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ABSTRACT

Optimal experimental designs are a class of experimental designs that are optimal with
respect to some statistical criterion. Sensor placement is a sampling decision on data collec-
tion which aims to minimize the uncertainty in parameter estimation. This thesis focuses
on two fundamental elements: the selection of sensor locations under statistically optimal
conditions, and the computation of sensor placement with an efficient algorithm.

We first present a design of experiments framework for sensor placement in a natural gas
pipeline system where the dynamics are described by partial differential equations, and ap-
ply sum-up rounding strategy as a heuristic to determine the sensor locations. We continue
to develop convergence theory on sum-up rounding for Bayesian inverse problems, where
the direct relationship is described through a discretized integral equation. We show that
the integer solution from sum-up rounding is asymptotically optimal in the limit of increas-
ingly refined meshes, for different experimental design criteria (A- and D- optimal), and
demonstrate its superior performance in comparison with other standard strategies.

We also propose an optimization algorithm to compute the sensor locations, based on
sequential quadratic programming and Chebyshev interpolation. By providing gradient and
Hessian information on the objective, we solve a sequence of quadratic programs with interior
point method and achieve a complexity of O(nlog®(n)), while controlling the error through

choosing the number of interpolation points to satisfy a user-defined precision level.
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1 INTRODUCTION

Design of experiments (DOE) is an important branch of statistics that aims to determine
experimental settings and extract the most useful information from data to explain the
variation of quantities of interest, which may arise both from the measurement procedure
and from the inherent variability of experimental material. In traditional DOE, one selects
suitable treatments, assigns the treatments to experimental units, and observes treatment
effects by measuring response variables (see [1, 2, 3, 4]). The experimenter also identifies
control variables that must be held constant to prevent external factors from affecting the
results. Experimental design involves not only the selection of treatment effects, experimental
units and control variables, but also the delivery of the experiment under statistically optimal
conditions given the constraints of available resources. The optimality of a design depends
on the statistical model and is usually related to the variance-matrix of the estimator.

Another branch of DOE attempts to compute the optimal sampling locations given a set
of available measurement points (see [5, §7.5] and [6, §9, §12]). For instance, in polynomial
regression, where the dependent variable y is modeled as dth degree polynomial in the inde-
pendent variable x, the goal is to determine the optimal support in 7 = [—1, 1] consisting
of d + 1 different points, such that the information matrix is maximized according to some
design criterion. Closed form solutions are available for several design criteria (see [7] and [6,
§9]), but in general they are difficult to derive and computational methods are required to
approximate the optimal design. It becomes even more challenging when either the dimen-
sion of parameters to be inferred or the number of available measurement points increases

drastically, and optimal sensor placement is an example of this second-type challenge.



Optimal sensor placement aims to determine the number, locations, and types of sensors
that would give the most accurate estimation of parameters or maximize the information
about a system. Naturally it arises in many infrastructure networks (oil, water, gas, and
electricity) in which large amounts of sensor data need to be processed in real time in order
to reconstruct the state of the system or to identify leaks, faults, or attacks. It can also
be viewed as a sampling decision of measurements, and there are different formulations in
literature (see [8, 9, 10]). In Gaussian process and Kriging (see [11, 12]), the training data
{(ug, y(uk))}ijvzl are sampled to predict the response y(u) of a process at some unsampled
point u. The observations are modeled as y(ug) = f(ug,0) + P(ug,w) + € where f(u,0)
is given and p(u,w) denotes a stationary zero-mean random processes with parameters in
its covariance function. This formulation makes statistical inference even possible for purely
deterministic systems, and it has been successfully applied in many domains of engineering
(see [13, 14]). However, few results exist on the optimal sampling of training data, and they
are generally assumed to be a collection of identically and independently distributed pairs
(u,y(7)) (see [15, 16]). The optimal design asymptotically tends to observe everywhere in the
design domain, and the points {uk}é\;l are distributed according to a density with respect
to Lebesgue measure, but little is known on the analytical form (see [17]).

Sensor placement plays a vital role in the operation of automation systems, and thus has
significant impact on our everyday life. In automatic vehicles, the central ingredient is the
lidar (light detection and ranging) sensor, a device that maps objects in 3D by bouncing
laser beams off its real-world surroundings. Driverless vehicles rely heavily on lidar to lo-
cate themselves on the detailed maps they need to get around, and to identify things like
pedestrians and other vehicles. Lidar sensors are expensive, costing thousands or even tens
of thousands of dollars a piece, and one self-driving vehicle is usually equipped with several
lidars. Together with other types of sensors (radar sensors, camera sensors) in automatic
vehicles, they collect information for the software system to process, plan and then exe-

cute. Different sensors have different mounting positions, and it is of essential importance



to study the impact of sensor positioning (the field of view of sensors) on the scenarios
that autonomous cars can manage. Another example of remote sensing system where lidars
are widely used is weather forecasting. The spinning lidar design, which includes the bal-
ance between the scanning frequency and spatial distribution of laser emission, is crucial in
collecting measurements to infer the wind speed and humidity for use in weather prediction.

Optimal sensor placement is computationally difficult because given n candidate loca-
tions, there are 2" possible combinations for sensor placement which is exponential in n
and makes the computation NP-hard 1. The goal of this thesis is to efficiently compute an
approximation that converges to the optimal sensor placement in the limit of n, in particu-
lar settings and under particular technical assumptions. Our approach is to first relax the

integrality constraint and then round it off to an integer one. More specifically, we will

e apply a rounding strategy that provides a feasible point to the optimization in formu-

lation, and examine the changes in optimality gap as n gets large;

e prove zero convergence of optimality gap 2 under various design criteria for continuously

indexed problems from a class of integral operators;

e propose a scalable 3 optimization algorithm to compute the rounding solution efficiently

and study its accuracy as n gets large.

Each will be elaborated in one chapter of the thesis. Now we introduce our estimation
framework and formulate our optimization problem, mainly following [8]. Consider a setting

with measurements perturbed by additive Gaussian noise,

d= JT:(“O) + m, n~ N(07 1_‘noise,d) ;

1. “NP-hard” stands for “non-deterministic polynomial acceptable problems”. Although it is suspected
that there are no polynomial-time algorithms for NP-hard problems, this has not been proven.

2. The gap between the objective obtained from rounding strategy and the true minimum objective.

3. complexity less than O(nlog®(n))
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where Loised € is the measurement noise covariance matrix and f is an operator that

maps a parameter vector ug € R to the observation vector d € R". Formally,

Friug — u+—d (1.1)

where u( are the input parameters we are interested in, f is the parameter-to-observable
operator, u € R" is the output vector that can be potentially observed, w is the observable-
to-observed operator which relates to the sensor locations, d is our observation from sensors,
and it is a subset of the output u. We consider continuously indexed problems, that is,
both ug and u are function discretizations on an increasingly refined mesh. Note w and d
described in (1.1) are not subject to measurement error.

This representation can also be viewed as an inverse problem in the language of mathe-
matical modeling, where the goal is to infer the input from the observed output. Recently,
the Bayesian approach has received lots of attention (see [18]) and has been widely applied
in many areas (see [8, 19, 20]). It not only allows for the quantification of uncertainity and
risk, but also addresses significant modeling issues, such as ill-posedness of inverse problems,
in a clear and precise fashion. We adopt the Bayesian framework and follow the formulation

in [8]: assume both the parameter prior and the measurements distributions are Gaussian:

ug ~ N(Upriora 1_‘plfiol“) )

u=f(up) +n, where 1 ~ N(0, Loise)-

Here, Iior and Ioise Tepresent the prior covariance matrix and measurement noise covariance
matrix respectively, whereas upior is the prior mean. We assume the measurement error to
be unbiased conditional on the realization of ug, and thus n has mean 0.

If the mapping f is linear (u = Fug + n), from Bayes’ rule, we know the posterior



distribution of ug is also Gaussian and has (up to a constant) the following density:

1 1
post \ W0 . - Ollp—1  — F1I%0 — Uprior|[p—1 (- .
Fouolt) o 050 { = 2~ Fuoll—t 20~ 1 12

Next we quantify the sensor placement effect in the posterior by creating a weight vector
w= (w1, ws,..,wn) € {0,1}" where the jth component w; corresponds to candidate location
zj. A sensor is placed at location z; if w; =1 and is not placed if w; =0, so there is a
one-to-one mapping between sensor placement and weight vectors. Let W be a diagonal

matrix with weight vector w on the diagonal. The w-weighted data likelihood is given by

- %(d — Fug)"w2r L wl/2(q - Fuo)}.

Trlike(d|u07 w) X exp { noise
One can immediately verify that for any integer-valued vector w, the posterior distribution is
exactly the one for Bayesian least squares with data measured for indices of u where w; = 1
fori=1,2,...,n. One can either think of the data d as weighted output u, i.e. d = Wu, or
a lower-dimension copy of u, see Appendix A for more details. Under these assumptions and
accounting for the prior distribution, we can compute the posterior ug, which is the normal
distribution N (tpest, [post ), Where

thesy = Tpost (FT WIS W20 4 T i ). (1.3)

—1
Thost = (FTWWF*1 wii2p -l )

noise prior

are the posterior mean and covariance matrix, respectively. We point out in this estimation
model the posterior covariance matrix does not depend on data d, and if we minimize certain
metrics of this matrix to calculate the optimal sensor placement, it is determined by the linear
mapping f and two I" matrices.

We are ready to formulate our DOE problem that addresses the issue of optimal sensor
placement. The objective is to minimize the estimation error of the parameter ug, which is

5



quantified by its posterior covariance matrix, ¢(Ipost). The three most widely used criteria

in experimental design (see [6]) to measure the size of this error are
o A-optimal design: ¢(I'post) = tr(Ipost);
e D-optimal design: ¢(T'post) = det(Tpost);
o L-optimal design: ¢(I'post) = Amaz(Lpost)-

The DOE problem is given as follows (¢ represents one of the three criteria, and we use

logdet for D-optimal design):

min A(Lpost (w))

s.t. w; € {0,1}, o1 w; = no,

(1.4)

where nq is the number of sensors on budget. All the above design criteria have the property
that, when there are more sensors available, there is less uncetainty remaining in the estima-
tion, i.e., the objective value is smaller. As mentioned earlier, this is an NP-hard problem.
Regularization methods have been exploited to alleviate the computation burden ([8, 20]) by
removing the integrality constraint, and controlling the number of sensors (i.e., the design
cost) by using an sparsity-inducing ¢y regularization norm that is in turn approximated by
using a smoothing function. This method requires tuning and can be numerically unstable.

Instead, we start with the relaxed version:

min O(Tpost(w))

s.t. OSwigl,izl,Z...,n, Z?:lwi:n(%

(1.5)

whose solution we denote by w,..;. This problem is convex if the covariance matrix [}ise
is chosen appropriately, such as a diagonal matrix. It can be solved in polynomial time
using, for example, interior-point algorithms [5] with gradient and Hessian information. The

relaxed solution w,.; to (1.5) provides a lower bound to the optimal objective of the convex



integer program (1.4), whereas any feasible point would provide an upper bound to (1.4).
Next we introduce a rounding strategy that gives a desirable upper bound.

The rounding strategy we apply is called sum-up rounding (SUR), which was first used in
the context of continuous-time mixed-integer optimal control problems (MIOCPs) (see [21]).
SUR for binary variables, as we also pursue here, has been shown in temporally indexed
problems to have the desirable asymptotic property of being arbitrarily close to an integer
solution as long as the discretization mesh is sufficiently fine (see [21, 22]). In [21], the
authors not only clarify the role of SUR in MIOCPs but also obtain a guaranteed bound
on the performance loss, depending on the size of discretization mesh. In [22], a specific
structure in one dimension is considered where the objective is a function of either the Fisher
information matrix or its inverse, and the optimality gap converges to zero. Therefore, Sum-
up rounding sheds light on both theory and computation of MIOCPs. However, new theory
needs to be developed to obtain similar results in the infinite-dimensional setting, because
all the previous results are for a fixed and finite number of parameters.

The basic SUR strategy to construct a binary vector w;,; from w,..; is given by:

1 1—1
1, if Zw;el — Z wi, > 0.5
k=0 k=0

0, otherwise.

T
Wint =

for i = 1, ...,n. The equality constraint Y ;' ; w; = ny is satisfied automatically (see Lemma
3.3.21in §3.3.1). The idea is to process each element sequentially based on the sum of elements
that are already processed, and control the sum difference between w;,,; and w,.q;.

In Chapter 2, we apply sum-up rounding as a heuristic to a nonlinear dynamical system
- a gas pipeline network, where the dynamics are described by hyperbolic partial differential
equations (PDEs), and the parameter is the initial condition of the PDEs. To represent
the problem using our formulation, the parameter-to-observable operator f is nonlinear and
it maps the initial condition wug to w(t) for ¢t € [0,T] according to the dynamics described

by PDEs. The parameter ug contains gas pressure and flow discretized from a mesh of the
7



pipeline, whereas u; is indexed in both space and time. The measurement data are available
from sensors at each discrete time point, but contaminated by noise. In this nonlinear setting,
calculating posterior variances in closed form is almost impossible, and we would resort to
sampling methods, such as Markov Chain Monte Carlo, for computing the posterior density.
Linearization is applied to make the calculation more tractable, and we test the performance
of SUR by investigating two objectives: the total-flow variance and the A-optimal design cri-
terion. We conclude that sum-up rounding approach produces shrinking gaps with increased
meshes, and also observe convergence of gap for two noise structures, which motivates us to
develop theories for Sum-up rounding in the infinite-dimensional setting.

In Chapter 3, we establish the theoretical work on zero convergence of optimality gap. To
briefly describe our theoretical setting, the unknown parameter wg is a function that belongs
to an infinite-dimensional space, which is approximated by discretization on increasingly fine
meshes. We aim to understand the asymptotics of the rounding procedure in the limit of the
mesh size going to zero. As a result, the posterior covariance matrix we try to minimize (with
respect to a given design criterion) increases in size with the number of discretization points,
and we are not aware of prior theoretical work on the convergence analysis of discretized
design of experiments with a number of sites that can grow unboundedly.

The particular assumption we make is that the parameter-to-observable operator f is

based on an integral equation, as opposed to the solution of a PDE in Chapter 2:
wa) = [ fa )y, 7€ Do

where £2;,, and ¢ are input domain and output domain respectively. The techniques we
employ to this end are related to the spectral theory of self-adjoint integral operators [23].

Ultimately we show that, under other technical assumptions,

o(Pwit)) = o(Tlp)[ >0 asn— oo



for any of the design criteria defined earlier. We demonstrate the effectiveness of SUR and
compare with another rounding strategy called thresholding in a gravity-surveying example.

In Chapter 4, we provide an optimization algorithm to compute the relaxed solution,
based on Chebyshev interpolation and sequential quadratic programming. While the relaxed
problem is not NP-hard, the interior-point based algorithm has a complexity of O(n3). Given
that f may come from a mathematical model typically described by a system of PDEs, and
the parameters to be estimated are initial or boundary conditions, the discretization of an
increasingly refined mesh can easily make the problem size explode to thousands and even
millions, so a O(n3) algorithm is intractable in practice. A scalable algorithm is needed to
solve it in a fast and accurate fashion.

Several efficient algorithms have been proposed to tackle the computation issue in liter-
ature ([8, 19, 20]) for specific design criteria, all of which exploit low-rank structure of the
parameter-to-observable mapping in some way. In [8], randomized methods, such as ran-
domized sigular value decomposition (rSVD) and randomized trace estimator, are employed
to evaluate the A-optimal design objective function, i.e. trace of posterior covariance matrix,
and its gradient, and the error depends on the threshold chosen in rSVD and the sample size
in randomized estimation. In [20], similar approaches (truncated spectral decomposition,
randomized estimators for determinants) are investigated for the D-optimal design criterion,
and error bounds are derived explicitly. In addition to computational work, a general study
on the optimal low-rank update from the prior covariance matrix to the posterior covariance
matrix, is also given over a broad class of loss functions (see [24]).

We make use of the integral operator assumption and the fact F' is continuously indexed
i.e., F(i,j) is evaluated from f(x,y) for € Quut,y € 4y, and propose an interpolation-
based algorithm to approximate the gradient and Hessian for both A- and D-optimal design
criteria. Interpolation theory is well developed in numerical analysis to approximate function
values with evaluations only at a subset of points. It is known that polynomial interpolation

at Chebyshev points is optimal in the minimax error for continuously differentiable func-



tions (see [25, §8.5]). We solve a sequence of quadratic programs (SQP), and each quadratic
program is solved with interior-point method. The advantage of SQP is twofold: in contrast
to previous algorithms, we incorporate Hessian information which can accelerate the conver-
gence rate of optimization algorithms, and the objective value is not required for SQP; we
are able to prove the zero convergence of approximation error in the objective value as the
problem size goes to infinity. Since the relaxed problem is convex, the KKT condition is both
sufficient and necessary for a solution to be optimal, and we demonstrate the effectiveness
of our approximation by the shrinkage of maximum KKT violation.

In summary, we apply the sum-up rounding strategy as a heuristic in a nonlinear dynamic
system of a natural gas network, and demonstrate our observation of gap convergence in
Chapter 2, and then prove the zero convergence of gap for a class of integral operators under
different design criteria in Chapter 3. In Chapter 4, we propose a scalable algorithm based
on sequential quadratic programming and Chebyshev interpolation, to solve the relaxation

efficiently. Finally, we discuss various directions for future research.

1.1 Previous work

Inverse problems with Bayesian formulation have been extensively explored recently. A
comprehensive review on well-posedness and stability from a function space viewpoint can
be found in [18] for linear inverse problems with Gaussian prior and Gaussian likelihood.

Following [18], a framework for A-optimal experimental design together with a random-
ized optimization algorithm are given in [8] for infinite-dimensional Bayesian linear inverse
problems governed by partial differential equations. In their papers, the measurement errors
from sensors are uncorrelated, and the covariance operator in the prior is specified as the in-
verse of an elliptic differential operator. The parameters to be estimated are the coefficients
of basis functions in a finite-dimensional subspace of the original infinite-dimensional func-
tion space, and the function in the subspace is approximated with a finite-element method.

Instead of the equality constraint on the number of sensors, the sparsity of sensor configura-
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tion is controlled by employing a sequence of penalty functions that successively approximate
the [y norm, and tuning is required in the regularization term. A low-rank approximation
of the parameter-to-observable map, preconditioned with the square root of the prior co-
variance operator, and a randomized trace estimator for evaluation of the A-optimal design
objective and its gradient, are exploited to reduce the computation cost.

The technique of sum-up rounding (SUR) was first applied in the context of continuous-
time mixed-integer optimal control problems [21]. Sum-up rounding for binary variables has
been shown in temporally indexed problems to have the desirable asymptotic property of
approximating the solution to a relaxed and convexified problem with arbitrary precision, as
long as the discretization mesh is sufficiently fine [21, 22]. A proof of guaranteed bound for
applying SUR on the performance loss, depending linearly on the size of discretization mesh,
is given in [21]. In [22], a specific structure in one dimension based on information gain is
considered where the objective is a function of either the Fisher information matrix or its
inverse, and the optimality gap converges to zero. These works use frequentist approaches,

and the parameter of interest has a fixed dimension, so does the Fisher information matrix.

1.2 Contributions

We first apply sum-up rounding strategy as heuristics in natural gas pipelines where the
dynamics are described by a system of partial differential equations on a spatial and temporal
domain. We investigate metrics to guide the design of experiments (the total flow variance
and the A-optimal design criterion) and analyze the effect of different noise structures. We
conclude that the sum-up rounding approach gives the best results and produces shrinking
gaps with increasing mesh resolution. We also observe that convergence for the white noise
measurement, error case is slower than for the colored noise case.

We then extend the sum-up rounding approach to multiple dimensions, analyze its ac-
curacy as a function of the discretization mesh size for a rectangular domain, and prove

asymptotic optimality of sup-up rounding solutions under different design criteria (A- and
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D- optimal). More specifically, we consider a statistical setup that consists of a Bayesian
framework for linear inverse problems for which the direct relationship is described by a
discretized integral equation, and aim to find the optimal sensor placement from a set of
candidate locations where data are collected with measurement error. The convex objective
function is a measure of the uncertainty, described by the trace or log-determinant of the
posterior covariance matrix. The resulting convex integer program is relaxed, producing
a lower bound. An upper bound is obtained by extending the sum-up rounding approach
to multiple dimensions. We show the convergence to zero of the gap between the upper and
lower bounds as the mesh size goes to zero. The technique is illustrated on a two-dimensional
gravity surveying problem for both A-optimal and D-optimal sensor placement where our
designs yield better results compared with thresholding rounding approach.

We also develop an optimization algorithm by taking advantage of the continuously-
indexed structure, propose an interpolation-based approximation to the derivative and Hes-
sian of the objective experimental design criterion — the trace or log-determinant of poste-
rior covariance matrix, and study its accuracy by looking into the difference between the
approximation and the true minimum in the objective value. The complexity is reduced to
O(nlog®(n)). A sequential quadratic programming algorithm, with each quadratic program
solved by interior point method, is implemented in Julia without using any existing optimiza-
tion package. This algorithm is more than 100 times faster than using a standard package,
such as Ipopt in Julia by passing through the exact gradient and Hessian, which makes it
possible to solve problems with hundreds of thousands of integer variables on a laptop with
only 4 GB memory. We demonstrate the efficiency of this algorithm on a linear inverse
problem governed by advection-diffusion equations, in search of optimal sensing directions
for lidar to collect data and infer the initial conditions.

We emphasize the application of sum-up rounding strategy to a spatial domain, and the
zero gap convergence of rounded DOE solutions over increasing design space sizes have not

been investigated before.
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2  APPLICATION IN A NATURAL GAS PIPELINE SYSTEM

In this chapter, we present a scalable design of experiments framework to compute optimal
sensor locations for systems described by partial differential equations (PDEs). This is done
by minimizing the uncertainty in the state and parameters estimated from Bayesian inverse
problems. The resulting problem is a mixed-integer infinite-dimensional optimal control
problem. We apply two heuristics that have the potential to be scalable for such problems:
a sparsity-inducing approach [8] and a sum-up rounding approach [26]. We investigate two
objectives: the total flow variance and the A-optimal design criterion. Using a natural gas
pipeline case study, we conclude that the sum-up rounding approach produces shrinking gaps
with increased meshes. We also observe that convergence for the white noise measurement
error is slower than for the colored noise case. For the A-optimal design the solution is close

to the uniform distribution, but for the total flow variance the pattern is noticeably different.

2.1 Introduction

The sensor placement problem seeks to determine the optimal number, locations, and
types of sensors that would maximize information about a dynamical system. Because in-
formation can often be expressed in terms of the posterior covariance matrix of the states
or parameters of the system, the problem can often be cast as an optimal design of experi-
ments problem. Such a problem is computationally challenging, particularly in the infinite-
dimensional case, because one must solve a mixed-integer and bilevel optimization problem
constrained by differential algebraic equations or by PDEs. This problem has been ad-

dressed by using mixed-integer programming techniques, for contaminant detection in water
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networks [27, 28, 29, 30]. In these studies, an optimal set of sensor locations is selected from
a set of candidate locations to minimize a certain engineering metric such as contaminant de-
tection time, population exposure, or likelihood of detection. Likelihoods are assigned based
on contamination scenarios, and not on information content of the sensor data recorded, as
in a traditional experimental design setting. As a result, these approaches fail to provide
statistically meaningful sensor network designs. Moreover, because the formulations capture
flow dynamics by using surrogate representations such as transportation delays, they fail to
capture physical effects.

Sensor placement problems have also been addressed in a more general control setting
where one seeks to optimize a measure of observability such as the covariance matrix, Kalman
estimator gain, or so-called observability Grammian matrix. This problem is again a bilevel
optimization problem. The covariance matrix approach in [31] bypasses this by assuming that
the dynamic model is linear, thus allowing the inner minimization problem to be formulated
as a linear matrix inequality. The approach in [32] models the dynamics of the covariance
matrix directly as a Riccati differential equation, which implicitly assumes linearity and thus
enables the use of semidefinite programming algorithms. This approach, however, is focused
on control policy design to extract maximum information, and not on sensor placement
design. Consequently, the authors do not consider discrete decisions associated to placement.
A rigorous treatment of nonlinear dynamics is presented in [33] by casting the problem as a
mixed-integer nonlinear program. The authors use a genetic algorithm to deal with the inner
minimization problem that computes the observability metric. A similar approach is used
in [34] to address the inner minimization problem. Mixed-integer techniques have also been
used in the context of information maximization for Gaussian processes and for designing
Latin hypercube samples [35, 36]. These approaches, however, do not use physical models.

Recently, the sensor placement problem for systems described by PDEs has been cast as
an A-experimental design problem in which the number of sensors (i.e., the design cost) is

controlled by using an sparsity-inducing ¢ regularization norm that is in turn approximated
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by using a smoothing function [8]. This compressed sensing approach was shown to be
scalable and applicable to infinite-dimensional systems, but it requires tuning and can be
numerically unstable. One can also formulate and solve the problem as a mixed-integer
programming problem directly, but this is computationally intractable because the PDEs
are in general nonconvex and because the problem has a bilevel nature.

An important application of optimal sensor location techniques is infrastructure networks
(oil, water, gas, and electricity) in which large amounts of sensor data need to be processed
in real time in order to reconstruct the state of the system or to identify leaks, faults, or
attacks. In this work we focus on natural gas networks, which are used to transport fuel
to power generation facilities and urban areas from storage and processing facilities. These
networks comprise pipelines that span thousands of miles and exhibit complex dynamics.
An interesting property of natural gas networks is that significant amounts of gas can be
stored inside the pipelines. The stored gas is distributed spatially along the pipelines and is
normally referred to as line-pack [37]. Line-pack is used by pipeline operators to modulate
variations of gas demands at multiple spatial points in intraday operations. Some of the
strongest variations in gas demands are the result of on-demand startup and shutdown of
gas-fired power plants [38]. Modulating these variations is challenging because the fast
release of line-pack at multiple simultaneous locations can trigger complex spatiotemporal
dynamic responses that propagate hundreds to thousands of miles and that can take hours
to stabilize. Therefore, line-pack management is performed by using sophisticated optimal
control and pipeline simulation tools. To use these automation tools, one must reconstruct
spatiotemporal state fields (flows, pressures, temperatures) [39] and natural gas leaks [40)].
This task is challenging from a practical stand point given the limited amounts of sensor
data (often limited to pressure and flow signals at a finite set of locations), the infinite-
dimensional nature of pipeline systems, and the complex physical behavior of these systems.
Such challenges are not unique to natural gas networks but also arise in other domains such

as geophysics and contaminant source detection in water networks.
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2.2 Distributed System Modeling

We illustrate the complexity of the optimal sensor placement problem by focusing on the
physical equations describing the dynamics of natural gas networks. Details on the model

derivation, nomenclature, and units used in this section can be found in [41].

2.2.1 Problem Physics

The isothermal flow of gas through a horizontal pipeline is described by the conservation

and momentum equations:

Op(r, ) | Op(r, 2)u(T, 7))

=0
or Ox
Wlr. 2T 0) | T2 ot oyt )l ).
Here, 7 € T := [0,7] is the time dimension with final time 7" (planning horizon), and

x € X := [0, L] is the axial dimension with length L. The pipeline diameters are denoted
as D, and the friction coefficients are denoted as A. The states of the link are the gas
density p(7,z), the gas speed v(1,x), and the gas pressure p(7,x). The transversal area A,

volumetric flow ¢(7,x), and mass flow f(7,x) are given by

A= }lnDQ (2.2a)

q(r,x) =v(r,z) A

flr,z) = p(r,x)v(T,x) A.

For an ideal gas, pressure and density are related as follows:

= (2.3)
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Here, c is the gas speed of sound. The speed (assuming an ideal gas behavior) and the

friction factor A\ can be computed from

o YZRT
M

7D\ 2
€

where Z is the gas compressibility factor, R is the universal gas constant, T is the gas

c

temperature, M is the gas molar mass, € is the pipe rugosity, and 7 is the adiabatic constant.
Often one desires to transform (2.1) into a more convenient form in terms of mass flow and

pressure by using (2.3) and (2.2):

Op(T,x) N faf(T, x)

or A o "
10f(r,x)  Op(r,x) _ Ap(r,2) f(r,2) | f(7,2)
A or + or 2D p(r,x)A ‘p(r, x)A‘ ' (2.52)

Substituting (2.3) and (2.2a) in (2.5a) and performing some manipulations, we obtain the

more compact form:

op(r.x) _ Eof(r,x)

or A Oz
iaf(T’x) B _8p(7,x) B SAE f(r,x)|f(r,2)]
A or ox 72 D5  p(r,x)

For numerical purposes, we define scaled flows f(7,x) <— aff(7,z) and pressures p(7,x) <
app(T,x), where a ¢ and «y are scaling factors. Scaling (2.6) and rearranging, we obtain the

final form:

oplra) ) o
or ox

Oftra) __ oplra) | Jealfmol oo
or ox p(T, x)
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where the constants ¢y, cg, and c3 are given by

Cl —_— C2 — 63 4

A oy ap w2 D5 af’ (2:8)

For subsonic flow, one must impose a boundary condition at the inlet point and a boundary
condition at the outlet point. For instance one can specify pressure at the inlet and outlet

points,

p(0,7) = 679 (7)

p(L,7) = 6"().
One also can impose boundary conditions for inlet and outlet flows as

£0.7) = £
F(LT) = 750,

Alternatively, one can impose a boundary condition for pressure at the inlet point and one

for flow at the outlet point, or vice versa.

2.2.2 Discretization of State Equations

For either simulation or optimization we need to discretize equations (2.7). These equa-
tions are a particular case of a nonlinear system of equations. To that end, we introduce the

vector variable

atry= [P ) .1 x 0.1

f(t,x)
which consists of pressure p(t, z) and flow f(¢,x) in the system defined over the domain: the

Cartesian product of [0,7] in time with [0, L] in space. With this notation, the governing
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equations of a gas pipeline can be written as the following nonlinear system of PDEs:

0 0 c1| o 0
Ty S, ~0. (2.11)

O [l R i1
The parameters ¢y, co,c3 > 0 are defined in (2.8) and play a key role in identifying stable
numerical schemes for solving (2.11). The initial conditions are given by p(0,z) = pg(x) and
f(0,2) = fo(x). We use prescribed and constant pressure boundary conditions: p(t,0) = pq
and p(t, L) = pa. We note that experimental validation has indicated that constant pressure
boundary conditions are appropriate for gas pipeline systems [42].

We now discretize the system of PDEs (2.11). The system (2.11) is not conservative, since
the friction term (nonlinear term) results in dissipation of energy. The linear part of the
system (formally obtained by setting cg to 0) represents a conservative hyperbolic system,
since all the eigenvalues of the 2 X 2 matrix in (2.11) are real and equal to £,/cica. At
each point, this system has two characteristic directions each having an angle smaller than
90-degrees with one of the boundaries. To maintain stability, we use an upwinding scheme
along each of the characteristics [43].

We first consider the linear part of the system:

ou ou
— +B— = L]t T
at + 8I 07 X e [07 ]7 e [07 ]
0
with B = € R2*2, B has eigenvalue decomposition B = SAS™1, where
co 0

—.\/c1c 0 c C
A = diag{Ay, Ao} = 12 CS= Ve vea

0 Veiee —/C2 /2
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We define the characteristic variable @ := S~ u, which satisfies the decoupled system

ou ot
+A—=0.
ot oz 0

The system consists of two independent wave equations traveling in opposite directions. To

separate the two waves, we introduce the splitting of the eigenvalues )\ as
A = )\;r + A, )\z = max (g, 0), A :=min(A,0).

We can write the upwind scheme for the characteristic variable as

1 1

“n+l o~ - . -
with

AT i=diag(A],AY), AT = diag(A],AY).
Next, we define Bt := SATS™! B~ := SA=S~! and obtain the upwinding scheme in

terms of the original variable u(-) by multiplying the resulting scheme by the matrix .S,

1 1 1 1 __
where
Pl 1[+veiee «a 1 [ —cie2 c1
u;’b _ i B+ I B~ ==Z

2 2
/i SERVETS: VOIS

Here, the notation ug‘ indicates the jth point in the spatial mesh and the nth point in the
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temporal mesh. Plugging these terms back into (2.12), we obtain the discretization scheme:

At At
1
Py =p o+ E[\/CICQ@?—l —2p} +pj)] — E[Cl(fﬁ-l = fi=1)]

At At

1

[ =1+ o Veaelffog = 2f] + f0] = g1 lea) i — 1))

Stability of this scheme is ensured if the corresponding scalar upwind schemes for all variables

y, are stable, which gives the Courant, Friedrichs, and Lewy (CFL) stability condition:

At At
max |Ap|— =/cica- — < 1.
ax [\l o= Ve o<
Since we anticipate that the friction term will not dominate, we simply consider the upwind-
ing scheme for each characteristic for the linear equation to which we add the friction term

explicitly. This procedure results in the following numerical scheme:

At At
p;lH =pj+ E[v01€2(p?_1 —2p} +pj)] — E[Cl(f}lﬂ — fi=1)]

At At
f;-H_l = fjn + E[\/ 0102(f}L_1 — 2f]n + ‘;?_,_1)] — EkQ(p?_,_l _p}l—l)] - At63f?|fy|/p§l

for j = 1,2,..., Ny — 1 and n = 0,1,..., Nt. The friction term can be split among the
characteristic equations based on the eigenvectors of the matrix of the linear system and

the boundary. To simplify the implementation, we repeat the flux values of the last interior

node: fy' = f1 fZT\L]I = fZT\sz—l'
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2.3 Design of Experiments Setup

2.3.1 Bayesian Framework

As mentioned in the Introduction chapter, we consider a setting with measurements

perturbed by additive Gaussian noise (some dimension notations are different):
d = F(up)+m, n~N(OT),

where I is the measurement noise covariance matrix and F is a nonlinear operator that maps

a parameter vector ug € R™ to the space-time observation vector d € RY. Formally,

Frug s uw s d (2.14)

where ug are the input parameters, f is the discretized PDE solution operator, u is the
discretized PDE solution vector, and w is the state-to-observation operator. Note measure-
ment error is not considered in (2.14). In our case, the input parameters ug (the inferred

variables) consist of the initial pressure and flow at the grid points:

uy = {{po(iﬁx)}¢:1,2,...,Nx—1 ; {fo(iﬁﬂf)h:og,...m} :

The solution vector consists of the pressure and flow at all nodes and all times:

n n
{{pﬂ }j:0,1,2,...,Nm, n=0,1,2,...N; ' {fJ }j:O,l,Q,...,Nx, n:0,1,2,...,Nt}

The map f is defined by the numerical scheme (2.13). The observations d are a subset of
entries in the solution vector w, and the space-time observation operator w is the restriction
operator from the components of w to the entries in d. For our experimental design, we

assume that the sensors are fixed and interrogated at all times, in which case the observation
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vector d and observation operator w are parameterized only by the spatial locations at which
we observe the pressure and flow.
The measurement noise 7 is independent of ug and thus ulug ~ N(f(ug), Daoise). The

likelihood is given by
1 2
Tike(uluto) o exp (= 5llu = F(uo)) |21 ).

Stating the consequence of Bayes’ theorem mpost (ug|u) o< ke (Ufug) mprior (ug) with a Gaus-

sian prior mprior(tg) o< exp ( - %HUO - upriorH%,l >, we obtain the parameterization of the

prior

posterior distribution mpest(uglu) (up to a constant) as [44]:

1 1
Tpost (o ) o< exp (= 51 £ (o) = WIIE 1 = Sl —wpall’ o )o (215)

noise 2 prior

R™ ™ is the covariance matrix

where uprior 1S the mean of the prior distribution, I'pior €
for the prior which we assume to be a scalar multiple of the identity matrix. T'}iee € R7*¢
is the covariance matrix for the noise. We consider two types of noise matrices I';gice. The
first one is diag(a%,a%, o ,03) which indicates independent measurements (white noise).
The second one is given in (2.16), which assumes independence in space but nonzero and
decaying correlation in time (colored noise). The statistical parameters needed to define our
model are I'ygise, Iprior; and Uprior-

By measurement noise we understand here the discrepancy between simulated pressure
and flow given exact initial and boundary information and the output of the sensor of a fixed
location. For modeling this measurement noise we have several considerations. The intrin-
sic sensor errors can be assumed to be statistically independent between different sensors.
However, some of the discrepancy between sensor indications and computed flow are also
due to the numerics and boundary conditions, such as unresolved fluctuations and external

perturbations. If the sensors are sufficiently far apart, we can assume that insofar as these

are represented as probabilistic errors, they are spatially independent. The situation con-
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cerning the temporal features of the noise is more complicated, however. The discrepancy
between measurement and simulation can be due to unresolved scales, which typically have
nonzero correlation times and cannot be ignored if the measurements are frequent enough.
We thus model the measurement noise as a Gaussian random variable that is independent
in space but correlated in time. We also assume that its mean is zero. For the intrinsic
error of a calibrated sensor, this is a reasonable assumption. Given our definition, measure-
ment noise also includes numerical error. We assume that this and all other biases are small
enough compared with the sensor error (and given the optimal variances, this is a reason-
able assumption). In summary we assume that the measurement error has zero mean and

covariance given by the following function:

ti—t;
COV((ti,Jj‘i), (tjwr])) = 5('7;2737]) exp {_%]ﬂti—tﬂgq}} ) (216>

where 7;, 7; are parameters with dimension of time that define the shape of the covariance
function. Here, 0(x;, ;) is the Kronecker ¢ symbol, which takes the value 1 if z; = x; and
0 otherwise. I',,,;se is then computed by evaluating the covariance functions at the position
where pressure and flow are measured. In other words, entries on subdiagonals of T';,,;se
have exponential decay, and IT',,;5. is a sparse matrix.

We also experiment with white noise in time. This is probably the most common usage
in such problems even if it does not make sense in the limit of dense temporal observations.
It does, however, has the advantage of needing fewer parameters. Moreover, under proper
scaling conditions, this gives a conservative approximation of the variance for target linear
forms of the initial state (i.e., it overestimates the posterior variance). We thus consider
the case of white noise in time and space as well, which corresponds to a constant diagonal

covariance function, that is:
COV((ti, mi), (tj, (I}j)) = 5(%,’, :cj)é(ti, ij).
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The other element in defining a Bayesian uncertainty framework concerns the prior assump-
tions about the parameters to be inverted, ug. Here we use a Gaussian prior, which is a
common choice for Bayesian inverse problems [44]. The prior mean describes our best guess
about the uncertainty parameter, which can be obtained from historical measurements or
from other available information. In addition, because of the lack of a priori information
about the parameters, we will use a prior that assumes spatial independence. This setup can
be interpreted as making no assumptions about the smoothness of the initial data, which
should result in conservative statements.

Despite the choice of Gaussian prior and noise probability distributions, the posterior
probability distribution need not be Gaussian, because of the nonlinearity of f(ug) [44]. If
our purpose were estimation, then we would aim to characterize the posterior distribution.
The mean of this posterior distribution, m,p, is the parameter vector maximizing the
posterior (2.15), and is known as the mazimum a posteriori (MAP) point. It can be found
by minimizing the negative log posterior, which amounts to solving the following optimization
problem:

Myap = argul(r)nin J (ug) := —log mpost (up|d).
Characterizing the posterior uncertainty, however, would require exploring and summarizing
this posterior distribution, which in general can be done only with Markov-chain Monte
Carlo methods [44]. To simplify computations, we use Laplace’s approximation. That is,
we make a quadratic approximation of the negative log of the posterior (2.15) around the
MAP point. The posterior covariance matrix I}, is then given by the inverse of the Hessian
of J at ug. We thus approximate the posterior covariance with a Gaussian distribution,

with mean M .p.
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2.3.2 Modeling Sensor Placement Decisions

Our interest, however, is not only in estimation but in optimal sensor placement locations.
To this end we allow any of the spatial nodes z;, ¢+ = 0,1,..., N to be candidate sensor
locations using the same discretization in x-direction as in §2.2.2. To allow the ability to
select the position of the sensors, we associate with each z; a non-negative binary weight w; €
{0,1}. Our intent is to denote by w; = 1 the situation where a sensor is placed at location z;
and by w; = 0 the situation where no sensor is placed at location x;. Therefore, the problem
of determining the optimal sensor locations becomes an large-scale mixed-integer integer
nonlinear program. Our approach will be to perform relaxations of the sensor placement
problem, by allowing w; to have any value in the domain [0, 1].

We model the fact that a sensor has fixed spatial placement, at which we measure both
flow and pressure at all times. Nevertheless, we allow grid points on the temporal direction
to have the same weight. We thus create a weight diagonal matrix corresponding to each

point in w:

W = diag(wg, w1, ..., WN,, W0, W, .oy WN,, ooy WO, WY, .o, WN,) € R2m*2m,

where m = (Nz 4+ 1)(N¢ + 1) is the total number of discretized points in the domain [0, 7] x
[0, L]. Because we allow any spatial degree of freedom to be measured, we initially assume
that f(ug) is the entire solution map S, and we use the weights to winnow it down. Since
we will end up solving an integer programming problem, we aim to produce a version of the
optimal sensor placement that has a convex objective. Therefore, inspired by the workflow
from [8], we approximate f(ug) when used in (2.15) by its linearization around the prior

mean Upior- 10 this end, we denote the Jacobian of f at upior by F. We then have that

f<u0> ~ f(uprior) + F(UO - uprior)~
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The last ingredient is to induce a weighted least squares setup to the estimation problem,
to allow for a consistent statistical framework when allowing points to come in and out of
the measurement set and thus decide on the optimal measurement set and sensor placement.
This strategy is equivalent to scaling the variance of the measurement at a certain point z;
by 1/w;. For writing down the likelihood we need the inverse of the noise variance, which

will now be WY2r—L wl/2 In this form, we assume that I';gice is the matrix of the noise

noise
as if sensors are at every grid point and are evaluated based on the covariance kernel (2.16).
In this case (2.15) is proportional to the weighted least squares likelihood. That is, the

w-weighted likelihood, conditional on the initial conditions ug and weights w, is [8]

noise

1
Tlike(d|ug, w) o< exp {_E(FUO —d)TWIT L W (Fug — d)} ,

where d is a potential measurement at all times and space points (or u, see §A). Accounting

now for the prior distribution on ug around its mean wpyior, we get the posterior likelihood:

1 1 1 _
Wpost<d‘w) X exp {_§<FUO - d)TVVYFnolz'sevv2 (FUO - d) - (U’O - uprior)rprlior(uo - uprior)} .

We note that a maximum likelihood approach would have a similar expression except that it
would miss the prior term. In that case the problem would become equivalent to one of least
squares. Under the assumptions above, the distribution of the best estimate uq is normal
with covariance matrix:

-1
Fpost(w) = (FTw%F_l W%F‘Fr_l ) . (2.17)

noise prior

2.3.3 Optimal Sensor Placement Formulation

The optimal sensor placement problem is cast as a design of experiments formulation.

The aim is to minimize a measure of the posterior covariance matrix under the constraint
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of a fixed number of sensors. In this work we focus on minimizing the trace (corresponding
to an A-optimality criterion) and minimizing the variance of the estimated initial flow. We

capture these formulations using the following general form:

N
subject to  w; € {0,1},i=0,1,..., N; and Zwi = nyg.
=1
Here ng is the total number of sensors to be placed. To minimize the posterior covariance

of total flow, we use

U (Tpost(w)) = al Tpost(w) a, a=(0,...,0,1,...,1) € R*=, (2.19)
—— N —
Ny—1  Ny+1

Here, the vector a has an entry of L/N, corresponding to any initial flow variable, and 0
otherwise. In other words, the vector a is used to extract the flow variance from the posterior

covariance matrix. The trace minimization problem considered in [8] uses
\I/(Fpost(w)) = Trace(rpost(w))~ (2.20)

We can interpret the minimization of the trace of the posterior covariance as a compromise

in aiming to reduce the variances of all possible linear functions of the initial state.

Sparsity-Inducing Approach

Because of the integrality of the sensor placement problem and the complex nonlinear
structure of the measures used, direct use of off-the-shelf solvers does not result in scal-
able solutions. For instance, initial investigation using linearization of the mapping and
mixed-integer linear programming solvers resulted in excessive computational times once we

exceeded a mesh of N, = 10. To enable scalable solutions, we propose to use a sparse (com-
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pressed sensing) optimization approach [8] and a sum-up rounding approach [26]. In the
compressed sensing approach, we introduce a sparsity-inducing penalty term while relaxing

the binary constraints. This results in

min U (Tpost(w)) +7 - ®(w)
N
subject to 0 < w; < 1,i=0,1,.., Ny and > w; = ny.

=1
Here, v > 0 is a penalty parameter, and ®(-) is a penalty function. The ideal penalty
function is the so-called 0-norm, which counts the nonzero entries. For v sufficiently large,
such a norm would indeed induce an integer solution. On the other hand, this formulation
makes the problem difficult, in effect NP-hard (in N;). If the number of nonzero entries
is small, however, an integer solution can be obtained with high probability by using the
I-norm (which is a continuous and convex metric). This is the basis for the recent advances
in the area of compressed sensing [45]. If we insist on the constraint of the sum of weights
being prescribed, however, then using ®(w) = |Jw||; has no effect on our problem. We have
also tried to use ®(w) = ||wl||; without the total sum constraints le\il w; = ng, and chose
the penalty parameter v so that the solution of the problem satisfies Zi\il w; = ng. In the
parameter ranges tried, this compressed sensing setup did not produce a sparse solution.
An alternative is to use a penalty ®(w) that is closer to the 0-norm, although this comes at
the cost of abandoning convexity. Such an approach is also used in [8]. In this work we use
®(w) = ||lw|[y/o- We highlight that the cost function ¥ (Tpost(w)) may be nonconvex and

the penalty term ®(w) = ||w]|; /2 would add to nonconvexity.

Sum-up Rounding Approach

The other approach considered is the sum-up rounding (SUR) strategy of Sager. This

approach starts with the convex relaxation of the optimization problem (2.18) (and formally

29



represents the problem (2.21) for v = 0):

min ¥ (Fpost (w))

N
subject to 0<w; <1,0=0,1,..., N, and Zwi =ny.
=1

An important property is that this problem produces a lower bound for the objective function

of (2.18). The key is now to produce an upper bound by finding an integer vector w that

satisfies the constraint Y w; = ng and that has an objective only slightly increased from

the optimal one of (2.22). In the sum-up rounding approach, an upper bound is produced

as follows. If we denote the relaxed solution of (2.22) by wj.e = {wgel, ...,wi\gf}, then an
Ny

integer-valued solution w;,; = {w?nt, -, w;, ¢} is obtained by:

Joo_
Wint =

J J—1
: J J
1 Zwrel o Z Wiy 2 0.5
k=0 k=0

0 otherwise

(2.23)

for j = 0,1, ..., Np. It has been shown for optimal control problems with binary controls [46]
and for the optimal selection of measurement times in time-dependent initial value problems
[26], that this rounded solution will become arbitrarily close to the relaxed one when the
underlying grid is chosen fine enough. The problem we apply this strategy to is different,
because rounding occurs in space and in the presence of two-point boundary conditions.
Hence, it is unclear whether such desirable properties persist. We investigate this situation

in the following section.
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2.4 Numerical Results

2.4.1 Case I: Total Flow Variance Minimization

02 ‘ 02
‘ 01

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
location location location

Fig.2.1: Optimal placement for sparsity-inducing (compressed sensing) approach (2.21).
Flow variance minimization formulation.

The optimal design of experiments framework is first applied to the total initial flow
variance minimization problem given by (2.18) with the objective function (2.19). In this
case study we compare the sparsity-inducing optimization approach and the sum-up rounding

strategy discussed in §2.3.3.

Sparsity-Inducing Approach

For the variance minimization problem we use L = 80000, 7' = 60 based on [41]. Also,
using the quantities from [41], we obtain the following parameters. ¢; = 9.6917, co = 14137,
c3 = 0.0825. To obtain a stable discretization, we must obey the CFL restrictions. We thus
choose N = Ny = 200. We then solve the problem (2.21) using the fmincon optimization
routine in Matlab. We choose as a starting point for the weights w; = 0.5 for all . We
solve the optimization problem (2.21) using a constrained optimization solver. The results
for white noise are displayed in Figure 2.1 for increased values of v. We see that increased
v indeed promotes increased sparsity and a (mostly) integer solution. On the other hand,
the changes in the solution for increased « are large and irregular. We thus suspect that the

sparsity-inducing solution may not get close enough to the actual solution, but we do not
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have enough evidence one way or the other to make a final conclusion.

Sum-Up Rounding Approach

We use L = 80000, = 60,¢; = 9.70,co = 1.41 x 10* ¢5 = 8.25 x 1072, fo(x) =
10, po(x) = =9z/L + 10, and 71 = 2,79 = 6 in Figures 2.2, 2.3, and 2.4. The time constant
governing the dynamic response of some flowmeters is about 1 second [47]; this governs our
choice of 1. We chose 79 = 3.0 - 71 both to capture enough of the dynamic response of
the sensor and to obtain a reasonably sparse covariance matrix to help with computations.
We present the gap between the objective function of the relaxation (2.22) and the sum-up
rounding integer value (2.23). We present the gap for white noise and colored noise cases
and the gap scaled by the mesh size. Scaling here was necessary to compare problems of
different sizes and to validate that the gap was shrinking with increasing mesh resolution.
While the solution does not change, for the objective function to represent total variance,
the vector @ in (2.19) must be scaled by the mesh size, which varies with 1/N;. The lower

and upper bounds in Figures 2.2 and 2.3 are not scaled in order to aid visualization.
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Fig.2.2:  Sum-up rounding upper/lower Fig.2.3:  Sum-up rounding upper/lower
bounds (white noise case). bounds (colored noise case).

In Figure 2.5 (optimal sensor locations), the grid size used is 100 x 100 and ng = 10,
which means that we have 100 candidate locations. These candidate locations are evenly

distributed along the pipeline, but only 10 are selected to place sensors. In Figure 2.4, the y
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Fig.2.4: Sum-up rounding gap percentage

axis is the percentage of the gap in the objective function when N, and N; are determined
by x relative to the gap when x = 1. In other words, we want to see how the gap decreases
as the mesh gets more refined, since this seems to be the message in [46, 26]. The number of
sensors is kept to a fixed fraction of the number of grid points, in this case ng = 0.1 x Ny.

Given the small magnitude of the gap, we believe that the results for the optimal dis-
tribution of the sensors are reasonable. We note that the sensor distributions, while not
complex, are certainly not trivial as they show that the spacing increases from inflow to
outflow in the white noise case and that it reaches the maximum spacing two thirds away
from the inflow in the colored noise case. We also observe that using colored noise against
white noise results in a significantly smaller gap.

We also computed the total variance at the solution of the sparsity-inducing approach,
and it was indeed worse. For example, for N, = 200, it was worse by about 4.65%. Figure
2.1 looks much worse than that; part of the problem occurs because the total flow variance
is not very sensitive to sensor placement if the time horizon is short, here being 60 s. This
short time horizon was chosen because of computational time constraints. In any case, we
conclude that the sparsity-inducing approach exhibits inferior performance compared with

that of the sum-up rounding approach.
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Fig.2.5: Optimal sensor locations using the sum-up rounding approach in the total flow
minimization example.

2.4.2 Case II: Trace Minimization

In Figure 2.6, the solution of §2.4.1 in the case of white noise is presented. The conclusions
are similar to the ones obtained by minimizing the variance of the total flow. The placement
appears to be unstable as « is varied, and subsequent comparisons with the solution of
the sum-up rounding approach convinced us that the solution is far from optimum. For
N, = 100, the solution produced is worse by 7.5% in terms of the value of the objective
(the trace of the posterior covariance). We observed a similar behavior for the colored noise
approach in the few circumstances studied.

We thus focus on applying the sum-up rounding approach to the A-optimal experimental
design problem (2.18) that minimizes the trace of the covariance matrix (2.20). That is, the
relaxed problem (2.22) is solved followed by the sum-up rounding strategy (2.23) to produce
the integer solution. Specifically, suppose wy.; is the solution to the relaxation (2.21) and

winet is the integer solution obtained from w,..; via the rounding-up strategy (2.23). Recall

34



that the posterior covariance matrix is given by (2.17).

We use the notation C1 = I'post(wyey) and Co = Tpost(wipe). How well we can certify
that the sum-up rounding strategy works depends on how close C1 and C2 are to each
other. In keeping with the intuition behind the sum-up rounding method [46], it is expected
that the gap decreases as the mesh is refined, provided that the number of sensors is kept
at a constant proportion of the number of nodes. One challenge faced here, however, is
comparing the optimality gap for different problem instances. In the case of the variance of
total flow, described in §2.4.1, this is a discretized linear form of the solution; the weights
from the discretization indicate what the scaling should be, so that one can reason whether
the gap is large or small from a practical perspective. The trace of the posterior variance
does not naturally represent an observable quantity that can be expressed as an integral
objective and in this sense this problem does not immediately fit the setting used in [46].
Because of this, the sum-up rounding strategy is used only as a heuristic. An example of the
difficulty is the following. Each diagonal entry in Cj, for a fixed number of sensors, would
have to converge to a fixed value (the variance of the flow at the given point), but its trace
would go to infinity. To this end, the gap C| — (9 is mapped to metrics that can be more
easily interpreted. One alternative is to compute Trace(C7 — C9) scaled by the number of
points in the x direction, which is equivalent to multiplying with AX. Another option is to
compute the largest eigenvalue of C'] —C9 also scaled by AX | we call this quantity the largest
eigenvalue distance. Another option is to compute the difference between the variances for
the total flow, that is, CLT<02 —Ch)a (N%) 2, where a is the vector in the objective function of
total flow. We call the absolute value of this quantity the total flow variance distance. In this
last case, we can compare this gap with the gap from the total flow variance minimization
problem §2.4.1.

We decided not to present the results for the white noise case because this assumption is
unrealistic and the resulting figures present behaviors that are similar to those of the colored

noise case. Moreover, as in the total low minimization case, they exhibit a slower decrease
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Fig.2.6: Optimal placement for sparsity-inducing (compressed sensing) approach (2.20) for
the trace minimization formulation with white noise.
in the gap compared with the colored noise case.

For colored noise, with the measurement error covariance kernel described in (2.16), our

results are presented in Figures 2.7-2.12.

e The resulting upper and lower bounds are presented in Figure 2.7 (scaled by nip in
Figure 2.8) and the gap between them is presented in Figure 2.9. The x axis is N, =

Ni = ny (the number of parameters), the y axis is Trace(I'post (wint)).

e The best sensor configuration (from the sum-up rounding strategy for N, = 100) is

presented in Figure 2.10.

e The largest eigenvalue distance (the eigenvalue with the largest absolute magnitude of
(C9—C1)AX) is displayed in Figure 2.11. The total flow variance distance is presented

2
in Figure 2.12 (this is equivalent to computing CLT(CQ —Ch)a <NLx> with the notation

from (2.19)). On the x axis we display N, = N;.

From the numerical experiments, we conclude the following. As N, increases, the gap
shrinks. The most convincing evidence we find is the largest eigenvalue discrepancy plots
in Figure 2.11, particularly when corroborated with the scaled upper and lower bounds
calculations from Figure 2.8. Note that despite the fact that Trace(Cy — C71)AX is almost
constant, in the spectral norm (Co — C71)AX is decreasing significantly, and the rate is

faster than \/1? (Figure 2.11). The scaled gap, in particular, does not appear to converge

(Figure 2.9). This also shows that, from the comparison with the largest eigenvalue distance
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Fig.2.9: Scaled gap for colored noise, Fig.2.10: Optimal sensor placement for
trace minimization case. colored noise, trace minimization case.

behavior, scaling the trace by its size is not the right approach. The right one will be
the subject of future research and is an intriguing problem in itself. We also display the
total flow variance distance in Figure 2.12. In this case, the proper scaling is clear, since it
represents differences of statistics of physical random variables. We observe a decrease that
is comparable to that in the total flow minimization optimization case. Specifically, we have
a decrease by a factor of 5, between the case N, = 50 and N, = 200, whereas in this trace
minimization case we have a decrease by a factor of 4.5 between the same mesh sizes in the
total flow variance distance.

The plots for the optimal solution, shown in Figure 2.10, indicate that a uniform distri-
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bution is a reasonable approximation. While the patterns show some spatial variability, it
is small compared with the gap to indicate that the exact solution would not be uniform
or close to it. In that sense this approach does not bring new insights, with the exception
that the approach indicates that the optimal placement will not include samples at the end-
points (again, an otherwise understandable conclusion given such results from approximation
theory). On the other hand, the endpoints are places where in practice the industry will
most likely have sensors. Thus, the second iteration of this may be to assume that sensors
exist at the endpoints and to solve the new problem. Our guess is that the result will be
close to uniform distribution again. Our interpretation of such effects comes from the fact
that minimizing the trace of the covariance is a bit like minimizing for the variance of all
possible linear forms of the initial state (in effect, one can prove this is precisely the average
of variances over random uniform choices of a over a sphere). With this interpretation it is
perhaps not surprising that a close-to-uniform distribution ensues. As a check suggested by
a referee, we tried each best solution we found for the total variance minimization and the
trace minimization setups in the other problem, and we found that they had larger objective
values, but not by much (less than 1%). Therefore, in the parameter setup we tried, the

minima appear to be shallow, and uniform designs appear to be acceptable. We suspect that
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an issue may be the limited time horizon we can consider because of the intensive nature of
the computation (it takes about a day to solve the problem in Matlab for 200 mesh points
and a 60-seconds horizon on a laptop). More extensive simulations are needed to elucidate

such initial questions.

2.5 Discussion

We concluded that in our setup the sparsity-inducing approach did not produce an integer
solution of sufficient quality. Because we do not know the exact solution, we came to this
conclusion by examining the stability of the approach with respect to the shrinking parameter
and by comparing it with the results of the sum-up rounding strategy. We observed that the
latter produced good results particularly in the increasing discretization case, as expected
because of the interpretation of the approach as being provably optimal in the limit of
increasingly accurate discretizations of a continuous limiting case [46]. For the total flow
variance minimization case, the gap in the relaxation and the sum-up rounding integer
solution decreases roughly as ﬁ’ where N, is the number of points in the x direction.
This indicates indeed an increasingly accurate solution.

For the A-optimal design (the trace minimization problem) the comparison is more com-
plicated, because classical design of experiments theory has a framework for increasing the
number of observations but not for increasing the dimension of the problem in terms of com-
paring the objectives of solutions for different problem sizes. We experimented with different
comparison metrics, the most satisfying of which we found to be the largest absolute value
of the eigenvalue of the difference between the covariance of the relaxed solution and that
of the integer-valued problem. We found that in this metric the sum-up rounding strategy

also results in decreasing the optimality gaps with problem size in the same \/}T fashion.
x

Comparing the white noise with the colored case, we observed that the solution of the
white noise case is harder for both total flow variance minimization and A-optimal design,

in the sense of the metrics of convergence being larger and slower to converge, although not
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significantly so. Since the colored-in-time noise case is more realistic for large data (even if
the white noise case is more common in the literature), this is a fortunate occurrence in our
opinion. A good outcome for white noise situations is also not conceptually covered by the
1D ansatz in [46], since in this case the embedding problem is closer to a two-dimensional
one. But the optimality gap shrinks as the mesh is refined in the white noise case as well.

In the total flow variance case the optimal sensor placement solution departs significantly
from the uniform distribution, whereas in the A-optimal design the optimal solution appears
close to uniform. While our approach presents the first computational evidence of this fact for
our target problem class, it is certainly disappointing, although given the worst-case flavor
of the A-optimal design perhaps not entirely unexpected. Of course when experimenting
with different regimes this conclusion may change, but this is how the evidence sits at the
moment.

While many more experiments need to be run, the behavior of the total flow optimal
sensor placement suggests that the optimal solution while focusing on application-specific
target functions of the unknown flow signal may result in nontrivial geometrical patterns of
sensor placement. This, however, may not be desirable because the objective function may
change with usage and redeployment of sensors. Therefore, a conservative approach would
be to use an A-optimal design objective. But when desired, it appears to be an interesting

direction of investigation in terms of expected outcome.
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3 THEORETICAL CONVERGENCE ON OPTIMALITY GAP

This section provides theoretical results on the zero convergence of integrality gap. In
§3.2, we review the Bayesian framework and the mixed-integer nonlinear program formula-
tion, and make a connection to integral operators. The sum-up rounding (SUR) procedure
is defined in §3.3 based on a two-level meshing decomposition, and we give its properties of
approximation in multiple dimensions. In §3.4, we show convergence of the integrality gap
based on SUR strategy for different experimental design criteria, with identity covariance
matrix in the prior. We provide simulation results in §3.5 on two-dimensional gravity sur-
veying and compare with thresholding designs. In §3.6, we extend the convergence results
to a Gaussian prior with Laplacian precision matrix, and give a different formulation where

the parameters are the truncated coefficients of basis in a function space in §3.7.

3.1 Introduction

Design of experiments (DOE) aims to determine experimental settings that yield accurate
results for statistical model parameters. One important branch of DOE seeks to determine
the optimal sampling locations given a set of available measurement points (see [5, §7.5]
and [6, 89, §12]). In [5], the goal is to select m regression vectors with replacement from
a prescribed set of p regression vectors, so as to obtain best ordinary least squares (OLS)
estimates. The optimality criteria are based on the trace, log-determinant, or maximum
eigenvalue of the covariance matrix of OLS estimates. This is an integer programming
problem, and it is generally NP-hard [48]. One tractable approach is to first solve the convex

problem obtained from relaxing the integrality constraints, and then round the solution off
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to an integer one. In [6], the setting is also linear, where measurements are selected from
an infinite set of regression vectors, allowing for repeated measurements. Several efficient
rounding-to-integrality procedures are proposed and an analysis of asymptotic performance
loss is given. A common feature of all these approaches is that the analysis is done with
respect to a fixed number of model parameters.

Our focus of investigation is related to such previous endeavors but takes a different di-
rection. Instead of a linear relationship between response (output) and parameters (input) in
fixed and finite dimensions, our measurement of response is determined by the discretization
of an integral functional of distributed parameters. The unknown quantity is a function that
belongs to an infinite-dimensional space, which is approximated by discretization on increas-
ingly fine meshes. Here, we aim to understand the asymptotics of the rounding procedure in
the limit of the mesh size going to zero. As a result, the inverse Fisher information matrix we
try to minimize (with respect to a given design criterion, such as its trace) increases in size
with the number of discretization points, which makes analysis with common design criteria
difficult (§3.2.5). We are not aware of prior theoretical work on the convergence analysis of
discretized design of experiments with a number of sites that can grow unboundedly. More-
over, we assume here—as would be the case in many physical settings—that each data site is
measured only once, so repeated measurements (as in [5, 6]) are not allowed. This would
be the case, for example, if the problem is time dependent and thus a certain point in space
cannot be revisited at the same instant in time or if the sensor error is constant in time but
has mean zero over the sensor population, as is typical of physical sensors [49, §34.3].

Since we aim to determine the optimal sensor locations starting from a relaxed problem,
the construction of an integer solution with appropriate rounding strategies of the relaxed
version is a critical endeavor. Numerous rounding heuristics are given in the literature (see
[50, 51, 52]), and some specifically aim for binary variables (see [53, 54, 55]). In [50], the
author studied the optimal rounding by recording and comparing empirical success rates,

defined as the percentage of “roundable relaxation” optima (in the words of [50]), for dif-

42



ferent types of optimization problems (mixed-integer quadratically constrained program,
mixed-integer nonlinear program, etc.) among the existing rounding strategies. Classical
mixed-integer techniques have been used specifically for sensor placement aiming at detect-
ing contamination in water networks (see [56, 57, 58]) but focusing mainly on a fixed-sized
discretization without investigation of limiting properties. Closer to the continuously indexed
(in the limit) framework in this paper, sensor placement for systems governed by partial dif-
ferential equations has been studied using a Bayesian framework [8]. In that case, the discrete
nature of sensor placement problems was recovered by seeking sparsity in the solution of the
relaxed problems by means of an [y penalty that is approximated by a sequence of smooth
functions. This approach can be applied to infinite-dimensional problems, but the numerical
results can be unstable, and they depend on the choice of various tuning parameters. All the
rounding approaches described in this paragraph have shown good performance for certain
classes of problems, including the type studied here, but their asymptotic properties have
not been investigated theoretically.

Since we are interested in problems that can be continuously indexed, we investigate an
extension of sum-up rounding (SUR). Sum-up rounding for binary variables, as we also pur-
sue here, has been shown in temporally indexed problems to have the desirable asymptotic
property of being arbitrarily close to an integer solution as long as the discretization mesh is
sufficiently fine [22, 21]. In [21], the authors not only clarify the role of SUR in MIOCPs but
also obtain a guaranteed bound on the performance loss, depending on the size of discretiza-
tion mesh. In [22], a specific structure in one dimension is considered where the objective
is a function of either the Fisher information matrix or its inverse, and the optimality gap
converges to zero. Recently we used SUR as a heuristic for the sensor placement problem
in natural gas pipelines governed by systems of nonlinear hyperbolic differential equations.
We observed convergence of the integrality gap as the spatial mesh was progressively refined
[59]; but since the spatial problem had a different nature from [21], we did not have theory

to justify that observation. That was one of the main motivators for this work.
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Here, we investigate DOE based on a Bayesian framework for parameter estimation [8],
and we minimize functions of the posterior covariance matrix based on common experimental
design criteria [6]. Our parameter to the observations map is based on an integral equation,
as opposed to the solution of a partial differential equation as in [§8], although the two are
conceptually equivalent if one considers the Green function resolvent with the prior inter-
preted as a regularization term [60]. The resulting DOE problem after spatial discretization
is a convex mixed-integer program; see §3.2.5. After solving the relaxed problem, we define
and employ a multidimensional SUR procedure inspired by the one-dimensional procedure
proposed in [22; 21]. Our main objective is to investigate whether the integrality gap be-
tween the DOE criteria at the rounded solution and relaxed solution converges to zero in the
limit of zero mesh size, as was observed for MIOCPs in [22, 21]. Our contributions consist of
proposing an extension of the SUR rounding procedure in multiple dimensions and proving
that, for common experimental design criteria, the integrality gap converges to zero as the
mesh size shrinks to zero. The techniques we employ to this end are related to the spectral
theory of self-adjoint integral operators [23]. We emphasize that questions about the asymp-
totic quality of DOE solutions over varying design space size have not been investigated in
classical DOE theory [6].

While inspired from the idea of SUR in [21] and using it as a building block, this work
is different in several respects. First, applying it in a multidimensional setting allows for a
larger number of rounding options and our theory covers a fairly general setup based on what
we call compatible two-level domain decomposition schemes. Also, while the SUR technique
itself works for rectangular domains, (which in effect, we argue in the construction at the
end of §3.3.2), the proof in [21] relies on the convergence of one-dimensional integrals which
would not directly apply to more than one dimension. While in the end, for implementation
simplicity, our examples are for rectangular domains as well, the theoretical framework itself
allows in principle a broad set of domain shapes and other rounding techniques, another

example of which we give in Appendix B. Second, the functions we optimize here, which
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define the objective of the experimental design, depend on the posterior covariance matrix,
whereas the entries in the precision matrix (the inverse of the covariance matrix) are the
ones related to an integral quantity for which the typical SUR analysis applies. To carry out
our the gap convergence analysis for experimental design requires the investigation of SUR
effects on the eigenvalues of the precision and covariance matrices. Moreover, the sizes of
these matrices go to infinity, which poses additional obstacles to the convergence analysis as
we discuss in §3.4, whereas results in [22] primarily address a fixed dimensional parameter

space, and thus, covariance matrix.

3.2 Estimation Framework

While the contribution of this work concerns primarily the behavior of the SUR-induced
integrality gap, some of the assumptions we make stem from the estimation framework itself.
In particular, our results are tied to a common but specific choice of the covariance matrices
as well as to a limiting interpretation in terms of a certain integral operator. In the latter
case, the integer programming relaxation needs to be interpreted in an extended output
space. We thus describe the estimation framework that we use to define our DOE problem.

The setup is based primarily on [8].

3.2.1 Parameter-to-Observable Map

Consider the input domain €2, cRY and output domain Qs C RY, both of which are
compact sets. Suppose the output without measurement error depends on the input through

an integral equation:

wa) = [ fa )y, 7 € Do

where f(z,y) is prescribed by the physical constraints in the setup; we thus assume it is
known. The output u(z) can be measured at selected points but is affected by measurement

error. Our goal is to infer the parameter vector ug from the observation vector u. Equation
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(3.56) defines a parameter-to-observable map.

To create a finite-dimensional approximation we now discuss a simple discretization strat-
egy. More advanced discretization approaches as in [61] could easily be incorporated but
would complicate the presentation whose focus is on the SUR approximation properties for
DOE. We divide D =€, (or an approximation of €;,) into m subdomains D1, Ds, ..., Dy,
with equal size p(D;) = Ay = () /m for 1 =1,2,...,m (as is done, e.g., for versions of
Nystrom’s method in [62]). Then, we select a representation point y; in each D; and repre-
sent the input function wug as the finite-dimensional vector uy= (uo(yl), uo(y2), -, uo(ym)).
Similarly we divide V =,+ into n subdomains V7, Vs, ..., V}, with equal size ,u(VJ) =A;=
(Qout)/n for j=1,2,...,n and select a representation point x; for each V;. Then we repre-
sent the continuous output u as the vector = (u(z1), u(z2), ...,u(zyn)). These z1,z2, ..., 2y
points are also the candidate locations to place sensors. We approximate the integral from

(3.56) by the Riemann sum:
)= [ Flag ol dy = 3 1o o,

To write it in matrix form, we define F' € R™*™ with F(j,i) = f(zj,%;)Ay, and then
1 = F'ug. Here u and g represent the discretized output and input respectively.

We note that in applications the function f(z,y) in (3.56) may not always be continuous.
For example, when the function f encapsulates wave dynamics, it is represented by a Dirac
functional f((z,t),y) = d(y,z—at), where a is the wave speed. For the remainder of this
work, we assume f to be continuous. Another restriction in (3.56) is that u(z) depends
linearly on wug(x), which is not the case in nonlinear relationships, such as for pipeline gas
dynamics [59]. In that case, the target problem can be approximated in the framework of

(3.56) by linearization, as was done in [8, 59].
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In the rest of this work, we use d(x) to denote the Kronecker ¢ symbol:

1, ifz=0,
o(z) =

0, otherwise.

3.2.2 Bayesian Estimation Framework

Our goal is to estimate the parameter vector g as a proxy for the unknown function u.
We consider a Bayesian framework where g is the parameter vector to be estimated and
the measurements @ are data perturbed by noise. Similar to [8, 59], we assume that both

the parameter prior and the measurements distributions are Gaussian:

ug ~ N(U’priu Fprior)u

@ =F1g +n, where 1 ~ N(0,T;0s¢)-

Here, I'); and I’y represent the prior and measurement noise covariance matrices, re-
spectively, whereas wy,; is the prior mean. We assume the measurement error to be unbiased
conditional on the realization of ug, and thus  has mean 0. From Bayes’ rule, the posterior

distribution of g is also Gaussian and has (up to a constant) the following density:
Tpost (Tip|@) o< exp § — l(ﬂ — Fag)'T, L (4 — Fag) — 1(ﬂo — i) T (@0 = tpri) 1
2 2

As mentioned in the Introduction and Chapter 2, we quantify the sensor placement effect
in the posterior by creating a weight vector w = (wy, wa, ..,wy) € {0,1}" where the jth
component w; corresponds to candidate location z; in the output domain. Let W be a

diagonal matrix with weight vector w on its diagonal. The w-weighted posterior likelihood,
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conditional on the data u and weight vector w, is

71'post(a()w% w) o< exp { — %(ﬁ — Fﬁo)TWUQF_l W1/2(ﬂ — Fuy)

notse

1/n Tr—1 (n
3§ (0 — tpri) Ty (10 — 1) .
Under these assumptions and accounting for the prior distribution, we can compute the
posterior g, which is the normal distribution N (upost, ['post), where

noise prior

-1
Upost = Tpost (FTrm}isea +T 1upm-), Tpost = (FTW1/2F L wl/2p -l )
are the posterior mean and covariance matrix, respectively. In this estimation model, the

posterior covariance matrix does not depend on data 4. In other words, the optimal sensor

placement is determined by the parameter-to-observable map and two I' matrices.

3.2.3 Choice of Covariance Matrices

We assume that, conditional on the true 4, the measurement errors are independent.
In most physical processes and sensor systems this is a reasonable assumption [63]. Con-
sequently, the matrix I'},,;5¢ is diagonal and commutes with W and all its positive powers,
resulting in the expression

WE 4T} )1.

prior

Upost = Lpost (F T gise F_lupm)’ Ppost = (F T ise
In particular, the precision matrix (the inverse of the covariance matrix) becomes linear in
W, which considerably simplifies our calculations and analysis. We assume identical sensors,
and therefore I'},;5e = 0p0iseIn for some prescribed sensor noise standard deviation ;.-
The other covariance matrix that needs to be selected is the one corresponding to the prior
distribution. Here we use a multiple of the identity I} = apm-lm. This choice can be
interpreted as ridge regression [64] or Tikhonov regularization of an inverse problem [65].

While for some setups our choice is not the ideal prior [65] it is one of the most common
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choices, at least before significant collection of data.

Our analysis is tied significantly to these choices, and particularly so for the prior where
other reasonable choices may be available. On the other hand, this is one of the most
common choices in statistical analysis of inverse problems [65]; therefore our setup does

represent many problems of interest.

3.2.4 Connection to Integral Operators

With the covariance choices specified in §3.2.3, the precision matrix, the inverse of the
posterior matrix I')pst, becomes

-l ol pTwryslr,.

post Tnoise pm

Note that the (7, j)th entry in Fpost is

n

1 . 2 -1 -1
Fpost( ’]> T noise Z xk Yi wkf(xk y]) to pri 5(x2 - ‘Tj)’ (3’1)

with w;! being the weights from the diagonal of W. With reference to the notations from
§3.2.1, we denote by w" () the piecewise constant function defined as w"(z) = wy, z € Dy,
which is the discretized area corresponding to kth candidate location in €2;,. Assume that
there is a measurable function w(z) : Quu — [0,1] such that w™(z) — w(z) in LY. For
purposes of illustration we assume that w(x) converges in this subsection; that will not be
required in our results in §3.4. Then, if Ay, Ay — 0 with A, /A, constant, the first term in

(3.1) will converge to
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This quantity relates to the discretization of an integral operator

A
Lug(z) = <A—i>a7;01ise //Qoutxﬁm flz, 2)w(z) f(x, s)ug(s) dzds, 2z € Qpye. (3.3)

Note that if Ay = Ay, then (3.2) is one coefficient of the discretization of (3.3) along the
input variable s. If w(x) is nonnegative, then the eigenvalues of £ are nonnegative. Because
L is a compact operator [23], it has a countable spectrum with 0 its only accumulation point.

Moreover, because of its integral form, its trace is finite [66]. This prompts the hypothesis

-1

that the spectrum of Fpost

is related to the spectrum of £ and oy,;. Specifically, eigenvalues

-1

of T noise

FTW F approach eigenvalues of £ [66] in the limit of A, Ay going to 0 at a fixed
ratio. This indicates that the eigenvalues of I'jost will approximately be 1/(A+ Ul;é), where
A are eigenvalues of £. This insight, with mathematical statements that will be made more

rigorous in §3.4, allows the analysis of optimization problems whose objectives are functions

of the spectrum of I'yys¢, as is the case for the DOE problems described in §3.2.5.

3.2.5 Design of Experiments Problems

We are ready to formulate our DOE problem that addresses the issue of optimal sensor
placement. We aim to minimize the estimation error of the parameter g, which can be
quantified by using its posterior covariance matrix, ¢(I'post). The three most widely used

criteria in experimental design to measure the size of this error are [6]
o A-optimal design: ¢(I'post) = tr(Lpost);
e D-optimal design: ¢(I'post) = det(I'post);
e E-optimal design: ¢(Ipost) = Mnaz(Lpost)-

Lemma 3.2.1. tr(I'post), logdet(Ipost) and Amaz(Lpost) are convex functions in the weight

vector w.
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Proof. The posterior matrix can be written as
& ~1
-1 T -1
F100575(“1) = (Unoise Z w; B F; + Upm'lm> )
1=1

where Fj is the ith column of FT. The desired results follow because tr(X 1), log det(X 1)

and Apaz(X 1) are all convex in X [5, Exercise 3.26], and the fact that X is affine in w. [

We formulate the DOE problem as follows (¢ represents one of the three criteria, and we

use logdet for D-optimal design):

min A(Lpost(w))

s.t. w; € {0,1}, 2?21 w; = N,

(3.4)

where ng is the number of sensors. To avoid the complexity of integer programming, we

start by examining the relaxed problem obtained by relaxing the integrality constraint,

min A(Lpost(w))

s.t. 0<w; <1,i=1,2,...,n, > w;=ny,

(3.5)

whose solution we denote by w,..;. Problem (3.5) is convex from Lemma 3.2.1. It can be
solved, after using some standard semidefinite programming reformulations, by interior-point
algorithms [5]. The relaxed solution w,..; provides a lower bound to the optimal objective of
the convex integer program (3.4).

Our results will apply for any ng (and its value could also change with the number
of discretization domains n), but they would be most meaningful in certain ranges. An
examination of (3.1) indicates that if f is bounded by C, then the trace of the discretization
of the integral operator is nonnegative and upper bounded by ngnC’QAZ. We must have
nAy = O(1) since nAy must be the volume of the initial set V. Therefore, for the estimation
problem to carry information comparable to the prior, we need to have ngA, = O(1); that is,

ng must be of comparable order with n. Otherwise the contribution from ¢ would originate
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in the limit exclusively from the prior. In other words, a meaningful asymptotics is the one
where the number of sensors is in a fixed ratio with the number of mesh domains. This is the
corresponding constraint to the one in [22] whereby the measurement time is proportional

to the considered time range [0, 7.

3.3 Sum-up Rounding Strategy in Multiple Dimensions

In this section we describe a sum-up rounding procedure that maps the fractional vector
Wy solution of (3.5) into an integer vector wgrp in a way that ensures the spectrum of
Lpost(Wre) and I'post(wspp) are not too far from each other. In turn, this will ensure that
the gap ¢(T'post(wsrr)) — @(Tpost (Wrey)) stays small.

Our procedure is presented here for rectangular domains V' (i.e., Quy¢, but the same
construction can be applied to €;;,), divided into n subdomains Vi, Vs, ..., V}, of equal size
w(Vi)=A, = %V) Given the function w"(x) : V — [0, 1], which is constant on each V},

we construct a 0-1 valued function @w"(z) that is also constant on each Vj such that the two

sums

are arbitrarily close to each other as long as n is large enough. Our analysis is centered
around estimating the variation in the entry ¢, 7 of F;olst following the SUR procedure. The
bounding technique will end up being uniform in ¢, j. To simplify our exposition, we ignore
in the rest of the analysis the argument y of f in (3.2) since it has no effect on our approach.

Note that the function f need not be the same as the one defining the integral equation
(3.56), and it can be any function defined on Qg satisfying certain continuity conditions.
If V C R, this is essentially a one-dimensional time domain problem that has already been
studied in [21]. In multiple dimensions, we can flatten the multidimensional vector and

apply the basic sum-up rounding. However, the integration-by-part technique in the proof

of [21, Theorem 2] becomes problematic in multiple dimensions, and this is why we resort
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to a two-level decomposition which also covers the basic one-dimensional case. It is worth
mentioning that depending on the ordering of entries, we can obtain different integer vectors.
In this section, we discuss the basic sum-up rounding strategy in §3.3.1 where Lemma 3.3.1
is an analogue to [21, Theorem 3|. The multidimensional strategy and its properties are
given in §3.3.2 and §3.3.3 respectively, and Theorem 3.3.4 in §3.3.3 is an extension of [21,
Theorem 2.

3.3.1 Properties of Basic Sum-up Rounding Strategy

We denote w" (w]) as the value of " (x) (w"(z)) in V; and construct the binary function

w"(x) from w"(x) as follows.

(1) Compute Iy = wf - u(V1), and set @ to

0, if I < u(W1),

Wy =
1, otherwise.
(2) For 1=2,3,...,n, compute
) R i—1
L= w™xp)u(Vy) and Ly=>Y @™ (xp)u(Vy),
k=1 k=1

where ;" is given by
07 if I’L - ii—l < %ﬂ(%)?
1, otherwise.
We call this strategy basic sum-up rounding, in reference to the name of the one-dimensional
technique introduced in [22, 21] which inspired this approach. The basic idea is that each

element is scanned sequentially and is rounded to either 0 or 1 determined by the difference in

the accumulated sum of elements that are already processed. The strategy has the property
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that for large n, w"(x) and @W"(x) get close to each other for all partial sums, which is stated

in the following lemma.

Lemma 3.3.1. The function w™(z) has the following property: For anyi=1,2,...,n,

< L.

- 2n

|u—zb{fj@ﬂ@w—w%%0Ax
k=1

where V' is the rectangular output domain with fixed size.
Proof. We prove this result by induction. For i = 1, we have the following.

e When 1 < %M(Vl) = %n,u(V), we have w]'=0 and I; =0, and therefore
=T =1 < —u(v)
1 1/ =41 > 2TLM :

e When [; > %M(V), we have W] =1. Since w"(z) <1, we get

1 1 ~ 1 1
— L <=~ L—1|=- — I < —pu(V).
(V)<< V), (=Dl = p(V) =1 < oou(V)

By the induction hypothesis, assume |I; — I;| < %M(V) is true for i = k. We show it for
1=k+1 as follows.
e When 0 < I — I}, < %M(V), note that I, < I, 1. We discuss two cases.

(a) If 0 < Ipyq — I, < %M(V), then @’ ; =0 from the rounding rule, and thus

fk+1 = I;.. Therefore

~ 1
0< Tp1 — L1 < —p(V),

— 2n
and the induction hypothesis is satisfied.
(b) If =p(V)) < Iy 1 — I, which implies
! (V) <I I, <1I f+w2“ (V)<1 (V)+1 (V) (3.7)
5 H bt — I S g — I+ — (V) < oop —u(V), :
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then from the rounding rule we have that ;! =1 and we obtain

e = Iy = Vi) = (V). (3.5)

Subtracting the equality (3.8) from the inequality (3.7) gives the desired result:
1 ~ ~ 1
—5, V) <Ipyr = Iy = Tpyr = Iy = —u(V) < oopl(V).

e When —%M(V) < I, — I, <0, since I = I, + w2+1“(v) we also have that

n Y

I+ 1 > Ij, and thus —%p(V) < Tpy1— I;,. We discuss two cases in a similar way.
(a) If —%n,u(\/) <Dy —1I < %n,u(V), then @ ; =0 from the rounding rule, and

thus I}, = I;;. Hence

1 ~ 1
_ < — < — .
oo 1(V) < Ty = Ty < 5op(V)

(b) If %nu(‘/) < Ijp1 — I, then

1 ~ . Wy 1
o V) <y = Iy < I = I+ — = (V) < 04 —pa(V). (3.9)

In turn, from the rounding rule this implies that @;’ =1 As a result, we have

~ ~ ~ 1
Tippr = I, + u(Vigr) = I, + ﬁﬂ(V)- (3.10)

Replacing the identity (3.10) in the inequality (3.9), we obtain

1 . .1
—5,MUV) <Ipyr = D1 = Tpyr = I, = —u(V) < 0.

Inspecting the consequences of these four branches, we have completed the proof for i=k+1,

namely, [Ip 1 — fk+1| < %M(V). Therefore the statement is true for i = 1,2,...,n and the
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proof is complete. O]

We now have a rounding strategy, and before we apply it, it is important to check
feasibility of the resulting integer vector. The lemma below states that sum-up rounding

always provides a feasible vector for our main optimization problem (3.4).

Lemma 3.3.2. With the basic sum-up rounding strategy, if >_j_, w"(x) =ng is an integer,

then
n n
D i (ay) =Y w(zy) = ng.
k=1 k=1

V)

Proof. In Lemma 3.3.1 we have that A, = “T, and the conclusion for i = n can be

rewritten as
n n 1
D) = Y ") < 5
k=1 k=1
Since both Y3 w™(z) and Y p_; w"(z},) are integers, they have to be equal. O

3.3.2 A Two-level Decomposition Scheme

We showed in §3.3.1 that w"(x) and @"(x) are close to each other, but our goal is to
prove that the two sums in (3.6) are close. Suppose V=[I{,13] x [12,13] x ... x v, lf] c R?,
and each [Zl,l%] is divided into n; intervals Z; 1,Z; 9, ...,Z; o, (script letters represent one-
dimensional intervals) of equal length. Then there are n = nino - - - np unit rectangles of the

form

|
i=1,2,..,P,
ji€{1,27..,ni}

They all have the same size (V') /n, and we call them Ry, Ra, ..., R,. In addition, we assume

that there exist two positive constants cy, co such that
max;—12 . pmn

1 < — < c9. (3.11)
min;_q 9 pn;
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This implies that n; = (’)(nl/P) for any ¢ € {1,2,..., P} and that each rectangle R; is not

far from a “unit box.”

Definition 1. We call a compatible two-level decomposition scheme a domain decomposition
setup of a compact domain V' with the following properties. The rectangles R;, 1 =1,2,....n,
are grouped in subdomains Vj, j = 1,2,..., l;:(n), for which the first k(n) subdomains contain
an equal number of rectangles, r(n). The intersections between the interiors of each two
subdomains V; is empty, moreover the subdomains V; need not cover the entire domain V,
and we denote the remainder by Viem =V — UJI;’(:nl)V‘7 We denote by p(V;) the diameter of
the subdomains, j = 1,2,... k(n). Subsequently, we reindex the rectangles such that their
ordering respects the subdomains ordering, that is, R;; € Vj, R;, € Vj,, 71 < j2 = i1 < ig.
Our sum-up rounding approach consists of applying the basic method from §3.3.1 to the

rectangles R; in their modified ordering.

To obtain the approximation properties, it would be sufficient to apply the basic method
from §3.3.1 to each subdomain V. The extra steps of reordering and the application to the
entire rectangle set ensure that we preserve the total sum of the weights, and thus that we
satisfy the constraints from (3.4).

To achieve a vanishing integrality gap, we will be interested in compatible two-level

decompositions that satisfy in the limit the following properties:

k
lim max p({/}) =0, k(n),r(n) n—Qo 0, r(n)k(n) n=%o

1 V — 0. 3.12

n

For many domains V' such compatible two-level decompositions can be easily obtained
based on algorithms for hexahedral meshing [67] that are commonly used in spectral element
methods [68]. Note that our problem is easier than most in that sense, since the mesh need
not be conformal [69], that is, we allow Vj.e;, # (0. Even in that case, however, a rigorous
proof of (3.12) for a wide class of domains is non-trivial and significantly beyond the scope of

the paper. The theoretical existence of such decompositions, however, seems clear as similar
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techniques are central to Riemann sums convergence arguments.
We thus demonstrate how to create compatible two-level decompositions for rectangular

domains only, as follows.

(i) We divide V' into n = nyno---np small rectangles of the form (3.3.2) as before, and

we list them as Ry, Ra, ..., Rj.

(ii) We order the unit rectangles Ry, Ra, ..., Ry, as follows:

Rl :Il,l X 1'271 X ... X IP,l

R2 :Il,g X 1-271 X ... X IP,l

Rn1 :Il,nl X 12’1 X ... X IP,l
RnlJr]_ :.'[171 X .'[272 X ... X Ip71

Rn1+2 = ILQ X 1272 X ... X IP,l

Ry 2117711 X 127712 X ... X Ip’np.

They are ordered “line by line” according to the first dimension. Denoting kj(nq) a

[v/n1], we now build the subdomains V; as follows.

(a) On [I7, l%] we group the first k1(n1) intervals {Im}?l:(?l) as Gi 1, group the next
2k1(nq)

k1(n1)+1
n
j=ki(n1)?+1

intervals in Gy ;¢ equals ny — [, /7).

k1(ny) intervals {Zy ;} as G12, and so forth until we get Gy 1 (,,)- The

remaining intervals {Z; ;} are grouped as Gy jq4, and the number of

b) The subdomain V; has the following form:
( j g

G151 X L2,y X - X Ipjp,
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where j1 € {1,2,..,k1(n1),last}, j; € {1,2,..,n;} for i > 2.

This decomposition has the following parameters and properties, in reference to Definition 1.

P P
k(n) = [vn1] [ nis k() = Va1l [[ ne: r(n) = [vn1) (3.13)
i—2 i=2

2P i iy 2
p(Vj) = (%) +Z(%), i=1,2,....k(n) (3.14)

1=2

With these definitions, sum-up rounding is applied as described in Definition 1. We note
that many other compatible two-level decompositions are possible, another one is presented
in §B.

The following simple example illustrates the idea of two-level decomposition on a square
domain in R2. There are 10 points evenly spaced on each side, and then unit rectangles
Rj;; we group 3 of them and form 30 subdomains Vj; the basic sum-up rounding strategy
is applied to each V;. As the construction is repeated for increasing n, the remainder area
(yellow in color rendering) will diminish compared to the full domain, and its effect on the
difference between the sums in (3.6) and their relationship to the corresponding integral will

vanish. The detailed explanation related to the output domain Figure 3.1 is given here:

e domain: [ll,l%] X [12713]3

discretization parameter: ny = ng = 10, n = ny * ng = 100;

kl(”l) = L\/l_OJ =3, k(”) = 307];(”) = 40;

Rj = Il,jl X Ig’jQ where j = (jQ - 1) N1+ J1;

G11=111Ul2Ul13,G12=14UL15Ul16, G13=117Ul18UI19, G1 jast = 11 1ast;

subdomain: Vl = ng X ]2’1, VQ = 9172 X ]271, ‘/Eg = 9173 X ]271, cee

We will characterize essential features of this approach in the next subsection.
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Fig.3.1: An illustration of two-level decomposition of rectangle domain
3.3.3 Properties of Sum-Up Rounding in Multiple Dimensions

For our results, we use the notation ||z||=||x||2 for the norm of a vector x € R™.

Theorem 3.3.3. Assume that V' is a compact domain in RY and that f(z) is Lipschitz

continuous on V' with Lipschitz constant L: for any x,y € V,

[f(x) = f(y)| < Lllx —yl|

Consider a compatible two-level domain decomposition and let W™ (x) be the binary function
from a sum-up rounding algorithm as described in Definition 1. Let xj be a point in Ry,
k=1,2,...,n. Then we have

p(V = Viem) k(n)r(n)

Sr;lea‘;(!f(:v)! ) —t

| S s (0" (og) — 0" () ) A
k=1

k(n)r(n)
V)2Lu(V = Ve )’
e p(V;)2Lp( rem)—— g
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Moreover, if > _q w"(x) = ng is an integer, then Y p_; W™ (x)) = ng.

Proof. We prove first the result for the case where k(n) = k(n) and Ve = 0 (that is, all
subdomains V; have the same size and properties and they exactly cover the domain V). In

this case Lemma 3.3.1 gives

1

< W

< 57 pu(Vj).

V1U..UVj):

> () ")) Aa

TREVIU..UV;

This implies

> (0 ) - a"e) Al < | D (0" ) - @) ) A

kaVj wkEVlu..UVj

Y (@) - i) A

zpeVIU..UV;

1 1
< sV + 5 ()
1
S (3.15
Let y; be any point in subdomain V}, and define
T = flag) (W (zg) — 0" (w1)) As,
k=1
=" fly) D (w(xg) — 0" () As
j=1 TREV
A bound on |¥| is given as
k(n) (3.15) k(n) V. Vv
<3 | X (0" w0)a] 5 maxlr Y B2 = 0 ).
j=1 2REV] j=1

(3.16)
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Lipschitz continuity implies |f(z) — f(y)| < L|jx — y|| for any z,y € V; and

T—0 =203 D0 (Flaw) = fly) (0" (og) = 0" (),

j=1 l‘kEV‘

Z] (ek) = Fly) (" () — 0" (),

<2Lu(V) mjax p(Vj). (3.17)

Therefore we obtain from (3.16) and (3.17) that

1fok( (2) = @" (g) ) A | = T
< W[+ [T —
n(V)
< ma | f(@) S (V) maxp(V;).

When k(n) > k(n) and Viem # 0, we divide V — Vyep into two disjoint domains Vi,gin =

k k .
Uj(znl) Vi and Vi, = Uj(:n) my41 Vj- We apply the results in the case k(n) = k(n) to Viyein

to obtain

1Vinain)
< max \f($)|W

+ 2Lp(Vingin) m;lXp(V}), (3.18)
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For the remaining part of the sum, using the fact that the components of w and w are

bounded between 0 and 1, we have

Y ) () - () ) A

T EVlast

< 2max | f(z)[n(Vigst)- (3.19)
zeV

Because each unit rectangle Rj has the same size, we have

#(Vinain) = Wﬂ(v — Vrem),
Kot

Vist) = V) = 1Vinain) = 1V = Vi) (1= 2

Applying these identities to the inequalities (3.18) and (3.19), we obtain the inequality
claimed in the proof. The equality is a consequence of applying the basic sum-up rounding
rule from §3.3.1 to the set of all rectangles as described in Definition 1, in conjunction with

Lemma 3.3.2. The proof is complete. O]
The preceding result gives us the following immediate corollary.
Corollary 3.3.1. With the assumptions of Theorem 3.3.3, further assume that a sequence

of compatible two-level domain decompositions satisfy (3.12). We then obtain that

=0.

n—oo

lim | kzzjl F ) (" (@) = 0" () ) Ay

and that, if Y p_j w"(x) = ng is an integer, then Y j_; w"(xy) = ng. In other words the
gap between the relaxation and our sum-up rounded integer solution goes to zero, and the

problem s feasible.

As discussed following the definition of compatible two-level domain decompositions,
Definition 1, this result can be used to show the vanishing integrality gap of our approach for
many types of domains. A complete analysis of when (3.12) holds appear extensive, though

cases such as unions of rectangles or polyhedral sets do not seem to require particularly
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deep analysis. Given our focus on consequences for optimization, we focus exclusively on the
rectangular domain case. For that situation, we can strengthen (3.12) and Corollary 3.3.1

by giving a bound on the rate of convergence as n — oo (also note that Vi.ep, = (0 in that

case).

Theorem 3.3.4. Under the assumptions of Theorem 3.3.3, there exists a C' such that our

sum-up rounding construction satisfies

| S ) (w" (o) = 0" () Ao
k=1

W1/2P

Proof. We use the inequalities

2 2
2 1
WSy 2 ey, WRDES 1o g (3.20)
n NLD n 2
and
1 1 1 1
cin? < min_n; <nP, nP < max n; < conP (3.21)

i=12,...,P i=1,2,...P
that follow from (3.11).

We use the definitions of the sum-up rounding scheme parameters (3.13)-(3.14) to infer

the following inequalities.

_1
Ly, TR o L 1 V2 (3.22)
Vi n rn) [yt Ty
For the maximum diameter of V; we obtain from (3.14) and (3.20)
max;_ 1y —17) 321 _max;_ 1y -1t
max  p(V;) < VP 1 Xz.—1,2,..,P( 5 —11) VP Xz-l,?,..,P( 2 1)71_#. (3.23)
Jj=12,....k(n) gmin;_19o . p+/My 7V
We also obtain
k 2 (3.20) 9 \ (322) _1
LG A ORIV 1—(1——) <o tneP. (3.24)
n ny ni



We now use Theorem 3.3.3 along with (3.22), (3.23), and (3.24) to obtain the statement

of this theorem with the choice

1

€ = ma | () u(V)V3ey 4 ALp(VIVE s (1~ t)ey * + dmas |f(a) (V)

This completes the proof. n

We note that other compatible two-level relaxations observe similar bounds when used

for sum-up rounding; see §B.

3.4 Approximation of Functions of the Covariance Matrix

We rely on the convergence of the sum-up rounding strategy to prove the main results
on functions of covariance matrices. We keep the ratio Ay /A, (or n/m) constant, say o, in

(3.2). We define
G =Dy {g" Wiy} and Gl = Ay {g™ (i, y)} =1,

where

9" (i, yj) = a0y o Zf g, yi)w" (2g) [ (g, y5) Az
~ n
gw (y'L7yj nozse Z xk yZ k)f(aj]iﬁ y.])Am

Here w" is the solution to the relaxed optimization problem (3.5) with the discretization
parameter n, and we construct w" from the SUR technique in §3.3. The quantities G},

é%, and I'pps satisfy the following relationships
n -1 -1 ~ n -1 -1
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The assumption of Lipschitz continuity we make on f(z,y) is

fr,y) f(x1,y2) — f(xe,y1) f(22,y2)| < Lljz1 — 2|,

where y1,y2 € ;, and L is independent of y; and yo. This is not a stringent assumption,
since we can let L depend on yp,ys first and then take L := maxy ,.cq. L(y1,y2) (note

that €2, is bounded and closed, thus ensuring L < oo). Theorem 3.3.4 then implies that

7T

Vi,j=1,2,..,m, ’gw (ylayj)_gw (ylayj)‘ <é —0, asn— oo (326)

Here €, is the bound from Theorem 3.3.4.

By definition of the Frobenius norm,
G = Gl < Ayy/m2e = u(Qin)én — 0. (3.27)

Since 14(€2;;,) is constant, we can introduce a new sequence {€,} — 0, €, = max{1, u()é,}.

With this notation we have

T

19" (i, ;) — 9% Wi yj)l < en and (|Gl — Grollp < €n. (3.28)

Denote eigenvalues of G}y, and G}, as

AP>A > > A >0
N> > > A >0

Note the number of eigenvalues for both G7, and G, is m, which changes and rises up to
infinity. We will show the kth eigenvalues of G}, and éfn are arbitrarily close for any fixed

keZs.
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Lemma 3.4.1. If A\ and :\Z are the k-th eigenvalues of GJv, and G

ms respectively, then

AL =M <2 en. (3.29)

Proof. From the Courant-Fischer theorem for real-valued symmetric matrices [70, Theorem

4.2.11], the kth largest eigenvalue of GJ}, can be computed as

n .
AL = sup inf {M cu €S, u# 0}. (3.30)
dim(S)=k [[ul

From this, we know there exists a subspace S of dimension & in R" such that

|G - ull

> A\ —
Ju = kT

for any u € S, u # 0. We apply (3.28); and using the relationship ||A|| < ||A||p, we obtain

Gl 1IGRy ull — G, — Gl
weSu0 lul T il
|G - ull = enlull
N i

Again from (3.30), we get

Switching G7, and G, and using similar arguments, we obtain the reverse inequality

Then (3.29) follows directly. O

Lemma 3.4.1 can directly be used to show convergence of the gap for E-optimality, since
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in that case, the difference between the objectives is

1 1 <‘>\2—)\m<€_n

o+ A\ 0—1—5\2 - o2 = g2’

On the other hand, for integral operators with continuous kernels it can be shown that A,
approaches zero, therefore any design will produce the same result in the limit which makes
this criterion uninteresting in our setup. For the A- and D- optimality case, however, the
objective function can be seen as the sum of eigenvalues or logarithm of eigenvalues of the
covariance matrix, and the number of its terms goes to infinity. In that case, the objective
functions may not even be bounded as n — oo, as we discuss in (3.54) and (3.55). Therefore
directly invoking Lemma 3.4.1 would not prove convergence. As a simple example, consider
the situation where A} = 1 + #ﬁ, and S\Z =1, k=1,2,...,n, For any k we have that
AL — S\Z| < n_% and thus the two eigenvalue sequences satisfy a relationship as the one in
the conclusion of Lemma 3.4.1. On the other hand the difference between the A-optimal

criteria would be

— — — —00.
0’-’—1—}-% o+1] =~ nyn(c+1)(oc+2)

Zn: 1 1 2 =1k

A proof of a zero gap between function of a matrix and its SUR version will require more
results beyond Lemma 3.4.1. In the following two theorems, we provide rigorous proofs on

convergence for A- and D-optimal design criteria respectively.

-1 ~ ~ —1
Theorem 3.4.2. Let M = (a]m + G%) and M)}, = (alm + G%) , where 0 = a;rli.

Then
tr(M]}) — tr(M%) —0

as m,n — oo and with n/m = « constant.

The proof is based on the fact that from Lemma 3.4.1, the spectra of G7, and of G,

are close to each other. From the definition of M}, its spectra can be inferred from that of
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G}, through Ay = 1/(0 + A\q), where A\ is an eigenvalue of GJ}, and \js is an eigenvalue
of M. The key is to exploit this relationship to show that the spectra of M and M. are

also close, combined with the consequences of the compactness of the integral operator.

Proof. Since w™ and @" are between 0 and 1, then g¥" (y,y) and g?" (y,y) are absolutely

integrable.
m m
0< Y A =tr(Gp) =Dy Y g" (Wi ui)
k=1 =1
m
<Ay 3 10" i) - /Q 19"y, )| dy
=1 in

m

m
<Y A =tr(Gh) =2y 9" (Wi wi)
k=1 =1
m ~
<Ay 3 107" i) - /Q 19" (. )| dy
=1 in

The inequality holds because gwn (¥, y;) depends linearly on w™. Since convergent sequences

are uniformly bounded, there exists a constant C'>0 such that for any n > 0,

m m
0< Y A <C, Z AP < (3.31)

k=1

We also have that

wn(!/ia!/i))’

NE

‘Ay (gwn(ywi) —g

‘Zkk—zw
k=1

1

.
I

Wi vi) — 9 Wi, vi)

I

Il
.

Ay

o

9

7

S Ay MM - €n = M(an)en,

where the last inequality follows from (3.26). Since p(2;,,) does not depend on n, and similar

to the way we defined {e,} in (3.28), we can redefine the sequence {e,} — 0 (for example
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as €y, < max{1, 1(€,)}en) such that the following inequalities hold simultaneously

m m
19" (er ) = 9" Wis )| < e IGo = Gnllp S ny | YA =D A% S (332)
k=1 k=1

We now show that for any small € > 0, there exists an integer N > 0 such that for any

n> N, we have

A i 1 i 1
‘S‘SD-E, EED -3 (3.33)
k=1

o+ Ay o+ :\Z
with some positive constant D. Note that n/m = «, so m is determined by n and they
increase at the same rate. We fix e >0. From the upper bound in (3.31), there are at most
No=[C/e] eigenvalues satisfying A\, > ¢, or equivalently, when k> Ny, A}l <e for any n, and,
from similar reasoning, :\Z <e. From (3.29), there exists Ny >0 such that for any n > Ny,
A} — 5\’,;‘] < € for all k=1,2,...,n. We choose n>max{Ny, N1} and split the sum in (3.33)

into two parts:

1 1 1 1

For the first part, we note that

)\n_j\n 2
S Gy a2 X e S s e G
k<N, ko ot AL k<No (0 + M) (@ + ) o o
For the second part, we know A7, S\Z <€, and we discuss two cases.
(1) WhenS\Z>AZandk>N0,
. DUV AT AR
[ VD V) R B S s Y e SERD
(0 +¢) THEN o+ X (oA (o + D) o
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(2) When /N\Z < Ay and k > Np,

No-Ap_ 1 . S SR b

< — = — < < 0. 3.36
o2 O+AN o+ A (oA (0 + A} (o +¢)? (3:30)
So we have
A=\ A=A
S G o) T YAt ¥
o+ AL o+ A} - o - (0 +¢)?
k>No AP>ALL, k>No AR <Ai» k>No
P 1 1y <
_ k k n n
=D, T2 T > <(0+6)z—p)(kk—m
k> No An<An, k>N
n n (20 + 6) n \n
2 Z =)+ 53 o2(o +€)2 Z (A = Ak)-
k>N )\”<)\g, k>N

With a similar use of (3.35) and (3.36) we obtain

D G R TID DI e SN S e
o+ oA T (c+€e)2 o2
k>No k XS AR, k>N NF<AR, k>N
1 1\ in AR — AR
- 2 <—(0+€)2 - p)o‘k A+ D T
5\">)\Z, k>Np k>No
€(20+¢€) N
2 Z )‘n ) + o2(0 +€)2 Z (AF = A%)-
k>No AZ>AR k>N
) 0
From the last two inequalities, we obtain
1 1 1 -
> ( -—)| = 3 or-a (3.37)
)| S e 2 RN
k>N0 o+ /\k o+ )\k g k>N0
€(20 +¢€) N ~
+0'2(O'—|—6)2 maX{N Z (N = Z)7~ Z O‘Z_)‘Z)}'
A<Mk, k>Ng A>Ap, k>Ng

In order to bound > n, (5\7,;? — ), recall (3.32). From it, there exists No >0 such that for
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any n> N9 we have

m ~
DICYEPYIEE

k=1

Choose n > max{Ng, N1, No}. Because n > Ny, we have

‘ Z (AZ—S\Z)’ §N0-e2:Ce,
k<Ny

and thus from (3.38), (3.39) and the triangle inequality we get

m
S or-a| = op -+ X =A<+ e
k>Ny k=1 k<Nj
Note that if we let € < o and use (3.31), we obtain
€(20 +¢) 0 tne 36 @ 3C
O<02(a—|—e)2~ Z (A )‘ S_BZ _3
A <A, k>Ng k=1
€(20 +¢) 3 ) 3¢ 3C
A>Ag, k>Ng k=1
Combining (3.37), (3.40), (3.41), and (3.42), we get
‘ ( 11 )’<C+16+£6_(C+1 £>
o+ AL 04_5\2 - g2 o3\ g2 o3

k>Ny
According to (3.34) and (3.43), we get

1

3> G )4 S G )

=1 k<Ny

1
+‘k§]:\70 <U+)\Z_o'—|—5\z>‘

o

~ o2 o

o2 o3
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Let D= % + 30—(:{. Then for any € >0 smaller than o, there exists N =max{ Ny, N1, No}

such that for any n> N,

m

1 1
> G o)l <Pe
=1 ko 0T AL

By definition of limit, as m,n — oo and n/m = «,

‘f:( CHE )‘—>0. (3.44)
= o+ Ay o+ A}

Given that the first quantity in (3.44) is tr(M,) and the second is tr(M,), the conclusion

follows. u

Theorem 3.4.3. logdet(M]}) — logdet(M]}) — 0, or equivalently

m

Z log L i log L — 0
— _ .
i e A

Here, M and M, are the matrices from Theorem 3.4.2.

Proof. First note that using the mean value theorem and the monotonicity of the log function

and its derivative, we have that, if 0 < ¢ <x < y<co, then

1 1 1 1
0< —(y—2x) <log——log— < —(y—x). (3.45)
) T y o

Again we show that for any € >0, there exists an integer N >0 such that for any n> N,

- 1 = 1
’Zlog =Y log —— ‘gD-e, (3.46)
= TN o oA

with some positive constant D. First, from (3.31) we choose Ny such that when k > Ny,
Al <e and S\Z < e for any n, using a similar argument in the proof of Theorem 3.4.2. Second,

from (3.29), we can find Ny >0 such that for any n> Ny, [A} — S\Z| < forall k=1,2,...,n.
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Third, from (3.32) there exists No >0 such that for any n> Ny, ‘ Do (AL = 5\2)‘ < e. We

then split the sum in (3.46) into two parts:

1 1 1 1
1 -1 ~> (1 -1 )
Z <Ogo—+>\§§ Oga+AZ i Z Oga+)\z o8

k<Np

For the first part, we apply (3.45) to obtain

- €.

A — A7 2
ThkTRE <Ny — =2
g g

1 1
‘ > <loga+>\§;_logo—+5\}g>‘§ >

k<Ny k<Ny

For the second part, 0 < A7, S\Z <e, and we discuss two cases.

(1) When AP > A and k > Ny,

0< (AP — A <1 1 L Sk
— 0 —lo — .
o4ek k)= go—i—)\z ga—i—)\z_ o
(2) When S\Z < Ay and k > Np,
AE = A 1 VY,
k k< log —log — <k k<0
o o+ )\Z o+ )\Z o+e
Therefore, we have
1 1 /N\n —\n S\n —\n
3 (10g ~log —— )g STk Yy Tk
o+ A\ o4\ . o . o+e
k>N k k
>No AE>AE, k>No AR<AY, k>No

pU 1 1\ -
T s e

k>No AR <A, k>N

(3.47)

AR

e B eI SRR Y

oloc+e) .
k>No AL, k>No
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and similarly

1 1 :\n_/\n j\n_/\n
> (1o Clog———)> Y Sy S Tk

o+ A} o+ \ . o+e€ B o
k>No ko Ansan k>N X<, k> Ny

D O S L EVIRD g =

- o+e¢€
ARSAR, k>Ny k>No

:_ZA” D) + (U+E) S (R =AD.

k>No AR>AR k>N
From these two inequalities, we get
’ Z (logg_:)\n — log )\”>’ —’ Z A — ) ’ (3.48)
k>Ny k o+ k>Ng
€ n An An n
A<\, k>Ng Ap>AE, k>Ng

Using the same rationale that led us to (3.40), we have

< (C+ 1)e. (3.49)

DS

k>N

<|Son-w|+] T op-ap
k=1

k<Ng

Moreover, using (3.31) and the nonnegativity of the eigenvalues of M™ and M", we obtain

n
€ N € C
0< oo > (AZ—AZ)S;ZAZS;G (3.50)
A<k, k>N k=1
€ € — C’
— AP =) < — — 51
< org. 2 P (3.51)
Ae>Ag, E>Np k=1
Combining (3.48), (3.49), (3.50) and (3.51), we get
1 C+1 C cC+1 C
— — < € = R .
Z (log 7 ga—l—)\")‘_ - €+O_26 ( - +02>6 (3.52)



Using the bounds (3.47) and (3.52), we get

5 ()

S’kgj:vo(logaj)\z—l 0—+)\n)‘+‘z<10g lggjj\};{)‘
€6+<C+1+£>6_(2C+1+£>6

o o o2) o o)

Let D= 26?%1 - % We conclude that for any e >0, there exists N =max{ Ny, N1, Na} such

that for any n> N,

i 1 1
‘Z<loga+xg_k’g )| <De
k=1

0—1—/\}3

By definition of limit, as m,n — oo and n/m = «,

m
‘Z(log ! — log >‘—>0
= U+/\z a—i—

Given that the first quantity is the logarithm of the determinant of M), and the second is

the logarithm of the determinant of ]\7[}}1, this proves the claim. n

Given the relation of I'yst and G7y, in (3.59), Theorem 3.4.2 proves that the lower bound
of the A-optimal design, which is given by the relaxed optimization problem (3.5), can be
achieved by using the sum-up rounding strategy. Theorem 3.4.3 does the same for the D-
optimal design. The E-optimal design, where we aim to minimize the largest eigenvalue of
[post, is actually trivial in this framework because the smallest eigenvalue of G7;, goes to 0
and the largest eigenvalue of I'jos¢(w"™) converges to 0y, which is also true for I'post (w0™).
This argument also shows that the E-optimal result is trivial for this case since virtually any
design will then be E-optimal; hence we do not emphasize it in this paper. To conclude, with
the sum-up rounding strategy described in §3.4, we are able to find sensor locations that are
asymptotically optimal for A and D design criteria.

While our proofs include several restrictions, they can be extended in several ways. To
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include more general domains or sum-up rounding patterns would require proving results such
as Theorem 3.3.4 and, subsequently, the critical property (3.26) needed to show the shrinking
gap for a given design strategy. General domains are not difficult to include, but the resulting
proofs would be extensive, involving computational geometry technicalities. However, the
two-level strategy presented in Definition 1 resembles the spectral element philosophy [68]
that is widely used for quite complex domains. Moreover, the within-subdomain ordering in
Definition 1 is entirely open, which would allow experimentation with various strategies such
as space-filling curves. While our results are proved for linear operators only, we note that as
a first step to extending our results to the case where the nonlinear parameter-to-observable

map F' is nonlinear, one could use the Laplace approximation as was done in [71, 59].

3.5 Numerical Experiments

We now present numerical experiments based on the model problem of gravity surveying
(see Example 1.5 in [72]) in our simulation. Suppose mass is distributed at depth d below
the surface where sensors can be deployed, in a unit square [0,1] x [0, 1] indexed by the
two-dimensional variable y, and we want to estimate the mass density function gg(y). Mea-
surements are carried out on a unit square in a plane indexed by the two-dimensional variable
x, and we can measure the vertical component of gravitational field g(x) but with error. By

Newton’s law of universal gravitation, the integral equation of g(z) for z € [0, 1] x [0,1] is

d
(2 + o =y |23/

o(z) = / fepao)dy,  flay) =
[0,1]x[0,1]

where ||z —y|| is the Euclidean distance between points x and y. In this problem, €2, =Qoy¢,
and we use the same discretization for the two domains. We divide [0, 1] x [0, 1] into n? small
squares with equal size 1/n2. On each side, there are n points 0 <1 <9< ... <xp <1
(v; = i/n+0.5) and Ay =1/n. We have n? candidate locations, and w= (wy, w3, ...,w,2) is

the corresponding weight vector. Let F GR”Q*"2 be the discretization of the above integral
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operator, and order the candidate locations as 21, 29, .., z,,2. Then

d 2
* (ACI)) 5
(42 + |12z — 2]12)3/2

F(i,j) =
fori,j=1,2,..,n2. Let W =diag(w). The relaxed problem is

min ¢ ((FTWF n aIn2> 1) (3.53)

w

s.t. 0<w; <1, Zwi:{rnQJ (0<r<1),
1

where o is not a variance but the ratio of 045 and oy, We keep the number of sensors
in a proportion r to the number of candidate locations, as discussed at the end of §3.2.5.
Using the solver Ipopt in Julia, we compute w,,; and then construct a feasible integer
vector w;,; via the sum-up round approach we developed in this paper. Our experiments are
run on a recent MacBook Air laptop with 4GB of memory, and we provide the Hessian of the
objective and the relevant objective and constraint gradients. By far the most expensive part
of the computation is the Hessian. For example, for the case where ¢(-) = tr(-), the entry
17 in the Hessian is proportional to tr(F_lfing_lfjffF_l), where I' = (FTWF + aIn2>
and f; is the ¢th column of FT Here1 < i< j<n? and for the rest of discussion in this
parameter, n represents the size of I'. Note that I is a dense matrix. While the computation
can be streamlined to carry out the factorization of I" once per iteration, followed by solving
n linear systems of equations with f;, then computing ~ %2 inner products, each of these
operations is O(n3). The largest problem we solve has n = 3600 (a 60 x 60 two-dimensional
grid) and Ipopt takes about 3 hours to produce a solution for it, though our code is far
from optimized. Interestingly, note that computing even one entry in the gradient, whose
ith entry is —tr(T 71 f; fiT I'1) would still take O(n3) as at least one linear system with T"
needs to be solved. For this reason it is doubtful one can do much better, as most convex

integer programming solvers need gradients of the objective. In any case, we had difficulties
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comparing with other approaches, as most of the ones we had reasonably easy access to
required the function to be expressible in a modeling environment such as JuMP or AMPL.
This does not occur for matrix functions, as they cannot atomically be expressed in terms
of standard libraries. An alternative was to reformulate the problem (3.53) as a semidefinite
program with integer variables, which we aimed to do with Pajarito. However, solving the
n = 50 case (in one dimension) took one hour to achieve a gap of less than 1%. Therefore this
did not appear to be an easy way to go either. Solving larger problems will probably require
reaching towards other ideas, such as perhaps exploiting the (approximate) hierarchical off
diagonal low rank structure, as we recently proposed in [73].

In any case, results for D-optimal and A-optimal designs using Ipopt as described above
are demonstrated below. The E-optimal design is not considered because the largest eigen-
value is extremely close to 1/o irrespective of w and there is not much difference in objective
values for different designs.

We compare our sum-up rounding design with a thresholding heuristic: let
w:(wl,UJQ, e 7wn2)

be the relaxed solution and its components are ordered by w;, > w;, > -+ > w; ,. The

thresholding integer solution w is given by

5 17 lij{Zl,ZQ, 7Z.Lrn2j};
wj =
0, otherwise.
In other words, we set elements to 1 if they have the largest values in the relaxation, up

to the available budget of sensors. We will compare the performance of two strategies by

measuring integrality gap.
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Thresholding Rounding
—— Relaxed Solution
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Fig.3.2: Objective value, D-optimal design

3.5.1 D-optimal Design

The parameters we choose are 0 =1,d=0.1,r=0.1. Figure 3.2 shows the objective value
(i.e. log determinant) with the continuous relaxation, sum-up rounding and thresholding
strategy as n increases from 4 to 60. For the thresholding heuristic, it does not seem to
converge at n=40, or at least its gap decreases more slowly than sum-up rounding. We note
that this validates the result of Theorem 3.4.2. One point we want to add is the objective
value in Figure 3.2 converges to a fixed number (around -11.3), which is related to our choice

o=1. Notice, when o = 1, that

logdet(I’post):Z log ! ~ Z(—)\k) (3.54)
1

and > A is finite, see (3.31). For other values of o, the objective value will approach infinity,
but the gap will still converge to zero as proved by our theorem.

We also plot the absolute and relative gaps for the two rounding strategies in Figure 3.3,
in logarithmic scale. The relative gap is defined as the ratio of absolute gap and the lower
bound from the relaxation. We observe that sum-up rounding has a relative gap below 1%
at n=40, compared with 5% for the thresholding heuristic.
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N —== SUR - absolute difference
Y SUR - relative difference

'S ——= THS - absolute difference
N —— THS - relative difference

101 4

100 4

102 4

103 4

4 10 20 30 40 50 60
Number of Candidate Locations on Each Side

Fig.3.3: Integrality gap, D-optimal design (SUR = sum-up rounding;
THS = thresholding rounding)

Figures 3.4, 3.5 and 3.6 give the relaxed solution, the sum-up rounding solution and
thresholding solution, respectively, when n = 40 (there are 1600 variables). The design is
symmetric since both f(x,y) and the output domain [0, 1] x [0, 1] are symmetric. Sensors are
placed toward the boundary and also in the interior. We note that the design highly depends
on d: When d goes to zero or infinity, the relaxed solution tends to be uniform. Therefore,
if we hope to observe interesting designs, d should be neither too big nor too small. For the
thresholding heuristic, a common feature is that sensors tend to be placed together when
values in the relaxation change smoothly, and we do not see sensors placed near the center.
Sum-up rounding, however, has the property that the 0 or 1 value in the relaxation will
remain the same in the integer solution, and the sensor placement is less concentrated than

for the thresholding heuristic.

3.5.2 A-optimal Design

We investigate the A-optimal design with the same setting and parameters as in the D-
optimal design case: o=1,d=0.1,r=0.1, and n starting at 4 and ending at 50. We observe

in Figure 3.7 a similar decaying trend as in the D-optimal design case, which validates the
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finding of Theorem 3.4.3. We would like to mention that in the trace case,

2

n
1
tr(Tpost) = >, =5 = 0, (3.55)
k=1

so the optimal objective value increases about linearly with respect to the number of can-
didate locations. However, both the absolute and relative gaps between the upper bound
induced by sum-up rounding and the lower bound obtained from the relaxation approach
zero for large n, as shown in Figure 3.7 and as claimed in §3.4.

The designs in Figure 3.8, 3.9 and 3.10 also have patterns similar to those in Figure 3.4, 3.5

and 3.6, although they are slightly more centered. It is worth mentioning that, as indicated
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Fig.3.7: Integrality gap, A-optimal design (SUR = sum-up rounding;
THS = thresholding rounding)

by Figure 3.3 and 3.7, monotonicity with n is unlikely. Indeed, kinks at n = 20, 30,... are
related to the particularities of sum-up rounding design. When n reaches those values, there
is a change in shape which induces a small increase in the gap, but the gap will be under

control and eventually go to zero.

3.5.3 Discussion

In practice, we normally do not wish to see clusters of sensors because data are usually
informative of other data nearby, while sum-up rounding tends to place sensors close to each
other because of smoothness in the relaxed solutions. One can request the sensor density not
to exceed a given value in any region. An alternative is to use a space-filling curve approach
for the sum-up rounding path to “randomize” the choices of 1. For this initial study, we note

the significant improvement in the objective, and we leave such issues to further research.

3.6 Extension to Non-Identity Covariance Matrix

Since components in the input are likely to be spatially correlated, it would be unrea-

sonable to assume a Gaussian prior with identity covariance matrix, and in this section, we
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Fig.3.10: THS solution, A-optimal design

extend the previous results to a Gaussian prior with Laplacian precision matrix, which is
widely used in image processing, and it is equivalent to a regularized least square problem.
We first focus on the one-dimensional case, and then generalize to the multi-dimensional
case using tensor product.

Recall that the output without measurement error depends on the input through an

integral equation:

u(x) :/Q' flz,v)ug(y)dy, = € Qout, (3.56)
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and we approximate the integral (3.56) by Riemann sum:
m
) = [ Flagmuoldy = Y 1o ol
in i=1
Define a matrix F}, € R™ " to be the discretization of integral operator
Fin(3,9) = f(z5,9i)Ay,

and the prior of our parameter with size m is ug’ ~ N (ul};

Dhors Lim) where Ly, is the discrete

Laplacian operator with periodic boundary conditions

Ly, = (3.57)

-1 -1 2.
The posterior matrix with the relaxed and integer weights are respectively

1 1

Tpost(w™) = ((F;;L)TW(F;;L) + Lm)_ . Tpost(i") = ((F;,Q)TW(F;,Q) +Lm>_ .

We will use F' as abbreviation for FJl. With some modification (F' — F§), we aim to show

tr (Fpost(w”)) —tr <I‘p05t(ﬁ)n)>‘ — 0, as m,n — oo with n/m constant. (3.58)

Here w™ is the solution to the relaxed optimization problem and @™ is constructed from the

SUR technique. Define G}}, = F TwF and Gn =F TW F. More specifically,

G = Ay {g" wiy)}imy and Gy = Ay {g™ (i, y)}=1,
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where

n

9 (i yj) = a

NE

[, y)w™ (o) f (2, y5) A
k

|
—

7

9" (Wi, yj) = a

NE

f@p, yi)o" (xp) f (g, yj) Ao
k

|
—_

The quantities G}y, é%, and st satisfy the following relationships

-1 -1

Denote eigenvalues of G, and G, as
N>y > .. > M, >0 (3.60)
AP >N > >0 >0 (3.61)

In [74], we showed for any € > 0, there exists a positive integer M (e) such that when
n > M(e)

IG7 —Ghllp<e |AE-M|<e k=1,2,..,m. (3.62)

From Theorem 2 in [74], € decays at the rate n~ /2 (in one dimension), so M(e) ~ € 2.
In practise, we cannot afford to compute and store the full matrix F© € R"*™  instead
we use interpolatin methods to approximate F, F' ~ Fs with rank(Fs) < ng, where ng is
the number of interpolation nodes. To be more precise, we apply Chebyshev polynomial

approxmation and choose ng = O(log(n)). From [25], if f(x,-) and f(-,y) is analytical in a

compact domain, then

1

A 1FG) = Fa(i )] "= 0(e) = 0(n ™) (3.63)
Y

for some 0 < ¢ < 1 and s > 0.For any €5 > 0, we can choose a positive integer M (es) such

86



that when n > M (e), Al—y|F(j,z) — Fs(j,1)| < €5, which implies

|F = Fs|lp < Ay xy/mxnxe2 = Ces (3.64)

where C' is a positive constant determined by €2;,,, Q¢ and a. Note that eg decays at the

rate of n~% which we will use in later proof, so M(es) ~ 65_1/ *. We will show convergence in

(3.58) with F replaced by Fs. To do that, we derive the proof into two stages.

Notation: || - || is Frobenius norm in the following subsections.

3.6.1 Stage 1: Lower Bound of the Spectrum

In this subsection, we will show for any m,n > 0 with n/m constant,
Amin (G’,;L n Lm> > 0> 0, Amin (é% n Lm) > ¢o > 0. (3.65)

Or equivalently, \?, > ¢y and A, > ¢ in (3.73) and (3.74) respectively. It is known the

eigenvalues and eigenvectors of Laplacian matrix in (3.57) are

Z”L:i
)
Ay

Sm2(<k:n1)ﬁ)7 o \/%exp{i(j—l)g;:—l)%r}

1

where v}y is the jth element in the k"

eigenvector of L,,, and ¢ here is the imaginary unit.
Because mAy = (), is a consant, we have asymptotically pp — ci(k — 1)2. This is also part
of Assumption 2.9 in [18] to construct Gaussian priors and obtain well-posedness of Bayesian
inverse problems.

The second smallest eigenvalue will exceed some constant co > 0 for large n. The
eigenvector corresponding to the minimum eigenvalue pf* = 0 is a constant vector v{" =
\/Lﬁ(l’ 1,.., 1)T € R™ and we will show it is not in the null space of FTWF,

WM FTW ) = %ij (Any(xj,yz‘))Q ~ %ij(/ﬂ f(xj,y) dy>2
J i J m
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for some constant C7 > 0. i ( fQ (z,y dy) is bounded below by C9 > 0 for = € Quyz,
then

WY FTW R > C1Cy - ij

As % > jwj = ris a constraint in our optimization, which implies % > j wj s also a constant,

there exists an integer N > 0 that when n > N,
WM FITWE@M) > ¢ == C1Cy - rm/n > 0. (3.66)

The same bound applies to (v]")T FTW F(v).
Lemma 3.6.1. For large enough m,n, there exists cog > 0 such that (3.65) holds.

Proof. Let {v]'}}"_| be eigenvectors of Ly, and they form a basis in R™. Let v = Y )" 1 apv* €

I?

R™ be any vector with ||v||* = >, a% = 1. Denote v = ajv]* +97", where 07" = ;-1 apv}”.

(G" + Lm> (FTWF + Lm)
— a3 -V FTWFO + 2010 FTW R + (07T FTW F(#7) 4 0T Ly Fo

zmax{a% U1 FTWFvl + 2a1v7 FTWF”ZJ TLmv}. (3.67)

Since v! Lyv = Y oks1 a%)\k(Lm) > 2 g1 a% =co(l — a%) where ¢9 is a lower bound of
Xo(Ly) for large n, we have v7 (G"m + Lm>v > ¢o(1 — a?) for any a} € [0,1]. We will find

a new lower bound when |aq| is close to 1. Note
/m
1P|l < AyVmnK?2 = pu(Qin) K P

where K is an upper bound of f(z,y) (this assumption can be relaxed by ||Fv| < Klv]]).

Because W is diagonal and W;; € [0, 1], the same bound applies to [|[W F||. Choose a small
constant ¢; > 0 and let a? = 1 — e%, Y k1 a% = e% (so [V = /1 — €2 and ||| = 1),
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we have

laro " FYWEFS| < Ja| - o] - | FI| - [[WF|| - [|0*]] < e K2, (3.68)
From (3.67), (3.66) and (3.68),

ol (G’;‘1 + Lm>v > a% . U?LFTWFUT' + QalvinFTWFﬁin

> (1 -0 —2¢1 K2,
When €7 is small enough, this lower bound is positive. For such €1, we have

2 2 2
co€], when a7 <1 — €]
ol <G”m + Lm>v >
(1-— e%)C” — 21 K2, when a% >1-— e%.

Define ¢ to be min{e%, (1— e%)C’ — 261K2} which is positive, and then for any unit vector
v e R™,

ol (G% + Lm)v > = Amin (G"m + Lm> > .

If we replace W with W in the proof, everything still holds. O

3.6.2 Stage 2: Gap Convergence

In this subsection, we would like to show as m,n — oo and keep n/m constant,
T -1 T -1
’tr (FS WFs + Lm) - tr(FS WF, + Lm) ’ ~0.

Before we get to the proof, there is some preparation work. We gather what we have so
far. From (3.62) and (3.64), we have for any ¢, €5 > 0, there are positive integers M (e) and
M, (es) such that when n > max{M (€), Ms(es)},

IFTWF — FTWF|p <e, ||F—Fs|p <es. (3.69)
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Next we want to show ||FL W Fys — FsW Fy|| is also small.

Lemma 3.6.2. For large enough n,
|FTW Fy — FsWFs|| < € + 2es.

Proof. We will prove it in two steps.

e First, we derive an upper bound for |[FTWF — FIW Fy| and |[FTWF — FIWFy).
Let £ = F — F5 and note that

FIWF—FIWEFy = (Fs+E)TW (Fs+Es)— FIWF, = EIWF+ FTWE;— ETW E4
Because || Es|| < €5 and |[WF| < K from (3.69), we have

IFITWF — FTWFy|| < |EIWE| + |[FTWES| + |[ETW ES|| < 2Kes + €2

The same bound applies to |[FTWF — FIW Fy|| as well. Hence we can find another

integer Ms(e) > 0 (also ~ es_l/s), such that

IFTWF — FIWF|| < €5, |FIWF — FIWF|| < es. (3.70)

e Second, we derive an upper bound for |[FIW Fy — FETW F||. From (3.69) and (3.70),

— H (FTWF - FTWF> + (FST WE, — FTWF> - (FST WE, — FTWF> H

FIwWF, — FIWF,

< HFTWF _ FTWFH " ‘

FTWF, - FTWFH + ‘

FTWE, - FTWFH

< €+ 2¢g.
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We will use it in Theorem 3.6.5 later.

Lemma 3.6.3. For any m,n > 0 with n/m constant,
T 1 Tyi 1
Amin <FS WFy + Lm> > 5¢0> 0. Amin (FS WE, 4+ Lm> > 5o > 0.

Proof. In Lemma 3.6.1, we already showed A, <F TwFr + Lm> > cg > 0. Together with

(3.6.2) and choose 0 < €5 < %Co,
T T T T 1
Ain <FS WFS+Lm> > Amin (F WF+Lm> —|IFTWE—FIWE|| = cp—es > 5e0 > 0.

and similarly, we can show \,,;;, (FEWFS + Lm> > %co > 0. [

Another important component is Lidskii’s Theorem (see [75]) and we will state it as

follows

Theorem 3.6.4 (Lidskii’s Theorem). Let A, B € R"*™ be Hermitian matrices. Then for

any choice of indices 1 <11 < .. < i <,

k k
N(A) =D N (B) <D AHA-B),
j=1

J j
J=1 J=1

where \¥ means etgenvalues are in descending order.

Corollary 3.6.1. With same notation in Lidskii’s Theorem, we also have
k k
M) =S A ((B) =S N (A-B).

J . J
1 j=1 j=1

J
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Theorem 3.6.5. Denote eigenvalues of FEWFS + Ly, and FEWFS + Ly, as

vl >vy > .. >, >0 (3.71)
> > >0 (3.72)
then
T -1 T -1 UL U |
(W r k) (T )| =3 Y ] o

as m,n — oo with n/m constant.

Proof. From Lemma 3.6.3, we know for any m,n € ZT,

1

vl >vy > >y, > 5€0 >0 (3.73)
1

20222 e > 0. (3.74)

To apply Lidskii’s Theorem, let A = FIWFy+ Ly, B = FIWFs+ Ly, and E = A— B
which we already have a bound in Lemma 3.6.2 that || E|| < e+ 2e5. Note both FZ W Fy and
FIW Fy have rank ns = O(log(n)) or less, where ng is the number of interpolation nodes.
This implies rank(E) < 2ns and there are at most 2ng non-zero eigenvalues. Together with

the fact [\;(E)| < [|E|| < €+ 2¢5 for any j € {1,2,..,m}, we have for any & € {1,2,..,m},

k k
D TAE)] <D IN(E)] < 2ng(e + 2¢).
j=1 j=1

Because
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and 7! — v} = /\i(A) — )\i(B ), we apply Lidskii’s Theorem to get

m m n
ST RE T S3,D W < )
Yk k=1 k 0 O

2
n>y “p >y

With similar reason, we have

4
__2 . 277,3(6 + 268)

m m ~
1 1 4 v
Z—n—Zﬁ—mc—g
B Tk 0 <y

3N
le._,;
;T-IM
S
-
C
V

Therefore,

It is important to know the behavior of nge and ngeg, since even though € and €4 are small,
ns can be large, and it is not obvious whether ng(e + 2¢5) is large or small.

Recall in (3.62) and (3.63) that € ~ O(n~1/2P) with sum-up rounding and e5 ~ O(n %)
with Chebyshev approximation, so € + 2¢5 has polynomial decay. Since ng is O(log(n)) and
limy,—y00 log't (n) - n =12 = 0 for any t1,t9 > 0, we conclude that ng(e + 2¢5) goes to zero as
n — oo.

Equivalently, for any fixed ¢ > 0, there exist N(¢/) > 0 such that when n > N(€'),

DITEN IS
— — —€
n ~N 277
=17k =1k D
which gives the desired convergence to 0. [

For the D-optimal design where the objective value is logdet(I'post), the proof is quite
similar after realizing that the log determinant equals the sum of the logarithm of eigenvalues,

and that for any z,y > ¢ > 0,
1 1 1
log( ) ~los( )| < _|r ]
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3.6.3 Laplacian Matrix and Convergence in Multiple Dimensions

The main difference in the proof for multiple dimensions is the Laplacian matrix. If we
can show its eigenvalues and eigenvectors has a “similar” structure as in one dimension, then
we can prove the convergence to zero in the same way. Suppose €);, € RY is a compact

domain, and we approximate

Q 52
Vu(yr,y2, - yQ) = Zp
i—1 Y

using the tensor products of one dimensional differences. Let Dy, and I, be the one dimen-
sional difference and the identity matrix acting on a one dimensional mesh respectively in

the y; direction.

The finite difference Laplacian operator L can be expressed as a sum of () tensor products

Q
Lu = <Zly1 ® - @Iy, ® Dy, ®Iyz‘+1"'®fyc2>u'
=1

The eigenvectors are also given by tensor products of the one dimensional eigenvectors, and
the eigenvalue is given by v = vy, + vy, + -+ + Vyg- Based on the discussion of L in
one dimension, we know the smallest eigenvector of L is still zero, and the corresponding
eigenvector is a constant vector. Further, the second eigenvalue is bounded below by a
positive constant for any n,m > 0 with n/m constant. Theorem 3.6.5 is also true in multiple

dimensions.

3.7 A Different Formulation on Function Space

So far, our parameters are discretized input vector in R", and actually we can move from
R" to L?(€;,). Suppose {#1}72 | is a basis in L%(Q;,), and every function L?(Q;,,) can be

represented as an infinite sequence in 12, see (3.75). We transfer the randomness from the
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V=

input function to its truncated coefficient vector m mi, .., my),

e 2 ¥y e By ue Q. (3.75)

The relationship between a Gaussian measure on L?(€;,) (a Hilbert space) and the distri-

bution of coefficient vector m is given by the following theorem (Theorem 6.19. in [18])

Theorem 3.7.1. Let C be a self-adjoint, positive semi-definite, nuclear operator in a Hilbert
space H and let m € H. Let {¢p, 7} 7o be an orthonormal set of eigenvectors/eigenvalues

for C ordered so that

1=

Take {&)} 521 to be an i.i.d. sequence with & ~ N(0,1). Then the random variable v € H

gwen by the Kalhunen-Loeve expansion

r=act Y Rk

k=1

is distributed according to = N (z¢,C).

In Assumption 2.9 of [18], v, ~ O(k™2) is “Laplacian” like. We can construct a matrix
d € R™N with ®;; = ¢j(x;), where x; is mesh point in €;,. The density for the prior is
characterized by

1
m(m) o exp{~[lm — mollf-1 }

prior

where T'i0p = diag(v1, .., 7). The likelihood is given by

1
m(ulm) oc exp{— u — Fem|, },

noise

where F' € R™ "™ is the discretized parameter-to-observable mapping. The posterior distri-

bution is also Gaussian with covariance function

-1
TpTp—-1 -1 NxN
(@7 FIT PO+ T %,,) e RV,

prior
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Notice that each column of F® € RN is a discretization of F(¢1) € L2(Qout). If Thpise &

-1
pos

Az~11, and N is fixed, by looking into each entry of T , and apply the same technique in

the previous proof of Theorem 3.4.2, we can show (without proof) that
A -1 A - -1
(g Frware+T, b ) —tr(cp o  FI e, L) [ =0, asn— oo

o prior o prior

noise noise

It’s worth mentioning that we do not require F to be an integral operator here, but require
F(¢y,) is Lipschitz continuous, which is a weaker assumption. One potential issue is that

(RNV*N) the relaxed solution w tends to have N “clusters”

when the size of ')y is fixed
and its component tends to be binary already as n increases, so sum-up rounding might not

be needed (see [26]).
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4 A SCALABLE ALGORITHM TO SOLVE THE RELAXATION

In this section, we provide a fast algorithm to solve the relaxation (3.5) for A-optimal de-
sign, and reduce the complexity from O(n?) with interior point method in §3.5 to O(nlog®(n)).
In §4.1, we review the target optimization problem, and in §4.2, we explain the gradient and
Hessian approximations with Chebyshev interpolation, and then propose an interpolation-
based SQP algorithm in §4.3. An error analysis on the objective gap, together with the choice
of interpolation points, are given in §4.4. Finally, we apply the algorithm on the so-called
LIDAR problem: selecting sensing directions to infer the initial condition of an advection-
diffusion equation in §4.5. The algorithm and error analysis also apply to D-optimal design,
but with a different gradient and Hessian than the A-optimal design, and more details can

be found in Appendix C.

4.1 Computational Goal

We focus on the criterion of ¢(M) = trace(M) (A-optimal) and solve the following convex

optimization problem:
min Cb(rpost (w))

s.t. 0<w; <1, Z?:I w; =N

(4.1)

—1
where ['post = <FTWF + 021n> and o2 = agiose/azmor. For the purpose of easy ex-
planation, we assume for now that €2;,, = €2y, and they have the same discretizations, but
this is not necessary and can be easily generalized. Without loss of generality, we assume

02 =1 in the discussion of this chapter except the numerical example section. F € R"*" ig

a discretization of the parameter-to-observable map F (an integral equation). For instance,
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in the one-dimensional gravity surveying example, F maps C[—1,1] to C[—1,1] by

d
(2 + |l = yl2)3/2

wo) = Fo) = [ evem ) = (12

from the example of gravity surveying. We discretize it on a regular n-grid and get

d-Azx
(@ + llos — 2 PP

F(i,j) =

where x;(;) is the center of the ith(jth) interval of length Azx. W = diag{wy, w2, .., w,} is

the weight matrix and w; is the wight associated with the ith candidate location.

4.2 Chebyshev Interpolation Method

The complexity of computing the gradient and Hessian of the trace objective in (4.1) is
O(n3) where n is the mesh size or the number of candidate sensor locations, and in practice
it can easily go to thousands or millions. By exploiting the continuously indexed structure

of out problem, we find that the interpolation method can give accurate approximations.

4.2.1 Gradient and Hessian for A-optimal Design

Both gradient and Hessian can be easily calculated by taking partial derivative of tr(I'post(w))

with respect to w;, and they are provided as follows.

e Gradient Denote f; as the ith column of F T and we have

n T
OF*WF
FIWF = wifif] = fil{

, w;

i=1
Therefore the ith component in the gradient is:
Otr(Tyes _ _ B
—é()uj’. ) _ ~tr(FTWF + 1) fif T (FTWF 4 1) ™) = < (FTWF + 1) 7 fi) 2

(3

(4.3)
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e Hessian Following the previous steps, the (i, j )th entry of Hessian matrix is:

0 t?"( post)

H;
! Ow; 0w

= —2(fFFTWF 1) ) (P FTWE 1)) (4a)
Note that f; is discretized from a smooth function f(z;,-), so both f; and F are continuously

indexed, and next we explain an approximation of the gradient and Hessian with Chebyshev

interpolation.

4.2.2 Chebyshev Interpolation in 1D

For starters, assume our domain is [—1, 1], the N Chebyshev interpolation points are

— 1
T; = COS (%), 1=1,2,..,N.

Suppose we want to interpolate a smooth function h : [—1,1] — R, and function evalua-
tions are available at the set of interpolation points {(Z1, h(Z1)), (2, h(Z2)), .., (TN, h(ZN))}-

Then for any = € [—1,1], h(x) can be approximated using Lagrange basis polynomials:

=21

=1 Ti CL’]

LY h(i).

The number of interpolation points is chosen to be N = O(log(n)) for both computational

and accuracy purposes which we will see in §4.4. The coefficient vector associated with x is

- Tr— Tr— 9 x—jN T N
C(flf)—(r[l‘l_wl]‘_[:L'Z_:L'2 H—~> GR .

— X
j#1 AN TN

To apply it in our problem, we construct a square matrix F e RVXN with

d- Ay )

Fi,j) = Flxiyj)Ay (e.g. F(i,j) = (d? + ||7; — gj||2)3/2
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where Z; and y; are interpolation points in 2o+ and €2, respectively. We calculate the coeffi-
cient vector c(z;) for each mesh point z; € Q;;, and create Cyy = (cz(21), cz(22), ..., cx(zn)) €

RN X" Similarly we construct Cy and then approximate F' by

Fs:=Cl«FxCy e R (4.5)

To approximate the gradient and Hessian in (4.3) and (4.4), we construct M € R™N

with its it" column m; given by

1

(FST WFs+ 1) f;. (4.6)

where fz is the i'" column of CyT FT as an approximation of the column in FZ evaluated
at Z; (note ¥; is an interpolation point which may not be a mesh point). We apply the
conjugate gradient algorithm (see [76, §5.1]) to solve the linear system (4.6) using matrix-
vector product only. Note F' is from an integral operator which is of trace class, and the sum
of all the eigenvalues of the positive semi-definite matrix F TWF is finite, so the condition
number of FITWF +I,, is O(1), and thus we do not need a preconditioner for the conjugate
gradient algorithm (see [60]). We then define My, My € RV*N where the (i, §)! entry is

(fi,mj> and (m;, m;) respectively. More specifically, for i, j = 1,2, ..., N,
.. ~ -1 .. x -2 7
M) = FT(FIWF + 1)y, MaGi,g) = JT (FTWE, + 1) 72 ;.

e Approximate gradient in (4.3). Let g € R™ be the true gradient, i.e.

99 99 0¢ )
Jwy’ w7 Owy,”

9=

and we approximate each component by g; ~ —cg(x;)T % My * cz(;).

RNXN

e Approximate Hessian in (4.4). We construct another matrix H € where

H(i,j) = 2% My (i, §) * Ma(i, ), then H(i, ) is approximated by ¢ (z;)T « H x cx ().
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Equivalently,

The above interpolation-based approximation can be generalized for any interval domain

[a, b] by defining a one-to-one mapping between |[a, b] and [—1, 1].

4.2.3 Chebyshev Interpolation in 2D

After we understand how the interpolation method works in one dimension, it is not
difficult to extend it to multiple dimensions using tensor product, though the notation would
be slightly more complicated.

Consider the same input and output domain Q = [—1,1] x [—1,1], and let n,,., and

Negen, be the number of mesh points and interpolation points respectively on each side of

2

“qch, mesh points and N = NeQach interpolation points in €2 and

the domain. We have n = n
they are related by
N = N2ach = O(log(n2 )) = O(log(n)).

e each

In the example of two dimensional gravity surveying, the integrand in (4.2) becomes

d d

f((:c,y), (z',y )) = (d2 + Iz, y) — (x’,y’)||2)3/2 - (d2 +(z — x’)Q +(y— y/)2)3/2'

Suppose {(z;, y])}?f]‘fl" are mesh points, and {(Z;, gj)}fnglh are interpolation points, and we
construct matrices F € R"*™ and F' € RV*Y in a similar fashion as in one dimension. The

n mesh points are ordered as follows: for an index k € {1,2,..,n}, we write

k:(i_l)*neach+<j_1)v

and it is associated with the mesh point (z;,y;) in the domain. In other words, we arrange
these mesh points “column by column”, and the index k is associated with (z;,y;). We apply

the same ordering to interpolation points. Next we find the coefficient vector c(x;,y;) € RN ,
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i.e. how a general function f(z;,y;) depends on the values at interpolation points. Based
on results from one dimension, let c(z;), c(y;) € RNeach be the one-dimensional coefficient

vector for z; and y;, and k € {1,2,.., N} with
k= (kl - 1) * Negeh + <k2 - 1)a

then the k" coefficient for f (z;,y;) is given by

(w3, Yj) g = (@) gy * (Y5)ky-

The k" component in c(wj,y;) € RY is the product of k’ih component in ¢(z;) and k%h
component in ¢(y;). We can calculate the coefficient vector for each mesh point, and create
matrices C';, M, M1 and M2 in a similar fashion (details omitted). Gradient and Hessian

are approximated in the same way as one dimension.

4.3 Sequential Quadratic Programming (SQP)

Given the (approximated) gradient and Hessian to our optimization program (4.1), we
solve a sequence of quadratic program until convergence, where at each step, we approximate
the objective by a quadratic Taylor polynomial at the current iterate. We adopt the algorithm
from [76, §18.1] and each quadratic program is solved with the interior point method.

Before we get to the program (4.1), we instead solve a slightly different version:

min H(Lpost(w))

s.t. 0<w; <1, 3% w; <ny.

(4.7)

Claim 4.3.1. This program and the original program has the same minimal point.

-1 -1
Proof: Note that if w < w’ (w; < wé for each 7), then <FTWF+In) - <FTW’F+IH> )
[ ]
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4.3.1 A Framework for SQP

Suppose at the k" iteration, (wk , /\k) (note w” is not k" component of w, but k" iterate

of w) are respectively the primal and dual variable, we solve the following quadratic program

min ¢y, + Vol - pF + 55T VELy - b
s.t. —wf < pf <1- wk, Q= 1,2,...,n, (4.8)

79 0

Sl <ng— YR wh

where V¢,. is the gradient of the objective ¢ and V%uw‘ck is the Hessian of the Lagrangian,
evaluated at the current iterate w®. As there are only linear constraints, we have V2.,Lp =

V2,61 = Hj.. The problem (4.8) can be simplified as:

min g7 pF 4+ 3T H - pF (49)
s.t. A-pF >0
In _wk
where g = Vg, H=V2,6p A= | —1 | e REHxn p— | k1 | e RZ0HL
17T 17wk — ng

*1 is updated

Both g and H are from Chebyshev approximations. The new iterate w”
by wk + C(kpk where pk is the solution to the quadratic program (4.9), and «y, is the step
length determined by backtracking line search (see [76, Algorithm 3.1]). We discuss details
on solving the program (4.9) and getting its Lagrangian multipliers in the next subsection,
but provide the SQP framework now in Algorithm 1.

In the backtracking line search step, we need to evaluate ¢(I'post(w)) which involves the

trace of an inverse matrix of size n x n, and we propose a SVD-based method with complexity

O(nlog?(n)) for the evaluation. Recall that Fi = CgFC’y in (4.5) where Cy,Cy € RNV
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F e RV*N and N = O(log(n)), then
FIwWF, =clFrc,wclFe,.

To evaluate ¢(I'post(w)), we compute the eigenvalues {;}7' ; of FI'W Fy because

¢(Fpost(w)) = tr((FsTWFS + ]n)_l) = Z :

SVD decompositions are applied to C'yT F e RN and C’le/ 2 ¢ RVxn respectively, and

the complexity is O(nlog?(n)). After that, we get
CTr =V, W2 =tysevy = FIWF, =1 (ElvlTUQE%Uvalzl)UlT.

Because X1 VITUQE%UZT V121 € RV*N i of smaller size, another SVD decomposition (equiv-
alently eigenvalue decomposition) of this matrix directly gives us the eigenvalues of F) éT WFy,

and then the value of ¢(I'post(w)).

Algorithm 1 SQP with line search for Solving (4.7)
(c=05,6=1073,¢e1 = 1075, eg = 1079)

1: choose an initial state (w9, \); set k < 0
2: repeat until KK'T optimality violation < €1
3 evaluate Voy, V2,06 A, bi;

end (while)

if oy, - ||pF||oo < €2, stop (either p¥ is small or p* is not a descent direction)
k71||
o0

4: solve the quadratic program (4.9) to obtain (pk, /\k+1);
5: Q. = 1

6:  while ¢(Tpost(w® + ap®)) > ¢(Tpost(z7)) + £y, Vo p
7 QL = C* Q,

8:

9:

10:if lag - pF +ap_q-p < €1, stop (moving back and forth between iterates)
11 set wh e wh 4 ap - pF AL NE o (L — 2R,
12: end (repeat);

Ideally the KKT optimality in the stopping criterion is with respect to the program (4.7),
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and its Lagrangian is

n n n

L(w, 11,0, 0) = ¢(Dpost(w)) + (Y wi —ng) + > Ai(—wi) + > Ni(w; — 1),
=1 =1 i=1
but computing the derivative of L is as expensive as computing V¢, so it is approximated
with Chebyshev interpolation. Given a feasible primal variable w and feasible dual variable
(, A, 5\), we define the KKT optimality violation as
Ai(w; —1)

max{||Ve(Tpost(w)) + 1= A+ A ., =120},

) |>\’L(_w2) )

n
p(d> wi —no)
=1
(4.10)
Note that the program (4.7) is convex, so the KKT condition is both necessary and sufficient
for a solution to be optimal, and we can examine the performance of a solution by looking
at its KKT optimality violation (4.10).

The two additional stopping criteria on Line 9 and 10 are to account for the approximation
errors in the gradient and Hessian, because it is a question as to whether {w¥} converges
to the true solution. We further show in §4.4 that, when the KKT condition on Line 2 is
satisfied, the SQP solution converges to the true solution as the problem size goes to infinity.
In addition, we would like to mention that with other stopping criteria, such as the decrease

in the objective is less than e, the algorithm will produce similar results.

4.3.2 Solve QP with Interior Point Method

In this subsection, we focus on solving the program (4.9) with an interior point method,

following the procedure in [76, §16.6]. We introduce slack variable s = 0 and write down the
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KKT condition for (4.9):

H-pk+g—AT)\:O
A-pk—s—b:O

s;i- N =0, 1=1,2..2n+1

H o0 -AT ApF —ry
A —T 0 As | = —7Tp (4.11)
0 A S AN —A-S1+o0-pul
where
rd:H~pk—AT)\+g, rp:A-pk—s—b
and

A:diag(/\l,..,/\2n+1), S:diag(sl,..,32n+1), 1= (1,1,..,)T.

A more compact “normal equation” form of the system (4.11) is
(# -+ ATSTINA) ApF = g+ ATSTIN(= 7y — s+ oA '1) (4.12)

Next we solve the linear system (4.12). Note that once Ap¥ is known, As and AX can be

derived without much effort. Let STIA = diag(dy, do, .., dop+1), we have from (4.9) that

ATS™INA =D +dgpyq-1-17
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where D = diag(dy+dy+1,do+dyp2, .., dp+day). Then we apply Sherman-Morrison formula

to calculate (H + D + dop11-1- 1T)_1. Since H ~ Hupproz = CTHC, we have
-1 ~ -1 - -1
(Happroo+D) = (¢PHC+D) = p~t=p7'cT (A~ +cp'cT) "ot (4.13)

because H is of much lower dimension O(log(n)) than H, and it is less expensive to find its

inverse. Let X := Hupproz + D, and we apply (4.13) to get

1
(H+D+d2n+1~1-1T)_1 = <X+d2n+11'1T> - X_l_X_lllTX_l/<1TX_11+d2_nl+1)'

To solve for ApF in (4.12), we only need H~1 and matrix vector products with complexity
O(log®(n)) and O(nlog(n)) respectively, and both are affordable to compute. In particular,
Algorithm 16.4 in [76] is implemented to solve (4.9). Together with the fact that the number
of iterations with increasing variable dimensions is usually stable for interior point algorithms,

our SQP algorithm has an overall complexity of O(nlog®(n)) for some positive s < 3.

4.4 Error Analysis - Convergence in Optimality Gap

In this section, we determine the number of Chebyshev interpolation points N to approxi-
mately achieve an accuracy level e. Specifically, let w! be the solution from SQP (Algorithm

1), and w" be the solution to (4.7), we want to choose N based on n such that

‘¢(FPOSt<wn)) - (b(rpost(wN))‘ <€

where € is a preassigned threshold. Basically we show that if we solve the optimization with
the low-rank approximation matrix Fs (see the program (4.14) in the next subsection), then
its objective value converges to the true minimum as n — co. We address this problem in

two steps.
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4.4.1 Connection Between Two Optimization Problems

Note that the KKT optimality in Algorithm 1 corresponds to the following program:

min  ¢s(Fpost (w)) (4.14)

s.t. 0<w; <1, > w; <ny.

where ¢5(I'post(w)) = ng((FSTWFS + I)_l). The program differs from (4.7) only in F', and

for simplicity, we use the abbreviation ¢s(w) for ¢s(I'post(w)), and ¢(w) for ¢(I'post(w)).

Claim 4.4.1. Let w!Y, w™ be the solution to (4.14) and (4.7) respectively. If |p(w)—ps(w)| <
€ for any w € R", then

p(w) — p(w™)] < 2e.

It tells us if ¢g is close to ¢ for any w, then the objective value with the interpolation
solution is close to the true minimum.

N

Proof: Because w"' and w™ minimizes ¢s(w) and ¢(w) respectively, we have

ds(w) < gs(w™),  Pw") < Pp(w?). (4.15)

From the assumption we know |¢(w’™) —ps(w!V)| < € and |¢(w™) —ps(w™)| < €, and together

with (4.15), we get
o) < g5 (W) + € < gs(w™) + € < Gw") + 2e. (4.16)

The result follows directly from (4.15) and (4.16). [

It remains to show |p(w) — ¢s(w)| is small for any w € R™. Because each entry in Al—yFs is
an approximation of Al—yF (which is equal to f(z;,y;), and Ay is the size of a unit rectangle
in Q;,), their difference is small because of the Chebyshev polynomial approximtaion ([25]).

We now quantify |¢(w) — ¢s(w)].
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We use the notation || X|| = || X||g (Frobenius norm) for any matrix X in this chapter.

Claim 4.4.2. If Al—y|F(z,]) — Fs(i,7)| <, then for any w € R",
[P(w) — ¢s(w)[ < C - N -,

for some positive constant C' independent of n and N.

Note F is defined in (4.5) with N interpolation points, and € represents the interpolation
error which we will quantify in the next subsection.

Proof: Because |F'(i,7) — Fs(i,7)| < eAy for 4,5 = 1,2, ..,n, we have

n n
1F = Fll < 1D @M% = nAy e = () - . (4.17)

\ i=1j=1

Similarly because |Al—yF(z,])| = |f(z;,y5)| < max f(z,y),

IF = | D) F(i,5)%(Ay)? < nAy - max f(z,y) = u(Qy) - max f(z,y). (4.18)
i=1j=1

Moreover, we can show ||F|| is also bounded
VBl = s+ F — Fl| < [F|l + |1F — Full < p1(Qin) - max f(z,9) + () - .
When € is small (e.g. € < max f(z,y)), we get
1F5] < 20(Qip) - max f(z,y). (4.19)

Because W is a diagonal matrix with each component between 0 and 1, the matrix product

W F results in multiplying the i** row of F by w; and thus |[WF| < |F|. For similar
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reasons, we have |[FW|| < ||F|| and get

|FTWF - FTWE,| < [|FTW(F - By)|| + |[(F — F)TWE|
< ||FTW| - |[(F = Fo)|| + | F — Fs|| - [|[WFy]
<|F| - [(F = Eo)ll + [[F = Fsll - || Fsl

< ce

where the postive constant ¢ = 3 - 12(€;,) - max f(z, y) from (4.17), (4.18) and (4.19). Let

M ZA3 220 N2> 27

be the eigenvalues of F TWF and F, ST W F respectively. In [74], it has been proved

N — AP < |[FTWEF — FIWE| < ce. (4.20)
Because the rank of Fs is at most N, we have )\7]"(/’-11 = .= M\" =0. In the trace case,
n n
|p(w) — ds(w)| = ’;1 Z +)\ns
N n
1 1 1 1
S‘Z( no nS)‘+‘ Z ( n nS)‘
P L+ N 14X N1 L+ N 14
i M- g: AP
= n,s T\
SN A TN
N n
<SoN N Y A
1=1 i=N+1

We control the two terms separately. The first term Zf\il A —X""| is bounded by ¢- Ne
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from (4.20), and in order to bound Y i 1 A, note that

tr(FTWE) — tr(FIWE)| = |ALY " wif2(w,y5) — ALY wi f2(xi,1;)]
7:7.]. i7j

’AQ Zwl %,yj + fs(ﬂ%ayj)) (f(x%yj) - fs(xi’yj)ﬂ

< Ag Z(Zcf - €)

0]

= 2(nAy)2cf € =:C€

where c is the uniform bound for both [ f (%, y;)| and | fs(z;,y;)| because f(x;,y;) is smooth
and fs(z;,y;) is the Chebyshev interpolation approximation on compact domains, and the
constant ¢ depends on c¢p and p(£2;,). The last by two step is due to the claim assumption
and f(z;,y5)—fs(x,y5) = Al—y(F(z, J)—Fs(i,7)). Because the trace function can be expressed

as sum of eigenvalues, we have

n N
tr(FTWE) — tr(FFWE)| = [ Y A = A

7

N
-0 -+ 5
>N
N
2= N =N DN
i=1 i>N
which implies
N
SN < |t (FTWE) — tr(FIWE)| + 3 [\ = A < ée+c- Ne.
>N 1=1
Therefore,
|[¢(w) = ds(w)] < (¢ +2¢N)e, (4.21)
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where ¢ and c¢ are constants free of n and N. When N > ¢, we get for any w € R",
lp(w) — ps(w)] < (2¢+1)N-e=:C-N -e.

which completes the proof. [ |

4.4.2 Determine The Number of Interpolation Points N

Claim 4.4.2 suggests in order to get accurate approximation, we should make Ne small
where € is the error in Chebyshev polynomial approximation, and it depends on the number
of interpolation points N and the smoothness of f(z,y). We quantify now how e depends
on the two factors. Classical theory on Chebyshev interpolation error is well developed (e.g.
see [25]): let f be a continuous function on [—1, 1], hy, be its degree n polynomial interpolant

at the Chebyshev points, € = || f — hy |00, we have
e if f has a k" derivative of bounded variation for some k > 1, then & = O(N _k);
e if f is analytical in a neighborhood of [—1,1], then ¢ = O(p™) for some 0 < p < 1.

As the second step, we need to bound Al—y\F(z,j) — Fs(i,7)] to satisfy the condition in
Claim 4.4.2. Note that Al—yF(z',j) = f(x;,y;) and

N N
= Zle (27)lq( yj f(@p,Tq)

p=lg=1

where

<

le—ik N
p=1"P "k =
k#p 7

gl

Q=
@2
@z

and {ip}g\; | and {gjq}i]\i 1 are interpolation points in Q4 and €, respectively. Let’s first
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look at the one-dimensional case. If for Vo € Qgut, Yy € Qi

N N
‘ Z I’p, ’ < €0, ‘f(fﬂ y Z LIZ' yq) < €0,
: q:
then we obtain
1
A, IP0.5) = Fud)
N N
= | f(z,y;) Z Z Ip(z; ZQ(yj)f(x]%yQ)‘
p=1q=1
N N
= | F@iy)) = D lplwi) flEp,y)) + Zzpm (£ ) = 3 W) 50))|
p=1 p—l qg=1
N N
< f(x’iayj) le( xpay] ‘ Z‘lp xz pryyj Zlq xpayq ‘
p=1 q=1
<ep+eo Y |lp(;)]
<e+ AN *e€ (4.22)

where Ay is called the Lebesgue constant and it is the opeator norm of Lagragian interpo-

lation polynomial projection at Chebyshev nodes. It is known (see [77]) that
2 2
—log(N)+a <Ay < —=log(N)+1, a=0.9625....
7r m

o If f(z,y)is kKt order continuously differentiable, in the one-dimensional case, we have

=0t L2 Aiyw(z;j) — Fy(i, J)] = O(N " log(IV))
B2 s(w) — d(w)] = O(NTH 1og()).

We conclude that when f(z,y) is at least 2nd order differentiable, |p(w) — ¢s(w)| will
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diminish as n — co. The decay gets slower in multiple dimensions intuitively because
if 2, Qowt C Rd, there are only NV 1/d interpolation points on each dimension. For the
sake of clear presentation, let’s still assume there are N interpolation points on each
dimension. To derive an error bound, we define the Chebyshev interpolation operator

Ty that maps a function g € C([—1,1]) to a degree-N polynomial:
N
Ing(z) = Z Ip(z)g(Zp).
p=1

Since Ay is the operator norm, we have | Zxg/loo < An|lglloo. For z,y € R?, we now

define the double N-th order tensor product interpolation operator:

Infla,y) =Th, X X Ty X I, X - X I f(2,),

where I]i\, , denotes the single interpolation operator on the i-th dimension in Qgy¢,

)

and Ig\ﬂy denotes the single interpolation operator on the j-th dimension in €2;,.

(@, y) = Inf, )] = |f(2,9) = Ty o f (2,9) + Iy o f(@,y) — In f(z,y)]
< |f(2,y) = Iy f (@, 9) + 1T o f (@,9) = Inf (2, 9)]
< f(@,y) = In o f (@ )| + 1Ty o f (@, y) = T TN f (2, y)]
+ TN oI o f (2,y) = I f(2,9)]
< |f(2,y) = Iy o f @ y)| + Ax|f(2,9) — TR f(2,y)]
oot A y) = T, f )]

2 2d—1
< oL+ Ay + A%+ + A

A3 -1
N 2d

<ey- A 4.23
Ao S AN (4.23)

:60

for any A > 2. We implicitly assume here € is the uniform bound of the interpolation

error on any single dimension in €2;,, and ,,+. Now we go back to the case where there
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are N interpolation points in total, so there are N 1/d interpolations on each side and

if f(z,y) is k-th order continuously differentiable,

o= oh/dy L2 Aiyum,j) ~Ey(i )] = OV 10g24(N))
B2 5(w) — da(w)] = O(NTH/ 4 1og2d (),

In order to guarantee of the convergence of |p(w) — ¢s(w)| to zero, f(x,y) should be

at least (d 4+ 1) — th continuously differentiable.

1/d
N

o If f(z,y) is analytical, then ¢g = O(p for some 0 < p < 1 and

[6(w) — s (w)] = O(Nlog2 (V)N

which converges to zero for any dimension d.

In Section §4.2; we choose N = clog(n) to achieve the computational complexity O(nlog®(n)),
but an important question is how to choose the constant c. One practical suggestion is to
solve for problems with moderate sizes and get the exact solution (true minimum), and then
adjust the constant ¢ by doubling it until all the errors are below the preassigned threshold.

As we will see in the numerical experiment, even though the zero convergence of optimality

gap is not proved to be monotone, its fluctuation is small, and it goes to zero eventually.

4.5 Temporal and Two-Dimensional LIDAR Problem

In this section, we apply the sequential quadratic programming in §4.3 to solve a Bayesian
inverse problem driven by partial differential equations. Specifically, our goal is to infer the
initial condition of an advection-diffusion equation on a spatial and temporal domain, where
the observable can be expressed as a truncated sum of integral equations so that all the

convergence results in Chapter §3 and this chapter would apply.
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4.5.1 Extend Convergence Results to Space-time Models

Because we are adding an extra time domain, theorems in Chapter 3 need to be extended
for time-dependent measurements as in the gas pipeline system. In addition, we require that

the measurements be taken at a fixed frequency for this extension.

Parameter-to-observable Map

Consider a compact domain V' in R? and a time interval [0, T]. Suppose the measurement

without noise has the following form: for z € Qg

)= [ (o) dy (4.24)

In our example, u(z, t) is the solution to partial differential equations describing a dynamical
system, where f(z,y,t) is derived from solving the equations. We discretize the integral equa-
tion (4.24), construct a matrix F' from f(x,y,t), and divide the domain Qg (€24, and [0, T)
into ny (ny and ng) equally spaced intervals (Azx = w(Qout)/nz, Ay = 1(Qout) /1y, At =

T/ng). Then, @ = Fig € Ra™*1 | e RNy where

N T
U= (u(ml, t1),u(z1,t2), .., u(xy, tn,), w(we, t1), ..., u(z2, tny), ooy w(Tny, 1), wW(Tn, tnt))

flr,ynty)  fleyetn) o f(21,Yny. 1)
flr1,y1,t2)  fr,u2,t2) - f(21,9n,,t2)

F=| friyntn)  fEnyate) - f@1,unyte) | AV
fleo,y1,t1)  foo,yet1) - fz2,Yn,. 1)
f($nxa Y1, tnt) f(mnxa y2>tnt) T f(wn;p7 ynyytnt)

116



and 4y € R™ is a discretization of ug(z) with @ ; = ug(y;) (j = 1,2,...,ny). To figure out
the (i,7)" entry of F, let i = (i1 — 1) * ng +ia (i1 € {1,2,...,nz},i9 € {1,2,...,nz}) and
J=12,...,ny, we get

F(i,5) = f(x3,,y),tiy) Ay.
If Qi = Qout, we use the same discretization, i.e. z; =y; (j = 1,2...,nz) and ng = ny.

Remark 1. f(x,y,t) in (4.24) is not always continuous as a solution to PDEs, for example,

f(z,y,t) in a one-wave system is a delta function §(x—at,y) where a is the wave speed.

Convexity of the Objective Function

In our Bayesian framework, the posterior covariance matrix is given by

Thoss = (FTW1/2F_1

noise

wi/2p -l >_

prior

where I',,;5¢ is the noise covariance matrix among measurements. We assume the measure-
ment noise is only correlated in time, not in space. Under this assumption, I',,,;sc is a block
diagonal matrix and the number of blocks is equal to the number of discrete points on the

spacial domain €2,,¢.
Lemma 4.5.1. tr(L,0), log det(Lyost) and o1(Lpost) are convex functions in the weight vector.

Proof: We construct the matrix W from the weight vector w=(wq, w1, .., wp,) as follows:

. X
W = diag{wy, w1, ..., W1, W, W2, .., W, .., Wy, Wryy s -y Wy, } € RIEEXT2TL

-1
noise

is also block diagonal. Il Fand W can be written

Since Iise is block diagonal, T" oises
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as

P Ny F, Ny Wiy I nt

where P, = P € R"*" and F}. € R"*"y. Therefore,

Ny

-1
Fpost = (Z kangFk + FpI‘lOI‘)
k=1

The desired results follow because tr(X 1), logdet(X~!) and o1(X~!) are convex in X. W

Extend the Convergence Theory

Note that

1
post Z wk‘Fk PF/C + 1—‘prlor
k=1

and denote f; ; s = f(%,¥;,ts), then FZPFk can be written as the following

51,52 1 fk 31;52fk,1,82 T 251 s9=1 fk 1,51 Sl,ssz: My, 52
. 2
(Ay)
n n
Zsf’32:1 fk,ny,slpsl,Ska,l,SQ T zsf752:1 fk,ny,sl PS1,$2fk,ny,32

Therefore, the (i,7)!" entry in I,

post
Fpost(Z J) A?JZ Z Z wi. f IkhtSl?yZ>P81,SQf(‘rk7t827yj)A
k=1s1=1s9=1

If measurements are collected every few seconds or minutes within a time range, i.e. ny is a

fixed integer, then for any precision matrix P, we are in the same setting of Chapter 3, and
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all the convergence proofs can be extended trivially.

4.5.2 2D Advection-diffusion Equation

The advection-diffusion equation is a combination of diffusion and advection equations,
and we will first look at the solution to the diffusion equation (or heat equation), which lays

the foundation to solving the advection-diffusion equation.

Analytical Solution to 2D Heat Equation

Consider a heat equation on a two-dimensional domain [—1, 1] x [—1, 1], with homogeneous

Dirichlet boundary conditions:

)
2 2
ut:uVu:u(g—x%+g—y%)

u(zx,y,t) =0, for (z,y) on the boundary. (4.25)

u(z,y,0) = ug(z,y), initial condition.

Using separation of variables, we let u(x,y,t) = T'(t) X (x,y) and get
= —— = constant.

The solution to (4.25) can be written as
o¢}
u(z,y,t) = cpel My,
k=1

where (A, hy,) are the eigenvalue and eigenvector respectively of the following problem:

_0X? L ox?

X(z,y) =0 for (z,y) on the boundary.
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Since <k27r2/4, sin (k%x)) and (k%72 /4, cos (]““TT“T)) are eigen-pairs in one dimension, we can

apply tensor product to obtain eigen-pairs in two dimensions, and further get the solution:

") sin (_’“2;1/)

.k
u(z,y,t) Z Z exp{ —pt( k: +k%)772/4}<14k1,k2 sin ( 1;

k120 k2>0
+ Bjy gy Sin (lﬂ;x) cos (k227T ) + C) kp €COS (]ﬂ;x) sin (@)
+ Dpy ky €OS (]ﬁ;m) Cos (@)) (4.26)

In combination with boundary condition and initial condition, we can calculate the coeffi-

cients which are given below:

k
Ay kg = / / ug(x,y) sm 5

k
By ko = uo x,y) sm

ki ko
Chy kg = / / up(, y) cos ( 21:) in ( 22y)dxdy, k1 odd and ko even;

x) i (k22 y)d:z:dy, ki even and ko even;

) 0s (kQ;ry)dxdy, k1 even and k9 odd,

Dy, gy = / / ug(z,y) cos (k 5 x) cos (k22 Jdzdy, ki odd and ko odd.

Because the uniqueness of solution to heat equation on bounded domains is already estab-
lished in the classical theory of partial differential equations (see [78, §2.3]), u(z,y,t) in
(4.26) is indeed the solution to (4.25).

From Heat Equation to Advection Diffusion Equation

The two-dimensional advection-diffusion equation we consider here is

ou ou Ou 2y 0%

Y = (o= + =), -1 1 ).
8t+c(8x+ ,u(axQ—i—ayQ), <z,y<l, te€][0,T]

)~
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where c is the velocity constant and p is the diffusivity. After a change of variables u(z, y,t) =

v(x,y,t)eo‘(x+y>+ﬁt, we get

ov ov  Ov 20 v 0%
Fn (c—2,ua)(ax+%)+(ﬁ+20a—2,ua)U M(W—l—w)

Set the coefficients of v and v/, + v'y to zero, we have the following

c—2ua =0 a=c/2u

B+ 2ca — 2ua® =0 B=—c/2u.

We can see v(zx,y,t) satisfies a heat equation, and its relation with u(z,y,t) is given by
u(,y,t) = exp{—c’t/2p + c(x +y) 2u}v(w, y, 1),
The solution u(z,y,t) given v(x,y,t) derived from the previous subsection is

u(z,y,t) =exp{—c’t/2u+ c(x +y)/2u} Y Y exp{—put(k{ + k3)x*/4}

k1>0 ko>0
i .k k
(Alﬂ,k:z S ( 27T ) ( ) + Bj, ko SID ( 127m) coS (—227@)
+ Cly ki €COS (k : I) sin (@) + Dy, COS (k1;x) cos (k227ry)>

Again in combination with boundary condition and initial condition, the coefficients are:

. klﬂ'l‘ . /{227'( C
Al ey = /_1 /_1 ug(x,y) sin ( 5 ) sin ( 5 y) exp{—ﬂ(a:‘ +y)}dxdy, ki even and kg even;

. kmx komy c
Bl ky = /1 /1 up(,y) sin ( 5 ) cos ( 5 )exp{—ﬂ(x +y)}dxdy, ki even and ko odd;

kimxy . komy c
Cley oy = /_1 /_1 ug(x,y) cos ( 5 ) sin ( ) )exp{—ﬂ(x +y)}dzdy, ki odd and ko even;

kyma ko c
Dy kg = /1 /1 up(, y) cos ( 12 ) cos ( 22 y) eXp{—ﬂ(x%—y)}dxdy, k1 odd and ko odd.
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In other words, u(z,y,t) is an integral equation of ug(z,y):

u(x,y,t) / f T, 9, z,y, t)u (T, y)drdy

where the function f(Z,7,x,y,t) is an infinite sum of Fourier series.

4.5.3 2D Advection-diffusion Equation with External Source

In the previous subsection, we have considered a stationary process meaning that even-
tually, the state becomes zero everywhere because of the homogeneous boundary conditions.
Now we extend it to a non-stationary process by adding an external force to the equation.

Again we work on the heat equation and then generalize to advection-diffusion equation.

2D Heat Equation with External Source

Consider the heat equation on a two-dimensional domain [—1, 1] x [—1, 1] with homoge-
neous Dirichlet boundary conditions and an external force f(x,y,t):

Pu  0%u
—ILLVU—Ut —/L(@ +8_y2) - f(a:,y,t)

and u(z,y,t) = 0 for (z,y) on the boundary. The initial condition is u(x,y,0) = ug(x,y).
Using a variant of separation of variables, we assume the solution u(x,y,t) has the following

form

u(z,y,t) ZTn ) Xn(z,y)

and then apply the tensor product of one-dimensional Fourier basis as before, we get

u(z,y,t) =Y Z{ by (D) sin (=) sin (22 + + T2, () sin( L) cos(“22)

k120 k>0

k .k k k
+Tl~§i)k2(t) cos( 1;m)31n( 227ry) T,gh)kQ() cos( 127m)cos( 2271y)}
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We treat each of the above four terms separately, and will use the Fourier basis sin( k12

as an example. Results for the other three terms can be derived similarly. Let

) sin(

) klms . komy
:vy, Z Z k1, 5 )sm(T),
k12>0k2>0
and then
(1)
oulD) 02u) 524 (1) 8Tk1k2(t) k‘%—l-k‘% 9.(1) . kymx, . kemy
g Mo T ) T 2 Z( ot M T Tkhl@(t)) sin(—5 =) sin( =5

k120 k>0
We solve the following equation:

(1)

Ty 'k, () K24k2 o (1)
i+ T, 1) = ey
ot k1,ko 1,k2 (4‘27)

where fi., 1,(t) and ¢y, 1, are the Fourier coefficients with respect to the basis sin( M o) sin (=4 i >

for the external force f(x,y,t) and the initial condition ug(z, y) respectively:

k k
= [ £, 2) 5L sin( 2272 dady,
[—1,1]x[~1,1 2 2

. kymx . kom
Chy ey :// ug(z, y) sin( 1 ) sin( 2 y)dxdy
[~1,1)x[-1,1] 2 2

and get the solution to (4.27)

2 2 t
1 k‘ +k k; ‘I—k?
Tf k(1) = exp{—p=t =2 2t}ck1k2+/0 exp{—p= 2 72(t = 5)}fiy () .
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After working out the other three terms, we combine them together and get:

k mx, .  komy . kT komy
u(t, x,y) Z Z Ay o () sin( ) sin( ) + By ky (1) sin( 5 ) cos( )

2 2 2
k120 ko>0
kimx ., . komy kimx komy
+Cky ky () cos( 5 ) sin( ) + Dy i () cos( ) 005(7(91.28)

where

—f-k: kimx, . komy
Ay ko (1) = exp{— ,ul t}// uo(z,y) sin( 5 ) sin( 5 ) dxdy

k2 + k2
" /O exp{— 22t — )} i, () ds

k2 + k3 . kymx komy
By (®) = exp{=n=i2n2y [ [ oo ysin(2) cos( ) dady

t ki + k3
+ [ exp(out e a7 () as

k? + k3 kimx, . komw
Croa®) = exo{=p = =2r2t) [ || ot ) cos( U5 sin(*5 ) dady

t
+ [ et L Y RO

k T kom
Dy, kp (1) = exp{— ,u 2724} // ug(x,y) cos( ) cos( 22 y)dxdy

k2+k2
+/O exp{—p 22t - 5)} £, (s)ds

Again from boundary conditions, Ay, 1, is for k1 even and kg even, By, 1, is for ky even and

ko odd, C}, 1, is for k1 odd and kg even, Dy, 1, is for k1 odd and ko odd.

Advection-diffusion Equation with External Source

The two-dimensional advection-diffusion equation with external source is

ou au au 82u 0%y
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where ¢ = (¢, ¢9) is the velocity constant and p is the diffusivity. After a change of variables

u(w,y,t) = v(w,y, )PV we get

v v 9*v 9%
BN + (c1 — Qlwé)a— + (co — 2#5) ay + (v + e+ B — ,UOCQ - M52)U - M(@ + @)

- f(l’,y,t) eXp{_O‘I - By - Vt}'

Again we set some coefficients to zero and get

( (

c1 —2pa =10 a=c1/2p
N2 —2uB=0 = B =c2/2u
\7+61a+026—ua2—u62=0 k7=—(C%+C§)/4M-

Note v(z,y,t) satisfies the heat equation with homogeneous Dirichlet conditions:

v — p(Vez + Vyy) = Jg(x y,t)

v(x,y,t) =0, for (z,y) on the boundary.

vo(z,y) = exp{—c12/2p — cay/2p}up(z, y),

where f(x, y,t) = exp{(c% - c%)t/él,u —c12/2u— coy/2u} f(x,y,t). Its relation to u(z,y,t) is

given by

u(z,y,t) = exp{—(c3 + At /4 + cre/2u + cay/2u}v(, y, t).

Based on the result on heat equation, the solution u(z,y,t) is

u(x,y,t) :eXp{_(C% +C%)t/4/~b+01x/2u+02y/2u} Z Z (4_30)
k1>0 ko>0
. kimxy o kamy .k komy
{ Ak, 1y (1) sin( ) sin(=2Y) + By, g, (1) sin(=5 ) cos(~512)
kimx komy

kimx
+ Oy o (1) c0s( ) + Diy iy (t) cos(

5 ) sin( 5
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where

¢ k2 + k3
1 +
Apy k(1) = ¢§€1>77f2 +/0 exp{—pu——= 5 2 2( )}fkl k‘z( s)ds, for kj even, ko even;

t

2 k2 + k2 ~(2
By, 1, (t) = (bl(ﬁ)’@ +/0 exp{—pu—-—2 5 272t — s)}fél?kQ(s) ds, for ki even, kg odd;

t k3 + k3 .
3 + 3
Cly o (1) = (;5](61)’]{2 +/O exp{—pu———= 5 272t — 3)}f]£1?k2(3) ds, for k1 odd, kg even;

t
4 k + k3 ~(4
Dy ko (1) = ¢](€1)7k2 +/0 exp{—p——= 5 272t — s)}fél?b(s) ds, for k1 odd, ko odd,;

{qbl({:?b} is related to the Fourier coefficients of the initial condition vg (or equivalently,
ug) as in (4.28). We see that the solution u(zx,y,t) is an additive sum of two components:
one is from the initial condition ug(z,y), the other is from the external source f(x,y,t), and
the two sources act independently on the solution. Therefore, the external source does not
play a role in the selection of sensor locations, if we use a Bayesian framework of Gaussian

distributions to infer the initial condition from time-space measurements.

4.5.4 Numerical Results

In this subsection, we provide numerical results on selecting the optimal sensing directions
to estimate the initial condition of a two-dimensional advection-diffusion equation. Here is
the problem description: suppose a lidar is sitting at the origin of a unit circle (24y¢), and
it collects data u(z,y,t) by sending out laser beams and detecting reflections; we need to
determine the optimal directions for releasing the beams to collect data long those directions.
Our parameter is the initial condition ug(x,y) of the advection-diffusion equations (4.29),
and the parameter-to-observable mapping is from the solution to (4.29), which is an integral

equation

o, yot) = Fu) = | / F(z,y, uo(z,y) dudy
11 11

where F is directly from the solution in (4.30). For discretizations, we divide the angle of 27

into ng parts so that the circle has n, sectors with the same area, and each beam goes across
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the center of each sector. We also discretize the radius into nr parts with equal length. We
attach a weight variable to each sector (or radius), and points on the same radius have the
same weight. The goal is to select a proportion of sectors to measure data along the radius,
and best infer ug defined on the slightly larger square domain [—1,1] x [—1, 1] (£2;;,), which
is discretized by regular grid of size ng, X ng.

The constants we choose in the equations (4.29) are ¢; = 0.1,c0 =0, u=1.0,7 = 1,0 =
5,7 = 0.2, and the noise ratio is 0.01. Here is a reminder on the meaning of these constants:
c1,co are the velocities along the x and y axis respectively, p is the diffusivity constant,
nt is a fixed integer denoting the number of measurements in time, and the noise ratio is
ag vise! agm. or- The covariance matrix in time is set to be identity at the moment. For the
results below, nd = nr = n, = 30, and the velocity (c1,c2) is pointing from the origin to

its right (the advection term can be thought of as air movement or wind when studying the

concentration of a substance), so the placement is symmetric to the x axis (see Fig. 4.1).

Fig.4.2: SQP solution for p = 1,2, 3 respectively

127



Fig.4.3: Sum-up Rounding for p = 1,2, 3 respectively (based on relaxed solutions)

Because the solution to advection-diffusion equation is an integral of an infinite sum, we
truncate and take the dominating terms where k1, k9 < p in (4.30), and we determine the hy-
per parameter p from a sanity check, where we try to recover the initial state sin(rz) sin(my)
by looking at the truncated solution at ¢ = 0. We observe that when p = 3, the values do
not change further, which suggests p = 3 is sufficient. Note this choice of p is subject to the
choice of ¢1, c9 and p in the PDE, especially when p is small, a larger value of p is required.

Next we examine the performance of SQP by looking at the computation time in compar-
ison with the Ipopt package in Julia, its optimality gap in the objective, and its maximum
KKT violation defined in (4.10) (without aprroximation) to measure the closeness to the
true minimal point. We use different numbers of interpolation points ¢ - log(n) by choosing
the constant ¢ = 1,2,4,8, and let nd = nr = ng, that is, the number of angles equals the
number of discretization points on each radius. When nr = 30, it takes Ipopt about 1.5
hours to find the solution, while SQP only needs a few minutes to get a sufficiently good
approximation. When ¢ = 8, nr = 30, the SQP solution actually gives a lower objective

value than the “true” minimum possibly due to the tolerance level ( 10’6) specified in Ipopt.
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Fig.4.4: (a) Input function: z = sin(7wz)(7y) on [—1,1] x [—1, 1]; (b) Recover the initial state
using dominant terms with k1, k9 < 1; (c) Recover the initial state using dominant terms
with k1, kg < 2; (d) Recover the initial state using dominant terms with kq, ko < 3.
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Fig.4.5: Computation time Fig.4.6: Error in the objective Fig.4.7: KKT violation

We would also like to examine the effect of c1, co and p on the optimal sensing directions,
and we conduct a few more experiments. The following gives the exact relaxed solution for

varying values of ¢; and u, but fixed co = 0 and p = 3. Again, nd = nr = 30.
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90° 900 900

Fig.4.8: Dependence of sensing direction on c¢; and g when wind blows —. From left to
right: (1) ¢; =0.1, 40 =0.1; (2) ¢ = 0.1, u = 1.0; (3) ¢1 = 1.0, u = 1.0.

Fig.4.9: Dependence of sensing direction on p when ¢; = 0.1 and wind blows —. From left
to right: © =5.0,7.0,8.0,10.0.

According to Fig. 4.8 and Fig. 4.9, we find that

e when the wind moves faster, more sensing directions are chosen towards the wind;
e when it is less diffusive (small values of p), the sensing directions spread out more;
e when the diffusivity u is large, the relaxed sensing directions gets blurred.

Since SQP is much faster than the exact method, we can run larger size problems (nd =
nr = 80) and change the wind direction form — to . The relaxed sensing directions are

given below.

130



90° 90° 90°

Fig.4.10: Sensing direction for increasing wind speed with g = 0.1, wind direction 7. From
left to right: (1) ¢y =2 =0.1; (2) ¢g =2 = 0.5; (3) ¢ = 20 = 1.0.

From the solution to the advection-diffusion equation, for a larger value of p, p imposes
less effect on the sensing directions. But when p is small, such as 0.1, the design is likely to
depend on p, and adding p makes the design more “diffusive”, although the configuration is

roughly the same, see Figure 4.10 and Figure 4.11.

Fig.4.11: Sensing direction for increasing p with ¢y = ¢ = 1.0 and p = 0.1, wind direction .
From left to right: p = 3,5, 10.
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5

FUTURE WORK

The work discussed in the thesis provides the initial results on the zero gap convergence

of optimal sensor placement, and there are many directions for future research. For exam-

ple, an immediate extension is to consider a general covariance function in the prior; the

integral equation seems restrictive in describing the relationship between the parameter and

observation. We give the following five prospective research directions to pursue.

(1)

Build the connection between the limit of discretized problem and the continuous prob-
lem on function spaces. The parameter in our formulation is a vector where each element
is associated with evaluation at a mesh point, and we increase the dimensions to infinity.
Whether the vector converges to a function-space-valued limit as the finite-dimensional
computation is refined deserves further study. There are known results in both Gaussian
and non-Gaussian settings (see discussions in [79], [18, §2.5]), but not for the particular
formulation incorporating weight matrix for sensor placement. It is also of theoretical
interest to explore if the relaxed weight vector w,..; converges to a continuous density

with respect to Lebesgue measure on €2+, although this is not required in our theorems.

Generalize parameter-to-observable mapping: integral operator — linear operator —
nonlinear operator. When the parameter is from a Hilbert space with the inner prod-
uct defined as an integral over a compact domain, it is known by Riesz representation
theorem any bounded linear operator is an inner product with a representative element,
and thus an integral operator. The theory of singular value decomposition for com-
pact operators on Hilbert space is also well established (see [80] and [81, §3.5]), so a

low-rank approximation by integral operators is possible by truncation. However for
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nonlinear operators, it remains difficult even though linearization methods have been

studied extensively (see [82, §4], [83, 84]).

Sum-up rounding can potentially be used in any continuously-indexed sampling problems
and approximate the density of optimal sampling locations. We can apply the sum-up
rounding idea on other formulations like Gaussian process/Kriging. A spatio-temporal
field estimation based on a kriged Kalman filter was published (see [9]) lately, where
the measurement consists of a stationary component capturing the non-dynamic spatial
effects, a non-stationary component modeling the physical properties of environmental
fields (represented by state space models), and an uncorrelated measurement error. Sim-
ilarly, the authors discretize the entire service area into small units, construct a weight
vector for each unit, formulate a convex optimization and solve the relaxation. In the
paper, the thresholding and weight-based multinomial rounding strategies are discussed,

but sum-up rounding seems a better candidate in this setting.

Consider general domains and general prior information. In the current work, both input
and output domains are rectangles, and we have mentioned extensions to domains that
can be well approximated by rectangles. However, in many practical problems, domains
do not possess regular shapes, such as autonomous vehicles and robots. Reparametriza-
tion or transformation may be required to deal with complicated domains, and thus a
theory on general domains is one direction to pursue. One advantage of Bayesian formu-
lation is to incorporate prior belief on the parameter, and a common choice is Gaussian
prior partially because a lot of theoretical results are available in literature, but prior
generalization is considered as a significant challenge. Even in the Gaussian setting, it

is unclear how to choose and interpret the covariance function.

Extend sum-up rounding strategy for multiple states. The current strategy is to con-
struct a binary vector, and only two states are allowed. There is a general version of the

strategy that applies to multiple states (see [46, Theorem 5]). If there are different types
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of sensors, for example, self-driving vehicles have lidar sensors, radar sensors and camera
sensors, the multi-state sum-up rounding would be useful in allocating different sensors
in different locations under statistical optimal conditions. It is of interest to prove similar

gap convergence given that the general strategy has a wider range of applications.
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A Likelihood for Sensor Data

The actual measurements d can be thought of in several ways, and the data likelihood

noise

1
ke (d|uig, w) ¢ exp { — 5(d = Fug) WL L w2 - Fuo)}.

shall all agree in the case when the weight matrix in R™"*"

is diagonal with entries either 0 or
1, and T}, is diagonal. Suppose the full measurement is v € R™, and we observe ng of them
(ng < n). The most general consideration is that d € R™, the weight matrix W € R™0*",

and ng out of its n columns form an identity matrix I,. The restricted covariance matrix

is WFnoiseWT, and the restricted mean vector is W F ug. The data likelihood becomes

3 1. 3 N B
ke (d|ug, w) o< exp { — i(d - WFUO)T(WFnOiseWT> (d— WFUO)}

Together with the prior information wg ~ N (Uprior, [prior), the posterior distribution can be

easily computed as N (tpost, [post) where

T = (FTW T (Wi W) T F 4 Ty ) 1)

Upost = Fpost (FTWT (WrnoiseWT) _1CZ + F_l uprior) .

prior

Because data error (or noise) from different sensors are assumed to be uncorrelated, I}oise 18

diagonal or block diagonal, i.e.

(W WD) T =T L T

noise

In the case of homogeneous noise, that is, I} = 0'2]n, we have

W (W WD) 7' W = WIT LW = 0207 = 072w

noise
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Moreover, the following are all equal

(d — Fug)Tw/2r-L wi/2(q — Fuo)}

noise

Tike (d|ug, w) o exp{ —

o] -
:exp{—

W has only binary values on the diagonal and in the paper, we introduce a weight for

(Wd — W Fug)Tw/2r-L wi/2qwq — WFuO)}

noise

N =N =N~

(W )T (Whseol¥7T) ™ (d — 1 Fug)}

each candidate sensor location so that W is diagonal with each entry between 0 and 1. For
the purpose of estimation, after the locations are selected, d can be viewed as the potential
measurement v in (1.2) with missing values in locations where there is no sensor and apply

(1.3), or can be viewed as a low-dimensional copy of u and apply (1).

B Another Sum-Up Rounding Procedure for Rectangular Domains

We present the sum-up rounding algorithm slowromancapii@ based on the following com-

patible two-level decomposition, with concepts defined in Definition 1. We use the notation

ki(ni) = [vni], and  k(n) = k1(n1)ki(n2)..k1(np).

(i) On [lli,l%] for i=1,2,..., P, group the first k1(n;) intervals {Ii,j}flz(?i) as G; 1, group

2k1(n;)

the next ki(n;) intervals {Iivj}j:h(n')Jr

| s gm, and so forth until we get gi,kl(ni)'

The remaining intervals {Ii,j}?,k (ny)

1(ng)2+1 A€ grouped as G; j,st, and the number of
=k (n; ,

intervals in G; ;4 equals n; — k1(n;)2. Note that

Vit =1 < ki(m) = Lymil < .
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We can bound the number of intervals in the last group by

ni — (vn)? < ni — ki(ng)? < ny — (Vg — 1)

0<n; — kl(ni)Q < 2y/ny,

so the cardinality of G; is O(\/n;), and its size is O(1/,/n;).

(ii) Consider a subdomain V; of the form

i=1,2,..,P
Ji€{1,2,...,k1(n;),last}

This decomposition has the following parameters and properties, in reference to Definition 1.

P P
k(n) = [T 1vnil, k) = [TTvAil, r(n) = k), (2)
i=1 i=1

p(V) = i(uf =12, k(n) (3)
=\ Ll

Theorem B.1. Under the assumptions of Theorem 3.3.3, there exists a C such that the

sum-up rounding algorithm slowromancapii@ construction satisfies

C
W1/2P

<

n
S Flaw) (w" @) — 0" () A
k=1
Proof. We use the definitions of the sum-up rounding procedure parameters (2)—(3), and the

inequalities (3.20)-(3.21) to infer the following inequalities:

(3.20)
<

b
BEE
=

<y =12, P — ﬁ !
<c ’n ,i1=1,2,...,P;, — =
N r(n) = Lv/nd
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For the maximum diameter of V; we obtain from (3) and (3.20)

max; L —11) (321)  _max,_ i
- omax  p(Vj) < VP : i=12,..P(5 — 1) < VP z—l,%._,P( 2 1)n_#. (5)
j=1,2,...k(n) Zming_j 9 p\/m 1/e

We also obtain

2

P . P
<1 H (1 — \/1n_l> (3§21) 1-— (1 — cl_%n_ﬁ’) .

1=1

P
Kot _ H

In turn, from the mean value theorem applied to (1—x)* for z € [0, 1] and the last inequality,
we have

L 1
1—(1—z)F < Pz, VmE[O,l]il—MSPan_%. (6)

We now use Theorem 3.3.3 along with (3.20)-(3.21) , (4), (5), and (6) to obtain the

statement of this theorem for the sum-up rounding algorithm slowromancapii@ with the

choice
max;_ 1y -1t 1
C' = max |f(x)|u(V)2§ +2Lu(V)VP Xz_l’?""P( 2~ 1) + 2max f(z)pu(V)Pcy 2.
zeV 34/C1 zeV

C The SQP Algorithm for D-optimal Design

The algorithm is very similar to the one for A-optimal design, except that the gradient

and Hessian for D-optimal design objective function are different.
Gradient of logdet objective
First we find the derivatives to the logdet of I}

0 logdet(Tost)
ow;

:—w«FﬁMF+I)1ﬂﬂ> —fFFTWF + 1) 7Y
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Hessian of logdet objective

The (i,7)!" entry of the Hessian matrix is

B 82logdet(Fpost)

HZ] =

2
T T -1
=(f(F F+1 il
dw;Ow; <fl (FEWE+ 1) fj)

Approximation of gradient and Hessian

We will give details for the one-dimensional case, and the procedure can be extended
trivially to rectangle domains in multiple dimensions using tensor product. For the input
domain, let {fz}f\; 1 be the N Chebyshev interpolation points, {z;}!' ; be the n discretization
points on the mesh and note N = O(log(n)), and C; € R™ ¥ be the matrix of interpolation
coefficients (see §4.2). Similarly, we can construct Cy, for the output domain. We approximate
F by

Fs=ClFc,

where F € RV*YN s the matrix of f (i‘i,i*j) evaluated at interpolation points. Next, we

construct M € R"*N by setting its (i,j)th entry to be
JEEWE+ 1)

where f; is the it column of CyT FT' . Then we approximate the i gradient by ¢, (;)T M (i, i) ey (;.

To approximate the Hessian H, let H € RY*N and H(i,j) = M(i,5)?, and then
H~CIHC,.

Once we figure out the gradient and Hessian approximations, it should be clear on the

implementation of the sequential quadratic programming algorithm 1 in §4.3.
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Error analysis

All the error analysis in §4.4 applies to the log-determinant case, and we only need to

modify one step in Claim 4.4.2:

N 1 1 n 1 1
<> (log —log ——5)| +] Y. (log —log —5) |
Pt 1+ A7 1+ Al Mot L+ A0 1+

N N
= |log(1+A"") —log(1+A])| + > log(1+ A7)
=1 i=N+1
N n
<D WA DN
=1 i=N-+1
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