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Abstract 

 

Type 2 diabetes disproportionately afflicts African-Americans, Latinx communities, and people 

with low income in the U.S. due to complex environmental influences. Despite the history of 

environmental inequality in the U.S., the potential contribution of endocrine-disrupting chemicals 

(EDCs) to racial/ethnic and socioeconomic differences in diabetes risk is not known. Evidence 

from recent decades gathered from the present comprehensive literature review showing uneven 

socioeconomic and racial/ethnic EDC exposures raises the possibility that EDCs are 

underappreciated contributors to diabetes disparities. Notably, EDC exposures during critical 

windows of development can program metabolic disease risk in a sex-specific way. Importantly, 

EDCs that modulate glucocorticoid receptor (GR) signaling are an understudied class of 

environmental pollutants of likely public health significance given that glucocorticoids regulate 

the development of tissues that control glucose homeostasis. The present studies examined the 

impact of perinatal exposure to the fungicide tolylfluanid (TF) on metabolic physiology in adult 

mouse offspring to understand how GR-disrupting EDCs can misprogram metabolism. C57BL/6J 

dams received standard rodent chow or the same diet containing 67 mg/kg TF. Female offspring 

exhibited reduced glucose tolerance, markedly enhanced systemic insulin sensitivity, reduced 

adiposity, and normal gluconeogenic capacity during adulthood. In contrast, male offspring 

exhibited impaired glucose tolerance with unchanged insulin sensitivity, no differences in 

adiposity, and increased gluconeogenic capacity. These findings indicating that perinatal TF 

exposure programs metabolism in a sex-specific manner imply that exposure to other GR-

modulating EDCs may elicit similar effects, and suggest that unequal exposures to GR-modulating 

EDCs may program metabolic disease risk differently by sex in exposed populations.
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Chapter 1 

Disparities in Environmental Exposures to Endocrine-Disrupting Chemicals and Diabetes 

Risk in Vulnerable Populations 

 

Sections of this chapter have been adapted verbatim from:  

Ruiz D, Becerra M, Jagai J, Ard K, Sargis RM. Disparities in environmental exposures to 

endocrine disrupting chemicals and diabetes risk in vulnerable populations. 2017. Diabetes Care, 

dc162765. 

 

Section 1.1: Introduction to Metabolic Disease Disparities: Focus on Development and the 

Environment 

Section 1.1.1: The Global Diabetes Pandemic 

Diabetes is a complex and devastating metabolic disease that arises from impairments in 

insulin production and/or action with consequential derangements in global energy metabolism. 

Currently afflicting nearly 10% of the U.S. population [1] and projected to impact 640 million 

individuals globally by 2040 [2], diabetes is the leading cause of adult blindness, kidney failure, 

and non-traumatic amputations; moreover, it is a central driver of cardiovascular disease, the 

leading cause of death among people with diabetes [3].  

Critically, in the U.S. diabetes disproportionately afflicts African-Americans, Latinx 

communities, and people with low income. Compared to non-Hispanic Whites, the risk of 

developing diabetes is estimated to be 66% higher for Hispanics and 77% higher for African-

Americans [4]. Indeed, 17.9% of African-Americans and 20.5% of Mexican-Americans have 

diabetes compared to only 9.1% of non-Hispanic Whites [5]. Furthermore, age-adjusted diabetes 
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mortality rates are significantly higher among Hispanics (28.8 per 100,000 population) and Non-

Hispanic Blacks (43.6) than Non-Hispanic Whites (19.8) [6]. Importantly, recent analyses suggest 

that diabetes prevalence has increased for African-Americans and Mexican-Americans over the 

last decade while rates among non-Hispanic whites have remained constant [5]. Although physical 

inactivity and caloric excess are key drivers of the diabetes pandemic, mechanistically 

understanding the myriad of factors that promote diabetes risk is essential for developing strategies 

to mitigate the societal impact of diabetes that devastates the lives of millions, and to address the 

disproportionate burden of diabetes in vulnerable demographics.  

 

Section 1.1.2: Developmental Origins of Metabolic Disease 

While chronic exposure to metabolic disease risk factors throughout life can promote the 

onset of diabetes, metabolic disease risk can also be programmed during sensitive windows of 

development as proposed by the Developmental Origins of Health and Disease (DOHaD) 

hypothesis. Evidence for the DOHaD first came from studies of the Dutch Hunger Winter, a period 

in which Nazi Germany imposed a food blockade on the western Netherlands at the end of the 

Second World War. Studies of individuals who were exposed to the Dutch Famine in utero showed 

lower birth weights, and these individuals were more likely to develop type 2 diabetes and suffer 

from cardiovascular disease by age 50 compared with those individuals born either the year before 

or the year after the famine [7]. Based on numerous epidemiological and animal studies, we now 

know that environmental factors can disrupt the organization of key metabolic tissues during fetal 

development and impair their ability to maintain glucose homeostasis throughout later in life [8]. 

As such, exposure to numerous common environmental factors during pregnancy; including 

overnutrition, psychological stress, and diabetes have been linked to the onset of metabolic disease 
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in the offspring in animal and epidemiological studies [8]. Additionally, developmental exposures 

to environmental pollutants can also promote later-life metabolic disease risk. Importantly, 

developing fetuses are more sensitive to xenobiotic exposures due to their underdeveloped 

detoxifying mechanisms, higher anabolic rate, and higher toxicant-to-weight ratios [9]. Because 

of these attributes, in utero and early post-natal development are periods of enhanced susceptibility 

to malprogramming by numerous environmental factors that can predestine individuals to greater 

lifetime metabolic disease risk [10].  

 

Section 1.1.3: Metabolism-Disrupting Chemicals 

The mass production of structurally diverse synthetic chemicals has resulted in an 

unprecedented burden on the environment and public health worldwide. As endocrine and 

metabolic diseases continue to rise globally [11], nearly 800 compounds have been identified as 

putative endocrine-disrupting chemicals (EDCs) [11], while tens of thousands of compounds still 

lack basic toxicological screening [12]. As defined by the Endocrine Society, EDCs are exogenous 

chemicals, or mixtures of chemicals, that interfere with any aspect of hormone action [13]. 

Historical EDC research focused largely on endpoints related to sexual-development and 

reproduction following developmental and adult exposures to sex-hormone modulating agents 

given the prominent roles that androgens and estrogens play in these physiological processes. 

However, the metabolic systems that control energy homeostasis are established by numerous 

hormones during fetal development, and glucose homeostasis is maintained by diverse endocrine 

signals throughout the lifespan. For this reason, metabolism is a physiological endpoint susceptible 

to disruption by EDCs both during development and throughout postnatal life. Of note, the 

dramatic rise in U.S. diabetes rates correlates closely with synthetic chemical production [14], and 
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these associations are now supported by epidemiological, animal, and cellular data that 

demonstrate that EDCs can interfere with insulin secretion and action, as well as with other 

pathways that regulate glucose homeostasis. Thus, exposures to EDCs have the potential to disrupt 

metabolism. However, it is important to recognize that the burden of that risk is not uniformly 

borne across society given the unequal distribution to exposures in the U.S. that disproportionately 

affects demographics already at higher risk for developing metabolic diseases. 

 

Section 1.2: Overview of Environmental Racism in the U.S. 

Despite the history of inequitable distribution of environmental pollution affecting 

communities of color in the U.S. [15], the potential contribution of environmental toxicants to 

racial/ethnic and socioeconomic differences in diabetes risk is underappreciated. The issue of 

environmental injustice first entered widespread consciousness in 1982 when residents of the 

predominantly African American community of Warren County, North Carolina, made national 

news by laying themselves across a rural road to prevent encroaching trucks from dumping dirt 

laden with polychlorinated biphenyls (PCBs) in their community [16]. This media attention 

prompted empirical examination of the community’s claim that toxic waste facilities were being 

disproportionately sited in low-income communities and communities of color. In 1987, the first 

national study on environmental discrimination documented the disproportionate siting of toxic 

waste facilities in African-American, Latinx, and poor neighborhoods throughout the U.S. [17]. 

Reevaluated 20 years later, these racial and socioeconomic disparities in toxic waste site proximity 

were even greater than previously reported [15]. Research on environmental inequality has grown 

substantially since the 1980s, with the majority of evidence showing racial and socioeconomic 

disparities in exposures to myriad of environmental hazards [16]. Moreover, the percentage of 
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African-Americans and Latinx living in “fenceline zones”, where people are least likely to escape 

a toxic chemical emergency, were 75% and 60% greater than the U.S. average, respectively [18]. 

In addition to higher exposure to industrial air pollution nationwide [19], unequal exposures 

amongst people of color are also rooted in patterns of occupation, housing conditions, and 

neighborhood infrastructure [20, 21].  

 

Section 1.3: Unequal Environmental Exposures and Diabetes Risk 

Section 1.3.1: Introduction 

Diverse scientific evidence linking EDCs with the development of diabetes and other 

metabolic disorders continues to grow. Importantly, exposures to several toxicants have been 

prospectively linked to diabetes risk, including: PCBs, various chemical constituents of air 

pollution, bisphenol A (BPA), phthalates, and organochlorine (OC) pesticides (Table 1.1); 

moreover, exposure to these EDCs is higher among African-Americans, Latinx, and people with 

low income (Table 1.2). The wealth of evidence gathered from recent decades showing uneven 

socioeconomic and racial/ethnic exposures raises the possibility that these chemicals are 

underappreciated contributors to diabetes disparities. This section will review the state of the 

evidence linking ethnic, racial, and socioeconomic disparities in pollutant exposure in the U.S. to 

EDCs linked to diabetes. 

 

Section 1.3.2: Polychlorinated Biphenyls (PCBs) 

 Introduced to the U.S. in the 1930s for a variety of industrial purposes, PCBs are a class of 

synthetic compounds in which various combinations of hydrogen atoms on the biphenyl (C12H10) 

structure have been substituted with chlorine, resulting in 209 congeners that are designated by a 
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unique number reflecting the extent and position of their chlorination (e.g. PCB 153). Although 

banned by the U.S. Environmental Protection Agency in 1977, PCBs remain detectable in human 

tissues due to their environmental and biological persistence [22]. Importantly, higher PCB 

exposures amongst African-Americans have been documented since the 1960s [23] (Table 1.2). 

Ongoing human exposure to PCBs is due to the legacy of contamination in food, including certain 

fish [24]; however, additional exposure sources include leaching from contaminated industrial 

sites and indoor construction materials [25, 26]. PCB waste is found in Superfund and toxic waste 

sites that are concentrated in neighborhoods of color [27]. Although catfish consumption has been 

suggested as the main contributor to increased PCB levels in African-Americans [28], the 

historical siting of PCB production and disposal sites in predominantly Black communities likely 

contributes to increased contamination of locally-sourced foods. One example of this phenomenon 

is Anniston, Alabama, a PCB-manufacturing city from 1929 to 1971. African-Americans not only 

lived closer to a former Monsanto PCB manufacturing plant but also had PCB levels three-times 

higher than Caucasians in Anniston [29]. Consumption of local fish and livestock were the 

strongest predictors of higher serum PCB levels among African-Americans [30], while 

consumption of local dairy products and dredging near another PCB-contaminated Superfund site 

also predicted higher cord blood PCB levels in infants [31]. 

 Experimental studies suggest that exposure to various PCB congeners have the capacity to 

promote metabolic dysfunction in vitro and in animal models. Murine adipocytes treated with 

PCB-77 or PCB mixtures promoted insulin-desensitizing pro-inflammatory cytokine release, and 

decreased insulin-stimulated glucose uptake at sub-lethal concentrations [32, 33]. In animal 

models, exposure to coplanar PCB congeners (e.g. PCB-77) promoted glucose intolerance while 

antagonizing the metabolic benefits of weight loss, effects mediated by activation of the aryl 
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hydrocarbon receptor (AhR) signaling [34, 35]. Non-coplanar PCB congeners such as PCB-153, 

the most abundant congener found in humans, exhibit less affinity for the AhR; however, this PCB 

class has also been shown to promote metabolic dysfunction. In mice fed a high fat diet, PCB-153 

synergistically increased non-alcoholic fatty liver disease (NAFLD), the liver component of the 

metabolic syndrome [36, 37]. At the cellular level, exposure to a PCB mixture down-regulated 

insulin signaling intermediates in skeletal muscle and liver in mice, resulting in hyperinsulinemia 

and systemic hyperglycemia [38]. Importantly, β-cell PCB treatment in vitro stimulated insulin 

secretion [39], suggesting that prolonged lifetime exposure can lead to β-cell exhaustion; however, 

additional studies are required to define the β-cell effects of PCB exposures. The effects of PCBs 

and their metabolites on energy metabolism are likely complex since they can disrupt the AhR, 

pregnane X-receptor, and constitutive androstane receptor, as well as sex steroid, glucocorticoid 

(GC), and thyroid hormone signaling [40-42], all of which regulate lipid and glucose homeostasis. 

 A large body of evidence, including prospective epidemiological studies, supports the 

hypothesis that PCBs are metabolic disease risk factors. Residential proximity to PCB-

contaminated waste sites is associated with higher diabetes hospitalization rates [43]. Among 

female residents of Anniston, serum PCB levels were significantly associated with diabetes [44], 

while in a separate study with 25 years of follow-up, women with higher PCB levels exhibited 

increased diabetes incidence (Incidence Density Ratio: 2.33; 95% Confidence Interval [95%CI]: 

1.25-4.34) [45]. Similarly, women exposed to PCB-laced rice bran oil during the Yucheng 

poisoning event in Taiwan also had an increased risk of developing diabetes (Odds Ratio [OR]: 

2.1; 95%CI: 1.1-4.5), with markedly higher risk among those who developed chloracne, a 

cutaneous manifestation of dioxin-like PCB exposure (OR: 5.5; 95%CI: 2.1-13.4) [46]. A meta-

analysis that pooled data from the Nurses’ Health Study with six prospective studies showed that 
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total PCBs were associated with incident diabetes (OR: 1.70; 95%CI: 1.28-2.27) [47]. Further 

supporting these prospective links between PCB exposure and diabetes are data from cohort 

studies including the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) 

[48], as well as a group followed for nearly 20 years [49]. Finally, while not reaching statistical 

significance, a study of Swedish women suggested that higher levels of PCB 153 were similarly 

associated with increased rates of type 2 diabetes (T2D) diagnosed after more than 6 years of 

follow-up (OR: 1.6; 95%CI: 0.61-4.0) [50]. Collectively, these data suggest an association between 

PCBs and diabetes risk, especially among women; however, there are some discrepant findings in 

the literature. In a study of Great Lakes sport fish consumers, PCB 118 and total PCBs were not 

associated with diabetes [51], and in a Flemish study that adjusted for correlated exposures, PCBs 

showed a negative association with self-reported diabetes [52]. Despite these discrepancies, a 

meta-analysis of both cross-sectional and prospective studies published prior to March 2014 

showed that, in aggregate, total PCBs were associated with increased diabetes risk (Relative Risk 

[RR]: 2.39; 95%CI: 1.86-3.08) [53]. Taken within the context of animal and cellular data 

demonstrating that PCBs alter metabolic function ((Table 1.3) and references therein), this 

evidence collectively suggests that differential exposure to PCBs could contribute to diabetes 

disparities. 

 

Section 1.3.3: Traffic-Related Air Pollution and Particulate Matter 

Traffic-related air pollution is composed of various chemical components, including nitric 

oxides (NOx), ozone (O3), and particulate matter (PM), which is a mixture of particles and liquids 

classified by their diameter (e.g., <10 µm [PM10] or <2.5 µm [PM2.5]). Nationwide studies show 

that African-Americans and Latinos are exposed to significantly more PM2.5   [19, 54], and ethnic 
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and racial disparities in exposure to traffic-related air pollution exceed those between income 

groups [55] (Table 1.2). NO2 levels correlate closely with PM2.5, ultrafine particles, and black 

carbon and thus serve as a proxy for traffic-related air pollution [56]. Exposure to NO2 was 38% 

higher for people of color than for non-Hispanic Whites and 10% higher for people below the 

poverty line [55]. Among non-White individuals living in poverty, children under the age of 5 

were exposed to 23% higher NO2 concentrations than the rest of the population [55]. Importantly, 

racial differences in NO2 exposure were greater in large metropolitan centers compared to small-

to-medium urban areas, likely reflecting racial and ethnic segregation around traffic corridors in 

major U.S. cities.  

Animal studies suggest that exposure to PM2.5 alters whole body energy homeostasis 

through the development of a chronic inflammatory state, endoplasmic reticulum stress in 

metabolic tissues, and autonomic nervous system dysfunction [57]. Chronic inhalational exposure 

to PM2.5 aberrantly activates innate immunity, increasing serum inflammatory cytokines and 

recruiting pro-inflammatory macrophages to adipose tissue resulting in the development of insulin 

resistance [58]. In animal models, PM2.5 exposure impairs insulin signaling in adipose tissue, liver, 

skeletal muscle, and the vascular endothelium, which increases blood glucose levels, and promote 

hepatic lipid accumulation [58, 59]. Similar effects were also shown with developmental exposure 

to PM2.5 during early life [60]. Although these studies examined PM2.5 concentrations that are 

higher than average ambient U.S. concentrations (15 µg/m3), they are on par with levels observed 

in low- and middle-income countries that are experiencing dramatic increases in diabetes rates, 

e.g. China, India, and several Latin American countries [61].  

Increasing epidemiological evidence implicates air pollution in glucose dysregulation, 

including insulin resistance [62] (Table 1.1). In a small but elegant study, residents of rural 
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Michigan exposed to urban air for only 4-5 hours daily for 5 consecutive days exhibited an increase 

in the homeostatic model assessment of insulin resistance (HOMA-IR) for each 10 µg/m3 increase 

in PM2.5 [63]. Similarly, in insulin resistant adults with the metabolic syndrome in the Beijing 

metropolitan area, variations in black carbon and PM2.5 were associated with worsening insulin 

resistance [64]. In Germany, long-term exposure to PM10 and NO2 was associated with greater 

insulin resistance in 10-year old children [65]. Additionally, several studies have linked poor air 

quality with progression to diabetes. In one study of subjects without diabetes followed for 5.1 

years, each interquartile range (IQR) increase in total PM10 was associated with a 20% increased 

risk of developing T2D (RR: 1.20; 95% CI: 1.01-1.42) [66]. Living closer than 100 m (relative to 

>200 m) from a busy road was associated with a 37% increased risk of developing diabetes (RR: 

1.37; 95% CI: 1.04-1.81). In this study, higher levels of PM2.5, traffic-specific PM10, and traffic-

specific PM2.5 were each also associated with increased diabetes risk; however, these measures 

failed to reach statistical significance. In a study of Black women living in Los Angeles, CA 

followed for 10 years, incident diabetes rates were increased for each IQR increase in NOX 

(Incidence Rate Ratio [IRR]: 1.25; 95% CI: 1.07-1.46), while PM2.5 was associated with a non-

significant increase in incident diabetes (IRR: 1.63; 95%CI: 0.78-3.44) [67]. Among non-diabetic 

women from the Study of the Influence of Air Pollution on Lung, Inflammation, and Aging cohort 

followed for 16 years, incident diabetes increased by 15-42% per IQR of PM10 or traffic-related 

air pollution [68]. The data from prospective studies are not, however, uniform. In the Multi-Ethnic 

Study of Atherosclerosis, NOX was associated with prevalent diabetes, and PM2.5 trended toward 

an association (OR: 1.09; 95% CI: 1.00-1.17), but no air pollution measure was associated with 

incident diabetes over 9 years of follow-up [69]. In a long-term analysis of the Black Women’s 

Health Study with adjustment for multiple metabolic stressors, NO2 was not associated with 
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diabetes incidence [70]. Despite this heterogeneity, epidemiological studies linking various 

chemical constituents of air pollution to diabetes risk coupled with animal studies demonstrating 

that exposures to air pollutants such as PM2.5 and polyaromatic hydrocarbons (PAHs) disrupt 

metabolism and promote inflammation (Table 1.3) collectively suggest that differential exposure 

to air pollution may augment diabetes risk in low-income communities of color. 

In addition to effects on diabetes development per se, air pollutants may also promote 

adverse outcomes in those with the disease. For example, PM2.5 levels modeled for home addresses 

were linked to diabetes on death certificates [71], while a prospective analysis of over 2 million 

adults revealed that a 10 μg/m3 increase in PM2.5 was associated with increased diabetes-related 

mortality [72]. These findings may be related to adverse vascular effects in those with diabetes. In 

22 patients with T2D living in North Carolina, daily measures of flow-mediated vasodilatation 

were decreased in association with PM2.5 levels [73]. The clinical significance of this may be 

reflected in data showing that each 10 μg/m3 increase in PM2.5 was associated with an 11% 

increased risk of ischemic stroke in those with diabetes [74].  

 

Section 1.3.4: Bisphenol A (BPA) 

 BPA is a ubiquitous synthetic chemical used in the manufacturing of polycarbonate and other 

plastics commonly used in consumer products; moreover, BPA is a component of sales receipts 

and epoxy resins lining food and beverage cans as well as water pipes. BPA exposure in the U.S. 

population is nearly universal [75]. Although BPA is rapidly cleared from the body and single 

measurements may not reflect cumulative exposure [76], African-Americans and people with 

lower incomes have higher BPA levels than the population at large (Table 1.2). The reasons for 

these disparities are not clear; however, reduced access to fresh food and consequential 
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consumption of processed foods may partly explain these associations [77] since consuming foods 

packaged in plastic or cans increases BPA exposure [78]. Moreover, among individuals with low 

food security, BPA levels were higher if they received emergency food assistance, which includes 

canned foods [79]. For example, 6-11 year-old children receiving emergency food assistance had 

BPA levels that were 54% higher than age-matched children from more affluent families [79]. 

 Several animal studies have shown that prenatal exposure to BPA at concentrations at or 

below the U.S. EPA’s daily allowable intake level (50 µg/kg/day) resulted in increased serum 

insulin, as well as decreased glucose tolerance later in life [80, 81]. Importantly, these effects were 

not observed at much higher doses, but were significantly worsened with a high-fat diet exposure 

during development [80]. Perinatal exposure to BPA induced promoter hypermethylation of 

hepatic glucokinase with consequent downregulation of glucokinase expression during adulthood 

[82]. BPA exposure decreases levels of the insulin-sensitizing adipokine adiponectin and disrupts 

insulin signaling in various animal models [83]. BPA exposure also has rapid effects on β-cell 

insulin secretion. Low-dose exposure can stimulate insulin secretion, whereas chronic exposure 

increases β-cell insulin content and glucose-stimulated insulin secretion, leading to post-prandial 

hyperinsulinemia that is often observed before the development of insulin resistance [84]. 

 Disparities in BPA exposure may contribute to metabolic disease burden since increasing 

evidence associates BPA with diabetes. Analyses exploring the association between urinary BPA 

levels and metabolic disease are complicated by BPA’s rapid excretion [85]; moreover, while there 

is no definitive evidence that urinary excretion of BPA is influenced by race/ethnicity, lack of 

adjustments for renal function can complicate urinary assessments in population studies [86]. 

Despite these caveats, the National Toxicology Program concluded that BPA is suggested to exert 

effects on glucose homeostasis and insulin release based upon animal and in vitro studies [87]. 
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While there is some heterogeneity across studies, the literature supporting this conclusion 

demonstrates myriad BPA-induced metabolic disruptions across multiple animal and cellular 

model systems, including alterations in body weight regulation, insulin action, and insulin 

secretion as well as specific disruptions in β-cell, α-cell, hepatocyte, and adipocyte function and 

development (Table 1.3). This conclusion is further supported by limited prospective human 

studies (Table 1.1). In data from the Nurses’ Health Study (NHS), extremes of BPA quartiles were 

associated with incident diabetes after adjusting for BMI (OR: 2.08; 95%CI: 1.17-3.69) in NHS 

II, but not NHS [88]. This potentially suggests that age may modify BPA-associated diabetes risk 

as the mean age in NHS II was 45.6 years versus 65.6 years in NHS. Alternatively, these 

differences may have arisen from period-cohort effects in which the extent, diversity, or timing of 

exposures may have been greater or more deleterious in NHS II. Furthermore, the relationship 

between BPA and diabetes risk was modulated by a diabetes genetic risk score, suggesting that 

some populations may be more sensitive to the diabetogenic effects of BPA [89]. Interestingly, 

among those with diabetes BPA may exacerbate diabetes complications since high levels of BPA 

were associated with a markedly increased rate of developing chronic kidney disease (OR: 6.65; 

95%CI: 1.47-30.04) [90]. In one meta-analysis aggregating cross-sectional and prospective 

studies, comparing the highest to lowest exposure groups demonstrated a positive association 

between BPA and diabetes (RR: 1.45; 95%CI: 1.13-1.87) [53], a finding similar to a second, more 

recent meta-analysis of prevalent diabetes in three cross-sectional studies (OR: 1.47; 95%CI: 1.21-

1.80) [91]. Thus, based on reasonable evidence, differential BPA exposure can contribute to 

diabetes disparities. 

 

Section 1.3.5: Phthalates 
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Phthalates are a diverse class of widely used synthetic compounds. High-molecular-weight 

(HMW) phthalates are mainly employed as plasticizers in food packaging, toys, and building 

materials such as polyvinyl chloride (PVC); low-molecular-weight (LMW) phthalates are used in 

pharmaceuticals, personal care products, and solvents. Phthalates are not covalently bound within 

products and thus can volatilize or leach out, thereby facilitating absorption via dermal contact, 

ingestion, and inhalation. Higher phthalate exposure amongst people of color and people with low 

income have been documented in various studies (Table 1.2), although the sources of these 

exposure differences are difficult to discern given the widespread commercial use of phthalates. 

Reduced access to fresh fruits and vegetables and increased consumption of fat-rich foods in low-

income populations may augment exposure differences since certain high fat foods are a major 

source of HMW phthalates [92]. Weathering of older construction materials in low-income 

households may increase inhalational phthalate exposure [93]. Furthermore, purchasing 

inexpensive products likely contributes to disproportionate phthalate exposures based on an 

evaluation of products at “dollar stores” revealing that 32% of PVC-containing products exceeded 

phthalate limits established for children’s products by the Consumer Product Safety Commission 

[94]. Importantly, personal care products and cosmetics also contribute to phthalate exposure [95], 

especially in women, who typically have the highest concentrations of phthalates [96]. Indeed, 

certain feminine hygiene products were found to be at least partially responsible for higher levels 

of monoethyl phthalate in African-American women [97]. These data provide provocative 

evidence of racial, ethnic, and socioeconomic disparities in phthalate exposure; however, 

additional studies are needed to further illuminate the sources of unequal phthalate exposures. 

Numerous animal studies demonstrate that phthalates affect energy metabolism, most of 

which have studied exposure to the widely used di(2-ethylhexyl) phthalate (DEHP). DEHP 
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decreased insulin content and secretion, and induced apoptosis of INS-1 cells by activating 

endoplasmic reticulum stress and suppressing antioxidant protection [98]. Phthalate exposure has 

been associated with increased oxidative stress biomarkers in humans such as decreased serum 

bilirubin [99], which is important since β-cells are particularly vulnerable to oxidative stress due 

to their low levels of catalase and glutathione peroxidase. In utero DEHP exposure led to reduced 

β-cell mass and insulin content with disruptions in β-cell ultrastructure at weaning, whereas at 

adulthood, female offspring of exposed dams developed hyperglycemia with reduced insulin levels 

[100]. Although male offspring of exposed dams showed elevated insulin levels without glucose 

intolerance [100], in utero DEHP exposure exacerbated glucose intolerance in males at adulthood 

upon high-fat diet feeding [101]. DEHP along with its breakdown products and other phthalates 

can directly activate the peroxisome proliferator-activated receptor-γ (PPARγ) [102], and may 

influence diabetes pathogenesis by their obesogenic activity.  

Several epidemiologic studies have linked higher phthalate exposure with diabetes (Table 

1.1). In data from NHS II, total urinary phthalate metabolites were associated with diabetes [88]. 

In this analysis, metabolites of butyl phthalates and DEHP were associated with diabetes with ORs 

of 3.16 (95%CI: 1.68-5.95) and 1.91 (95%CI: 1.04-3.49), respectively. Similar to BPA, these 

associations may be age-related or a consequence of period-cohort effects as similar findings were 

not observed with the older, original NHS. In the Early Life Exposure in Mexico to Environmental 

Toxicants cohort, in utero levels of monoethyl phthalate were associated with reduced insulin 

secretion in pubertal boys [103]. In the meta-analysis of Song and colleagues, urinary 

concentrations of phthalates were nearly significantly associated with diabetes (RR: 1.48; 95%CI: 

0.98-2.25). With supportive cellular and animal data demonstrating that various phthalates have 

the capacity to promote dysfunction in multiple metabolic tissues (Table 1.1), further prospective 
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studies are justified to define the relationship between phthalate exposures and diabetes risk, 

particularly among vulnerable populations. 

 

Section 1.3.6: Organochlorine Pesticides 

Organochlorine (OC) pesticides were extensively used in the U.S. until the 1970s when 

most were banned due to their environmental persistence and toxicity to humans and wildlife; 

however, several OC pesticides and their metabolites are still detectable in the U.S. population. 

Importantly, levels of these compounds are greater in Mexican-Americans and African-Americans 

compared to Caucasians (Table 1.2). The prolonged use of OC pesticides outside of the U.S. for 

agricultural purposes or vector control is believed to contribute to higher levels in Latinx 

populations [22, 104, 105]. Indeed, based on NHANES data, people born outside of the U.S. are 

more likely to be exposed to OC pesticides [106]. However, the overrepresentation of Mexican-

Americans in U.S. agriculture may also play a role in exposure disparities [107]. Additionally, 

direct exposures to OC pesticides before their phase-out may have been passed down to offspring 

through breast milk and cord blood [108], likely resulting in higher body burdens at the start of 

life that then persist into adulthood.  

Organochlorine pesticides are persistent organic pollutants (POPs) that can bioaccumulate 

in adipose tissue, where they disrupt adipocyte function and development and from which they can 

leach to affect other tissues [109, 110]. Animal and in vitro studies support these links; however, 

the mechanisms by which OC pesticides perturb energy homeostasis remain elusive. Both p,p’- 

dichlorodiphenyltrichloroethane (DDT) and p,p’- dichlorodiphenylethylene (DDE), a metabolite 

of DDT, can promote differentiation of mature murine adipocytes in vitro by mechanisms that are 

unclear [111, 112]. Male rats that were fed crude salmon oil naturally contaminated with POPs 
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including OC pesticides, developed insulin resistance and hepatosteatosis compared to rats fed 

refined salmon oil [33]. Moreover, this study demonstrated that OC pesticides present in farmed 

salmon oil were the most potent POP-inducers of insulin resistance in an in vitro adipocyte model. 

A study examining perinatal DDT exposure found that female offspring developed hyperglycemia 

and hyperinsulinemia, and exhibited reduced thermogenesis and energy utilization during 

adulthood, suggesting a novel mechanism by which OC pesticide exposure might promote 

metabolic dysfunction [113]. In addition, earlier studies demonstrated the capacity of DDT to 

inhibit ß-cell insulin secretion [114]. However, other studies have reported conflicting results on 

the effects of p,p’-DDE on fasting hyperglycemia and insulin resistance in mice, suggesting that 

these phenotypes are diet-dependent [115, 116]. Supporting these basic science studies, 

epidemiological data from different parts of the world have associated exposure to OC pesticides 

including p,p’-DDT and its major metabolite p,p’-DDE, ß-Hexachlorocyclohexane (HCH), 

oxychlordane, and Hexachlorobenzene (HCB) with diabetes and the metabolic syndrome [117]. 

Thus, exposure to OC pesticides may be a further contributor to metabolic disease disparities. 

In concordance with animal and cellular data demonstrating the capacity of OC pesticides 

to disrupt multiple aspects of cellular and systemic glucose regulation (Table 1.3), epidemiological 

studies from various regions of the world have associated OC pesticide exposure with diabetes and 

the metabolic syndrome (Table 1.1). For example, plasma HCB was positively associated with 

incident T2D, an effect confirmed in an accompanying meta-analysis (OR: 2.00; 95%CI: 1.13-

3.53) [47]. Among Great Lakes sport fish consumers, levels of DDE were associated with incident 

diabetes [51], while a study in Swedish women showed that being in the highest quartile of DDE 

levels relative to the lowest quartile was associated with incident diabetes (OR: 5.5; 95%CI: 1.2-

25) [50]. In a nested case-control cohort of individuals followed for nearly 20 years, the OC 
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pesticides trans-nonachlor, oxychlordane, and mirex were nonlinearly associated with new onset 

diabetes [49]. While in the PIVUS study, trans-nonachlor and a summary index of 3 OC pesticides 

were also positively associated with diabetes at age 75 [48]. In a Flemish biomonitoring program, 

OC pesticides levels measured in 2004-5 were associated with self-reported diabetes in 2011; this 

included hexachlorobenzene as well as DDE in men [52]. Finally, in the Agricultural Health Study, 

a large prospective cohort of pesticide applicators and their spouses, the OC pesticide dieldrin was 

associated with incident diabetes (Hazard Ratio: 1.99; 95%CI: 1.12-3.54) [118]. Compiling data 

across studies, a meta-analysis comparing the highest to lowest exposure groups demonstrated a 

strong positive correlation between OC pesticide exposure and diabetes rates (RR: 2.30; 95%CI: 

1.81-2.93) [53].  

 

Section 1.3.7: Polybrominated diphenyl ethers (PBDEs) 

PBDEs are synthetic chemicals that have been used as flame retardants since the 1970s. 

Because of their chemical stability and hydrophobicity, PBDEs have been found to bioaccumulate 

in animal fat, breast milk and placental tissue [119, 120]. United States residents have some of the 

highest levels of PBDEs in the world [119]. Within the U.S., the highest dust and serum levels 

have been reported in California [121], which may be due to California’s strict furniture 

flammability standards.  

Epidemiological evidence thus far suggests that in California, Mexican-Americans and 

people with low socioeconomic status (SES) may be disproportionately exposed to PBDEs (Table 

1.2). House dust contaminated with PBDEs that have leached out of furniture is currently thought 

to be the most significant exposure route. Low-income households may, on average, replace 

damaged furniture less often and be more likely to own used furniture, which may contribute to 
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the higher dust levels documented. Residential zoning may further contribute to PBDE exposure 

by confining children indoors where exposure is highest. This concept is supported by associations 

between higher PBDE levels and the absence of safe places to play among low-income, Mexican-

American children from Salinas, California [122]. Importantly, lower levels of PBDEs have been 

found in foreign-born Mexican-Americans relative to U.S.-born Mexican-Americans [121, 123, 

124]. Thus, PBDE exposure may be another possible health risk factor affecting the already 

vulnerable Mexican immigrant population of California.  

Although studies suggest that PBDE exposure disparities exist outside of California, the 

affected populations seem to vary between studies and geographical regions. One national study 

that examined the influence of SES on PBDE exposure found that individuals living in a household 

with an income of less than $20,000/year had significantly more PBDE exposure compared to 

those of higher income households (>$20,000/year) [121]. A study based in Durham, North 

Carolina also associated higher serum levels of some PBDEs with lower SES [125]. However, 

studies carried out in New York and Baltimore, MD, showed that educational attainment positively 

correlated with increased PBDE exposure [126, 127]. An analysis of the NHANES 2003-2008 

data, which did not look at SES, found no significant differences of PBDE levels across ethnic 

groups [22]. Thus, more studies are required to understand regional drivers of PBDE exposure 

disparities by race/ethnicity and SES.  

The majority of the experimental studies that have investigated the metabolism-disrupting 

activity of PBDEs have examined the effects of BDE-47, the most prevalent congener measured 

in human samples [128]. BDE-47 promotes differentiation of 3T3-L1 preadipocytes into mature 

adipocytes [129-131]. Interestingly, some BDE-47 metabolites are potent ligands for PPARγ 

[132], a master regulator of adipocyte differentiation. Animal models of in vivo PBDE exposure 
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have shown impaired lipolysis and glucose utilization in adipose tissue, markers of reduced insulin 

response [133], and alterations in hepatic gene expression that may compromise liver glucose and 

lipid metabolism [134-136]. Penta-BDEs such as BDE-47 have been phased out in several states 

in the U.S. since 2006 and replaced with organophosphate flame retardants, which can also induce 

adipocyte differentiation via PPARγ activation [137]. Although exposure data on this relatively 

new class of flame retardants is limited, their similar routes of exposure may result in similar 

exposure disparities.  

While, emerging epidemiological evidence links PBDE exposure to metabolic disease, the 

available evidence to date is not as strong as it is for the previously discussed EDCs. In a 

prospective cohort of French women, PBDE exposure showed a non-linear association with T2D 

risk, where the second and fourth quintile groups of exposure showed significant hazards ratios 

[138]. Further, evidence from two case-control community-based studies in China showed a 

positive association between serum PBDE-47 and diabetes risk [139]. In a national study, serum 

PBDE-153 levels showed an inverted U-shaped association with diabetes and metabolic syndrome 

[140]. Interestingly, PCBs, which have a similar molecular structure to PBDEs, have also 

displayed diabetogenic non-monotonic dose responses such as the one in this study [141-143]. A 

study in the Great Lakes region did not identify significant associations with PBDE exposure and 

diabetes [144]. Thus, further studies may be needed to investigate the high California PBDE levels 

with obesity and diabetes. However, evidence from recent case-control studies from the U.S., Iran, 

and China have consistently associated higher maternal serum PBDE levels with gestational 

diabetes [145-148]. Considering the higher PBDE exposure in Mexican-Americans, early life 

PBDE exposure should be considered as a possible factor that may contribute to the deterioration 

of metabolic health. Importantly, gestational diabetes increases the risk of developing T2D in 
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mothers after giving birth, and also increases the risk of metabolic disease in exposed children 

[149]. Overall, emerging epidemiological evidence supported by growing animal and in vitro 

studies now link PBDE exposure to diabetes, and raise the question of whether disparate exposures 

to this class of EDCs can be contributing to the unequal risk of T2D in the U.S. 

 

Section 1.4: Linking Environmental Exposures to Diabetes Risk in Vulnerable Populations 

Most studies examining links between EDCs and diabetes have done so without 

consideration of race, ethnicity, or SES; however, recently some reports have begun to interrogate 

these important interactions. In a cross-sectional study investigating the associations between 

phthalates and insulin resistance, there was an interaction with race demonstrating that Mexican-

American (P=0.001) and non-Hispanic Black adolescents (P=0.002) had significant increments in 

HOMA-IR with higher levels of HMW phthalates or DEHP that were not observed in non-

Hispanic Whites (P≥0.74) [150]. Similarly, in stratified models, HMW phthalates and DEHP were 

more strongly associated with HOMA-IR in adolescents from households with lower income. In 

another cross-sectional study, phthalate levels were positively associated with fasting blood 

glucose, fasting insulin, or HOMA-IR; however, the dose-response relationship was stronger 

among African-Americans and Mexican-Americans than Whites [151]. In the meta-analysis of 

Song and colleagues, the impact of PCBs on diabetes risk was higher in non-White populations 

(RR: 2.91; 95%CI: 1.60-5.30) compared to their White counterparts (RR: 1.94; 95%CI: 1.42-2.62); 

similarly, associations between OC pesticides and diabetes were also stronger in non-Whites (RR: 

2.64; 95%CI: 1.56-4.49) than Whites (RR: 1.95; 95%CI: 1.40-2.71) [53]. While these associations 

are likely partially attributable to higher EDC exposures, these findings may also suggest that 

Blacks and Latinxs may also be more sensitive to the diabetogenic effects of environmental 
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contaminants due to potential synergy with other diabetes risk factors, including behavioral factors 

such as diet and exercise. 

 The current literature provides evidence that six classes of environmental toxicants are 

linked to diabetes risk in humans, and for each there is evidence that vulnerable populations are 

disproportionately exposed. The strength of epidemiological evidence for these six classes varies, 

with the most consistent findings observed for the persistent pollutants (PCBs and OCs). This 

likely reflects the long biological half-lives of these compounds, the stability of their quantitation, 

and the duration of time they have been studied. Among all six classes, however, there is 

provocative evidence of diabetes-promoting effects as well as disparities in exposure. Thus, while 

further study is required, the unequal burden of environmental risk factors in ethnically/racially, 

and economically-segregated neighborhoods of color may contribute to inter-ethnic differences in 

metabolic health. 

 

Section 1.5: Origins of Differential Environmental Exposures 

Addressing disparities in environmental health necessitates understanding the sociological 

forces that shape society. Segregation profoundly influences individual socioeconomic status, 

reinforces unhealthy neighborhood environments, and modifies individual behaviors [152], all of 

which influence metabolic disease susceptibility. Reduced access to affordable healthy foods, as 

seen in many African-American and Latinx neighborhoods, promotes unhealthy eating habits [77], 

while lack of safety and reduced access to green space can limit physical activity [153]. Thus, the 

built environment in many communities of color potentiates two key drivers of diabetes risk, 

namely diet and exercise. 
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In addition, the historic economic and political racialization of residential areas and the 

labor force promoted today’s racial segregation and the co-decline of environmental health in these 

neighborhoods [154]. Indeed, living in highly segregated metropolitan areas is associated with 

greater health risk from industrial air pollution, with African-Americans at enhanced risk relative 

to non-Hispanic Whites [155]. Importantly, despite improvements in air quality over time, African-

Americans remain exposed to significantly more air pollution than non-Hispanic Whites [156]. 

Accounts of industrial division of labor by race in major U.S. cities document how people of color 

were restricted to low-wage, hazardous occupations while simultaneously being confined to low-

income housing near these industries [154]. Similar labor divisions also occurred in agriculture 

[107]. Grandfathering clauses allow older industrial facilities, often located in America’s 

metropolitan centers, to opt out of stricter environmental regulations required of newer facilities, 

thereby clustering industrial toxins within these urban cores [155]. Suburbanization was 

accompanied by expansion and clustering of highways near and through neighborhoods of color 

[157], leading to higher traffic-related air pollution exposure amongst African-Americans and 

Latinos [55]. Shifted focus to suburban economic development with consequential disinvestment 

of inner city neighborhoods have perpetuated a legacy of environmental inequality [154]. The 

cumulative effects of these cultural forces enhance exposure to environmental toxicants among 

African-American, Latinx, and low-income communities; addressing this history is essential for 

eliminating disparities in metabolic health.  

 

Section 1.6: Unanswered Questions and Objective of Dissertation 

While racial/ethnic and socioeconomic disparities in numerous metabolic disease risk 

factors, including EDC exposures, have been extensively reported in the U.S. for decades, the 
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extent to which these exposure differences are programming disease risk in utero and contributing 

to the current disparities in metabolic disease is unknown. Additionally, the sex-specific 

manifestations of these developmental exposure disparities are not understood. Further, the impact 

that glucocorticoid receptor (GR) modulating EDCs have on the programing of metabolic disease 

in animal models and humans is understudied. Finally, recent advances in the field of epigenetics 

have allowed for increasingly refined explanations for the transgenerational of inheritance of 

metabolic outcomes triggered by environmental factors including developmental EDC exposures 

[158, 159]. The extent to which the history of social and environmental inequality in the U.S. has 

contributed to the current racial and socioeconomic disparities in metabolic health and disease is 

unknown. Understanding how adverse health outcomes are programmed in utero in animal models 

will lead to a better understanding of how EDC exposure disparities are contributing to the current 

decline in metabolic health. 

The aim of this dissertation is to advance the current understanding of how gestational 

exposure to GR-modulating EDCs affect the metabolic health of exposed offspring. Discussion of 

metabolic outcomes following gestational pharmacological GC overexposures will put in context 

how exposures to GR-modulating EDCs can affect the metabolic health of exposed offspring. Sex-

specific outcomes and potential mechanisms mediating these differences will be emphasized. 

Current knowledge about GR-modulating EDCs will be examined. Finally, the metabolic 

outcomes of perinatal exposure to the GR-modulating EDC tolylfluanid (TF) on exposed offspring 

will be discussed. 
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Chapter 2 

Metabolic Misprogramming by Developmental Glucocorticoid Disruption 

 

Section 2.1: General Overview of Glucocorticoids: Physiology, Receptor Biochemistry, and 

Gene Regulation 

Section 2.1.1: Introduction to Glucocorticoid Physiology 

EDCs that modulate GR signaling are an understudied class of environmental pollutants of 

likely public health significance given the numerous physiological outcomes that GCs regulate 

during development and throughout life, including the control of glucose homeostasis. 

Developmental GC overexposure results in sex differences in outcomes that lack fundamental 

mechanistic understanding; moreover, these differences have been understudied in EDC studies. 

This chapter will discuss the current understanding of GC action, the role that GCs and sex 

hormones play during fetal development, how pharmacological overexposures to GCs promote the 

development of metabolic disease with a focus on sex differences in outcomes, and the state of 

knowledge regarding GR-modulating EDCs. Finally, this chapter will discuss potential 

mechanisms by which developmental GR disruption results in sex specific outcomes. 

GCs are life-sustaining steroid hormones that regulate physiological processes ranging 

from fetal development, metabolism, reproduction, circadian rhythmicity, inflammation, and 

behavior. GCs are synthesized in the zona fasciculata of the adrenal cortex under control of the 

Hypothalamic-Pituitary-Adrenal (HPA) axis (Figure 2.1). In response to HPA activators such as 

stress, the paraventricular nucleus of the hypothalamus releases Corticotropin-Releasing Hormone 

(CRH), which signals corticotropic cells in the anterior pituitary that produce Adrenocorticotropic 

hormone (ACTH) from pro-opiomelanocortin (POMC) to release ACTH. ACTH promotes the 
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synthesis of GCs by the adrenal cortex, namely cortisol in humans and corticosterone in rodents, 

which negatively feedback on the HPA axis.  

GC bioavailability is regulated by several mechanisms, which directly influence GR 

binding and transcriptional activity. Circulating GC levels follow diurnal rhythms characterized 

by peak morning levels and low nighttime levels in humans, whereas rodents exhibit opposite 

patterns [160]. Most circulating GCs are bound to corticosterone-binding globulin (CBG) and 

albumin, which reduce circulating GC bioavailability. At the cellular level, GC availability is 

regulated by 11β-hydroxysteroid dehydrogenase (11β-HSD) enzymes. 11β-HSD1 favors the 

conversion of inactive GCs such as cortisone and 11-dehydrocorticosterone into active cortisol 

and corticosterone, whereas 11β-HSD2 favors the conversion of active GCs into their inactive 

forms [160]. Because GCs have high affinity to the mineralocorticoid receptor (MR), 11β-HSD2 

is abundant in tissues where endogenous GCs would aberrantly induce MR action, such as the 

kidney. 

GCs were named based on initial observations of their role in regulating blood glucose 

levels. As such, GCs are counterregulatory hormones that increase blood glucose levels in times 

of fasting or psychological stress by reducing peripheral insulin sensitivity, promoting lipid and 

amino acid mobilization, and inducing hepatic glucose output. Increased GC exposure during adult 

life through either pharmacological treatment, endogenous hypercortisolemia due to Cushing’s 

Syndrome, and to a lesser extent, chronic psychological stress promotes the development of 

metabolic derangements characterized by hyperglycemia, hyperlipidemia, and visceral adiposity 

[161]. Increased GC exposure during fetal development has also been linked to adverse metabolic 

phenotypes later in life [162]. Thus, GCs are essential metabolic hormones that program and 
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maintain glucose homeostasis throughout the lifespan, making GR action a susceptible target for 

disruption by EDCs that could result in metabolic derangements. 

 

Section 2.1.2: Glucocorticoid Receptor (GR) Biochemistry 

GCs elicit their actions by binding to GR, a member of the nuclear receptor superfamily 

that is encoded by the NR3C1 gene. GR possesses an N-terminal domain, a central DNA binding 

domain (DBD), C-terminal ligand binding domain (LBD) and a flexible hinge region connecting 

the DBD and LBD that contributes to conformational changes upon ligand binding. GR activity is 

open to regulation by different posttranslational modifications including acetylation, 

phosphorylation, SUMOylation, and ubiquitination [163]. The N-terminal domain possesses the 

activated function (AF-1) transactivation domain which is needed for maximal transcriptional 

activity. The AF-1 domain from human GR contains 3 serine residues that can be phosphorylated 

(Ser-203, Ser-211, Ser-226); of these, pSer-211 is dependent on agonist activation, and promotes 

GR-transcriptional activation [164]. Further, human GR has been found to harbor at least three 

SUMOylation sites: K277 and K293 in the N-terminal domain, which promote gene repression, as 

well as K703 in the C-terminal ligand binding domain, which promotes GR activity [165, 166]. 

The LBD also possesses sequences that allow the receptor to dimerize and translocate to the 

nucleus, as well as a second transactivation AF-2 domain, which mediates interactions with 

coregulators after ligand binding [167].  

The NR3C1 gene is comprised of nine exons that via alternative splicing give rise to several 

transcriptional isoforms: GRα, GRβ, GRγ, GR-A, and GR-P. Alternative translation initiation of 

each GR transcriptional isoform results in up to 40 potential GR isoforms with differences in tissue 

distribution and transcriptional activity [160]. GRα is the most highly studied isoform and will be 
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the focus of this chapter. GR is localized in the cytosol bound to several proteins including 

chaperones such as heat shock protein 90 (Hsp90), Hsp70, and immunophilins such as FKBP51 

and FKBP52, which help maintain GR in a conformation with the highest ligand affinity [160]. 

Upon ligand binding, cytosolic GR changes conformation, dissociates from its chaperones, and 

translocates into the nucleus where it regulates gene expression. Overall, the structure and 

processing of GR is receptive to diverse regulatory signals that allow for the dynamic control of 

transcriptional activity leading to tissue-specific actions throughout development and life.  

 

Section 2.1.3: Gene Regulation by the Glucocorticoid Receptor 

 Once bound to DNA, GR can promote the expression of extensive gene networks by 

consolidating the nucleation of coregulators and the general transcription machinery. GR binds to 

palindromic DNA sequences as homodimers, but may also bind as homotetramers [168]. GR 

monomers bind to half-site motifs in the genome at a ratio of around 5:1 of homodimer binding 

and can drive transcription, but the relative role of monomeric GR in gene expression is still being 

explored given the preference of pharmacological GCs to induce GR homodimerization [169]. 

GR-DNA binding depends on chromatin accessibility to glucocorticoid response elements (GREs) 

[170-172]. Available data indicate that GR binding patterns overlap less than 5% across different 

cell types [170, 173] suggesting that cell-specific differences in the chromatin landscape dictate 

differential gene expression by GR. While cell-specific DNA accessibility is established during 

cell differentiation, differences in the expression of chromatin remodeling factors that could be 

signaled to open or close genomic regions harboring GREs such as Activator Protein 1 (AP-1) 

[174] and Forkhead Box A1 (FoxA1) [175] can also contribute to tissue-specific differences in 

transcriptional regulation by GR.  
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Tissue-specific differences in the expression of other transcription factors and coregulators 

can also contribute to differential GR gene regulation. Through a mechanism termed “assisted 

loading,” DNA-bound GR can increase accessibility to other transcription factors and promote 

gene transcription [176]. Likewise, other DNA-bound transcription factors can recruit GR through 

assisted loading [177]. GR has the ability to regulate genes that do not possess GREs through a 

mechanism called “tethering”, where GR forms protein-protein interactions with DNA-bound 

transcription factors and contributes to the transcriptional complex [178]. DNA-bound GR can 

also tether other transcription factors in regions that don’t harbor their respective DNA-binding 

regions and involve them in the transcriptional complex [177]. Notably, various transcription 

factors which have tissue-specific differences in relative expression and which show sex 

differences in activity, such as signal transducer and activator of transcription 5 (STAT5), can 

engage in tethering with GR and mediate gene expression [177]. Further, GR can cooperatively 

bind to DNA with other DNA-bound transcription factors and promote gene expression [177]. 

Tissue-specific expression and modulation of coregulators may also contribute to cell-specific 

differences in GR action [179]. GR-mediated gene repression is thought to happen by upregulation 

of gene products that antagonize other gene endpoints, by binding or tethering to other 

transcription factors and inhibiting their activity, or by GR binding to negative glucocorticoid 

response elements [180-182]. The regulation of gene expression by GR depends on numerous 

tissue-specific elements that can be modulated by factors including developmental stage, 

hormones, and other environmental influences. Comprehensively understanding how GR activity 

is modulated in a tissue-specific manner by EDCs during fetal development can clarify the nature 

behind tissue-specific phenotypes that are sex-dependent, which still lack a mechanistic 

understanding.  
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Section 2.2: Estrogens, Androgens, and Glucocorticoids During Fetal Development 

Section 2.2.1: Conceptualizing Developmental Misprogramming as a Multi-Hormone Issue 

Numerous hormones including estrogens, androgens, and glucocorticoids control fetal 

development; however, the ways in which these three hormone classes cooperate to promote 

development are not completely understood. Importantly, these three hormone classes are known 

to crosstalk during adulthood (Section 2.4.2-2.4.3), suggesting that hormone crosstalk may also 

happen during fetal development. Differences in the levels of testosterone (T) between male and 

female fetuses promote sex-differentiation and masculinization of reproductive organs [183], and 

recent evidence suggests that sex-differences in the development of key metabolic tissues may also 

happen during early development [184, 185]. Whether disrupting GC signaling during the 

establishment of sex-differences of key metabolic tissues results in sex-specific outcomes remains 

to be studied. In support of this idea, developmental GC overexposure leads to sex differences in 

later-life outcomes (Table 2.1), suggesting that aberrant GR activation during development can 

interact with AR and/or ER signaling and result in sex-specific organizational differences leading 

to adverse outcomes later-in-life. This section will introduce the developmental roles and dynamics 

of estrogens, androgens, and glucocorticoids to better outline susceptible windows of 

malprogramming during fetal development and better understand how disruption of these hormone 

pathways can potentially lead to sex-specific outcomes.  

 

Section 2.2.2: Estrogens During Fetal Development 

Early in pregnancy estrogens are synthesized by the corpus luteum in the maternal ovaries, 

but by the eighth week of gestation (in primates), the placenta becomes the primary source of 

estrogens. The rodent placenta has minimal steroidogenic activity and depends on ovarian estrogen 
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synthesis throughout gestation [186]. In primates, the placenta cannot synthesize C19 steroids from 

pregnenolone or progesterone since it does not express 17α-hydroxylase/17:20-lyase (P450c17), 

and thus depends on the developing fetal adrenal gland for androgen precursors such as 

dehydroepiandrosterone (DHEA) and DHEA-S for placental estrogen synthesis [187]. This 

increased estrogen during gestation regulates fetal exposure to maternal GCs by upregulating 

placental 11-βHSD2, which converts active cortisol and corticosterone into inactive cortisone and 

11-dehydrocorticosterone [188]. By limiting the elevated maternal GCs from entering fetal 

circulation, which would otherwise inhibit ACTH release by the fetal pituitary, fetal ACTH 

remains high and stimulates DHEA secretion from the fetal adrenal gland to continue providing 

substrate to drive increasing estrogen production in primates [187]. This estrogen-mediated 

increase in fetal ACTH levels promotes the maturation of the transitional zone of the fetal adrenal 

gland, which becomes a key source of fetal GCs later in gestation [187]. As fetal glucocorticoids 

rise, they stimulate placental CRH secretion (as opposed to their inhibitory effects on the 

hypothalamus), resulting in a positive feedback loop that further promotes GC secretion from the 

fetal adrenal gland towards the end of gestation [187].  

The described increase in circulating estrogens in the mother ensure a healthy pregnancy 

and postpartum period through direct actions on maternal physiology and by regulating other 

hormones [189, 190]. Estrogens also elicit a variety of actions on the fetus that includes sexual 

differentiation and the development of reproductive tissues and the brain [191-193], but also likely 

regulate the development of non-reproductive organs important for maintaining glucose 

homeostasis [184, 194, 195]. Importantly, while T levels are markedly higher in developing male 

fetuses, tissue-specific aromatization of androgens to estrogens is common during development, 

and known to contribute to sex-specific differences in developmental outcomes. For example, 
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levels of estradiol (E2), estrogen receptors, and aromatase activity are at their highest in the brain 

prenatally and in the first postnatal days before declining to adult levels [191]. Whether such tissue-

specific conversion happens in developing key metabolic tissues is possible, but needs further 

study. Interestingly, inhibition of ER activity during fetal development by inhibiting aromatase in 

baboons results in insulin resistance later in life [196, 197], while prenatal exposure to ER 

disrupting EDCs leads to adverse metabolic outcomes in mice [198]. Whether indirect disruption 

of ER signaling through GR disruption contributes to adverse metabolic programming is possible 

and should be formally tested.  

 

Section 2.2.3: Androgens During Fetal Development 

Fetal androgens are best known for promoting sexual differentiation and masculinization 

of reproductive organs; however, androgens likely mediate sex differences in the development of 

key metabolic tissues as well [184]. Fetal T levels in humans and rats are regulated differently and 

follow somewhat different circulating patterns during pregnancy [183]. In humans, male fetal 

Leydig cells start to produce T at about 8 weeks of gestation [199], and levels peak during the 

second trimester, from 11-14 weeks of gestation [200-202] as measured in fetal blood and the 

testis. Notably, male serum T levels are between 3- to 8-fold higher than in female fetuses between 

gestation week 12-20 [203, 204]. In the fetal male rat, testicular testosterone production begins at 

around gestational day 14.5-15.5 [205, 206]. T levels in the rat peak near term at around gestation 

day 16.5-17.5 if measured in the testis and blood, [207, 208] or gestation day 18.5-19.5 when 

measuring whole body T levels [209]. Further, whole body T levels in rats are higher in males in 

comparison to female levels, but only on gestational days 18.5 and 19.5 [209].  
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 Notably, prenatal overexposure to androgens leads to metabolic perturbations in female 

offspring characterized by increased adiposity, impairments in insulin secretion, and/or insulin 

resistance in mice, rats, sheep, and monkeys [210-214]. Whether these perturbations result from 

direct organizational programming of key metabolic tissues through AR signaling, or indirectly, 

by altering the development of reproductive, or neuronal endpoints that increase susceptibility to 

metabolic disease by altering sex hormone levels during adulthood or eating behavior need further 

study. Nonetheless, aberrant androgen action during fetal development is implicated in the 

misprogramming of metabolism, that may be sex specific. Critically, overexposure to GCs during 

pregnancy leads to outcomes indicative of alterations in fetal androgen levels and action. For 

example, dexamethasone (DEX) treatment during the last week of gestation in rats lead to altered 

anogenital distance [215]. Further, maternal corticosterone use during pregnancy was associated 

with increased risk of hypospadias [216]. Whether aberrant GR signaling during fetal development 

promotes the misprogramming of key metabolic tissues by directly altering AR signaling or T 

levels is a possibility that should be further studied.  Further, the extent by which T overexposure 

leads to metabolic misprogramming by disrupting GR signaling during development remains 

unknown. 

 

Section 2.2.4: Glucocorticoids During Fetal Development 

Systemic GC production in humans and rodents is enhanced during pregnancy [217]. 

Circulating maternal CRH levels increase up to one thousand times their nonpregnant 

concentrations [218, 219] due to increased CRH production from the placenta, decidua, and fetal 

membranes [220-222]. While CRH regulates several physiological functions during pregnancy, 

including fetal adrenal steroidogenesis, maintenance of fetoplacental circulation, and onset of 



 34

parturition [223], CRH also increases maternal ACTH and results in a two- to three-fold increase 

in total maternal circulating cortisol in humans that can reach levels observed during Cushing’s 

Syndrome [224]. Estrogens upregulate hepatic CBG production in the mother [225], which bind 

and reduce GC bioavailability, but nonetheless, free GC levels increase throughout pregnancy 

[226]. Interestingly, GC sensitivity decreases in certain maternal tissues, such as the liver, 

potentially to protect against adverse metabolic effects that would otherwise result from the 

Cushing-like state of pregnancy. Restoration of hepatic GC sensitivity in the pregnant mouse 

impairs pregnancy-induced hepatomegaly and ultimately leads to IUGR, suggesting that tissue-

specific changes in maternal GCs sensitivity is essential for healthy fetal development [227]. 

Proposed mechanisms explaining the lack of negative feedback by the higher GC levels on the 

HPA axis are enhanced pituitary response to CRH and decreased pituitary sensitivity to GC 

negative feedback [223].  

GCs are important regulators of fetal development that optimize offspring fitness [228]. 

Throughout gestation fetal GCs serve as signals of resource availability that support fetal survival  

in response to drops of essential nutritional substrates during development such as glucose and 

oxygen, and prioritize substrate availability for key tissues at the expense of others [229]. The rise 

in GCs towards the end of gestation promotes the developmental transition from tissue accretion 

to differentiation in multiple tissues [162]. These GC-mediated physiological changes are driven 

by the upregulation of enzymes in multiple tissues that sustain life, including the lungs, liver, 

adipose tissue, and the gastrointestinal tract [162]. For example, GCs upregulate genes needed to 

produce glycogen, as well as genes necessary for gluconeogenesis, including phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pc) [162]. Thus, throughout pregnancy, 

carefully regulated GC levels and their tissue specific actions in the mother and fetus are essential 
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for controlling a healthy developmental trajectory that will optimize offspring fitness after birth. 

Disrupting GC action during fetal development can therefore have life-lasting physiological 

impacts on the offspring that can increase disease risk.  

 

Section 2.3: Metabolic Outcomes Following Developmental Overexposure to Glucocorticoids  

Section 2.3.1: Introduction 

Gestational exposure to excess GCs leads to adverse outcomes in the offspring later-in-life, 

including alterations in lipid and glucose homeostasis. Prenatal treatment with pharmacological 

GCs administered to augment lung development in preterm births decreases birth weight, a known 

cardiometabolic disease risk factor [230], and can increase the individual’s risk of insulin 

resistance during adulthood [231]. Moreover, animal models of in utero GC excess, such as 

pharmacological inhibitors of placental 11β-HSD2 and chronic maternal psychological stress, as 

well as other indirect models such as maternal protein restriction and hypoxia have all shown 

metabolic defects in the offspring [232-236]. This section will focus on studies that have treated 

dams with known doses of pharmacological GCs such as betamethasone or DEX (Table 2.1), 

which bypass 11β-HSD2 deactivation and readily cross the placenta and expose the developing 

fetus. 

 

Section 2.3.2: Adverse Metabolic Outcomes Following In Utero Pharmacological 

Glucocorticoid Exposure 

While prenatal GC exposures lead to varying effects on glucose homeostasis in offspring, 

most studies have shown adverse metabolic outcomes characterized by either impaired glucose 

tolerance or decreased insulin sensitivity (Table 2.1). Interestingly, the most commonly affected 
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organ from these studies is the liver, which exhibits related metabolic derangements such as lipid 

accumulation, reduced sensitivity to insulin, and upregulated expression of gluconeogenic genes 

such as PEPCK with resulting increased hepatic glucose output. Other important metabolic tissues 

such as adipose and the pancreatic β-cells have also shown functional and structural abnormalities 

following prenatal DEX exposure (Table 2.1). Pancreatic β-cells are reduced following prenatal 

GC overexposure, with some studies reporting decreased glucose-stimulated insulin secretion 

during glucose tolerance test [237-239]. Glucocorticoid misprogramming of β-cell development 

and function can increase diabetes risk later in life by decreasing the β-cell pool that the body will 

depend on to stay at euglycemia during adulthood, especially since most of the lifelong β-cell 

population from which adult β-cells will replicate from is established early in life [240, 241]. 

Gestational DEX exposure reduced epididymal and/or total visceral adiposity in several studies 

[242-244]. Two studies found no differences in adiposity, likely because the choice of adipose 

depot (retroperitoneal) [245], or because adiposity was assessed at weaning [238] when fat mass 

is minimal. Critically, the reduction or no change in adiposity from these studies suggest that 

developmental exposures can result in adiposity phenotypes different from those observed in 

adults with glucose intolerance and insulin resistance, which are usually characterized by increased 

adiposity. Gestational GC overexposure could potentially inhibit adipose development and 

consequent expansion during adulthood, which can promote increased hepatic lipid storage and 

decrease liver insulin sensitivity, as has been observed in several studies (Table 2.1). In support 

of this point, nutrient excess during adulthood leads to worse liver steatosis in rats prenatally 

exposed to DEX [245-248]. Finally, several studies have found that DEX increases circulating GC 

levels [249, 250], and can upregulate GR levels in adipose and liver [242, 251], all of which 

promote hepatic glucose output. Overall, glucose intolerance and insulin resistance are common 
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metabolic endpoints resulting from developmental GC overexposure in animal models. While the 

mechanisms leading to these adverse outcomes warrant more work, evidence from current studies 

show that metabolic misprogramming results from structural and functional defects at multiple 

tissues.    

 

Section 2.3.3: Potential Mechanisms by Which Developmental Glucocorticoid Overexposure 

Results in Adverse Metabolic Outcomes 

We still lack a mechanistic understanding of how early life overexposures to GC result in 

adverse metabolic outcomes later in life such as glucose intolerance and insulin resistance, but 

evidence from available studies suggest that these effects are mediated through multiple tissues 

and may be programmed epigenetically [252]. Maternal and fetal GCs are critical for the 

development of key metabolic tissues, including pancreatic β-cells [253], adipose tissue [254], and 

the liver [255]. All three of these tissues have been shown to be adversely affected by prenatal 

DEX exposures (Table 2.1); however, the mechanisms by which GCs misprogram these tissues 

are likely tissue-specific and dependent on the developmental period of exposure. For example, 

GCs suppress β-cell development and promote acinar cell development [253]; thus prenatal GC 

excess can lead to the observed decreased pancreatic β-cell content by suppressing β-cell 

development. Fetal overexposure to GCs results in a lifelong increase in hepatic expression of the 

rate-limiting enzyme of gluconeogenesis, PEPCK (Table 2.1), which is implicated in the 

pathogenesis of type 2 diabetes and its complications. PEPCK can also be upregulated by multiple 

additional factors that are similarly altered following prenatal GC overexposure, such as 

hepatocyte nuclear factor 4 (HNF4) [256], GR [251], and reduced insulin sensitivity, which is 

commonly observed after gestational DEX exposure. Whether PEPCK, GR and/or HNF4 are 
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epigenetically programmed after gestational GC overexposure remain to be tested. Evidence for 

epigenetic malprogramming some of these factors exists in other contexts. For example, low 

maternal grooming in rats resulted in a higher stress response in the offspring, which was attributed 

to lower hippocampal GR expression driven by lower GR promoter accessibility, which blunted 

HPA-axis negative feedback [257]. Further, paternal stress resulted in increased hepatic PEPCK 

expression in the offspring, which was associated with the epigenetic silencing of a micro-RNA 

that negatively regulates PEPCK  [258]. Prenatal exposure to excess pharmacological GCs may 

alter the hepatic chromatin architecture during fetal development in such a way that directly 

promotes the increased expression of PEPCK, or modulates the expression of PEPCK-regulating 

genes. Unfortunately, epigenetic programming of metabolic phenotypes following prenatal GC 

overexposure through pharmacological exposures or EDC exposures remains relatively 

understudied. Future studies are warranted to test at how GC overexposure affects fetal organ 

development to better understand the mechanisms by which GC program metabolic disease risk 

later in life. 

 

Section 2.3.4: Sex Differences in Metabolic Outcomes Following Developmental 

Glucocorticoid Overexposure 

Sex differences in HPA axis function, behavior, and neurological endpoints following 

gestational GC overexposure are established [259-261]; however, few studies have reported 

studying how prenatal pharmacological GC overexposure affects the metabolic health of both male 

and female offspring. Out of the 15 studies included in Table 2.1 that have studied metabolic 

outcomes following pharmacological GC exposure during gestation, only four studies have 

presented results from male and female offspring. Importantly, every one of these studies found 
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sex differences in metabolic outcomes. Interestingly, the phenotypes and sex differences observed 

varied by study, and ranged from changes in hepatic PEPCK expression, steatosis, adiposity, 

insulin sensitivity, glucose tolerance, and circulating corticosterone. Sex differences in these 

studies were characterized by only one sex having an adverse metabolic phenotype, whereas the 

other sex was unaffected, even though both males and females were exposed to DEX during 

gestation. There was no clear trend suggesting that either females or males were more susceptible 

to metabolic misprogramming by gestational GC overexposure, since depending on the study, both 

sexes experienced adverse metabolic outcomes. While the mechanisms behind the observed sex 

differences were not elucidated, one study attributed suppressed growth hormone (GH) axis as a 

potential mediator of liver steatosis in DEX-exposed female offspring that was not observed in 

male offspring [246]. Thus, a thorough understanding of potential mediators of sex differences in 

metabolic outcomes following gestational GC overexposures is warranted to truly understand how 

environmental factors that disrupt GC signaling during development are implicated in today’s 

metabolic disease pandemic.  

 

Section 2.4: Potential Mechanisms Explaining Sex Differences in Metabolic Outcomes  

Section 2.4.1:  Placental Mediated Sex Differences 

The placenta is a transient organ that sustains pregnancy and promotes fetal growth by 

acting as the fetal-maternal interface mediating the exchange of metabolic substrates, waste, and 

hormones, while also synthesizing hormones necessary for development and parturition, and 

serving as a barrier limiting environmental contaminants from entering fetal circulation [262]. The 

placenta originates from the embryo, resulting in sex differences in numerous placental aspects 

including formation, function, and response to environmental factors [263]. As such, sex-specific 
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outcomes in offspring prenatally subjected to nutritional, pharmacological, hormonal, and 

chemical insults have been attributed to the placenta by mechanisms that remain unclear [262, 

264].  

Importantly, sex differences in placental outcomes following prenatal GC overexposures 

have been extensively reported in humans and mice [264] despite known differences in placental 

morphology and function across these species [186], emphasizing the pervasiveness of sex 

differences in placental GC response.  For example, a single dose of DEX in spiny mice led to 

latent sex-specific differences in structure and gene expression in the placenta, which included 

differential regulation of the primary placental glucose transporter SLC2A1 [265-267]. Critically, 

differential expression of nutrient transporters by GC overexposure can potentially result in 

adverse metabolic outcomes by limiting essential nutrient availability in a sex-specific manner, 

however, this hypothesis needs to be tested. These different outcomes in glucose transporter 

differences were not attributed to differences in placental GR expression by sex [265]; however, 

different GR isoforms were not assessed. Notably, human placentas express several GR isoforms 

that are differentially expressed according to sex [268, 269], which may contribute to differences 

in placental and fetal response to GCs during development. As such, prenatal DEX exposure in 

mice altered placental GR isoform expression in a sex-dependent manner [270]. Interestingly, 

pharmacological GC exposure during gestation has led to increased placental 11β-HSD2 levels in 

female placentas in both humans and mice [271, 272], suggesting that differential GC-induced 

changes in placental GC metabolism might contribute to sex-specific outcomes. Further, placental 

response to GC treatment in asthmatic mothers have been reported to exhibit sex differences [273-

275]. Thus, while mechanisms are lacking, evidence showing distinct placental responses to GCs 
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suggests that the placenta can also respond in a sex-specific manner to GR-modulating EDCs, and 

may result in different metabolic outcomes between male female offspring.  

 

Section 2.4.2:  Glucocorticoid Receptor and Estrogen Receptor Crosstalk  

Crosstalk between GR and ERα has been established in numerous cell types from different 

species including humans, rats, and mice; this underscores the physiological importance of this 

hormonal interplay. ER and GR have been shown to affect each other’s action both by affecting 

receptor and ligand availability, and by altering genomic transcriptional binding and activity. The 

bulk of the evidence describing the nature of GR/ER crosstalk described here is based on breast 

cancer cell models, uterine tissue, and the liver; however, GR/ER crosstalk in different brain 

regions has also been reported [276, 277]. This section will describe what is known about GR and 

ER crosstalk to place into context how a common hormone transcriptional mechanism of 

communication that is currently not studied during fetal development can lead to a better 

understanding of developmental misprogramming by EDCs that alter either GR or ER signaling. 

The significance of GR and ER crosstalk is evident in breast cancer given that GR 

expression in ERα-positive tumors is associated with better clinical outcomes, and worse 

outcomes in triple negative breast cancer [278, 279]. In the ERα positive breast cancer cell line 

MCF-7, along with mouse livers, and human hepatocytes, GCs can inhibit E2 from binding to ER 

by upregulating estrogen sulfotransferase and inducing estrogen sulfation [280]. Likewise, E2 

promotes the proteasomal degradation of GR in MCF-7 cells by upregulating p53 and the E3 

ubiquitin ligase Mdm2 [281]. E2 can also reduce GR activity by reducing GR Ser-211 

phosphorylation by upregulating protein phosphatase 5 (PP5) [282]. Apart from crosstalk at the 

ligand and receptor level of action, GR and ER influence each other’s binding to chromatin and 
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consequent control of gene expression. As such, a large overlap of DNA binding sites for ER, AR, 

and GR have been identified in male breast tumors [283]. DEX can inhibit E2-mediated 

proliferation and downregulated ERα target gene expression by promoting GR recruitment to 

ERα-binding regions, causing the destabilization of ERα transcriptional complex [284]. The 

observed direct interaction between GR and ERα was mediated through the GR DBD, and the 

binding of GR to estrogen binding sites was mediated by AP-1 and the pioneer factor FoxA1 [284], 

suggesting that GR binding to estrogen binding sites can happen in numerous tissues given 

widespread expression of FoxA1 and AP-1. Further, ligand-bound SUMOylated GR can repress 

ER-activated genes by inhibiting the recruitment of the mega transcription factor complex 

(MegaTrans) to ER-alpha-bound enhancers [285]. 

DEX has the ability to both inhibit and synergize ERα target gene expression, indicating 

that the transcriptional endpoint of GR-ERα crosstalk is gene-dependent [286]. Further, in this 

model, the co-regulator interaction domain of the ERα LBD was necessary for the co-recruitment 

of GR to the estrogen response element (ERE)-rich array, suggesting that coregulator proteins also 

contribute to GR/ER crosstalk [286]. Interestingly, the extent of ER and GR crosstalk goes beyond 

altering known genes regulated by each hormone receptor. For example, DEX and E2 co-treatment 

resulted in the abrogation of GR and ER genomic binding at a small number of genomic sites, but 

gave rise to more binding sites previously not measured in the absence of the co-treatment in mouse 

mammary epithelial cell lines. This induction of new chromatin binding resulted from ER and GR 

increasing chromatin accessibility for each other at assisted binding sites, and interestingly, ER-

assisted loading of GR happened in the absence of EREs in these genomic sites, and were actually 

dependent on “assisted loading” by AP-1 [287]. Another study found similar results in in MCF7 
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cells, where ER and GR co-activation promoted GR chromatin association with ER and AP-1 

response elements, as well as with FoxO response elements [288].  

In addition to crosstalk in breast cancer, GCs are known to antagonize uterotrophic 

estrogen action [289-291]. DEX decreases estrogen-stimulated insulin-like growth factor 1 (IGF-

1) gene expression [292] and inhibits the proinflammatory and bactericidal activity of E2 in the 

rat uterus [293, 294]. E2 can prevent GR from binding gene promoters and consequently inhibit 

gene expression by promoting ER binding to GREs and decreasing polymerase 2 occupancy [295] 

as well as reducing recruitment of pioneer factors FoxA1/2 to GREs [296]. In single human uterine 

leiomyoma and myometrium cell types, about 97% of the examined genes that were 

simultaneously regulated by DEX and E2 had similar expression patterns, while few genes were 

identified as antagonistically regulated by DEX and E2 [297]. Likewise, co-treatment of DEX and 

E2 in the human uterine endometrial cancer cell line ECC1 resulted in only 5.2% of the co-

regulated genes antagonistically regulated [298]. For these antagonistically regulated genes, GREs 

were shown to be present in 80% of the promoters, while EREs were only present in 45% of the 

antagonistically regulated promoters, suggesting that GR binding to GREs was a more common 

way of estrogen antagonism. In the human endometrial adenocarcinoma Ishikawa cell line, DEX 

and E2 co-treatment resulted in a transcriptional profile that was most similar to that of E2 [299]. 

Co-treatment of DEX and E2 dramatically increased shared GR and ER genomic binding sites to 

46.5%, with most of these sites being new binding sites for GR, but not for ER, suggesting that 

ER enables GR to bind new genomic loci [299]. Contrary to this study, simultaneous activation of 

GR and ER resulted in the most differentially expressed genes and were unique to the DEX and 

E2 co-exposure condition [298] as observed in mammary epithelial cells [287], suggesting that the 

unique transcriptional profiles resulting from simultaneous GR and ER activation may be a method 
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of controlling cell function common to other tissues. Thus, depending on the uterine cell line, E2 

and DEX co-treatments can lead to similar genomic binding patterns and consequent similar 

regulation of gene expression, or can result in unique regulation of gene expression. The 

implications of this cell type specific ER and GR crosstalk for fetal development remains to be 

studied.    

 

Section 2.4.3:  Glucocorticoid Receptor and Androgen Receptor Crosstalk  

 The DBD of the androgen receptor (AR) and GR have a high degree of amino acid 

sequence similarity, including a conserved P Box, which allow them to bind similar and even 

identical hormone response elements [300-302], but GR is unable to bind selective androgen 

response elements (AREs) [301, 303]. The functional overlap between AR and GR is evident in 

castration resistant prostate cancer, where GR activity regulates a different yet considerably 

overlapping transcriptome that renders AR inhibition therapy ineffective [304]. As such, about one 

half of the AR binding regions overlap GR binding regions in antiandrogen-resistant xenograft 

tumors and GR-expressing LNCaP-1F5 cells [304, 305]. The presence of ligand-bound AR also 

influences genomic GR binding activity; liganded GR can antagonize AR transcription in the 

presence of androgens, but GR can promote AR transcriptional endpoints in the absence of 

androgens [302, 305]. 

Depending on the DNA binding sequence, both AR and GR can either promote 

transcription, or interfere with transcriptional activity [306, 307]. The ability of GR to inhibit AR 

transcription is probably not due to competition of DNA binding, since DEX and DHT co-

treatment actually results in increased AR chromatin binding, likely through assisted loading 

[305]. One possible way by which AR and GR inhibit each other’s transcriptional activity at certain 
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genes is by forming heterodimers at GREs [308]. Further, SRC-1, the coactivator for several 

steroid hormone receptors including GR can actually inhibit AR transactivation, suggesting that 

coactivators for each hormone receptor can also play a role in crosstalk between GR and AR [309]. 

Additionally, the weak androgen DHEA can upregulate and preferentially direct splicing of GR 

mRNA towards the β isoform, which is known to inhibit the expression of some GRα-regulated 

genes, providing another possible mechanism of AR mediated GR antagonism [310]. Apart from 

genomic crosstalk, AR signaling suppresses GR gene expression in prostate cancer [311], 

however, whether AR suppresses GR expression in other tissues needs to be tested. The anabolic 

steroid oxandrolone antagonized GR transactivation in an in vitro monkey kidney CV-1 cell 

luciferase model without affecting cortisol binding to GR [312]. This effect was AR-dependent, 

and interestingly, the DDT metabolite DDE, which is a known anti-androgenic EDC, also 

suppressed GR transactivation, suggesting AR modulating EDCs can affect GR endpoints as well.  

Recent evidence shows that crosstalk between AR and GR also happens in metabolic 

tissues such as the pancreatic β-cells, adipose tissue, and the liver. One study suggests that AR can 

decrease DEX-induced β-cell apoptosis in an INS-1 model [313]. GR was shown to upregulate 

AR expression and promote nuclear AR translocation during adipogenesis in human pre-

adipocytes, while concurrently decreasing AR transcriptional activity [185]. While the purpose for 

upregulating AR while suppressing its activity remains unclear, it is possible that GR upregulates 

AR to promote GR chromatin binding through assisted loading, however, this hypothesis needs to 

be formally tested. GCs have been shown to deactivate androgens during adipogenesis in human 

preadipocytes [314]. Likewise, T can upregulate 11β-HSD1 in omental adipose tissue in children 

[315], suggesting that AR crosstalk with GR can also be mediated by altering tissue availability to 

GCs. Finally, DHT and corticosterone co-treatment in white and brown adipose resulted in 
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synergistic upregulation of GR-dependent genes that were not upregulated with DHT alone, while 

AR antagonism decreased GR transcriptional activity in adipose and the liver [316]. Overall, 

crosstalk between GR and AR mediates several physiological outcomes during adulthood 

including the regulation of tissues important for regulating glucose and lipid homeostasis in 

humans and rodents. Given that the basis of AR/GR crosstalk is largely dependent on similarities 

in DBDs, and T levels during development are higher in male fetuses, it is likely that GR/AR 

crosstalk during fetal development may contribute to sex differences in the development of key 

metabolic tissues.  Thus, disruption of either GR or AR by EDC exposures could potentially lead 

to sex-differences in metabolic misprogramming. 

 

Section 2.5: Glucocorticoid Receptor Signaling Modulating EDCs 

An increasing body of evidence suggests that a wide variety of synthetic and plant-made 

chemicals have the ability to disrupt GR signaling. Some of the most prevalent of these EDCs 

include genistein [317] which is consumed from soy, arsenic [318], which is found in groundwater, 

rice, and industrial pollution, and methylsulfonyl PCBs [40], which are metabolites of legacy 

contaminants found throughout the environment. Recent high throughput studies using human GR 

reporter assays have identified numerous pesticides [319], organophosphate flame retardants 

[320], and metals [321] that antagonized GR in their cell models. Several of the chemicals tested 

in these studies had previously shown to disrupt other hormone receptors, emphasizing the 

complexity of endocrine disruption by synthetic chemicals and the need to test EDC mixtures for 

additive, synergistic, and opposing activity in cellular and physiological contexts. One study found 

that POP mixtures did not affect GR activity in their cell based reporter assay, but found GR 

antagonism by the pesticide DDE, and enhancement of cortisol-induced transcriptional activity by 
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the flame retardant BDE-47 [322]. Notably, exposure to both of these EDCs have been shown to 

be consistently higher in Mexican-Americans, African-Americans and people with lower income 

[323, 324]. In addition to single chemical screens, ecotoxicology studies have found widespread 

GC activity from water samples from numerous U.S. states [325, 326]. The chemical constituents 

in these water samples responsible for inducing GR activity were not characterized; however, over-

the-counter pharmacological GCs and GR-modulating EDCs are likely contributors. Further, a 

handful of studies have also shown that several synthetic chemicals have the ability to disrupt GC 

synthesis in human adrenocortical carcinoma cells [327, 328], suggesting that GC action can also 

be affected by disruption of GC synthesis in addition to disrupting GR signaling. Out of the few 

studies that have tested GR modulating EDCs for adverse metabolic health outcomes, TF has been 

extensively studied in adipocytes and adult mice, and was shown to promote cellular insulin 

resistance [329], as well as systemic metabolic dysfunction characterized by glucose intolerance 

and insulin resistance [330]. However, no study had previously tested whether a well characterized 

GR-modulating EDC known to elicit metabolic defects in cells and live animals could affect the 

metabolic health of animals exposed throughout fetal development and lactation. Given the 

widespread prevalence of GR-modulating EDCs, studies are warranted to examine how exposure 

to this class of EDCs misprogram metabolism in animal models to better understand their effects 

on people. 
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Chapter 3 

Developmental Exposure to the Endocrine Disruptor Tolylfluanid Induces Sex-Specific 

Later-Life Metabolic Dysfunction 

 

Sections from this chapter have been adapted verbatim from:  

Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM. 

Developmental Exposure to the Endocrine Disruptor Tolylfluanid Induces Sex-Specific Later-Life 

Metabolic Dysfunction. Reproductive Toxicology. 2019. 89: 74-82. 

 

Section 3.1: Introduction 

Sex differences in metabolic disease prevalence are characterized by higher diabetes rates 

in males and higher obesity rates in females that are attributed to differences in physiology and 

environmental interactions [331, 332]. An expanding body of epidemiological and animal studies 

suggests that developmental exposures to endocrine disrupting chemicals (EDCs) can lead to sex-

specific, adverse effects on metabolic physiology [10, 333]. Sex-specific differences in metabolic 

outcomes are known to occur after developmental exposure to other environmental stressors, 

including both overnutrition and undernutrition [331]; however, the mechanisms underlining these 

sex-specific outcomes remain poorly understood. Assessing alterations in whole-body glucose-

regulating physiological parameters is essential to subsequently mechanistically delineate how 

EDC exposures misprogram metabolism and increase disease risk in a sex-specific manner. The 

urgency to address this data gap is heightened by the fact that nearly 10% of the U.S. population 

has diabetes [1], and an estimated 629 million individuals across the globe are projected to have 

the disease by 2045 [334].  
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 While tens of thousands of chemicals lack basic endocrine toxicological screening [12], 

800-1000 compounds have already been identified as putative EDCs [11]. Among these EDCs that 

modulate glucocorticoid receptor (GR) signaling remain understudied, and little is known about 

the long-term consequences of early-life exposure to GR-modulating EDCs despite the critical role 

that maternal and fetal glucocorticoids play in the development of key metabolic tissues, including 

pancreatic β-cells [253], adipose tissue [254], and liver [255]. In humans, prenatal treatment with 

pharmacological glucocorticoids administered to augment lung development during preterm births 

has been shown to decrease birth weight [230] and may lower insulin sensitivity during adulthood, 

with some evidence of more pronounced effects in women [231]. Multiple animal studies have 

shown that dexamethasone (DEX) treatment during the last week of gestation promotes later-life 

metabolic defects, including insulin resistance and the upregulation of the hepatic gluconeogenic 

machinery [238, 249, 251]. While the prenatal programming of metabolic health by 

pharmacological glucocorticoids has been extensively studied in a variety of animals [162, 335], 

large data gaps exist regarding the later-life metabolic consequences of exposure to GR-active 

chemicals with lower GR affinity. Given that at least 34 putative human GR-modulating pesticides 

have been identified [319] and that relatively high glucocorticoid activity has been detected in U.S. 

surface waters [326], it is essential to understand the impacts of developmental exposure to GR-

modulating EDCs on metabolic physiology and long-term metabolic disease risk. 

Tolylfluanid (TF) is a phenylsulfamide fungicide used in agriculture and as a booster 

biocide in marine paints [330]. TF has been found on agricultural goods in Europe [336-338], 

where it has also been detected in groundwater in agricultural regions [339]. While not approved 

for use in the United States, TF is permitted on foods imported into the U.S. Previous studies have 

shown that TF activates GR signaling in adipocytes, with consequential induction of cellular 
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insulin resistance [329, 340, 341]. Adult mice exposed to TF near the maximum U.S. tolerance 

limit for imported foods exhibit weight gain, glucose intolerance, insulin resistance, and disrupted 

circadian rhythms [330]. While the impact of dietary TF on energy homeostasis remains 

controversial [342], data suggest that the precise physiological effects may be nutrient-dependent 

[343, 344]. The present study sought to expand upon these data to ascertain the sex-specific 

physiological effects of perinatal exposure to TF on later-life metabolic health.  

 

Section 3.2: Materials and Methods 

Section 3.2.1: Animals, TF exposure, and tissue processing 

Eight-week old C57BL/6J mice were obtained from Jackson Laboratories (Bar Harbor, 

ME) and housed at 22.2 ± 1.1°C under a 12:12-hour light-dark cycle. Mating cages were arranged 

with one male and two females per cage. Control mating cages received ad libitum access to a 

standard rodent chow (Teklad Global Diet 2918, Harlan Laboratories, Madison, WI), while TF 

cages received the identical diet supplemented with 100 mg/kg TF added at the time of 

manufacturing (Harlan Laboratories, Madison, WI); diet preparation led to a final TF 

concentration of 67 mg/kg. This dose was shown to increase adiposity and lower insulin sensitivity 

in adult male mice in previous studies [330]. Upon pregnancy confirmation by vaginal plug 

formation, dams were housed singly and continued on their respective diet throughout gestation 

and lactation until postnatal day (PD) 21. Initial breeding was performed with a 1:1.5 control:TF 

ratio to account for potential unknown effects of TF on fertility. The offspring analyzed in this 

study came from four distinct cohorts that included 29 control pregnancies and 42 TF pregnancies. 

Litter size and litter sex ratios were assessed at weaning. None of the litters were culled, and 

metabolic phenotyping to assess glucose tolerance or insulin sensitivity was performed in a 
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randomly selected subset of the offspring. Offspring were housed by treatment and sex in groups 

of 2-3 per cage. Offspring were handled and weighed weekly after weaning, and food was weighed 

and replaced weekly. All animals were treated humanely in accordance with protocols approved 

by the Institutional Animal Care and Use Committees at the University of Chicago and the 

University of Illinois at Chicago. Dams were euthanized after weaning by CO2 asphyxiation 

followed by cervical dislocation. Offspring were euthanized by isoflurane intoxication followed 

by exsanguination via cardiac puncture. Relevant metabolic tissues were dissected, weighed, flash 

frozen in liquid nitrogen, and stored at -80°C prior to processing. The study timeline is summarized 

in Figure 3.1. 

 

Section 3.2.2: Intraperitoneal glucose tolerance test (IP-GTT)  

At postnatal week (PW) 10, mice were fasted for 6 hours beginning at 7:30 am. Fasting 

blood glucose was measured using a Freestyle Lite glucometer (Abbott Laboratories, Abbott Park, 

IL) by tail vein sampling. Mice then received an intraperitoneal (IP) injection of dextrose (2 g/kg 

body weight), and blood glucose concentrations were measured serially for 120 minutes. Blood 

samples for insulin levels were obtained using heparinized tubes at 0, 10, 30, and 60 minutes post 

IP injection, placed immediately on ice, and centrifuged at 1500 g for 15 minutes at 4°C. Plasma 

insulin concentrations were determined using the ALPCO mouse insulin ELISA kit per the 

manufacturer’s instructions (ALPCO, Salem, NH). The sensitivity of the insulin ELISA was 

determined by the manufacturer to be 0.115 ng/mL for the 5 μL sample size, and the intra-assay 

coefficient of variation was determined to be between 4.53-9.30%. Homeostatic model assessment 

of insulin resistance (IR) and β-cell function (HOMA-IR and HOMA-β, respectively) were 

calculated using fasting blood glucose and fasting plasma insulin levels as previously described 



 52

[345]. 

 

Section 3.2.3: Intraperitoneal insulin tolerance test (IP-ITT)  

At Postnatal Week (PW) 16 (PW16), mice were fasted at 9:00 am for 3 hours. Fasting 

blood glucose was measured, followed by IP injection of Humalog insulin (Eli Lilly, Indianapolis, 

IN) (0.4 U/kg body weight for females, 0.5 U/kg body weight for males). Mice with blood glucose 

readings that dropped below the limits of detection for the glucometer (20 mg/dL per the 

manufacturer) were confirmed on repeat testing, and if confirmed, hypoglycemic mice 

immediately received a rescue IP injection of dextrose. Post-hypoglycemia data points were 

excluded from analysis. 

 

Section 3.2.4: Intraperitoneal pyruvate tolerance test (IP-PTT)  

At PW 20-22, mice were fasted for 16 hours overnight from 5:00 pm to 9:00 am. Fasting 

blood glucose was measured, followed by IP injection of sodium pyruvate (Sigma, St. Louis, MO) 

(1 g/kg body weight), and blood glucose was measured serially by tail vein sampling using a 

Freestyle Lite glucometer.  

 

Section 3.2.5: Quantitative polymerase chain reaction 

Total RNA was extracted from perigonadal adipose tissue and liver from mice fasted 

overnight using the E.Z.N.A. Total RNA Kit II (Omega Bio-tek Inc., Norcross, GA) and a 

BeadBug microtube homogenizer (Benchmark Scientific Inc., Edison, NJ) according to the 

manufacturers’ instructions. Total RNA was quantified by UV spectrophotometry using a 

Nanodrop One (Thermo Fisher Scientific, Waltham, MA). RNA purity was verified by 260/280 
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and 260/230 ratios of ~2.0. Primers were generated by Primer-BLAST (National Center for 

Biotechnology Information, Bethesda, MD) and confirmed to have amplification efficiency of 

90%–110%. Primer sequences (Integrated DNA Technologies, Coralville, IA) can be found in 

Table 3.1. Gene expression levels were evaluated by the ∆∆-Ct method [346] with GAPDH used 

to control for total mRNA recovery; control values normalized to a group mean of 1.0.  

 

Section 3.2.6: Serum collection and analysis 

At the time of terminal sacrifice, blood was collected by cardiac puncture. Whole blood 

was collected in microfuge tubes, allowed to clot at room temperature for 45 minutes, and then 

centrifuged at 1500 g for 15 minutes at 4°C to collect serum. Serum was aliquoted in separate 

tubes to minimize repeated freezing-thawing during later analyses; samples were stored at -80°C.  

 

Section 3.2.7: Adipose tissue insulin signaling western blotting 

At the time of tissue harvest following a 3-hour fast, perigonadal fat was assessed for 

insulin sensitivity by quantifying the ratio of phosphorylated-to-total Akt at the serine 473 site 

(S473) as previously described [340]. Briefly, perigonadal fat was minced in Krebs-Ringer 

bicarbonate HEPES (KRBH) buffer pre-warmed to 37ºC, equally distributed into four Eppendorf 

tubes with different insulin concentrations (0, 1, 5, and 10 nM) and incubated at 37ºC for 10 

minutes. After incubation, samples were put on ice, insulin-containing media was removed, and 

samples were washed with ice-cold KRBH. Homogenization buffer was added, samples were 

lysed by sonication, and centrifuged at 10,000 g at 4ºC for 10 minutes. Infranatant was used for 

immunoblotting. Adipose tissue lysate was separated by SDS-PAGE and transferred onto PVDF 

membrane. Membranes were blocked in 5% non-fat milk in Tris-buffered saline-Tween (TBS-T) 
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(0.1%) for one hour at room temperature and incubated overnight at 4°C with primary antibodies. 

Mouse monoclonal anti-total Akt (40D4) at 1:750 dilution and rabbit anti-phospho-S473 Akt 

(D9E) at 1:500 dilution (Cell Signaling Technology, Danvers, MA) were used as primary 

antibodies. Goat anti-rabbit IRDye® 680RD and goat anti-mouse IRDye® 800CW (LI-COR, Inc., 

Lincoln, NE) were used as secondary antibodies to simultaneously image Akt and phospho-Akt. 

Densitometry was performed using ImageStudioLite version 5.2.5 (LI-COR, Inc., Lincoln, NE). 

Insulin sensitivity was assessed as the ratio of the area of bands corresponding to phosphorylated 

Akt (S473) divided by total Akt, normalized within each animal to the basal condition (0 nM 

insulin) to specifically assess relative insulin responsiveness.  

 

Section 3.2.8: Pancreatic histology and immunohistochemistry 

At the time of tissue harvest, the pancreas was dissected, weighed, and fixed in 4% 

paraformaldehyde overnight followed by paraffin embedding. Pancreas sections (5 µm in 

thickness) were immunostained with the following primary antibodies at 1:500 dilution: polyclonal 

guinea pig anti-porcine insulin (DAKO, Carpinteria, CA), mouse monoclonal anti-human 

glucagon (Sigma-Aldrich), polyclonal goat anti-somatostatin (Santa Cruz Biotechnology, Santa 

Cruz, CA), and DAPI (Invitrogen, Carlsbad, CA). The primary antibodies were detected using a 

combination of DyLight 488-, 549-, and 649-conjugated secondary antibodies (1:200, Jackson 

Immuno Research Laboratory, West Grove, PA). Antibodies used in this study have been 

previously validated [347].  

 

Section 3.2.9: Image capture and endocrine cell quantification  
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As previously described [347], microscopic images of pancreatic sections were taken with 

an Olympus IX8 DSU spinning disk confocal microscope (Melville, NY) with Stereo Investigator 

imaging software (SI; Micro Bright Field, Williston, VT). A modified method of “virtual slice 

capture” was used. Quantification of cellular composition (i.e., each area of β-, α-, and δ-cell 

populations, or sum of endocrine cell populations per islet area) was carried out using custom-

written scripts for Fiji/ImageJ (https://rsbweb.nih.gov/ij/). MATLAB (MathWorks, Natick, MA) 

was used for mathematical analyses.  

 

Section 3.2.10: Acute Restraint Test 

At PW5, mice subjected to an acute restraint test. Blood was collected for baseline analyte 

measurements. Mice were then placed in small mouse restraint devices for 30 minutes, then 

released back to their respective cages. Blood samples were obtained using heparinized tubes at 

the end of the 30-minute restraint, then at 60 and 90 minutes. Blood was placed immediately on 

ice and centrifuged at 1500 g for 15 minutes at 4°C. Plasma corticosterone concentrations were 

determined using the Corticosterone ELISA kit (Abcam, MA). Plasma epinephrine concentrations 

were determine using the Adrenaline (Epinephrine) High Sensitive ELISA Assay Kit (Eagle 

Biosciences Inc., NH). Blood glucose levels were measured using a Freestyle Lite glucometer 

(Abbott Laboratories, Abbott Park, IL). 

 

Section 3.2.11: Statistics 

Relative to control mice, perinatal TF exposure consistently decreased weaning weight, 

our primary outcome measure, with no differences in the magnitude of decrease across the cohorts 

(data not shown); therefore, data were pooled from all studies. In collaboration with the Statistical 
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Laboratory at the University of Illinois at Chicago, Analysis of Response Profile, which does not 

make a parametric assumption on the form of the mean trajectory, was used to analyze effects on 

glucose tolerance, insulin sensitivity, and pyruvate tolerance using R (R Foundation for Statistical 

Computing, Vienna, Austria). The main goal in the Analysis of Response Profiles is to characterize 

the patterns of change in the mean response over time in the two groups and to determine whether 

the shapes of the mean response profiles do or do not differ for the two groups. The model used 

for these analyses used time and treatment as main effects, and treatment-by-time interaction 

effects. Post-hoc unpaired t tests without assumption of consistent standard deviations were 

performed on datasets with different Analysis of Response Profiles to ascertain time points at 

which blood glucose levels were significantly different.  For non-time-dependent outcomes, 

control and TF treatment groups were compared by F-testing to determine differences in variance; 

for F <0.05, t tests were performed with Welch’s correction, whereas when F >0.05, standard 

Student’s t tests were performed. Log-Rank test was used to compare survival curves.  Data are 

presented as mean ± standard error of the mean (SEM). A value of P <0.05 was considered 

statistically significant. GraphPad Prism version 7.0 (La Jolla, CA) was used for all other 

comparisons. 

 

Section 3.3: Theory 

Glucocorticoids play a central role in metabolic programming, and pharmacologic 

treatment with glucocorticoids during development alters metabolic outcomes. This study was 

designed to test the hypothesis that the environmental GR-modulating EDC TF disrupts later-life 

metabolic homeostasis. 
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Section 3.4: Results 

Section 3.4.1: Perinatal TF exposure does not alter litter size or sex-ratio 

Litter size and sex ratio were assessed at weaning as a crude measure for developmental 

toxicity. Mean litter size (Control = 6.2, TF = 5.6) was not significantly different between groups 

(p = 0.31) (Figure 3.2A). Similarly, litter male-to-female sex ratio was also not significantly 

different at weaning between groups (Control = 1.7 versus TF = 1.2; p = 0.20) (Figure 3.2B). 

These data suggest that developmental exposure to TF did not result in significant gestational 

toxicity. 

 

Section 3.4.2: Perinatal TF exposure reduces birth weight, weaning weight, and long-term 

body weights in offspring 

Offspring body weight was measured at birth, at weaning on PD21, and once weekly post-

weaning. TF exposure lowered birthweights by 3.7%, and lowered weaning weights in females 

and males by 13.4% and 6.8%, respectively (Figures 3.2C, 3.2D, 3.2E). Female offspring from 

TF exposed dams had significantly lower body weight throughout the entirety of the study (Figure 

3.2F), while male offspring from exposed dams achieved comparable weight to that of control 

males by 17 weeks of age (Figure 3.2G).  

 

Section 3.4.3: Perinatal TF exposure results in sex-specific patterns of mild glucose 

intolerance during acute glucose challenge  

To assess whether perinatal TF exposure altered glucose homeostasis later in life, offspring 

underwent an IP-GTT at PW10. Perinatal TF exposure resulted in mildly impaired glucose 

tolerance in the offspring (Figure 3.3). Female offspring exposed to TF had higher blood glucose 
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levels early after glucose challenge (i.e., 12.4% higher at 10 minutes and 12.7% higher at 20 

minutes post-injection) (Figure 3.3A). In addition, insulin levels were 22.4% higher at 30 minutes 

post-glucose load compared to controls (Figure 3.3B). Male offspring exposed to TF had higher 

blood glucose levels compared to controls later during the course of the GTT (i.e. 20% higher at 

40 minutes, 17.9% higher at 90 minutes, and 16.2% higher at 120 minutes post-glucose injection) 

(Figure 3.3C), without significant differences in circulating insulin levels over the first 60 minutes 

of the IP-GTT (Figure 3.3D). 

 

Section 3.4.4: Perinatal TF exposure increases whole-body insulin sensitivity in female 

offspring but not male offspring 

Global insulin sensitivity was assessed to determine whether the observed impairments in 

glucose tolerance in TF-exposed offspring were attributable to impairments in insulin action. 

Unexpectedly, TF-exposed female offspring showed evidence of markedly enhanced insulin 

sensitivity (Figure 3.4). At PW10, assessment of steady-state glucose-insulin homeostasis 

demonstrated that TF-exposed female offspring had 29.7% lower HOMA-IR (Figure 3.4A) 

without significant differences in β-cell function as assessed by HOMA-β (Figure 3.4B). At PW16 

TF-exposed female offspring exhibited a markedly enhanced response to insulin during an IP-ITT 

with significantly lower blood glucose levels at every time point post insulin injection (Figure 

3.4C). Among TF-exposed female offspring, 38% experienced severe hypoglycemia (<20 mg/dL) 

during the IP-ITT requiring rescue with dextrose, while no control females exhibited this trait 

(Control n=0; TF n=7 with 4 at 45 minutes, 3 at 60 minutes, 1 at 90 minutes) (Figure 3.4D). 

Among male offspring, there were no significant differences in HOMA-IR and HOMA-β at PW10 

(Figures 3.4E and 3.4F), nor was there a difference in response to insulin during the IP-ITT at 
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PW16 (Figure 3.4G). Only one exposed male offspring became hypoglycemic during the course 

of the IP-ITT (Control n=0; TF n=1 at 45 minutes) (Figure 3.4H). 

 

Section 3.4.5: Perinatal TF decreases adiposity and increases adipose tissue insulin sensitivity 

in female offspring but not male offspring 

Adiposity and adipose tissue insulin sensitivity were assessed at the time of sacrifice in the 

offspring. Adiposity was defined as adipose tissue mass relative to total body weight for the 

perigonadal (epididymal or periuterine), perirenal, mesenteric, or total visceral (sum of 

perigonadal, perirenal, and mesenteric) depots. TF-exposed female offspring had 12.9% lower 

perigonadal adiposity and 26.4% lower perirenal adiposity; there were no differences in mesenteric 

adiposity (Figure 3.5A). Across all adipose depots analyzed, there was a trend toward lower total 

visceral adiposity at week 19 (p=0.052) (Figure 3.5A). Adipose insulin sensitivity was assessed 

ex vivo in perigonadal adipose tissue. Among TF-exposed female offspring, adipose tissue insulin 

sensitivity was enhanced relative to control mice with a 88.7% and 53.7% increase in Akt 

phosphorylation at 5 nM and 10 nM insulin, respectively (Figure 3.5C). Gene expression of 

insulin signaling intermediates upstream of Akt was quantified to ascertain the molecular 

mechanism responsible for the observed enhancement in adipose insulin sensitivity, but no 

differences were observed (Figure 3.6). Among male offspring, there were no differences in either 

depot-specific or total adiposity between control and TF-exposed mice (Figure 3.5B). Relative 

insulin-stimulated Akt phosphorylation was not significantly different between control and TF-

exposed male offspring (Figure 3.5D). 

 

Section 3.4.6: Perinatal TF does not affect pancreatic endocrine cell area in exposed offspring 
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To ascertain whether alterations in glucose homeostasis, insulin sensitivity, and adiposity 

were attributable to developmental disruption of the endocrine pancreas, pancreatic α-cell, β-cell, 

and δ-cell areas were quantified using immunohistochemistry. There were no differences in α-cell, 

β-cell, δ-cell, or total islet area relative to the total pancreatic area analyzed between control and 

TF-exposed offspring (Table 3.2).  

 

Section 3.4.7: Perinatal TF exposure does not increase HPA reactivity, but increases blood 

glucose levels in male offspring only. 

 Circulating corticosterone after an overnight fast was measured at PW4, but no differences 

were observed between controls and TF-exposed offspring (Figure 3.7). On PW5, offspring were 

subjected to an acute restraint test to assess differences in HPA axis reactivity to psychological 

stress. No differences in circulating corticosterone were observed during the acute restraint test 

between control and TF-exposed offspring (Figure 3.8A and B); however, male offspring exposed 

to TF had increased circulating glucose immediately after the acute restraint (Figure 3.8D). 

Circulating epinephrine levels were measured to test whether increased epinephrine could 

potentially be responsible for the observed hyperglycemia in the TF-exposed male offspring. 

Circulating epinephrine concentrations were lower in the male offspring perinatally exposed to TF 

at 30 minutes during the acute restraint test (Figure 3.8E). 

 

Section 3.4.8: Perinatal TF exposure results in sex-specific changes in hepatic gluconeogenic 

capacity in exposed offspring  

On PW4 offspring were fasted overnight and hepatic expression of genes regulating 

gluconeogenesis was measured. Compared to control male offspring, male offspring perinatally 
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exposed to TF had 30.7% higher hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene 

expression following overnight fasting with a trend toward higher expression of glucose-6-

phosphatase (G6PC) (p=0.08) (Figure 3.9B). There were no differences in PEPCK or G6PC gene 

expression between female offspring (Figure 3.9A). Fasting circulating corticosterone, a key 

gluconeogenesis-stimulating hormone, was not different between groups in either sex (data not 

shown). Dynamic differences in gluconeogenic capacity among offspring were assessed by IP-

PTT at PW20-22 to ascertain whether the observed differences in gene expression had lasting 

physiological effects. Male offspring perinatally exposed to TF showed higher blood glucose 

levels during the pyruvate challenge (p=0.047), (Figure 3.9D), while there were no differences in 

circulating glucose in female offspring during the pyruvate challenge (Figure 3.9C). 

 

Section 3.5:  Discussion 

The current study adds to the growing body of research demonstrating sex-specific and 

long-term alterations in metabolic physiology caused by early-life exposures to EDCs [333]. 

Specifically, this study shows that perinatal TF exposure reduces birth and weaning weight, while 

leading to mild impairments in glucose tolerance later-in-life without disruptions in insulin 

secretion or endocrine pancreas morphology. Intriguingly, perinatal TF exposure decreased 

adiposity and markedly enhanced global insulin sensitivity in female offspring, but did not alter 

these parameters in male offspring. Finally, gluconeogenic capacity was enhanced in TF-exposed 

male offspring but unaffected in exposed females. These findings underscore the importance of in 

vivo studies to identify sex differences in metabolic fate arising from developmental EDC 

exposures. Moreover, these studies support the hypothesis that early-life exposure to metabolism-
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disrupting EDCs may contribute to later-life metabolic disease risk in humans in a sex-dependent 

manner.  

Previous work showed that dietary exposure to TF increased adiposity and decreased 

systemic and adipose-specific insulin sensitivity in adult male mice [330]. This motivated the 

present studies examining whether similar exposures during development elicited comparable 

metabolic derangements in exposed offspring. Importantly, the TF dose used for this study did not 

alter litter size or sex ratio at the time of weaning, indicating that this dose was not overtly toxic 

to developing fetuses. Perinatal exposure to TF resulted in lower birthweight, and reduced weaning 

weight in both female and male offspring, indicating that exposed offspring did not catch-up in 

growth by the time of weaning. Reduced birth weight results from impaired fetal growth that 

reflects an adverse intrauterine environment; it is a known risk factor for later-life cardiometabolic 

disease [262]. Furthermore, TF-exposed female offspring weighed less than control female 

offspring through PW19, while exposed male offspring achieved comparable weights to control 

males by PW17, showing long-term impacts of TF on growth and development. 

Perinatal TF exposure resulted in modest, sex-specific impairments in whole-body glucose 

clearance during an acute glucose challenge. Despite having relatively higher insulin sensitivity at 

steady-state (as assessed by HOMA-IR), exposed female offspring exhibited elevated blood 

glucose levels relative to controls during the early phase of the glucose tolerance test. Importantly, 

the observed glucose intolerance among TF-exposed females was not due to impairments in insulin 

action as TF-exposed females were markedly more insulin sensitive than control mice. In 

evaluating insulin-glucose dynamics in this study, the modest blood glucose elevation in females 

was noted to normalize after 30 minutes when circulating insulin was significantly higher for 

exposed females. This suggests that hyperglycemia may have arisen from relative reductions or 
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delays in insulin release from pancreatic β-cells. Of note, however, TF exposure did not result in 

morphological changes in the endocrine pancreas, suggesting overt β-cell toxicity was not 

responsible for the observed findings. 

In contrast to females, exposed male offspring experienced a more pronounced impairment 

in glucose clearance that was notable at later time points post-glucose load. Importantly, this 

hyperglycemia was not accompanied by compensatory β-cell insulin hypersecretion as seen in TF-

exposed female offspring. Furthermore, the observed impairment in glucose clearance was not due 

to diminished systemic insulin action. Thus, we hypothesized that increased or sustained hepatic 

glucose output may have contributed to hyperglycemia in TF-exposed male offspring. Indeed, 

male TF-exposed offspring exhibited enhanced hepatic PEPCK gene expression at PW4, 

suggesting an upregulation of the gluconeogenic machinery that was not observed in female 

offspring. Indeed, with provocative testing TF-exposed male offspring exhibited enhanced 

gluconeogenic capacity as evidenced by higher hepatic glucose production following pyruvate 

challenge. Importantly, this was a sex-dependent effect as exposed female offspring did not exhibit 

this effect. Likewise, only male offspring perinatally exposed to TF exhibited elevated glucose 

levels during the acute restraint test. Taken together, these data indicate that the path to glucose 

intolerance among mice exposed perinatally to TF is sexually dimorphic.  

 The observed effects of developmental TF exposure on insulin sensitivity and adiposity in 

female offspring coincide with results from previous in utero growth restriction studies 

demonstrating that prenatal growth restriction that is not followed by catch-up growth is 

accompanied by increased insulin sensitivity and decreased adiposity [348-357]. Studies in sheep 

showed that increased insulin sensitivity resulting from in utero growth restriction originates 

during fetal development [358-362] and carries on into early postnatal life [362]. It has been 
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proposed that increased global insulin sensitivity arising from an adverse in utero environment is 

a compensatory mechanism to support anabolic metabolism and promote offspring survival [360]; 

however, the mechanisms by which insulin sensitivity is enhanced under these circumstances 

remains unclear. The results reported herein suggest that adipocyte insulin sensitivity is enhanced 

upstream of Akt; however, our studies were unable to identify changes in insulin signaling 

intermediates that could explain this phenomenon. One possibility is that insulin sensitivity is 

tuned to be more responsive through the differential phosphorylation of insulin receptor substrates 

[363]; however, further molecular analyses will be required to test this hypothesis and ascertain 

the precise mechanism by which insulin signaling is potentiated in exposed female offspring. 

Interestingly, evidence from rat studies suggest that compensatory increases in insulin sensitivity 

following developmental growth-inhibiting insults are followed by later-life onset of insulin 

resistance and a decline in metabolic health [236, 351, 364, 365]. For example, in rat models of 

uteroplacental insufficiency, female offspring exhibited enhanced insulin sensitivity at up to 12 

months of age [352]; however, age-related deterioration in metabolic health and the development 

of insulin resistance was observed at 21 months of age [236]. The current study followed the 

exposed offspring for up to 22 weeks of age, which is within the timeframe during which other 

rodent models of growth restriction have observed enhanced insulin sensitivity [348-353]. 

Whether mice developmentally exposed to TF will ultimately go on to develop insulin resistance 

and worsened glucose intolerance with aging requires additional study. 

Importantly, the current study adds to the growing body of evidence implicating hepatic 

gluconeogenesis as a sensitive metabolic endpoint for developmental misprogramming [238, 243, 

249, 251, 366]. The upregulation of gluconeogenesis with attendant increased PEPCK expression 

in TF-exposed male offspring is consistent with several studies in rats demonstrating that 
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gluconeogenesis in male offspring is disrupted by either glucocorticoid exposure or protein 

restriction during development [238, 243, 249, 251, 366]. Importantly, in the present studies 

PEPCK upregulation was not due to enhanced corticosterone secretion, suggesting that another 

mechanism is responsible, including potential epigenetic alterations; however, this hypothesis 

requires further study. Interestingly, our study suggests that gluconeogenic capacity in exposed 

female offspring trends lower and that these mice are more prone to hypoglycemia with insulin 

challenge. The reasons behind this sex-specific defect in counterregulation needs further study.  

 Critically, the sex-specific effects on growth, insulin sensitivity, glucose tolerance, 

adiposity, and hepatic glucose output resulting from perinatal TF exposure highlights the 

importance of studying males and females in developmental studies that assess GR signaling 

modulation, especially since most of the prenatal studies published to date have focused on male 

offspring [238, 243, 249, 251, 366]. Taken together, animal studies have consistently shown that 

later-life metabolic physiology can be altered by in utero disruption of GR signaling by 

dexamethasone (DEX) treatment despite variations in the specific outcomes measured. The current 

study adds to this area of study by demonstrating that perinatal exposure to a fungicide that alters 

GR signaling also has lasting effects on growth and metabolism. The differences in metabolic 

outcomes between the current study and previous developmental DEX studies may be attributable 

to differences in species (rats vs. mice), timing of assessments, potency of GR-signaling 

modulation (DEX>TF), the timing and length of exposure, or non-GR-effects of TF. As evidence 

continues to emerge suggesting that a subset of EDCs modulate GR signaling, the current studies 

provide a useful framework for interrogated the long-term metabolic consequences of 

developmental exposure to these agents. 
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Despite the strengths of the current study in examining sex-specific differences in 

metabolic physiology after developmental exposure to TF, work presented herein has several 

limitations. The current study only followed offspring for 20-22 weeks after birth; thus, it did not 

determine whether further aging would unmask metabolic deterioration in exposed mice as seen 

in other growth restriction models. While this work found enhanced adipose-specific insulin 

sensitivity that could partly explain the increase in whole body insulin sensitivity in the exposed 

female offspring, additional mechanistic studies are needed to understand the molecular bases for 

the physiological alterations identified herein. It is also possible that the observed effects of TF 

could be mediated by alterations in maternal metabolism. Based on data that exposure of adult 

male mice to TF did not alter adiposity, glucose tolerance, or insulin sensitivity until 8 weeks of 

exposure [330], it does not seem likely that this was a major driver of the observed effects; 

however, this needs to be formally assessed. Despite these limitations the observed phenotypic 

disruptions in body weight, adiposity, insulin sensitivity, and gluconeogenesis induced by TF 

reflect growth and metabolic changes observed in other developmental stress models including 

prenatal DEX exposure, in utero protein restriction, or uterine artery ligation studies [348-353]. 

Future studies are warranted to elucidate the common molecular mechanisms by which these 

diverse stressors impact long-term metabolic health.  

 

 

 

 

 

 



 67

Chapter 4 

Future Directions for Characterizing Mechanisms Driving Metabolic Outcomes of 

Developmental GR-Modulating EDCs and Preventing Exposures 

 

Section 4.1: Comprehensive Assessment of Hepatic Transcriptomic Alterations During 

Adulthood After Perinatal TF Exposure 

Evidence that perinatal TF exposure upregulates hepatic gluconeogenesis in the male 

offspring reflects outcomes observed from previous developmental GC overexposure animal 

models that have consistently shown altered gluconeogenesis in the offspring. Future work aimed 

at understanding the underlying mechanisms explaining impaired glucose tolerance resulting from 

perinatal TF exposure should thus begin with interrogating hepatic gluconeogenesis during 

adulthood. Unbiased transcriptomic approaches such as RNA-Seq would allow a genome-wide 

assessment of changes in gene expression that could identify causal genes responsible for the 

observed impairment in glucose tolerance and aberrant hepatic glucose output. Data gathered from 

such assessment could be analyzed by gene set enrichment analysis to test whether genes that 

compose or regulate pathways including gluconeogenesis, glycogenolysis, insulin sensitivity, or 

GR signaling are significantly altered. Examining the hepatic transcriptomic signature resulting 

from perinatal TF exposure could delineate whether the cause for upregulated gluconeogenesis is 

due to the upregulated gluconeogenic pathway itself, or pathways that regulate gluconeogenesis 

(such as glucocorticoid or glucagon signaling, for example). Upregulation of a regulatory pathway, 

such as GR signaling, could suggest that the HPA axis is altered, or hepatic sensitivity to GCs is 

altered, and could thus lead to a more comprehensive understanding of the observed phenotype. 

Further, unexpected regulatory factors such as microRNAs, or unanticipated pathways indirectly 
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regulating gluconeogenesis could be illuminated from an unbiased assessment that could broaden 

the current understanding of developmental programming of metabolism and basic regulatory 

mechanisms of hepatic glucose output. Finally, targeted gene expression analysis with qRT-PCR 

and western blotting could be performed at an earlier time point, such as after weaning, on the 

genes with the largest and most significant changes to test for the persistence of differential 

expression throughout the lifespan that would suggest epigenetic mis programming.  

 

Section 4.2: Comprehensive Assessments of Chromatin Alterations Leading to Altered Gene 

Expression 

Expression of genes persistently altered by perinatal TF treatment would warrant an 

extensive assessment of the epigenetic mechanisms leading to lifelong altered expression. Analysis 

of whole genome bisulfite sequencing targeted for the most significantly and persistently altered 

genes would give an assessment of differences in DNA methylation at gene regulatory sites that 

would suggest differences in DNA accessibility for the transcriptional machinery. Assessing the 

distribution of covalent histone modifications indicative of active (i.e. H3K4me3, H3K27ac) and 

repressive (i.e. H3K27me3) chromosomal regions using ChIP-Seq would further explain how 

changes in chromatin landscape at gene regulatory sites contribute to differential gene expression 

caused by perinatal TF exposure. Consistent observations of concordant changes in DNA 

methylation and histone modifications that explain upregulated or downregulated genes would 

justify further assessments targeted at understanding the developmental origins of observed 

chromatin alterations. 

Comprehensive assessments of hepatic chromatin architecture between treatment groups 

before and after liver maturation has occurred would help determine alterations in the chromatin 
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landscape leading to abnormal gene expression later in life. Comparing differences in chromatin 

accessibility in unexposed offspring before and after liver maturation would provide a reference 

for chromatin organization during normal liver development. Abnormalities in accessibility of 

chromosomal regions relative to this standard could then be identified in the livers of TF-exposed 

offspring. Proposed assessments would include bisulfite sequencing to assess DNA-methylation 

differences, ChIP-Seq for active and repressive histone distribution, ATAC-Seq to assess DNA-

accessibility patterns, and Hi-C to measure global chromatin interactions. Isolation of hepatocytes 

would be performed before liver maturation and at birth, when substantial liver maturation has 

happened. Results from these experiments would be compared between male offspring from 

untreated dams, dams treated with TF, and dams given the GR antagonist RU486, which would 

prevent endogenous GCs from inducing liver maturation. Comparing differences in chromatin 

architecture as the liver matures between control mice, TF-treated mice, and mice deprived of liver 

maturation via RU486 treatment would outline the establishment of aberrant chromatin 

modifications belonging to regulatory elements of differentially programed genes implicated in 

adverse metabolic outcomes later in life. For example, the epigenetic programming of a gene that 

is upregulated might be due to increased accessibility and activity of an enhancer rather than a 

promoter [367]. The proposed experiments could show this by measuring decreased enhancer 

methylation, increased DNA-accessibility and positioning of histones denoting active enhancers, 

as well as increased interactions between this hypothetical enhancer and the promoter regulating 

the gene of interest. Such comprehensive assessments would be possible at a genome-wide scale 

that would be more informative than targeted analysis on specific gene regulatory regions. Further, 

these unbiased tests could uncover underlying mechanisms responsible for the regulation of 

multiple genes. For example, the increased activity of an enhancer could result in the upregulation 
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of several genes [368]. Finally, identifying gene regulatory regions responsible for altered gene 

expression could help pinpoint proteins responsible for the alteration of the epigenetic makeup of 

such regulatory regions, such as pioneer factors, transcription factors, or other factors responsible 

for altering chromatin architecture such as CTCF. Overall, comprehensively assessing the 

chromatin landscape during fetal development would help resolve unanswered questions in the 

field of DOHaD, such as how altered gene expression is programmed during development, and 

what protein factors mediate such changes. 

 

Section 4.3: Evaluating Potential Sources of Sex-Specific Hepatic Outcomes  

Section 4.3.1: Assessing Potential Placental Contributions to Sex Differences in TF Outcomes 

Sex-specific differences in placental function and response to environmental factors have 

been extensively reported, yet the role that the placenta plays in mediating distinct metabolic 

outcomes between male and female offspring following GC overexposure remains unclear. 

Testing for differential placental response to TF would be critical in resolving whether the placenta 

mediates the sex-specific metabolic outcomes elicited by perinatal TF exposure. It is possible that 

the placenta expresses drug transporters in a sex-specific manner and lead to differential fetal TF 

exposure. One initial experiment could test for differences in fetal TF and TF metabolite levels 

between male and female fetuses with mass spectrometry. Second, sex-differences in GR-mediated 

placental response to an acute TF exposure could be assessed. To test this, whole placental tissue 

could be analyzed for placenta-specific GR-mediated endpoints such as phosphorylated GR, 11β-

HSD2 expression, and apoptosis markers by western blot or histology following an oral gavage of 

TF dissolved in corn oil. Placental sex would be determined by genotyping the associated fetus for 

SRY. Sex-specific differences in any of the observed GR-mediated endpoints would warrant 
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further studies to characterize other potential placental responses that could alter fetal 

development, such as changes in placental vasculature, expression of nutrient transporters, and 

synthesis of hormones and growth factors. An assessment of these endpoints could also be carried 

out during gestation after the same dietary exposure paradigm. Alternatively, a validated ex vivo 

placental perfusion system [369] could be employed to directly expose the placenta to TF and test 

for differences in gene expression and TF-metabolism. Overall, sex-specific placental responses 

could be interrogated to assess whether the placenta is responsible for mediating differential 

metabolic outcomes in developmentally exposed offspring.  

 

Section 4.3.2: Uncovering Potential Crosstalk Between GCs and Sex Steroid Hormones 

During Liver Development 

Definitive evidence shows that GCs crosstalk with androgens and estrogens in several 

tissues by numerous mechanisms, yet the extent and role of GR crosstalk with AR and ER during 

fetal development remains largely unknown. Further, whether disrupting GR signaling can lead to 

sex-specific differences by disrupting crosstalk with AR and ER has not been assessed. Comparing 

differences in global gene expression and hormone receptor chromatin binding in rodent fetal 

hepatocytes co-treated ex vivo with DEX and DHT, as well as DEX and E2, would answer these 

questions. Specifically, fetal hepatocytes isolated at the same gestational day from the same sex 

would first be treated with either DEX, DHT, or E2 to obtain a transcriptional and genome binding 

signature for activated GR, AR, and ER during a specific developmental stage. Steroid receptor 

DNA-binding depends on chromatin accessibility of the respective hormone response elements 

[170-172], which is markedly different depending on developmental stage. Thus, testing primary 

fetal hepatocytes would capture the chromatin landscape necessary to answer whether these 
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nuclear receptors can influence each other’s gene-regulatory activity specifically during 

development. ChIP-Seq and RNA-Seq data from each treatment could be compared to assess 

differences and overlap in gene expression and DNA-binding patterns. After this initial 

assessment, fetal hepatocytes from the same gestational day and sex would be co-treated with DEX 

and DHT, as well as DEX and E2 to test how co-treatments affect gene expression and DNA-

binding in comparison to the single treatments. As with similar experiments performed with adult 

cell lines, these experiments would provide information about new DNA-binding and 

transcriptional outcomes not observed during single hormone receptor activation, which has never 

been assessed during fetal development. Further, knowing which genes are differentially regulated 

during co-exposures would provide insight into which sex-specific metabolic outcomes observed 

in published GC overexposure studies may be attributed to such differential expression.  

Considerable differences in outcomes measured during the co-treatment experiments 

would strongly suggest that disrupting GR signaling in times where fetal T or E2 levels differ 

between male and female fetuses could result in sex-specific programming differences. To directly 

test this hypothesis, similar co-treatment experiments could be performed with doses designed to 

reflect sex-differences in T during fetal development between male and female fetuses, while 

keeping the DEX dose constant. Alternatively, a similar experiment with E2 instead of T could be 

performed given that T could be aromatized to E2 in the fetal liver as it is done in other tissues. If 

significant differences in global gene expression are observed between the DEX/female T 

concentration, and DEX/male T concertation co-treatment experiments, then it is possible that GC 

crosstalk during times where sex hormone levels are different between male and female fetuses 

could lead to sex differences in programming. Importantly, all prenatal DEX studies that have 

shown sex differences in metabolic outcomes have administered DEX during the last week of 
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gestation, which is when female and male rats have differences in circulating T [209]. Moreover, 

a longitudinal assessment at different points during fetal development would determine how 

steroid hormone crosstalk dynamics change, and importantly, identify critical windows of 

susceptibility to disruption. Overall, the outlined experiments would directly test whether GR 

disruption during developmental windows where circulating fetal sex hormone differ in male and 

female fetuses could result in sex-specific differences in developmental programming. Future 

studies could test whether similar results are obtained with weaker GR agonists, such as TF or 

other GR-modulating EDCs. 

 

Section 4.4: Addressing Exposure Disparities Through Community-Based Collaborations 

The gradual and cumbersome nature of the EPA’s chemical regulatory process warrants 

additional means to end the higher exposures to EDCs amongst disproportionately exposed 

communities. This point is underlined by the shortcomings of the Toxic Substances Control Act 

(TSCA), which guides the EPA’s toxic chemical regulatory practices. The TSCA places the 

“burden of proof” on researchers rather than chemical manufacturers, resulting in an unsustainable 

system that requires the investment of millions of dollars, decades of research, and an unknown 

amount of affected lives to prove that a suspected chemical is hazardous. The EPA must also weigh 

the economic benefits of a potentially hazardous chemical in their regulatory decision-making, 

which can prevent adequate regulation of lucrative chemicals that vulnerable populations are 

unequally exposed to. Thus, proactive place-based measures in addition to research-guided 

legislation are needed to address EDC exposures in disproportionately exposed communities. 

Equitable academic collaborations with non-profit and autonomous environmental 

organizations can optimize efforts to locally address environmental injustices by combining 
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resources that are specific to each of these entities. For decades, environmental non-profit groups 

along with autonomous environmental groups have pushed for preventive health by realizing 

changes that result in tangible reductions in pollution exposures. These groups create change by 

engaging the youth, adults, and elders of affected neighborhoods in campaigns that combine 

community organizing, media communications, legal and electoral strategies, and research. Some 

organizations realizing environmental justice in their communities include Communities for a 

Better Environment (CBE) and East Yard Communities for a Better Environment (EYCEJ) in 

California, and Little Village Environmental Justice Organization (LVEJO) in Chicago, IL. CBE 

has prevented the siting and expansion of various polluting sources, has won several settlements 

against polluters and influenced the reduction of their emissions, and continues to support the 

resilience of communities of color by tackling issues dealing with food justice, transportation, and 

green zoning. Some of LVEJO’s distinguished accomplishments is the closure of two of major 

coal plants sited in a predominantly Latinx neighborhood, expanding a bus route in an area 

deprived of public transportation, and the conversion of a superfund site into their neighborhood’s 

a largest park. Environmental community groups can serve as central entities that can guide 

initiatives with external collaborators given the strong community ties and understanding of the 

neighborhood dynamics that environmental community groups belong to. 

Academic collaborations through Community Based Participatory Research (CBPR) can 

comprehensively identify unequal exposure sources and help implement successful interventions 

that will reduce these exposures. CBPR is a model based on the sharing of power in all aspects of 

the research process in academic–community partnerships and benefits communities through 

interventions or policy change [370]. A successful CBPR collaboration is exemplified by the 

California Household Exposure study, which investigated socioeconomic influences behind the 
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exposure of EDCs linked to breast cancer. This collaboration unraveled the disproportionate 

exposure to oil combustion air pollution inside the homes of low-income people of color in 

Richmond, CA, it elucidated of some of the highest levels of PBDEs ever recorded in human 

samples, and discovered that indoor products significantly contribute to indoor air levels of EDCs 

[121, 371, 372]. These breakthroughs influenced litigation against Chevron refinery and the 

prevention of its proposed expansion, and also influenced PBDE regulation in CA [372, 373]. 

Similar academic-community partnerships can help identify sources of other EDCs that vulnerable 

communities are disproportionately exposed to. Just previous studies have identified increased 

packaged and processed food consumption as drivers of BPA and phthalate exposure amongst 

people with lower income [374-376], community-wide studies could assess how commercial 

product consumption patterns can lead to unequal exposures to other EDCs.  These types of 

projects can lead to interventions aimed to build local consumer consciousness about EDC 

exposures and increase the demand for cleaner and healthier alternatives. Consumer pressure can 

then influence local businesses to adopt healthier products in their communities, and thus bypass 

the bureaucratic process of banning potentially harmful chemicals. For example, the Campaign for 

Safe Cosmetics has increased awareness about EDC additives in cosmetic products, and may be 

responsible for the voluntarily removal of several phthalates from cosmetic products in the recent 

years. Accordingly, exposure levels of these EDCs have dropped in the recent years [96]. Similar 

initiatives focused in communities of color may result in lower exposure levels of EDCs found in 

consumer products. Increased funding for academic-community initiatives can be a priority for 

funding agencies that aim to address socioeconomic disparities in health. Despite lack of funding, 

environmental non-profits creating change within their communities, thus, increasing funding to 

these entities will only result in greater tangible health and environmental outcomes.  
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Section 4.5: Conclusion 

In conclusion, disruption of GR signaling during fetal development misprograms 

metabolism in the offspring in a sex-specific manner as evidenced by different methods of 

gestational GC overexposure. Potential reasons explaining sex-specific outcomes following in 

utero GC overexposures include hormone crosstalk between GR sex hormone receptors during 

development, as well as differential placental responses. Developmental exposure to the GR-

modulating EDC TF leads to various metabolic derangements in the offspring in a sex-specific 

manner, some of which parallel outcomes observed in other in utero GC overexposure models. 

These results warrant further efforts to assess how exposure to other GR-modulating EDCs of 

known public health relevance are influencing long-term metabolic disease risk in the offspring.  
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Appendix A: Figures 

Figure 2.1: Overview of the Hypothalamic-Pituitary-Adrenal (HPA) Axis. 

 

Glucocorticoids (GCs) are synthesized under control of the Hypothalamic-Pituitary-Adrenal 

(HPA) axis. In response to HPA activation, the paraventricular nucleus of the hypothalamus 

releases Corticotropin-Releasing Hormone (CRH), which signals corticotropic cells in the anterior 

pituitary to release Adrenocorticotropic hormone (ACTH). ACTH promotes the synthesis of GCs 

in the zone fasciculata of the adrenal cortex, namely cortisol in humans and corticosterone in 

rodents, which negatively feedback on the HPA axis.  
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Figure 3.1: Perinatal TF study timeline. 

 

Eight-week old C57BL/6J mice were mated and fed a standard chow diet or an identical diet 

supplemented with TF at 100 g/kg diet throughout gestation and lactation. Offspring were 

weaned at 3 weeks and pair housed by sex. In Study 1, offspring were subjected to IP-GTT at 

week 10, IP-ITT at week 16, and were sacrificed at 19 weeks. Fat from a subset of these mice 

was assayed ex vivo for adipose insulin sensitivity. In Study 2, hepatic gene expression of 

overnight-fasted mice was assessed at week 4, and HPA axis reactivity was assessed at week 5. 

Littermates were subjected to an IP-PTT at week 20-22.  
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Figure 3.2: Litter and growth outcomes of perinatal TF exposure in female and male offspring. 
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Figure 3.2, continued 

Pregnant C57BL/6J mice were provided a standard chow with or without TF added at the time of 

manufacturing at a concentration of 100 mg/kg throughout pregnancy and lactation. Litter size 

(Panel A) and offspring sex-ratio (Panel B) was assessed at weaning), Control n=17 litters, TF 

n=24 litters. Body weight was measured at birth (Panel C), Control n=30 pups, TF n=25 pups. 

Offspring were weaned at 3 weeks and weighed until they reached 19 weeks of age. Weaning 

weight for females (Panel D) and males (Panel E). Weekly body weight for females (Panel F) 

and males (Panel G). Control n=25, TF n=53 for female offspring weaning and weekly body 

weights. Control n=36, TF n=43 for male offspring weaning and weekly body weights. *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001. 
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Figure 3.3: Perinatal TF exposure impairs glucose clearance during acute glucose challenge. 

 

 

An IP-GTT was performed in the offspring at week 10 by IP injection of dextrose (2 g/kg). Serial 

blood glucose measurements were taken for 120 minutes in females (Panel A) and males (Panel 

C). Control n=20, TF n=39 for female offspring. Control n=27, TF n=33 for male offspring. 

Plasma insulin during IP-GTT was assessed at baseline and 10, 30, and 60 minutes after dextrose 

injection in females (Panel B) and males (Panel D). Control n=11, TF n=20 for female offspring; 

control n=20, TF n=20 for male offspring. GTT, glucose tolerance test; IP, intraperitoneal; 

*p<0.05; ***p<0.001.  
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Figure 3.4: Perinatal TF exposure results in sex-specific differences in insulin sensitivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 117

Figure 3.4, continued 

HOMA-IR (Panel A) and HOMA-β (Panel B) were calculated for female offspring using fasting 

blood glucose and plasma insulin levels at week 10 after a 6-hour fast, (Control n=21, TF n=31). 

An IP-ITT was performed at week 16 by IP injection of insulin (0.4 U/kg), and serial blood glucose 

measured for 90 minutes in female offspring (Control n=12; TF n=21) (Panel C). HOMA-IR 

(Panel E) and HOMA-β (Panel F) were calculated for male offspring using fasting blood glucose 

and plasma insulin levels at week 10 after a 6-hour fast (Control n=28; TF n=19). An IP-ITT was 

performed at week 16 of exposure by IP injection of insulin (0.5 U/kg for males), and serial blood 

glucose was measured for 90 minutes for male offspring (Control n=15; TF n=26) (Panel G). 

Survival curves for females (Panel D) and males (Panel H) show the percentage of mice that 

experienced severe hypoglycemia (<20 mg/dL) during IP-ITT at week 16. ITT, insulin tolerance 

test. *p<0.05; **p<0.01; ***p<0.001, ****p<0.0001. 
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Figure 3.5: Perinatal TF exposure results in sex-specific differences in adiposity and adipose 
insulin sensitivity. 

 

 

 

Visceral adipose depots were collected and weighed at sacrifice week 19. Perigonadal (PGF), 

perirenal, and mesenteric fat depot weight was normalized to total body weight. Total visceral 

adiposity was calculated by adding all of the individual depots and normalizing to body weight for 

female offspring (Panel A), Control n=25, TF n=50; and male offspring (Panel C), Control n=35, 

TF n=31.  A subset of the PGF tissue was stimulated with different insulin concentrations for 10 

minutes, and insulin sensitivity was assessed as the ratio of the band sizes of phosphorylated-to-

total Akt at the S473 site for female offspring (Panel B) Control n=14, TF n=14 (except for 10 

nM, n=13); and male offspring (Panel D), Control n=11, TF n=11 (except for nM 10, n=10). 

*p<0.05. 
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Figure 3.6: Insulin signaling mediator gene expression is not altered in TF exposed female 
offspring. 

 

 

 

Perigonadal adipose tissue was collected at week 19 from female offspring after a 3-hour fast 

and gene expression for insulin signaling mediators upstream of Akt was assessed with RT-

qPCR (Panel A) control n=8-13, TF n=8-14. Perigonadal adipose tissue (Panel B), skeletal 

muscle (Panel C), and liver (Panel D) was collected from female offspring at week 4 after an 

overnight fast and gene expression for the insulin receptor and IRS-1 was assessed with RT-

qPCR control n=10, TF n=10. IR, insulin receptor; IRS, insulin receptor substrate; PI3K, 

Phosphatidylinositol 3 phosphate kinase.  
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Figure 3.7: Perinatal TF exposure does not alter fasting circulating corticosterone in offspring. 

 

Offspring were fasted for 16 hours (5:00pm – 9:00am) at week 4 and sacrificed by cardiac 

puncture. Serum corticosterone was measured in total offspring (Panel A) Control n=18, TF 

n=20; female offspring (Panel B) Control n=9, TF n=11; and male offspring (Panel C) Control 

n=9, TF n=9. 
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Figure 3.8: Perinatal TF exposure does not increase HPA reactivity, but increases blood glucose 
levels in male offspring only. 

 

 

 

 

 

 

 

Offspring HPA axis reactivity was assessed at week 5 by acute restraint test. Circulating 

corticosterone was measured in females (Panel A), Control n=5, TF n=5; and male offspring 

(Panel B), Control n=10, TF n=10. Blood glucose levels were measured in females (Panel C), 

Control n=5, TF n=5; and male offspring (Panel D), Control n=10, TF n=10. Circulating 

epinephrine was measured in males only (Panel E), Control n=10, TF n=10.  *p<0.05. 
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Figure 3.9. Perinatal TF exposure results in sex-specific differences in gluconeogenic capacity. 

 

 

Hepatic gene expression was measured with qPCR at week 4 after an overnight fast (16 hour) for 

females (Panel A) (n=9-10, TF n=10) and males (Panel B) (control n=9-10, TF n=12) per group. 

An IP-PTT was performed at week 20-22 after an overnight fast by IP injection of sodium pyruvate 

(1 g/kg) and serial blood glucose measured for 75 minutes in female offspring (Panel C) (n=5 per 

group) and male offspring (Panel D) (n=10 per group). PTT, pyruvate tolerance test; PEPCK, 

phosphoenolpyruvate carboxykinase; G6pc, glucose-6-phosphatase; *p<0.05; **p<0.01. 
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Appendix B: Tables 

Table 1.1: Prospective studies documenting associations between EDC exposures and diabetes 
risk. 

 

Polychlorinated Biphenyls (PCBs) 

Ref. Population Results Effect Estimate 

with Confidence 

Interval 

[45] 1384 subjects without 
diabetes in the Michigan 

PBB Cohort followed for 25 
years 

Women with the highest (vs. 
lowest) PCB serum levels had 
increased incidence of diabetes. 

Incidence Density 
Ratio (IDR): 2.33 
[1.25-4.34] 

[46] 378 subjects and 370 
matched references from the 

Yucheng Poisoning in 
Taiwan in the 1970s 

Increased risk of incident diabetes 
in women who consumed rice 
bran oil laced with PCBs. Women 
with chloracne, a severe skin 
manifestation of dioxin-like PCB 
exposure, had an increased risk of 
diabetes. 

Odds Ratio (OR) 
for PCBs: 2.1 [1.1-
4.5]; OR for 
chloracne: 5.5 [2.1-
13.4] 

[51] 471 Great Lakes sport fish 
consumers without diabetes 

followed from 1994-5 to 
2005 

Highest tertile of PCB levels were 
not associated with incident 
diabetes. 

Incident Rate Ratio 
(IRR) for diabetes: 
1.8; [0.6-5.0] for 
total PCBs; IRR: 
1.3 [0.5–3.0] for 
PCB 118 

[47] Two case-control studies of 
women without diabetes 
from the Nurses’ Health 

Study (NHS), and a meta-
analysis of pooled data with 
six additional prospective 

studies 

After pooling of data, total PCBs 
were associated with incident 
diabetes. 

Pooled OR for 
diabetes: 1.70 
[1.28-2.27] 

[50] Case-control study of women 
aged 50-59 years in Southern 

Sweden 

PCB 153 not associated with T2D 
in women in the highest quartile 
of exposure examined more than 
6 years after study entry. 

OR for T2D: 1.6 
[0.61-4.0] 

[49] 90 cases and controls in a 
nested case-control study 

followed for approximately 
18 years 

Highly chlorinated PCBs showed 
nonlinear associations with 
incident diabetes risk. 

OR of 5.3 for 
second sextile vs. 
lowest sextile of 
sum of 16 persistent 
organic pollutants 
(POPs), including 
12 PCBs 
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Table 1.1 continued 

 

 

 

 

 

[48]  725 participants from the 
Prospective Investigation of 
the Vasculature of Uppsala 

Seniors (PIVUS) study 

Increased OR for T2D across 
quintiles of a summary measure 
of PCBs vs. the lowest quintile. 

OR: 4.5 [0.9-23.5], 
5.1 [1.0-26.0], 8.8 
[1.8-42.7], and 7.5 
[1.4-38.8]; Ptrend 
<0.01 

[53] Meta-analysis of cross-
sectional and prospective 
studies published before 

March 8, 2014 examining 
links between various EDCs 

and diabetes risk 

Increased risk of diabetes in the 
highest exposure to lowest 
exposure group for serum 
concentrations of total PCBs. 

Relative Risk (RR) 
for diabetes: 2.39 
[1.86-3.08] 

 

Chemical Constituents of Air Pollution 

Ref. Population Results Effect Estimate 

with Confidence 

Interval 

[64] 65 adults with metabolic 
syndrome and insulin 

resistance from the Air-
Pollution and 

Cardiometabolic Diseases 
(AIRCMD) - China Study 

PM2.5 exposure during the 4th and 
5th day prior to metabolic 
assessment.associated with 
worsening insulin resistance.  

0.18 (0.02-0.34) 
and 0.22 (0.08–
0.36) HOMA-IR 
unit increase per 
standard deviation 
(SD) increase of 
PM2.5  

[66] 
 

3607 individuals from the 
Heinz Nixdorf Recall Study 
in Germany followed for an 

average of 5.1 years 

PM exposure associated with 
incident diabetes. 

RRs for PM10: 1.20 
[1.00-1.31]; RR for 
PM2.5: 1.11 (0.99-
1.23); RR for 
individuals living 
closer than 100 m 
to a busy road 
relative to those 
>200 m away: RR: 
1.37 (1.04-1.81) 

[377
] 

29,549 women from the 
Canadian National Breast 

Screening Study 

Increased prevalence of diabetes 
with increasing PM2.5 exposure 

Prevalence rate 
ratio (PR) of 
diabetes: 1.28 
[1.16-1.41] per 10 
µg/m3 increase in 
PM2.5 
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Table 1.1 continued 

 

 

 

 

 

 

 

[69] 5839 subjects in the Multi-
Ethnic Study of 

Atherosclerosis (MESA) 
Cohort 

No air pollution measures were 
signifiantly associated with 
incident DM over 9 years of 
follow-up; however, prevalent 
diabetes OR per IQR increase 
showed an association 

PM2.5 1.09 [1.00-
1.17]; nitrogen 
oxides 1.18 [1.01-
1.38]. 

[71] 669,046 participants from the 
American Cancer Society 

Cancer Prevention Study II 

Deaths linked to diabetes (on 
death certificates) were associated 
with increased PM2.5.  

Hazard Ratio (HR): 
1.13 [1.02–1.26] 
per 10 µg/m3 

increment of PM2.5 

[72] 2.1 milion adults from the 
1991 Canadian Census 

Mortality Follow-Up Study  

A 10 µ/m3 increase in PM2.5 was 
associated with an increase in 
diabetes-related mortality. 

HR: 1.49 [1.37-
1.62] 

[65] Fasting blood from 397 10-
year old children in 2 

prospective German birth 
cohort studies 

Insulin resistance (IR) increased  
for every 2 SD increase in 
ambient NO2, PM10, and for every 
500 m to nearest major road. 

17.0% [5.0-30.3] 
for NO2; 18.7% 
[2.9-36.9] for PM10; 
and 7.2% [0.8-14.0] 
for proximity to 
nearest road 

[67] 3992 black women living in 
Los Angeles followed for 10 

years 

Increase in nitrogen oxides (NOx) 
were associated with diabetes. 

IRR: 1.63 [0.78-
3.44] for each 10 
µg/m3 increase in 
PM2.5; 1.25 [1.07-
1.46] for the IQR of 
NOx (12.4 ppb).  

[70] 43,003 participants in the 
Black Women’s Health 

Study (BWHS) followed 
from 1995 to 2011 

After adjustment for age, 
metropolitan area, education, 
vigorous exercise, BMI, smoking, 
and diet, NO2 was not associated 
with diabetes. 

HR per IQR of 
NO2: 0.96 [0.88-
1.06] for a land use 
regression model 
for participants 
living in 56 
metropolitan areas; 
HR: 0.94 [0.80-
1.10] using a 
dispersion model 
for participants 
living in 27 cities. 
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[68] 1775 non-diabetic women 
aged 54-55 followed for 16 

years in West Germany 

HR for diabetes was increased per 
IQR of traffic-related PM or NO2 
exposure. 

HR for PM and 
NO2: 1.15 [1.04–
1.27]; HR for NO2: 
1.42 [1.16–1.73] 
using land-use 
regression. 

[73] 22 people with T2D living in 
North Carolina  

Increased ambient PM2.5 prior to 
clinical assessment was 
associated with impairment in 
endothilial function, such as 
decreased flow-mediated 
dilitation (FMD) and small-artery 
elasticity index (SAEI). 

FMD: –17.3 [–34.6 
to 0.0] during the 
first 24 hours of 
clinical assessment; 
SAEI –17.0 [–27.5 
to –6.4] and –15.1 
[–29.3 to –0.9] 1-3 
days prior to 
clinical assessment 

[74] 9202 patients hospitalized 
with ischemic stroke 

Among patients with diabetes, 
PM2.5 was associated with an 
increased risk of ischemic stroke. 

11% [1-22%] 
increased risk per 
10 µg/m3 increase 
in PM2.5 

[63] 25 healthy adults from rural 
Michigan brought to an 

urban location for 5 
consecutive days 

PM2.5 associated with increased 
insulin resistance. 

0.7 [ 0.1 to 1.3] 
increase in HOMA-
IR per 10 µg/m3 
increase in PM2.5. 

Bisphenol A (BPA) 

Ref. Population Results Effect Estimate 

with Confidence 

Interval 

[88] 971 incident T2D case-
control pairs from the NHS 

II 

Extremes of BPA quartiles 
associated with increased incident 
T2D after adjusting for BMI. 

OR: 2.08 [1.17-
3.69]. 

[89] 2209 non-diabetic middle-
aged and elderly subjects 

followed for 4 years 

Individuals with genetic 
susceptibility to diabetes with 
high BPA levels showed a greater 
increase in fasting plasma glucose 
compared with individuals with 
low BPA. 

Increase in fasting 
plasma glucose: 
0.85 ± 0.07 vs. 0.59 
± 0.04 mmol/L. 
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[90] 121 patients with T2D 
followed for 6 years 

Individuals with diabetes and 
high BPA had increased risk of 
developing chronic kidney 
disease vs. subjects with low 
BPA. 

OR: 6.65 [1.47-
30.04]. 

[53] Meta-analysis of cross-
sectional and prospective 
studies published before 

March 8, 2014 examining 
links between various EDCs 

and diabetes risk 

Higher urinary BPA 
concentrations.were positively 
associated with diabetes risk. 

RR: 1.45 [1.13-
1.87]. 

Phthalates 

Ref. Population Results Effect Estimate 

with Confidence 

Interval 

[88] 971 incident T2D case-
control pairs from the 

Nurses’ Health Study II 

Incident T2D in NHSII associated 
with summed metabolites of butyl 
phthalates and diethylhexyl 
phthalate (DEHP). 

OR for metabolites 
of butyl phthalate: 
3.16 [1.68-5.95]; 
OR for DEHP: 1.91 
[1.04-3.49]. 

[103
]  

250 children of women 
enrolled in Early Life 

Exposure in Mexico to 
Environmental Toxicants 

(ELEMENT) cohort 

In utero monoethyl phthalate 
(MEP) associated with lower 
insulin secretion among pubertal 
boys. Peripubertal DEHP 
associated with increased insulin 
resistance and higher insulin 
secretion. 

17% [-29 to -3.3%] 
lower insulin 
secretion among 
pubertal boys 
exposed to MEP in 

utero.  

20% [2.5-41] 
higher insulin 
secretion for 
peripubertal DEHP 
exposure.  

[53] Meta-analysis of cross-
sectional and prospective 
studies published before 

March 8, 2014 examining 
links between various EDCs 

and diabetes risk  

Group with highest urinary 
concentrations of phthalates had 
increased risk for diabetes. 

RR: 1.48 [0.98-
2.25]. 
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Organochlorine (OC) Pesticides 

Ref. Population Results Effect Estimate 

with Confidence 

Interval 

[47] Two case-control studies of 
women without diabetes 
from the Nurses’ Health 

Study (NHS), and a meta-
analysis of pooled data with 
six additional prospective 

studies 

Highest tertile of plasma 
hexachlorobenzene (HCB) was 
positively associated with 
incident T2D. After pooling 
results from 6 published 
prospective studies, HCB was 
associated with incident diabetes. 

OR: 3.59 [ 1.49-
8.64]; Pooled OR: 
2.00 [1.13-3.53]. 

[51] 471 Great Lakes sport fish 
consumers without diabetes 

followed from 1994-5 to 
2005 

Higher levels of 
dichlorodiphenyldichloroethylene 
(DDE), a metabolite of 
dichlorodiphenyltrichloroethane 
(DDT), were associated with 
incident diabetes. 

IRR: 7.1 [1.6–
31.9]. 

[50] Case-control study of women 
aged 50-59 years in Southern 

Sweden 

DDE was associated with T2D in 
women in the highest quartile of 
exposure followed for more than 
6 years.  

OR: 5.5 [1.2-25]. 

[49] 90 cases and controls in a 
nested case-control study 

followed for approximately 
18 years 

Sum of 16 POPs (including 3 OC 
pesticides) were associated with 
T2D. 

OR (second sextile 
vs. lowest sextile): 
5.4 [1.6-18.4]. 

[48] 725 participants from the 
Prospective Investigation of 
the Vasculature of Uppsala 

Seniors (PIVUS) study 

Trans-nonachlor was non-linearly 
associated with incident diabetes 
risk (Ptrend=0.03). Summary 
measure of 3 OC pesticides non-
linearly associated with diabetes 
risk (Ptrend=0.03). 

OR (fourth quintile 
of Trans-nonachlor 
vs. first): 4.2 [1.3-
13.3]. OR (fifth 
quintile of OC 
exposure vs. first): 
3.4 [ 1.0-11.7]. 

[52] 973 participants of the 
Flemish Environment and 

Health Survey 

Doubling serum HCB was 
positively associated with 
diabetes risk. Doubling DDE was 
positively associated with 
diabetes in men but not women. 

OR for HCB: 1.61 
[1.07-2.42]; OR for 
DDE: 1.67 [1.25-
2.24]. 

[118
] 

13,637 women from the 
Agricultural Health Study 

Incident diabetes was positively 
associated with dieldrin. 

HR: 1.99 [1.12-
3.54]. 
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[53] Meta-analysis of cross-
sectional and prospective 
studies published before 

March 8, 2014 examining 
links between various EDCs 

and diabetes risk 

Comparing the highest exposure 
group to the lowest exposure 
group, serum concentrations of 
chlorinated pesticides were 
positively associated with 
diabetes. 

RR: 2.30 [1.81-
2.93]. 
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Table 1.2: Studies documenting racial, ethnic, and/or socioeconomic disparities in exposures to 
EDCs associated with metabolic disease. 

 

Polychlorinated Biphenyls (PCBs) 

Ref. Population Assessment Comparisons Pollutants Differences 

[23] Pregnant Women 
from the Child 

Health and 
Development 
study cohort 
1963-1967 

Percent 
difference of 
serum PCBs 

between [95% 
CI] 

non-white vs. 
white 

PCB 105 6.57 [-7.32-
22.1]† 

PCB 110 -1.84 [-20.5-
21.2]† 

PCB 118 -1.37 [-11.8-
10.2]† 

PCB 137 -15.1 [-30.9-
3.12]† 

PCB 138 9.5 [-1.69-
22.2]† 

PCB 153 5.35 [-4.3-
15.9]† 

PCB 170 6.68 [-3.19-
18.5]† 

PCB 180 12.8 [2.52-
24.2]†* 

PCB 187 17.9 [5.83-
31.9]†* 

Sum PCBs 6.28 [-2.05-
15.9] 

[378] Women from the 
Northern 
California 

Region Kaiser 
Permanente 

Medical Care 
Program, 1964-

1971 

Adjusted mean 
difference of 
serum PCBs 

(ppb) [95% CI] 

AA vs. NHW PCBs (not 
specified) 

1.4 [0.7, 
2.1]* 

AA vs. NHW 
(Breast Cancer 

patients) 

1.7 [0.8, 
2.5]* 

AA vs. NHW 
(Control patients) 

1.1 [0.0, 
2.2] 

[28] National 
Adipose Tissue 
Survey 1972-

1979 

Population 
percentage with 
>3 ppm PCB in 
adipose tissue; 
no statistical 

comparisons are 
reported 

Non-white vs. 
white 

Total PCBs 5.05 vs. 
4.52 

(1972)† 
11.0 vs. 

4.68 
(1973)† 
5.58 vs. 

4.89 
(1974)† 
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     12.6 vs. 
7.00 

(1975)† 
12.6 vs. 

6.03 
(1976)† 
14.6 vs. 

8.96 
(1977)† 
10.1 vs. 

8.02 
(1978)† 
6.11 vs. 

4.68 
(1979)† 
9.71 vs. 

6.10 
(Average, 
’72-’79)* 

[379] National Human 
Adipose Tissue 

Survey 1986 

Average 
adipose 

concentrations 
(ng/g) [RSE] 

Non-white vs. 
white 

Tetrachloro
biphenyl 

73.0 [22] vs. 
53.0 [11] 

Pentachlor
obiphenyl 

141 [30] vs. 
133 [14] 

Hexachloro
biphenyl 

435 [15] vs. 
289 [8] 

Heptachlor
obiphenyl 

195 [31] vs. 
111 [24] 

[105] Pregnant women 
from NHANES 

1999-2002 

GM for serum 
lipid adjusted 

PCBs [95% CI] 

AA vs NHW PCB-126 
(pg/g) 

20.3 [16.9–
24.5] vs. 

13.9 [12.4–
15.6]* 

PCB-
138/158 
(ng/g) 

21.7 [19.4–
24.2] vs. 

16.2 [15.1–
17.3]* 

PCB-153 
(ng/g) 

30.5 [28–
33.2] vs. 

22.8 [21.5–
24.2]* 

PCB-169 
(pg/g) 

13.4 [12.1–
14.9] vs. 

10.9 [9.9–
12]* 
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    PCB-180 
(ng/g) 

17.2 [16.1–
18.4] vs. 

14.1 [13.2–
15]* 

MA vs. NHW PCB-126 
(pg/g) 

15.9 [14.2–
17.7] vs. 

13.9 [12.4–
15.6] 

PCB-
138/158 
(ng/g) 

13.9 [12.6–
15.4] vs. 

16.2 [15.1–
17.3]* 

PCB-153 
(ng/g) 

18.2 [16.5–
20] vs. 22.8 

[21.5–
24.2]* 

PCB-169 
(pg/g) 

9.4 [8.7–
10.2] vs. 

10.9 [9.9–
12]* 

PCB-180 
(ng/g) 

12.3 [11.5–
13.2] vs. 

14.1 [13.2–
15]* 

[380] NHANES 1999-
2002 Elders 60-

84 years old 

GM [GSD] of 
serum PCBs 
(ng/g lipid) 

AA vs. NHW Sum of 12 
non–dioxin 
and dioxin-
like PCBs 

410 [1.74] 
vs. 283 
[1.67]* 

MA vs. NHW 206 [1.76] 
vs. 283 
[1.67]* 

First PIR quartile 
vs. fourth quartile 

244 [1.80] 
vs. 294 
[1.72] 

[381] NHANES 2001-
2004 

Total blood 
concentration of 

30 PCB 
congeners (ng/g 

lipid) 

AA vs. NHW (> 
30 years old) 

30 PCB 
congeners 

1.97 vs. 
1.54† 

AA vs. NHW 
(+50 years old) 

3.08 vs. 
2.02 

MA vs. NHW (> 
30 years old) 

1.50 vs. 
1.54† 

MA vs. NHW 
(+50 years old) 

1.57 vs. 
2.02 
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   AA vs. NHW 
(+50 years old, 

female, 95th 
percentile) 

 7.68 vs. 
4.72 

AA vs. NHW 
(+50 years old, 

male, 95th 
percentile) 

7.70 vs. 
4.21 

[22] NHANES 2003-
2008 Women 
and men > 60 
years of age 

Serum PCB 153 
(ng/g lipid) 

±95%CI 

AA vs. NHW 
Females (‘03-‘04) 

PCB 153 in 
people ≥ 60 

years old 

146.5 ± 27.7 
vs. 62.1 ± 

7.8* 
AA vs. NHW 

Females (‘05-‘06) 
129.5 ± 74.8 

vs. 58.0 ± 
10.8 

AA vs. NHW 
Females (‘07-‘08) 

102.4 ± 15.6 
vs. 56.4 ± 

7.8* 
AA vs. NHW 

Males (‘03-‘04) 
153 ± 53.6 
vs. 65.0 ± 

11.0* 
AA vs. NHW 

Males (‘05-‘06) 
103.5 ± 40.9 

vs. 60.4 ± 
6.2 

AA vs. NHW 
Males (‘07-‘08) 

94.5 ± 29.3 
vs. 63.9 ± 

10.6 
MA vs. NHW 

Females (‘03-‘04) 
39.5 ± 11.4 
vs. 62.1 ± 

7.8* 
MA vs. NHW 

Females (‘05-‘06) 
36.2 ± 9.3 
vs. 58.0 ± 

10.8* 
MA vs. NHW 

Females (‘07-‘08) 
40.9 ± 32.1 
vs. 56.4 ± 

7.8 
MA vs. NHW 

Males (‘03-‘04) 
36.7 ± 5.5 
vs. 65.0 ± 

11.0* 
MA vs. NHW 

Males (‘05-‘06) 
37.3 ± 16.8 
vs. 60.4 ± 

6.2 
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Table 1.2 continued 

 

   MA vs. NHW 
Males (‘07-‘08) 

 39.5 ± 8.9 
vs. 63.9 ± 

10.6* 

AA vs. NHW 
Females (‘03-‘04) 

PCB 153 in 
people 40-
59 years 

old 

53.2 ± 11.9 
vs. 34.2 ± 

3.5* 

AA vs. NHW 
Females (‘05-‘06) 

41.2 ± 10.1 
vs. 27.8 ± 

2.5* 

AA vs. NHW 
Females (‘07-‘08) 

35.7 ± 8.0 
vs. 27.7 ± 

2.3 

AA vs. NHW 
Males (‘03-‘04) 

59.9 ± 27.2 
vs. 38.2 ± 

9.4 

AA vs. NHW 
Males (‘05-‘06) 

38.8 ± 15.3 
vs. 36.4 ± 

16.4 

AA vs. NHW 
Males (‘07-‘08) 

41.0 ± 18.6 
vs. 28.2 ± 

4.8 

MA vs. NHW 
Females (‘03-‘04) 

23.7 ± 10.5 
vs. 34.2 ± 

3.5 

MA vs. NHW 
Females (‘05-‘06) 

19.1 ± 3.3 
vs. 27.8 ± 

2.5* 

MA vs. NHW 
Females (‘07-‘08) 

20.9 ± 6.0 
vs. 27.7 ± 

2.3 

MA vs. NHW 
Males (‘03-‘04) 

26.5 ± 7.3 
vs. 38.2 ± 

9.4 
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Table 1.2 continued 

 

   MA vs. NHW 
Males (‘05-‘06) 

 16.5 ± 2.6 
vs. 36.4 ± 

16.4* 

MA vs. NHW 
Males (‘07-‘08) 

22.4 ± 6.1 
vs. 28.2 ± 

4.8 

[382] NHANES 2003-
2004 

Serum PCBs 
(ng/g lipid) 
[95% CI] 

AA vs. NHW 
(GM) 

Sum of 35 
PCBs 

148.3 
[129.0-

170.5] vs. 
142.7 

[134.2-
151.9] 

MA vs. NHW 
(GM) 

71.2 [61.0-
83.1] vs. 

142.7 
[134.2-
151.9]* 

AA vs. NHW 
(90th percentile) 

604.6 
[454.4-

830.6] vs. 
406.0 

[363.9-
433.8]* 

MA vs. NHW 
(90th percentile) 

188.2 
[155.8-

220.3] vs. 
406.0 

[363.9-
433.8]* 

AA vs. NHW 
(95th percentile) 

984.3 
[631.1-

1426.9] vs. 
508.8 

[461.8-
539.2]* 
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   MA vs. NHW 
(95th percentile) 

 245.1 
[192.7-

323.9] vs. 
508.8 

[461.8-
539.2]* 

[383] 6-8 year old girls 
from California 
and Ohio 2005-

2007 

Serum PCB 
GM (ng/g lipid) 

AA vs. NHW PCB 118 2.4 vs. 3.0* 

PCB 
138/158 

3.6 vs. 4.5* 

PCB 153 4.2 vs. 6.0* 
PCB 170 1.0 vs. 1.4* 
PCB 180 2.2 vs. 3.2* 

Latinas vs. NHW PCB 118 2.4 vs. 3.0* 
PCB 

138/158 
3.6 vs. 4.5* 

PCB 153 4.4 vs. 6.0* 
PCB 170 0.9 vs. 1.4* 
PCB 180 2.1 vs. 3.2* 

Chemical Constituents of Air Pollution 

Ref. Population Assessment Comparisons Pollutants Differences 

[19] 215 U.S. Census 
tracts from 2000-

2006 

Percent increase 
in long-term 

average 
exposure per an 
additional 10% 

increase in 
demographic 

AA PM2.5 1.88* 

Latino 0.13 

NHW -1.37* 

[384] 5921 participants 
from the Multi-
Ethnic Study of 
Atherosclerosis, 

2000-2002 

Ambient GM 
for PM2.5 

(µg/m3), and 
NOx (ppb) 

AA vs. NHW PM2.5 16.5 [16.4, 
16.6] vs. 
15.7 [15.6, 
15.8]* 

Latinos vs. NHW 16.9 [16.8, 
17.1] vs. 
15.7 [15.6, 
15.8]* 

AA vs. NHW NOx 43.3 [42.2, 
44.4] vs. 
33.6 [33.0, 
34.4]* 
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   Latinos vs. NHW  58.7 [57.1, 
60.4] vs. 
33.6 [33.0, 
34.4]* 

[54] 80 metropolitan 
areas in the U.S. 

Coefficient of 
total exposure: 
Log (µ x p x e) 

+1); µ = 
concentration at 

pollution 
monitor, p = 
population 

living within ½ 
mile of monitor, 
e = total number 
of days monitor 
reported levels 

higher than 
federal 

standards from 
2001-2003 

% AA PM2.5 3.82* 

% Latino 0.23 

%Poverty 8.85* 

% AA Ozone 2.37* 

% Latino 0.02 

% Poverty 1.77* 

[385] U.S. Census 
demographics 
from 2000, air 

quality data from 
587 U.S. 

counties from 
2005-2007 

Odds Ratio for 
a county being 

in the worst 
20% vs. best 

20% of counties 
for each 

pollution metric 
per increase in 
IQR for each 
demographic 

across all U.S. 
counties 

% AA Annual 
PM2.5 

2.73* 

% Latino 0.83 

% living in 
poverty 

3.95* 

% AA Daily 
PM2.5 

1.58* 

% Latino 1.13 

% living in 
poverty 

1.92* 

[55] U.S. population 
demographics 
from 2000, air 
pollution data 

from 2006 

Population-
weighted mean 

(ppb) 

Non-white vs. 
white 

NO2 14.5 vs. 9.9, 
38% 

Relative 
Difference* 

AA vs. NHW 13.3 vs. 9.9 
Latinos vs. NHW 15.6 vs. 9.9 

Non-white vs. 
white (Children 

below the poverty 
level) 

14.3 vs. 9.1 
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   Non-white vs. 
white (Elderly 

below the poverty 
level) 

 14.5 vs. 9.9 

Bisphenol A (BPA) 

Ref. Population Assessment Comparisons Pollutants Differences 

[386] NHANES 2003-
2004 

Adjusted 
LSGM [95% 
CI] of Total 
urinary BPA 

(µg/L) 

Income <$20,000 
vs. >$45,000 

BPA 3.1 [2.7–
3.5] vs. 2.5 
[2.3–2.7]* 

[387] NHANES 2005-
2006 

Total urinary 
BPA (ng/mL) 

AA vs. NHW BPA Higher 
urinary BPA 
levels in AA 
than NHW, 
(Wilcoxon 

test, P< 
0.00001); 

Note: 
Original 

article does 
not provide 

urinary 
concentratio

ns 

[79] NHANES 2003-
2006 

Total urinary 
median BPA 

(µg/g 
creatinine) 

Emergency food 
assistance vs. no 
food assistance 
(Children, 6-11 

years olds) 

BPA Percent 
change 54 

[13 to 112]* 

Lowest family 
Income vs. 

highest family 
income 

2.5 vs. 1.8 
µg/g; 

Percent 
Change: 

22.8 [10.6, 
36.4]* 
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   Very low food 
security vs. full 
food security 

 2.6 vs. 2.0 
µg/g; 

Percent 
change: 

19.6 [5.6, 
35.5]* 

AA vs NHW 2.2 vs. 2.2 
µg/g 

MA vs NHW 1.9 vs. 2.2 
µg/g 

[388] South Carolina 
Pilot Study of 27 
pregnant women 

Total serum 
median [range] 
BPA (ng/mL) 

AA vs. NHW BPA 30.13 [0–
134.8] vs. 
3.14 [0–
37.1]* 

Latinas vs. NHW 24.46 [0.2–
153.5] vs. 
3.14 [0–

37.1] 
Unemployed vs. 

employed 
41 [8.55–
153] vs. 
7.45 [0–
43.7]†* 

Phthalates 

Ref. Population Assessment Comparisons Pollutants Differences 

[389] NHANES 1988-
1994 

Relation 
between the log 

of exposure 
estimates for 

phthalates and 
demographic 

factors 

Monthly family 
income <$1,500 

vs. ≥$1,500 

BBP 0.23* 

Monthly family 
income <$1,500 

vs. ≥$1,500 

DEHP 0.68* 

[390] NHANES 1999-
2000 

LSGM of 
urinary 

phthalates 
(µg/L) 

AA vs. NHW MEP 237.8 vs. 
162.1* 

MA vs. NHW 191.9 vs. 
162.1  

AA vs. NHW MBzP 14.7 vs. 
15.5 
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   MA vs. NHW  13.1 vs. 
15.5* 

[97] 2001-2004 
NHANES, (20-

49 year old 
women) 

GM [GSE] of 
urinary 

phthalates 
(ng/mL); 

percent change 
[95% CI] 

AA vs. NHW MEP 268 [26.5] 
vs. 127 
[10.7]; 
Percent 
change: 

48.4 [16.8-
88.6]* 

MA vs. NHW 247 [26.1] 
vs. 127 
[10.7]; 
Percent 

change: 58 
[24.7-

100.8]* 
AA vs. NHW MnBP 32.3 [2.0] 

vs. 18.2 
[1.0] § 

MA vs. NHW 23.7 [2.3] 
vs. 18.2 
[1.0] § 

[150] 2003-2008 
NHANES, (12-

19 years old) 

Mean urinary 
phthalates (µM) 

AA vs. NHW Low 
molecular 

weight 
phthalates 

1.010 vs. 
0.662* 

MA vs. NHW 0.891 vs. 
0.662* 

First PIR quartile 
(poor) vs. fourth 

PIR quartile 

0.982 vs. 
0.727* 

[391] NHANES 2001-
2008, (20-39 

year old women) 

Multiplicative 
differences in 

urinary 
phthalate 

concentrations 
[95% CI] 

Non-white vs. 
white 

DBP molar 
sum 

1.26 [1.12-
1.40]* 

Income-to-
poverty ratio 0-1 
(most poor) vs. 4-

5 

1.16 [1.03-
1.32]* 

Non-white vs. 
white 

MEP 1.44 [1.24-
1.68]* 

Income-to-
poverty ratio 0-1 
(most poor) vs. 4-

5 

MBzP 1.62 [1.37-
1.91]* 
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   Food Security 
(Full, Marginal, 
Low, Very Low) 

DBP molar 
sum 

1 (ref), 1.07 
[0.87, 1.31], 
1.19 [0.97, 
1.46], 1.30 

[0.98, 1.73]; 
Trend* 

MBzP 1 (ref), 1.14 
[0.97, 1.35], 
1.17 [0.95, 
1.45] 1.24 

[0.98, 1.56]; 
Trend* 

Organochlorine (OC) Pesticides 

Ref. Population Assessment Comparisons Pollutants Differences 

[378] Women from the 
Northern 
California 

Region Kaiser 
Permanente 

Medical Care 
Program, 1964-

1971 

Adjusted mean 
difference (ppb) 

[95% CI] 

AA vs. NHW DDE 13.2 [5.6, 
20.9]* 

AA vs. NHW 
(Breast Cancer 

patients) 

15.5 [4.0, 
26.9]* 

AA vs. NHW 
(Control patients) 

11.6 [1.4, 
21.8]** 

[392] Dade County, 
FL, study 

population, 
1965-1967 

Mean adipose 
(ppm) and 

whole blood 
(ppb) DDE 

DDE AA vs. 
NHW 

(adipose) 

10.8 vs. 
5.5* 

AA vs. 
NHW 

(serum) 

16 vs. 8* 

[393] Dade County, 
FL, residents, 

1970-1971 

Mean [SD] 
serum DDT and 

DDE (ppb) 

Lowest social 
classes vs. highest 

social classes 
(AA) 

DDT 10.4 vs. 
8.0* 

Lowest social 
classes vs. highest 

social classes 
(NHW) 

7.4 vs. 5.1* 

AA vs. NHW 
(highest social 

class) 

7.7 [2.6] vs. 
5 [2.7] ‡ 

AA vs. NHW 
(Lowest social 

class) 

11.4 [7.0] 
vs. 7.9 [6.0] 

‡ 
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   Lowest social 
classes vs. highest 

social classes 
(AA) 

DDE 46.8 vs. 
35.3* 

Lowest social 
classes vs. highest 

social classes 
(NHW) 

31.2 vs. 
24.3* 

AA vs. NHW 
(highest social 

class) 

33.1 [11.3] 
vs. 22.3 
[10.4] 

AA vs. NHW 
(Lowest social 

class) 

50.5 [30.1] 
vs. 33.9 
[25.2] 

[23] Pregnant Women 
from the Child 

Health and 
Development 
Study Cohort 

1963-1967 

Percent 
difference of 

serum [95% CI] 

Non-white vs. 
white 

pp’-DDE 53.4 [38.3-
70.8]†* 

op’-DDT 24.5 [6.53-
44.2]†* 

pp’-DDT 48.0 [32.9-
64.2]†* 

sum DDTs 53.5 [38.6-
69.9]†* 

[379] National Human 
Adipose Tissue 

Survey 1986 

Average 
adipose 

concentrations 
(ng/g) [RSE] 

Non-white vs. 
white 

pp’-DDT 301 [25] vs. 
152 [15] 

pp’-DDE 2780 [25] 
vs. 2250 

[13] 
β-HCB 212 [32] vs. 

146 [21] 
Heptachlor 

epoxide 
51.6 [19] vs. 

58.8 [8] 
Oxychlorda

ne 
103 [22] vs. 

116 [8]  
Trans-

nonachlor 
131 [32] vs. 

130 [14] 
Dieldrin 54.1 [41] vs. 

45.6 [21] 
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[105] Pregnant women 
in NHANES 
1999-2002 

GM for serum 
lipid adjusted 

pesticides [95% 
CI] 

AA vs. NHW β-HCH 
(ng/g) 

7.3 [6.5–
8.3] vs. 6.7 
[6.2–7.2] 

p,p ́-DDE 
(ng/g) 

311.6 
[253.2–

383.4] vs. 
177.2 

[156.7–
200.3]* 

trans-
Nonachlor 

(ng/g) 

18.2 [16–
20.8] vs. 

13.9 [12.7–
15.2]* 

MA vs. NHW β-HCH 
(ng/g) 

19 [16–
22.5] vs. 6.7 
[6.2–7.2]* 

p,p ́-DDE 
(ng/g) 

806.8 
[674.6–

964.8] vs. 
177.2 

[156.7–
200.3]* 

trans-
Nonachlor 

(ng/g) 

14.8 [13.2–
16.7] vs. 

13.9 [12.7–
15.2] 

[394] Pregnant women 
in in the Center 
for the Health 
Assessment of 
Mothers and 
Children of 

Salinas 
(CHAMACOS) 
cohort, 1999-

2000 

GM (ng/g lipid) 
[range] for 

CHAMACOS 
cohort, Median 

(ng/g lipid) 
[range] for 
NHANES 

CHAMACOS vs. 
NHANES 

p,p'-DDE 1,500 [49 - 
159,303] vs. 
210.5 [5.4 - 
17,900] ‡ 

CHAMACOS vs. 
NHANES 

p,p'-DDT 24 [2 - 
33,174] vs. 
6.8 [3.3 - 
1,070] ‡ 

CHAMACOS vs. 
NHANES 

o,p'-DDT 2 [0.1 - 
1,878] vs. 
<LOD‡ 

[104] Pregnant women 
in the 

CHAMACOS 
cohort, 1999-

2000 

Median serum 
pesticides (ng/g 

lipid)  

CHAMACOS vs. 
NHANES 

HCB 64.9 vs. 
<LOD‡ 
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   CHAMACOS vs. 
NHANES 

β-HCH 36.9 vs. 5‡ 

[383] 6-8 year old girls 
from California 
and Ohio 2005-

2007 

GM (ng/g lipid) AA vs. NHW HCB 6.6 vs. 7.8* 
Latinas vs. NHW 7.8 vs. 7.8 

AA vs. NHW trans-
nonachlor 

3.4 vs. 4.7* 
Latinas vs. NHW 4.3 vs. 4.7 

AA vs. NHW p,p-DDE 69.1 vs. 
72.1 

Latinas vs. NHW 110.7 vs. 
72.1* 

[382] NHANES 2003-
2004 

LSGM of serum 
pesticides (ng/g 
lipid) [95% CI] 

AA vs. NHW HCB 14.8 [14.3-
15.3] vs. 

15.0 [14.2-
15.8] 

MA vs. NHW 17.2 [15.9-
18.6] vs. 

15.0 [14.2-
15.8]* 

AA vs. NHW GM of pp’-
DDE 

262.4 
[233.38-

294.98] vs. 
208.2 

[165.00-
262.54] 

MA vs. NHW 444.2 
[361.72-

545.43] vs. 
208.2 

[165.00-
262.54]* 

AA vs. NHW β-HCH at 
the 75th 

percentile 

9.60 [8.30-
11.90] vs. 

12.80 
[10.90-
14.70] 
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   MA vs. NHW  23.50 
[17.50-

29.90] vs. 
12.80 

[10.90-
14.70]* 

AA vs. NHW pp’-DDT at 
the 90th 

percentile 

17.50 
[14.80-

25.40] vs. 
9.70[8.50-

11.20]* 

MA vs. NHW 24.00 
[18.50-

33.30] vs. 
9.70[8.50-

11.20]* 

AA vs. NHW pp’-DDT at 
the 95th 

percentile 

30.70 
[19.00-

53.40] vs. 
12.90 

[10.70-
16.60] 

MA vs. NHW 48.60 
[31.00-

71.10] vs. 
12.90 

[10.70-
16.60]* 

AA vs. NHW GM of 
trans-

nonachlor 

14.4 [12.24-
16.98] vs. 

15.8 [13.72-
18.21] 

MA vs. NHW 10.2 [7.68 - 
13.24] vs. 

15.8 [13.72-
18.21]* 
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‡: Statistical comparisons between groups not reported, or not possible due to varying detection 
limits and high non-detect frequency. §: group differences are significant, but single comparisons 
between groups were not reported. †: Values were estimated from graphs using DigitizeIt 
software (http://www.digitizeit.de). * Denotes significantly different comparisons where p <0.05 
or lower. 
Abbreviations: AA: African-American. MA: Mexican-American. NHW: Non-Hispanic White. 
GM: Geometric Mean. LSGM: Least Square Geometric Mean. GSD: Geometric Standard 
Deviation. GSE: Geometric Standard Error. RSE: Relative Standard Error. CI: Confidence 
Interval. NHANES: National Health and Nutrition Examination Survey. PM2.5: Particulate 
Matter <2.5 µm. NOx: Nitrogen oxides. ppm: parts per million. ppb: parts per billion. MnB: 
Mono-n-butyl phthalate. MEP: monoethyl phthalate, MBzP: Mono-benzyl phthalate. DEHP: 
Bis(2-ethylhexyl) phthalate. BBP: Benzyl butyl phthalate. DBP: Dibutyl phthalate. DDT: 
Dichlorodiphenyltrichloroethane. DDE: dichlorodiphenyldichloroethylene. β-HCH: beta-
hexachlorocyclohexane. HCB: Hexachlorobenzene. 
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Table 1.3: Representative animal and cellular studies linking EDCs with metabolic dysfunction. 
 

Metabolic 

Alterations 

 PCBs Chemicals 

Constituents of 

Air Pollution 

 BPA Phthalates Organochlorine 

(OC) Pesticides 

Weight Gain 
and/or Increased 

Adiposity 

[32] [395, 396] [397] [398] [113] 

Glucose 
Intolerance 

[34]  [399] [100] [113] 

Systemic and/or 
Cellular Insulin 
Resistance or 

Hyperinsulinemia 

[34] [400] [399, 

401, 

402] 

[403, 404] [113] 

Altered β-cell 
Function, Reduced 

β-cell Mass, or 
Increased Insulitis 

[405]  [402, 

406, 

407] 

[100] [408] 

Altered Hepatic 
Gene Expression, 
Lipid Handling, 

and Steatosis 

[409, 410] [396] [411] [412] [410] 

Altered Adipocyte 
Differentiation and 

Adipose Gene 
Expression, 
including 

Inflammatory 
Mediators 

[32] [400] [401, 

413, 

414] 

[398] [415] 

Alterations α-cell 
Signaling 

  [416]   
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Table 2.1: Summary of prenatal dexamethasone exposure studies that reported metabolic 
outcomes in rat offspring. 

 

Ref. Animal DEX 

Treatment 

Offspring 

Sex 

Metabolic Outcomes 

[251] Wistar Rat 100 µg/kg/day 
during third 
trimester 

Male Decreased glucose tolerance and 
increased insulin levels during OGTT, 
increased glucose levels after 
corticosterone implant, increased 
hepatic PEPCK and GR expression at 5 
months 

[242] Wistar Rat 100 µg/kg/day 
from GD15-21 

Male Decreased epididymal adiposity, higher 
2-deoxyglucose uptake in EDL muscle 
(at 7-8 months old), increased GR and 
less lipoprotein lipase in retroperitoneal 
fat 

[238] Sprgue-
Dawley Rat 

100 µg/kg/day 
on last week of 
gestation 

Male Decreased glucose tolerance and 
insulin sensitivity at weaning. 
Increased PEPCK and G6pc gene 
expression and lower number of islets 
on PD7 
Increased adipose leptin and CEBPα 
expression, but no differences in 
adiposity at weaning.  

[245] Wistar Rat 100 µg/kg/day 
from GD15-21 

Male No differences in glucose tolerance 
during O-GTT, no differences in 
retroperitoneal fat pad weight, 
upregulation of FAS, HSL, and 
SREBP1c in adipose at 6 months. 
Increased liver triglyceride content in 
DEX offspring fed a high fat diet  

[249] Wistar Rat 100 µg/kg/day 
from GD 14-
21 

Male and 
Female 

Increased PEPCK activity at weaning 
in males, evidence of insulin resistance 
during O-GTT only in males at 6 
months. Increased morning ACTH and 
cort. in DEX-treated males. DEX-
exposed female offspring were 
hypertensive, but showed no metabolic 
differences. 

[237] Sprague-
Dawley Rat 

100 mg/kg/day 
IP from GD 
14-20 

Male No differences in blood glucose during 
GTT, decreased insulin secretion 
during GTT, trending lower blood 
glucose levels during IP-ITT at PD120, 
fewer beta cell pancreatic fractions   
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[243] Wistar Rat 200 µg/kg/d 
SC on GD 15-
19 

Male and 
Female 

Decreased glucose tolerance in females 
during IP-GTT at week 12-13, less 
visceral adiposity by weight in males, 
lower fasting insulin in males, 
increased hepatic PEPCK activity in 
total offspring at week 14-15 

[250] Sprague-
dawley Rat 

150 µg/kg/d 
GD 14-21 
DEX 
 

Sex not 
specified 

Lower systemic insulin sensitivity 
during clamp, increased hepatic 
PEPCK expression and lower insulin 
supression of hepatic glucose output, 
increased circulating corticosterone  

[366] Wistar Rat 
 

200 mg/kg/d 
from GD 14-
19 
 

Sex not 
specified 

Decreased glucose tolerance during IP-
GTT at 12 weeks, no difference in 
insulin tolerance during IP-ITT, 
increased PEPCK expression after 12-
hour fast. Increased hepatic lipid 
accumulation after 60-hour fast. 

[244] Wistar Rat 100 µg/kg/d 
DEX on last 
week of 
gestation 

Male and 
Female 

Lower placental leptin expression. At 1 
year, plasma leptin was higher for 
exposed offspring. Exposed male 
offspring had lower epididymal 
adiposity and higher plasma insulin at 1 
year. 

[417] Sprague-
dawley Rat 

100 mg/kg/day 
IP during 
GD14-20 

Male Increased hepatic hexokinase 2 and 
reduced skeletal muscle insulin 
receptor expression. High fat diet plus 
prenatal DEX exposure resulted in 
insulin resistance and glucose 
intolerance compared to high fat 
control group 

[239] ICR Mice 600 µg/kg/day 
BETA SQ for 
4 days, GD 
8.5, GD 9.5, 
GD 10.5 and 
GD 14.5 

Sex not 
specified 

Decreased glucose intolerance, and 
lower insulin secretory capacity during 
GTT. Higher circulating triglycerides.  

[246] Sprague-
dawley Rat 

400 µg/kg/d 
DEX from 
GD18-23 

Male and 
Female 

More severe liver steatosis in DEX-
exposed female offspring fed a high-fat 
diet possibly mediated by suppressed 
GH axis.   
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Table 2.1 continued 

 

[247] Sprague-
dawley Rat 

100 µg/kg/d 
DEX from GD 
14-21 

Male Increased hepatic lipid accumulation in 
DEX vs control group. Worse hepatic 
steatosis and apoptosis in DEX-
exposed offspring fed a high-fat diet 
compared to high fat control group. 

[248] Sprague-
dawley Rat 

100 µg/kg/d 
DEX from GD 
14-21 

Male Increased hepatic lipid accumulation, 
apoptosis, and TNF-α expression in 
DEX vs control group. Worse hepatic 
steatosis and apoptosis in DEX-
exposed offspring fed a high-fat diet 
compared to high fat control group. 

 
Abbreviations: BETA: betamethasone. Cort: corticosterone. CEBP: CCAAT/enhancer-binding 
protein. EDL: extensor digitorum longus. FAS: fatty acid synthase. GD: gestational day. HSL: 
hormone sensitive lipase. OGTT: oral glucose tolerance test. SQ: subcutaneous. SREBP: sterol 
regulatory element-binding protein 1. TNF: tumor necrosis factor. 
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Table 3.1: Primer sequences used for qPCR. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Gene Direction Primer sequence; 5' → 3' 

Amplicon size, 

bp 

    
G6pc Forward TGCAAGGGAGAACTCAGCAA 145 
 Reverse TTGCGCTCTTGCAGAAAGAC  
    
PEPCK Forward TGGTGGGAACTCACTACTCGG 105 
 Reverse ATGCCCAGGATCAGCATATGC  
    
IR Forward TTCAGGAAGACCTTCGAGGATTACCTGCAC 218 

 
Reverse 
 

AGGCCAGAGATGACAAGTGACTCCTTGTT 
  

IRS-1 Forward GCCAGAGGATCGTCAATAGC 140 
 
 

Reverse 
 

GAGGAAGACGTGAGGTCCTG 
  

IRS-2 Forward AACCTGAAACCTAAGGGACTGG 140 
 Reverse CGGCGAATGTTCATAAGCTGC  
    
PI3K-
p85β Forward GGACAGTGAATGCTACAGTAAGC 189 
 Reverse CCTGCAACCTCTCGAAGTG  
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Table 3.2: Perinatal TF exposure does not alter pancreatic endocrine cell area. 

 Females Males 

 Control TF p-value Control TF p-value 

β-cell area (%) 0.39 ± 0.07 0.28 ± 0.05 0.23 0.22 ± 0.05 0.33 ± 0.04 0.11 
α-cell area (%) 0.07 ± 0.02 0.08 ± 0.02 0.67 0.05± 0.02 

 

0.03 ± 0.01 0.35 

δ-cell area (%) 0.15 ± 0.07 0.29 ± 0.22 0.57 0.09 ± 0.04 0.04 ± 0.02 0.34 
Islet area (%) 0.61 ± 0.12 0.65 ± 0.21 0.87 0.36 ± 0.09 0.41 ± 0.07  0.64 

 

Pancreas was collected at sacrifice (week 19). Histological slides were immunostained for 
insulin, glucagon, and somatostatin. β-cell, α-cell, and δ-cell areas were calculated as the percent 
cell area relative to the pancreatic area analyzed, and islet area was calculated as the sum of three 
endocrine cell types relative to analyzed area. For females, control n = 9, TF n= 8. For males n = 
9 per group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


