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Abstract

Optimal experimental designs are a class of experimental designs that are optimal with

respect to some statistical criterion. Sensor placement is a sampling decision on data collec-

tion which aims to minimize the uncertainty in parameter estimation. This thesis focuses

on two fundamental elements: the selection of sensor locations under statistically optimal

conditions, and the computation of sensor placement with an efficient algorithm.

We first present a design of experiments framework for sensor placement in a natural gas

pipeline system where the dynamics are described by partial differential equations, and ap-

ply sum-up rounding strategy as a heuristic to determine the sensor locations. We continue

to develop convergence theory on sum-up rounding for Bayesian inverse problems, where

the direct relationship is described through a discretized integral equation. We show that

the integer solution from sum-up rounding is asymptotically optimal in the limit of increas-

ingly refined meshes, for different experimental design criteria (A- and D- optimal), and

demonstrate its superior performance in comparison with other standard strategies.

We also propose an optimization algorithm to compute the sensor locations, based on

sequential quadratic programming and Chebyshev interpolation. By providing gradient and

Hessian information on the objective, we solve a sequence of quadratic programs with interior

point method and achieve a complexity of O(n logs(n)), while controlling the error through

choosing the number of interpolation points to satisfy a user-defined precision level.
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1 Introduction

Design of experiments (DOE) is an important branch of statistics that aims to determine

experimental settings and extract the most useful information from data to explain the

variation of quantities of interest, which may arise both from the measurement procedure

and from the inherent variability of experimental material. In traditional DOE, one selects

suitable treatments, assigns the treatments to experimental units, and observes treatment

effects by measuring response variables (see [1, 2, 3, 4]). The experimenter also identifies

control variables that must be held constant to prevent external factors from affecting the

results. Experimental design involves not only the selection of treatment effects, experimental

units and control variables, but also the delivery of the experiment under statistically optimal

conditions given the constraints of available resources. The optimality of a design depends

on the statistical model and is usually related to the variance-matrix of the estimator.

Another branch of DOE attempts to compute the optimal sampling locations given a set

of available measurement points (see [5, §7.5] and [6, §9, §12]). For instance, in polynomial

regression, where the dependent variable y is modeled as dth degree polynomial in the inde-

pendent variable x, the goal is to determine the optimal support in T = [−1, 1] consisting

of d + 1 different points, such that the information matrix is maximized according to some

design criterion. Closed form solutions are available for several design criteria (see [7] and [6,

§9]), but in general they are difficult to derive and computational methods are required to

approximate the optimal design. It becomes even more challenging when either the dimen-

sion of parameters to be inferred or the number of available measurement points increases

drastically, and optimal sensor placement is an example of this second-type challenge.
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Optimal sensor placement aims to determine the number, locations, and types of sensors

that would give the most accurate estimation of parameters or maximize the information

about a system. Naturally it arises in many infrastructure networks (oil, water, gas, and

electricity) in which large amounts of sensor data need to be processed in real time in order

to reconstruct the state of the system or to identify leaks, faults, or attacks. It can also

be viewed as a sampling decision of measurements, and there are different formulations in

literature (see [8, 9, 10]). In Gaussian process and Kriging (see [11, 12]), the training data

{(uk, y(uk))}Nk=1 are sampled to predict the response y(u) of a process at some unsampled

point u. The observations are modeled as y(uk) = f(uk, θ) + P (uk, ω) + εk where f(u, θ)

is given and p(u, ω) denotes a stationary zero-mean random processes with parameters in

its covariance function. This formulation makes statistical inference even possible for purely

deterministic systems, and it has been successfully applied in many domains of engineering

(see [13, 14]). However, few results exist on the optimal sampling of training data, and they

are generally assumed to be a collection of identically and independently distributed pairs

(u, y(i)) (see [15, 16]). The optimal design asymptotically tends to observe everywhere in the

design domain, and the points {uk}Nk=1 are distributed according to a density with respect

to Lebesgue measure, but little is known on the analytical form (see [17]).

Sensor placement plays a vital role in the operation of automation systems, and thus has

significant impact on our everyday life. In automatic vehicles, the central ingredient is the

lidar (light detection and ranging) sensor, a device that maps objects in 3D by bouncing

laser beams off its real-world surroundings. Driverless vehicles rely heavily on lidar to lo-

cate themselves on the detailed maps they need to get around, and to identify things like

pedestrians and other vehicles. Lidar sensors are expensive, costing thousands or even tens

of thousands of dollars a piece, and one self-driving vehicle is usually equipped with several

lidars. Together with other types of sensors (radar sensors, camera sensors) in automatic

vehicles, they collect information for the software system to process, plan and then exe-

cute. Different sensors have different mounting positions, and it is of essential importance

2



to study the impact of sensor positioning (the field of view of sensors) on the scenarios

that autonomous cars can manage. Another example of remote sensing system where lidars

are widely used is weather forecasting. The spinning lidar design, which includes the bal-

ance between the scanning frequency and spatial distribution of laser emission, is crucial in

collecting measurements to infer the wind speed and humidity for use in weather prediction.

Optimal sensor placement is computationally difficult because given n candidate loca-

tions, there are 2n possible combinations for sensor placement which is exponential in n

and makes the computation NP-hard 1. The goal of this thesis is to efficiently compute an

approximation that converges to the optimal sensor placement in the limit of n, in particu-

lar settings and under particular technical assumptions. Our approach is to first relax the

integrality constraint and then round it off to an integer one. More specifically, we will

• apply a rounding strategy that provides a feasible point to the optimization in formu-

lation, and examine the changes in optimality gap as n gets large;

• prove zero convergence of optimality gap 2 under various design criteria for continuously

indexed problems from a class of integral operators;

• propose a scalable 3 optimization algorithm to compute the rounding solution efficiently

and study its accuracy as n gets large.

Each will be elaborated in one chapter of the thesis. Now we introduce our estimation

framework and formulate our optimization problem, mainly following [8]. Consider a setting

with measurements perturbed by additive Gaussian noise,

d = F(u0) + η, η ∼ N (0,Γnoise,d) ,

1. “NP-hard” stands for “non-deterministic polynomial acceptable problems”. Although it is suspected
that there are no polynomial-time algorithms for NP-hard problems, this has not been proven.

2. The gap between the objective obtained from rounding strategy and the true minimum objective.

3. complexity less than O(n logs(n))
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where Γnoise,d ∈ Rn×n is the measurement noise covariance matrix and f is an operator that

maps a parameter vector u0 ∈ Rm to the observation vector d ∈ Rn. Formally,

F : u0
f7−→ u

w7−→ d (1.1)

where u0 are the input parameters we are interested in, f is the parameter-to-observable

operator, u ∈ Rn is the output vector that can be potentially observed, w is the observable-

to-observed operator which relates to the sensor locations, d is our observation from sensors,

and it is a subset of the output u. We consider continuously indexed problems, that is,

both u0 and u are function discretizations on an increasingly refined mesh. Note u and d

described in (1.1) are not subject to measurement error.

This representation can also be viewed as an inverse problem in the language of mathe-

matical modeling, where the goal is to infer the input from the observed output. Recently,

the Bayesian approach has received lots of attention (see [18]) and has been widely applied

in many areas (see [8, 19, 20]). It not only allows for the quantification of uncertainity and

risk, but also addresses significant modeling issues, such as ill-posedness of inverse problems,

in a clear and precise fashion. We adopt the Bayesian framework and follow the formulation

in [8]: assume both the parameter prior and the measurements distributions are Gaussian:

u0 ∼ N (uprior,Γprior) ,

u =f(u0) + η, where η ∼ N (0,Γnoise).

Here, Γprior and Γnoise represent the prior covariance matrix and measurement noise covariance

matrix respectively, whereas uprior is the prior mean. We assume the measurement error to

be unbiased conditional on the realization of u0, and thus η has mean 0.

If the mapping f is linear (u = Fu0 + η), from Bayes’ rule, we know the posterior

4



distribution of u0 is also Gaussian and has (up to a constant) the following density:

πpost(u0|u) ∝ exp
{
− 1

2
‖u− Fu0‖Γ−1

noise
− 1

2
‖u0 − uprior‖Γ−1

prior

}
. (1.2)

Next we quantify the sensor placement effect in the posterior by creating a weight vector

w=(w1, w2, .., wn) ∈ {0, 1}n where the jth component wj corresponds to candidate location

xj . A sensor is placed at location xj if wj = 1 and is not placed if wj = 0, so there is a

one-to-one mapping between sensor placement and weight vectors. Let W be a diagonal

matrix with weight vector w on the diagonal. The w-weighted data likelihood is given by

πlike(d|u0, w) ∝ exp
{
− 1

2
(d− Fu0)TW 1/2Γ−1

noiseW
1/2(d− Fu0)

}
.

One can immediately verify that for any integer-valued vector w, the posterior distribution is

exactly the one for Bayesian least squares with data measured for indices of u where wi = 1

for i = 1, 2, . . . , n. One can either think of the data d as weighted output u, i.e. d = Wu, or

a lower-dimension copy of u, see Appendix A for more details. Under these assumptions and

accounting for the prior distribution, we can compute the posterior u0, which is the normal

distribution N (upost,Γpost), where

upost = Γpost

(
FTW 1/2Γ−1

noiseW
1/2d+ Γ−1

prioruprior

)
, (1.3)

Γpost =
(
FTW 1/2Γ−1

noiseW
1/2F + Γ−1

prior

)−1

are the posterior mean and covariance matrix, respectively. We point out in this estimation

model the posterior covariance matrix does not depend on data d, and if we minimize certain

metrics of this matrix to calculate the optimal sensor placement, it is determined by the linear

mapping f and two Γ matrices.

We are ready to formulate our DOE problem that addresses the issue of optimal sensor

placement. The objective is to minimize the estimation error of the parameter u0, which is

5



quantified by its posterior covariance matrix, φ(Γpost). The three most widely used criteria

in experimental design (see [6]) to measure the size of this error are

• A-optimal design: φ(Γpost) = tr(Γpost);

• D-optimal design: φ(Γpost) = det(Γpost);

• E-optimal design: φ(Γpost) = λmax(Γpost).

The DOE problem is given as follows (φ represents one of the three criteria, and we use

logdet for D-optimal design):

min φ(Γpost(w))

s.t. wi ∈ {0, 1},
∑n
i=1wi = n0,

(1.4)

where n0 is the number of sensors on budget. All the above design criteria have the property

that, when there are more sensors available, there is less uncetainty remaining in the estima-

tion, i.e., the objective value is smaller. As mentioned earlier, this is an NP-hard problem.

Regularization methods have been exploited to alleviate the computation burden ([8, 20]) by

removing the integrality constraint, and controlling the number of sensors (i.e., the design

cost) by using an sparsity-inducing `0 regularization norm that is in turn approximated by

using a smoothing function. This method requires tuning and can be numerically unstable.

Instead, we start with the relaxed version:

min φ(Γpost(w))

s.t. 0 ≤ wi ≤ 1, i = 1, 2, . . . , n,
∑n
i=1wi = n0,

(1.5)

whose solution we denote by wrel. This problem is convex if the covariance matrix Γnoise

is chosen appropriately, such as a diagonal matrix. It can be solved in polynomial time

using, for example, interior-point algorithms [5] with gradient and Hessian information. The

relaxed solution wrel to (1.5) provides a lower bound to the optimal objective of the convex

6



integer program (1.4), whereas any feasible point would provide an upper bound to (1.4).

Next we introduce a rounding strategy that gives a desirable upper bound.

The rounding strategy we apply is called sum-up rounding (SUR), which was first used in

the context of continuous-time mixed-integer optimal control problems (MIOCPs) (see [21]).

SUR for binary variables, as we also pursue here, has been shown in temporally indexed

problems to have the desirable asymptotic property of being arbitrarily close to an integer

solution as long as the discretization mesh is sufficiently fine (see [21, 22]). In [21], the

authors not only clarify the role of SUR in MIOCPs but also obtain a guaranteed bound

on the performance loss, depending on the size of discretization mesh. In [22], a specific

structure in one dimension is considered where the objective is a function of either the Fisher

information matrix or its inverse, and the optimality gap converges to zero. Therefore, Sum-

up rounding sheds light on both theory and computation of MIOCPs. However, new theory

needs to be developed to obtain similar results in the infinite-dimensional setting, because

all the previous results are for a fixed and finite number of parameters.

The basic SUR strategy to construct a binary vector wint from wrel is given by:

wiint =


1, if

i∑
k=0

wirel −
i−1∑
k=0

wiint ≥ 0.5

0, otherwise.

for i = 1, ..., n. The equality constraint
∑n
i=1wi = n0 is satisfied automatically (see Lemma

3.3.2 in §3.3.1). The idea is to process each element sequentially based on the sum of elements

that are already processed, and control the sum difference between wint and wrel.

In Chapter 2, we apply sum-up rounding as a heuristic to a nonlinear dynamical system

- a gas pipeline network, where the dynamics are described by hyperbolic partial differential

equations (PDEs), and the parameter is the initial condition of the PDEs. To represent

the problem using our formulation, the parameter-to-observable operator f is nonlinear and

it maps the initial condition u0 to u(t) for t ∈ [0, T ] according to the dynamics described

by PDEs. The parameter u0 contains gas pressure and flow discretized from a mesh of the

7



pipeline, whereas ut is indexed in both space and time. The measurement data are available

from sensors at each discrete time point, but contaminated by noise. In this nonlinear setting,

calculating posterior variances in closed form is almost impossible, and we would resort to

sampling methods, such as Markov Chain Monte Carlo, for computing the posterior density.

Linearization is applied to make the calculation more tractable, and we test the performance

of SUR by investigating two objectives: the total-flow variance and the A-optimal design cri-

terion. We conclude that sum-up rounding approach produces shrinking gaps with increased

meshes, and also observe convergence of gap for two noise structures, which motivates us to

develop theories for Sum-up rounding in the infinite-dimensional setting.

In Chapter 3, we establish the theoretical work on zero convergence of optimality gap. To

briefly describe our theoretical setting, the unknown parameter u0 is a function that belongs

to an infinite-dimensional space, which is approximated by discretization on increasingly fine

meshes. We aim to understand the asymptotics of the rounding procedure in the limit of the

mesh size going to zero. As a result, the posterior covariance matrix we try to minimize (with

respect to a given design criterion) increases in size with the number of discretization points,

and we are not aware of prior theoretical work on the convergence analysis of discretized

design of experiments with a number of sites that can grow unboundedly.

The particular assumption we make is that the parameter-to-observable operator f is

based on an integral equation, as opposed to the solution of a PDE in Chapter 2:

u(x) =

∫
Ωin

f(x, y)u0(y) dy, x ∈ Ωout,

where Ωin and Ωout are input domain and output domain respectively. The techniques we

employ to this end are related to the spectral theory of self-adjoint integral operators [23].

Ultimately we show that, under other technical assumptions,

∣∣∣φ(Γ(wnrel)
)
− φ
(

Γ(wnint)
)∣∣∣→ 0 as n→∞.
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for any of the design criteria defined earlier. We demonstrate the effectiveness of SUR and

compare with another rounding strategy called thresholding in a gravity-surveying example.

In Chapter 4, we provide an optimization algorithm to compute the relaxed solution,

based on Chebyshev interpolation and sequential quadratic programming. While the relaxed

problem is not NP-hard, the interior-point based algorithm has a complexity of O(n3). Given

that f may come from a mathematical model typically described by a system of PDEs, and

the parameters to be estimated are initial or boundary conditions, the discretization of an

increasingly refined mesh can easily make the problem size explode to thousands and even

millions, so a O(n3) algorithm is intractable in practice. A scalable algorithm is needed to

solve it in a fast and accurate fashion.

Several efficient algorithms have been proposed to tackle the computation issue in liter-

ature ([8, 19, 20]) for specific design criteria, all of which exploit low-rank structure of the

parameter-to-observable mapping in some way. In [8], randomized methods, such as ran-

domized sigular value decomposition (rSVD) and randomized trace estimator, are employed

to evaluate the A-optimal design objective function, i.e. trace of posterior covariance matrix,

and its gradient, and the error depends on the threshold chosen in rSVD and the sample size

in randomized estimation. In [20], similar approaches (truncated spectral decomposition,

randomized estimators for determinants) are investigated for the D-optimal design criterion,

and error bounds are derived explicitly. In addition to computational work, a general study

on the optimal low-rank update from the prior covariance matrix to the posterior covariance

matrix, is also given over a broad class of loss functions (see [24]).

We make use of the integral operator assumption and the fact F is continuously indexed

i.e., F (i, j) is evaluated from f(x, y) for x ∈ Ωout, y ∈ Ωin, and propose an interpolation-

based algorithm to approximate the gradient and Hessian for both A- and D-optimal design

criteria. Interpolation theory is well developed in numerical analysis to approximate function

values with evaluations only at a subset of points. It is known that polynomial interpolation

at Chebyshev points is optimal in the minimax error for continuously differentiable func-
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tions (see [25, §8.5]). We solve a sequence of quadratic programs (SQP), and each quadratic

program is solved with interior-point method. The advantage of SQP is twofold: in contrast

to previous algorithms, we incorporate Hessian information which can accelerate the conver-

gence rate of optimization algorithms, and the objective value is not required for SQP; we

are able to prove the zero convergence of approximation error in the objective value as the

problem size goes to infinity. Since the relaxed problem is convex, the KKT condition is both

sufficient and necessary for a solution to be optimal, and we demonstrate the effectiveness

of our approximation by the shrinkage of maximum KKT violation.

In summary, we apply the sum-up rounding strategy as a heuristic in a nonlinear dynamic

system of a natural gas network, and demonstrate our observation of gap convergence in

Chapter 2, and then prove the zero convergence of gap for a class of integral operators under

different design criteria in Chapter 3. In Chapter 4, we propose a scalable algorithm based

on sequential quadratic programming and Chebyshev interpolation, to solve the relaxation

efficiently. Finally, we discuss various directions for future research.

1.1 Previous work

Inverse problems with Bayesian formulation have been extensively explored recently. A

comprehensive review on well-posedness and stability from a function space viewpoint can

be found in [18] for linear inverse problems with Gaussian prior and Gaussian likelihood.

Following [18], a framework for A-optimal experimental design together with a random-

ized optimization algorithm are given in [8] for infinite-dimensional Bayesian linear inverse

problems governed by partial differential equations. In their papers, the measurement errors

from sensors are uncorrelated, and the covariance operator in the prior is specified as the in-

verse of an elliptic differential operator. The parameters to be estimated are the coefficients

of basis functions in a finite-dimensional subspace of the original infinite-dimensional func-

tion space, and the function in the subspace is approximated with a finite-element method.

Instead of the equality constraint on the number of sensors, the sparsity of sensor configura-
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tion is controlled by employing a sequence of penalty functions that successively approximate

the l0 norm, and tuning is required in the regularization term. A low-rank approximation

of the parameter-to-observable map, preconditioned with the square root of the prior co-

variance operator, and a randomized trace estimator for evaluation of the A-optimal design

objective and its gradient, are exploited to reduce the computation cost.

The technique of sum-up rounding (SUR) was first applied in the context of continuous-

time mixed-integer optimal control problems [21]. Sum-up rounding for binary variables has

been shown in temporally indexed problems to have the desirable asymptotic property of

approximating the solution to a relaxed and convexified problem with arbitrary precision, as

long as the discretization mesh is sufficiently fine [21, 22]. A proof of guaranteed bound for

applying SUR on the performance loss, depending linearly on the size of discretization mesh,

is given in [21]. In [22], a specific structure in one dimension based on information gain is

considered where the objective is a function of either the Fisher information matrix or its

inverse, and the optimality gap converges to zero. These works use frequentist approaches,

and the parameter of interest has a fixed dimension, so does the Fisher information matrix.

1.2 Contributions

We first apply sum-up rounding strategy as heuristics in natural gas pipelines where the

dynamics are described by a system of partial differential equations on a spatial and temporal

domain. We investigate metrics to guide the design of experiments (the total flow variance

and the A-optimal design criterion) and analyze the effect of different noise structures. We

conclude that the sum-up rounding approach gives the best results and produces shrinking

gaps with increasing mesh resolution. We also observe that convergence for the white noise

measurement error case is slower than for the colored noise case.

We then extend the sum-up rounding approach to multiple dimensions, analyze its ac-

curacy as a function of the discretization mesh size for a rectangular domain, and prove

asymptotic optimality of sup-up rounding solutions under different design criteria (A- and
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D- optimal). More specifically, we consider a statistical setup that consists of a Bayesian

framework for linear inverse problems for which the direct relationship is described by a

discretized integral equation, and aim to find the optimal sensor placement from a set of

candidate locations where data are collected with measurement error. The convex objective

function is a measure of the uncertainty, described by the trace or log-determinant of the

posterior covariance matrix. The resulting convex integer program is relaxed, producing

a lower bound. An upper bound is obtained by extending the sum-up rounding approach

to multiple dimensions. We show the convergence to zero of the gap between the upper and

lower bounds as the mesh size goes to zero. The technique is illustrated on a two-dimensional

gravity surveying problem for both A-optimal and D-optimal sensor placement where our

designs yield better results compared with thresholding rounding approach.

We also develop an optimization algorithm by taking advantage of the continuously-

indexed structure, propose an interpolation-based approximation to the derivative and Hes-

sian of the objective experimental design criterion – the trace or log-determinant of poste-

rior covariance matrix, and study its accuracy by looking into the difference between the

approximation and the true minimum in the objective value. The complexity is reduced to

O(n logs(n)). A sequential quadratic programming algorithm, with each quadratic program

solved by interior point method, is implemented in Julia without using any existing optimiza-

tion package. This algorithm is more than 100 times faster than using a standard package,

such as Ipopt in Julia by passing through the exact gradient and Hessian, which makes it

possible to solve problems with hundreds of thousands of integer variables on a laptop with

only 4 GB memory. We demonstrate the efficiency of this algorithm on a linear inverse

problem governed by advection-diffusion equations, in search of optimal sensing directions

for lidar to collect data and infer the initial conditions.

We emphasize the application of sum-up rounding strategy to a spatial domain, and the

zero gap convergence of rounded DOE solutions over increasing design space sizes have not

been investigated before.
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2 Application in A Natural Gas Pipeline System

In this chapter, we present a scalable design of experiments framework to compute optimal

sensor locations for systems described by partial differential equations (PDEs). This is done

by minimizing the uncertainty in the state and parameters estimated from Bayesian inverse

problems. The resulting problem is a mixed-integer infinite-dimensional optimal control

problem. We apply two heuristics that have the potential to be scalable for such problems:

a sparsity-inducing approach [8] and a sum-up rounding approach [26]. We investigate two

objectives: the total flow variance and the A-optimal design criterion. Using a natural gas

pipeline case study, we conclude that the sum-up rounding approach produces shrinking gaps

with increased meshes. We also observe that convergence for the white noise measurement

error is slower than for the colored noise case. For the A-optimal design the solution is close

to the uniform distribution, but for the total flow variance the pattern is noticeably different.

2.1 Introduction

The sensor placement problem seeks to determine the optimal number, locations, and

types of sensors that would maximize information about a dynamical system. Because in-

formation can often be expressed in terms of the posterior covariance matrix of the states

or parameters of the system, the problem can often be cast as an optimal design of experi-

ments problem. Such a problem is computationally challenging, particularly in the infinite-

dimensional case, because one must solve a mixed-integer and bilevel optimization problem

constrained by differential algebraic equations or by PDEs. This problem has been ad-

dressed by using mixed-integer programming techniques, for contaminant detection in water
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networks [27, 28, 29, 30]. In these studies, an optimal set of sensor locations is selected from

a set of candidate locations to minimize a certain engineering metric such as contaminant de-

tection time, population exposure, or likelihood of detection. Likelihoods are assigned based

on contamination scenarios, and not on information content of the sensor data recorded, as

in a traditional experimental design setting. As a result, these approaches fail to provide

statistically meaningful sensor network designs. Moreover, because the formulations capture

flow dynamics by using surrogate representations such as transportation delays, they fail to

capture physical effects.

Sensor placement problems have also been addressed in a more general control setting

where one seeks to optimize a measure of observability such as the covariance matrix, Kalman

estimator gain, or so-called observability Grammian matrix. This problem is again a bilevel

optimization problem. The covariance matrix approach in [31] bypasses this by assuming that

the dynamic model is linear, thus allowing the inner minimization problem to be formulated

as a linear matrix inequality. The approach in [32] models the dynamics of the covariance

matrix directly as a Riccati differential equation, which implicitly assumes linearity and thus

enables the use of semidefinite programming algorithms. This approach, however, is focused

on control policy design to extract maximum information, and not on sensor placement

design. Consequently, the authors do not consider discrete decisions associated to placement.

A rigorous treatment of nonlinear dynamics is presented in [33] by casting the problem as a

mixed-integer nonlinear program. The authors use a genetic algorithm to deal with the inner

minimization problem that computes the observability metric. A similar approach is used

in [34] to address the inner minimization problem. Mixed-integer techniques have also been

used in the context of information maximization for Gaussian processes and for designing

Latin hypercube samples [35, 36]. These approaches, however, do not use physical models.

Recently, the sensor placement problem for systems described by PDEs has been cast as

an A-experimental design problem in which the number of sensors (i.e., the design cost) is

controlled by using an sparsity-inducing `0 regularization norm that is in turn approximated
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by using a smoothing function [8]. This compressed sensing approach was shown to be

scalable and applicable to infinite-dimensional systems, but it requires tuning and can be

numerically unstable. One can also formulate and solve the problem as a mixed-integer

programming problem directly, but this is computationally intractable because the PDEs

are in general nonconvex and because the problem has a bilevel nature.

An important application of optimal sensor location techniques is infrastructure networks

(oil, water, gas, and electricity) in which large amounts of sensor data need to be processed

in real time in order to reconstruct the state of the system or to identify leaks, faults, or

attacks. In this work we focus on natural gas networks, which are used to transport fuel

to power generation facilities and urban areas from storage and processing facilities. These

networks comprise pipelines that span thousands of miles and exhibit complex dynamics.

An interesting property of natural gas networks is that significant amounts of gas can be

stored inside the pipelines. The stored gas is distributed spatially along the pipelines and is

normally referred to as line-pack [37]. Line-pack is used by pipeline operators to modulate

variations of gas demands at multiple spatial points in intraday operations. Some of the

strongest variations in gas demands are the result of on-demand startup and shutdown of

gas-fired power plants [38]. Modulating these variations is challenging because the fast

release of line-pack at multiple simultaneous locations can trigger complex spatiotemporal

dynamic responses that propagate hundreds to thousands of miles and that can take hours

to stabilize. Therefore, line-pack management is performed by using sophisticated optimal

control and pipeline simulation tools. To use these automation tools, one must reconstruct

spatiotemporal state fields (flows, pressures, temperatures) [39] and natural gas leaks [40].

This task is challenging from a practical stand point given the limited amounts of sensor

data (often limited to pressure and flow signals at a finite set of locations), the infinite-

dimensional nature of pipeline systems, and the complex physical behavior of these systems.

Such challenges are not unique to natural gas networks but also arise in other domains such

as geophysics and contaminant source detection in water networks.
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2.2 Distributed System Modeling

We illustrate the complexity of the optimal sensor placement problem by focusing on the

physical equations describing the dynamics of natural gas networks. Details on the model

derivation, nomenclature, and units used in this section can be found in [41].

2.2.1 Problem Physics

The isothermal flow of gas through a horizontal pipeline is described by the conservation

and momentum equations:

∂ρ(τ, x)

∂τ
+
∂(ρ(τ, x)ν(τ, x))

∂x
= 0

∂(ρ(τ, x)ν(τ, x))

∂τ
+
∂p(τ, x)

∂x
= − λ

2D
ρ(τ, x)ν(τ, x)|ν(τ, x)|.

Here, τ ∈ T := [0, T ] is the time dimension with final time T (planning horizon), and

x ∈ X := [0, L] is the axial dimension with length L. The pipeline diameters are denoted

as D, and the friction coefficients are denoted as λ. The states of the link are the gas

density ρ(τ, x), the gas speed ν(τ, x), and the gas pressure p(τ, x). The transversal area A,

volumetric flow q(τ, x), and mass flow f(τ, x) are given by

A =
1

4
πD2 (2.2a)

q(τ, x) = ν(τ, x)A

f(τ, x) = ρ(τ, x) ν(τ, x)A.

For an ideal gas, pressure and density are related as follows:

p(τ, x)

ρ(τ, x)
= c2. (2.3)
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Here, c is the gas speed of sound. The speed (assuming an ideal gas behavior) and the

friction factor λ can be computed from

c2 =
γ̄ZRT

M

λ =

(
2 log10

(
3.7D

ε

))−2

,

where Z is the gas compressibility factor, R is the universal gas constant, T is the gas

temperature, M is the gas molar mass, ε is the pipe rugosity, and γ̄ is the adiabatic constant.

Often one desires to transform (2.1) into a more convenient form in terms of mass flow and

pressure by using (2.3) and (2.2):

∂p(τ, x)

∂τ
+
c2

A

∂f(τ, x)

∂x
= 0

1

A

∂f(τ, x)

∂τ
+
∂p(τ, x)

∂x
= −λρ(τ, x)

2D

f(τ, x)

ρ(τ, x)A

∣∣∣∣ f(τ, x)

ρ(τ, x)A

∣∣∣∣ . (2.5a)

Substituting (2.3) and (2.2a) in (2.5a) and performing some manipulations, we obtain the

more compact form:

∂p(τ, x)

∂τ
= −c

2

A

∂f(τ, x)

∂x
1

A

∂f(τ, x)

∂τ
= −∂p(τ, x)

∂x
− 8λ c2

π2D5

f(τ, x)|f(τ, x)|
p(τ, x)

.

For numerical purposes, we define scaled flows f(τ, x)← αff(τ, x) and pressures p(τ, x)←

αpp(τ, x), where αf and αp are scaling factors. Scaling (2.6) and rearranging, we obtain the

final form:

∂p(τ, x)

∂τ
= −c1

∂f(τ, x)

∂x
, τ ∈ T , x ∈ X

∂f(τ, x)

∂τ
= −c2

∂p(τ, x)

∂x
− c3

f(τ, x)|f(τ, x)|
p(τ, x)

, τ ∈ T , x ∈ X ,
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where the constants c1, c2, and c3 are given by

c1 =
ν2

A

αp
αf
, c2 = A

αf
αp
, c3 =

8λ ν2A

π2D5

αp
αf
. (2.8)

For subsonic flow, one must impose a boundary condition at the inlet point and a boundary

condition at the outlet point. For instance one can specify pressure at the inlet and outlet

points,

p(0, τ) = θorig(τ)

p(L, τ) = θrec(τ).

One also can impose boundary conditions for inlet and outlet flows as

f(0, τ) = forig(τ)

f(L, τ) = frec(τ).

Alternatively, one can impose a boundary condition for pressure at the inlet point and one

for flow at the outlet point, or vice versa.

2.2.2 Discretization of State Equations

For either simulation or optimization we need to discretize equations (2.7). These equa-

tions are a particular case of a nonlinear system of equations. To that end, we introduce the

vector variable

u(t, x) =

p(t, x)

f(t, x)

 , (t, x) ∈ [0, T ]× [0, L]

which consists of pressure p(t, x) and flow f(t, x) in the system defined over the domain: the

Cartesian product of [0, T ] in time with [0, L] in space. With this notation, the governing
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equations of a gas pipeline can be written as the following nonlinear system of PDEs:

∂u

∂t
+

 0 c1

c2 0

 ∂u
∂x

+ c3

 0

f |f |/p

 = 0. (2.11)

The parameters c1, c2, c3 > 0 are defined in (2.8) and play a key role in identifying stable

numerical schemes for solving (2.11). The initial conditions are given by p(0, x) = p0(x) and

f(0, x) = f0(x). We use prescribed and constant pressure boundary conditions: p(t, 0) = p1

and p(t, L) = p2. We note that experimental validation has indicated that constant pressure

boundary conditions are appropriate for gas pipeline systems [42].

We now discretize the system of PDEs (2.11). The system (2.11) is not conservative, since

the friction term (nonlinear term) results in dissipation of energy. The linear part of the

system (formally obtained by setting c3 to 0) represents a conservative hyperbolic system,

since all the eigenvalues of the 2 × 2 matrix in (2.11) are real and equal to ±√c1c2. At

each point, this system has two characteristic directions each having an angle smaller than

90-degrees with one of the boundaries. To maintain stability, we use an upwinding scheme

along each of the characteristics [43].

We first consider the linear part of the system:

∂u

∂t
+B

∂u

∂x
= 0, x ∈ [0, L], t ∈ [0, T ]

with B =

 0 c1

c2 0

 ∈ R2×2. B has eigenvalue decomposition B = SΛS−1, where

Λ := diag{λ1, λ2} =

−√c1c2 0

0
√
c1c2

 , S :=

 √c1 √
c1

−√c2
√
c2

 .
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We define the characteristic variable ũ := S−1u, which satisfies the decoupled system

∂ũ

∂t
+ Λ

∂ũ

∂x
= 0.

The system consists of two independent wave equations traveling in opposite directions. To

separate the two waves, we introduce the splitting of the eigenvalues λk as

λk = λ+
k + λ−k , λ+

k := max(λk, 0), λ−k := min(λk, 0).

We can write the upwind scheme for the characteristic variable as

1

∆t
(ũn+1
j − ũnj ) +

1

∆x
Λ+(ũnj − ũ

n
j−1) +

1

∆x
Λ−(ũnj+1 − ũ

n
j ) = 0

with

Λ+ := diag(λ+
1 , λ

+
2 ), Λ− := diag(λ−1 , λ

−
2 ).

Next, we define B+ := SΛ+S−1, B− := SΛ−S−1, and obtain the upwinding scheme in

terms of the original variable u(·) by multiplying the resulting scheme by the matrix S,

1

∆t
(un+1
j − unj ) +

1

∆x
B+(unj − u

n
j−1) +

1

∆x
B−(unj+1 − u

n
j ) = 0, (2.12)

where

unj =

pnj
fnj

 B+ =
1

2

√c1c2 c1

c2
√
c1c2

 B− =
1

2

−√c1c2 c1

c2 −√c1c2

 .

Here, the notation unj indicates the jth point in the spatial mesh and the nth point in the
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temporal mesh. Plugging these terms back into (2.12), we obtain the discretization scheme:

pn+1
j = pnj +

∆t

2∆x
[
√
c1c2(pnj−1 − 2pnj + pnj+1)]− ∆t

2∆x
[c1(fnj+1 − f

n
j−1)]

fn+1
j = fnj +

∆t

2∆x
[
√
c1c2(fnj−1 − 2fnj + fnj+1)]− ∆t

2∆x
[c2(pnj+1 − p

n
j−1)].

Stability of this scheme is ensured if the corresponding scalar upwind schemes for all variables

ũk are stable, which gives the Courant, Friedrichs, and Lewy (CFL) stability condition:

max
k
|λk|

∆t

∆x
=
√
c1c2 ·

∆t

∆x
≤ 1.

Since we anticipate that the friction term will not dominate, we simply consider the upwind-

ing scheme for each characteristic for the linear equation to which we add the friction term

explicitly. This procedure results in the following numerical scheme:

pn+1
j = pnj +

∆t

2∆x
[
√
c1c2(pnj−1 − 2pnj + pnj+1)]− ∆t

2∆x
[c1(fnj+1 − f

n
j−1)]

fn+1
j = fnj +

∆t

2∆x
[
√
c1c2(fnj−1 − 2fnj + fnj+1)]− ∆t

2∆x
[c2(pnj+1 − p

n
j−1)]−∆t·c3fnj |f

n
j |/p

n
j .

for j = 1, 2, ..., Nx − 1 and n = 0, 1, ..., Nt. The friction term can be split among the

characteristic equations based on the eigenvectors of the matrix of the linear system and

the boundary. To simplify the implementation, we repeat the flux values of the last interior

node: fn0 = fn1 , f
n
Nx

= fnNx−1.
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2.3 Design of Experiments Setup

2.3.1 Bayesian Framework

As mentioned in the Introduction chapter, we consider a setting with measurements

perturbed by additive Gaussian noise (some dimension notations are different):

d = F(u0) + η, η ∼ N (0,Γ) ,

where Γ is the measurement noise covariance matrix and F is a nonlinear operator that maps

a parameter vector u0 ∈ Rn to the space-time observation vector d ∈ Rq. Formally,

F : u0
f7−→ u

w7−→ d (2.14)

where u0 are the input parameters, f is the discretized PDE solution operator, u is the

discretized PDE solution vector, and w is the state-to-observation operator. Note measure-

ment error is not considered in (2.14). In our case, the input parameters u0 (the inferred

variables) consist of the initial pressure and flow at the grid points:

u0 =
{
{p0(i∆x)}i=1,2,...,Nx−1 , {f0(i∆x)}i=0,1,...,Nx

}
.

The solution vector consists of the pressure and flow at all nodes and all times:

u =

{{
pnj

}
j=0,1,2,...,Nx, n=0,1,2,...,Nt

,
{
fnj

}
j=0,1,2,...,Nx, n=0,1,2,...,Nt

}
.

The map f is defined by the numerical scheme (2.13). The observations d are a subset of

entries in the solution vector u, and the space-time observation operator w is the restriction

operator from the components of u to the entries in d. For our experimental design, we

assume that the sensors are fixed and interrogated at all times, in which case the observation
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vector d and observation operator w are parameterized only by the spatial locations at which

we observe the pressure and flow.

The measurement noise η is independent of u0 and thus u|u0 ∼ N (f(u0),Γnoise). The

likelihood is given by

πlike(u|u0) ∝ exp
(
− 1

2
‖u− f(u0))‖2

Γ−1
noise

)
.

Stating the consequence of Bayes’ theorem πpost(u0|u) ∝ πlike(u|u0)πprior(u0) with a Gaus-

sian prior πprior(u0) ∝ exp
(
− 1

2‖u0 − uprior‖2Γ−1
prior

)
, we obtain the parameterization of the

posterior distribution πpost(u0|u) (up to a constant) as [44]:

πpost(u0|u) ∝ exp
(
− 1

2
‖f(u0)− u)‖2

Γ−1
noise
− 1

2
‖u0 − uprior‖2Γ−1

prior

)
, (2.15)

where uprior is the mean of the prior distribution, Γprior ∈ Rn×n is the covariance matrix

for the prior which we assume to be a scalar multiple of the identity matrix. Γnoise ∈ Rq×q

is the covariance matrix for the noise. We consider two types of noise matrices Γnoise. The

first one is diag(σ2
1, σ

2
2, . . . , σ

2
q ) which indicates independent measurements (white noise).

The second one is given in (2.16), which assumes independence in space but nonzero and

decaying correlation in time (colored noise). The statistical parameters needed to define our

model are Γnoise, Γprior, and uprior.

By measurement noise we understand here the discrepancy between simulated pressure

and flow given exact initial and boundary information and the output of the sensor of a fixed

location. For modeling this measurement noise we have several considerations. The intrin-

sic sensor errors can be assumed to be statistically independent between different sensors.

However, some of the discrepancy between sensor indications and computed flow are also

due to the numerics and boundary conditions, such as unresolved fluctuations and external

perturbations. If the sensors are sufficiently far apart, we can assume that insofar as these

are represented as probabilistic errors, they are spatially independent. The situation con-
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cerning the temporal features of the noise is more complicated, however. The discrepancy

between measurement and simulation can be due to unresolved scales, which typically have

nonzero correlation times and cannot be ignored if the measurements are frequent enough.

We thus model the measurement noise as a Gaussian random variable that is independent

in space but correlated in time. We also assume that its mean is zero. For the intrinsic

error of a calibrated sensor, this is a reasonable assumption. Given our definition, measure-

ment noise also includes numerical error. We assume that this and all other biases are small

enough compared with the sensor error (and given the optimal variances, this is a reason-

able assumption). In summary we assume that the measurement error has zero mean and

covariance given by the following function:

Cov
(
(ti, xi), (tj , xj)

)
= δ(xi, xj) exp

{
−
|ti − tj |
τi

I{|ti−tj |≤τj}

}
, (2.16)

where τi, τj are parameters with dimension of time that define the shape of the covariance

function. Here, δ(xi, xj) is the Kronecker δ symbol, which takes the value 1 if xi = xj and

0 otherwise. Γnoise is then computed by evaluating the covariance functions at the position

where pressure and flow are measured. In other words, entries on subdiagonals of Γnoise

have exponential decay, and Γnoise is a sparse matrix.

We also experiment with white noise in time. This is probably the most common usage

in such problems even if it does not make sense in the limit of dense temporal observations.

It does, however, has the advantage of needing fewer parameters. Moreover, under proper

scaling conditions, this gives a conservative approximation of the variance for target linear

forms of the initial state (i.e., it overestimates the posterior variance). We thus consider

the case of white noise in time and space as well, which corresponds to a constant diagonal

covariance function, that is:

Cov
(
(ti, xi), (tj , xj)

)
= δ(xi, xj)δ(ti, tj).
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The other element in defining a Bayesian uncertainty framework concerns the prior assump-

tions about the parameters to be inverted, u0. Here we use a Gaussian prior, which is a

common choice for Bayesian inverse problems [44]. The prior mean describes our best guess

about the uncertainty parameter, which can be obtained from historical measurements or

from other available information. In addition, because of the lack of a priori information

about the parameters, we will use a prior that assumes spatial independence. This setup can

be interpreted as making no assumptions about the smoothness of the initial data, which

should result in conservative statements.

Despite the choice of Gaussian prior and noise probability distributions, the posterior

probability distribution need not be Gaussian, because of the nonlinearity of f(u0) [44]. If

our purpose were estimation, then we would aim to characterize the posterior distribution.

The mean of this posterior distribution, mMAP, is the parameter vector maximizing the

posterior (2.15), and is known as the maximum a posteriori (MAP) point. It can be found

by minimizing the negative log posterior, which amounts to solving the following optimization

problem:

mMAP = arg min
u0

J (u0) := − log πpost(u0|d).

Characterizing the posterior uncertainty, however, would require exploring and summarizing

this posterior distribution, which in general can be done only with Markov-chain Monte

Carlo methods [44]. To simplify computations, we use Laplace’s approximation. That is,

we make a quadratic approximation of the negative log of the posterior (2.15) around the

MAP point. The posterior covariance matrix Γpost is then given by the inverse of the Hessian

of J at u0. We thus approximate the posterior covariance with a Gaussian distribution,

with mean mMAP.
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2.3.2 Modeling Sensor Placement Decisions

Our interest, however, is not only in estimation but in optimal sensor placement locations.

To this end we allow any of the spatial nodes xi, i = 0, 1, ..., Nx to be candidate sensor

locations using the same discretization in x-direction as in §2.2.2. To allow the ability to

select the position of the sensors, we associate with each xi a non-negative binary weight wi ∈

{0, 1}. Our intent is to denote by wi = 1 the situation where a sensor is placed at location xi

and by wi = 0 the situation where no sensor is placed at location xi. Therefore, the problem

of determining the optimal sensor locations becomes an large-scale mixed-integer integer

nonlinear program. Our approach will be to perform relaxations of the sensor placement

problem, by allowing wi to have any value in the domain [0, 1].

We model the fact that a sensor has fixed spatial placement, at which we measure both

flow and pressure at all times. Nevertheless, we allow grid points on the temporal direction

to have the same weight. We thus create a weight diagonal matrix corresponding to each

point in u:

W = diag(w0, w1, ..., wNx
, w0, w1, ..., wNx

, ..., w0, w1, ..., wNx
) ∈ R2m×2m,

where m = (Nx + 1)(Nt + 1) is the total number of discretized points in the domain [0, T ]×

[0, L]. Because we allow any spatial degree of freedom to be measured, we initially assume

that f(u0) is the entire solution map S, and we use the weights to winnow it down. Since

we will end up solving an integer programming problem, we aim to produce a version of the

optimal sensor placement that has a convex objective. Therefore, inspired by the workflow

from [8], we approximate f(u0) when used in (2.15) by its linearization around the prior

mean uprior. To this end, we denote the Jacobian of f at uprior by F . We then have that

f(u0) ≈ f(uprior) + F (u0 − uprior).
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The last ingredient is to induce a weighted least squares setup to the estimation problem,

to allow for a consistent statistical framework when allowing points to come in and out of

the measurement set and thus decide on the optimal measurement set and sensor placement.

This strategy is equivalent to scaling the variance of the measurement at a certain point xi

by 1/wi. For writing down the likelihood we need the inverse of the noise variance, which

will now be W 1/2Γ−1
noiseW

1/2. In this form, we assume that Γnoise is the matrix of the noise

as if sensors are at every grid point and are evaluated based on the covariance kernel (2.16).

In this case (2.15) is proportional to the weighted least squares likelihood. That is, the

w-weighted likelihood, conditional on the initial conditions u0 and weights w, is [8]

πlike(d|u0, w) ∝ exp

{
−1

2
(Fu0 − d)TW

1
2Γ−1

noiseW
1
2 (Fu0 − d)

}
,

where d is a potential measurement at all times and space points (or u, see §A). Accounting

now for the prior distribution on u0 around its mean uprior, we get the posterior likelihood:

πpost(d|w) ∝ exp

{
−1

2
(Fu0 − d)TW

1
2Γ−1

noiseW
1
2 (Fu0 − d)− (u0 − uprior)Γ−1

prior(u0 − uprior)
}
.

We note that a maximum likelihood approach would have a similar expression except that it

would miss the prior term. In that case the problem would become equivalent to one of least

squares. Under the assumptions above, the distribution of the best estimate u0 is normal

with covariance matrix:

Γpost(w) =
(
FTW

1
2Γ−1

noiseW
1
2F + Γ−1

prior

)−1
. (2.17)

2.3.3 Optimal Sensor Placement Formulation

The optimal sensor placement problem is cast as a design of experiments formulation.

The aim is to minimize a measure of the posterior covariance matrix under the constraint
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of a fixed number of sensors. In this work we focus on minimizing the trace (corresponding

to an A-optimality criterion) and minimizing the variance of the estimated initial flow. We

capture these formulations using the following general form:

min Ψ(Γpost(w))

subject to wi ∈ {0, 1}, i = 0, 1, ..., Nx and
N∑
i=1

wi = n0.

Here n0 is the total number of sensors to be placed. To minimize the posterior covariance

of total flow, we use

Ψ
(
Γpost(w)

)
≡ aTΓpost(w) a, a = (0, . . . , 0︸ ︷︷ ︸

Nx−1

, 1, . . . , 1︸ ︷︷ ︸
Nx+1

) ∈ R2Nx . (2.19)

Here, the vector a has an entry of L/Nx corresponding to any initial flow variable, and 0

otherwise. In other words, the vector a is used to extract the flow variance from the posterior

covariance matrix. The trace minimization problem considered in [8] uses

Ψ(Γpost(w)) ≡ Trace(Γpost(w)). (2.20)

We can interpret the minimization of the trace of the posterior covariance as a compromise

in aiming to reduce the variances of all possible linear functions of the initial state.

Sparsity-Inducing Approach

Because of the integrality of the sensor placement problem and the complex nonlinear

structure of the measures used, direct use of off-the-shelf solvers does not result in scal-

able solutions. For instance, initial investigation using linearization of the mapping and

mixed-integer linear programming solvers resulted in excessive computational times once we

exceeded a mesh of Nx = 10. To enable scalable solutions, we propose to use a sparse (com-
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pressed sensing) optimization approach [8] and a sum-up rounding approach [26]. In the

compressed sensing approach, we introduce a sparsity-inducing penalty term while relaxing

the binary constraints. This results in

min Ψ
(
Γpost(w)

)
+ γ · Φ(w)

subject to 0 ≤ wi ≤ 1, i = 0, 1, ..., Nx and
N∑
i=1

wi = n0.

Here, γ ≥ 0 is a penalty parameter, and Φ(·) is a penalty function. The ideal penalty

function is the so-called 0-norm, which counts the nonzero entries. For γ sufficiently large,

such a norm would indeed induce an integer solution. On the other hand, this formulation

makes the problem difficult, in effect NP-hard (in Nx). If the number of nonzero entries

is small, however, an integer solution can be obtained with high probability by using the

1-norm (which is a continuous and convex metric). This is the basis for the recent advances

in the area of compressed sensing [45]. If we insist on the constraint of the sum of weights

being prescribed, however, then using Φ(w) = ‖w‖1 has no effect on our problem. We have

also tried to use Φ(w) = ‖w‖1 without the total sum constraints
∑N
i=1wi = n0, and chose

the penalty parameter γ so that the solution of the problem satisfies
∑N
i=1wi = n0. In the

parameter ranges tried, this compressed sensing setup did not produce a sparse solution.

An alternative is to use a penalty Φ(w) that is closer to the 0-norm, although this comes at

the cost of abandoning convexity. Such an approach is also used in [8]. In this work we use

Φ(w) = ‖w‖1/2. We highlight that the cost function Ψ
(
Γpost(w)

)
may be nonconvex and

the penalty term Φ(w) = ‖w‖1/2 would add to nonconvexity.

Sum-up Rounding Approach

The other approach considered is the sum-up rounding (SUR) strategy of Sager. This

approach starts with the convex relaxation of the optimization problem (2.18) (and formally
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represents the problem (2.21) for γ = 0):

min Ψ
(
Γpost(w)

)
subject to 0 ≤ wi ≤ 1, i = 0, 1, ..., Nx and

N∑
i=1

wi = n0.

An important property is that this problem produces a lower bound for the objective function

of (2.18). The key is now to produce an upper bound by finding an integer vector w that

satisfies the constraint
∑
wi = n0 and that has an objective only slightly increased from

the optimal one of (2.22). In the sum-up rounding approach, an upper bound is produced

as follows. If we denote the relaxed solution of (2.22) by wrel = {w0
rel, ..., w

Nx
rel}, then an

integer-valued solution wint = {w0
int, ..., w

Nx
int} is obtained by:

w
j
int =


1 if

j∑
k=0

w
j
rel −

j−1∑
k=0

w
j
int ≥ 0.5

0 otherwise

(2.23)

for j = 0, 1, ..., Nx. It has been shown for optimal control problems with binary controls [46]

and for the optimal selection of measurement times in time-dependent initial value problems

[26], that this rounded solution will become arbitrarily close to the relaxed one when the

underlying grid is chosen fine enough. The problem we apply this strategy to is different,

because rounding occurs in space and in the presence of two-point boundary conditions.

Hence, it is unclear whether such desirable properties persist. We investigate this situation

in the following section.
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2.4 Numerical Results

2.4.1 Case I: Total Flow Variance Minimization
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Fig.2.1: Optimal placement for sparsity-inducing (compressed sensing) approach (2.21).
Flow variance minimization formulation.

The optimal design of experiments framework is first applied to the total initial flow

variance minimization problem given by (2.18) with the objective function (2.19). In this

case study we compare the sparsity-inducing optimization approach and the sum-up rounding

strategy discussed in §2.3.3.

Sparsity-Inducing Approach

For the variance minimization problem we use L = 80000, T = 60 based on [41]. Also,

using the quantities from [41], we obtain the following parameters. c1 = 9.6917, c2 = 14137,

c3 = 0.0825. To obtain a stable discretization, we must obey the CFL restrictions. We thus

choose Nx = Nt = 200. We then solve the problem (2.21) using the fmincon optimization

routine in Matlab. We choose as a starting point for the weights wi = 0.5 for all i. We

solve the optimization problem (2.21) using a constrained optimization solver. The results

for white noise are displayed in Figure 2.1 for increased values of γ. We see that increased

γ indeed promotes increased sparsity and a (mostly) integer solution. On the other hand,

the changes in the solution for increased γ are large and irregular. We thus suspect that the

sparsity-inducing solution may not get close enough to the actual solution, but we do not
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have enough evidence one way or the other to make a final conclusion.

Sum-Up Rounding Approach

We use L = 80000, T = 60, c1 = 9.70, c2 = 1.41 × 104, c3 = 8.25 × 10−2, f0(x) =

10, p0(x) = −9x/L + 10, and τ1 = 2, τ2 = 6 in Figures 2.2, 2.3, and 2.4. The time constant

governing the dynamic response of some flowmeters is about 1 second [47]; this governs our

choice of τ1. We chose τ2 = 3.0 · τ1 both to capture enough of the dynamic response of

the sensor and to obtain a reasonably sparse covariance matrix to help with computations.

We present the gap between the objective function of the relaxation (2.22) and the sum-up

rounding integer value (2.23). We present the gap for white noise and colored noise cases

and the gap scaled by the mesh size. Scaling here was necessary to compare problems of

different sizes and to validate that the gap was shrinking with increasing mesh resolution.

While the solution does not change, for the objective function to represent total variance,

the vector a in (2.19) must be scaled by the mesh size, which varies with 1/Nx. The lower

and upper bounds in Figures 2.2 and 2.3 are not scaled in order to aid visualization.
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Fig.2.2: Sum-up rounding upper/lower
bounds (white noise case).
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Fig.2.3: Sum-up rounding upper/lower
bounds (colored noise case).

In Figure 2.5 (optimal sensor locations), the grid size used is 100 × 100 and n0 = 10,

which means that we have 100 candidate locations. These candidate locations are evenly

distributed along the pipeline, but only 10 are selected to place sensors. In Figure 2.4, the y
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Fig.2.4: Sum-up rounding gap percentage

axis is the percentage of the gap in the objective function when Nx and Nt are determined

by x relative to the gap when x = 1. In other words, we want to see how the gap decreases

as the mesh gets more refined, since this seems to be the message in [46, 26]. The number of

sensors is kept to a fixed fraction of the number of grid points, in this case n0 = 0.1×Nx.

Given the small magnitude of the gap, we believe that the results for the optimal dis-

tribution of the sensors are reasonable. We note that the sensor distributions, while not

complex, are certainly not trivial as they show that the spacing increases from inflow to

outflow in the white noise case and that it reaches the maximum spacing two thirds away

from the inflow in the colored noise case. We also observe that using colored noise against

white noise results in a significantly smaller gap.

We also computed the total variance at the solution of the sparsity-inducing approach,

and it was indeed worse. For example, for Nx = 200, it was worse by about 4.65%. Figure

2.1 looks much worse than that; part of the problem occurs because the total flow variance

is not very sensitive to sensor placement if the time horizon is short, here being 60 s. This

short time horizon was chosen because of computational time constraints. In any case, we

conclude that the sparsity-inducing approach exhibits inferior performance compared with

that of the sum-up rounding approach.
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Fig.2.5: Optimal sensor locations using the sum-up rounding approach in the total flow
minimization example.

2.4.2 Case II: Trace Minimization

In Figure 2.6, the solution of §2.4.1 in the case of white noise is presented. The conclusions

are similar to the ones obtained by minimizing the variance of the total flow. The placement

appears to be unstable as γ is varied, and subsequent comparisons with the solution of

the sum-up rounding approach convinced us that the solution is far from optimum. For

Nx = 100, the solution produced is worse by 7.5% in terms of the value of the objective

(the trace of the posterior covariance). We observed a similar behavior for the colored noise

approach in the few circumstances studied.

We thus focus on applying the sum-up rounding approach to the A-optimal experimental

design problem (2.18) that minimizes the trace of the covariance matrix (2.20). That is, the

relaxed problem (2.22) is solved followed by the sum-up rounding strategy (2.23) to produce

the integer solution. Specifically, suppose wrel is the solution to the relaxation (2.21) and

wint is the integer solution obtained from wrel via the rounding-up strategy (2.23). Recall
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that the posterior covariance matrix is given by (2.17).

We use the notation C1 = Γpost(wrel) and C2 = Γpost(wint). How well we can certify

that the sum-up rounding strategy works depends on how close C1 and C2 are to each

other. In keeping with the intuition behind the sum-up rounding method [46], it is expected

that the gap decreases as the mesh is refined, provided that the number of sensors is kept

at a constant proportion of the number of nodes. One challenge faced here, however, is

comparing the optimality gap for different problem instances. In the case of the variance of

total flow, described in §2.4.1, this is a discretized linear form of the solution; the weights

from the discretization indicate what the scaling should be, so that one can reason whether

the gap is large or small from a practical perspective. The trace of the posterior variance

does not naturally represent an observable quantity that can be expressed as an integral

objective and in this sense this problem does not immediately fit the setting used in [46].

Because of this, the sum-up rounding strategy is used only as a heuristic. An example of the

difficulty is the following. Each diagonal entry in Ci, for a fixed number of sensors, would

have to converge to a fixed value (the variance of the flow at the given point), but its trace

would go to infinity. To this end, the gap C1 − C2 is mapped to metrics that can be more

easily interpreted. One alternative is to compute Trace(C1 − C2) scaled by the number of

points in the x direction, which is equivalent to multiplying with ∆X. Another option is to

compute the largest eigenvalue of C1−C2 also scaled by ∆X, we call this quantity the largest

eigenvalue distance. Another option is to compute the difference between the variances for

the total flow, that is, aT (C2−C1)a
(
L
Nx

)2
, where a is the vector in the objective function of

total flow. We call the absolute value of this quantity the total flow variance distance. In this

last case, we can compare this gap with the gap from the total flow variance minimization

problem §2.4.1.

We decided not to present the results for the white noise case because this assumption is

unrealistic and the resulting figures present behaviors that are similar to those of the colored

noise case. Moreover, as in the total flow minimization case, they exhibit a slower decrease
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Fig.2.6: Optimal placement for sparsity-inducing (compressed sensing) approach (2.20) for
the trace minimization formulation with white noise.

in the gap compared with the colored noise case.

For colored noise, with the measurement error covariance kernel described in (2.16), our

results are presented in Figures 2.7–2.12.

• The resulting upper and lower bounds are presented in Figure 2.7 (scaled by 1
np

in

Figure 2.8) and the gap between them is presented in Figure 2.9. The x axis is Nx =

Nt = np (the number of parameters), the y axis is Trace(Γpost(wint)).

• The best sensor configuration (from the sum-up rounding strategy for Nx = 100) is

presented in Figure 2.10.

• The largest eigenvalue distance (the eigenvalue with the largest absolute magnitude of

(C2−C1)∆X) is displayed in Figure 2.11. The total flow variance distance is presented

in Figure 2.12 (this is equivalent to computing aT (C2−C1)a
(
L
Nx

)2
with the notation

from (2.19)). On the x axis we display Nx = Nt.

From the numerical experiments, we conclude the following. As Nx increases, the gap

shrinks. The most convincing evidence we find is the largest eigenvalue discrepancy plots

in Figure 2.11, particularly when corroborated with the scaled upper and lower bounds

calculations from Figure 2.8. Note that despite the fact that Trace(C2 − C1)∆X is almost

constant, in the spectral norm (C2 − C1)∆X is decreasing significantly, and the rate is

faster than 1√
Nx

(Figure 2.11). The scaled gap, in particular, does not appear to converge

(Figure 2.9). This also shows that, from the comparison with the largest eigenvalue distance
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Fig.2.7: Upper/lower bounds for trace
minimization case.
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Fig.2.8: Scaled upper/lower bounds for
trace minimization case.
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trace minimization case.
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Fig.2.10: Optimal sensor placement for
colored noise, trace minimization case.

behavior, scaling the trace by its size is not the right approach. The right one will be

the subject of future research and is an intriguing problem in itself. We also display the

total flow variance distance in Figure 2.12. In this case, the proper scaling is clear, since it

represents differences of statistics of physical random variables. We observe a decrease that

is comparable to that in the total flow minimization optimization case. Specifically, we have

a decrease by a factor of 5, between the case Nx = 50 and Nx = 200, whereas in this trace

minimization case we have a decrease by a factor of 4.5 between the same mesh sizes in the

total flow variance distance.

The plots for the optimal solution, shown in Figure 2.10, indicate that a uniform distri-
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Fig.2.12: Total flow variance distance be-
tween relaxed and sum-up rounding co-
variance for colored noise, trace minimiza-
tion case.

bution is a reasonable approximation. While the patterns show some spatial variability, it

is small compared with the gap to indicate that the exact solution would not be uniform

or close to it. In that sense this approach does not bring new insights, with the exception

that the approach indicates that the optimal placement will not include samples at the end-

points (again, an otherwise understandable conclusion given such results from approximation

theory). On the other hand, the endpoints are places where in practice the industry will

most likely have sensors. Thus, the second iteration of this may be to assume that sensors

exist at the endpoints and to solve the new problem. Our guess is that the result will be

close to uniform distribution again. Our interpretation of such effects comes from the fact

that minimizing the trace of the covariance is a bit like minimizing for the variance of all

possible linear forms of the initial state (in effect, one can prove this is precisely the average

of variances over random uniform choices of a over a sphere). With this interpretation it is

perhaps not surprising that a close-to-uniform distribution ensues. As a check suggested by

a referee, we tried each best solution we found for the total variance minimization and the

trace minimization setups in the other problem, and we found that they had larger objective

values, but not by much (less than 1%). Therefore, in the parameter setup we tried, the

minima appear to be shallow, and uniform designs appear to be acceptable. We suspect that
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an issue may be the limited time horizon we can consider because of the intensive nature of

the computation (it takes about a day to solve the problem in Matlab for 200 mesh points

and a 60-seconds horizon on a laptop). More extensive simulations are needed to elucidate

such initial questions.

2.5 Discussion

We concluded that in our setup the sparsity-inducing approach did not produce an integer

solution of sufficient quality. Because we do not know the exact solution, we came to this

conclusion by examining the stability of the approach with respect to the shrinking parameter

and by comparing it with the results of the sum-up rounding strategy. We observed that the

latter produced good results particularly in the increasing discretization case, as expected

because of the interpretation of the approach as being provably optimal in the limit of

increasingly accurate discretizations of a continuous limiting case [46]. For the total flow

variance minimization case, the gap in the relaxation and the sum-up rounding integer

solution decreases roughly as 1√
Nx

, where Nx is the number of points in the x direction.

This indicates indeed an increasingly accurate solution.

For the A-optimal design (the trace minimization problem) the comparison is more com-

plicated, because classical design of experiments theory has a framework for increasing the

number of observations but not for increasing the dimension of the problem in terms of com-

paring the objectives of solutions for different problem sizes. We experimented with different

comparison metrics, the most satisfying of which we found to be the largest absolute value

of the eigenvalue of the difference between the covariance of the relaxed solution and that

of the integer-valued problem. We found that in this metric the sum-up rounding strategy

also results in decreasing the optimality gaps with problem size in the same 1√
Nx

fashion.

Comparing the white noise with the colored case, we observed that the solution of the

white noise case is harder for both total flow variance minimization and A-optimal design,

in the sense of the metrics of convergence being larger and slower to converge, although not
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significantly so. Since the colored-in-time noise case is more realistic for large data (even if

the white noise case is more common in the literature), this is a fortunate occurrence in our

opinion. A good outcome for white noise situations is also not conceptually covered by the

1D ansatz in [46], since in this case the embedding problem is closer to a two-dimensional

one. But the optimality gap shrinks as the mesh is refined in the white noise case as well.

In the total flow variance case the optimal sensor placement solution departs significantly

from the uniform distribution, whereas in the A-optimal design the optimal solution appears

close to uniform. While our approach presents the first computational evidence of this fact for

our target problem class, it is certainly disappointing, although given the worst-case flavor

of the A-optimal design perhaps not entirely unexpected. Of course when experimenting

with different regimes this conclusion may change, but this is how the evidence sits at the

moment.

While many more experiments need to be run, the behavior of the total flow optimal

sensor placement suggests that the optimal solution while focusing on application-specific

target functions of the unknown flow signal may result in nontrivial geometrical patterns of

sensor placement. This, however, may not be desirable because the objective function may

change with usage and redeployment of sensors. Therefore, a conservative approach would

be to use an A-optimal design objective. But when desired, it appears to be an interesting

direction of investigation in terms of expected outcome.
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3 Theoretical Convergence on Optimality Gap

This section provides theoretical results on the zero convergence of integrality gap. In

§3.2, we review the Bayesian framework and the mixed-integer nonlinear program formula-

tion, and make a connection to integral operators. The sum-up rounding (SUR) procedure

is defined in §3.3 based on a two-level meshing decomposition, and we give its properties of

approximation in multiple dimensions. In §3.4, we show convergence of the integrality gap

based on SUR strategy for different experimental design criteria, with identity covariance

matrix in the prior. We provide simulation results in §3.5 on two-dimensional gravity sur-

veying and compare with thresholding designs. In §3.6, we extend the convergence results

to a Gaussian prior with Laplacian precision matrix, and give a different formulation where

the parameters are the truncated coefficients of basis in a function space in §3.7.

3.1 Introduction

Design of experiments (DOE) aims to determine experimental settings that yield accurate

results for statistical model parameters. One important branch of DOE seeks to determine

the optimal sampling locations given a set of available measurement points (see [5, §7.5]

and [6, §9, §12]). In [5], the goal is to select m regression vectors with replacement from

a prescribed set of p regression vectors, so as to obtain best ordinary least squares (OLS)

estimates. The optimality criteria are based on the trace, log-determinant, or maximum

eigenvalue of the covariance matrix of OLS estimates. This is an integer programming

problem, and it is generally NP-hard [48]. One tractable approach is to first solve the convex

problem obtained from relaxing the integrality constraints, and then round the solution off
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to an integer one. In [6], the setting is also linear, where measurements are selected from

an infinite set of regression vectors, allowing for repeated measurements. Several efficient

rounding-to-integrality procedures are proposed and an analysis of asymptotic performance

loss is given. A common feature of all these approaches is that the analysis is done with

respect to a fixed number of model parameters.

Our focus of investigation is related to such previous endeavors but takes a different di-

rection. Instead of a linear relationship between response (output) and parameters (input) in

fixed and finite dimensions, our measurement of response is determined by the discretization

of an integral functional of distributed parameters. The unknown quantity is a function that

belongs to an infinite-dimensional space, which is approximated by discretization on increas-

ingly fine meshes. Here, we aim to understand the asymptotics of the rounding procedure in

the limit of the mesh size going to zero. As a result, the inverse Fisher information matrix we

try to minimize (with respect to a given design criterion, such as its trace) increases in size

with the number of discretization points, which makes analysis with common design criteria

difficult (§3.2.5). We are not aware of prior theoretical work on the convergence analysis of

discretized design of experiments with a number of sites that can grow unboundedly. More-

over, we assume here–as would be the case in many physical settings–that each data site is

measured only once, so repeated measurements (as in [5, 6]) are not allowed. This would

be the case, for example, if the problem is time dependent and thus a certain point in space

cannot be revisited at the same instant in time or if the sensor error is constant in time but

has mean zero over the sensor population, as is typical of physical sensors [49, §34.3].

Since we aim to determine the optimal sensor locations starting from a relaxed problem,

the construction of an integer solution with appropriate rounding strategies of the relaxed

version is a critical endeavor. Numerous rounding heuristics are given in the literature (see

[50, 51, 52]), and some specifically aim for binary variables (see [53, 54, 55]). In [50], the

author studied the optimal rounding by recording and comparing empirical success rates,

defined as the percentage of “roundable relaxation” optima (in the words of [50]), for dif-
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ferent types of optimization problems (mixed-integer quadratically constrained program,

mixed-integer nonlinear program, etc.) among the existing rounding strategies. Classical

mixed-integer techniques have been used specifically for sensor placement aiming at detect-

ing contamination in water networks (see [56, 57, 58]) but focusing mainly on a fixed-sized

discretization without investigation of limiting properties. Closer to the continuously indexed

(in the limit) framework in this paper, sensor placement for systems governed by partial dif-

ferential equations has been studied using a Bayesian framework [8]. In that case, the discrete

nature of sensor placement problems was recovered by seeking sparsity in the solution of the

relaxed problems by means of an l0 penalty that is approximated by a sequence of smooth

functions. This approach can be applied to infinite-dimensional problems, but the numerical

results can be unstable, and they depend on the choice of various tuning parameters. All the

rounding approaches described in this paragraph have shown good performance for certain

classes of problems, including the type studied here, but their asymptotic properties have

not been investigated theoretically.

Since we are interested in problems that can be continuously indexed, we investigate an

extension of sum-up rounding (SUR). Sum-up rounding for binary variables, as we also pur-

sue here, has been shown in temporally indexed problems to have the desirable asymptotic

property of being arbitrarily close to an integer solution as long as the discretization mesh is

sufficiently fine [22, 21]. In [21], the authors not only clarify the role of SUR in MIOCPs but

also obtain a guaranteed bound on the performance loss, depending on the size of discretiza-

tion mesh. In [22], a specific structure in one dimension is considered where the objective

is a function of either the Fisher information matrix or its inverse, and the optimality gap

converges to zero. Recently we used SUR as a heuristic for the sensor placement problem

in natural gas pipelines governed by systems of nonlinear hyperbolic differential equations.

We observed convergence of the integrality gap as the spatial mesh was progressively refined

[59]; but since the spatial problem had a different nature from [21], we did not have theory

to justify that observation. That was one of the main motivators for this work.
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Here, we investigate DOE based on a Bayesian framework for parameter estimation [8],

and we minimize functions of the posterior covariance matrix based on common experimental

design criteria [6]. Our parameter to the observations map is based on an integral equation,

as opposed to the solution of a partial differential equation as in [8], although the two are

conceptually equivalent if one considers the Green function resolvent with the prior inter-

preted as a regularization term [60]. The resulting DOE problem after spatial discretization

is a convex mixed-integer program; see §3.2.5. After solving the relaxed problem, we define

and employ a multidimensional SUR procedure inspired by the one-dimensional procedure

proposed in [22, 21]. Our main objective is to investigate whether the integrality gap be-

tween the DOE criteria at the rounded solution and relaxed solution converges to zero in the

limit of zero mesh size, as was observed for MIOCPs in [22, 21]. Our contributions consist of

proposing an extension of the SUR rounding procedure in multiple dimensions and proving

that, for common experimental design criteria, the integrality gap converges to zero as the

mesh size shrinks to zero. The techniques we employ to this end are related to the spectral

theory of self-adjoint integral operators [23]. We emphasize that questions about the asymp-

totic quality of DOE solutions over varying design space size have not been investigated in

classical DOE theory [6].

While inspired from the idea of SUR in [21] and using it as a building block, this work

is different in several respects. First, applying it in a multidimensional setting allows for a

larger number of rounding options and our theory covers a fairly general setup based on what

we call compatible two-level domain decomposition schemes. Also, while the SUR technique

itself works for rectangular domains, (which in effect, we argue in the construction at the

end of §3.3.2), the proof in [21] relies on the convergence of one-dimensional integrals which

would not directly apply to more than one dimension. While in the end, for implementation

simplicity, our examples are for rectangular domains as well, the theoretical framework itself

allows in principle a broad set of domain shapes and other rounding techniques, another

example of which we give in Appendix B. Second, the functions we optimize here, which
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define the objective of the experimental design, depend on the posterior covariance matrix,

whereas the entries in the precision matrix (the inverse of the covariance matrix) are the

ones related to an integral quantity for which the typical SUR analysis applies. To carry out

our the gap convergence analysis for experimental design requires the investigation of SUR

effects on the eigenvalues of the precision and covariance matrices. Moreover, the sizes of

these matrices go to infinity, which poses additional obstacles to the convergence analysis as

we discuss in §3.4, whereas results in [22] primarily address a fixed dimensional parameter

space, and thus, covariance matrix.

3.2 Estimation Framework

While the contribution of this work concerns primarily the behavior of the SUR-induced

integrality gap, some of the assumptions we make stem from the estimation framework itself.

In particular, our results are tied to a common but specific choice of the covariance matrices

as well as to a limiting interpretation in terms of a certain integral operator. In the latter

case, the integer programming relaxation needs to be interpreted in an extended output

space. We thus describe the estimation framework that we use to define our DOE problem.

The setup is based primarily on [8].

3.2.1 Parameter-to-Observable Map

Consider the input domain Ωin⊂RQ and output domain Ωout⊂RP , both of which are

compact sets. Suppose the output without measurement error depends on the input through

an integral equation:

u(x) =

∫
Ωin

f(x, y)u0(y) dy, x ∈ Ωout,

where f(x, y) is prescribed by the physical constraints in the setup; we thus assume it is

known. The output u(x) can be measured at selected points but is affected by measurement

error. Our goal is to infer the parameter vector u0 from the observation vector u. Equation
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(3.56) defines a parameter-to-observable map.

To create a finite-dimensional approximation we now discuss a simple discretization strat-

egy. More advanced discretization approaches as in [61] could easily be incorporated but

would complicate the presentation whose focus is on the SUR approximation properties for

DOE. We divide D= Ωin (or an approximation of Ωin) into m subdomains D1, D2, ..., Dm

with equal size µ(Di) = ∆y = µ(Ωin)/m for i = 1, 2, ...,m (as is done, e.g., for versions of

Nyström’s method in [62]). Then, we select a representation point yi in each Di and repre-

sent the input function u0 as the finite-dimensional vector û0 =
(
u0(y1), u0(y2), ..., u0(ym)

)
.

Similarly we divide V = Ωout into n subdomains V1, V2, ..., Vn with equal size µ(Vj) = ∆x=

µ(Ωout)/n for j=1, 2, ..., n and select a representation point xj for each Vj . Then we repre-

sent the continuous output u as the vector û=
(
u(x1), u(x2), ..., u(xn)

)
. These x1, x2, ..., xn

points are also the candidate locations to place sensors. We approximate the integral from

(3.56) by the Riemann sum:

u(xj) =

∫
Ωin

f(xj , y)u0(y) dy ≈
∑
i

f(xj , yi)u0(yi)∆y.

To write it in matrix form, we define F ∈ Rn×m with F (j, i) = f(xj , yi)∆y, and then

û = Fû0. Here û and û0 represent the discretized output and input respectively.

We note that in applications the function f(x, y) in (3.56) may not always be continuous.

For example, when the function f encapsulates wave dynamics, it is represented by a Dirac

functional f
(
(x, t), y

)
≡ δ(y, x−at), where a is the wave speed. For the remainder of this

work, we assume f to be continuous. Another restriction in (3.56) is that u(x) depends

linearly on u0(x), which is not the case in nonlinear relationships, such as for pipeline gas

dynamics [59]. In that case, the target problem can be approximated in the framework of

(3.56) by linearization, as was done in [8, 59].
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In the rest of this work, we use δ(x) to denote the Kronecker δ symbol:

δ(x) =


1, if x = 0,

0, otherwise.

3.2.2 Bayesian Estimation Framework

Our goal is to estimate the parameter vector û0 as a proxy for the unknown function u0.

We consider a Bayesian framework where û0 is the parameter vector to be estimated and

the measurements û are data perturbed by noise. Similar to [8, 59], we assume that both

the parameter prior and the measurements distributions are Gaussian:

û0 ∼ N(upri,Γprior),

û =Fû0 + η, where η ∼ N(0,Γnoise).

Here, Γpri and Γnoise represent the prior and measurement noise covariance matrices, re-

spectively, whereas upri is the prior mean. We assume the measurement error to be unbiased

conditional on the realization of u0, and thus η has mean 0. From Bayes’ rule, the posterior

distribution of û0 is also Gaussian and has (up to a constant) the following density:

πpost(û0|û) ∝ exp
{
− 1

2
(û− Fû0)TΓ−1

noise(û− Fû0)− 1

2
(û0 − upri)TΓ−1

prior(û0 − upri)
}
.

As mentioned in the Introduction and Chapter 2, we quantify the sensor placement effect

in the posterior by creating a weight vector w = (w1, w2, .., wn) ∈ {0, 1}n where the jth

component wj corresponds to candidate location xj in the output domain. Let W be a

diagonal matrix with weight vector w on its diagonal. The w-weighted posterior likelihood,
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conditional on the data u and weight vector w, is

πpost(û0|û, w) ∝ exp
{
− 1

2(û− Fû0)TW 1/2Γ−1
noiseW

1/2(û− Fû0)

−1
2(û0 − upri)TΓ−1

prior(û0 − upri)
}
.

Under these assumptions and accounting for the prior distribution, we can compute the

posterior û0, which is the normal distribution N(upost,Γpost), where

upost = Γpost

(
FTΓ−1

noiseû+ Γ−1upri

)
, Γpost =

(
FTW 1/2Γ−1

noiseW
1/2F + Γ−1

prior

)−1

are the posterior mean and covariance matrix, respectively. In this estimation model, the

posterior covariance matrix does not depend on data û. In other words, the optimal sensor

placement is determined by the parameter-to-observable map and two Γ matrices.

3.2.3 Choice of Covariance Matrices

We assume that, conditional on the true û, the measurement errors are independent.

In most physical processes and sensor systems this is a reasonable assumption [63]. Con-

sequently, the matrix Γnoise is diagonal and commutes with W and all its positive powers,

resulting in the expression

upost = Γpost

(
FTΓ−1

noiseû+ Γ−1upri

)
, Γpost =

(
FTΓ−1

noiseWF + Γ−1
prior

)−1
.

In particular, the precision matrix (the inverse of the covariance matrix) becomes linear in

W , which considerably simplifies our calculations and analysis. We assume identical sensors,

and therefore Γnoise =σnoiseIn for some prescribed sensor noise standard deviation σnoise.

The other covariance matrix that needs to be selected is the one corresponding to the prior

distribution. Here we use a multiple of the identity Γprior = σpriIm. This choice can be

interpreted as ridge regression [64] or Tikhonov regularization of an inverse problem [65].

While for some setups our choice is not the ideal prior [65] it is one of the most common
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choices, at least before significant collection of data.

Our analysis is tied significantly to these choices, and particularly so for the prior where

other reasonable choices may be available. On the other hand, this is one of the most

common choices in statistical analysis of inverse problems [65]; therefore our setup does

represent many problems of interest.

3.2.4 Connection to Integral Operators

With the covariance choices specified in §3.2.3, the precision matrix, the inverse of the

posterior matrix Γpost, becomes

Γ−1
post = σ−1

noiseF
TWF + σ−1

priIm.

Note that the (i, j)th entry in Γ−1
post is

Γ−1
post(i, j) = (∆y)2σ−1

noise

n∑
k=1

f(xk, yi)w
n
kf(xk, yj) + σ−1

pri · δ(xi − xj), (3.1)

with wnk being the weights from the diagonal of W . With reference to the notations from

§3.2.1, we denote by wn(x) the piecewise constant function defined as wn(x) = wnk , x ∈ Dk,

which is the discretized area corresponding to kth candidate location in Ωin. Assume that

there is a measurable function w(x) : Ωout → [0, 1] such that wn(x) → w(x) in L1. For

purposes of illustration we assume that wn(x) converges in this subsection; that will not be

required in our results in §3.4. Then, if ∆x,∆y → 0 with ∆y/∆x constant, the first term in

(3.1) will converge to

∆y

(∆y

∆x

)
σ−1
noise

∫
Ωout

f(x, yi)w(x)f(x, yj) dx. (3.2)
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This quantity relates to the discretization of an integral operator

Lu0(z) =
(∆y

∆x

)
σ−1
noise

∫∫
Ωout×Ωin

f(x, z)w(x)f(x, s)u0(s) dxds, z ∈ Ωout. (3.3)

Note that if ∆x = ∆y, then (3.2) is one coefficient of the discretization of (3.3) along the

input variable s. If w(x) is nonnegative, then the eigenvalues of L are nonnegative. Because

L is a compact operator [23], it has a countable spectrum with 0 its only accumulation point.

Moreover, because of its integral form, its trace is finite [66]. This prompts the hypothesis

that the spectrum of Γ−1
post is related to the spectrum of L and σpri. Specifically, eigenvalues

of σ−1
noiseF

TWF approach eigenvalues of L [66] in the limit of ∆x,∆y going to 0 at a fixed

ratio. This indicates that the eigenvalues of Γpost will approximately be 1/(λ+ σ−1
pri), where

λ are eigenvalues of L. This insight, with mathematical statements that will be made more

rigorous in §3.4, allows the analysis of optimization problems whose objectives are functions

of the spectrum of Γpost, as is the case for the DOE problems described in §3.2.5.

3.2.5 Design of Experiments Problems

We are ready to formulate our DOE problem that addresses the issue of optimal sensor

placement. We aim to minimize the estimation error of the parameter û0, which can be

quantified by using its posterior covariance matrix, φ(Γpost). The three most widely used

criteria in experimental design to measure the size of this error are [6]

• A-optimal design: φ(Γpost) = tr(Γpost);

• D-optimal design: φ(Γpost) = det(Γpost);

• E-optimal design: φ(Γpost) = λmax(Γpost).

Lemma 3.2.1. tr(Γpost), log det(Γpost) and λmax(Γpost) are convex functions in the weight

vector w.
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Proof. The posterior matrix can be written as

Γpost(w) =
(
σ−1
noise

n∑
i=1

wiFiF
T
i + σ−1

priIm

)−1
,

where Fi is the ith column of FT . The desired results follow because tr(X−1), log det(X−1)

and λmax(X−1) are all convex in X [5, Exercise 3.26], and the fact that X is affine in w.

We formulate the DOE problem as follows (φ represents one of the three criteria, and we

use logdet for D-optimal design):

min φ(Γpost(w))

s.t. wi ∈ {0, 1},
∑n
i=1wi = n0,

(3.4)

where n0 is the number of sensors. To avoid the complexity of integer programming, we

start by examining the relaxed problem obtained by relaxing the integrality constraint,

min φ(Γpost(w))

s.t. 0 ≤ wi ≤ 1, i = 1, 2, . . . , n,
∑n
i=1wi = n0,

(3.5)

whose solution we denote by wrel. Problem (3.5) is convex from Lemma 3.2.1. It can be

solved, after using some standard semidefinite programming reformulations, by interior-point

algorithms [5]. The relaxed solution wrel provides a lower bound to the optimal objective of

the convex integer program (3.4).

Our results will apply for any n0 (and its value could also change with the number

of discretization domains n), but they would be most meaningful in certain ranges. An

examination of (3.1) indicates that if f is bounded by C, then the trace of the discretization

of the integral operator is nonnegative and upper bounded by n0nC
2∆2

y. We must have

n∆y = O(1) since n∆y must be the volume of the initial set V . Therefore, for the estimation

problem to carry information comparable to the prior, we need to have n0∆y = O(1); that is,

n0 must be of comparable order with n. Otherwise the contribution from φ would originate
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in the limit exclusively from the prior. In other words, a meaningful asymptotics is the one

where the number of sensors is in a fixed ratio with the number of mesh domains. This is the

corresponding constraint to the one in [22] whereby the measurement time is proportional

to the considered time range [0, T ].

3.3 Sum-up Rounding Strategy in Multiple Dimensions

In this section we describe a sum-up rounding procedure that maps the fractional vector

wrel solution of (3.5) into an integer vector wSUR in a way that ensures the spectrum of

Γpost(wrel) and Γpost(wSUR) are not too far from each other. In turn, this will ensure that

the gap φ(Γpost(wSUR))− φ(Γpost(wrel)) stays small.

Our procedure is presented here for rectangular domains V (i.e., Ωout, but the same

construction can be applied to Ωin), divided into n subdomains V1, V2, ..., Vn of equal size

µ(Vk) = ∆x =
µ(V )
n . Given the function wn(x) : V → [0, 1], which is constant on each Vi,

we construct a 0-1 valued function w̃n(x) that is also constant on each Vi such that the two

sums

Sn1 =
n∑
k=1

f(xk)wn(xk)∆x, Sn2 =
n∑
k=1

f(xk)w̃n(xk)∆x (3.6)

are arbitrarily close to each other as long as n is large enough. Our analysis is centered

around estimating the variation in the entry i, j of Γ−1
post following the SUR procedure. The

bounding technique will end up being uniform in i, j. To simplify our exposition, we ignore

in the rest of the analysis the argument y of f in (3.2) since it has no effect on our approach.

Note that the function f need not be the same as the one defining the integral equation

(3.56), and it can be any function defined on Ωout satisfying certain continuity conditions.

If V ⊂R, this is essentially a one-dimensional time domain problem that has already been

studied in [21]. In multiple dimensions, we can flatten the multidimensional vector and

apply the basic sum-up rounding. However, the integration-by-part technique in the proof

of [21, Theorem 2] becomes problematic in multiple dimensions, and this is why we resort
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to a two-level decomposition which also covers the basic one-dimensional case. It is worth

mentioning that depending on the ordering of entries, we can obtain different integer vectors.

In this section, we discuss the basic sum-up rounding strategy in §3.3.1 where Lemma 3.3.1

is an analogue to [21, Theorem 3]. The multidimensional strategy and its properties are

given in §3.3.2 and §3.3.3 respectively, and Theorem 3.3.4 in §3.3.3 is an extension of [21,

Theorem 2].

3.3.1 Properties of Basic Sum-up Rounding Strategy

We denote w̃ni (wn1 ) as the value of w̃n(x) (wn(x)) in Vi and construct the binary function

w̃n(x) from wn(x) as follows.

(1) Compute I1 = wn1 · µ(V1), and set w̃n1 to

w̃n1 =


0, if I1 ≤ 1

2µ(V1),

1, otherwise.

(2) For i=2, 3, ..., n, compute

Ii=
i∑

k=1

wn(xk)µ(Vk) and Ĩi−1 =
i−1∑
k=1

w̃n(xk)µ(Vk),

where w̃ni is given by

w̃ni =


0, if Ii − Ĩi−1 ≤ 1

2µ(Vi),

1, otherwise.

We call this strategy basic sum-up rounding, in reference to the name of the one-dimensional

technique introduced in [22, 21] which inspired this approach. The basic idea is that each

element is scanned sequentially and is rounded to either 0 or 1 determined by the difference in

the accumulated sum of elements that are already processed. The strategy has the property
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that for large n, wn(x) and w̃n(x) get close to each other for all partial sums, which is stated

in the following lemma.

Lemma 3.3.1. The function w̃n(x) has the following property: For any i = 1, 2, ..., n,

|Ii − Ĩi| =
∣∣∣ i∑
k=1

(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ 1

2n
µ(V ).

where V is the rectangular output domain with fixed size.

Proof. We prove this result by induction. For i = 1, we have the following.

• When I1 ≤ 1
2µ(V1) = 1

2nµ(V ), we have w̃n1 =0 and Ĩ1 =0, and therefore

|I1 − Ĩ1| = I1 ≤
1

2n
µ(V ).

• When I1>
1

2nµ(V ), we have w̃n1 =1. Since wn(x)≤1, we get

1

2n
µ(V ) < I1 ≤

1

n
µ(V ), |I1 − Ĩ1| =

1

n
µ(V )− I1 ≤

1

2n
µ(V ).

By the induction hypothesis, assume |Ii − Ĩi| ≤ 1
2nµ(V ) is true for i= k. We show it for

i=k+1 as follows.

• When 0 ≤ Ik − Ĩk ≤ 1
2nµ(V ), note that Ik ≤ Ik+1. We discuss two cases.

(a) If 0 ≤ Ik+1 − Ĩk ≤ 1
2nµ(V ), then w̃nk+1 = 0 from the rounding rule, and thus

Ĩk+1 = Ĩk. Therefore

0 ≤ Ik+1 − Ĩk+1 ≤
1

2n
µ(V ),

and the induction hypothesis is satisfied.

(b) If 1
2nµ(V ) < Ik+1 − Ĩk, which implies

1

2n
µ(V ) < Ik+1 − Ĩk ≤ Ik − Ĩk +

wnk+1

n
µ(V ) ≤ 1

2n
µ(V ) +

1

n
µ(V ), (3.7)
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then from the rounding rule we have that w̃nk+1 =1, and we obtain

Ĩk+1 − Ĩk = µ(Vi+1) =
1

n
µ(V ). (3.8)

Subtracting the equality (3.8) from the inequality (3.7) gives the desired result:

− 1

2n
µ(V ) < Ik+1 − Ĩk+1 = Ik+1 − Ĩk −

1

n
µ(V ) ≤ 1

2n
µ(V ).

• When − 1
2nµ(V ) ≤ Ik − Ĩk ≤ 0, since Ik+1 = Ik + wnk+1

µ(V )
n , we also have that

Ik+1 ≥ Ik, and thus − 1
2nµ(V ) ≤ Ik+1 − Ĩk. We discuss two cases in a similar way.

(a) If − 1
2nµ(V ) ≤ Ik+1 − Ĩk ≤ 1

2nµ(V ), then w̃nk+1 = 0 from the rounding rule, and

thus Ĩk+1 = Ĩk. Hence

− 1

2n
µ(V ) ≤ Ik+1 − Ĩk+1 ≤

1

2n
µ(V ).

(b) If 1
2nµ(V ) < Ik+1 − Ĩk, then

1

2n
µ(V ) < Ik+1 − Ĩk ≤ Ik − Ĩk +

wnk+1

n
µ(V ) ≤ 0 +

1

n
µ(V ). (3.9)

In turn, from the rounding rule this implies that w̃nk+1 =1. As a result, we have

Ĩk+1 = Ĩk + µ(Vi+1) = Ĩk +
1

n
µ(V ). (3.10)

Replacing the identity (3.10) in the inequality (3.9), we obtain

− 1

2n
µ(V ) < Ik+1 − Ĩk+1 = Ik+1 − Ĩk −

1

n
µ(V ) ≤ 0.

Inspecting the consequences of these four branches, we have completed the proof for i=k+1,

namely, |Ik+1 − Ĩk+1| ≤ 1
2nµ(V ). Therefore the statement is true for i = 1, 2, ..., n and the
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proof is complete.

We now have a rounding strategy, and before we apply it, it is important to check

feasibility of the resulting integer vector. The lemma below states that sum-up rounding

always provides a feasible vector for our main optimization problem (3.4).

Lemma 3.3.2. With the basic sum-up rounding strategy, if
∑n
k=1w

n(xk)=n0 is an integer,

then
n∑
k=1

w̃n(xk) =
n∑
k=1

wn(xk) = n0.

Proof. In Lemma 3.3.1 we have that ∆x =
µ(V )
n , and the conclusion for i = n can be

rewritten as ∣∣∣ n∑
k=1

wn(xk)−
n∑
k=1

w̃n(xk)
∣∣∣ ≤ 1

2
.

Since both
∑n
k=1w

n(xk) and
∑n
k=1 w̃

n(xk) are integers, they have to be equal.

3.3.2 A Two-level Decomposition Scheme

We showed in §3.3.1 that wn(x) and w̃n(x) are close to each other, but our goal is to

prove that the two sums in (3.6) are close. Suppose V =[l11, l
1
2]× [l21, l

2
2]× ...× [lP1 , l

P
2 ] ⊂ RP ,

and each [li1, l
i
2] is divided into ni intervals Ii,1, Ii,2, ..., Ii,ni (script letters represent one-

dimensional intervals) of equal length. Then there are n = n1n2 · · ·nP unit rectangles of the

form ∏
i=1,2,..,P,
ji∈{1,2,..,ni}

Ii,ji .

They all have the same size µ(V )/n, and we call them R1, R2, ..., Rn. In addition, we assume

that there exist two positive constants c1, c2 such that

c1 ≤
maxi=1,2,..,P ni

mini=1,2,..,P ni
≤ c2. (3.11)
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This implies that ni = O(n1/P ) for any i ∈ {1, 2, ..., P} and that each rectangle Ri is not

far from a “unit box.”

Definition 1. We call a compatible two-level decomposition scheme a domain decomposition

setup of a compact domain V with the following properties. The rectangles Ri, i = 1, 2, . . . , n,

are grouped in subdomains Vj, j = 1, 2, . . . , k̃(n), for which the first k(n) subdomains contain

an equal number of rectangles, r(n). The intersections between the interiors of each two

subdomains Vj is empty, moreover the subdomains Vj need not cover the entire domain V ,

and we denote the remainder by Vrem = V − ∪k̃(n)
j=1 Vj. We denote by ρ(Vj) the diameter of

the subdomains, j = 1, 2, . . . , k(n). Subsequently, we reindex the rectangles such that their

ordering respects the subdomains ordering, that is, Ri1 ∈ Vj1 , Ri2 ∈ Vj2 , j1 ≤ j2 ⇒ i1 ≤ i2.

Our sum-up rounding approach consists of applying the basic method from §3.3.1 to the

rectangles Ri in their modified ordering.

To obtain the approximation properties, it would be sufficient to apply the basic method

from §3.3.1 to each subdomain Vi. The extra steps of reordering and the application to the

entire rectangle set ensure that we preserve the total sum of the weights, and thus that we

satisfy the constraints from (3.4).

To achieve a vanishing integrality gap, we will be interested in compatible two-level

decompositions that satisfy in the limit the following properties:

lim
n→∞

max
1≤j≤k(n)

ρ(Vj) = 0, k(n), r(n)
n→∞−→ ∞, r(n)k(n)

n

n→∞−→ 1, µ(Vrem)→ 0. (3.12)

For many domains V such compatible two-level decompositions can be easily obtained

based on algorithms for hexahedral meshing [67] that are commonly used in spectral element

methods [68]. Note that our problem is easier than most in that sense, since the mesh need

not be conformal [69], that is, we allow Vrem 6= ∅. Even in that case, however, a rigorous

proof of (3.12) for a wide class of domains is non-trivial and significantly beyond the scope of

the paper. The theoretical existence of such decompositions, however, seems clear as similar
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techniques are central to Riemann sums convergence arguments.

We thus demonstrate how to create compatible two-level decompositions for rectangular

domains only, as follows.

(i) We divide V into n = n1n2 · · ·nP small rectangles of the form (3.3.2) as before, and

we list them as R1, R2, ..., Rn.

(ii) We order the unit rectangles R1, R2, ..., Rn, as follows:

R1 = I1,1 × I2,1 × ...× IP,1

R2 = I1,2 × I2,1 × ...× IP,1
...

Rn1 = I1,n1 × I2,1 × ...× IP,1

Rn1+1 = I1,1 × I2,2 × ...× IP,1

Rn1+2 = I1,2 × I2,2 × ...× IP,1
...

Rn = I1,n1 × I2,n2 × ...× IP,nP .

They are ordered “line by line” according to the first dimension. Denoting k1(n1)
∆
=

b
√
n1c, we now build the subdomains Vj as follows.

(a) On [l11, l
1
2] we group the first k1(n1) intervals {Ii,j}

k1(n1)
j=1 as G1,1, group the next

k1(n1) intervals {I1,j}
2k1(n1)
k1(n1)+1

as G1,2, and so forth until we get G1,k1(n1). The

remaining intervals {I1,j}nj=k1(n1)2+1
are grouped as G1,last, and the number of

intervals in G1,last equals n1 − b
√
n1c2.

(b) The subdomain Vj has the following form:

G1,j1 × I2,j2 × ..× IP,jP ,
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where j1 ∈ {1, 2, .., k1(n1), last}, ji ∈ {1, 2, .., ni} for i ≥ 2.

This decomposition has the following parameters and properties, in reference to Definition 1.

k(n) = b√n1c
P∏
i=2

ni, k̃(n) = d√n1e
P∏
i=2

ni, r(n) = b√n1c (3.13)

ρ(Vj) =

√√√√((l12 − l
1
1)

b√n1c

)2

+
P∑
i=2

(
(li2 − l

i
1)

ni

)2

, j = 1, 2, . . . , k(n) (3.14)

With these definitions, sum-up rounding is applied as described in Definition 1. We note

that many other compatible two-level decompositions are possible, another one is presented

in §B.

The following simple example illustrates the idea of two-level decomposition on a square

domain in R2. There are 10 points evenly spaced on each side, and then unit rectangles

Rj ; we group 3 of them and form 30 subdomains Vj ; the basic sum-up rounding strategy

is applied to each Vj . As the construction is repeated for increasing n, the remainder area

(yellow in color rendering) will diminish compared to the full domain, and its effect on the

difference between the sums in (3.6) and their relationship to the corresponding integral will

vanish. The detailed explanation related to the output domain Figure 3.1 is given here:

• domain: [l11, l
1
2]× [l21, l

2
2];

• discretization parameter: n1 = n2 = 10, n = n1 ∗ n2 = 100;

• k1(n1) = b
√

10c = 3, k(n) = 30, k̃(n) = 40;

• Rj = I1,j1 × I2,j2 where j = (j2 − 1) ∗ n1 + j1;

• G1,1 = I1,1∪I1,2∪I1,3, G1,2 = I1,4∪I1,5∪I1,6, G1,3 = I1,7∪I1,8∪I1,9, G1,last = I1,last;

• subdomain: V1 = G1,1 × I2,1, V2 = G1,2 × I2,1, V3 = G1,3 × I2,1, · · · .

We will characterize essential features of this approach in the next subsection.
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Dimension 1

D
im

en
si

on
2

l11 l12

l21

l22

I1,j1 I1,last

I2,j2

Rj

V1 V2 V3

•

••

•

V28 V29 V30

Fig.3.1: An illustration of two-level decomposition of rectangle domain

3.3.3 Properties of Sum-Up Rounding in Multiple Dimensions

For our results, we use the notation ‖x‖=‖x‖2 for the norm of a vector x ∈ Rn.

Theorem 3.3.3. Assume that V is a compact domain in RP and that f(x) is Lipschitz

continuous on V with Lipschitz constant L: for any x, y ∈ V ,

|f(x)− f(y)| ≤ L‖x− y‖.

Consider a compatible two-level domain decomposition and let w̃n(x) be the binary function

from a sum-up rounding algorithm as described in Definition 1. Let xk be a point in Rk,

k = 1, 2, . . . , n. Then we have

∣∣∣ n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ max
x∈V
|f(x)|µ(V − Vrem)

r(n)

k(n)r(n)

n
+

max
j=1,2,...,k(n)

ρ(Vj)2Lµ(V − Vrem)
k(n)r(n)

n
+ 2 max

x∈V
f(x)µ(V − Vrem)

(
1− k(n)r(n)

n

)
.
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Moreover, if
∑n
k=1w

n(xk) = n0 is an integer, then
∑n
k=1 w̃

n(xk) = n0.

Proof. We prove first the result for the case where k(n) = k̃(n) and Vrem = ∅ (that is, all

subdomains Vj have the same size and properties and they exactly cover the domain V ). In

this case Lemma 3.3.1 gives

∣∣∣ ∑
xk∈V1∪..∪Vj

(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ 1

2j · r(n)
µ(V1 ∪ .. ∪ Vj) =

1

2r(n)
µ(Vj).

This implies

∣∣∣ ∑
xk∈Vj

(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ ∣∣∣ ∑
xk∈V1∪..∪Vj

(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣
+
∣∣∣ ∑
xk∈V1∪..∪Vj−1

(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣
≤ 1

2r(n)
µ(Vj) +

1

2r(n)
µ(Vj)

=
1

r(n)
µ(Vj). (3.15)

Let yj be any point in subdomain Vj , and define

Υ =
n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x,

Ψ =

k(n)∑
j=1

f(yj)
∑
xk∈Vj

(
wn(xk)− w̃n(xk)

)
∆x.

A bound on |Ψ| is given as

|Ψ| ≤
k(n)∑
j=1

|f(yj)|
∣∣∣ ∑
xk∈Vj

(
wn(xk)−w̃n(xk)

)
∆x

∣∣∣ (3.15)
≤ max

x∈V
|f(x)|

k(n)∑
j=1

µ(Vj)

r(n)
=
µ(V )

r(n)
max
x∈V
|f(x)|.

(3.16)
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Lipschitz continuity implies |f(x)− f(y)| ≤ L‖x− y‖ for any x, y ∈ Vj and

|Υ−Ψ| =
∣∣∣∆x

k(n)∑
j=1

∑
xk∈Vj

(
f(xk)− f(yj)

)(
wn(xk)− w̃n(xk)

)∣∣∣
≤ ∆x

k(n)∑
j=1

∑
xk∈Vj

∣∣∣(f(xk)− f(yj)
)(
wn(xk)− w̃n(xk)

)∣∣∣
≤ ∆x

k(n)∑
j=1

∑
xk∈Vj

2L‖xk − yj‖

≤
k(n)∑
j=1

2Lρ(Vj)
∑
xk∈Vj

∆x

= 2L

k(n)∑
j=1

ρ(Vj)µ(Vj)

≤ 2Lµ(V ) max
j

ρ(Vj). (3.17)

Therefore we obtain from (3.16) and (3.17) that

∣∣∣ n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ = |Υ|

≤ |Ψ|+ |Υ−Ψ|

≤ max
x∈V
|f(x)|µ(V )

r(n)
+ 2Lµ(V ) max

j
ρ(Vj).

When k̃(n) > k(n) and Vrem 6= ∅, we divide V −Vrem into two disjoint domains Vmain =⋃k(n)
j=1 Vj and Vlast =

⋃k̃(n)
j=k(n)+1

Vj . We apply the results in the case k(n) = k̃(n) to Vmain

to obtain

∣∣∣ ∑
xk∈Vmain

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤max
x∈V
|f(x)|µ(Vmain)

r(n)

+ 2Lµ(Vmain) max
j

ρ(Vj), (3.18)
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For the remaining part of the sum, using the fact that the components of w and w̃ are

bounded between 0 and 1, we have

∣∣∣ ∑
xk∈Vlast

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ 2 max
x∈V
|f(x)|µ(Vlast). (3.19)

Because each unit rectangle Rk has the same size, we have

µ(Vmain) =
k(n)r(n)

n
µ(V − Vrem),

µ(Vlast) = µ(V )− µ(Vmain) = µ(V − Vrem)

(
1− k(n)r(n)

n

)
.

Applying these identities to the inequalities (3.18) and (3.19), we obtain the inequality

claimed in the proof. The equality is a consequence of applying the basic sum-up rounding

rule from §3.3.1 to the set of all rectangles as described in Definition 1, in conjunction with

Lemma 3.3.2. The proof is complete.

The preceding result gives us the following immediate corollary.

Corollary 3.3.1. With the assumptions of Theorem 3.3.3, further assume that a sequence

of compatible two-level domain decompositions satisfy (3.12). We then obtain that

lim
n→∞

∣∣∣ n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ = 0.

and that, if
∑n
k=1w

n(xk) = n0 is an integer, then
∑n
k=1 w̃

n(xk) = n0. In other words the

gap between the relaxation and our sum-up rounded integer solution goes to zero, and the

problem is feasible.

As discussed following the definition of compatible two-level domain decompositions,

Definition 1, this result can be used to show the vanishing integrality gap of our approach for

many types of domains. A complete analysis of when (3.12) holds appear extensive, though

cases such as unions of rectangles or polyhedral sets do not seem to require particularly
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deep analysis. Given our focus on consequences for optimization, we focus exclusively on the

rectangular domain case. For that situation, we can strengthen (3.12) and Corollary 3.3.1

by giving a bound on the rate of convergence as n → ∞ (also note that Vrem = ∅ in that

case).

Theorem 3.3.4. Under the assumptions of Theorem 3.3.3, there exists a C such that our

sum-up rounding construction satisfies

∣∣∣ n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ C

n1/2P
.

Proof. We use the inequalities

(b
√
nc)2

n
≥ 1− 2√

n
,∀n ∈ N,

(b
√
nc)2

n
≥ 1

2
,∀n > 3, (3.20)

and

c1n
1
P ≤ min

i=1,2,...,P
ni ≤ n

1
P , n

1
P ≤ max

i=1,2,...,P
ni ≤ c2n

1
P (3.21)

that follow from (3.11).

We use the definitions of the sum-up rounding scheme parameters (3.13)-(3.14) to infer

the following inequalities.

1
√
n1
≤ c
−1

2
1 n−

1
2P ;

r(n)k(n)

n
≤ 1;

1

r(n)
=

1

b√n1c
≤
√

2
√
n1

(3.22)

For the maximum diameter of Vj we obtain from (3.14) and (3.20)

max
j=1,2,...,k(n)

ρ(Vj) ≤
√
P

maxi=1,2,..,P (li2 − l
i
1)

1
2 mini=1,2,...,P

√
ni

(3.21)
≤
√
P

maxi=1,2,..,P (li2 − l
i
1)

1
2
√
c1

n−
1
2P . (3.23)

We also obtain

1− k(n)r(n)

n
= 1−

b√n1c2

n1

(3.20)
≤ 1−

(
1− 2
√
n1

) (3.22)
≤ 2c

−1
2

1 n−
1
2P . (3.24)
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We now use Theorem 3.3.3 along with (3.22), (3.23), and (3.24) to obtain the statement

of this theorem with the choice

C = max
x∈V
|f(x)|µ(V )

√
2c
−1

2
1 + 4Lµ(V )

√
P max
i=1,2,..,P

(li2 − l
i
1)c
−1

2
1 + 4 max

x∈V
|f(x)|µ(V )c

−1
2

1 .

This completes the proof.

We note that other compatible two-level relaxations observe similar bounds when used

for sum-up rounding; see §B.

3.4 Approximation of Functions of the Covariance Matrix

We rely on the convergence of the sum-up rounding strategy to prove the main results

on functions of covariance matrices. We keep the ratio ∆y/∆x (or n/m) constant, say α, in

(3.2). We define

Gnm = ∆y · {gw
n
(yi, yj)}mi,j=1 and G̃nm = ∆y · {gw̃

n
(yi, yj)}mi,j=1,

where

gw
n
(yi, yj) = ασ−1

noise

n∑
k=1

f(xk, yi)w
n(xk)f(xk, yj)∆x

gw̃
n
(yi, yj) = ασ−1

noise

n∑
k=1

f(xk, yi)w̃
n(xk)f(xk, yj)∆x.

Here wn is the solution to the relaxed optimization problem (3.5) with the discretization

parameter n, and we construct w̃n from the SUR technique in §3.3. The quantities Gnm,

G̃nm, and Γpost satisfy the following relationships

Γpost(w
n) =

(
Gnm + σ−1

priIm

)−1
, Γpost(w̃

n) =
(
G̃nm + σ−1

priIm

)−1
. (3.25)
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The assumption of Lipschitz continuity we make on f(x, y) is

∣∣∣f(x1, y1)f(x1, y2)− f(x2, y1)f(x2, y2)
∣∣∣ ≤ L‖x1 − x2‖,

where y1, y2 ∈ Ωin and L is independent of y1 and y2. This is not a stringent assumption,

since we can let L depend on y1, y2 first and then take L := maxy1,y2∈Ωin
L(y1, y2) (note

that Ωin is bounded and closed, thus ensuring L <∞). Theorem 3.3.4 then implies that

∀i, j=1, 2, ...,m, |gw
n
(yi, yj)− gw̃

n
(yi, yj)| ≤ ε̃n → 0, as n→∞. (3.26)

Here ε̃n is the bound from Theorem 3.3.4.

By definition of the Frobenius norm,

‖Gnm − G̃nm‖F ≤ ∆y

√
m2ε2n = µ(Ωin)ε̃n → 0. (3.27)

Since µ(Ωin) is constant, we can introduce a new sequence {εn} → 0, εn = max{1, µ(Ω)ε̃n}.

With this notation we have

|gw
n
(yi, yj)− gw̃

n
(yi, yj)| ≤ εn and ‖Gnm − G̃nm‖F ≤ εn. (3.28)

Denote eigenvalues of Gnm and G̃nm as

λn1 ≥ λn2 ≥ ... ≥ λnm ≥ 0

λ̃n1 ≥ λ̃n2 ≥ ... ≥ λ̃nm ≥ 0.

Note the number of eigenvalues for both Gnm and G̃nm is m, which changes and rises up to

infinity. We will show the kth eigenvalues of Gnm and G̃nm are arbitrarily close for any fixed

k ∈ Z+.
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Lemma 3.4.1. If λnk and λ̃nk are the k-th eigenvalues of Gnm and G̃nm, respectively, then

|λnk − λ̃
n
k | ≤ 2 · εn. (3.29)

Proof. From the Courant-Fischer theorem for real-valued symmetric matrices [70, Theorem

4.2.11], the kth largest eigenvalue of Gnm can be computed as

λnk = sup
dim(S)=k

inf
{‖Gnm · u‖
‖u‖

: u ∈ S, u 6= 0
}
. (3.30)

From this, we know there exists a subspace S of dimension k in Rm such that

‖Gnm · u‖
‖u‖

≥ λnk − εn

for any u ∈ S, u 6= 0. We apply (3.28); and using the relationship ‖A‖ ≤ ‖A‖F , we obtain

inf
u∈S,u 6=0

‖G̃nm · u‖
‖u‖

≥ ‖G
n
m · u‖ − ‖Gnm − G̃nm‖F ‖u‖

‖u‖

≥ ‖G
n
m · u‖ − εn‖u‖
‖u‖

≥ λnk − 2εn.

Again from (3.30), we get

λ̃nk ≥ λnk − 2εn.

Switching G̃nm and Gnm and using similar arguments, we obtain the reverse inequality

λnk ≥ λ̃nk − 2εn.

Then (3.29) follows directly.

Lemma 3.4.1 can directly be used to show convergence of the gap for E-optimality, since
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in that case, the difference between the objectives is

∣∣∣∣ 1

σ + λnn
− 1

σ + λ̃nn

∣∣∣∣ ≤ |λnn − λ̃nn|σ2
≤ εn
σ2
.

On the other hand, for integral operators with continuous kernels it can be shown that λn

approaches zero, therefore any design will produce the same result in the limit which makes

this criterion uninteresting in our setup. For the A- and D- optimality case, however, the

objective function can be seen as the sum of eigenvalues or logarithm of eigenvalues of the

covariance matrix, and the number of its terms goes to infinity. In that case, the objective

functions may not even be bounded as n→∞, as we discuss in (3.54) and (3.55). Therefore

directly invoking Lemma 3.4.1 would not prove convergence. As a simple example, consider

the situation where λnk = 1 + k
n
√
n

, and λ̃nk = 1, k = 1, 2, . . . , n,. For any k we have that

|λnk − λ̃
n
k | ≤ n−

1
2 and thus the two eigenvalue sequences satisfy a relationship as the one in

the conclusion of Lemma 3.4.1. On the other hand the difference between the A-optimal

criteria would be

n∑
k=1

 1

σ + 1 + k
n
√
n

− 1

σ + 1

 ≤ − ∑n
k=1 k

n
√
n(σ + 1)(σ + 2)

→ −∞.

A proof of a zero gap between function of a matrix and its SUR version will require more

results beyond Lemma 3.4.1. In the following two theorems, we provide rigorous proofs on

convergence for A- and D-optimal design criteria respectively.

Theorem 3.4.2. Let Mn
m =

(
σIm + Gnm

)−1
and M̃n

m =
(
σIm + G̃nm

)−1
, where σ = σ−1

pri.

Then

tr(Mn
m)− tr(M̃n

m)→ 0

as m,n→∞ and with n/m = α constant.

The proof is based on the fact that from Lemma 3.4.1, the spectra of Gnm and of G̃nm

are close to each other. From the definition of Mn
m, its spectra can be inferred from that of
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Gnm through λM = 1/(σ + λG), where λG is an eigenvalue of Gnm and λM is an eigenvalue

of Mn
m. The key is to exploit this relationship to show that the spectra of Mn

m and M̃n
m are

also close, combined with the consequences of the compactness of the integral operator.

Proof. Since wn and w̃n are between 0 and 1, then gw
n
(y, y) and gw̃

n
(y, y) are absolutely

integrable.

0 <
m∑
k=1

λnk = tr(Gnm) = ∆y ·
m∑
i=1

gw
n
(yi, yi)

≤ ∆y ·
m∑
i=1

|gw
n=1(yi, yi)| →

∫
Ωin

|gw=1(y, y)| dy

0 <
m∑
k=1

λ̃nk = tr(G̃nm) = ∆y ·
m∑
i=1

gw̃
n
(yi, yi)

≤ ∆y ·
m∑
i=1

|gw̃
n=1(yi, yi)| →

∫
Ωin

|gw=1(y, y)| dy

The inequality holds because gw
n
(yi, yj) depends linearly on wn. Since convergent sequences

are uniformly bounded, there exists a constant C>0 such that for any n > 0,

0 <
m∑
k=1

λnk ≤ C, 0 <
m∑
k=1

λ̃nk ≤ C. (3.31)

We also have that

∣∣∣ m∑
k=1

λk −
m∑
k=1

λ̃nk

∣∣∣ =
∣∣∣∆y

m∑
i=1

(
gw

n
(yi, yi)− gw̃

n
(yi, yi)

)∣∣∣
≤ ∆y

m∑
i=1

∣∣∣gwn
(yi, yi)− gw̃

n
(yi, yi)

∣∣∣
≤ ∆y ·m · εn = µ(Ωin)εn,

where the last inequality follows from (3.26). Since µ(Ωin) does not depend on n, and similar

to the way we defined {εn} in (3.28), we can redefine the sequence {εn} → 0 (for example
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as εn ← max{1, µ(Ωin)}εn) such that the following inequalities hold simultaneously

|gw
n
(yi, yj)− gw̃

n
(yi, yj)| ≤ εn, ‖Gnm − G̃nm‖F ≤ εn,

∣∣∣ m∑
k=1

λnk −
m∑
k=1

λ̃nk

∣∣∣ ≤ εn. (3.32)

We now show that for any small ε > 0, there exists an integer N > 0 such that for any

n>N , we have ∣∣∣S∣∣∣ ≤ D · ε, S
∆
=

m∑
k=1

1

σ + λnk
−

m∑
k=1

1

σ + λ̃nk
(3.33)

with some positive constant D. Note that n/m = α, so m is determined by n and they

increase at the same rate. We fix ε>0. From the upper bound in (3.31), there are at most

N0 =dC/εe eigenvalues satisfying λk>ε, or equivalently, when k>N0, λnk<ε for any n, and,

from similar reasoning, λ̃nk < ε. From (3.29), there exists N1 > 0 such that for any n>N1,

|λnk − λ̃
n
k | < ε2 for all k=1, 2, ..., n. We choose n>max{N0, N1} and split the sum in (3.33)

into two parts:

S =
∑
k≤N0

( 1

σ + λnk
− 1

σ + λ̃nk

)
+
∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)
.

For the first part, we note that

∣∣∣ ∑
k≤N0

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣ ≤ ∑
k≤N0

|λnk − λ̃
n
k |

(σ + λnk)(σ + λ̃nk)
≤ N0 ·

ε2

σ2
≤ C

σ2
· ε. (3.34)

For the second part, we know λnk , λ̃
n
k<ε, and we discuss two cases.

(1) When λ̃nk > λnk and k > N0,

0 <
1

(σ + ε)2
(λ̃nk − λ

n
k) ≤ 1

σ + λnk
− 1

σ + λ̃nk
=

λ̃nk − λ
n
k

(σ + λnk)(σ + λ̃nk)
≤
λ̃nk − λ

n
k

σ2
. (3.35)
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(2) When λ̃nk < λnk and k > N0,

λ̃nk − λ
n
k

σ2
≤ 1

σ + λnk
− 1

σ + λ̃nk
=

λ̃nk − λ
n
k

(σ + λnk)(σ + λ̃nk)
≤
λ̃nk − λ

n
k

(σ + ε)2
< 0. (3.36)

So we have

∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)
≤

∑
λ̃nk>λ

n
k , k>N0

λ̃nk − λ
n
k

σ2
+

∑
λ̃nk<λ

n
k , k>N0

λ̃nk − λ
n
k

(σ + ε)2

=
∑
k>N0

λ̃nk − λ
n
k

σ2
+

∑
λ̃nk<λ

n
k , k>N0

( 1

(σ + ε)2
− 1

σ2

)
(λ̃nk − λ

n
k)

=
1

σ2

∑
k>N0

(λ̃nk − λ
n
k) +

ε(2σ + ε)

σ2(σ + ε)2

∑
λ̃nk<λ

n
k , k>N0

(λnk − λ̃
n
k).

With a similar use of (3.35) and (3.36) we obtain

∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)
≥

∑
λ̃nk>λ

n
k , k>N0

λ̃nk − λ
n
k

(σ + ε)2
+

∑
λ̃nk<λ

n
k , k>N0

λ̃nk − λ
n
k

σ2

=
∑

λ̃nk>λ
n
k , k>N0

( 1

(σ + ε)2
− 1

σ2

)
(λ̃nk − λ

n
k) +

∑
k>N0

λ̃nk − λ
n
k

σ2

=
1

σ2

∑
k>N0

(λ̃nk − λ
n
k) +

ε(2σ + ε)

σ2(σ + ε)2

∑
λ̃nk>λ

n
k , k>N0

(λnk − λ̃
n
k).

From the last two inequalities, we obtain

∣∣∣ ∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣ ≤ 1

σ2

∣∣∣ ∑
k>N0

(λnk − λ̃
n
k)
∣∣∣ (3.37)

+
ε(2σ + ε)

σ2(σ + ε)2
max

{ ∑
λ̃k<λk, k>N0

(λnk − λ̃
n
k),

∑
λ̃k>λk, k>N0

(λ̃nk − λ
n
k)
}
.

In order to bound
∑
k>N0

(λ̃nk − λ
n
k), recall (3.32). From it, there exists N2>0 such that for

71



any n>N2 we have ∣∣∣ m∑
k=1

(λnk − λ̃
n
k)
∣∣∣ < ε. (3.38)

Choose n > max{N0, N1, N2}. Because n ≥ N1, we have

∣∣∣ ∑
k≤N0

(λnk − λ̃
n
k)
∣∣∣ ≤ N0 · ε2 = Cε, (3.39)

and thus from (3.38), (3.39) and the triangle inequality we get

∣∣∣ ∑
k>N0

(λnk − λ̃
n
k)
∣∣∣ ≤ ∣∣∣ m∑

k=1

(λnk − λ̃
n
k)
∣∣∣+
∣∣∣ ∑
k≤N0

(λnk − λ̃
n
k)
∣∣∣ ≤ (C + 1)ε. (3.40)

Note that if we let ε < σ and use (3.31), we obtain

0 <
ε(2σ + ε)

σ2(σ + ε)2

∑
λ̃k<λk, k>N0

(λnk − λ̃
n
k) ≤ 3ε

σ3

n∑
k=1

λnk ≤
3C

σ3
ε (3.41)

0 <
ε(2σ + ε)

σ2(σ + ε)2

∑
λ̃k>λk, k>N0

(λ̃nk − λ
n
k) ≤ 3ε

σ3

n∑
k=1

λ̃nk ≤
3C

σ3
ε. (3.42)

Combining (3.37), (3.40), (3.41), and (3.42), we get

∣∣∣ ∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣ ≤ C + 1

σ2
ε+

3C

σ3
ε =

(C + 1

σ2
+

3C

σ3

)
ε (3.43)

According to (3.34) and (3.43), we get

∣∣∣ m∑
k=1

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣ ≤∣∣∣ ∑
k≤N0

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣
+
∣∣∣ ∑
k>N0

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣
≤ C
σ2
ε+

(C + 1

σ2
+

3C

σ3

)
ε =

(2C + 1

σ2
+

3C

σ3

)
ε.
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Let D= 2C+1
σ2

+ 3C
σ3

. Then for any ε> 0 smaller than σ, there exists N = max{N0, N1, N2}

such that for any n>N ,

∣∣∣ m∑
k=1

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣ ≤ D · ε.

By definition of limit, as m,n→∞ and n/m = α,

∣∣∣ m∑
k=1

( 1

σ + λnk
− 1

σ + λ̃nk

)∣∣∣→ 0. (3.44)

Given that the first quantity in (3.44) is tr(Mn
m) and the second is tr(M̃n

m), the conclusion

follows.

Theorem 3.4.3. logdet(Mn
m)− logdet(M̃n

m)→ 0, or equivalently

m∑
k=1

log
1

σ + λnk
−

m∑
k=1

log
1

σ + λ̃nk
→ 0.

Here, Mn
m and M̃n

m are the matrices from Theorem 3.4.2.

Proof. First note that using the mean value theorem and the monotonicity of the log function

and its derivative, we have that, if 0 < c1<x< y<c2, then

0 <
1

c2
(y − x) ≤ log

1

x
− log

1

y
≤ 1

c1
(y − x). (3.45)

Again we show that for any ε>0, there exists an integer N>0 such that for any n>N ,

∣∣∣ m∑
k=1

log
1

σ + λnk
−

m∑
k=1

log
1

σ + λ̃nk

∣∣∣ ≤ D · ε, (3.46)

with some positive constant D. First, from (3.31) we choose N0 such that when k > N0,

λnk<ε and λ̃nk<ε for any n, using a similar argument in the proof of Theorem 3.4.2. Second,

from (3.29), we can find N1>0 such that for any n>N1, |λnk − λ̃
n
k | < ε2 for all k=1, 2, ..., n.
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Third, from (3.32) there exists N2>0 such that for any n>N2,
∣∣∣∑m

k=1(λnk − λ̃
n
k)
∣∣∣ < ε. We

then split the sum in (3.46) into two parts:

∑
k≤N0

(
log

1

σ + λnk
− log 1

σ + λ̃nk

)
+
∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)
.

For the first part, we apply (3.45) to obtain

∣∣∣ ∑
k≤N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣ ≤ ∑
k≤N0

|λnk − λ̃
n
k |

σ
≤ N0 ·

ε2

σ
=
C

σ
· ε. (3.47)

For the second part, 0 ≤ λnk , λ̃
n
k<ε, and we discuss two cases.

(1) When λ̃nk > λnk and k > N0,

0 <
1

σ + ε
(λ̃nk − λ

n
k) ≤ log

1

σ + λnk
− log

1

σ + λ̃nk
≤
λ̃nk − λ

n
k

σ
.

(2) When λ̃nk < λnk and k > N0,

λ̃nk − λ
n
k

σ
≤ log

1

σ + λnk
− log

1

σ + λ̃nk
≤
λ̃nk − λ

n
k

σ + ε
< 0.

Therefore, we have

∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)
≤

∑
λ̃nk>λ

n
k , k>N0

λ̃nk − λ
n
k

σ
+

∑
λ̃nk<λ

n
k , k>N0

λ̃nk − λ
n
k

σ + ε

=
∑
k>N0

λ̃nk − λ
n
k

σ
+

∑
λ̃nk<λ

n
k , k>N0

( 1

σ + ε
− 1

σ

)
(λ̃nk − λ

n
k)

=
1

σ

∑
k>N0

(λ̃nk − λ
n
k) +

ε

σ(σ + ε)

∑
λ̃nk<λ

n
k , k>N0

(λnk − λ̃
n
k)
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and similarly

∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)
≥

∑
λ̃nk>λ

n
k , k>N0

λ̃nk − λ
n
k

σ + ε
+

∑
λ̃nk<λ

n
k , k>N0

λ̃nk − λ
n
k

σ

=
∑

λ̃nk>λ
n
k , k>N0

( 1

σ + ε
− 1

σ

)
(λ̃nk − λ

n
k) +

∑
k>N0

λ̃nk − λ
n
k

σ

=
1

σ

∑
k>N0

(λ̃nk − λ
n
k) +

ε

σ(σ + ε)

∑
λ̃nk>λ

n
k , k>N0

(λnk − λ̃
n
k).

From these two inequalities, we get

∣∣∣ ∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣ ≤ 1

σ

∣∣∣ ∑
k>N0

(λnk − λ̃
n
k)
∣∣∣ (3.48)

+
ε

σ(σ + ε)
max

{ ∑
λ̃k<λk, k>N0

(λnk − λ̃
n
k),

∑
λ̃k>λk, k>N0

(λ̃nk − λ
n
k)
}
.

Using the same rationale that led us to (3.40), we have

∣∣∣ ∑
k>N0

(λnk − λ̃
n
k)
∣∣∣ ≤ ∣∣∣ n∑

k=1

(λnk − λ̃
n
k)
∣∣∣+
∣∣∣ ∑
k≤N0

(λnk − λ̃
n
k)
∣∣∣ ≤ (C + 1)ε. (3.49)

Moreover, using (3.31) and the nonnegativity of the eigenvalues of Mn and M̃n, we obtain

0 <
ε

σ(σ + ε)

∑
λ̃k<λk, k>N0

(λnk − λ̃
n
k) ≤ ε

σ2

n∑
k=1

λnk ≤
C

σ2
ε (3.50)

0 <
ε

σ(σ + ε)

∑
λ̃k>λk, k>N0

(λ̃nk − λ
n
k) ≤ ε

σ2

n∑
k=1

λ̃nk ≤
C

σ2
ε. (3.51)

Combining (3.48), (3.49), (3.50) and (3.51), we get

∣∣∣ ∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣ ≤ C + 1

σ
ε+

C

σ2
ε =

(C + 1

σ
+
C

σ2

)
ε (3.52)
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Using the bounds (3.47) and (3.52), we get

∣∣∣ m∑
k=1

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣
≤
∣∣∣ ∑
k≤N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣+
∣∣∣ ∑
k>N0

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣
≤C
σ
ε+

(C + 1

σ
+
C

σ2

)
ε =

(2C + 1

σ
+
C

σ2

)
ε.

Let D= 2C+1
σ + C

σ2
. We conclude that for any ε>0, there exists N=max{N0, N1, N2} such

that for any n>N , ∣∣∣ m∑
k=1

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣ ≤ D · ε.

By definition of limit, as m,n→∞ and n/m = α,

∣∣∣ m∑
k=1

(
log

1

σ + λnk
− log

1

σ + λ̃nk

)∣∣∣→ 0.

Given that the first quantity is the logarithm of the determinant of Mn
m and the second is

the logarithm of the determinant of M̃n
m, this proves the claim.

Given the relation of Γpost and Gnm in (3.59), Theorem 3.4.2 proves that the lower bound

of the A-optimal design, which is given by the relaxed optimization problem (3.5), can be

achieved by using the sum-up rounding strategy. Theorem 3.4.3 does the same for the D-

optimal design. The E-optimal design, where we aim to minimize the largest eigenvalue of

Γpost, is actually trivial in this framework because the smallest eigenvalue of Gnm goes to 0

and the largest eigenvalue of Γpost(w
n) converges to σpri, which is also true for Γpost(w̃

n).

This argument also shows that the E-optimal result is trivial for this case since virtually any

design will then be E-optimal; hence we do not emphasize it in this paper. To conclude, with

the sum-up rounding strategy described in §3.4, we are able to find sensor locations that are

asymptotically optimal for A and D design criteria.

While our proofs include several restrictions, they can be extended in several ways. To
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include more general domains or sum-up rounding patterns would require proving results such

as Theorem 3.3.4 and, subsequently, the critical property (3.26) needed to show the shrinking

gap for a given design strategy. General domains are not difficult to include, but the resulting

proofs would be extensive, involving computational geometry technicalities. However, the

two-level strategy presented in Definition 1 resembles the spectral element philosophy [68]

that is widely used for quite complex domains. Moreover, the within-subdomain ordering in

Definition 1 is entirely open, which would allow experimentation with various strategies such

as space-filling curves. While our results are proved for linear operators only, we note that as

a first step to extending our results to the case where the nonlinear parameter-to-observable

map F is nonlinear, one could use the Laplace approximation as was done in [71, 59].

3.5 Numerical Experiments

We now present numerical experiments based on the model problem of gravity surveying

(see Example 1.5 in [72]) in our simulation. Suppose mass is distributed at depth d below

the surface where sensors can be deployed, in a unit square [0, 1] × [0, 1] indexed by the

two-dimensional variable y, and we want to estimate the mass density function g0(y). Mea-

surements are carried out on a unit square in a plane indexed by the two-dimensional variable

x, and we can measure the vertical component of gravitational field g(x) but with error. By

Newton’s law of universal gravitation, the integral equation of g(x) for x ∈ [0, 1]× [0, 1] is

g(x) =

∫
[0,1]×[0,1]

f(x, y)g0(y) dy, f(x, y) =
d

(d2 + ‖x− y‖2)3/2
,

where ‖x−y‖ is the Euclidean distance between points x and y. In this problem, Ωin=Ωout,

and we use the same discretization for the two domains. We divide [0, 1]× [0, 1] into n2 small

squares with equal size 1/n2. On each side, there are n points 0< x1 < x2 < ... < xn < 1

(xi = i/n+0.5) and ∆x=1/n. We have n2 candidate locations, and w=(w1, w2, ..., wn2) is

the corresponding weight vector. Let F ∈Rn2∗n2 be the discretization of the above integral
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operator, and order the candidate locations as z1, z2, .., zn2 . Then

F (i, j) =
d

(d2 + ‖zi − zj‖2)3/2
· (∆x)2,

for i, j=1, 2, .., n2. Let W =diag(w). The relaxed problem is

min
w

φ

((
FTWF + σIn2

)−1
)

(3.53)

s.t. 0 ≤ wi ≤ 1,
∑
i

wi =
⌊
rn2
⌋

(0 < r < 1),

where σ is not a variance but the ratio of σnoise and σpri. We keep the number of sensors

in a proportion r to the number of candidate locations, as discussed at the end of §3.2.5.

Using the solver Ipopt in Julia, we compute wrel and then construct a feasible integer

vector wint via the sum-up round approach we developed in this paper. Our experiments are

run on a recent MacBook Air laptop with 4GB of memory, and we provide the Hessian of the

objective and the relevant objective and constraint gradients. By far the most expensive part

of the computation is the Hessian. For example, for the case where φ(·) = tr(·), the entry

ij in the Hessian is proportional to tr(Γ−1fif
T
i Γ−1fjf

T
j Γ−1), where Γ =

(
FTWF + σIn2

)
and fi is the ith column of FT . Here 1 ≤ i < j ≤ n2, and for the rest of discussion in this

parameter, n represents the size of Γ. Note that Γ is a dense matrix. While the computation

can be streamlined to carry out the factorization of Γ once per iteration, followed by solving

n linear systems of equations with fi, then computing ≈ n2

2 inner products, each of these

operations is O(n3). The largest problem we solve has n = 3600 (a 60× 60 two-dimensional

grid) and Ipopt takes about 3 hours to produce a solution for it, though our code is far

from optimized. Interestingly, note that computing even one entry in the gradient, whose

ith entry is −tr(Γ−1fif
T
i Γ−1) would still take O(n3) as at least one linear system with Γ

needs to be solved. For this reason it is doubtful one can do much better, as most convex

integer programming solvers need gradients of the objective. In any case, we had difficulties
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comparing with other approaches, as most of the ones we had reasonably easy access to

required the function to be expressible in a modeling environment such as JuMP or AMPL.

This does not occur for matrix functions, as they cannot atomically be expressed in terms

of standard libraries. An alternative was to reformulate the problem (3.53) as a semidefinite

program with integer variables, which we aimed to do with Pajarito. However, solving the

n = 50 case (in one dimension) took one hour to achieve a gap of less than 1%. Therefore this

did not appear to be an easy way to go either. Solving larger problems will probably require

reaching towards other ideas, such as perhaps exploiting the (approximate) hierarchical off

diagonal low rank structure, as we recently proposed in [73].

In any case, results for D-optimal and A-optimal designs using Ipopt as described above

are demonstrated below. The E-optimal design is not considered because the largest eigen-

value is extremely close to 1/σ irrespective of w and there is not much difference in objective

values for different designs.

We compare our sum-up rounding design with a thresholding heuristic: let

w=(w1, w2, · · · , wn2)

be the relaxed solution and its components are ordered by wi1 ≥ wi2 ≥ · · · ≥ win2
. The

thresholding integer solution w̃ is given by

w̃j =


1, if j ∈ {i1, i2, · · · , ibrn2c};

0, otherwise.

In other words, we set elements to 1 if they have the largest values in the relaxation, up

to the available budget of sensors. We will compare the performance of two strategies by

measuring integrality gap.
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Fig.3.2: Objective value, D-optimal design

3.5.1 D-optimal Design

The parameters we choose are σ=1, d=0.1, r=0.1. Figure 3.2 shows the objective value

(i.e. log determinant) with the continuous relaxation, sum-up rounding and thresholding

strategy as n increases from 4 to 60. For the thresholding heuristic, it does not seem to

converge at n=40, or at least its gap decreases more slowly than sum-up rounding. We note

that this validates the result of Theorem 3.4.2. One point we want to add is the objective

value in Figure 3.2 converges to a fixed number (around -11.3), which is related to our choice

σ=1. Notice, when σ = 1, that

logdet(Γpost)=
n2∑
k=1

log
1

σ + λk
≈

n2∑
k=1

(−λk) (3.54)

and
∑
λk is finite, see (3.31). For other values of σ, the objective value will approach infinity,

but the gap will still converge to zero as proved by our theorem.

We also plot the absolute and relative gaps for the two rounding strategies in Figure 3.3,

in logarithmic scale. The relative gap is defined as the ratio of absolute gap and the lower

bound from the relaxation. We observe that sum-up rounding has a relative gap below 1%

at n=40, compared with 5% for the thresholding heuristic.
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Fig.3.3: Integrality gap, D-optimal design (SUR = sum-up rounding;
THS = thresholding rounding)

Figures 3.4, 3.5 and 3.6 give the relaxed solution, the sum-up rounding solution and

thresholding solution, respectively, when n = 40 (there are 1600 variables). The design is

symmetric since both f(x, y) and the output domain [0, 1]× [0, 1] are symmetric. Sensors are

placed toward the boundary and also in the interior. We note that the design highly depends

on d: When d goes to zero or infinity, the relaxed solution tends to be uniform. Therefore,

if we hope to observe interesting designs, d should be neither too big nor too small. For the

thresholding heuristic, a common feature is that sensors tend to be placed together when

values in the relaxation change smoothly, and we do not see sensors placed near the center.

Sum-up rounding, however, has the property that the 0 or 1 value in the relaxation will

remain the same in the integer solution, and the sensor placement is less concentrated than

for the thresholding heuristic.

3.5.2 A-optimal Design

We investigate the A-optimal design with the same setting and parameters as in the D-

optimal design case: σ=1, d=0.1, r=0.1, and n starting at 4 and ending at 50. We observe

in Figure 3.7 a similar decaying trend as in the D-optimal design case, which validates the
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Fig.3.6: THS solution, D-optimal design

finding of Theorem 3.4.3. We would like to mention that in the trace case,

tr(Γpost) =
n2∑
k=1

1

σ + λk
= O(n2), (3.55)

so the optimal objective value increases about linearly with respect to the number of can-

didate locations. However, both the absolute and relative gaps between the upper bound

induced by sum-up rounding and the lower bound obtained from the relaxation approach

zero for large n, as shown in Figure 3.7 and as claimed in §3.4.

The designs in Figure 3.8, 3.9 and 3.10 also have patterns similar to those in Figure 3.4, 3.5

and 3.6, although they are slightly more centered. It is worth mentioning that, as indicated
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Fig.3.7: Integrality gap, A-optimal design (SUR = sum-up rounding;
THS = thresholding rounding)

by Figure 3.3 and 3.7, monotonicity with n is unlikely. Indeed, kinks at n = 20, 30, . . . are

related to the particularities of sum-up rounding design. When n reaches those values, there

is a change in shape which induces a small increase in the gap, but the gap will be under

control and eventually go to zero.

3.5.3 Discussion

In practice, we normally do not wish to see clusters of sensors because data are usually

informative of other data nearby, while sum-up rounding tends to place sensors close to each

other because of smoothness in the relaxed solutions. One can request the sensor density not

to exceed a given value in any region. An alternative is to use a space-filling curve approach

for the sum-up rounding path to “randomize” the choices of 1. For this initial study, we note

the significant improvement in the objective, and we leave such issues to further research.

3.6 Extension to Non-Identity Covariance Matrix

Since components in the input are likely to be spatially correlated, it would be unrea-

sonable to assume a Gaussian prior with identity covariance matrix, and in this section, we
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Fig.3.10: THS solution, A-optimal design

extend the previous results to a Gaussian prior with Laplacian precision matrix, which is

widely used in image processing, and it is equivalent to a regularized least square problem.

We first focus on the one-dimensional case, and then generalize to the multi-dimensional

case using tensor product.

Recall that the output without measurement error depends on the input through an

integral equation:

u(x) =

∫
Ωin

f(x, y)u0(y) dy, x ∈ Ωout, (3.56)
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and we approximate the integral (3.56) by Riemann sum:

u(xj) =

∫
Ωin

f(xj , y)u0(y) dy ≈
m∑
i=1

f(xj , yi)u0(yi)∆y.

Define a matrix Fnm ∈ Rn×m to be the discretization of integral operator

Fnm(j, i) = f(xj , yi)∆y,

and the prior of our parameter with size m is um0 ∼ N (umprior, Lm) where Lm is the discrete

Laplacian operator with periodic boundary conditions

Lm =
1

(∆y)2



2 −1 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 −1 2.


(3.57)

The posterior matrix with the relaxed and integer weights are respectively

Γpost(w
n) =

(
(Fnm)TW (Fnm) + Lm

)−1
, Γpost(w̃

n) =
(

(Fnm)T W̃ (Fnm) + Lm

)−1
.

We will use F as abbreviation for Fnm. With some modification (F → Fs), we aim to show

∣∣∣tr(Γpost(w
n)
)
− tr

(
Γpost(w̃

n)
)∣∣∣→ 0, as m,n→∞ with n/m constant. (3.58)

Here wn is the solution to the relaxed optimization problem and w̃n is constructed from the

SUR technique. Define Gnm = FTWF and G̃nm = FT W̃F . More specifically,

Gnm = ∆y · {gw
n
(yi, yj)}mi,j=1 and G̃nm = ∆y · {gw̃

n
(yi, yj)}mi,j=1,
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where

gw
n
(yi, yj) = α

n∑
k=1

f(xk, yi)w
n(xk)f(xk, yj)∆x

gw̃
n
(yi, yj) = α

n∑
k=1

f(xk, yi)w̃
n(xk)f(xk, yj)∆x.

The quantities Gnm, G̃nm, and Γpost satisfy the following relationships

Γpost(w
n) =

(
Gnm + Lm

)−1
, Γpost(w̃

n) =
(
G̃nm + Lm

)−1
. (3.59)

Denote eigenvalues of Gnm and G̃nm as

λn1 ≥ λn2 ≥ ... ≥ λnm ≥ 0 (3.60)

λ̃n1 ≥ λ̃n2 ≥ ... ≥ λ̃nm ≥ 0. (3.61)

In [74], we showed for any ε > 0, there exists a positive integer M(ε) such that when

n > M(ε)

‖Gnm − G̃nm‖F < ε,
∣∣λnk − λ̃nk ∣∣ < ε, k = 1, 2, ...,m. (3.62)

From Theorem 2 in [74], ε decays at the rate n−1/2 (in one dimension), so M(ε) ≈ ε−2.

In practise, we cannot afford to compute and store the full matrix F ∈ Rn×m, instead

we use interpolatin methods to approximate F , F ≈ Fs with rank(Fs) ≤ ns, where ns is

the number of interpolation nodes. To be more precise, we apply Chebyshev polynomial

approxmation and choose ns = O(log(n)). From [25], if f(x, ·) and f(·, y) is analytical in a

compact domain, then

1

∆y
|F (j, i)− Fs(j, i)|

n→∞
= O(cns) = O(n−s) (3.63)

for some 0 < c < 1 and s > 0.For any εs > 0, we can choose a positive integer M(εs) such
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that when n > M(ε), 1
∆y
|F (j, i)− Fs(j, i)| < εs, which implies

‖F − Fs‖F ≤ ∆y ∗
√
m ∗ n ∗ ε2s = Cεs (3.64)

where C is a positive constant determined by Ωin, Ωout and α. Note that εs decays at the

rate of n−s which we will use in later proof, so M(εs) ≈ ε
−1/s
s . We will show convergence in

(3.58) with F replaced by Fs. To do that, we derive the proof into two stages.

Notation: ‖ · ‖ is Frobenius norm in the following subsections.

3.6.1 Stage 1: Lower Bound of the Spectrum

In this subsection, we will show for any m,n > 0 with n/m constant,

λmin

(
Gnm + Lm

)
≥ c0 > 0, λmin

(
G̃nm + Lm

)
≥ c0 > 0. (3.65)

Or equivalently, λnm ≥ c0 and λ̃nm > c0 in (3.73) and (3.74) respectively. It is known the

eigenvalues and eigenvectors of Laplacian matrix in (3.57) are

µmk =
4

∆2
y

sin2 ((k − 1)π

m

)
, vmj,k =

1√
m

exp{i(j − 1)(k − 1)2π

m
}

where vml,k is the jth element in the kth eigenvector of Lm, and i here is the imaginary unit.

Because m∆y = Ωin is a consant, we have asymptotically µk → ck(k−1)2. This is also part

of Assumption 2.9 in [18] to construct Gaussian priors and obtain well-posedness of Bayesian

inverse problems.

The second smallest eigenvalue will exceed some constant c2 > 0 for large n. The

eigenvector corresponding to the minimum eigenvalue µm1 = 0 is a constant vector vm1 =

1√
m

(1, 1, .., 1)T ∈ Rm and we will show it is not in the null space of FTWF ,

(vm1 )TFTWF (vm1 ) =
1

m

∑
j

wj

(
∆y

∑
i

f(xj , yi)
)2
≈ C1

m

∑
j

wj

(∫
Ωin

f(xj , y) dy
)2
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for some constant C1 > 0. if
( ∫

Ωin
f(x, y) dy

)2
is bounded below by C2 > 0 for x ∈ Ωout,

then

(vm1 )TFTWF (vm1 ) ≥ C1C2 ·
1

m

∑
j

wj

As 1
n

∑
j wj = r is a constraint in our optimization, which implies 1

m

∑
j wj is also a constant,

there exists an integer N > 0 that when n > N ,

(vm1 )TFTWF (vm1 ) > C ′ := C1C2 · rm/n > 0. (3.66)

The same bound applies to (vm1 )TFT W̃F (vm1 ).

Lemma 3.6.1. For large enough m,n, there exists c0 > 0 such that (3.65) holds.

Proof. Let {vmk }
m
k=1 be eigenvectors of Lm, and they form a basis in Rm. Let v =

∑m
k=1 akv

m
k ∈

Rm be any vector with ‖v‖2 =
∑
k a

2
k = 1. Denote v = a1v

m
1 + ṽm1 , where ṽm1 =

∑
k>1 akv

m
k .

vT
(
Gnm + Lm

)
v = vT

(
FTWF + Lm

)
v

= a2
1 · v

m
1 F

TWFvm1 + 2a1v
m
1 F

TWFṽm1 + (ṽm1 )TFTWF (ṽm1 ) + vTLmFv

≥ max{a2
1 · v

m
1 F

TWFvm1 + 2a1v
m
1 F

TWFṽm1 , v
TLmv}. (3.67)

Since vTLmv =
∑
k>1 a

2
kλk(Lm) > c2

∑
k>1 a

2
k = c2(1 − a2

1) where c2 is a lower bound of

λ2(Lm) for large n, we have vT
(
Gnm + Lm

)
v ≥ c2(1 − a2

1) for any a2
1 ∈ [0, 1]. We will find

a new lower bound when |a1| is close to 1. Note

‖F‖ ≤ ∆y

√
mnK2 = µ(Ωin)K

√
m

n
=: K̃

where K is an upper bound of f(x, y) (this assumption can be relaxed by ‖Fv‖ ≤ K‖v‖).

Because W is diagonal and Wii ∈ [0, 1], the same bound applies to ‖WF‖. Choose a small

constant ε1 > 0 and let a2
1 = 1 − ε21,

∑
k>1 a

2
k = ε21 (so ‖vm1 ‖ =

√
1− ε21 and ‖ṽm1 ‖ = ε1),
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we have

|a1v
m
1 F

TWFṽm1 | ≤ |a1| · ‖vm1 ‖ · ‖F || · ‖WF‖ · ‖ṽm1 ‖ ≤ ε1K̃
2. (3.68)

From (3.67), (3.66) and (3.68),

vT
(
Gnm + Lm

)
v ≥ a2

1 · v
m
1 F

TWFvm1 + 2a1v
m
1 F

TWFṽm1

≥ (1− ε21)C ′ − 2ε1K̃
2.

When ε1 is small enough, this lower bound is positive. For such ε1, we have

vT
(
Gnm + Lm

)
v ≥


c2ε

2
1, when a2

1 ≤ 1− ε21

(1− ε21)C ′ − 2ε1K̃
2, when a2

1 > 1− ε21.

Define c0 to be min{ε21, (1− ε
2
1)C ′ − 2ε1K̃

2} which is positive, and then for any unit vector

v ∈ Rm,

vT
(
Gnm + Lm

)
v ≥ c0 ⇒ λmin

(
Gnm + Lm

)
≥ c0.

If we replace W with W̃ in the proof, everything still holds.

3.6.2 Stage 2: Gap Convergence

In this subsection, we would like to show as m,n→∞ and keep n/m constant,

∣∣∣tr(FTs WFs + Lm

)−1
− tr

(
FTs W̃Fs + Lm

)−1∣∣∣→ 0.

Before we get to the proof, there is some preparation work. We gather what we have so

far. From (3.62) and (3.64), we have for any ε, εs > 0, there are positive integers M(ε) and

Ms(εs) such that when n > max{M(ε),Ms(εs)},

‖FTWF − FT W̃F‖F < ε, ‖F − Fs‖F < εs. (3.69)
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Next we want to show ‖FTs WFs − FsW̃Fs‖ is also small.

Lemma 3.6.2. For large enough n,

‖FTs WFs − FsW̃Fs‖ < ε+ 2εs.

Proof. We will prove it in two steps.

• First, we derive an upper bound for ‖FTWF − FTs WFs‖ and ‖FTWF − FTs WFs‖.

Let Es = F − Fs and note that

FTWF−FTs WFs = (Fs+Es)
TW (Fs+Es)−FTs WFs = ETs WF+FTWEs−ETs WEs

Because ‖Es‖ < εs and ‖WF‖ < K̃ from (3.69), we have

‖FTWF − FTs WFs‖ ≤ ‖ETs WF‖+ ‖FTWEs‖+ ‖ETs WEs‖ < 2K̃εs + ε2s

The same bound applies to ‖FT W̃F − FTs W̃Fs‖ as well. Hence we can find another

integer Ms(ε) > 0 (also ≈ ε
−1/s
s ), such that

‖FTWF − FTs WFs‖ < εs, ‖FT W̃F − FTs W̃Fs‖ < εs. (3.70)

• Second, we derive an upper bound for ‖FTs WFs − FTs W̃Fs‖. From (3.69) and (3.70),

∥∥∥FTs WFs − FTs W̃Fs

∥∥∥
=
∥∥∥(FTWF − FT W̃F

)
+
(
FTs WFs − FTWF

)
−
(
FTs W̃Fs − FT W̃F

)∥∥∥
≤
∥∥∥FTWF − FT W̃F

∥∥∥+
∥∥∥FTs WFs − FTWF

∥∥∥+
∥∥∥FTs W̃Fs − FT W̃F

∥∥∥
< ε+ 2εs.
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We will use it in Theorem 3.6.5 later.

Lemma 3.6.3. For any m,n > 0 with n/m constant,

λmin

(
FTs WFs + Lm

)
≥ 1

2
c0 > 0, λmin

(
FTs W̃Fs + Lm

)
≥ 1

2
c0 > 0.

Proof. In Lemma 3.6.1, we already showed λmin

(
FTWF + Lm

)
≥ c0 > 0. Together with

(3.6.2) and choose 0 < εs <
1
2c0,

λmin

(
FTs W̃Fs+Lm

)
≥ λmin

(
FTWF+Lm

)
−‖FTWF−FTs WFs‖ ≥ c0−εs >

1

2
c0 > 0.

and similarly, we can show λmin

(
FTs W̃Fs + Lm

)
> 1

2c0 > 0.

Another important component is Lidskii’s Theorem (see [75]) and we will state it as

follows

Theorem 3.6.4 (Lidskii’s Theorem). Let A,B ∈ Rn×n be Hermitian matrices. Then for

any choice of indices 1 ≤ i1 < .. < ik ≤ n,

k∑
j=1

λ
↓
ij

(A)−
k∑
j=1

λ
↓
ij

(B) ≤
k∑
j=1

λ
↓
j (A−B),

where λ↓ means eigenvalues are in descending order.

Corollary 3.6.1. With same notation in Lidskii’s Theorem, we also have

k∑
j=1

λ
↓
ij

(A)−
k∑
j=1

λ
↓
ij

(B) ≥
k∑
j=1

λ
↓
n−j(A−B).
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Theorem 3.6.5. Denote eigenvalues of FTs WFs + Lm and FTs W̃Fs + Lm as

νn1 ≥ νn2 ≥ ... ≥ νnm ≥ 0 (3.71)

ν̃n1 ≥ ν̃n2 ≥ ... ≥ ν̃nm ≥ 0. (3.72)

then

∣∣∣tr(FTs WFs + Lm

)−1
− tr

(
FTs W̃Fs + Lm

)−1∣∣∣ =
∣∣∣ m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk

∣∣∣→ 0

as m,n→∞ with n/m constant.

Proof. From Lemma 3.6.3, we know for any m,n ∈ Z+,

νn1 ≥ νn2 ≥ ... ≥ νnm ≥
1

2
c0 > 0 (3.73)

ν̃n1 ≥ ν̃n2 ≥ ... ≥ ν̃nm ≥
1

2
c0 > 0. (3.74)

To apply Lidskii’s Theorem, let A = FTs WFs + Lm, B = FTs W̃Fs + Lm and E = A − B

which we already have a bound in Lemma 3.6.2 that ‖E‖ < ε+ 2εs. Note both FTs WFs and

FTs W̃Fs have rank ns = O(log(n)) or less, where ns is the number of interpolation nodes.

This implies rank(E) < 2ns and there are at most 2ns non-zero eigenvalues. Together with

the fact |λj(E)| ≤ ‖E‖ < ε+ 2εs for any j ∈ {1, 2, ..,m}, we have for any k ∈ {1, 2, ..,m},

|
k∑
j=1

λ↓(E)| <
k∑
j=1

|λ↓(E)| < 2ns(ε+ 2εs).

Because

m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk
=

m∑
k=1

ν̃nk − ν
n
k

ν̃nk ν
n
k

=
∑
ν̃nk>ν

n
k

ν̃nk − ν
n
k

ν̃nk ν
n
k

+
∑
ν̃nk<ν

n
k

ν̃nk − ν
n
k

ν̃nk ν
n
k
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and ν̃nk − ν
n
k = λ

↓
k(A)− λ↓k(B), we apply Lidskii’s Theorem to get

m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk
<

4

c20

∑
ν̃nk>ν

n
k

ν̃nk − ν
n
k

ν̃nk ν
n
k

≤ 4

c20

∑
ν̃nk>ν

n
k

λ
↓
k(E) <

4

c20
· 2ns(ε+ 2εs).

With similar reason, we have

m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk
>

4

c20

∑
ν̃nk<ν

n
k

ν̃nk − ν
n
k

ν̃nk ν
n
k

≥ 4

c20

∑
ν̃nk>ν

n
k

λ
↓
m−k(E) > − 4

c20
· 2ns(ε+ 2εs).

Therefore, ∣∣∣ m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk

∣∣∣ < 8

c20
ns(ε+ 2εs).

It is important to know the behavior of nsε and nsεs, since even though ε and εs are small,

ns can be large, and it is not obvious whether ns(ε+ 2εs) is large or small.

Recall in (3.62) and (3.63) that ε ∼ O(n−1/2P ) with sum-up rounding and εs ∼ O(n−s)

with Chebyshev approximation, so ε+ 2εs has polynomial decay. Since ns is O(log(n)) and

limn→∞ logt1(n) · n−t2 = 0 for any t1, t2 > 0, we conclude that ns(ε + 2εs) goes to zero as

n→∞.

Equivalently, for any fixed ε′ > 0, there exist N(ε′) > 0 such that when n > N(ε′),

∣∣∣ m∑
k=1

1

νnk
−

m∑
k=1

1

ν̃nk

∣∣∣ < 8

c20
ε′,

which gives the desired convergence to 0.

For the D-optimal design where the objective value is log det(Γpost), the proof is quite

similar after realizing that the log determinant equals the sum of the logarithm of eigenvalues,

and that for any x, y ≥ c > 0,

∣∣∣ log(
1

x
)− log(

1

y
)
∣∣∣ ≤ 1

c

∣∣∣x− y∣∣∣.
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3.6.3 Laplacian Matrix and Convergence in Multiple Dimensions

The main difference in the proof for multiple dimensions is the Laplacian matrix. If we

can show its eigenvalues and eigenvectors has a “similar” structure as in one dimension, then

we can prove the convergence to zero in the same way. Suppose Ωin ∈ RQ is a compact

domain, and we approximate

∇u(y1, y2, .., yQ) =

Q∑
i=1

∂2

∂y2
i

using the tensor products of one dimensional differences. Let Dyi and Iyi be the one dimen-

sional difference and the identity matrix acting on a one dimensional mesh respectively in

the yi direction.

The finite difference Laplacian operator L can be expressed as a sum of Q tensor products

Lu =
( Q∑
i=1

Iy1 ⊗ · · · ⊗ Iyi−1 ⊗Dyi ⊗ Iyi+1 · · · ⊗ IyQ
)
u.

The eigenvectors are also given by tensor products of the one dimensional eigenvectors, and

the eigenvalue is given by ν = νy1 + νy2 + · · · + νyQ . Based on the discussion of L in

one dimension, we know the smallest eigenvector of L is still zero, and the corresponding

eigenvector is a constant vector. Further, the second eigenvalue is bounded below by a

positive constant for any n,m > 0 with n/m constant. Theorem 3.6.5 is also true in multiple

dimensions.

3.7 A Different Formulation on Function Space

So far, our parameters are discretized input vector in Rn, and actually we can move from

Rn to L2(Ωin). Suppose {φk}∞k=1 is a basis in L2(Ωin), and every function L2(Ωin) can be

represented as an infinite sequence in l2, see (3.75). We transfer the randomness from the
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input function to its truncated coefficient vector mN = (m1, ..,mN ),

m ∈ l2 {φk}−−−→ u0 ∈ Ωin
F−→ u ∈ Ωout. (3.75)

The relationship between a Gaussian measure on L2(Ωin) (a Hilbert space) and the distri-

bution of coefficient vector m is given by the following theorem (Theorem 6.19. in [18])

Theorem 3.7.1. Let C be a self-adjoint, positive semi-definite, nuclear operator in a Hilbert

space H and let m ∈ H. Let {φk, γk}∞k=1 be an orthonormal set of eigenvectors/eigenvalues

for C ordered so that

γ1 ≥ γ2 ≥ · · · .

Take {ξk}∞k=1 to be an i.i.d. sequence with ξk ∼ N(0, 1). Then the random variable x ∈ H

given by the Kalhunen-Loève expansion

x = xc +
∞∑
k=1

√
γkξkφk

is distributed according to µ = N (xc, C).

In Assumption 2.9 of [18], γk ∼ O(k−2) is “Laplacian” like. We can construct a matrix

Φ ∈ Rn×N with Φij = φj(xi), where xi is mesh point in Ωin. The density for the prior is

characterized by

π(m) ∝ exp{−1

2
‖m−m0‖2Γ−1

prior
}

where Γprior = diag(γ1, .., γN ). The likelihood is given by

π(u|m) ∝ exp{−1

2
‖u− FΦm‖2

Γ−1
noise
},

where F ∈ Rn×n is the discretized parameter-to-observable mapping. The posterior distri-

bution is also Gaussian with covariance function

(
ΦTFTΓ−1

noiseFΦ + Γ−1
prior

)−1
∈ RN×N .
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Notice that each column of FΦ ∈ Rn×N is a discretization of F(φk) ∈ L2(Ωout). If Γnoise ≈

∆x−1In and N is fixed, by looking into each entry of Γ−1
post and apply the same technique in

the previous proof of Theorem 3.4.2, we can show (without proof) that

∣∣∣tr( ∆x

σ2
noise

ΦTFTWnFΦ+Γ−1
prior

)−1
−tr

( ∆x

σ2
noise

ΦTFT W̃nΦ+Γ−1
prior

)−1∣∣∣→ 0, as n→∞.

It’s worth mentioning that we do not require F to be an integral operator here, but require

F(φk) is Lipschitz continuous, which is a weaker assumption. One potential issue is that

when the size of Γpost is fixed (RN×N ), the relaxed solution w tends to have N “clusters”

and its component tends to be binary already as n increases, so sum-up rounding might not

be needed (see [26]).
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4 A Scalable Algorithm to Solve the Relaxation

In this section, we provide a fast algorithm to solve the relaxation (3.5) for A-optimal de-

sign, and reduce the complexity fromO(n3) with interior point method in §3.5 toO(n logs(n)).

In §4.1, we review the target optimization problem, and in §4.2, we explain the gradient and

Hessian approximations with Chebyshev interpolation, and then propose an interpolation-

based SQP algorithm in §4.3. An error analysis on the objective gap, together with the choice

of interpolation points, are given in §4.4. Finally, we apply the algorithm on the so-called

LIDAR problem: selecting sensing directions to infer the initial condition of an advection-

diffusion equation in §4.5. The algorithm and error analysis also apply to D-optimal design,

but with a different gradient and Hessian than the A-optimal design, and more details can

be found in Appendix C.

4.1 Computational Goal

We focus on the criterion of φ(M) = trace(M) (A-optimal) and solve the following convex

optimization problem:

min φ(Γpost(w))

s.t. 0 ≤ wi ≤ 1,
∑n
i=1wi = n0

(4.1)

where Γpost =
(
FTWF + σ2In

)−1
and σ2 = σ2

niose/σ
2
prior. For the purpose of easy ex-

planation, we assume for now that Ωin = Ωout and they have the same discretizations, but

this is not necessary and can be easily generalized. Without loss of generality, we assume

σ2 = 1 in the discussion of this chapter except the numerical example section. F ∈Rn×n is

a discretization of the parameter-to-observable map F (an integral equation). For instance,
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in the one-dimensional gravity surveying example, F maps C[−1, 1] to C[−1, 1] by

u(x) = F(u0) =

∫
[−1,1]

f(x, y)u0(y) dy, f(x, y) =
d

(d2 + ‖x− y‖2)3/2
(4.2)

from the example of gravity surveying. We discretize it on a regular n-grid and get

F (i, j) =
d ·∆x

(d2 + ‖xi − xj‖2)3/2
,

where xi(xj) is the center of the ith(jth) interval of length ∆x. W = diag{w1, w2, .., wn} is

the weight matrix and wi is the wight associated with the ith candidate location.

4.2 Chebyshev Interpolation Method

The complexity of computing the gradient and Hessian of the trace objective in (4.1) is

O(n3) where n is the mesh size or the number of candidate sensor locations, and in practice

it can easily go to thousands or millions. By exploiting the continuously indexed structure

of out problem, we find that the interpolation method can give accurate approximations.

4.2.1 Gradient and Hessian for A-optimal Design

Both gradient and Hessian can be easily calculated by taking partial derivative of tr(Γpost(w))

with respect to wi, and they are provided as follows.

• Gradient Denote fi as the ith column of FT and we have

FTWF =
n∑
i=1

wifif
T
i ⇒ ∂FTWF

∂wi
= fif

T
i .

Therefore the ith component in the gradient is:

∂tr(Γpost)

∂wi
= −tr

(
(FTWF + In)−1fif

T
i (FTWF + In)−1

)
= −‖(FTWF + In)−1fi‖2.

(4.3)
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• Hessian Following the previous steps, the (i, j)th entry of Hessian matrix is:

Hij =
∂2tr(Γpost)

∂wi∂wj
= 2
(
fTi (FTWF + In)−1fj

)(
fTi (FTWF + In)−2fj

)
. (4.4)

Note that fi is discretized from a smooth function f(xi, ·), so both fi and F are continuously

indexed, and next we explain an approximation of the gradient and Hessian with Chebyshev

interpolation.

4.2.2 Chebyshev Interpolation in 1D

For starters, assume our domain is [−1, 1], the N Chebyshev interpolation points are

x̃i = cos
(π(i− 1)

N − 1

)
, i = 1, 2, .., N.

Suppose we want to interpolate a smooth function h : [−1, 1] → R, and function evalua-

tions are available at the set of interpolation points {(x̃1, h(x̃1)), (x̃2, h(x̃2)), .., (x̃N , h(x̃N ))}.

Then for any x ∈ [−1, 1], h(x) can be approximated using Lagrange basis polynomials:

h(x) =
N∑
i=1

(∏
j 6=i

x− x̃j
x̃i − x̃j

)
h(x̃i).

The number of interpolation points is chosen to be N = O(log(n)) for both computational

and accuracy purposes which we will see in §4.4. The coefficient vector associated with x is

c(x) =
(∏
j 6=1

x− x̃1

x̃i − x̃1
,
∏
j 6=2

x− x̃2

x̃i − x̃2
, ...,

∏
j 6=N

x− x̃N
x̃i − x̃N

)T
∈ RN .

To apply it in our problem, we construct a square matrix F̃ ∈ RN×N with

F̃ (i, j) = f(xi, yj)∆y
(
e.g. F̃ (i, j) =

d ·∆y
(d2 + ‖x̃i − ỹj‖2)3/2

)
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where x̃i and ỹj are interpolation points in Ωout and Ωin respectively. We calculate the coeffi-

cient vector c(xi) for each mesh point xi ∈ Ωin and create Cx =
(
cx(x1), cx(x2), ..., cx(xn)

)
∈

RN×n. Similarly we construct Cy and then approximate F by

Fs := CTx ∗ F̃ ∗ Cy ∈ Rn×n. (4.5)

To approximate the gradient and Hessian in (4.3) and (4.4), we construct M ∈ Rn×N

with its ith column mi given by

(
FTs WFs + In

)−1
f̃i. (4.6)

where f̃i is the ith column of CTy F̃
T , as an approximation of the column in FT evaluated

at x̃i (note x̃i is an interpolation point which may not be a mesh point). We apply the

conjugate gradient algorithm (see [76, §5.1]) to solve the linear system (4.6) using matrix-

vector product only. Note F is from an integral operator which is of trace class, and the sum

of all the eigenvalues of the positive semi-definite matrix FTWF is finite, so the condition

number of FTWF + In is O(1), and thus we do not need a preconditioner for the conjugate

gradient algorithm (see [60]). We then define M1,M2 ∈ RN×N where the (i, j)th entry is

〈f̃i,mj〉 and 〈mi,mj〉 respectively. More specifically, for i, j = 1, 2, ..., N ,

M1(i, j) = f̃Ti

(
FTs WFs + In

)−1
f̃j , M2(i, j) = f̃Ti

(
FTs WFs + In

)−2
f̃j .

• Approximate gradient in (4.3). Let g ∈ Rn be the true gradient, i.e.

g = (
∂φ

∂w1
,
∂φ

∂w2
, ...,

∂φ

∂wn
)T .

and we approximate each component by gi ≈ −cx(xi)
T ∗M2 ∗ cx(xi).

• Approximate Hessian in (4.4). We construct another matrix H̃ ∈ RN×N where

H̃(i, j) = 2 ∗M1(i, j) ∗M2(i, j), then H(i, j) is approximated by cx(xi)
T ∗ H̃ ∗ cx(xj).
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Equivalently,

H ≈ Hs = CTx ∗ H̃ ∗ Cx.

The above interpolation-based approximation can be generalized for any interval domain

[a, b] by defining a one-to-one mapping between [a, b] and [−1, 1].

4.2.3 Chebyshev Interpolation in 2D

After we understand how the interpolation method works in one dimension, it is not

difficult to extend it to multiple dimensions using tensor product, though the notation would

be slightly more complicated.

Consider the same input and output domain Ω = [−1, 1] × [−1, 1], and let neach and

Neach be the number of mesh points and interpolation points respectively on each side of

the domain. We have n = n2
each mesh points and N = N2

each interpolation points in Ω and

they are related by

N = N2
each = O

(
log(n2

each)
)

= O(log(n)).

In the example of two dimensional gravity surveying, the integrand in (4.2) becomes

f
(
(x, y), (x′, y′)

)
=

d

(d2 + ‖(x, y)− (x′, y′)‖2)3/2
=

d

(d2 + (x− x′)2 + (y − y′)2)3/2
.

Suppose {(xi, yj)}
neach
i,j=1 are mesh points, and {(x̃i, ỹj)}

Neach
i,j=1 are interpolation points, and we

construct matrices F ∈ Rn×n and F̃ ∈ RN×N in a similar fashion as in one dimension. The

n mesh points are ordered as follows: for an index k ∈ {1, 2, .., n}, we write

k = (i− 1) ∗ neach + (j − 1),

and it is associated with the mesh point (xi, yj) in the domain. In other words, we arrange

these mesh points “column by column”, and the index k is associated with (xi, yj). We apply

the same ordering to interpolation points. Next we find the coefficient vector c(xi, yj) ∈ RN ,
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i.e. how a general function f(xi, yj) depends on the values at interpolation points. Based

on results from one dimension, let c(xi), c(yj) ∈ RNeach be the one-dimensional coefficient

vector for xi and yj , and k ∈ {1, 2, .., N} with

k = (k1 − 1) ∗Neach + (k2 − 1),

then the kth coefficient for f(xi, yj) is given by

c(xi, yj)k = c(xi)k1 ∗ c(yj)k2 .

The kth component in c(xi, yj) ∈ RN is the product of kth1 component in c(xi) and kth2

component in c(yj). We can calculate the coefficient vector for each mesh point, and create

matrices C, M , M1 and M2 in a similar fashion (details omitted). Gradient and Hessian

are approximated in the same way as one dimension.

4.3 Sequential Quadratic Programming (SQP)

Given the (approximated) gradient and Hessian to our optimization program (4.1), we

solve a sequence of quadratic program until convergence, where at each step, we approximate

the objective by a quadratic Taylor polynomial at the current iterate. We adopt the algorithm

from [76, §18.1] and each quadratic program is solved with the interior point method.

Before we get to the program (4.1), we instead solve a slightly different version:

min φ(Γpost(w))

s.t. 0 ≤ wi ≤ 1,
∑n
i=1wi ≤ n0.

(4.7)

Claim 4.3.1. This program and the original program has the same minimal point.

Proof: Note that if w � w′ (wi ≤ w′i for each i), then
(
FTWF+In

)−1
�
(
FTW ′F+In

)−1
.

�
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4.3.1 A Framework for SQP

Suppose at the kth iteration, (wk, λk) (note wk is not kth component of w, but kth iterate

of w) are respectively the primal and dual variable, we solve the following quadratic program

min φk +∇φTk · p
k + 1

2(pk)T · ∇2
wwLk · pk

s.t. −wki ≤ pki ≤ 1− wki , , i = 1, 2, ..., n,∑n
i=1 p

k
i ≤ n0 −

∑n
i=1w

k
i

(4.8)

where ∇φk is the gradient of the objective φ and ∇2
wwLk is the Hessian of the Lagrangian,

evaluated at the current iterate wk. As there are only linear constraints, we have ∇2
wwLk =

∇2
wwφk = Hk. The problem (4.8) can be simplified as:

min gT · pk + 1
2(pk)T ·H · pk

s.t. A · pk ≥ b.
(4.9)

where g = ∇φk, H = ∇2
wwφk, A =


In

−In

−1T

 ∈ R(2n+1)×n, b =


−wk

wk − 1

1Twk − n0

 ∈ R2n+1.

Both g and H are from Chebyshev approximations. The new iterate wk+1 is updated

by wk + αkp
k where pk is the solution to the quadratic program (4.9), and αk is the step

length determined by backtracking line search (see [76, Algorithm 3.1]). We discuss details

on solving the program (4.9) and getting its Lagrangian multipliers in the next subsection,

but provide the SQP framework now in Algorithm 1.

In the backtracking line search step, we need to evaluate φ(Γpost(w)) which involves the

trace of an inverse matrix of size n×n, and we propose a SVD-based method with complexity

O(n log2(n)) for the evaluation. Recall that Fs = CTx F̃Cy in (4.5) where Cx, Cy ∈ RN×n,
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F̃ ∈ RN×N and N = O(log(n)), then

FTs WFs = CTy F̃
TCxWCTx F̃Cy.

To evaluate φ(Γpost(w)), we compute the eigenvalues {λi}ni=1 of FTs WFs because

φ(Γpost(w)) = tr
(
(FTs WFs + In)−1) =

n∑
i=1

1

1 + λi
.

SVD decompositions are applied to CTy F̃ ∈ Rn×N and CxW
1/2 ∈ RN×n respectively, and

the complexity is O(n log2(n)). After that, we get

CTy F̃ = U1Σ1V
T
1 , CxW

1/2 = U2Σ2V
T
2 ⇒ FTs WFs = U1

(
Σ1V

T
1 U2Σ2

2U
T
2 V1Σ1

)
UT1 .

Because Σ1V
T
1 U2Σ2

2U
T
2 V1Σ1 ∈ RN×N is of smaller size, another SVD decomposition (equiv-

alently eigenvalue decomposition) of this matrix directly gives us the eigenvalues of FTs WFs,

and then the value of φ(Γpost(w)).

Algorithm 1 SQP with line search for Solving (4.7)
(c = 0.5, ξ = 10−3, ε1 = 10−5, ε2 = 10−8)

1: choose an initial state (w0, λ0); set k ← 0

2: repeat until KKT optimality violation < ε1
3: evaluate ∇φk,∇2

wwφk, Ak, bk;

4: solve the quadratic program (4.9) to obtain (pk, λk+1);

5: αk = 1

6: while φ(Γpost(w
k + αpk)) > φ(Γpost(x

k)) + ξαk∇φTk p
k

7: αk = c ∗ αk
8: end (while)

9: if αk · ‖pk‖∞ < ε2, stop (either pk is small or pk is not a descent direction)

10: if ‖αk · pk + αk−1 · pk−1‖∞ < ε1, stop (moving back and forth between iterates)

11: set wk+1 ← wk + αk · pk, λk+1 ← λk + αk(λk+1 − λk);

12: end (repeat);

Ideally the KKT optimality in the stopping criterion is with respect to the program (4.7),
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and its Lagrangian is

L(w, µ, λ, λ̃) = φ
(
Γpost(w)

)
+ µ
( n∑
i=1

wi − n0
)

+
n∑
i=1

λi(−wi) +
n∑
i=1

λ̃i(wi − 1),

but computing the derivative of L is as expensive as computing ∇φ, so it is approximated

with Chebyshev interpolation. Given a feasible primal variable w and feasible dual variable

(µ, λ, λ̃), we define the KKT optimality violation as

max{
∥∥∇φ(Γpost(w)

)
+µ−λ+ λ̃

∥∥
∞,
∣∣µ(

n∑
i=1

wi−n0)
∣∣, ∣∣λi(−wi)∣∣, ∣∣λ̃i(wi− 1)

∣∣, i = 1, 2, .., n.}.

(4.10)

Note that the program (4.7) is convex, so the KKT condition is both necessary and sufficient

for a solution to be optimal, and we can examine the performance of a solution by looking

at its KKT optimality violation (4.10).

The two additional stopping criteria on Line 9 and 10 are to account for the approximation

errors in the gradient and Hessian, because it is a question as to whether {wk} converges

to the true solution. We further show in §4.4 that, when the KKT condition on Line 2 is

satisfied, the SQP solution converges to the true solution as the problem size goes to infinity.

In addition, we would like to mention that with other stopping criteria, such as the decrease

in the objective is less than ε, the algorithm will produce similar results.

4.3.2 Solve QP with Interior Point Method

In this subsection, we focus on solving the program (4.9) with an interior point method,

following the procedure in [76, §16.6]. We introduce slack variable s � 0 and write down the
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KKT condition for (4.9):

H · pk + g − ATλ = 0

A · pk − s− b = 0

si · λi = 0, i = 1, 2, ..., 2n+ 1

(s, λ) � 0.

Define a complementarity measure µ = sT · λ/(2n+ 1), and solve a linear system:


H 0 −AT

A −I 0

0 Λ S




∆pk

∆s

∆λ

 =


−rd

−rp

−Λ · S1 + σ · µ1

 (4.11)

where

rd = H · pk − ATλ+ g, rp = A · pk − s− b

and

Λ = diag(λ1, .., λ2n+1), S = diag(s1, .., s2n+1), 1 = (1, 1, .., )T .

A more compact “normal equation” form of the system (4.11) is

(
H + ATS−1ΛA

)
∆pk = −rd + ATS−1Λ

(
− rp − s+ σµΛ−11

)
(4.12)

Next we solve the linear system (4.12). Note that once ∆pk is known, ∆s and ∆λ can be

derived without much effort. Let S−1Λ = diag(d1, d2, .., d2n+1), we have from (4.9) that

ATS−1ΛA = D + d2n+1 · 1 · 1T
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where D = diag(d1+dn+1, d2+dn+2, .., dn+d2n). Then we apply Sherman-Morrison formula

to calculate (H +D + d2n+1 · 1 · 1T )−1. Since H ≈ Happrox = CT H̃C, we have

(
Happrox+D

)−1
=
(
CT H̃C+D

)−1
= D−1−D−1CT

(
H̃−1 +CD−1CT

)−1
CD−1 (4.13)

because H̃ is of much lower dimension O(log(n)) than H, and it is less expensive to find its

inverse. Let X := Happrox +D, and we apply (4.13) to get

(H+D+d2n+1·1·1T )−1 =
(
X+d2n+11·1T

)−1
= X−1−X−111TX−1/

(
1TX−11+d−1

2n+1

)
.

To solve for ∆pk in (4.12), we only need H̃−1 and matrix vector products with complexity

O(log3(n)) and O(n log(n)) respectively, and both are affordable to compute. In particular,

Algorithm 16.4 in [76] is implemented to solve (4.9). Together with the fact that the number

of iterations with increasing variable dimensions is usually stable for interior point algorithms,

our SQP algorithm has an overall complexity of O(n logs(n)) for some positive s ≤ 3.

4.4 Error Analysis - Convergence in Optimality Gap

In this section, we determine the number of Chebyshev interpolation points N to approxi-

mately achieve an accuracy level ε. Specifically, let wN be the solution from SQP (Algorithm

1), and wn be the solution to (4.7), we want to choose N based on n such that

∣∣∣φ(Γpost(wn)
)
− φ
(
Γpost(w

N )
)∣∣∣ < ε

where ε is a preassigned threshold. Basically we show that if we solve the optimization with

the low-rank approximation matrix Fs (see the program (4.14) in the next subsection), then

its objective value converges to the true minimum as n→∞. We address this problem in

two steps.
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4.4.1 Connection Between Two Optimization Problems

Note that the KKT optimality in Algorithm 1 corresponds to the following program:

min φs(Γpost(w))

s.t. 0 ≤ wi ≤ 1,
∑n
i=1wi ≤ n0.

(4.14)

where φs(Γpost(w)) = φ
(
(FTs WFs + I)−1

)
. The program differs from (4.7) only in F , and

for simplicity, we use the abbreviation φs(w) for φs(Γpost(w)), and φ(w) for φ(Γpost(w)).

Claim 4.4.1. Let wN , wn be the solution to (4.14) and (4.7) respectively. If |φ(w)−φs(w)| <

ε for any w ∈ Rn, then

|φ(wN )− φ(wn)| < 2ε.

It tells us if φs is close to φ for any w, then the objective value with the interpolation

solution is close to the true minimum.

Proof: Because wN and wn minimizes φs(w) and φ(w) respectively, we have

φs(w
N ) ≤ φs(w

n), φ(wn) ≤ φ(wN ). (4.15)

From the assumption we know |φ(wN )−φs(wN )| < ε and |φ(wn)−φs(wn)| < ε, and together

with (4.15), we get

φ(wN ) ≤ φs(w
N ) + ε ≤ φs(w

n) + ε < φ(wn) + 2ε. (4.16)

The result follows directly from (4.15) and (4.16). �

It remains to show |φ(w)−φs(w)| is small for any w ∈ Rn. Because each entry in 1
∆yFs is

an approximation of 1
∆yF (which is equal to f(xi, yj), and ∆y is the size of a unit rectangle

in Ωin), their difference is small because of the Chebyshev polynomial approximtaion ([25]).

We now quantify |φ(w)− φs(w)|.
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We use the notation ‖X‖ = ‖X‖F (Frobenius norm) for any matrix X in this chapter.

Claim 4.4.2. If 1
∆y |F (i, j)− Fs(i, j)| < ε, then for any w ∈ Rn,

|φ(w)− φs(w)| ≤ C ·N · ε,

for some positive constant C independent of n and N .

Note Fs is defined in (4.5) with N interpolation points, and ε represents the interpolation

error which we will quantify in the next subsection.

Proof: Because |F (i, j)− Fs(i, j)| < ε∆y for i, j = 1, 2, .., n, we have

‖F − Fs‖ <

√√√√ n∑
i=1

n∑
j=1

ε2∆2y = n∆y · ε = µ(Ωin) · ε. (4.17)

Similarly because | 1
∆yF (i, j)| = |f(xi, yj)| ≤ max f(x, y),

‖F‖ =

√√√√ n∑
i=1

n∑
j=1

F (i, j)2(∆y)2 ≤ n∆y ·max f(x, y) = µ(Ωin) ·max f(x, y). (4.18)

Moreover, we can show ‖Fs‖ is also bounded

‖Fs‖ = ‖Fs + F − F‖ ≤ ‖F‖+ ‖F − Fs‖ ≤ µ(Ωin) ·max f(x, y) + µ(Ωin) · ε.

When ε is small (e.g. ε < max f(x, y)), we get

‖Fs‖ ≤ 2µ(Ωin) ·max f(x, y). (4.19)

Because W is a diagonal matrix with each component between 0 and 1, the matrix product

WF results in multiplying the ith row of F by wi and thus ‖WF‖ ≤ ‖F‖. For similar
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reasons, we have ‖FW‖ ≤ ‖F‖ and get

∥∥FTWF − FTs WFs
∥∥ ≤ ∥∥FTW (F − Fs)

∥∥+
∥∥(F − Fs)TWFs

∥∥
≤ ‖FTW‖ · ‖(F − Fs)‖+ ‖F − Fs‖ · ‖WFs‖

≤ ‖F‖ · ‖(F − Fs)‖+ ‖F − Fs‖ · ‖Fs‖

< cε

where the postive constant c = 3 · µ2(Ωin) ·max f(x, y) from (4.17), (4.18) and (4.19). Let

λn1 ≥ λn2 ≥ · · · ≥ λnn, λ
n,s
1 ≥ λ

n,s
2 ≥ · · · ≥ λ

n,s
n

be the eigenvalues of FTWF and FTs WFs respectively. In [74], it has been proved

|λni − λ
n,s
i | < ‖F

TWF − FTs WFs‖ < cε. (4.20)

Because the rank of Fs is at most N , we have λ
n,s
N+1 = .. = λ

n,s
n = 0. In the trace case,

|φ(w)− φs(w)| =
∣∣ n∑
i=1

1

1 + λni
−

n∑
i=1

1

1 + λ
n,s
i

∣∣
≤
∣∣ N∑
i=1

( 1

1 + λni
− 1

1 + λ
n,s
i

)∣∣+
∣∣ n∑
i=N+1

( 1

1 + λni
− 1

1 + λ
n,s
i

)∣∣
=

N∑
i=1

|λni − λ
n,s
i |

(1 + λni )(1 + λ
n,s
i )

+
N∑

i=N+1

λni
1 + λni

≤
N∑
i=1

|λni − λ
n,s
i |+

n∑
i=N+1

λni .

We control the two terms separately. The first term
∑N
i=1 |λni −λ

n,s
i | is bounded by c ·Nε
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from (4.20), and in order to bound
∑n
i=N+1 λ

n
i , note that

∣∣tr(FTWF )− tr(FTs WFs)
∣∣ =

∣∣∆2
y

∑
i,j

wif
2(xi, yj)−∆2

y

∑
i,j

wif
2
s (xi, yj)

∣∣
=
∣∣∆2

y

∑
i,j

wi
(
f(xi, yj) + fs(xi, yj)

)(
f(xi, yj)− fs(xi, yj)

)∣∣
≤ ∆2

y

∑
i,j

(2cf · ε)

= 2(n∆y)2cf · ε =: c̃ε

where cf is the uniform bound for both |f(xi, yj)| and |fs(xi, yj)| because f(xi, yj) is smooth

and fs(xi, yj) is the Chebyshev interpolation approximation on compact domains, and the

constant c̃ depends on cF and µ(Ωin). The last by two step is due to the claim assumption

and f(xi, yj)−fs(xi, yj) = 1
∆y (F (i, j)−Fs(i, j)). Because the trace function can be expressed

as sum of eigenvalues, we have

∣∣tr(FTWF )− tr(FTs WFs)
∣∣ =

∣∣ n∑
i=1

λni −
N∑
i=1

λ
n,s
i |

=
∣∣ N∑
i=1

(λni − λ
n,s
i ) +

∑
i>N

λni
∣∣

≥ −
N∑
i=1

|λni − λ
n,s
i |+

∑
i>N

λni

which implies

∑
i>N

λns ≤
∣∣tr(FTWF )− tr(FTs WFs)

∣∣+
N∑
i=1

|λni − λ
n,s
i | ≤ c̃ε+ c ·Nε.

Therefore,

|φ(w)− φs(w)| ≤ (c̃+ 2cN)ε, (4.21)
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where c̃ and c are constants free of n and N . When N > c̃, we get for any w ∈ Rn,

|φ(w)− φs(w)| ≤ (2c+ 1)N · ε =: C ·N · ε.

which completes the proof. �

4.4.2 Determine The Number of Interpolation Points N

Claim 4.4.2 suggests in order to get accurate approximation, we should make Nε small

where ε is the error in Chebyshev polynomial approximation, and it depends on the number

of interpolation points N and the smoothness of f(x, y). We quantify now how ε depends

on the two factors. Classical theory on Chebyshev interpolation error is well developed (e.g.

see [25]): let f be a continuous function on [−1, 1], hn be its degree n polynomial interpolant

at the Chebyshev points, ε = ‖f − hn‖∞, we have

• if f has a kth derivative of bounded variation for some k ≥ 1, then ε = O(N−k);

• if f is analytical in a neighborhood of [−1, 1], then ε = O(ρN ) for some 0 < ρ < 1.

As the second step, we need to bound 1
∆y |F (i, j) − Fs(i, j)| to satisfy the condition in

Claim 4.4.2. Note that 1
∆yF (i, j) = f(xi, yj) and

1

∆y
Fs(i, j) =

N∑
p=1

N∑
q=1

lp(xi)lq(yj)f(x̃p, ỹq)

where

lp(x) =
N∏
k=1
k 6=p

x− x̃k
x̃p − x̃k

, lq(y) =
N∏
k=1
k 6=q

y − ỹk
ỹq − ỹk

and {x̃p}Ni=1 and {ỹq}Ni=1 are interpolation points in Ωout and Ωin respectively. Let’s first
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look at the one-dimensional case. If for ∀x ∈ Ωout, ∀y ∈ Ωin,

∣∣∣f(x, y)−
N∑
p=1

lp(x)f(x̃p, y)
∣∣∣ ≤ ε0,

∣∣∣f(x, y)−
N∑
q=1

lq(y)f(x, ỹq)
∣∣∣ ≤ ε0,

then we obtain

1

∆y
|F (i, j)− Fs(i, j)|

=
∣∣∣f(xi, yj)−

N∑
p=1

N∑
q=1

lp(xi)lq(yj)f(x̃p, ỹq)
∣∣∣

=
∣∣∣f(xi, yj)−

N∑
p=1

lp(xi)f(x̃p, yj) +
N∑
p=1

lp(xi)
(
f(x̃p, yj)−

N∑
q=1

lq(yj)f(x̃p, ỹq)
)∣∣∣

≤
∣∣∣f(xi, yj)−

N∑
p=1

lp(xi)f(x̃p, yj)
∣∣∣+

N∑
p=1

|lp(xi)|
∣∣∣f(x̃p, yj)−

N∑
q=1

lq(yj)f(x̃p, ỹq)
∣∣∣

≤ ε0 + ε0

N∑
p=1

|lp(xi)|

≤ ε0 + ΛN ∗ ε0 (4.22)

where ΛN is called the Lebesgue constant and it is the opeator norm of Lagragian interpo-

lation polynomial projection at Chebyshev nodes. It is known (see [77]) that

2

π
log(N) + a < ΛN <

2

π
log(N) + 1, a = 0.9625....

• If f(x, y) is kth order continuously differentiable, in the one-dimensional case, we have

ε0 = O(N−k)
(4.22)
===⇒ 1

∆y
|F (i, j)− Fs(i, j)| = O(N−k log(N))

(4.21)
===⇒ |φ(w)− φs(w)| = O(N1−k log(N)).

We conclude that when f(x, y) is at least 2nd order differentiable, |φ(w)− φs(w)| will
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diminish as n→∞. The decay gets slower in multiple dimensions intuitively because

if Ωin,Ωout ⊂ Rd, there are only N1/d interpolation points on each dimension. For the

sake of clear presentation, let’s still assume there are N interpolation points on each

dimension. To derive an error bound, we define the Chebyshev interpolation operator

IN that maps a function g ∈ C([−1, 1]) to a degree-N polynomial:

INg(x) =
N∑
p=1

lp(x)g(x̃p).

Since ΛN is the operator norm, we have ‖INg‖∞ ≤ ΛN‖g‖∞. For x, y ∈ Rd, we now

define the double N -th order tensor product interpolation operator:

INf(x, y) = I1
N,x × · · · × I

d
N,x × I

1
N,y × · · · × I

d
N,yf(x, y),

where IiN,x denotes the single interpolation operator on the i-th dimension in Ωout,

and IjN,y denotes the single interpolation operator on the j-th dimension in Ωin.

|f(x, y)− INf(x, y)| = |f(x, y)− I1
N,xf(x, y) + I1

N,xf(x, y)− INf(x, y)|

≤ |f(x, y)− I1
N,xf(x, y)|+ |I1

N,xf(x, y)− INf(x, y)|

≤ |f(x, y)− I1
N,xf(x, y)|+ |I1

N,xf(x, y)− I1
N,xI

2
N,xf(x, y)|

+ |I1
N,xI

2
N,xf(x, y)− INf(x, y)|

≤ |f(x, y)− I1
N,xf(x, y)|+ ΛN |f(x, y)− I2

N,xf(x, y)|

+ · · ·+ Λ2d−1
N |f(x, y)− IdN,yf(x, y)|

≤ ε0(1 + ΛN + Λ2
N + · · ·+ Λ2d−1

N )

= ε0
Λ2d
N − 1

ΛN − 1
≤ ε0 · Λ2d

N (4.23)

for any ΛN > 2. We implicitly assume here ε0 is the uniform bound of the interpolation

error on any single dimension in Ωin and Ωout. Now we go back to the case where there
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are N interpolation points in total, so there are N1/d interpolations on each side and

if f(x, y) is k-th order continuously differentiable,

ε0 = O(N−k/d)
(4.23)
===⇒ 1

∆y
|F (i, j)− Fs(i, j)| = O(N−k/d log2d(N))

(4.21)
===⇒ |φ(w)− φs(w)| = O(N1−k/d log2d(N)).

In order to guarantee of the convergence of |φ(w) − φs(w)| to zero, f(x, y) should be

at least (d+ 1)− th continuously differentiable.

• If f(x, y) is analytical, then ε0 = O(ρN
1/d

) for some 0 < ρ < 1 and

|φ(w)− φs(w)| = O
(
N log2d(N)ρN

1/d)
.

which converges to zero for any dimension d.

In Section §4.2, we chooseN = c log(n) to achieve the computational complexityO(n logs(n)),

but an important question is how to choose the constant c. One practical suggestion is to

solve for problems with moderate sizes and get the exact solution (true minimum), and then

adjust the constant c by doubling it until all the errors are below the preassigned threshold.

As we will see in the numerical experiment, even though the zero convergence of optimality

gap is not proved to be monotone, its fluctuation is small, and it goes to zero eventually.

4.5 Temporal and Two-Dimensional LIDAR Problem

In this section, we apply the sequential quadratic programming in §4.3 to solve a Bayesian

inverse problem driven by partial differential equations. Specifically, our goal is to infer the

initial condition of an advection-diffusion equation on a spatial and temporal domain, where

the observable can be expressed as a truncated sum of integral equations so that all the

convergence results in Chapter §3 and this chapter would apply.
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4.5.1 Extend Convergence Results to Space-time Models

Because we are adding an extra time domain, theorems in Chapter 3 need to be extended

for time-dependent measurements as in the gas pipeline system. In addition, we require that

the measurements be taken at a fixed frequency for this extension.

Parameter-to-observable Map

Consider a compact domain V in RP and a time interval [0, T ]. Suppose the measurement

without noise has the following form: for x ∈ Ωout

u(x, t) =

∫
Ωin

f(x, y, t)u0(y) dy. (4.24)

In our example, u(x, t) is the solution to partial differential equations describing a dynamical

system, where f(x, y, t) is derived from solving the equations. We discretize the integral equa-

tion (4.24), construct a matrix F from f(x, y, t), and divide the domain Ωout (Ωin and [0, T ])

into nx (ny and nt) equally spaced intervals (∆x = µ(Ωout)/nx,∆y = µ(Ωout)/ny,∆t =

T/nt). Then, û = Fû0 ∈ Rnxnt×1, F ∈ Rnxnt×ny , where

û =
(
u(x1, t1), u(x1, t2), ..., u(x1, tnt), u(x2, t1), ..., u(x2, tnt), ..., u(xnx , t1), u(xnx , tnt)

)T

F =



f(x1, y1, t1) f(x1, y2, t1) · · · f(x1, yny , t1)

f(x1, y1, t2) f(x1, y2, t2) · · · f(x1, yny , t2)

...
...

...

f(x1, y1, tnt) f(x1, y2, tnt) · · · f(x1, yny , tnt)

f(x2, y1, t1) f(x2, y2, t1) · · · f(x2, yny , t1)

...
...

...

f(xnx , y1, tnt) f(xnx , y2, tnt) · · · f(xnx , yny , tnt)



∆y
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and û0 ∈ Rny is a discretization of u0(x) with û0,j = u0(yj) (j = 1, 2, ..., ny). To figure out

the (i, j)th entry of F , let i = (i1 − 1) ∗ nt + i2 (i1 ∈ {1, 2, ..., nx}, i2 ∈ {1, 2, ..., nt}) and

j = 1, 2, ..., ny, we get

F (i, j) = f(xi1 , yj , ti2)∆y.

If Ωin = Ωout, we use the same discretization, i.e. xj = yj (j = 1, 2..., nx) and nx = ny.

Remark 1. f(x, y, t) in (4.24) is not always continuous as a solution to PDEs, for example,

f(x, y, t) in a one-wave system is a delta function δ(x−at, y) where a is the wave speed.

Convexity of the Objective Function

In our Bayesian framework, the posterior covariance matrix is given by

Γpost =
(
FTW 1/2Γ−1

noiseW
1/2F + Γ−1

prior

)−1
.

where Γnoise is the noise covariance matrix among measurements. We assume the measure-

ment noise is only correlated in time, not in space. Under this assumption, Γnoise is a block

diagonal matrix and the number of blocks is equal to the number of discrete points on the

spacial domain Ωout.

Lemma 4.5.1. tr(Γpost), log det(Γpost) and σ1(Γpost) are convex functions in the weight vector.

Proof: We construct the matrix W from the weight vector w=(w0, w1, .., wnx) as follows:

W = diag{w1, w1, ..., w1, w2, w2, .., w2, .., wnx , wnx , ..., wnx} ∈ Rnxnt×nxnt .

Since Γnoise is block diagonal, Γ−1
noise is also block diagonal. Γ−1

noise, F and W can be written
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as

Γ−1
noise =



P1 · · · · · · · · ·

· · · P2 · · · · · ·
...

...
. . .

...

· · · · · · · · · Pnx


F =



F1

F2

...

Fnx


W =



w1Int · · · · · · · · ·

· · · w2Int · · · · · ·
...

...
. . .

...

· · · · · · · · · wnxInt


where Pk ≡ P ∈ Rnt×nt and Fk ∈ Rnt×ny . Therefore,

Γpost =
( nx∑
k=1

wkF
T
k PkFk + Γ−1

prior

)−1

The desired results follow because tr(X−1), log det(X−1) and σ1(X−1) are convex in X. �

Extend the Convergence Theory

Note that

Γ−1
post =

nx∑
k=1

wkF
T
k PFk + Γ−1

prior

and denote fi,j,s = f(xi, yj , ts), then FTk PFk can be written as the following


∑nt
s1,s2=1 fk,1,s1Ps1,s2fk,1,s2 · · ·

∑nt
s1,s2=1 fk,1,s1Ps1,s2fk,ny,s2

...
. . .

...∑nt
s1,s2=1 fk,ny,s1Ps1,s2fk,1,s2 · · ·

∑nt
s1,s2=1 fk,ny,s1Ps1,s2fk,ny,s2

 (∆y)2

Therefore, the (i, j)th entry in Γ−1
post is

Γ−1
post(i, j) = ∆y

nx∑
k=1

nt∑
s1=1

nt∑
s2=1

wkf(xk, ts1 , yi)Ps1,s2f(xk, ts2 , yj)∆x.

If measurements are collected every few seconds or minutes within a time range, i.e. nt is a

fixed integer, then for any precision matrix P , we are in the same setting of Chapter 3, and
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all the convergence proofs can be extended trivially.

4.5.2 2D Advection-diffusion Equation

The advection-diffusion equation is a combination of diffusion and advection equations,

and we will first look at the solution to the diffusion equation (or heat equation), which lays

the foundation to solving the advection-diffusion equation.

Analytical Solution to 2D Heat Equation

Consider a heat equation on a two-dimensional domain [−1, 1]×[−1, 1], with homogeneous

Dirichlet boundary conditions:


ut = µ∇u = µ

(∂2u
∂x2

+ ∂2u
∂y2

)
u(x, y, t) = 0, for (x, y) on the boundary.

u(x, y, 0) = u0(x, y), initial condition.

(4.25)

Using separation of variables, we let u(x, y, t) = T (t)X(x, y) and get

Tt
T

= µ
∇X
X
≡ constant.

The solution to (4.25) can be written as

u(x, y, t) =
∞∑
k=1

cke
µλkthk

where (λk, hk) are the eigenvalue and eigenvector respectively of the following problem:


∇X = ∂X2

∂2x
+ ∂X2

∂2y
= λX

X(x, y) = 0 for (x, y) on the boundary.

119



Since
(
k2π2/4, sin

(kπx
2

))
and (k2π2/4, cos

(kπx
2

)
) are eigen-pairs in one dimension, we can

apply tensor product to obtain eigen-pairs in two dimensions, and further get the solution:

u(x, y, t) =
∑
k1≥0

∑
k2≥0

exp{−µt(k2
1 + k2

2)π2/4}
(
Ak1,k2 sin

(k1πx

2

)
sin
(k2πy

2

)
+Bk1,k2 sin

(k1πx

2

)
cos
(k2πy

2

)
+ Ck1,k2 cos

(k1πx

2

)
sin
(k2πy

2

)
+Dk1,k2 cos

(k1πx

2

)
cos
(k2πy

2

))
. (4.26)

In combination with boundary condition and initial condition, we can calculate the coeffi-

cients which are given below:

Ak1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) sin

(k1πx

2

)
sin
(k2πy

2

)
dxdy, k1 even and k2 even;

Bk1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) sin

(k1πx

2

)
cos
(k2πy

2

)
dxdy, k1 even and k2 odd;

Ck1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) cos

(k1πx

2

)
sin
(k2πy

2

)
dxdy, k1 odd and k2 even;

Dk1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) cos

(k1πx

2

)
cos
(k2πy

2

)
dxdy, k1 odd and k2 odd.

Because the uniqueness of solution to heat equation on bounded domains is already estab-

lished in the classical theory of partial differential equations (see [78, §2.3]), u(x, y, t) in

(4.26) is indeed the solution to (4.25).

From Heat Equation to Advection Diffusion Equation

The two-dimensional advection-diffusion equation we consider here is

∂u

∂t
+ c
(∂u
∂x

+
∂u

∂y

)
= µ

(∂2u

∂x2
+
∂2u

∂y2

)
, −1 < x, y < 1, t ∈ [0, T ].
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where c is the velocity constant and µ is the diffusivity. After a change of variables u(x, y, t) =

v(x, y, t)eα(x+y)+βt, we get

∂v

∂t
+ (c− 2µα)

(∂v
∂x

+
∂v

∂x

)
+ (β + 2cα− 2µα2)v = µ

(∂2v

∂x2
+
∂2v

∂x2

)
.

Set the coefficients of v and v′x + v′y to zero, we have the following


c− 2µα = 0

β + 2cα− 2µα2 = 0

⇒


α = c/2µ

β = −c2/2µ.

We can see v(x, y, t) satisfies a heat equation, and its relation with u(x, y, t) is given by

u(x, y, t) = exp{−c2t/2µ+ c(x+ y)/2µ}v(x, y, t).

The solution u(x, y, t) given v(x, y, t) derived from the previous subsection is

u(x, y, t) = exp{−c2t/2µ+ c(x+ y)/2µ}
∑
k1≥0

∑
k2≥0

exp{−µt(k2
1 + k2

2)π2/4}

(
Ak1,k2 sin

(k1πx

2

)
sin
(k2πy

2

)
+Bk1,k2 sin

(k1πx

2

)
cos
(k2πy

2

)
+ Ck1,k2 cos

(k1πx

2

)
sin
(k2πy

2

)
+Dk1,k2 cos

(k1πx

2

)
cos
(k2πy

2

))
.

Again in combination with boundary condition and initial condition, the coefficients are:

Ak1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) sin

(k1πx

2

)
sin
(k2πy

2

)
exp{− c

2µ
(x+ y)}dxdy, k1 even and k2 even;

Bk1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) sin

(k1πx

2

)
cos
(k2πy

2

)
exp{− c

2µ
(x+ y)}dxdy, k1 even and k2 odd;

Ck1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) cos

(k1πx

2

)
sin
(k2πy

2

)
exp{− c

2µ
(x+ y)}dxdy, k1 odd and k2 even;

Dk1,k2 =

∫ 1

−1

∫ 1

−1
u0(x, y) cos

(k1πx

2

)
cos
(k2πy

2

)
exp{− c

2µ
(x+ y)}dxdy, k1 odd and k2 odd.
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In other words, u(x, y, t) is an integral equation of u0(x, y):

u(x, y, t) =

∫∫
Ωin

f(x̃, ỹ, x, y, t)u0(x̃, ỹ)dx̃dỹ

where the function f(x̃, ỹ, x, y, t) is an infinite sum of Fourier series.

4.5.3 2D Advection-diffusion Equation with External Source

In the previous subsection, we have considered a stationary process meaning that even-

tually, the state becomes zero everywhere because of the homogeneous boundary conditions.

Now we extend it to a non-stationary process by adding an external force to the equation.

Again we work on the heat equation and then generalize to advection-diffusion equation.

2D Heat Equation with External Source

Consider the heat equation on a two-dimensional domain [−1, 1]× [−1, 1] with homoge-

neous Dirichlet boundary conditions and an external force f(x, y, t):

ut − µ∇u = ut − µ
(∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t)

and u(x, y, t) = 0 for (x, y) on the boundary. The initial condition is u(x, y, 0) = u0(x, y).

Using a variant of separation of variables, we assume the solution u(x, y, t) has the following

form

u(x, y, t) =
∑
n

Tn(t)Xn(x, y)

and then apply the tensor product of one-dimensional Fourier basis as before, we get

u(x, y, t) =
∑
k1≥0

∑
k2≥0

{
T

(1)
k1,k2

(t) sin(
k1πx

2
) sin(

k2πy

2
) + T

(2)
k1,k2

(t) sin(
k1πx

2
) cos(

k2πy

2
)

+ T
(3)
k1,k2

(t) cos(
k1πx

2
) sin(

k2πy

2
) + T

(4)
k1,k2

(t) cos(
k1πx

2
) cos(

k2πy

2
)
}
.
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We treat each of the above four terms separately, and will use the Fourier basis sin(k1πx2 ) sin(k2πy2 )

as an example. Results for the other three terms can be derived similarly. Let

u(1)(x, y, t) =
∑
k1≥0

∑
k2≥0

T
(1)
k1,k2

(t) sin(
k1πx

2
) sin(

k2πy

2
),

and then

∂u(1)

∂t
−µ(

∂2u(1)

∂x2
+
∂2u(1)

∂y2
) =

∑
k1≥0

∑
k2≥0

(∂T (1)
k1,k2

(t)

∂t
+µ

k2
1 + k2

2

4
π2T

(1)
k1,k2

(t)
)

sin(
k1πx

2
) sin(

k2πy

2
).

We solve the following equation:


∂T

(1)
k1,k2

(t)

∂t + µ
k21+k22

4 π2T
(1)
k1,k2

(t) = fk1,k2(t)

T
(1)
k1,k2

(0) = ck1,k2

(4.27)

where fk1,k2(t) and ck1,k2 are the Fourier coefficients with respect to the basis sin(k1πx2 ) sin(k2πy2 ),

for the external force f(x, y, t) and the initial condition u0(x, y) respectively:

fk1,k2(t) =

∫∫
[−1,1]×[−1,1]

f(x, y, t) sin(
k1πx

2
) sin(

k2πy

2
) dxdy,

ck1,k2 =

∫∫
[−1,1]×[−1,1]

u0(x, y) sin(
k1πx

2
) sin(

k2πy

2
) dxdy

and get the solution to (4.27)

T
(1)
k1,k2

(t) = exp{−µ
k2

1 + k2
2

4
π2t}ck1,k2 +

∫ t

0
exp{−µ

k2
1 + k2

2

4
π2(t− s)}fk1,k2(s) ds.

123



After working out the other three terms, we combine them together and get:

u(t, x, y) =
∑
k1≥0

∑
k2≥0

Ak1,k2(t) sin(
k1πx

2
) sin(

k2πy

2
) +Bk1,k2(t) sin(

k1πx

2
) cos(

k2πy

2
)

+Ck1,k2(t) cos(
k1πx

2
) sin(

k2πy

2
) +Dk1,k2(t) cos(

k1πx

2
) cos(

k2πy

2
)(4.28)

where

Ak1,k2(t) = exp{−µ
k2

1 + k2
2

4
π2t}

∫∫
Ωin

u0(x, y) sin(
k1πx

2
) sin(

k2πy

2
) dxdy

+

∫ t

0
exp{−µ

k2
1 + k2

2

4
π2(t− s)}f (1)

k1,k2
(s) ds

Bk1,k2(t) = exp{−µ
k2

1 + k2
2

4
π2t}

∫∫
Ωin

u0(x, y) sin(
k1πx

2
) cos(

k2πy

2
) dxdy

+

∫ t

0
exp{−µ

k2
1 + k2

2

4
π2(t− s)}f (2)

k1,k2
(s) ds

Ck1,k2(t) = exp{−µ
k2

1 + k2
2

4
π2t}

∫∫
Ωin

u0(x, y) cos(
k1πx

2
) sin(

k2πy

2
) dxdy

+

∫ t

0
exp{−µ

k2
1 + k2

2

4
π2(t− s)}f (3)

k1,k2
(s) ds

Dk1,k2(t) = exp{−µ
k2

1 + k2
2

4
π2t}

∫∫
Ωin

u0(x, y) cos(
k1πx

2
) cos(

k2πy

2
) dxdy

+

∫ t

0
exp{−µ

k2
1 + k2

2

4
π2(t− s)}f (4)

k1,k2
(s) ds.

Again from boundary conditions, Ak1,k2 is for k1 even and k2 even, Bk1,k2 is for k1 even and

k2 odd, Ck1,k2 is for k1 odd and k2 even, Dk1,k2 is for k1 odd and k2 odd.

Advection-diffusion Equation with External Source

The two-dimensional advection-diffusion equation with external source is

∂u

∂t
+ c1

∂u

∂x
+ c2

∂u

∂y
− µ

(∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t), −1 < x, y < 1, t ∈ [0, T ]. (4.29)
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where c = (c1, c2) is the velocity constant and µ is the diffusivity. After a change of variables

u(x, y, t) = v(x, y, t)eαx+βy+γt, we get

∂v

∂t
+ (c1 − 2µα)

∂v

∂x
+ (c2 − 2µβ)

∂v

∂y
+ (γ + c1α + c2β − µα2 − µβ2)v − µ

(∂2v

∂x2
+
∂2v

∂x2

)
= f(x, y, t) exp{−αx− βy − γt}.

Again we set some coefficients to zero and get


c1 − 2µα = 0

c2 − 2µβ = 0

γ + c1α + c2β − µα2 − µβ2 = 0

⇒


α = c1/2µ

β = c2/2µ

γ = −(c21 + c22)/4µ.

Note v(x, y, t) satisfies the heat equation with homogeneous Dirichlet conditions:


vt − µ(vxx + vyy) = f̃(x, y, t)

v(x, y, t) = 0, for (x, y) on the boundary.

v0(x, y) = exp{−c1x/2µ− c2y/2µ}u0(x, y),

where f̃(x, y, t) = exp{(c21 + c22)t/4µ− c1x/2µ− c2y/2µ}f(x, y, t). Its relation to u(x, y, t) is

given by

u(x, y, t) = exp{−(c21 + c22)t/4µ+ c1x/2µ+ c2y/2µ}v(x, y, t).

Based on the result on heat equation, the solution u(x, y, t) is:

u(x, y, t) = exp{−(c21 + c22)t/4µ+ c1x/2µ+ c2y/2µ}
∑
k1≥0

∑
k2≥0

(4.30)

{
Ak1,k2(t) sin(

k1πx

2
) sin(

k2πy

2
) +Bk1,k2(t) sin(

k1πx

2
) cos(

k2πy

2
)

+ Ck1,k2(t) cos(
k1πx

2
) sin(

k2πy

2
) +Dk1,k2(t) cos(

k1πx

2
) cos(

k2πy

2
)
}
.
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where

Ak1,k2(t) = φ
(1)
k1,k2

+

∫ t

0
exp{−µ

k2
1 + k2

2

2
π2(t− s)}f̃ (1)

k1,k2
(s) ds, for k1 even, k2 even;

Bk1,k2(t) = φ
(2)
k1,k2

+

∫ t

0
exp{−µ

k2
1 + k2

2

2
π2(t− s)}f̃ (2)

k1,k2
(s) ds, for k1 even, k2 odd;

Ck1,k2(t) = φ
(3)
k1,k2

+

∫ t

0
exp{−µ

k2
1 + k2

2

2
π2(t− s)}f̃ (3)

k1,k2
(s) ds, for k1 odd, k2 even;

Dk1,k2(t) = φ
(4)
k1,k2

+

∫ t

0
exp{−µ

k2
1 + k2

2

2
π2(t− s)}f̃ (4)

k1,k2
(s) ds, for k1 odd, k2 odd;

{φ(i)
k1,k2
} is related to the Fourier coefficients of the initial condition v0 (or equivalently,

u0) as in (4.28). We see that the solution u(x, y, t) is an additive sum of two components:

one is from the initial condition u0(x, y), the other is from the external source f(x, y, t), and

the two sources act independently on the solution. Therefore, the external source does not

play a role in the selection of sensor locations, if we use a Bayesian framework of Gaussian

distributions to infer the initial condition from time-space measurements.

4.5.4 Numerical Results

In this subsection, we provide numerical results on selecting the optimal sensing directions

to estimate the initial condition of a two-dimensional advection-diffusion equation. Here is

the problem description: suppose a lidar is sitting at the origin of a unit circle (Ωout), and

it collects data u(x, y, t) by sending out laser beams and detecting reflections; we need to

determine the optimal directions for releasing the beams to collect data long those directions.

Our parameter is the initial condition u0(x, y) of the advection-diffusion equations (4.29),

and the parameter-to-observable mapping is from the solution to (4.29), which is an integral

equation

u(x, y, t) = F(u0) =

∫∫
[−1,1]×[−1,1]

F(x, y, t)u0(x, y) dxdy

where F is directly from the solution in (4.30). For discretizations, we divide the angle of 2π

into nd parts so that the circle has nd sectors with the same area, and each beam goes across

126



the center of each sector. We also discretize the radius into nr parts with equal length. We

attach a weight variable to each sector (or radius), and points on the same radius have the

same weight. The goal is to select a proportion of sectors to measure data along the radius,

and best infer u0 defined on the slightly larger square domain [−1, 1]× [−1, 1] (Ωin), which

is discretized by regular grid of size nx × nx.

The constants we choose in the equations (4.29) are c1 = 0.1, c2 = 0, µ = 1.0, T = 1, nt =

5, r = 0.2, and the noise ratio is 0.01. Here is a reminder on the meaning of these constants:

c1, c2 are the velocities along the x and y axis respectively, µ is the diffusivity constant,

nt is a fixed integer denoting the number of measurements in time, and the noise ratio is

σ2
noise/σ

2
prior. The covariance matrix in time is set to be identity at the moment. For the

results below, nd = nr = nx = 30, and the velocity (c1, c2) is pointing from the origin to

its right (the advection term can be thought of as air movement or wind when studying the

concentration of a substance), so the placement is symmetric to the x axis (see Fig. 4.1).

Fig.4.1: Relaxed solution for p = 1, 2, 3 respectively

Fig.4.2: SQP solution for p = 1, 2, 3 respectively
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Fig.4.3: Sum-up Rounding for p = 1, 2, 3 respectively (based on relaxed solutions)

Because the solution to advection-diffusion equation is an integral of an infinite sum, we

truncate and take the dominating terms where k1, k2 ≤ p in (4.30), and we determine the hy-

per parameter p from a sanity check, where we try to recover the initial state sin(πx) sin(πy)

by looking at the truncated solution at t = 0. We observe that when p = 3, the values do

not change further, which suggests p = 3 is sufficient. Note this choice of p is subject to the

choice of c1, c2 and µ in the PDE, especially when µ is small, a larger value of p is required.

Next we examine the performance of SQP by looking at the computation time in compar-

ison with the Ipopt package in Julia, its optimality gap in the objective, and its maximum

KKT violation defined in (4.10) (without aprroximation) to measure the closeness to the

true minimal point. We use different numbers of interpolation points c · log(n) by choosing

the constant c = 1, 2, 4, 8, and let nd = nr = nx, that is, the number of angles equals the

number of discretization points on each radius. When nr = 30, it takes Ipopt about 1.5

hours to find the solution, while SQP only needs a few minutes to get a sufficiently good

approximation. When c = 8, nr = 30, the SQP solution actually gives a lower objective

value than the “true” minimum possibly due to the tolerance level (10−6) specified in Ipopt.
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Fig.4.4: (a) Input function: z = sin(πx)(πy) on [−1, 1]× [−1, 1]; (b) Recover the initial state
using dominant terms with k1, k2 ≤ 1; (c) Recover the initial state using dominant terms
with k1, k2 ≤ 2; (d) Recover the initial state using dominant terms with k1, k2 ≤ 3.
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Fig.4.5: Computation time
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Fig.4.6: Error in the objective
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Fig.4.7: KKT violation

We would also like to examine the effect of c1, c2 and µ on the optimal sensing directions,

and we conduct a few more experiments. The following gives the exact relaxed solution for

varying values of c1 and µ, but fixed c2 = 0 and p = 3. Again, nd = nr = 30.
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Fig.4.8: Dependence of sensing direction on c1 and µ when wind blows →. From left to
right: (1) c1 = 0.1, µ = 0.1; (2) c1 = 0.1, µ = 1.0; (3) c1 = 1.0, µ = 1.0.

Fig.4.9: Dependence of sensing direction on µ when c1 = 0.1 and wind blows →. From left
to right: µ = 5.0, 7.0, 8.0, 10.0.

According to Fig. 4.8 and Fig. 4.9, we find that

• when the wind moves faster, more sensing directions are chosen towards the wind;

• when it is less diffusive (small values of µ), the sensing directions spread out more;

• when the diffusivity µ is large, the relaxed sensing directions gets blurred.

Since SQP is much faster than the exact method, we can run larger size problems (nd =

nr = 80) and change the wind direction form → to ↗. The relaxed sensing directions are

given below.
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Fig.4.10: Sensing direction for increasing wind speed with µ = 0.1, wind direction↗. From
left to right: (1) c1 = c2 = 0.1; (2) c1 = c2 = 0.5; (3) c1 = c2 = 1.0.

From the solution to the advection-diffusion equation, for a larger value of µ, p imposes

less effect on the sensing directions. But when µ is small, such as 0.1, the design is likely to

depend on p, and adding p makes the design more “diffusive”, although the configuration is

roughly the same, see Figure 4.10 and Figure 4.11.

Fig.4.11: Sensing direction for increasing p with c1 = c2 = 1.0 and µ = 0.1, wind direction↗.
From left to right: p = 3, 5, 10.
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5 Future Work

The work discussed in the thesis provides the initial results on the zero gap convergence

of optimal sensor placement, and there are many directions for future research. For exam-

ple, an immediate extension is to consider a general covariance function in the prior; the

integral equation seems restrictive in describing the relationship between the parameter and

observation. We give the following five prospective research directions to pursue.

(1) Build the connection between the limit of discretized problem and the continuous prob-

lem on function spaces. The parameter in our formulation is a vector where each element

is associated with evaluation at a mesh point, and we increase the dimensions to infinity.

Whether the vector converges to a function-space-valued limit as the finite-dimensional

computation is refined deserves further study. There are known results in both Gaussian

and non-Gaussian settings (see discussions in [79], [18, §2.5]), but not for the particular

formulation incorporating weight matrix for sensor placement. It is also of theoretical

interest to explore if the relaxed weight vector wrel converges to a continuous density

with respect to Lebesgue measure on Ωout, although this is not required in our theorems.

(2) Generalize parameter-to-observable mapping: integral operator → linear operator →

nonlinear operator. When the parameter is from a Hilbert space with the inner prod-

uct defined as an integral over a compact domain, it is known by Riesz representation

theorem any bounded linear operator is an inner product with a representative element,

and thus an integral operator. The theory of singular value decomposition for com-

pact operators on Hilbert space is also well established (see [80] and [81, §3.5]), so a

low-rank approximation by integral operators is possible by truncation. However for
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nonlinear operators, it remains difficult even though linearization methods have been

studied extensively (see [82, §4], [83, 84]).

(3) Sum-up rounding can potentially be used in any continuously-indexed sampling problems

and approximate the density of optimal sampling locations. We can apply the sum-up

rounding idea on other formulations like Gaussian process/Kriging. A spatio-temporal

field estimation based on a kriged Kalman filter was published (see [9]) lately, where

the measurement consists of a stationary component capturing the non-dynamic spatial

effects, a non-stationary component modeling the physical properties of environmental

fields (represented by state space models), and an uncorrelated measurement error. Sim-

ilarly, the authors discretize the entire service area into small units, construct a weight

vector for each unit, formulate a convex optimization and solve the relaxation. In the

paper, the thresholding and weight-based multinomial rounding strategies are discussed,

but sum-up rounding seems a better candidate in this setting.

(4) Consider general domains and general prior information. In the current work, both input

and output domains are rectangles, and we have mentioned extensions to domains that

can be well approximated by rectangles. However, in many practical problems, domains

do not possess regular shapes, such as autonomous vehicles and robots. Reparametriza-

tion or transformation may be required to deal with complicated domains, and thus a

theory on general domains is one direction to pursue. One advantage of Bayesian formu-

lation is to incorporate prior belief on the parameter, and a common choice is Gaussian

prior partially because a lot of theoretical results are available in literature, but prior

generalization is considered as a significant challenge. Even in the Gaussian setting, it

is unclear how to choose and interpret the covariance function.

(5) Extend sum-up rounding strategy for multiple states. The current strategy is to con-

struct a binary vector, and only two states are allowed. There is a general version of the

strategy that applies to multiple states (see [46, Theorem 5]). If there are different types
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of sensors, for example, self-driving vehicles have lidar sensors, radar sensors and camera

sensors, the multi-state sum-up rounding would be useful in allocating different sensors

in different locations under statistical optimal conditions. It is of interest to prove similar

gap convergence given that the general strategy has a wider range of applications.
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A Likelihood for Sensor Data

The actual measurements d can be thought of in several ways, and the data likelihood

πlike(d|u0, w) ∝ exp
{
− 1

2
(d− Fu0)TW 1/2Γ−1

noiseW
1/2(d− Fu0)

}
.

shall all agree in the case when the weight matrix in Rn×n is diagonal with entries either 0 or

1, and Γnoise is diagonal. Suppose the full measurement is u ∈ Rn, and we observe n0 of them

(n0 ≤ n). The most general consideration is that d̃ ∈ Rn0 , the weight matrix W̃ ∈ Rn0×n,

and n0 out of its n columns form an identity matrix In0 . The restricted covariance matrix

is W̃ΓnoiseW̃
T , and the restricted mean vector is W̃Fu0. The data likelihood becomes

πlike(d̃|u0, w) ∝ exp
{
− 1

2
(d̃− W̃Fu0)T

(
W̃ΓnoiseW̃

T
)−1

(d̃− W̃Fu0)
}
.

Together with the prior information u0 ∼ N (uprior,Γprior), the posterior distribution can be

easily computed as N (upost,Γpost) where

Γpost =
(
FT W̃T (W̃ΓnoiseW̃

T )−1
W̃F + Γprior

)−1
(1)

upost = Γpost

(
FT W̃T (W̃ΓnoiseW̃

T )−1
d̃+ Γ−1

prioruprior

)
.

Because data error (or noise) from different sensors are assumed to be uncorrelated, Γnoise is

diagonal or block diagonal, i.e.

(
WΓnoiseW

T )−1
= WΓ−1

noiseW
T .

In the case of homogeneous noise, that is, Γnoise = σ2In, we have

W̃T (W̃ΓnoiseW̃
T )−1

W̃ = W̃TΓ−1
noiseW̃ = σ−2W̃W̃T = σ−2W.
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Moreover, the following are all equal

πlike(d|u0, w) ∝ exp
{
− 1

2
(d− Fu0)TW 1/2Γ−1

noiseW
1/2(d− Fu0)

}
= exp

{
− 1

2
(Wd−WFu0)TW 1/2Γ−1

noiseW
1/2(Wd−WFu0)

}
= exp

{
− 1

2
(d̃− W̃Fu0)T

(
W̃ΓnoiseW̃

T
)−1

(d̃− W̃Fu0)
}

W has only binary values on the diagonal and in the paper, we introduce a weight for

each candidate sensor location so that W is diagonal with each entry between 0 and 1. For

the purpose of estimation, after the locations are selected, d can be viewed as the potential

measurement u in (1.2) with missing values in locations where there is no sensor and apply

(1.3), or can be viewed as a low-dimensional copy of u and apply (1).

B Another Sum-Up Rounding Procedure for Rectangular Domains

We present the sum-up rounding algorithm slowromancapii@ based on the following com-

patible two-level decomposition, with concepts defined in Definition 1. We use the notation

k1(ni) = b√nic, and k(n) = k1(n1)k1(n2)..k1(nP ).

(i) On [li1, l
i
2] for i= 1, 2, ..., P , group the first k1(ni) intervals {Ii,j}

k1(ni)
j=1 as Gi,1, group

the next k1(ni) intervals {Ii,j}
2k1(ni)
j=k1(ni)+1

as Gi,2, and so forth until we get Gi,k1(ni)
.

The remaining intervals {Ii,j}nj=k1(ni)2+1
are grouped as Gi,last, and the number of

intervals in Gi,last equals ni − k1(ni)
2. Note that

√
ni − 1 < k1(ni) = b√nic ≤

√
ni.
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We can bound the number of intervals in the last group by

ni − (
√
ni)

2 ≤ ni − k1(ni)
2 < ni − (

√
ni − 1)2

0 ≤ ni − k1(ni)
2 < 2

√
ni,

so the cardinality of Gi,. is O(
√
ni), and its size is O(1/

√
ni).

(ii) Consider a subdomain Vj of the form

∏
i=1,2,..,P

ji∈{1,2,..,k1(ni),last}

Gi,ji .

This decomposition has the following parameters and properties, in reference to Definition 1.

k(n) =
P∏
i=1

b√nic, k̃(n) =
P∏
i=1

d√nie, r(n) = k(n), (2)

ρ(Vj) =

√√√√ P∑
i=1

(
(li2 − l

i
1)

b√nic

)2

, j = 1, 2, . . . , k(n) (3)

Theorem B.1. Under the assumptions of Theorem 3.3.3, there exists a C such that the

sum-up rounding algorithm slowromancapii@ construction satisfies

∣∣∣ n∑
k=1

f(xk)
(
wn(xk)− w̃n(xk)

)
∆x

∣∣∣ ≤ C

n1/2P
.

Proof. We use the definitions of the sum-up rounding procedure parameters (2)–(3), and the

inequalities (3.20)-(3.21) to infer the following inequalities:

1
√
ni
≤ c
−1

2
1 n−

1
2P , i = 1, 2, . . . , P ;

1

r(n)
=

P∏
i=1

1

b√nic
(3.20)
≤ 2

P
2
√
n
. (4)
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For the maximum diameter of Vj we obtain from (3) and (3.20)

max
j=1,2,...,k(n)

ρ(Vj) ≤
√
P

maxi=1,2,..,P (li2 − l
i
1)

1
2 mini=1,2,...,P

√
ni

(3.21)
≤
√
P

maxi=1,2,..,P (li2 − l
i
1)

1
2
√
c1

n−
1
2P . (5)

We also obtain

1− k(n)r(n)

n
= 1−

P∏
i=1

b√nic2

ni
≤ 1−

P∏
i=1

(
1− 1
√
ni

) (3.21)
≤ 1−

(
1− c−

1
2

1 n−
1
2P

)P
.

In turn, from the mean value theorem applied to (1−x)P for x ∈ [0, 1] and the last inequality,

we have

1− (1− x)P ≤ Px, ∀x ∈ [0, 1]⇒ 1− k(n)r(n)

n
≤ Pc

−1
2

1 n−
1
2P . (6)

We now use Theorem 3.3.3 along with (3.20)-(3.21) , (4), (5), and (6) to obtain the

statement of this theorem for the sum-up rounding algorithm slowromancapii@ with the

choice

C = max
x∈V
|f(x)|µ(V )2

P
2 + 2Lµ(V )

√
P

maxi=1,2,..,P (li2 − l
i
1)

1
2
√
c1

+ 2 max
x∈V

f(x)µ(V )Pc
−1

2
1 .

C The SQP Algorithm for D-optimal Design

The algorithm is very similar to the one for A-optimal design, except that the gradient

and Hessian for D-optimal design objective function are different.

Gradient of logdet objective

First we find the derivatives to the logdet of Γpost:

∂ logdet(Γpost)

∂wi
= −tr

(
(FTWF + In)−1fif

T
i

)
= −fTi (FTWF + In)−1fi
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Hessian of logdet objective

The (i, j)th entry of the Hessian matrix is

Hij =
∂2logdet(Γpost)

∂wi∂wj
=
(
fTi (FTWF + In)−1fj

)2
.

Approximation of gradient and Hessian

We will give details for the one-dimensional case, and the procedure can be extended

trivially to rectangle domains in multiple dimensions using tensor product. For the input

domain, let {x̄i}Ni=1 be the N Chebyshev interpolation points, {xi}ni=1 be the n discretization

points on the mesh and note N = O(log(n)), and Cx ∈ Rn×N be the matrix of interpolation

coefficients (see §4.2). Similarly, we can construct Cy for the output domain. We approximate

F by

Fs = CTx F̄Cy

where F̄ ∈ RN×N is the matrix of f(x̄i, x̄j) evaluated at interpolation points. Next, we

construct M ∈ Rn×N by setting its (i, j)th entry to be

f̄Ti (FTs WFs + In)−1f̄i

where f̄i is the ith column of CTy F
T
s . Then we approximate the ith gradient by cx(xi)

TM(i, i)cx(xi.

To approximate the Hessian H, let H̄ ∈ RN×N and H̄(i, j) = M(i, j)2, and then

H ≈ CTx H̄Cx.

Once we figure out the gradient and Hessian approximations, it should be clear on the

implementation of the sequential quadratic programming algorithm 1 in §4.3.
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Error analysis

All the error analysis in §4.4 applies to the log-determinant case, and we only need to

modify one step in Claim 4.4.2:

|φ(w)− φs(w)| =
∣∣ n∑
i=1

log
1

1 + λni
−

n∑
i=1

log
1

1 + λ
n,s
i

∣∣
≤
∣∣ N∑
i=1

(
log

1

1 + λni
− log

1

1 + λ
n,s
i

)∣∣+
∣∣ n∑
i=N+1

(
log

1

1 + λni
− log

1

1 + λ
n,s
i

)∣∣
=

N∑
i=1

∣∣ log(1 + λ
n,s
i )− log(1 + λni )

∣∣+
N∑

i=N+1

log(1 + λni )

≤
N∑
i=1

|λni − λ
n,s
i |+

n∑
i=N+1

λni .
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