bmi

 (3.4)

where wji and b are a layer weight and bias, respectively, and i and j are indices over the

number of neurons in the current and previous layers. For the activation function f , we

choose the common sigmoidal activation function for all layers except the output layer, for

which we use a linear activation. Backpropagation is used to train the neural network, the

output of which is an estimate of the mean force which we denote Q. Regularization improves

generalizability and prevents overfitting of the neural network; if we denote the ith mean

force estimate from the grid as Pi and the ith mean force estimate from the neural network

output as Qi, our loss function is
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E = β
∑
i

(Pi −Qi)2 + α
∑
j

wj
2 (3.5)

where the first term is the squared error between network predictions of the mean force and

the target values stored in the histogram summed over all data points, and the second term

penalizes network weights. Specifically, we use Bayesian regularization, which was used in

the work by Sidky and Whitmer [103], and is crucial for the viability of this sampling method.

Importantly, it is advantageous in requiring minimal input parameters from the end user and

eliminating the need for using a subset of the sampling data as a validation set. The latter

point is particularly helpful in difficult regions of collective variable space where utilizing

all collected estimated mean forces is preferable, rather than using a subset for validation.

In this framework, we assume Gaussian priors on the network weights and Gaussian errors

on the estimates of the generalized force. To minimize loss, one must find weights that

maximize the conditional probability of the weights, given the observed generalized force

data; a generalizable model is obtained through this self-regularization of network weights.

The loss function is minimized by solving for optimal values of α and β, which may be

expressed in terms of a value γ, representing the effective number of well-determined network

parameters [69, 68]. A Levenberg-Marquardt optimization routine is used to iteratively

update α, β, and γ. This proceeds until either γ stabilizes, the Marquardt trust region

radius exceeds 1010, or a certain number of maximum training iterations has been reached

[65, 70, 81]. We refer readers to [69, 68, 103] for further details on Bayesian regularization.

While the exact training time depends on network topology and grid size, we find that it

does not contribute significantly to the total runtime of most research systems (for example,

each round of training for a 60× 60 grid on a two-layer network topology of 16-12, such as

the one used in the solvated alanine dipeptide example below, takes under a minute).

For each subsequent sweep, the system is biased using −Q(ξ∗)∇ξ∗, where ξ∗ is the

instantaneous value of the collective variable, again collecting entries in F(k) and n(k).
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Herein lies a first advantage of FUNN: the trained network returns an estimate of the mean

force at any point in collective variable space Q(ξ∗), regardless of whether ξ∗ has already

been visited by the simulation or whether ξ∗ lies somewhere between grid points. Here Q

supplies a hypothetical mean force estimate, even for regions that have yet to be explored,

and the applied bias is calculated from the estimated mean force at ξ∗, not the nearest kth

grid point. Even if Q supplies a poor mean force estimate in a previously unexplored region,

this estimated mean force performs the critical job of driving preliminary biasing in this

region. Future estimates in this region are then corrected, as further samples are accrued in

the histogram corresponding to this region and the neural network is retrained.

The applied external biasing forces are easily accounted for before logging the current

estimate of the true generalized force by adding the current mean force from the neural

network to the instantaneous force:

F(k) = Fold(k) +
d

dt
(W>p) + Q(ξ) (3.6)

At the end of each sweep, Q is updated by training the network on the current generalized

mean force estimates from the grid, using
F(k)

n(k)
. This cycle of collecting mean force estimates

on the grid and re-training the neural network to generate mean force estimates across

collective variable space is iterated until convergence of the mean force landscape, which can

then be integrated to recover the underlying free energy landscape.

3.3 Examples

To illustrate the application and performance of FUNN sampling, three examples of in-

creasing complexity are considered: (1) a particle on a 2D surface consisting of a sum of

50 randomly deposited Gaussian functions, emulating a rough free energy landscape; (2)

the isomerization of a simple alanine dipeptide in explicit water; and (3) the sampling of a
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polymer chain along its first three Rouse modes.

3.3.1 Langevin Particle in 2D Potential

The first example consists of a single Langevin particle in a 2-dimensional square box with

side length of 4 LJ units. All simulations were performed using SSAGES [100] coupled to

LAMMPS (11 Aug 2017) [92]. A potential field of 50 randomly generated Gaussians was

used to generate the surface features, shown in panel (c) in Figure 3.1.

Figure 3.1 shows the free energy landscape from both ABF and FUNN simulations; one

can appreciate that the convergence of FUNN is several times faster than that of ABF.

Free energies obtained from FUNN are shown in the left column (a-b) and compared to

results from ABF at the equivalent simulation time in the right column (d-e). Free energy

landscapes are calculated at 500 time-units (top row) and 1000 time-units (middle row).

After only 500 time-units, FUNN has visited almost all of phase space, whereas ABF has

not left its starting basin. After 1000 time-units, FUNN has essentially converged, while

ABF has barely left its starting minimum, leaving most of phase space unexplored. The

relative error of the simulated free energy landscape predicted by FUNN decays rapidly in

the initial states of the simulation, whereas for traditional ABF it decays more slowly.

3.3.2 Alanine Dipeptide in Water

The second example, an alanine dipeptide molecule in explicit water, was simulated using

SSAGES, but in this case it was coupled to GROMACS 5.1.3 [2], using the AMBER99SB

force field [49]. The box size was 3 nm×3 nm×3 nm with 880 TIP3P water molecules, and

a timestep of 2 fs was used. Temperature and pressure were controlled using GROMACS’

stochastic velocity rescaling thermostat [11] at 298.15 K and Parrinello-Rahman barostat

[84] at 1 bar.

The results are shown in Figure 3.2. As before, the exploration of collective variable
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(a) (d)

(b) (e)

(c) (f)

Figure 3.1: Comparison of FUNN to ABF on a 60 × 60 grid with a topology of 16-12 (2
hidden layers, containing 16 and 12 neurons) and a sweep interval of 5 LJ units on a surface
of 50 randomly deposited Gaussian functions. (a) Results obtained from FUNN at 500 LJ
timesteps, and (b) at 1000 LJ timesteps. (c) Exact surface for the 50 Gaussian landscape.
(d) Results obtained from ABF at 500 LJ timesteps, and (e) at 1000 LJ timesteps. (f)
Comparison of root-mean-square error over CV space with respect to the exact surface as a
function of simulation time for both methods.
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 3.2: Comparison of FUNN to ABF on solvated alanine dipeptide, at 1, 2 and 5 ns
from top to bottom. (a-c) Result obtained from FUNN on a 60 × 60 grid using a topology
of 16-12 and sweep interval of 5 ps. (d-f) Result obtained from ABF on a 60× 60 grid. (g)
Snapshot from the simulated alanine dipeptide in explicit water. (h) Comparison of root-
mean-square error for FUNN and ABF over the CV space as a function of simulation time
for both methods. Error is calculated with respect to a long ABF simulation shown in panel
(i). (i) Reference surface obtained from a long-time ABF simulation (120 ns).
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space is faster using FUNN than using a traditional ABF method. As little as one ns into

the simulation, FUNN has virtually visited all available states, and a rough but reasonable

estimate of the free energy across collective variable space is already available. In contrast,

most high-energy regions remain unexplored in ABF. After 5 ns, FUNN provides a converged

estimate of the free energy surface, whereas ABF has not converged (as evidenced by the

incorrect height of the (φ, ψ) = (0, 0) peak and the features around (φ, ψ) = (1,−1)). An

additional 90 ns of simulation time are necessary for ABF to converge. The relative error

decays rapidly in the first 2 ns of simulation time for FUNN, whereas more than 100 ns are

required from traditional ABF simulations to reach a comparable accuracy.

(a) (b)

(c) (d)

Figure 3.3: (a-c) Comparison of FUNN to analytic solution of the first three Rouse modes
of a 21-bead Gaussian chain. (d) Schematic of the simulated polymer chain, consisting of 21
beads connected by harmonic bonds.

3.3.3 Rouse Modes of Coarse-Grained Polymer Chain

As a final example, we sampled the first three Rouse modes of a coarse-grained polymer

chain. The polymer is represented as 21 Lennard-Jones particles with mass and parameters
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set to 1.0 (see 3.3d). Langevin dynamics were used in this case, with a temperature of 0.66,

a damping constant of 0.5, and a time step of 0.005. The results from sampling along these

three collective variables was then compared to the analytic result in Figure 3.3.

One sees that there is excellent agreement between the exact result for the free energy

and that obtained from FUNN across all three Rouse modes, serving to demonstrate that

FUNN recovers the pertinent free energy profiles efficiently and accurately.

3.4 Conclusions

In summary, we have introduced a new method for performing molecular simulations that

relies on learning the generalized mean forces acting on a system with an artificial neural

network. FUNN builds upon the framework for conventional ABF while addressing its

shortcomings. Specifically, the use of a neural network enables mean force approximations

and adaptive biasing even in previously un-sampled regions of collective variable space.

Furthermore, the choice of Bayesian regularization allows for minimal input from the user,

eliminates the need to select a subset of the generated data as a validation set, and prevents

poor mean force estimates in sparsely-sampled histogram bins. A continuous estimate for

the mean force is obtained from the neural network output, allowing for force estimates

and adaptive biasing with a finer resolution than that used for the underlying grid. These

improvements are reflected in FUNN’s superior convergence rate, as demonstrated in three

examples that are representative of glassy materials, molecular conformational transitions in

aqueous solvents, and polymeric materials. We note that a sparse option is also available,

where the artificial neural network is trained while ignoring empty histogram bins; this

is particularly useful for systems in higher dimensions. Finally, the network parameters

can easily be used to query the network at arbitrary resolution after sampling is complete,

allowing one to integrate the generalized forces using a more dense grid with ease.
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CHAPTER 4

COMBINED FORCE FREQUENCY

4.1 Introduction

Self-assembly, conformational changes, binding events and similar processes of interest are

often limited by free energy barriers. Therefore, simulating these processes requires methods

beyond brute-force simulations. Enhanced sampling methods can be used to overcome these

free energy barriers while simultaneously constructing an estimate of the barrier heights,

leading to a deeper understanding of the kinetics and dynamics of the system. Perhaps one

of the most popular of these enhanced sampling methods is umbrella sampling[107], which

has been a cornerstone of free energy calculations. In umbrella sampling, multiple copies

of the simulation are restrained along one or more collective variables (CVs) of interest to

collect biased statistics. These statistics are unbiased after the simulations end using methods

such as the weighed histogram analysis method[59]. More recently, adaptive methods have

been employed frequently, such as Metadynamics,[61] where the estimate of the free energy

is continuously refined and used to bias the system towards rarely visited, higher energy

configurations. Metadynamics constructs the inverse of the underlying free energy surface as

a function of the CVs by depositing Gaussians at a preset interval, and the system eventually

behaves nearly diffusively in CV space. Though the original Metadynamics algorithm has

been successful in a large number of systems, it still suffers from several drawbacks, such as

non-convergent behavior and occasional challenges in picking method parameters[104]. Some

of its drawbacks have been addressed via improvements to the original algorithm[89, 6, 24,

104]. Other adaptive free energy methods have also been proposed, such as Basis Function

Sampling[115], Green’s Function Sampling[116] and Variationally Enhanced Sampling[109],

with their own set of advantages and disadvantages. Finally, neural networks have been used

to generate a free energy estimate directly from a frequency histogram in ANN method[103].
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Adaptive Biasing Force (ABF)[20] stands out in contrast to these methods, in partic-

ular due to how the estimate of the free energy is constructed. ABF uses an estimate of

the generalized force (the derivative of the free energy with respect to collective variables)

directly, rather than estimate the free energy surface from frequency of state visits. In ABF,

the generalized force is estimated directly from momentum changes in the system. Though

ABF is a fast and robust method, it comes with its own disadvantages such as the lack of an

explicit expression for the free energy estimate, the need to select an appropriate damping

hyperparameter, and the need for manual integration after the simulation. Some of these

shortcomings have been successfully addressed, and significant speed-up over conventional

ABF has been achieved through the use of machine learning techniques[78, 34]. In particular,

FUNN[40] uses an ANN to estimate the generalized force over CV space, which yields sig-

nificant improvements over the traditional ABF algorithm. Though FUNN yields noticeable

speed-up over ABF and overcomes some the original algorithm’s shortcomings, it still lacks

an explicit expression for the free energy estimate at any given time i.e. manual integration

is still necessary to obtain the free energy estimate. Such an explicit expression would be

necessary for techniques such as CV-reweighing and replica exchange[51].

In this paper, we present a new method that combines the frequency-based approach to

free energy estimation with generalized force-based estimation using machine learning tech-

niques. In meta-eABF[32] as well as this work, learning from both the frequency of CV space

state visits and the generalized force estimates results in faster and more accurate estimation

of the underlying free energy surface compared to only one or the other as in aforementioned

methods. However, in contrast to meta-eABF, we accomplish the unification without the

introduction of a fictitious particle as in eABF [64], and thus avoid hyperparameter selec-

tion, oversmoothing and other associated problems that such an approach brings. In this

neural network-based approach, we first extend the expression for the objective function to

allow learning a function from its derivatives (here, the free energy from generalized force
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estimates), which allows the construction of a free energy estimator function directly from

the estimates of the derivative of the free energy, thereby solving the issue of lacking an

explicit expression for the free energy from generalized force-based methods. Thus, no man-

ual integration is necessary as the network directly provides an estimate for the free energy,

even though the free energy estimate is generated using from the generalized force estimate.

Then, we combine this network with another that learns from the unbiased histogram of

state visits in CV space as described in ANN sampling[103]. The outputs of these networks

are blended using the relative complexity of the networks as a proxy for quality of fit to

produce a final estimate. In addition, we implement overfill protection[25] and sparse stor-

age of histograms to allow scaling of the method to higher dimensions in collective variables

without running into memory limitations, and to easily handle nonphysical regions of phase

space often encountered using CVs such as coordination number.

Overall, this method combines the speed of generalized-force based methods such as

ABF[21] or FUNN[40] with the advantages of frequency-based methods such as Metadynamics[61]

or ANN method[103]. Notably, improvements over aforementioned force-based methods in-

clude removing the need to dampen early-time estimates via a hyperparameter, removing

the need to manually integrate to obtain free energy, and having an explicit expression for

free energy at all times, enabling replica exchange or reweighing. We also include support

for overfill protection[25] to automatically avoid high-energy regions, and sparse training and

data structures for higher-dimensional systems, all the while being faster than state-of-the-

art force-based methods. As with FUNN[40] and ANN method[103], the network training

time remains negligible compared to simulation time for all but the smallest systems.

Combined Force Frequency (CFF) method is implemented in Software Suite for Advanced

General Ensemble Simulations,[100] which enables its use with a wide range of simulation

engines.
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4.2 Method Description

Artificial neural networks are powerful, non-linear function estimators that find use in a wide

variety of fields. Generally, training an ANN requires large amounts of data, powerful hard-

ware and time, and subsequent validation of the model. However, smaller, self-regularizing

networks which train much faster have been successfully used for regression tasks, and have

been successfully used in a similar context[103]. Here, similarly to ANN method and FUNN,

we use a Bayesian self-regularizing network[69], which eschews the requirement for a valida-

tion set, avoids overfitting, and handles the noise inherent to the ABF estimate remarkably

well [40].

In Combined Force Frequency method, an overall free energy estimate is constructed by

combining frequency of state visits in CV space with an estimate generated from the gener-

alized force. Both visit frequency and the generalized force are first collected as discretized

estimates using N−dimensional grids, where N is the number of CVs. These grids are up-

dated every timestep as visits and local estimates of the generalized force are collected. The

grids are then each fed into separate neural networks to produce estimates of the underlying

free energy. Thus, we obtain two independent estimates, one from CV space state visit fre-

quencies, and the other from the local estimates of generalized force. The network outputs

are then combined into a final estimate using a weighed average based on effective number

of network parameters.

Training is performed every X timesteps of a simulation, where X is the sweep length

determined by the user, and generates continuous functions with well-defined derivatives

with respect to the collective variables to bias the system.

The frequency-based portion of the estimate is constructed as in ANN method[103]. For

the force-based estimation, we require an explicit expression for the free energy estimate

from the generalized force so that an unbiased histogram of state visits in CV space may be

generated. We first start with the estimate of the generalized force as described by Darve et
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al.[21].

dA

dξ
= −

〈
d

dt
(w · p)

∣∣∣∣ξ〉 (4.1)

We wish to train the Bayesian self-regularizing ANN in a way that produces an estimate

of the free energy from its derivatives with respect to the collective variables, which is the

generalized force given in (4.1). To achieve this, we derive back-propagation for an extended

objective function which includes terms for the ANN output with respect to its inputs.

Including these terms allows training the network to learn a function (the free energy) from

a training set of the target function’s derivatives (the generalized force). The objective

function used in ANN sampling and FUNN is

E = β
∑
i

(Pi −Qi)2 + α
∑
j

wj
2 (4.2)

where the first term, scaled by β, is the squared error on network predictions to their

targets (Pi are the targets, and Qi are the network outputs, where i indexes a grid point).

The second term, scaled by α, is a penalty on network weights to prevent overfitting (wj

are the network weights in no particular order). The ratio of α/β is γ, which controls the

network complexity and is adjusted dynamically during training as described in Sidky et

al.[103]. We extend (4.2) to include terms for the error of the output derivative with respect

to the neural network inputs:

E = β
∑
i

((Pi −Qi)2 + (Fi − Q̇i)2) + α
∑
j

wj
2 (4.3)

where Pi and Fi are the ith estimate of the target function’s value and its derivative,

respectively, and Qi and Q̇i are the neural network output and its derivative with respect to

the neural network inputs.

Then, we derive the back-propagation algorithm that results from this objective function.
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The derivative of the error with respect to the N − 1th can be expressed as a function of the

Nth layer:

∂E

∂φN−1
=

∂E

∂φN

∂φN
∂φN−1

+
∂E

∂φ̇N−1

∂φ̇N
∂φN−1

(4.4)

where φN refers to the output of the Nth layer of the network, and a dot above a layer

represents the derivative of the layer output with respect to the neural network inputs. The

derivative of the error with respect to the N − 1th layer’s derivative with respect to the

neural network inputs can similarly be related to the Nth layer:

∂E

∂φ̇N−1

=
∂E

∂φ̇N

∂φ̇N

∂φ̇N−1

(4.5)

These expressions are propagated backwards to obtain derivatives of the error with re-

spect to each layer. Derivatives of the layer outputs with respect to the neural network

inputs (φ̇) are calculated during the forward pass. For the initial layer, we have:

∂φx0
∂Ay

= δxy (4.6)

where φx0 refers to the xth input node and Ay refers to the yth entry of an input vector.

Then, for linear layers we have:

φ̇N =
∑

wφ̇N−1 (4.7)

∂φN

∂φ̇N−1

= w (4.8)

∂φ̇N

∂φ̇N−1

= 0 (4.9)

44



where w refers to weights for a given layer. Finally, for nonlinear layers:

φ̇N =
∑

wσ′φ̇N−1 (4.10)

∂φN

∂φ̇N−1

= wσ′′φ̇N−1 (4.11)

∂φ̇N

∂φ̇N−1

= wσ′ (4.12)

where σ is the activation function and σ′ and σ′′ are its first and second derivatives.

Notably, the second derivative of the activation function is required, which prohibits the use

of some activation functions, such as ReLU. In this work, tanh was used as the activation

function.

Overall, a neural network with the objective function (4.3) and backpropagation derived

above is trained on the generalized force data provided by (4.1), while a second neural

network is trained using (4.2) on an unbiased histogram as described in Sidky et al.[103].

We take a weighed average of the two estimates, where the ratio of the γ parameters of

each network, which are proxies for the complexity of the networks, is used as the weights.

Weighing by γ allows a more complex network to provide a heavier bias, for instance in very

early in the calculation when forces are too inconsistent to provide a good estimate, the

frequency-based estimate provides the majority of the bias. The weights quickly equalize

and the mixing approaches 1:1 in most cases (Fig. 4.3a). Furthermore, it is possible to use

either network output or their combined output as the final estimates of the free energy.

The combined output is used throughout this paper, but the estimates are often comparable

(Fig. 4.3b).

We note that it is possible to train a single network on both the frequency and the force

data. However, due to the discrepancy in early time estimates generated from forces and
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frequencies, this approach does not work as well as training two separate networks (Fig. 4.2).

In addition, we implement the ‘overfill protection‘ framework as generally described for

histogram-based methods by Dickinson et al.[24]. To implement overfill protection, the

unbiased histogram of state visits in CV space, which is used to construct the training set

for the frequency-based network, is modified such that areas with low enough visit frequency

that would correspond to free energies higher than the desired cutoff are artificially filled

up to the cutoff. Essentially, system is not biased towards configurations that are higher in

energy than the cutoff, allowing rapid exploration of areas of interest in phase space while

ignoring very high energy regions.

The method also supports a sparse mode, where histograms are stored using sparse data

structures, and the ANNs are only trained on non-zero entries. Combining overfill protection

with sparse mode, this method can scale well to higher dimensions in collective variables if

one limits the exploration of the free energy surface to an effectively lower-dimensional region

consisting of lower free energy regions.

4.3 Examples

We illustrate the various features of the CFF method on a simple test system, alanine

dipeptide in explicit water (Fig. 4.1a). We first show how generalized force and frequency

networks contribute to convergence and overall estimate (Fig. 4.2). We then show that CFF

method is faster than state-of-the-art force based methods while possessing the advantages

of frequency-based methods (Fig. 4.3). Finally, we showcase overfill protection with sparse

training in an intuitive example showing the results for several overfill cutoff settings (Fig.

4.5). Finally, we test the method on a model of polymer diffusion through a narrow pore for

a range of pore sizes as a system representative of hidden energy barriers (Fig. 4.1b).

Throughout the paper, we use a short-hand to refer to method details when we report

results. The format is ‘network layers sweep length grid dimensions’, where network layers
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(A) (B)

Figure 4.1: A) The dihedral angles that are the two canonical collective variables that
describe alanine dipeptide. B) Schematic for polymer diffusion through a pore.

is the number of nodes in each hidden layer of the networks used to train on both estimates,

sweep length is number of timesteps in between training the networks, and grid dimensions

refers to the discretization used to store the state visits in CV space and the generalized

force estimates. For example, 12-8 5000 30 × 30 refers to networks with two hidden layers,

with 12 and 8 neurons in the first and second hidden layer respectively, which are trained

every 5000 timesteps of a simulation on data stored on a 30 × 30 grid. The dimensionality

of the grid corresponds to the number of CVs defined for the system.

4.3.1 Alanine Dipeptide

We use alanine dipeptide in explicit water as a test system to illustrate the features of the

method. All alanine dipeptide simulations were performed using GROMACS 2016.5[2] linked

to SSAGES[100] where the method is implemented, using the AMBER99SB force field[49].

The box size was 3 nm × 3 nm × 3 nm with 880 TIP3P[54] water molecules, with a timestep

of 2 fs. Temperature and pressure were controlled using GROMACS’ stochastic velocity

rescaling thermostat[11] at 298.15 K and Parrinello-Rahman barostat[84] at 1 bar.

In the CFF method, we have access to an estimate of the free energy generated purely

from an unbiased histogram of state visits in CV space, and another one from the generalized

force. The combined estimate is a weighed average of the two, where the weights are the rel-

ative neural network complexities as described by the γ parameter. The individual estimates
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from forces and frequencies evolve over time as the simulation progresses, which together

make up the combined estimate (Fig. 4.2). Depending on the network configurations, ran-

dom initialization, and the system, the histogram-based estimate may have a higher weight

at early time when the generalized force-estimates are very noisy, but the ratio of the mixing

quickly goes to 0.5 (equal weights) for most configurations (Fig. 4.3a).

(A)

(B)

(C)

Figure 4.2: Contributions from histogram and generalized force estimates to the overall free
energy surface of alanine dipeptide for 12-8 5000 30 × 30. State visit-based (left column),
generalized force-based (middle column) and combined estimate of the free energy (right
column) at A) 0.1 ns. B) 0.5 ns. and C) 1 ns.

Generally, unbiased state visit-based estimate captures finer features of the underlying

surface, whereas the generalized force-based estimate very quickly maps out the larger fea-

tures and higher barriers. The combined estimate during a CFF-accelerated simulation is

often more accurate than the individual estimates, though the difference is often small and
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the user is free to pick any estimate (Fig. 4.3b). In any case, all estimates will benefit from

the acceleration provided by the jointly generated bias in CFF. We illustrate this speed-up

over using only the state visit-based or the generalized force-based biasing in Fig. 4.4.

(A) (B)

Figure 4.3: Mixing details and contributions to the overall performance. A) Mixing ratio
for a sweep of network configurations on alanine dipeptide. B) Error of CFF method free
energy estimates generated from the unbiased state visit frequency, generalized force, and
their mixture for 12-8 5000 30 × 30.

Finally, we provide an example of overfill protection. Overfill protection is designed to

allow scaling to high number of CVs, and to safely ignore nonphysical, high energy regions of

phase space. When overfill protection is enabled, the bias is turned off above a user-selected

cutoff, and unbiased histogram of state visits in CV space are modified to cap the maximum

free energy difference in the system. The end result is that the system will only explore and

generate an estimate for regions of free energy below the cutoff from the lowest free energy

state discovered. As an example, we run the same alanine dipeptide system at a range of

overfill settings (Fig. 4.5). As expected, with a cap of 20 kJ/mol, the system does not

leave the initial basin during the short simulation. At 40 kJ/mol, the system explores both

minima, and the favorable paths that connect the them. Comparable settings could be used

in higher dimensions with sparse functionality to limit the system to lower energy channels

and efficiently explore complex surfaces. At 60 kJ/mol, some of the lower barriers are crossed
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Figure 4.4: Convergence rate of CFF method compared to biasing based purely on frequency
or based purely on generalized force for a network of 12-8 5000 30 × 30 for alanine dipeptide
in water.

fully, but the highest energy regions are still not accessed. Notably, with the exception of

the very high energy regions, the surface is well explored in just 0.5ns with overfill enabled.

(A) (B) (C)

Figure 4.5: Overfill protection enabled simulations of alanine dipeptide for 12-8 5000 30 ×
30. Free energy results at 0.5 ns with overfill set to A) 20 kJ/mol, B) 40 kJ/mol and C) 60
kJ/mol.
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4.3.2 Polymer Diffusion Through a Pore

Finally, we test CFF method on a system with hidden energy barriers. We use LAMMPS

to simulate a Kremer-Grest[57] polymer in 3 dimensions with a single 50 bead chain in a

simulation box consisting of two large regions of 60 × 60 × 35σ connected by a 30σ long

pore of variable cross-sectional area. All monomers are connected to a Langevin heat bath

at T = 1.5kB/ε. For the FENE potential, we use k = 30ε/σ2 and R0 = 1.5σ.

Without any biasing, the probability of the polymer extending, aligning with the pore in

the Y and Z dimensions, finding the correct orientation and then diffusing through the pore

is extremely low. To accelerate these transition events, we apply the CFF method to some,

but not all of these degrees of freedom. The end-to-end distance and center of mass in the

X dimension were selected as the two collective variables, leaving pore location in Y-Z space

and alignment with the pore as two hidden collective variables. Overfill protection is enabled

and set to 100ε for these simulations which aids in simulation stability when encountering

walls by limiting the maximum bias. Despite the hidden barriers, it is possible to obtain

the free energies for the transition through the pore for a range of pore sizes in 5.0 ∗ 106 LJ

timesteps (Fig. 4.6). We integrate out end-to-end distance for convenience, but the full 2D

surfaces are available in the supplemental material (Fig. 4.7).

As expected, narrowing the pore makes the process increasingly unfavorable. Smaller

pores not only have a smaller proportion of the available volume, but they also limit the

number of configurations available during the crossing process. The end-to-end distance

collective variable was selected to aid in unfolding the polymer, as we hypothesized that

rod-like configurations would be much more likely to successfully diffuse through the pore.

However, end-to-end distance did not fully capture the configurational limitations, due to a

range of once-folded configurations with continuous end-to-end distances. However, the free

energy calculation converged successfully despite the suboptimal choice of collective variable,

even for the smallest pore size.
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Figure 4.6: Free energy surfaces for a 50-bead Kremer-Grest polymer diffusing through a
pore of 10 × 10 , 8 × 8 and 6 × 6 σ at 5.0 ∗ 106 LJ timesteps.

4.4 Conclusions

In summary, we introduced the Combined Force Frequency (CFF) method, a neural network-

based method that learns the free energy surface from both frequencies of visits in CV-space

and the generalized forces, unlike most free energy methods which use one or the other exclu-

sively. CFF is faster than state-of-the-art force-based methods while still possessing advan-

tages of frequency-based methods such as an explicit expression for free energy. Furthermore,

Bayesian self-regularization and the ability to adjust on-the-fly the ratio of force-based or

frequency-based estimation reduces user-specified hyperparameters, and renders the method

minimally sensitive to various network configurations. In addition, CFF method supports

overfill protection along with support for sparse storage of data, allowing CFF method to

scale better to higher number of collective variables for some systems, and to automatically

avoid unphysical, high-energy regions within its phase-space. Overall, CFF method is a

feature rich, easy to use, fast and powerful method for free energy calculations.

4.5 Appendix
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(A) (B) (C)

Figure 4.7: Free energy surfaces for a 50-bead Kremer-Grest polymer diffusing through a
pore of A) 10 × 10, B) 8x8 and C) 6x6 at 5.0 ∗ 106 LJ timesteps.
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CHAPTER 5

HIERARCHICAL COUPLING OF FIRST PRINCIPLES

MOLECULAR DYNAMICS WITH ADVANCED SAMPLING

METHODS

5.1 Introduction

Molecular dynamics (MD) simulations are routinely used to study a wide spectrum of phys-

ical phenomena, ranging from protein folding [16, 76] to glass formation [93, 43], from self-

assembly [87] and nucleation[15, 36, 35], to chemical problems such as reactions in solution

and at interfaces [88]. In many of these studies relevant processes are often rare events’,

where the characteristic timescale associated with a given transition is not accessible within

a reasonable amount of simulation time, due to the presence of large free energy barriers

that separate local minima along a rough free energy landscape.

In recent years, a wide range of advanced sampling methods has been developed to

overcome the challenges associated with rugged free energy landscapes. These methods are

generally aimed at accelerating the exploration of free energy profiles along given reaction

coordinates, at finding transition pathways, and at computing dynamical properties such as

transition rates [23, 22, 106, 62, 7]. For the most part, these techniques have been applied in

conjunction with classical molecular dynamics, where the quantum-mechanical interactions

between atoms are described in terms of pre-determined functions of the coordinates called

force fields. These functions are often parametrized by relying on a combination of results

from quantum mechanical calculations and experimental data [55, 50, 5, 71, 14]. Force fields

enable simulations of large systems and, when coupled to sophisticated sampling methods,

can be used to estimate the structure and thermodynamic properties of relatively complex

fluids and materials. Force fields, however, can be inaccurate[29] and suffer from several

drawbacks. Chemical reactions, for example, cannot be directly simulated by using the most
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common force fields[55, 50]. Furthermore, force fields are fitted to experimental data under

specific situations or states, and their transferability to conditions different from those used

to parameterize the model is not insured [46, 67].

The use of first-principles molecular dynamics (FPMD) overcomes the transferability

issues present in classical interatomic potentials, and allows for the description of bond

breaking and formation, and, in principle, chemical reactions. In FPMD, interatomic forces

are computed on-the-fly[13, 74], leading to more computationally demanding calculations

than classical MD simulations. However the combination of accelerated techniques for elec-

tronic structure calculations developed in the last decades, and the computational power of

modern architectures suggest that it may now be possible to use FPMD, in conjunction with

sampling techniques, for calculations of free energy surfaces and the pathways along which

rare transitions take place.

Only a few examples of FPMD and advanced sampling simulations have been so far re-

ported in the literature[52, 4, 42], and several interesting results have begun to emerge from

such efforts. Examples include FPMD combined with blue moon sampling, metadynamics

and umbrella sampling to address problems such as chemical reactions, phase transitions

and ionic or molecular dissociation[47, 58, 73, 90, 39, 27]. However, the level of theory used

in these calculations has been limited to Density Functional Theory within the General-

ized Gradient Approximation (GGA) or the Local Density Approximation (LDA), as more

elaborate exchange-correlation functionals were deemed too computationally expensive.

In this work, we describe the hierarchical transfer of free energy estimates to enable free

energy calculations using FPMD at hybrid DFT level of theory, through the coupling between

Qbox[41], a C++/MPI scalable parallel code for first-principles molecular dynamics simu-

lations, and SSAGES[100], an open-source C++11 based package for sampling simulations.

The coupling includes calculations at the DFT-GGA (PBE[86]) and hybrid DFT (PBE0[3])

level of theory. SSAGES offers a selection of flat histogram, string, and flux methods that
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are directly applicable to FPMD simulations. The client-server mode functionality of Qbox

allows SSAGES to launch, control and combine several Qbox instances in multiple walkers

fashion, thereby significantly accelerating the convergence of the sampling process. As a

proof-of-concept, we present results for the free energy calculations of the alanine dipeptide

(ADP) in the gas phase, and we compare them to those obtained using a classical force field.

Taking full advantage of the flexibility that SSAGES and Qbox offer, we are able to signif-

icantly decrease the time required to generate a free energy surface (FES) using the hybrid

PBE0 functional, by initializing hybrid simulations from the PBE free energy calculations

and by using multiple walkers. We find that the classical and quantum-level FES are qual-

itatively similar, but exhibit important quantitative differences. In particular, the classical

force field yields higher barriers than FPMD, and leads to a different minimum free energy

pathway connecting the main minima on the FES; these results are consistent with those of

Ref. [19], where a lower level of quantum mechanical theory was used to describe the alanine

dipeptide. By analyzing the entropic and internal energy contributions to the free energy,

we identify the origins of the quantitative differences between the classical and quantum free

energy surfaces. Compared to the first principles calculations, Amber99sb overestimates the

internal energy contribution, in particular at the transition states in high free energy regions,

and it underestimates the entropy of the system.

In addition, we employ the finite temperature string method (FTS) [26] to estimate the

transition pathway between the different minima of the ADP molecule. SSAGES supports

several variants of the string method, along with flux methods, which are helpful for studies

of reaction pathways characterized by high dimensionality[111, 83, 45, 44]. We find that

both the predicted transition pathway as well as the free energy barriers along the pathway

are noticeably different when computed classically and quantum mechanically.

The rest of the paper is organized as follows: In section 2 we first present our results for

the free energy surface and path calculations at the first principles and classical levels. We
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then discuss the structural and energetic differences of ADP obtained with different levels

of theory. Section 3 concludes the paper.

5.2 Methods

5.2.1 Details of molecular dynamics simulations.

Classical MD calculations were performed using SSAGES coupled to Gromacs 5.1.3, using

the Amber99sb force field. A box size of 40x40x40 Å was used. The simulations were carried

out in the NVT ensemble, using GROMACS and the stochastic velocity rescaling thermostat

[11] coupled at 0.1 times constant to 300K. A timestep of 2 fs was used for all classical MD

calculations.

First principles calculations were performed using SSAGES coupled to Qbox 1.63.5. The

box size was set at 15.875x15.875x15.875 Å. A plane-wave cutoff of 60 Ry with electronic

structure tolerance of 1e-4 a.u. was used. A Bussi-Donadio-Parrinello thermostat was used

to control the temperature, coupled to 300K[11]. A timestep of 0.24 fs was used for all

classical MD calculations.

5.2.2 Advanced sampling methods

The adaptive biasing force method was used with 42x42 bins for the φ and ψ variables,

with the initial linear damping set to 200 samples for all calculations. Up to 16 walkers

contributed to a joint histogram in first principles runs. In order to smooth possible noise,

we convolved the histogram with a small Gaussian filter.

A finite temperature string method was used with 24 nodes, initialized uniformly along

the line (φ=-3.0,ψ=3.0) - (φ=3.0,ψ=-3.0). Each block consisted of 1000 timesteps, and the

string constant was set to 0.1. The smoothing constant was set to 0.1. The free energy along

the string was calculated from the adaptive biasing force results for analysis.
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5.2.3 Simulation details

Classical MD runs were performed using a single walker and ran for a total of 100 ns for

ABF and 10 ns per string node for string method simulations. The calculations took less

than a day on a common workstation.

All FPMD free energy calculations were performed on 16 Intel E5-2680v4 processors,

each processor hosting one walker. PBE level calculations of the FES were performed using

16 walkers, for a total trajectory time of 1.5ns. The wall time for the calculation was 2

weeks. PBE0 level calculations of the FES were initialized from the PBE results to accelerate

convergence and ran for a total of 100 ps across 16 walkers. The wall time for the calculation

was 2.5 weeks. The initial contribution from PBE was removed entirely from the final PBE0

result.

The FPMD string method was performed for 50 ps per string node. FPMD string method

calculations were performed on 12 Intel E5-2680v4 processors, each processor hosting 2 nodes.

In all cases, calculations were performed in vacuum.

5.3 Results

5.3.1 Advanced sampling of alanine dipeptide using first principles

molecular dynamics

The free energy surface of the ADP has been studied extensively with classical force fields

and, more recently, using metadynamics with tight-binding Hamiltonians[7, 101, 72, 19]. The

collective variables (CV) used to describe the system are the two dihedral angles, φ and ψ,

shown in Fig. 5.1. Using these two CVs, it is possible to identify three different minima in a

Ramachandran plot, describing the secondary structure of the peptide. The first minimum,

in which the peptide is almost planar, is labeled β and is located at (φ=-2.5,ψ=2.5) radians.

The second and third minima, both stabilized by an intra-molecular hydrogen bond, are
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denoted as C7eq and C7ax and are approximately located at (φ=-1.2,ψ=1.2) and (φ=1,ψ=-

1.2) radians, respectively.

Figure 5.1: Representation of the three metastable minima, β, C7eq and C7ax of the alanine
dipeptide together with the two angles (φ,θ) used to bias and analyze our calculations.

In Fig.5.2 we show a comparison between the FES of the ADP obtained with a classical

force field, Amber99sb, and with first principles molecular dynamics using density functional

theory with two different functionals, PBE and PBE0. To calculate the free energy surface

(FES) as a function of the two CVs, we use the Adaptive Biasing Force (ABF) method

as implemented in SSAGES [100, 22]. ABF was chosen over other methods due to how

it generates the estimate of the free energy. ABF estimates the derivatives of the free

energy directly from changes in momentum each timestep. We found it to be particularly

advantageous in simulations using small timesteps, such as in FPMD, compared to methods

that rely on frequency of visits, as ABF can refine the estimate locally even when diffusion

through the phase space is slow, whereas other methods might be diffusion limited. In

order to accelerate sampling, up to 16 individual walkers were used for tight binding MD

calculations (see Methods for details).

There are clear differences between the FES calculated with DFT-PBE and the one

calculated with the classical force field, Amber99sb (Fig. 5.2A). The difference is especially

noticeable near the maximum located at (φ=2.8,ψ=2.8) in the Ramachandran plot, which

is less pronounced in FPMD. In addition, the Amber99sb force field predicts a much larger

barrier that spans the entirety of ψ at φ = 2, likely restricting conformational transitions

across that dihedral angle. The smaller barrier observed in DFT calculations is consistent
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A

B

C

Figure 5.2: Comparison of the Free Eenrgy Surface (FES) obtained from classical and first
principles molecular dynamics using the Adaptive Biasing Force method. A) Classical FES
from Amber99sb force field. B) First principles result obtained at the PBE level of theory.
C) First principles result obtained at the PBE0 level of theory. While there are small
quantitative differences between the PBE and PBE0 calculations, the Amber99sb results
differs from both. In particular, Amber99sb predicts a higher barrier in the φ = 2 region.
The position of the β, C7eq and C7ax minima are defined here as •, �, and H, respectively
(see Fig. 5.1.
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with earlier FPMD simulations of the alanine dipeptide [19].

In order to investigate the dependence of the FPMD results on the functional chosen,

the FES was recalculated using an hybrid functional (PBE0). Since these calculations are

significantly more demanding than those carried out with PBE, we estimated the initial

PBE0 FES from the converged ABF histogram obtained from PBE. This strategy allows the

simulations to converge considerably faster. The PBE contribution to the FES was removed

at the end of the hybrid simulation, yielding the pure PBE0 result. The morphology of

the PBE0 FES is similar to that of PBE, but the PBE0 functional predicts slightly higher

barriers to transitions between β −→ C7ax and C7eq −→ C7ax, as well as a higher relative

free energy for the C7ax minimum than PBE(see Fig. 5.2B and 5.2C).

While obtaining a converged FES is relatively straightforward for a small number of

collective variables, it may quickly become prohibitive for systems requiring many collective

variables when using flat histogram methods such as ABF. The string method and its variants

are instead particularly useful for identifying transition pathways and calculating the free

energy along them, as these methods focus only on the states along the transition path.

This feature allows string methods to only sample states relevant to the transition, thereby

enabling calculations with increasing numbers of CVs.

To illustrate how the string method may be useful in the context of FPMD simulations,

we performed finite temperature string method simulations using DFT-PBE for the alanine

dipeptide[111]. The computed FES suggests that there are two possible transitions from

β to C7ax: one involves the formation of the metastable state C7eq, and then a transition

to C7ax, without breaking the intramolecular hydrogen bond. A second transition involves

the direct formation of an intramolecular hydrogen bond to the C7ax state, starting from

the β state. We thus initialized the string to include both transitions, from (φ=0,ψ=0) to

(φ=3.1,ψ=-3.1). The converged string was found to be consistent with the FES obtained

by ABF, being perpendicular to the contours of the FES, as illustrated in Fig 5.3A. At a
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qualitative level, the PBE string path resembles the classical result, but the transition at

φ = 0 deviates noticeably from the classical result, as shown in Fig. 5.3b.

A

B

Figure 5.3: Finite temperature string method results overlayed on the free energy surface. In
black and red are reported the initial and final configuration, respectively. A) Results from
classical molecular dynamics using Amber99sb force field B) Results from FPMD using the
PBE functional. The pathways are qualitatively similar, yet there are differences in their
positions.

It is instructive to plot the free energy along the reaction coordinate, i.e., the string in

this case, to illustrate the differences in barrier heights between PBE and Amber99sb. Figure

5.4 shows that Amber99sb calculations predict a higher barrier height for the C7ax −→ β

compared to PBE. The evaluation of the FES along the string in the classical and PBE

simulation reveals that the lowest transition pathway connecting β −→ C7ax is different in

the two cases: using Amber99sb, the transition occurs following the path β −→ C7eq −→

C7ax, whereas in FPMD simulations the secondary path β −→ C7ax is favored, as the

barrier for the transition C7eq −→ C7ax is higher. We emphasize that the Amber99sb and
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PBE calculations predict the same structure in the metastable minima and at the transition

states, but different transition pathways. In a larger system with more dihedrals, e.g. a

longer polypeptide, the difference in the folding-unfolding path predicted classically and

quantum mechanically could be even more significant.

Figure 5.4: Free energy along transition paths calculated using finite temperature string
for Amber99sb (red) and DFT PBE (black). The two levels of theory predict two different
transition pathways: while Amber99sb predicts the minimum free energy pathway to be
β −→ C7eq −→ C7ax, the PBE case predicts it to be β −→ C7ax due to different barrier
heights. The β, C7eq and C7ax minima are denoted as •, �, and H, respectively (see Fig.
5.1).

5.3.2 Analysis of Differences Between Classical and first principles Results

To understand the origin of the differences between DFT and the Amber force field described

above, we performed additional structural and energetic analyses.

We first quantified differences in the geometrical structure predicted by Amber99sb, PBE

and PBE0, by computing the average Root Mean Square Displacement (RMSD) between

the accessible structures at a given point (φ,ψ) in CVs space:

RMSD(φ, ψ) =

1

N(φ, ψ)

N(φ,ψ)∑
i

N(φ,ψ)∑
j 6=i

Nat∑
k

√
(rik − r

j
k)2 (5.1)
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where N is the total number of configurations at a given (φ, ψ) point, and Nat is the total

number of atoms composing the backbone of the peptide. The RMSD parameter is small

if the N configurations are all very similar, whereas higher values indicate higher diversity.

We have not included hydrogen atoms in the parameter definition, as they do not provide

any relevant information on the structure. The results for Amber99sb, PBE and PBE0 are

reported in Fig 5.5.

The three levels of theory yield similar qualitative features. The RMSD surfaces are

characterized by two regions of low RMSD, one roughly corresponding to the C7eq and a

second one located approximately at (φ=2,ψ=-2). The positions where the RMSD reaches

a maximum correspond approximately to the high free energy states.

The most important contribution to the general form of the plot, and especially to the

low RMSD ’channel’ going from the C7eq to (φ=3,ψ=-3), is the intra-molecular hydrogen

bond that forms in the peptide (Fig. 5.6). Given the hydrogen bond formation, the position

of the basin corresponding to C7eq is not a surprise, as the intra-molecular hydrogen bond

limits the flexibility of the peptide. To our surprise, however, the second basin does not

exactly correspond to the C7ax minimum, and its position is closer to the barrier along the

β −→ C7ax. Despite quantitative differences, however, the distribution of geometries that

the three levels of theory predict are similar, and we conclude that they do not represent the

main origin for the difference in the FES reported in Fig 5.2.

Minor differences can also be noticed in the distance between the hydrogen and the

oxygen involved in the intramolecular hydrogen bond. As can be noted in Fig. 5.6, the

transition between the C7eq −→ C7ax does not involve the breaking of the intra-molecular

hydrogen bond. The barrier between the two metastable states is most likely due to steric

hindrance. The hydrogen bond distance is also correlated with the RMSD illustrated in Fig.

5.5: both contour plots show the same channel which follows the C7eq −→ C7ax transition,

illustrating that the intra-molecular hydrogen bond tends to decrease the molecular mobility.
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Figure 5.5: The average diversity of configurations adopted in phase space during a molecular
dynamics simulations, as obtained with classical force field and with first principle molecular
dynamics. A) Average local root mean square displacement (see Eq. 5.1) from Amber99sb.
B) Average local root mean square displacement (see Eq. 5.1) from first principles within
the PBE functional. The two surfaces are quantitatively different. The β, C7eq and C7ax
minima are denoted as •, �, and H, respectively (see Fig. 5.1.
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Figure 5.6: Average distance between the oxygen and the hydrogen stabilizing the C7ax
and C7eq structures. The minimum distance (roughly 1.8 Å, located at(φ=0.0,φ=0.0)) is
very close to the saddle point for the transition C7eq −→ C7ax. The Amber99sb force field
predicts a slightly different average distance than the PBE and PBE0 simulations. The β,
C7eq and C7ax minima are denoted as •, �, and H, respectively (See Fig. 5.1).
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Next we investigated whether the FES differences originate from different internal energy

and/or entropic contributions in the classical and FPMD simulations. We partition the FES

as:

∆A(φ, ψ) = ∆U(φ, ψ)− T∆S(φ, ψ) (5.2)

The internal energy contribution (U) to the FES was calculated as the local running-

average of the internal energy computed during the MD simulations on a grid. An estimate

of the entropic contributions, T∆S, was obtained from the difference (∆A−∆U). Fig. 5.7

shows the potential energy surfaces, which are qualitatively similar, and resemble the free

energy surfaces obtained using ABF calculations. The classical force field predicts a higher

internal energy than the PBE and PBE0 functionals in the region corresponding to the φ = 2

dihedral, which is reflected in the FES. The differences observed between PBE and PBE0

FES are mirrored here, as the barriers predicted by the PBE0 functional are higher than those

predicted at the PBE level of theory. This effect is also visible for the C7ax minimum, which

is less stable when using PBE0. It is important to emphasize that the DFT and classical PES

differ the most in the low probability states. This difference is also maintained when DFT

and Amber99sb are compared with a higher level of theory such as CCSD(T) [56]. Notably,

there is a consensus of all he methods, regarding the free energy difference between the

different metastable minima. However, there are minor local minima predicted by MP2/cc-

pVTZ//MP2/6-31G** calculations [113], for which our simulations with PBE and PBE0,

along with B3LYP and CCSDT/CBS-aVDZ give consistent energies [56]. Interestingly, the

PBE0 functional captures most of the features observed in the MP2/cc-pVTZ//MP2/6-

31G** calculation of the alanine dipeptide PES [113]. A comparison between energies at all

the identified minima are reported in the SI, in Table SI-1 and Fig. SI-1.

The entropic contributions to the free energy also exhibit significant differences. The

classical case predicts a low entropy, in contrast to PBE and PBE0. The entropy maxima
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Figure 5.7: Comparison of potential energy surfaces. A) Potential energy surface from
the classical force field Amber99sb B) Results from first principles calculations using the
PBE functional. C) Results from first principles calculations using the PBE0 functionals.
The classical force field predicts a higher barrier in the region identified by φ = 2 than DFT
calculations. The PBE0 functional predicts a higher barrier than PBE, as well as a less stable
C7ax minimum. The β, C7eq and C7ax minima are denoted as •, �, and H, respectively (See
Fig. 5.1).
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for all the three cases are located in proximity of the FES maxima. Two of the minima

correspond to the C7eq and C7ax, while the third one located at (0.5,-2.5) does not correspond

to a minimum in the FES or to a well-defined structure. Even though they are on an entirely

different scale, the morphologies of the surfaces are similar in the classical, PBE and PBE0

cases, with the minima and maxima in the same positions (Fig. SI-2). Most likely, the

classical force field predicts such a low entropic contribution because the entropy is not

explicitly included in the fitting of the force field. We note that the entropic contributions

may be important to obtain a correct description of large peptides, in particular for folding

and unfolding processes.

We end our discussion of the results by emphasizing that our calculations do not imply

or prove that the FES computed from FPMD simulations are superior to those of a clas-

sical force field for the description of peptide molecules. The classical force field has been

parametrized by using extensive amounts of experimental data for peptides, both isolated

and in aqueous solutions. Instead, we wish to stress two important points. First, our premise

is that a general aim of condensed matter theory is to one day be in a position to predict the

properties of macroscopic fluids and complex materials from first principles. Free energies are

essential for such pursuits, and our calculations serve to establish that one can now predict

free energies and free energy pathways by relying on advanced sampling methods that, until

now, have been almost exclusively used in the context of classical force fields. Second, we

note that when Ramachandran plots are used to parameterize classical force fields by relying

on quantum mechanical calculations, they are expressed in terms of the internal energy. For

such endeavors, a more appropriate quantity is the free energy. Our work illustrates that for

a representative dipeptide the free energy surface differs considerably from the internal en-

ergy surface, particularly in the vicinity of high energy barriers, where entropic contributions

to the free energy can differ appreciably.

69



A

B

C

Figure 5.8: Comparison of the entropic term T∆S as obtained from classical and FPMD.
A) Entropy surface from the classical force field Amber99sb. B) Entropy surface from first
principles calculations using the PBE functional. C) Entropy surface from first principles
calculations using the PBE0 functional. Refer to Fig. SI-2 in the Supplementary Information
for a comparison of the purely entropic term.
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5.4 Conclusions

Our first aim in this work was to present a methodology to calculate free energy surfaces

using first-principles molecular dynamics with demanding functionals, leveraging the cou-

pling between Qbox, a DFT code capable of doing FPMD simulations with local and hybrid

functionals, with SSAGES, a general engine-agnostic code to perform enhanced sampling

calculations. Some of these free energy methods have gained popularity through their avail-

ability in public domain software packages, e.g. Plumed or Colvars[108, 8, 28]. However, the

coupling presented here increases the number of enhanced sampling methods usable with

FPMD, and it facilitates their use thanks to the architecture of the coupling. We emphasize

that the two codes are not compiled together, but work in a client-server mode. In this

way, the two codes have minimal dependencies, and it is straightforward to execute multiple

walkers calculations. Thanks to the scalability of Qbox, its fast evaluation of hybrid func-

tionals, and the possibility or restarting SSAGES calculations from a previous results, one

can resort to a hierarchical sampling approach. In this paradigm, it is possible to restart

hybrid functionals calculations from previous semi-local functional ones, greatly diminishing

the computational burden needed to converge the simulations.

To illustrate the efficacy of our coupling, we calculated the FES for alanine dipeptide in

vacuum at the PBE and PBE0 levels of theory. To the best of our knowledge, this is the

first FES calculated using a hybrid functional. We also calculated the minimum free energy

path using finite temperature string method at the PBE level of theory. A key strategy

in obtaining a converged free energy surface at such high level of theory is the hierarchical

transfer of free energy estimates. Leveraging the implementation of ABF in SSAGES, it was

possible to easily initialize the ABF histogram for PBE0 from the converged PBE result,

making PBE0 nearly diffusive from the start. We note that the same strategy could be

applied to investigate how dispersion correction influences the result. In particular, it would

be possible to perform the same calculation with the OPTB88 functional by restarting from
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the PBE result, greatly diminishing the computational resources required.

Transferring the estimate from PBE, obtained in 1.5ns total simulation time, to PBE0

reduces total required simulation time to just 100ps - a 15x improvement. A 1.5ns calculation

at PBE0 level of theory would have taken more than 30 weeks instead of 2.5 weeks used to

obtain the result with the transfer. Initial PBE contribution was completely removed from

the final result.

The results are consistent with similar calculations performed at a lower level of theory[19],

but show significant deviations from classical results determined using a classical force field

(Amber99sb). In particular, the classical calculation overestimates the internal energy con-

tribution in an entire region of the CVs space (ψ = 2), predicting a free energy surface with a

higher barrier than that of the PBE/PBE0 calculations. This higher barrier causes a change

in the transition pathway between the β −→ C7ax minima which passes through C7eq in the

classical case, but does not in the FPMD case. Furthermore, the difference manifests as a

significantly higher barrier across the transition in the classical case. In addition, Amber99sb

underestimates the entropic contribution to the free energy surface, when compared to the

semi-local and hybrid case.

The result for the ADP case is of importance because force fields are generally fitted to

properly represent equilibrium properties, such as the dihedral angles of the backbone of

a protein. However, they are not always designed to include information about transition

states and high free energy states. In order to establish whether the classical or the first

principles calculations are better representatives of reality, calculations of solvated systems

will be required and these are work in progress.

Both codes are open-source and are readily available at https://github.com/MICCoM

/SSAGES-public and at http://qboxcode.org/. The coupling used in this work is imple-

mented and can be setup off-the-shelf, allowing the application of many flat histogram, string

and flux methods to first principles molecular dynamics. We believe that the combination of
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these techniques will provide a new way of solving exciting problems, from chemical reactions

to structural characterization of solid-liquid interfaces. Force field construction with these

methods is particularly appealing, as one can match the classical and first principles free

energy surfaces, rather than solely fitting to the potential energy surface.
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CHAPTER 6

CONCLUSION

In this work, we have shown an application of enhanced sampling on molecular dynamics to

obtain free energies, and using these free energies to predict material properties. Specifically,

calculating the free energy of dissociation of a single molecule from a micelle in a self-

assembling system allows the estimation of the relative stability of the micelle. Performing

such calculations for a range of sizes using a statistical mechanical model of micelle formation

provides further information, allowing predictions of equilibrium micelle size, micelle size

distribution, and stability. Further studies of the micelle core provide answers into the

mechanisms of micelle formation.

This study is one of countless possible ways of leveraging free energy to infer properties

of interest, including but not limited to kinetics, population densities across phase space,

phase diagrams, and protein conformational changes. However, as the systems and processes

studied get more complex, the computational demands to calculate relevant free energies also

increase dramatically. Therefore, faster free energy methods are one of the most efficient

ways of expanding the feasibility limit for simulating larger systems. To this end, two new

free energy methods are developed and made available to the community. These methods

take advantage of neural networks to better estimate free energy during a simulation and

significantly accelerate the exploration of phase space.

Finally, we present a framework and hierarchical approach for bringing new free energy

methods to the first principles molecular dynamics community, where such approaches re-

main underutilized. In this framework, SSAGES is coupled to QBox to inject easy-to-use

and powerful enhanced sampling methods into a fast and scalable first principles molecular

dynamics package. The coupling enables multi-level parallelization through SSAGES on top

of the inherent layer of QBox for the best possible performance on a range of hardware

configurations and simulation setups. In addition, free energy calculations are further ac-
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celerated through the hierarchical approach, where a cheap estimate is constructed using a

lower level of theory and then refined at a higher level of theory for higher accuracy. Such

hierarchical sampling is easy to perform in SSAGES, and requires minimal post-processing

to obtain a free energy from high level theory simulations for a much lower computational

cost.
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