THE UNIVERSITY OF CHICAGO

RHODIUM-CATALYZED C-C BOND ACTIVATION OF FOUR-MEMBERED RING KETONES

A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

BY

LIN DENG

CHICAGO, ILLINOIS

JUNE 2019

Copyright © 2019 by Lin Deng

All rights reserved

TABLE OF CONTENTS

LIST OF SCHEMES	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xxv
ACKNOWLEDGEMENT	xxxi
PREFACE	xxxiii
CHAPTER 1	1
1.1 Introduction	1
1.2 C-C Bond Activation of Cyclopropenones	3
1.2.1 Reactions with stoichiometric metals	3
1.2.2 Catalytic reactions with different metals	7
1.3 C-C Bond Activation of Cyclobutenediones and Cyclobutenones	12
1.3.1 Reactions with stoichiometric metals	12
1.3.2 Catalytic reactions with different metals	17
1.4 C-C Bond Activation of Cyclobutanones	28
1.4.1 Reactions with stoichiometric metals	29
1.4.2 Catalytic reactions with different metals	30
1.5 Conclusions and Outlook	42
1.6 References	43

CHAPTER 2	48
2.1 Introduction	48
2.2 Results and Discussion	51
2.2.1 Condition optimization for rhodium-catalyzed carboacylation of $C=N$ bonds	51
2.2.2 Substrate scope for rhodium-catalyzed carboacylation of $C=N$ bonds	57
2.2.3 Synthetic applications for rhodium-catalyzed carboacylation of $C=N$ bonds	61
2.3 Conclusion	63
2.4 Experimental	63
2.4.1 General information	63
2.4.2 Synthetic routes for substrate synthesis	64
2.4.3 Synthesis of precursors	65
2.4.4 Route I synthesis of substrates 1b to 1f	70
2.4.5 Route II synthesis of substrates 1a and 1g to 1m	73
2.4.6 Synthesis of substrates 1n	78
2.4.7 General procedure for C-C activation reactions	79
2.4.8 Synthetic applications	99
2.4.9 X-ray data	106
2.5 References	114
2.6 NMR Spectra	117
CHAPTER 3	160

3.1 Introduction	169
3.2 Results and Discussion	172
3.2.1 Rh-catalyzed enantioselective "cut-and-sew" reactions to const	truct fused indolines
	172
3.2.2 Substrate scope for the Rh-catalyzed synthesis of tricyclic indol	ines via C–C
activation	176
3.2.3 Rh-catalyzed diastereoselective cyclopropanation	178
3.2.4 End game	
3.3 Conclusion	184
3.4 Experimental	185
3.4.1 General information	185
3.4.2 Synthetic routes for substrate synthesis	186
3.4.3 Procedure for C–C bond activation and characterization of con	npounds 8 to 81 199
3.4.4 Procedure and characterization data for the total synthesis of (-	–)-cycloclavine 223
3.4.5 Procedure and characterization data of total synthesis of (–)-5-	epi-cycloclavine 230
3.4.6 X-ray data	233
3.5 References	235
3.6 NMR Spectra	238
CHAPTER 4	281
4.1 Introduction	281

4.2 Results and Discussion.	. 284
4.2.1 Condition optimization for "cut-and-sew" reactions between cyclobutanones and	
alkynes	. 284
4.2.2 Substrate scope for "cut-and-sew" reactions between cyclobutanones and alkynes	s 287
4.2.3 Mechanistic study for "cut-and-sew" reactions between cyclobutanones and alkyr	nes
	. 290
4.2.4 Synthetic applications for "cut-and-sew" reactions between cyclobutanones and	
alkynes	. 295
4.3 Conclusion	. 295
4.4 Experimental	. 296
4.4.1 General information	. 296
4.4.2 General information about substrate synthesis	. 297
4.4.3 Synthesis of precursors	. 298
4.4.4. Synthesis of substrates	. 301
4.4.5 Rh-catalyzed intramolecular coupling between cyclobutanones and alkynes	. 317
4.4.6 Procedures and data for synthetic applications	. 330
4.4.7 Mechanistic study	. 337
4.4.8 X-ray data	. 353
4.5 References	. 358
4.6 NMR Spectra	. 361

CHAPTER 5	425
5.1 Introduction	425
5.2 Results and Discussion	428
5.2.1 Condition optimization for kinetic resolution of cyclobutanones	428
5.2.2 Substrate scope for kinetic resolution of cyclobutanones	434
5.3 Conclusion and Outlook	437
5.4 Experimental	438
5.4.1 General information	438
5.4.2 Substrate synthesis	439
5.4.3 Rh-catalyzed kinetic resolutions between cyclobutanones and alkynes	449
5.4.4 X-ray data	474
5.5 References	475
5 6 NMR Spectra	477

LIST OF SCHEMES

Scheme 1.1 Two Major Mechanistic Pathways for C-C Bond Activation of Strained Cyclic
Ketones
Scheme 1.2 The Resonance Structure of Cyclopropenones
Scheme 1.3 Stoichiometric Insertion of Platinum(0) into Cyclopropenone
Scheme 1.4 Stoichiometric Insertion of Nickel(0) into Cyclopropenone
Scheme 1.5 Stoichiometric Insertion of Rhodium(I) into Cyclopropenone
Scheme 1.6 Stoichiometric Insertion of Cobalt(I) into Cyclopropenone
Scheme 1.7 Nickel-Catalyzed Dimerization of Cyclopropenones
Scheme 1.8 Nickel-Catalyzed Insertion of Ketene into Cyclopropenones
Scheme 1.9 Transition-Metal Catalyzed Reaction between Cyclopropenones and Trimethylsilyl
Cyanide
Scheme 1.10 Ruthenium-Catalyzed Carbonylation of Cyclopropenones
Scheme 1.11 Rhodium-Catalyzed [3+2]-Cycloaddition of Cyclopropenones with Alkynes1
Scheme 1.12 Rhodium-Catalyzed Aryl C-H Bond Insertion into Cyclopropenones
Scheme 1.13 Cyclobutenediones and Cyclobutenones in C-C Bond Activation Reactions 1
Scheme 1.14 Stoichiometric Reactions Involving Insertion of Transition-Metals into
Cyclobutenediones
Scheme 1.15 Stoichiometric Insertion of Transition-Metals into Cyclobutenones

Scheme 1.16 Recent Examples of Stoichiometric Insertion of Transition-Metals into	
Benzocyclobutenones	16
Scheme 1.17 Ruthenium-Catalyzed Decarbonylative C-C Bond Activation	18
Scheme 1.18 Synthesis of Phenols through C–C Bond Activation	19
Scheme 1.19 Rhodium or Ruthenium-Catalyzed Coupling between Cyclobutenones and	
Norbornene or Ketene	21
Scheme 1.20 Rhodium-Catalyzed Intramolecular Ring Fusion Reaction	22
Scheme 1.21 Rhodium-Catalyzed Carboacylation of Olefins through C-C Bond Activation of	of
Benzocyclobutenones	23
Scheme 1.22 Rhodium-Catalyzed Decarbonylative Spirocyclization through C-C Bond	
Activation of Benzocyclobutenones	24
Scheme 1.23 Rhodium-Catalyzed Alkyne-Benzocyclobutenone Couplings	25
Scheme 1.24 Rhodium-Catalyzed Carboacylation/Aromatization Cascade	25
Scheme 1.25 Palladium-Catalyzed Insertion of Silacyclobutane into Benzocyclobutenones	26
Scheme 1.26 Ruthenium-Catalyzed Insertion of Adjacent Diols into C-C Bond of	
Benzocyclobutenones and Benzocyclobutenediones	27
Scheme 1.27 Nickel-Catalyzed Intermolecular Diene-Benzocyclobutenone Couplings	28
Scheme 1.28 Decarbonylation of Cyclobutanones by Insertion of Stoichiometric Rhodium(I)) 29
Scheme 1.29 Oxidative Addition of Cyclobutanone onto Rhodium(I) at Room Temperature .	30
Scheme 1.30 Rhodium(I)-Catalyzed Reductive Ring Opening of Cyclobutanones	31

Scheme 1.31 Catalytic Decarbonylation of Cyclobutanones via Rhodium Catalysis
Scheme 1.32 Rhodium(I)-Catalyzed Successive Cleavage of C-C and C-O Bonds
Scheme 1.33 Intramolecular Olefin Insertion into C–C Bond of Cyclobutanones
Scheme 1.34 Rhodium(I)-Catalyzed Bridged Ring Formation through C-C Bond Activation 34
Scheme 1.35 Rhodium(I)-Catalyzed Vinyl Carbenoid Insertion into Cyclobutanones
Scheme 1.36 Rhodium(I)-Catalyzed Decarbonylative Insertion of Olefins into Cyclobutanones
Scheme 1.37 Rhodium(I)-Catalyzed Enantioselective Insertion of C=O Bonds into
Cyclobutanones
Scheme 1.38 Palladiun(0)-Catalyzed Intramolecular Exchange of C-C and C-Si Bonds 37
Scheme 1.40 Rhodium(I)-Catalyzed Addition/Ring-Opening of Cyclobutanones with
Arylboronic Acids
Scheme 1.41 Rhodium(I)-Catalyzed Arylative Ring Expansion of Cyclobutanones
Scheme 1.42 Rhodium(I)-Catalyzed Enantioselective Lactone Synthesis from Cyclobutanones 39
Scheme 1.43 Nickel(0)-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanones 40
Scheme 1.44 Nickel(0)-Catalyzed Enantioselective Intramolecular Olefin Insertion into
Cyclobutanones
Scheme 1.45 Nickel(0)-Catalyzed Enantioselective Intramolecular Allene Insertion into
Cyclobutanones 42
Scheme 2.1 Carboacylation of C=O Bonds via Transition-Metal-Catalyzed C-C Activation 49

Scheme 2.2 General Process of Amide Bond Formation through "Cut-and-Sew" Approa	ch 49
Scheme 2.3 Carboacylation of C=N Bonds via Rh-Catalyzed C-C Activation	50
Scheme 2.4 Representative Natural Products and Pharmaceuticals with Hydroisoquinoli	nes 51
Scheme 2.5 Crystal Structure of Compound 2a	55
Scheme 2.6 Cleavage of N-O Bond	62
Scheme 2.7 Synthetic Applications I	62
Scheme 2.8 Synthetic Applications II	63
Scheme 3.1 The "Cut-and-Sew" Approach for Bridged and Fused Ring Synthesis	170
Scheme 3.2 Structures of Representative Ergot Alkaloids	170
Scheme 3.3 Prior Strategies towards Total Synthesis of Cycloclavine	171
Scheme 3.4 Retrosynthetic Analysis for the Synthesis of (-)-Cycloclavine: a C-C Activa	ation
Strategy	172
Scheme 3.5 Challenges for "Cut-and-Sew" Reactions	173
Scheme 3.6 Synthesis of the Nitrogen-Tethered Benzocyclobutenone Substrate	174
Scheme 3.7 Synthesis of Compound 3 as the Substrate for Cyclopropanation	179
Scheme 3.8 Potential Side Reaction for Cyclopropanation	179
Scheme 3.9 X-ray Structures of Compound 9b (Racemic)	181
Scheme 3.10 Stereochemical Model for the Cyclopropanation Step	182
Scheme 3.11 Synthesis of (–)-5-epi-Cycloclavine	183
Scheme 3.12 Total Synthesis of (–)-Cycloclavine	184

Scheme 3.13 A Summary of the Synthetic Efforts towards (–)-Cycloclavine	185
Scheme 4.1 "Cut and Sew" Reactions with Cyclobutanones	282
Scheme 4.2 Challenge for Fused Ring Formation	282
Scheme 4.3 "Cut-and-Sew" with Cyclobutanones to Form Fused Rings	283
Scheme 4.4 Precedents of Cyclohexenone-Fused Ring Formation via C-C Activation	284
Scheme 4.5 Scope for Disubstituted Cyclobutanones	289
Scheme 4.6 Unsuccessful Substrates	290
Scheme 4.7 Control Experiments	291
Scheme 4.8 ¹³ CO Exchange Experiment	292
Scheme 4.9 Resting State Study	293
Scheme 4.10 Kinetic Study with Different [Rh]/P Ratio	294
Scheme 4.11 Synthetic Applications	295
Scheme 5.1 Asymmetric Cyclohexenone-Bridged Ring Formation via C-C Activation	426
Scheme 5.2 Representative Natural Products with the Fused Ring Systems Generated	427
Scheme 5.3 Asymmetric Cyclohexenone-Fused or Bridged Ring Formation via C-C Activ	vation
	427
Scheme 5.4 Representative Natural Products with Four-membered Ring	428
Scheme 5.5 X-ray Structure of 2a	434
Scheme 5.6 Unsuccessful Substrates on Olefin- or Allene-Tethered Substrates	436
Scheme 5.7 Unsuccessful Substrates on Alkyne-Tethered Substrates	437

LIST OF TABLES

Table 2.1 Evaluation of Solvents and Precatalysts ^a	. 52
Table 2.2 Evaluation of Counter-Ion ^a	. 52
Table 2.3 Evaluation of Chiral Ligands ^a	. 54
Table 2.4 Further Screening with (<i>R</i>)-xyl-SDP ^a	. 55
Table 2.5 Studies of the Mixed-Ligand Conditions ^a	. 56
Table 2.6 Control Experiments ^a	. 57
Table 2.7 Substrate Scope I ^a	. 58
Table 2.8 Substrate Scope II ^a	. 59
Table 2.9 Unsuccessful Substrates ^a	60
Table 2.10 Crystal Data and Structure Refinement for 2a 1	106
Table 2.11 Crystal Data and Structure Refinement for 21 1	108
Table 2.12 Crystal Data and Structure Refinement for 2n 1	110
Table 2.13 Crystal Data and Structure Refinement for 6	111
Table 2.14 Crystal Data and Structure Refinement for 7 1	113
Table 3.1 Selected Optimization Study for the Rh-Catalyzed Asymmetric "Cut-and-Sew"	
Reaction ^a	175
Table 3.2 Substrate Scope I ^a 1	177
Table 3.3 Substrate Scope II ^a 1	178
Table 3.4 Selected Condition Optimization for the Cyclopropanation Step ^a	181

Table 3.5 Crystal Data and Structure Refinement for 12 (Racemic)	233
Table 4.1 Selected Ligand Screening	285
Table 4.2 Screening of the [Rh]/P Ratio ^a	286
Table 4.3 Precatalyst/solvent Screening and Control Experiments ^a	287
Table 4.4 Substrate Scope ^a	288
Table 4.5 Series of ¹³ CO Exchange Experiment	293
Table 4.6 Crystal Data and Structure Refinement for 2a	353
Table 4.7 Crystal Data and Structure Refinement for 3	354
Table 4.8 Crystal Data and Structure Refinement for 6.	356
Table 5.1 Initial Condition Screening ^a	429
Table 5.2 Selected Condition Screening with Different Precatalysts ^a	429
Table 5.3 Selected Condition Screening with Different Ligands ^a	430
Table 5.4 Selected Condition Screening with Different Additives ^a	431
Table 5.5 Selected Condition Screening with In-Situ Generated Cationic Rhodium	Catalysts ^a 432
Table 5.6 Selected Condition Screening at Different Temperatures ^a	433
Table 5.7 Selected Condition Screening for Acidic Additives ^a	433
Table 5.8 Selected Control Experiments ^a	434
Table 5.9 Substrate Scope a,b	435
Table 5.10 Crystal Data and Structure Refinement for 2a	475

LIST OF FIGURES

Figure 2.1 ¹ H and ¹³ C NMR spectrum of compound 1a	117
Figure 2.2 ¹ H and ¹³ C NMR spectrum of compound 1b	118
Figure 2.3 ¹ H and ¹³ C NMR spectrum of compound 1c	119
Figure 2.4 ¹ H and ¹³ C NMR spectrum of compound 1d	120
Figure 2.5 ¹ H and ¹³ C NMR spectrum of compound 1e	121
Figure 2.6 ¹ H and ¹³ C NMR spectrum of compound 1f	122
Figure 2.7 ¹ H and ¹³ C NMR spectrum of compound 1g	123
Figure 2.8 ¹ H and ¹³ C NMR spectrum of compound 1h	124
Figure 2.9 ¹ H and ¹³ C NMR spectrum of compound 1i	125
Figure 2.10 ¹ H and ¹³ C NMR spectrum of compound 1j	126
Figure 2.11 ¹ H and ¹³ C NMR spectrum of compound 1k	127
Figure 2.12 ¹ H and ¹³ C NMR spectrum of compound 11	128
Figure 2.13 ¹ H and ¹³ C NMR spectrum of compound 1m	129
Figure 2.14 ¹ H and ¹³ C NMR spectrum of compound 1n	130
Figure 2.15 ¹ H and ¹³ C NMR spectrum of compound 2a	131
Figure 2.16 ¹ H and ¹³ C NMR spectrum of compound 2b	132
Figure 2.17 ¹ H and ¹³ C NMR spectrum of compound 2c	133
Figure 2.18 ¹ H and ¹³ C NMR spectrum of compound 2d	134
Figure 2.19 ¹ H and ¹³ C NMR spectrum of compound 2e	135

Figure 2.20 ¹ H and ¹³ C NMR spectrum of compound 2f	
Figure 2.21 ¹ H and ¹³ C NMR spectrum of compound 2g	137
Figure 2.22 ¹ H and ¹³ C NMR spectrum of compound 2h	138
Figure 2.23 ¹ H and ¹³ C NMR spectrum of compound 2i	139
Figure 2.24 ¹ H and ¹³ C NMR spectrum of compound 2j	140
Figure 2.25 ¹ H and ¹³ C NMR spectrum of compound 2k	141
Figure 2.26 ¹ H and ¹³ C NMR spectrum of compound 21	142
Figure 2.27 ¹ H and ¹³ C NMR spectrum of compound 2m	143
Figure 2.28 ¹ H and ¹³ C NMR spectrum of compound 2n	144
Figure 2.29 ¹ H and ¹³ C NMR spectrum of compound 1j-II	145
Figure 2.30 ¹ H and ¹³ C NMR spectrum of compound 1k-II	146
Figure 2.31 ¹ H and ¹³ C NMR spectrum of compound 11-II	147
Figure 2.32 ¹ H and ¹³ C NMR spectrum of compound 1k-III	148
Figure 2.33 ¹ H and ¹³ C NMR spectrum of compound 1k-IV	149
Figure 2.34 ¹ H and ¹³ C NMR spectrum of compound 3	150
Figure 2.35 ¹ H and ¹³ C NMR spectrum of compound 4	151
Figure 2.36 ¹ H and ¹³ C NMR spectrum of compound 5	152
Figure 2.37 ¹ H and ¹³ C NMR spectrum of compound 6	153
Figure 2.38 ¹ H and ¹³ C NMR spectrum of compound 7	154
Figure 2.39 ¹ H and ¹³ C NMR spectrum of compound 8	155

Figure 2.40 ¹ H and ¹³ C NMR spectrum of compound 9	156
Figure 2.41 2D NMR spectra of compound 2m	157
Figure 2.42 2D NMR spectra of compound 2n	159
Figure 2.43 2D NMR spectra of compound 8	160
Figure 3.1 ¹ H and ¹³ C NMR spectrum of compound 6h	238
Figure 3.2 ¹ H and ¹³ C NMR spectrum of compound 5	239
Figure 3.3 ¹ H and ¹³ C NMR spectrum of compound 5a	240
Figure 3.4 ¹ H and ¹³ C NMR spectrum of compound 5b	241
Figure 3.5 ¹ H and ¹³ C NMR spectrum of compound 5c	242
Figure 3.6 ¹ H and ¹³ C NMR spectrum of compound 5d	243
Figure 3.7 ¹ H and ¹³ C NMR spectrum of compound 5e	244
Figure 3.8 ¹ H, ¹³ C NMR and ¹⁹ F-NMR spectrum of compound 5f	245
Figure 3.9 ¹ H and ¹³ C NMR spectrum of compound 5g	247
Figure 3.10 ¹ H and ¹³ C NMR spectrum of compound 5h	248
Figure 3.11 ¹ H and ¹³ C NMR spectrum of compound 5i	249
Figure 3.12 ¹ H and ¹³ C NMR spectrum of compound 5j	250
Figure 3.13 ¹ H and ¹³ C NMR spectrum of compound 5k	251
Figure 3.14 ¹ H and ¹³ C NMR spectrum of compound 5l-I	252
Figure 3.15 ¹ H and ¹³ C NMR spectrum of compound 5l	253
Figure 3.16 ¹ H and ¹³ C NMR spectrum of compound 5m	254

Figure 3.17 ¹ H and ¹³ C NMR spectrum of compound 5n	255
Figure 3.18 ¹ H and ¹³ C NMR spectrum of compound 8	256
Figure 3.19 ¹ H and ¹³ C NMR spectrum of compound 8a	257
Figure 3.20 ¹ H and ¹³ C NMR spectrum of compound 8b	258
Figure 3.21 ¹ H and ¹³ C NMR spectrum of compound 8c	259
Figure 3.22 ¹ H and ¹³ C NMR spectrum of compound 8d	260
Figure 3.23 ¹ H and ¹³ C NMR spectrum of compound 8e	261
Figure 3.24 ¹ H, ¹³ C NMR and ¹⁹ F NMR spectrum of compound 8f	262
Figure 3.25 ¹ H and ¹³ C NMR spectrum of compound 8g	264
Figure 3.26 ¹ H and ¹³ C NMR spectrum of compound 8h	
Figure 3.27 ¹ H and ¹³ C NMR spectrum of compound 8i	266
Figure 3.28 ¹ H and ¹³ C NMR spectrum of compound 8j	267
Figure 3.29 ¹ H and ¹³ C NMR spectrum of compound 8k	268
Figure 3.30 ¹ H and ¹³ C NMR spectrum of compound 81	269
Figure 3.31 ¹ H and ¹³ C NMR spectrum of compound 8m	270
Figure 3.32 ¹ H and ¹³ C NMR spectrum of compound 8n	271
Figure 3.33 ¹ H and ¹³ C NMR spectrum of compound 3	272
Figure 3.34 ¹ H and ¹³ C NMR spectrum of compound 9b (major)	273
Figure 3.35 ¹ H and ¹³ C NMR spectrum of compound 9b (minor)	274
Figure 3.36 ¹ H and ¹³ C NMR spectrum of compound 10	275

Figure 3.37 ¹ H and ¹³ C NMR spectrum of compound 2	276
Figure 3.38 ¹ H and ¹³ C NMR spectrum of compound 1	277
Figure 3.39 ¹ H and ¹³ C NMR spectrum of compound 11	278
Figure 3.40 ¹ H (in CDCl ₃ and CD ₂ Cl ₂) and ¹³ C NMR spectrum of compound 12	279
Figure 4.1 ¹ H and ¹³ C NMR spectrum of compound 1d-II	361
Figure 4.2 ¹ H and ¹³ C NMR spectrum of compound 1j-II	362
Figure 4.3 ¹ H and ¹³ C NMR spectrum of compound 11-II	363
Figure 4.4 ¹ H and ¹³ C NMR spectrum of compound 1m-II	364
Figure 4.5 ¹ H and ¹³ C NMR spectrum of compound 1n-I	365
Figure 4.6 ¹ H and ¹³ C NMR spectrum of compound 1u-I	366
Figure 4.7 ¹ H and ¹³ C NMR spectrum of compound 1t-I	367
Figure 4.8 ¹ H and ¹³ C NMR spectrum of compound 1a	368
Figure 4.9 ¹ H and ¹³ C NMR spectrum of compound 1b	369
Figure 4.10 ¹ H and ¹³ C NMR spectrum of compound 1c	370
Figure 4.11 ¹ H and ¹³ C NMR spectrum of compound 1d	371
Figure 4.12 ¹ H and ¹³ C NMR spectrum of compound 1e	372
Figure 4.13 ¹ H and ¹³ C NMR spectrum of compound 1f	373
Figure 4.14 ¹ H and ¹³ C NMR spectrum of compound 1g	374
Figure 4.15 ¹ H and ¹³ C NMR spectrum of compound 1h	375
Figure 4.16 ¹ H and ¹³ C NMR spectrum of compound 1i	376

Figure 4.17 ¹ H and ¹³ C NMR spectrum of compound 1j	377
Figure 4.18 ¹ H and ¹³ C NMR spectrum of compound 1k	378
Figure 4.19 ¹ H and ¹³ C NMR spectrum of compound 11	379
Figure 4.20 ¹ H and ¹³ C NMR spectrum of compound 1m	380
Figure 4.21 ¹ H and ¹³ C NMR spectrum of compound 1n	381
Figure 4.22 ¹ H and ¹³ C NMR spectrum of compound 10	382
Figure 4.23 ¹ H and ¹³ C NMR spectrum of compound 1p	383
Figure 4.24 ¹ H and ¹³ C NMR spectrum of compound 1q	384
Figure 4.25 ¹ H and ¹³ C NMR spectrum of compound 1r	385
Figure 4.26 ¹ H and ¹³ C NMR spectrum of compound 1s	386
Figure 4.27 ¹ H and ¹³ C NMR spectrum of compound 1t	387
Figure 4.28 ¹ H and ¹³ C NMR spectrum of compound 1u	388
Figure 4.29 ¹ H and ¹³ C NMR spectrum of compound 1v	389
Figure 4.30 ¹ H and ¹³ C NMR spectrum of compound 2a	390
Figure 4.31 ¹ H and ¹³ C NMR spectrum of compound 2b	391
Figure 4.32 ¹ H and ¹³ C NMR spectrum of compound 2c	392
Figure 4.33 ¹ H and ¹³ C NMR spectrum of compound 2d	393
Figure 4.34 ¹ H and ¹³ C NMR spectrum of compound 2e	394
Figure 4.35 ¹ H and ¹³ C NMR spectrum of compound 2f	395
Figure 4.36 ¹ H and ¹³ C NMR spectrum of compound 2g	396

Figure 4.37 ¹ H and ¹³ C NMR spectrum of compound 2h	397
Figure 4.38 ¹ H and ¹³ C NMR spectrum of compound 2i	398
Figure 4.39 ¹ H and ¹³ C NMR spectrum of compound 2j	399
Figure 4.40 ¹ H and ¹³ C NMR spectrum of compound 2k	400
Figure 4.41 ¹ H and ¹³ C NMR spectrum of compound 21	401
Figure 4.42 ¹ H and ¹³ C NMR spectrum of compound 2m	402
Figure 4.43 ¹ H and ¹³ C NMR spectrum of compound 2n	403
Figure 4.44 ¹ H and ¹³ C NMR spectrum of compound 20	404
Figure 4.45 ¹ H and ¹³ C NMR spectrum of compound 2p	405
Figure 4.46 ¹ H and ¹³ C NMR spectrum of compound 2q	406
Figure 4.47 ¹ H and ¹³ C NMR spectrum of compound 2r	407
Figure 4.48 ¹ H and ¹³ C NMR spectrum of compound 2s	408
Figure 4.49 ¹ H and ¹³ C NMR spectrum of compound 2t	409
Figure 4.50 ¹ H and ¹³ C NMR spectrum of compound 2u	410
Figure 4.51 ¹ H and ¹³ C NMR spectrum of compound 2v (major)	411
Figure 4.52 ¹ H and ¹³ C NMR spectrum of compound 3	412
Figure 4.53 ¹ H and ¹³ C NMR spectrum of compound 4	413
Figure 4.54 ¹ H and ¹³ C NMR spectrum of compound 5	414
Figure 4.55 ¹ H and ¹³ C NMR spectrum of compound 6	415
Figure 4.56 ¹ H and ¹³ C NMR spectrum of compound 7	416

Figure 4.57 ¹ H and ¹³ C NMR spectrum of compound 8	417
Figure 4.58 ¹ H and ¹³ C NMR spectrum of compound 9	418
Figure 4.59 ¹ H and ¹³ C NMR spectrum of compound 2a'	419
Figure 4.60 2D-NMR spectrum of compound 1u	420
Figure 4.61 2D-NMR spectrum of compound 1v	421
Figure 4.62 2D-NMR spectrum of compound 2u.	422
Figure 4.63 2D-NMR spectrum of compound 2v	423
Figure 4.64 2D-NMR spectrum of compound 5	424
Figure 5.1 ¹ H and ¹³ C NMR spectrum of compound 1a	477
Figure 5.2 ¹ H and ¹³ C NMR spectrum of compound 1b	478
Figure 5.3 ¹ H and ¹³ C NMR spectrum of compound 1c	479
Figure 5.4 ¹ H and ¹³ C NMR spectrum of compound 1e	480
Figure 5.5 ¹ H and ¹³ C NMR spectrum of compound 1f	481
Figure 5.6 ¹ H and ¹³ C NMR spectrum of compound 1g	482
Figure 5.7 ¹ H and ¹³ C NMR spectrum of compound 1h	483
Figure 5.8 ¹ H and ¹³ C NMR spectrum of compound 1i	484
Figure 5.9 ¹ H and ¹³ C NMR spectrum of compound 1j	485
Figure 5.10 ¹ H and ¹³ C NMR spectrum of compound 1k	486
Figure 5.11 ¹ H and ¹³ C NMR spectrum of compound 2a	487
Figure 5.12 ¹ H and ¹³ C NMR spectrum of compound 2b	488

Figure 5.13 ¹ H and ¹³ C NMR spectrum of compound 2c	489
Figure 5.14 ¹ H and ¹³ C NMR spectrum of compound 2e	490
Figure 5.15 ¹ H and ¹³ C NMR spectrum of compound 2f	491
Figure 5.16 ¹ H and ¹³ C NMR spectrum of compound 2g	492
Figure 5.17 ¹ H and ¹³ C NMR spectrum of compound 2h	493
Figure 5.18 ¹ H and ¹³ C NMR spectrum of compound 2i	494
Figure 5.19 ¹ H and ¹³ C NMR spectrum of compound 2j	495
Figure 5.20 ¹ H and ¹³ C NMR spectrum of compound 2k	496

LIST OF ABBREVIATIONS

Acetyl Ac acetylacetonate Acac Ad Adamantyl Ar Aryl **BARF** Tetrakis(perfluorophenyl)borate **BINAP** 2,2'-bis(Diphenylphosphino)-1,1'-binaphthalene Benzyl Bn Boc tert-Butoxycarbonyl Butyl Bu Benzoyl BzCOD 1,5-Cyclooctadienyl COE Cyclooctene Cyclopentadienyl Cp Cp* 1,2,3,4,5-Pentamethylcyclopentadienyl Cyclohexyl Cy

δ Chemical shift

DCE 1,2-Dichloroethane

DCM Dichloromethane

DIAD Diisopropyl azodicarboxylate

DMF *N,N*-Dimethylformamide

DMPU N, N'-Dimethylpropyleneurea

DMSO Dimethylsulphoxide

DPEphos (Oxydi-2,1-phenylene)bis(diphenylphosphine)

dppb 1,4-bis(Diphenylphosphino)butane

dppe 1,2-bis(Diphenylphosphino)ethane

dppf 1,1'-bis(Diphenylphosphino)ferrocene

dppp 1,3-bis(Diphenylphosphino)propane

dppm 1,1-bis(Diphenylphosphino)methane

dr Diastereomeric ratio

DG Directing group

DTBMP 2,6-Di-tert-butyl-4-methylpyridine

Enantiomeric excess ee Et Ethyl equiv Equivalent **HFIP** 1,1,1,3,3,3-Hexafluoro-2-propanol High performance liquid chromatography **HPLC** High-resolution mass spectrometry **HRMS IBX** 2-Iodoxybenzoic acid 1,3-Dimesitylimidazol-2-ylidene **IMes** Isopropyl i-Pr IR Infrared

KPS Potassium persulfate

m Meta

mCPBA meta-Chloroperoxybenzoic acid

Me Methyl

Mes Mesityl

MOM Methoxymethyl

Methanesulphonyl Ms M.S. Molecular Sieve MW Microwave Mass charge ratio m/z2,5-Norbornadiene nbd NBS *N*-Bromosuccinimide *n*-Bu normal-Butyl **NFSI** N-Fluorobenzenesulfonimide N-Heterocyclic Carbene **NHC** N-Iodosuccinimide **NIS** Nuclear magnetic resonance **NMR** normal-Propyl *n*-Pr Nitrobenzenesulphonyl Ns Ortho 0 Oxone $2KHSO_5 \cdot KHSO_4 \cdot K_2SO_4$ Para p

PCC Pyridinium chlorochromate Ph Phenyl Phth Phthaloyl Pin Pinacolyl Pivaloyl Piv Pyridyl Py Regioisomeric ratio rr Room temperature r.t. TBS tert-Butyldimethylsilyl *t*-Bu tert-Butyl Tf Trifluoromethanesulphonyl Tfa Trifluoroacetyl THF Tetrahydrofuran TIPS Tri-iso-propylsilyl TLC Thin-layer chromatography TMS Trimethylsilyl

Tol Tolyl

Ts *para-*Toluenesulphonyl

ACKNOWLEDGEMENT

First of all, I would like to thank my advisor, Prof. Guangbin Dong, for taking the risk of recruiting me when I knew nothing about methodology development. Over the past five years, he has been a great mentor to me and taught me with his own example how to be an ethusiatic chemist and endure the ups and downs along the way. His creative ideas and solid understanding about catalysis have been vital to anything I have achieved in this thesis. I would like also to thank Professor Eric Anslyn, Professor Stephen Martin, and Professor Grant Willson, for the supportance during the two years I spent in University of Texas at Austin. I would also like to thank my committee members, Professor Viresh Rawal and Professor Scott Snyder, for agreeing to be my committee and attend my defense on a very short notice. The faculty members at University of Chicago are greatly appreciated for being very supportive since I moved to Chicago. Professor Viresh Rawal and Professor John Anderson have helped me a lot during my job searching process and I am really grateful for that.

Next, I want to thank all my collaborators during the past five years: Tao Xu, Jianchun Wang, Likun Jin, Mengqing Chen and Serena Lee; their helpful discussions and solid efforts contribute to every aspect of my research. I am especially grateful to Tao Xu for being my mentor in the first year of my Ph.D. study, who generously helped me both in research and life. All the Dong group members are greatly appreciated for being a super supportive and fun family in the past five year: Haye Min Ko, Rachel Whittaker, Zhi Ren, John Thompson, Xuan Zhou, Fanyang Mo, Hee Nam Lim, Yan Xu, Zhe Dong, Zhongxing Huang, Gang Li, Penghao Chen, Ki-Young

Yoon, Rong Zeng, Dong Xing, Saiyong Pan, Mike Young, Ying Xia, Jiaxin Xie, Chengpeng Wang,

Tatsuhiro Tsukamoto, Brent Billett, Ziqiang Rong, Ming Chen, Jun Zhu, Renhe Li, Alexander

Rago, Sihua Hou, Xiaoyang Chen, Zhao Wu, Xukai Zhou, Hairong Lyu, Yibin Xue and Shusuke

Ochi. It is my great honor to work with this group of talented and passionate chemists.

This last word of acknowledgment goes to my dearest family. I could not use any word to

describe the gratitude I have for having them being my family. My parents have shown me how to

love unconditionally and forgive radically. They encourage me and support me in every mountains

and valleys. I dedicate this thesis to them.

Lin Deng

University of Chicago

May 2019

PREFACE

Each chapter of this dissertation is numbered independently. A given compound may have a different number in different chapters. All experimental details, references, and notes for individual chapters are included at the end of each chapter.

CHAPTER 1

C-C Activation of Cyclic Ketones with Ring Strain: History and Recent Methodologies

1.1 Introduction

C–C and C–H bonds constitutes most of the organic compounds. In petroleum industry, the C–C bond cleavage and reorganization has been widely used in crude oil refining in a massive scale. When it goes to smaller scales, C–C bond activation has attracted the attention of synthetic chemists for decades because they often lead to interesting skeletal rearrangement and cracking. In the past four decades, significant progress in this field has been achieved, especially with transformations involving transition metals.¹ However, comparing with the selective C–H bond functionalization, studies around C–C σ-bond activations lag behind. One of the reasons is that C–C bonds are less abundant than C–H bonds. The other is that the highly directional character of the C–C bonds making its orbital overlap with transition metal not efficient. Nevertheless, highly strained alkanes, such as quadricyclane, cubanes etc.,¹a have been shown to undergo C–C σ-bond activation rapidly and enabled the generation of a wide variety of complex ring systems. As more general and synthetically useful C–C σ-bond activation transformations were pursued, strained cyclic ketones have been found to privileged substrates for facile C–C bond cleavage. Ring strain is certainly the main driving force, but in addition to that, the stable acyl metal bond generated or

the downhill transformation after C–C bond cleavage also contributes. In addition, ketones are the most common functional groups existing in organic molecules and can also serve as a handle for further transformations, which significantly increases the synthetic utility of C–C bond activation reactions. Mechanistically, there are two major mechanistic pathways involved in the C–C bond cleavage reactions discussed here (Scheme 1.1). The pathway A is through the direct oxidative addition of ketones, which is the reverse reaction of the reductive elimination. Because of the stability of the C–C bond (ca. 90 kcal/mol) comparing with the C–M bond (ca. 30 kcal/mol),² the reductive elimination is often thermodynamically favoured. However, when the strained cyclic ketones are involved, this pathway would benefit from the releasing of ring strain and the stability of transition metal carbonyl bond. The other is pathway B, which starts with the addition of a nucleophile to the ketone, then β–carbon elimination driven by ring-strain would take place to cleave the C–C bond.

Scheme 1.1 Two Major Mechanistic Pathways for C-C Bond Activation of Strained Cyclic

Ketones

Pathway A: Oxidative Addition [Mⁿ]

Pathway B: β-carbon Elimination

In following sessions, the history and recent development in C-C bond cleavages of several types of cyclic ketone with ring strain would be discussed in detail and we aim at giving a thorough background information for the further research we conducted in this thesis.

1.2 C-C Bond Activation of Cyclopropenones

Cyclopropenones have shown special stability attributing to its resonance structure, cyclopropenylium cation, which is the smallest member of the Hückel aromatic systems (Scheme 1.2). The chemical behavior of cyclopropenone is largely related to its polarized nature as well as the large ring strain in the three membered-ring. They have been found to undergo facile C–C bond cleavage due to its high ring strain.³ In this review, we mainly focus on the transition metal-promoted C–C bond cleavage of cyclopropenones.

Scheme 1.2 The Resonance Structure of Cyclopropenones

$$\begin{array}{c}
0 \\
R
\end{array}$$

$$\begin{array}{c}
0 \\
R
\end{array}$$

1.2.1 Reactions with stoichiometric metals

The generation of metallacyclobutenone intermediates were suggested by Bird in the decomposition of diarylcyclopropenones with complexes of Fe, Co as early as 1967.⁴ In 1972, Baddley reported the stoichiometric insertion of platinum(0) into the C-C bond of diphenylcyclopropenone at room temperature. The platinacyclobutenone complex 1 was synthesized in 60% yield and was confirmed by X-ray crystallography (Scheme 1.3a).⁵ Methylcyclopropenone was also found to undergo exchange with the ethylene ligand in a platinum(0) complex at -65 °C and the platinum further inserted to the C-C bond at slightly elevated temperature, which suggested that complex 2 was an intermediate for the C-C bond cleavage of cyclopropenones (Scheme 1.3b).⁶

Scheme 1.3 Stoichiometric Insertion of Platinum(0) into Cyclopropenone

a)
$$Pt(PPh_{3})_{4} + Ph \xrightarrow{DCM, r.t.} Ph_{3}P \xrightarrow{Ph_{3}P} Pt \xrightarrow{Ph_{3}P}$$

In addition to platinum(0) complex, nickel(0) carbonyl complex has also been reported by Baba and coworkers to generate nickelacyclbutenone complex and such intermediates can further react with ketene to generate cyclopenten-1,2-diones in good yield when one equivalent nickel was used (Scheme 1.4a). They found that if *N*-thionylaniline was used as an addition partner, insertion reaction was observed but the S=O completely exchanged with the C=O on nickel. Formally, the product can be regarded as a 1:1 cycloadduct of diphenylcyclopropene and phenyl isocyanate. When phenyl isocyanate was tested in similar conditions, only trimerization of phenyl isocyanate was generated. When 2,4,5-triphenyl-3-isothiazolone-1-oxide 3 synthesized through other method reacted with Ni(CO)₄, the exchange product was not observed. These control experiments confirmed that the reaction might go through intermediate 4, and the exchange happened before the product was generated (Scheme 1.4b). Interestingly, when diphenylcyclopropenone was reacted with *N*-thionylcyclohexylamine, such exchange was not observed.⁸

Scheme 1.4 Stoichiometric Insertion of Nickel(0) into Cyclopropenone

Rhodium(I) complexes were also found to insert into the C–C bond of cyclopropenones by Stang in 1990 (Scheme 1.5). They observed the generation of *trans*-Rh(PPh₃)₂(CO)Cl and alkyne products in high yield when heating the cyclopropenones with Wilkinson's catalyst (Scheme 1.5a). They proposed that the rhodacyclobutenone intermediate **5** was generated first, which then further decomposed through decarbonylation into alkynes and *trans*-Rh(PPh₃)₂(CO)Cl. When cyclopropenone reacted with the *trans*-Rh(PPh₃)₂(CO)Cl in refluxing benzene, air-stable 1-rhodacyclopentene-2,5-diones were isolated in high yields (Scheme 1.5b). When the rhodium complex was changed into *trans*-Rh(PPh₃)₂(CO)OTf, the reaction between cyclopropenones and

rhodium complex led to the generation of complex **6** at room temperature. At elevated temperature, the similar 1-rhodacyclopentene-2,5-diones can be generated (Scheme 1.5c). They proposed that the reaction proceed via a mechanism shown in scheme 1.5c. After the generation of complex **7**, rhodium inserted into the cyclopropenone, then CO insertion happened to generate the product.

Scheme 1.5 Stoichiometric Insertion of Rhodium(I) into Cyclopropenone

In 2000, Butenschön reported the insertion of cobalt(I) complex **8** into diphenylcyclopropenones after stirring in THF at 20 °C for 3 days with 91% yield (Scheme 1.6). ¹⁰ The structure of the metallacyclobutenone complex **9** was confirmed by X-ray crystallography and similar structural characters were observed comparing with the platinacyclobutenone reported by

Baddley (Scheme 1.3a). Upon heating, complex 9 would undergo decarbonylation to give a mixture of complex 10 and 11 in 60% yield and diphenylacetylene was also observed. It was known that carbonyl complex 10 does not undergo a thermal ligand exchange process with diphenylacetylene to give complex 11. Such complex was proposed to come from intermediate 12, which has a decoordinated phosphine sidearm directly generating from CO extrusion. Recomplexation of the sidearm would liberate either CO or diphenylacetylene and generate complex 10 or 11 respectively through an associative intramolecular ligand exchange reaction.

Scheme 1.6 Stoichiometric Insertion of Cobalt(I) into Cyclopropenone

1.2.2 Catalytic reactions with different metals

The transition metal catalyzed C–C bond activation of cyclopropenones have been reported as early as the stoichiometric study. In 1972, Noyori reported a nickel(0)-catalyzed dimerization of cyclopropenone to generate benzoquinone. The interesting side product **13** observed in the reaction suggested the existence of the nickelcyclobutenone intermediate **14** (Scheme 1.7). Shortly after that, Baba reported that the insertion of ketene into cyclopropenones can be catalyzed by a nickel carbonyl complex (Scheme 1.8).

Scheme 1.7 Nickel-Catalyzed Dimerization of Cyclopropenones

Scheme 1.8 Nickel-Catalyzed Insertion of Ketene into Cyclopropenones

Scheme 1.9 Transition-Metal Catalyzed Reaction between Cyclopropenones and Trimethylsilyl

Cyanide

In 1987, Chatani reported that several transition-metal complexes can catalyze the reaction between cyclopropenones and trimethylsilyl cyanide to synthesize 5-amino-2-furancarbonitriles (Scheme 1.9).¹² The reaction mechanism was not described in the report. Based on the previous

study, it might proceed through nucleophilic addition of electron-rich transition metal catalyst to the cyclopropenone followed by ring-opening and further attacked the trimethylsilyl cyanide.

Mitsudo reported ruthenium-catalyzed carbonylative dimerizations of diaryl- or dialkylcyclpropenones as well as crossed reactions with internal alkynes to give substituted pyranopyrandiones (Scheme 1.10a). When 13 CO atmosphere was used in the reaction, carbons highlighted in Scheme 1.10a were labelled with 13 C in corresponding ratio, which supported their mechanistic proposal (Scheme 1.10b). The reaction starts with oxidative addition of the C–C bond in cyclopropenone to give a ruthenacyclobutenone, following by carbonylation of ruthenacyclobutenone (or carbonylative cyclization of alkynes on the ruthenium), which led to a maleoylruthenium intermediate 15. Such intermediate can further isomerize into an active (η^4 -bisketene) ruthenium intermediate, which underwent oxidative addition into another molecule of cyclopropenone and insertion reactions to produce a (ketene)ruthenium intermediate 16. After isomerizing into ruthenium carbene intermediate 17, a molecule of carbon monoxide would insert into the carbene-ruthenium bond, which led to another ketene intermediate 18. Final insertion of a ketene carbonyl group and reductive elimination give the desired product.

Wender later disclosed a rhodium(I)-catalyzed [3+2]-cycloaddition of cyclopropenones with alkynes forging cyclopentendiones (Scheme 1.11).¹⁴ The rhodium catalyst underwent oxidative addition to the acyl-carbon bond of cyclopropenones and gave rhodacyclobutenones. Then alkyne migratory insertion followed by reductive elimination delivers cyclopentadienones. Diphenyl- and phenylmethylcyclopropenones can be used as the three carbon component in combination with aryl- and dialkyl-substituted alkynes or benzyne. Cyclopentendiones can be synthesized on a multigram scale through this transformation and 0.1 mol% catalyst loading still

provided 69% yield. The regioselectivity is also excellent, consistent with the regioselectivity observed in Pauson-Khand reactions of analogous aryl alkynes.

Scheme 1.10 Ruthenium-Catalyzed Carbonylation of Cyclopropenones

Scheme 1.11 Rhodium-Catalyzed [3+2]-Cycloaddition of Cyclopropenones with Alkynes

Scheme 1.12 Rhodium-Catalyzed Aryl C-H Bond Insertion into Cyclopropenones

Recently, Li studied rhodium(III)-catalyzed $C(sp^3)$ -H bond insertion into cyclopropenones via C-H activation pathway. This study is an extension of their previous report on rhodium(III)-catalyzed $C(sp^2)$ -H bond insertion into cyclopropenones. The mechanism of both transformations are similar (Scheme 1.12). Initiated by $C(sp^3)$ -H bond activation, a five-membered rhodacyclic intermediate was generated and further coordinated to cyclopropenone. The carbonyl group of cyclopropenone then underwent migratory insertion followed by β -carbon

elimination to give a ring-opened alkenyl intermediate. At the end, protonolysis furnishes the final product.

1.3 C-C Bond Activation of Cyclobutenediones and Cyclobutenones

When it comes to four-membered ring ketones, early studies have been focused on cyclobutenediones and cyclobutenones, because they are more strained comparing to the saturated cyclobutanones thus more activated. Compared with cyclopropenones, their diverse structures and reactivities promise the product generated with an impressive level of complexity. In general, cyclobutenediones and cyclobutenones can either undergo direct C–C cleavage or decarbonylative C–C cleavage. As a result, they can be considered as either a four-carbon or three-carbon synthon (Scheme 1.13). ^{1p}

Scheme 1.13 Cyclobutenediones and Cyclobutenones in C-C Bond Activation Reactions

1.3.1 Reactions with stoichiometric metals

Benzocyclobutenediones are the initial candidate chosen to investigate the reactivity of four-membered ring ketones in C–C bond activation reaction. Metal insertion into the C–C bond of benzocyclobutenediones was first reported in 1973 by Kemmitt using Pt(PPh₃)₄. The structure of the platinabenzocyclopentenedione was confirmed by X-ray crystallography to be the unsymmetrical cleavage product (Scheme 1.14a). Liebeskind later used Wilkinson's catalyst to generate the C–C bond cleavage product (Scheme 1.14b). It was observed that the unsymmetrical cleavage product 19 was formed at first, which then isomerized to symmetrical cleavage product

20. This suggested that 19 is a kinetic product and 20 is a thermodynamic product. Cobalt and iron complex are also capable of inserting into the C-C bond of benzocyclobutenediones and the symmetrical cleavage products were observed.

Following their stoichiometric study on the transition metal insertion into cyclobutenediones, Liebeskind systematically studied the naphthoquinone and benzoquinone synthesis realized by alkyne insertion to the metalla(benzo)cyclopentenediones.¹⁹ Both cobalt and iron complexes were capable of reacting with a wide variety of alkynes to yield naphthoquinones with moderate to excellent efficiency and regioselectivity (Scheme 1.14c).²⁰ The cobalt system requires the activation using AgBF4 to generate a 6-coordinated 18-electron cobalt complex and facilitate the ligand exchange with alkyne (Scheme 1.14d).²¹ Compared with the iron system, the requirement of a silver salt might be a drawback, but the easy preparation of phthaloylcobalt complex 21 made it the primary system they further studied on.

Later this phthaloylcobalt complex was successfully applied to the regiospecific total synthesis of (±)-nanaomycin A enabled by an intramolecular directed regiochemical control.²² To get rid of the silver salt in the cobalt system, they modified the cobalt complex with dimethylglyoxime in solvent amount of pyridine to give high yields of a 6-coordinated cobalt complex 22, which enables a faster ligand exchange with alkynes and proved to be equally effective without silver salts (Scheme 1.14d).¹⁹ In analogy to the naphthoquinone synthesis, the benzoquinone synthesis was achieved with good efficiency and regioselectivity.²³

Scheme 1.14 Stoichiometric Reactions Involving Insertion of Transition-Metals into

Cyclobutenediones

Scheme 1.15 Stoichiometric Insertion of Transition-Metals into Cyclobutenones

Inspired by the success with activation and transformation of cyclobutenediones, Liebeskind casted attention on C–C bond cleavage of cyclobutenones and benzocyclobutenones (Scheme 1.15a).²⁴ Wilkinson's catalyst underwent oxidative addition to cyclobutenones and generated 5-rhoda-2-cyclopenten-1-ones with good efficiency. Mixtures of two regioisomeric insertion products were observed when benzocyclobutenones were employed. Interestingly, when the reaction time was extended to 5 days, complex **24** became the dominate product, which suggest that complex **24** is thermodynamically favored product. In contrast, when cyclobutenones reacted with $(\eta^5$ -C₉H₇)Co(PPh₃)₂, η^4 -vinylketene complexes were formed as mixtures of E/Z isomers. The

monosubstituted vinylketene cobalt complex can react with various alkynes to generate phenols. For unsymmetrical alkynes, such a reaction would give a mixture of regioisomers (Scheme 1.15b).²⁵

Scheme 1.16 Recent Examples of Stoichiometric Insertion of Transition-Metals into

Benzocyclobutenones

Recently, several stoichiometric reactions involving transition-metal insertion into benzocyclobutenones have been reported at much lower reaction temperature or with metals that are less explored in the field (Scheme 1.16). In 2013, Murakami, Nozaki and Yamashita observed

that an infinitely networked T-shape 14-electron rhodium(I) complex coordinating to a PBP pincer ligand was able to undergo oxidative addition into the C1–C8 bond of benzocyclobutenones, which delivered **25** with high efficiency at room temperature (Scheme 1.16a).²⁶

Bourissou later disclosed that (diphosphinocarborane)gold(I) complexes can selectively cleave the C1–C2 or C1–C8 bond in benzocyclobutenone to generate the corresponding acyl gold(III) complexes at different reaction temperatures (Scheme 1.16b).²⁷ Moreover, when the palladium(0)-isocyanide complex was mixed with benzocyclobutenone in benzene at room temperature for 7 h, the C1–C2 bond of benzocyclobutenones were selectively cleaved and the five-membered palladacycle **26** was produced in a quantitative yield (Scheme 1.16c).²⁸

1.3.2 Catalytic reactions with different metals

On the basis of the stoichiometric study on C-C bond cleavage of cyclobutenediones, Mitsudo disclosed a ruthenium-catalyzed decarbonylative C-C bond activation of cyclobutenediones followed by coupling with alkenes (Scheme 1.17a).²⁹ Alkoxyl group substitution on C4 position is required to selectively cleave the C1-C4 bond. When the 3,4-dialkylcyclobutenedione was subjected to the reaction condition, C1-C2 bond was selectively cleaved which led to the phenol product in 74% yield. The carbon monoxide pressure was found to be crucial for the transformation and 3 atm was the optimal pressure. Use of ¹³CO would lead to 70% ¹³C scrambling at the cyclopentenone product, which suggested that the external CO is needed to suppress the complete decarbonylation. Apart from norbornene, ethylene gas was also found to be an effective coupling partner. The proposed mechanism for this transformation started with the selective oxidative addition of ruthenium into the C1-C4 bond directed by the alkoxyl substituent, followed by decarbonylation to generate a ruthenacyclobutenone intermediate. Subsequent migratory insertion of norbornene and reductive elimination gives the product

exclusively in its *exo* form. In 2006, Yamamoto reported an intramolecular version of this reaction using a nitrogen-tethered substrate (Scheme 1.17b).³⁰

Scheme 1.17 Ruthenium-Catalyzed Decarbonylative C-C Bond Activation

Compared with cyclobutenediones, cyclobutenones have been applied in a wide variety of catalytic transformations using transition metals. The catalytic reaction was pioneered by Liebeskind in 1991 to realize the synthesis of substituted phenols through nickel-catalyzed C–C bond cleavage of cyclobutenones (Scheme 1.18a).³¹ The reaction was initiated by oxidative addition of the Ni(0) catalyst to the C1–C4 bond of cyclobutenones, and the coordinated alkyne would then undergo migratory insertion to generate intermediate 27. After reductive elimination and aromatization, the product can be generated. For most of the examples, the ratio between 28 and 29 was close to 1:1. However, for alkyne substrates bearing an oxygen moiety two carbons away, the regioselectivity improves significantly to give a ratio of 3:1. The improvement on the

regioselectivity was attributed to the chelation between the nickel and the oxygen. This type of reactivity was later further explored by Kondo in 2007 using a rhodium catalyst.³²

Scheme 1.18 Synthesis of Phenols through C–C Bond Activation

In Liebeskind's report, 2,3-disubstituted cyclobutenones were not viable substrates. However, using rhodium catalysts, these substrates could successfully yield the desired phenols in moderate yields (Scheme 1.18b). A more intriguing finding was that the cycloaddition between the proposed (η^4 -vinylketene)rhodium intermediate and an electron-deficient olefin, followed by dehydrogenation and isomerization, would lead to a highly regions elective formation of phenol

products.³² In 2015, Harrity investigated the regioselectivity in the nickel-catalyzed system and extended the insertion partner to alkynylboronates.³³

Apart from catalytic reactions between cyclobutenones and alkenes to generate phenols, Mitsudo and Kondo reported on a rhodium-catalyzed decarbonylative coupling and direct coupling of cyclobutenones with norbornene to selectively synthesize cyclopentenes and cyclohexenones Oxidative addition of rhodium into cyclobutenones generates the $(\eta^4$ (Scheme 1.19a). vinylketene)rhodium intermediate 30 that may exist in an equilibrium with rhodacyclopentenone 31. Migratory insertion of norbornene would lead to the rhodacycloheptenone intermediate 32, from which direct reductive elimination produces cyclohexenones 33 and CO extrusion followed by reductive elimination yields cyclopentenes 34. When ¹³CO atmosphere was used, 71% of the carbonyl group in the generated cyclohexenones was labeled by ¹³C, which suggested that the decarbonylation during the reaction process was facile but reversible. In addition to that, Mitsudo and Kondo disclosed that ruthenium or rhodium can both catalyze the C-C bond cleavage of cyclobutenones followed by insertion of another vinylketene generated in the reaction to yield 2pyranones (Scheme 1.19b). The mechanism of this reaction includes the hetero-Diels-Alder reaction between two molecules of metal-bound η^4 -vinylketene intermediate 35. Interestingly ruthenium and rhodium gave different Z/E selectivity. Ruthenium catalysts gave good Z selectivity, while rhodium catalysts led to the E products exclusively. When cyclobutenone was fused with an eight-membered ring, both catalysts gave the E product.³⁴

Scheme 1.19 Rhodium or Ruthenium-Catalyzed Coupling between Cyclobutenones and Norbornene or Ketene

Apart from reacting cyclobutenones with unsaturated bonds, other coupling partners have been explored as well. In 1993, Liebeskind reported on a rhodium-catalyzed intramolecular ring fusion reaction between cyclobutenones and cyclopropanes or cyclobutanes (Scheme 1.20).³⁵ In the presence of a rhodium catalyst, cycloheptadienones or cyclooctadienones **36** was formed in good yields. At elevated temperature, 1,5-hydrogen shift can take place and generate the

isomerized products 37 in some cases. This ring fusion strategy provides a unique approach to obtain medium-size rings.

Scheme 1.20 Rhodium-Catalyzed Intramolecular Ring Fusion Reaction

In Liebeskind's stoichiometric study, benzocyclobutenones have shown interesting regioselectivity in C–C bond cleavage (Scheme 1.15a), which intrigues the application of such intermediates in the catalytic transformations. Xu and Dong disclosed the rhodium-catalyzed intramolecular carboacylation of olefins through C–C bond activation of benzocyclobutenones in 2012 (Scheme 1.21a). After the generation of rhodacycle, the intramolecular migratory insertion of olefins followed by reductive elimination would yield the tricyclic products.

Using (*R*)-DTBM-segphos, excellent enantioselectivity was obtained.³⁷ From the computational study by Liu (Scheme 1.21b), the C–C bond cleavage first occurs at the C1–C8 position, and then the CO extrusion and reinsertion takes place to afford the formal C1–C2 cleavage intermediate **38**. The CO reinsertion step was found to be the rate-determining step. After intermediate **38** is generated, the olefin would insert into the rhodacycle, which is the enantioselectivity determining step.³⁸

Scheme 1.21 Rhodium-Catalyzed Carboacylation of Olefins through C–C Bond Activation of Benzocyclobutenones

In analogy to the reaction between cyclobutenones and olefins (Scheme 1.19a), decarbonylative coupling between benzocyclobutenones and olefins can afford products with different ring structures. An intriguing spirocycle formation was observed by Dong when benzocyclobutenones tethered with cyclic olefins were subjected to the reaction catalyzed by $[Rh(CO)_2Cl]_2/P(C_6F_5)_3$ in tetrahydrofuran at 130 °C (Scheme 1.22).³⁹ The mechanism of this

transformation features a CO extrusion after migratory insertion of the olefin followed by a β -H elimination.

Scheme 1.22 Rhodium-Catalyzed Decarbonylative Spirocyclization through C–C Bond Activation of Benzocyclobutenones

$$R^{1} = H, Me, i-Pr, CO_{2}Me, C(n-Bu)_{2}(OH)$$

$$R^{2} = H \text{ or OMe}$$

$$X = 0 \text{ or CHCO}_{2}Me$$

$$x = 0, 1, 2, 3, 7$$

$$R^{1} = R^{1} = R^{1}$$

$$R^{2} = R^{2}$$

$$R^{2} = R^{1} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{3} = R^{2}$$

$$R^{4} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{3} = R^{2}$$

$$R^{4} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{3} = R^{2}$$

$$R^{4} = R^{2}$$

$$R^{2} = R^{2}$$

$$R^{3} = R^{4} = R^{2}$$

$$R^{4} = R^{4}$$

When alkynes were adopted as the coupling partner, both direct insertion products and decarbonylative insertion products were obtained through fine tuning of the reaction conditions (Scheme 1.23a).⁴⁰ Later, Dong disclosed that, using Co₂(CO)₈/P(3,5-C₆H₃(CF₃)₂)₃ as the optimal precatalyst/ligand combination, bulky benzocyclobutenones can be used as substrates to couple with alkynes intramolecularly (Scheme 1.23b).⁴¹

Apart from non-polarized 2π units, recently, polarized ones such as C=O bonds have been reported to undergo similar insertion reactions to benzocylcobutenones. In 2018, Xu reported that a cationic rhodium(I) complex can catalyze the intramolecular carboacylation of C=O bonds with benzocyclobutenones followed by an aromatization-drived elimination to afford benzofurans (Scheme 1.24).⁴²

Scheme 1.23 Rhodium-Catalyzed Alkyne-Benzocyclobutenone Couplings

a) Condition B:
$$R^2$$
 Condition A: R^2 Condition A: R^2 T.5 mol% $[Rh(cod)Cl]_2$ T.4 mol% dppp T.4.4 dioxane, 130 °C R T.5 mol% $[Rh(cod)Cl]_2$ T.4.4 mol% dppp T.4.4 dioxane, 130 °C R T.5 mol% $[Rh(cod)Cl]_2$ T.5 mol

Scheme 1.24 Rhodium-Catalyzed Carboacylation/Aromatization Cascade

$$R^{1} = H; R^{2} = aryl, furyl, thiophenyl, alkyl$$

$$R^{1} = R^{2} = aryl, furyl, thiophenyl, alkyl$$

$$R^{1} = R^{2} = aryl, furyl, thiophenyl, alkyl$$

$$R^{2} = -(CH_{2})_{3}, -(CH_{2})_{4}, -(CH_{2})_{5}$$

Murakami disclosed the insertion of silacyclobutanes into benzocyclobutenones using the *in-situ* generated palladium(0)-isocyanide complex as a catalyst. Firstly, the palladium(0) undergoes oxidative addition into C1–C2 bond in benzocyclobutenone to generate intermediate **39** (*vide supra*, Scheme 1.16c). The transmetalation of the C–Si bond in silacyclobutane **40** with the C–Pd bond of **39** takes place to give the nine-membered palladacycle. They proposed that the transmetalation happens through a sequence of oxidative addition and reductive elimination. Finally, C–C reductive elimination generates the eight-membered ring product and reforms the

palladium(0) catalyst (Scheme 1.25).²⁸ Later, the computational study supported the proposed reaction pathway.⁴³

Scheme 1.25 Palladium-Catalyzed Insertion of Silacyclobutane into Benzocyclobutenones

Recently, Krische reported that when a ruthenium(0) complex was used as the catalyst, the C1–C8 bond was selectively cleaved to generate ruthena-indanone 41, which upon successive addition of the C–Ru bonds to 1,2-dione, generates the ruthenium(II) diolate complex 42.⁴⁴ Protonolysis of intermediate 42 by the diol or ketol delivers the ruthenium(II) alkoxide 43. After β-hydride elimination, the ruthenium hydride 44 and the ketol or 1,2-dione are generated. Lastly, O–H reductive elimination releases the product 45 and regenerated the ruthenium(0) catalyst. Diverse diols were found to undergo the cycloaddition reaction smoothly and the nonsymmetric diols gave high regioselectivity. It is noteworthy that the resulting cycloadduct 45 possesses the key structural motif in type II polyketides (Scheme 1.26). In 2018, the same group disclosed an analogous enantioselective cycloaddition between bezocyclobutenones and ketols by replacing the dppp ligand into (*R*)-segphos.⁴⁵

Scheme 1.26 Ruthenium-Catalyzed Insertion of Adjacent Diols into C-C Bond of Benzocyclobutenones and Benzocyclobutenediones

Apart from the oxidative addition pathway, the β -carbon elimination pathway has also been studied in C–C bond activation of benzocyclobutenones. In 2005, Martin reported that nickel(0) can catalyze the intermolecular insertion of dienes (or diphenylacetylene) into the benzocyclobutenones after the selective C1–C2 bond cleavage (Scheme 1.27).⁴⁶ The proposed mechanism started with oxidative cyclication of a low-valent nickel complex to 1,3-dienes and benzocyclobutenones. A subsequent β -carbon elimination leads to the formation of π -allyl nickle(II)

metallacycle **46**, which further undergoes reductive elimination to form the product. Later, computational studies suggested that this reaction could possibly go through an oxidative addition pathway.⁴⁷ When PPh₃ was adopted as the ligand with Ni(cod)₂ as precatalyst, analogous intermolercular insertion of diphenylacetylene into benzocyclobutenones was achieved with good efficiency.⁴⁶

Scheme 1.27 Nickel-Catalyzed Intermolecular Diene-Benzocyclobutenone Couplings

$$R^{1} = H, MeO$$

$$R^{2} = R^{3} = n-hexyl, H; Me, Me; -(CH_{2})_{5}-; -(CH_{2})_{4}CH=CH_{2}$$

$$R^{4} = R^{5} = R^{6}$$

$$R^{7} = R^{8} = n-hexyl, H; Me, Me; -(CH_{2})_{5}-; -(CH_{2})_{4}CH=CH_{2}$$

$$R^{5} = R^{6} = R^{7} = R$$

1.4 C-C Bond Activation of Cyclobutanones

Cyclobutanones are another type of strained cyclic ketones which have been widely studied among C–C bond activation reactions. Compared with cyclobutenones and cyclobutenediones, they possess less ring strain and present a bigger challenge for transition-metal-mediated reactions. Nevertheless, different strategies have been applied to activate cyclobutanones and significant progress was made in the past two decades, especially in forging diverse ring systems and constructing quaternary carbon centers.

1.4.1 Reactions with stoichiometric metals

The C–C bond activation of cyclobutanones is pioneered by Murakami in 1994, when they observed the quantitative decarbonylation of cyclobutanones upon refluxing substrate 47 with Wilkinson's catalyst. The generation of stable *trans*-Rh(PPh₃)₂(CO)Cl was proposed to be crucial for the success of this transformation. The mechanism proposal starts with oxidative addition of Wilkinson's catalyst into the less hindered C1–C8 bond, and was followed by CO extrusion and reductive elimination to provide products (Scheme 1.28).⁴⁸ Similar stoichiometric reactions happened smoothly with simple 3-alkyl substituted cyclobutanones as well.⁴⁹

Scheme 1.28 Decarbonylation of Cyclobutanones by Insertion of Stoichiometric Rhodium(I)

In 2013, Murakami disclosed that an electron-rich rhodium(I) PBP complex can undergo oxidative addition into cyclobutanone **48** and proceed to the decarbonylation product with good efficiency at room temperature (Scheme 1.29).²⁶ The oxidative addition was proposed to be the rate-determining step. The hexa-coordinated intermediate **49** is thermodynamically unstable because of the steric congestion from the *t*-butyl group, which provide a driving force for the reductive elimination.

Scheme 1.29 Oxidative Addition of Cyclobutanone onto Rhodium(I) at Room Temperature

1.4.2 Catalytic reactions with different metals

Upon the discovery of the reactivity between cyclobutanones and stoichiometric metals, the catalytic reactions have been the major focus for chemists to develop synthetically useful reactions utilizing the unique reaction mode of C–C bond activation. Through years of development, two major C–C cleavage pathways, direct oxidative addition and β-carbon elimination, have been heavily studied. The C–C bond activation of cyclobutanones followed by new bond formations has been demonstrated to be a highly efficient way to construct complex ring systems.

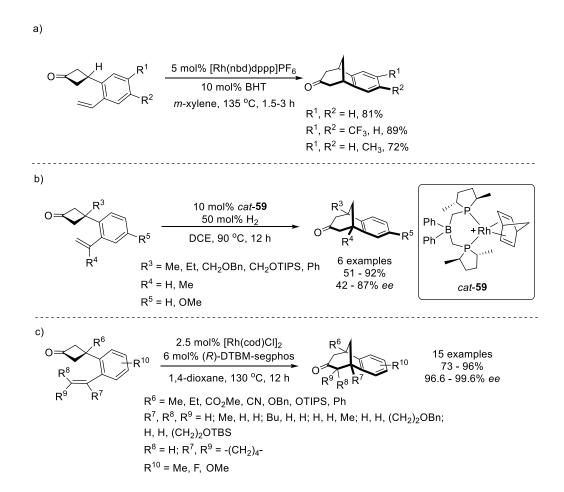
1.4.2.1 C-C bond cleavage via oxidative addition pathway

Catalytic reactions involving oxidative addition into cyclobutanone C–C bonds were discovered as early as the stoichiometric reactions. In the original report of the stoichiometric reaction (Scheme 1.28), Murakami disclosed a rhodium-catalyzed hydrogenolysis of cyclobutanones (Scheme 1.30).⁴⁸ After oxidative addition of rhodium into cyclobutanone to

generate rhodacyclopentanone **50**, hydrogenolysis happens to deliver the aldehyde product **51**. Part of the aldehyde product was further reduced under hydrogen atmosphere to give alcohol **52**, thus treatment of sodium borohydride was used to obtain the unified products. It was proposed that in addition to the relief of ring strain, the dihydrogen addition provides additional driving force for this reaction to take place.

Scheme 1.30 Rhodium(I)-Catalyzed Reductive Ring Opening of Cyclobutanones

Scheme 1.31 Catalytic Decarbonylation of Cyclobutanones via Rhodium Catalysis


In 1996, Murakami reported that through fine tuning of the ligand, cyclobutanones can undergo efficient decarbonylation into two different products **53** and **54**. Olefin **53** is generated through β-hydrogen elimination, while cyclopropane **54** through direct reductive elimination (Scheme 1.31). ⁴⁹ Cyclobutanones fused with a cyclohexane is a viable substrate as well. Cationic rhodium catalysts can also yield the cyclopropane product.

Scheme 1.32 Rhodium(I)-Catalyzed Successive Cleavage of C-C and C-O Bonds

Other than using hydrogenolysis, Murakami further studied successive cleavage of C–C and C–O bonds in cyclobutanones containing an alkoxyl substituent at the α position (Scheme 1.32).⁵⁰ After oxidative addition directed by the oxygen of the substituent at the more sterically hindered C–C bond, the resulting intermediate further undergoes β-oxygen elimination to generate **56**, which upon C–O bond reductive elimination yield the linear ester product **57**. Alternatively, **56** can go through a 6-*endo* cyclization followed by C–C bond reductive elimination to produce

cyclized product **58**. For special spiro cyclobutanones, similar successive cleavage of two C-C bonds driven by ring strain was reported by the same group.⁵¹

Scheme 1.33 Intramolecular Olefin Insertion into C–C Bond of Cyclobutanones

In 2002, Murakami disclosed the intramolecular olefin insertion into cyclobutanones to generate [3.2.1] bridged rings efficiently (Scheme 1.33a).⁵² This transformation starts with oxidative addition of rhodium into the cyclobutanone. Then the olefin undergoes migratory insertion into the rhodacyclopentanone followed by C–C bond reductive elimination to generate the product. The substrate scope was restricted to three structurally similar examples. Later, Cramer developed a chiral rhodium catalyst **59** to realize the enantioselective version of this

reaction with moderate to good enantioselectivity and an extended substrate scope (Scheme 1.33b).⁵³ In 2014, Cramer discovered that the [Rh(cod)Cl]₂/DTBM-segphos can realize a much better enantioselective transformation with excellent enantioselectivity (Scheme 1.33c).⁵⁴

Intramolecular olefin insertion into cyclobutanones demonstrates the potential of this strategy in synthesizing complex bridged ring structures. However, the substrate was limited to styrene-tethered cyclobutanones due to competing decarbonylation side reactions. Extending the reaction scope to more general substrates requires addressing this challenge. In 2014, Ko and Dong reported the intramolecular carboacylation of various 1,1- or 1,2-disubstituted olefins with cyclobutanones (Scheme 1.34). Other than the styrene-tethered cyclobutanones, the nitrogentethered and the malonate-tethered cyclobutanones underwent the transformation smoothly to deliver various [3.3.1] bridged ring systems.

Scheme 1.34 Rhodium(I)-Catalyzed Bridged Ring Formation through C-C Bond Activation

$$R^{2}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{1} = Me, Et$$

$$R^{2} = H, alkyl, aryl$$

$$R^{3}, R^{4} = H \text{ or Me}$$

$$X = NTs, NCO_{2}Me, C(CO_{2}Me)_{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4} = H \text{ or Me}$$

$$R^{3}$$

$$R^{4} = H \text{ or Me}$$

$$R^{5}$$

$$R^{6}$$

$$R^{1} = Me, Et$$

$$R^{2} = H, alkyl, aryl$$

$$R^{3}$$

$$R^{4} = H \text{ or Me}$$

$$R^{5}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4} = H \text{ or Me}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{8}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

In 2015, Dong reported that allene can serve as a vinyl carbenoid equivalent to insert into cyclobutanones and generate [4.2.1] bridged cycles (Scheme 1.35).⁵⁶ An impressive level of

enantioselectivity and a broad substrate scope was observed in this transformation. During the mechanistic studies, they found that when the two terminal methyl groups on allene was labelled by deuterium, the hydrogen at C3 position was deuterated with a ratio greater than 95% and the C3 deuterium is *cis* to the alkenyl side chain. Based on this observation, they proposed a β-hydrogen elimination/re-insertion sequence after migratory insertion to generate intermediate **61** or **62**, both of which could deliver the product via reductive elimination.

Scheme 1.35 Rhodium(I)-Catalyzed Vinyl Carbenoid Insertion into Cyclobutanones

In comparison to cyclobutenones, it is more difficult to achieve decarbonylative insertion of unsaturated units into cyclobutanones because the $C(sp^3)$ – $C(sp^3)$ reductive elimination after CO extrusion is less favored compared with the original $C(sp^2)$ – $C(sp^3)$ case. Additionally, the potential side reaction leading to the formation of cyclopropanes needs to be prevented. Dong disclosed a

decarbonylative insertion of olefins into cyclobutanones making use of a bulky XPhos ligand, which promotes the reductive elimination step after the CO extrusion. Broad substrate scope was achieved with moderate to good yields (Scheme 1.36).⁵⁷

Scheme 1.36 Rhodium(I)-Catalyzed Decarbonylative Insertion of Olefins into Cyclobutanones

Apart from non-polar unsaturated bonds, Cramer reported that polarized C=O bonds can be successfully inserted into cyclobutanones after the rhodacyclopentanones were formed through oxidative addition of rhodium catalyst (Scheme 1.37).⁵⁸ With the help of DTBM-segphos, excellent enantioselectivity and broad substrate scope were achieved to obtain lactone-containing [3.2.1] bridged ring structures. It is impressive to see that with the presence of aldehyde C-H bonds, the rhodium catalyst selectively undergoes oxidative addition into the C-C bond other than the C-H bond.

Scheme 1.37 Rhodium(I)-Catalyzed Enantioselective Insertion of C=O Bonds into Cyclobutanones

O R² 2.5 mol% [Rh(cod)Cl]₂ 6 mol% (
$$R$$
)-DTBM-segphos 1,4-dioxane, 110 °C, 12-48 h R³ R¹ 12 examples 64 - 89% 94.4 - 99.6% ee R¹ = Me, F, Cl, OMe, CF₃ R² = Me, Et, Bu, CO₂Me, CH₂OBn, CH₂OTIPS, Ph R³ = H, CO₂Et, Me

In addition to rhodium, palladium(0) catalysts can also promote C–C bond activation of cyclobutanones after initial oxidative insertion into Si–Si⁵⁹ or C–Si⁶⁰ bonds. In 2014, Murakami disclosed an intramolecular exchange of C–C and C–Si bond to generate interesting silabicyclo[5.2.1]decanes **64** diastereoselectively. The bulky phosphine ligand was used to promote the direct C–C bond reductive elimination after the transmetalation step. When less sterically hindered PMe₃ was applied, the β-hydrogen elimination would take place, followed by C–H reductive elimination to generate **65** (Scheme 1.38).⁶⁰

Scheme 1.38 Palladiun(0)-Catalyzed Intramolecular Exchange of C-C and C-Si Bonds

1.4.2.2 C-C bond cleavage via β -carbon elimination pathway

Apart from direct oxidative addition, the addition of a nucleophile to the C=O bond followed by β -carbon elimination represents another common pathway for C-C bond activation of cyclobutanones.

In 2004, Murakami reported that a more electron-rich arylrhodium(I) species generated from transmetalation can undergo addition to cyclobutanones. Then β -carbon elimination would happen to cleave the four-membered ring. After β -hydrogen elimination and re-insertion, the rhodium enolate intermediate would be generated and then undergo protonolysis to yield the product. The intermediacy of the rhodium enolate species was confirmed by a deuterium labeling study. Various arylboronic acids and cyclobutanones with different substitution are well-tolerated (Scheme 1.40).⁶¹

Scheme 1.40 Rhodium(I)-Catalyzed Addition/Ring-Opening of Cyclobutanones with

Arylboronic Acids

$$\begin{array}{c} \text{O} \\ \text{R} \\ \end{array} + \text{ArB(OH)}_2 \\ \begin{array}{c} \text{5 mol\% Rh(C}_2\text{H}_4)_2(\text{acac})} \\ \text{10 mol\% P(t-Bu)}_3 \\ \text{1 equiv. Cs}_2\text{CO}_3 \\ \text{1,4-dioxane, 100 °C, 24 h} \\ \text{R} = \text{Ph, 2-naphthyl, } \\ \text{R} = \text{Ph, 2-naphthyl, } \\ \text{R} = \text{Ph, 0-MeC}_6\text{H}_4, \\ \text{p-MeOC}_6\text{H}_4, \\ \text{p-MeOC}_6\text{H}_4, \\ \text{p-CF}_3\text{C}_6\text{H}_4 \\ \end{array} \\ \begin{array}{c} \text{Rh} \\ \end{array} \\ \text{Rh} \\ \end{array} \\ \begin{array}{c} \text{Rh} \text{Rh} \\$$

Murakami later disclosed that a similar reaction initiation mode can be applied to the ring expansion reaction of cyclobutanones using an alkyne-tethered substrate. The aryl rhodium can first undergo addition to the alkyne, then intramolecular addition of the rhodium to the C=O bond would take place. After β-hydrogen elimination, the rhodium enolate is generated and further undergoes protonolysis to yield the ring expansion product (Scheme 1.41).⁶² Various functional groups and aryl boronic esters are well-tolerated. This method provides a unique way to synthesize medium-sized rings using C–C bond activation strategy.

Scheme 1.41 Rhodium(I)-Catalyzed Arylative Ring Expansion of Cyclobutanones

$$\begin{array}{c}
R^{1} \\
O \\
R^{2} \\
R^{2} \\
R^{2} \\
R^{2} \\
R^{1} = Et, n-Pr. i-Bu, (CH_{2})_{2}OTBS, CH_{2}OMe, Ph \\
R^{2} = Me, F \\
Ar = Ph, 4-MeC_{6}H_{4}, 4-MeOC_{6}H_{4}, 4-FC_{6}H_{4}
\end{array}$$

$$\begin{array}{c}
Ar \\
R^{1} \\
R^{2} \\
R^{2} \\
R^{2} \\
R^{3} \\
R^{4} \\
R^{2} \\
R^{2} \\
R^{2} \\
R^{2} \\
R^{3} \\
R^{4} \\
R^{4} \\
R^{4} \\
R^{5} \\
R^{6} \\
R^{4} \\
R^{5} \\
R^{6} \\
R^{6} \\
R^{1} \\$$

Scheme 1.42 Rhodium(I)-Catalyzed Enantioselective Lactone Synthesis from Cyclobutanones

Instead of using arylboronic acids or esters to generate the rhodium aryl intermediate and further promote the β -carbon elimination, Murakami reported that rhodium catalysts can promote the C–C bond cleavage of cyclobutanones with phenols to form ester linkages inter- 63 or intramolecularly⁶⁴ through β -carbon elimination pathway. In 2007, they disclosed an enantioselective lactone formation using such a strategy (Scheme 1.42). 65 They proposed that the

reaction starts with generation of the rhodium aryloxide followed by its addition to the carbonyl group forming rhodium cyclobutanolate **66**. Then β -carbon elimination of **66** takes place to generate **67**, which is the enantiodetermining step. After a series of β -hydrogen elimination and reinsertion, intermediate **68** is generated and protonolysis of **68** affords the dihydrocoumarin product with moderate to excellent enantioselectivity. Different substitutions on the four-membered ring and the aryl linker are well-tolerated.

Scheme 1.43 Nickel(0)-Catalyzed Intermolecular Alkyne Insertion into Cyclobutanones

a)
$$R^4$$
 R^4 R

Other than rhodium, nickel(0) catalysts have been found to be privileged in promoting the ring-opening of cyclobutanones through oxidative cyclization/β-carbon elimination pathway. In 2005, Murakami disclosed the intermolecular alkyne insertion into cyclobutanones using Ni(cod)₂/ PCy₃ as an optimal precatalyst/ligand combination (Scheme 1.43a).⁶⁶ Various symmetrical or

unsymmetrical alkynes are viable substrates with moderate regioselectivity. The same group later reported a similar transformation between cyclobutanones and diynes, which afforded the bicyclic eight-membered ketones (Scheme 1.43b).⁶⁷ When *N*-heterocyclic carbene ligand IPr was used, the reaction can happen at room temperature. Different symmetrical diynes can successfully give the desired products. The unsymmetrical diyne gives higher yield but lower regioselectivity when PCy₃ is used as ligand, while in the case where IPr was used, the reactivity was lower but good regioselectivity was observed because of the steric bulkiness. Similar to cyclobutanones, azetidin-3-ones⁶⁸ and oxetan-3-ones⁶⁹ were reported by Louie, Murakami and Aïssa to be viable substrates to couple with alkynes or dienes through nickel catalysis.

Scheme 1.44 Nickel(0)-Catalyzed Enantioselective Intramolecular Olefin Insertion into

Cyclobutanones

$$R^{1} = H, Ph$$

$$R^{2} = Me, F, OMe$$

$$R^{1} = H, Ph$$

$$R^{2} = Me, F, OMe$$

$$R^{2} = Me, F, OMe$$

$$R^{3} = Me, F, OMe$$

$$R^{4} = Me, F, OMe$$

$$R^{5} = Me, F, OMe$$

$$R^{5} = Me, F, OMe$$

$$R^{5} = Me, F, OMe$$

$$R^{6} = Me, F, OMe$$

$$R^{5} = Me, F, OMe$$

$$R^{6} = Me, F, OM$$

The intramolecular insertion of olefins into cyclobutanones catalyzed by nickel(0) was reported by Murakami in 2006.⁷⁰ The reaction was proposed to go through a similar mechanism as above. Later an enantioselective insertion was achieved with chiral phosphoramidite ligand **69**

and bioactive chiral benzobicyclo[2.2.2]octene structures were synthesized, which previously required multiple functional group manipulation and resolution processes (Scheme 1.44).⁷¹ The oxidative cyclization is the enatiodetermining step.

Apart from alkynes or olefins, Dong reported that allene can also serve as the two carbon insertion unit for the intramolecular reaction with cyclobutanones. A broad substrate scope was achieved with the racemic transformation, which tolerates various types of linkage and substitution on cyclobutanones. With the help of phosphoramidite ligand **60**, a high level of enantiocontrol was achieved (Scheme 1.45).⁷²

Scheme 1.45 Nickel(0)-Catalyzed Enantioselective Intramolecular Allene Insertion into Cyclobutanones

R1 10 mol% Ni(cod)₂ 12 mol% PPh₃ toluene, 100 °C 24 h

R1 = H, Me R² = alkyl, aryl

R3, R⁴ = alkyl, H X = NTs, C(CH₂OMe)₂, benzene

R6 R7 10 mol% Ni(cod)₂ 12 mol% 60 mesitylene, r.t. 72 h

R5 = Me, Et,
$$n$$
-Pr, Ph

R6, R7 = Me, Me; Et, Et; n -Pr, n -Pr; Et, Me; -(CH₂)₅-; -(CH₂)₆-

1.5 Conclusions and Outlook

The C-C bond cleavage of cyclic ketones following by valuable new bond formations provides unique retro-synthetic strategies for organic synthesis. However, it remains a challenging task owning to the directional feature of the C-C bond. Releasing of the ring strain has been an

efficient driving force for such transformations. In this review, we have discussed how the threeand four-membered ring systems have been studied from stoichiometric reactions to a wide variety
of catalytic transformations, which leads to the construction of valuable ring structures. However,
the current methodologies still fall short considering the restrictions on substrates and harsh
reaction conditions, which hinders its applications in natural product or pharmaceutical synthesis.
Given these challenges, in this thesis, efforts were made to develop robust C–C bond activation
reactions to obtain synthetically valuable ring systems including heterocycles and apply this
unique reactivity into asymmetric synthesis and total synthesis of natural products.

1.6 References

- (1) (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (b) Jones, W. D. Nature 1993, 364, 676. (c) Murakami, M.; Ito, Y., Cleavage of Carbon-Carbon Single Bonds by Transition Metals. In Top. Organomet. Chem., 1999; Vol. 3, pp 97. (d) Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870. (e) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (f) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (g) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (h) Murakami, M.; Matsuda, T. Chem. Comm. 2011, 47, 1100. (i) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740. (j) Korotvicka, A.; Necas, D.; Kotora, M. Curr. Org. Chem. 2012, 16, 1170. (k) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (l) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567. (m) Dong, G., C-C bond activation. Springer-Verlag: Berlin, 2014; Vol. 346. (n) Murakami, M.; Ishida, N., Fundamental Reactions to Cleave Carbon–Carbon σ -Bonds with Transition Metal Complexes. In Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 1. (o) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (p) Chen, P.-h.; Dong, G. Chem. Eur. J. 2016, 22, 18290. (q) Chen, P.-h.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Cat. 2017, 7, 1340. (r) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404. (s) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977. (t) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
- (2) Halpern, J. Acc. Chem. Res. 1982, 15, 238.
- (3) Komatsu, K.; Kitagawa, T. Chem. Rev. 2003, 103, 1371.
- (4) Bird, C. W.; Briggs, E. M.; Hudec, J. Journal of the Chemical Society C: Organic 1967, 1862.
- (5) Wong, W.; Singer, S. J.; Pitts, W. D.; Watkins, S. F.; Baddley, W. H. J. Chem. Soc., Chem. Commun. 1972, 672.
- (6) Visser, J. P.; Ramakers-Blom, J. E. J. Organomet. Chem. 1972, 44, C63.

- (7) Baba, A.; Ohshiro, Y.; Agawa, T. J. Organomet. Chem. 1976, 110, 121.
- (8) Akio, B.; Yoshiki, O.; Toshio, A. Chem. Lett. 1976, 5, 11.
- (9) Song, L.; Arif, A. M.; Stang, P. J. Organometallics 1990, 9, 2792.
- (10) Foerstner, J.; Kakoschke, A.; Wartchow, R.; Butenschön, H. Organometallics 2000, 19, 2108.
- (11) Ryoji, N.; Isao, U.; Hidemasa, T. Chem. Lett. 1972, 1, 1189.
- (12) Chatani, N.; Hanafusa, T. J. Org. Chem. 1987, 52, 4408.
- (13) Kondo, T.; Kaneko, Y.; Taguchi, Y.; Nakamura, A.; Okada, T.; Shiotsuki, M.; Ura, Y.; Wada, K.; Mitsudo, T.-a. *J. Am. Chem. Soc.* **2002**, *124*, 6824.
- (14) Wender, P. A.; Paxton, T. J.; Williams, T. J. J. Am. Chem. Soc. 2006, 128, 14814.
- (15) Kong, L.; Zhou, X.; Xu, Y.; Li, X. Org. Lett. 2017, 19, 3644.
- (16) Yu, S.; Li, X. Org. Lett. 2014, 16, 1220.
- (17) Evans, J. A.; Everitt, G. F.; Kemmitt, R. D. W.; Russell, D. R. J. Chem. Soc., Chem. Commun. **1973**, 158.
- (18) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Blount, J. F. J. Organomet. Chem. 1980, 202, C73.
- (19) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Iyer, S.; Leeds, J. P. *Tetrahedron* **1985**, *41*, 5839.
- (20) Liebeskind, L. S.; Baysdon, S. L.; South, M. S. J. Am. Chem. Soc. 1980, 102, 7397.
- (21) Baysdon, S. L.; Liebeskind, L. S. Organometallics 1982, 1, 771.
- (22) South, M. S.; Liebeskind, L. S. J. Am. Chem. Soc. 1984, 106, 4181.
- (23) Liebeskind, L. S.; Leeds, J. P.; Baysdon, S. L.; Iyer, S. J. Am. Chem. Soc. 1984, 106, 6451.
- (24) Huffman, M. A.; Liebeskind, L. S.; Pennington, W. T. Organometallics 1990, 9, 2194.
- (25) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1990, 112, 8617.
- (26) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.; Ishida, N.; Murakami, M. *J. Am. Chem. Soc.* **2013**, *135*, 7142.
- (27) Joost, M.; Estévez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. *Angew. Chem. Int. Ed.* **2015**, *54*, 5236.
- (28) Okumura, S.; Sun, F.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2017, 139, 12414.

- (29) Kondo, T.; Nakamura, A.; Okada, T.; Suzuki, N.; Wada, K.; Mitsudo, T.-a. *J. Am. Chem. Soc.* **2000**, *122*, 6319.
- (30) Yamamoto, Y.; Kuwabara, S.; Hayashi, H.; Nishiyama, H. Adv. Synth. Catal. 2006, 348, 2493.
- (31) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1991, 113, 2771.
- (32) Kondo, T.; Niimi, M.; Nomura, M.; Wada, K.; Mitsudo, T.-a. Tetrahedron Lett. 2007, 48, 2837.
- (33) Stalling, T.; Harker, W. R. R.; Auvinet, A.-L.; Cornel, E. J.; Harrity, J. P. A. *Chem. Eur. J.* **2015**, *21*, 2701.
- (34) Kondo, T.; Taguchi, Y.; Kaneko, Y.; Niimi, M.; Mitsudo, T.-a. *Angew. Chem. Int. Ed.* **2004**, 43, 5369.
- (35) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 4895.
- (36) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 7567.
- (37) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005.
- (38) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. J. Am. Chem. Soc. 2015, 137, 8274.
- (39) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 1891.
- (40) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 1674.
- (41) Zhu, Z.; Li, X.; Chen, S.; Chen, P.-h.; Billett, B. A.; Huang, Z.; Dong, G. ACS Cat. **2018**, *8*, 845.
- (42) Sun, T.; Zhang, Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T. Angew. Chem. Int. Ed. 2018, 57, 2859.
- (43) Xu, Z.-Y.; Zhang, S.-Q.; Liu, J.-R.; Chen, P.-P.; Li, X.; Yu, H.-Z.; Hong, X.; Fu, Y. *Organometallics* **2018**, *37*, 592.
- (44) Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J. Science 2017, 357, 779.
- (45) Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. **2018**, *140*, 9091.
- (46) Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem. Int. Ed. 2015, 54, 9537.
- (47) (a) Yang, S.; Xu, Y.; Li, J. *Org. Lett.* **2016**, *18*, 6244. (b) Zou, H.; Wang, Z. L.; Huang, G. *Chemistry A European Journal* **2017**, *23*, 12593.
- (48) Murakami, M.; Amii, H.; Ito, Y. *Nature* **1994**, *370*, 540.

- (49) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285.
- (50) Murakami, M.; Itahashi, T.; Amii, H.; Takahashi, K.; Ito, Y. J. Am. Chem. Soc. 1998, 120, 9949.
- (51) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 9307.
- (52) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002, 124, 13976.
- (53) Parker, E.; Cramer, N. Organometallics 2014, 33, 780.
- (54) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001.
- (55) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739.
- (56) Zhou, X.; Dong, G. J. Am. Chem. Soc. 2015, 137, 13715.
- (57) Zhou, X.; Ko, H. M.; Dong, G. Angew. Chem. Int. Ed. 2016, 55, 13867.
- (58) Souillart, L.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9640.
- (59) Ishida, N.; Ikemoto, W.; Murakami, M. Org. Lett. 2012, 14, 3230.
- (60) Ishida, N.; Ikemoto, W.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 5912.
- (61) Matsuda, T.; Makino, M.; Murakami, M. Org. Lett. 2004, 6, 1257.
- (62) Matsuda, T.; Makino, M.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44, 4608.
- (63) Takanori, M.; Masanori, S.; Yohei, M.; Masahiro, M. Chem. Lett. 2007, 36, 744.
- (64) Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem. Int. Ed. 2000, 39, 2484.
- (65) Matsuda, T.; Shigeno, M.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12086.
- (66) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932.
- (67) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166.
- (68) (a) Ho, K. Y. T.; Aïssa, C. *Chem. Eur. J.* **2012**, *18*, 3486. (b) Ishida, N.; Yuhki, T.; Murakami, M. *Org. Lett.* **2012**, *14*, 3898. (c) Kumar, P.; Louie, J. *Org. Lett.* **2012**, *14*, 2026. (d) Thakur, A.; Facer, M. E.; Louie, J. *Angew. Chem. Int. Ed.* **2013**, *52*, 12161. (e) Thakur, A.; Evangelista, J. L.; Kumar, P.; Louie, J. *J. Org. Chem.* **2015**, *80*, 9951. (f) Elwrfalli, F.; Esvan, Y. J.; Robertson, C. M.; Aïssa, C. *Chem. Comm.* **2019**, *55*, 497.
- (69) Barday, M.; Janot, C.; Clare, D.; Carr-Knox, C.; Higginson, B.; Ho, K. Y. T.; Aïssa, C. *Synthesis* **2017**, *49*, 3582.
- (70) Murakami, M.; Ashida, S. Chem. Comm. 2006, 4599.

- (71) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem. Int. Ed. 2012, 51, 2485.
- (72) Zhou, X.; Dong, G. Angew. Chem. Int. Ed. 2016, 55, 15091.

CHAPTER 2

Enantioselective Rh-catalyzed Carboacylation of C=N Bonds via C-C Activation of Benzocyclobutenones

2.1 Introduction

Transition metal-catalyzed C–C σ-bond cleavage of cyclic compounds followed by 2π-insertion, namely a "cut-and-sew" approach, has recently emerged as an attractive approach for complex bridged or fused ring formation. Comparing with traditional approaches, these methods operate at near pH and redox neutral conditions, and usually in a highly atom-economical manner. However, as discussed in previous chapter, the unsaturated 2π-units that have been applied to "cut-and-sew" sequence² are primarily non-polar carbon-carbon multiple bonds, such as alkenes, alkynes and 1,3-dienes. It is evident that if polarized C=X bonds, such as aldehydes, imines etc., can be applied in "cut-and-sew" reactions, valuable heterocycles containing ring systems would be accessed efficiently. Potentially, it would provide new strategy for molecule disconnection in the synthesis of natural products and pharmaceuticals. Cramer and coworkers pioneered in applying the C=O bonds as the coupling partner with cyclobutanones to access bridged lactones. They demonstrated that rhodium precatalyst together with chiral phosphine ligand can provide a highly enantioselective transformation (Scheme 2.1). In addition, through completely different

mechanistic pathways, the C-C bond cleavage of the same substrate can be observed when Lewis acid catalysts are used and generate different products.⁴

Scheme 2.1 Carboacylation of C=O Bonds via Transition-Metal-Catalyzed C-C Activation

Stimulated by the pivotal role of amide bond formation in organic synthesis and the pharmaceutical importance of nitrogen-containing heterocycles, we have been fascinated by the transition metal-catalyzed carboacylation of C=N bonds, which, to the best of our knowledge, has not been reported previously. Based on the precedents on carboacylation of non-polar 2π units with ketones, we proposed that initiated by oxidative addition of transition metal catalyst into ketone α C-C bonds, the resulting two M-C bonds, including one M-acyl bond, can add across an imine C=N bond to form an amide (Scheme 2.2). Elegant work by Chi and coworkers, involving an organocatalyst-promoted ring-opening of cyclobutenones followed by a formal enantioselective hetero-Diels-Alder reaction with sulfonyl and isatin imines, represents the closest example.⁵

Scheme 2.2 General Process of Amide Bond Formation through "Cut-and-Sew" Approach

Given the importance of optically enriched lactam moieties in bioactive compounds,⁶ herein we designed a Rh-catalyzed enantioselective intramolecular carboacylation of oximes

(imines) via C–C activation of benzocylcobutenones to access chiral fused lactams (Scheme 2.3). This design is supported by previous reported examples by our group where the selective C1–C2 bond cleavage happened and was followed by intramolecular insertion of alkenes and alkynes.^{7,8,9} Mechanistically, the C–C bond cleavage might start with the C1–C8 bond cleavage, then go through CO extrusion and re-insertion to generate the selective C1–C2 bond cleavage intermediate.^{7c} Considering the prevalence of hydroisoquinolines and isoquinolinones in natural products and pharmaceuticals,¹⁰ this method would provide a significant impact to the synthesis of these scaffolds (Scheme 2.4).

Scheme 2.3 Carboacylation of C=N Bonds via Rh-Catalyzed C-C Activation

enantio-determining carboacylation of C=N

There are three major challenges relating to the designed enantioselective carboacylation of C=N double bonds: a) distinct from ketones/aldehydes, imines tend to exist as a mixture of E/Z isomers, which may complicate the enantio-determining step; b) due to the Lewis basicity of the nitrogen, imines can coordinate with metals in either an η^1 or η^2 mode, which may influence the migratory insertion step;¹¹ (c) imine hydrolysis can be a competitive side reaction.

Scheme 2.4 Representative Natural Products and Pharmaceuticals with Hydroisoquinolines

2.2 Results and Discussion

2.2.1 Condition optimization for rhodium-catalyzed carboacylation of C=N bonds

To explore the aforementioned challenges, we sought the use of oximes as an imine equivalent due to their bench stability and the ease of cleavage of N–O bond for introducing various substituents on the nitrogen (*vide infra*, Scheme 2.4 and Scheme 2.5). Benzocyclobutenone **1a** containing a ketoxime group with variable E/Z ratios (1:1 to 4:1) was employed as the initial substrate, and various catalytic conditions were explored (Table 2.1). Due to the different nature between C=C and C=N bonds, the conditions with [Rh(cod)Cl]₂ and dppb that previously worked best^{8a} for olefin insertion only yielded a small amount of product (Table 2.1, entry 1). In contrast, through examining of various pre-catalysts, the corresponding cationic rhodium complex showed much higher reactivity (Table 2.1, entry 2). Regarding the solvent effect, THF was found to be optimal, and 1,4-dioxane also provided a reasonable yield (Table 2.1, entries 2-5). It is likely that both solvents can stabilize the active rhodium intermediates during the reaction via weak

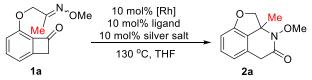

coordination. In addition, the premade and in situ generated rhodium complexes (with dppb ligand) exhibited similar reactivity (Table 2.1, entry 6).

Table 2.1 Evaluation of Solvents and Precatalysts^a

Entry	Catalyst/ Ligand	Solvent	Yield ^b
1	[Rh(COD)Cl] ₂ /dppb	THF	<20%
2 ^c	[Rh(COD)dppb]BF ₄	THF	58% (66%)
3^c	[Rh(COD)dppb]BF ₄	1,4-dioxane	40% (60%)
4 ^c	[Rh(COD)dppb]BF ₄	PhCl	22% (47%)
5 ^c	[Rh(COD)dppb]BF ₄	Toluene	7% (8%) ^e
6 ^d	$[{\rm Rh}({\rm COD})({\rm CH_3CN})_2]{\rm BF_4/dppb}$	THF	57%

^a Unless otherwise mentioned, the reaction was run with 10 mol % rhodium complex (based on the metal) and 12 mol % ligand on a 0.1 mmol scale at 110 °C for 48 h; numbers in parenthesis are yields based on recovered starting material (brsm). ^b Isolated yield. ^c Reactions were run at 110 °C for 12 h, 130 °C for 24 h. ^d 130 °C. ^e NMR yield using mesitylene as internal standard.

Table 2.2 Evaluation of Counter-Ion^a

Entry	Catalyst/ Ligand	Silver salt	Yield (BRSM)
1	[Rh(COD)dppb]BF ₄	none	58% (66%) ^a
2	[Rh(COD)Cl] ₂ /dppb	AgOTf	6% (6%) ^b
3	[Rh(COD)Cl] ₂ /dppb	AgPF ₆	0% (0%) ^b
4	[Rh(COD)Cl] ₂ /dppb	AgSbF ₆	53% (53%) ^b
5	[Rh(COD)Cl] ₂ /dppb	NaBARF	28% (42%) ^b
6	[Rh(COD)CI] ₂ /BIPHEP	AgSbF ₆	47% (48%) ^b
7	[Rh(COD)Cl] ₂ /BIPHEP	AgBF ₄	49% (49%) ^b
8	[Rh(COD)Cl] ₂ /(S)-BINAP	AgSbF ₆	20% (20%) ^b
9	[Rh(COD)Cl] ₂ /(S)-BINAP	AgBF ₄	40% (57%) ^b

^a isolated yield. ^b NMR yield using mesitylene as internal standard.

Meanwhile, a survey of the counter-ion effect was conducted, which indicated BF₄ is the best counter-ion for this reaction (Table 2.2). Hence, [Rh(cod)(CH₃CN)₂]BF₄ was selected as the pre-catalyst for further investigation of the enantioselective transformation.

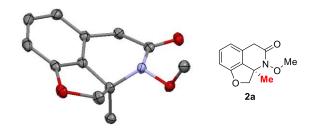

A range of chiral bidentate phosphine ligands were examined (Table 2.3). DTBM-SEGPHOS and DIOP, which previously gave excellent enantioselectivity^{8b} for the olefin insertion, only resulted in low yields and poor enantioselectivity (Table 2.3, entries 1 and 3). Surprisingly, xylyl-substituted SEGPHOS provided 86% ee (entry 2). Subsequently, ligands with different backbones, such as SYNPHOS, BINAP, H8-BINAP and MeO-BIPHEP, were evaluated (Table 2.3, entries 4-10). Again, the xylyl-based ligands showed significant higher enantioselectivity than their phenyl and tolyl analogues. In particular, good yield (72%) and excellent ee (92%) can be obtained with xyl-BINAP (Table 2.3, entry 7). While efforts to further improve the enantioselectivity using xyl-BINAP remained unfruitful, the xyl-SDP ligand, first developed by Zhou and coworkers, ¹³ was found to give almost perfect enantioselectivity (99% ee) (Table 2.3, entry 12). Such a high enantioselectivity of this transformation is remarkable, because it suggested that, although involving C-N formation, both *E* and *Z* isomers of the oxime substrate can be converted to the same enantiomer of the product. The absolute configuration of product 2a (the *R* isomer) was confirmed by the micro-focused X-ray crystallography (Scheme 2.5).

Table 2.3 Evaluation of Chiral Ligands^a

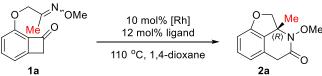
1a		2a		
Entry	Ligands	Yield	ee^b	
1	(R)-DTBM-SEGPHOS	23%	-23%	
2	(R)-xyl-SEGPHOS	54%	-86%	
3	(S,S)-DIOP	54%	3.2%	
4	(R)-SYNPHOS	39%	-50%	
5	(S)-BINAP	20%	56%	
6	(R)-tol-BINAP	50%	-68%	
7	(R)-xyl-BINAP	72%	-92%	
8	(R)-H8-BINAP	71%	-80%	
9	(R)-xyl-H8-BINAP	52%	-88%	
10	(R)-xyl-MeO-BIPHEP	60%	-84%	
11	(R)-SDP	32%	94%	
12	(R)-xyl-SDP	46% (63%)	99%	
\times 1	PPh ₂ PPh ₂ PPh ₂ (R)-xyl-MeO-BIPHEF	PPh ₂ (R)-SYNPHOS	Ar= Ph, (R)-BINAP Ar= tol, (R)-tol-BINAP Ar= xyl, (R)-xyl-BINAF	
		, (,	PAr ₂ PAr ₂ PAr ₂ R)-DTBM-SEGPHOS R)-xyl-SEGPHOS	
	tBu OMe Zz tBu DTBM	Me Ne xyl tol	1e	

^a Unless otherwise mentioned, the reaction was run with 10 mol % rhodium complex (based on the metal) and 12 mol % ligand on a 0.1 mmol scale at 110 °C for 48 h; numbers in parenthesis are yields based on recovered starting material (brsm). ^b Determined by chiral HPLC.

Scheme 2.5 Crystal Structure of Compound 2a

at 50% probability level with absolute stereochemistry, Hydrogen atoms are omitted for clarity

Table 2.4 Further Screening with (R)-xyl-SDP^a


Entry	Additives	Conc.	T/°C	Time/h	Yield (BRSM)	e.e. ^b
1	none	0.1 M	110	36	53%	99%
2	none	0.1 M	110	48	53%	99%
3	none	0.1 M	110	96	32%	N/D
4	none	0.1 M	130	48	32% (35%)	N/D
5	none	0.05 M	130	48	44% (63%)	N/D
6	none	0.03 M	130	48	45% (59%)	97%
7	ZnCl ₂	0.1 M	130	48	24% (57%)	93%
8	BPh_3	0.1 M	130	48	35% (35%)	N/D
9	$Zn(OTf)_2$	0.1 M	130	48	<5%	N/D
10	portion-wise	0.1 M	110	96	61% (86%)	99%
11	none	0.1 M	110	36	53% (64%)	98%
12	PPh_3	0.1 M	110	36	21% (65%)	N/D
13	$P(C_6F_5)_3$	0.1 M	110	36	16% (72%)	N/D

^a Unless otherwise mentioned, the reaction was run with 10 mol % $[Rh(COD)(CH_3CN)_2]BF_4$ and 12 mol % (R)-xyl-SDP on a 0.1 mmol scale; numbers in parenthesis are yields based on recovered starting material (brsm). ^b Determined by chiral HPLC.

The reaction yield remained moderate despite intensive conditions screened with xyl-SDP ligand alone (Table 2.4). The impressively high enantioselectivity with the rigid SDP ligands suggested a well-controlled transition state, but the moderate yields indicated the stability of the catalyst could be an issue. Efforts of adding a mono-dentate ligand, such as PPh₃ or P(C₆F₅)₃, ¹⁴ to

stabilize the catalyst intermediate remained unsuccessful due to side reactions triggered by these rhodium-monodentate-phosphine complexes (Table 2.4, entries 12 and 13).

Table 2.5 Studies of the Mixed-Ligand Conditions^a

		ıu	L u		
	Entry	Catalyst	Ligand	Yield (BRSM)	e.e. ^b
	1 ^c	[Rh(COD)(CH ₃ CN) ₂]BF ₄	(R)-xyl-SDP	46% (63%)	99%
	2	[Rh(COD)(CH ₃ CN) ₂]BF ₄	(R)-xyl-SDP	51% (85%)	98%
	3	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP	53% (90%)	98%
	4 ^d	$[Rh(COD)_2]BF_4$	(R)-xyl-SDP	55% (85%)	98%
	5	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP : (R)-xyl-BINAP 1:1	75%	-10%
	6 ^e	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP : (R)-xyl-BINAP 1:1	33% (82%)	-26%
	7	$[Rh(COD)_2]BF_4$	(R)-xyl-SDP : (rac)-xyl-BINAP 1:1	74%	32%
	8	$[Rh(COD)_2]BF_4$	(S)-xyl-BINAP	79%	92%
	9	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP : (S)-xyl-BINAP 1:1	63%	94%
	10 ^d	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP: (S)-xyl-BINAP 1:1	70%	95%
	11 ^d	[Rh(COD)(CH ₃ CN) ₂]BF ₄	(R)-xyl-SDP : (S)-xyl-BINAP 1:1	61%	94%
	12 ^d	$[Rh(COD)_2]BF_4$	(R)-xyl-SDP : (S)-xyl-BINAP 2:1	60%	97%
	13 ^d	[Rh(COD) ₂]BF ₄	(R)-xyl-SDP : (S)-xyl-BINAP 5:1	54%	98%

^a Unless otherwise mentioned, the reaction was run with 10 mol % rhodium complex (based on the metal) and 12 mol % ligand on a 0.1 mmol scale at 110 °C for 48 h; numbers in parenthesis are yields based on recovered starting material (brsm). ^b Determined by chiral HPLC. ^c THF was used as the solvent. ^d Rhodium complex (5 mol%) and mixed ligands (6 mol%) were added initially; the reaction mixture was stirred at 110 °C for 24 h before another portion of the same catalyst was added. ^e the reaction was run for 14 h.

Although changing the solvent from THF to 1,4-dioxane slightly increased the yield (Table 2.5, entries 1 and 2), using $[Rh(cod)_2]BF_4$ as the pre-catalyst gave a cleaner reaction (Table 2.5, entries 3 and 4). However, instead of using (R)-xyl-SDP alone, when 6 mol% (R)-xyl-BINAP was used together with 6 mol% (R)-xyl-SDP, the presence of xyl-BINAP indeed stabilize the catalyst and insured a good yield of 72% (Table 2.5, entry 5). It is worth noting that the R enantiomers of xyl-BINAP and xyl-SDP gave opposite enantioselectivity in our previous screening, so when they were used together in the reaction, they work against each other rendering a lower ee. So we further

tried to use (R)-xyl-SDP and (S)-xyl-BINAP together to make use of the advantages of both ligands. We were glad to see that they compromised each other and resulted in a significantly higher yield (70%) and excellent ee (95%) (Table 2.5, entry 10). We also compared both precatalysts and found [Rh(cod)₂]BF₄ provides best yield for current condition (Table 2.5, entry 11).

Table 2.6 Control Experiments^a

Entry	Variation	Additive	Yield ^b
1	w/o Rh catalyst	none	0%
2	w/o ligand	none	0%
3	w/o Rh catalyst and ligand	none	0%
4	w/o Rh catalyst and ligand	20 mol % ZnCl ₂	0%
5	w/o Rh catalyst and ligand	20 mol % AICI ₃	0%
6	w/o Rh catalyst and ligand	20 mol % B(C ₆ F ₅) ₃	0%

 $[^]a$ Unless otherwise mentioned, the reaction was run with 10 mol % rhodium complex (based on the metal) and 12 mol % ligand on a 0.1 mmol scale at 110 °C for 48 h. b NMR yield using 1,1,2,2-tetrachloroethane as the internal standard.

Further control experiments suggested that both rhodium catalyst and ligands are crucial for the reaction to take place (Table 2.6, entries 1-3). Given the literature precedents that Lewis acid alone can catalyze several C–C activation reactions^{4,12}, we also explored some Lewis acids that proved to be efficient in other transformations. However, none of these Lewis acids were productive for our reaction (Table 2.6, entries 4-6).

2.2.2 Substrate scope for rhodium-catalyzed carboacylation of C=N bonds

With the optimized conditions in hand (Table 2.5, entry 10), we next investigated the substrate scope. First, substitutes on the ketoxime with various steric properties all underwent the desired carboacylation giving excellent enantioselectivity (\geq 90% ee, Table 2.7). It is not surprising

that when the steric bulk of the oxime substituent increased from methyl to ethyl and to isopropyl, the reactivity diminished and a higher temperature (130 °C) was required (Table 2.7, entries 2-4).

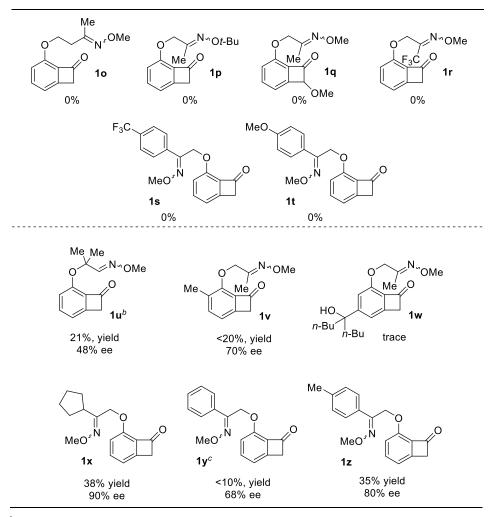
 $\mathsf{Yield}^{\mathit{c}}$ Entry Substrate Product ee^d N_{_}OMe OMe 1^b 95% 72% 1a (x-ray obtained) ^OMe N OMe 2 65% 94% 2b 1b **OTBS OTBS** N^OMe 62% 90% OMe 3 2c 1c 50% 90% N_{_}OMe 37% 92% 5^{b,e} N°OMe 81% 40%

Table 2.7 Substrate Scope I^a

 6^b

Although the aldoxime substrate (1e) suffered from a competing β -H elimination side reaction and the lactam product (2e) was unstable at high temperatures, a moderate yield (37%) with an excellent ee (92%) can nevertheless be obtained by using xyl-SDP alone as the ligand (Table 2.7, entries 5). It is encouraging to observe that 6-membered rings can also be formed generating an interesting 6-6-6 fused lactam (Table 2.7, entry 6).

^a Reaction conditions: [Rh(cod)₂]BF₄ (5 mol %), (R)-xyl-SDP (3 mol %), (S)-xyl-BINAP (3 mol%), 1,4dioxane, 130 °C; another portion of the same catalyst was added after 24h. b Reaction temperature was 110 °C. c Isolated yield; numbers in the parenthesis are brsm yields. d Determined by chiral HPLC. ^e (R)-xyl-SDP (12 mol%) alone was used.


Table 2.8 Substrate Scope II^a

Entry	Substrate	Product	Yield ^c	ee ^d
1	N~OMe Ne No Ne Ne Ne Ne Ne Ne Ne N	i-Pr OMe 2g	53% (74%)	90%
2 ^b	N OMe No Ohe No Ohe	Me N OMe 2h	68%	94%
3 ^b	N n OMe Me O 1i	Me N OMe 2i	74%	89%
4 ^b	O N OMe O ij	Me N OMe 2j	50%	86%
5	N n OMe Me O 1k	Me OMe 2k	67%	90%
6	N ⁴ OMe O 11	Me N OMe 2I CI (x-ray obtained)	72%	90%
7 ^b	MeO ₂ C No OMe O 1m	MeO ₂ C Me OMe N OMe 2m	70% d.r.=3:1	N/A
8 ^e	MeO ^s N 1n	N-OMe 2n (x-ray obtained)	66% d.r.>20:1	N/A

^a Reaction conditions: $[Rh(cod)_2]BF_4$ (5 mol %), (*R*)-xyl-SDP (3 mol %), (*S*)-xyl-BINAP (3 mol%), 1,4-dioxane, 130 °C; another portion of the same catalyst was added after 24h. ^b Reaction temperature was 110 °C. ^c Isolated yield; numbers in the parenthesis are brsm yields. ^d Determined by chiral HPLC. ^e $[Rh(CH_3CN)_2(COD)]BF_4$ (20 mol%) and (*R*)-xyl-BINAP (25 mol%) were used.

Moreover, both electron-donating and withdrawing groups on the arene can be well tolerated (Table 2.8, entries 1-6). In particular, both C5 and C6-substituted benzocyclobutenones are competent substrates.

Table 2.9 Unsuccessful Substrates^a

^a Reaction conditions: $[Rh(cod)_2]BF_4$ (5 mol %), (R)-xyl-SDP (3 mol %), (S)-xyl-BINAP (3 mol%), 1,4-dioxane, 130 °C; another portion of the same catalyst was added after 24h. ^b $[Rh(cod)(CH_3CN)]BF_4$ (10 mol %) and (R)-xyl-BINAP (12 mol%) were used. ^c $[Rh(cod)(CH_3CN)]BF_4$ (10 mol %) and (R)-xyl-SEGPHOS (12 mol%) were used.

Next, we aimed at replacing the ether linker with a carbon-based one. Substrate **1m** with a pre-existing stereocenter underwent smooth transformation to give the fused lactam in 70% yield with 3:1 dr (Table 2.8, entry 7). Finally, the substrate containing a cyclic oxime was examined for

this transformation (Table 2.8, entry 8). We were concerned that the relatively rigid conformation of the six-membered ring with a fixed orientation would hinder the carboacylation process. To our delight, with a higher catalyst loading the desired tetracyclic scaffold containing two adjacent stereocenters can nonetheless be provided in good yield and excellent diastereoselectivity (>20:1 dr). The structure of product **2n** was confirmed by both 2D-NMR and X-ray diffraction analysis. Apart from the successful examples discussed above, we have synthesized other substrates which fail to deliver the desired product with synthetically useful yield or enantioselectivity (Table 2.9). When substrate 10 was subjected to the standard condition, the 6-6-6 fused lactam product similar to product 2f was not observed, mainly due to the steric hinderance. Increasing the steric on the oxygen of the oxime to tert-butyl (1p) would shut down the reaction. Methoxy substituent at C8 position (1q) cannot be tolerated. Replacing the methyl substituent with strongly electronwithdrawing trifluoromethyl group (1r) is not viable substrate due to substrate decomposition. Substrates with aryl substituents on the oxime are having low reactivity (1s, 1t, 1v, 1z). Only 1v and 1z gave small amount of the product. Gem-dimethyl substituents on the linkage (1u) was proposed to bring the olefin closer to the rhodacycle intermediate, however it failed to give good yield and ee.

2.2.3 Synthetic applications for rhodium-catalyzed carboacylation of C=N bonds

One advantage of using oximes as the C=N coupling partner is that the O-N bond can be easily cleaved using various reductants.¹⁵ For example, treatment of lactam **2a** with Mo(CO)₆ provided the free amide in 86% yield (Scheme 2.6). *N*-arylatated and alkylated lactams can be conveniently obtained under cross-coupling¹⁶ and S_N2 conditions (Scheme 2.7). While the benzocyclobutenone substrates with a C8 substituent were not reactive under carboacylation conditions, arylation and alkylation at the C8 position can be efficiently achieved through post

functionalization. In particular, complete diastereoselectivity was obtained for the alkylation reaction to generate **7**, suggesting an excellent convex-face-controlled situation. The relative stereochemistry was unambiguously confirmed by X-ray diffraction analysis.

Scheme 2.6 Cleavage of N-O Bond

Scheme 2.7 Synthetic Applications I

Furthermore, a new saturated scaffold **8** can be efficiently constructed using a mild Rh-catalyzed hydrogenation protocol (Scheme 2.8).¹⁷ Two interesting features should be noted: 1) the reaction gives perfect diastereoselectivity; 2) the *N*-OMe bond and the amide moiety remained intact after the reaction. In addition, a complementary LiAlH₄ reduction smoothly provided the corresponding *N*-OMe piperidine **9**.¹⁸

Scheme 2.8 Synthetic Applications II

THS: tetrabutylammonium hydrogen sulfate.

2.3 Conclusion

In summary, we have developed a highly enantioselective Rh-catalyzed carboacylation of oxime C=N bonds via C-C activation. Using this method, unique fused isoquinolinone scaffolds can be efficiently accessed from benzocyclobutenone-linked oximes. The reaction conditions do not use a strong acid or base and are overall redox neutral, which provide good functional group tolerance. High enantioselectivity can be achieved despite using a mixture of the *E/Z* isomers of the oximes. The resulting scaffolds were rendered to several derivatization conditions and among them, an interesting saturated fused lactam was successfully obtained. Considering the novelty of these structures, the potential pharmaceutical applications of the fused heterocyclic products are under investigation. Moreover, given the importance of amide-bond formation, this catalytic asymmetric C-C activation method provides an additional approach for their synthesis.

2.4 Experimental

2.4.1 General information

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). And the solvents for the C-C Activation reactions were distilled freshly over sodium or calcium hydride and carefully freeze-pump-thawed. All the

C-C Activation reactions were carried out under nitrogen atmosphere with a stir bar in a sealed vial. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. Sensitive ligands and rhodium catalysts and solvents were transferred under nitrogen into a nitrogen-filled glove-box with standard techniques. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials (17 x 60 mm (7.5mL) with PTFE lined cap attached) were purchased from Qorpak and flamedried or put in an oven overnight. High-resolution mass spectra (HRSM) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+Na]⁺, [M+H]⁺, [M-H]⁻ or [M]. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with a Varian Gemini (400 MHz, ¹H at 400 MHz, ¹³C at 100 MHz). Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and are referenced to residual solvent (CDCl₃, δ =7.26 ppm (¹H) and 77.00 ppm (¹³C); CD₂Cl₂, δ =5.32 ppm (¹H) and 53.84 ppm (¹³C)). Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, hept=heptuplet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration).

2.4.2 Synthetic routes for substrate synthesis

Route I

Substrates 1b to 1f were synthesized through Route I.

Route II

Substrates 1a and 1g to 1l were synthesized through route II.

2.4.3 Synthesis of precursors

a) Synthesis of known compound 1a-II, 1g-II, 1h-II and 1i-II:

Compounds **1a-II**, **1g-II**, **1h-II** and **1i-II** were synthesized according to the reported procedure and match the data reported in literature. ^{8a,8b,19}

b) Synthesis of compound 1j-II, 1k-II and 1l-II:

Compound 1j-II was synthesized using same procedure as reported in literature. 8a,8b

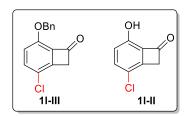
Compound **1j-II** was synthesized as a colorless oil in 30% yield (113.8 mg) in 4 steps from commercial available 4-(1-methylethyl)resornol. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (dd, J = 8.5, 0.5 Hz, 1H), 6.75 (d, J = 8.5 Hz, 1H), 3.91 (d, J = 0.7 Hz, 2H), 3.53 (s, 1H), 2.93 (hept, J = 6.9 Hz, 1H), 1.24 (d, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 189.20, 147.31, 147.04, 137.16, 135.56, 131.71, 116.88, 50.56, 31.10, 23.12. IR: v 3271, 2961, 2871, 1741, 1619, 1591, 1501, 1276, 1147, 828, 672 cm⁻¹; HRMS calcd. for [M+H]⁺: 177.0916. Found: 177.0912.

Compound 1k-II was synthesized using the following procedure.¹⁹

Commercially available starting material 3-bromo-4-methylphenol (2.0 g, 10.7 mmol, 1 equiv.) was dissolved in a 40 mL vial (with stir bar) using acetone (20 mL). K₂CO₃ (7.39 g, 53.5 mmol, 5 equiv.), KI (5.33 g, 32.1 mmol, 3 equiv.) and BnCl (4.57 g, 26.7 mmol, 2.5 equiv.) were added to the stirring solution. Then the reaction was heated to 40 °C and stirred overnight. Upon completion, the reaction mixture was transferred to a separation funnel and 40 mL of NH₄Cl (sat.) solution was

added to quench the reaction. Then the mixture was extracted with ethyl acetate (EA) (3×20 mL). Afterwards, the organic phase was washed by saturated Na₂S₂O₃ solution twice and brine twice. The organic phase was then dried using Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/20) to obtain compound **1k-IV** as a colorless oil in 96% yield (2.85 g). R_f = 0.7 (EtOAc/Hexane=1/5) ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.32 (m, 5H), 7.22 (s, 1H), 7.14 (dd, J = 8.5, 2.2 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.03 (s, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.32, 157.30, 136.58, 136.56, 130.97, 130.96, 129.98, 128.58, 128.57, 128.03, 128.02, 127.44, 127.43, 124.84, 124.82, 118.60, 118.59, 114.12, 114.10, 70.24, 21.83, 21.82. **IR**: v 3032, 2922, 1604, 1491, 1235, 1026, 736, 696, 450 cm⁻¹; **HRMS** calcd. for [M]⁺: 276.0150. Found: 276.0150.

To a 100 mL flamed-dried Schlenk flask equipped with a stir bar and a nitrogen-filled balloon was added THF (20 mL). The system was cooled to 0 °C with an ice-water bath before *n*-BuLi (2.5 M in hexane, 3.2 mL, 8.1 mmol, 1.5 equiv.) was added dropwise. Upon completion, the system was warmed to r.t. and stirred for 16 h under nitrogen atmosphere. To a 30 mL flamed-dried Schlenk flask equipped with a stir bar and a nitrogen-filled balloon were added 2,2,6,6-tetramethylpiperidine (918.13 mg, 6.5 mmol, 1.2 equiv.) and THF (15 mL). After cooled to 0 °C with an ice-water bath, *n*-BuLi (2.5 M in hexane, 2.6 mL, 6.5 mmol, 1.2 equiv.) was added dropwise and the reaction was stirred at 0 °C for 0.5 h to provide lithium tetramethylpiperidine solution. The previous 100 mL flask was cooled to –78 °C with an acetone-dry ice bath and compound **1k-IV** (1.5 g, 5.4 mmol, 1 equiv) in THF (5 mL) was added before in *situ* generated lithium tetramethylpiperidine was added dropwise. The reaction was stirred at –78 °C for 3h and was warmed to r.t. before quenched by adding saturated NH₄Cl solution (30 mL). The mixture was extracted with ethyl acetate (3×30 mL), washed with brine, and dried with Na₂SO₄. The combined


organic extract was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) on silica gel to afford compound **1k-III** as a colorless oil in 56% yield (723.5 mg). $R_f = 0.4$ (EtOAc/Hexane=1/5) ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.41 (m, 2H), 7.37 (ddd, J = 8.0, 6.9, 1.0 Hz, 2H), 7.31 (d, J = 7.2 Hz, 1H), 7.01 (dt, J = 8.4, 0.7 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.33 (d, J = 12.3 Hz, 1H), 5.23 (d, J = 12.2 Hz, 1H), 5.18 (ddd, J = 9.6, 4.6, 1.8 Hz, 1H), 3.50 (dd, J = 14.3, 4.6 Hz, 1H), 2.96 – 2.87 (m, 1H), 2.17 (d, J = 9.6 Hz, 1H), 2.12 (s, 3H), 1.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 151.50, 142.07, 137.59, 131.84, 130.40, 128.49, 127.78, 127.17, 127.16, 125.40, 115.33, 71.11, 70.02, 41.19, 15.77. **IR:** v 3302, 2920, 1582, 1490, 1454, 1262, 1112, 1047, 1007, 825, 729, 667 cm⁻¹; **HRMS** calcd. for [M]⁺: 240.1150. Found: 240.1150.

Compound **1k-III** (480.6 mg, 2.0 mmol, 1 equiv.) was dissolved in dichloromethane (10 mL). Pyridinium chlorochromate (PCC) (689.8 mg, 3.2 mmol, 1.6 equiv.) and silica gel (1.03 g, mass ratio to PCC is 1.5:1) were added to the solution. The reaction was monitored by TLC and stopped at 3 h when all the starting material was consumed. The resulting mixture was filtered through a silica pad and concentrated. The crude product was used directly in the next step without further purification.

The crude product from the previous step was dissolved in 10 mL AcOH in a 50 mL Schlenk tube and 2 mL of 6M HCl (aq.) was added into the solution. Then the Pd(OH)₂ (20 wt% on carbon) (137.0 mg, 0.97 mmol, 0.5 equiv.) was added to the solution. A H₂ balloon was equipped and a pump with low vaccum was used to degas and pump H₂ three times. The reaction was heated at 40 °C overnight. When the reaction was finished, the reaction mixture was filtered through a celite pad and the solid was washed with acetone. After concentrating the solution under reduced pressure, the crude product was purified by silica gel flash column chromatography

(EtOAc/Hexane=1/5) on silica gel to afford compound **1k-II** as a colorless oil in 81% yield for two steps (242.6 mg). $R_f = 0.3$ (EtOAc/Hexane = 1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (dd, J = 8.3, 0.8 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 3.83 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 188.52, 148.59, 147.34, 139.70, 131.10, 124.46, 116.94, 49.77, 16.41. **IR**: v 2923, 1753, 1620, 1585, 1501, 1451, 1270, 1149, 1012, 822, 631 cm⁻¹; **HRMS** calcd. for [M]⁺: 148.0524. Found: 148.0523.

Compound **11-II** was synthesized using same procedure as **1k-II**. ¹⁹

Compound **11-III** matched the reported data¹⁹ and **11-II** was obtained using similar deprotection procedure used in **1k-II** synthesis. **11-II** was obtained as a colorless oil in 89% yield (105.2 mg). $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (d, J = 8.8 Hz, 1H), 6.77 (d, J = 8.8 Hz, 1H), 3.92 (s, 2H). ¹³**C NMR (100 MHz, CDCl₃):** δ 187.03, 148.65, 147.07, 138.57, 132.34, 119.14, 119.07, 50.28, 29.68. **IR:** v 3079, 2921, 1780, 1755, 1732, 1597, 1440, 1414, 1294, 1154, 984, 818, 750, 714 cm⁻¹; **HRMS** calcd. for [M]⁺: 167.9978. Found: 167.9981.

c) Synthesis of known compounds 1b-I to 1f-I:

From compound **1a-II**, compound **1b-I** to **1f-I** were synthesized according to the reported procedure and matched the data reported in literature. 8a,8b,19

2.4.4 Route I synthesis of substrates 1b to 1f

Substrates 1b to 1f were synthesized through Route I.

General Procedure for the Synthesis of Oxime Substrates from 1b-I to 1f-I in Route I

One-pot ozonolysis and oxime formation

Using the synthesis of substrate 1b as an example: A round bottom flask was charged with a stir bar, and the alkene precursor 1b-I in DCM (633.1 mg, 3.13 mmol, 1 equiv.; 0.2 mol/L). The flask was sealed with plastic stopper on top and cooled to -78 °C in an acetone-dry ice bath. A needle was inserted through the stopper to keep a static pressure inside the flask while inserting an oxygen gas line into the reaction system. The ozone generator was opened. After the solution turned pale blue, a DCM solution of PPh₃ (4.11 g, 15.7 mmol; 5equiv. for small scale reactions and 2 equiv. for large scale reactions) was injected to quench the reaction and the reaction was stirred at room temperature for 15 minutes. NH₂OMe·HCl (261.4 mg, 3.13 mmol, 1equiv.) was then added to the reaction and the flask was kept stirring at room temperature (also 1c-I, 1e-I, 1f-I) or 65 °C with 4 Å molecule sieves (10 equiv.) (1d-I) overnight. [For substrate 1c-I the TBS group was removed during this reaction, thus the protection method used in literature¹ was used to re-protect the OH group] The reaction mixture was concentrated using rovator (if 4 A molecule sieves were used, the reaction mixture was filtered before concentrating the mixture) before purifying by silica gel column chromatography (EtOAc/Hexane=1/10).

1b was isolated as a colorless oil in 54% yield (395.2 mg) on a 2 mmol scale as an inseparable 2:1 mixture of E/Z isomers from **1b-I** and NH₂OMe·HCl. R_f = 0.5 (EtOAc/Hexane=1/5). ¹**H NMR** (**400 MHz, CDCl₃**): δ (major) 7.44 (dd, J = 8.4, 7.1 Hz, 0.68H), 7.06 (dd, J = 0.7, 0.5 Hz, 0.68H), 6.86 (dd, J = 8.5, 0.7 Hz, 0.68H), 4.93 (s, 1.33H), 3.93 (s, 1.33H), 3.88 (s, 2H), 2.45 (q, J = 7.6 Hz, 1.36H), 1.11 (t, J = 7.7 Hz, 2.47H).); δ (minor) 7.45 (dd, J = 8.4, 7.1 Hz, 0.33H), 7.07 (dd, J = 0.7, 0.5 Hz, 0.33H), 6.84 (dd, J = 8.5, 0.7 Hz, 0.33H), 5.22 (s, 0.68H), 3.93 (s, 0.68H), 3.89 (s, 1.02H), 2.37 (q, J = 7.4 Hz, 0.71H), 1.13 (t, J = 7.4 Hz, 0.75H). ¹³C NMR (100 MHz, CDCl₃): δ 184.71, 184.54, 157.92, 157.16, 151.83, 151.72, 150.71, 150.54, 137.70, 132.61, 132.49, 116.17, 115.79, 115.68, 115.56, 72.03, 66.73, 61.74, 51.39, 51.30, 24.30, 19.92, 11.16, 9.96. IR: v 2973, 2938, 2818, 1765, 1603, 1575, 1473, 1450, 1270, 1048, 896, 784 cm⁻¹; HRMS calcd. For [M+Na]⁺: 256.0944. Found: 256.0947.

1c was isolated as a colorless oil in 69% yield (730 mg) on a 3 mmol scale as an inseparable 2:1 mixture of E/Z isomers from 1c-I and NH₂OMe·HCl. $R_f = 0.7$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ (major) 7.42 (dd, J = 8.4, 7.0 Hz, 0.67H), 7.02 (dd, J = 7.0, 0.7 Hz, 0.67H), 6.83 (dd, J = 8.4, 0.8 Hz, 0.67H), 5.08 (s, 1.36H), 4.59 (s, 1.36H), 3.91 (s, 1.39H), 3.87 (s, 2.09H),

0.81 (s, 6.04H), 0.03 (s, 4.09H). δ (minor) 7.43 (dd, J = 8.4, 7.0 Hz, 0.33H), 7.05 (dd, J = 7.0, 0.7 Hz, 0.33H), 6.83 (dd, J = 8.4, 0.8 Hz, 0.33H), 5.24 (s, 0.65H), 4.34 (s, 0.65H), 3.93 (s, 0.69H), 3.91 (s, 1.01H), 0.83 (s, 2.90H), 0.03 (s, 1.91H). ¹³C NMR (100 MHz, CDCl₃): δ 184.61, 156.39, 154.67, 152.06, 151.95, 150.57, 150.37, 137.50, 132.39, 116.16, 115.89, 115.50, 115.20, 69.26, 64.37, 62.16, 62.08, 61.59, 57.65, 51.31, 51.19, 25.63, 18.11, -5.44, -5.73. IR: v 2930, 2898, 2857, 1770, 1603, 1575, 1473, 1273, 1128, 1048, 837, 780 cm⁻¹; HRMS calcd. For [M+Na]⁺: 372.1602. Found: 372.1605.

1d was isolated as a colorless oil in 58% yield (298.7 mg) on a 2 mmol scale as an inseparable 1:1 mixture of E/Z isomers from 1d-I and NH₂OMe·HCl. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (ddd, J = 8.4, 7.1, 2.6 Hz, 1H), 7.04 (ddd, J = 7.1, 3.5, 0.7 Hz, 1H), 6.83 (ddd, J = 8.5, 4.3, 0.7 Hz, 1H), 5.17 (s, 1H), 4.94 (s, 1H), 3.92 (s, 2H), 3.87 (d, J = 1.8 Hz, 3H), 3.30 (hept, J = 7.0 Hz, 0.5H), 2.76 (hept, J = 6.9 Hz, 0.5H), 1.14 (dd, J = 7.0, 5.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 184.64, 184.50, 159.83, 159.54, 151.73, 151.64, 150.60, 150.44, 137.60, 132.53, 132.42, 116.19, 115.80, 115.53, 115.43, 70.93, 65.63, 61.70, 51.30, 51.22, 30.52, 26.66, 20.00, 18.87. IR: v 2968, 2937, 2901, 2875, 2818, 1767, 1602, 1575, 1473, 1273, 1047, 905, 783 cm⁻¹; HRMS calcd. for [M+Na]⁺: 270.1101. Found: 270.1099.

1e was isolated as white solid in 43% yield (160 mg) on a 1 mmol scale as an inseparable 1:1 mixture of E/Z isomers from 1e-I and NH₂OMe·HCl. R_f= 0.6 (EtOAc/Hexane=1/5). M.P.=66-68 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, J = 5.6 Hz, 0.5H), 7.45 (ddd, J = 8.4, 7.1, 3.0 Hz, 1H), 7.07 (ddq, J = 7.1, 3.6, 0.7 Hz, 1H), 6.91 (t, J = 3.6 Hz, 0.5H), 6.85 (ddd, J = 8.4, 2.6, 0.6 Hz, 1H), 5.18 (d, J = 3.6 Hz, 1H), 4.99 (d, J = 5.6 Hz, 1H), 3.95 (m, 1.5H), 3.95 – 3.93 (m, 2H), 3.89 (m, 1.5H). ¹³C NMR (100 MHz, CDCl₃): δ 184.68, 184.46, 151.46, 151.26, 150.67, 150.52, 147.32, 144.82, 137.83, 137.78, 132.56, 132.30, 116.23, 115.94, 115.86, 115.76, 68.55, 66.18, 62.40, 61.94, 51.41, 51.32. IR: v 2938, 1765, 1602, 1573, 1473, 1269, 1046, 870, 785 cm⁻¹; HRMS calcd. for [M+Na]⁺: 228.0631. Found: 228.0631.

If was isolated as a colorless oil in 60% yield (410.2 mg) on a 3 mmol scale as an inseparable 1:1 mixture of E/Z isomers from If-I and NH₂OMe·HCl. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (t, J = 6.1 Hz, 0.5H), 7.43 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.05 – 7.00 (m, 1H), 6.84 – 6.77 (m, 1.5H), 4.52 (q, J = 6.3 Hz, 2H), 3.92 (dd, J = 1.8, 0.9 Hz, 2H), 3.89 (s, 1.5H), 3.83 (s, 1.6H), 2.80 (d, J = 6.3 Hz, 1H), 2.67 (q, J = 6.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 184.90, 184.89, 152.00, 151.99, 150.48, 147.73, 147.31, 137.73, 132.22, 132.20, 116.27, 115.30, 115.28, 69.28, 68.87, 61.72, 61.39, 51.20, 29.80, 26.07. IR: v 2938, 1765, 1603, 1573, 1461, 1275, 1050, 785 cm⁻¹; HRMS calcd. for [M+Na]⁺: 242.0788. Found: 242.0781.

2.4.5 Route II synthesis of substrates 1a and 1g to 1m

II.
$$\frac{Me}{Cl}$$
 + $H_2NOMe \cdot HCl$ $\frac{DCM/H_2O}{65 \, ^{\circ}C}$ $\frac{Me}{S10}$ $\frac{N_1 \cdot OMe}{S11}$ $\frac{OH}{R}$ $\frac{Me}{Cl}$ $\frac{K_2CO_3, Kl}{acetone, reflux}$ $\frac{Me}{Acetone, reflux}$ $\frac{N_1 \cdot OMe}{Acetone, reflux}$ $\frac{Me}{Acetone}$ $\frac{N_2CO_3, Kl}{Acetone, reflux}$ $\frac{Me}{Acetone}$ $\frac{N_1 \cdot OMe}{Acetone}$ $\frac{N_1 \cdot O$

Substrates 1a and 1g to 1l were synthesized through route II.

S11 was synthesized according to a reported procedure²⁰ and matched the reported data.

General Procedures for the Synthesis of Oxime Substrates from **1a-II** and **1g-II** to **11-II**<u>Substitution reaction with pre-formed oxime chloride</u>

Using the synthesis of substrate 11 as an example: To a solution of compound 11-II (105.2 mg, 0.62 mmol, 1 equiv.) in acetone (10 mL), K₂CO₃ (256.7 mg, 1.86 mmol, 3 equiv.), KI (206.7 mg, 1.24 mmol, 2 equiv.) and S11 (114.3 mg, 0.94 mmol, 1.5 equiv.) were added to the stirring solution. Then the reaction was heated to 70 °C and stirred overnight. After the reaction was complete, 10 mL of NH₄Cl (sat.) solution was used to quench the reaction. The mixture was extracted with ethyl acetate (EA) (3×10 mL). Then the organic phase was washed by saturated Na₂S₂O₃ (aq.) solution (2×10 mL) and brine (2×10 mL). The organic phase was then dried using Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10), to obtain the compound 11 as a white solid in 83% yield (2.85 g).

1a was isolated following the general procedure as a white solid in 68% yield (250 mg) on a 3 mmol scale as an inseparable 5:1 mixture of E/Z isomers from 1a-II and S11. $R_f = 0.5$ (EtOAc/Hexane=1/5). M.P. = 53-54 °C ¹H NMR (400 MHz, CDCl₃): δ (major) 7.44 (ddd, J = 8.4, 7.1, 3.9 Hz, 0.84H), 7.07 – 7.01 (m, 0.84H), 6.86 (m, 0.84H), 4.90 (s, 1.71H), 3.93 (d, J = 0.9 Hz, 1.71H), 3.89 (s, 2.5H), 1.95 (s, 2.5H). δ (minor) 7.45 (ddd, J = 8.4, 7.1, 3.9 Hz, 0.20H), 7.09 – 7.05 (m, 0.20H), 6.84 (m, 0.2H), 5.21 (m, 0.32H), 3.93 (d, J = 0.9 Hz, 0.32H), 3.89 (s, 0.47H), 1.97 (s, 0.47H). ¹³C NMR (100 MHz, CDCl₃): δ 184.73, 184.52, 154.56, 152.68, 151.84, 150.53, 137.74, 137.72, 132.45, 116.14, 115.59, 73.31, 67.48, 61.80, 61.73, 51.39, 51.28, 16.51, 12.22. IR: v 2963, 2937, 1763, 1602, 1576,1474, 1289, 1267, 1159, 1129, 1051, 899, 784 cm⁻¹; HRMS calcd. for [M+Na]⁺: 242.0788. Found: 242.0789.

1g was isolated as a colorless oil in 70% yield (98 mg) on a 1 mmol scale from 1g-II and S11. R_f = 0.6 (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 6.94 (s, 1H), 6.74 (s, 1H), 4.89 (s, 2H), 3.89 (s, 3H), 3.87 (s, 2H), 2.91 (hept, J = 6.9 Hz, 1H), 1.95 (s, 3H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 184.19, 160.91, 152.77, 151.94, 150.47, 130.27, 114.28, 114.11, 73.34, 61.70, 50.68, 35.09, 23.63, 12.24.. IR: v 2962, 1780, 1609, 1571, 1448, 1329, 1223, 1142, 1057, 899, 842, 668 cm⁻¹; HRMS calcd. for [M+Na]⁺: 284.12570. Found: 284.12550.

1h was isolated as a colorless oil in 54% yield (78 mg) on a 1 mmol scale from **1h-II** and **S11**. R_f = 0.5 (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.68 (s, 1H), 7.58 (s, 1H), 4.91 (s, 2H), 3.97 (s, 2H), 3.94 (s, 3H), 3.89 (s, 3H), 1.95 (s, 3H), 1.55 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 184.12, 165.88, 152.28, 151.54, 150.53, 138.62, 135.72, 118.17, 116.19, 73.63, 61.77, 52.63, 51.12, 22.99, 12.16. **IR:** v 2955, 1769, 1726, 1611, 1572, 1436, 1371, 1293, 1278, 1228, 1137, 1059, 900, 872, 774, 668, 601, 455 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 300.08420. Found: 300.08440.

1i was isolated as white solid in 72% yield (167.5 mg) on a 2 mmol scale as an inseparable 6:1 mixture of E/Z isomers from 1i-II and S11. $R_f = 0.6$ (EtOAc/Hexane=1/5). M.P.= 96-98 °C ¹H NMR (400 MHz, CDCl₃): δ (major) 6.88 (s, 1H), 6.68 (s, 1H), 4.88 (s, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 2.38 (s, 3H), 1.94 (s, 3H). C NMR (100 MHz, CDCl₃): δ 184.10, 152.78, 151.76, 150.44, 149.77, 129.94, 116.66, 73.28, 61.70, 50.69, 22.49, 12.18. IR: v 2980, 2944, 1770, 1753, 1613, 1569, 1466, 1444, 1353, 1276, 1130, 1065, 911, 847, 600 cm⁻¹; HRMS calcd. for [M+Na]⁺: 256.09440. Found: 256.09450.

1j was isolated as a colorless oil in 87% yield (150 mg) on a 1 mmol scale as an inseparable >10:1 mixture of E/Z isomers from 1j-II and S11. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz,

CDCl3): δ (major) 7.28 – 7.26 (m, 1H), 6.81 (dt, J = 8.5, 0.8 Hz, 1H), 4.88 (s, 2H), 3.93 (d, J = 0.9 Hz, 2H), 3.89 (s, 3H), 2.95 (hept, J = 6.9 Hz, 1H), 1.94 (s, 3H), 1.26 (s, 3H), 1.25 (s, 3H). ¹³C **NMR (100 MHz, CDCl3):** δ 184.93, 152.92, 149.82, 147.17, 136.01, 132.47, 116.71, 77.19, 73.20, 61.72, 50.86, 31.13, 23.08, 12.21. **IR:** v 2962, 2936, 1763, 1621, 1569, 1492, 1458, 1420, 1290, 1213, 1143, 1048, 899, 840, 668, 606, 456 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 284.12570. Found: 284.12590.

1k was isolated as a white solid in 83% yield (242.4 mg) on a 2 mmol scale as an inseparable 8:1 mixture of E/Z isomers from 1k-II and S11. $R_f = 0.5$ (EtOAc/Hexane=1/5). M.P. = 77-79 °C ¹H NMR (400 MHz, CDCl₃): δ (major) 7.22 (dd, J = 8.4, 0.7 Hz, 1H), 6.78 (dd, J = 8.4, 1.0 Hz, 1H), 4.86 (s, 2H), 3.88 (s, 3H), 3.84 (s, 2H), 2.26 (s, 3H), 1.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 184.46, 184.27, 154.83, 152.86, 149.88, 149.70, 148.85, 148.65, 138.72, 131.82, 131.70, 129.43, 125.45, 125.29, 116.77, 116.39, 110.66, 73.60, 73.15, 72.57, 69.44, 67.36, 61.77, 61.69, 61.66, 50.16, 50.06, 17.86, 16.47, 16.46, 12.19, 11.80. IR: v 2937, 1764, 1621, 1576, 1492, 1268, 1063, 900, 838, 749, 436 cm⁻¹; HRMS calcd. for [M+H]⁺: 234.1130 . Found: 234.1127.

11 was isolated as white solid in 83% yield (130.4 mg) on a 1 mmol scale from 11-II and S11. R_f = 0.6 (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl3): δ 7.36 (d, J = 8.9 Hz, 1H), 6.84 (d, J = 8.8 Hz, 1H), 4.87 (s, 2H), 3.96 (d, J = 0.8 Hz, 2H), 3.89 (s, 3H), 1.94 (s, 3H). ¹³C NMR (100 MHz, CDCl3): δ 152.31, 150.71, 147.27, 137.55, 120.29, 118.81, 77.20, 73.69, 61.81, 50.76, 12.23. IR: v 2937, 1781, 1759, 1570, 1472, 1449, 1411, 1369, 1287,1266, 1051, 965, 901, 668 cm⁻¹; HRMS calcd. for [M+Na]⁺: 276.03980. Found: 276.04000.

Synthesis of 1m

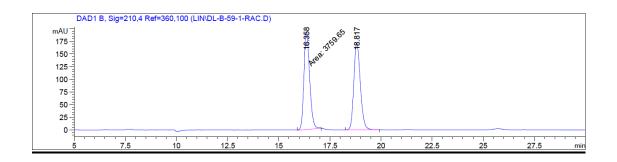
1m-I was synthesized according to the reported procedure and matched the reported data^{8a}. Following the general procedure, **1m** was isolated as a colorless oil in 66% yield as a racemic mixture from **1m-I** and **S11**. $R_f = 0.3$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl3):** δ 7.45 (t, J = 7.4 Hz, 1H), 7.42 - 7.39 (m, 1H), 7.34 - 7.31 (m, 1H), 4.21 (dd, J = 8.6, 6.6 Hz, 1H), 3.95 (t, J = 0.8 Hz, 2H), 3.73 (s, 3H), 3.66 (s, 3H), 3.14 (ddd, J = 16.2, 8.6, 0.6 Hz, 1H), 2.73 (ddd, J = 16.2, 6.6, 0.5 Hz, 1H), 1.79 (s, 3H). ¹³C NMR (100 MHz, CDCl3): δ 187.47, 172.47, 153.95, 151.25, 146.13, 135.30, 134.19, 128.34, 122.46, 61.27, 52.24, 52.06, 45.25, 37.91, 14.68. **IR**: v 2952, 1750, 1739, 1581, 1437, 1162, 1051, 952, 893, 853, 783, 550, 436 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 298.10500. Found: 298.10520.

2.4.6 Synthesis of substrates 1n

1n was synthesized using the procedure shown above. Using the general procedure for substitution as before, the ketone substrate was obtained. Then it was used without further purification to condense with NH₂OMe·HCl using the general procedure for **route I**.

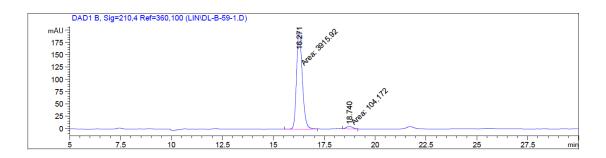
1n was isolated as a colorless oil in 50% yield as an inseparable 10:1 mixture of E/Z isomers for two steps. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (**400** MHz, CDCl₃): δ (major) 7.43 (dd, J = 8.5, 7.1 Hz, 1H), 7.01 (d, J = 6.8 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 5.35 (d, J = 5.5 Hz, 1H), 3.89 (d, J = 2.6 Hz, 2H), 3.79 (s, 3H), 2.83 – 2.70 (m, 1H), 2.54 – 1.59 (m, 7H). ¹³C NMR (**100** MHz, CDCl₃): δ 184.71, 156.89, 151.03, 150.41, 137.61, 132.57, 116.55, 115.06, 78.38, 61.51, 51.09, 32.33, 25.18, 22.74, 21.05. **IR**: v 2937, 1762, 1601, 1570, 1469, 1269, 1127, 1046, 962, 870, 782, 668 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 282.11010. Found: 282.11040.

2.4.7 General procedure for C-C activation reactions


(reaction was usually performed at 0.1mmol scale at 0.05 M concentration)

In a nitrogen filled glove box, a 8 mL vial was charged with the benzocyclobutenone substrates (1a to 1n, 0.1 mmol), Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) or [Rh(CH₃CN)₂(COD)]BF₄ (5 mol%, 0.005 mmol, 1.9 mg) and ligand (6 mol%, 0.006 mmol). After adding 2 mL 1,4-dioxane, the vial was capped and the solution was maintained at certain temperature for 24h before another portion of same catalyst was added. After the reaction was maintained at the same temperature for another 24h, it was cooled to room temperature and purified by silica gel flash chromatography.

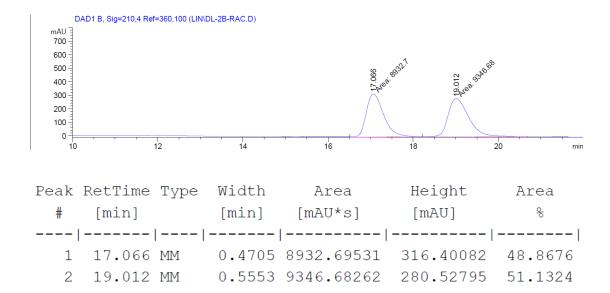
2a (15.8 mg) was isolated as a colorless oil in 72% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 110 °C. R_f = 0.6 (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (t, J = 7.7 Hz, 1H), 6.78 – 6.68 (m, 2H), 4.60 (dd, J = 8.4, 0.9 Hz, 1H), 4.54 (d, J = 8.4 Hz, 1H), 3.90-3.85 (td, J = 20.5, 1.3 Hz, 1H), 3.87 (s, 3H), 3.69 (d, J = 20.6 Hz, 1H), 1.63 (d, J = 0.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.69, 157.55, 130.64, 128.77, 128.74, 118.68, 108.75, 83.32, 66.57, 64.34, 37.04, 22.65. IR: v 2972, 2933, 1691, 1639, 1612, 1473, 1279, 1047, 935, 771, 668, 633 cm⁻¹; HRMS calcd. for [M+Na]⁺: 242.0788. Found: 242.0789.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 97:3, 1 mL/min, 210 nm), t_{minor} = 18.740 min, t_{major} = 16.271 min. [a] $_{D}^{20}$ = -53 (c=0.75, CH₂Cl₂) at 95 % e.e.

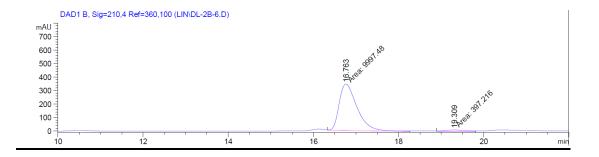
Racemic Sample 2a

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.358	MM	0.3248	3759.64697	192.91611	49.7686
2	18.817	BB	0.3399	3794.61060	171.68166	50.2314

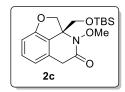
Enantiomeric Sample 2a



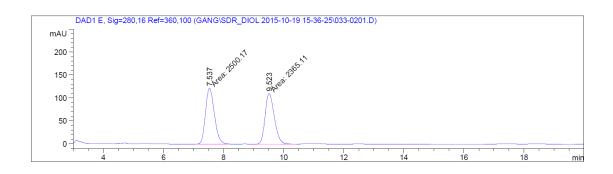
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.271	MM	0.3287	3915.92285	198.56981	97.4087
2	18.740	MM	0.3535	104.17199	4.91210	2.5913


2b (15.2 mg) was isolated as light yellow oil in 65% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (*R*)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (*S*)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4

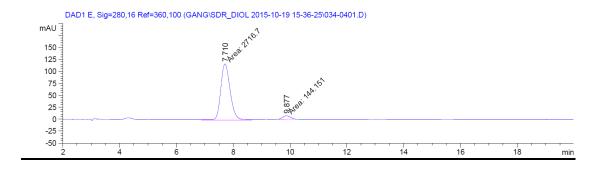
mg) were used and the reaction was maintained at 130 °C. $R_f = 0.6$ (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (t, J = 7.8 Hz, 1H), δ .72 (d, J = 8.0 Hz, 2H), 4.62 - 4.52 (m, 2H), 3.92 (dt, J = 20.7, 1.1 Hz, 1H), 3.84 (s, 3H), 3.64 (d, J = 20.8 Hz, 1H), 2.10 (d, J = 7.5 Hz, 2H), 0.86 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.39, 158.31, 130.65, 129.85, 126.74, 118.63, 108.65, 82.57, 70.28, 64.20, 37.56, 30.24, 8.09. IR: v 2970, 2937, 2883, 1688, 1635, 1812, 1471, 1279, 1057, 943, 773 cm⁻¹; HRMS calcd. for [M+Na]⁺: 256.0944. Found: 256.0947. Chiral HPLC (Chiralpak IA, hexane:isopropanol = 98:2, 1 mL/min, 210 nm): t_{minor} =19.309 min, t_{maior} =16.763 min. [a] t_{minor} = -43 (c=0.63, CH₂Cl₂) at 92% e.e..


Racemic Sample 2b

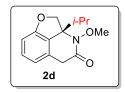
Enantiomeric Sample 2b


Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.763	MM	0.4836	9997.48438	344.55362	96.1787
2	19.309	MM	0.6114	397.21585	10.82889	3.8213

2c (21.7 mg) was isolated as a colorless oil in 62% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 130 °C. R_f= 0.7 (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (dd, J = 7.4, 3.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 2H), 4.58 (d, J = 8.9 Hz, 1H), 4.40 (d, J = 9.0 Hz, 1H), 4.21 (d, J = 10.1 Hz, 1H), 4.02 (d, J = 20.4 Hz, 1H), 3.84 (s, 2H), 3.78 (d, J = 10.1 Hz, 1H), 3.56 (d, J = 20.4 Hz, 1H), 0.79 (s, 9H), -0.06 (d, J = 1.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.95, 158.03, 131.55, 130.63, 125.68, 118.51, 109.99, 108.28, 79.09, 71.25, 64.48, 64.14, 38.18, 25.75, 18.40, -5.76. IR: v 2955, 2930, 2857, 1762, 1698, 1612, 1471, 1361, 1254, 1124, 1093, 1058, 948, 840, 777, 662 cm⁻¹; HRMS calcd. for [M+Na]⁺: 372.16020. Found: 372.16040.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 98:2, 1 mL/min, 280 nm): t_{minor} = 9.877 min, t_{major} = 7.710 min. [a]_D²⁰ = -40 (c=0.82, CH₂Cl₂) at 90% e.e.

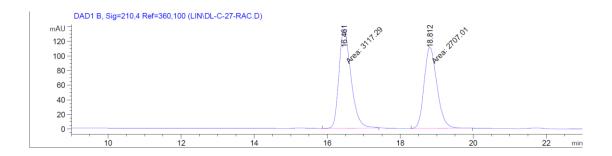
Racemic Sample 2c



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	7.537	MF	0.3421	2500.16699	121.80779	51.3880
2	9.523	MM	0.3576	2365.10986	110.23833	48.6120

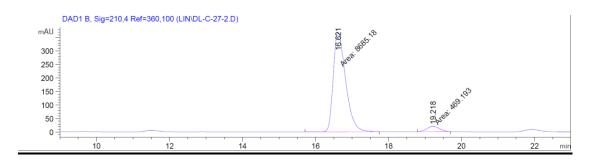
Enantiomeric Sample 2c

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	7.710	MM	0.3845	2716.70483	117.76103	94.9613
2	9.877	MM	0.3244	144.15134	7.40620	5.0387



2d (12.4 mg) was isolated as a colorless oil in 50% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (*R*)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (*S*)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4

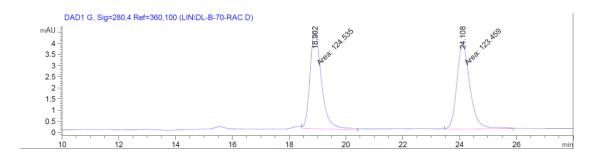
mg) were used and the reaction was maintained at 130 °C. $R_f = 0.5$ (EtOAc/Hexane=1/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.20 (t, J = 7.8 Hz, 1H), 6.72 (dd, J = 8.1, 4.6 Hz, 2H), 4.73 (d, J = 8.8 Hz, 1H), 4.62 (d, J = 8.8 Hz, 1H), 3.96 (dt, J = 20.7, 1.2 Hz, 1H), 3.85 (s, 3H), 3.61 (d, J = 20.8 Hz, 1H), 2.50 (hept, J = 6.9 Hz, 1H), 1.02 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.75, 158.94, 130.72, 130.49, 125.40, 118.74, 108.36, 81.04, 73.15, 64.25, 38.11, 36.81, 17.61, 16.87. IR: v 2970, 2936, 1687, 1470, 1279, 1116, 1057, 943, 773, 667 cm⁻¹ HRMS calcd. for [M+Na]⁺: 270.11010. Found: 270.11020.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 98:2, 1 mL/min, 210 nm): t_{minor} =19.218 min, t_{maior} =16.621 min. [a]_D²⁰ = -11 (c=0.88, CH₂Cl₂) at 90% e.e.

Racemic Sample 2d

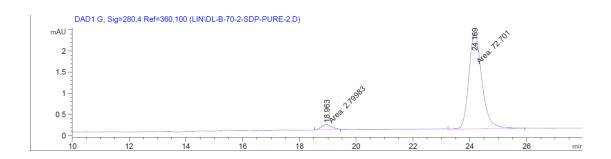
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	્રે
		-				
1	16.461	MM	0.3840	3117.28613	135.29062	53.5221
2	18.812	MM	0.4075	2707.00903	110.72683	46.4779

Enantiomeric Sample 2d

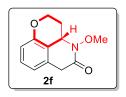


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.621	MM	0.3928	8685.17773	368.51218	94.8747
2	19.218	MM	0.3981	469.19284	19.64262	5.1253

2e (7.6 mg) was isolated as light yellow oil in 37% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (12 mol %, 0.012 mmol, 8.2 mg) were used and the reaction was maintained at 110 °C. R_f = 0.3 (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.20 (t, J = 7.9 Hz, 1H), 6.73 (d, J = 7.5 Hz, 2H), 5.50 – 5.40 (m, 1H), 4.95 (dd, J = 8.8, 7.4 Hz, 1H), 4.49 (dd, J = 10.0, 8.8 Hz, 1H), 3.90 (dd, J = 20.5, 1.6 Hz, 1H), 3.87 (s, 3H), 3.70 (dd, J = 20.5, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 170.96, 158.51, 130.95, 129.87, 123.14, 118.47, 108.56, 77.97, 63.71, 59.69, 37.86. IR: v 2927, 2854, 1691, 1640, 1612, 1471, 1266, 1072, 1041, 938, 770 cm⁻¹; HRMS calcd. for [M+Na]⁺: 228.0631. Found: 228.0631.


Chiral HPLC (Chiralpak IB, hexane:isopropanol = 92:8, 1 mL/min, 210 nm): t_{minor} = 18.963 min, t_{major} = 24.169 min. [a]_D²⁰ = -6 (c=0.48, CH₂Cl₂) at 92% e.e..

Racemic Sample 2e



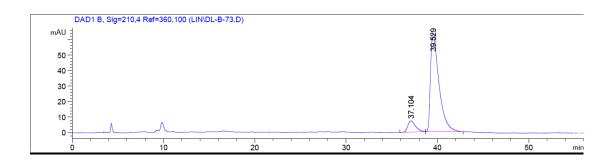
Peak	${\tt RetTime}$	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	18.902	MM	0.4723	124.53470	4.39498	50.2168
2	24.108	MM	0.5450	123.45930	3.77538	49.7832

Enantiomeric Sample 2e

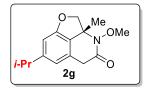
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	18.963	MM	0.4140	2.79983	1.12716e-1	3.7083
2	24.169	MM	0.5333	72.70095	2.27205	96.2917

2f (8.8 mg) was isolated as yellow oil in 40% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (*R*)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (*S*)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were

used and the reaction was maintained at 110 °C. $R_f = 0.5$ (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.17 (t, J = 7.9 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 4.83 (dd, J = 11.5, 5.3 Hz, 1H), 4.52 (ddd, J = 11.6, 4.0, 2.5 Hz, 1H), 4.20 (ddd, J = 13.4, 11.7, 1.9 Hz, 1H), 3.89 (s, 3H), 3.78 – 3.63 (m, 2H), 2.65 – 2.59 (m, 1H), 2.20 – 2.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 168.76, 152.76, 131.58, 129.63, 118.66, 116.75, 114.62, 77.30, 76.98, 76.66, 64.25, 64.06, 54.05, 38.12, 29.67, 26.49. IR: v 2926, 2654, 1688, 1596, 1475, 1462, 1263, 1082, 1052, 778 cm⁻¹; HRMS calcd. for [M+Na]⁺: 242.07880. Found: 242.07870.

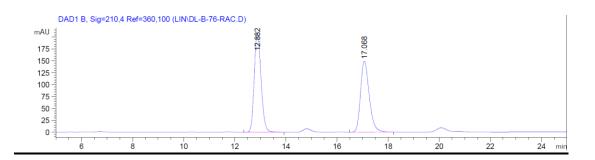

Chiral HPLC (Chiralpak IB, hexane:isopropanol = 95:5, 1 mL/min, 210 nm): t_{minor} =37.104 min, t_{maior} =39.529 min. [a]_D²⁰ = -15 (c=0.78, CH₂Cl₂) at 81% e.e.

Racemic Sample 2f

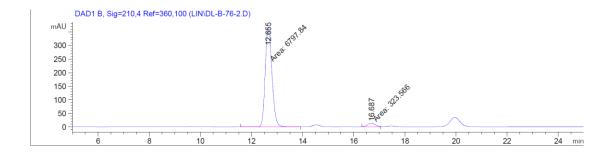


Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	37.171	BB	0.6614	361.47104	6.49435	48.9587	
2	40.143	MM	0.9032	376.84689	6.95430	51.0413	

Enantiomeric Sample 2f


Width	Area	Height	Area
[min]	[mAU*s]	[mAU]	8
0.8485	423.66238	7.19950	9.3731
0.9368	4096.33301	63.48286	90.6269
	[min] 0.8485	0.8485 423.66238	

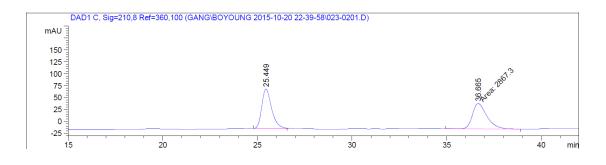
2g (13.8 mg) was isolated as a colorless oil in 53% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 130 °C. R_f= 0.6 (EtOAc/Hexane=1/1). ¹**H NMR** (**400 MHz, CDCl₃**): δ 6.62 (s, 1H), 6.60 (s, 1H), 4.59 (dd, J = 8.4, 0.8 Hz, 1H), 4.52 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.85 (td, 1H), 3.65 (d, J = 20.6 Hz, 1H), 2.87 (hept, J = 6.9 Hz, 1H), 1.62 (d, J = 0.8 Hz, 3H), 1.23 (d, J = 6.9 Hz, 6H). ¹³**C NMR** (**100 MHz, CDCl₃**): δ 170.93, 157.88, 152.89, 128.31, 126.37, 116.77, 106.89, 83.61, 77.19, 66.44, 64.27, 37.18, 34.70, 24.14, 22.74. **IR:** v 2960, 1700, 1638, 1490, 1436, 1302, 1282, 1067, 1040, 969, 953, 847, 668, 651, 635 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 284.12570. Found: 284.12620.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 97:3, 1 mL/min, 210 nm): $t_{minor} = 16.687$ min, $t_{major} = 12.655$ min. [a]_D²⁰ = -28 (c=1.53, CH₂Cl₂) at 90% ee..

Racemic Sample 2g

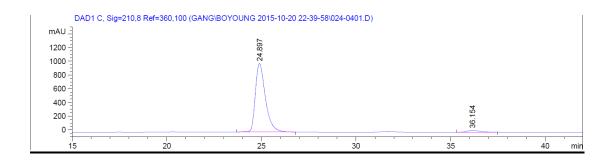
oe Width Ar	rea Heigh	t Area
[min] [mAU	U*s] [mAU]	90
0.2889 3893.	.11011 209.39	294 52.3654
0.3647 3541.	.40527 149.33	739 47.6346
	[min] [mAN	min] [mAU*s] [mAU]

Enantiomeric Sample 2g



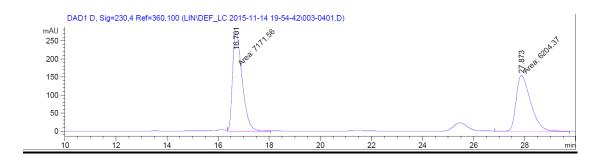
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	12.655	MM	0.3078	6797.84375	368.13293	95.4564
2	16.687	MM	0.3856	323.56555	13.98700	4.5436

2h (18.8 mg) was isolated as yellow oil in 68% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 110 °C. R_f = 0.7 (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (s, 1H), 7.39 (t, J = 0.9 Hz, 1H), 4.64 (dd, J = 8.5, 0.7 Hz, 1H), 4.59 (d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 3.87 (s, 4H), 3.73 (d, J = 20.7 Hz, 1H), 1.64 (d, J = 1.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.13, 166.36, 157.58, 133.50, 133.15, 128.59, 120.92, 110.02, 83.66, 66.37, 64.43, 52.39, 36.78, 22.49. IR: v 2951, 2362, 1720, 1693, 1433, 1364, 1289, 1243, 1215, 1075, 1049, 989, 838, 770, 644cm⁻¹ HRMS calcd. for [M+Na]⁺: 300.08420. Found: 300.08480.

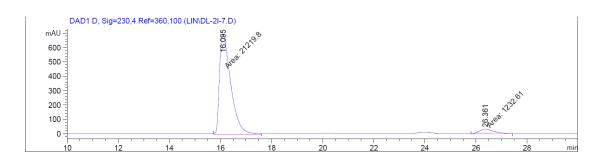

Chiral HPLC (Chiralpak IA, hexane:isopropanol = 95:5, 1 mL/min, 210 nm): t_{minor} = 36.154 min, t_{major} = 24.897 min. [a]_D²⁰ = -23 (c=1.49, CH₂Cl₂) at 94% e.e.

Racemic Sample 2h

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	용	
1	25.449	BB	0.5494	2970.20825	82.62710	50.8815	
2	36.665	MM	0.8960	2867.29541	53.33685	49.1185	


Enantiomeric Sample 2h

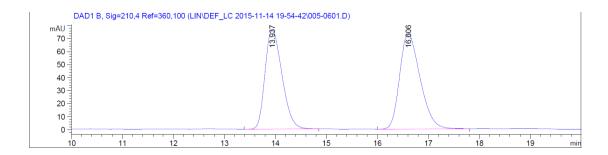
2i (17.2 mg) was isolated as a colorless oil in 74% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 110 °C. R_f = 0.6 (EtOAc/Hexane=1/1). ¹H NMR (**400 MHz, CDCl₃**): δ 6.56 (s, 2H), 4.58 (dd, J = 8.4, 0.8 Hz, 1H), 4.52 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.84 (d, J = 20.5 Hz, 1H), 3.63 (d, J = 20.6 Hz, 1H), 2.33 (s, 3H), 1.61 (d, J = 0.7 Hz, 3H). ¹³C NMR (**100 MHz, CDCl₃**): δ 170.87, 157.86, 141.38, 128.33, 126.09, 119.23, 109.44, 83.60, 66.41, 64.30, 37.04, 22.76, 21.93. **IR:** v 2928, 1689, 1637, 1497, 1449, 1289, 1087, 1063, 1048, 972, 954, 923, 833, 654, 634 cm⁻¹; **HRMS** calcd. for [M+Na]⁺: 256.09440. Found: 256.09480.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 98:2, 1 mL/min, 230 nm): t_{minor} = 26.361 min, t_{maior} = 16.095 min. [a]_D²⁰ = -33 (c=1.50, CH₂Cl₂) at 89% ee.

Racemic Sample 2i

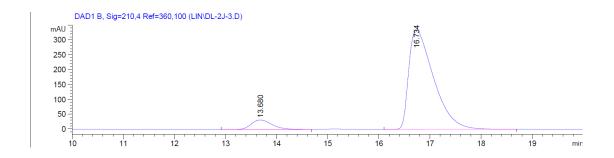
Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	16.701	FM	0.4343	7171.55713	275.19339	53.6154
2	27.873	MM	0.6656	6204.37305	155.36742	46.3846

Enantiomeric Sample 2i


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.095	MM	0.5090	2.12198e4	694.79749	94.5101
2	26.361	MM	0.6548	1232.60718	31.37551	5.4899

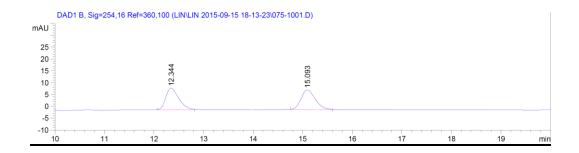
2j (13.0 mg) was isolated as yellow oil in 50% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (*R*)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (*S*)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg)

were used and the reaction was maintained at 110 °C. $R_f = 0.6$ (EtOAc/Hexane=1/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.11 (d, J = 8.3 Hz, 1H), 6.72 (d, J = 9.1 Hz, 1H), 4.59 (dd, J = 8.3, 0.8 Hz, 1H), 4.51 (d, J = 8.3 Hz, 1H), 3.87 (s, 3H), 3.83 – 3.67 (m, 2H), 2.91 (hept, J = 6.9 Hz, 1H), 1.61 (d, J = 2.2 Hz, 3H), 1.21 (dd, J = 6.9, 3.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 170.91, 155.32, 138.15, 128.57, 126.75, 125.76, 108.95, 83.13, 66.63, 64.30, 35.10, 28.73, 23.57, 23.23, 22.69. IR: 2961, 2928, 2360, 2342, 1691, 1487, 1459, 1277, 1154, 1067, 1037, 955, 935, 814, 668 v cm⁻¹ HRMS calcd. for [M+Na]⁺: 284.12570. Found: 284.12600.

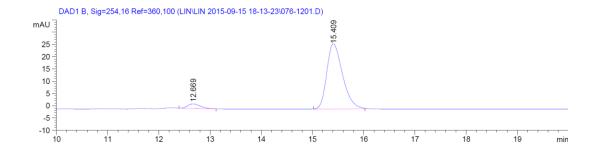

Chiral HPLC (Chiralpak IA, hexane:isopropanol = 98:2, 1 mL/min, 210 nm): t_{minor} =13.680 min, t_{major} =16.734 min. [a]_D²⁰ = -45 (c=0.88, CH₂Cl₂) at 86% e.e..

Racemic Sample 2j

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	13.937	BB	0.3630	1762.46692	76.43552	46.3320
2	16.606	BB	0.4284	2041.52405	73.41205	53.6680


Enantiomeric Sample 2j

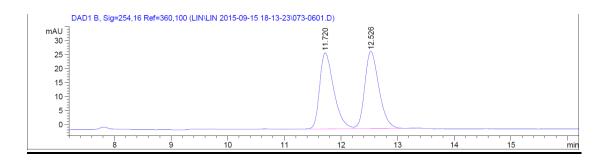
2k (15.6 mg) was isolated as a colorless oil in 67% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (*R*)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (*S*)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 130 °C. R_f = 0.4 (EtOAc/Hexane=1/1). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.00 (dd, J = 8.1, 0.8 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 4.57 (dd, J = 8.3, 0.9 Hz, 1H), 4.51 (d, J = 8.3 Hz, 1H), 3.86 (s, 3H), 3.71 (s, 2H), 2.18 (d, J = 0.7 Hz, 3H), 1.61 (d, J = 0.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ ¹³C NMR (101 MHz, cdcl₃) δ 170.85, 155.54, 131.11, 128.70, 127.20, 126.92, 108.65, 83.23, 66.59, 64.27, 35.42, 22.71, 17.09. **IR**: v 2982, 2963, 2940, 1682, 1488, 1274, 1194, 1037, 936, 817, 659, 638 cm⁻¹; **HRMS** calcd. for [M+H]⁺: 233.1052. Found: 233.1049.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 97:3, 1 mL/min, 254 nm), t_{minor} = 12.669 min, t_{major} = 15.409 min. [a] $_{D}^{20}$ = -25 (c=1.22, CH₂Cl₂) at 90 % ee.

Racemic Sample 2k

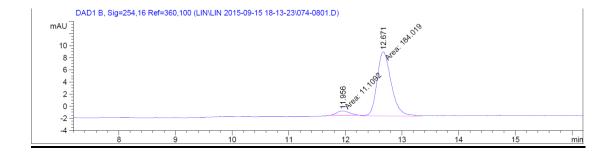
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	12.344	BB	0.2754	165.13733	9.11349	50.1464
2	15.093	BB	0.3043	164.17308	8.24353	49.8536

Enantiomeric Sample 2k

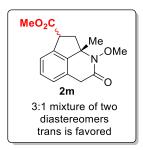

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
			I			
1	12.669	BB	0.2658	31.48661	1.83901	5.2409
2	15.409	BB	0.3273	569.30206	26.64713	94.7591

2l (18.2 mg) was isolated as yellow solid in 72% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 130 °C. R_f = 0.4 (EtOAc/Hexane=1/1). ¹H NMR

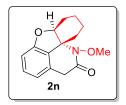
(400 MHz, CDCl₃): δ 7.18 (d, J = 8.5 Hz, 1H), 6.71 – 6.68 (m, 1H), 4.61 (dd, J = 8.4, 0.8 Hz, 1H), 4.55 (d, J = 8.4 Hz, 1H), 3.87 (d, J = 21.2 Hz, 1H), 3.86 (s, 3H), 3.71 (dd, J = 21.2, 0.9 Hz, 1H), 1.62 (d, J = 0.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.98, 156.07, 130.35, 126.77, 123.17, 110.31, 83.76, 66.61, 64.36, 35.23, 29.68, 22.76. IR: v 2924, 1684, 1472, 1457, 1274, 1100, 1042, 943, 817 cm⁻¹; HRMS calcd. for [M+Na]⁺: 276.03980. Found: 276.04000.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 95:5, 1 mL/min, 210 nm), t_{minor} = 10.463 min, t_{maior} = 10.926 min. [a] $_{D}^{20}$ = -18 (c=1.69, CH₂Cl₂) at 89 % ee.

Racemic Sample 21



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	11.720	BV	0.2647	467.11456	27.15729	49.3527
2	12.526	VB	0.2670	479.36838	27.55320	50.6473


Enantiomeric Sample 21

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	11.956	MM	0.2596	11.10922	7.13351e-1	5.6933
2	12.671	MM	0.2899	184.01852	10.57862	94.3067

2m (19.2 mg) was isolated as a colorless oil in 70% yield. d.r. = 3:1. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.1 mg) (R)-xyl-SDP (6 mol %, 0.006 mmol, 4.2 mg), (S)-xyl-BINAP (6 mol%, 0.006 mmol, 4.4 mg) were used and the reaction was maintained at 110 °C. R_f = 0.5 (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ (major) 7.34 (d, J = 7.6 Hz, 1H), 7.32 – 7.27 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 1H), 4.13 (d, J = 9.5 Hz, 0.79H), 3.90 (s, 2.4H), 3.85 (d, J = 20.5 Hz, 0.9H), 3.66 (d, J = 20.5 Hz, 0.9 H), 3.76 (s, 2.4H), 2.86 (dd, J = 13.0, 1.0 Hz, 0.84H), 2.72 (d, J = 10.0 Hz, 0.9H), 1.54 (d, J = 0.9 Hz, 2.56H). [major and minor E/Z isomers are inseparable in aromatic region] δ (minor) 4.26 (dd, J = 10.8, 6.4 Hz, 0.20H), 3.94 (d, J = 10.2 Hz, 0.35H), 3.92 (s, 0.7H), 3.83 (s, 0.7H), 3.73 (d, J = 10.2 Hz, 0.35H), 2.69 – 2.61 (m, 0.50H), 1.48 (d, J = 0.9 Hz, 0.64H). ¹³C NMR (100 MHz, CDCl₃): δ 172.87, 170.20, 143.32, 136.78, 129.33, 128.07, 125.61, 124.68, 69.28, 64.43, 52.47, 48.33, 41.54, 37.16, 24.49. IR: v 2925, 2852, 1735, 1686, 1436, 1325, 1261, 1199, 1174, 1061, 1032, 783, 762, 669, 623 cm⁻¹; HRMS calcd. for [M+Na]⁺: 298.10500. Found: 298.10430. The relative stereochemistry is also determined by 2D-NMR (See Data-2D NMR).

2n (17.0 mg) was isolated as a colorless oil in 66% yield. d.r. \geq 20:1. [Rh(CH₃CN)₂(COD)]BF₄ (20 mol%, 0.02 mmol, 7.6 mg), (*R*)-xyl-BINAP (25 mol%, 0.025 mmol, 18.4 mg) were used and the reaction was maintained at 130 °C. R_f = 0.5 (EtOAc/Hexane=1/1). ¹**H NMR (400 MHz, CDCl₃):** δ 7.16 (t, J = 7.8 Hz, 1H), 6.71 (t, J = 8.3 Hz, 2H), 4.85 (t, J = 2.7 Hz, 1H), 3.84 (s, 4H), 3.67 (d, J = 20.6 Hz, 1H), 2.45 – 1.51 (m, 8H). ¹³C NMR (100 MHz, CDCl₃): δ 170.28, 156.49, 131.12, 130.08, 128.23, 118.37, 108.76, 89.04, 65.06, 64.20, 37.04, 34.34, 26.02, 20.56, 18.82, -0.03. **IR:** v 2936, 1687, 1639, 1465, 1292, 1265, 1137, 1072, 1056, 1035, 934, 820, 776, 736, 638, 431 cm⁻¹; **HRMS**. calcd. for [M+Na]⁺: 282.11010. Found: 282.11050. The relative stereochemistry is determined by both 2D-NMR and X-ray analysis (see attached data).

2.4.8 Synthetic applications

a) N-O bond cleavage reaction: synthesis of 3

Compound **2a** (100.0 mg, 0.45 mmol, 1 equiv., 95% e.e.) was dissolved in a 20 mL vial (with stir bar) using acetonitrile (12 mL). Mo(CO)₆ (133.5 mg, 0.90 mmol, 2 equiv.) and H₂O (4 mL) was added to the stirring solution. Then the reaction was sealed and heated to 110 °C and stirred overnight. When reaction was complete, the mixture was filtered with Celite pad, then concentrated under reduced pressure. The residue was purified by silica gel flash column

chromatography (EtOAc/Hexane=1/2 with 20% MeOH). Compound **3** was obtained as a white solid in 86% yield (75 mg).

Compound 3: $R_f = 0.2$ (EtOAc/Hexane=1/1). [a] $_D^{20} = -22$ (c=0.97, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.50 (s, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.73 (ddt, J = 12.3, 8.1, 0.7 Hz, 2H), 4.50 (d, J = 8.2 Hz, 1H), 4.32 (dd, J = 8.2, 0.9 Hz, 1H), 3.73 (dt, J = 19.4, 1.2 Hz, 1H), 3.46 (d, J = 19.5 Hz, 1H), 1.61 (d, J = 1.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 173.59, 157.13, 130.28, 129.86, 128.53, 119.08, 108.62, 84.59, 59.48, 35.37, 26.80. IR: v 3292, 2925, 2853, 1654, 1458, 1376, 1149, 1050, 972, 749, 648 cm⁻¹; HRMS. calcd. for [M+Na]⁺: 212.06820. Found: 212.06830.

b) Cu-catalyzed C-N bond formation: synthesis of 4

An 8 mL vial was charged with starting material compound **3** (10 mg, 0.05 mmol, 1equiv., synthesized from 95% e.e. **2a**) and another 8 mL vial was charged with aryl bromide (12.1 mg, 0.05 mmol, 1equiv.), CuI (6.1 mg, 0.03 mmol, 0.6 equiv.), K₂CO₃ (175.5 mg, 1.3 mmol, 24 equiv.) and N₁,N₂-Dimethylethane-1,2-diamine (5.6 mg, 0.06 mmol, 1.2 equiv.). Both vials were transferred to a nitrogen-filled glove box. Toluene (0.5 mL) was added to the second vial and the solution was stirred for 2 mins. Using another 1 mL toluene to dissolve and transfer the compound **3** into the pre-stirred mixture of other components. The vial was sealed and took outside the glovebox. The reaction was stirred at 130 °C overnight. After the reaction was complete, it was concentrated and purified by silica gel flash chromatography. Compound **4** was obtained as a light yellow oil in 59% yield (10.2 mg).

Compound **4:** $R_f = 0.6$ (EtOAc/Hexane=1/1). $[a]_D^{20} = -2$ (c=1.06, CH₂Cl₂). ¹**H NMR (400 MHz, CDCl₃):** δ 8.14 – 8.09 (m, 2H), 7.32 – 7.27 (m, 2H), 7.23 (d, J = 7.8 Hz, 1H), 6.84 – 6.81 (m, 1H), 6.75 (dt, J = 8.1, 0.7 Hz, 1H), 4.43 – 4.33 (m, 4H), 4.08 (d, J = 8.6 Hz, 1H), 4.00 – 3.91 (m, 1H), 3.76 (d, J = 19.4 Hz, 1H), 1.80 (d, J = 0.9 Hz, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 170.84, 165.72, 156.65, 142.81, 130.90, 130.57, 130.08, 129.60, 128.79, 128.35, 118.92, 108.71, 83.25, 65.09, 61.23, 36.85, 25.61, 14.32. **IR:** v 2924, 2853, 1717, 1669, 1605, 1508, 1472, 1458, 1305, 1276, 1174, 1101, 1020, 958, 936, 768, 742, 713, 580 cm⁻¹; **HRMS**. calcd. for $[M+Na]^+$: 360.12060. Found: 360.12040.

c) Substitution reaction: synthesis of 5

Compound **3** (15.0 mg, 0.08 mmol, 1 equiv., synthesized from 95% e.e. **2a**) was dissolved in a 20 mL vial (with stir bar) using acetone (10 mL). Cs_2CO_3 (172.2 mg, 0.53 mmol, 7 equiv.) and MeI (67.5 mg, 29.6 μ L, 0.048 mmol, 6 equiv.,) were added to the stirring solution. The reaction was then sealed and heated to 40 °C with stirring for 36 h. Upon completion, the reaction mixture was transferred to a separation funnel and 10 mL of NH₄Cl (sat.) solution was added to quench the reaction. The mixture was further extracted with ethyl acetate (EA) (3×10 mL) and washed by brine twice. The organic phase was then dried using Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to obtain the compound **5** as a a colorless oil in 91% yield (14.6 mg). Compound **5**: $R_f = 0.5$ (EtOAc/Hexane=1/1). $[a]_D^{20} = -12$ (c=1.46, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.17 (t, J = 7.8 Hz, 1H), 6.74 (dd, J = 7.6, 0.6 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.45 (d, J = 8.0 Hz, 1H), 4.41 (dd, J = 8.1, 0.8 Hz, 1H), 3.71 (d, J = 19.4 Hz, 1H), 3.58 (d, J = 19.4 Hz, 1Hz, 1Hz)

1H), 2.92 (s, 3H), 1.54 (d, J = 0.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.60, 156.94, 130.26, 130.12, 128.42, 118.79, 108.43, 83.36, 63.57, 36.01, 29.01, 22.76. IR: v 3205, 2964, 2923, 1655, 1473, 1356, 1305, 1242, 1164, 1026, 934, 751, 447 cm⁻¹; HRMS. calcd. for [M+Na]⁺: 226.08380. Found: 226.08380.

d) α-arylation of **5**: synthesis of **6**

An 8 mL vial was charged with Compound 5 (10 mg, 0.044 mmol, 1 equiv.) and another 8 mL vial was charged with aryl bromide (11.3 mg, 0.066 mmol, 1.5equiv.), Pd(OAc)₂ (1.2 mg, 0.0044 mmol, 0.1 equiv.), NaO'Bu (12.7 mg, 0.132 mmol, 3 equiv.) and BINAP (2.7 mg, 0.0044 mmol, 0.1 equiv.). Both vials were transferred to a nitrogen filled glove box. 0.5 mL 1,4-dioxane was added to the second vial and the solution was stirred for 2 mins. Using 1 mL of 1,4-dioxane to dissolve and transfer the compound 5 into the pre-stirred mixture of other components. The vial was sealed and took outside the glovebox. The reaction was stirred at 90 °C overnight. After the reaction was complete, it was concentrated and purified by silica gel flash chromatography. Compound 6 was obtained as a colorless oil in 53% yield as an inseperable 3:1 mixture of diastereomers (6.6 mg). The structure was also confirmed by X-Ray analysis. In the crystal we obtained, 17% of the hydrogen atom at carbon 8 was oxidized to OH.

Compound **6** (a 3:1 mixture of diastereomers): $R_f = 0.6$ (EtOAc/Hexane=1/1). ¹**H NMR** (**400 MHz**, **CDCl₃**): δ (major) 7.54 (d, J = 0.7 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.09 (td, J = 7.9, 5.3 Hz, 1H),

6.89 (dd, J = 8.6, 0.7 Hz, 2H), 6.70 (ddd, J = 8.0, 3.4, 0.7 Hz, 1H), 5.27 (s, 1H), 3.55 (dd, J = 12.8, 7.7 Hz, 1H), 3.45 – 3.38 (m, 1H), 2.35 (s, 3H), 1.99 (s, 3H), 0.70 (d, J = 1.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (major) 173.84, 157.13, 139.75, 138.32, 135.54, 130.72, 129.29, 127.86, 126.89, 118.18, 109.58, 84.19, 75.49, 62.95, 51.13, 29.70, 23.83, 21.25, 21.05. IR: v 3240, 2924, 1659, 1467, 1241, 1166, 954, 933, 788, 751, 450 cm⁻¹; HRMS. calcd. for [M+H]⁺: 294.1494. Found: 294.1486.

e) α -alkylation of 3: synthesis of 7

To a 10 mL flamed-dried Schlenk flask equipped with a stir bar and a nitrogen-filled balloon was added THF (2.3 mL) and freshly distilled *i*-Pr₂NH (506.0 mg, 0.7 mL, 5.0 mmol, 1 equiv.). The system was cooled to -78 °C with an acetone-dry ice bath before n-BuLi (2.5 M in hexane, 2.0 mL, 5 mmol, 1 equiv.) was added dropwise. Upon completion, the system was warmed to 0 °C and stirred for 0.5 h under nitrogen atmosphere. Meanwhile, to another 10 mL flamed-dried flask equipped with a stir bar and a nitrogen-filled balloon were added compound **3** (9.5 mg, 0.05 mmol, 1 equiv., synthesized from 95% e.e. **2a**) and THF (5 mL). After cooled to -78 °C with an acetone-dry ice bath, the newly made LDA solution as indicated above (1 M in THF/Hexane, 1.0 ml, 1.00 mmol, 20 equiv.) was added dropwise and the reaction was warmed up to -20 °C for 0.5 h. After that, the reaction was cooled to -78 °C again and EtI (389.9 mg, 0.2 mL, 2.5 mmol, 50 equiv.) was added dropwisely. The reaction was gradually warmed up to R.T. for 4h and was quenched by adding NH₄Cl (sat.) 5 mL. The mixture was extracted with ethyl acetate (10 mL×3), washed with brine, and dried with Na₂SO₄. The combined organic extract was concentrated under reduced

pressure and purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) on silica gel to afford compound 7 as a colorless oil in 55% yield (6.0 mg). The relative stereochemistry was determined by X-ray analysis (see in **X-Ray data**). The sample used for X-Ray analysis was synthesized from compound 3 with 40% e.e.

Compound 7: $R_f = 0.5$ (EtOAc/Hexane=1/1). [a]_D²⁰ = 8(c=0.50, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, J = 7.6 Hz, 1H), 6.73 (dd, J = 7.8, 2.8 Hz, 2H), 6.61 (d, J = 53.6 Hz, 1H), 4.44 (d, J = 7.8 Hz, 1H), 4.25 (dd, J = 7.8, 1.0 Hz, 1H), 3.32 (m, 1H), 2.21 (dqd, J = 12.9, 7.5, 5.4 Hz, 1H), 1.81 (ddq, J = 13.2, 10.0, 7.3 Hz, 1H), 1.68 (d, J = 1.0 Hz, 3H), 1.18 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.05, 157.87, 134.42, 130.03, 127.99, 120.34, 108.62, 85.37, 59.12, 55.97, 48.45, 28.94, 28.92, 12.66.

. **IR:** v 3432, 2923, 1654, 1473, 1365, 1242, 1088, 959, 864, 749 cm⁻¹; **HRMS**. calcd. for [M+Na]⁺: 240.0995. Found: 240.0993.

f) Rh-catalyzed hydrogenation: synthesis of 8

Me
$$[Rh(1,5-hexadiene)_2Cl]_2$$
 H_2 $(750 Psi), THS$ $PH=7.6, r.t. Hexane$ 62% as a single diastereomer

A 20 mL vial was charged with 2a (18.4 mg, 0.084 mmol, 1 equiv.), $[Rh(1,5\text{-pentadiene})Cl]_2$ (3.7 mg, 0.0084 mmol, 0.1 equiv.), tetrabutylammonium hydrogen sulfate (THS) (11.4 mg, 0.034 mmol, 0.4 equiv.), a buffer solution of pH=7.6 (2 mL), Et₂O (0.5 mL) and hexane (5 mL). The vial was put into a high-pressure hydrogenation reactor and H_2 gas was introduced and maintained at 850 psi. The vessel was sealed and stirred at r.t. for 24 h. Then H_2 pressure was carefully released. The solution was extracted with EtOAc (3 × 10 mL). The combined organic extract was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was

purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to afford product compound **8** (11.8 mg) as a colorless oil in 62% yield. The relative stereochemistry was determined by 2D-NMR (see in **NMR Sprectra**).

Compound 8: $R_f = 0.5$ (EtOAc/Hexane=1/1). [a] $_D^{20} = -42$ (c=1.18, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 4.04 (d, J = 9.9 Hz, 1H), 3.95 (td, J = 4.6, 2.2 Hz, 1H), 3.81 (s, 3H), 3.52 (d, J = 9.9 Hz, 1H), 2.78 (dd, J = 16.5, 10.5 Hz, 1H), 2.33 – 2.13 (m, 3H), 2.00 (dtd, J = 10.5, 4.1, 1.3 Hz, 1H), 1.75 – 1.55 (m, 2H), 1.53 (s, 3H), 1.46 – 1.32 (m, 1H), 0.91 – 0.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 173.05, 79.15, 69.96, 64.16, 49.50, 37.70, 27.71, 27.08, 26.55, 25.24, 15.40. IR: v 2924, 1638, 1472, 1368, 1308, 1243, 1153, 1106, 1022, 957, 936, 793, 771, 601 cm⁻¹; HRMS. calcd. for [M+Na] $^+$: 248.1257. Found: 248.1260.

g) LAH reduction: synthesis of 9²¹

To a suspension of LiAlH₄ (17.4 mg, 0.45 mmol, 10 equiv.) in THF (0.5 mL) in 10 mL flamed-dried Schlenk flask equipped with stir bar and a nitrogen-filled balloon was added Compound 2a (12.3 mg, 0.056 mmol, 1 equiv., 95% e.e.) solution in 0.5 mL THF dropwise at 0 °C. The reaction was then allowed to warm to r.t. and reflux overnight. When the reaction was complete, the flask was cooled to 0 °C again and 0.3 mL water and 0.2 mL 15% NaOH was added to quench the reaction. The mixture was then filtered through a silica pad and washed with acetone. The solution was concentrated under reduced pressure and the residue was purified by silica gel flash column

chromatography (EtOAc/Hexane=1/10) to afford product compound **9** (7.5 mg) as a colorless oil in 65% yield.

Compound **9:** $R_f = 0.7$ (EtOAc/Hexane=1/1). $[a]_D^{20} = -16$ (c=0.51, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (td, J = 7.9, 1.0 Hz, 1H), 6.72 (dd, J = 7.8, 1.0 Hz, 1H), 4.70 (dd, J = 9.6, 1.0 Hz, 1H), 4.06 (dd, J = 9.6, 1.0 Hz, 1H), 3.99 (dddd, J = 10.7, 5.4, 4.3, 1.0 Hz, 1H), 3.74 (dddd, J = 10.8, 9.5, 3.5, 1.1 Hz, 1H), 3.56 (s, 3H), 3.14 (dddd, J = 14.0, 9.5, 4.3, 1.0 Hz, 1H), 2.92 (dd, J = 14.1, 4.4 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.09, 138.66, 130.54, 126.40, 123.04, 108.66, 78.60, 67.57, 63.82, 62.84, 35.44, 20.46. IR: v 3347, 2928, 1654, 1591, 1466, 1446, 1264, 1046, 999, 785, 746, 416 cm⁻¹; HRMS. calcd. for [M+H]⁺: 206.1181. Found: 206.1185.

2.4.9 *X-ray data*

I. X-ray data for 2a

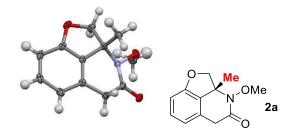


Table 2.10 Crystal Data and Structure Refinement for 2a

Empirical formula	C12 H13 N O3
•	

Formula weight 219.23

Temperature 100(2) K

Wavelength 1.54184 Å

Crystal system monoclinic

Space group P 21

Table 2.10 Continued Crystal Data and Structure Refinement for 2a

Unit cell dimensions a = 8.3112(15) Å $\alpha = 90^{\circ}$.

b = 7.2566(13) Å $\beta = 95.146(2)^{\circ}.$

c = 8.9068(17) Å $\gamma = 90^{\circ}$.

Volume 535.01(17) $Å^3$

Z 2

Density (calculated) 1.361 Mg/m³

Absorption coefficient 0.812 mm⁻¹

F(000) 232

Crystal size $0.310 \times 0.290 \times 0.140 \text{ mm}^3$

Theta range for data collection 4.986 to 74.282°.

Index ranges -10 <= h <= 10, -8 <= k <= 8, -11 <= 10

Reflections collected 5543

Independent reflections 2019 [R(int) = 0.0140]

Completeness to theta = 67.684° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.00 and 0.909

 $Refinement \ method \\ Full-matrix \ least-squares \ on \ F^2$

Data / restraints / parameters 2019 / 1 / 199

Goodness-of-fit on F² 1.064

Final R indices [I>2sigma(I)] R1 = 0.0236, wR2 = 0.0632

R indices (all data) R1 = 0.0236, wR2 = 0.0633

Absolute structure parameter -0.06(19)

Table 2.10 Continued Crystal Data and Structure Refinement for 2a

Extinction coefficient 0.0129(17)

Largest diff. peak and hole 0.218 and -0.111 e.Å-3

II. X-ray data for 21

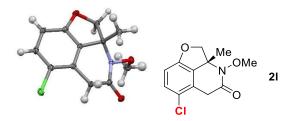


Table 2.11 Crystal Data and Structure Refinement for 21

Empirical formula C12 H12 C1 N O3

Formula weight 253.68

Temperature 100(2) K

Wavelength 1.54184 Å

Crystal system monoclinic

Space group P 21

Unit cell dimensions a = 8.7567(12) Å $\alpha = 90^{\circ}$.

b = 7.2460(10) Å $\beta = 96.915(7)^{\circ}$.

c = 9.0118(14) Å $\gamma = 90^{\circ}$.

Volume 567.65(14) Å³

Z 2

Density (calculated) 1.484 Mg/m³

Absorption coefficient 2.964 mm⁻¹

F(000) 264

Table 2.11 Continued Crystal Data and Structure Refinement for 21

Crystal size $0.24 \times 0.15 \times 0.12 \text{ mm}^3$

Theta range for data collection 4.943 to 74.278°.

Index ranges -10 <= h <= 10, -8 <= k <= 9, -11 <= l <= 11

Reflections collected 5799

Independent reflections 2182 [R(int) = 0.0184]

Completeness to theta = 67.684° 99.9 %

Absorption correction Semi-empirical from equivalents

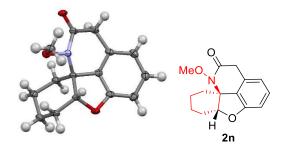
Max. and min. transmission 1.00 and 0.881

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2182 / 103 / 203

Goodness-of-fit on F² 1.063

Final R indices [I>2sigma(I)] R1 = 0.0207, wR2 = 0.0547


R indices (all data) R1 = 0.0209, wR2 = 0.0550

Absolute structure parameter 0.008(12)

Extinction coefficient n/a

Largest diff. peak and hole 0.204 and -0.218 e.Å-3

III. X-ray data for 2n

Table 2.12 Crystal Data and Structure Refinement for 2n

Identification code DL-C-59

Empirical formula C15 H17 N O3

Formula weight 259.29

Temperature 100(2) K

Wavelength 1.54184 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 9.6015(3) Å $\alpha = 90^{\circ}$.

b = 14.9637(5) Å $\beta = 104.171(3)^{\circ}.$

c = 8.9947(3) Å $\gamma = 90^{\circ}$.

Volume 1252.98(7) Å³

Z 4

Density (calculated) 1.375 Mg/m³

Absorption coefficient 0.780 mm⁻¹

F(000) 552

Crystal size $0.400 \times 0.020 \times 0.010 \text{ mm}^3$

Theta range for data collection 4.750 to 74.174° .

Index ranges -11<=h<=11, -18<=k<=15, -10<=l<=10

Reflections collected 9340

Independent reflections 2497 [R(int) = 0.0432]

Completeness to theta = 67.684° 99.9 %

Absorption correction Semi-empirical from equivalents

Table 2.12 Continued Crystal Data and Structure Refinement for 2n

Max. and min. transmission 0.992 and 0.732

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2497 / 0 / 173

Goodness-of-fit on F^2 1.087

Final R indices [I>2sigma(I)] R1 = 0.0520, wR2 = 0.2109

R indices (all data) R1 = 0.0632, wR2 = 0.2144

Extinction coefficient n/a

Largest diff. peak and hole 0.379 and -0.331 e.Å-3

IV. X-ray data for 6

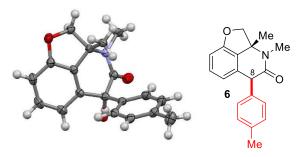


Table 2.13 Crystal Data and Structure Refinement for 6

Empirical formula C19 H19 N O2.20

Formula weight 296.55

Temperature 100(2) K

Wavelength 1.54184 Å

Crystal system orthorhombic

Space group P 21 21 21

Unit cell dimensions a = 8.2495(3) Å $\alpha = 90^{\circ}$.

b = 12.0484(3) Å $\beta = 90^{\circ}$.

Table 2.13 Continued Crystal Data and Structure Refinement for 6

c = 14.9606(7) Å

 $\gamma = 90^{\circ}$.

Volume

1486.98(10) Å³

Z

1

Density (calculated)

 1.325 Mg/m^3

Absorption coefficient

0.689 mm⁻¹

F(000)

630

Crystal size

 $0.210 \times 0.100 \times 0.030 \text{ mm}^3$

Theta range for data collection

4.712 to 74.417°.

Index ranges

-10<=h<=10, -14<=k<=15, -18<=l<=15

Reflections collected

9736

Independent reflections

2909 [R(int) = 0.0376]

Completeness to theta = 67.684°

99.9 %

Absorption correction

Semi-empirical from equivalents

Max. and min. transmission

1.00 and 0.849

Refinement method

Full-matrix least-squares on F²

Data / restraints / parameters

2909 / 0 / 206

Goodness-of-fit on F^2

1.050

Final R indices [I>2sigma(I)]

R1 = 0.0410, wR2 = 0.1030

R indices (all data)

R1 = 0.0434, wR2 = 0.1049

Absolute structure parameter

0.13(17)

Extinction coefficient

n/a

Largest diff. peak and hole

0.162 and -0.277 e.Å-3

V. X-ray data for 7

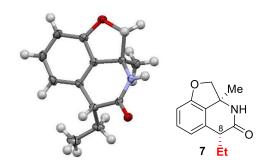


Table 2.14 Crystal Data and Structure Refinement for 7

Empirical formula C13 H15 N O2

Formula weight 217.26

Temperature 100(2) K

Wavelength 1.54184 Å

Crystal system monoclinic

Space group P 21

Unit cell dimensions $a = 7.5087(2) \ \mathring{A} \qquad \qquad \alpha = 90^{\circ}.$

b = 19.9025(6) Å $\beta = 93.255(3)^{\circ}$.

c = 11.5097(5) Å $\gamma = 90^{\circ}$.

Volume $1717.26(10) \text{ Å}^3$

Z 6

Density (calculated) 1.261 Mg/m³

Absorption coefficient 0.685 mm⁻¹

F(000) 696

Crystal size $0.370 \times 0.050 \times 0.020 \text{ mm}^3$

Theta range for data collection 3.847 to 74.282°.

Table 2.14 Continued Crystal Data and Structure Refinement for 7

Index ranges -8<=h<=9, -20<=k<=24, -14<=l<=14

Reflections collected 16617

Independent reflections 6404 [R(int) = 0.0280]

Completeness to theta = 67.684° 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.00 and 0.672

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 6404 / 1 / 452

Goodness-of-fit on F² 1.047

Final R indices [I>2sigma(I)] R1 = 0.0308, wR2 = 0.0791

R indices (all data) R1 = 0.0318, wR2 = 0.0801

Absolute structure parameter 0.00(16)

Extinction coefficient n/a

Largest diff. peak and hole 0.182 and -0.202 e.Å⁻³

2.5 References

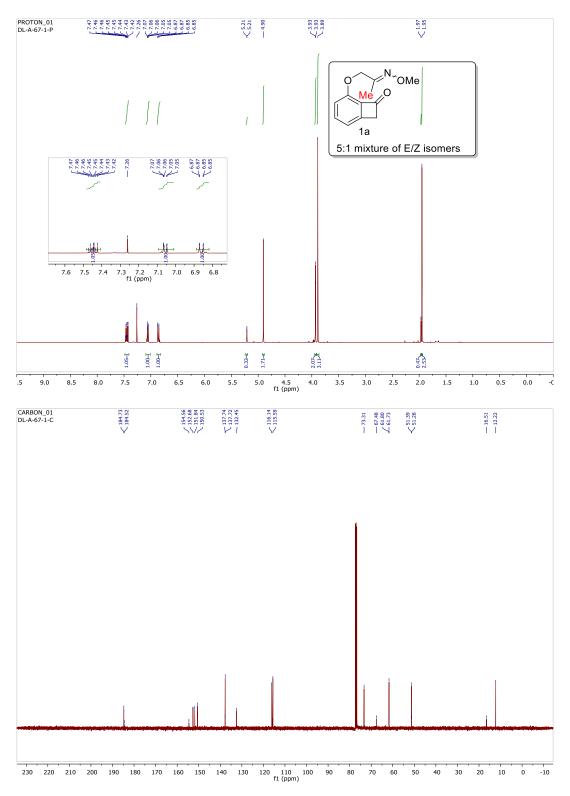
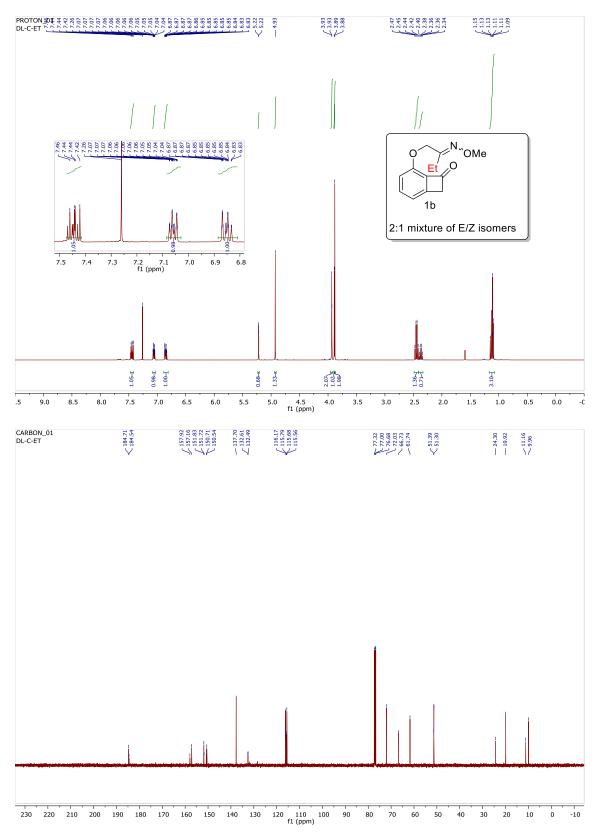
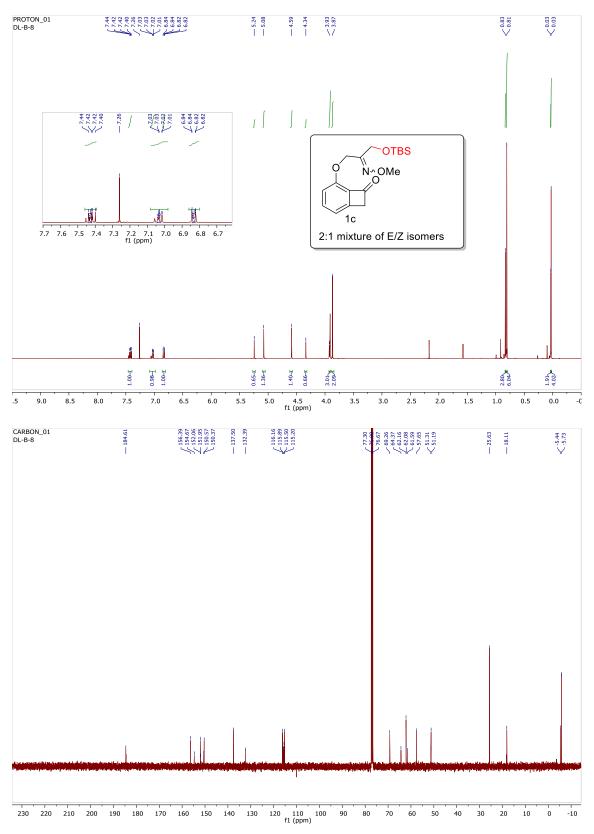
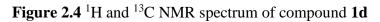
(1) For selected reviews on C-C activation, see: (a) Jones, W. D. Nature 1993, 364, 676. (b) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97. (c) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. (d) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (e) Satoh, T.; Miura, M. Top. Organomet. Chem. 2005, 14, 1. (f) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (g) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (h) Ruhland, K. Eur. J. Org. Chem. 2012, 2683. (i) Korotvicka, A.; Necas, D.; Kotora, M. Curr. Org. Chem. 2012, 16, 1170. (j) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50, 7740. (k) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (l) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567. (m) C-C bond activation. In Topics in Current Chemistry; Dong, G., Ed.; Springer-Verlag: Berlin, 2014, Vol. 346. (n) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (o) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.

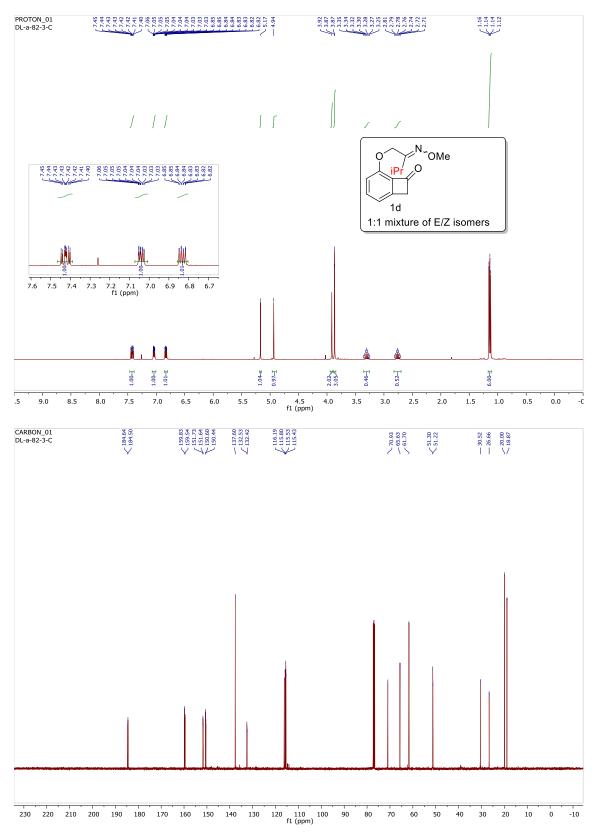
- (2) For two seminal works: (a) South, M. S.; Liebeskind, L. S. *J. Am. Chem. Soc.* **1984**, *106*, 4181. (b) Murakami, M.; Itahashi, T.; Ito, Y. *J. Am. Chem. Soc.* **2002**, *124*, 13976.
- (3) Souillart, L.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9640.
- (4) Souillart, L.; Cramer, N. Chem. Eur. J. 2015, 21, 1863.
- (5) Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. *Nature Comm.* **2015**, *6*, 6207.
- (6) For examples of drugs containing a chiral lactam moiety, see: (a) St Georgiev, V.; Van Inwegen, R. G.; Carlson, P. Eur. J. Med. Chem. 1990, 25, 375. (b) Mekonnen, B.; Weiss, E.; Katz, E.; Ma, J.; Ziffer, H.; Kyle, D. E. Biorg. Med. Chem. 2000, 8, 1111. (c) Ding, Y.-S.; Lin, K.-S.; Logan, J.; Benveniste, H.; Carter, P. J. Neurochem. 2005, 94, 337. (d) Lin, K.-S.; Ding, Y.-S. Biorg. Med. Chem. 2005, 13, 4658. (e) Altomare, C.; Carotti, A.; Casini, G.; Cellamare, S.; Ferappi, M.; Gavuzzo, E.; Mazza, F.; Pantaleoni, G.; Giorgi, R. J. Med. Chem. 1988, 31, 2153. (f) Altomare, C.; Cellamare, S.; Carotti, A.; Casini, G.; Ferappi, M.; Gavuzzo, E.; Mazza, F.; Carrupt, P.-A.; Gaillard, P.; Testa, B. J. Med. Chem. 1995, 38, 170.
- (7) For a seminal mechanistic study on the metal cleavage of benzocyclobutenone C-C bond, see:
 (a) Huffman, M. A.; Liebeskind, L. S.; Pennington, W. T. *Organometallics*, 1990, 9, 2194.
 (b) Huffman, M. A.; Liebeskind, L. S.; Pennington, W. T. *Organometallics*, 1992, 11, 255.
 For a detailed computational mechanism study of benzocyclobutenones with Rh(I) complex, see:
 (c) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. *J. Am. Chem. Soc.* 2015, 137, 8274.
- (8) For selected examples involving 2π-insertion to rhodaindanones via oxidative addition of Rh(I)-catalysts into C(sp²)-acyl bonds: (a) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 7567. (b) Xu, T.; Ko, H. M.; Sagave, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. (c) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1891. (d) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 10733. (e) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1674.
- (9) For selected examples involving 2π-insertion to related rhodacyclopentanones: reference 2b, 3 and (a) Matsuda, T.; Fujimoto, A.; Ishibashi, M.; Murakami, M. Chem. Lett. 2004, 33, 876. (b) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992. (c) Ko, H. M.; Dong, G. Nature Chemistry 2014, 6, 739. (d) Parker, E.; Cramer, N. Organometallics 2014, 33, 780. (e) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. (f) Shaw, M. H.; McCreanor, N. G.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 463. (g) Shaw, M. H.; Croft, R. A.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 8054.
- (10) For examples of drugs containing a tetrahydroisoquinoline moiety, see: (a) Omar, H.; Hashim, N. M.; Zajmi, A.; Nordin, N.; Abdelwahab, S. I.; Azizan, A. H. S.; Hadi, A. H. A.; Ali, H. M. *Molecules* 2013, 18, 8994. (b) Zarga, M. A.; Miana, G. A.; Shamma, M. *Tetrahedron Lett.* 1981, 22, 541. (c) Grunewald, G. L.; Sall, D. J.; Monn, J. A. *J. Med. Chem.* 1988, 31, 433. (d) Kim, J. H.; Ryu, Y. B.; Lee, W. S.; Kim, Y. H. *Bioorg. Med. Chem.* 2014, 22, 6047. (e) Ye, N.; Chen, C. H.; Chen, T.; Song, Z.; He, J. X.; Huan, X. J.; Song, S. S.; Liu, Q.; Chen, Y.; Ding, J.; Xu, Y.; Miao, Z. H.; Zhang, A. *J. Med. Chem.* 2013, 56, 2885. (f) Parraga, J.; Galan, A.; Sanz, M. J.; Cabedo, N.; Cortes, D. *Eur. J. Med. Chem.* 2015, 90, 101. For a

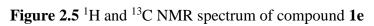
- comprehensive review of the chemistry and biology of the tetrahydroisoquinoline alkaloids, see: (g) Scott, J. D.; Williams, R. M. *Chem. Rev.* **2002**, *102*, 1669. For isoquinolinones with novel vasorelaxation acitivity, see: (h) Lin, C. H.; Lin, M. S.; Lin, Y. H.; Chen, I. M.; Lin, P. R.; Cheng, C. Y.; Tsai, M. C. *Pharmacology* **2003**, *67*, 202.
- (11) (a) Ittel, S. D.; Johnson, L. K. *Chem. Rev.* **2000**, *100*, 1169. (b) Milios, C. J.; Stamatatos, T. C.; Perlepes, S. P. *Polyhedron* **2006**, *25*, 134.
- (12) Pan, Z.; Pound, S. M.; Rondla, N. R.; Douglas, C. J. Angew. Chem. Int. Ed. 2014, 53, 5170.
- (13) (a) Xie, J.-H.; Zhou, Q.-L. *Acc. Chem. Res.* **2008**, *41*, 581. (b) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. *Chem. Rev.* **2011**, *111*, 1713. (c) Fan, B.-M.; Xie, J.-H.; Li, S.; Wang, L.-X.; Zhou, Q.-L. *Angew. Chem. Int. Ed.* **2007**, *46*, 1275. (d) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. *Angew. Chem. Int. Ed.* **2007**, *46*, 7506.
- (14) Yang, Y.; Shi, S.-L.; Liu, P.; Buchwald, S. L. Science 2015, 349, 62.
- (15) For examples of reductive cleavage of N-O bonds: (a) using samarium(II) iodide: Myers, R. M.; Langston, S. P.; Conway, S. P.; Abell, C. *Org. Lett.* **2000**, *2*, 1349. (b) using ruthenium: Fukuzawa, H.; Ura, Y.; Kataoka, Y. *J. Organomet. Chem.* **2011**, *696*, 3643. (c) using zinc or molybdenum: (e) Atobe, M.; Yamazaki, N.; Kibayashi, C. *J. Org. Chem.* **2004**, *69*, 5595. (d) Ren, Z.; Schulz, J. E.; Dong, G. *Org Lett* **2015**, *17*, 2696.
- (16) For reviews on C-N bond formations: (a) Muci, A.R.; Buchwald, S. L. *Topics in Curr. Chem.* 2002, 219, 131. (b) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (d) Bariwalab, J.; Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283. (e) Beletskaya, I.; Cheprakov, A. Coord. Chem. Rev. 2004, 248, 2337.
- (17) Januszklewicz, K. R.; Alper, H. Organometallics 1983, 2, 1055 and reference 8b.
- (18) Wardrop, D. J.; Basak, A. Org. Lett. **2001**, *3*, 1053.
- (19) Chen, P. H.; Savage, N. A.; Dong, G. Tetrahedron 2014, 70, 4135.
- (20) Godfrey, J. D., Jr; Mueller, R. H.; Sedergran, T. C.; Soundararajan, N.; Colandrea, V. J. *Tetrahedron Letters* **1994**, *35*, 6405.
- (21) Karanfil, A.; Balta, B.; Eskici, M. Tetrahedron 2012, 68, 10218.

2.6 NMR Spectra

Figure 2.1 1 H and 13 C NMR spectrum of compound 1a


Figure 2.2 ¹H and ¹³C NMR spectrum of compound 1b



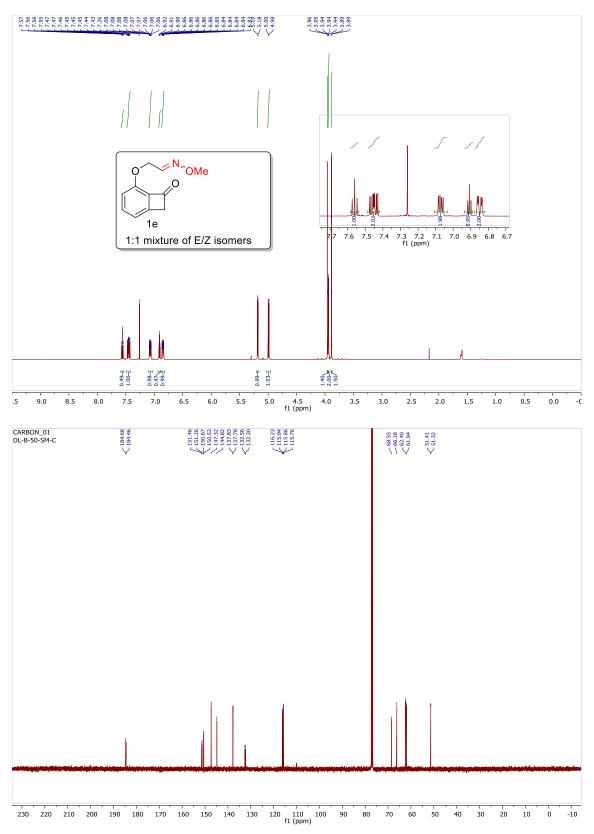


Figure 2.6 ¹H and ¹³C NMR spectrum of compound 1f

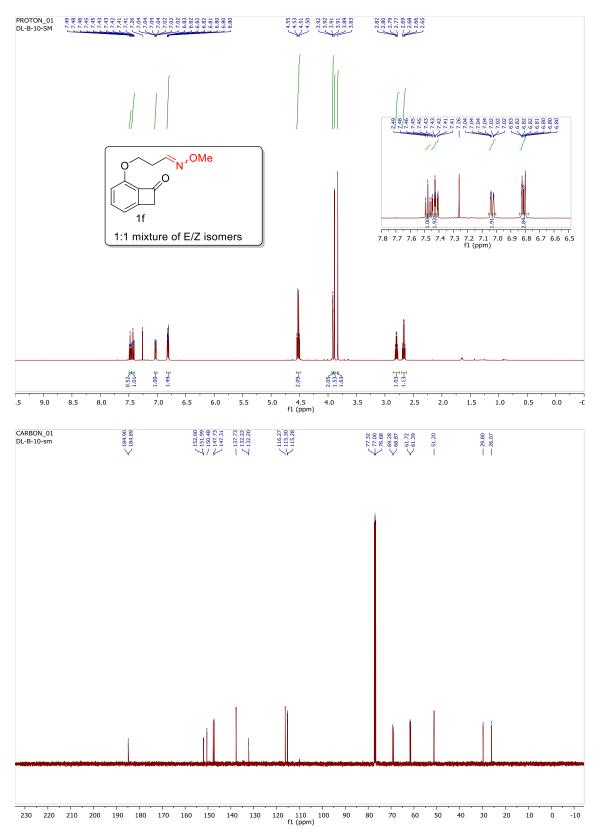


Figure 2.7 ¹H and ¹³C NMR spectrum of compound 1g

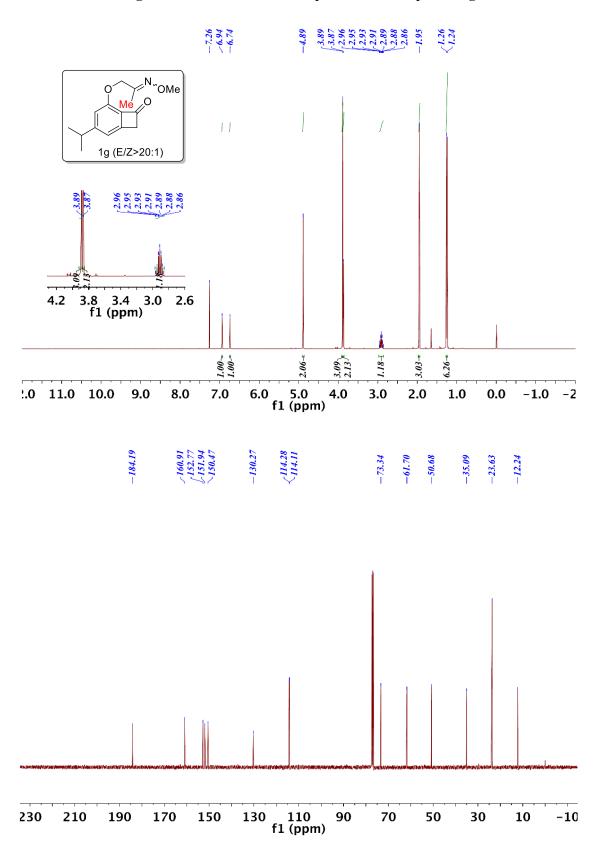


Figure 2.8 ¹H and ¹³C NMR spectrum of compound 1h

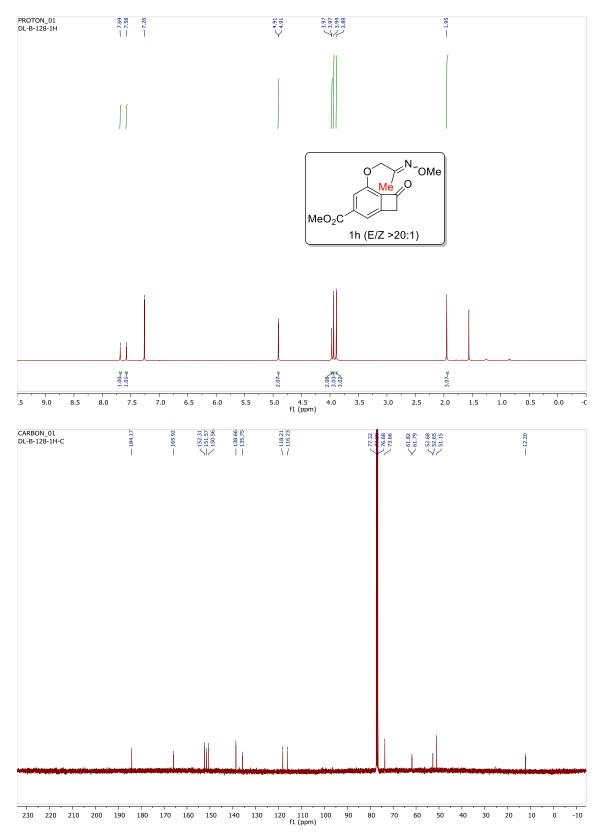
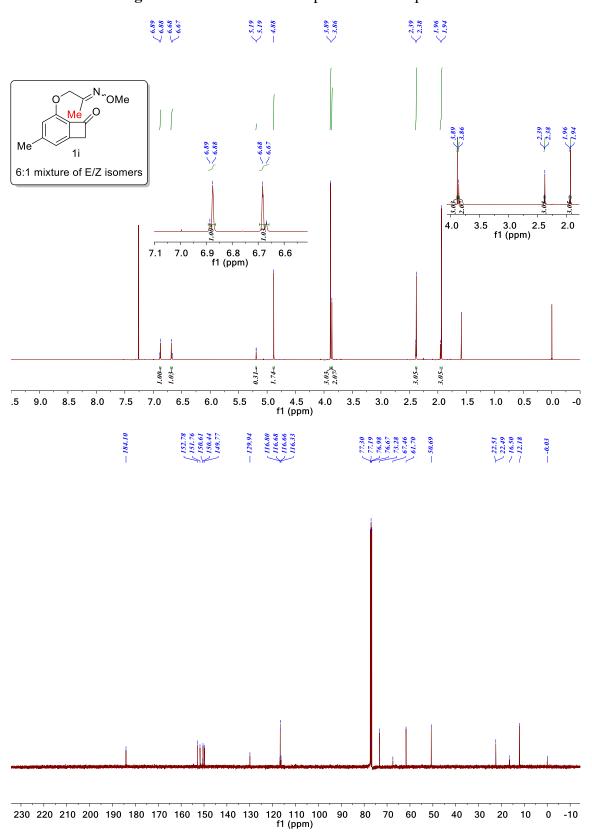



Figure 2.9 ¹H and ¹³C NMR spectrum of compound 1i

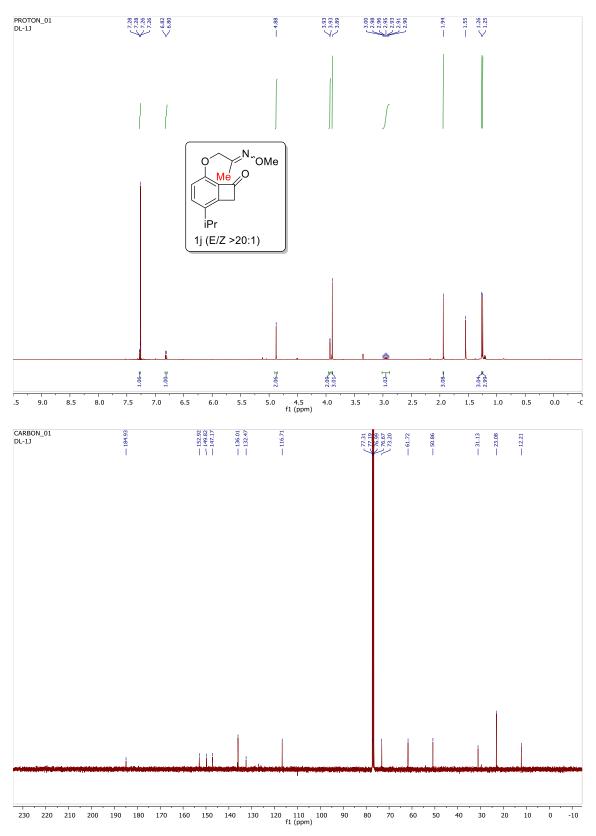
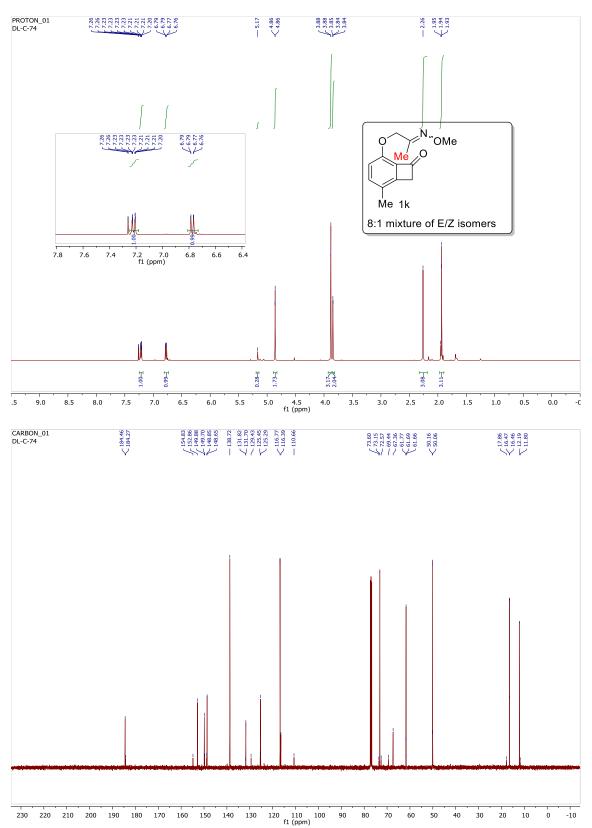



Figure 2.11 1 H and 13 C NMR spectrum of compound 1k

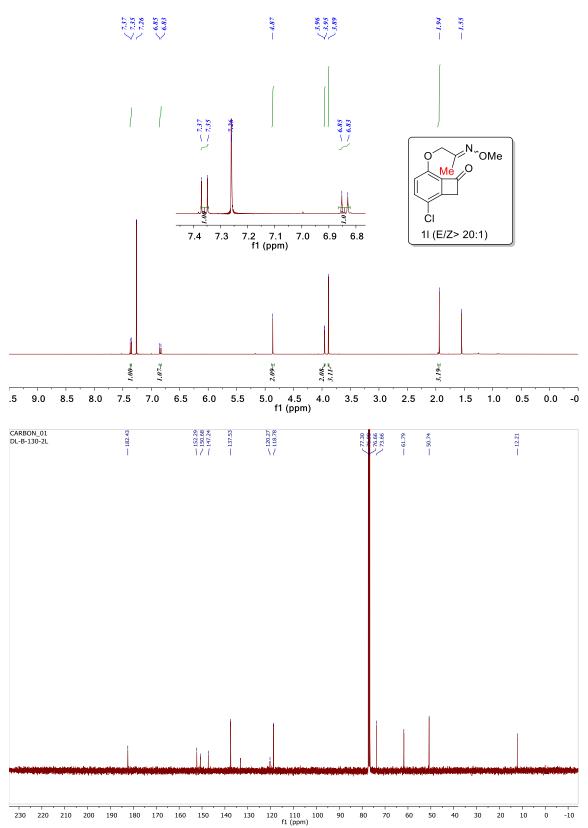


Figure 2.13 ¹H and ¹³C NMR spectrum of compound 1m

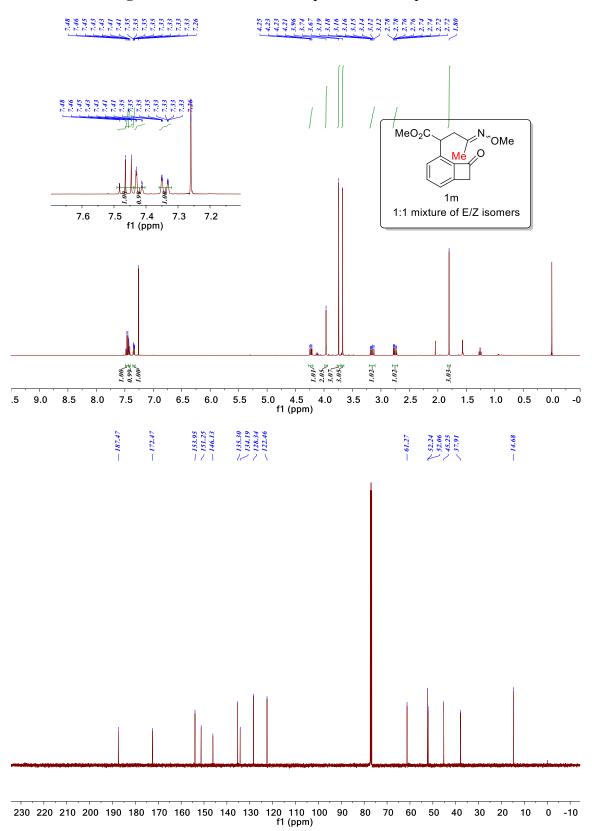


Figure 2.14 ¹H and ¹³C NMR spectrum of compound 1n

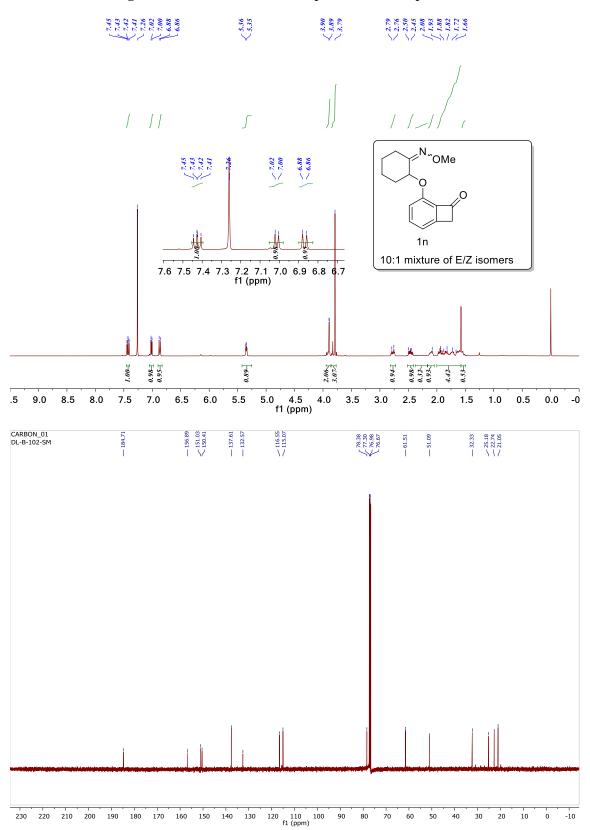


Figure 2.15 ¹H and ¹³C NMR spectrum of compound 2a

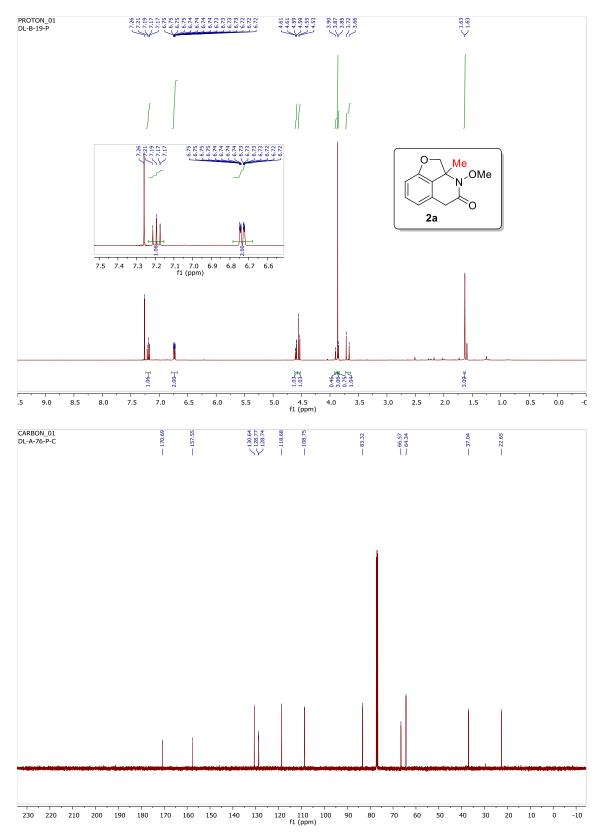


Figure 2.16 ¹H and ¹³C NMR spectrum of compound 2b

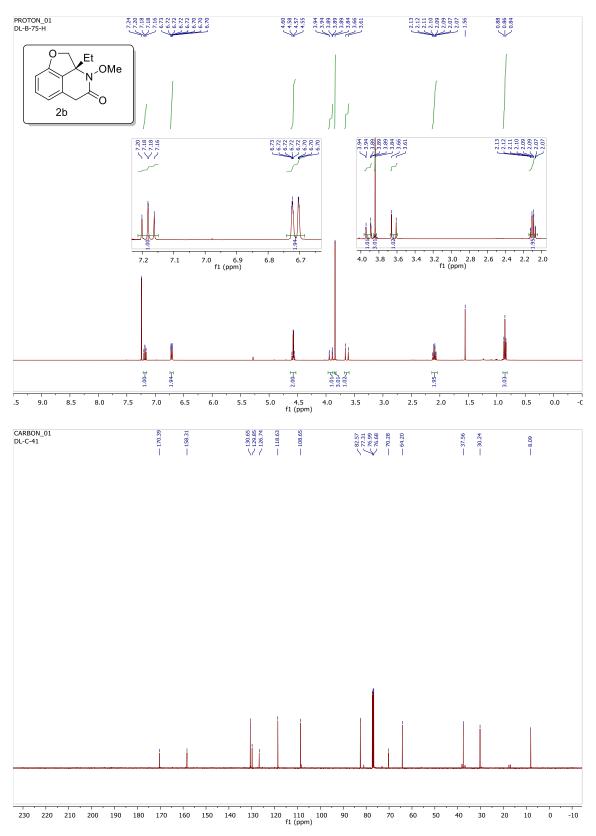


Figure 2.17 ¹H and ¹³C NMR spectrum of compound 2c

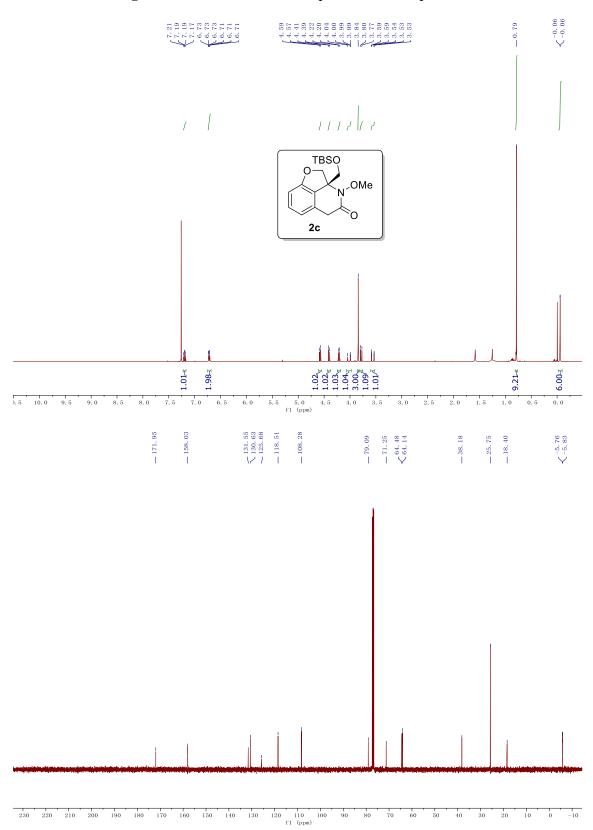


Figure 2.18 1 H and 13 C NMR spectrum of compound 2d

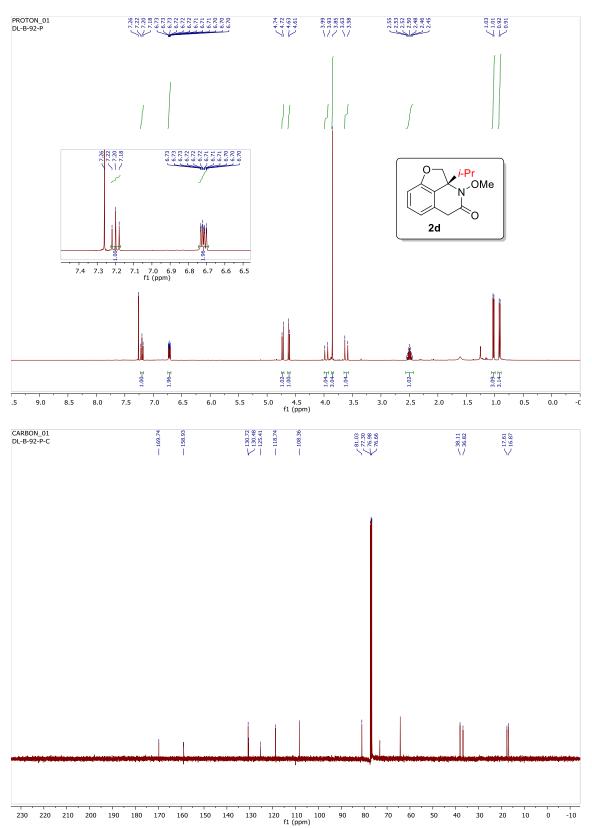


Figure 2.19 ¹H and ¹³C NMR spectrum of compound 2e

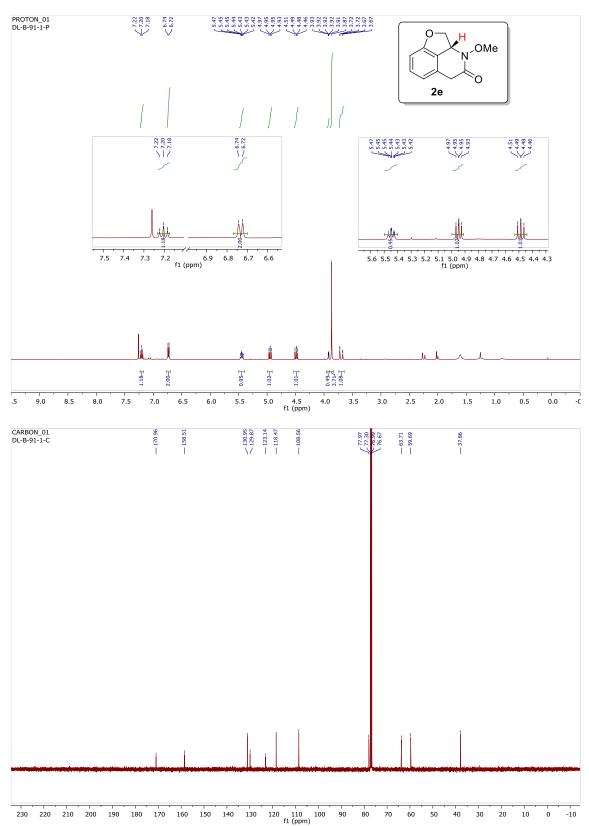


Figure 2.20 ¹H and ¹³C NMR spectrum of compound 2f

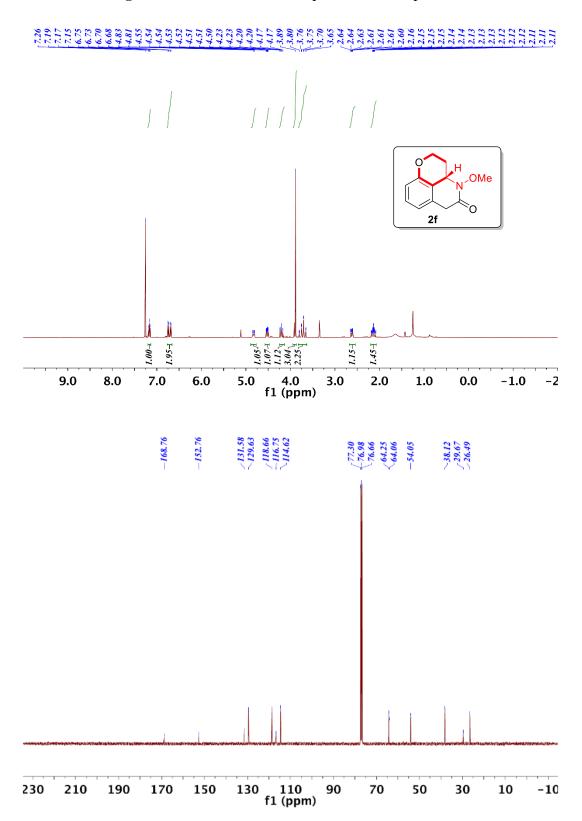


Figure 2.21 ¹H and ¹³C NMR spectrum of compound 2g

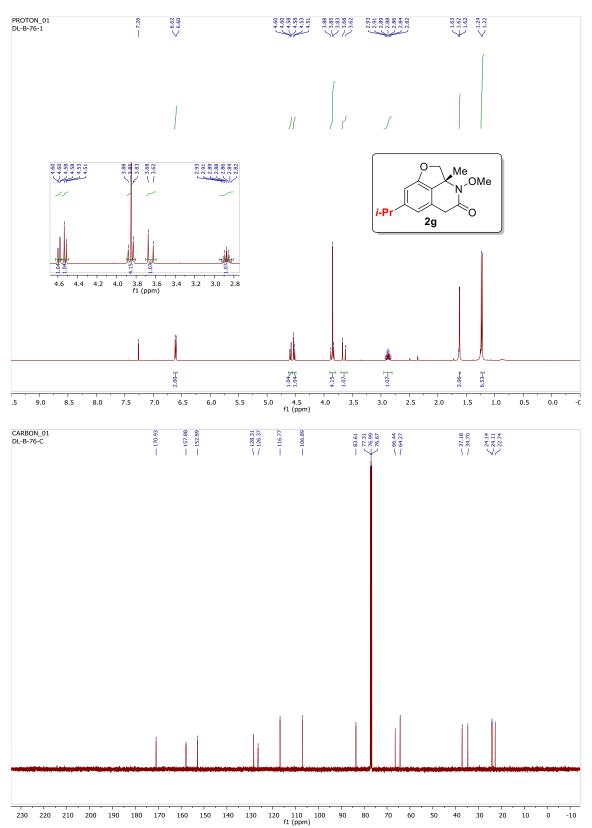
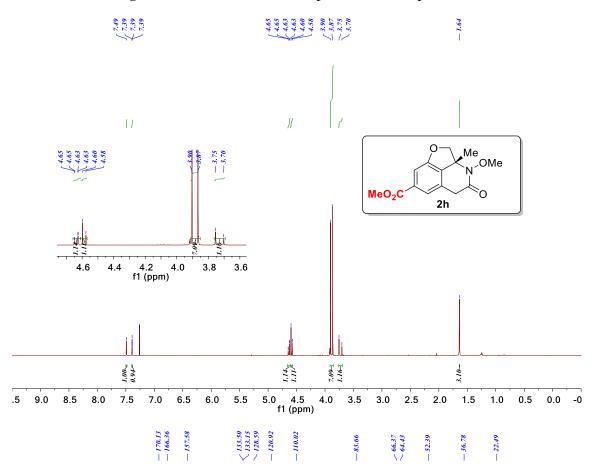



Figure 2.22 ¹H and ¹³C NMR spectrum of compound 2h

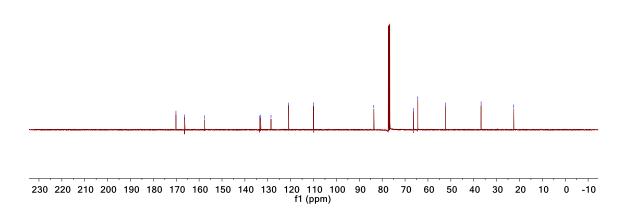


Figure 2.23 ¹H and ¹³C NMR spectrum of compound 2i

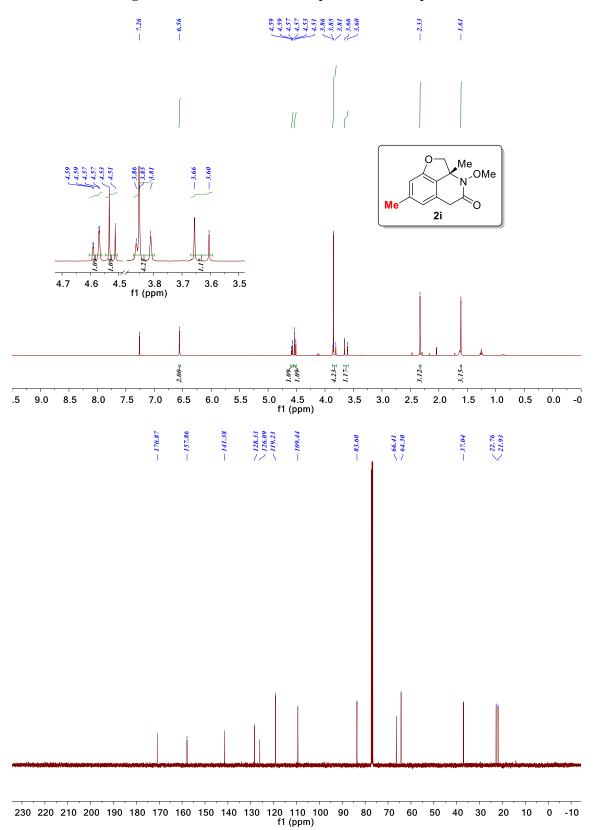


Figure 2.24 ¹H and ¹³C NMR spectrum of compound 2j

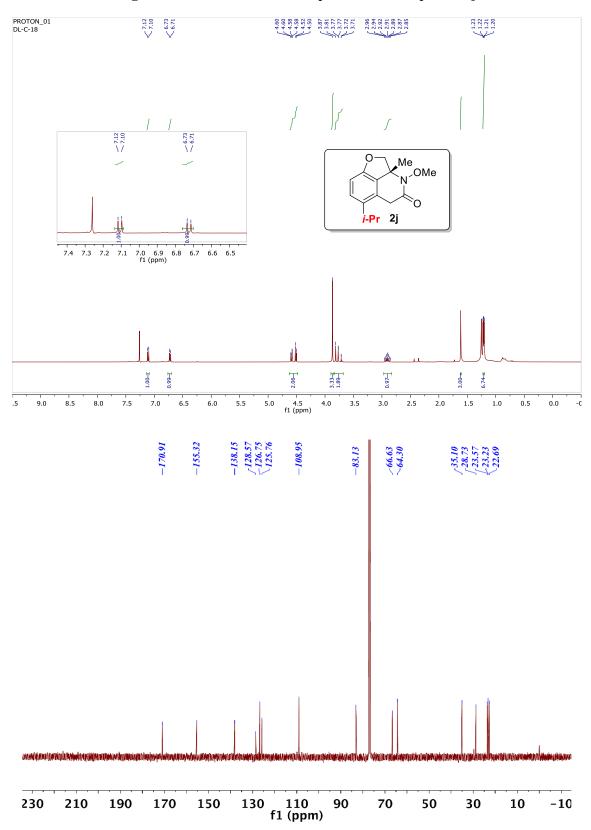
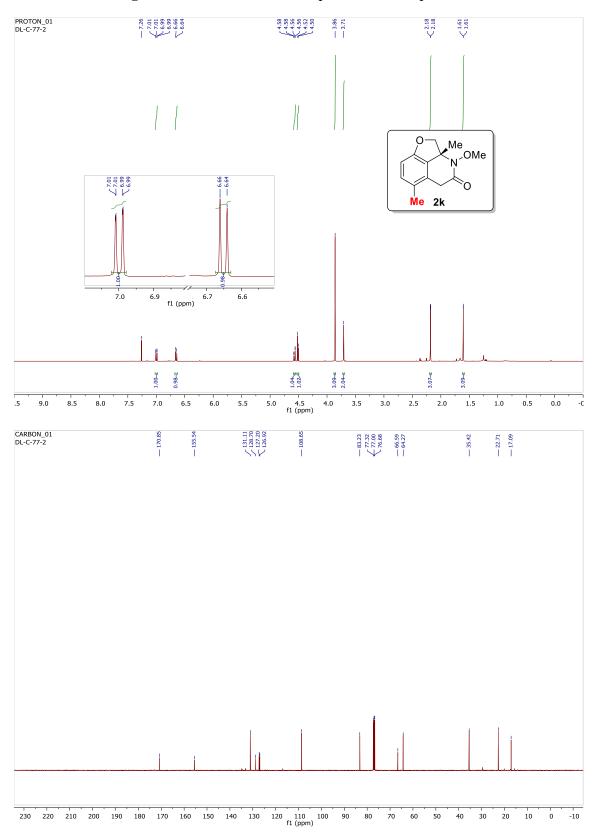



Figure 2.25 ¹H and ¹³C NMR spectrum of compound 2k

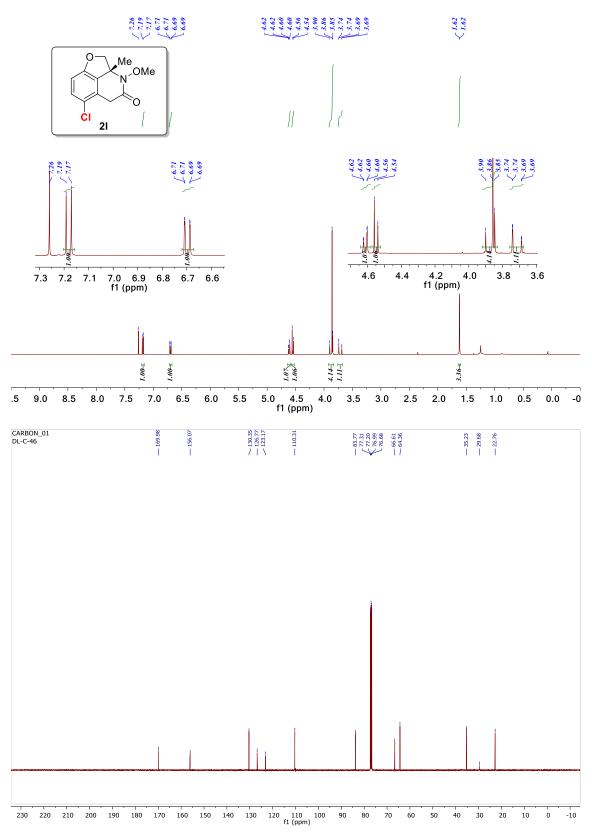


Figure 2.27 ¹H and ¹³C NMR spectrum of compound 2m

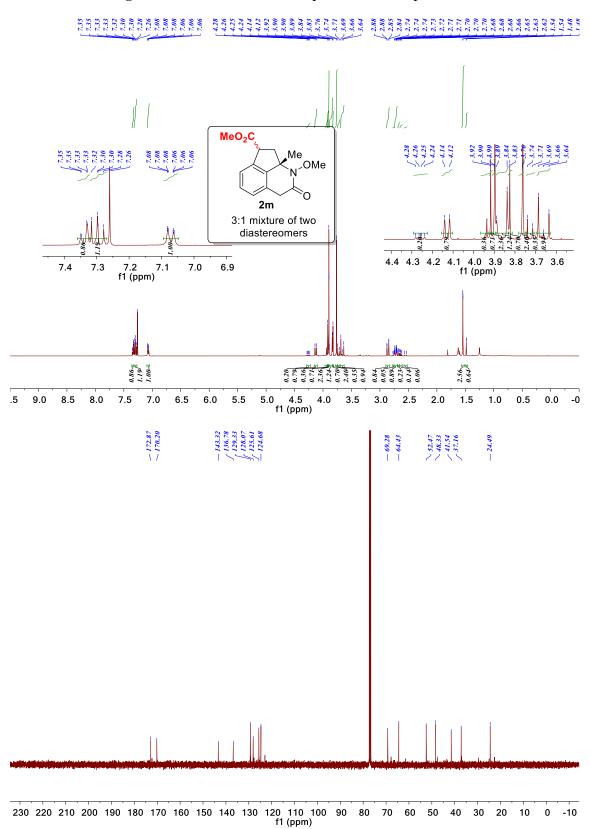


Figure 2.28 ¹H and ¹³C NMR spectrum of compound 2n

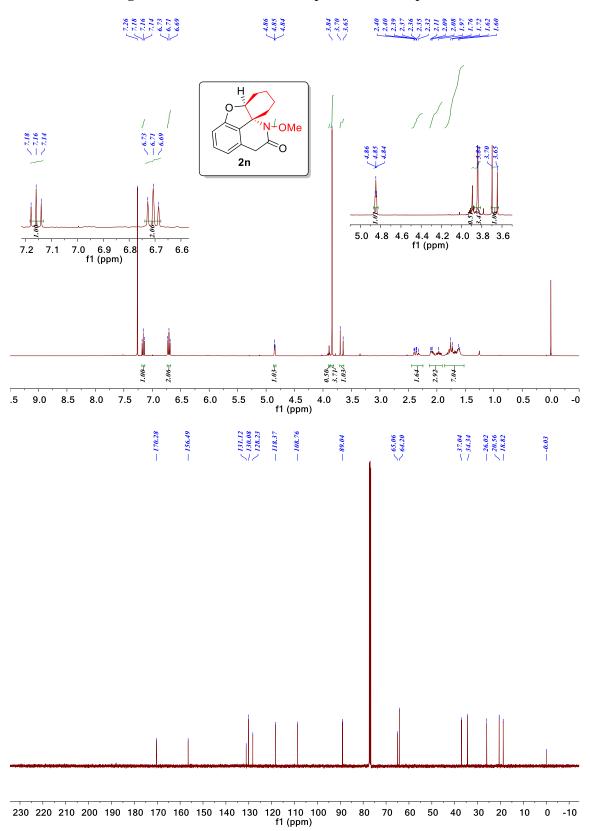
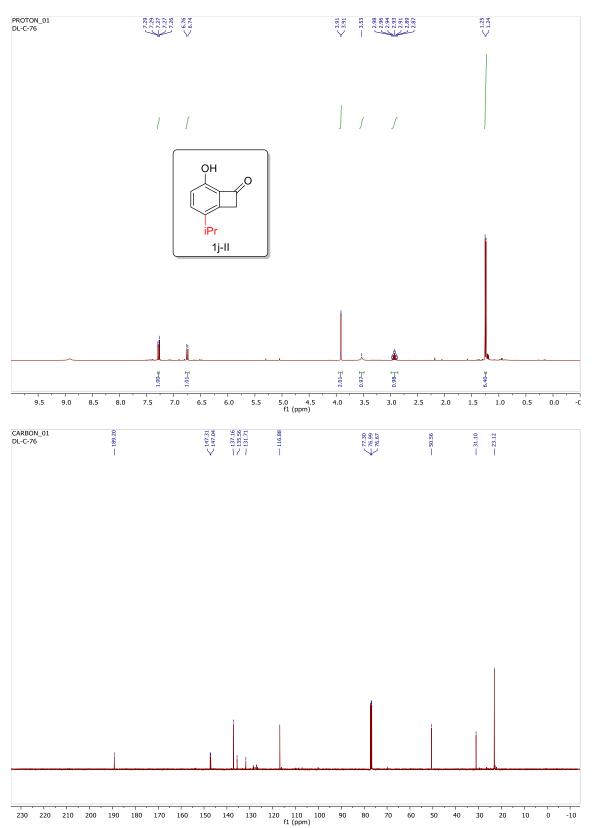



Figure 2.29 ¹H and ¹³C NMR spectrum of compound 1j-II

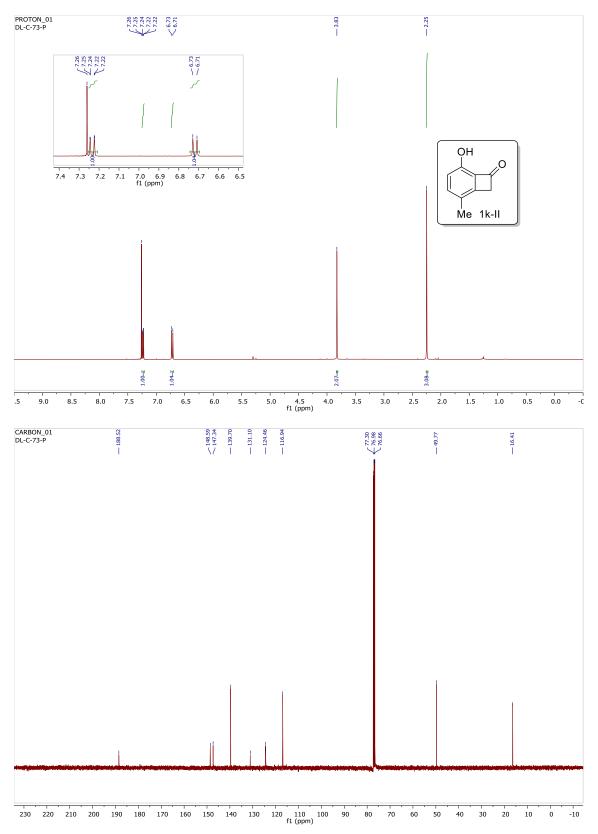
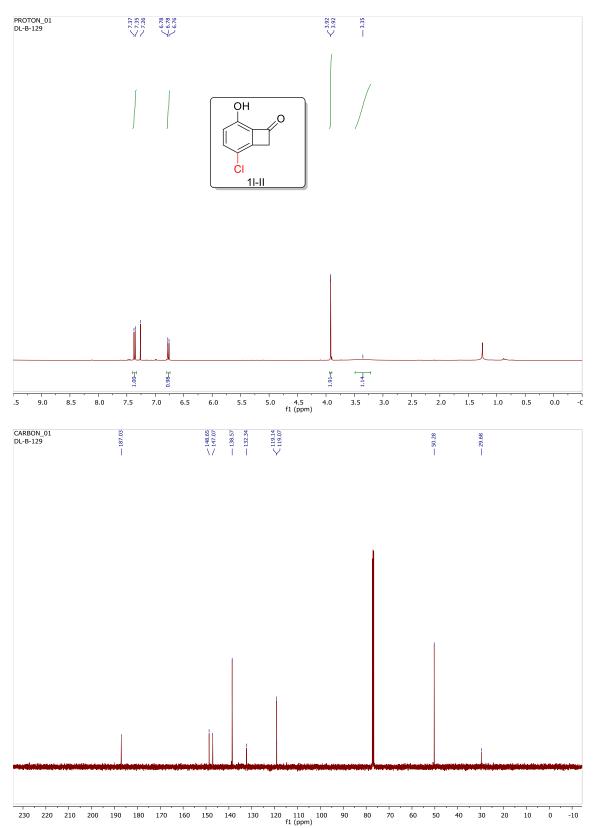
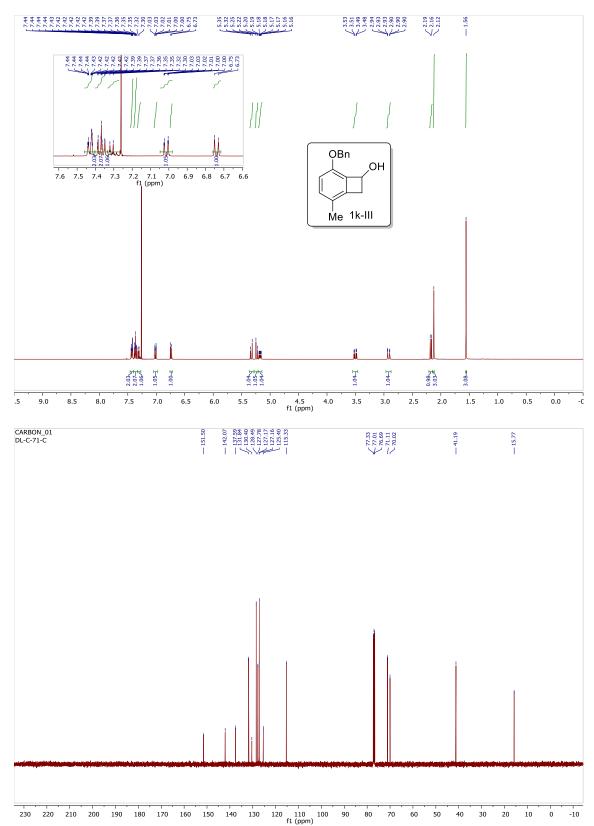
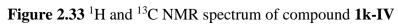





Figure 2.31 ¹H and ¹³C NMR spectrum of compound 11-II

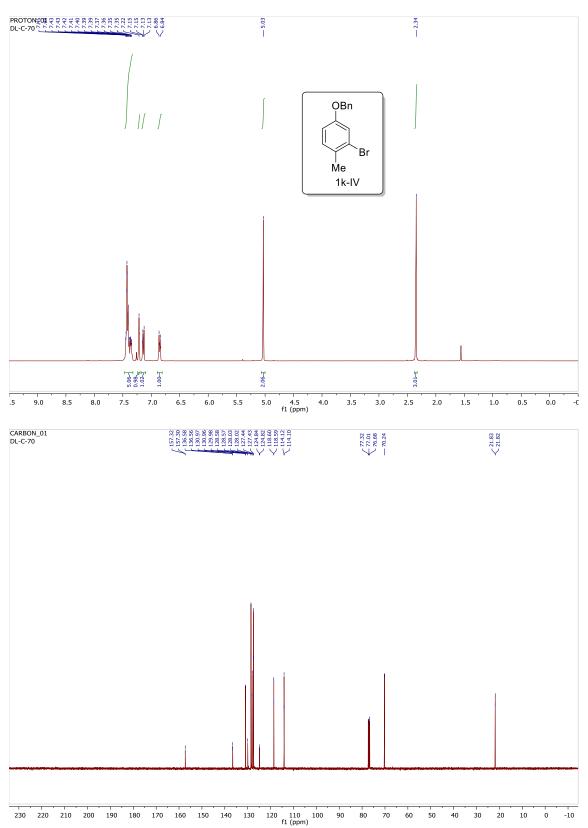
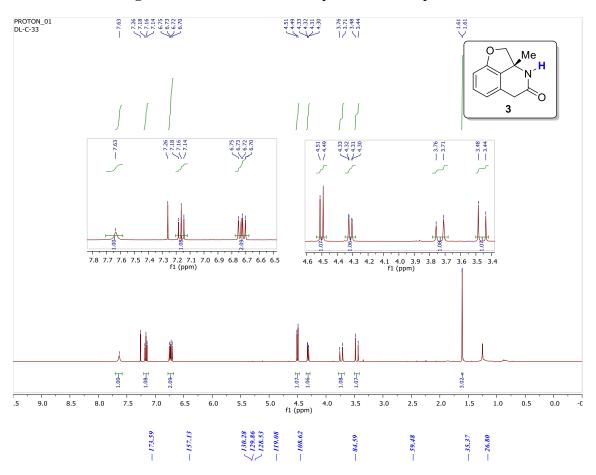
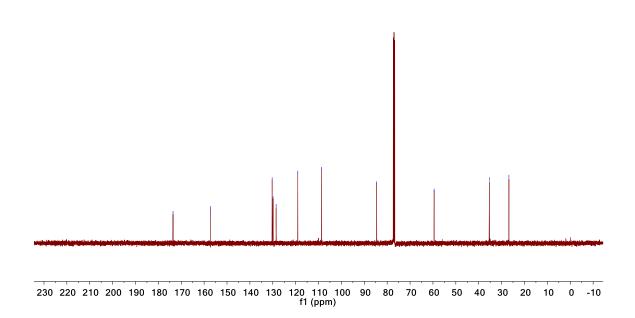




Figure 2.34 ¹H and ¹³C NMR spectrum of compound 3

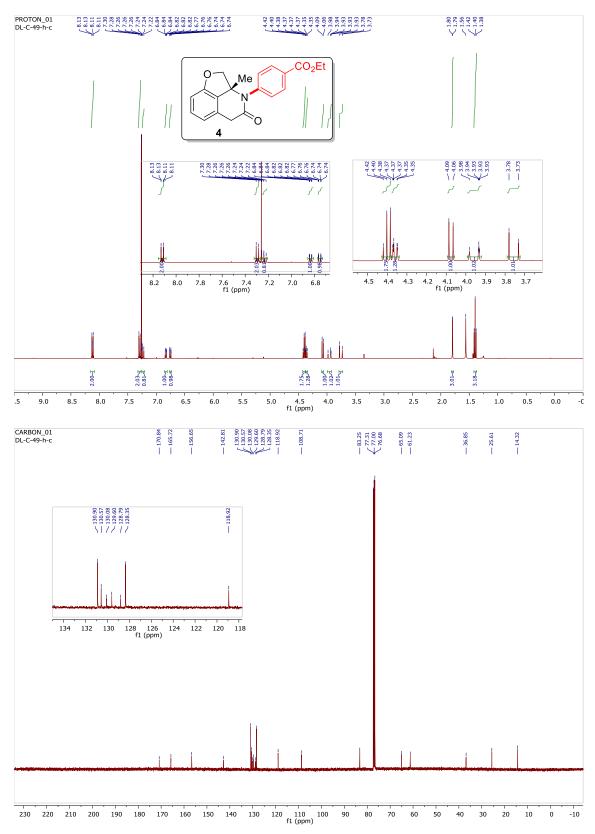
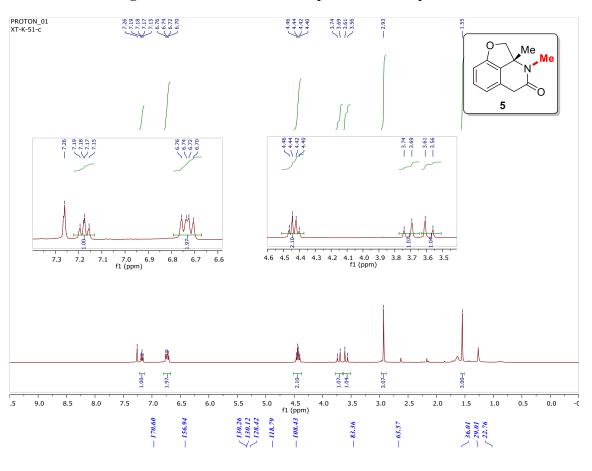



Figure 2.36 ¹H and ¹³C NMR spectrum of compound 5

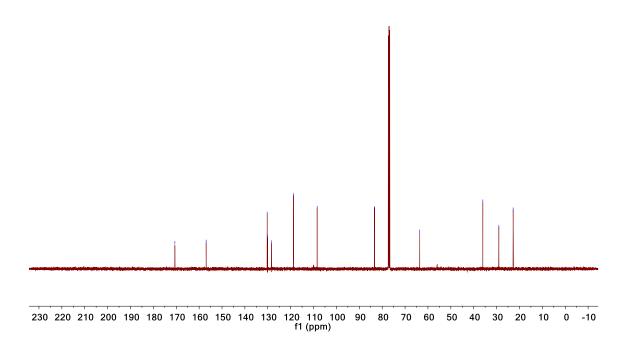
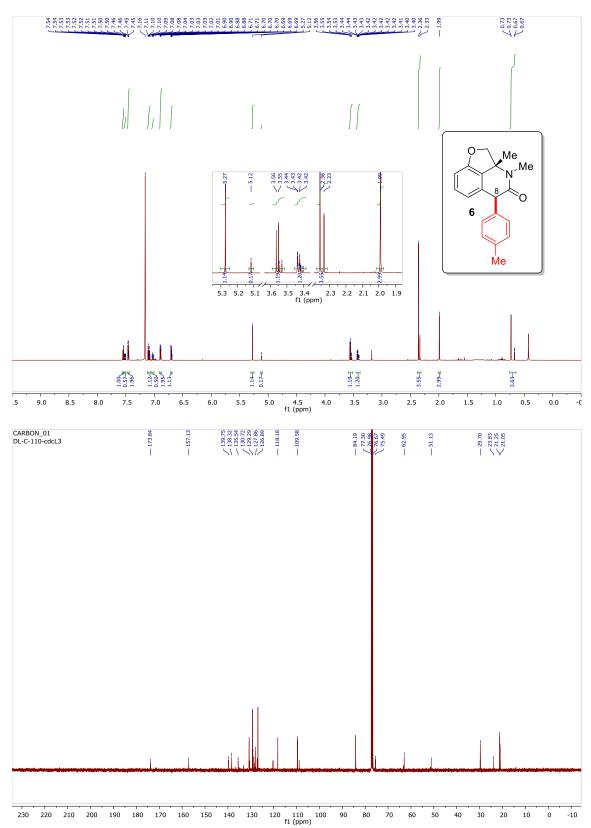



Figure 2.37 ¹H and ¹³C NMR spectrum of compound 6

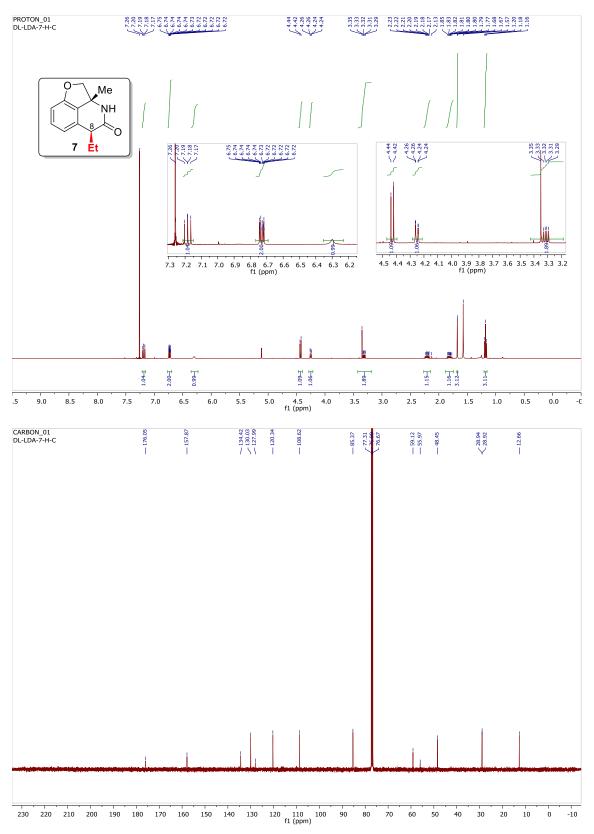


Figure 2.39 ¹H and ¹³C NMR spectrum of compound 8

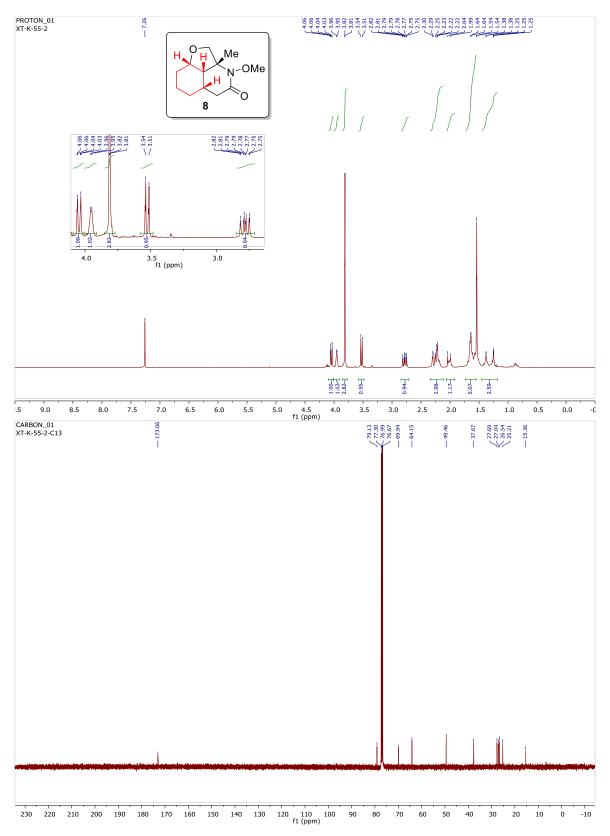
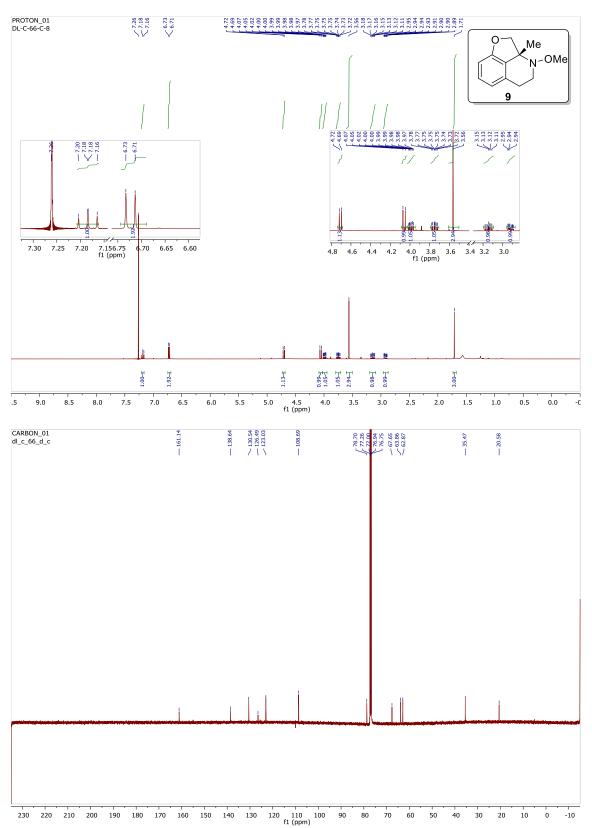
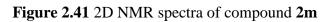
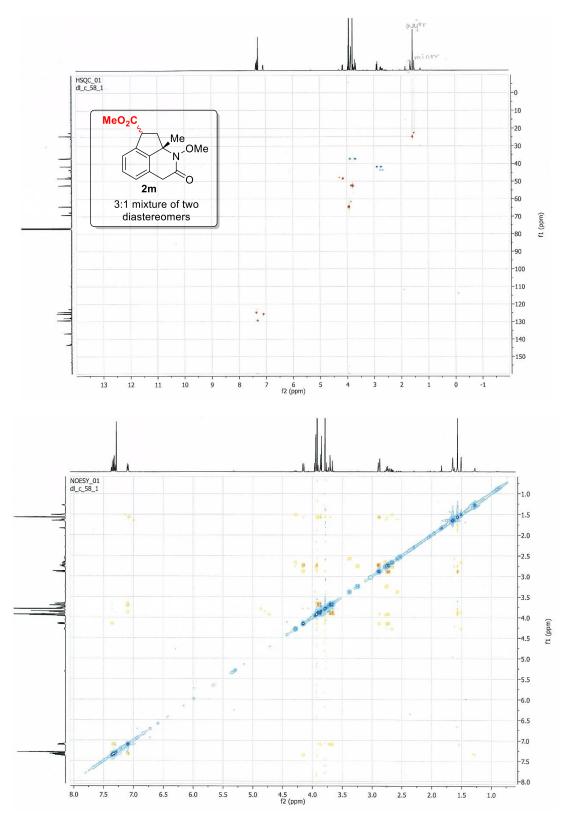





Figure 2.40 ¹H and ¹³C NMR spectrum of compound 9

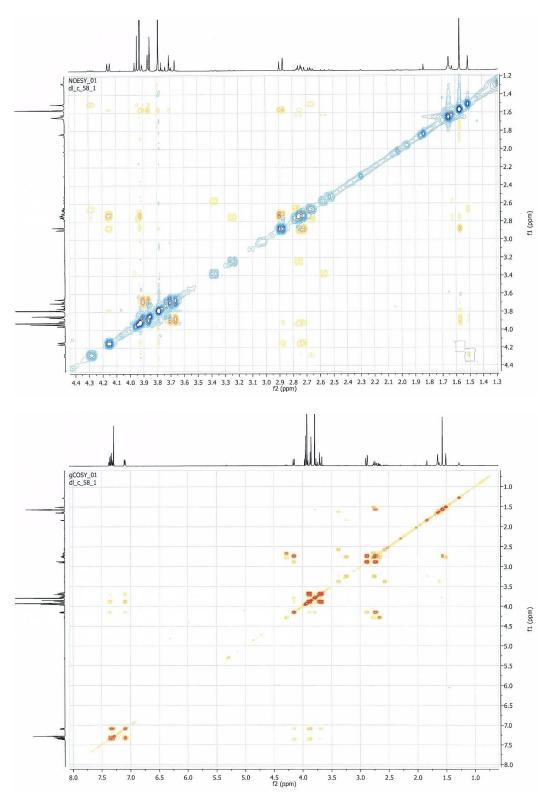
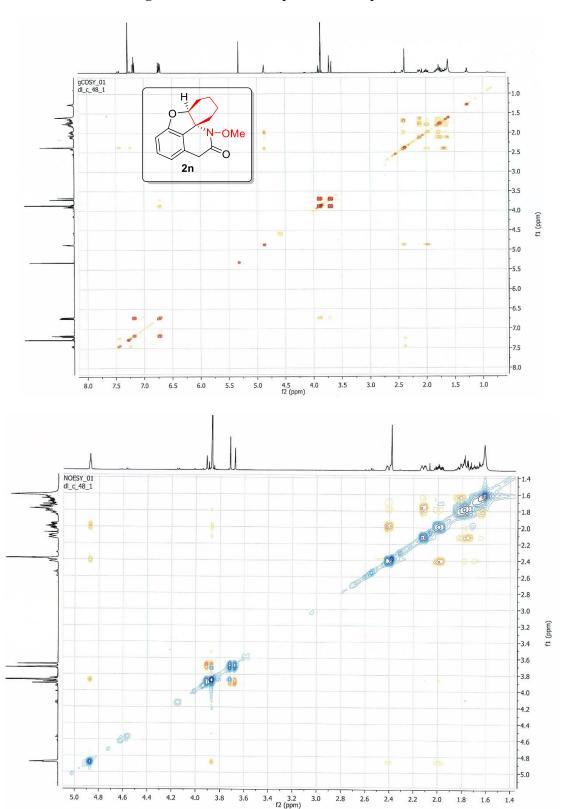
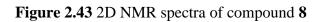
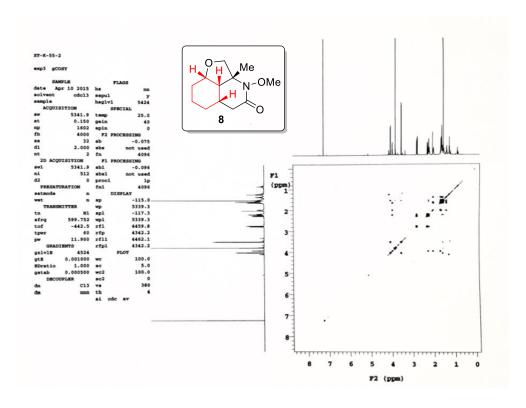
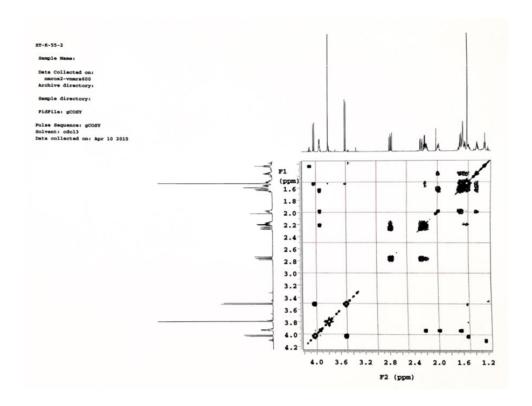
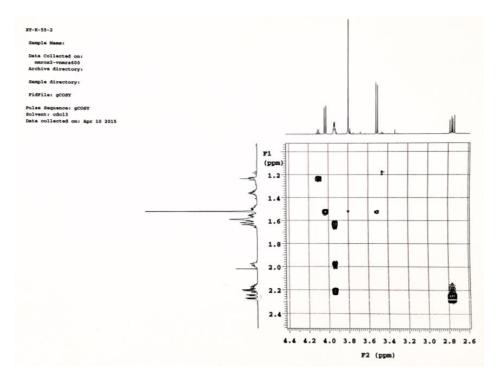
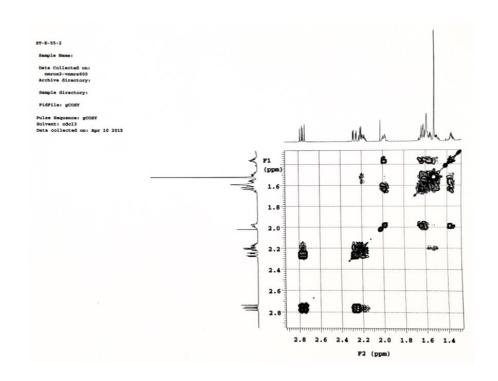
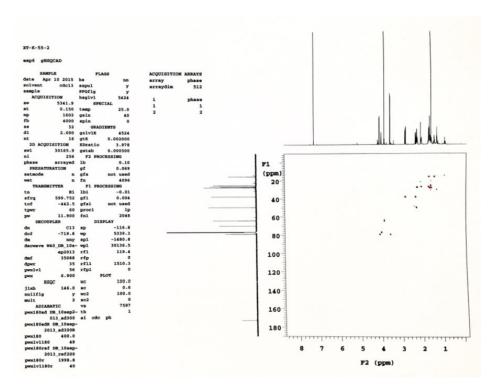
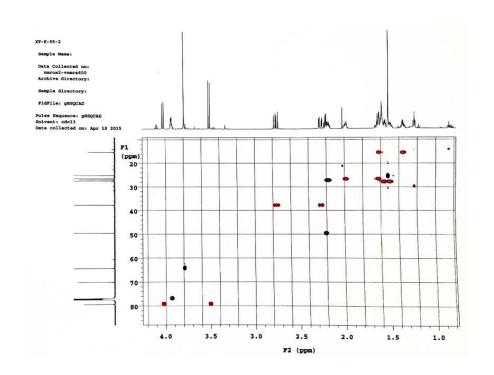






Figure 2.42 2D NMR spectra of compound 2n

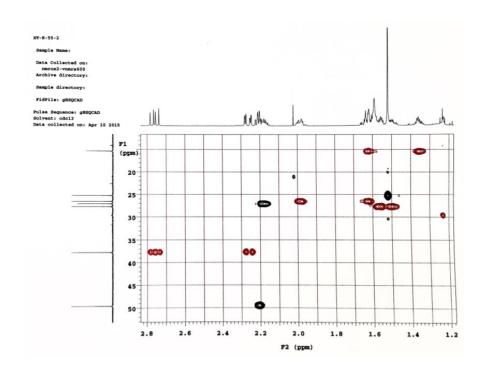


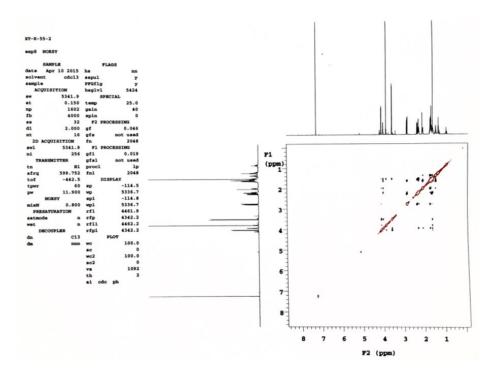


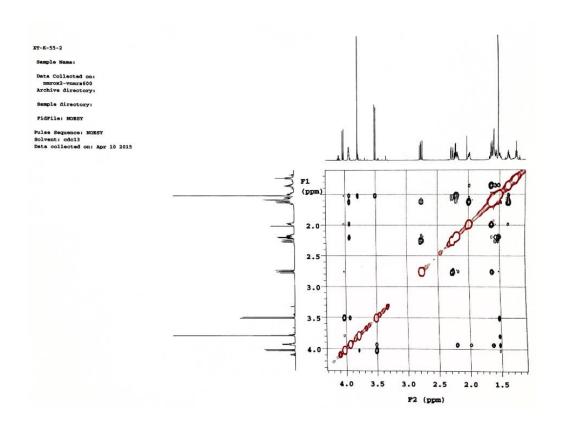


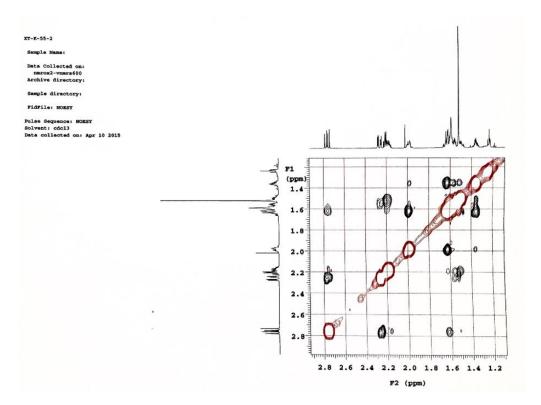


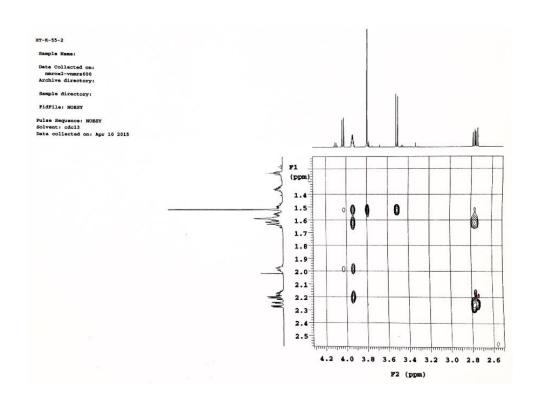


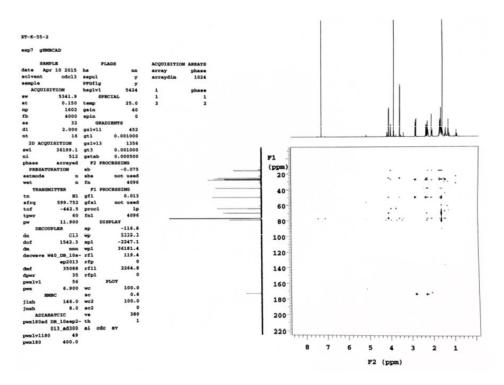


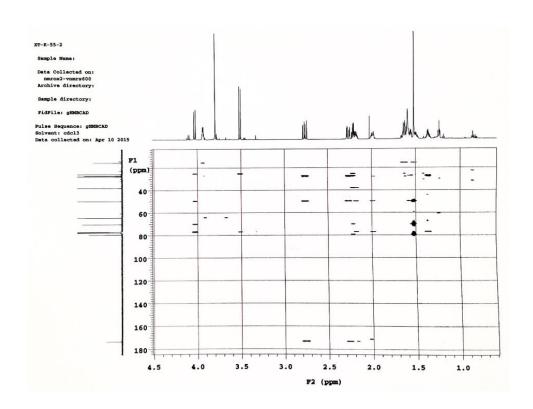


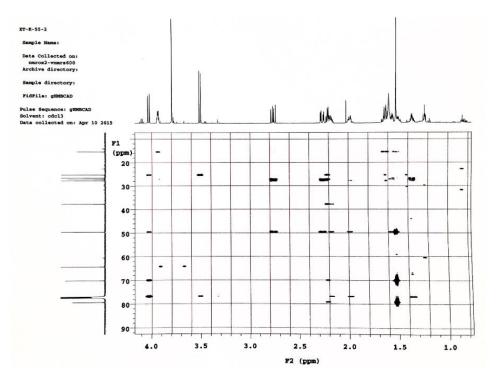


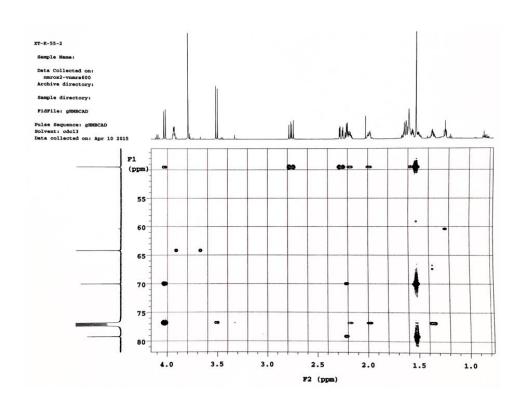


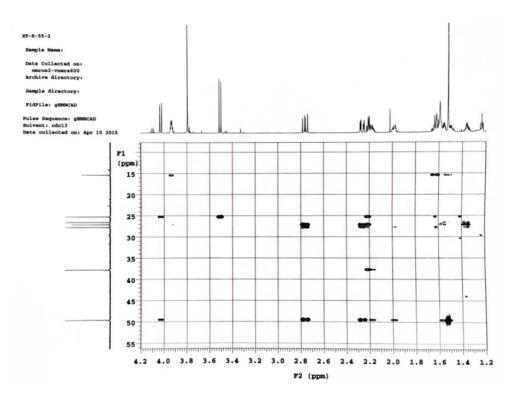


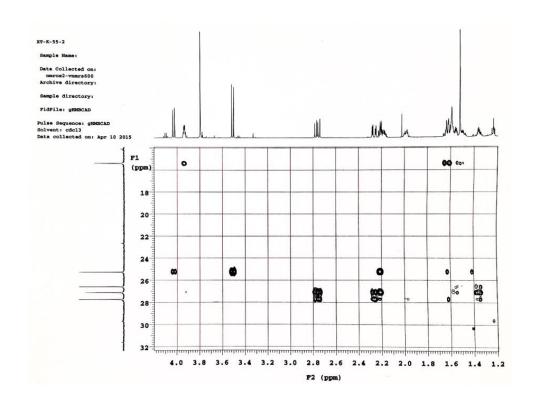










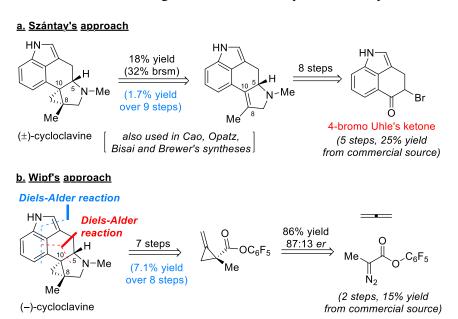


CHAPTER 3

Concise Synthesis of (-)-Cycloclavine and (-)-5-epi-Cycloclavine via Asymmetric C-C Activation

3.1 Introduction

With the rapid development of transition metal (TM)-catalyzed carbon-carbon bond (C-C) activation, new bond disconnection strategies have been made possible to access complex ring structures. However, beyond intriguing methodology development, the potential synthetic utility of these new C-C activation methods remains unexplored. Arguably, one of the most attractive ways to examine the efficacy and scope of new synthetic methods is to use them in the context of complex molecule syntheses. On the other hand, the potential challenges in complex molecule synthesis would provide valuable feedbacks and insights for further development of methodology. To date, only a handful of examples have been reported on using C-C activation as the key strategy in total synthesis of natural products, 2 particularly in an asymmetric manner. 2h The namely "Cutand-Sew" strategy developed over past decades by our group and others provides new opportunities for the construction of bridged and fused rings through intramolecular insertion of an unsaturated unit into α C–C bond of a cyclic ketone. ^{1q,3} (Scheme 3.1). As discussed in previous chapter, we successfully achieved a highly enantioselective carboacylation of C=N bonds. Apart from aiming to tackle the challenge of applying polarized C=X bonds in "Cut-and-Sew" reactions, we also envision the synthetic significance of N-containing heterocycles and the potential


application of this type of transformation in atom-economical total synthesis of related natural products. In this chapter, we will describe a complete story on the concise total synthesis of indole alkaloid (–)-cycloclavine and its unnatural analogue enabled by a highly enantioselective "Cut-and-Sew" transformation^{4,5,6} with nitrogen-tethered benzocyclobutenones and olefins.

Scheme 3.1 The "Cut-and-Sew" Approach for Bridged and Fused Ring Synthesis

As an indole alkaloid, cycloclavine was first isolated from the seeds of *Ipomoea hildebrandtii* by Hofmann and co-workers in 1969⁷ and later from *Aspergillus japonicas* in 1982 (Scheme 3.2).⁸ It represents the only member in the ergot alkaloid family that contains a cyclopropane ring. During the past decade, ergot alkaloids have attracted significant attention of synthetic chemists due to their striking polycyclic fused scaffolds as well as a broad spectrum of biological activities for potential pharmaceutical and agrichemical applications.⁹ While the full biological profile of cycloclavine remains to be disclosed, a recent study showed that cycloclavine exhibits promising insecticidal and antiparasitic properties.¹⁰

Scheme 3.2 Structures of Representative Ergot Alkaloids

Scheme 3.3 Prior Strategies towards Total Synthesis of Cycloclavine

Distinct from other members in the ergot alkaloids family, cycloclavine possesses a pentacyclic core with a unique [3.1.0] structural motif. The sterically congested cyclopropane ring along with three contiguous stereogenic centers including two adjacent quaternary carbons presents a considerable challenge for asymmetric total synthesis. The first total synthesis of (±)-cycloclavine was described in 2008 by Szántay. In this seminal work, the [3.1.0] fused ring was constructed in the late stage through cyclopropanation of the tetrasubstituted olefin (Scheme 3.3), which unfortunately gave only 18% yield (32% based on recovered starting material) likely owing to the steric hindrance of the olefin as well as the presence of nucleophilic indole and pyrrolidine moieties in the substrate. Subsequently, a number of formal syntheses of cycloclavine have been reported utilizing such a late-stage cyclopropanation strategy. In contrast, a unique and elegant approach was developed by Wipf in 2011, in which cyclopropane was introduced at the very beginning of the synthesis followed by two intramolecular Diels-Alder cycloaddition to furnish the fused 6-5-6-5 ring systems (Scheme 1b). In 2017, the Wipf group reported the first asymmetric total synthesis of (¬)-cycloclavine. Despite the high novelty and step-efficiency of

the synthetic route, the moderate enantioselectivity initially obtained from the asymmetric cyclopropanation step and a low overall yield still leave room for developing an alternative enantioselective synthesis of cycloclavine.

Scheme 3.4 Retrosynthetic Analysis for the Synthesis of (–)-Cycloclavine: a C–C Activation Strategy

From a retrosynthetic viewpoint (Scheme 3.4), we envisioned that the pyrrolidine D ring could be installed in the end through an intramolecular reductive amination, and the tetrasubstituted cyclopropane E ring could be constructed via a diastereoselective cyclopropanation between a less bulky 1,1-disubstituted olefin 4 with aryl α-diazoketone 3. The indoline-fused tricycle (A/B/C rings) in intermediate 3 is expected to be synthesized from an enantioselective nitrogen-tethered "Cut-and-Sew" reaction via C-C activation of benzocyclobutenone 5, which could be conveniently prepared from the known aryl triflate 6.15

3.2 Results and Discussion

3.2.1 Rh-catalyzed enantioselective "cut-and-sew" reactions to construct fused indolines

To explore the proposed synthetic strategy, the key "Cut-and-Sew" reaction was investigated first. In 2012, we reported a highly enantioselective Rh-catalyzed carboacylation of olefins through cleavage of benzocyclobutenone C–C σ-bonds.^{5a} This reaction is atom-economical and operates under pH- and redox-neutral conditions. While a range of substrates have been demonstrated in this preliminary report, including different substitution patterns on benzocyclobutenones and olefins, the tethering structure has nevertheless been largely restricted to a more flexible oxygen linker.^{3,5a,5f} Thus, to enable the synthesis of cycloclavine, the key questions are 1) whether high efficiency and enantioselectivity could be obtained for the "Cut-and-Sew" reaction with a more rigid nitrogen-tethered substrate (Scheme 3.5), and 2) whether a rapid and efficient route could be established for preparing such nitrogen-substituted benzocyclobutenones.

Scheme 3.5 Challenges for "Cut-and-Sew" Reactions

In a forward manner, following a reported procedure by Hosoya, ¹⁵ the ketal-protected OTf-substituted benzocyclobutenone (**6**) was prepared with an excellent overall yield from commercially available 2-iodoresorcinol through a sequence of triflation and benzyne-mediated [2+2] cycloaddition (Scheme 3.6). Attempts to directly couple Boc-protected allylamine with triflate **6** were unfruitful likely owing to the steric hindrance of both substrates. However, a Pd-catalyzed C–N bond coupling ¹⁶ between triflate **6** and *tert*-butyl carbamate, followed by an allylic alkylation catalyzed by the same Pd species and then acidic workup, provided the nitrogen–tethered benzocyclobutenone **5** in an excellent yield. Hence, this three-step route offers a rapid and

high-yielding entry to substrate **5** for the subsequent C–C activation, which otherwise would take around 6 steps using the prior preparation routes.^{3,17}

Scheme 3.6 Synthesis of the Nitrogen-Tethered Benzocyclobutenone Substrate

With substrate **5** in hand, the key "Cut-and-Sew" reaction was explored (Table 3.1). Unsurprisingly, under the previous optimal (racemic³ and asymmetric^{5a}) conditions for the etherlinked substrates, the desired tricycle product was only obtained in low yields (Table 3.1, entries 1 and 2) and moderate enantioselectivity (Table 3.1, entry 2). We hypothesized that the reduced reactivity was likely due to the increased bulkiness and rigidity of the nitrogen linkage, thus use of a less bulky and more electron-deficient Rh catalyst might enhance the binding with the olefin moiety thereby promoting the subsequent 2π insertion. Indeed, the combination of a monodentate phosphine ligand, i.e. PMe₂Ph, with π -acidic [Rh(CO)₂Cl]₂ afforded indoline product **8** in an excellent yield (Table 3.1, entry 3). Interestingly, [Rh(CO)₂Cl]₂ as a precatalyst alone still gave 49% yield (Table 3.1, entry 4). However, developing enantioselective transformations based on

the [Rh(CO)₂Cl]₂ system proved to be challenging due to the limitation of using monodentate electron-rich ligands. On the other hand, while a promising level of enantioselectivity could be achieved using chloro-Rh(I)/olefin precatalysts, the yield was difficult to be improved (Table 3.1, entries 5-7).

Table 3.1 Selected Optimization Study for the Rh-Catalyzed Asymmetric "Cut-and-Sew" Reaction^a

Entry	Precatalyst/ Ligand	Temperature (°C)	Yield ^b	ee ^c
1	5 mol% [Rh(cod)Cl] ₂ / 10 mol% dppb	130	18% ^{g,h}	N/A
2	5 mol% [Rh(cod)Cl] ₂ / 10 mol% (R)-DTBM-segphos	130	12% (57%)	75%
3	5 mol% [Rh(CO) ₂ Cl] ₂ / 10 mol% PMe ₂ Ph	120	86%	N/A
4 ^d	5 mol% [Rh(CO) $_2$ Cl] $_2$	120	49% ^g	N/A
5	5 mol% [Rh(cod)Cl] ₂ / 10 mol% (R)-DM-segphos	130	22% (71%)	26%
6	5 mol% [Rh(cod)Cl] ₂ / 10 mol% (R)-tol-binap	130	7% (37%)	72%
7	5 mol% [Rh(coe) ₂ Cl] ₂ / 10 mol% (R)-DTBM-segphos	110	12% (44%)	85%
8	10 mol% Rh(nbd) ₂ BF ₄ / 12 mol% (R)-DTBM-segphos	100	61%	97.5%
9	10 mol% Rh(cod) ₂ BF ₄ / 12 mol% (R)-DTBM-segphos	120	22%	98%
10 ^e	10 mol% Rh(cod) ₂ BF ₄ / 12 mol% (R)-DTBM-Segphos	90	95%	97%
11 ^e	5 mol% Rh(cod) ₂ BF ₄ / 6 mol% (R)-DTBM-segphos	90	96%	97.5%
12 ^{e,f}	3 mol% Rh(cod) $_2$ BF $_4$ / 3.6 mol% (<i>R</i>)-DTBM-segphos	90	95%	97.5%

^a Unless otherwise mentioned, the reaction was run on a 0.1 mmol scale at specified temperature for 24 h. ^b Isolated yield; numbers in parenthesis are yields based on recovered starting material (brsm). ^c Determined by chiral HPLC. ^d Reaction time was 72 h. ^e Reaction time was 12 h. ^f Reaction scale was 2.0 mmol. ^g NMR yields using 1,1,2,2-tetrachloroethane as internal standard. ^h Tetrahydrofuran (THF) was used as solvent.

Finally, we turned our attention to cationic Rh(I) precatalysts, because the olefin coordination would likely be enhanced due to the cationic nature of the metal. To our delight, using Rh(nbd)₂BF₄ and DTBM-segphos as the metal/ligand combination, 61% yield and 97.5% ee were achieved (Table 3.1, entry 8). The Rh(cod)₂BF₄ was found to be more reactive than Rh(nbd)₂BF₄, and a 95% yield was reached at a lower reaction temperature (90 °C) with the same ee (Table 3.1, entry 10); in contrast, at 120 °C significant catalyst decomposition was observed leading to a much

lower yield (Table 3.1, entry 9). Remarkably, with this new catalyst system, the catalyst loading and reaction time could be further reduced. For example, using 3 mol% Rh, tricycle 8 was isolated in 95% yield and 97.5% ee in 12 h on a 2.0 mmol scale.

Comparing with our first-generation conditions for the ether-linked benzocyclobutenones, the current one shows several advantages: first, the reaction temperature is signifi-cantly lower (90 vs 130 °C); second, the loading of the rhodium catalyst could be reduced to 3 mol% (previously, 10 mol%); and finally, the reaction is much faster (12 vs 48 h). ^{5a}

3.2.2 Substrate scope for the Rh-catalyzed synthesis of tricyclic indolines via C–C activation

After obtaining the optimal conditions for the Rh-catalyzed carboacylation of olefins with nitrogen-tethered benzocyclobutenones, the substrate scope was further investigated (Table 3.2). First, alkyl substituents on the olefin with various steric properties all underwent the desired carboacylation reaction giving excellent enantioselectivity (\geq 97% ee, Table 3.2, entries 1-4). It is not surprising that with increased bulkiness around the olefin, the yield of the reaction slightly decreased from methyl to cyclopentyl to isopropyl, while the enantioselectivity remained the same. Given the pH and redox-neutral reaction conditions, the TBS-protected primary alcohol is well tolerated (Table 3.2, entry 4). Both electron-rich and poor aryl substituents are compatible, giving good yields and excellent enantioselectivity (Table 3.2, entries 5-7).

In addition, C5 and C6-substituted benzocyclobutenones are competent substrates (Table 3.3, entries 1 and 2). Furthermore, besides the Boc moiety, other protecting groups at the nitrogen, such as acyl or tosyl group, are also suitable for this reaction, providing products in 80-91% yields and 99% ee (Table 3.3, entries 3-5). Gratifyingly, 1,2-disubstituted and trisubstituted olefins undergo the desired transformation with good yields and ee, which were not viable substrates for our first generation condition (Table 3.3, entries 6 and 7).

Table 3.2 Substrate Scope I^a

Entry	Substrate	Product	Yield ^b	e.e. ^c
1	Boc Me O 5a	Boc Me 8a	88%	98%
2	Boc N O 5b	Boc N 8b	78%	98%
3	Boc N i-Pr O 5c	Boc i-Pr 8c	71%	98%
4	Boc N OTBS O 5d	Boc OTBS 8d	71%	97%
5	Boc N Ph O 5e	Boc Ph 8e	78%	97%
6	Boc N O 5f	Boc N 8f	93%	98%
7	Boc N O 5g	Boc N 8g	OMe 76%	99%

^a Reaction conditions: [Rh(cod)₂]BF₄ (5 mol %), (R)-DTBM-segphos (6 mol%),

In summary, the improved catalytic conditions show a general feature for the nitrogentethered substrates, giving high yields and excellent enantioselectivity. The reaction conditions do not contain strong acids/bases or stoichiometric oxidants/reductants, which could be the key for the good functional group tolerance. Thus, this method is expected to be useful for enantioselective synthesis of various indole or indoline-containing complex target molecules.

^{1,4-}dioxane, 90 °C, 12 h. ^b Isolated yield. ^c Determined by chiral HPLC.

Table 3.3 Substrate Scope II^a

Entry	Substrate	Product	Yield ^b	e.e. ^c
1	Boc N Me O 5h Me	Boc Me 8h	95%	98%
2 C	Boc N Me O 5i	Boc Me 8i	76%	98%
М [,] 3	Me O 5j	Me N Me 8j	90%	99%
Ме 4	0 N 0 5k	Me N H 8k	80%	99%
5 ^d	Ts NO 5I	Ts N H 8I	91%	99%
В 6 ^е	OC N Me	Boc N H Me 8m	75%	94%
7 ^e (N Boc O 5n	Boc 8n	82%	98%

^a Reaction conditions: $[Rh(cod)_2]BF_4$ (5 mol %), (R)-DTBM-segphos (6 mol%), 1,4-dioxane, 90 °C, 12 h. ^b Isolated yield. ^c Determined by chiral HPLC. ^d Run with 10 mol% $[Rh(cod)_2]BF_4$ and 12 mol% (R)-DTBM-segphos at 90 °C for 12 h and then 110 °C for 12 h. ^e Run with 10 mol% $[Rh(cod)_2]BF_4$ and 12 mol% (R)-DTBM-segphos. ^f Compound **5m** is an inseparable 4:1 mixture of *translcis* isomers. From our control experiment, *cis* isomer cannot undergo the desired reaction, so the product obtained was generated exclusively from the trans isomer. The yield was calculated based on the amount of *trans* starting material.

3.2.3 Rh-catalyzed diastereoselective cyclopropanation

With a reliable route to access key intermediate **8**, we continued to explore the forward synthesis of (–)-cycloclavine. First, the diazo-transfer reaction proceeded smoothly to afford compound **3** in 92% yield (Scheme 3.7). Clearly, the next formidable challenge is to construct the tetra-substituted cyclopropane E ring in an efficient and diastereoselective fashion. While cyclopropanation with donor–acceptor carbenoids, pioneered by the Davies group, ¹⁸ has been extensively developed, the use of ketone-derived diazo compounds is less common compared to the widely used ester-derived ones. ¹⁹ In particular, the α -diazoketone-based cyclopropanation with 1,1-disubstituted olefins to construct tetrasubstituted cyclopropanes diastereoselectively remains elusive.

Scheme 3.7 Synthesis of Compound **3** as the Substrate for Cyclopropanation

Scheme 3.8 Potential Side Reaction for Cyclopropanation

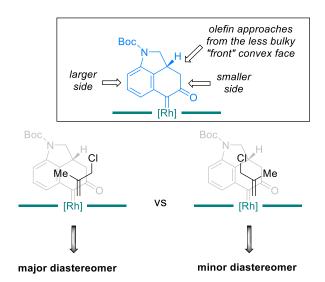
One potential side reaction with α -diazoketones could be the Wolff rearrangement, ²⁰ which would possibly lead to ring contraction (Scheme 3.8). However, due to the low temperature of the dirhodium-catalyzed cyclopropanation, the Wolff rearrangement was expected to be unlikely to happen. Thus, the reactions with racemic α -diazoketone 3 were tested initially under various dinuclear Rh(II)-catalyzed cyclopropanation conditions (Table 3.4, entries 1-4). Davies' DOSP catalyst²¹ was found to give higher reactivity than other commercially available Rh(II) catalysts.

While the use of protected allyl amine **4a** could indeed provide the desired cyclopropane product **9a**, the efficiency was not satisfying, likely owing to the bulkiness or chelating effect of the carbamate moiety. Hence, less sterically hindered 2-methylallyl chloride **4b** was then employed as the olefin substrate. To our delight, **4b** exhibited significantly enhanced reactivity and could even yield the desired cyclopropane product **9b** at -60 °C using Rh₂(*R*-DOSP)₄ as the catalyst (Table 3.4, entry 5). After a further survey of the reaction temperature and solvent (Table 3.4, entries 6-8), -40 °C and hexane/toluene as a mixed solvent proved to be more efficient; cyclopropane **9b** could be isolated in 78-80% yield and ~6:1 d.r favoring the desired diastereomer with either enantiopure or racemic catalyst (Table 3.4, entries 7 and 8). It is noteworthy that both diastereomers are easily separable, and the relative stereochemistry of the major diastereomer **9b** was confirmed by X-ray crystallography (Scheme 3.9).

The optimal reaction conditions have also been applied to compound **3** with 97.5% e.e. using 1 mol% Rh₂(*R*-DOSP)₄ as the catalyst (Table 3.4, entry 9). On a larger scale the desired product **9b** was still isolated in 85% yield with satisfactory diastereoselectivity. Interestingly, use of the other enantiomer of the Rh catalyst, i.e. Rh₂(*S*-DOSP)₄, gave diminished diastereoselectivity, suggesting a mismatched situation (Table 3.4, entry 10). Given that both enantiomers of the Rh catalysts gave the same major diastereomer of the product, it indicates that the diastereoselectivity was majorly controlled by the substrate. Finally, as a control experiment, the achiral Du Bois' Rh₂(esp)₂²² catalyst was also found to be effective under the optimized conditions (Table 3.4, entry 11), though the yield was lower than the DOSP one.

Table 3.4 Selected Condition Optimization for the Cyclopropanation Step^a

•				,	
Entry	Х	Catalyst (1 mol%)	T[°C]	Yield ^b	d.r. ^b
1	MeNBoc	Rh ₂ (OAc) ₄	40	<10%	N/D
2	MeNBoc	Rh ₂ (esp) ₂	r.t.	trace	N/D
3	MeNBoc	$Rh_2(R-DOSP)_4$	r.t.	25%	N/D
4	MeNBoc	$Rh_2(R-DOSP)_4$	-40	trace	N/D
5	CI	$Rh_2(R-DOSP)_4$	-60	27%	5:1
6	CI	$Rh_2(R-DOSP)_4$	-40	45%	6:1
7 ^c	CI	$Rh_2(R-DOSP)_4$	-40	80%	5.9:1
8 ^{c,d}	CI	$Rh_2(R/S-DOSP)_4$	-40	78%	5.8:1
$9^{c,e,f}$	CI	$Rh_2(R-DOSP)_4$	-40	85%	5.8:1
10 ^{c,e}	CI	$Rh_2(S-DOSP)_4$	-40	52%	4.3:1
11 ^{c,e}	CI	Rh ₂ (esp) ₂	-40	67%	6.3:1


^a Unless otherwise mentioned, the reaction was run on a 0.1 mmol scale at specified temperature for 6 h using racemic compound **3**; compound **3** was added to the stirring solution of catalyst and **4a** or **4b** with a speed of 2 mL/ h. ^b Yield and d.r. were determined based on isolated compounds. ^c Using hexane/toluene (10:1) as a mixed solvent. ^d 0.5 mol% of Rh₂(R-DOSP)₄ and 0.5 mol% of Rh₂(R-DOSP)₄ were mixed to provide the racemic catalyst. ^e Starting material **3** was prepared from compound **8** with 97.5% ee. ^f Reaction was run on a 0.7 mmol scale.

Scheme 3.9 X-ray Structures of Compound 9b (Racemic)

A plausible model has been proposed to explain the observed diastereoselectivity (Scheme 3.10). According to Davies' model on the cyclopropanation with donor-accepter carbenoids,²³ the aryl group is generally considered as a larger group and the accepter part is considered as a smaller

group. Thus, we rationalized that during the transition state for the cyclopropanation, first, the olefin would approach to the less bulky convex face of the tricycle; second, the smaller methyl substituent of the olefin would prefer to stay at the more sterically hindered side (the aryl side) of the carbenoid and the bulkier chloromethyl group of the olefin would favor the less sterically hindered side (the ketone side). The minor diastereomer likely comes from the other olefin orientation relative to the carbenoid due to the moderate steric difference between methyl and chloromethyl groups.

Scheme 3.10 Stereochemical Model for the Cyclopropanation Step

3.2.4 End game

The stage is now set for closing of the last D ring. A S_N2 reaction between alkyl chloride **9b** and sodium azide went smoothly to deliver azido compound **10** in an excellent yield (Scheme 3.11). The subsequent one-pot aza-Wittig, imine reduction and reductive amination sequence²⁴ furnished the pyrrolidine ring and *N*-methyl substitution in a high overall efficiency and complete diastereoselectivity. However, the C5 stereocenter was found to be opposite from the one of natural cycloclavine **1**. Nevertheless, removal of the Boc protecting group with TFA, followed by a

selenium-mediated dehydrogenation,²⁵ accomplished the synthesis of (–)-5-*epi*-cycloclavine **12**, which spectroscopically matched the one reported by Wipf and coworkers.¹³ It is noteworthy that indole was added as a scavenger to avoid oxidative decomposition of product **12** formed.^{25c}

Scheme 3.11 Synthesis of (-)-5-*epi*-Cycloclavine

We postulated that the undesired diastereoselectivity during the imine reduction step is likely influenced by the remote C3 stereocenter. As depicted from the X-ray crystal structure (Scheme 3.9) of **9b**, the cyclohexanone C ring is highly twisted, which forces the C8 quaternary center pointing to the same face as the C3 hydrogen. Thus, we hypothesized that removing the C3 stereocenter might significantly alter the conformation of the imine intermediate, thereby providing a different stereochemical outcome for the reduction. To test this hypothesis, the indoline moiety in azide **10** was then converted to a flat indole structural motif through Boc-deprotection and then dehydrogenation (Scheme 3.12). Using indole **2** as the substrate, to our delight, the same aza-Wittig reduction/reductive amination sequence indeed provided (–)-cycloclavine in 78% yield as a single diastereomer, which is spectroscopically identical to the reported natural sample.^{7,14}

Scheme 3.12 Total Synthesis of (–)-Cycloclavine

3.3 Conclusion

In summary, concise enantioselective total synthesis of (–)-cycloclavine has been accomplished in 10 steps with 30% overall yield (Scheme 3.13). The high efficiency of the synthetic strategy is enabled by a number of transition metal-catalyzed transformations. First, a Pd-catalyzed tandem C–N bond coupling/allylic alkylation offers a rapid and high-yielding route to access nitrogen-tethered benzocyclobutenone substrates. Second, an asymmetric Rh-catalyzed "Cut-and-Sew" reaction has been employed to build the fused A/B/C core structure in a highly enantioselective manner. Third, a diastereoselective Rh-catalyzed cyclopropanation between α-diazoketone and 1,1-substituted olefin effectively constructs two adjacent quaternary centers, which addresses the "late-stage cyclopropanation challenge" in cycloclavine synthesis. In particular, the C–C activation method has served as the key strategy in this total synthesis, which could have further implications beyond this work. It is anticipated that the unique "Cut-and-Sew" strategy may inspire future development of novel bond disconnections for the syntheses of other natural products and bioactive compounds that contain complex bridged or fused rings.

Scheme 3.13 A Summary of the Synthetic Efforts towards (–)-Cycloclavine

3.4 Experimental

3.4.1 General information

Unless otherwise noted, all screening reactions were carried out in 4-mL vial sealed with PTFE lined caps. Solvents for the rhodium catalyzed C–C bond activation reaction were distilled over corresponding drying agents then freeze-pump-thawed three times before use. Methyl acetate was distilled over phosphorus pentoxide and freeze-pump-thawed three times before use. Rhodium precatalysts were purchased from Strem. All commercially available substrates were used without further purification. Thin layer chromatography (TLC) analysis was run on silica gel plates purchased from EMD Chemical (silica gel 60, F254). Infrared spectra were recorded on a Nicolet iS5 FT-IR Spectrometer using neat thin film technique. High-resolution mass spectra (HRMS) were obtained on an Agilent 6224 TOF-MS spectrometer and are reported as m/z. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with a Bruker Model DMX 400 (400 MHz, ¹H at 400 MHz, ¹³C at 101 MHz). For CDCl₃ solutions, the chemical shifts were

reported as parts per million (ppm) referenced to residual protium or carbon of the solvents: CHCl₃ δ H (7.26 ppm) and CDCl₃ δ C (77.00 ppm). Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as following: chemical shift (δ , ppm), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet), coupling constant (Hz), and integration. Analytical HPLC was carried out on an Angilent 1260 infinity HPLC with DAD, Chiralpak IA-IF, served as columns, and mixtures of *n*-hexane and *i*-PrOH were used for elution.

3.4.2 Synthetic routes for substrate synthesis

For compound 6:

The substrates for the C-C activation reactions were synthesized following the route shown below:

,OMe

Compound **6** was synthesized according to the reported procedure¹⁵. Compounds **6h** and **6i** were synthesized in two steps from literature known benzocyclobutenone precursors^{5f} **S1** and **S2**. For the following C–N bond coupling reaction, alkylation and deprotection sequence, substrate **5** was synthesized using a one-pot procedure^{16d}, while substrates **5a-5k** and **5m** to **5n** were synthesized following the stepwise procedure. For compound **5l**, because the C–N bond coupling was not efficient enough, we purified the intermediate **5l-I** and subjected it to the following reactions.

- 3.4.2.1 Synthesis of intermediates and substrates 5 to 5n
- a) Synthesis of known compounds 6, S1 and S2:

Compounds **6**, **S1** and **S2** were synthesized according to the reported procedure, Their spectroscopic data match those reported in literature^{5f,15}.

b) Synthesis of compounds **6h** and **6i**:

Representative procedure:

To a 100 mL flamed-dried Schlenk flask equipped with a stir bar and a nitrogen-filled balloon was added **S1** (843.7 mg, 5.7 mmol, 1.0 equiv.) in dichloromethane (30 mL). The system was cooled to -78 °C with a dry ice-acetone bath before NEt₃ (1.58 mL, 11.4 mmol, 2.0 equiv.) and Tf₂O (1.15

mL, 6.84 mmol, 1.2 equiv.) were added dropwisely. Upon completion of the addition, the system was kept at -78 °C and stirred for 1 h under nitrogen atmosphere. After the starting material was fully consumed, the reaction mixture was quenched with saturated aqueous NH₄Cl solution (20 mL) and warmed to room temperature. The mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The combined organic extract was concentrated under reduced pressure and subjected to next step without further purification. The crude product was dissolved in MeOH (20 mL) before (MeO)₃CH (5.61 mL, 51.3 mmol, 9.0 equiv.) and *p*-TsOH (108.4 mg, 0.57 mmol, 0.1 equiv.) were added to the stirring solution. The reaction was stirred at room temperature overnight. The reaction was quenched by saturated aqueous NaHCO₃ solution (20 mL) and the mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to afford compound **6h** as a colorless oil in 96% yield over two steps (1.78 g).

Compound **6h** was isolated as a colorless oil in 96% yield over two steps (1.78 g). $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.17 (dd, J = 8.6, 0.9 Hz, 1H), 7.05 (d, J = 8.5 Hz, 1H), 3.45 (s, 6H), 3.31 (s, 2H), 2.23 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃):** δ 143.1, 138.6, 135.6, 134.6, 132.5, 120.1, 120.0, 117.0, 104.5, 51.8, 42.4, 16.4. **IR:** v 3446, 2065, 1635, 1423, 1256, 1211, 860, 750, 618 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 349.0328 Found: 349.0323. c) Synthesis of compound **5**:

Procedure:

To a 20 mL flamed-dried vial equipped with a stir bar was added 6 (312.3 mg, 1 mmol, 1.0 equiv.), BocNH₂ (175.8 mg, 1.5 mmol, 1.5 equiv.), [Pd(allyl)Cl]₂ (18.3 mg, 0.05 mmol, 5 mol%), Xantphos (86.8 mg, 0.15 mmol, 15 mol%) and Cs₂CO₃ (975 mg, 3.0 mmol, 3.0 equiv.). Then the vial was loosely capped and transferred into a nitrogen-filled glovebox and 1,4-dioxane (10 mL) was added to the mixture before the vial was tightly capped and transferred out. The system was heated to 100 °C overnight. The reaction was then cooled down to room temperature and allyl acetate (0.54 mL, 5 mmol, 5.0 equiv.) was added to the mixture inside glovebox. The mixture was stirred at 100 °C for another 10 min. After cooling the reaction back to room temperature, 1M HCl (6 mL) was added dropwisely to the vial and the mixture was stirred for 1 h at room temperature. The reaction was then quenched by saturated aqueous NaHCO₃ solution (30 mL) and the mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to afford compound 5 as a colorless oil in 92% yield (252 mg).

Compound **5** was isolated as a colorless oil in 92% yield in one pot (252 mg). $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.52 (d, J = 8.4 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.18 (d, J = 7.1 Hz, 1H), 5.80 (ddt, J = 17.5, 10.4, 5.3 Hz, 1H), 5.13 – 5.01 (m, 2H), 4.57 (d,

J = 5.1 Hz, 2H), 3.89 (s, 2H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 185.4, 153.1, 150.5, 139.0, 135.9, 135.7, 133.8, 123.4, 118.5, 116.0, 81.7, 51.2, 51.1, 28.1. IR: v 2977, 2929, 1765, 1707, 1599, 1478, 1367, 1239, 1147, 976, 787, 575 cm⁻¹; HRMS calcd. For [M+Na]⁺: 296.1257. Found: 296.1256.


d) Synthesis of compounds 5a to 5k and 5m to 5n:

Procedure (using **5a** as an example):

To a 20 mL flamed-dried vial equipped with a stir bar was added **6** (665.2 mg, 2.13 mmol, 1.0 equiv.), BocNH₂ (391.9 mg, 3.34 mmol, 1.5 equiv.), [Pd(allyl)Cl]₂ (38.9 mg, 0.11 mmol, 5 mol%), Xantphos (184.9 mg, 0.32 mmol, 15 mol%) and Cs₂CO₃ (2.08 g, 6.4 mmol, 3.0 equiv.). Then the vial was loosely capped and transferred into a nitrogen-filled glovebox and 1,4-dioxane (10 mL) was added to the mixture before the vial was tightly capped and transferred out. The system was then heated to 100 °C overnight. Upon completion, the reaction was cooled to room temperature and filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the crude product was dissolved in DMF (10 mL). NaH (74.88 mg, 3.12 mmol, 1.5 equiv.) was added to the mixture, followed by 3-chloro-2-methyl-1-propene (0.42 mL, 3.12 mmol, 1.5 equiv.). The mixture was stirred overnight at room temperature. Upon completion, the reaction was quenched with water and extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was dissolved in 6 mL tetrahydrofuran and transferred to a 20 mL vial charged with a stir bar. While stirring, 2 mL of 1M HCl aqueous solution was added to the mixture. After

stirring for 1 h at room temperature, saturated NaHCO₃ aqueous solution was added dropwisely to quench the reaction. The mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was purified by silica gel flash column chromatography (EtOAc/Hexane=1/5) to afford compound **5a** as a colorless oil in 94% yield (575 mg) over 3 steps. [All the R'X used in substrate preparation were literature known compounds^{3,5a}]

Compound **5a** was isolated as a colorless oil in 94% yield over 3 steps. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.51 (d, J = 8.4 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.18 (d, J = 7.0 Hz, 1H), 4.76 – 4.73 (m, 1H), 4.70 (s, 1H), 4.51 (s, 2H), 3.88 (s, 2H), 1.68 (s, 3H), 1.49 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃):** δ 185.4, 153.3, 150.5, 141.3, 139.2, 135.9, 135.7, 123.5, 118.5, 110.7, 81.6, 53.9, 51.1, 28.1, 19.9. **IR:** v 3080, 2976, 2931, 1766, 1708, 1599, 1478, 1367, 1240, 1159, 975, 788, 576 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 310.1414. Found: 310.1414.

Compound **5b** was isolated as a colorless oil in 86% yield over 3 steps. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.52 (d, J = 8.4 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.18 (d, J = 7.0 Hz, 1H), 4.78 (s, 1H), 4.68 (s, 1H), 4.55 (s, 2H), 3.89 (s, 2H), 2.35 (p, J = 8.5 Hz, 1H), 1.82 (td, J = 11.2, 6.8 Hz, 2H), 1.72 – 1.62 (m, 2H), 1.61 – 1.52 (m, 2H), 1.49 (s, 9H), 1.44 – 1.34 (m, 2H). ¹³**C NMR (101 MHz, CDCl₃):** δ 185.3, 153.2, 150.4, 148.5, 139.1, 136.0, 135.8, 123.3, 118.4, 106.3, 81.5, 52.8, 51.0, 43.6, 31.2, 28.0, 24.8. **IR:** v 2955, 2869, 1766, 1708,

1599, 1478, 1367, 1243, 1157, 981, 787, 575 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 364.1883. Found: 364.1880.

Compound **5c** was isolated as a colorless oil in 97% yield over 3 steps. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR** (**500 MHz, CDCl₃**): δ 7.51 (d, J = 8.4 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.18 (d, J = 7.0 Hz, 1H), 4.76 (s, 1H), 4.67 (s, 1H), 4.56 (s, 2H), 3.88 (s, 2H), 2.23 (hept, J = 6.4 Hz, 1H), 1.48 (s, 9H), 1.03 (d, J = 7.0 Hz, 6H). ¹³**C NMR** (**101 MHz, CDCl₃**): δ 185.4, 153.3, 151.1, 150.5, 139.2, 136.0, 135.9, 123.4, 118.5, 106.6, 81.6, 52.1, 51.1, 31.6, 28.1, 21.6. **IR:** v 3435, 2965, 2930. 1766, 1708, 1599, 1478, 1367, 1243, 1155, 981, 786 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 316.1907. Found: 316.1906.

Compound **5d** was isolated as a colorless oil in 91% yield over 3 steps. $R_f = 0.7$ (EtOAc/Hexane=1/5). ¹**H NMR** (**500 MHz, CDCl₃**): δ 7.49 (d, J = 8.3 Hz, 1H), 7.45 (dd, J = 8.3, 6.8 Hz, 1H), 7.18 (d, J = 6.8 Hz, 1H), 5.05 (d, J = 1.5 Hz, 1H), 4.83 (d, J = 1.4 Hz, 1H), 4.58 (s, 2H), 4.09 (s, 2H), 3.88 (s, 2H), 1.48 (s, 9H), 0.87 (s, 9H), 0.02 (s, 6H). ¹³**C NMR** (**101 MHz, CDCl₃**): δ 185.4, 153.2, 150.5, 144.3, 139.4, 135.9, 135.6, 123.5, 118.6, 109.7, 81.7, 64.1, 51.2, 50.7, 28.1, 25.8, 18.3, -5.5. **IR:** v 2929, 2856, 1766, 1711, 1600, 1478, 1367, 1257, 1158, 977, 838, 765 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 418.2408. Found: 418.2410.

Compound **5e** was isolated as a colorless oil in 30% yield over 3 steps. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (**500 MHz, CDCl₃**): δ 7.40 (dd, J = 8.4, 7.1 Hz, 1H), 7.35 – 7.24 (m, 6H), 7.18 (d, J = 7.1 Hz, 1H), 5.25 (s, 1H), 5.05 (s, 1H), 5.02 (s, 2H), 3.90 (s, 2H), 1.47 (s, 9H). ¹³C NMR (**101 MHz, CDCl₃**): δ 185.5, 153.1, 150.4, 144.5, 139.5, 139.1, 135.8, 135.2, 128.2, 127.7, 126.4, 124.1, 118.7, 112.7, 81.7, 51.9, 51.2, 28.0. **IR**: v 2977, 2926, 1766, 1707, 1599, 1478, 1368, 1241, 1157, 981, 750, 704 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 350.1751. Found: 350.1761.

Compound **5f** was isolated as a light yellow solid in 75% yield over 3 steps. Melting Point: 91-92 °C. $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.40 (t, J = 7.7 Hz, 1H), 7.34 - 7.26 (m, 3H), 7.19 (d, J = 7.1 Hz, 1H), 6.97 (t, J = 8.5 Hz, 2H), 5.18 (s, 1H), 5.03 (s, 1H), 5.00 (s, 2H), 3.90 (s, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 185.6, 162.4 (d, J = 246.7 Hz), 153.1, 150.4, 143.6, 139.4, 135.8, 135.2 (d, J = 3.4 Hz), 135.1, 128.1 (d, J = 8.0 Hz), 124.2, 118.8, 115.0 (d, J = 21.4 Hz), 112.9, 81.8, 51.8, 51.2, 28.0. ¹⁹F NMR (470 MHz, CDCl₃): δ -68.4. IR: v 3435, 2930, 1764, 1707, 1600, 1510, 1368, 1234, 1157, 981, 841, 750 cm⁻¹; HRMS calcd. For $[M+Na]^+$: 390.1476. Found: 390.1483.

Compound **5g** was isolated as a colorless oil in 37% yield over 3 steps. $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.40 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.18 (d, J = 7.1 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 5.18 (s, 1H), 4.96 (s, 1H), 4.99 (s, 2H), 3.89 (s, 2H), 3.80 (s, 3H), 1.47 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃):** δ 185.5, 159.2, 153.2, 150.4, 143.7, 139.5, 135.7, 135.2, 131.6, 127.4, 124.2, 118.7, 113.5, 111.2, 81.7, 55.2, 51.8, 51.2, 28.1. **IR:** v 3454, 2978, 2932, 1763, 1706, 1600, 1513, 1368, 1249, 1156, 1033, 981, 836, 749, 576 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 402.1676 Found: 402.1669.

Compound **5h** was isolated as a colorless oil in 87% yield over 3 steps. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (**400 MHz, CDCl₃**): δ 7.39 (d, J = 8.3 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 4.74 (s, 1H), 4.70 (s, 1H), 4.49 (s, 2H), 3.82 (s, 2H), 2.30 (s, 3H), 1.67 (s, 3H), 1.48 (s, 9H). ¹³C NMR (**101 MHz, CDCl₃**): δ 185.3, 153.4, 149.2, 141.4, 138.9, 136.8, 133.2, 128.8, 124.7, 110.8, 81.4, 53.9, 50.0, 28.1, 19.9, 16.9. **IR:** v 2976, 2922, 1761, 1706, 1577, 1497, 1389, 1366, 1242, 1154, 1088, 979, 764 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 302.1751 Found: 302.1749.

Compound **5i** was isolated as a colorless oil in 60% yield over 3 steps. $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹H NMR (**400** MHz, CDCl₃): δ 7.67 (s, 1H), 7.17 (d, J = 1.3 Hz, 1H), 4.80 – 4.71 (m, 1H), 4.67 (s, 1H), 4.53 (s, 2H), 3.86 (s, 2H), 1.69 (s, 3H), 1.50 (s, 9H). ¹³C NMR (**101** MHz, CDCl₃): δ 183.6, 152.9, 151.2, 141.8, 141.0, 137.0, 136.7, 123.6, 118.9, 110.6, 82.3, 54.0, 50.7, 28.0, 19.9. IR: v 2977, 2930, 1766, 1713, 1594, 1446, 1366, 1275, 1155, 1071, 980, 764, 749 cm⁻¹; HRMS calcd. For [M+Na]⁺: 344.1024 Found: 344.1028.

Compound **5j** was isolated as a colorless oil in 78% yield over 3 steps. $R_f = 0.4$ (acetone/Hexane=1/5). ¹H NMR (**400 MHz, CDCl₃**): δ 7.53 (dd, J = 8.1, 7.3 Hz, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.30 (s, 1H), 4.76 (s, 1H), 4.72 (s, 1H), 4.50 (s, 2H), 3.97 (s, 2H), 2.15 (s, 3H), 1.67 (s, 3H). ¹³C NMR (**101 MHz, CDCl₃**): δ 185.5, 170.0, 151.4, 140.5, 136.3, 135.1, 125.7, 121.0, 112.2, 53.9, 51.8, 22.5, 20.0. **IR**: v 3005, 1762, 1665, 1596, 1477, 1377, 1275, 1260, 764, 750 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 230.1176 Found: 230.1179.

Compound **5k** was isolated as a colorless oil in 85% yield over 3 steps. $R_f = 0.4$ (acetone/Hexane=1/5). **1H NMR (400 MHz, CDCl₃):** δ 7.54 (dd, J = 8.1, 7.3 Hz, 1H), 7.38 (d, J = 7.3 Hz, 1H), 7.29 (s, 1H), 5.78 (ddt, J = 17.2, 10.6, 5.5 Hz, 1H), 5.18 – 5.03 (m, 2H), 4.53 (d, J = 5.5 Hz, 2H), 3.99 (s, 2H), 2.13 (s, 3H). **13C NMR (101 MHz, CDCl₃):** δ 185.5, 169.8, 151.6,

136.3, 135.1, 133.0, 126.0, 121.3, 117.1, 51.9, 51.3, 22.6. **IR:** v 2922, 1762, 1668, 1596, 1478, 1375, 1275, 1139, 970, 750, 570 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 216.1019 Found: 216.1015.

Compound **5m** was isolated as a colorless oil in 88% yield over 3 steps. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ (reported as a E/Z mixture) 7.53 – 7.40 (m, 2H), 7.19 (td, J = 7.1, 1.4 Hz, 1H), 5.59 – 5.29 (m, 2H), 4.63 – 4.57 (m, 0.4H), 4.48 (dt, J = 5.6, 1.3 Hz, 1.6H), 3.93 – 3.85 (m, 2H), 1.64 – 1.57 (m, 3H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ (reported as a E/Z mixture) 185.52, 185.46, 153.2, 150.6, 150.5, 139.5, 139.1, 135.9, 135.84, 135.82, 135.7, 127.8, 126.6, 126.51, 126.48, 124.1, 123.6, 118.7, 118.4, 81.6, 81.5, 51.2, 51.1, 50.7, 46.2, 28.2, 28.1, 17.7, 13.0. IR: v 2975, 2927, 1763, 1704, 1599, 1580, 1477, 1366, 1308, 1232, 1159, 1138, 974 cm⁻¹; HRMS calcd. For [M+H]⁺: 288.1594; Found: 288.1591.

Compound **5n** was isolated as a colorless oil in 80% yield over 3 steps. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (**400** MHz, CDCl₃): δ 7.45 (d, J = 4.4 Hz, 2H), 7.22 – 7.16 (m, 1H), 5.45 – 5.37 (m, 1H), 4.43 (s, 2H), 3.89 (s, 2H), 1.94 – 1.82 (m, 4H), 1.56 – 1.50 (m, 2H), 1.48 (s, 9H), 1.47 – 1.43 (m, 2H). ¹³C NMR (**101** MHz, CDCl₃): δ 185.6, 153.5, 150.5, 139.6, 135.8, 135.8, 133.7, 123.8, 122.6, 118.5, 81.4, 54.3, 51.2, 28.1, 26.0, 24.9, 22.5, 22.3. IR: v 3450, 2976, 2928, 1764, 1704, 1634, 1478, 1366, 1234, 1157, 1137, 980 cm⁻¹; HRMS calcd. For [M+H]⁺: 328.1907; Found: 328.1903.

e) Synthesis of compound 51:

Procedure (step 1):

To a 8 mL flamed-dried vial equipped with a stir bar was added 6 (156.2 mg, 1 mmol, 1.0 equiv.), TsNH₂ (205.4 mg, 1.2 mmol, 2.4 equiv.), [Pd(allyl)Cl]₂ (36.6 mg, 0.10 mmol, 20 mol%), Xantphos (173. mg, 0.30 mmol, 60 mol%) and Cs₂CO₃ (488.7 mg, 1.5 mmol, 3.0 equiv.). Then the vial was loosely capped and transferred into a nitrogen-filled glovebox and 1,4-dioxane (4 mL) was added to the mixture before the vial was tightly capped and transferred out. The system was then heated to 100 °C overnight. Upon completion, the reaction was cooled to room temperature and filtered through a pad of celite. The filtrate was concentrated under reduced pressure and the crude product was dissolved in DMF (10 mL). NaH (20.0 mg, 0.5 mmol, 2 equiv.) was added to the mixture, followed by allyl bromide (121.0 mg, 1.0 mmol, 2.0 equiv.). The mixture was stirred overnight at room temperature. Upon completion, the reaction was quenched with water and extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was was purified by silica gel flash column chromatography (EtOAc/Hexane=1/3) to afford compound 51-1 as a colorless oil in 47% yield (88 mg).

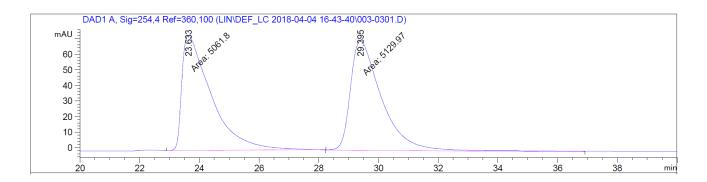
Compound **51-I** was isolated as a colorless oil in 47% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR** (**500 MHz, CDCl₃**): δ 7.60 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 7.7 Hz, 2H), 7.15 (d, J = 7.6

Hz, 1H), 7.10 (d, J = 7.3 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 5.41 (t, J = 6.7 Hz, 1H), 5.37 (s, 1H), 5.27 (d, J = 1.3 Hz, 1H), 4.09 (d, J = 6.7 Hz, 2H), 3.33 (s, 6H), 3.32 (s, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 142.8, 142.8, 141.5, 141.2, 137.6, 133.6, 130.5, 129.3, 127.1, 126.4, 123.0, 117.2, 106.1, 52.0, 47.6, 41.5, 21.5. IR: v 3278, 2935, 2831, 1639, 1599, 1451, 1328, 1238, 1160, 1104, 1061, 1034, 850, 791, 664, 550 cm⁻¹; HRMS calcd. For [M+H]⁺: 374.1421; Found: 374.1417.

Procedure (step 2):

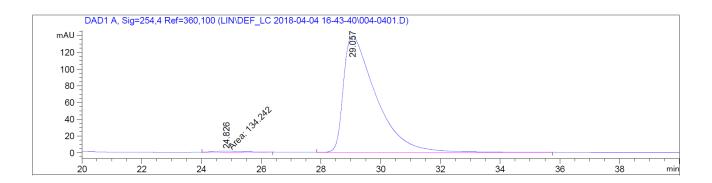
Compound 51-I (136 mg, 0.36 mmol, 1.0 equiv.) was dissolved in 6 mL tetrahydrofuran and transferred to a 20 mL vial charged with a stir bar. While stirring, 2 mL of 1M HCl aqueous solution was added to the mixture. After stirring for 1 h at room temperature, saturated NaHCO₃ aqueous solution was added dropwisely to quench the reaction. The mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was purified by silica gel flash column chromatography (EtOAc/Hexane=1/5) to afford compound 51 as a colorless oil in 98% yield (117.5 mg).

Compound **51** was isolated as a colorless oil in 98% yield from **51-I**. $R_f = 0.3$ (EtOAc/Hexane=1/3). **1H NMR (400 MHz, CDCl₃):** δ 7.64 (dd, J = 8.2, 0.8 Hz, 1H), 7.54 (dd, J = 8.2, 7.2 Hz, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.33 (dd, J = 7.2, 0.7 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 5.69 (ddt, J = 17.1, 10.3, 5.8 Hz, 1H), 5.09 (dq, J = 17.2, 1.6 Hz, 1H), 5.00 (dq, J = 10.3, 1.4 Hz, 1H), 4.49 (dt, J = 5.8, 1.6 Hz, 2H), 3.80 (s, 2H), 2.39 (s, 3H). ¹³C **NMR (101 MHz, CDCl₃)**: δ 184.4, 150.8, 144.0, 141.2, 136.3, 134.4, 132.9, 132.6, 129.5, 128.0, 127.3, 121.1, 118.3, 52.2, 51.2, 21.6. **IR:** v 2924, 1766, 1595, 1473, 1354, 1164, 1090, 973, 814, 748, 662, 545 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 328.1002 Found: 328.1003.


3.4.3 Procedure for C-C bond activation and characterization of compounds 8 to 8l

Procedure:

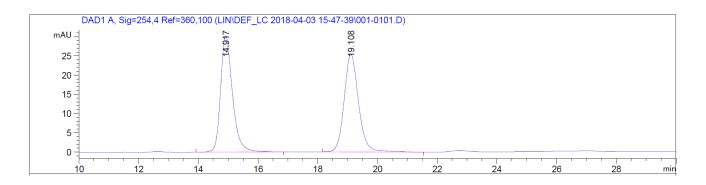
In a nitrogen filled glove box, a 4 mL vial was charged with the benzocyclobutenone substrates (5 to 51, 0.1 mmol), Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg). After adding 1 mL 1,4-dioxane, the vial was capped and the solution was maintained at certain temperature (90 °C or 110 °C) for 12h. Upon completion, it was cooled to room temperature and the solvent was removed by rotavap under reduced pressure. The crude product was directly purified by silica gel flash chromatography to yield 8 to 81.


8 (518.2 mg) was isolated as a white solid in 95% yield. Melting Point: 115-116 °C. Rh(COD)₂BF₄ (3 mol%, 0.06 mmol, 24.4 mg) and (R)-DTBM-segphos (3.6 mol%, 0.072 mmol, 84.9 mg) were used and the reaction was maintained at 90 °C. R_f= 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.20 (m, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 4.41 (s, 1H), 3.79 – 3.63 (m, 1H), 3.63 – 3.54 (m, 1H), 3.52 (s, 2H), 2.95 (dd, J = 16.2, 5.3 Hz, 1H), 2.30 (dd, J = 16.2, 12.3 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 208.7, 152.4, 130.3, 129.1, 121.0, 112.9, 81.1, 55.3, 44.0, 42.2, 34.0, 28.4. IR: v 2975, 1700, 1462, 1389, 1351, 1252, 1161, 1135, 948, 856, 784, 762, 735 cm⁻¹; HRMS calcd. For [M+Na]⁺: 296.1257. Found: 296.1254. Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 24.8 min, t_{major}= 29.0 min. [α]_D^{21.5} = -139 (c= 2.20, CHCl₃) at 97.5 % e.e.

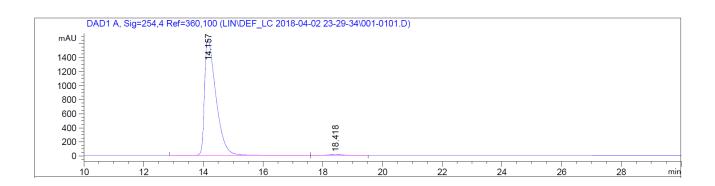
Racemic Sample 8

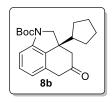
Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	23.633	MM	1.1375	5061.79883	74.16519	49.6656
2	29.395	MM	1.2159	5129.96924	70.31551	50.3344

Enantiomeric Sample 8


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	24.826	MM	1.4330	134.24211	1.56128	1.2608
2	29.057	BB	1.1122	1.05130e4	139.02695	98.7392

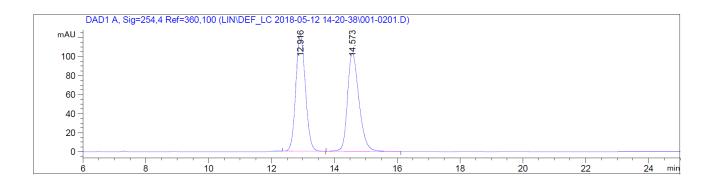
8a (25.0 mg) was isolated as a white solid in 88% yield. Melting Point: 154-156 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.73 – 7.20 (m, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 7.5 Hz, 1H), 3.99 (s, 1H), 3.71 (d, *J* = 10.8 Hz, 1H), 3.60 (d, *J* = 21.7 Hz, 1H), 3.50 (d, *J* = 21.7 Hz, 1H), 2.80 (d, *J* = 15.6 Hz, 1H), 2.52 (d, *J* = 15.6 Hz, 1H), 1.58 (s, 9H), 1.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 208.8, 152.6, 140.5, 129.5, 129.0, 121.3, 113.1, 81.7, 62.3, 50.9, 40.7, 39.7, 28.4, 25.8. IR: v 3444, 2975, 1700, 1621, 1475, 1389, 1337, 1162, 1136, 855, 750 cm⁻¹; HRMS calcd. For [M+Na]⁺: 310.1414. Found: 310.1415.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 18.4 min, t_{major} = 14.1 min. [α] $_{D}$ ^{21.5} = -91.2 (c= 1.04, CHCl₃) at 98 % e.e.

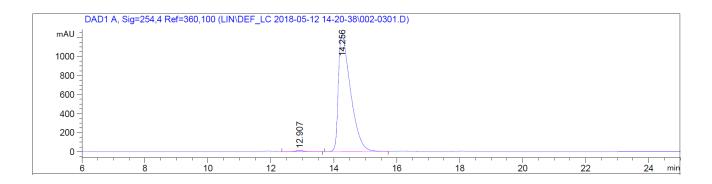

Racemic Sample 8a

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	용	
1	14.917	BB	0.4215	838.23456	30.22814	49.6893	
2	19.108	BB	0.5101	848.71851	25.38437	50.3107	

Enantiomeric Sample 8a



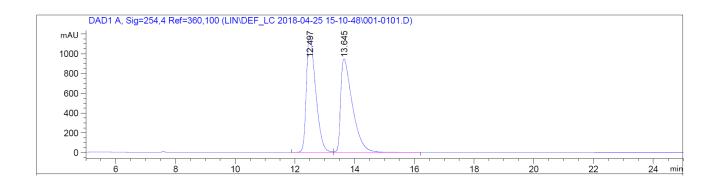
8b (26.6 mg) was isolated as a colorless oil in 78% yield. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.75 – 7.19 (m, 1H), 7.18 (s, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 4.13 (m, 1H), 3.65 (d, *J* = 21.9 Hz, 1H), 3.57 (d, *J* = 11.4 Hz, 1H), 3.45 (d, *J* = 22.0 Hz, 1H), 2.92 (d, *J* = 15.7 Hz, 1H), 2.46 (d, *J* = 15.7 Hz, 1H), 1.88 (d, *J* = 8.4 Hz, 1H), 1.77 (dtd, *J* = 11.0, 7.3, 3.0 Hz, 1H), 1.66 – 1.49 (m, 12H), 1.44 – 1.29 (m, 2H), 1.28 – 1.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 209.4, 152.0, 140.5, 129.9, 129.0, 121.4, 120.9, 113.0, 81.8, 57.0, 50.2, 48.3, 45.5, 41.1, 28.4, 28.4, 27.6, 27.2, 25.1, 24.8. IR: v 3442, 2957, 1699, 1618, 1461, 1388, 1275, 1162, 1137, 750, 521 cm⁻¹; HRMS calcd. For [M+H]⁺: 342.2064. Found: 342.2062.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 12.9 min, t_{major} = 14.2 min. [α] $_{D}$ ^{21.5} = -68.4 (c= 0.70, CHCl₃) at 98% e.e.

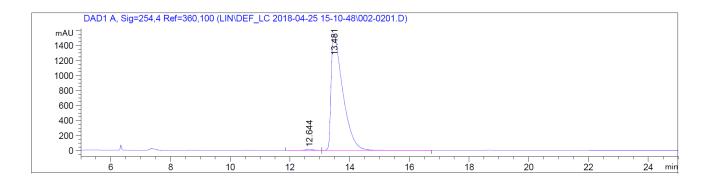
Racemic Sample 8b

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	12.916	BB	0.3328	2595.53271	121.70525	49.6854
2	14.573	BB	0.3905	2628.40674	103.41245	50.3146

Enantiomeric Sample 8b


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	12.907	BB	0.3278	206.30048	9.79096	0.6215
2	14.256	BB	0.4024	3.29901e4	1224.24268	99.3785

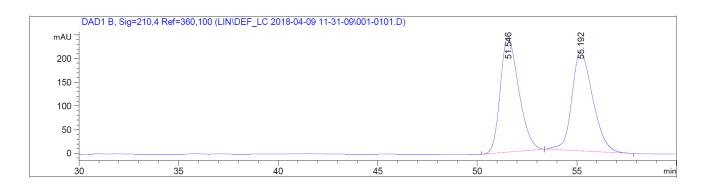
8c (22.0 mg) was isolated as a white solid in 71% yield. Melting Point: 122-124 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.71 – 7.16 (m, 1H), 7.19 (s, 1H), 6.78 (d, *J* = 7.6 Hz, 1H), 4.17 (m, 1H), 3.63 (d, *J* = 22.0 Hz, 1H), 3.54 – 3.38 (m, 2H), 3.03 (d, *J* = 15.7 Hz, 1H), 2.41 (d, *J* = 15.7 Hz, 1H), 1.71 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.59 (m, 9H), 0.97 (d, *J* = 6.7 Hz, 3H), 0.77 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 209.3, 152.0, 130.1, 129.0, 121.5, 112.9, 80.9, 55.8, 48.8, 46.2, 41.0, 34.4, 28.4, 17.5, 16.8. IR: v 3441, 1699, 1635, 1457, 1386, 1275, 1260, 1139, 750 cm⁻¹; HRMS calcd. For [M+Na]⁺: 338.1727. Found: 338.1716.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 99:1, 1 mL/min, 254 nm), t_{minor} = 12.6 min, t_{maior} = 13.5 min. [α] $_{D}$ ^{21.5} = -63.5 (c= 0.95, CHCl₃) at 98% e.e.

Racemic Sample 8c

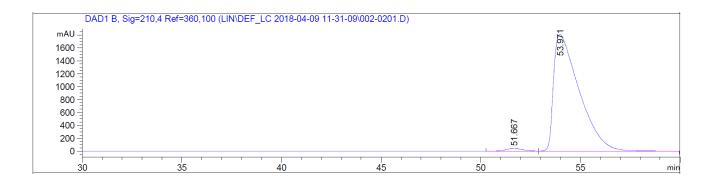
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	12.497	BV	0.3366	2.57255e4	1178.75208	49.7820
2	13.645	VB	0.4073	2.59508e4	948.21454	50.2180

Enantiomeric Sample 8c

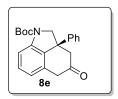


8d (28.5 mg) was isolated as a white solid in 71% yield. Melting Point: 95-97 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.5 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.74 – 7.19 (m, 1H), 7.20 (t, J = 7.7 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.07 (m, 1H), 3.70 – 3.54 (m, 4H), 3.40 (d, J = 21.6 Hz, 1H), 2.96 (d, J = 16.1 Hz, 1H), 2.40 (d, J = 16.1 Hz, 1H), 1.57 (s, 9H), 0.81 (s, 9H), -0.06 (d, J = 3.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 208.1,

152.5, 131.5, 129.4, 121.2, 112.9, 80.9, 68.3, 58.3, 46.6, 41.4, 28.4, 25.8, 18.3, -5.7, -5.9. **IR:** v 2929, 2885, 2856, 1705, 1459, 1388, 1347, 1256, 1163, 1137, 1099, 838, 782 cm⁻¹; **HRMS** calcd. For [M+K]⁺: 456.1967. Found: 456.1980.

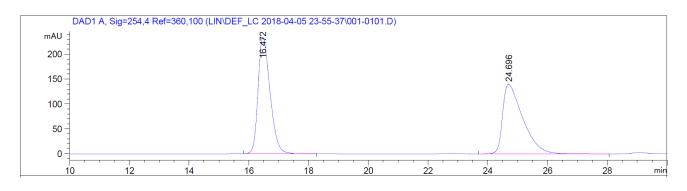

Chiral HPLC (Chiralpak IF, hexane:isopropanol = 99:1, 0.3 mL/min, 210 nm), t_{minor} = 51.7 min, t_{major} = 54.0 min. [α] $_D^{21.5}$ = -28.2 (c= 1.31, CHCl₃) at 97% e.e.

Racemic Sample 8d

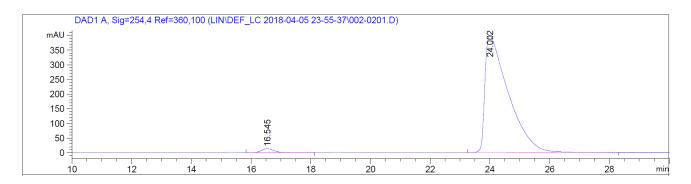


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	51.546	BB	1.0015	1.55841e4	241.28061	50.5455
2	55.192	BB	1.1354	1.52477e4	207.47116	49.4545

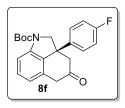
Enantiomeric Sample 8d


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	51.667	BB	0.8834	2295.71265	40.49353	1.4071
2	53.971	BBA	1.2752	1.60853e5	1802.44165	98.5929

8e (26.8 mg) was isolated as a colorless oil in 78% yield. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.30 (m, 1H), 7.34 – 7.24 (m, 3H), 7.24 – 7.16 (m, 1H), 7.03 (d, J = 6.3 Hz, 2H), 6.85 (d, J = 7.6 Hz, 1H), 4.28 (m, 1H), 4.07 (d, J = 10.9 Hz, 1H), 3.48 (d, J = 16.2 Hz, 1H), 3.41 (d, J = 21.0 Hz, 1H), 3.24 (d, J = 21.0 Hz, 1H), 2.75 (d, J = 16.2 Hz, 1H), 1.66 – 1.43 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 208.1, 152.3, 143.3, 140.9, 132.5, 130.8, 129.7, 129.0, 127.3, 126.1, 121.4, 113.2, 81.1, 64.5, 51.0, 47.1, 41.8, 28.4. IR: v 3443, 1699, 1634, 1474, 1385, 1275, 1162, 1137, 750, 701 cm⁻¹; HRMS calcd. For [M+H]⁺: 350.1751. Found: 350.1745.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 16.5 min, t_{major} = 24.0 min. $[\alpha]_D^{21.5}$ = -118.9 (c= 0.95, CHCl₃) at 97% e.e.

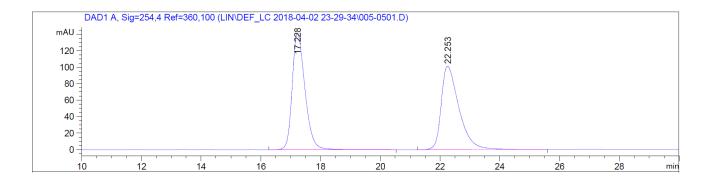
Racemic Sample 8e



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	16.472	BB	0.4282	6509.98535	234.23973	49.8598
2	24.696	BB	0.7025	6546.60889	139.75941	50.1402

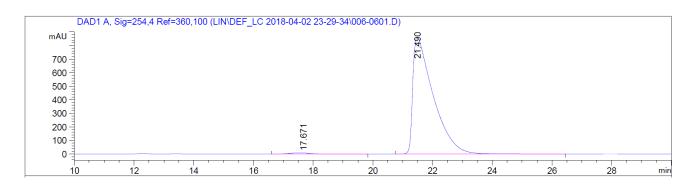
Enantiomeric Sample 8e

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.545	BB	0.4256	371.59622	13.39684	1.6909
2	24.002	BB	0.7812	2.16053e4	398.07251	98.3091

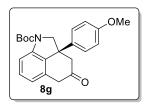


8f (34.0 mg) was isolated as a colorless oil in 93% yield. Melting Point: 97-99 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (R)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used

and the reaction was maintained at 90 °C. $R_f = 0.3$ (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.90 – 7.25 (m, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.07 – 6.90 (m, 4H), 6.86 (d, J = 7.5 Hz, 1H), 4.22 (m, 1H), 4.05 (d, J = 10.9 Hz, 1H), 3.45 (s, 1H), 3.40 (d, J = 5.7 Hz, 1H), 3.22 (d, J = 21.1 Hz, 1H), 2.76 (d, J = 16.1 Hz, 1H), 1.64 – 1.42 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 207.8, 161.8 (d, J = 247.0 Hz), 152.3, 139.0, 129.9, 127.9 (d, J = 8.2 Hz), 121.6, 115.9 (d, J = 21.4 Hz), 113.3, 64.2, 51.1, 46.2, 41.7, 28.4. ¹⁹F NMR (470 MHz, CDCl₃): δ -68.4. IR: v 3442, 1635, 1507, 1474, 1386, 1337, 1275, 1161, 1138, 750, 516 cm⁻¹; HRMS calcd. For [M+Na]⁺: 390.1476. Found: 390.1464.

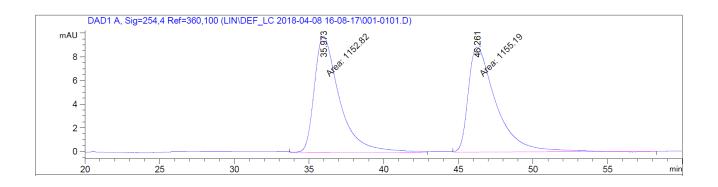

Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 17.7 min, t_{major} = 21.5 min. $[\alpha]_D^{21.5}$ = -89.9 (c= 0.88, CHCl₃) at 98% e.e.

Racemic Sample 8f

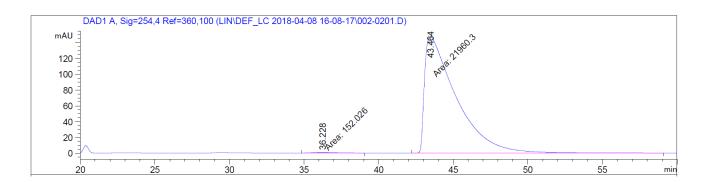


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	17.228	BB	0.4557	4224.91748	141.76109	50.1852
2	22.253	BB	0.6238	4193.74316	101.54588	49.8148

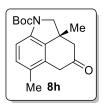
Enantiomeric Sample 8f



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	17.671	BB	0.6837	401.00906	7.90668	0.9663
2	21.490	BB	0.6845	4.10976e4	861.54816	99.0337

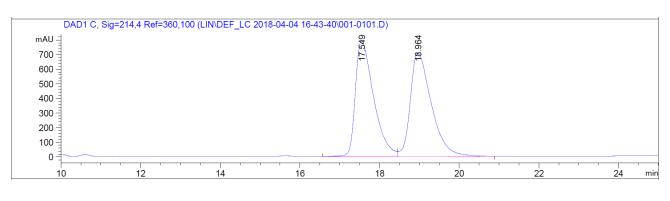

8g (31.3 mg) was isolated as a colorless oil in 76% yield. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.3 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.23 (m, 1H), 7.29 (t, J = 7.7 Hz, 1H), 6.93 (d, J = 8.3 Hz, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.79 (d, J = 8.8 Hz, 2H), 4.24 (m, 1H), 4.03 (d, J = 10.9 Hz, 1H), 3.75 (s, 3H), 3.53 – 3.33 (m, 2H), 3.24 (d, J = 21.0 Hz, 1H), 2.73 (d, J = 16.1 Hz, 1H), 1.62 – 1.36 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 208.2, 158.6, 152.3, 141.0, 135.3, 132.8, 130.8, 129.6, 127.3, 121.4, 114.3, 113.2, 81.0, 64.6, 55.2, 51.1, 46.3, 41.8, 28.4. IR: v 3442, 2056, 1699, 1621, 1511, 1474, 1386, 1337, 1275, 1256, 1162, 1137, 1029, 833, 750 cm⁻¹; HRMS calcd. For [M+Na]⁺: 402.1676. Found: 402.1673. Chiral HPLC (Chiralpak ID, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 36.2 min, t_{major}= 43.5 min. [α]_D^{21.5} = -104.9 (c= 1.06, CHCl₃) at 99% e.e.

Racemic Sample 8g

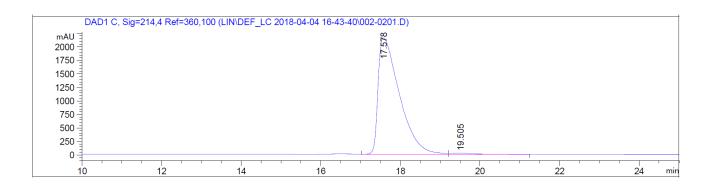


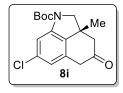
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	35.973	MM	1.9547	1152.81665	9.82926	49.9486
2	46.261	MM	2.1657	1155.18762	8.89003	50.0514

Enantiomeric Sample 8g


Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
						I
1	36.228	MM	2.2703	152.02570	1.11607	0.6875
2	43 464	MM	2 4780	2 19603e4	147 70340	99 3125

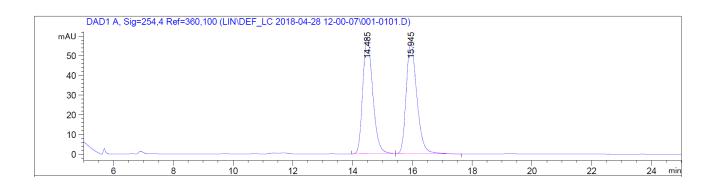
8h (28.5 mg) was isolated as a white solid in 95% yield. Melting Point: 140-142 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.11 (m, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 3.98 (m, 1H), 3.69 (d, *J* = 10.7 Hz, 1H), 3.48 (d, *J* = 22.0 Hz, 1H), 3.40 (d, *J* = 22.1 Hz, 1H), 2.78 (d, *J* = 15.1 Hz, 1H), 2.54 (d, *J* = 15.1 Hz, 1H), 2.18 (s, 3H), 1.57 (s, 9H), 1.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 208.9, 152.6, 129.5, 127.8, 112.8, 80.8, 62.0, 50.8, 39.5, 38.9, 29.7, 28.4, 25.9, 17.7. IR: v 3443, 2974, 1699, 1626, 1484, 1387, 1369, 1338, 1257, 1159, 1137, 816, 751 cm⁻¹; HRMS calcd. For [M+H]⁺: 324.1570. Found: 324.1568.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 99:1, 1 mL/min, 214 nm), t_{minor} = 19.5 min, t_{major} = 17.6 min. $[\alpha]_D^{21.5}$ = -88.7 (c= 1.19, CHCl₃) at 98% e.e.


Racemic Sample 8h

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	17.549	BV	0.4790	2.51541e4	795.31250	49.2640
2	18.964	VB	0.5527	2.59057e4	708.27655	50.7360

Enantiomeric Sample 8h



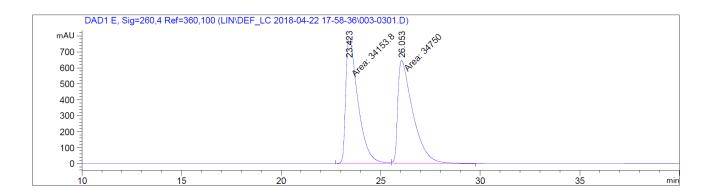
8i (24.0 mg) was isolated as a colorless oil in 76% yield. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (R)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.80 – 7.19 (m, 1H), 6.78 (d, J = 1.2 Hz, 1H), 3.98 (m, 1H), 3.73 (d, J = 10.8 Hz, 1H), 3.57 (d, J = 21.8 Hz, 1H), 3.45 (d, J = 21.8 Hz, 1H), 2.80 (d, J = 15.6 Hz, 1H), 2.50 (d, J = 15.6 Hz, 1H), 1.58 (s, 9H), 1.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 207.7, 166.8, 152.4, 141.6, 121.1, 113.8, 109.6, 50.7, 40.4, 29.7, 28.4, 25.8. IR: v 3400, 2975, 1705, 1618, 1479, 1437, 1371, 1337, 1275, 1157, 1139, 859, 751, 592 cm⁻¹; HRMS calcd. For [M+Na]⁺: 344.1024. Found: 344.1027.

Chiral HPLC (Chiralpak IF, hexane:isopropanol = 99:1, 1 mL/min, 254 nm), t_{minor} = 15.8 min, t_{major} = 14.2 min. $[\alpha]_D^{21.5}$ = -69.8 (c= 0.43, CHCl₃) at 98% e.e.

Racemic Sample 8i

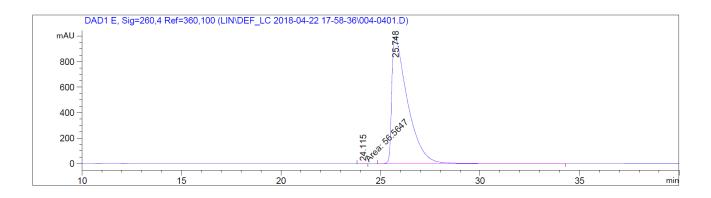
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	14.485	BB	0.3618	1377.60852	59.13932	49.7598
2	15.945	BB	0.3870	1390.90991	55.76566	50.2402

Enantiomeric Sample 8i

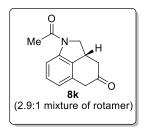


Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	14.226	BB	0.3681	1.26037e4	528.79913	98.8756
2	15.832	BB	0.3521	143.32492	6.38088	1.1244

8j (20.7 mg, 2.8:1 mixture of rotamer) was isolated as a colorless oil in 90% yield. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (R)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (acetone/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ (major rotamer) 7.95 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 3.96 (d, J = 9.9 Hz, 1H), 3.90 (d, J = 10.0 Hz, 1H), 3.66 – 3.57 (m, 1H), 3.52 (d, J = 21.8 Hz, 1H), 2.83 (d, J = 15.5 Hz, 1H), 2.55 (d, J = 15.6 Hz, 1H), 2.24 (s, 3H), 1.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (all the peaks observed) 208.3, 168.8, 140.3, 134.4, 131.0, 129.32, 129.27, 128.97, 126.7, 122.8, 122.5, 115.4, 112.8, 63.8, 62.5, 50.7, 50.6, 40.7, 40.6, 39.0, 25.9, 25.3, 24.1, 23.9. IR: v 3442, 2064, 1636, 1472, 1399, 1276, 750, 569 cm⁻¹; HRMS calcd. For [M+H][†]: 230.1176. Found: 230.1176.


Chiral HPLC (Chiralpak IF, hexane:isopropanol = 85:15, 1 mL/min, 260 nm), t_{minor} = 24.1 min, t_{major} = 25.7 min. $[\alpha]_D^{21.5}$ = -135.3 (c= 0.91, CHCl₃) at 99% e.e.

Racemic Sample 8j



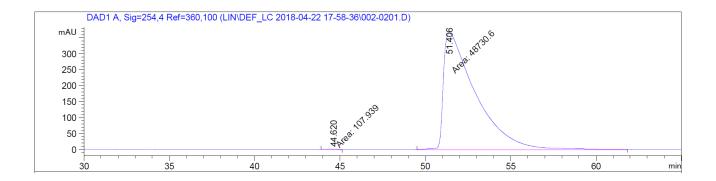
Peak	RetTime 7	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	90	
		-					
1	23.423 N	MF	0.7142	3.41538e4	796.97180	49.5674	
2	26.053 H	FM	0.8927	3.47500e4	648.80408	50.4326	

Enantiomeric Sample 8j

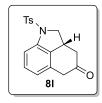
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	9
		-				
1	24.115	MM	0.5411	56.56469	1.74236	0.1032
2	25.748	BB	0.7927	5.47543e4	993.96942	99.8968

8k (17.2 mg, 2.9:1 mixture of rotamer) was isolated as a white solid in 80% yield. Melting Point: 154-156 °C. Rh(COD)₂BF₄ (5 mol%, 0.005 mmol, 2.1 mg) and (*R*)-DTBM-segphos (6 mol%, 0.006 mmol, 7.1 mg) were used and the reaction was maintained at 90 °C. R_f = 0.4 (acetone/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ (major rotamer) 7.94 (d, J = 8.0 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 4.41 (t, J = 9.1 Hz, 1H), 3.88 – 3.78 (m, 1H), 3.74 (t, J = 9.6 Hz, 1H), 3.55 (s, 2H), 2.97 (dd, J = 16.1, 5.3 Hz, 1H), 2.33 (dd, J = 16.1, 12.0 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (all the peaks observed) 208.2, 168.5, 141.1, 131.7, 130.4, 130.2, 129.3, 129.0, 122.4, 122.1, 115.2, 112.5, 56.4, 55.6, 43.8, 43.7, 42.1, 35.0,

33.6, 29.7, 24.2, 23.9. **IR:** v 3440, 2050, 1635, 1472, 1416, 1275, 749, 578 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 216.1019. Found: 216.1010.

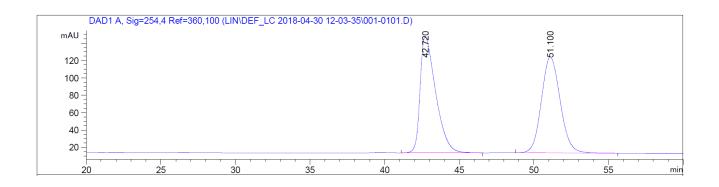

Chiral HPLC (Chiralpak IF, hexane:isopropanol = 85:15, 1 mL/min, 254 nm), t_{minor} = 44.6 min, t_{major} = 51.4 min. [α] $_{D}^{21.5}$ = -177.9 (c= 0.95, CHCl₃) at 99% e.e.

Racemic Sample 8k

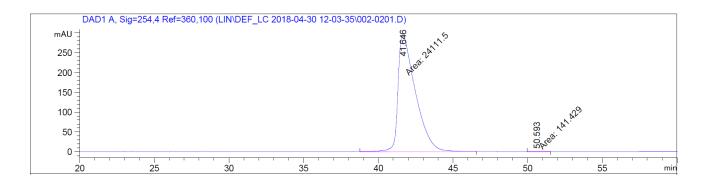


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	43.109	BB	1.2759	1.21946e4	136.54861	49.9805
2	53.318	BB	1.6252	1.22041e4	106.79595	50.0195

Enantiomeric Sample 8k

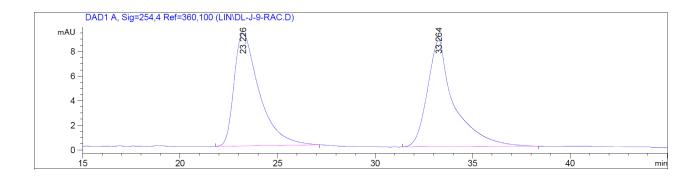

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	44.620	MM	1.0347	107.93900	1.73873	0.2210
2	51.406	MM	2.2181	4.87306e4	366.16602	99.7790

8l (32.0 mg) was isolated as white solid in 91% yield. Melting Point: 127-129 °C. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.2 mg) and (R)-DTBM-segphos (12 mol%, 0.012 mmol, 14.2 mg) were used and the reaction was maintained at 90 °C for 12 h then at 110 °C for 12 h. R_f = 0.2 (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.47 (dd, J = 8.1, 0.8 Hz, 1H), 7.26 (d, J = 1.4 Hz, 2H), 7.25 – 7.18 (m, 1H), 6.81 (dd, J = 7.6, 0.9 Hz, 1H), 4.40 (dd, J = 9.9, 8.4 Hz, 1H), 3.55 – 3.47 (m, 1H), 3.46 – 3.44 (s, 2H), 3.38 (dd, J = 10.7, 10.0 Hz, 1H), 2.85 (dd, J = 16.1, 5.4 Hz, 1H), 2.38 (s, 3H), 2.11 (dd, J = 16.1, 12.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 207.7, 144.4, 140.6, 133.7, 130.9, 129.8, 129.4, 127.3, 122.5, 113.3, 57.8, 43.6, 41.8, 34.7, 21.6. IR: v 3441, 2064, 1707, 1635, 1456, 1353, 1275, 1165, 1095, 750, 660, 581, 543 cm⁻¹; HRMS calcd. For [M+H]⁺: 328.1002. Found: 328.1002.

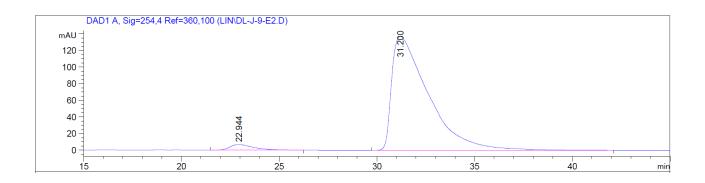

Chiral HPLC (Chiralpak IF, hexane:isopropanol = 85:15, 1 mL/min, 254 nm), t_{minor} = 50.6 min, t_{major} = 41.6 min. [α] $_{D}^{21.5}$ = -134.5 (c= 0.62, CHCl₃) at 99% e.e.

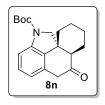
Racemic Sample 81

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	42.720	BB	1.1037	9729.44531	134.22519	50.1079
2	51.100	BB	1.3663	9687.53711	110.55894	49.8921


Enantiomeric Sample 81

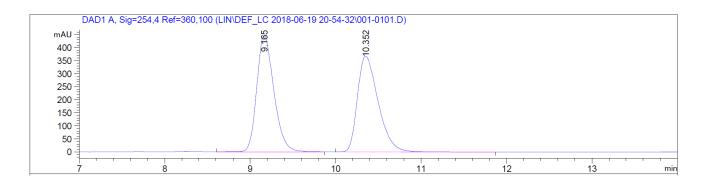
Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	9
1	41.646	MM	1.3625	2.41115e4	294.94385	99.4169
2	50.593	MM	1.3283	141.42949	1.77458	0.5831


8m (17.1 mg) was isolated as a white solid in 75% yield. Melting Point: 155-159 °C. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.2 mg) and (R)-DTBM-segphos (12 mol%, 0.012 mmol, 14.2 mg) were used and the reaction was maintained at 90 °C for 12 h. R_f = 0.6 (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.76-7.20 (m, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.88 – 6.69 (m, 1H), 4.38 (br, 1H), 3.64 (t, J = 10.5 Hz, 1H), 3.57 (s, 2H), 3.40 – 3.24 (m, 1H), 2.35 (dq, J = 12.0, 6.6 Hz, 1H), 1.58 (s, 9H), 1.23 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 210.0, 152.4, 130.4, 129.0, 120.9, 112.8, 81.0, 54.7, 48.4, 41.8, 40.6, 28.4, 12.4. IR: v 2966, 2925, 2853, 1702, 1475, 1462, 1389, 1354, 1162, 1136, 776 cm⁻¹; HRMS calcd. For [M+Na]⁺: 310.1414. Found: 310.1406. Chiral HPLC (Chiralpak IF, hexane:isopropanol = 98:2, 1 mL/min, 254 nm), t_{minor} = 22.9 min, t_{major} = 31.2 min. [α]_D^{21.5} = -114.8 (c= 1.08, CHCl₃) at 94% e.e.

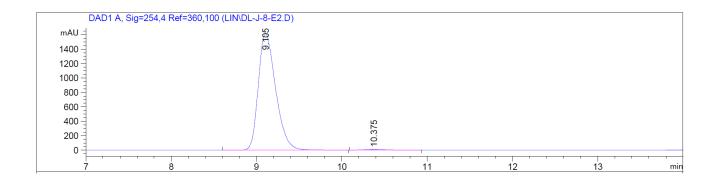

Racemic Sample 8m

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	૭
1	23.226	BB	1.2728	819.87750	9.17241	49.9569
2	33.264	BB	1.2774	821.29224	8.66851	50.0431

Enantiomeric Sample 8m



8n (26.7 mg) was isolated as a colorless oil in 82% yield. Rh(COD)₂BF₄ (10 mol%, 0.01 mmol, 4.2 mg) and (R)-DTBM-segphos (12 mol%, 0.012 mmol, 14.2 mg) were used and the reaction was maintained at 90 °C for 12 h. R_f = 0.6 (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.76 – 7.21 (m, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.47 – 4.08 (m, 1H), 3.65 – 3.47 (m, 3H), 2.55 – 2.42 (m, 1H), 2.41 – 2.33 (m, 1H), 1.82 – 1.73 (m, 1H), 1.71 – 1.64 (m, 1H), 1.60 (s, 9H), 1.55 – 1.48 (m, 1H), 1.41 – 1.19 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 210.1, 152.6, 139.9, 135.3, 129.8, 128.8, 121.1, 112.9, 80.9, 58.7, 52.9, 42.6, 41.2, 32.4, 28.4, 22.6, 22.0, 21.2. IR: v 2924, 2853, 1705, 1620, 1460, 1387, 1351, 1162, 1138, 1081, 777 cm⁻¹; HRMS calcd. For [M+Na]⁺: 350.1727. Found: 350.1722.


Chiral HPLC (Chiralpak IA, hexane:isopropanol = 99:1, 1 mL/min, 254 nm), t_{minor} = 10.4 min, t_{major} = 9.1 min. [α] $_{D}^{21.5}$ = -97.6 (c= 2.67, CHCl₃) at 98% e.e.

Racemic Sample 8n

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	9.165	BB	0.2130	6234.80469	446.14462	50.2401
2	10.352	BB	0.2606	6175.20605	366.40610	49.7599

Enantiomeric Sample 8n

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	9.105	BB	0.2165	2.27470e4	1613.47888	99.2855
2	10.375	BB	0.2537	163.69363	10.06678	0.7145

3.4.4 Procedure and characterization data for the total synthesis of (–)-cycloclavine

Procedure:

A 20 mL vial with a stir bar was charged with **8** (672 mg, 2.46 mmol, 1.0 equiv.) and TsN_3 (581.9 mg, 2.95 mmol, 1.2 equiv.) in CH₃CN (10 mL). After adding DBU (441 μ L, 2.95 mmol, 1.2 equiv.) at 0 °C, the vial was capped and the mixture was stirred at 0 °C for 2 h. Upon completion, it was warmed up to room temperature and the solvent was removed by rotavap under reduced pressure. The crude product was purified by silica gel flash chromatography (heaxane:ethyl acetate= 10:1) to yield the desired product **3**.

Compound **3** was isolated as a bright yellow solid in 92% yield (670 mg). Melting Point: 148-150 °C (decomposed). $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.02 (m, 1H), 7.23 (t, J = 7.9 Hz, 1H), 6.61 (d, J = 7.9 Hz, 1H), 4.40 (m, 1H), 3.74 – 3.49 (m, 2H), 2.93 (dd, J = 15.6, 5.3 Hz, 1H), 2.50 (dd, J = 15.5, 13.1 Hz, 1H), 1.57 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 192.3, 152.3, 130.0, 124.5, 122.0, 113.2, 111.5, 81.2, 70.3, 55.4, 42.1, 34.2, 28.4. IR: v 3453, 2084, 1698, 1651, 1475, 1459, 1391, 1356, 1275, 1261, 1163, 1141, 859, 750 cm⁻¹; HRMS calcd. For [M+H]⁺: 300.1343. Found: 300.1339. [α]_D^{21.5} = -167.8 (c= 1.57, CHCl₃).

Procedure²¹:

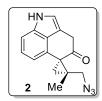
To a 50 mL flamed-dried Schlenk flask equipped with a stir bar and a nitrogen-filled balloon was added Rh₂(*R*-DOSP)₄ (12.7 mg, 0.0068 mmol, 1 mol%) and 3-chloro-2-methyl-1-propene (604.9 mg, 6.68 mmol, 10 equiv.) in hexane (15 mL). The system was cooled to -40 °C before **3** (200 mg, 0.67 mmol, 1.0 equiv.) in hexane/toluene (4 mL/2 mL) was added using slow-addition pump with a speed of 2 mL/h. After the addition of **3** was finished, the system was kept at -40 °C for another 20 min. After the starting material was fully consumed, the reaction solution was directly loaded to a silica gel column while the temperature was still below 0 °C. The crude product was purified by silica gel flash column chromatography (EtOAc/Hexane=1/50) to afford compound **9b** as a white solid in 85% yield. Two diastereomers of compound **9b** were isolated through silica gel chromatography, with a ratio of 5.8:1. The relative stereochemistry of the major isomer was determined by X-ray crystallagraphy.

Compound **9b** (major diastereomer) was isolated as a white solid in 73% yield (175.8 mg). Melting Point: 183-184 °C (decomposed). $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹H NMR (**400 MHz, CDCl₃):** δ 7.74 – 7.22 (m, 1H), 7.19 (t, J = 7.8 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 4.46 (s, 1H), 3.93 (d, J = 1.8 Hz, 1H), 4.46 (s, 1H), 3.93 (d, J = 1.8 Hz, 1H), 4.46 (s, 1H), 4.46 (s, 1H), 3.93 (d, J = 1.8 Hz, 1H), 4.46 (s, 1H), 3.93 (d, J = 1.8 Hz, 1H), 4.46 (s, 1H), 4.46 (s, 1H), 3.93 (d, J = 1.8 Hz, 1H), 4.46 (s, 1H), 4.46 (s

8.0 Hz, 1H), 3.75 (d, J = 11.4 Hz, 1H), 3.68 – 3.55 (m, 2H), 3.07 (dd, J = 17.7, 5.8 Hz, 1H), 2.29 (dd, J = 17.7, 11.9 Hz, 1H), 2.12 (d, J = 5.4 Hz, 1H), 1.67 (d, J = 5.4 Hz, 1H), 1.57 (s, 9H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 206.7, 152.4, 141.1, 133.7, 128.5, 118.9, 113.0, 81.5, 54.9, 48.8, 44.7, 43.0, 39.9, 32.7, 28.4, 22.9, 17.2. IR: v 3444, 2977, 2098, 1694, 1617, 1462, 1390, 1350, 1258, 1142, 750 cm⁻¹; HRMS calcd. For [M+H]⁺: 362.1517. Found: 362.1513. [α]_D^{21.5} = -132.3 (c= 1.10, CHCl₃).

Compound **9b** (minor diastereomer) was isolated as a colorless oil in 12% yield (30.3 mg). The stereochemistry was tentatively assigned based on preliminary experimental results. After subjecting this minor diastereomer to further deprotection and oxidation of the indoline to the indole, we found the compound obtained is likely the diastereomer of compound **2** according to the ¹H-NMR spectrum. This experiment suggested that the diastereomer observed here should arise from the stereocenter close to the methyl and methylene chloride group. $R_f = 0.3$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.77 – 7.25 (m, 1H), 7.20 (t, J = 7.8 Hz, 1H), 6.59 (d, J = 7.7 Hz, 1H), 4.42 (s, 1H), 3.93 – 3.75 (m, 1H), 3.60 (dd, J = 13.9, 10.3 Hz, 2H), 3.21 (d, J = 11.3 Hz, 1H), 3.00 (dd, J = 17.8, 5.1 Hz, 1H), 2.35 (dd, J = 18.1, 11.9 Hz, 1H), 1.99 (d, J = 5.6 Hz, 1H), 1.64 (d, J = 5.6 Hz, 1H), 1.57 (s, 9H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 206.0, 152.4, 134.1, 131.0, 128.8, 118.4, 113.2, 80.8, 54.8, 50.5, 44.9, 44.1, 37.3, 33.2, 28.4, 21.1, 16.5. IR: v 2976, 2930, 1698, 1477, 1462, 1391, 1351, 1322, 1256, 1166, 1143, 736 cm⁻¹; HRMS calcd. For [M+H]⁺: 362.1517. Found: 362.1516.

Procedure:

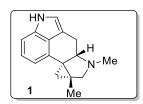

A 20 mL vial with a stir bar was charged with **9b** (150 mg, 0.41 mmol, 1.0 equiv. the major diastereomer) and NaN₃ (161.7 mg, 2.49 mmol, 6.0 equiv.) in DMF (10 mL). The vial was capped and the mixture was stirring at 60 °C for 5 h. Upon completion, it was cooled down to room temperature and the reaction mixture was quenched with brine (10 mL). The mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The combined organic extract was concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography (heaxane:ethyl acetate= 20:1) to yield the desired product **10**.

Compound **10** was isolated as a white solid in 93% yield (140 mg). Melting Point: 116-118 °C. $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.75 – 7.22 (m, 1H), 7.18 (t, J = 7.7 Hz, 1H), 6.54 (d, J = 7.8 Hz, 1H), 4.47 (s, 1H), 3.96 – 3.76 (m, 1H), 3.63 (dd, J = 11.3, 8.9 Hz, 1H), 3.55 (d, J = 12.7 Hz, 1H), 3.39 (d, J = 12.8 Hz, 1H), 3.04 (dd, J = 17.6, 5.3 Hz, 1H), 2.29 (dd, J = 17.6, 12.0 Hz, 1H), 2.00 (d, J = 5.5 Hz, 1H), 1.58 (d, J = 5.6 Hz, 9H), 1.54 (d, J = 5.5 Hz, 1H), 0.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 206.9, 152.4, 133.5, 131.7, 128.5, 118.9, 112.9, 80.8, 55.1, 44.8, 42.2, 37.8, 32.8, 28.4, 21.1, 17.8. **IR:** v 3439, 2096, 1694, 1635, 1462, 1390, 1259,

1166, 1139, 1079, 749 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 369.1921. Found: 369.1922. [α] $_D^{21.5} = -167.8$ (c= 0.87, CHCl₃).

Procedure^{25c}:

A 20 mL vial with a stir bar was charged with 10 (36.8 mg, 0.1 mmol, 1.0 equiv.) in dichloromethane (5 mL). TFA (1 mL) was added dropwisely to the stirring solution and the mixture was stirred at room temperature for 1 h. The reaction mixture was then quenched with saturated aqueous NaHCO₃ solution (10 mL) and extracted with dichloromethane (3×10 mL), washed with brine, and dried over Na₂SO₄. The combined organic extract was concentrated under reduced pressure. The crude product was transferred to a flame-dried 8 mL vial and (PhSeO)₂O (18.0 mg, 0.05 mmol, 0.5 equiv.) and indole (23.4 mg, 0.2 mmol, 2.0 equiv.) was added. The vial was loosely capped and transferred into a nitrogen-filled glovebox, where anhydrous THF (2 mL) was used to dissolve the mixture. After stirring at 55 °C for 2 h, the vial was cooled down to room temperature and the solvent was removed under reduced pressure. The crude product was purified by silica gel flash chromatography (dichloromethane:methanol= 100:0 to 100:1) to yield the desired product 2. Compound 2 is unstable even under nitrogen atmosphere at low temperature, normally directly subjected to the next step right after purification. Here we provide ¹H-NMR and ¹³C-NMR data for compound 2.

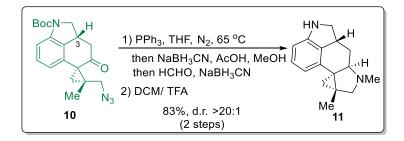


Compound **2** was isolated as a colorless oil in 79% yield over 2 steps (21.2 mg). $R_f = 0.5$ (DCM/MeOH=20/1). ¹**H NMR** (**500 MHz, CDCl₃**): δ 8.10 (s, 1H), 7.25 – 7.13 (m, 2H), 6.96 (s, 1H), 6.57 (d, J = 6.6 Hz, 1H), 4.03 (d, J = 19.5 Hz, 1H), 3.87 (d, J = 19.6 Hz, 1H), 3.59 (d, J = 12.8 Hz, 1H), 3.30 (d, J = 12.7 Hz, 1H), 2.21 – 2.12 (m, 1H), 1.56 – 1.44 (m, 1H), 1.28 (s, 3H). ¹³**C NMR** (**101 MHz, CDCl₃**): δ 204.0, 133.4, 128.5, 126.8, 123.0, 118.0, 114.8, 109.4, 108.7, 56.4, 41.8, 39.2, 36.8, 21.6, 16.6.

Procedure:

An 8 mL vial was charged with 2 (35.0 mg, 0.13 mmol, 1.0 equiv.) and PPh₃ (103.4 mg, 0.39 mmol, 3.0 equiv.). After adding THF (1 mL) inside a nitrogen-filled glovebox, the vial was capped and the mixture was stirred at 65 °C for 2 h. After that, MeOH (5 mL) was added to the solution as well as NaBH₃CN (10.3 mg, 0.16 mmol, 1.3 equiv.) and AcOH (100 μL). The mixture was then stirred for 30 min at room temperature, before HCHO (37 wt% solution in water, 270 μL) and another portion of NaBH₃CN (10.3 mg, 0.16 mmol, 1.3 equiv.) was added. The mixture was further stirred for 30 min. Upon completion, the reaction was quenched by brine (10 mL). The mixture was extracted with dichloromethane (3×10 mL), washed with brine, and dried over Na₂SO₄. The

crude product was purified by silica gel flash chromatography (dichloromethane:methanol= 100:0 to 50:1) to yield the desired natural product **1**. The characterization data of compound **1** matches the reported data^{13,14}.


Compound **1** was isolated as a white solid in 78% yield (24.3 mg). Melting Point: 158-160 °C. $R_f = 0.4$ (DCM/MeOH=20/1). ¹**H NMR (400 MHz, CDCl₃):** δ 7.92 (br, 1H), 7.14 (d, J = 8.0 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.90 (s, 1H), 6.83 (d, J = 6.9 Hz, 1H), 3.17 (d, J = 9.0 Hz, 1H), 3.14 (dd, J = 14.2, 3.2 Hz, 1H), 2.79 (dd, J = 11.5, 3.7 Hz, 1H), 2.61 (t, J = 12.2 Hz, 1H), 2.41 (d, J = 8.6 Hz, 1H), 2.37 (s, 3H), 1.69 (s, 3H), 1.61 (d, J = 3.4 Hz, 1H), 0.46 (d, J = 3.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 135.4, 133.6, 128.7, 122.9, 118.1, 113.2, 110.4, 107.9, 69.6, 65.6, 39.9, 34.4, 27.8, 24.9, 24.2, 16.5. **IR:** v 3416, 2076, 1634, 1448, 1276, 749, 616 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 261.1362. Found: 261.1360. [α]_D^{21.5} = -45.3 (c= 0.86, CHCl₃). [Reported [α]_D^{21.5} = -58.9 (c= 0.23, CHCl₃)]

Comparison of the NMR Data between Synthesized 1 and Reported 1 13,14

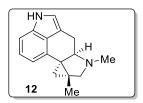
H-NMR of Synthesized 1	H-NMR of Reported 1	¹³ C-NMR of	¹³ C-NMR of
		Synthesized 1	Reported 1
7.92 (br, 1H)	7.92 (br, 1 H)	135.4	135.4
7.14 (d, J = 8.0 Hz, 1H)	7.15 (d, J = 8.4 Hz, 1H)	133.6	133.5
7.09 (t, J = 7.6 Hz, 1H)	7.10 (app t, J = 7.7 Hz, 1H)	128.7	128.7
6.90 (s, 1H)	6.91 (s, 1 H)	122.9	122.9
6.83 (d, J = 6.9 Hz, 1H)	6.84 (d, J = 7.0 Hz, 1H)	118.1	118.1
3.17 (d, J = 9.0 Hz, 1H)	3.17 (d, J = 9.1 Hz, 1H)	113.2	113.2
3.14 (dd, J = 14.2, 3.2 Hz, 1H)	3.15 (dd, J = 14.0, 4.2 Hz,	110.4	110.3
	1H)		
2.79 (dd, J = 11.5, 3.7 Hz, 1H)	$2.79 \text{ (dd, J} = 11.2, 3.5 Hz,}$	107.9	107.9
	1H)		
2.61 (t, J = 12.2 Hz, 1H)	2.61 (t, J = 12.6 Hz, 1H)	69.6	69.6

2.41 (d, J = 8.6 Hz, 1H)	2.42 (d, J = 8.4 Hz, 1H)	65.6	65.6
2.37 (s, 3H)	2.37 (s, 3 H)	39.9	39.9
1.69 (s, 3H)	1.70 (s, 3 H)	34.4	34.3
1.61 (d, J = 3.4 Hz, 1H)	1.61 (d, J = 2.8 Hz, 1H)	27.8	27.8
0.46 (d, J = 3.5 Hz, 1H)	0.46 (d, J = 3.5 Hz, 1H)	24.9	24.9
		24.2	24.2
		16.5	16.5

3.4.5 Procedure and characterization data of total synthesis of (–)-5-epi-cycloclavine

Procedure:

An 8 mL vial was charged with **10** (51.4 mg, 0.14 mmol, 1.0 equiv.) and PPh₃ (109.8 mg, 0.42 mmol, 3.0 equiv.). After adding THF (1 mL) inside a nitrogen-filled glovebox, the vial was capped and the mixture was stirred at 65 °C for 2 h. After that, MeOH (5 mL) was added to the solution as well as NaBH₃CN (13.2 mg, 0.21 mmol, 1.5 equiv.), AcOH (97 μL, 1.68 mmol, 12 equiv.). The mixture was then stirred for 30 min at room temperature, before HCHO (37 wt% solution in water, 240 μL) and another portion of NaBH₃CN (13.2 mg, 0.21 mmol, 1.5 equiv.) was added. The mixture was further stirred for 30 min. Upon completion, the reaction was quenched by brine (10 mL). The mixture was extracted with dichloromethane (3×10 mL), washed with brine, and dried over Na₂SO₄. The crude product was dissolved in 5 mL dichloromethane and 1 mL of trifluoroacetic acid was added dropwisely to the stirring solution. After the mixture was stirred for 1 h, the reaction was quenched by saturated NaHCO₃ aqueous solution (10 mL). The mixture was extracted with dichloromethane (3×10 mL), washed with brine, and dried over Na₂SO₄. The crude


product was purified by silica gel flash chromatography (dichloromethane:methanol= 100:0 to 20:1) to yield the desired product 11.

Compound 11 was isolated as a white solid in 83% yield (28.0 mg). Melting Point: 119-120 °C. R_f = 0.2 (DCM/MeOH=20/1). ¹H NMR (400 MHz, CDCl₃): δ 6.97 (td, J = 7.7, 0.9 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 6.24 (d, J = 7.7 Hz, 1H), 3.83 (t, J = 8.4 Hz, 1H), 3.34 (ddd, J = 12.1, 8.5, 4.4 Hz, 1H), 3.23 (dd, J = 10.9, 8.4 Hz, 2H), 2.51 (d, J = 4.5 Hz, 1H), 2.33 (d, J = 9.5 Hz, 1H), 2.29 – 2.23 (m, 4H), 1.58 (d, J = 4.8 Hz, 1H), 1.39 (ddd, J = 13.2, 11.9, 4.8 Hz, 1H), 1.03 (s, 3H), 0.91 (d, J = 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 149.4, 133.4, 133.3, 127.1, 113.7, 106.1, 72.5, 67.3, 55.1, 39.5, 38.8, 35.2, 34.4, 33.2, 30.7, 17.3. IR: v 3443, 2065, 1635, 1275, 1260, 764, 750, 566 cm⁻¹; HRMS calcd. For [M+H]⁺: 241.1699. Found: 241.1704. $[\alpha]_D^{21.5}$ = -138 (c= 0.71, CHCl₃).

Procedure:

To a flame-dried 8 mL vial charged with **11** (14.4 mg, 0.06 mmol, 1.0 equiv.) was added (PhSeO)₂O (10.8 mg, 0.03 mmol, 0.5 equiv.) and indole (21.1 mg, 0.18 mmol, 3.0 equiv.). The vial was loosely capped and transferred into a nitrogen-filled glovebox, where anhydrous THF (1

mL) was used to dissolve the mixture. After stirring at 55 °C for 2 h, the vial was cooled down to room temperature and the solvent was removed by rotavap under reduced pressure. The crude product was purified by silica gel flash chromatography (dichloromethane:methanol= 100:0 to 20:1) to yield the desired product **12**. The characterization data of compound **12** matches the reported data¹³.

Compound **12** was isolated as a white solid in 89% yield (12.7 mg). Melting Point: 175-176 °C (decomposed). $R_f = 0.4$ (DCM/MeOH=20/1). ¹H NMR (400 MHz, CDCI₃): δ 7.92 (br, 1H), 7.20 - 7.13 (m, 2H), 6.90 (t, J = 1.9 Hz, 1H), 6.62 (dd, J = 5.1, 2.7 Hz, 1H), 3.54 (dd, J = 11.0, 5.6 Hz, 1H), 3.08 - 2.97 (m, 2H), 2.67 (d, J = 8.8 Hz, 1H), 2.62 (ddd, J = 14.5, 11.0, 1.8 Hz, 1H), 2.51 (s, 3H), 1.59 (d, J = 4.4 Hz, 1H), 1.15 (d, J = 6.3 Hz, 4H).). ¹H NMR (400 MHz, CD₂CI₂): δ 8.05 (br, 1H), 7.18 - 7.07 (m, 2H), 6.92 (t, J = 1.8 Hz, 1H), 6.58 (dd, J = 6.4, 1.4 Hz, 1H), 3.47 (dd, J = 10.8, 5.6 Hz, 1H), 3.01 (dd, J = 14.6, 5.6 Hz, 1H), 2.98 (d, J = 8.8 Hz, 1H), 2.66 (d, J = 8.8 Hz, 1H), 2.60 (ddd, J = 14.5, 11.0, 1.8 Hz, 1H), 2.49 (s, 3H), 1.60 - 1.52 (m, 1H), 1.12 (s, 3H), 1.11 (d, J = 4.5 Hz, 1H). ¹³C NMR (101 MHz, CDCI₃): δ 133.3, 130.4, 127.4, 122.9, 118.1, 112.9, 111.6, 107.6, 62.9, 59.7, 35.8, 35.4, 33.2, 20.1, 18.6, 14.9. IR: v 3420, 1635, 1275, 1260, 764, 749, 528 cm⁻¹; HRMS calcd. For [M+H]⁺: 239.1543. Found: 239.1550. [α] ρ ^{21.5} = -42 (c= 0.64, CHCI₃).

Comparison of the NMR Data between Synthesized 12 and Reported 12¹³

H-NMR of Synthesized	H-NMR of Reported 12	¹³ C-NMR of	¹³ C-NMR of
12 (in CD ₂ Cl ₂)	(in CD ₂ Cl ₂)	Synthesized 12	Reported 12
		(in CDCl ₃)	(in CDCl ₃)
8.05 (br, 1H)	8.04 (br s, 1 H)	133.3	133.3
7.18 – 7.07 (m, 2H)	7.15-7.10 (m, 2 H)	130.4	130.5

6.92 (t, J = 1.8 Hz, 1H)	6.92 (dd, J = 1.8 Hz, 1H)	127.4	127.4
6.58 (dd, J = 6.4, 1.4 Hz,	6.58 (dd, J = 6.6, 0.6 Hz, 1H)	122.9	122.9
1H)			
3.47 (dd, J = 10.8, 5.6 Hz,	3.47 (dd, J = 10.8, 6.0 Hz, 1H)	118.1	118.1
1H)			
3.01 (dd, J = 14.6, 5.6 Hz,	3.01 (dd, J = 14.4, 6.0 Hz, 1H)	112.9	112.9
1H)			
2.98 (d, J = 8.8 Hz, 1H)	2.98 (d, J = 8.4 Hz, 1H)	111.6	111.7
2.66 (d, J = 8.8 Hz, 1H)	2.66 (d, J = 9.0 Hz, 1H)	107.6	107.6
2.60 (ddd, J = 14.5, 11.0,	$2.59 \text{ (ddd, J} = 16.2, 11.4, 1.8 Hz,}$	62.9	62.9
1.8 Hz, 1H)	1H)		
2.49 (s, 3H)	2.48 (s, 3 H)	59.7	59.8
1.60 – 1.52 (m, 1H)	1.57 (d, J = 3.0 Hz, 1H)	35.8	35.8
1.12 (s, 3H)	1.12 (s, 3 H)	35.4	35.4
1.11 (d, $J = 4.5$ Hz, 1H)	1.11 (d, J = 4.2 Hz, 1H)	33.2	33.2
		20.1	20.1
		18.6	18.6
		14.9	14.9

3.4.6 X-ray data

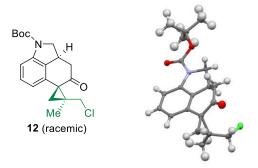


Table 3.5 Crystal Data and Structure Refinement for 12 (Racemic)

Empirical formula	C ₂₀ H ₂₄ ClNO ₃
Formula weight	361.85
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	9.2522(8)

Table 3.5 Continued Crystal Data and Structure Refinement for **12** (Racemic)

b/Å	10.3247(9	9)
0/11	10.521/(.	<i>,</i>

α/° 90

 β /° 90

 γ /° 90

Volume/Å³ 1865.8(3)

Z 4

 $\rho_{cale}g/cm^3$ 1.288

 μ/mm^{-1} 0.223

F(000) 768.0

Crystal size/mm³ $0.04 \times 0.03 \times 0.03$

Radiation $MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 4.17 to 56.626

Index ranges $-12 \le h \le 8, -13 \le k \le 10, -26 \le l \le 26$

Reflections collected 13956

Independent reflections 4589 [$R_{int} = 0.0471$, $R_{sigma} = 0.0647$]

Data/restraints/parameters 4589/0/230

Goodness-of-fit on F^2 1.041

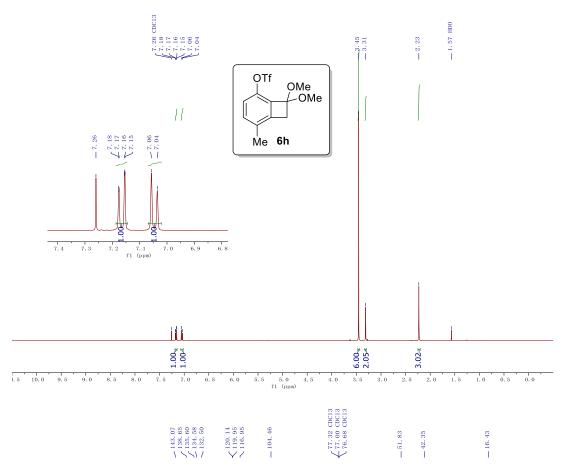
Final R indexes [I>= 2σ (I)] $R_1 = 0.0485$, $wR_2 = 0.1097$

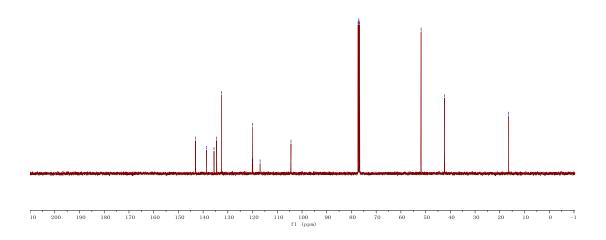
Final R indexes [all data] $R_1 = 0.0689$, $wR_2 = 0.1175$

Largest diff. peak/hole / e $Å^{-3}$ 0.36/-0.36

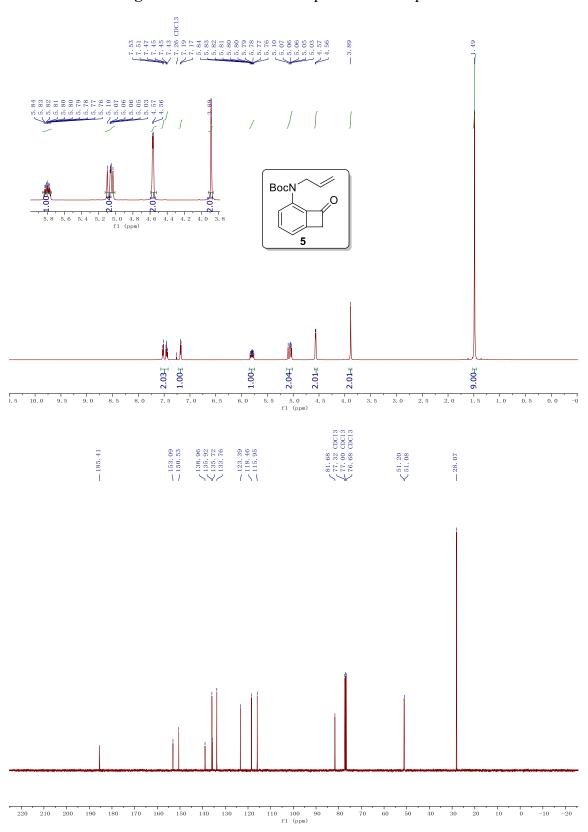
Flack parameter -0.09(5)

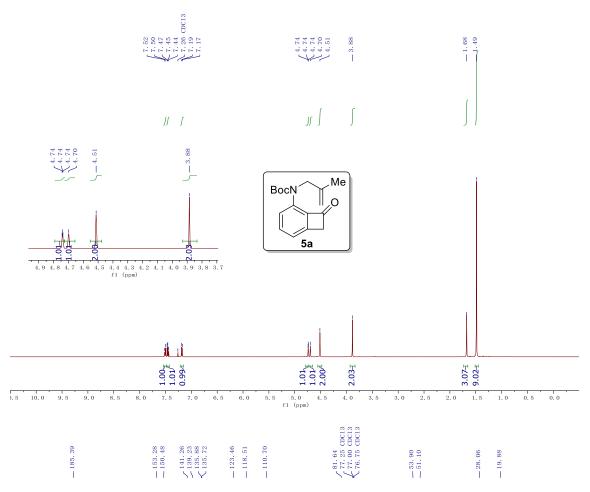
3.5 References

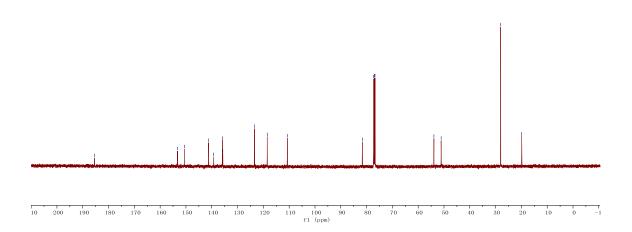

- (1) For selected reviews, see: (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (b) Jones, W. D. Nature 1993, 364, 676. (c) Murakami, M.; Ito, Y., Cleavage of Carbon—Carbon Single Bonds by Transition Metals. In Top. Organomet. Chem., 1999; Vol. 3, pp 97. (d) Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870. (e) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (f) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (g) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (h) Murakami, M.; Matsuda, T. Chem. Comm. 2011, 47, 1100. (i) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740. (j) Korotvicka, A.; Necas, D.; Kotora, M. Curr. Org. Chem. 2012, 16, 1170. (k) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (1) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567. (m) Dong, G., C-C bond activation. Springer-Verlag: Berlin, 2014; Vol. 346. (n) Murakami, M.; Ishida, N., Fundamental Reactions to Cleave Carbon-Carbon σ-Bonds with Transition Metal Complexes. In Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 1. (o) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (p) Chen, P.-h.; Dong, G. Chem. Eur. J. **2016**, 22, 18290. (g) Chen, P.-h.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Cat. **2017**, 7, 1340. (r) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404. (s) Kim, D.-S.; Park, W.-J.; Jun, C.-H. Chem. Rev. 2017, 117, 8977.
- (2) For a recent review, see: (a) Murakami, M.; Ishida, N., Total Syntheses of Natural Products and Biologically Active Compounds by Transition-Metal-Catalyzed C-C Cleavage. In Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 253. For selected examples, see: (b) South, M. S.; Liebeskind, L. S. J. Am. Chem. Soc. 1984, 106, 4181. (c) Wender, P. A.; Fuji, M.; Husfeld, C. O.; Love, J. A. Org. Lett. 1999, I, 137. (d) Trost, B. M.; Waser, J.; Meyer, A. J. Am. Chem. Soc. 2007, 129, 14556. (e) Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421. (f) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874. (g) Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964. (h) Liang, Y.; Jiang, X.; Yu, Z.-X. Chem. Comm. 2011, 47, 6659. (i) Evans, P. A.; Inglesby, P. A.; Kilbride, K. Org. Lett. 2013, 15, 1798. (j) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 10733. (k) Sun, T.; Zhang, Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T. Angew. Chem. Int. Ed. 2018, 57, 2859.
- (3) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 7567.
- (4) Souillart, L.; Parker, E.; Cramer, N., *Asymmetric Transformations via C-C Bond Cleavage*. In C-C Bond Activation, Dong, G., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 163.
- (5) For asymmetric C-C activation reactions via oxidative addition, see: (a) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. (b) Parker, E.; Cramer, N. Organometallics 2014, 33, 780. (c) Souillart, L.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9640. (d) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001. (e) Zhou, X.; Dong, G. J. Am. Chem. Soc. 2015, 137, 13715. (f) Deng, L.; Xu, T.; Li, H.; Dong, G. J. Am. Chem. Soc. 2016, 138, 369.

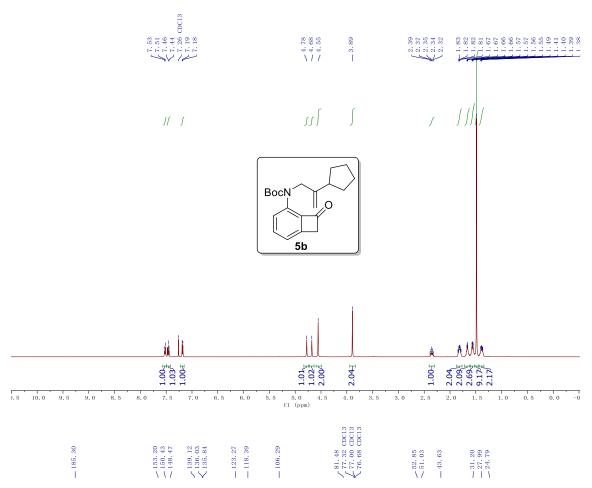

- (6) For asymmetric C-C activation reactions via β-carbon elimination, see: (a) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006, 8, 3379. (b) Seiser, T.; Cramer, N. Angew. Chem. Int. Ed. 2008, 47, 9294. (c) Seiser, T.; Roth, O. A.; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 6320. (d) Shigeno, M.; Yamamoto, T.; Murakami, M. Chem. Eur. J. 2009, 15, 12929. (e) Seiser, T.; Cramer, N. Chem. Eur. J. 2010, 16, 3383. (f) Seiser, T.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 10163. (g) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem. Int. Ed. 2012, 51, 2485. (h) Zhou, X.; Dong, G. Angew. Chem. Int. Ed. 2016, 55, 15091.
- (7) Stauffacher, D.; Niklaus, P.; Tscherter, H.; Weber, H. P.; Hofmann, A. *Tetrahedron* **1969**, *25*, 5879.
- (8) Furuta, T.; Koike, M.; Abe, M. Agric. Biol. Chem. 1982, 46, 1921.
- (9) (a) MacLeod, R. M.; Lehmeyer, J. E. Cancer Research 1973, 33, 849. (b) Berde, B.; Stürmer, E., Introduction to the Pharmacology of Ergot Alkaloids and Related Compounds as a Basis of Their Therapeutic Application. In Ergot Alkaloids and Related Compounds, Berde, B., Schild, H. O., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1978; pp 1. (c) Horwell, D. C. Tetrahedron 1980, 36, 3123. (d) Lyons, P. C.; Plattner, R. D.; Bacon, C. W. Science **1986**, 232, 487. (e) de Groot, A. N. J. A.; van Dongen, P. W. J.; Vree, T. B.; Hekster, Y. A.; van Roosmalen, J. Drugs 1998, 56, 523. (f) Somei, M.; Yokoyama, Y.; Murakami, Y.; Ninomiya, I.; Kiguchi, T.; Naito, T., Recent synthetic studies on the ergot alkaloids and related compounds. In The Alkaloids: Chemistry and Biology, Academic Press: 2000; Vol. 54, pp 191. (g) Boichenko, L. V.; Boichenko, D. M.; Vinokurova, N. G.; Reshetilova, T. A.; Arinbasarov, M. U. Microbiology 2001, 70, 306. (h) Schardl, C. L.; Panaccione, D. G.; Tudzynski, P., Chapter 2 Ergot Alkaloids – Biology and Molecular Biology. In The Alkaloids: Chemistry and Biology, Cordell, G. A., Ed. Academic Press: 2006; Vol. 63, pp 45. (i) Schiff, P. L. Am. J. Pharm. Educ. 2006, 70, 98. (j) Liu, Q.; Jia, Y. Org. Lett. 2011, 13, 4810. (k) Wallwey, C.; Li, S.-M. Nat. Prod. Rep. 2011, 28, 496. (1) McCabe, S. R.; Wipf, P. Org. Bio. Chem. 2016, 14, 5894.
- (10) Kçrber, K.; Song, D.; Rheinheimer, J.; Kaiser, F.; Dickhaut, J.; Narine, A.; Culbertson, D. L.; Thompson, S.; Rieder, J. WO2014096238 A1, **2014**.
- (11) Incze, M.; Dörnyei, G.; Moldvai, I.; Temesvári-Major, E.; Egyed, O.; Szántay, C. *Tetrahedron* **2008**, *64*, 2924.
- (12) (a) Jabre, N. D.; Watanabe, T.; Brewer, M. Tetrahedron Lett. 2014, 55, 197. (b) Wang, W.; Lu, J.-T.; Zhang, H.-L.; Shi, Z.-F.; Wen, J.; Cao, X.-P. J. Org. Chem. 2014, 79, 122. (c) Netz, N.; Opatz, T. J. Org. Chem. 2016, 81, 1723. (d) Chen, J.-Q.; Song, L.-L.; Li, F.-X.; Shi, Z.-F.; Cao, X.-P. Chem. Comm. 2017, 53, 12902. (e) Chaudhuri, S.; Ghosh, S.; Bhunia, S.; Bisai, A. Chem. Comm. 2018, 54, 940.
- (13) Petronijevic, F. R.; Wipf, P. J. Am. Chem. Soc. 2011, 133, 7704.
- (14) McCabe, S. R.; Wipf, P. Angew. Chem. Int. Ed. 2017, 56, 324.
- (15) Yoshida, S.; Uchida, K.; Igawa, K.; Tomooka, K.; Hosoya, T. Chem. Comm. 2014, 50, 15059.

- (16) For selected reviews, see: (a) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (c) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125. (d) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101. (e) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (f) S., S. D.; L., B. S. Angew. Chem. Int. Ed. 2008, 47, 6338.
- (17) Chen, P. H.; Savage, N. A.; Dong, G. Tetrahedron 2014, 70, 4135.
- (18) (a) Davies, H. M. L.; Antoulinakis, E. G. *Org. React.* **2001**, *57*, 1. (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* **2003**, *103*, 977. (c) Reissig, H.-U.; Zimmer, R. *Chem. Rev.* **2003**, *103*, 1151. (d) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. *Synthesis* **2014**, *46*, 979.
- (19) (a) Denton, J. R.; Davies, H. M. L. *Org. Lett.* **2009**, *11*, 787. (b) Lindsay, V. N. G.; Nicolas, C.; Charette, A. B. *J. Am. Chem. Soc.* **2011**, *133*, 8972.
- (20) Wolfgang, K. Eur. J. Org. Chem. 2002, 2193.
- (21) Davies, H. M. L.; Nagashima, T.; Klino, J. L. Org. Lett. 2000, 2, 823.
- (22) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378.
- (23) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. *J. Am. Chem. Soc.* **2011**, *133*, 19198.
- (24) (a) Feng, P.; Fan, Y.; Xue, F.; Liu, W.; Li, S.; Shi, Y. Org. Lett. **2011**, 13, 5827. (b) Hou, S. H.; Tu, Y. Q.; Liu, L.; Zhang, F. M.; Wang, S. H.; Zhang, X. M. Angew. Chem. Int. Ed. **2013**, 52, 11373.
- (25) (a) Barton, D. H. R.; Lusinchi, X.; Milliet, P. *Tetrahedron Lett.* **1982**, *23*, 4949. (b) Ninomiya, I.; Hashimoto, C.; Kiguchi, T.; Barton, D. H. R.; Lusinchi, X.; Milliet, P. *Tetrahedron Lett.* **1985**, *26*, 4187. (c) Ninomiya, I.; Kiguchi, T.; Hashimoto, C.; Barton, D. H. R.; Lusinchi, X.; Milliet, P. *Tetrahedron Lett.* **1985**, *26*, 4183.


3.6 NMR Spectra







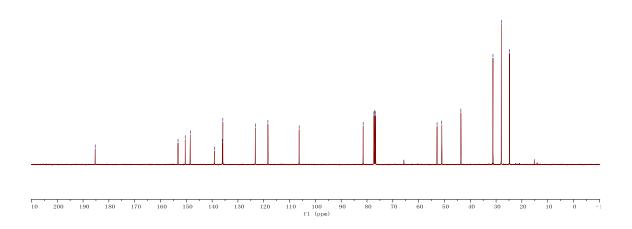
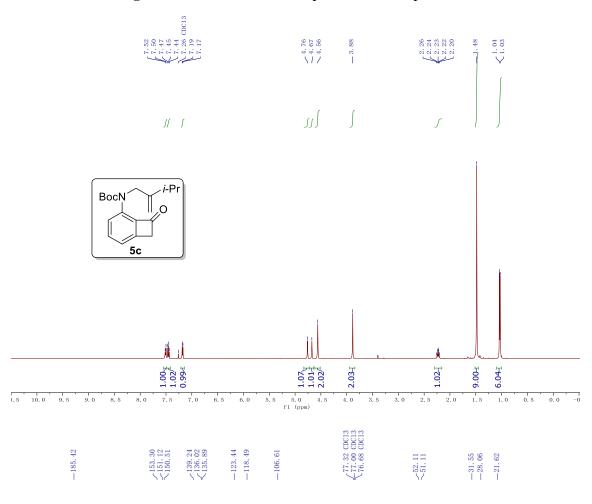



Figure 3.5 ¹H and ¹³C NMR spectrum of compound 5c

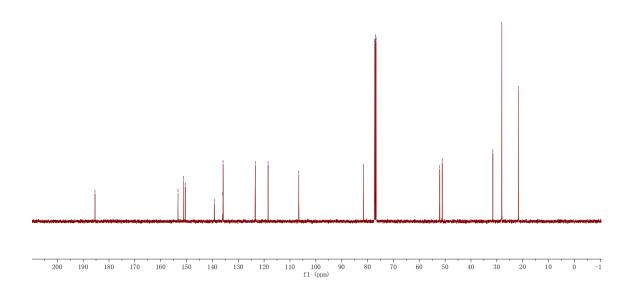
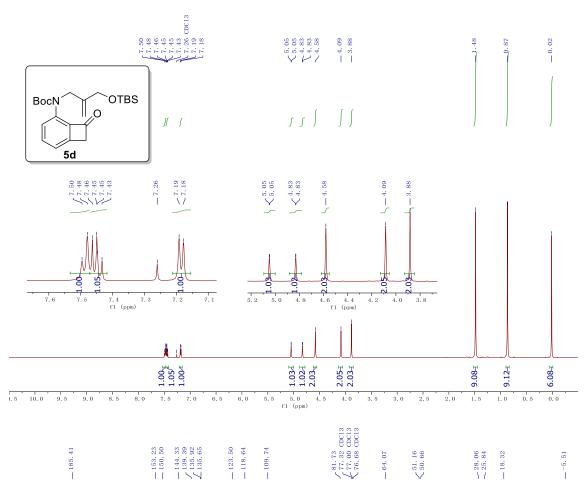



Figure 3.6 ¹H and ¹³C NMR spectrum of compound 5d

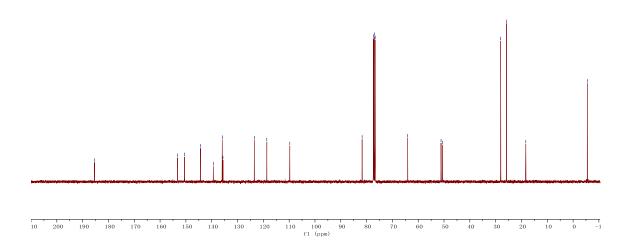
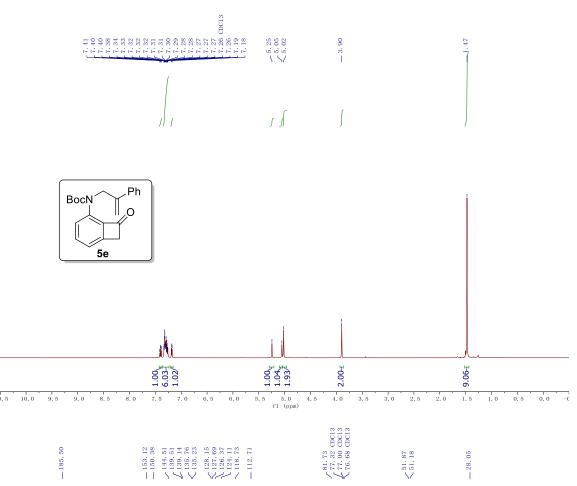



Figure 3.7 ¹H and ¹³C NMR spectrum of compound 5e

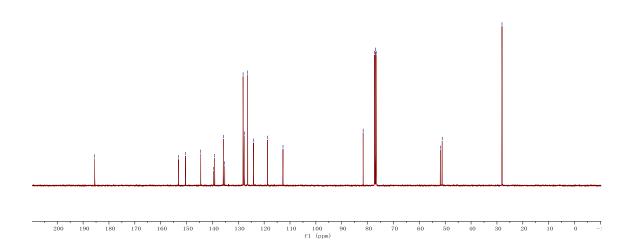
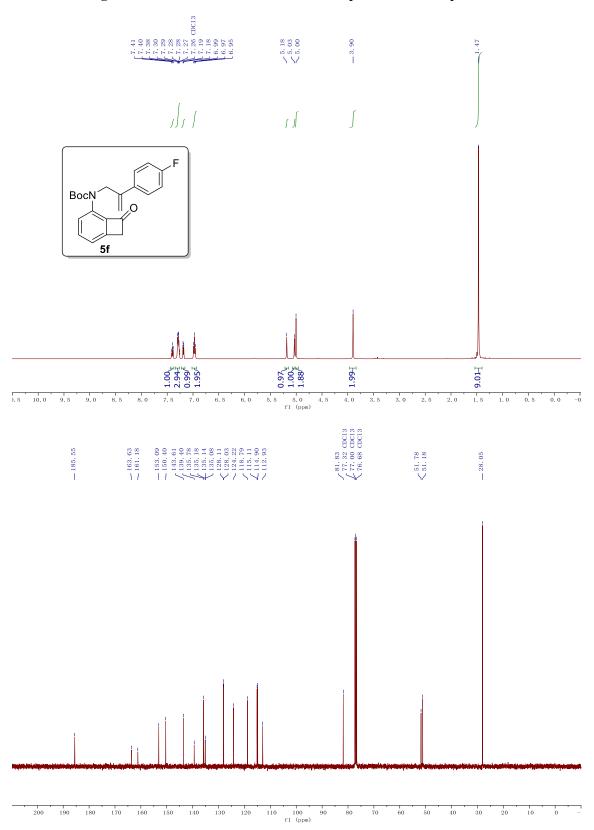
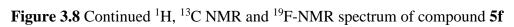




Figure 3.8 ¹H, ¹³C NMR and ¹⁹F-NMR spectrum of compound 5f

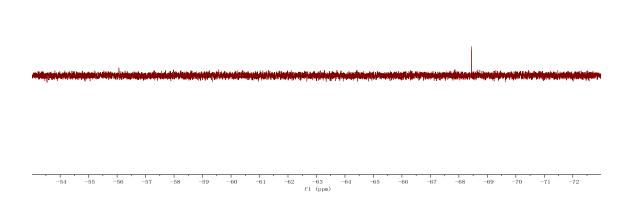
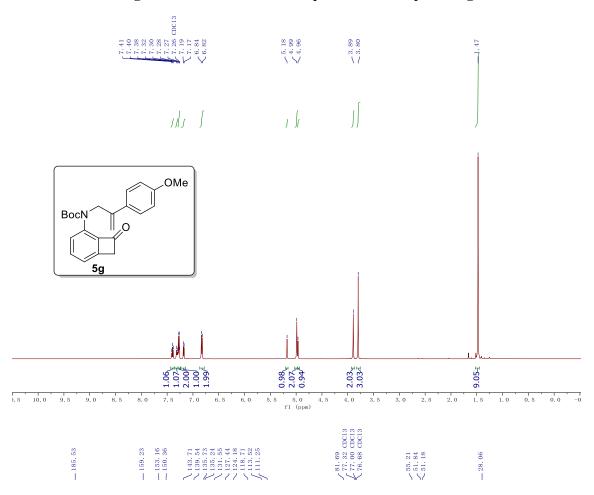
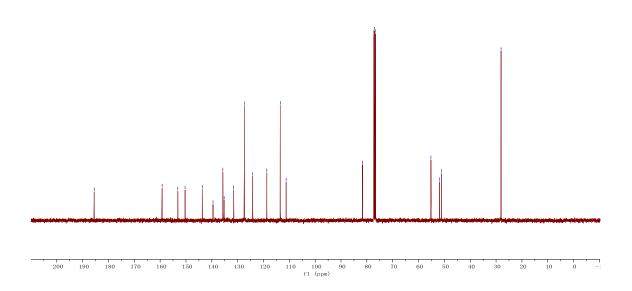
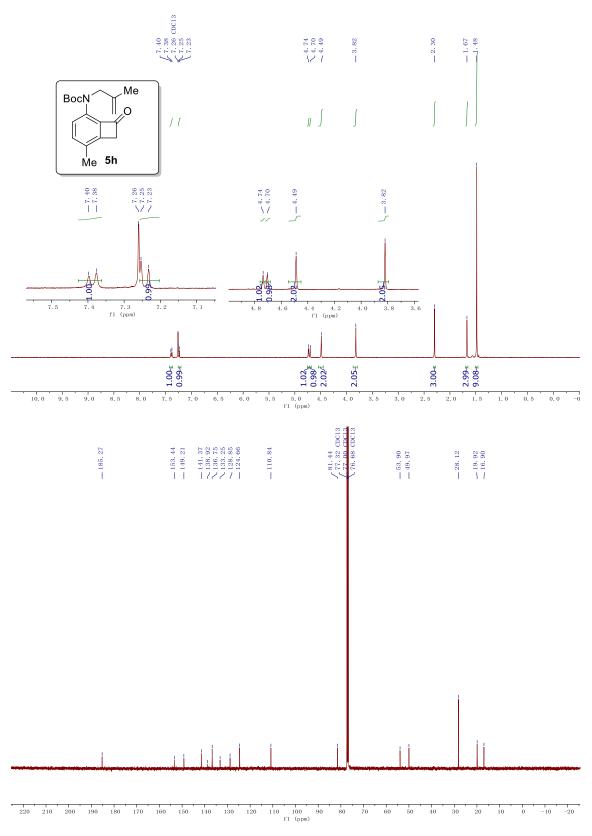
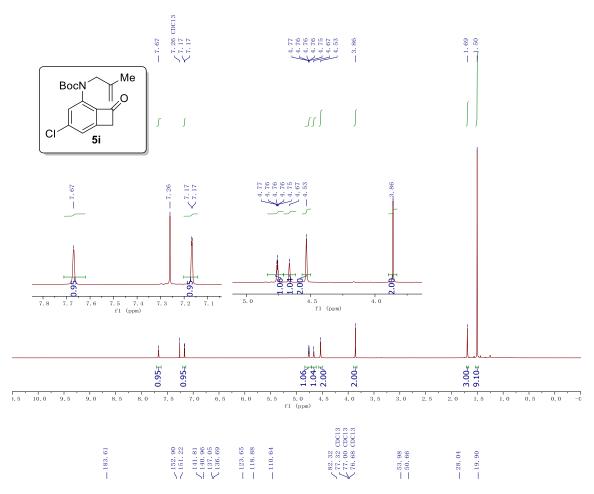





Figure 3.9 ¹H and ¹³C NMR spectrum of compound 5g



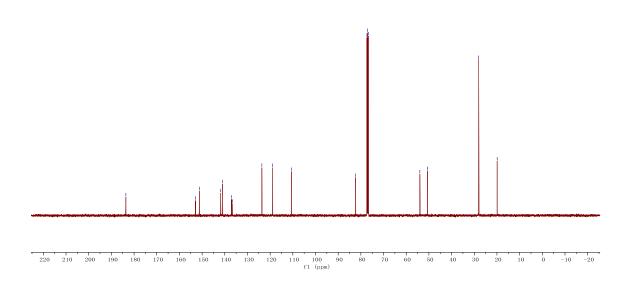
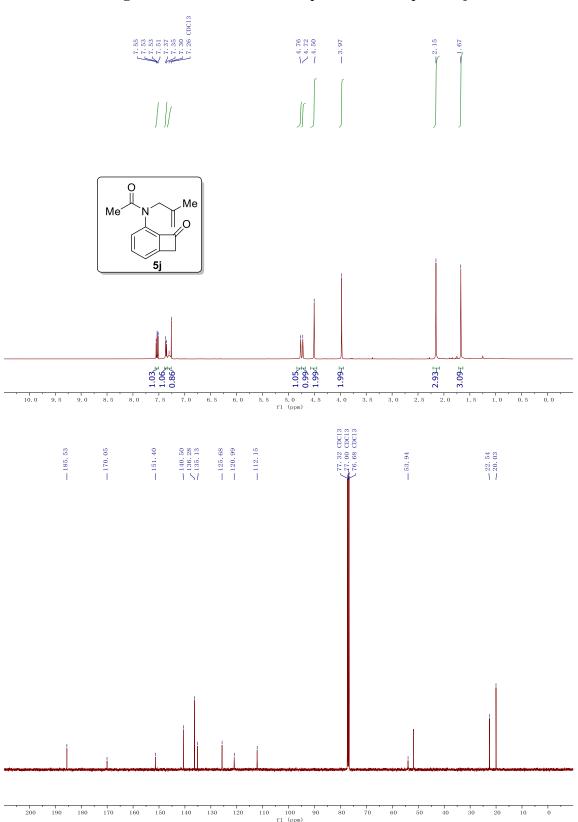




Figure 3.12 ¹H and ¹³C NMR spectrum of compound 5j

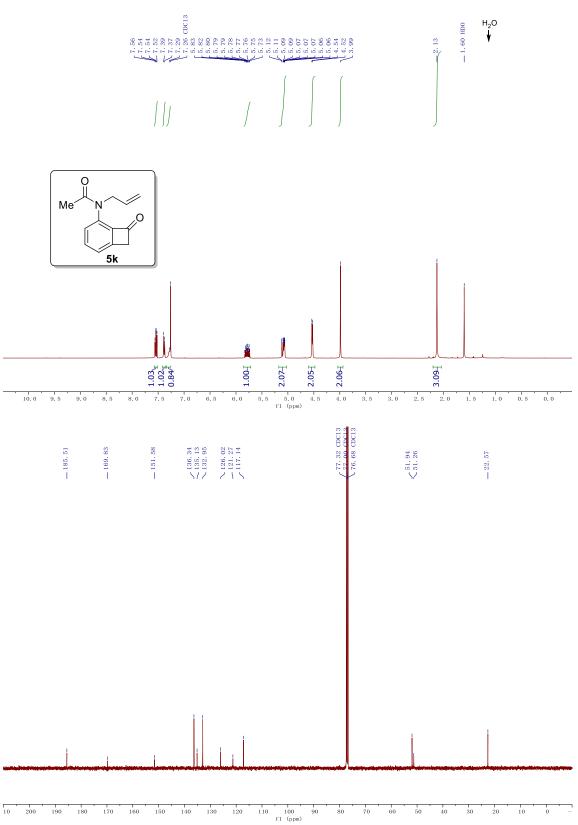
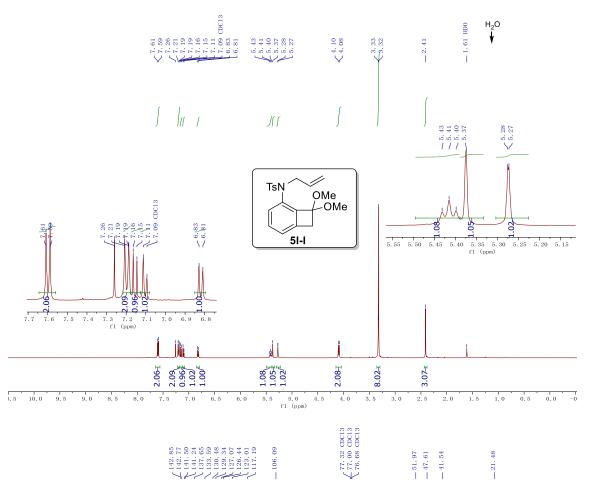



Figure 3.14 ¹H and ¹³C NMR spectrum of compound 51-I

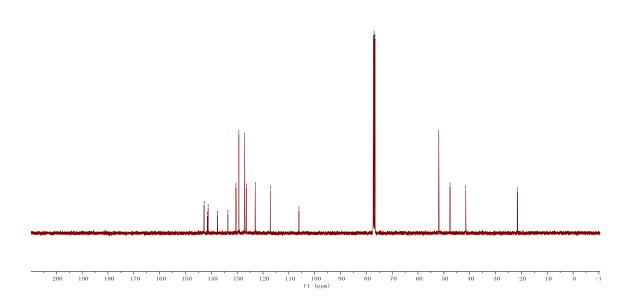
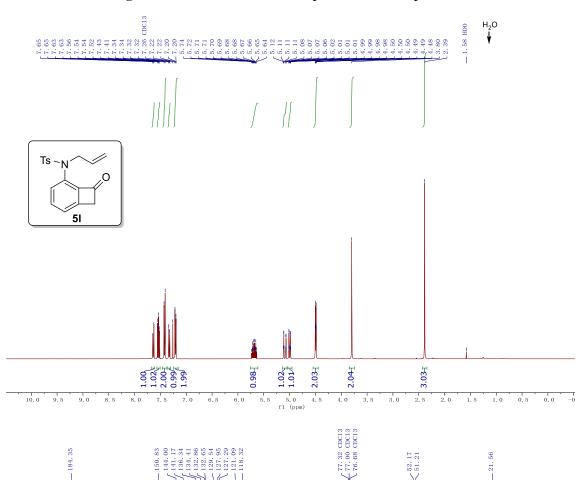



Figure 3.15 ¹H and ¹³C NMR spectrum of compound 5l

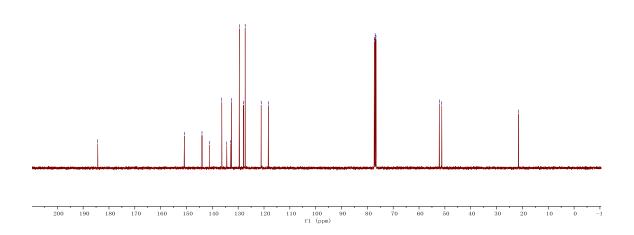
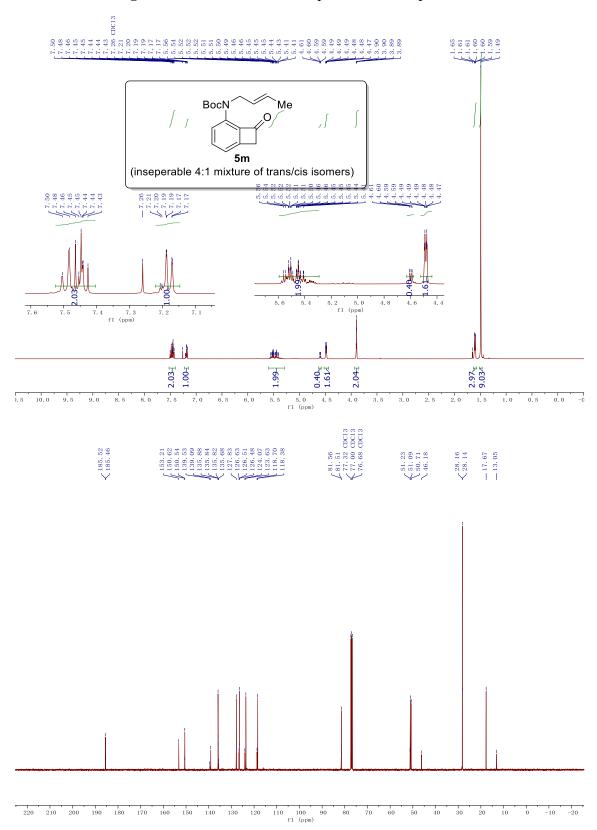
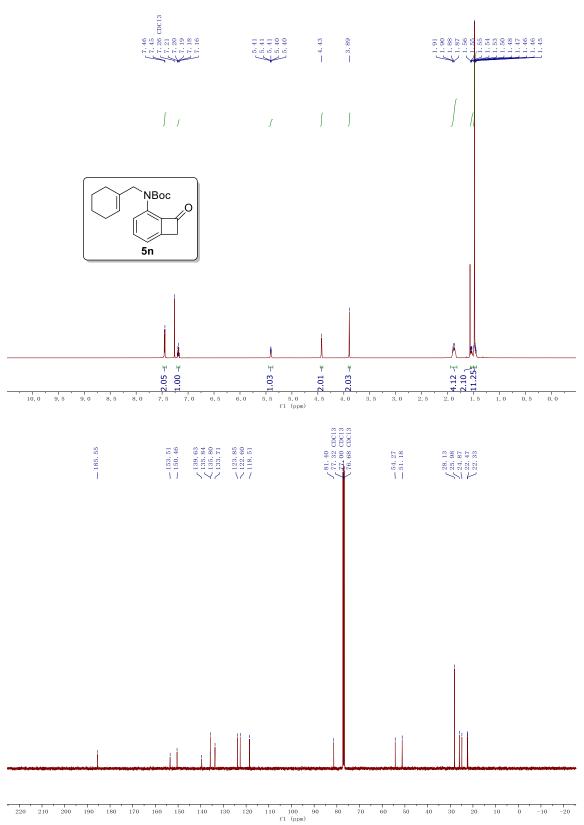
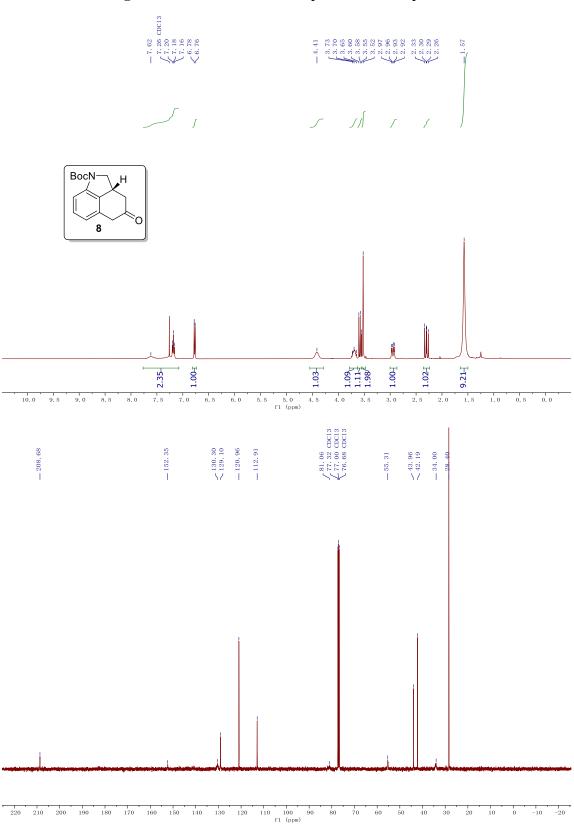
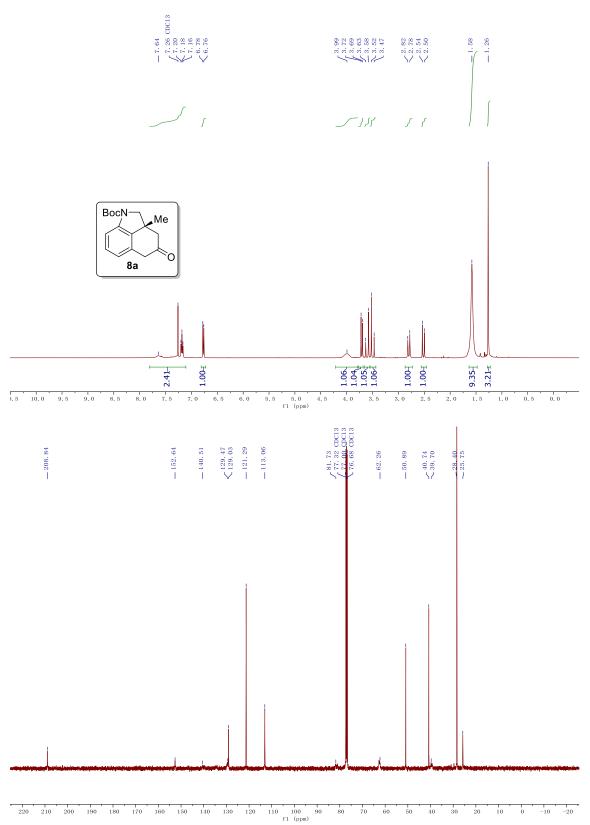
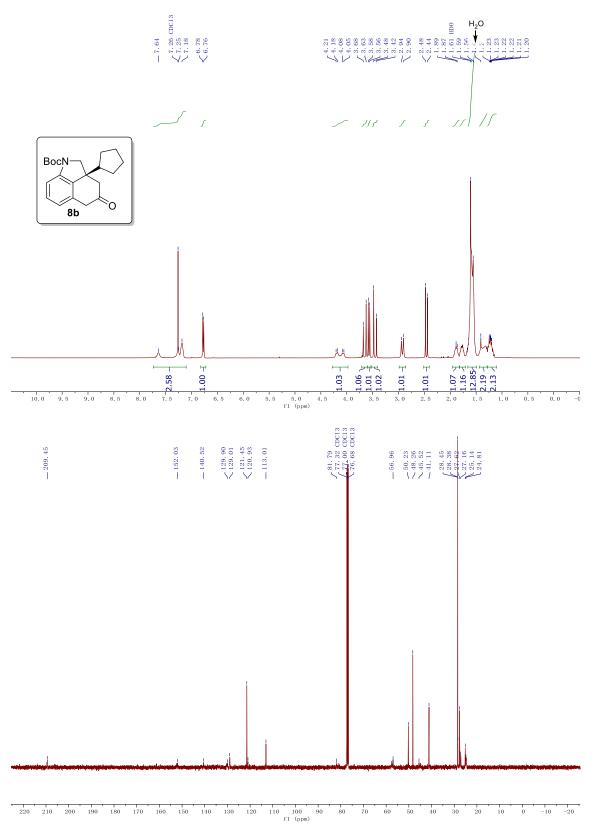
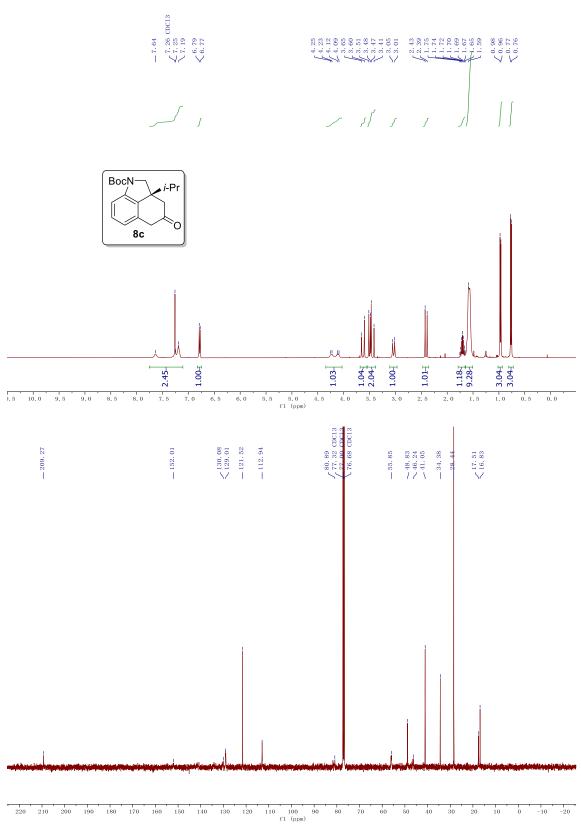
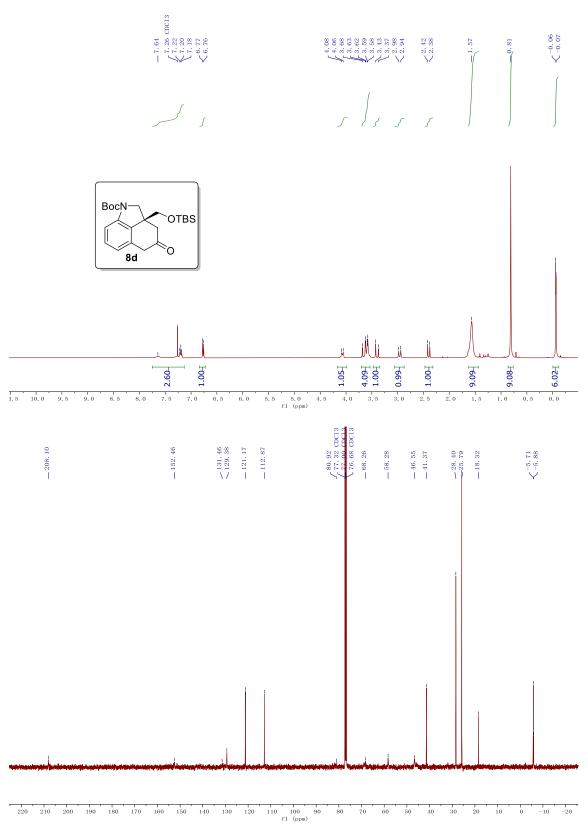



Figure 3.16 ¹H and ¹³C NMR spectrum of compound 5m


Figure 3.18 1 H and 13 C NMR spectrum of compound 8





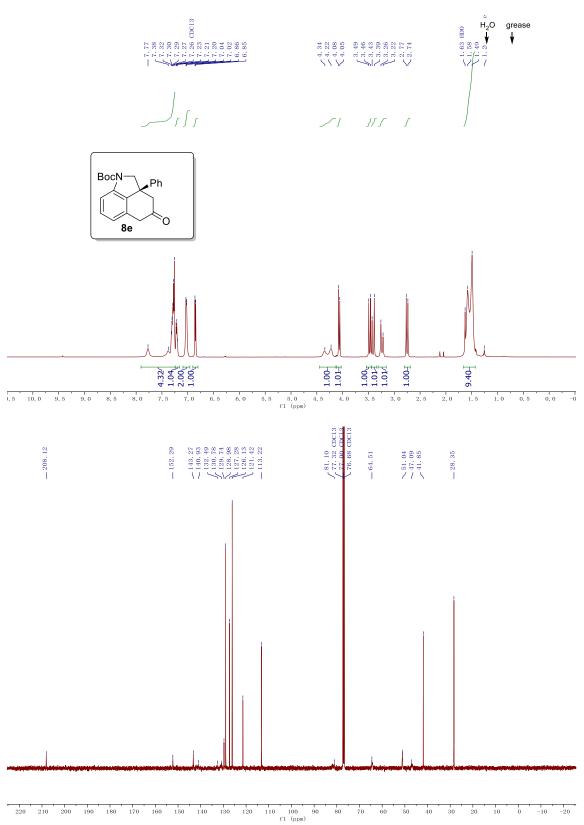
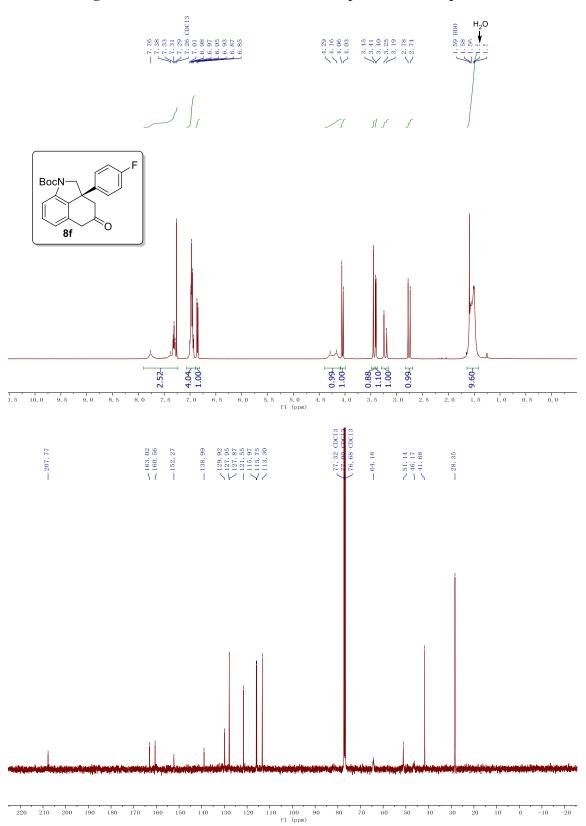
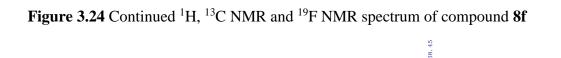
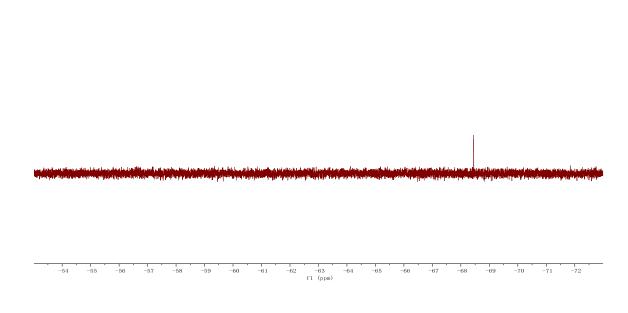





Figure 3.24 1 H, 13 C NMR and 19 F NMR spectrum of compound $\mathbf{8f}$

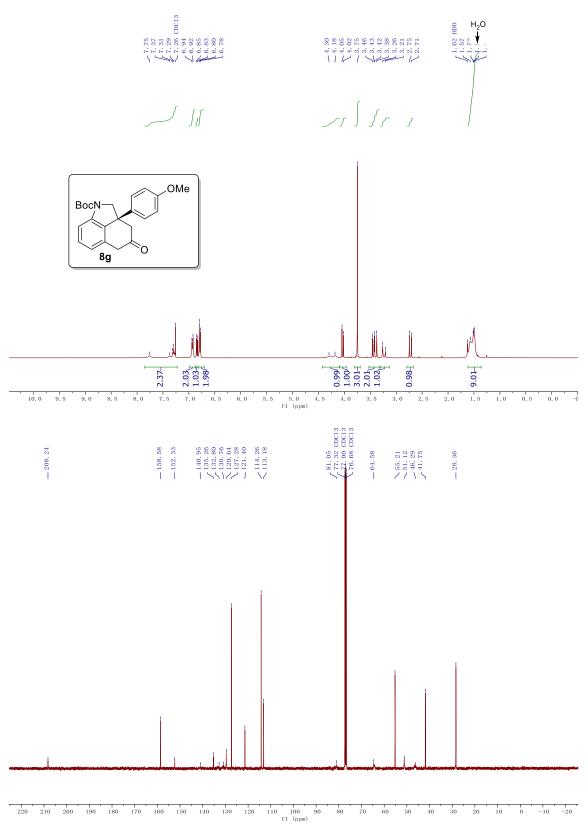
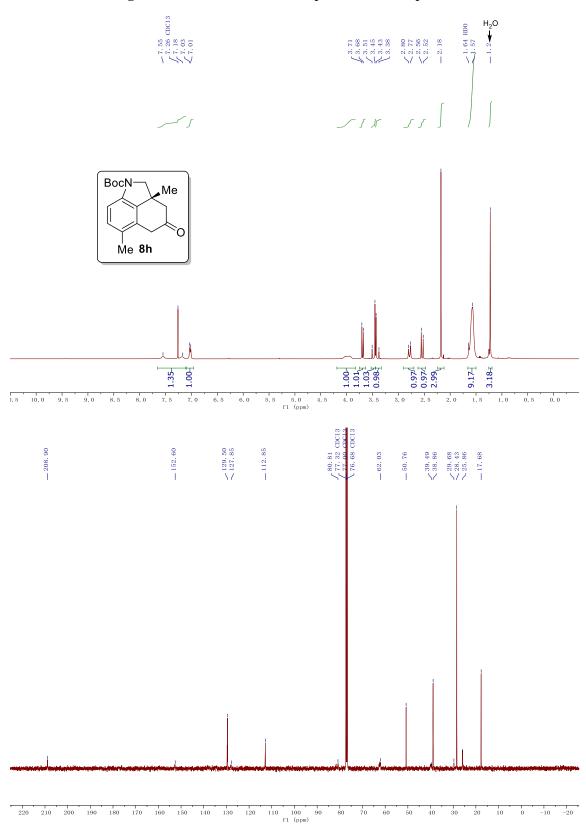
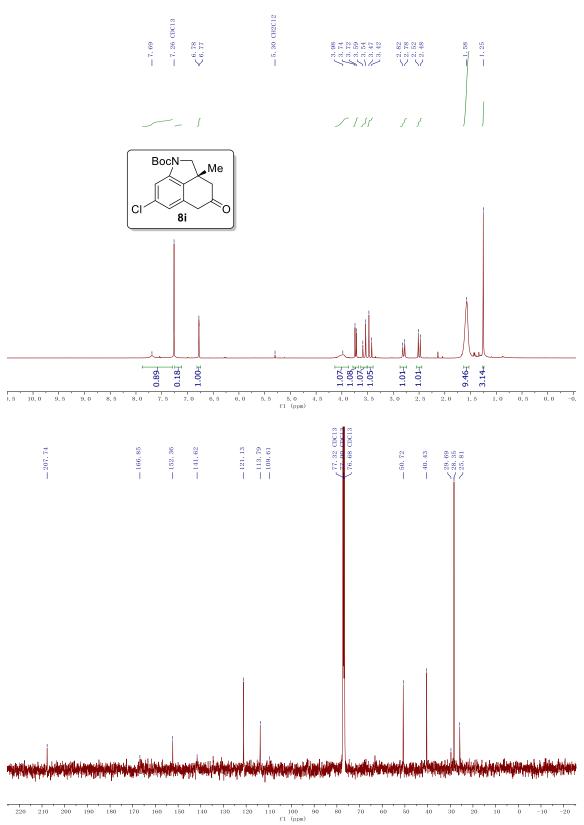
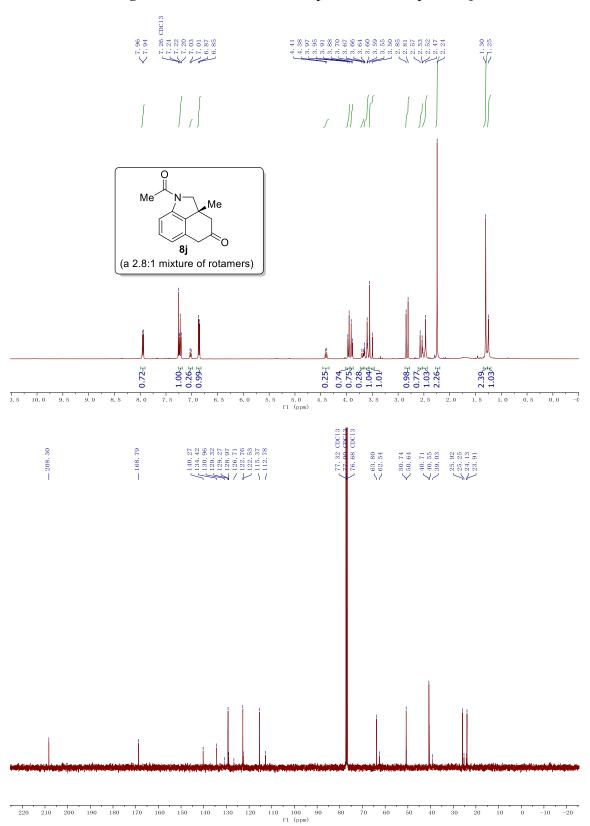
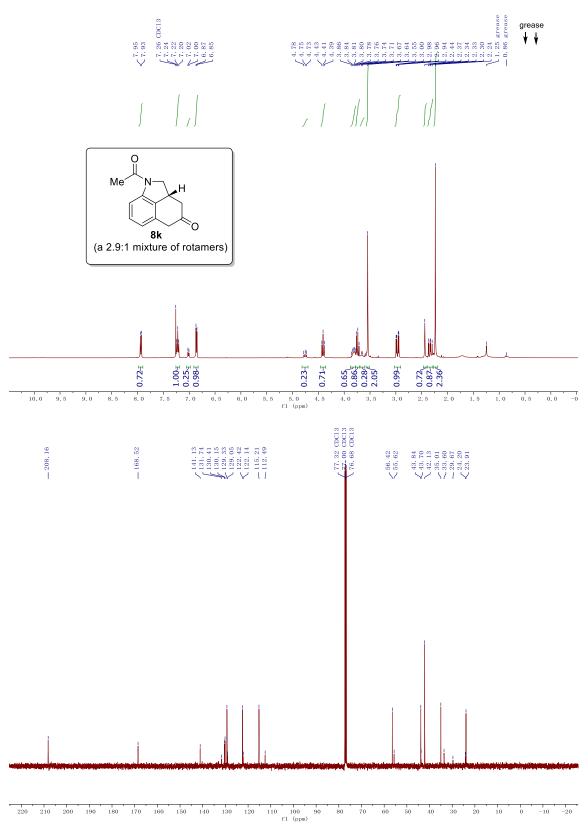
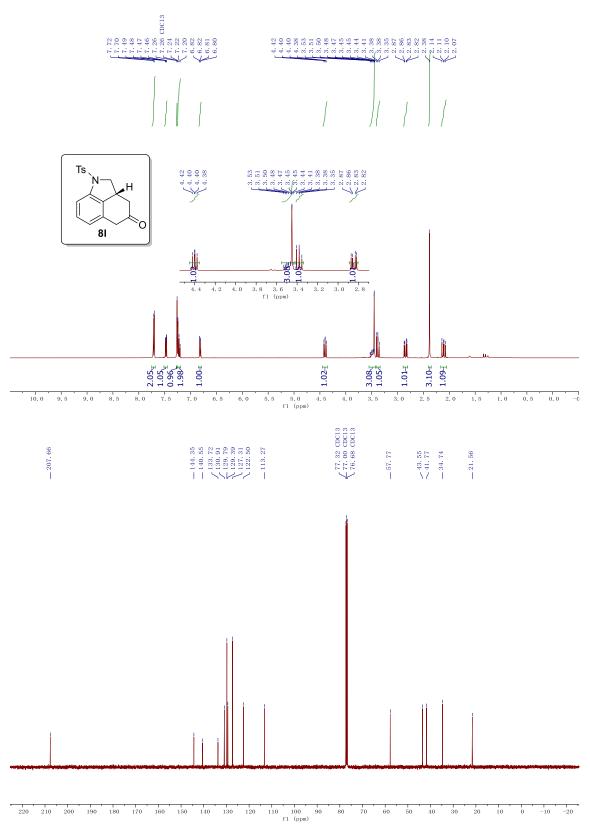
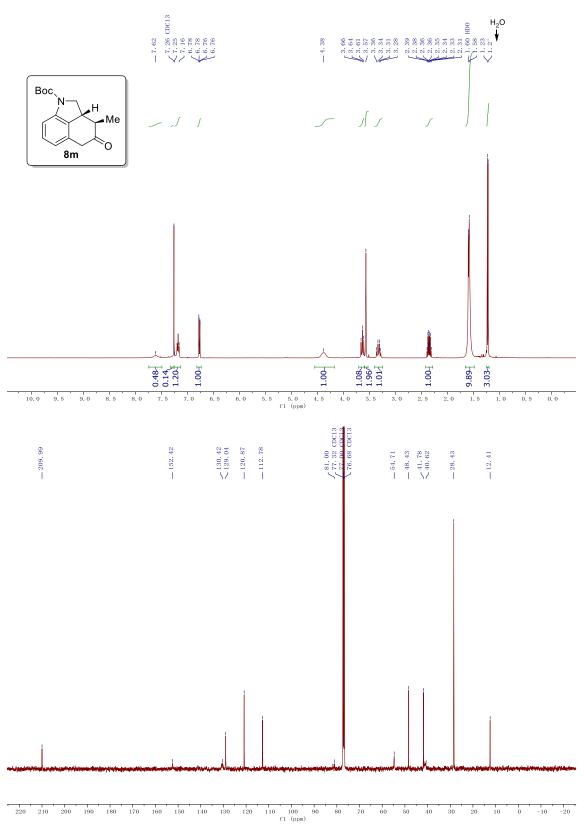
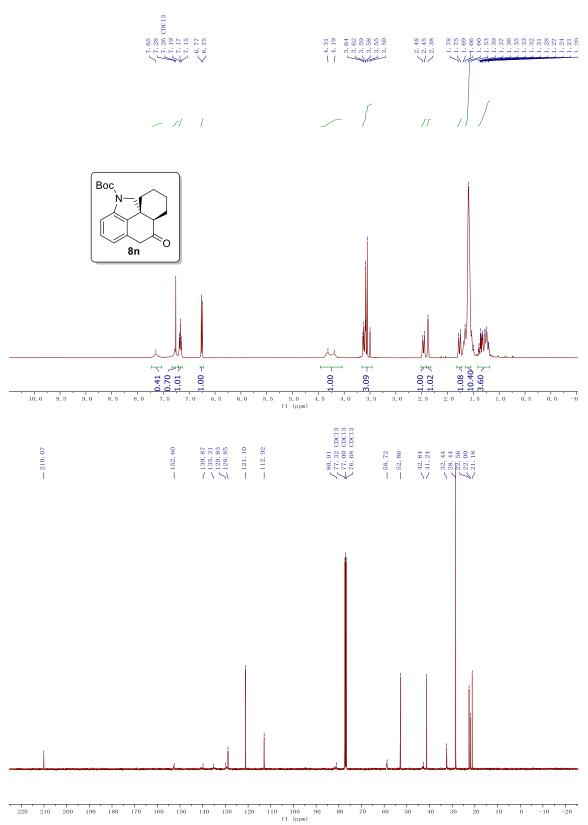
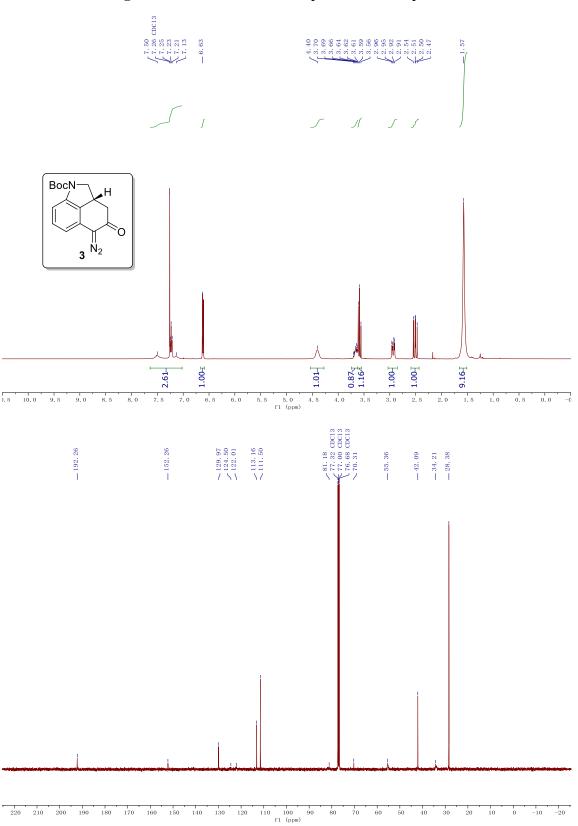
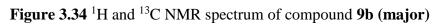
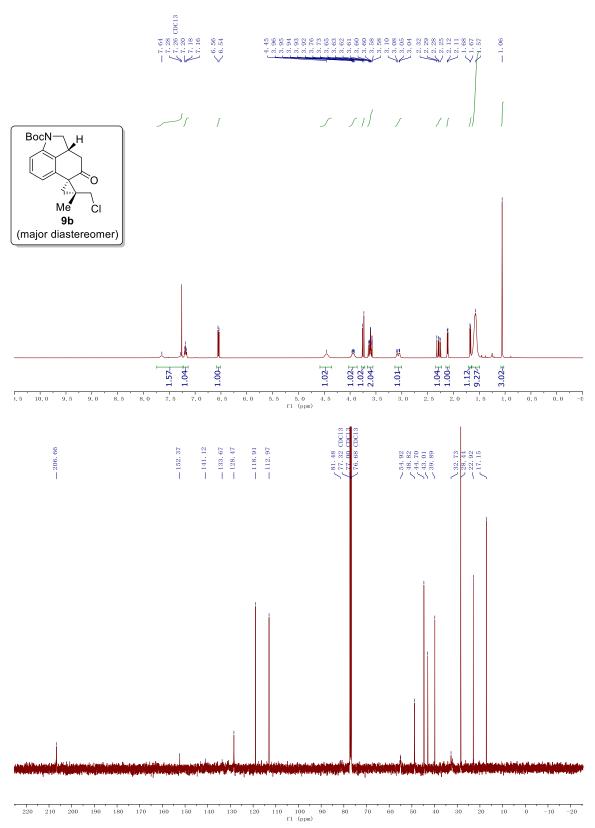
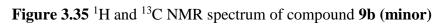



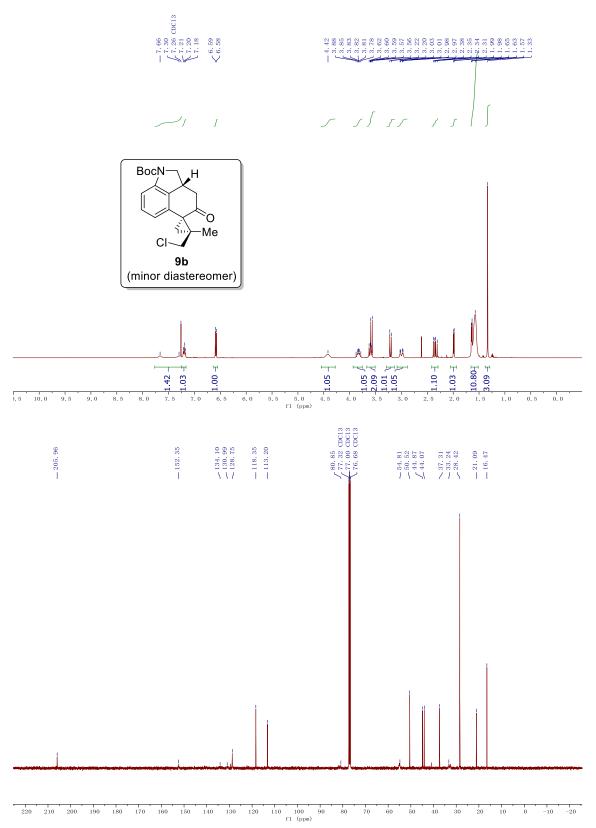
Figure 3.26 ¹H and ¹³C NMR spectrum of compound 8h


Figure 3.28 ¹H and ¹³C NMR spectrum of compound 8j




Figure 3.33 1 H and 13 C NMR spectrum of compound 3

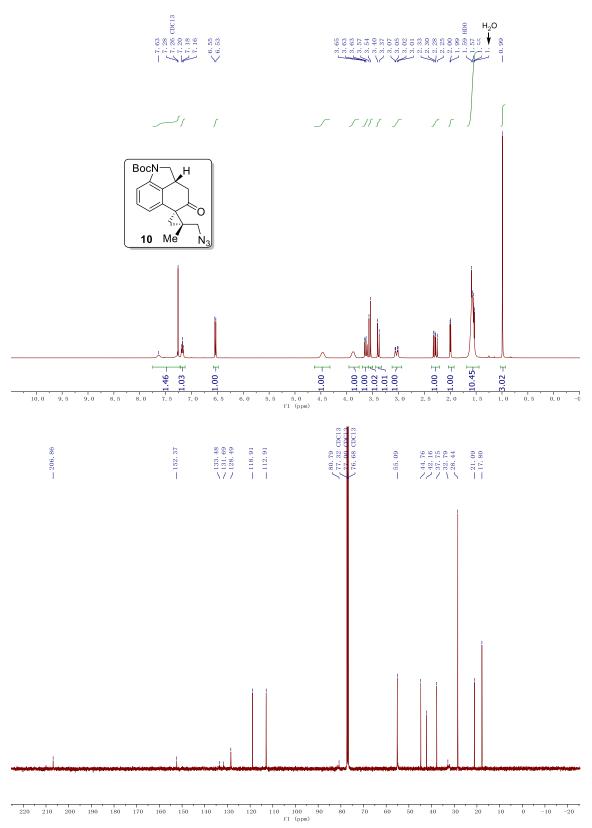
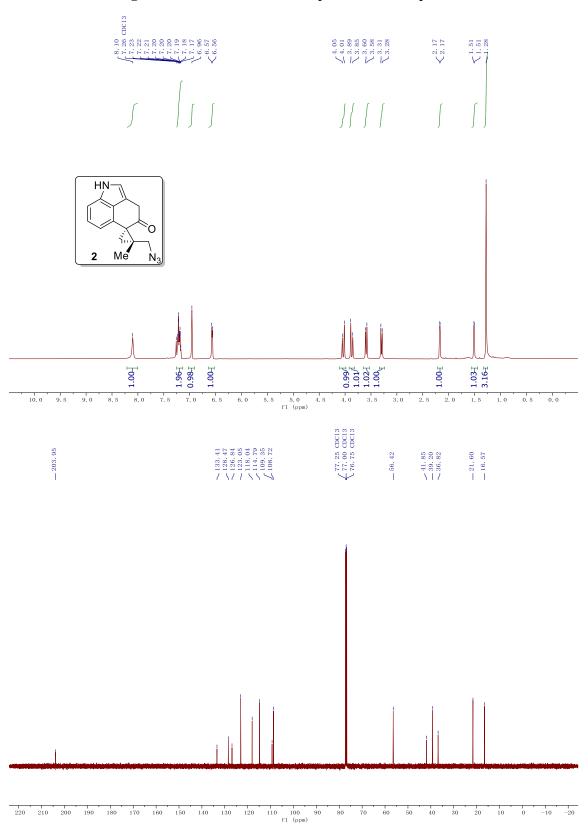
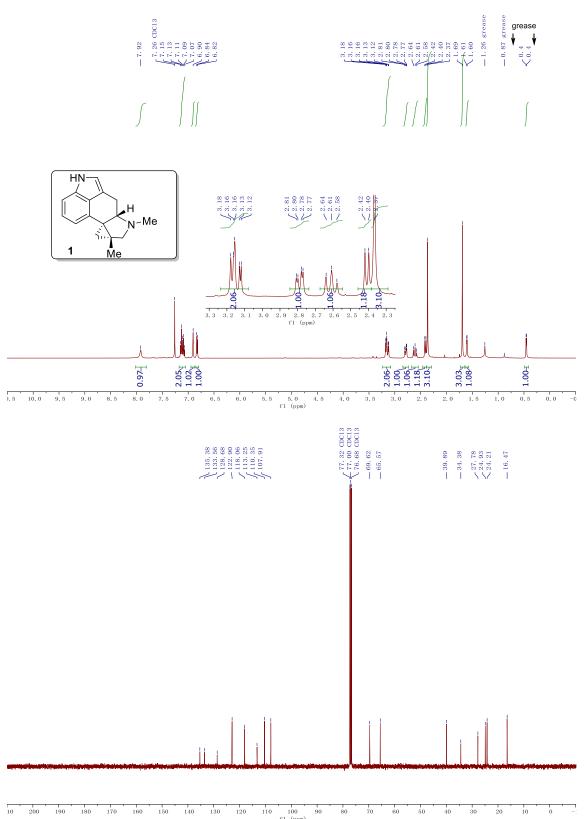




Figure 3.37 ¹H and ¹³C NMR spectrum of compound 2

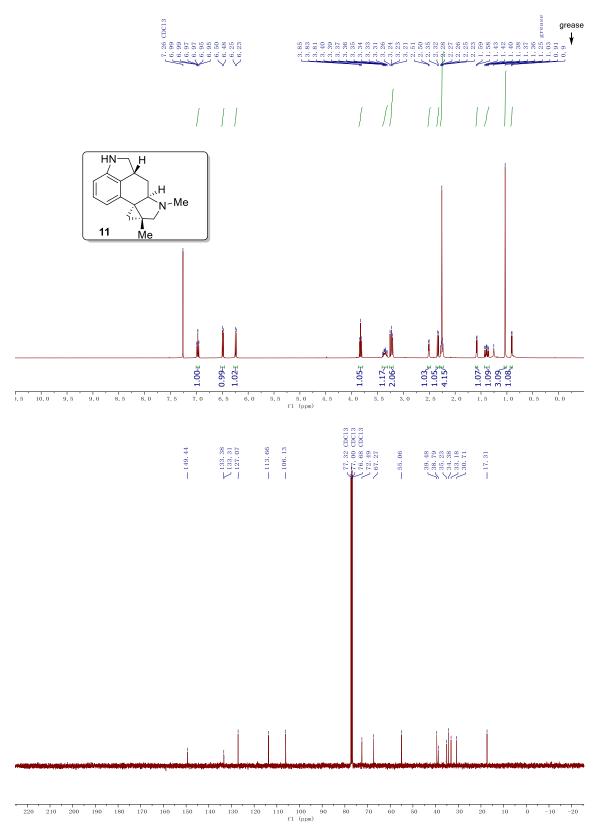


Figure 3.40 ¹H (in CDCl₃ and CD₂Cl₂) and ¹³C NMR spectrum of compound 12

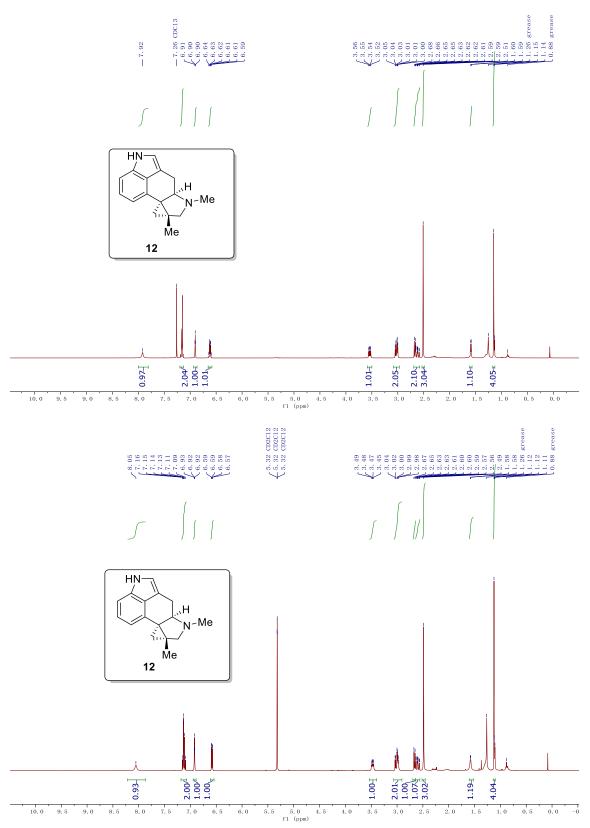
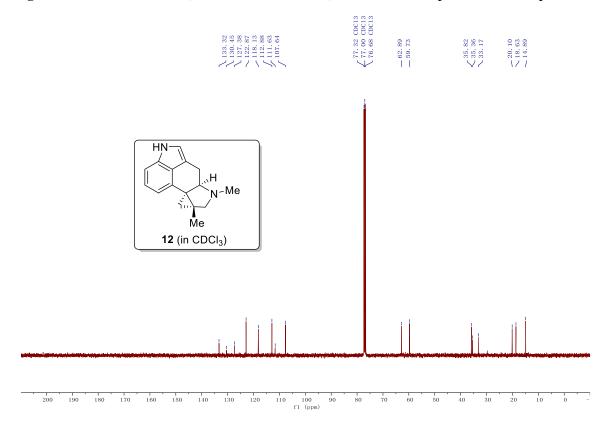
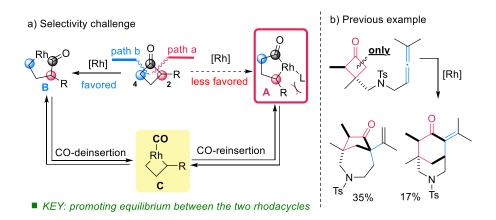



Figure 3.40 Continued 1H (in CDCl $_3$ and CD $_2$ Cl $_2$) and ^{13}C NMR spectrum of compound 12

CHAPTER 4

Fused-Ring Formation via an Intramolecular "Cut-and-Sew" Reaction between Cyclobutanones and Alkynes


4.1 Introduction

Among various endeavor in transition metal (TM)-catalyzed carbon–carbon bond (C–C) activation, people have explored different activation strategies to develop intriguing transformations.¹ In particular, oxidative addition of TM into C–C σ bonds followed by 2π-insertion, namely a "cut-and-sew" process, has been demonstrated to be effective for construction of complex ring scaffolds. Apart from the benzocyclobutenones discussed in previous chapters, cyclobutanone derivatives are of special interest for this type of transformations due to their easy access and high reactivity towards C–C activation. ^{1i,1n,1o,1q,1r} To date, significant progress has been achieved for construction of bridged rings via intramolecular "cut-and-sew" reactions, in which cyclobutanones are coupled with an unsaturated unit tethered at the C3 position (Scheme 4.1a).² However, using such a strategy to synthesize fused-ring systems remains an unmet challenge (Scheme 4.1b).³

Scheme 4.1 "Cut and Sew" Reactions with Cyclobutanones

One main difficulty associated with fused-ring formation arises from the need for C–C cleavage/coupling at the more hindered C2 (proximal) position (Scheme 4.2a), as the selectivity typically favors the less hindered C4 (distal) position (Scheme 4.2b).^{2g} In addition, decarbonylation of cyclobutanones is always a competing reaction pathway.^{2a,2g,2h} As illustrated in Scheme 4.2a, to obtain rhodacycle **A**, which is the reactive intermediate for subsequent 2π-insertion, *the key* would be to promote equilibrium between the two rhodacycles (**A** and **B**). Learned from our prior work on benzocyclobutenone activation, one solution is to enable a facile and reversible decarbonylation/CO-reinsertion⁴, in which rhodacyclopentanone **B** can be converted first to a rhodacyclobutane intermediate **C** and then to **A** via CO-reinsertion.

Scheme 4.2 Challenge for Fused Ring Formation

We anticipate that the choice of the ligand would be critical for this transformation, because it should promote decarbonylation/reinsertion rather than further reductive elimination of **C** to give cyclopropane, which represents a major difference from the benzocyclobutenone system.⁵ In this chapter, we will discuss our development of an effective catalytic system for fused-ring formation via an intramolecular "cut and sew" reaction between cyclobutanones and alkynes (Scheme 4.3).⁶ The transformation is enabled by use of an electron-rich, less bulky phosphine ligand, offering a rapid access to cyclohexenone-fused rings.

Scheme 4.3 "Cut-and-Sew" with Cyclobutanones to Form Fused Rings

$$\begin{array}{c}
R^{1} \\
\hline
R^{2} \\
\hline
R^{3}
\end{array}$$

$$\begin{array}{c}
[Rh]/L \\
(4+2)
\end{array}$$

$$\begin{array}{c}
R^{2} \\
\hline
R^{3}
\end{array}$$

It should be noted that similar structures could also be obtained through a (3+2+1) cycloaddition reactions among cyclopropanes, CO and alkynes.^{4e,7} The coupling of simple cyclopropanes, CO and alkynes was first reported by Narasaka,⁸ albeit with a low catalyst turnover and limited substrate scope (Scheme 4.4). Use of more reactive vinyl cyclopropanes and cyclopropanes with a directing group were recently developed by Yu⁹ and Bower¹⁰ respectively, both of which exhibit excellent reactivity and selectivity (Scheme 4.4). Hence, methods that directly activate simple cyclobutanones should offer a complementary approach to the prior (3+2+1) reactions without the external CO gas or auxiliary DGs (Scheme 4.3).

Scheme 4.4 Precedents of Cyclohexenone-Fused Ring Formation via C-C Activation


4.2 Results and Discussion

4.2.1 Condition optimization for "cut-and-sew" reactions between cyclobutanones and alkynes

To explore the proposed "cut-and-sew" reaction, cyclobutanone **1a** was employed as the initial substrate, and the ligand effect was examined first using [Rh(CO)₂Cl]₂ as the pre-catalyst (Table 4.1). According to aforementioned challenges, we proposed that ligand is crucial for this transformation. First, we tested the monodentate phosphine ligands with differed electronic and steric properties (Table 4.1, entries 1-11). A range of them was found effective, and generally, higher conversion was obtained with more electron-rich ligands. For alkyl substituted phosphine ligands (Table 4.1, entries 1-4), the product **2a** was observed in all cases. PMe₃ and P(*t*-Bu)₃, which varies significantly in steric properties, gave better yields, which can be explained by that PMe₃ promoted the oxidative addition step while P(*t*-Bu)₃ promoted the reductive elimination step. As the ligand became less electron-rich and more bulky from PMe₂Ph to PPh₃, the yield of **2a** decreased continuously (Table 4.1, entries 5-7) and PMe₂Ph gave the optimal yield of 82%, as well

as the conversion. Varying the electronic property of the aryl substituted phosphine ligands gave comparable yields with trialkylphosphines and there is no clear relation between the electronic property and reactivity (Table 4.1, entries 7-11). Phosphite ligands cannot yield any product (Table 4.1, entries 12 and 13). Bidentate ligands were able to facilitate this transformation, albeit with lower yield compared with PMe₂Ph (Table 4.1, entries 14-19).

Table 4.1 Selected Ligand Screening

Entry	Ligands	Yield (2a: 1a: 2a')
1 ^a	PMe ₃	57%: trace: 10%
2 ^a	PCy_3	37%: 23%: 18%
3 ^a	PBu ₃	39%: 6%: 15%
4 ^a	$P(t-Bu)_3$	65%: trace: 16%
5 ^a	PMe ₂ Ph	82%: trace: 13%
6 ^a	PMePh ₂	50%: 22%: 8%
7 ^a	PPh_3	35%: 50%: 12%
8 ^a	$P(tol)_3$	47%: 12%: 19%
9 ^a	$P(4-FPh)_3$	64%: 16%; 22%
10 ^a	P(4-MeOPh) ₃	53%: trace: 17%
11 ^a	$P(3,5-CF_3C_6H_3)_3$	50%: 25%: 10%
12 ^b	P(OMe) ₃	0%: 0%: 0%
13 ^b	$P(OPh)_3$	0%: 70%: trace
14 ^a	dppb	45%: 40%: 9%
15 ^a	dppe	67%: 8%: trace
16 ^b	dppbz	9%: 77%: 10%
17 ^b	binap	48%: 33%: trace
18 ^b	biphep	31%: 52%: trace
19 ^b	L ₁	17%: 70%: trace
	Ph ₂ P PPh ₂	
	\;	

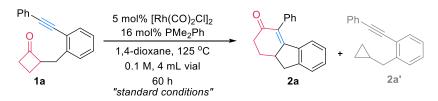
^a Isolated yield. ^b NMR yield using mesitylene as internal standard

Surprisingly, one important factor was the ligand/metal ratio, with 1.6:1 being optimal (Table 4.2). When less ligand was employed (P/Rh=1:1), the reaction still gave a complete conversion albeit with more cyclopropane side product **2a'** (Table 4.2, entry 1); however, increasing the P/Rh ratio to 2:1 completely shut down the reactivity (Table 4.2, entry 8), which

could be attributed to the generation of inactive *trans*-Rh(CO)(L)₂Cl species. We reason that the active catalytic species likely contains only one phosphine ligand, but it is relatively unstable in the absence of extra PMe₂Ph. This rationale was furthered confirmed by our mechanistic study which would be discussed later.

5 mol% [Rh(CO)₂Cl]₂ y mol% PMe₂Ph 1,4-dioxane, 125 °C 0.1 M, 4 mL vial 1a 60 h 2a 2a' Entry У Yield (2a: 1a: 2a') 10 mol% 64%: trace: 24% 2 13 mol% 71%: trace: 20% 3 14 mol% 73%: trace: 20% 4 15 mol% 76%: trace: 18% 5 16 mol% 82%: trace: 13% 77%: 5%: 15% 17 mol% 7 18 mol% 53%: 30%: 8%

Table 4.2 Screening of the [Rh]/P Ratio^a

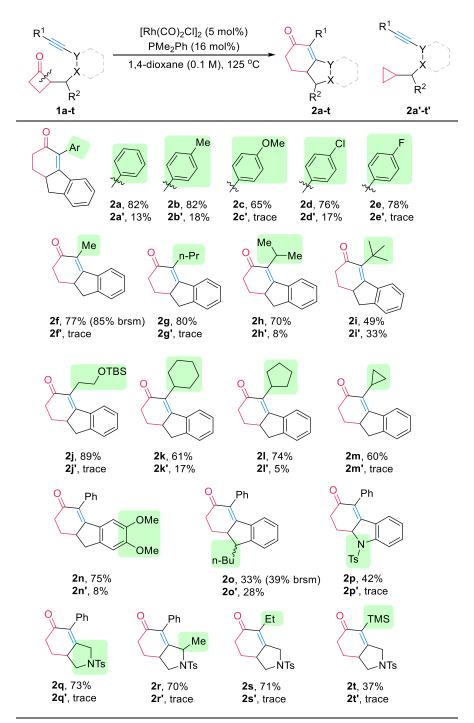

trace: 92%: trace

20 mol%

In addition, use of the more π -acidic [Rh(CO)₂Cl]₂ as a precatalyst is also crucial to generate the active species; in contrast, use of more electron-rich Rh-olefin complexes gave almost no conversions of cyclobutanone **1a** (Table 4.3, entries 2 and 3). Dioxane was found to be the best solvent (Table 4.3, entries 4-5). At lower temperature, yield decreased significantly to 67% (Table 4.3, entry 6). In the absence of precatalyst or ligand, no desired product was observed (Table 4.3, entries 7 and 8). Interestingly, when we added one equivalent of 2-amino-3-methylpyridine as a cofactor, no reaction was observed (Table 4.3, entry 9). This result suggests that the dynamic nature of carbonyl group in cyclobutanone could be important for this transformation.

^a All the yields are NMR yield using mesitylene as internal standard

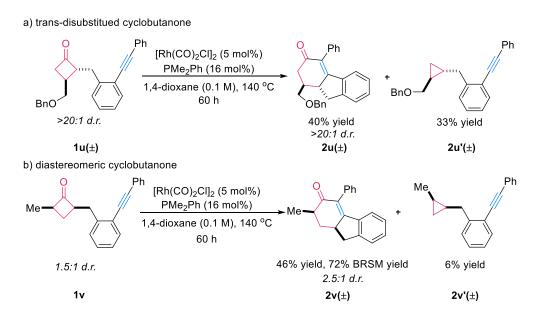
Table 4.3 Precatalyst/solvent Screening and Control Experiments^a


Entry	Variations from standard condition	2a ^b	Conversion ^b	2a' ^b
1	none	82%	>95%	13%
2 ^c	$[Rh(C_2H_4)Cl]_2$ instead of $[Rh(CO)_2Cl]_2$	trace	<5%	trace
3 ^c	[Rh(cod)Cl] ₂ instead of [Rh(CO) ₂ Cl] ₂	trace	<5%	trace
4	in THF	57%	90%	11%
5	in toluene	77%	>95%	14%
6	at 115 °C	67%	>95%	18%
7 ^c	without PMe ₂ Ph	0%	>95%	0%
8 ^c	without [Rh(CO) ₂ CI] ₂	0%	<5%	0%
9 ^c	with 100 mol% of C1	0%	<5%	0%

 $[^]a$ Unless otherwise mentioned, the reaction was run with 10 mol % rhodium complex (based on the metal) and 16 mol % ligand (based on phosphine) on a 0.1 mmol scale at 125 °C for 60 h. b Isolated yield/conversion. c Based on crude NMR.

4.2.2 Substrate scope for "cut-and-sew" reactions between cyclobutanones and alkynes

With the optimized conditions in hand, the substrate scope was next investigated (Table 4.4). First, different aryl-substituted alkynes all underwent the "cut and sew" sequence to give the corresponding tricycle products (2a-2e). Alkyl-substituted alkynes are also competent coupling partners; primary, secondary and tertiary alkyl substituents are all tolerated. Unsurprisingly, increasing the bulkiness on the substituent from propyl (2g) to isopropyl (2h) to *t*-butyl (2i) groups reduced the yield. It is noteworthy that the reaction conditions are both *pH* and redox neutral. The acid-labile TBS ether is compatible and 89% yield of product 2j was isolated. In addition, cycloalkyl-substituted alkynes can be effectively coupled; the generated vinyl cyclopropane moiety (2m) remained intact. Moreover, substitution on the arene (2n) or the methylene bridge (2o) (between the arene and cyclobutanone) is tolerated. The reduced yield for product 2o is due to the increasing cyclopropane formation; it is likely that the substitution hindered the migratory insertion to certain extent. Interestingly, the aniline linkage provided an indoline scaffold (2p).


Table 4.4 Substrate Scope^a

^a all the yields of **2a-t** and **2a'-t'** are isolated yields obtained after column purification.

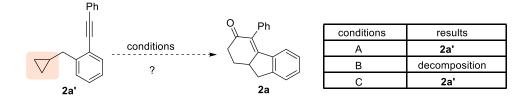
On the other hand, the nitrogen linker was also found efficient. With such a linker, coupling with aryl, alkyl and even silyl-substituted alkynes has been achieved, and the corresponding 6H-isoindole products (2q-2t) can potentially serve as valuable synthetic building blocks. 10

Scheme 4.5 Scope for Disubstituted Cyclobutanones

On addition, both α and β substituted cyclobutanones can be employed albeit in moderate yields (Scheme 4.5), probably caused by the increased steric hindrance in the substrates.

Finally, there are a handful of unsuccessful substrates for this transformation under standard condition (Scheme 4.6). We screened many conditions for substrate **1w** and **1x** to generate 6,6-fused ring systems with one more carbon on the linkage. However, under those conditions, the only product we observed is the decarbonylation product **2w'** and **2x'**. The dimethyl substituents on the 3 position of cyclobutanone are not tolerated despite of different linkage and substituents on the alkyne tested, which could be attributed to the significantly increased steric bulkiness (**1y-1aa**). Oxygen linkage (**1ab**) is not viable substrate and it might be caused by the conformation flexibility of the linkage. Amine functional group (**1ac**) which can possibly coordinated to the

catalyst is not tolerated. Ester substitution on the alkyne (1ad) and free alkyne (1ae) would lead to decomposition.


Scheme 4.6 Unsuccessful Substrates

4.2.3 Mechanistic study for "cut-and-sew" reactions between cyclobutanones and alkynes

With regard to the plausible reaction mechanism, there are two major questions. One is whether this (4+2) cycloaddition shares the same catalytic pathway as the (3+2+1) reaction involving cyclopropane ring opening. The other one is whether the reaction pathway involves the cleavage of the less hindered distal C–C bond. To address the first question, control experiments with cyclopropane side product **2a'** were conducted (Scheme 4.7). Subjecting **2a'** to the standard (4+2) reaction conditions in the presence of CO gas or to the optimal conditions developed by Narasaka⁸ or Bower¹⁰ for the (3+2+1) reaction gave no desired **2a** product. This result suggests that cyclopropane formation during the (4+2) reaction is probably irreversible and **2a'** should not be an intermediate towards product formation. This observation is also consistent with the fact that coupling of unactivated cyclopropanes in the absence of DGs is rather difficult. We then tested

the control substrate **1af** (Scheme 4.7). In the absence of alkyne group, we still observed aldehyde **1af**' as major product, which proves that alkyne did not serve as a directing group for C–C bond cleavage in our catalytic system.

Scheme 4.7 Control Experiments

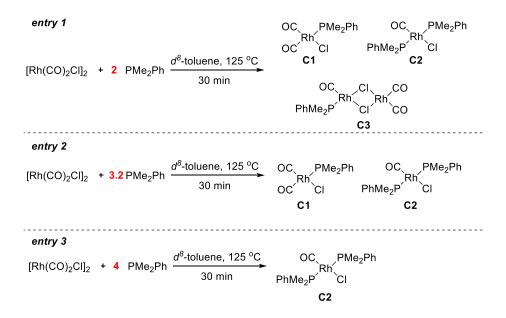
condition A: "standard conditions" with 1 atm CO

condition B: [Rh(CO)₂Cl]₂, 1,2-dichlorobenzene, 160 °C, 48 h, 1 atm CO (ref 7)

condition C: [Rh(cod)Cl]₂, P(3,5-CF₃C₆H₃)₃, PhCN, Na₂SO₄, 130 °C, 72 h, 1 atm CO (ref 9)

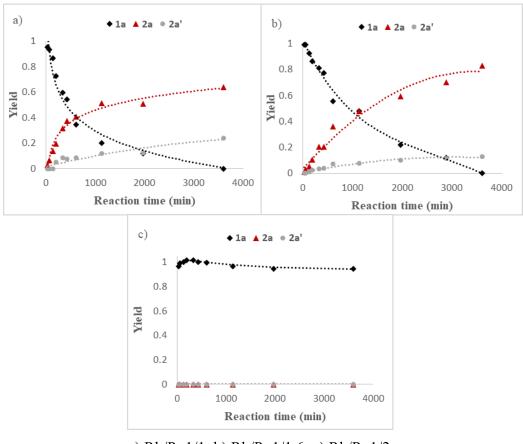
To explore the second question, ¹³C labeling study was conducted (Scheme 4.8). We hypothesized that, if the reaction involved cleavage of the less hindered distal C–C bond, a CO de-insertion and re-insertion into the less hindered alkyl group would have to occur (*vide supra*, Scheme 4.2). Thus, if this were the case, use of the Rh catalyst containing ¹³CO ligands would introduce ¹³C-labeled carbonyl moiety into the product. Indeed, replacement of [Rh(CO)₂Cl]₂ with [Rh(¹³CO)₂Cl]₂ under the standard reaction conditions afforded product **2a** in 82% yield with 21% ¹³C incorporation. Give that only 5 mol% [Rh(¹³CO)₂Cl]₂ was used, 86% ¹³CO from the Rh complex has been transferred into product. When we terminated the reaction at an earlier stage, there is higher ¹³C incorporation (34%) observed and no significant ¹³C incorporation was observed in starting material. We also did a series of monitoring on the ¹³C incorporation ratio at different conversion. The observation is similar to what we mentioned above, with increasing

conversion the ¹³C incorporation ratio decreases and there is no ¹³C incorporation in recovered starting material (Scheme 4.9).


Scheme 4.8 ¹³CO Exchange Experiment

These observations suggested that (i) decarbonylation/CO-reinsertion must have occurred in this reaction (Scheme 4.2), (ii) the exchange between the coordinated CO on Rh and the free CO is faster the subsequent steps and (iii) the reductive elimination back to starting material is significantly slower than migratory insertion once the CO exchange happened. Hence, this observation is consistent with the hypothesis that the reaction may involve cleavage of the less hindered distal C–C bond, followed by a decarbonylation/CO reinsertion process, though the pathway initiated from direct activation of the bulkier proximal C–C bond cannot be completely ruled out at this stage.

Table 4.5 Series of ¹³CO Exchange Experiment

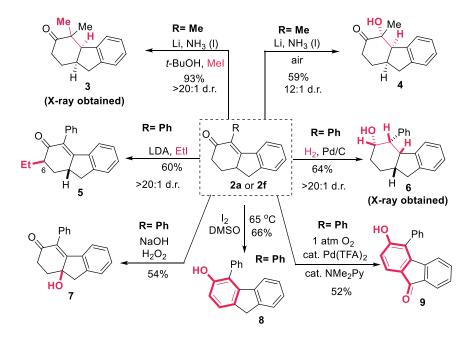

We noticed from our condition screening that the ratio between rhodium precatalyst and ligand plays an important role in this transformation. To shed some light into this observation, we want to first figure out the catalyst's resting state in this transformation at different [Rh]/P ratios (Scheme 4.9).

Scheme 4.9 Resting State Study

When rhodium precatalyst and ligands were mixed in different ratios, we observed different square planar rhodium species (their structures were assigned by comparing the ³¹P-NMR with literature known spectrum)¹¹. The mixture of entry 2 was added 3 equiv. of substrate **1a** and

kept at 125 °C for 10 h and 2a was generated in 21% yield. The ³¹P-NMR suggested that rhodium complexes stay the same as those before the reaction. According to these results, we proposed that C1 and C2 are likely the resting state.

Scheme 4.10 Kinetic Study with Different [Rh]/P Ratio


a) Rh/P=1/1. b) Rh/P=1/1.6. c) Rh/P=1/2

Following that, we did kinetic monitoring with different rhodium/phosphine ratio (Scheme 4.10). When Rh:P equals 1:1, the initial rate is significantly higher than the 1:1.6, because of higher concentration of the active catalyst. However, in this case, the catalyst died quicker than the 1:1.6 entry and led to increased yield of the 2a' side product. When Rh:P equals 1:2, there is no 2a or 2a' generation, which suggests that C2 is inactive species. From these observations, we propose C1 to be the active catalyst for this transformation.

4.2.4 Synthetic applications for "cut-and-sew" reactions between cyclobutanones and alkynes

The intriguing cyclohexanone-fused ring structures generated from this "cut-and-sew" reaction can be conveniently derivatized (Scheme 4.11). Excellent diastereoselectivity was obtained in most cases possibly driven by forming less strained 5-6 cis-fused rings. First, dissolving metal reduction, followed by alkylation or oxidation, afforded the α -disubstituted cyclohexanone products **3** (X-ray structure obtained) and **4** (stereochemistry tentatively assigned), respectively.¹² Moreover, enolate-based alkylation occurred site- and diastereoselectively at the C6-position of the cyclohexenone moiety. Pd/C-catalyzed hydrogenation took place at the *syn* side to the methine hydrogen and directly gave the corresponding saturated alcohol. Treatment of product **2a** with base and hydrogen peroxide unexpectedly led to a γ -hydroxylation product (7).¹³ Finally, iodine/DMSO oxidation¹⁴ converted the tricycle into a functionalized fluorene, and a Pd-catalyzed aerobic oxidation¹⁵ surprisingly gave 9-fluorenone **9** as the dominant product.

Scheme 4.11 Synthetic Applications

4.3 Conclusion

In summary, we have developed a novel catalyst system utilizing electron-rich phosphine with small steric hindrance, which can efficiently catalyze the C−C bond activation of cyclobutanones and enable the site-selective insertion of C≡C bond. This transformation provides the insertion product at the more hindered C−C bond and forges various fused ring scaffolds. The reaction condition is very concise, pH and redox neutral, which provides a good functional group tolerance. Through our mechanistic investigation, we found both proximal C−C bond can be readily cleaved and that led to the same intermediate through a reversible decarbonylation-reinsertion process. We foresee this discovery to open up more possibilities in diverse ring system formation through "cut-and-sew" process.

4.4 Experimental

4.4.1 General information

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). The solvents for the C–C Activation reactions were distilled freshly over sodium or calcium hydride and carefully freeze-pump-thawed. All the C–C Activation reactions were carried out under nitrogen atmosphere with a stir bar in a sealed vial. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. Sensitive ligands and rhodium catalysts and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials (17 x 60 mm (7.5mL) with PTFE lined cap attached) were purchased from Qorpak and flame-dried or put in an oven overnight. High-resolution mass spectra (HRSM) were obtained on a Agilent 6224 Tof-MS and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+Na]⁺, [M+H]⁺. Infrared spectra were recorded on a

Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (1 H NMR and 13 C NMR) were recorded with a Bruker Avance 500 instrument (500 MHz, 1 H at 500 MHz, 13 C at 126 MHz) and Bruker Avance 400 instrument (400 MHz, 1 H at 400 MHz, 13 C at 100 MHz). Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and are referenced to residual solvent (CDCl₃, δ =7.26 ppm (1 H) and 77.00 ppm (13 C); CD₂Cl₂, δ =5.32 ppm (1 H) and 53.84 ppm (13 C)). Coupling constants were reported in Hertz (Hz). Data for 1 H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, hept=heptuplet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration).

4.4.2 General information about substrate synthesis

The substrates for the C-C Activation reactions were synthesized through two different routes.

Synthetic route I for substrates with benzene linkage¹⁶

OH +
$$=$$
 R¹ Pd(PPh₃)₂Cl₂, Cul toluene/piperidine, r.t. OH 1a-I to 1o-I PBr₃, ether -10 °C PBr 1a-II to 1o-II PBr₃, ether -10 °C PBr 1a-II to 1o-II PBr₃, ether -10 °C PBr 1a-II to 1o-II PBr₃ PBr₃ PBr₄ PBr₃ PBr₄ PBr₃ PBr₄ PBr₄ PBr₃ PBr₄ PBr₄ PBr₄ PBr₄ PBr₃ PBr₄ PBr₄ PBr₄ PBr₅ PBr₄ PBr₄ PBr₄ PBr₅ PBr₅

Substrates 1a to 1o and 1u were synthesized through Route I.

Synthetic route II for substrates with N-Ts linkage¹⁷

EtO OH + TsNH R¹ 1) DIAD, PPh₃, THF, 0 °C to r.t. 2) 1 M H₂SO₄, CH₃CN, r.t. 0.5 h
$$\frac{R^2}{1}$$
 R¹ Et, R² = H, 1s-I R¹ Et, R² = H, 1q-I R¹ R¹ Ph, R² H, 1q-I R¹ Ph, R² Me, 1r-I R¹ Ph, R² Me, 1r-I R¹ Ph, R² Me, 1r-I R¹ Ph, R² Me, 1r 27% over 2 steps R¹ Ph, R² Me, 1r 27% over 2 steps R¹ Ph, R² Me, 1r 27% over 2 steps

Substrates 1q to 1s were synthesized through route II. 1q-I, 1r-I and 1s-I are known compounds.

4.4.3 Synthesis of precursors

a) Synthesis of unknown precursors:

Apart from what are reported here, all other alkyl bromide precursors are known compound. ¹⁸ Compound **1d-II**, **1j-II**, **1l-II**, **1m-II** and **1n-II** were synthesized using the previously reported procedure as shown in route I and the alcohol precursor **1d-I**, **1j-I**, **1l-I**, **1m-I** and **1n-I** are known compounds. ¹⁹ Compound **1o-II** was synthesized from the corresponding alcohol **1o-I**

(literature known).¹⁹ Because of the instability of compound **10-II** towards column, it was subjected directly to the alkylation reaction.

Compound **1d-II** was obtained as a white solid (M.P.: 74-75 °C) in 55% yield (1.65 g) over two steps. $R_f = 0.8$ (EtOAc/Hexane=1/5). **¹H NMR (500 MHz, CDCl3):** δ 7.56 – 7.50 (m, 3H), 7.45 (dd, J = 7.3, 1.6 Hz, 1H), 7.37 – 7.28 (m, 4H), 4.72 (s, 2H). **¹³C NMR (126 MHz, CDCl3):** δ 139.22, 134.67, 132.81, 132.48, 129.75, 128.99, 128.80, 128.56, 122.98, 121.52, 94.06, 87.41, 31.94. **IR:** v 3065, 3028, 1492, 1450, 1397, 1220, 1090, 1013, 949, 827, 758, 606 532, 515 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 304.9727. Found: 304.9707.

Compound **1j-II** was obtained as a colorless oil in 37% yield (1.1 g). $R_f = 0.8$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl₃):** δ 7.44 – 7.36 (m, 2H), 7.23 (td, J = 7.0, 1.6 Hz, 2H), 4.66 (s, 2H), 3.86 (t, J = 7.1 Hz, 2H), 2.69 (t, J = 7.1 Hz, 2H), 0.92 (s, 9H), 0.10 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 139.13, 132.48, 129.61, 128.33, 128.19, 123.66, 93.31, 78.70, 61.84, 32.21, 25.92, 24.10, 18.35, -5.23. **IR:** v 2954, 2928, 2856, 1485, 1471, 1275, 1258, 1221, 1106, 1057, 916, 837, 750 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 353.0931. Found: 353.0940.

Compound **11-II** was obtained as a light yellow oil in 68% yield (1.43 g). $R_f = 0.8$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.37 (m, 2H), 7.25 – 7.21 (m, 2H), 4.65 (s, 2H), 2.90 (dt, J = 10.9, 7.2 Hz, 1H), 2.05 – 1.98 (m, 2H), 1.84 – 1.76 (m, 4H), 1.67 – 1.60 (m, 2H). **¹³C NMR (100 MHz, CDCl₃):** δ 138.98, 132.33, 129.53, 128.37, 127.92, 124.16, 101.00, 77.29, 33.88, 32.44, 31.02, 25.06. **IR:** v 2961, 2868, 1485, 1499, 1275, 1260, 1220, 750, 607 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 263.0430. Found: 263.0435.

Compound **1m-II** was obtained as a light yellow oil in 36% yield (1.0 g) over two steps. $R_f = 0.8$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.38 (dt, J = 6.8, 2.2 Hz, 2H), 7.23 (ddd, J = 6.1, 3.3, 1.8 Hz, 2H), 4.63 (s, 2H), 1.55 – 1.46 (m, 1H), 0.96 – 0.86 (m, 4H). ¹³**C NMR (101 MHz, CDCl₃):** δ 139.08, 132.45, 129.52, 128.34, 127.89, 123.94, 99.75, 72.78, 32.38, 8.86, 0.42. **IR:** v 3013, 2923, 2850, 1221, 1028, 955, 842, 809, 758, 607, 542 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 235.0117. Found: 235.0120.

Compound **1n-II** was obtained as a white solid (M.P.: 89-92 °C) in 74% yield (2.56 g) from corresponding alcohol. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.53 (m, 2H), 7.42 – 7.31 (m, 3H), 7.01 (s, 1H), 6.92 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 149.49, 148.93, 132.38, 131.45, 128.40, 128.36, 123.15, 115.55, 114.35, 112.30, 93.76, 86.57, 56.05, 56.00, 32.79. **IR**: 3003, 2961, 2935, 2851, 2832, 1595, 1516, 1463, 1352,

1251, 1225, 1091, 1027, 863, 756, 691, 577, 529 cm⁻¹. **HRMS** calcd. For [M+H]⁺: 331.0328. Found: 331.0328.

$$\begin{bmatrix}
N & \\
Me_2N & OBn \\
1u-I
\end{bmatrix}$$

Compound **1u-I** was obtained as a light yellow oil in 23% yield (335 g) over 5 steps. $R_f = 0.6$ (EtOAc/Hexane=1/1). **¹H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.27 (m, 5H), 4.54 (s, 2H), 3.59 – 3.44 (m, 2H), 3.12 – 2.93 (m, 2H), 2.78 – 2.60 (m, 3H), 2.59 (s, 6H). **¹³C NMR (101 MHz, CDCl₃):** δ 156.90, 138.26, 128.42, 127.69, 127.67, 73.59, 73.18, 46.83, 38.22, 27.92. **IR:** v 2955, 2855, 2776, 1782, 1682, 1453, 1364, 1097, 1027, 988, 738, 698, 606 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 233.1648. Found: 233.1634.

4.4.4. Synthesis of substrates

a) Synthesis of substrates with benzene linkage (In Route I):

The procedure for the alkylation reaction is as follows (using substrate **1a** as an example):

n-BuLi (2.5 M in hexane, 0.9 mL, 1.1 equiv.) was added to a solution of known compound **10** (228.8 mg, 2.04 mmol, 1 equiv.) in freshly distilled THF (5 mL). The reaction mixture was stirred for 1 h at 0 °C until a yellow suspension was generated. After that, a solution of **1a-II** (608.9 mg, 2.25 mmol, 1.1 equiv.) in THF (2 mL) was added dropwise to the stirring mixture at -78 °C. The mixture was further stirred for 15 min at -78 °C, then overnight at room temperature. 2 M HCl (3.6 mL) was then added to the reaction system and the reaction was stirred vigorously for 1 h at room temperature. A mixture of diethyl ether (25 mL) and water (10 mL) was added to the reaction mixture. The aqueous phase was extracted by diethyl ether (2×25 mL). Then the organic phase was washed with brine (2×10 mL) and dried using Na₂SO₄ and concentrated under reduced

pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to obtain the desired substrate **1a** (457.3 mg) as a light yellow oil in 86% yield.

Compound **1a** was obtained as a light yellow oil in 86% yield (457.3 mg). $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹**H NMR (500 MHz, CDCl₃):** δ 7.53 (ddd, J = 7.2, 3.6, 1.7 Hz, 3H), 7.41 - 7.31 (m, 3H), 7.32 - 7.18 (m, 3H), 3.79 (tdd, J = 9.9, 7.4, 5.8 Hz, 1H), 3.35 (dd, J = 14.0, 5.7 Hz, 1H), 3.11 - 3.01 (m, 1H), 3.05 - 2.97 (m, 1H), 2.93 (dddd, J = 17.6, 9.7, 5.1, 2.7 Hz, 1H), 2.21 - 2.09 (m, 1H), 1.84 (ddt, J = 11.2, 9.6, 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 210.70, 140.93, 132.31, 131.52, 129.24, 128.58, 128.48, 128.42, 126.43, 123.24, 122.89, 93.76, 87.91, 60.58, 44.55, 34.04, 16.80. IR: v 3059, 2922, 1777, 1599, 1479, 1443, 1089, 1071, 757, 691, 553 cm⁻¹; HRMS calcd. For [M+H]⁺: 261.1274. Found: 261.1283.

Compound **1b** was obtained as light yellow oil in 27% yield (118.9 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (500 MHz, CDCl₃):** δ 7.51 (dd, J = 7.5, 1.4 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.30 – 7.14 (m, 5H), 3.78 (dtq, J = 12.6, 8.2, 2.7 Hz, 1H), 3.34 (dd, J = 14.0, 5.7 Hz, 1H), 3.10 – 3.00 (m, 1H), 3.04 – 2.97 (m, 1H), 2.92 (dddd, J = 17.5, 9.6, 5.1, 2.7 Hz, 1H), 2.38 (s, 3H), 2.14 (qd, J = 10.5, 5.1 Hz, 1H), 1.83 (ddt, J = 11.2, 9.6, 7.7 Hz, 1H). **¹³C NMR (126 MHz, CDCl₃):** δ 210.73, 140.80, 138.55, 132.20, 131.38, 129.20, 129.18, 128.34, 126.37, 123.11, 120.16, 93.92,

87.23, 60.60, 44.51, 34.01, 21.52, 16.76, 6.96. **IR:** v 2922, 2853, 1778, 1510, 1448, 1393, 1073, 817, 757, 522 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 275.1430. Found: 275.1438.

Compound 1c was obtained as colorless oil in 68% yield (246.7 mg). $R_f = 0.5$ (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.42 (m, 3H), 7.30 – 7.16 (m, 3H), 6.93 – 6.85 (m, 2H), 3.83 (s, 3H), 3.82 – 3.73 (m, 1H), 3.35 (dd, J = 14.0, 5.6 Hz, 1H), 3.12 – 2.85 (m, 3H), 2.14 (dtd, J = 11.3, 10.2, 5.2 Hz, 1H), 1.90 – 1.76 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 210.98, 159.70, 140.62, 132.94, 132.05, 129.14, 128.17, 126.36, 123.18, 115.30, 114.09, 93.76, 86.55, 60.55, 55.33, 44.51, 34.03, 16.76. IR: v 3062, 2997, 2954, 2837, 1777, 1606, 1510, 1442, 1287, 1249, 1175, 1029, 832, 757, 532 cm⁻¹; HRMS calcd. For [M+H]⁺: 291.1380. Found: 291.1384.

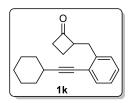
Compound **1d** was obtained as colorless oil in 48% yield (225.5 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl3):** δ 7.51 (ddd, J = 7.5, 1.5, 0.6 Hz, 1H), 7.48 - 7.43 (m, 2H), 7.37 - 7.32 (m, 2H), 7.32 - 7.26 (m, 1H), 7.26 - 7.20 (m, 2H), 3.84 - 3.69 (m, 1H), 3.35 (dd, J = 14.0, 5.6 Hz, 1H), 3.13 - 2.86 (m, 3H), 2.15 (dtd, J = 11.3, 10.3, 5.2 Hz, 1H), 1.82 (ddt, J = 11.2, 9.7, 7.8 Hz, 1H). **¹³C NMR (101 MHz, CDCl3):** δ 210.69, 140.93, 134.40, 132.69, 132.30, 129.21, 128.79, 128.76, 126.45, 122.52, 121.68, 92.57, 88.78, 60.51, 44.56, 34.02,

16.82. **IR:** v 3059, 2923, 2852, 1778, 1492, 1447, 1397, 1090, 1014, 828, 757, 520 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 295.0884. Found: 295.0893.

Compound **1e** was obtained as colorless oil in 67% yield (277.2mg). $R_f = 0.5$ (EtOAc/Hexane=1/5). **1H NMR (400 MHz, CDCl₃):** δ 7.54 (ddt, J = 8.5, 5.3, 3.1 Hz, 3H), 7.35 – 7.19 (m, 3H), 7.13 – 7.01 (m, 2H), 3.79 (dtq, J = 12.7, 8.1, 2.8 Hz, 1H), 3.38 (dd, J = 14.1, 5.6 Hz, 1H), 3.08 (dddd, J = 18.3, 10.6, 8.0, 2.7 Hz, 1H), 3.05 – 2.90 (m, 2H), 2.17 (ddt, J = 15.7, 10.6, 5.5 Hz, 1H), 1.85 (ddt, J = 11.3, 9.6, 7.8 Hz, 1H). ¹³C **NMR (101 MHz, CDCl₃):** δ 210.74, 162.56 (d, J = 249.8 Hz), 140.85, 133.37 (d, J = 8.4 Hz), 132.24, 129.19, 128.60, 126.43, 122.68, 119.29 (d, J = 3.5 Hz), 115.75 (d, J = 22.1 Hz), 92.64, 87.51 (d, J = 1.5 Hz), 60.52, 44.54, 34.03, 16.82. **IR:** v 3065, 2924, 2853, 1778, 1597, 1508, 1229, 1156, 1092, 836, 757, 525 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 279.1180. Found: 279.1190.

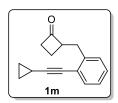
Compound **1f** was obtained as a light yellow oil in 63 % yield (850 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl3):** δ 7.41 – 7.35 (m, 1H), 7.23 – 7.11 (m, 3H), 3.77 - 3.65 (m, 1H), 3.24 (dd, J = 14.1, 5.7 Hz, 1H), 3.04 (dddd, J = 17.6, 10.6, 8.0, 2.7 Hz, 1H), 2.97 - 2.84 (m, 2H), 2.18 - 2.04 (m, 1H), 2.08 (s, 3H), 1.78 (ddt, J = 11.2, 9.6, 7.7 Hz, 1H). **¹³C NMR (100 MHz, CDCl3):** δ 211.15, 140.61, 132.33, 128.91, 127.73, 126.23, 123.70, 90.11, 78.17,

60.47, 44.47, 33.73, 16.72, 4.50. **IR:** v 3063, 2971, 2851, 1778, 1485, 1446, 1091, 1073, 758 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 199.1117. Found: 199.1122.


Compound **1g** was obtained as a colorless oil in 70% yield (420 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **1H NMR (500 MHz, CDCl₃):** δ 7.38 (dd, J = 7.5, 1.4 Hz, 1H), 7.23 – 7.11 (m, 3H), 3.78 – 3.67 (m, 1H), 3.24 (dd, J = 14.0, 5.8 Hz, 1H), 3.10 – 2.98 (m, 1H), 2.97 – 2.85 (m, 2H), 2.42 (t, J = 7.0 Hz, 2H), 2.15 – 2.06 (m, 1H), 1.79 (ddt, J = 11.3, 9.6, 7.7 Hz, 1H), 1.64 (q, J = 7.2 Hz, 2H), 1.06 (t, J = 7.4 Hz, 3H). **13C NMR (126 MHz, CDCl₃):** δ 210.91, 140.56, 132.30, 128.96, 127.68, 126.22, 126.20, 123.74, 94.64, 79.17, 60.54, 60.54, 44.43, 33.83, 22.29, 21.55, 16.65, 13.60. **IR:** v 3064, 2962, 2832, 1779, 1484, 1448, 1091, 1073, 758 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 227.1430. Found: 227.1435.

Compound **1h** was obtained as a colorless oil in 74% yield (566 mg). $R_f = 0.5$ (EtOAc/Hexane=1/5). **1H NMR (500 MHz, CDCl₃):** δ 7.37 (dd, J = 7.5, 1.4 Hz, 1H), 7.23 – 7.11 (m, 3H), 3.72 (dq, J = 8.0, 2.8 Hz, 1H), 3.23 (dd, J = 13.9, 5.7 Hz, 1H), 3.09 – 2.97 (m, 1H), 2.91 (dd, J = 13.8, 9.5 Hz, 2H), 2.81 (p, J = 6.9 Hz, 1H), 2.09 (dt, J = 10.5, 5.2 Hz, 1H), 1.85 – 1.75 (m, 1H), 1.28 (d, J = 6.9 Hz, 6H). **13C NMR (126 MHz, CDCl₃):** δ 210.92, 140.61, 132.13, 129.01, 127.70, 126.20, 123.59, 100.24, 78.26, 60.57, 44.43, 33.89, 23.09, 21.31, 16.65. **IR:** v 2975, 2930,

1777, 1485, 1448, 1362, 1174, 963, 912, 759 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 249.1250. Found: 249.1254.


Compound **1i** was obtained as white solid (M.P.: 63-64 °C) in 77% yield (885 mg). $R_f = 0.5$ (EtOAc/Hexane=1/5). M. P.= . ¹**H NMR (500 MHz, CDCl₃):** δ 7.39 (dd, J = 7.6, 1.3 Hz, 1H), 7.26 – 7.13 (m, 3H), 3.82 – 3.68 (m, 1H), 3.25 (dd, J = 13.8, 5.7 Hz, 1H), 3.11 – 3.00 (m, 1H), 3.00 – 2.88 (m, 2H), 2.12 (qd, J = 10.5, 5.2 Hz, 1H), 1.84 (ddt, J = 11.3, 9.8, 7.7 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ 210.91, 140.59, 132.03, 129.05, 127.67, 126.19, 123.59, 103.03, 60.60, 44.41, 33.97, 31.04, 28.19, 16.61. IR: v 3065, 2968, 2867, 1780, 1474, 1448, 1291, 1203, 1089, 1072, 757 cm⁻¹: HRMS calcd. For [M+H]⁺: 241.1587. Found: 241.1596.

Compound **1j** was obtained as a colorless oil in 33% yield (288 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **1H NMR (500 MHz, CDCl₃):** δ 7.38 (dd, J = 7.5, 1.4 Hz, 1H), 7.24 – 7.12 (m, 3H), 3.82 (t, J = 7.1 Hz, 2H), 3.77 – 3.65 (m, 1H), 3.22 (dd, J = 14.1, 5.7 Hz, 1H), 3.03 (dddd, J = 18.3, 10.5, 8.0, 2.7 Hz, 1H), 2.97 – 2.84 (m, 2H), 2.66 (t, J = 7.1 Hz, 2H), 2.10 (qd, J = 10.6, 5.1 Hz, 1H), 1.84 – 1.71 (m, 1H), 0.91 (s, 9H), 0.10 (s, 6H). **13C NMR (126 MHz, CDCl₃):** δ 210.76, 140.70, 132.35, 128.96, 127.88, 126.20, 123.43, 91.47, 80.03, 61.99, 60.51, 44.46, 33.78, 25.90, 25.90, 24.00, 18.33, 16.70, -5.25, -5.48. **IR:** v 2927, 2855, 1779, 1485, 1390, 1254, 1098, 1055, 837, 758, 668 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 343.2088. Found: 343.2102.

Compound **1k** was obtained as a light yellow oil in 54% yield (603 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (500 MHz, CDCl3):** δ 7.41 – 7.36 (m, 1H), 7.23 – 7.10 (m, 3H), 3.81 - 3.67 (m, 1H), 3.23 (dd, J = 13.9, 5.8 Hz, 1H), 3.03 (dddd, J = 18.4, 10.6, 8.0, 2.8 Hz, 1H), 2.96 - 2.86 (m, 2H), 2.64 (dt, J = 9.7, 5.2 Hz, 1H), 2.16 - 2.03 (m, 1H), 1.95 - 1.69 (m, 5H), 1.60 - 1.51 (m, 3H), 1.37 (s, 3H). **¹³C NMR (100 MHz, CDCl3):** δ 211.04, 140.56, 132.19, 129.01, 127.64, 126.19, 123.71, 98.89, 78.97, 60.55, 44.43, 33.90, 32.73, 29.78, 25.91, 24.87, 16.61. **IR:** v 2929, 2853, 1779, 1484, 1447, 1072, 953, 886, 757 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 267.1743. Found: 267.1753.

Compound **11** was obtained as a light yellow oil in 34% yield (315 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.37 (ddd, J = 7.4, 1.5, 0.7 Hz, 1H), 7.24 -7.09 (m, 3H), 3.79 -3.64 (m, 1H), 3.22 (dd, J = 13.9, 5.7 Hz, 1H), 3.09 -2.98 (m, 1H), 2.96 -2.82 (m, 3H), 2.09 (dtd, J = 11.3, 10.3, 5.2 Hz, 1H), 2.04 -1.92 (m, 2H), 1.88 -1.56 (m, 7H). ¹³**C NMR (100 MHz, CDCl₃):** δ 211.02, 140.55, 132.11, 129.00, 127.62, 126.19, 123.73, 99.09, 78.57, 60.55, 44.43, 34.00, 33.98, 33.90, 30.95, 24.99, 16.63. **IR:** v 2958, 2869, 1777, 1484, 14448, 1353, 1177, 1072, 994, 919, 758 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 253.1587. Found: 253.1595.

Compound **1m** was obtained as a light yellow oil in 47% yield (411.4 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR** (**400 MHz**, **CDCl3**): δ 7.38 – 7.34 (m, 1H), 7.22 – 7.09 (m, 3H), 3.69 (ddd, J = 9.5, 5.6, 2.7 Hz, 1H), 3.21 (dd, J = 14.0, 5.6 Hz, 1H), 3.10 – 2.97 (m, 1H), 2.97 – 2.83 (m, 2H), 2.10 (dtd, J = 11.2, 10.2, 5.2 Hz, 1H), 1.84 – 1.72 (m, 1H), 1.47 (tt, J = 8.2, 5.0 Hz, 1H), 0.93 – 0.77 (m, 4H). **¹³C NMR** (**100 MHz**, **CDCl3**): δ 211.05, 140.71, 132.27, 128.94, 127.63, 126.20, 123.53, 97.93, 77.33, 74.10, 60.49, 44.45, 33.84, 16.69, 8.82, 8.78, 0.31. **IR**: v 3010, 2923, 2852, 1778, 1485, 1447, 1392, 1178, 1087, 1072, 954, 757 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 225.1274. Found: 225.1285.

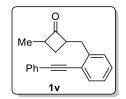
Compound **1n** was obtained as a light yellow solid (M.P.: 91-92 °C) in 66% yield (695 mg). $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR (500 MHz, CDCl₃):** δ 7.54 – 7.48 (m, 2H), 7.38 – 7.30 (m, 3H), 7.01 (s, 1H), 6.77 (s, 1H), 3.90 (d, J = 4.6 Hz, 6H), 3.78 – 3.68 (m, 1H), 3.24 (dd, J = 14.0, 6.1 Hz, 1H), 3.09 – 2.97 (m, 2H), 2.95 – 2.83 (m, 1H), 2.15 (qd, J = 10.6, 5.1 Hz, 1H), 1.86 (ddt, J = 11.1, 9.5, 7.7 Hz, 1H). ¹³**C NMR (126 MHz, CDCl₃):** δ 210.97, 149.45, 147.26, 134.43, 131.31, 128.41, 128.10, 123.45, 114.59, 114.52, 112.45, 92.12, 88.17, 60.97, 56.00, 55.95, 44.55, 33.57, 16.48. **IR:** v 3004, 2360, 1775, 1512, 1464, 1349, 1275, 1260, 1091, 913, 764, 750, 691 cm⁻¹. **HRMS** calcd. For [M+H]⁺: 321.1485. Found: 321.1485.

Compound **10** was obtained as a light yellow oil in 32% yield (64 mg). $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (500 MHz, CDCl₃): δ (major) 7.57 – 7.50 (m, 3H), 7.40 – 7.32 (m, 3H), 7.32 – 7.18 (m, 3H), 3.71 (dd, J = 6.8, 3.6 Hz, 2H), 2.92 (dddd, J = 17.8, 10.3, 7.6, 2.9 Hz, 1H), 2.74 (dddd, J = 17.9, 10.0, 5.3, 2.6 Hz, 1H), 2.19 – 2.02 (m, 1H), 1.99 – 1.83 (m, 2H), 1.78 (tdd, J = 13.5, 5.9, 4.4 Hz, 1H), 1.41 – 1.08 (m, 4H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (major) 210.99, 144.30, 132.40, 131.47, 128.61, 128.41, 128.27, 126.75, 126.18, 123.56, 123.41, 93.61, 88.18, 65.51, 44.58, 42.50, 32.00, 29.49, 22.67, 14.60, 13.99. IR: v 3059, 2956, 2928, 2859, 1777, 1599, 1493, 1443, 1072, 913, 756, 690 cm⁻¹; HRMS calcd. For [M+H]⁺: 317.1900. Found: 317.1900.

Compound **1u** was obtained as a light yellow oil in 66% yield (361.5 mg) from **11**. $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl₃):** δ 7.54 – 7.48 (m, 3H), 7.37 – 7.31 (m, 3H), 7.31 – 7.26 (m, 2H), 7.25 – 7.14 (m, 6H), 4.34 (td, J = 12.4, 8.2 Hz, 2H), 3.62 (ddd, J = 9.1, 7.3, 5.9 Hz, 1H), 3.44 (dd, J = 9.5, 4.5 Hz, 1H), 3.34 (dd, J = 13.8, 6.0 Hz, 1H), 3.30 (dd, J = 9.50, 6.27 Hz, 1H), 3.03 (dd, J = 13.8, 9.1 Hz, 1H), 2.95 (d, J = 8.3 Hz, 2H), 2.52 – 2.41 (m, 1H). ¹³C **NMR** (**101 MHz, CDCl₃):** δ 208.85, 140.68, 138.11, 132.31, 131.49, 129.44, 128.58, 128.44, 128.39,

128.32, 127.54, 127.45, 126.44, 123.14, 122.74, 93.63, 87.88, 72.94, 71.93, 61.78, 47.42, 33.15, 30.81. **IR:** v 3060, 3030, 2922, 2851, 1776, 1494, 1451, 1364, 1097, 914, 757, 691 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 403.1669. Found: 403.1671. The diastereomer was assigned by characteristic *J* coupling constant (7.3) of H^a and H^d at four-membered ring¹⁷.

b) Synthesis of substrate 1v:


The Procedure for the synthesis of **1v-I**:

n-BuLi (2.5 M in hexane, 3.8 mL, 1.1 equiv.) was added to a solution of known compound **10** (977.7 mg, 8.7 mmol, 1 equiv.) in freshly distilled THF (10 mL). Then the reaction mixture was stirred for 1 h at 0 °C until a yellow suspension was generated. After that, a solution of **1a-II** (2.6 g, 9.6 mmol, 1.1 equiv.) in THF (10 mL) was added dropwise to the stirring mixture at -78 °C. The mixture was stirred at -78 °C for 15 min before warmed up to room temperature and stirred overnight. The reaction was quenched with a mixture of diethyl ether (25 mL) and water (10 mL) and the aqueous phase was extracted by diethyl ether (2×25 mL). Then the organic phase was washed with brine (2×10 mL) and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5 to 1/2) to obtain the desired product **1v-I** with a small amount of impurity due to its instability. **1v-I** was subjected to the next step without further purification.

The procedure for the synthesis of **1v**:

n-BuLi (2.5 M in hexane, 0.73 mL, 1.1 equiv.) was added to a solution of compound **1v-I** (500 mg, 1.65 mmol, 1 equiv.) in freshly distilled THF (10 mL). Then the reaction mixture was stirred for 1

h at 0 °C until a yellow suspension was generated. After that, MeI (258.1 mg, 1.82 mmol, 1.1 equiv.) was added dropwise to the stirring mixture at -78 °C. The mixture was stirred at -78 °C for 15 min before warmed up to room temperature. After starting material was fully converted as shown by TLC, 2 M HCl (1 mL) was added to the reaction system and the reaction was stirred vigorously for 1 h at room temperature. A mixture of diethyl ether (10 mL) and water (10 mL) was added to the reaction mixture. The aqueous phase was extracted by diethyl ether (2×25 mL). Then the organic phase was washed with brine (2×20 mL) and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) to obtain the desired substrate **1v** (335 mg) as a light yellow oil in 74% yield.

3:2 mixture of diastereomers

Compound **1v** was obtained as a yellow oil in 74% yield (335 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR (500 MHz, CDCl₃):** δ 7.53 (ddt, J = 9.2, 4.5, 2.6 Hz, 3H), 7.36 (td, J = 4.9, 2.9 Hz, 3H), 7.31 – 7.26 (m, 1H), 7.26 – 7.17 (m, 2H), 3.73 (ddd, J = 9.4, 6.3, 3.2 Hz, 1H), 3.34 (ddd, J = 14.0, 12.4, 5.8 Hz, 1H), 3.30 – 3.17 (m, 1H), 3.05 (dd, J = 14.0, 9.5 Hz, 0.6H), 2.97 (dd, J = 14.0, 9.1 Hz, 0.4H), 2.38 (d, J = 10.5 Hz, 0.4H), 2.10 (ddd, J = 11.5, 10.0, 6.1 Hz, 0.6H), 1.73 (ddd, J = 11.4, 9.7, 6.3 Hz, 0.6H), 1.41 (dt, J = 10.7, 8.4 Hz, 0.4H), 1.19 (d, J = 7.6 Hz, 1.8H), 1.12 (d, J = 7.3 Hz, 1.2H). **¹³C NMR (126 MHz, CDCl₃):** δ 214.63, 212.92, 141.25, 140.95, 132.32, 132.25, 131.50, 131.48, 129.28, 129.16, 128.53, 128.44, 128.37, 128.35, 126.43, 126.30, 123.26, 122.98, 122.83, 93.69, 93.62, 87.97, 87.90, 57.88, 57.81, 52.11, 51.57, 34.46, 33.78, 25.91, 25.19, 24.93, 14.86, 13.51. **IR:** v 3059, 2960, 2867, 1772, 1599, 1493, 1443, 1372, 1101, 1070, 914, 756, 690 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 297.1250. Found: 297.1258.

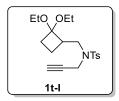
c) Synthesis of substrates with NTs linkage (In Route II):

The procedure for Mitsunobu reaction and deprotection cascade is as follows (using substrate 1q as an example):

A solution of **12** (174.2 mg, 1.0 mmol, 1 equiv.) and DIAD (208.3 mg, 1.03 mmol, 1.03 equiv.) in THF (5 mL) was added to a solution of known⁵ compound **1q-I** (313.9 mg, 1.1 mmol, 1.1 equiv.) and triphenylphosphine (270.0 mg, 1.03 mmol, 1.03 equiv.) in THF (5 mL) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After the reaction finished, solvent was removed by rotavap and the residue was dissolved in 5 mL acetonitrile and 3 mL 1M H₂SO₄ was added to the solution. The resulting mixture was stirred at room temperature for 0.5 h and the progress of the reaction was monitored by TLC. When the starting material was fully consumed, the reaction mixture was diluted with ether and washed by water, saturated NaHCO₃ solution and brine successively. Then the organic phase was dried over magnesium sulfate, then filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate **1q** (258.3 mg) as a white solid in 74% yield.

Compound **1q** was obtained as a white solid (M.P.: 102-104 °C) in 74% yield (258.3 mg). $R_f = 0.4$ (EtOAc/Hexane=1/5). **1H NMR (400 MHz, CDCl₃):** δ 7.76 (d, J = 8.3 Hz, 2H), 7.31 – 7.20 (m, 5H), 7.05 (dd, J = 8.2, 1.5 Hz, 2H), 4.44 (dd, J = 18.7, 0.8 Hz, 1H), 4.31 (dd, J = 18.7, 0.6 Hz, 1H),

3.72 - 3.61 (m, 1H), 3.58 - 3.40 (m, 2H), 3.19 - 3.06 (m, 1H), 3.05 - 2.93 (m, 1H), 2.33 (s, 3H), 2.32 - 2.22 (m, 1H), 2.02 (ddt, J = 11.5, 9.7, 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 208.48, 143.71, 135.59, 131.50, 129.59, 128.48, 128.12, 127.80, 121.99, 85.90, 81.58, 59.13, 45.39, 45.06, 38.31, 21.42, 15.49. IR: v 2960, 2923, 2858, 1778, 1597, 1490, 1442, 1348, 1162, 1090, 1024, 903, 815, 758, 658, 571, 544 cm⁻¹; HRMS calcd. For [M+H]⁺: 368.1315. Found: 368.1319.


Compound **1r** was obtained as an oil in 79% yield (53.1 mg). $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl3**): δ 7.76 (dd, J = 9.8, 8.1 Hz, 2H), 7.27 (dd, J = 7.5, 3.6 Hz, 3H), 7.26 – 7.20 (m, 2H), 7.09 – 7.02 (m, 2H), 5.10 – 4.98 (m, 1H), 4.01 (s, 0.42H), 3.77 – 3.63 (m, 0.56H), 3.55 – 3.37 (m, 1.58H), 3.28 (dd, J = 15.5, 9.6 Hz, 0.44H), 3.14 – 3.00 (m, 1H), 3.01 – 2.85 (m, 1H), 2.35 (d, J = 3.3 Hz, 3H), 2.34 – 2.26 (m, 1H), 2.24 – 2.10 (m, 0.60H), 1.99 – 1.85 (m, 0.43H), 1.52 (d, J = 7.1 Hz, 1.77H), 1.47 (d, J = 7.0 Hz, 1.32H). ¹³**C NMR** (**100 MHz, CDCl3**): δ 208.71, 208.53, 143.75, 143.67, 135.47, 135.23, 131.51, 131.49, 129.63, 129.61, 128.50, 128.18, 128.16, 127.88, 127.79, 121.98, 86.25, 86.00, 85.25, 84.96, 61.34, 61.15, 47.27, 46.58, 44.50, 43.53, 43.40, 22.50, 22.04, 21.48, 21.47, 16.95, 16.28. **IR:** v 2968, 2863, 1777, 1275, 1165, 1121, 913, 748, 658 cm⁻¹; **HRMS** calcd. For [M+H]+: 382.1471. Found: 382.1472.

Compound **1s** was obtained as a colorless oil in 59% yield (396.7 mg). $R_f = 0.3$ (EtOAc/Hexane=1/3). **¹H NMR** (**400 MHz**, **CDCl3**): δ 7.75 – 7.69 (m, 2H), 7.29 (dq, J = 8.0, 0.6 Hz, 2H), 4.24 – 4.12 (m, 1H), 4.02 (dtd, J = 18.3, 2.2, 0.6 Hz, 1H), 3.72 – 3.55 (m, 1H), 3.50 – 3.30 (m, 2H), 3.10 (dddd, J = 18.6, 10.6, 8.2, 2.5 Hz, 1H), 2.98 (dddd, J = 17.7, 9.7, 5.2, 2.6 Hz, 1H), 2.24 (dtd, J = 11.5, 10.3, 5.2 Hz, 1H), 1.99 (ddt, J = 11.5, 9.7, 7.9 Hz, 1H), 1.90 (qt, J = 7.5, 2.3 Hz, 2H), 0.94 – 0.82 (m, 3H). **¹³C NMR** (**100 MHz**, **CDCl3**): δ 208.67, 143.47, 135.75, 129.38, 127.83, 87.89, 71.61, 59.03, 45.07, 45.02, 37.81, 21.50, 15.52, 13.42, 12.10. **IR**: v 2977, 2923, 1778, 1597, 1442, 1347, 1161, 1089, 1014, 903, 815, 750, 656, 569, 544 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 342.1134. Found: 342.1151.

Synthesis of substrate 1t

The procedures for synthesis of **1t-I**:

A solution of **6** (261.3 mg, 1.5 mmol, 1 equiv.) and DIAD (313.4 mg, 1.55 mmol, 1.03 equiv.) in THF (5 mL) was added to a solution of known^{20a} compound **1t-II** (345.3 mg, 1.65 mmol, 1.1 equiv.) and triphenylphosphine (406.2 mg, 1.55 mmol, 1.03 equiv.) in THF (5 mL) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After the reaction finished, solvent was removed by rotavap and the residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/15 to 1/10) to obtain the desired coumpound **1t-I** (346 mg) as a colorless oil in 63% yield.

Compound **1t-I** was obtained as a colorless oil in 63% yield (346 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). **¹H NMR** (**400 MHz**, **CDCl₃**): δ 7.74 (d, J = 8.3 Hz, 2H), 7.29 (dt, J = 8.0, 0.7 Hz, 2H), 4.27 (ddd, J = 18.4, 2.5, 1.0 Hz, 1H), 4.09 (dd, J = 18.4, 2.5 Hz, 1H), 3.48 – 3.31 (m, 5H), 3.24 (dd, J = 14.2, 6.7 Hz, 1H), 2.74 (ddd, J = 8.7, 6.8, 1.4 Hz, 1H), 2.42 (s, 3H), 2.19 (dddd, J = 12.2, 10.0, 4.6, 1.0 Hz, 1H), 2.04 – 1.94 (m, 2H), 1.91 – 1.80 (m, 1H), 1.46 (ddt, J = 11.3, 10.2, 7.7 Hz, 1H), 1.18 (td, J = 7.1, 1.2 Hz, 6H). **¹³C NMR** (**100 MHz**, **CDCl₃**): δ 143.35, 135.97, 129.38, 127.81, 102.10, 77.11, 73.33, 56.62, 56.28, 46.76, 43.71, 37.19, 29.42, 21.54, 16.76, 15.28, 15.24. **IR:** v 3271, 2976, 1930, 2883, 1598, 1445, 1348, 1260, 1162, 1049, 911, 749, 660, 580, 545 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 388.1553. Found: 388.1560.

The procedures for synthesis of **1t**:

A 10 mL Schlenk flask charged with solution of **1t-I** (185 mg, 0.51 mmol, 1 equiv.) in THF (5 mL) was cooled to -78 °C by acetone-dry ice bath, then n-BuLi (2.5 M, 0.34 mL, 1.05 equiv.) was added to the mixture. The mixture was stirred at -78 °C for 1.5 h before TMSCl (60.5 mg, 0.56 mmol, 1.1 equiv.) was added to the reaction. The mixture was further stirred for 15 min at -78 °C, then overnight at room temperature. The reaction was quenched with a mixture of diethyl ether (15 mL) and water (10 mL) and the aqueous phase was extracted by diethyl ether (2×15 mL). Then the organic phase was washed with brine (2×10 mL) and dried over Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in 5 mL acetonitrile and 3 mL 1M H₂SO₄ was added to the solution. The resulting mixture was stirred at room temperature for 0.5 h and the progress of the reaction was monitored by TLC. When the starting material was fully consumed,

reaction mixture was diluted with ether and washed with water, saturated NaHCO₃ solution and brine successively. Then the organic phase was dried over MgSO₄, then filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate **1t** (258.3 mg) as a white solid in 60% yield (70 mg).

Compound **1t** was obtained as a light yellow oil in 60% yield (70 mg) from **1t-I**. $R_f = 0.5$ (EtOAc/Hexane=1/5). **¹H NMR** (**500 MHz, CDCl₃**): δ 7.77 – 7.70 (m, 2H), 7.30 (d, J = 8.1 Hz, 2H), 4.30 – 4.20 (m, 1H), 4.10 (d, J = 18.7 Hz, 1H), 3.71 – 3.57 (m, 1H), 3.46 (dd, J = 14.0, 8.8 Hz, 1H), 3.38 (dd, J = 14.0, 5.9 Hz, 1H), 3.12 (dddd, J = 18.7, 10.6, 8.2, 2.5 Hz, 1H), 3.00 (dddd, J = 17.7, 9.7, 5.1, 2.7 Hz, 1H), 2.43 (s, 3H), 2.32 – 2.19 (m, 1H), 2.06 – 1.93 (m, 1H), -0.00 (s, 9H). **¹³C NMR** (**100 MHz, CDCl₃**): δ 208.35, 143.54, 135.53, 129.53, 127.72, 97.63, 91.23, 58.96, 45.08, 44.96, 38.22, 21.48, 15.46, -0.50. **IR**: v 2959, 2923, 2853, 1780, 1598, 1445, 1349, 1250, 1162, 1090, 1027, 991, 845, 759, 665, 546 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 386.1217. Found: 386.1217.

d) Synthesis of substrate 1p:

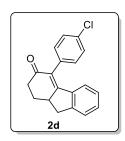
Substrates **1p** were synthesized through alkylation of **1p-II** as shown above. **1p-I** and **1p-II** are known compounds.²¹

Procedure:

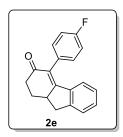
NaH (86.4 mg, 3.6 mmol, 1.2 equiv.) was added to a 20 mL vial with solution of known compound **1p-II** (978.6 mg, 3 mmol, 1 equiv.) in DMF (10 mL) at room temperature. After the mixture was stirred for 30 min at room temperature, **1p-I** (536.4 mg, 3.6 mmol, 1.2 equiv.) in DMF (2 mL) was added. Then the reaction mixture was heated to 40 °C for 5 h. The progress of the reaction was monitored by TLC. When the starting material was fully consumed, reaction mixture was diluted with ether and water was added slowly to the vial. The organic phase was dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate **1p** (400 mg) as an orange oil in 34% yield.

Compound **1p** was obtained as a light yellow oil in 34% yield (400 g) from known compound. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR (400 MHz, CDCl₃):** δ 7.69 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.4 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.39 – 7.26 (m, 6H), 7.15 (d, J = 8.5 Hz, 2H), 5.34 (s, 1H), 2.82 – 2.70 (m, 1H), 2.70 – 2.56 (m, 1H), 2.48 (qd, J = 10.5, 4.6 Hz, 1H), 2.30 (m, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 204.65, 143.53, 138.24, 137.43, 133.25, 132.27, 131.78, 129.38, 129.07, 128.91, 128.58, 128.28, 127.83, 125.95, 122.91, 94.43, 86.08, 72.63, 40.23, 21.52, 19.40. **IR:** v 3063, 2968, 2255, 2219, 1793, 1598, 1494, 1444, 1346, 1161, 1091, 912, 758, 669, 544 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 416.1315. Found: 416.1316.

4.4.5 Rh-catalyzed intramolecular coupling between cyclobutanones and alkynes


General procedure:

In a nitrogen-filled glove box, a 4 mL vial was charged with the cyclobutanone substrates (0.1 mmol), followed by 800 μ L 1,4-dioxane. 100 μ L of PMe₂Ph stock solution (22.1 mg/1000 μ L , 2.21 mg, 0.016 mmol, 16 mol%) and 100 μ L of [Rh(CO)₂Cl]₂ stock solution (19.4 mg/1000 μ L, 1.94 mg, 0.005 mmol, 5 mol%) were added sequentially to the vial. After stirring to a homogeneous solution, the vial was capped and the reaction was maintained at 125 °C (**1a** to **1t**) and 140 °C (**1u** and **1v**) for 60 h. After the reaction was complete, solvent was removed by rotavap and the residue was directly purified by silica gel flash chromatography.

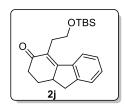

Compound **2a** was isolated as a white solid (M.P.: 118-120 °C) in 82% yield. $R_f = 0.4$ (EtOAc/Hexane=1/2). ¹**H NMR (500 MHz, CDCl₃):** δ 7.39 (q, J = 9.9, 7.2 Hz, 3H), 7.31 (d, J = 7.6 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.15 (s, 2H), 6.91 (t, J = 7.6 Hz, 1H), 6.41 (d, J = 7.9 Hz, 1H), 3.37 – 3.22 (m, 2H), 2.86 – 2.73 (m, 2H), 2.61 (ddd, J = 17.3, 14.3, 5.0 Hz, 1H), 2.43 (dtd, J = 12.0, 4.7, 2.2 Hz, 1H), 2.06 (dtd, J = 16.4, 12.5, 4.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.28, 162.69, 148.84, 138.46, 135.34, 132.51, 130.72, 129.67, 128.70, 127.66, 126.62, 125.14, 43.13, 38.44, 37.31, 29.14. **IR:** v 3057, 2938, 2860, 1654, 1620, 1593, 1463, 1359, 1326, 1182, 1002, 910, 829, 732, 699, 578 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 283.1093. Found: 283.1094.

Compound **2b** was isolated as a white solid (M.P.: 168-172 °C) in 82% yield. $R_f = 0.4$ (EtOAc/Hexane=1/2). ¹**H NMR (400 MHz, CDCl₃):** δ 7.30 (d, J = 7.5 Hz, 1H), 7.28 – 7.18 (m, 3H), 7.04 (s, 2H), 6.98 – 6.89 (m, 1H), 6.50 (d, J = 8.0 Hz, 1H), 3.38 – 3.21 (m, 2H), 2.87 – 2.72 (m, 2H), 2.59 (ddd, J = 17.1, 14.2, 5.0 Hz, 1H), 2.41 (m, 4H), 2.11 – 1.98 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.47, 162.51, 148.78, 138.58, 137.25, 132.46, 132.19, 130.63, 129.47, 129.35, 126.65, 126.59, 125.10, 43.10, 38.46, 37.30, 29.15, 21.40. **IR:** v 3023, 2922, 2859, 1657, 1597, 1510, 1462, 1358, 1335, 1206, 1092, 980, 811, 773, 734, 678, 518 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 297.1250. Found: 297.1255.

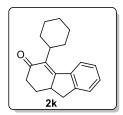
Compound **2c** was isolated as a white solid (M.P.: 132-135 °C) in 65% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.21 – 6.89 (m, 5H), 6.56 – 6.50 (m, 1H), 3.86 (s, 3H), 3.36 – 3.20 (m, 2H), 2.87 – 2.71 (m, 2H), 2.60 (ddd, J = 17.2, 14.2, 5.0 Hz, 1H), 2.47 – 2.36 (m, 1H), 2.12 – 1.96 (m, 1H). ¹³**C NMR (100 MHz, CDCl₃):** δ 198.71, 162.84, 159.05, 148.81, 138.59, 132.02, 130.84, 130.66, 127.37, 126.63, 126.62, 125.13, 114.23, 55.24, 43.16, 38.45, 37.32, 29.11. **IR:** v 2934, 1655, 1603, 1509, 1463, 1334, 1245, 1174, 1030, 979, 823, 774, 734, 578 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 291.1380. Found: 291.1395.

Compound **2d** was isolated as a white solid (M.P.: 145-147 °C) in 76% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹H NMR (**400 MHz, CDCl₃**): δ 7.40 (d, J = 7.8 Hz, 2H), 7.35 – 7.26 (m, 2H), 7.11 (s, 2H), 7.00 – 6.93 (m, 1H), 6.50 (d, J = 8.0 Hz, 1H), 3.38 – 3.21 (m, 2H), 2.87 – 2.72 (m, 2H), 2.60 (ddd, J = 17.2, 14.2, 5.0 Hz, 1H), 2.48 – 2.38 (m, 1H), 2.12 – 1.98 (m, 1H). ¹³C NMR (**100 MHz, CDCl₃**): δ 198.04, 163.20, 149.02, 138.12, 133.76, 133.65, 131.27, 131.16, 131.03, 128.99, 126.76, 126.51, 125.31, 43.26, 38.35, 37.29, 29.01. **IR**: v 3010, 2922, 1657, 1588, 1489, 1335, 1183, 1069, 816, 734, 578 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 317.0704. Found: 317.0710.

Compound **2e** was isolated as a white solid (M.P.: 120-121 °C) in 78% yield. $R_f = 0.3$ (EtOAc/Hexane=1/3). ¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.33 (m, 1H), 7.33 – 7.27 (m, 1H), 7.15 (s, 4H), 6.98 (dd, J = 8.2, 7.0 Hz, 1H), 6.49 (d, J = 7.9 Hz, 1H), 3.40 – 3.23 (m, 2H), 2.90 – 2.75 (m, 2H), 2.63 (ddd, J = 17.2, 14.2, 4.9 Hz, 1H), 2.46 (ddt, J = 12.6, 5.1, 2.1 Hz, 1H), 2.07 (dddd, J = 14.3, 12.8, 11.9, 4.3 Hz, 1H). ¹³**C NMR (100 MHz, CDCl₃):** δ 198.36, 163.32, 162.39 (d, J = 246.2 Hz), 148.98, 138.23, 131.33, 131.08 (d, J = 3.5 Hz), 130.94, 126.58 (d, J = 21.6 Hz),

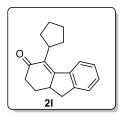

125.28, 115.76 (d, J = 21.3 Hz), 43.21, 38.35, 37.29, 29.02. **IR:** v 2943, 1656, 1597, 1507, 1335, 1223, 1182, 911, 826, 773, 733, 584 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 301.0999. Found: 301.1000.

Compound **2f** was isolated as a colorless oil in 77% yield. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.74 (d, J = 7.4 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.34 – 7.29 (m, 1H), 3.25 – 3.11 (m, 2H), 2.79 – 2.69 (m, 1H), 2.66 (ddd, J = 17.1, 4.2, 2.3 Hz, 1H), 2.46 (ddd, J = 17.1, 14.4, 4.9 Hz, 1H), 2.32 (dtd, J = 12.5, 4.5, 2.3 Hz, 1H), 2.13 (d, J = 2.2 Hz, 3H), 1.88 (dddd, J = 14.4, 12.5, 11.7, 4.2 Hz, 1H). ¹³C NMR (**100 MHz, CDCl₃**): δ 199.76, 161.02, 148.55, 139.71, 130.24, 127.10, 126.92, 126.78, 125.32, 43.26, 37.95, 37.64, 29.27, 11.12. **IR:** v 3304, 2954, 1720, 1632, 1463, 1330, 1276, 1205, 1070, 925, 849, 749, 580 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 199.1117. Found: 199.1121.

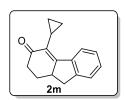

Compound **2g** was isolated as a colorless oil in 80% yield. $R_f = 0.5$ (EtOAc/Hexane=1/3). ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 7.6 Hz, 1H), 7.39 - 7.27 (m, 3H), 3.26 - 3.09 (m, 2H), 2.77 - 2.59 (m, 3H), 2.52 - 2.38 (m, 2H), 2.37 - 2.26 (m, 1H), 1.87 (dd, J = 14.5, 4.1 Hz, 1H), 1.59 (dd, J = 9.4, 3.8 Hz, 1H), 1.50 - 1.38 (m, 1H), 1.03 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.49, 160.65, 148.53, 139.18, 132.50, 130.23, 127.08, 126.29, 125.35, 43.28, 38.15, 37.69, 29.40, 27.00, 22.08, 14.33. IR: v 2956, 2868, 1665, 1598, 1462, 1362, 1327, 1183, 1114, 770, 733 cm⁻¹; HRMS calcd. For [M+H]⁺: 227.1430. Found: 227.1442.

Compound **2h** was isolated as an oily solid (M.P.: 63-65 °C) in 70% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹H NMR (500 MHz, CDCl₃): δ 7.69 – 7.64 (m, 1H), 7.35 (dd, J = 5.6, 1.1 Hz, 2H), 7.31 – 7.26 (m, 1H), 3.31 (hept, J = 6.9 Hz, 1H), 3.19 – 3.01 (m, 2H), 2.74 (dd, J = 14.9, 7.3 Hz, 1H), 2.55 (ddd, J = 17.6, 4.4, 2.2 Hz, 1H), 2.35 (ddd, J = 17.6, 14.4, 4.9 Hz, 1H), 2.27 – 2.18 (m, 1H), 1.82 (dddd, J = 14.4, 12.5, 11.7, 4.4 Hz, 1H), 1.43 (d, J = 7.1 Hz, 3H), 1.25 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.39, 159.77, 148.41, 139.27, 137.11, 130.09, 126.73, 126.46, 125.31, 44.32, 38.90, 37.88, 28.47, 28.01, 20.80, 20.70. IR: v 2952, 2869, 1658, 1598, 1461, 1357, 1325, 995, 771, 733 cm⁻¹; HRMS calcd. For [M+H]⁺: 227.1430. Found: 227.1444.

Compound **2i** was isolated as a light yellow oil in 49% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹H **NMR** (**400 MHz, CDCl₃**): δ 7.67 (d, J = 7.5 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.26 – 7.19 (m, 1H), 3.11 – 2.93 (m, 2H), 2.76 (dd, J = 14.4, 7.9 Hz, 1H), 2.51 (ddd, J = 18.7, 5.7, 1.6 Hz, 1H), 2.31 (ddd, J = 18.7, 13.8, 5.6 Hz, 1H), 2.15 – 2.06 (m, 1H), 1.84 – 1.71 (m, 1H), 1.38 (s, 9H). ¹³C **NMR** (**100 MHz, CDCl₃**): δ 201.70, 157.81, 148.62, 143.12, 140.15, 129.41, 129.28, 125.58, 124.62, 48.19, 38.49, 38.34, 34.91, 30.61, 27.23. **IR**: v 2957, 2863, 1660, 1576, 1461, 1362, 1318, 1203, 991, 768, 737 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 241.1587. Found: 241.1601.



Compound **2j** was isolated as a colorless oil in 89% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl₃**): δ 8.00 (d, J = 7.7 Hz, 1H), 7.39 - 7.26 (m, 3H), 3.85 (ddd, J = 9.9, 8.0, 5.2 Hz, 1H), 3.72 (dt, J = 9.9, 7.5 Hz, 1H), 3.24 - 3.12 (m, 2H), 2.99 - 2.80 (m, 2H), 2.72 (d, J = 8.3 Hz, 1H), 2.63 (ddd, J = 16.9, 4.1, 2.4 Hz, 1H), 2.44 (ddd, J = 16.9, 14.4, 4.9 Hz, 1H), 2.37 - 2.26 (m, 1H), 1.96 - 1.80 (m, 1H), 0.84 (s, 9H), 0.03 (d, J = 0.3 Hz, 3H), 0.00 (d, J = 0.7 Hz, 3H). ¹³C **NMR** (**100 MHz, CDCl₃**): δ 199.57, 162.98, 148.38, 139.05, 130.51, 128.36, 127.05, 126.90, 125.14, 61.97, 43.56, 38.07, 37.74, 29.29, 28.78, 25.94, 18.32, -5.28, -5.31. **IR**: v 2882, 1659, 1600, 1471, 1360, 1337, 1254, 1100, 1076, 928, 836, 774, 732 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 365.1907. Found: 365.1909.



Compound **2k** was isolated as a white solid (M.P.: 103-105 °C) in 61% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹**H NMR (400 MHz, CDCl₃):** δ 7.60 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 26.6, 4.0 Hz, 3H), 3.14 (dd, J = 15.2, 8.0 Hz, 1H), 3.06 (ddt, J = 11.7, 7.8, 3.8 Hz, 1H), 2.88 (td, J = 10.3, 8.6, 6.0 Hz, 1H), 2.74 (dd, J = 15.2, 7.6 Hz, 1H), 2.59 – 2.49 (m, 1H), 2.41 – 2.29 (m, 1H), 2.29 – 2.17 (m, 2H), 2.17 – 2.03 (m, 1H), 1.92 – 1.66 (m, 5H), 1.49 – 1.31 (m, 3H), 1.24 – 1.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 199.55, 160.23, 148.49, 139.38, 136.71, 130.07, 126.78, 126.42, 125.30, 44.36, 39.18, 38.87, 37.90, 30.41, 29.92, 28.43, 27.27, 26.90, 25.97. **IR:** v 2933,

2862, 1655, 1598, 1450, 1325, 1276, 1181, 986, 769, 733 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 289.1563. Found: 289.15774.

Compound **21** was isolated as a colorless oil in 74% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.66 (dd, J = 7.8, 1.0 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.31 – 7.24 (m, 1H), 3.45 – 3.31 (m, 1H), 3.19 – 3.02 (m, 2H), 2.80 – 2.71 (m, 1H), 2.56 (ddd, J = 17.5, 4.3, 2.3 Hz, 1H), 2.42 – 2.31 (m, 1H), 2.23 (ddt, J = 10.1, 4.3, 2.3 Hz, 1H), 2.03 – 1.88 (m, 5H), 1.71 – 1.52 (m, 4H). ¹³**C NMR (100 MHz, CDCl₃):** δ 199.12, 160.93, 148.41, 139.53, 134.75, 130.09, 126.69, 126.20, 125.30, 44.58, 38.93, 38.52, 37.94, 31.24, 30.79, 28.35, 27.05, 26.91. **IR:** v 2938, 2863, 1658, 1597, 1462, 1326, 1274, 1153, 943, 769, 733 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 253.1587. Found: 253.1602.

Compound **2m** was isolated as a colorless oil in 58% yield. $R_f = 0.6$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl₃**): δ 8.02 (d, J = 7.8 Hz, 1H), 7.40 – 7.26 (m, 3H), 3.22 – 3.08 (m, 2H), 2.78 – 2.66 (m, 1H), 2.58 (ddd, J = 17.6, 4.4, 2.3 Hz, 1H), 2.41 (ddd, J = 17.6, 14.2, 5.0 Hz, 1H), 2.29 – 2.21 (m, 1H), 1.79 (dddd, J = 14.2, 12.6, 11.8, 4.5 Hz, 1H), 1.61 (ddt, J = 8.5, 5.6, 2.9 Hz, 1H), 1.13 – 1.02 (m, 1H), 0.86 (dddd, J = 9.1, 7.9, 6.1, 4.5 Hz, 1H), 0.49 – 0.42 (m, 1H), 0.35 – 0.26 (m, 1H). ¹³**C NMR** (**100 MHz, CDCl₃**): δ 199.80, 164.00, 148.67, 138.66, 131.93, 130.47,

127.91, 126.35, 124.94, 43.98, 38.41, 37.56, 28.54, 9.59, 8.05, 7.91. **IR:** v 2925, 2855, 1657, 1597, 1462, 1306, 1204, 1027, 997, 770, 734 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 225.1274. Found: 225.1290.

Compound **2n** was isolated as a colorless oil in 75% yield. $R_f = 0.3$ (EtOAc/Hexane=1/3). ¹H NMR (**400** MHz, CDCl₃): δ 7.57 – 7.27 (m, 4H), 7.05 (s, 1H), 6.78 (s, 1H), 5.85 (s, 1H), 3.87 (s, 3H), 3.38 – 3.26 (m, 1H), 3.31 (s, 3H), 3.20 (dd, J = 15.8, 7.9 Hz, 1H), 2.78 (dd, J = 6.5, 2.3 Hz, 1H), 2.74 (dd, J = 4.4, 2.2 Hz, 1H), 2.60 (ddd, J = 17.2, 14.0, 4.9 Hz, 1H), 2.39 (dtd, J = 12.0, 4.7, 2.4 Hz, 1H), 2.02 (dtd, J = 13.7, 12.4, 4.4 Hz, 1H). ¹³C NMR (**100** MHz, CDCl₃): δ 198.05, 163.76, 152.01, 147.88, 142.99, 135.74, 130.55, 130.36, 129.74, 128.70, 127.50, 108.16, 106.92, 55.96, 55.17, 43.42, 38.42, 37.04, 29.12. IR: v 2937, 2835, 2250, 1647, 1590, 1490, 1464, 1322, 1293, 1220, 1189, 977, 750, 701 cm⁻¹; HRMS calcd. For [M+H]⁺: 321.1485. Found: 321.1487.

Compound **20** was isolated as a colorless oil in 33% yield. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹H NMR (500 MHz, CDCl₃): δ 7.50 – 7.34 (m, 3H), 7.28 (dd, J = 13.8, 7.4 Hz, 2H), 7.14 (s, 2H), 6.90 (t, J = 7.5 Hz, 1H), 6.38 (d, J = 7.8 Hz, 1H), 3.45 – 3.24 (m, 0.21H), 3.04 – 2.84 (m, 1.87H), 2.82 – 2.69 (m, 1H), 2.59 (ddd, J = 17.4, 14.2, 4.9 Hz, 1H), 2.52 – 2.36 (m, 1H), 2.26 – 2.14 (m, 0.23H), 2.11 – 1.92 (m, 1.88H), 1.80 – 1.63 (m, 1H), 1.54 – 1.35 (m, 3.94H), 1.35 – 1.18 (m,

0.83H), 0.96 (t, J = 7.1 Hz, 2.78H), 0.88 (t, J = 6.9 Hz, 0.41H). ¹³C NMR (100 MHz, CDCl₃): δ (major) 198.46, 161.95, 152.42, 137.91, 135.41, 132.23, 130.80, 129.75, 128.75, 127.67, 126.68, 126.45, 123.97, 49.41, 48.05, 38.49, 33.19, 29.23, 28.97, 23.20, 14.09. IR: v 2928, 2858, 1661, 1594, 1463, 1330, 1274, 1179, 750, 700 cm⁻¹; HRMS calcd. For [M+H]⁺: 317.1900. Found: 317.1900.

Compound **2p** was isolated as a light yellow oil in 42% yield. $R_f = 0.5$ (EtOAc/Hexane=1/5). ¹**H** NMR (**400 MHz, CDCl3**): δ 8.20 (dt, J = 8.5, 0.8 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.29 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.26 – 7.22 (m, 5H), 7.15 – 7.11 (m, 2H), 7.09 (ddd, J = 8.2, 7.3, 1.0 Hz, 1H), 6.93 – 6.84 (m, 1H), 4.74 – 4.69 (m, 1H), 3.77 (dddd, J = 17.6, 7.5, 3.5, 0.8 Hz, 1H), 3.34 (dddd, J = 18.1, 10.0, 6.5, 1.9 Hz, 1H), 2.89 (ddd, J = 13.9, 10.0, 7.8 Hz, 1H), 2.55 (dddd, J = 13.9, 6.5, 3.5, 1.1 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (**100 MHz, CDCl3**): δ 207.24, 145.18, 137.45, 136.74, 135.72, 134.49, 130.06, 128.85, 128.42, 128.01, 127.65, 126.40, 124.93, 123.72, 119.22, 118.58, 114.82, 53.23, 35.14, 24.64, 21.65. **IR**: v 3028, 2921, 1718, 1597, 1451, 1371, 1247, 1170, 1149, 1090, 910, 746, 707, 659, 576, 541 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 416.1315. Found: 416.1315.

Compound **2q** was isolated as a white solid (M.P.: 158-160 °C) in 73% yield. $R_f = 0.3$ (EtOAc/Hexane=1/3). ¹**H NMR (400 MHz, CDCl₃):** δ 7.65 (d, J = 8.2 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.03 (d, J = 8.1 Hz, 2H), 4.32 (dd, J = 17.6, 1.6 Hz, 1H), 3.95 (dd, J = 9.5, 8.2 Hz, 1H), 3.65

(dd, J = 17.6, 2.2 Hz, 1H), 3.19 – 3.05 (m, 1H), 2.71 (dd, J = 10.5, 9.5 Hz, 1H), 2.65 (ddd, J = 17.3, 4.4, 2.5 Hz, 1H), 2.52 – 2.43 (m, 4H), 2.43 (s, 4H), 2.24 (ddt, J = 12.8, 4.9, 2.5 Hz, 1H), 1.72 (dddd, J = 14.7, 12.9, 11.6, 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 195.98, 158.93, 144.05, 134.48, 133.32, 132.91, 129.91, 129.01, 128.34, 128.11, 127.64, 127.35, 53.12, 51.13, 40.86, 36.93, 26.37, 21.59. IR: v 3056, 2950, 2869, 1674, 1598, 1493, 1443, 1346, 1272, 1163, 1094, 1038, 912, 816, 733, 701, 679, 596, 550 cm⁻¹; HRMS calcd. For [M+Na]⁺: 390.1134. Found: 390.1143.

Compound **2r** was isolated as a colorless oil in 70% yield. $R_f = 0.5$ (EtOAc/Hexane=1/5). **¹H NMR** (**400 MHz, CDCl**₃): δ (major) 7.65 (d, J = 8.3 Hz, 2H), 7.39 – 7.34 (m, 5H), 6.83 – 6.74 (m, 2H), 4.24 (qd, J = 6.6, 1.9 Hz, 1H), 3.92 (dd, J = 9.2, 8.3 Hz, 1H), 3.24 (ddd, J = 8.1, 4.8, 2.5 Hz, 1H), 2.73 (dd, J = 10.4, 9.3 Hz, 1H), 2.60 – 2.49 (m, 2H), 2.48 (s, 3H), 2.30 – 2.22 (m, 1H), 1.64 – 1.48 (m, 1H), 1.23 (d, J = 6.6 Hz, 3H). δ (minor) ¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.73 (m, 2H), 7.41 – 7.29 (m, 5H), 7.07 – 6.99 (m, 2H), 4.97 (q, J = 6.8 Hz, 1H), 3.98 (dd, J = 12.1, 8.3 Hz, 1H), 3.05 (t, J = 11.8 Hz, 1H), 2.65 (ddd, J = 17.7, 4.5, 2.2 Hz, 1H), 2.45 (s, 3H), 2.44 – 2.30 (m, 2H), 2.13 (dtd, J = 12.1, 5.0, 2.2 Hz, 1H), 1.71 (dtd, J = 14.5, 12.4, 4.5 Hz, 1H), 0.87 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (mixture) 196.74, 196.67, 165.85, 162.51, 144.10, 143.90, 136.56, 134.72, 133.97, 133.68, 133.18, 132.94, 130.07, 129.78, 129.18, 129.00, 128.49, 128.48, 128.05, 128.01, 127.82, 127.02, 58.52, 58.48, 54.11, 50.55, 42.07, 37.84, 36.97, 36.61, 26.56, 26.45, 22.19, 21.63, 21.60, 18.89. IR: v 2931, 2869, 1675, 1597, 1493, 1344, 1275, 1162, 1093, 915, 817, 751, 701, 659, 575, 550 cm⁻¹; HRMS calcd. For [M+H]⁺: 382.1471. Found: 382.1475.

Compound **2s** was isolated as a colorless oil in 71% yield. $R_f = 0.3$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.74 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 7.9 Hz, 2H), 4.26 (d, J = 16.6 Hz, 1H), 3.89 (dd, J = 9.2, 7.9 Hz, 1H), 3.82 (dd, J = 16.9, 2.5 Hz, 1H), 2.96 (q, J = 11.7 Hz, 1H), 2.59 (dd, J = 10.9, 9.2 Hz, 1H), 2.49 (ddd, J = 17.1, 4.3, 2.3 Hz, 5H), 2.45 (s, 4H), 2.30 (ddd, J = 17.2, 14.6, 4.9 Hz, 1H), 2.23 – 2.08 (m, 2H), 2.03 (qd, J = 7.5, 6.1 Hz, 1H), 1.55 (dddd, J = 14.5, 12.6, 11.7, 4.4 Hz, 1H), 0.91 (t, J = 7.5 Hz, 3H). ¹³C **NMR** (**100 MHz, CDCl₃**): δ 196.95, 156.63, 144.11, 134.63, 132.56, 129.92, 127.73, 53.42, 50.11, 40.57, 36.73, 26.54, 21.60, 19.58, 12.89. **IR:** v 2965, 2872, 1667, 1598, 1453, 1346, 1164, 1094, 1041, 913, 815, 732, 675, 593, 550 457 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 320.1315. Found: 320.1308.

Compound **2t** was isolated as a white solid (M.P.: 138-140 °C) in 37% yield. $R_f = 0.4$ (EtOAc/Hexane=1/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.72 (d, J = 8.2 Hz, 2H), 7.37 (dd, J = 8.6, 0.7 Hz, 2H), 4.30 (dd, J = 17.3, 1.3 Hz, 1H), 3.87 (dd, J = 9.0, 8.1 Hz, 1H), 3.81 (dd, J = 17.3, 2.4 Hz, 1H), 2.86 (dd, J = 12.3, 6.6 Hz, 1H), 2.51 (dd, J = 11.0, 9.3 Hz, 1H), 2.46 (s, 3H), 2.45 – 2.40 (m, 1H), 2.27 (ddd, J = 17.2, 14.4, 5.2 Hz, 1H), 2.12 (dtd, J = 12.4, 5.0, 2.3 Hz, 1H), 1.54 (dtd, J = 14.4, 12.3, 4.6 Hz, 1H), 0.15 (s, 9H). ¹³**C NMR (100 MHz, CDCl₃):** δ 201.09, 170.41, 144.14, 134.08, 132.34, 129.92, 127.80, 52.42, 52.22, 42.05, 36.75, 25.99, 21.61, 0.39. **IR:** v 2924, 2852,

1659, 1600, 1453, 1349, 1262, 1165, 1094, 875, 841, 665, 597, 550 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 364.1397. Found: 364.1400.

Compound **2u** was isolated as a colorless oil in 40% yield (d.r. >20:1). $R_f = 0.3$ (EtOAc/Hexane=1/4). ¹H NMR (500 MHz, CDCl₃): δ 7.55 – 7.27 (m, 9H), 7.23 (m, 3H), 6.91 (t, J = 7.6 Hz, 1H), 6.41 (d, J = 7.9 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 12.1 Hz, 1H), 3.69 – 3.58 (m, 2H), 3.27 (ddt, J = 30.5, 15.5, 7.9 Hz, 2H), 2.84 (ddd, J = 21.2, 16.2, 5.4 Hz, 2H), 2.64 (dd, J = 16.9, 13.3 Hz, 1H), 2.52 – 2.39 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.40, 162.04, 148.43, 138.26, 138.23, 135.23, 132.40, 130.75, 129.62, 128.72, 128.45, 127.69, 127.52, 126.60, 125.14, 73.32, 72.20, 45.31, 41.76, 41.62, 35.86. IR: v 3060, 2856, 1657, 1594, 1463, 1313, 1108, 1073, 776, 737, 699 cm⁻¹; HRMS calcd. For [M+H]⁺: 381.1849. Found: 381.1848. The stereochemistry was tentatively assigned according to the stereochemistry of starting material 1v.

Compound **2v** (major) was isolated as a white solid (M.P.: 123-125 °C) in 33% yield and 2v (minor) was isolated as a white solid in 13% (d.r. =2.5:1 based on isolated yield). $R_f = 0.4$ (EtOAc/Hexane=1/4). ¹**H NMR** (**500 MHz, CDCl**₃): δ (major) 7.49 – 7.33 (m, 3H), 7.30 (d, J = 7.6 Hz, 1H), 7.25 – 6.96 (m, 3H), 6.91 (t, J = 7.6 Hz, 1H), 6.44 (d, J = 7.9 Hz, 1H), 3.41 – 3.32 (m, 1H), 3.24 (dd, J = 15.8, 8.1 Hz, 1H), 2.80 (dd, J = 15.8, 7.3 Hz, 1H), 2.59 (dqd, J = 13.5, 6.7,

4.3 Hz, 1H), 2.44 (dt, J = 12.5, 4.4 Hz, 1H), 1.85 (q, J = 12.6 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H). δ (minor) 7.48 – 7.35 (m, 3H), 7.34 – 7.27 (m, 2H), 7.25 – 7.08 (m, 2H), 6.91 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 7.9 Hz, 1H), 3.56 – 3.42 (m, 1H), 3.24 (dd, J = 15.8, 8.0 Hz, 1H), 2.85 – 2.71 (m, 2H), 2.35 – 2.15 (m, 2H), 1.38 (d, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (major) 200.66, 161.82, 148.52, 138.56, 135.61, 132.05, 130.54, 129.73, 128.59, 127.50, 126.55, 126.46, 125.10, 43.03, 42.25, 37.66, 37.34, 16.20. IR: v 3020, 2928, 2852, 1658, 1595, 1462, 1372, 1330, 1179, 1093, 774, 731, 699 cm⁻¹; HRMS calcd. For [M+Na]⁺: 297.1250. Found: 297.1253. The major diastereomer's stereochemistry was assigned according to 2-D NMR (see in **2-D NMR spectra**). 4.4.6 Procedures and data for synthetic applications

a) Dissolving metal reduction followed by alkylation of 2f: synthesis of 3

Procedure:²²

1 mL liquid ammonia was condensed in a 10 mL Schlenk flask at -78 °C and nitrogen atmosphere was introduced after condensation. A solution of **2f** (20.0 mg, 0.1 mmol, 1 equiv.) and *t*-BuOH (8.2 mg, 0.11 mmol, 1.1 equiv.) in anhydrous tetrahydrofuran (1 mL) was added dropwise to the stirring liquid ammonia at -78 °C. Under N₂ flow, the rubber stopper of Schlenk flask was removed and pieces of lithium (6.9 mg, 1.0 mmol, 10 equiv.) was added to the stirring mixture. After stirring at -78 °C for 3 h, iodomethane (851.3 mg, 6 mmol, 60 equiv.) was injected into the flask and stirred for another 3 h. 1 mL of saturated aqueous ammonia chloride solution was injected to the flask and the system was opened and slowly warmed up to room temperature. After the ammonia was removed, the reaction was diluted with ether (10 mL) and washed with sat. NH₄Cl (aq.) solution

(20 mL) and brine (20 mL). The combined organic extract was dried by MgSO₄ and concentrated under reduced pressure. The crude product was purified with silica gel flash column chromatography (EtOAc/Hexane= 1/10 to 1/5) to afford compound **3** as a white solid in 93% yield (20.0 mg).

Compound **3** was isolated as a white solid (M.P.: 70-72 °C) in 93% yield (d.r. >20:1). $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR** (**500 MHz, CDCl₃**): δ ¹**H NMR** (400 MHz, Chloroform-d) δ 7.30 -7.26 (m, 1H), 7.25 - 7.14 (m, 3H), 3.30 (d, J = 8.7 Hz, 1H), 3.16 - 3.02 (m, 1H), 2.98 - 2.81 (m, 2H), 2.60 (ddd, J = 15.7, 6.2, 4.4 Hz, 1H), 2.41 (ddd, J = 15.7, 11.4, 5.2 Hz, 1H), 2.26 (dddd, J = 13.7, 7.4, 6.1, 5.1 Hz, 1H), 1.98 (dddd, J = 14.0, 11.5, 7.9, 4.4 Hz, 1H), 1.28 (s, 3H), 0.81 (s, 3H). ¹³C **NMR** (**100 MHz, CDCl₃**): δ 217.10, 144.29, 143.28, 127.11, 126.13, 125.74, 124.78, 53.78, 48.12, 39.59, 38.03, 36.68, 26.37, 24.90, 22.63. **IR:** v 2969, 2932, 1707, 1458, 1378, 1319, 1224, 1177, 1098, 940, 754, 735 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 215.1430. Found: 215.1430.

b) Dissolving metal reduction followed by oxidation of 2f: synthesis of 4

Procedure:²³

1 mL liquid ammonia was condensed in a 10 mL Schlenk flask at -78 °C and nitrogen atmosphere was introduced after condensation. A solution of **2f** (12.0 mg, 0.06 mmol, 1 equiv.) in anhydrous tetrahydrofuran (1 mL) was added dropwise to the stirring liquid ammonia at -78 °C. Under N₂ flow, the rubber stopper of Schlenk flask was removed and pieces of lithium (1.8 mg, 0.27 mmol, 4.4 equiv.) was added to the stirring mixture. After stirring at -78 °C for 3 h, 1 mL of saturated aqueous ammonia chloride solution was injected to the flask and the system was opened and slowly

warmed up to room temperature. After the ammonia was removed, the reaction was diluted with ether (10 mL) and washed with sat. NH₄Cl (aq.) solution (20 mL) and brine (20 mL). The combined organic extract was dried by MgSO₄ and concentrated under reduced pressure. The crude product was purified with silica gel flash column chromatography (EtOAc/Hexane= 1/10 to 1/5) to afford compound 4 as a colorless oil in 59% yield (7.7 mg). (note: The d.r. of 4 decreased if being kept in chloroform).

Compound **4** was isolated as a colorless oil in 59% yield (d.r.=12:1). $R_f = 0.4$ (EtOAc/Hexane=1/5). **1H NMR (400 MHz, CDCl₃):** δ 9.37 – 9.22 (m, 1H), 7.44 – 7.38 (m, 1H), 7.26 – 7.19 (m, 3H), 4.00 (d, J = 9.6 Hz, 1H), 3.18 (dd, J = 15.7, 8.7 Hz, 1H), 3.07 – 2.94 (m, 1H), 2.87 (dd, J = 15.7, 8.9 Hz, 1H), 2.68 (ddd, J = 16.8, 6.6, 5.1 Hz, 1H), 2.49 (ddd, J = 16.7, 10.2, 5.4 Hz, 1H), 2.23 (ddd, J = 13.8, 6.8, 1.4 Hz, 1H), 2.02 (ddd, J = 10.3, 8.5, 5.0 Hz, 1H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 214.20, 143.31, 141.09, 127.50, 126.72, 126.61, 124.51, 88.91, 48.99, 38.87, 37.11, 36.74, 26.43, 18.25. **IR:** v 3300, 2934, 1717, 1458, 1275, 1260, 913, 764, 749 cm⁻¹; **HRMS** calcd. For [M+H-(H₂O)]⁺: 199.1117. Found: 199.1114.

c) α-alkylation of 2a: synthesis of 5

Procedure:

To a 10 mL flamed-dried Schlenk flask equipped with a nitrogen-filled balloon was added THF (2.3 mL) and freshly distilled *i*-Pr₂NH (506.0 mg, 0.7 mL, 5.0 mmol, 1 equiv.). The reaction mixture was cooled to -78 °C with an acetone-dry ice bath and *n*-BuLi (2.5 M in hexane, 2.0 mL, 5 mmol, 1 equiv.) was added dropwise. Upon completion, the system was warmed to 0 °C and

stirred for 0.5 h under nitrogen atmosphere. Meanwhile, to another 10 mL flamed-dried flask equipped with a nitrogen-filled balloon were added compound **2a** (26 mg, 0.1 mmol, 1 equiv.) and THF (5 mL). After cooling to -78 °C with an acetone-dry ice bath, the newly made LDA solution as indicated above (1 M in THF/Hexane, 2.0 ml, 2.00 mmol, 20 equiv.) was added dropwise and the reaction was warmed up to -20 °C for 0.5 h. After that, the reaction was cooled to -78 °C again and EtI (779.9 mg, 0.4 mL, 5 mmol, 50 equiv.) was added dropwise. The reaction was gradually warmed up to room temperature for 3 h and was quenched by adding NH₄Cl (sat.) 5 mL. The mixture was extracted with diethyl ether (10 mL×3), washed with brine, and dried with Na₂SO₄. The combined organic extract was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane=1/10) on silica gel to afford compound **5** as a colorless oil in 60% yield (d.r. >20:1). The relative stereochemistry was determined by 2-D NMR (see in **2-D NMR spectra**).

Compound **5** was isolated as a colorless oil in 60% yield (d.r. >20:1). $R_f = 0.6$ (EtOAc/Hexane=1/5). 1 H NMR (400 MHz, CDCl₃): δ 7.48 – 7.34 (m, 3H), 7.33 – 7.29 (m, 1H), 7.23 (td, J = 7.5, 1.2 Hz, 1H), 7.14 (s, 2H), 6.95 – 6.88 (m, 1H), 6.41 (dt, J = 8.0, 0.9 Hz, 1H), 3.43 (ddt, J = 12.3, 7.7, 3.9 Hz, 1H), 3.22 (dd, J = 15.7, 8.0 Hz, 1H), 2.80 (dd, J = 15.7, 7.5 Hz, 1H), 2.51 (dtt, J = 6.7, 4.9, 2.5 Hz, 1H), 2.38 (ddd, J = 13.1, 4.6, 2.0 Hz, 1H), 2.26 – 2.12 (m, 1H), 1.93 – 1.68 (m, 2H), 1.09 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 201.10, 161.14, 148.74, 138.54, 135.64, 131.73, 130.53, 129.82, 128.65, 127.56, 126.57, 126.56, 125.08, 47.45, 38.38, 37.54, 32.18, 23.05, 12.39. IR: v 2930, 1654, 1462, 1337, 1275, 1260, 1177, 764, 749, 699 cm⁻¹; HRMS calcd. For [M+H]⁺: 289.1587. Found: 289.1589.

d) H₂/ (Pd/C) reduction of **2a**: synthesis of **6**

Procedure:

A 10 mL Schlenk flask was charged with **2a** (26 mg, 0.1 mmol, 1 equiv.) and Pd/C (26.0 mg, 0.24 mmol, 2.4 equiv.) before it was degassed and backfilled with hydrogen three times. After that, toluene (1 mL) and dichloromethane (1 mL) were injected into the flask. A balloon of hydrogen was kept on top of the flask. After stirring at room temperature overnight, the reaction was diluted with dichloromethane (10 mL) and filtered through a filtration paper. The resulting solution was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane= 1/10 to 1/5) to afford compound **6** as a bright yellow oil in 64% yield (17.0 mg). The stereochemistry was determined by X-ray crystallography.

Compound **6** was isolated as a white solid (M.P.: 110-112 °C) in 64% yield (d.r.>20:1). $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.77 (dt, J = 8.4, 1.1 Hz, 2H), 7.42 (dd, J = 8.4, 7.0 Hz, 2H), 7.30 (td, J = 7.5, 1.0 Hz, 1H), 7.20 (t, J = 6.6 Hz, 1H), 7.08 – 7.02 (m, 1H), 6.88 – 6.82 (m, 1H), 6.48 (d, J = 7.6 Hz, 1H), 4.72 – 4.62 (m, 1H), 3.97 (t, J = 5.7 Hz, 1H), 3.34 (d, J = 4.3 Hz, 1H), 3.08 – 2.77 (m, 1H), 2.69 – 2.57 (m, 1H), 2.59 (d, J = 15.5 Hz, 1H), 1.95 (dq, J = 13.6, 3.5 Hz, 1H), 1.65 (tdd, J = 13.5, 4.6, 2.2 Hz, 1H), 1.56 – 1.42 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.16, 143.77, 142.35, 128.58, 127.66, 126.48, 126.16, 126.14, 125.74, 125.46, 68.36, 47.01, 45.13, 40.95, 38.60, 32.89, 21.50. **IR:** v 3580, 3022, 2926, 2854, 1456, 1275, 973, 913, 763, 748, 698 cm⁻¹; **HRMS** calcd. For [M+H-(H₂O)]⁺:247.1481. Found: 247.1484.

e) Epoxidation of 2a: synthesis of 7

Procedure:

A 20 mL vial was charged with **2a** (26 mg, 0.1 mmol, 1 equiv.) in 10 mL anhydrous ethanol, NaOH (12 mg, 0.3 mmol, 3.0 equiv.) and H₂O₂ (28 L, 1 mmol, 10 equiv.). After stirring at 45 °C overnight, the reaction was diluted with dichloromethane and filtered through a pad of silica gel and MgSO₄. The combined organic extract was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane=1/5 to 1/1) to afford compound **7** as a colorless oil in 54% yield.

Compound **7** was isolated as a colorless oil in 54% yield (14.9 mg). $R_f = 0.2$ (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.37 (m, 3H), 7.38 – 7.23 (m, 2H), 7.16 (s, 2H), 7.00 – 6.92 (m, 1H), 6.47 (d, J = 7.9 Hz, 1H), 3.24 (d, J = 16.6 Hz, 1H), 3.18 (d, J = 16.6 Hz, 1H), 3.09 (ddd, J = 17.7, 13.3, 5.4 Hz, 1H), 2.66 (ddd, J = 17.7, 4.9, 1.9 Hz, 1H), 2.55 (ddd, J = 13.6, 5.4, 1.9 Hz, 1H), 2.36 (td, J = 13.4, 4.9 Hz, 1H), 2.29 – 2.09 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 198.30, 158.52, 146.11, 136.32, 134.40, 133.35, 131.36, 129.30, 128.80, 128.05, 127.56, 127.17, 125.95, 77.21, 46.43, 33.65, 33.53. IR: v 3404, 3058, 2924, 2245, 1647, 1595, 1463, 1442, 1331, 1275, 1192, 1064, 1004, 960, 906, 750, 733, 699 cm⁻¹; HRMS calcd. For [M+H]⁺: 277.1223. Found: 277.1225.

f) Oxidation of 2a: synthesis of 8

Procedure:14

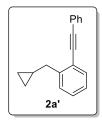
A 4 mL vial was charged with **2a** (20 mg, 0.077 mmol, 1 equiv.) in 0.5 mL anhydrous DMSO and I₂ (4.9 mg, 0.038 mmol, 0.5 equiv.) under nitrogen atmosphere. After stirring at 65 °C overnight, the reaction was diluted with ethyl acetate (10 mL) and washed with saturated Na₂S₂O₃ aqueous solution (10 mL). Then the organic phase was washed with brine (10 mL) and dried by a pad of MgSO₄. The combined organic extract was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to afford compound **8** as a light yellow oil in 66% yield (13.2 mg).

Compound **8** was isolated as a colorless oil in 66% yield (13.2 mg). $R_f = 0.6$ (EtOAc/Hexane=1/5). ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.53 (m, 3H), 7.52 – 7.41 (m, 4H), 7.19 (td, J = 7.4, 1.1 Hz, 1H), 7.03 – 6.96 (m, 2H), 6.51 (dt, J = 7.9, 0.9 Hz, 1H), 4.82 (t, J = 0.8 Hz, 1H), 3.88 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 152.04, 144.71, 141.52, 140.03, 135.52, 134.44, 130.45, 129.90, 128.88, 126.33, 126.23, 125.11, 124.84, 122.92, 122.33, 113.66, 36.22. IR: v 3511, 3050, 2887, 1595, 1478, 1444, 1424, 1276, 1231, 1170, 912, 763, 747, 701 cm⁻¹; HRMS calcd. For [M+H]⁺: 259.1117. Found: 259.1117.

g) Aerobic Oxidation of 2a: synthesis of 9

Procedure:15

A 8 mL rubber-head test tube was charged with **2a** (26 mg, 0.1 mmol, 1 equiv.) in 0.5 mL anhydrous DMSO, Pd(TFA)₂ (1.7 mg, 0.005 mmol, 5 mol%), 2-Me₂NPy (1.2 mg, 0.01 mmol, 10 mol%) and TsOH (3.8 mg, 0.02 mmol, 20 mol%) before purging oxygen through the solution for


5 min. A balloon of oxygen was kept on top of the test tube through the rubber. After stirring at 80 °C overnight, the reaction was diluted with ethyl acetate (10 mL) and washed with brine (10 mL) and dried by a pad of MgSO₄. The combined organic extract was concentrated under reduced pressure and purified by silica gel flash column chromatography (EtOAc/Hexane= 1/5) to afford compound **9** as a bright yellow oil in 52% yield (13.5 mg).

Compound **9** was isolated as a yellow oil in 52% yield (13.5 mg). $R_f = 0.3$ (EtOAc/Hexane=1/5). **1H NMR (400 MHz, CDCl₃):** δ 7.68 – 7.57 (m, 5H), 7.45 (dd, J = 7.7, 1.7 Hz, 2H), 7.17 (td, J = 7.4, 1.1 Hz, 1H), 7.10 (td, J = 7.6, 1.3 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.27 (dt, J = 7.5, 0.9 Hz, 1H), 5.53 (s, 1H). **13C NMR (100 MHz, CDCl₃):** δ 192.61, 159.14, 144.11, 143.32, 135.55, 133.86, 132.63, 130.16, 130.11, 129.57, 128.86, 127.30, 125.90, 124.28, 123.80, 122.60, 114.91. **IR:** v 3246, 1685, 1603, 1575, 1420, 1380, 1275, 1184, 1097, 942, 903, 834, 763, 749, 699 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 273.0910. Found: 273.0914.

4.4.7 Mechanistic study

I. Subjecting 2a' to carbonylative (3+2+1) conditions

2a' was obtained as a side product from the key reaction of 1a.

Compound **2a'** was isolated as a colorless oil. $R_f = 0.8$ (EtOAc/Hexane=1/5). ¹H NMR (**400 MHz**, CDCl₃): δ 7.53 (ddd, J = 6.6, 5.2, 1.9 Hz, 3H), 7.40 – 7.33 (m, 4H), 7.32 – 7.27 (m, 1H), 7.21 (dd, J = 7.5, 1.4 Hz, 1H), 2.81 (d, J = 6.9 Hz, 2H), 1.20 – 1.07 (m, 1H), 0.58 – 0.49 (m, 2H), 0.29 (dt, J = 6.0, 4.5 Hz, 2H). ¹³C NMR (**100 MHz, CDCl₃):** δ ¹³C NMR (101 MHz, Chloroform-d) δ

144.19, 132.06, 131.46, 128.55, 128.40, 128.36, 128.16, 125.81, 123.56, 122.54, 92.91, 88.45, 38.79, 11.27, 4.67. **IR:** v 3060, 3000, 2923, 1599, 1492, 1442, 1016, 754, 689 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 233.1325. Found: 233.1311.

a) Utilizing "standard conditions" with 1 atm CO

Procedure:

In a nitrogen-filled glovebox, a flame dried reaction tube, containing a magnetic stirrer, was charged with 2a' (19.0 mg, 0.082 mmol, 1 equiv.) in FPT 1,4-dioxane (0.8 mL). PMe₂Ph (1.81 mg, 0.0131 mmol, 16 mol%) and [Rh(CO)₂Cl]₂ (1.6 mg, 0.0041 mmol, 5 mol%) were added as a stock solution to the system. The tube was sealed with a rubber septum and the reaction mixture was sparged with CO for 2 minutes, then heated at 125 °C under a CO atmosphere (1 atm.) for 60 h. The mixture was cooled to room temperature and filtered through a pad of silica gel to afford >90% recovery of 2a' indicated by crude ¹H-NMR.

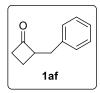
b) Narasaka's (3+2+1) condition

Procedure:⁸

A flame-dried reaction tube, fitted with a magnetic stirrer, was charged with [Rh(CO)₂Cl]₂ (3.0 mg, 0.0075 mmol, 10 mol%) in a nitrogen-filled glovebox. Compound **2a'** (18.0 mg, 0.077 mmol,

1 equiv.) in a nitrogen sparged anhydrous 1,2-dichlorobenzene (300 μ L) was added via syringe. The reaction mixture was sparged with CO for 2 minutes, and then heated at 160 °C under a CO atmosphere (1 atm.) for 48 h. The mixture was cooled to r.t. and filtered through a pad of silica gel to afford a crude mixture which has no NMR signal from 2a' or 2a indicated by crude NMR.

c) Bower's (3+2+1) condition

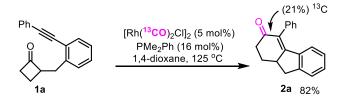

Procedure:10

An oven-dried reaction tube, fitted with a magnetic stirrer, was charged with [Rh(cod)Cl]₂ (1.0 mg, 0.002 mmol, 3.75 mol%), P(3,5-(CF₃)₂Ph)₃ (5.5 mg, 0.0082 mmol, 15 mol%) and Na₂SO₄ (1.6 mg, 0.011, 20 mol%). The tube was fitted with a rubber septum and purged with nitrogen. Compound **2a'** (12.8 mg, 0.055 mmol, 1 equiv.) in a nitrogen sparged anhydrous benzonitrile solution (0.07 M) was added via syringe. The reaction mixture was sparged with CO for 2 minutes, and then heated at 130 °C under a CO atmosphere (1 atm.) for 72 h. The mixture was cooled to r.t. and filtered through a pad of silica gel to afford >90% recovery of **2a'** indicated by crude NMR.

II. Subjecting **1w** to standard conditions

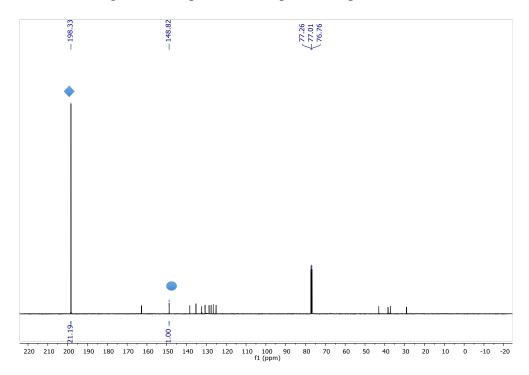
Compound **1af** was synthesized according to literature known procedure and matched the reported characterization data²⁴. Adopting the aforementioned standard procedure for C-C activation

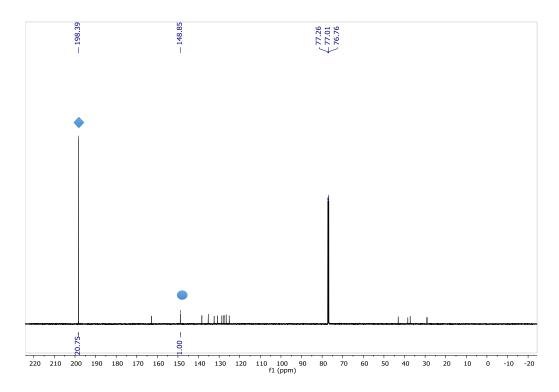
reaction, **1af'** was isolated as the only characterizable product and its spectra matched the reported data²⁵.

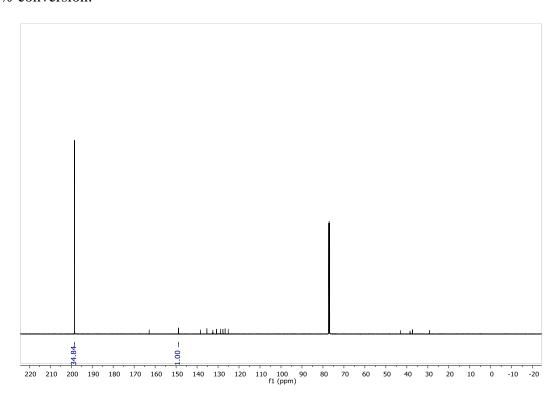

Compound **1af** was isolated as a colorless oil in 56% yield from compound **10** and benzyl bromide. $R_f = 0.7$ (EtOAc/Hexane=1/5). **¹H NMR (500 MHz, CDCl3):** δ 7.29 (dd, J = 8.2, 6.8 Hz, 2H), 7.22 (s, 1H), 7.20 – 7.16 (m, 2H), 3.71 – 3.53 (m, 1H), 3.11 – 2.98 (m, 2H), 2.89 (ddd, J = 9.7, 5.1, 2.8 Hz, 1H), 2.81 (dd, J = 14.4, 9.0 Hz, 1H), 2.23 – 2.10 (m, 1H), 1.75 (ddt, J = 11.2, 9.6, 7.6 Hz, 1H).

Compound **1af**° was isolated as a colorless oil in 22% yield from **1af**. $R_f = 0.5$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.38 – 7.28 (m, 3H), 7.21 (t, J = 8.7 Hz, 2H), 6.44 (d, J = 15.9 Hz, 2H), 6.21 (dt, J = 15.4, 6.4 Hz, 2H), 2.70 – 2.60 (t, J = 7.1 Hz, 2H), 2.61 – 2.53 (t, J = 7.0 Hz, 2H).

III. ¹³CO labeling study

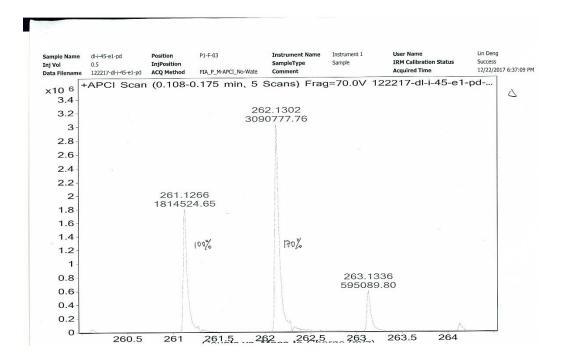

[Rh(¹³CO)₂Cl]₂ was prepared according to literature procedure (using ¹³CO atmosphere instead of CO) and its characterization matched the reported data.²⁶

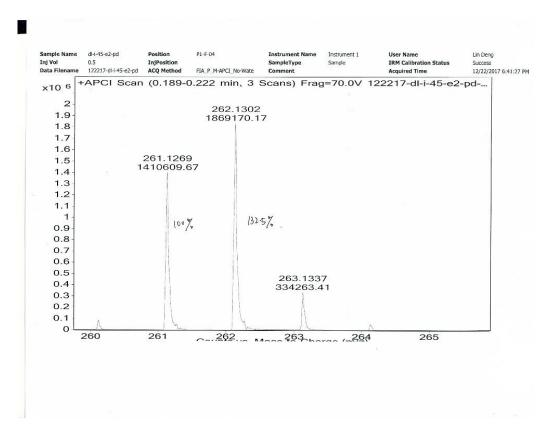

The reaction below adopted the standard procedure of C–C activation and **2a** (¹³CO incorporated) was isolated in 82% yield. Using this entry as an example to demonstrate how we measure the ¹³CO incorporation ratio.


Method A: Quantitative ¹³C-NMR experiment:²⁷

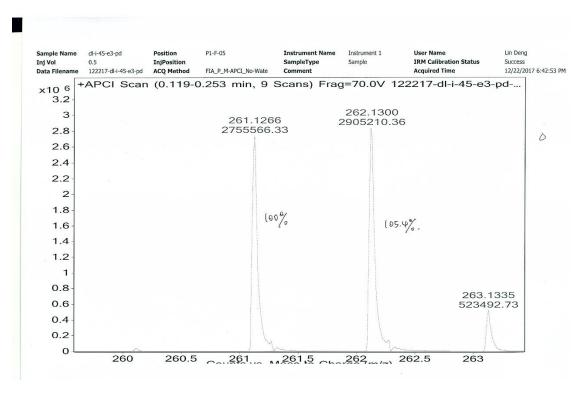
The 13 C NMR spectra were acquired on a Bruker AVANCE III HD 500 MHz; 11.7 Tesla NMR spectrometer (126 MHz for 13 C, CDCl₃) at 295 K with inverse-gated decoupling. T_1 values of enriched carbon (marked with diamond shape in the spectra below) and the reference carbon (marked with oval shape in the spectra below) were determined to be 5.7 second and 8.7 second prior to the acquisitions, and delays of 50 s (50 s > 5 × T_1) were utilized between scans. The reaction was repeated twice and the spectra are shown below. 21% 13 C was found to be incorporated as an average of two experiments (Exp 1 and Exp 2).

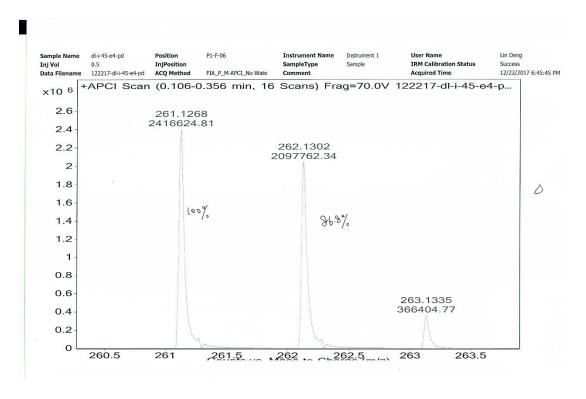
at 52% conversion:

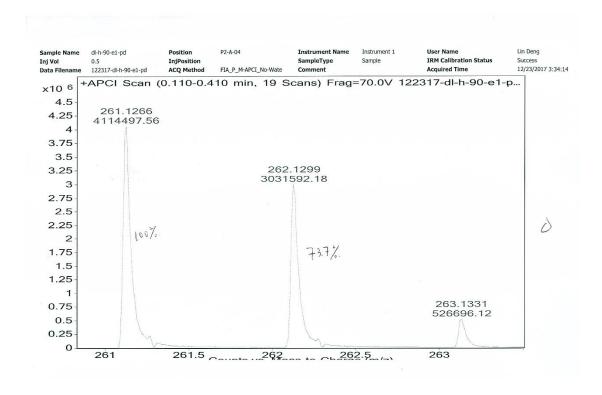


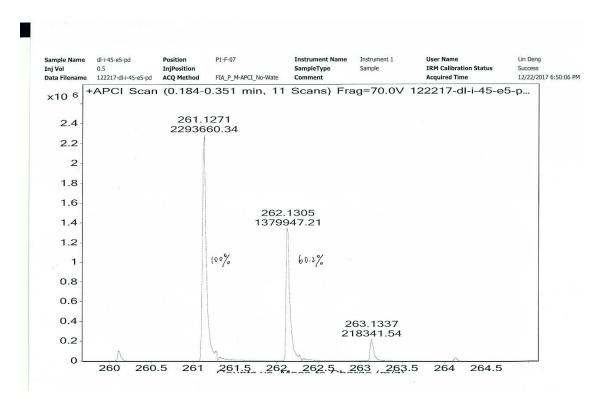

Method B: Using high resolution mass spectroscopy to determine the incorporation ratio of ${}^{13}C$

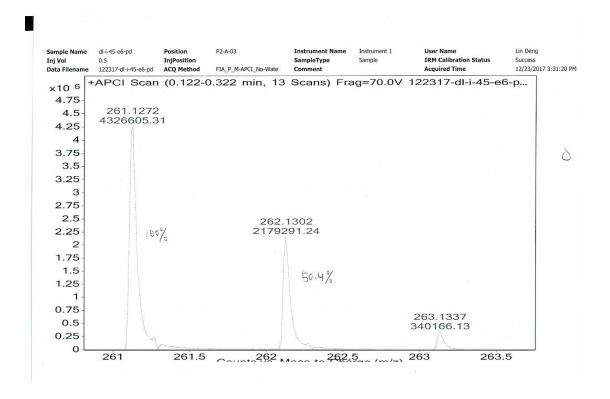
For compound 2a without 13 CO incorporation, the native isotope peak can be calculated according to the natural abundance of 13 C. We obtained this ratio from chemdraw as $[M+H+1]^+$ (262.1307) equals 20.5% when setting the $[M+H]^+$ (261.1274) as 100%. From this ratio, we can derive a function between the experimental $[M+H+1]^+$ (y) and incorporation ratio (x). The function is $y = (20.5 + 0.795x)/(100 - x) \times 100$


Using Agilent TOF LCMS, we acquired the mass spectrum of column purified product 2a at different conversion and obtained the experimental [M+H+1]⁺(y), then the incorporation ratio can be calculated accordingly.

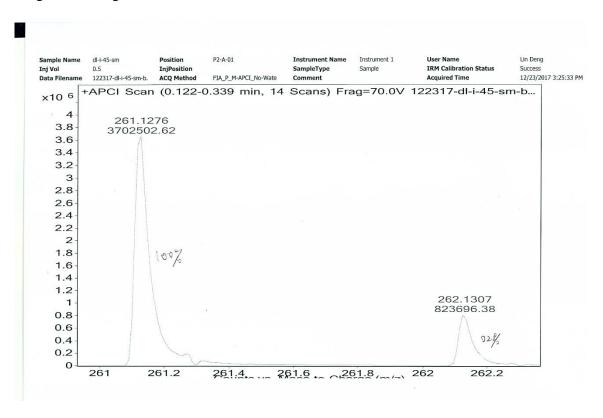

10% conversion:



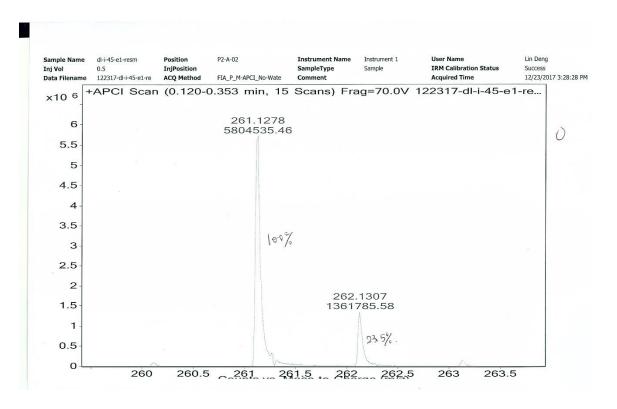

30% conversion:



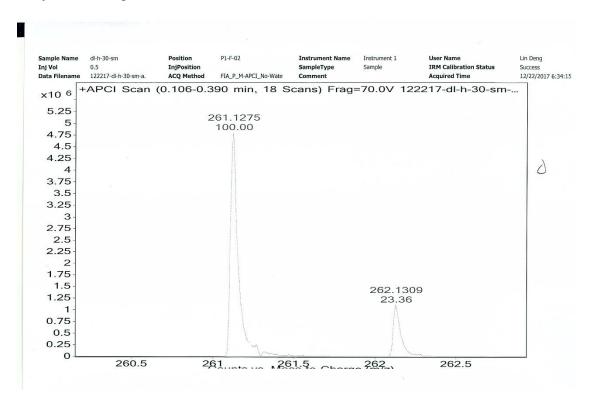
67% conversion:

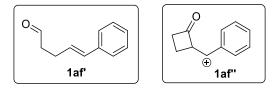


Shown below are the calculated incorporation ratio we obtained from this study.

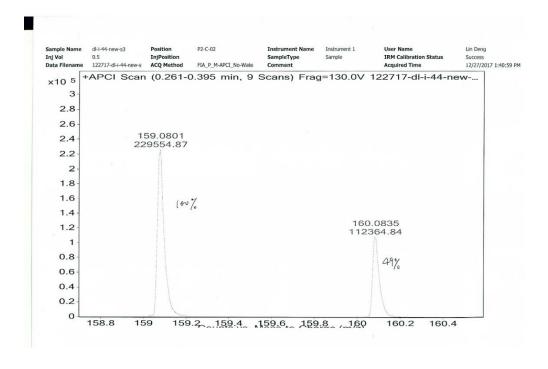

conversion	10%	15%	30%	36%	52%	67%	79%	100%
yield of 2a	9%	13%	29%	32%	46%	52%	67%	82%
¹³ C incorporation	60%	53%	45%	39%	34%	28%	24%	21%

Starting material was also recycled at 10% and 52% conversion. Both of them did not show significant ¹³C incorporation compared with the original starting material from comparing their isotope peaks in mass spectroscopy.


Original starting material:

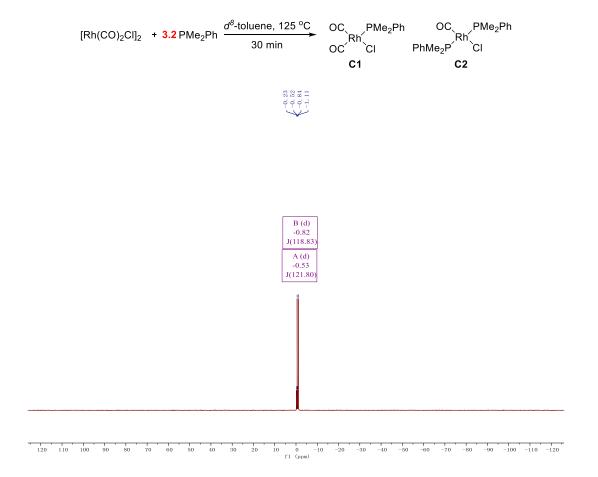

Recycled starting material at 10% conversion:

Recycled starting material at 52% conversion:



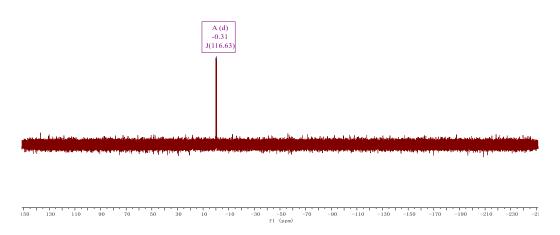
Measurement of ¹³CO incorporation in **1af**³:

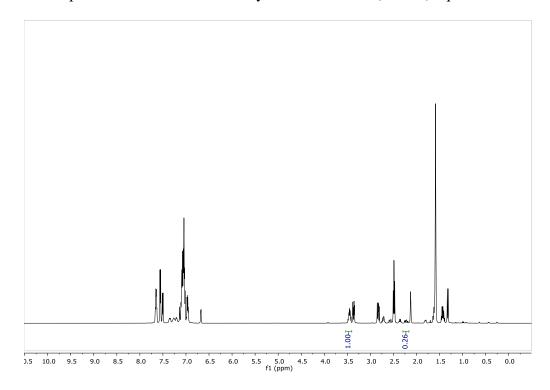
For compound **1af'** without ¹³CO incorporation, the native isotope peak can be calculated according to the natural abundance of ¹³C. Because of the weak aldehyde C-H bond under the mass spectroscopy condition, 1w will cyclize to form carbocation **1af'**, as shown. In mass spectrum, the m/z we observed is **1af'**, (m/z=159.0804). We obtained the ratio for **1af'**, from chemdraw as $[M+1]^+$ equals 11.9% when setting the $[M]^+$ as 100%. From this ratio, we can derive a function between the experimental $[M+1]^+$ (y) and incorporation ratio (x). The function is $y = (11.9 + 0.88x)/(100 - x) \times 100$


Using Agilent TOF LCMS, we acquired the mass spectrum of column purified product 1w' and obtained the experimental $[M+1]^+(y)$ equals 49%, then the incorporation ratio can be calculated as 27%.

IV. Resting state study

a) When catalyst [Rh(CO)₂Cl]₂ (10 mg, 0.0257 mmol, 1 eq) was mixed with PMe₂Ph (7.1 mg, 0.0514 mmol, 2 eq) at 1:1 ratio in d^8 -toluene at 125 °C for 30 min, the ³¹P-NMR spectrum (at 294 K) is shown below. The three sets of signals are assigned to be **C1** (δ -0.54 (d, J = 120.3 Hz)), **C2** (δ -0.83 (d, J = 118.9 Hz)) and **C3** (δ 17.66 (d, J = 162.1 Hz)) according to literature.¹¹


b) When catalyst [Rh(CO)₂Cl]₂ (10 mg, 0.0257 mmol, 1 eq) was mixed with PMe₂Ph (11.4 mg, 0.0822 mmol, 3.2 eq) at 1:1.6 ratio in d^8 -toluene at 125 °C for 30 min, the ³¹P-NMR spectrum (at 294 K) is shown below. The two sets of signals are assigned to be C1 (δ -0.53 (d, J = 121.8 Hz)), C2 (δ -0.82 (d, J = 118.8 Hz)) according to literature.¹¹


c) When catalyst [Rh(CO)₂Cl]₂ (10 mg, 0.0257 mmol, 1 eq) was mixed with PMe₂Ph (14.2 mg, 0.103 mmol, 4 eq) at 1:2 ratio in d^8 -toluene at 125 °C for 30 min, the ³¹P-NMR spectrum (at 200 K) is shown below. The one set of signal are assigned to be **C2** (δ -0.31 (d, J = 116.6 Hz)) according to literature.¹¹

$$[Rh(CO)_2CI]_2 + 4 PMe_2Ph \xrightarrow{d^8-toluene, 125 °C} OC PMe_2Ph \\ \hline 30 min PhMe_2P' CI$$

d) The NMR tube in b) was added 3 equivalent of substrate **1a** and heated to 125 °C for 12 h. The crude H-NMR was shown below. The two peaks integrated in the H-NMR belong to starting material **1a** and product **2a**. So the estimated yield of 2a is 0.26/(1+0.26) equals to 20%.

4.4.8 X-ray data

a) X-ray data for 2a

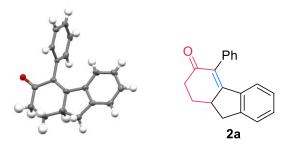


Table 4.6 Crystal Data and Structure Refinement for 2a

Identification code	Complex
Empirical formula	$C_{19}H_{16}O$
Formula weight	260.32

Temperature/K 100.0

Crystal system monoclinic

Space group P2₁/n

a/Å 10.6293(4)

b/Å 7.8160(3)

c/Å 16.5040(6)

 α / $^{\circ}$ 90

 $\beta/^{\circ}$ 91.724(2)

 $\gamma/^{\circ}$ 90

Volume/ $Å^3$ 1370.51(9)

Z 4

 $\rho_{calc}g/cm^3 \hspace{1.262} 1.262$

 $\mu/mm^{\text{-}1} \hspace{1.5cm} 0.076$

Table 4.6 Continued Crystal Data and Structure Refinement for 2a

F(000) 552.0

Crystal size/mm³ $0.03 \times 0.02 \times 0.02$

Radiation MoK α ($\lambda = 0.71073$)

2Θ range for data collection/° 4.498 to 48.88

Index ranges $-12 \le h \le 12, -9 \le k \le 9, -19 \le 1 \le 19$

Reflections collected 13330

Independent reflections 2261 [$R_{int} = 0.0495$, $R_{sigma} = 0.0306$]

Data/restraints/parameters 2261/57/209

Goodness-of-fit on F^2 1.161

Final R indexes [I>= 2σ (I)] $R_1 = 0.0624$, $wR_2 = 0.1612$

Final R indexes [all data] $R_1 = 0.0808$, $wR_2 = 0.1708$

Largest diff. peak/hole / e $\mbox{Å}^{-3}$ 0.36/-0.32

b) X-ray data for 3

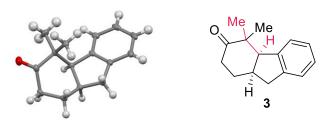


Table 4.7 Crystal Data and Structure Refinement for 3

Identification code DL-h-116

Empirical formula C₁₅H₁₈O

Table 4.7 Continued Crystal Data and Structure Refinement for 3

Formula weight 214.29

Temperature/K 100

Crystal system monoclinic

Space group $P2_1/c$

a/Å 7.9732(5)

b/Å 7.5678(5)

c/Å 19.3603(13)

 α / $^{\circ}$ 90

 $\beta/^{\circ}$ 92.343(2)

γ/° 90

Volume/ $Å^3$ 1167.22(13)

Z 4

 $\rho_{calc}g/cm^3$ 1.219

 μ/mm^{-1} 0.074

F(000) 464.0

 $Crystal~size/mm^3 \\ 0.1 \times 0.08 \times 0.05$

Radiation $MoK\alpha (\lambda = 0.71073)$

2Θ range for data collection/° 5.114 to 60.214

Index ranges $-11 \le h \le 11, -10 \le k \le 10, -27 \le l \le 27$

Reflections collected 24376

Independent reflections 3431 [$R_{int} = 0.0447$, $R_{sigma} = 0.0342$]

Table 4.7 Continued Crystal Data and Structure Refinement for 3

Data/restraints/parameters 3431/0/147

Goodness-of-fit on F^2 1.014

Final R indexes [I>= 2σ (I)] $R_1 = 0.0474$, $wR_2 = 0.1055$

Final R indexes [all data] $R_1 = 0.0729$, $wR_2 = 0.1166$

Largest diff. peak/hole / e Å-3 0.47/-0.18

c) X-ray data for 6

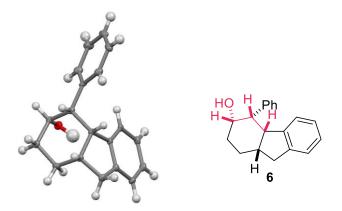


Table 4.8 Crystal Data and Structure Refinement for 6.

Identification code DL-h-59

Empirical formula C₁₉H₂₀O

Formula weight 264.35

Temperature/K 100.0

Crystal system monoclinic

Space group P2₁

a/Å 5.8407(4)

b/Å 22.3977(15)

Table 4.8 Continued Crystal Data and Structure Refinement for 6

c/Å 10.7014(7)

α/° 90

 $\beta/^{\circ}$ 97.123(2)

γ/° 90

Volume/ $Å^3$ 1389.13(16)

Z 4

 $\rho_{calc}g/cm^3 \hspace{1.5cm} 1.264$

 μ/mm^{-1} 0.076

F(000) 568.0

Crystal size/mm³ $0.02 \times 0.02 \times 0.01$

Radiation $MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 4.246 to 54.354

Index ranges $-7 \le h \le 7, -28 \le k \le 28, -13 \le l \le 13$

Reflections collected 18648

Independent reflections 6167 [$R_{int} = 0.0417$, $R_{sigma} = 0.0592$]

Data/restraints/parameters 6167/1/369

Goodness-of-fit on F^2 1.015

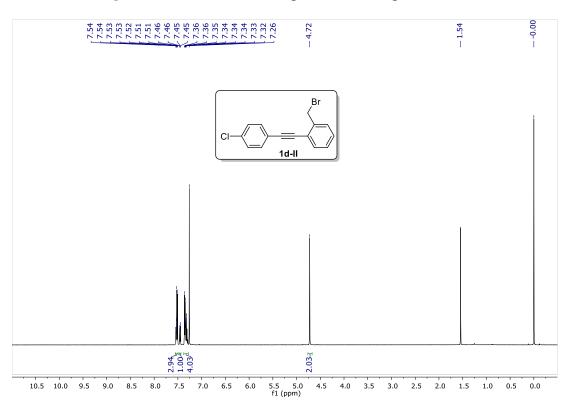
Final R indexes [I>= 2σ (I)] $R_1 = 0.0468$, $wR_2 = 0.0988$

Final R indexes [all data] $R_1 = 0.0749$, $wR_2 = 0.1096$

Largest diff. peak/hole / e Å-3 0.28/-0.21

Flack parameter 0.2(7)

4.5 References


- (1) For selected reviews, see: (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (b) Jones, W. D. Nature 1993, 364, 676. (c) Murakami, M.; Ito, Y., Cleavage of Carbon–Carbon Single Bonds by Transition Metals. In Top. Organomet. Chem., 1999; Vol. 3, pp 97. (d) Rybtchinski, B.; Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870. (e) Jun, C.-H. Chem. Soc. Rev. 2004, 33, 610. (f) Miura, M.; Satoh, T., Catalytic Processes Involving b-Carbon Elimination. In Top. Organomet. Chem., 2005; Vol. 14, pp 1. (g) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (h) Murakami, M.; Matsuda, T. Chem. Comm. 2011, 47, 1100. (i) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740. (j) Korotvicka, A.; Necas, D.; Kotora, M. Curr. Org. Chem. 2012, 16, 1170. (k) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683. (1) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613. (m) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567. (n) Dong, G., C-C bond activation. Springer-Verlag: Berlin, 2014; Vol. 346. (o) Murakami, M.; Ishida, N., Fundamental Reactions to Cleave Carbon–Carbon σ -Bonds with Transition Metal Complexes. In Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 1. (p) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (q) Chen, P.-h.; Dong, G. Chem. Eur. J. 2016, 22, 18290. (r) Chen, P.-h.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Cat. 2017, 7, 1340. (s) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
- (2) For representative examples, see: (a) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002, 124, 13976. (b) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739. (c) Parker, E.; Cramer, N. Organometallics 2014, 33, 780. (d) Souillart, L.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9640. (e) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001. (f) Souillart, L.; Cramer, N. Chem. Eur. J. 2015, 21, 1863. (g) Zhou, X.; Dong, G. J. Am. Chem. Soc. 2015, 137, 13715. (h) Zhou, X.; Ko, H. M.; Dong, G. Angew. Chem. Int. Ed. 2016, 55, 13867.
- (3) For the (6+2) coupling of 2-vinyl cyclobutanones with olefins, see: (a) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. *J. Am. Chem. Soc.* **2000**, *122*, 7815. (b) Matsuda, T.; Fujimoto, A.; Ishibashi, M.; Murakami, M. *Chem. Lett.* **2004**, *33*, 876. (c) Matsuda, T.; Makino, M.; Murakami, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 4608.
- (4) (a) Roundhill, D. M.; Lawson, D. N.; Wilkinson, G. J. Chem. Soc. (A) 1968, 845. (b) McQuillin, F. J.; Powell, K. G. J. Chem. Soc., Dalton Trans. 1972, 2123. (c) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (d) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 8285. (e) Wang, G.-W.; McCreanor, N. G.; Shaw, M. H.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2016, 138, 13501.
- (5) (a) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 7567. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. (c) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 1674. (d) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 10733. (e) Deng, L.; Xu, T.; Li, H.; Dong, G. J. Am. Chem. Soc. 2016, 138, 369. (f) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. J. Am. Chem. Soc. 2015, 137, 8274.

- (6) For representative examples of intermolecular cyclobutanone/alkyne couplings catalyzed by nickel, see: (a) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2005, 127, 6932. (b) Murakami, M.; Ashida, S.; Matsuda, T. Tetrahedron 2006, 62, 7540. (c) Kumar, P.; Louie, J. Org. Lett. 2012, 14, 2026. (d) Ishida, N.; Yuhki, T.; Murakami, M. Org. Lett. 2012, 14, 3898. (e) Ho, K. Y. T.; Aïssa, C. Chem. Eur. J. 2012, 18, 3486. (f) Li, Y.; Lin, Z. Organometallics 2013, 32, 3003. (g) Thakur, A.; Evangelista, J. L.; Kumar, P.; Louie, J. J. Org. Chem. 2015, 80, 9951. (h) Barday, M.; Ho, K. Y. T.; Halsall, C. T.; Aïssa, C. Org. Lett. 2016, 18, 1756.
- (7) For representative examples of (3+2+1) reactions involving cyclopropanes, see: (a) Mazumder, S.; Shang, D.; Negru, D. E.; Baik, M.-H.; Evans, P. A. J. Am. Chem. Soc. 2012, 134, 20569. (b) Kim, S.; Chung, Y. K. Org. Lett. 2014, 16, 4352. (c) Feng, Y.; Yu, Z.-X. J. Org. Chem. 2015, 80, 1952. (d) Shaw, M. H.; Croft, R. A.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 8054. (e) Shaw, M. H.; McCreanor, N. G.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 463. (f) Bose, S.; Yang, J.; Yu, Z.-X. J. Org. Chem. 2016, 81, 6757. (g) Shaw, M. H.; Whittingham, W. G.; Bower, J. F. Tetrahedron 2016, 72, 2731.
- (8) Koga, Y.; Narasaka, K. Chem. Lett. 1999, 28, 705.
- (9) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528.
- (10) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W. G.; Bower, J. F. *J. Am. Chem. Soc.* **2013**, *135*, 4992.
- (11) Rotondo, E.; Battaglia, G.; Giordano, G.; Cusmano, F. P. J. Organomet. Chem. 1993, 450, 245.
- (12) Jiang, X.; Covey, D. F. J. Org. Chem. 2002, 67, 4893.
- (13) Garcia-Cabeza, A.; Marin-Barrios, R.; Azarken, R.; Moreno-Dorado, F. J.; Ortega, M. J.; Vidal, H.; Gatica, J. M.; Massanet, G. M.; Guerra, F. M. *Eur. J. Org. Chem.* **2013**, 8307 and references therein.
- (14) Wang, S.-K.; Chen, M.-T.; Zhao, D.-Y.; You, X.; Luo, Q.-L. Adv. Synth. Catal. **2016**, 358, 4093.
- (15) Pun, D.; Diao, T.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 8213.
- (16) Liniger, M.; VanderVelde, D. G.; Takase, M. K.; Shahgholi, M.; Stoltz, B. M. *J. Am. Chem. Soc.* **2016**, *138*, 969.
- (17) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc. 2000, 122, 7815.
- (18) a) Tadross, P. M.; Bugga, P.; Stoltz, B. M. *Organic & Biomolecular Chemistry* **2011**, *9*, 5354. b) Salezadeh-Asl, R.; Lee-Ruff, E. *Tetrahedron: Asymmetry* **2005**, *16*, 3986. c) Suarez, L. L.; Greaney, M. F. *Chem. Commun.* **2011**, *47*, 7992. d) Sashida, H.; Ohyanagi, K.; Minoura, M.; Akiba, K.-y. *J. Chem. Soc., Perkin Trans. 1* **2002**, 606. e) Obata, T.; Suzuki, S.; Nakagawa,

- A.; Kajihara, R.; Noguchi, K.; Saito, A. *Org. Lett.* **2016**, *18*, 4136. f) Trost, B. M.; Vladuchick, W. C.; Bridges, A. J. *J. Am. Chem. Soc.* **1980**, *102*, 3548. g) Xu, L.; Liu, Z.; Dong, W.; Song, J.; Miao, M.; Xu, J.; Ren, H. *Org. Bio. Chem.* **2015**, *13*, 6333.
- (19) Li, D. Y.; Shi, K. J.; Mao, X. F.; Zhao, Z. L.; Wu, X. Y.; Liu, P. N. Tetrahedron **2014**, 70, 7022.
- (20) a) Vinoth, P.; Nagarajan, S.; Maheswari, C. U.; Sudalai, A.; Pace, V.; Sridharan, V. *Org. Lett.* **2016**, *18*, 3442. b) Yukiteru, I.; Mitsuhiro, Y. *Chem. Lett.* **2014**, *43*, 1758.
- (21) a) Ishii, S.; Niwa, Y.; Watanabe, S. J. Fluorine Chem. **2016**, 182, 41. b) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. **2017**, 53, 8980.
- (22) Kaplan, H. Z.; Rendina, V. L.; Kingsbury, J. S. J. Org. Chem. 2013, 78, 4620.
- (23) Yamashita, S.; Iso, K.; Kitajima, K.; Himuro, M.; Hirama, M. J. Org. Chem. **2011**, 76, 2408.
- (24) Nordvik, T.; Brinker, U. H. J. Org. Chem. 2003, 68, 9394.
- (25) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. **2014**, 136, 12217.
- (26) Montag, M.; Schwartsburd, L.; Cohen, R.; Leitus, G.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. *Angew. Chem. Int. Ed.* **2007**, *46*, 1901.
- (27) Rathbun, C. M.; Johnson, J. B. J. Am. Chem. Soc. 2011, 133, 2031.

4.6 NMR Spectra

Figure 4.1 1 H and 13 C NMR spectrum of compound 1d-II

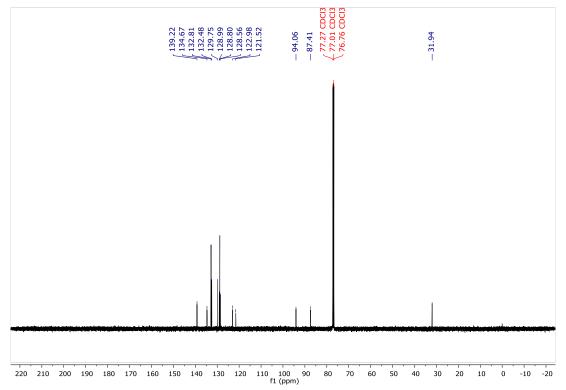
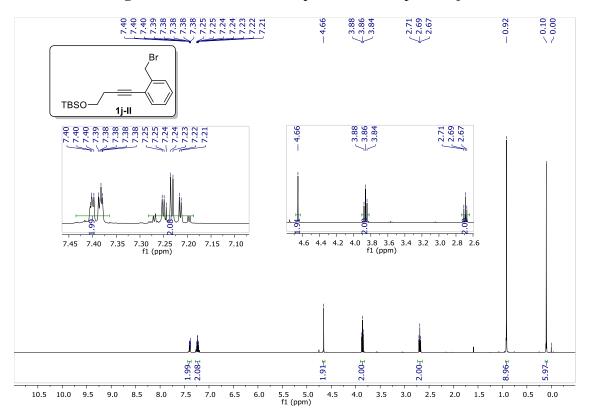



Figure 4.2 ¹H and ¹³C NMR spectrum of compound 1j-II

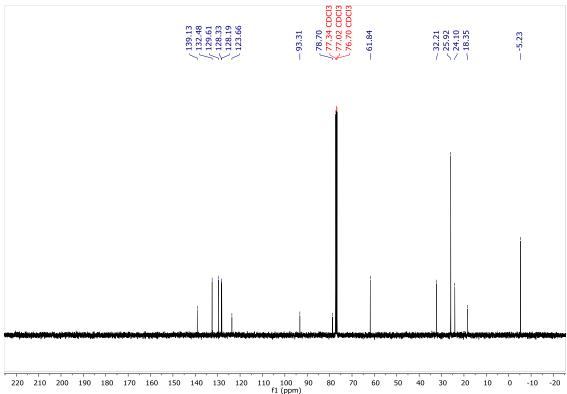


Figure 4.3 ¹H and ¹³C NMR spectrum of compound 11-II

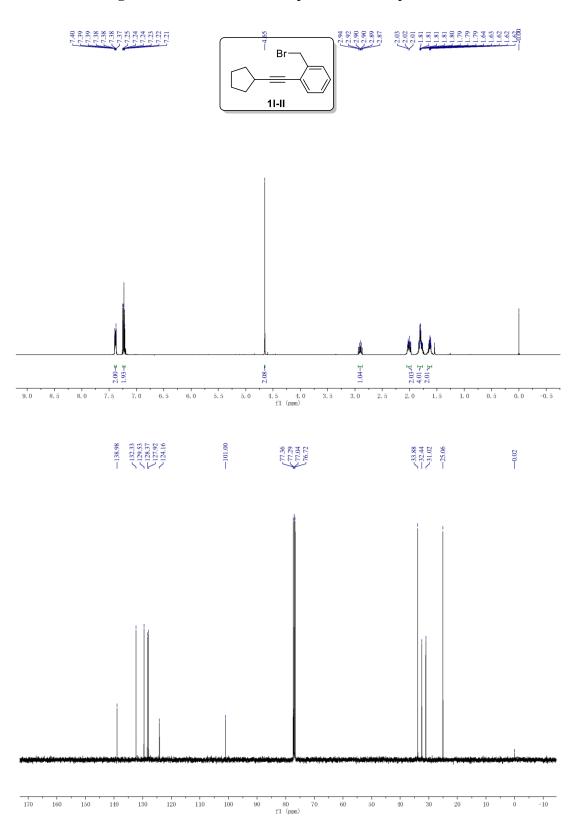


Figure 4.4 ¹H and ¹³C NMR spectrum of compound 1m-II

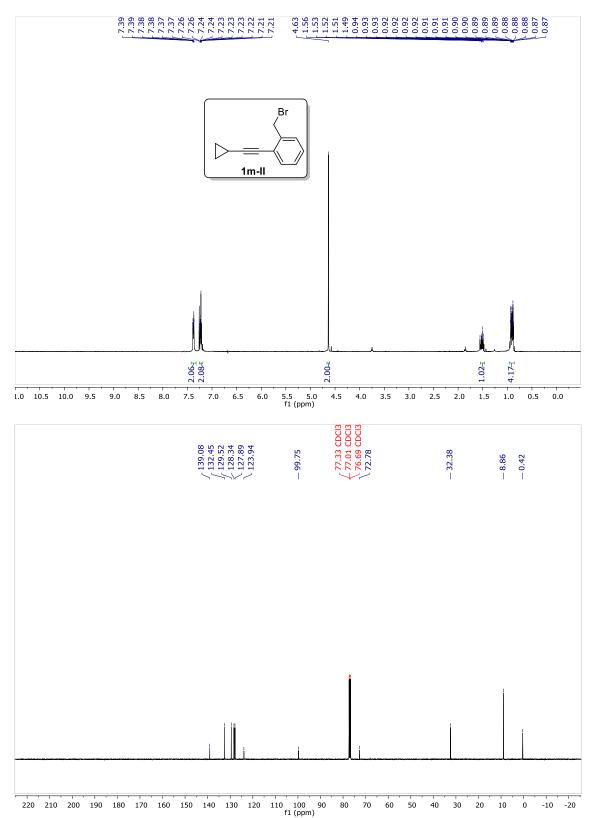


Figure 4.5 ¹H and ¹³C NMR spectrum of compound 1n-I

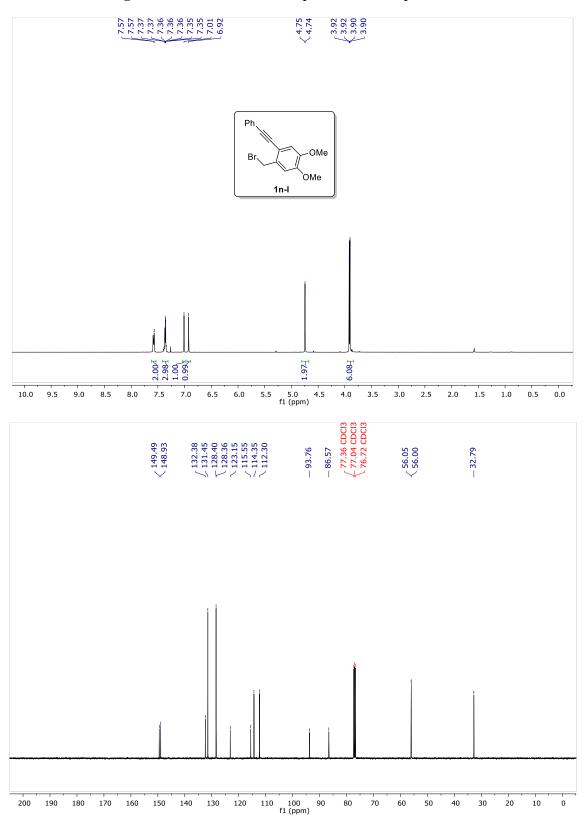


Figure 4.6 ¹H and ¹³C NMR spectrum of compound 1u-I

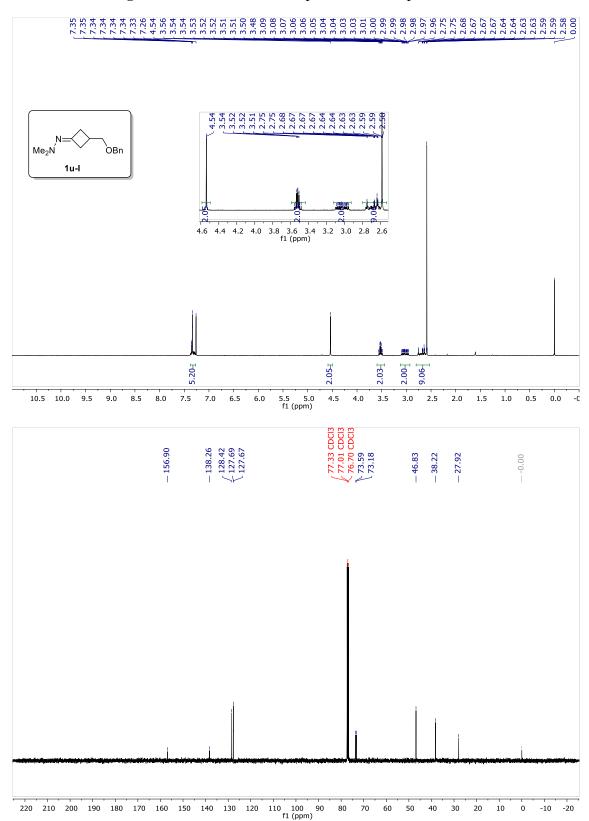


Figure 4.7 ¹H and ¹³C NMR spectrum of compound 1t-I

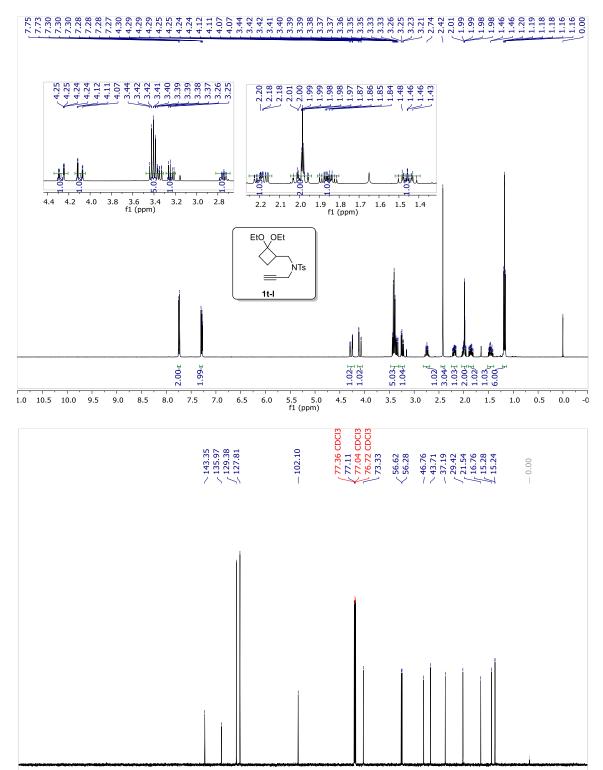
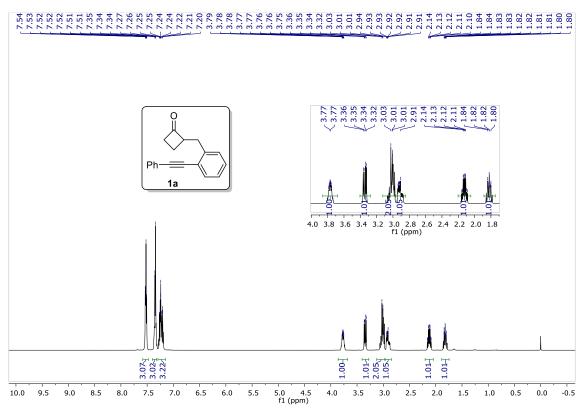



Figure 4.8 ¹H and ¹³C NMR spectrum of compound 1a

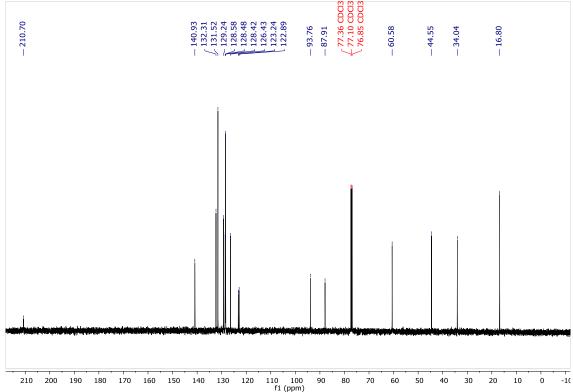
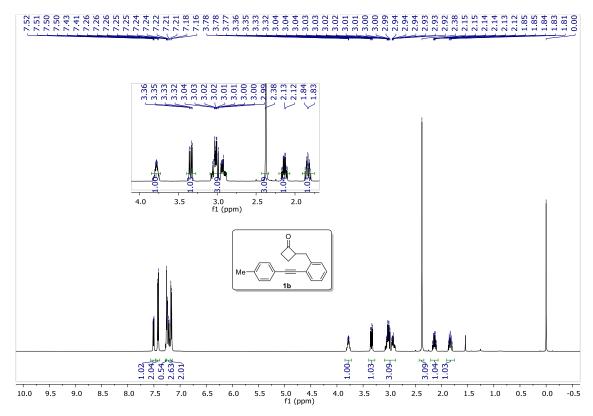



Figure 4.9 ¹H and ¹³C NMR spectrum of compound 1b

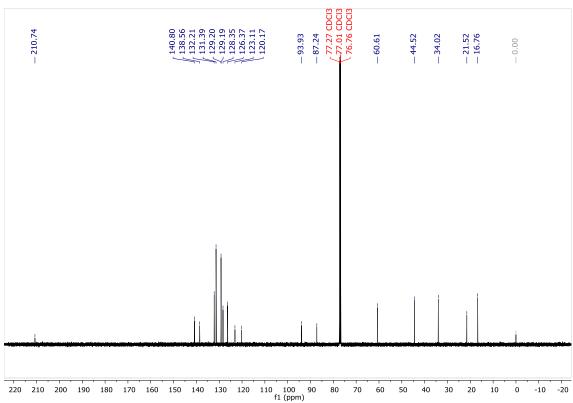


Figure 4.10 1 H and 13 C NMR spectrum of compound 1c

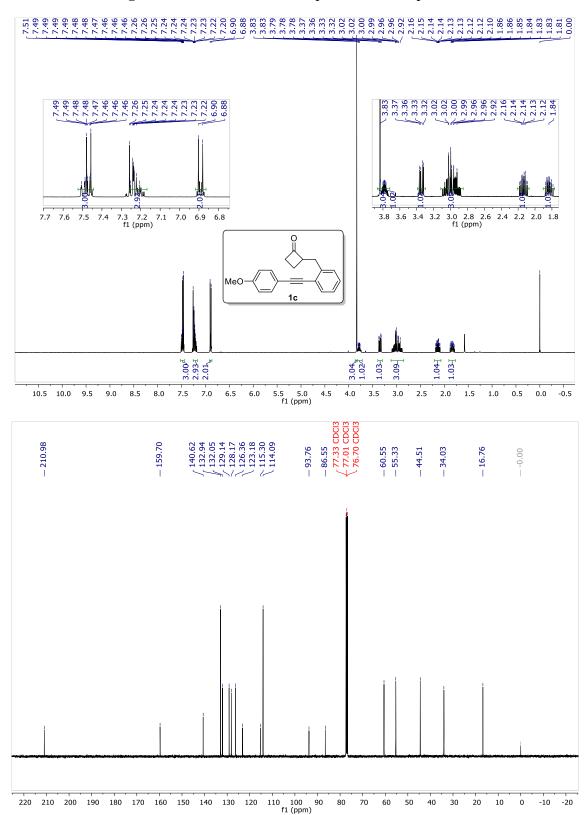


Figure 4.11 1 H and 13 C NMR spectrum of compound 1d

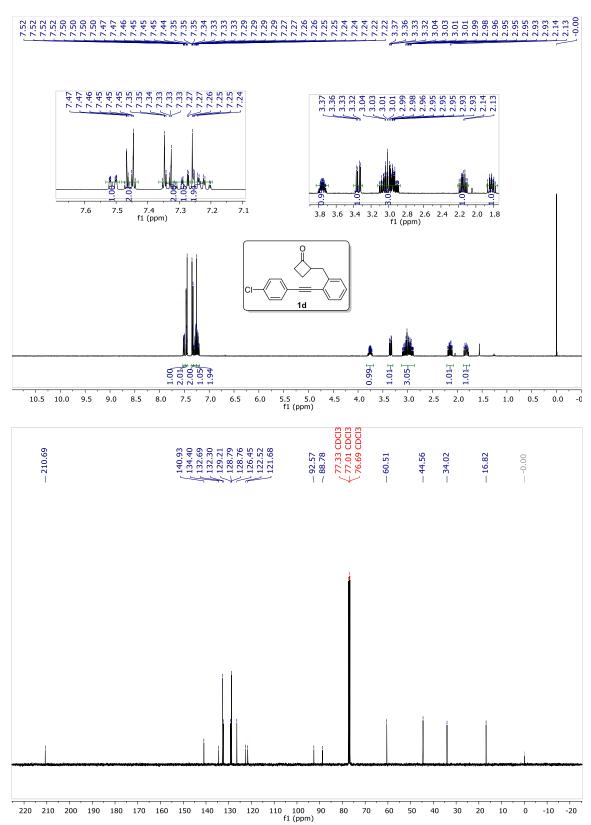


Figure 4.12 ¹H and ¹³C NMR spectrum of compound 1e

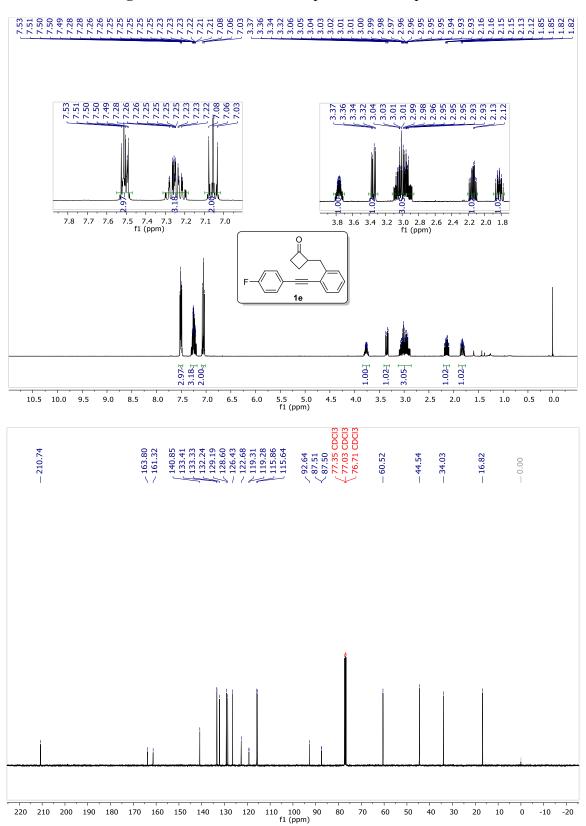
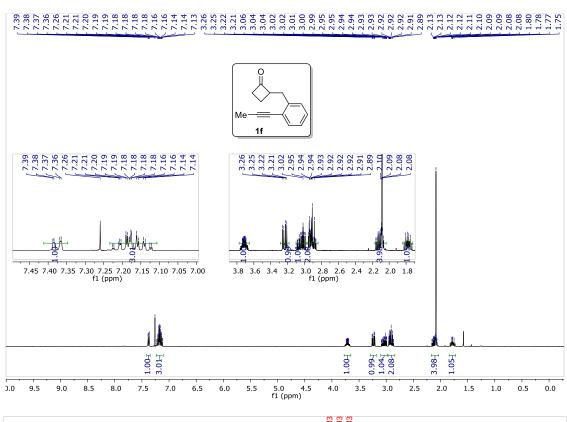



Figure 4.13 ¹H and ¹³C NMR spectrum of compound 1f

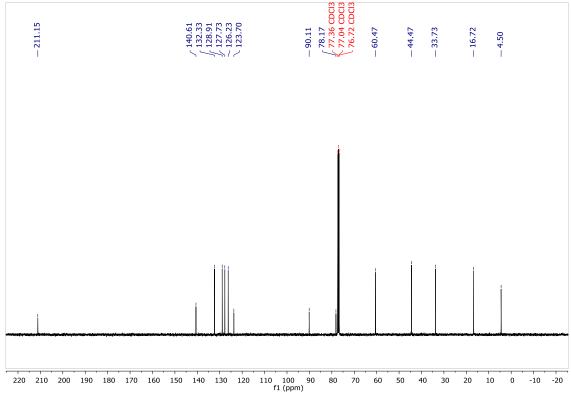
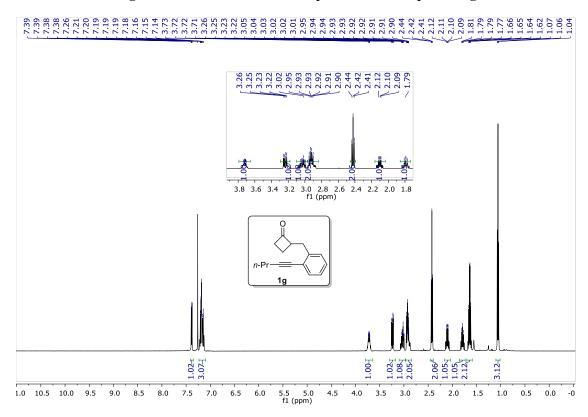



Figure 4.14 1 H and 13 C NMR spectrum of compound 1g

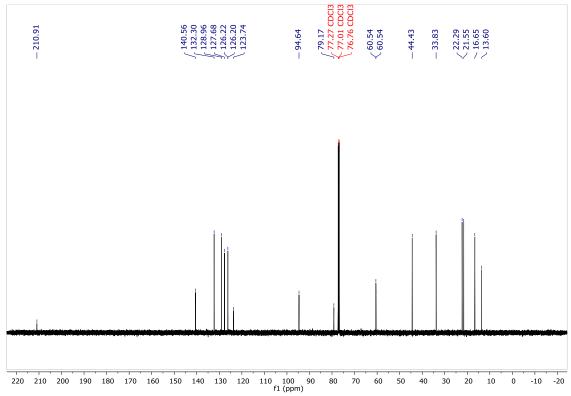
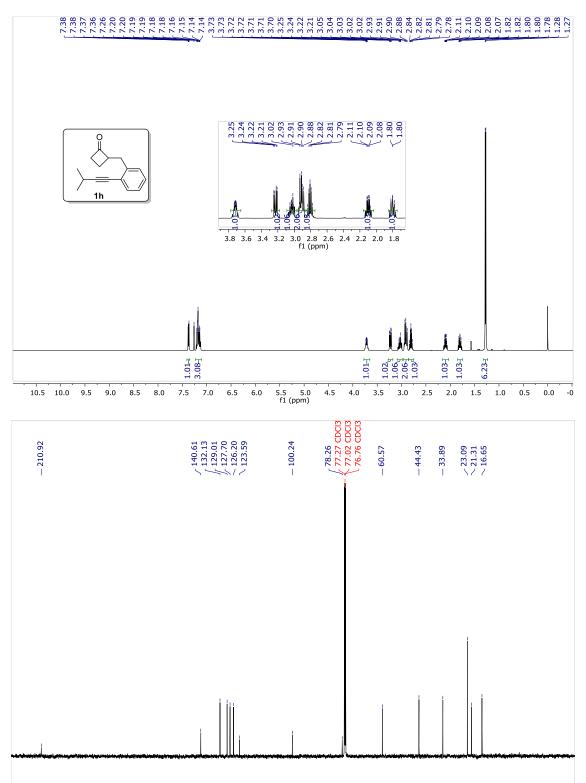



Figure 4.15 ¹H and ¹³C NMR spectrum of compound 1h

-10 -20

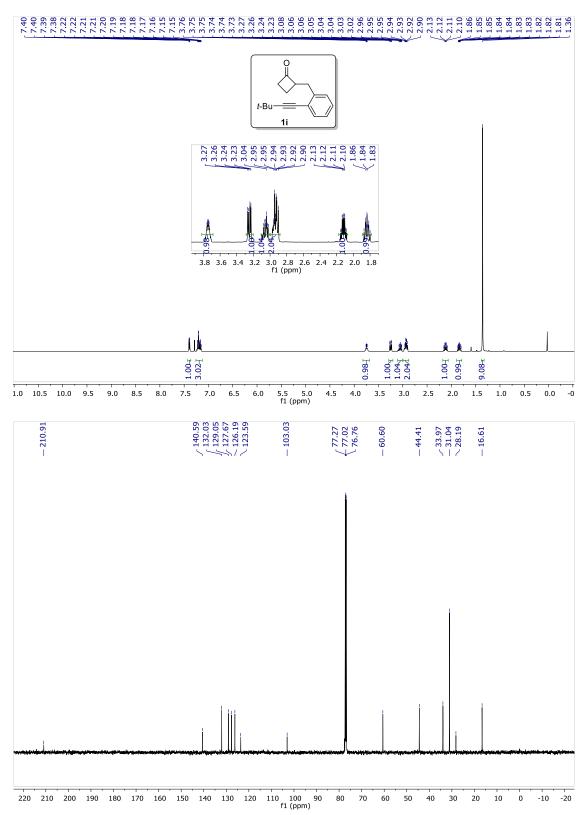


Figure 4.17 ¹H and ¹³C NMR spectrum of compound 1j

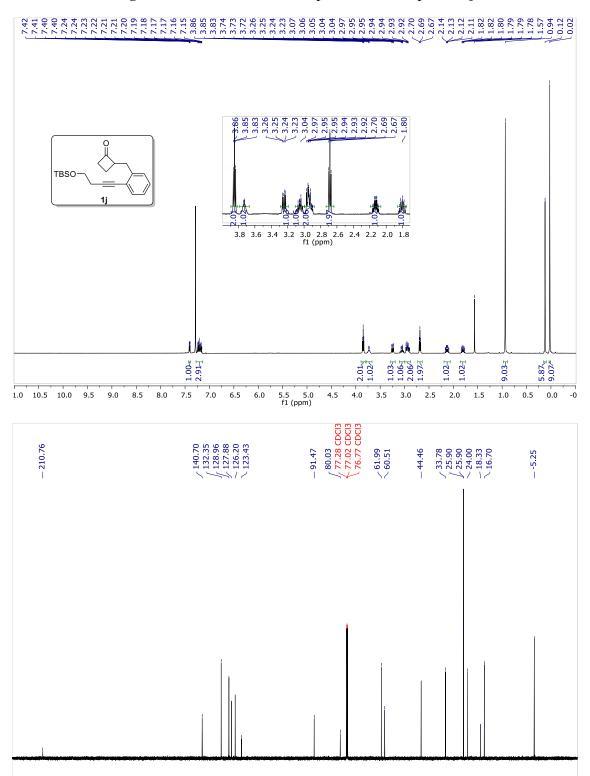


Figure 4.18 ¹H and ¹³C NMR spectrum of compound 1k

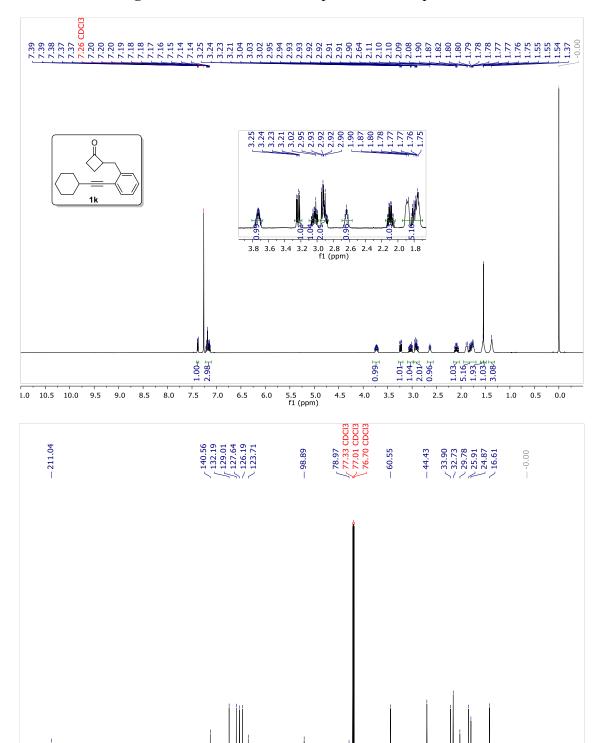


Figure 4.19 ¹H and ¹³C NMR spectrum of compound 11

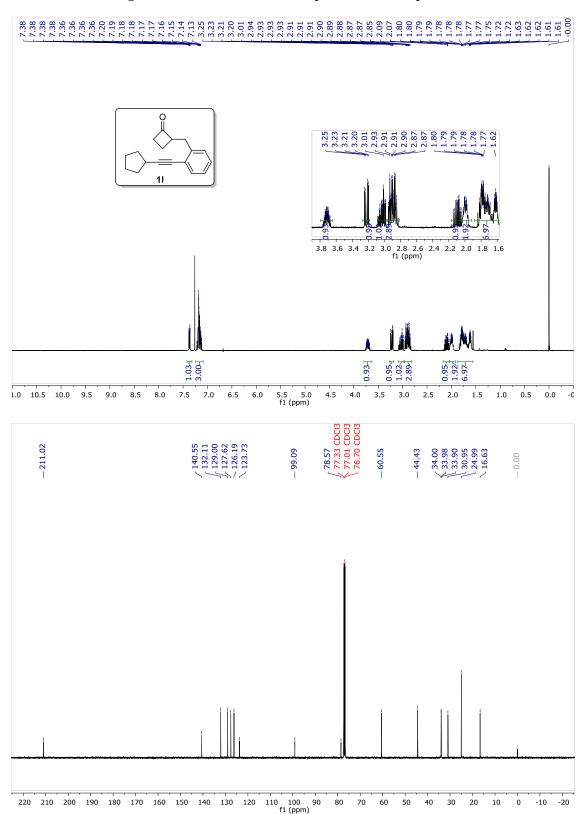


Figure 4.20 ¹H and ¹³C NMR spectrum of compound 1m

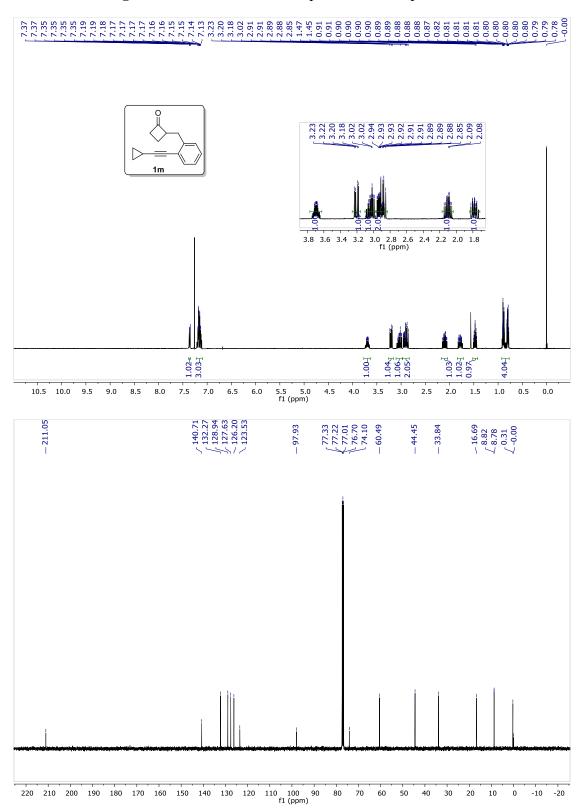


Figure 4.21 1 H and 13 C NMR spectrum of compound 1n

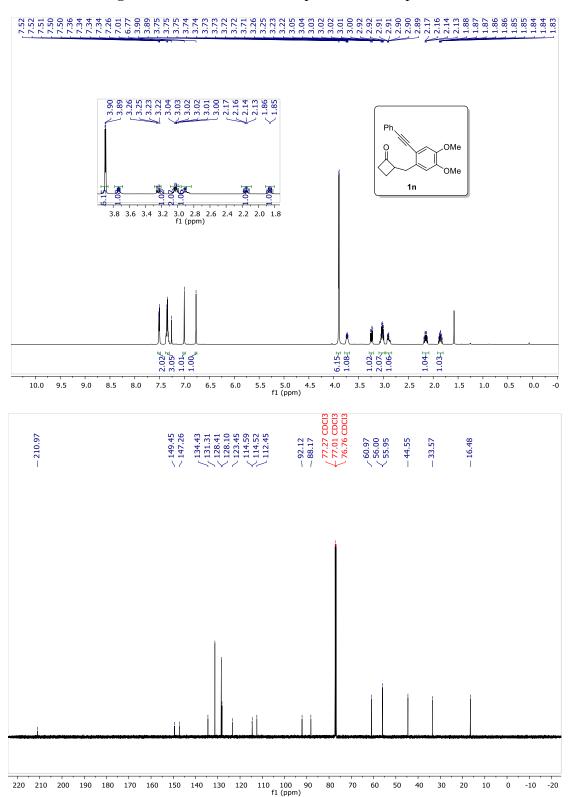


Figure 4.22 ¹H and ¹³C NMR spectrum of compound 10

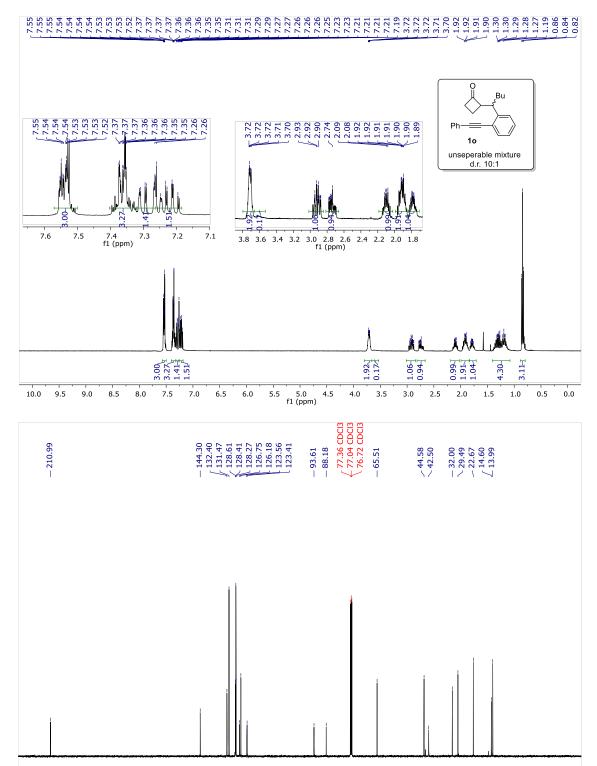


Figure 4.23 ¹H and ¹³C NMR spectrum of compound 1p

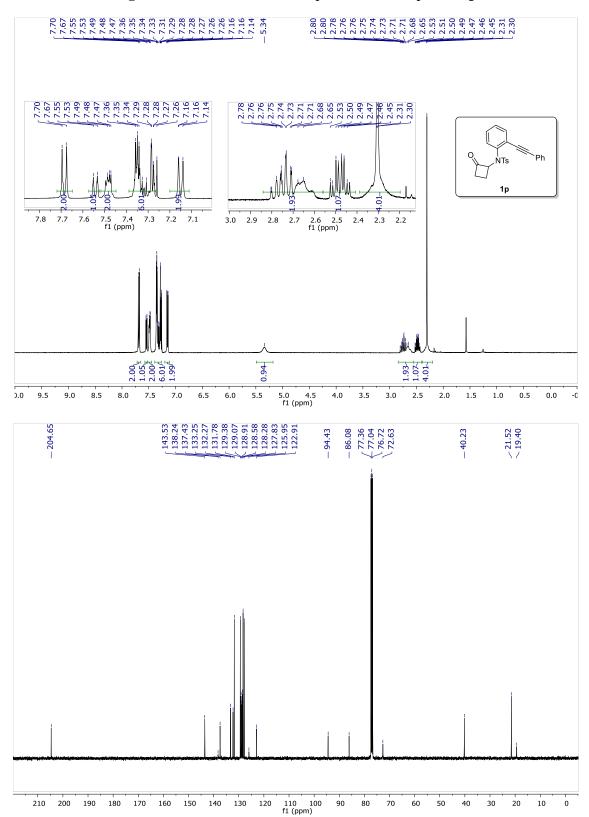
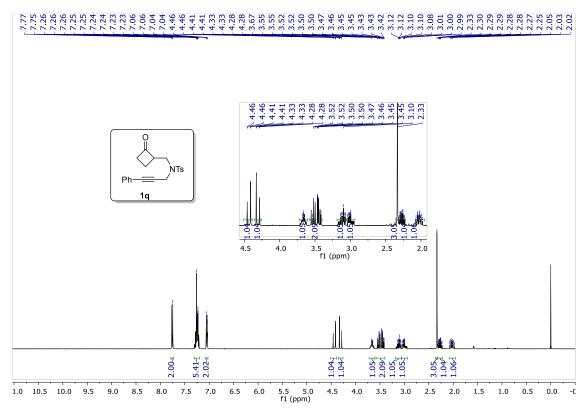



Figure 4.24 ¹H and ¹³C NMR spectrum of compound 1q

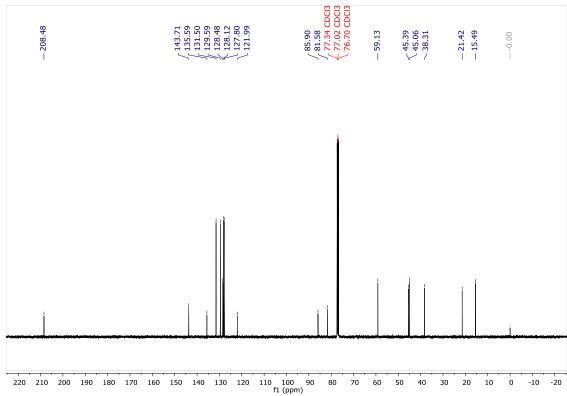
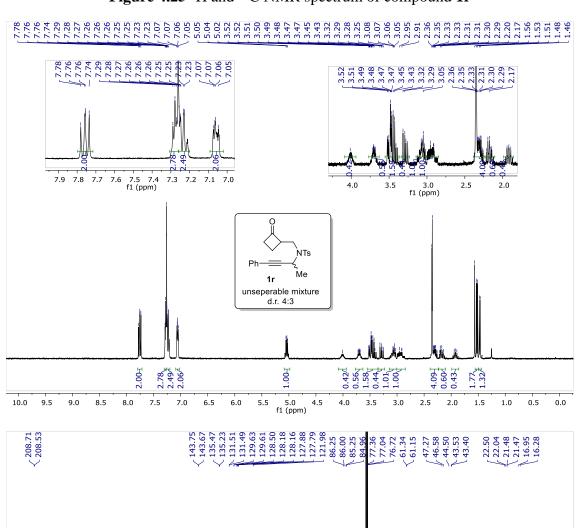



Figure 4.25 ¹H and ¹³C NMR spectrum of compound 1r

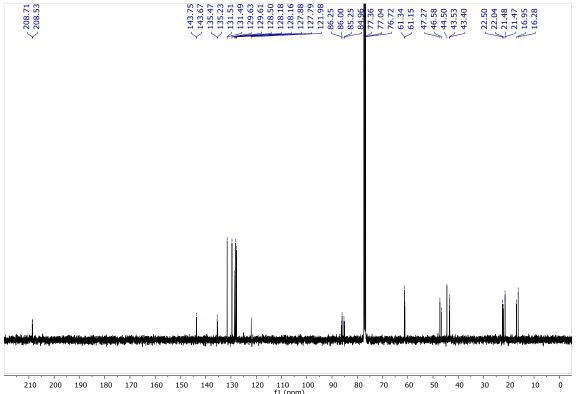


Figure 4.26 ¹H and ¹³C NMR spectrum of compound 1s

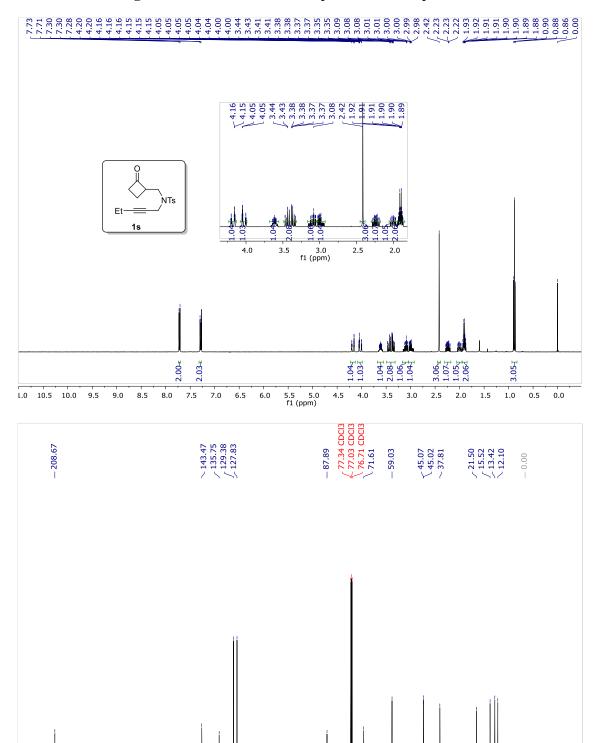


Figure 4.28 ^{1}H and ^{13}C NMR spectrum of compound 1u

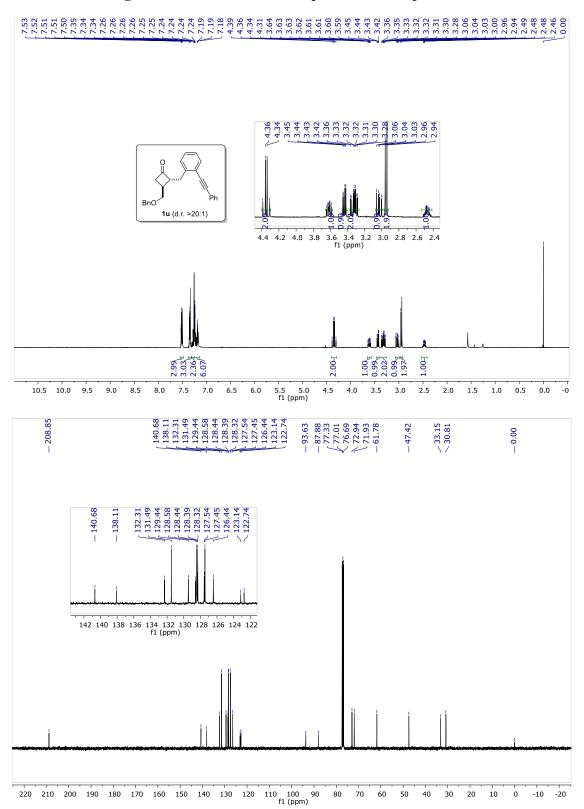


Figure 4.29 ¹H and ¹³C NMR spectrum of compound 1v

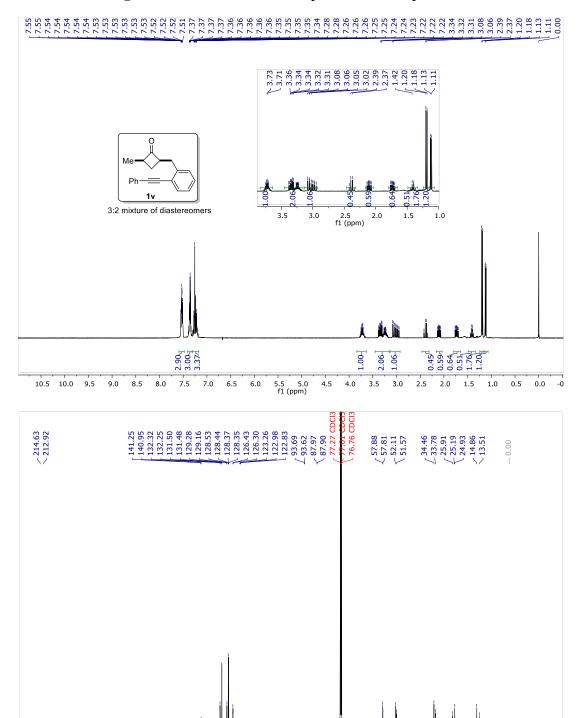


Figure 4.30 ¹H and ¹³C NMR spectrum of compound 2a

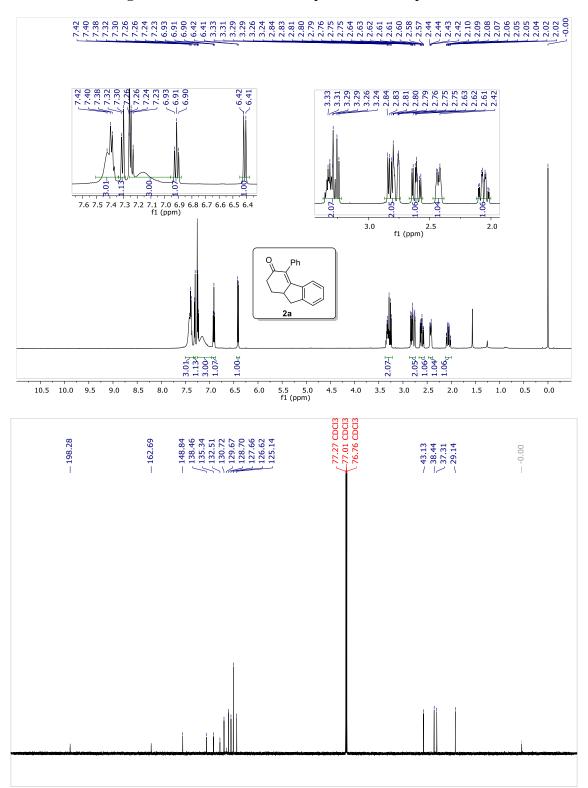


Figure 4.31 ¹H and ¹³C NMR spectrum of compound 2b

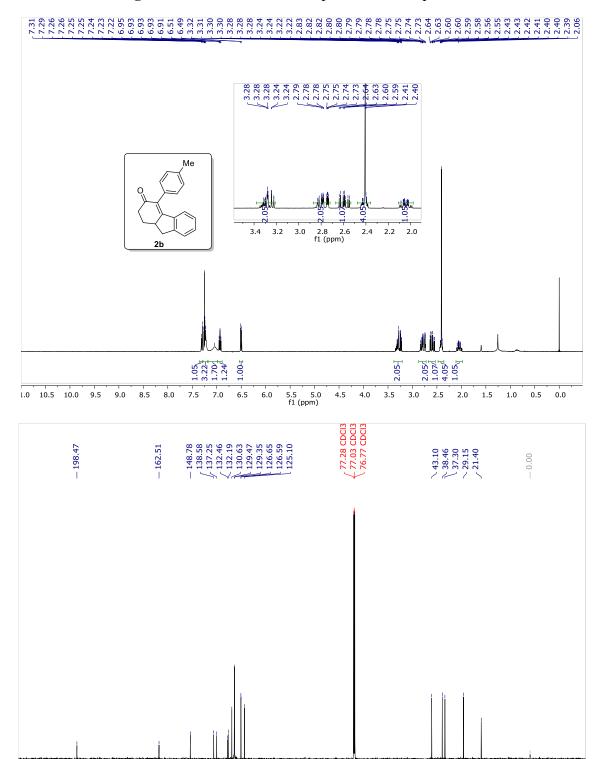


Figure 4.32 ¹H and ¹³C NMR spectrum of compound 2c

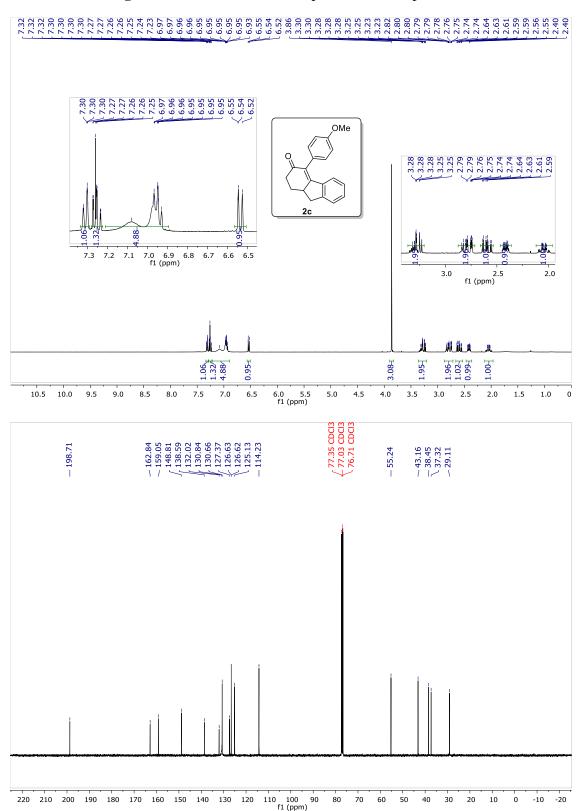


Figure 4.33 ¹H and ¹³C NMR spectrum of compound 2d

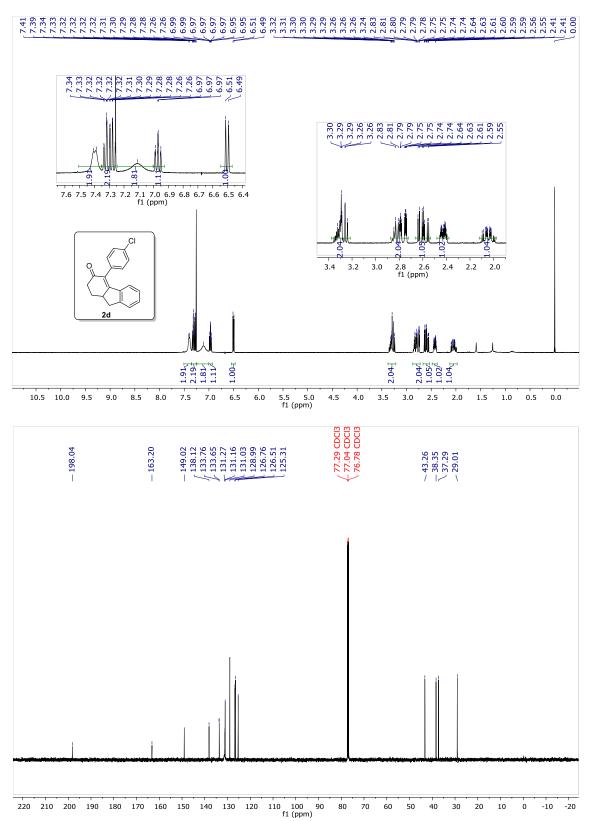
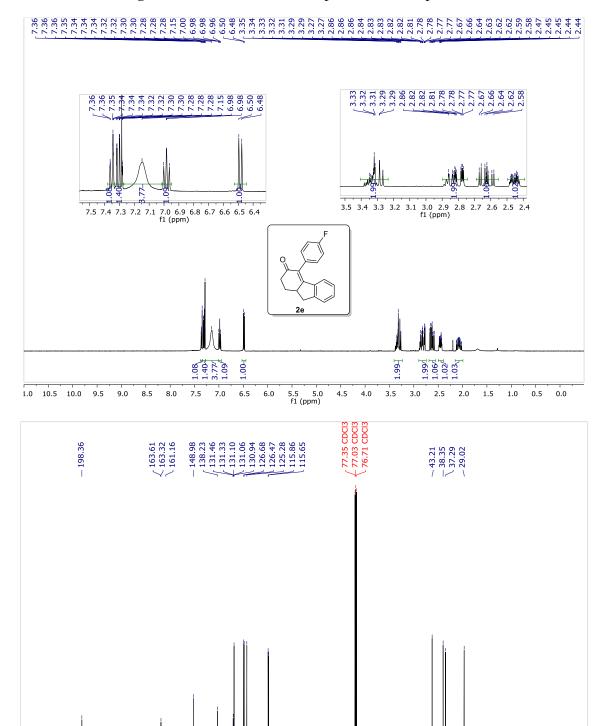



Figure 4.34 ¹H and ¹³C NMR spectrum of compound 2e

160 150 140 130 120 110 100 90 f1 (ppm)

Figure 4.35 ¹H and ¹³C NMR spectrum of compound 2f

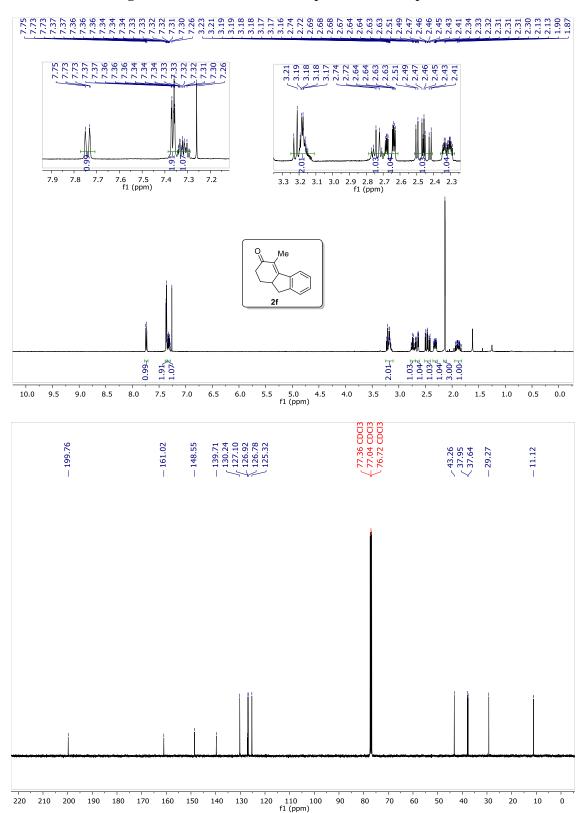


Figure 4.36 ¹H and ¹³C NMR spectrum of compound 2g

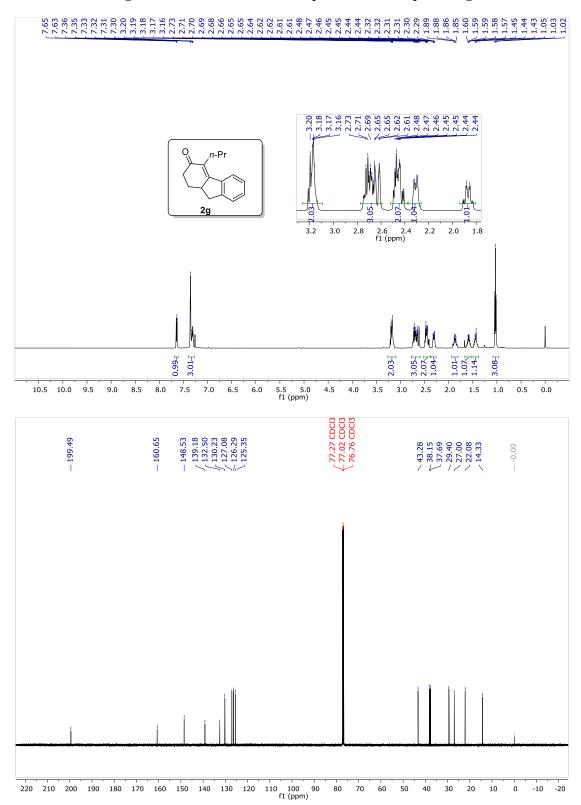
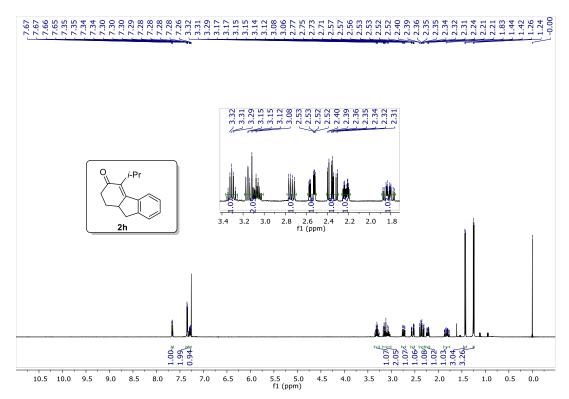



Figure 4.37 ¹H and ¹³C NMR spectrum of compound 2h

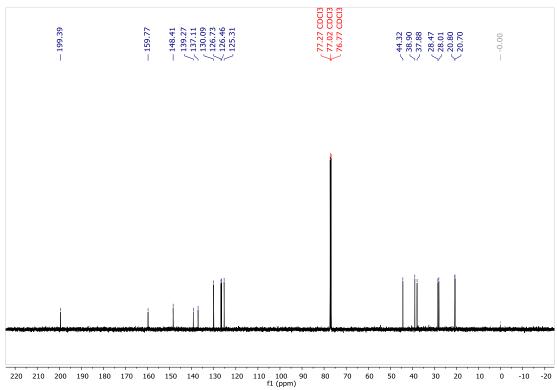


Figure 4.38 ¹H and ¹³C NMR spectrum of compound 2i

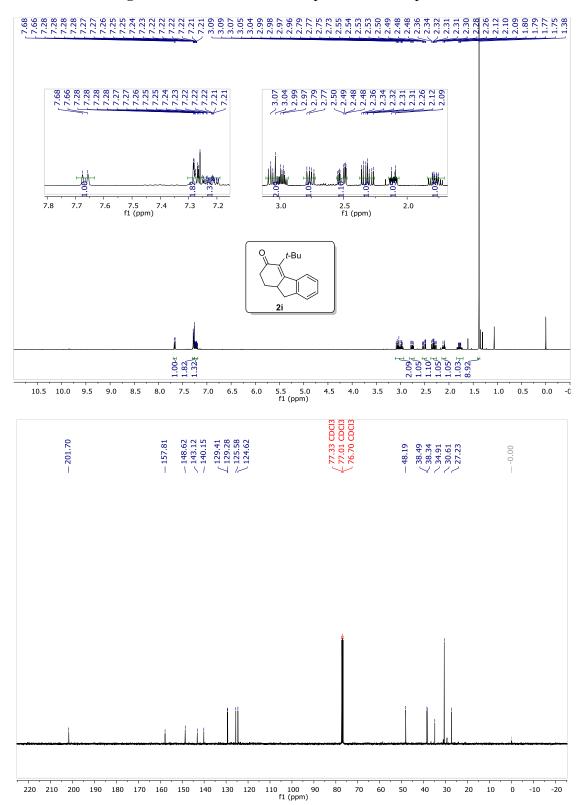


Figure 4.39 ¹H and ¹³C NMR spectrum of compound 2j

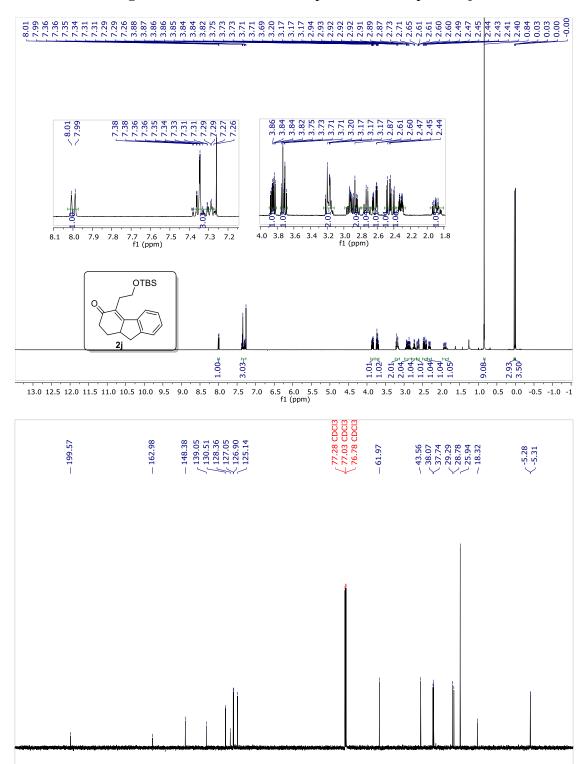


Figure 4.40 1 H and 13 C NMR spectrum of compound 2k

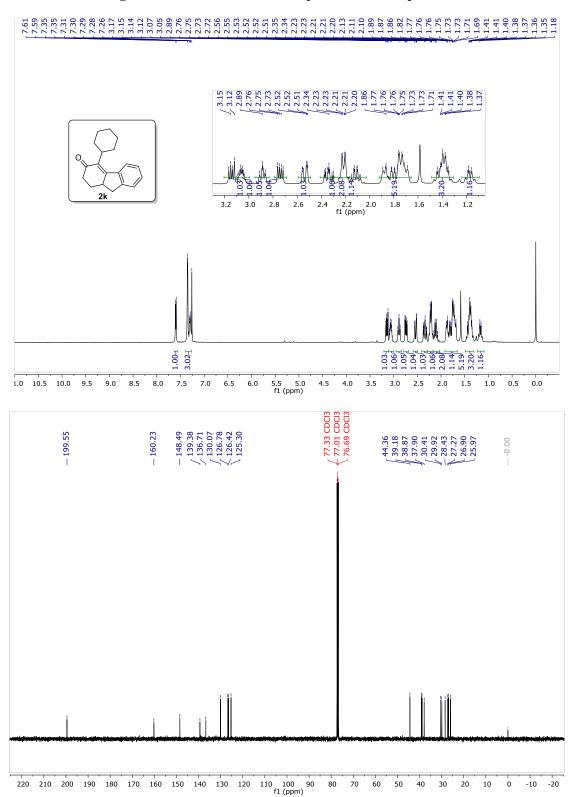


Figure 4.41 ¹H and ¹³C NMR spectrum of compound 2l

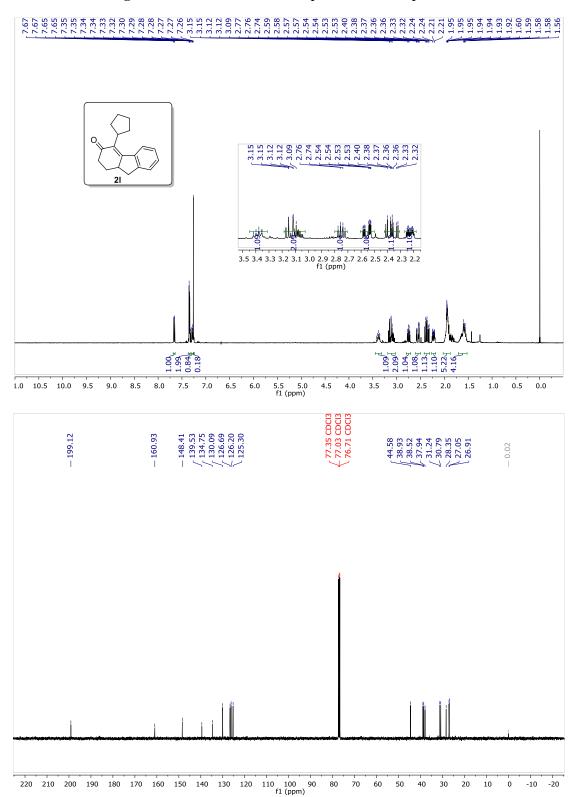


Figure 4.42 ¹H and ¹³C NMR spectrum of compound 2m

Figure 4.43 ¹H and ¹³C NMR spectrum of compound 2n

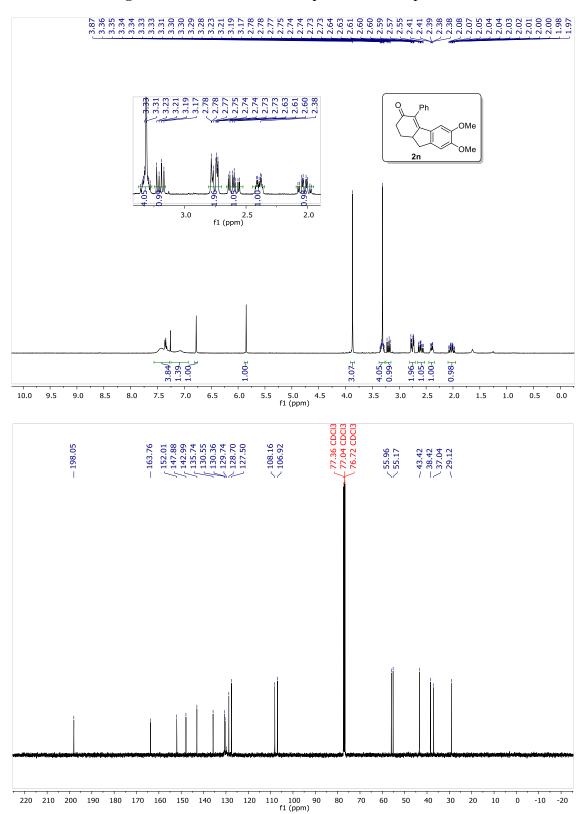


Figure 4.44 ¹H and ¹³C NMR spectrum of compound 20

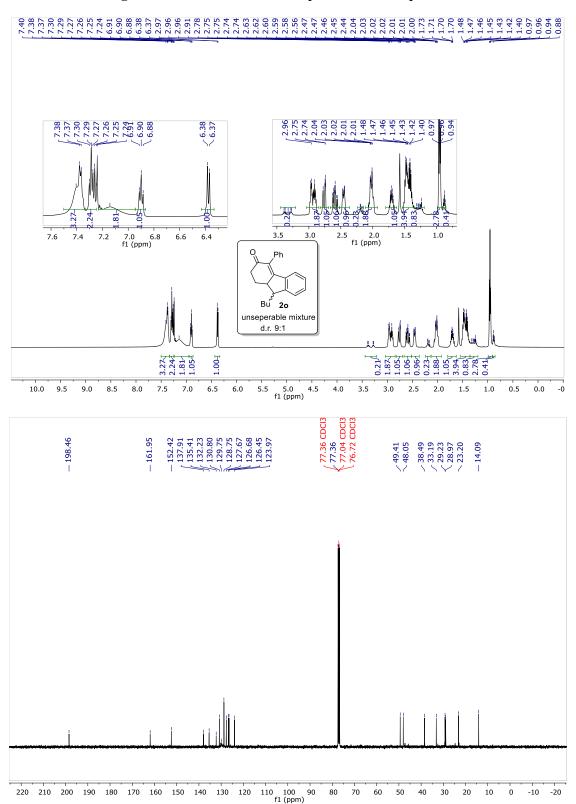
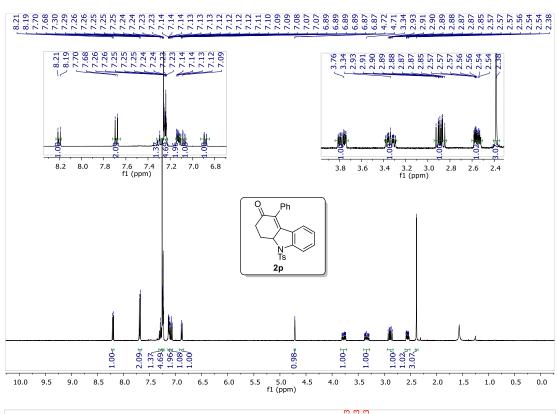



Figure 4.45 ¹H and ¹³C NMR spectrum of compound 2p

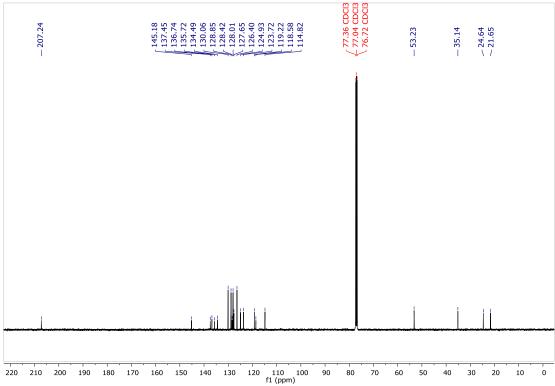
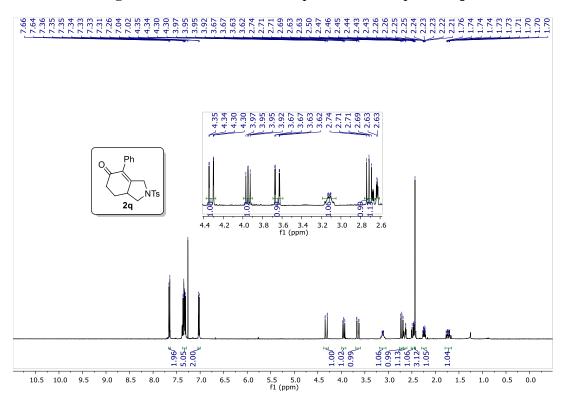



Figure 4.46 ¹H and ¹³C NMR spectrum of compound 2q

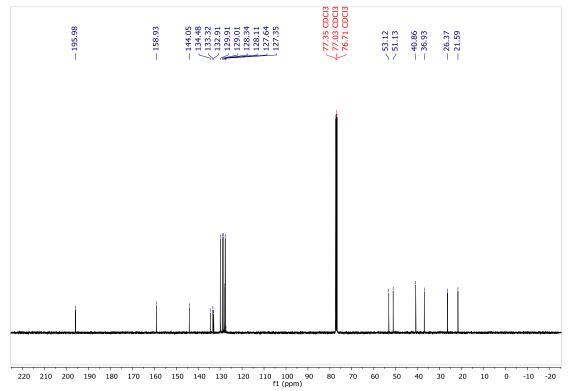
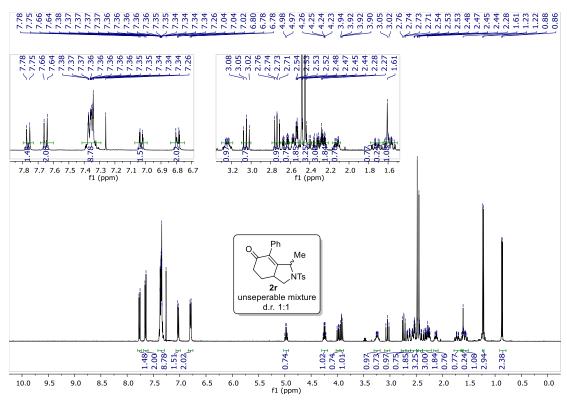



Figure 4.47 ¹H and ¹³C NMR spectrum of compound 2r

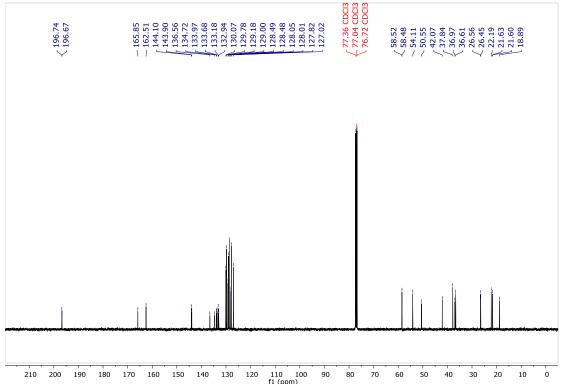


Figure 4.48 ¹H and ¹³C NMR spectrum of compound 2s

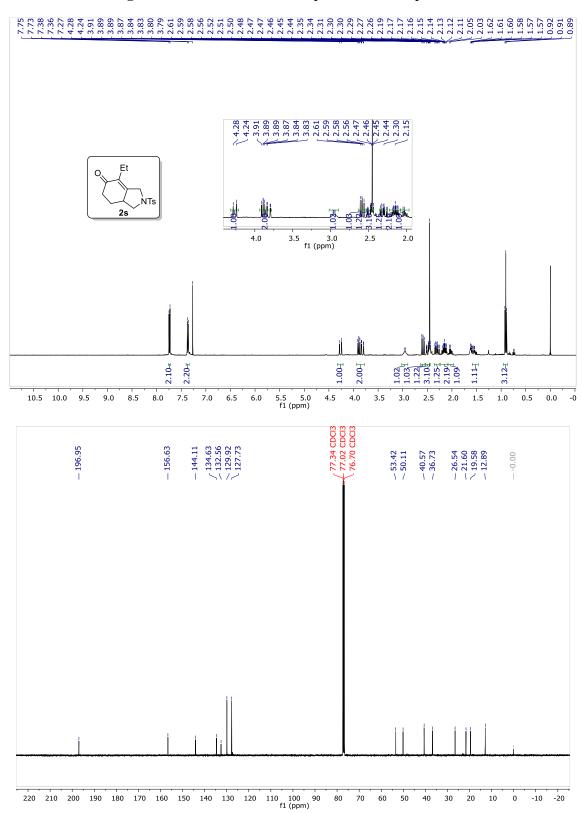


Figure 4.49 ¹H and ¹³C NMR spectrum of compound 2t

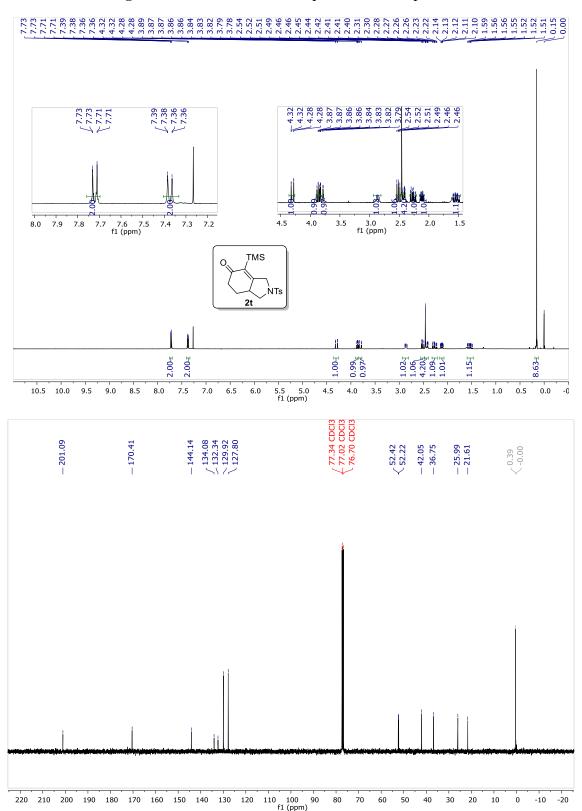


Figure 4.50 ¹H and ¹³C NMR spectrum of compound 2u

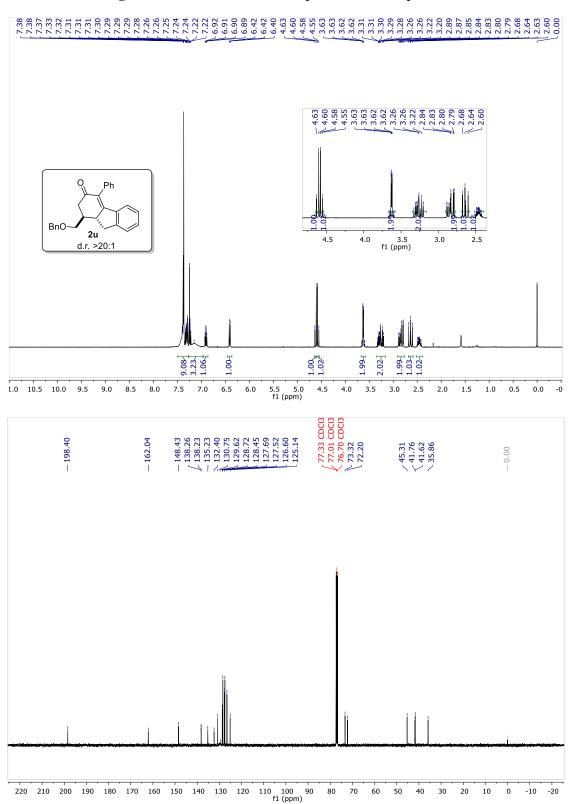


Figure 4.51 ¹H and ¹³C NMR spectrum of compound 2v (major)

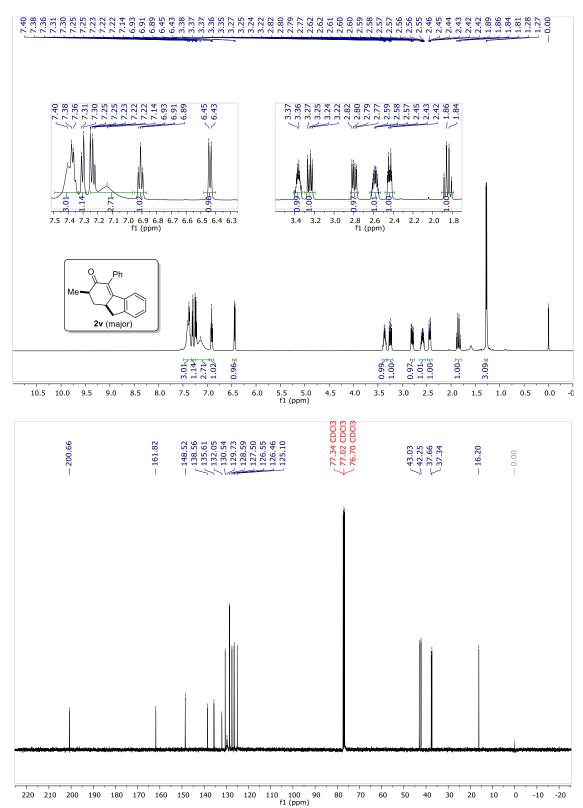
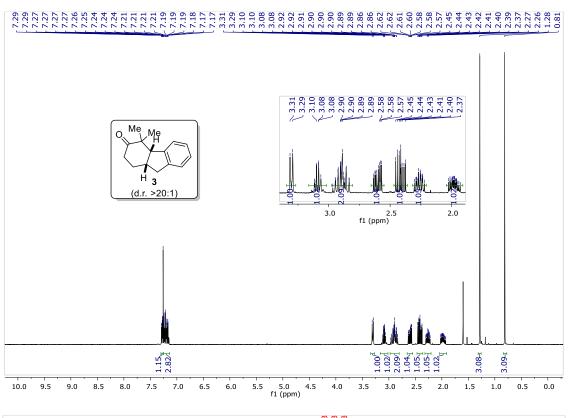



Figure 4.52 1 H and 13 C NMR spectrum of compound 3

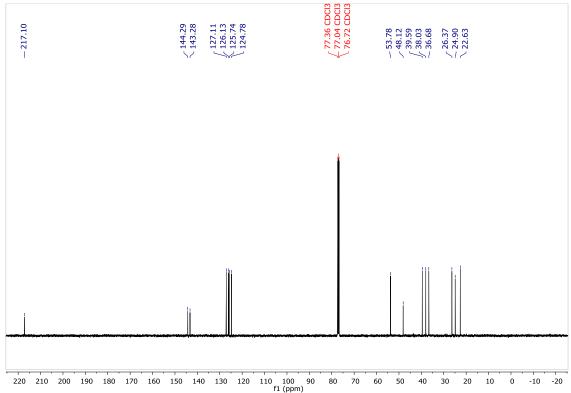


Figure 4.53 ¹H and ¹³C NMR spectrum of compound 4

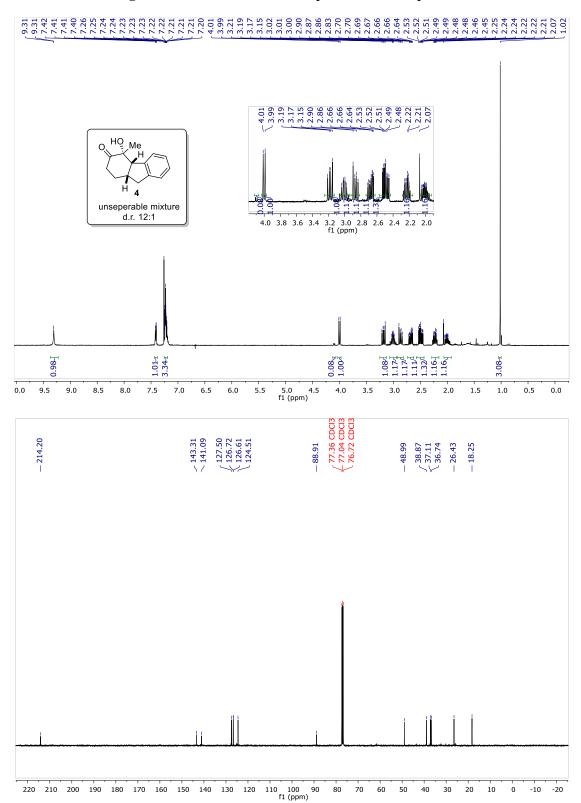


Figure 4.54 ¹H and ¹³C NMR spectrum of compound 5

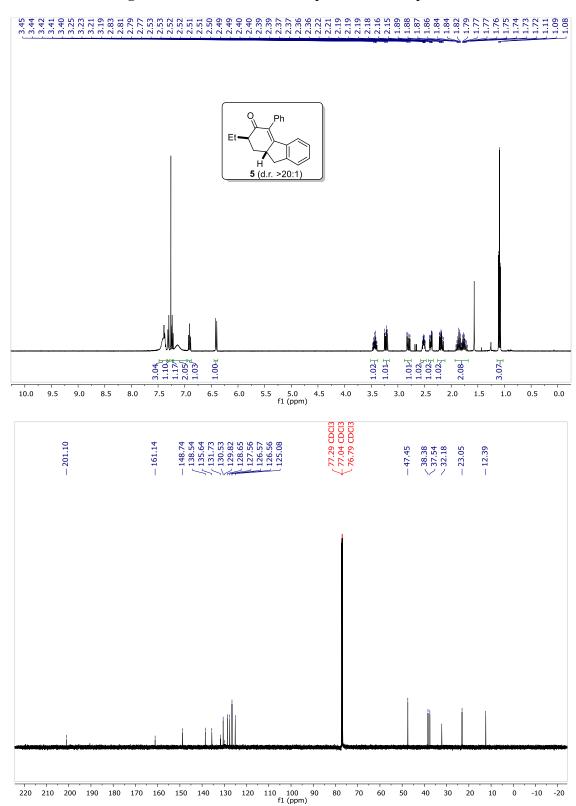
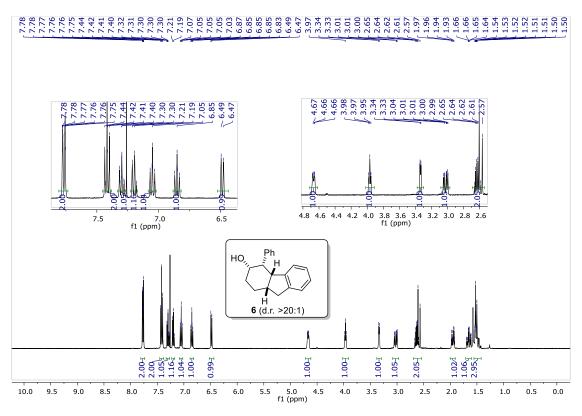



Figure 4.55 ¹H and ¹³C NMR spectrum of compound 6

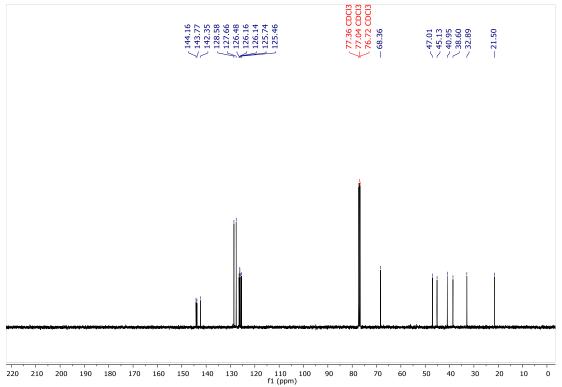


Figure 4.56 1 H and 13 C NMR spectrum of compound 7

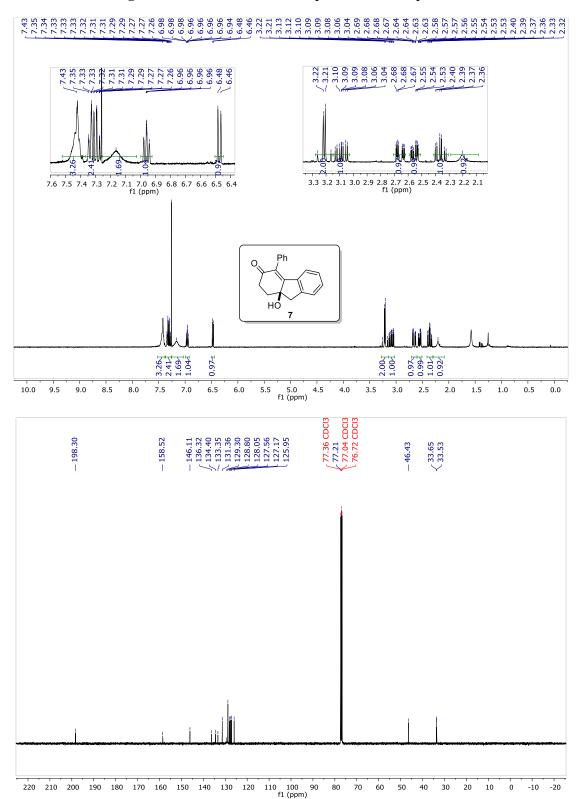


Figure 4.57 1 H and 13 C NMR spectrum of compound 8

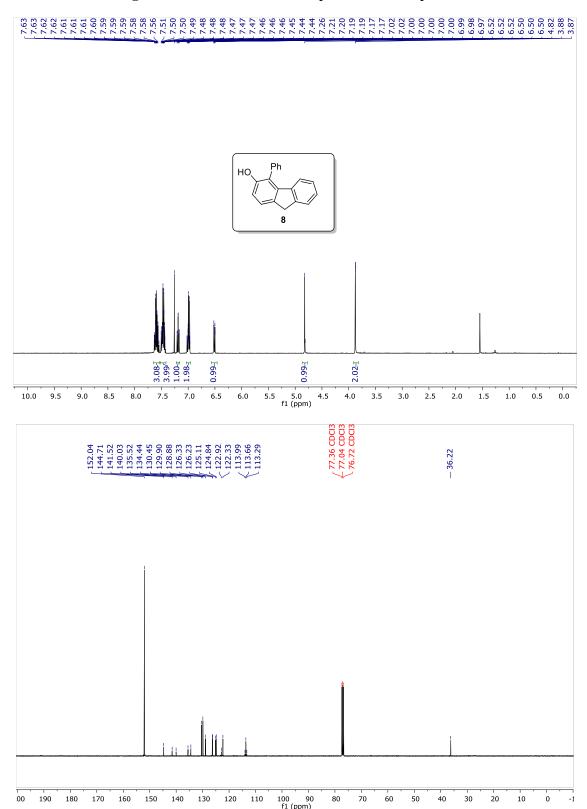
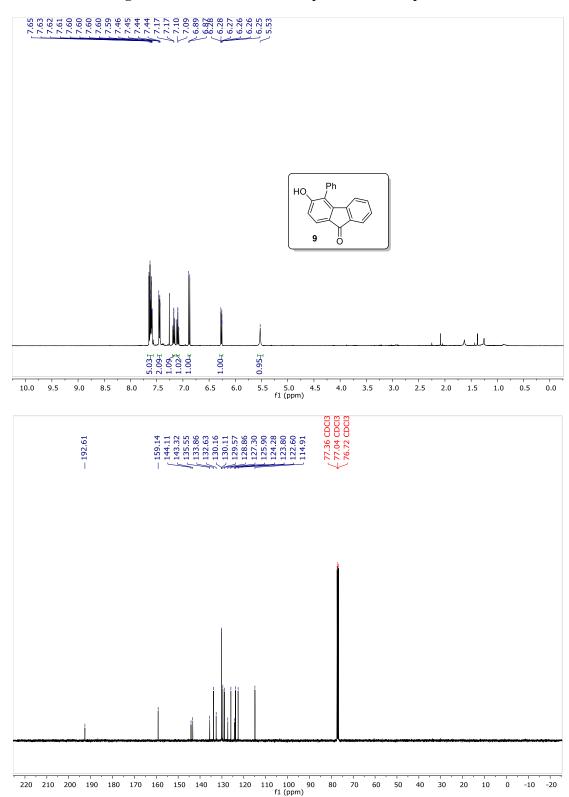
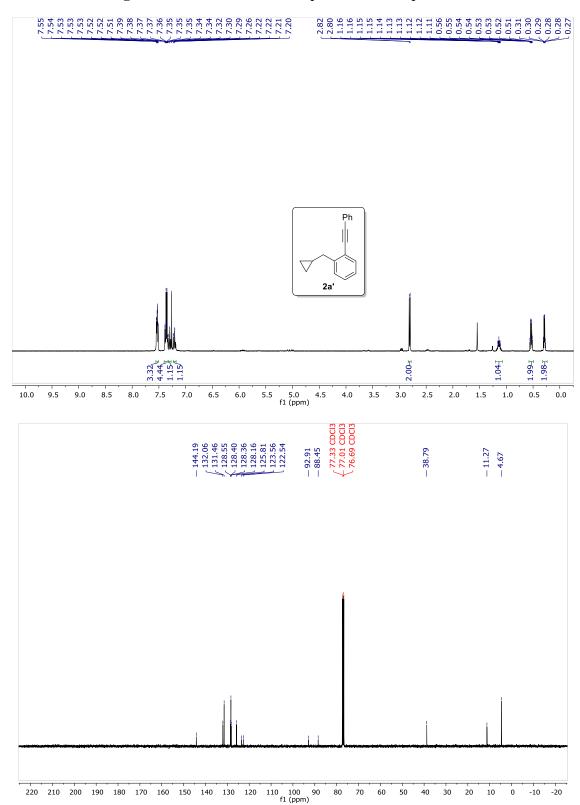
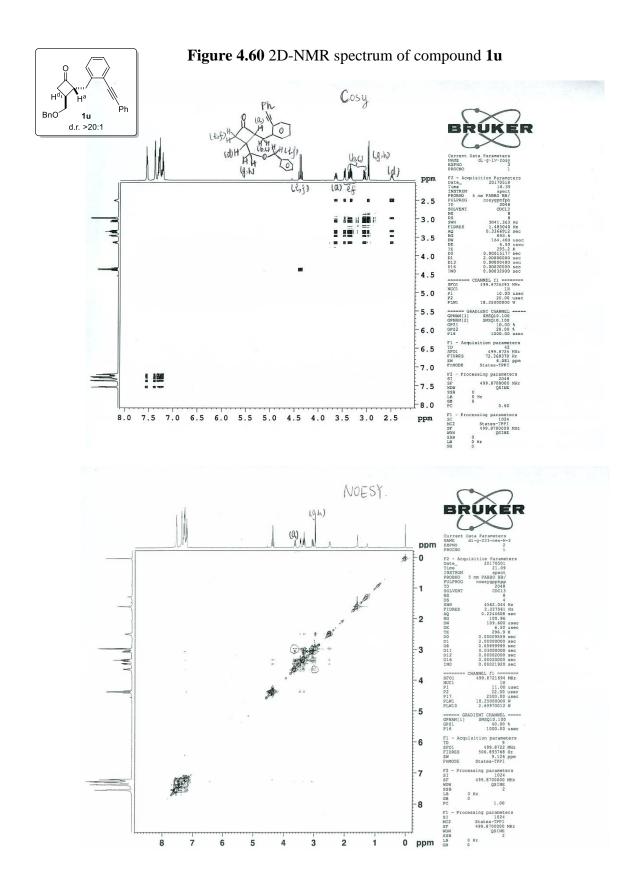
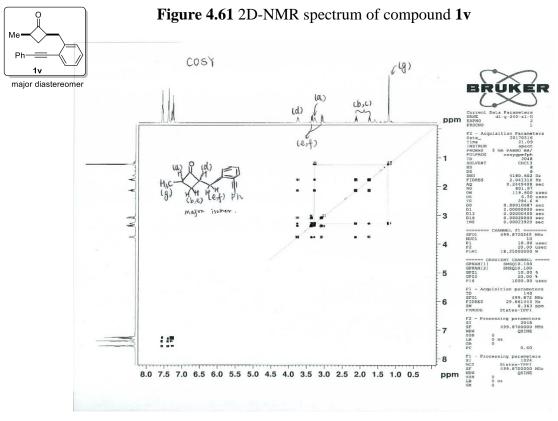
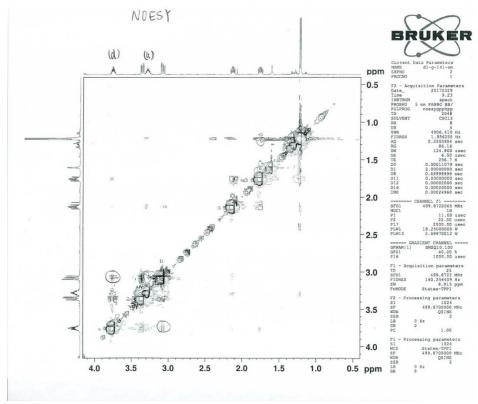
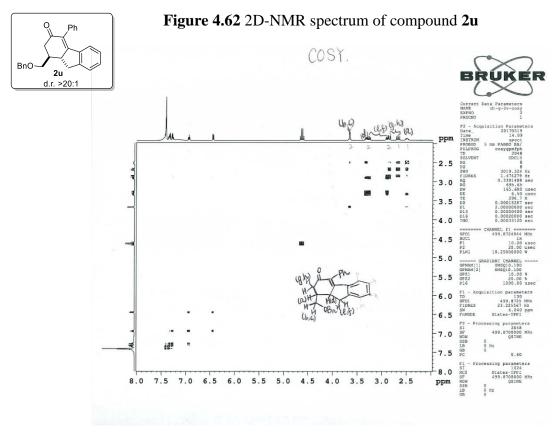
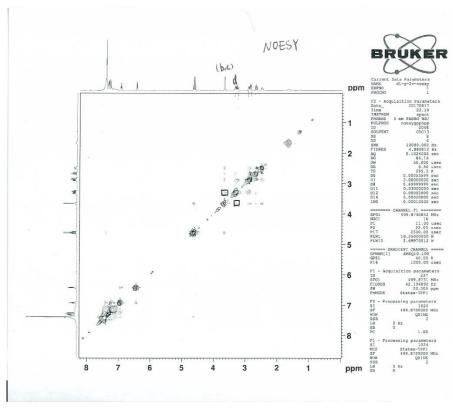
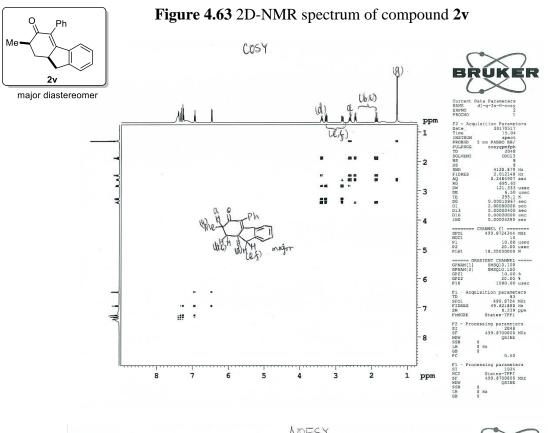


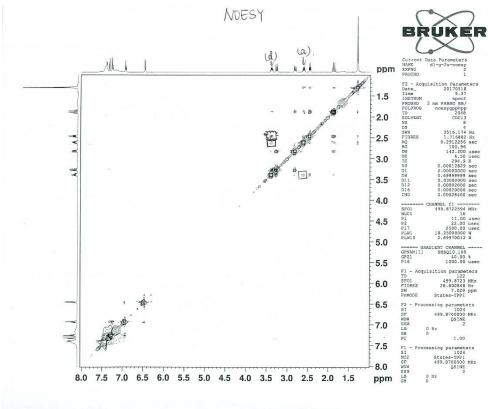
Figure 4.58 ¹H and ¹³C NMR spectrum of compound 9

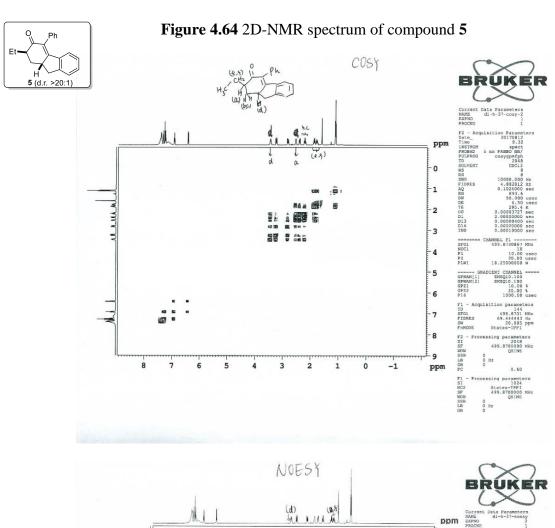






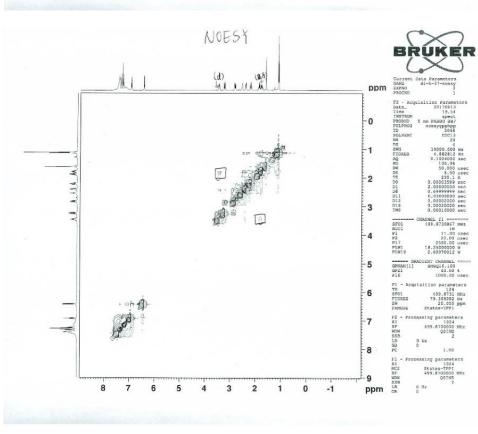

Figure 4.59 ¹H and ¹³C NMR spectrum of compound 2a'











CHAPTER 5

(Dynamic) Kinetic Resolution of Cyclobutanones through "Cut-and-Sew" Approach

5.1 Introduction

As discussed in Chapter 1, in the past decade, significant progress has been made for the "cut-and-sew" reactions between 3-substituted cyclobutanones and unsaturated units.¹ Starting from restricted types of substrates^{1a,1d,1e} then to general substrates^{1b,1f,1g}, several bridged ring systems were synthesized through this approach. The 3-substituted cyclobutanones are symmetrical, so it is possible to realize enantioselective transformations through desymmetrization. In 2014, Cramer reported an enantioselective intramolecular carboacylation of olefins through C–C activation of 3-substituted cyclobutanones to generate [3.2.1] bridged ring systems with excellent enantioselectivity.^{1e} Later in 2015, our group disclosed an enantioselective [4+1] intramolecular addition between 3-substituted cyclobutanones and allenes, which extended the scope of this strategy to more general substrates (Scheme 5.1).^{1f}

Scheme 5.1 Asymmetric Cyclohexenone-Bridged Ring Formation via C-C Activation

Fused ring systems can also be accessed through C–C bond activation approach when 2-substituted cyclobutanones are used as the starting materials. In particular, 5,6-fused ring systems are widely found in natural products and pharmaceuticals, and many of them have shown attractive bioactivity towards different bacteria or cancer cell lines (Scheme 5.2).² However, there has only been a few reports on the construction of fused ring systems using C–C bond activation, and only restricted substrates have been employed.³ The transformation we developed in Chapter 4 serves as a unique example utilizing "cut-and-sew" strategy,^{3b,4} and the enantioselective version using this strategy has not been disclosed yet. The difficulty of realizing such asymmetric transformations attributes to the intrinsic structural feature of 2-substituted cyclohexanones. Comparing with 3-substituted cyclobutanones, they are not symmetrical as they possess an existing chiral center. Therefore, in order to access enantioenriched fused ring systems from racemic

cyclobutanones with high efficiency, approaches other than asymmetric catalysis are required, such as dynamic kinetic resolution (Scheme 5.3).

Scheme 5.2 Representative Natural Products with the Fused Ring Systems Generated

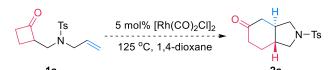
Scheme 5.3 Asymmetric Cyclohexenone-Fused or Bridged Ring Formation via C-C Activation

On the other hand, chiral cyclobutanones are valuable building blocks for organic synthesis and widely found in natural products and bioactive compounds (Scheme 5.4),⁵ yet it still remains challenging to access such structural motifs with satisfactory enantioselectivity.⁶ In contrast, a variety of mature synthetic methods have been developed and extensively utilized to synthesize racemic cyclobutanones. Therefore, it would be appealing if enantioenriched cyclobutanones can be accessed from their easily available racemic mixtures. We foresaw that the kinetic resolution

of 2-substituted cyclobutanones would be of special interest as it provides an efficient way to obtain both enantioenriched cyclobutanones and fused ring systems (Scheme 5.3).

Scheme 5.4 Representative Natural Products with Four-membered Ring

The challenge for this proposal is three-fold: 1) the potential CO extrusion and re-insertion equilibrium would increase the complexity of the reaction pathway, which might lead to various side reactions and diminished enantioselectivity; 2) "cut-and-sew" reaction normally demands relatively high temperature (100 - 150 °C), which would increase the difficulty for efficient enantio-control; 3) for dynamic kinetic resolution, a fast racemization is necessary before the enantio-determining step.


5.2 Results and Discussion

5.2.1 Condition optimization for kinetic resolution of cyclobutanones

Based on our previous optimal conditions of "cut-and-sew" reactions between cyclobutanones and alkynes⁴, we initiated the condition screening of the proposed transformation employing cyclobutanone **1a** as the substrate. The ligand effect was first examined using [Rh(CO)₂Cl]₂ as the precatalyst at 125 °C (Table 5.1). Gratifyingly, under the same conditions for the alkyne insertion, **2a** was obtained in 75% yield with excellent diastereoselectivity (Table 5.1, entry 1). However, apart from DTBM-segphos which delivered **2a** in 35% yield, most chiral phosphine ligands tested were not able to yield the insertion product **2a** (Table 5.1, entries 2-8). To our disappointment, the product obtained using DTBM-segphos is completely racemic. According

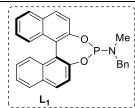

to our mechanistic studies in Chapter 4, fast CO extrusion and re-insertion happened during the reaction, which could be related to the lack of enantio-control when [Rh(CO)₂Cl]₂ was used as the precatalyst, though the exact reason is unclear.

Table 5.1 Initial Condition Screening^a

1a			Za	
Entry	Ligand	Yield ^b	dr	ee ^c
1	16 mol% PMe₂Ph	75%	>20:1	N/A
2	8 mol% (<i>R</i>)-BINAP	0%	N/A	N/A
3	8 mol% (R)-tol-BINAP	0%	N/A	N/A
4	8 mol% (R)-MeO-BIPHEP	0%	N/A	N/A
5	8 mol% (S,S)-DIOP	0%	N/A	N/A
6	8 mol% (R)-DTBM-segphos	35%	>20:1	0%
7	15 mol% (S)-monophos	0%	N/A	N/A
8	15 mol% L ₁	0%	N/A	N/A

^a The reactions were run at 0.1 mmol scale, 0.1 mol/L concentration for 12 to 36 h. ^b Isolation yield. ^c ee was determined by HPLC.

Table 5.2 Selected Condition Screening with Different Precatalysts^a

Ts 6	10 mol% [Rh] mol% (<i>R</i>)-DTBM-segphos 100 °C, 1,4-dioxane	N-Ts	+ Ts
1a		2a	1a

Entry	[Rh]	2a	ee of 2a ^d	1a	ee of 1a ^d
1 ^b	$Rh(cod)_2BF_4$	27%	90%	27%	2%
2^c	Rh(nbd) ₂ BF ₄	17%	N/D	46%	N/D
3^c	$Rh(cod)_2NTf_2$	26%	N/D	17%	N/D
4 ^c	[Rh(cod)(CH ₃ CN) ₂]BF ₄	16%	N/D	35%	N/D
5^c	[Rh(cod)OH] ₂	0%	N/D	83%	N/D
6 ^c	Rh(cod)(acac)	0%	N/D	61%	N/D
7 ^c	$Rh(CH_2=CH_2)_2(acac)$	0%	N/D	74%	N/D
8 ^c	Rh(CO) ₂ (acac)	0%	N/D	82%	N/D

 $[^]a$ The reactions were run at 0.1 mmol scale, 0.1 mol/L concentration for 12 to 36 h. b Isolation yield. c NMR yield using 1,1,2,2-tetrachloroethane as the internal standard. d ee was determined by HPLC.

To address this concern, we did further screening with different precatalysts (Table 5.2). Among the tested precatalysts, only cationic rhodium precatalysts gave moderate yield of the product (Table 5.2, entries 1-4). Gratifyingly, we observed 90% ee when Rh(cod)₂BF₄ was used, and the recycled starting material was close to racemic, which suggested that the process is possibly a dynamic kinetic resolution.

Table 5.3 Selected Condition Screening with Different Ligands^a

	Ts 6 mol% (R)-DTBM-N 100 °C, 1,4-diox	segpho	S.	H N-	Ts +	Ts N
	1a			2a		1a
Entry	Modification on the Condition	2a ^c	ee of 2a ^d	1a ^c	ee of 1a ^d	3a ^c
1 ^b	none	27%	90%	27%	2%	0%
2	10 mol% (R)-DM-segphos	7%	N/D	20%	N/D	32%
3	(R)-xyl-sdp	0%	N/D	60%	N/D	21%
4	(R)-xyl-binap	0%	N/D	30%	N/D	15%
5	10 mol% (<i>R</i>)-H8-binap	4%	N/D	8%	N/D	30%
6	10 mol% (R)-synphos	8%	N/D	69%	N/D	5%
7	10 mol% (R)-MeO-biphep	5%	N/D	25%	N/D	37%
8	(R)-C3-tunephos	0%	N/D	>90%	N/D	0%
9	10 mol% (R)-difluorphos	8%	N/D	37%	N/D	34%
10	(<i>R,R</i>)- <i>i</i> -Pr-Duphos, 90 °C	0%	N/D	0%	N/D	83%
11	12 mol% P(cyclohexyl) ₃ , 90 °C	12%	N/A	65%	N/A	0%
12	15 mol% P(DTBM) ₃	16%	N/A	17%	N/A	0%

 $[^]a$ The reactions were run at 0.05 mmol scale, 0.1 mol/L concentration for 12 to 36 h. b Isolation yield. c NMR yield using 1,1,2,2-tetrachloroethane as the internal standard. d ee was determined by HPLC.

With the expectation that the ligands would significantly influence the reactivity and enantioselectivity, we did further screening with different bidentate and monodentate ligands (Table 5.3). We found that DTBM-segphos is the privileged ligand for this transformation among bidentate chiral phosphine ligands possessing different backbond structures tested (Table 5.3, entries 1-10). Notably, side product **3a** could be observed in considerable yields when these ligands were used, while the desired product is often generated in very low yields. The current results

suggest that an electron-rich phosphine ligand is necessary for the high efficiency of this transformation.

We further tested different basic and acidic additives which could potentially promote the racemization of the starting material via enolization of the ketone (Table 5.4). For inorganic bases or amines, we did not observe improvements on the yield of **2a** (Table 5.4, entries 1-5). When sodium bicarbonate was added, the product generated was found to be racemic (Table 5.4, entry 2). When 2,6-di(*t*-butyl)pyridine was introduced, the mass balance of the reaction was improved, but the yield and ee of **2a** were not influenced (Table 5.4, entry 6). Lewis acids were also tested, but no improvement was observed (Table 5.4, entries 7 and 8).

Table 5.4 Selected Condition Screening with Different Additives^a

A₁: 2,6-di(t-butyl)pyridine

Following that, different pre-coordinating groups on rhodium precatalysts and counter-ions were examined (Table 5.5). It is obvious that when the cationic rhodium catalysts were generated in situ, [Rh(CH₂=CH₂)₂Cl]₂ is the optimal precursor which might be attributed to the complete exchange of the ethylene ligand in the precatalyst with the chiral ligand (Table 5.5, entries 1-4). Among the counter-ions tested in the reaction, SbF₆ anion was found to give the highest reactivity

 $[^]a$ The reactions were run at 0.05 mmol scale, 0.1 mol/L concentration for 12 to 36 h. b Isolation yield. c NMR yield using 1,1,2,2-tetrachloroethane as the internal standard. d ee was determined by HPLC.

and enantioselectivity (Table 5.5, entries 5-9). The reason might be that SbF₆ anion is weakly associated to the rhodium cation, which would lead to faster migratory insertion.

Table 5.5 Selected Condition Screening with In-Situ Generated Cationic Rhodium Catalysts^a

	10 mol% [Rh] Ts 10 mol% (R)-DTBM-segphos N 100 °C, 1,4-dioxane	• O	N-Ts	+	Ts N	
1a			2a		1a	
Entry	Precatalyst	2a ^b	ee of $\mathbf{2a}^d$	1a ^b	ee of 1a ^d	
1	[Rh(coe) ₂ Cl] ₂ / AgBF ₄	28%	54%	40%	N/D	
2 ^c	$[Rh(CO)_2CI]_2/AgBF_4$	26%	N/D	0%	N/D	
3^c	[Rh(hexadiene) ₂ Cl] ₂ / AgBF ₄	28%	N/D	31%	N/D	
4	$[Rh(CH_2=CH_2)_2CI]_2/AgBF_4$	37%	56%	21%	N/D	
5 ^c	[Rh(cod)Cl] ₂ / AgOTf	9%	N/D	70%	N/D	
6	[Rh(cod)Cl] ₂ / AgBF ₄	24%	90%	33%	N/D	
7	[Rh(cod)Cl] ₂ / AgPF ₆	29%	92%	36%	N/D	
8	[Rh(cod)Cl] ₂ / AgSbF ₆	29%	84%	29%	N/D	
9	[Rh(CH $_2$ =CH $_2$) $_2$ Cl] $_2$ / AgSbF $_6$, 90 $^{\rm o}$ C	36%	98%	29%	0%	

^a The reactions were run at 0.05 mmol scale, 0.1 mol/L concentration for 12 to 36 h.

The relatively low mass balance suggests that lower temperature might be beneficial for the reaction. A series of different temperatures was then tested for this transformation using the optimal precatalyst/ligand combination (Table 5.6). Distinct from all the known "cut-and-sew" reactions, 7 this transformation can happen smoothly even at room temperature with excellent yield and ee (Table 5.6, entries 5 and 6). As the temperature of reaction decreases, the ee of the recycled starting material increased accordingly, which suggests that the racemization process requires higher temperature (Table 5.6, entries 1-5). The conditions shown in entry 6 are optimal for a kinetic resolution process, as both 2a and 1a can be obtained in excellent yield and ee, and the calculated selectivity factor is very high.

^b Isolation yield. ^c NMR yield using 1,1,2,2-tetrachloroethane as the internal standard.

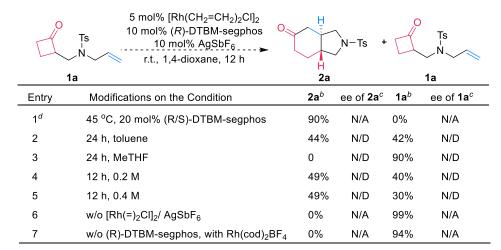
^d ee was determined by HPLC.

Table 5.6 Selected Condition Screening at Different Temperatures^a

Interestingly, when we purify the reaction mixture using prep TLC, the recycled **1a** is completely racemized at room temperature. Considering that the prep TLC silica gel is very acidic, we proposed that strong acids might help the racemization process. Further screening of the acidic additives were conducted, but none of them can improve the result for the dynamic kinetic resolution (Table 5.7, entries 3-5).

Table 5.7 Selected Condition Screening for Acidic Additives^a

	5 mol% [Rh(CH ₂ =CH ₂) ₂ Cl] ₂ Ts	O H H 2a	N-Ts +		Ts N
	ia	Za			ıa
Entry	Modifications on the Condition	2a	ee of 2a c	1a	ee of 1a c
1 ^b	None, column purification	43%	98%	44%	99%
2^b	None, prep TLC purification	45%	98%	42%	0%
3^d	50 wt% silica gel	15%	N/D	66%	N/D
4 ^d	20 mol% p-TsOH	41%	N/D	40%	N/D
5 ^d	20 mol% AcOH	36%	N/D	43%	N/D


^a The reactions were run at 0.1 mmol scale, 0.1 mol/L concentration for 12 h. ^b Isolation yield. ^c ee was determined by HPLC. ^d The reactions were run at 0.05 mmol scale with NMR yield using 1,1,2,2-tetrachloroethane as the internal standard.

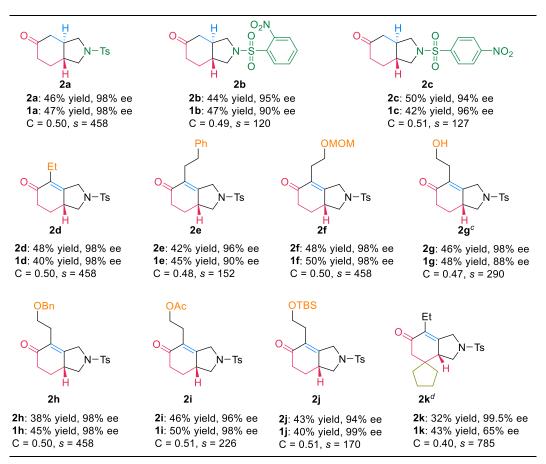
Selected control experiments are shown below. When racemic DTBM-segphos was used in the reaction, 90% yield was obtained, which further supports that the reaction is a kinetic

^a The reactions were run at 0.1 mmol scale, 0.1 mol/L concentration for 12 h. ^b Isolation yield. ^c ee was determined by HPLC. ^d Selectivity (s) = $\ln[(1 - C)(1 - ee_{SM})]/\ln[(1 - C)(1 + ee_{SM})]$; calculated conversion (C) = $ee_{SM}/(ee_{SM} + ee_{PD})$.

resolution (Table 5.8, entry 1). Currently, 1,4-dioxane is found to be the optimal solvent and 0.1 M is the optimal concentration (Table 5.8, entries 2-5). Both precatalyst and ligand are essential for this transformation (Table 5.8, entries 6-7). The absolute stereochemistry of **2a** was confirmed by X-ray crystallography (Scheme 5.5).

Table 5.8 Selected Control Experiments^a

 $[^]a$ The reactions were run at 0.05 mmol scale, 0.1 mol/L concentration for 12 h. b NMR yield using 1,1,2,2-tetrachloroethane as the internal standard. c ee was determined by HPLC. d The reactions were run at 0.1 mmol scale with isolation yield.


Scheme 5.5 X-ray Structure of 2a

5.2.2 Substrate scope for kinetic resolution of cyclobutanones

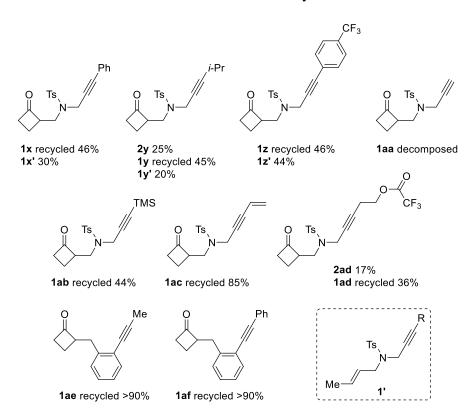
With the optimized conditions for kinetic resolution in hand, we next investigated the substrate scope (Table 5.9). The protecting group on the nitrogen linkage can be changed to 2-nosyl and 4-nosyl groups with good yield and ee maintained (Table 5.9, **2b** and **2c**). Gratifyingly, alkyne-tethered substrates can be engaged in this transformation smoothly (**2d** to **2k**). The reaction

condition is very mild, so many labile groups are well tolerated under the standard conditions, such as MOM, benzyl, acyl and TBS-protected alcohols. The free-alcohol-containing substrate can also yield the product with excellent yield and ee. Substituent on the 3-position of the cyclobutanone would reduce the reactivity, but the kinetic resolution happened with good reactivity and selectivity at slightly elevated temperature (2k).

Table 5.9 Substrate Scope *a,b*

^a Reaction conditions: at 0.1 mmol scale, $[Rh(CH_2=CH_2)_2Cl]_2$ (5 mol %), (R)-DTBM-segphos (10 mol%), AgSbF6 (10 mol%), 1,4-dioxane (1 mL), r.t., 12-13 h. ^b Isolation yield; ee is determined by chiral HPLC; selectivity (s) = $ln[(1 - C)(1 - ee_{SM})]/ln[(1 - C)(1 + ee_{SM})]$, calculated conversion (C) = $ee_{SM}/(ee_{SM} + ee_{PD})$. ^c THF is used as the solvent. ^d Reaction temperature is 40 °C.

Apart from the successful examples shown in table 5.9, we have synthesize and tested many other substrates, but unfortunately, they cannot give satisfying results for the kinetic resolution. Different linkages other than *N*-Ts were tested, such as benzene (**11** and **1m**), oxygen


(1n) or *N*-acyl (1o and 1p), but none of them can yield any product, which could be explained by the flexibility of the linkage or the stronger coordination from the acyl group. The reaction is sensitive to the steric hindrance of the olefin moiety (1q to 1u). Substrates with 1,1- or 1,2-disubstituted olefins are not viable under the current conditions. Gem-dimethyl substituents on the 3-position of the cyclobutanone are not tolerated (1v) and allene is not a feasible coupling partner due to severe isomerization (1w).

Scheme 5.6 Unsuccessful Substrates on Olefin- or Allene-Tethered Substrates

For different substituents on the alkyne moiety, similar sensitivity to steric hindrance was observed (Scheme 5.7). Aryl substituents are not tolerated (1x and 1z). Simply switching the ethyl group to a bulkier isopropyl group (1y) caused significant decrease of the yield. Additionally, 1x, 1y and 1z decomposed to olefins (1x', 1y' and 1z', the general structure is shown as 1') via decarbonylation followed by β -hydrogen elimination. Terminal alkyne (1aa) leads to severe decomposition. TMS and vinyl substituted alkynes are not viable substrates (1ab and 1ac).

Benzene linkage cannot facilitate the desired transformation in the alkyne-tethered substrates as well (1ae and 1af).

Scheme 5.7 Unsuccessful Substrates on Alkyne-Tethered Substrates

5.3 Conclusion and Outlook

In summary, we have developed a highly selective kinetic resolution process for intramolecular addition between 2-substituted cyclobutanones and olefins or alkynes. Impressive selectivity was observed with a selectivity factor ranging from 120 to 785. In addition, the kinetic resolution is highly efficient at room temperature, at which catalytic C–C activation through oxidative addition of cyclobutanones has not been achieved. Given the mild reaction conditions, various functional groups are well tolerated. We envision that the newly developed kinetic resolution process would provide access to a wide variety of chiral 5,6-fused ring systems and

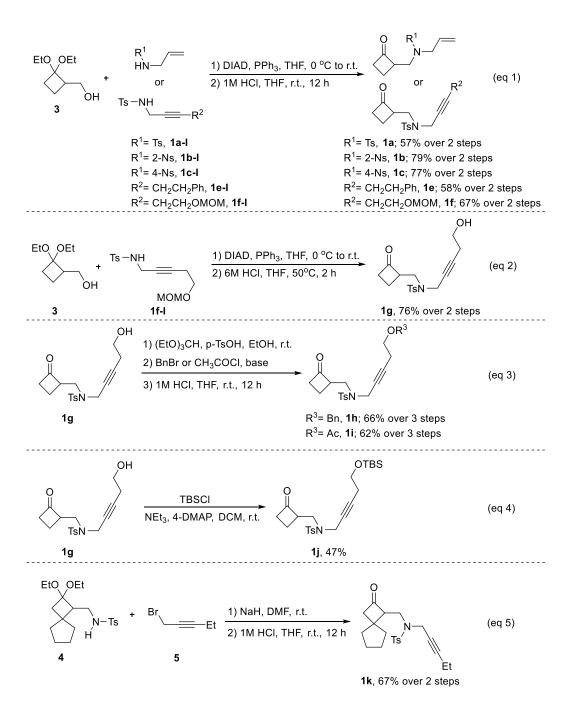
chiral substituted cyclobutanones and cyclobutanols, which are often found to be important building blocks for bioactive natural products and pharmaceuticals.

At current stage, we are still focusing on understanding the enantio-determining step and the reason why this reaction can happen at low temperature through collaboration with computational chemists. Meanwhile, exploration on different olefin-tethered substrates and the synthetic utility of this method is ongoing in our laboratory. With the encouraging preliminary results on dynamic kinetic resolution, further screening to realize a high efficiency is also currently being explored.

It is encouraging to see how far we have gone in terms of activating these inert C-C bonds, from more strained cyclobutenones to cyclobutanones, from high temperature to room temperature, and from racemic to highly enantioselective transformations. In the near future, we foresee that the "cut-and-sew" chemistry of various ketones will be a widely adopted approach for synthetic chemists to forge the backbones of complex molecules with all the past, current and ongoing efforts in this area.

5.4 Experimental

5.4.1 General information


Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). The solvents for the C–C Activation reactions were distilled freshly over sodium or calcium hydride and carefully freeze-pump-thawed. All the C–C Activation reactions were carried out under nitrogen atmosphere with a stir bar in a sealed vial. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. Sensitive ligands and rhodium catalysts and solvents were transferred under nitrogen into a nitrogen-filled glovebox with standard techniques. Analytical thin-layer chromatography (TLC)

was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical). Vials (17 x 60 mm (7.5mL) with PTFE lined cap attached) were purchased from Qorpak and flamedried or put in an oven overnight. High-resolution mass spectra (HRSM) were obtained on a Agilent 6224 Tof-MS and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+Na]⁺, [M+H]⁺. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film technique. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded with a Bruker Avance 500 instrument (500 MHz, ¹H at 500 MHz, ¹³C at 126 MHz) and Bruker Avance 400 instrument (400 MHz, ¹H at 400 MHz, ¹³C at 100 MHz). Unless otherwise noted, all spectra were acquired in CDCl₃. Chemical shifts are reported in parts per million (ppm, δ), downfield from tetramethylsilane (TMS, δ =0.00ppm) and are referenced to residual solvent $(CDCl_3, \delta=7.26 \text{ ppm } (^1\text{H}) \text{ and } 77.00 \text{ ppm } (^{13}\text{C}); CD_2Cl_2, \delta=5.32 \text{ ppm } (^1\text{H}) \text{ and } 53.84 \text{ ppm } (^{13}\text{C})).$ Coupling constants were reported in Hertz (Hz). Data for ¹H NMR spectra were reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, hept=heptuplet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). Analytical HPLC was carried out on an Angilent 1260 infinity HPLC with DAD, Chiralpak IA-IF, served as columns, and mixtures of *n*-hexane and *i*-PrOH were used for elution.

5.4.2 Substrate synthesis

Substrates **1a** to **1f** were synthesized through Mitsunobu reaction followed by deprotection of the ketal (eq 1). **1a-I** to **1f-I** and **1d** are literature known compounds, and their characterization data match the reported data. ^{4,8a-e} Substrate **1g** was synthesized from **3** and **1f-I** using stronger deprotection condition (eq 2). Substrate **1h** and **1i** were synthesized from **1g** through a three-step one-column procedure (eq 3). Substrate **1h** was synthesized from **1g** after TBS protection (eq 4).

Substrate **1k** was synthesized from **4** and **5** (commercial available) through substitution reaction followed by deprotection (eq 5). The ketal protected cyclobutanone **3** is a known compounds.⁹

The procedure for Mitsunobu reaction and deprotection cascade is as follows (using substrate 1a as an example):

A solution of **3** (574.9 mg, 3.3 mmol, 1.1 equiv.) and DIAD (727.9 mg, 3.6 mmol, 1.2 equiv.) in THF (5 mL) was added to a solution of known compound **1a-I** (633.9 mg, 3 mmol, 1.0 equiv.) and triphenylphosphine (943.6 mg, 3.6 mmol, 1.2 equiv.) in THF (5 mL) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After the reaction was finished, the solvent was removed by rotavap and the residue was dissolved in 6 mL THF, and then 2 mL 1M HCl was added to the solution. The resulting mixture was stirred at room temperature overnight. After the starting material was fully consumed, the reaction mixture was diluted with ethyl acetate and washed with water, saturated NaHCO₃ solution and brine successively. The organic phase was dried over magnesium sulfate, filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate **1a** (506 mg) as a colorless oil in 57% yield.

The procedure for synthesis of substrate 1g:

A solution of **3** (514.5 mg, 2.95 mmol, 1.2 equiv.) and DIAD (552.5 mg, 2.73 mmol, 1.1 equiv.) in THF (5 mL) was added to a solution of known compound **1f-I** (735.0 mg, 2.47 mmol, 1.0 equiv.) and triphenylphosphine (715.7 mg, 2.73 mmol, 1.1 equiv.) in THF (5 mL) at 0 °C. Then the reaction mixture was warmed up to room temperature and stirred overnight. After the reaction was finished, the solvent was removed by rotavap and the residue was dissolved in 6 mL THF, then 2 mL 6M HCl was added to the solution. The resulting mixture was stirred at 50 °C for 2 h. After the starting material was fully consumed, the reaction mixture was diluted with ethyl acetate and washed with water, saturated NaHCO₃ solution and brine successively. The organic phase was dried over magnesium sulfate, filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/1 to 2/1) to obtain the desired substrate **1g** (627 mg) as a colorless oil in 76% yield over 2 steps.

The procedure for synthesis of substrate **1h**:

1g (185.0 mg, 0.55 mmol, 1.0 equiv.) was dissolved in EtOH (5 mL) before (EtO)₃CH (274 μL, 1.65 mmol, 3.0 equiv.) and p-TsOH (18.9 mg, 0.11 mmol, 0.2 equiv.) were added to the stirring solution. The reaction was stirred at room temperature overnight before quenched by saturated aqueous NaHCO₃ solution (20 mL) and the mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was dissolved in DMF (5 mL) and NaH (44 mg, 1.1 mmol, 2.0 equiv.) was added to the stirring solution. After the reaction mixture was stirred for 10 min, BnBr (67.1 µL, 0.565 mmol, 1.02 equiv.) was added and the mixture was stirred at room temperature overnight before quenched by water. The resulting mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. Then solvent was removed by rotavap and the residue was dissolved in 6 mL THF, then 2 mL 1M HCl was added to the solution. The resulting mixture was stirred at room temperature overnight. After the starting material was fully consumed, the reaction mixture was diluted with ethyl acetate and washed by water, saturated NaHCO₃ solution and brine successively. Then the organic phase was dried over magnesium sulfate, then filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/4) to obtain the desired substrate 1h (154 mg) as a colorless oil in 66% yield over 3 steps.

The procedure for synthesis of substrate 1i:

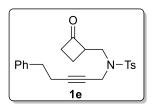
1g (143.0 mg, 0.43 mmol, 1.0 equiv.) was dissolved in EtOH (5 mL) before (EtO)₃CH (213 μL, 1.28 mmol, 3.0 equiv.) and *p*-TsOH (14.8 mg, 0.086 mmol, 0.2 equiv.) were added to the stirring solution. The reaction was stirred at room temperature overnight before quenched by saturated aqueous NaHCO₃ solution (20 mL) and the mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. The crude product was dissolved in DCM (5 mL) and

pyridine (104 μL, 1.29 mmol, 3.0 equiv.) was added to the stirring solution. After the reaction mixture was stirred for 10 min, acetyl chloride (61 μL, 0.86 mmol, 2.0 equiv.) was added and the mixture was stirred at room temperature overnight before quenched by water. The resulting mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. Then solvent was removed by rotavap and the residue was dissolved in 6 mL THF, then 2 mL 1M HCl was added to the solution. The resulting mixture was stirred at room temperature overnight. After the starting material was fully consumed, the reaction mixture was diluted with ethyl acetate and washed by water, saturated NaHCO₃ solution and brine successively. Then the organic phase was dried over magnesium sulfate, then filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/2) to obtain the desired substrate 1i (100 mg) as a colorless oil in 62% yield over 3 steps.

The procedure for synthesis of substrate 1j:

1g (167.7 mg, 0.5 mmol, 1.0 equiv.) and 4-DMAP (6.1 mg, 0.05 mmol, 0.1 equiv.) was dissolved in DCM (5 mL) before injected into a flame-dried Schlenk flask, and the flask was cooled to 0 °C and NEt₃ (210 μL, 1.5 mmol, 3 equiv) was added into the stirring solution. Then TBSCl (113.0 mg, 0.75 mmol, 1.5 equiv.) was dissolved in DCM (3 mL) and added to the reaction mixture. The reaction was warmed to room temperature and stirred overnight before quenched by saturated aqueous NH₄Cl solution (20 mL) and the mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. After the solvent was removed, the residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate **1j** (106 mg) as a colorless oil in 47% yield.

The procedure for synthesis of substrate **1k**:


4 (381.5 mg, 1.0 mmol, 1.0 equiv.) was dissolved in DMF (5 mL) and NaH (80 mg, 2.0 mmol, 2.0 equiv.) was added to the stirring solution. After the reaction mixture was stirred for 10 min, 5 (310 μL, 3.0 mmol, 3.0 equiv.) was added and the mixture was stirred at room temperature overnight before quenched by water. The resulting mixture was extracted with ethyl acetate (3×20 mL), washed with brine, and dried over Na₂SO₄. Then solvent was removed by rotavap and the residue was dissolved in 6 mL THF, then 2 mL 1M HCl was added to the solution. The resulting mixture was stirred at room temperature overnight. After the starting material was fully consumed, the reaction mixture was diluted with ethyl acetate and washed by water, saturated NaHCO₃ solution and brine successively. Then the organic phase was dried over magnesium sulfate, then filtered and concentrated. The residue was purified by silica gel flash column chromatography (EtOAc/Hexane=1/10 to 1/5) to obtain the desired substrate 1k (250 mg) as a colorless oil in 67% yield over 2 steps.

Compound **1a** was isolated as a colorless oil in 57% yield over 2 steps. $R_f = 0.4$ (EtOAc/Hexane=1/3). **¹H NMR (400 MHz, CDCl₃)**: δ 7.75 – 7.62 (m, 2H), 7.34 – 7.28 (m, 2H), 5.57 (ddt, J = 17.2, 10.1, 6.4 Hz, 1H), 5.28 – 5.05 (m, 2H), 3.91 – 3.73 (m, 2H), 3.67 – 3.52 (m, 1H), 3.43 (dd, J = 14.5, 8.6 Hz, 1H), 3.25 (dd, J = 14.5, 5.8 Hz, 1H), 3.06 (dddd, J = 17.8, 10.6, 8.2, 2.5 Hz, 1H), 2.93 (dddd, J = 17.7, 9.8, 5.1, 2.6 Hz, 1H), 2.43 (s, 3H), 2.21 (dtd, J = 11.5, 10.3, 5.1 Hz, 1H), 2.01 – 1.83 (m, 1H). **¹³C NMR (101 MHz, CDCl₃)**: 208.76, 143.49, 136.56, 132.77, 129.77, 127.16, 119.32, 59.52, 51.22, 45.92, 44.75, 21.52, 15.72. **IR:** v 2925, 1778, 1598, 1447, 1343, 1160, 1091, 934 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 294.1158 Found: 294.1163.

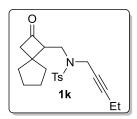
$$\begin{array}{c|c} O & & \\ & O & \\ & N-S & \\ & O \\ & O_2N \\ & & 1b \\ \end{array}$$

Compound **1b** was isolated as a colorless oil in 79% yield over 2 steps. $R_f = 0.3$ (EtOAc/Hexane=1/2). ¹**H NMR** (**400 MHz**, **CDCl₃**): δ 8.08 – 8.01 (m, 1H), 7.76 – 7.62 (m, 3H), 5.64 (ddt, J = 17.2, 10.1, 6.3 Hz, 1H), 5.39 – 5.01 (m, 2H), 4.08 – 3.91 (m, 2H), 3.71 – 3.42 (m, 3H), 3.07 (dddd, J = 17.7, 10.4, 8.2, 2.2 Hz, 1H), 2.94 (dddd, J = 17.8, 9.8, 5.1, 2.4 Hz, 1H), 2.22 (dddd, J = 11.5, 10.5, 9.7, 5.1 Hz, 1H), 1.97 – 1.77 (m, 1H). ¹³**C NMR** (**101 MHz**, **CDCl₃**): δ 208.22, 147.91, 133.63, 133.41, 132.17, 131.76, 131.03, 124.26, 119.77, 59.25, 50.40, 45.59, 44.82, 15.68. **IR**: v 2926, 1778, 1545, 1373, 1163, 1084, 775 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 347.0672 Found: 347.0684.

Compound **1c** was isolated as a white solid in 77% yield over 2 steps. Melting Point: 85-87 °C. $R_f = 0.3$ (EtOAc/Hexane=1/2). **¹H NMR** (**400 MHz, CDCl₃**): δ 8.40 – 8.30 (m, 2H), 8.07 – 7.92 (m, 2H), 5.55 (ddt, J = 16.6, 10.1, 6.3 Hz, 1H), 5.32 – 5.07 (m, 2H), 4.00 – 3.84 (m, 2H), 3.67 – 3.54 (m, 1H), 3.49 (dd, J = 14.5, 7.9 Hz, 1H), 3.34 (dd, J = 14.5, 6.2 Hz, 1H), 3.10 (dddd, J = 17.9, 10.6, 8.3, 2.4 Hz, 1H), 2.96 (dddd, J = 17.8, 9.7, 5.0, 2.6 Hz, 1H), 2.34 – 2.18 (m, 1H), 2.05 – 1.74 (m, 1H). **¹³C NMR** (**101 MHz, CDCl₃**): δ 207.94, 150.03, 145.67, 131.73, 128.34, 124.45, 120.15, 59.21, 51.04, 45.89, 44.88, 15.66. **IR:** v 2925, 1778, 1530, 1351, 1163, 1088, 772 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 347.0672 Found: 347.0677.

Compound **1e** was isolated as a light yellow solid in 58% yield over 2 steps. Melting Point: 98-100 °C. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹H NMR (**400 MHz, CDCl3**): δ 7.72 – 7.65 (m, 2H), 7.30 – 7.23 (m, 4H), 7.23 – 7.17 (m, 1H), 7.11 – 7.02 (m, 2H), 4.15 (dtd, J = 18.4, 2.2, 0.8 Hz, 1H), 4.04 (dt, J = 18.4, 2.2 Hz, 1H), 3.61 – 3.48 (m, 1H), 3.44 – 3.24 (m, 2H), 3.07 (dddd, J = 17.8, 10.6, 8.2, 2.5 Hz, 1H), 2.94 (dddd, J = 17.7, 9.8, 5.1, 2.7 Hz, 1H), 2.54 (t, J = 7.4 Hz, 2H), 2.40 (s, 3H), 2.28 – 2.11 (m, 3H), 1.90 (ddt, J = 11.4, 9.7, 7.9 Hz, 1H). ¹³C NMR (**101 MHz, CDCl3**): δ 208.48, 143.44, 140.22, 135.73, 129.36, 128.37, 128.22, 127.83, 126.36, 85.66, 73.11, 59.02, 45.01, 37.79, 34.49, 21.52, 20.47, 15.47. **IR:** v 2925, 1778, 1598, 1454, 1348, 1162, 1090, 750 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 418.1447 Found: 418.1451.

Compound **1f** was isolated as a colorless oil in 67% yield over 2 steps. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz**, **CDCl₃**): δ 7.80 – 7.66 (m, 2H), 7.32 – 7.27 (m, 2H), 4.57 (s, 2H), 4.19 (dtd, J = 18.4, 2.2, 0.9 Hz, 1H), 4.09 – 4.00 (m, 1H), 3.68 – 3.54 (m, 1H), 3.44 (ddd, J = 14.0, 8.7, 0.9 Hz, 1H), 3.39 – 3.31 (m, 6H), 3.10 (dddd, J = 17.8, 10.6, 8.3, 2.5 Hz, 1H), 2.98 (dddd, J = 17.7, 9.8, 5.2, 2.6 Hz, 1H), 2.43 (s, 3H), 2.32 – 2.17 (m, 3H), 1.99 (ddt, J = 11.5, 9.7, 7.9 Hz, 1H). ¹³**C NMR** (**101 MHz**, **CDCl₃**): δ 208.56, 143.54, 135.69, 129.40, 127.83, 96.33, 83.08, 73.54, 65.58, 59.00, 55.27, 45.11, 45.00, 37.79, 21.49, 19.93, 15.47. **IR**: v 2925, 1778, 1598, 1443, 1348, 1162, 1028, 918 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 380.1526 Found: 380.1539.

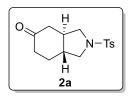

Compound **1g** was isolated as a colorless oil in 76% yield over 2 steps. $R_f = 0.4$ (EtOAc/Hexane=2/1). **¹H NMR** (**400 MHz**, **CDCl₃**): δ 7.76 – 7.67 (m, 2H), 7.36 – 7.28 (m, 2H), 4.18 (dtd, J = 18.4, 2.2, 0.9 Hz, 1H), 4.13 – 3.99 (m, 1H), 3.70 – 3.55 (m, 1H), 3.53 – 3.43 (m, 3H), 3.37 (dd, J = 14.0, 5.9 Hz, 1H), 3.11 (dddd, J = 17.9, 10.6, 8.2, 2.5 Hz, 1H), 2.98 (dddd, J = 17.8, 9.8, 5.2, 2.6 Hz, 1H), 2.43 (s, 3H), 2.32 – 2.15 (m, 3H), 1.99 (ddt, J = 11.5, 9.8, 8.0 Hz, 1H), 1.65 (br, 1H). **¹³C NMR** (**101 MHz**, **CDCl₃**): δ 208.89, 143.77, 135.67, 129.46, 127.75, 83.24, 74.44, 60.68, 58.99, 45.10, 45.00, 37.76, 22.89, 21.51, 15.36. **IR**: v 3531, 2925, 1777, 1598, 1346, 1161, 1090, 750 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 336.1264 Found: 336.1271.

Compound **1h** was isolated as a colorless oil in 66% yield over 3 steps. $R_f = 0.4$ (EtOAc/Hexane=1/3). **¹H NMR** (**400 MHz**, **CDCl3**): δ 7.78 – 7.66 (m, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.28 (m, 3H), 7.25 – 7.22 (m, 2H), 4.46 (s, 2H), 4.18 (dtd, J = 18.3, 2.3, 0.8 Hz, 1H), 4.11 – 3.98 (m, 1H), 3.72 – 3.52 (m, 1H), 3.42 (ddd, J = 14.1, 8.6, 0.8 Hz, 1H), 3.38 – 3.27 (m, 3H), 3.07 (dddd, J = 17.8, 10.6, 8.2, 2.5 Hz, 1H), 2.95 (dddd, J = 17.8, 9.7, 5.2, 2.6 Hz, 1H), 2.39 (s, 3H), 2.29 – 2.14 (m, 3H), 2.05 – 1.86 (m, 1H). **¹³C NMR** (**101 MHz, CDCl3**): δ 208.58, 143.45, 137.86, 135.68, 129.37, 128.45, 127.82, 127.79, 127.64, 83.16, 73.51, 72.94, 67.99, 59.02, 45.15, 44.99, 37.84, 21.51, 19.86, 15.48. **IR:** v 2923, 1777, 1597, 1453, 1348, 1161, 1092, 746 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 426.1734 Found: 426.1744.

Compound **1i** was isolated as a colorless oil in 62% yield over 3 steps. $R_f = 0.3$ (EtOAc/Hexane=1/3). **¹H NMR** (**400 MHz**, **CDCl3**): δ 7.86 – 7.59 (m, 2H), 7.35 – 7.28 (m, 2H), 4.20 (dtd, J = 18.4, 2.2, 0.9 Hz, 1H), 4.06 (dtd, J = 18.5, 2.2, 0.6 Hz, 1H), 3.93 – 3.79 (m, 2H), 3.72 – 3.55 (m, 1H), 3.44 (ddd, J = 14.0, 8.5, 0.9 Hz, 1H), 3.34 (ddd, J = 14.0, 6.0, 0.6 Hz, 1H), 3.11 (dddd, J = 17.9, 10.6, 8.2, 2.5 Hz, 1H), 2.98 (dddd, J = 17.7, 9.8, 5.2, 2.6 Hz, 1H), 2.43 (s, 3H), 2.34 – 2.17 (m, 3H), 2.03 (s, 3H), 2.02 – 1.92 (m, 1H). **¹³C NMR** (**101 MHz, CDCl3**): δ 208.52, 170.59, 143.71, 135.65, 129.43, 127.78, 81.91, 74.12, 61.83, 58.99, 45.08, 45.01, 37.70, 21.49, 20.79, 18.88, 15.43. **IR:** v 2925, 1778, 1739, 1597, 1348, 1240, 1162, 816 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 400.1189 Found: 400.1186.

Compound **1j** was isolated as a colorless oil in 47% yield. $R_f = 0.4$ (EtOAc/Hexane=1/4). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.82 – 7.63 (m, 2H), 7.32 – 7.27 (m, 2H), 4.32 – 4.14 (m, 1H), 4.05 (dt, J = 18.3, 2.2 Hz, 1H), 3.69 – 3.56 (m, 1H), 3.51 – 3.40 (m, 3H), 3.34 (dd, J = 14.1, 6.0 Hz, 1H), 3.10 (dddd, J = 17.8, 10.6, 8.2, 2.5 Hz, 1H), 2.98 (dddd, J = 17.8, 9.7, 5.2, 2.6 Hz, 1H), 2.42 (s, 3H), 2.24 (dtd, J = 11.5, 10.3, 5.2 Hz, 1H), 2.11 (tt, J = 7.3, 2.2 Hz, 2H), 1.98 (ddt, J = 11.5, 9.8, 8.0 Hz, 1H), 0.87 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 208.50, 143.46, 135.72, 129.35, 127.82, 83.31, 73.49, 61.45, 59.05, 45.09, 44.99, 37.81, 25.81, 22.84, 21.52, 18.23, 15.48,

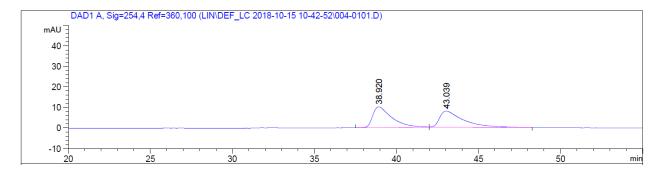
-5.33. **IR:** v 2929, 1780, 1598, 1350, 1163, 1095, 838 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 472.1948 Found: 472.1956.


Compound **1k** was isolated as a white solid in 67% yield over 2 steps. Melting Point: 58-59 °C. $R_f = 0.4$ (EtOAc/Hexane=1/5). **¹H NMR (400 MHz, CDCl3)**: δ 7.83 – 7.64 (m, 2H), 7.32 – 7.27 (m, 2H), 4.29 (dtd, J = 18.5, 2.3, 0.8 Hz, 1H), 4.01 (dt, J = 18.4, 2.2 Hz, 1H), 3.65 – 3.42 (m, 2H), 3.34 – 3.11 (m, 1H), 3.03 – 2.83 (m, 1H), 2.69 (dd, J = 16.8, 1.7 Hz, 1H), 2.42 (s, 3H), 2.05 – 1.62 (m, 9H), 1.51 (dddd, J = 12.5, 7.6, 3.4, 1.3 Hz, 1H), 0.86 (t, J = 7.5 Hz, 3H). **¹³C NMR (101 MHz, CDCl3**): δ 207.03, 143.44, 135.33, 129.34, 127.93, 88.04, 71.36, 62.29, 57.86, 42.28, 40.66, 39.72, 37.27, 32.21, 23.92, 23.84, 21.49, 13.40, 12.08. **IR:** v 2940, 1775, 1598, 1451, 1349, 1162, 906 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 396.1604 Found: 396.1603.

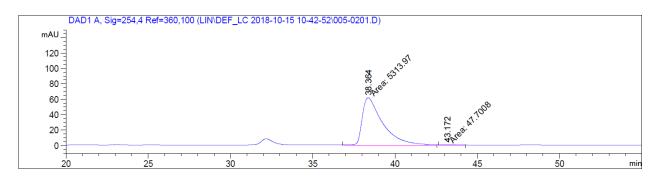
5.4.3 Rh-catalyzed kinetic resolutions between cyclobutanones and alkynes

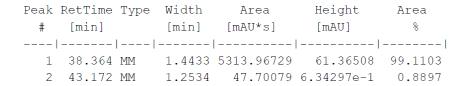
General procedure:

In a nitrogen-filled glove box, a 4 mL vial was charged with the cyclobutanone substrates (0.1 mmol), [Rh(CH₂=CH₂)₂Cl]₂ (1.9 mg, 0.005 mmol, 5 mol%), (*R*)-DTBM-segphos (11.8 mg, 0.01 mmol, 10 mol%) and AgSbF₆ (3.4 mg, 0.01 mmol, 10 mol%), followed by 1000 μL 1,4-dioxane. After a homogeneous solution was formed, the vial was capped and the reaction was maintained at room temperature (**1a** to **1j**) and 40 °C (**1k**) for 12-13 h. After the reaction was complete, solvent was removed by rotavap and the residue was directly purified by silica gel flash chromatography.


Both 2a to 2k and recycled 1a to 1k were collected and measured the yield. The H-NMR spectrum of recycled 1a to 1k are identical with the original spectrum. The HPLC data and optical rotation data was collected and shown in following session.

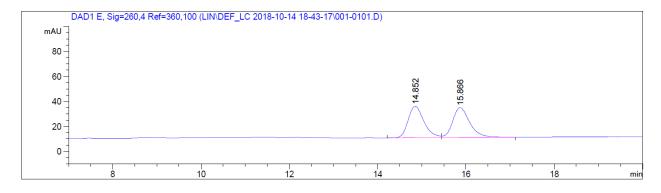
2a (13.5 mg) was isolated as a white solid in 46% yield. Melting Point: 186-188 °C. $R_f = 0.2$ (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.68 (m, 2H), 7.39 – 7.30 (m, 2H), 3.68 (dd, J = 9.6, 7.1 Hz, 1H), 3.59 (dd, J = 9.7, 7.0 Hz, 1H), 2.96 (dd, J = 10.7, 9.7 Hz, 1H), 2.86 (dd, J = 10.7, 9.6 Hz, 1H), 2.53 (ddd, J = 14.3, 4.0, 1.9 Hz, 1H), 2.48 – 2.40 (m, 4H), 2.26 (dddd, J = 15.4, 13.1, 6.7, 0.9 Hz, 1H), 2.19 – 2.07 (m, 2H), 1.96 – 1.84 (m, 1H), 1.81 – 1.68 (m, 1H), 1.44 (tdd, J = 14.7, 12.7, 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 208.27, 143.56, 134.35, 129.80, 127.28, 52.61, 51.90, 44.17, 43.88, 42.75, 39.81, 26.47, 21.55. IR: v 2937, 1705, 1598, 1343, 1160, 1027, 816 cm⁻¹; HRMS calcd. For [M+Na]+: 316.0978. Found: 316.0977.


Chiral HPLC for **2a** (Chiralpak IA, hexane:isopropanol = 90:10, 1 mL/min, 254 nm), $t_{minor} = 43.2$ min, $t_{major} = 38.4$ min. $[\alpha]_D^{22.6} = 72.6$ (c = 1.79, CH₂Cl₂) at 98 % ee.

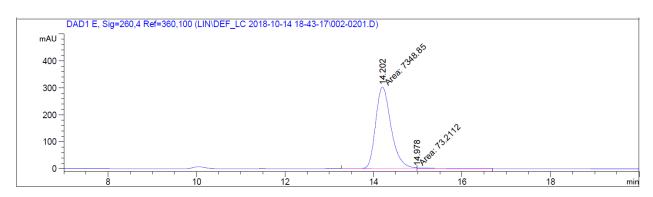

Racemic Sample 2a

Peak	RetTime T	'уре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	38.920 B	BB	1.1182	794.42914	10.00704	50.8163
2	43.039 B	BB	1.3591	768.90729	7.80643	49.1837

Enantiomeric Sample 2a



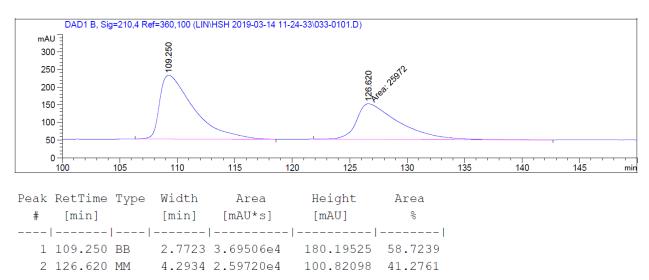
1a (13.8 mg) was recycled as a colorless oil in 47% yield.


Chiral HPLC for **1a** (Chiralpak IA, hexane:isopropanol = 90:10, 1 mL/min, 260 nm), $t_{minor} = 15.0$ min, $t_{major} = 14.2$ min. $[\alpha]_D^{22.6} = -30.4$ (c = 1.38, CH₂Cl₂) at 98 % ee.

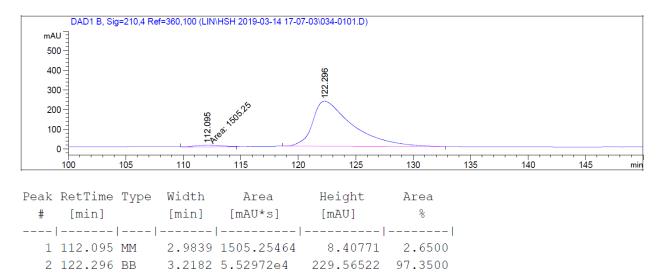
Racemic Sample 1a

Peak	RetTime 7	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-		-		
1	14.852	BV	0.3820	626.01959	25.18777	49.4295
2	15.866	VB	0.4058	640.47095	23.96771	50.5705

Enantiomeric Sample 1a

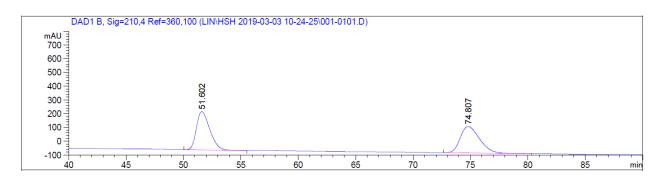

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.202	MF	0.4050	7348.84521	302.39944	99.0136
2	14.978	FM	0.3892	73.21117	3.13483	0.9864

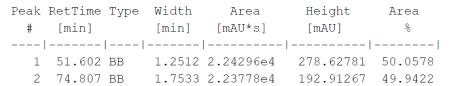
$$\begin{array}{c|c}
H & O_2N \\
\hline
O & -N \\
N-S \\
H & O
\end{array}$$
2b


2b (14.3 mg) was isolated as a light yellow solid in 44% yield. Melting Point: 187-189 °C. $R_f = 0.3$ (EtOAc/Hexane=1/1). ¹H NMR (400 MHz, CDCl₃): $\delta 8.14 - 7.99$ (m, 1H), 7.76 - 7.67 (m, 2H), 7.66 - 7.61 (m, 1H), 3.81 (dd, J = 9.3, 6.8 Hz, 1H), 3.73 (dd, J = 9.3, 6.7 Hz, 1H), 3.17 - 3.01 (m, 2H), 2.61 (ddd, J = 14.2, 3.8, 1.9 Hz, 1H), 2.51 (ddt, J = 15.5, 4.9, 1.9 Hz, 1H), 2.34 (dddd, J = 15.5, 13.1, 6.6, 0.9 Hz, 1H), 2.27 - 1.97 (m, 4H), 1.63 - 1.49 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): $\delta 208.06$, 133.57, 132.46, 131.62, 130.84, 124.01, 52.56, 51.96, 44.40, 43.81, 42.97, 39.81, 26.39. IR: v 2925, 1714, 1544, 1373, 1349, 1164, 779 cm⁻¹; HRMS calcd. For [M+Na]⁺: 347.0672. Found: 347.0675.

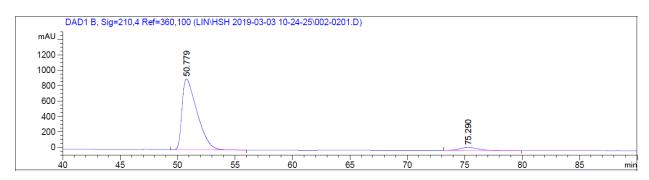
Chiral HPLC for **2b** (Chiralpak ID, hexane:isopropanol = 75:25, 1 mL/min, 210 nm), t_{minor} = 112.1 min, t_{major} = 122.3 min. $[\alpha]_D^{22.6}$ = -278.2 (c = 0.87, CH₂Cl₂) at 95 % ee.

Racemic Sample 2b


Enantiomeric Sample 2b

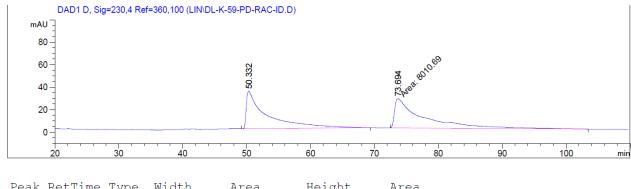


1b (15.2 mg) was recycled as a colorless oil in 47% yield.


Chiral HPLC for **1b** (Chiralpak IC, hexane:isopropanol = 80:20, 1 mL/min, 210 nm), $t_{minor} = 75.3$ min, $t_{major} = 50.8$ min. [α]_D^{22.6} = -11.4 (c = 0.35, CH₂Cl₂) at 90 % ee.

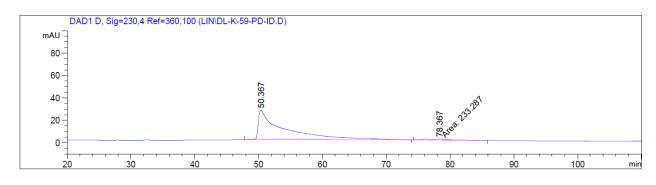
Racemic Sample 1b

Enantiomeric Sample 1b


$$\begin{array}{c|c}
 & H & O \\
 & N-S \\
 & O \\
 & N-S \\
 & O \\
 & O$$

2c (16.2 mg) was isolated as a white solid in 50% yield. Melting Point: 210 °C (decomposed). $R_f = 0.3$ (EtOAc/Hexane=1/1). ¹**H NMR (400 MHz, DMSO-d₆)**: δ 8.46 – 8.40 (m, 2H), 8.19 – 8.04 (m, 2H), 3.62 (dd, J = 9.5, 7.0 Hz, 1H), 3.55 (dd, J = 9.4, 6.8 Hz, 1H), 2.90 (dd, J = 10.6, 9.5 Hz, 1H), 2.83 (dd, J = 10.7, 9.5 Hz, 1H), 2.36 – 2.22 (m, 3H), 2.18 (ddt, J = 15.3, 4.9, 1.8 Hz, 1H), 2.04 – 1.70 (m, 3H), 1.53 – 1.32 (m, 1H). ¹³**C NMR (101 MHz, DMSO-d₆)**: δ 209.05, 150.35,

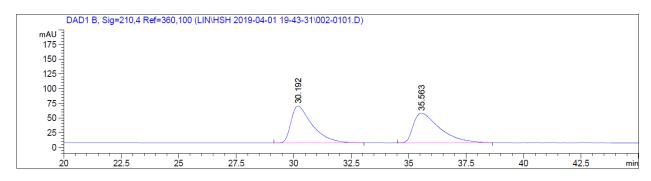
142.75, 129.14, 125.21, 52.90, 52.27, 43.59, 43.42, 41.94, 39.71, 25.94. **IR:** v 2923, 1704, 1528, 1461, 1347, 1161, 855 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 325.0853. Found: 325.0852.


Chiral HPLC of **2c** (Chiralpak ID, hexane:isopropanol = 75:25, 1 mL/min, 230 nm), t_{minor} = 78.4 min, t_{major} = 50.4 min. [α]_D^{22.6} = -33.3 (c = 0.75, CH₂Cl₂) at 94 % ee.

Racemic Sample 2c

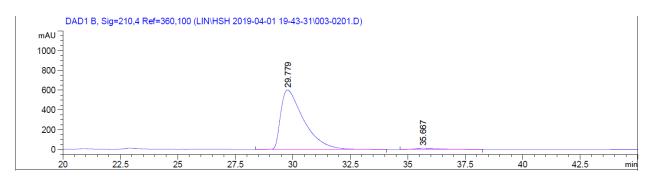
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	50.332	BB	2.8479	7471.58105	33.12019	48.2589
2	73.694	MM	5.1135	8010.69189	26.10973	51.7411

Enantiomeric Sample 2c



Реак	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	50.367	BB	3.4522	7271.30029	26.08440	96.8914
2	78.367	MM	4.6921	233.28732	8.28652e-1	3.1086

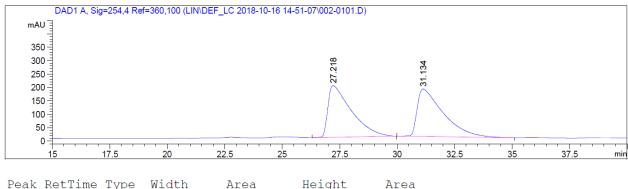
1c (13.6 mg) was recycled as a white solid in 42% yield.


Chiral HPLC for **1c** (Chiralpak IA, hexane:isopropanol = 90:10, 1 mL/min, 210 nm), t_{minor} = 35.7 min, t_{major} = 29.8 min. [α]_D^{22.6} = -82.4 (c = 0.74, CH₂Cl₂) at 96 % ee.

Racemic Sample 1c

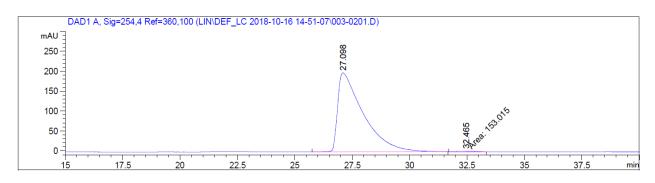
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.192	BB	0.9501	4013.14819	62.58150	50.2500
2	35.563	BB	1.1437	3973.21191	50.18191	49.7500

Enantiomeric Sample 1c



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	29.779	BB	1.0360	4.17410e4	599.75763	97.9710
2	35.667	BB	1.0209	864.47595	11.74302	2.0290

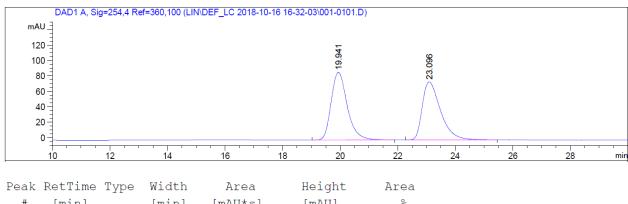
2d (15.2 mg) was isolated as a colorless oil in 48% yield. The characterization data of **2d** is identical as the reported data.³ The HPLC data of **1d** and **2d** is shown below.


Chiral HPLC of **2d** (Chiralpak IB, hexane:isopropanol = 92:8, 1 mL/min, 254 nm), t_{minor} = 32.5 min, t_{major} = 27.1 min. [α]_D^{22.6} = -205.0 (c = 1.00, CH₂Cl₂) at 98 % ee.

Racemic Sample 2d

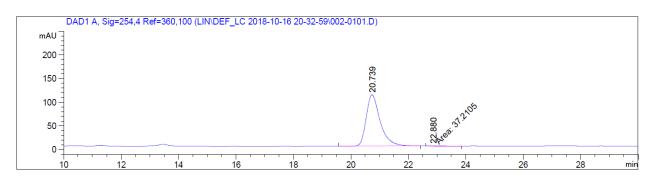
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	ક	
		-					
1	27.218	BB	0.9983	1.35299e4	191.49348	49.2997	
2	31.134	BB	1.1400	1.39142e4	176.07523	50.7003	

Enantiomeric Sample 2d



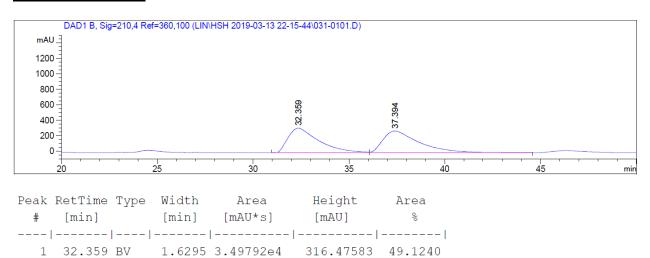
Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	27.098	BB	1.0934	1.52927e4	197.93497	99.0093	
2	32.465	MM	0.8101	153.01463	2.24809	0.9907	

1d (12.6 mg) was recycled as a colorless oil in 40% yield.


Chiral HPLC for **1d** (Chiralpak IA, hexane:isopropanol = 95:5, 1 mL/min, 254 nm), t_{minor} = 22.9 min, t_{major} = 20.7 min. [α]_D^{22.6} = -12.7 (c = 0.79, CH₂Cl₂) at 98 % ee.

Racemic Sample 1d

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.941	BB	0.5996	3409.07446	87.68116	50.8446
2	23.096	BB	0.6652	3295.82153	74.92858	49.1554

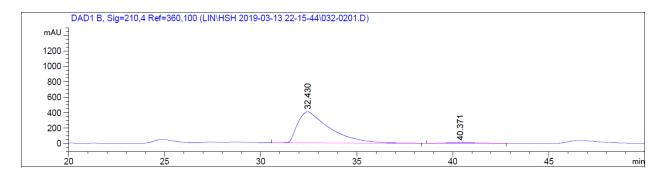

Enantiomeric Sample 1d

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	ે
1	20.739	BB	0.5111	3663.22852	108.16530	98.9944
2	22.880	MM	0.8522	37.21054	7.27732e-1	1.0056

2e (16.6 mg) was isolated as a colorless oil in 42% yield. $R_f = 0.3$ (EtOAc/Hexane=1/4). ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.60 (m, 2H), 7.41 – 7.32 (m, 2H), 7.24 – 7.17 (m, 2H), 7.15 – 7.01 (m, 3H), 3.90 – 3.72 (m, 2H), 3.45 (dd, J = 17.0, 2.4 Hz, 1H), 2.92 – 2.77 (m, 1H), 2.72 – 2.54 (m, 2H), 2.55 – 2.39 (m, 6H), 2.36 – 2.24 (m, 2H), 2.10 (dtd, J = 12.3, 4.8, 2.4 Hz, 1H), 1.58 – 1.45 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 197.00, 158.41, 143.95, 141.24, 132.81, 131.89, 129.87, 128.59, 128.22, 127.67, 126.09, 53.19, 50.13, 40.63, 36.77, 34.16, 28.88, 26.41, 21.60. IR: v 2925, 1666, 1453, 1346, 1164, 1094, 816 cm⁻¹; HRMS calcd. For [M+H]⁺: 396.1628. Found: 396.1627. Chiral HPLC of 2e (Chiralpak IB, hexane:isopropanol = 92:8, 1 mL/min, 210 nm), $t_{minor} = 40.4$ min, $t_{maijor} = 32.4$ min. $[\alpha]_D^{22.6} = -115.7$ (c = 1.59, CH₂Cl₂) at 96 % ee.

Racemic Sample 2e

279.89749

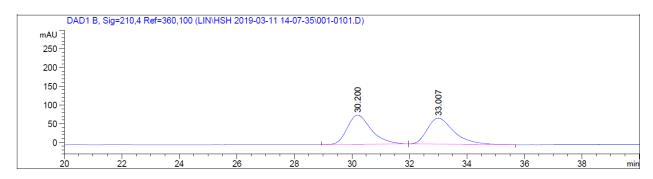

50.8760

Enantiomeric Sample 2e

37.394 VB

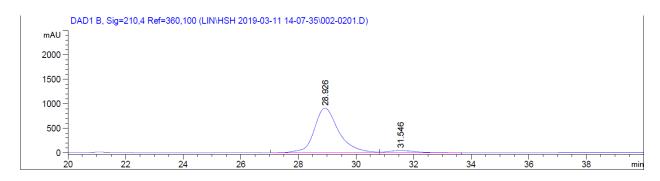
1.8760 3.62267e4

2

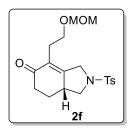


Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	용	
1	32.430	BB	1.6659	4.66369e4	404.27081	98.1967	
2	40.371	BB	1.3748	856.43756	7.63441	1.8033	

1e (17.7 mg) was recycled as a colorless oil in 45% yield.


Chiral HPLC for **1e** (Chiralpak IA, hexane:isopropanol = 95:5, 1 mL/min, 210 nm), t_{minor} = 31.5 min, t_{major} = 28.9 min. [α] $_{D}^{22.6}$ = -109.6 (c = 1.35, CH $_{2}$ Cl $_{2}$) at 90 % ee.

Racemic Sample 1e

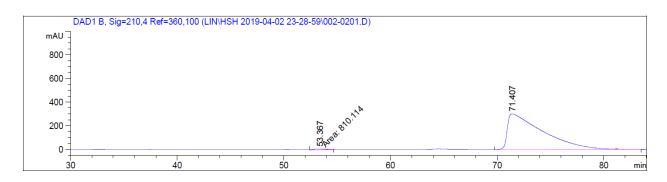


Pea	k RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	왕
	-					
	1 30.200	BB	0.8791	4529.69287	78.05059	50.2543
	2 33.007	BB	0.9803	4483.84424	69.35200	49.7457

Enantiomeric Sample 1e


Р	eak	RetTime	Type	Width	Area	Height	Area
	#	[min]		[min]	[mAU*s]	[mAU]	용
_							
	1	28.926	BV	0.8862	5.36689e4	909.85333	94.8979
	2	31.546	VB	0.9372	2885.44653	45.91332	5.1021

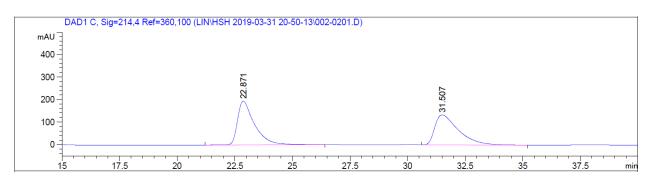
2f (18.2 mg) was isolated as a colorless oil in 48% yield. $R_f = 0.3$ (EtOAc/Hexane=1/2). ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.76 – 7.69 (m, 2H), 7.42 – 7.33 (m, 2H), 4.48 – 4.42 (m, 2H), 4.40 – 4.31 (m, 1H), 4.02 – 3.83 (m, 2H), 3.57 – 3.43 (m, 2H), 3.22 (s, 3H), 3.09 – 2.90 (m, 1H), 2.57 (dd, J = 10.9, 9.3 Hz, 1H), 2.54 – 2.40 (m, 5H), 2.38 – 2.25 (m, 2H), 2.15 (dtd, J = 12.3, 4.8, 2.4 Hz, 1H), 1.55 (dddd, J = 14.6, 12.7, 11.6, 4.4 Hz, 1H). ¹³**C NMR** (**101 MHz, CDCl₃**): δ 196.88, 159.93, 144.02, 132.44, 129.92, 129.84, 127.81, 96.14, 66.05, 55.01, 53.51, 50.82, 40.74, 36.60, 27.01, 26.46, 21.57. **IR:** v 2923, 1666, 1468, 1346, 1164, 1041, 816 cm⁻¹; **HRMS** calcd. For [M+H]⁺: 380.1526. Found: 380.1516.


Chiral HPLC of **2f** (Chiralpak IF, hexane:isopropanol = 85:15, 1 mL/min, 210 nm), $t_{minor} = 53.4$ min, $t_{major} = 71.4$ min. [α]_D^{22.6} = -461.1 (c = 0.95, CH₂Cl₂) 98 % ee.

Racemic Sample 2f

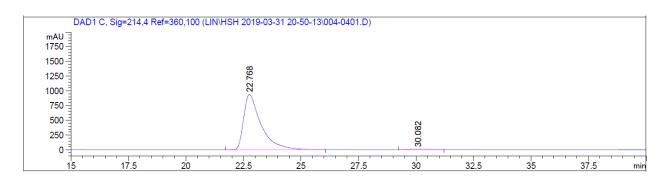
]	Peak	${\tt RetTime}$	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	용	
	1	50.735	BB	1.5793	3.20088e4	285.22900	50.4156	
	2	73.040	BB	2.4590	3.14812e4	167.47899	49.5844	

Enantiomeric Sample 2f

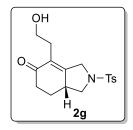


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	િ
1	53.367	MM	1.1920	810.11365	8.17228	1.1493
2	71.407	BB	2.9724	6.96760e4	301.02255	98.8507

1f (19.0 mg) was recycled as a colorless oil in 50% yield.

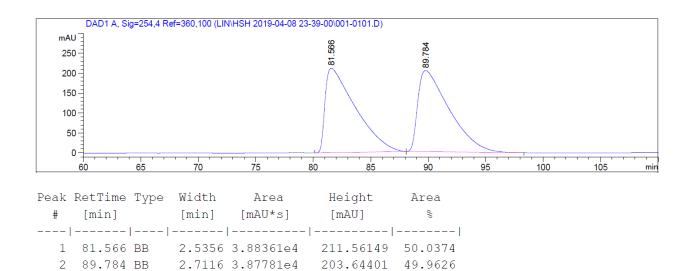

Chiral HPLC for **1f** (Chiralpak IA, hexane:isopropanol = 92:8, 1 mL/min, 214 nm), t_{minor} = 30.1 min, t_{major} = 22.8 min. [α] $_{D}^{22.6}$ = -22.7 (c = 2.42, CH $_{2}$ Cl $_{2}$) at 98 % ee.

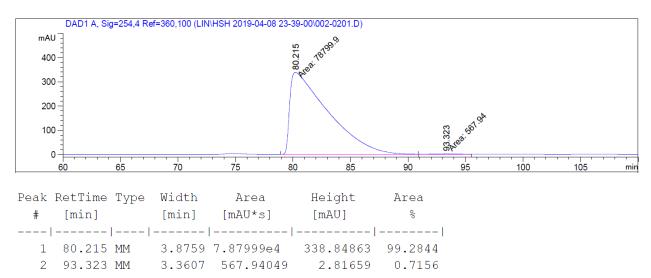
Racemic Sample 1f



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	22.871	BB	0.7378	9914.95898	194.80487	51.3800
2	31.507	BB	1.0453	9382.36133	132.95697	48.6200

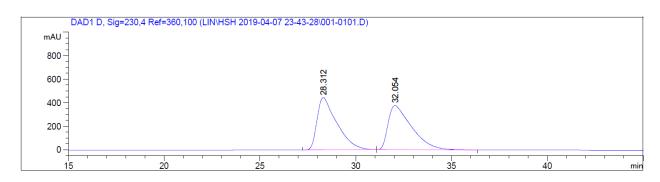
Enantiomeric Sample 1f

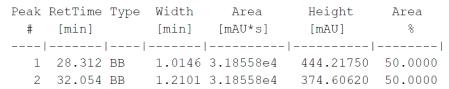

Р	eak	RetTime	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	%	
_								
	1	22.768	BB	0.7530	4.88321e4	938.55890	99.1581	
	2	30.082	BB	0.8286	414.61984	7.34519	0.8419	


2g (15.4 mg) was isolated as a white solid in 46% yield. Melting Point: 110-113 °C. $R_f = 0.2$ (EtOAc/Hexane=1/1). ¹**H NMR** (**400 MHz**, **CDCl₃**): δ 7.82 – 7.64 (m, 2H), 7.46 – 7.34 (m, 2H), 4.33 (d, J = 17.2 Hz, 1H), 4.02 – 3.84 (m, 2H), 3.62 (q, J = 5.3 Hz, 2H), 3.22 – 2.87 (m, 1H), 2.61 (dd, J = 10.9, 9.3 Hz, 1H), 2.53 (ddd, J = 17.5, 4.5, 2.5 Hz, 1H), 2.49 – 2.41 (m, 4H), 2.41 – 2.25 (m, 2H), 2.21 – 2.11 (m, 1H), 1.98 (br, 1H), 1.60 (dddd, J = 14.5, 12.7, 11.6, 4.4 Hz, 1H). ¹³**C NMR** (**101 MHz**, **CDCl₃**): δ 198.34, 160.23, 144.16, 132.44, 130.34, 129.92, 127.75, 61.44, 53.36, 50.67, 40.79, 36.58, 29.95, 26.39, 21.59. **IR**: v 3449, 2927, 1664, 1597, 1344, 1163, 1043, 816 cm⁻¹; **HRMS** calcd. For [M+Na]⁺: 358.1083. Found: 358.1084.

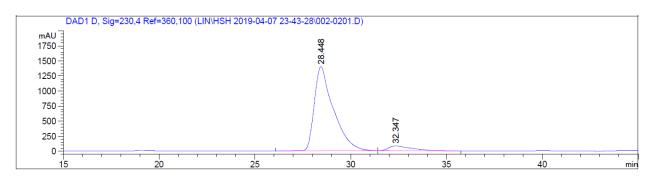
Chiral HPLC of **2g** (Chiralpak ID, hexane:isopropanol = 80:20, 1 mL/min, 254 nm), t_{minor} = 93.3 min, t_{major} = 80.2 min. [α]_D^{22.6} = -440.1 (c = 1.67, CH₂Cl₂) at 98 % ee.

Racemic Sample 2g

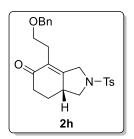

Enantiomeric Sample 2g



1g (16.0 mg) was recycled as a colorless oil in 48% yield.

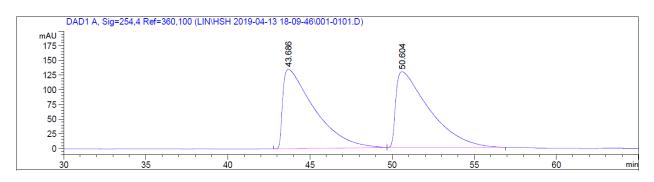

Chiral HPLC for **1g** (Chiralpak IA, hexane:isopropanol = 90:10, 1 mL/min, 230 nm), t_{minor} = 32.3 min, t_{major} = 28.4 min. $\lceil \alpha \rceil_D^{22.6}$ = -38.1 (c = 1.89, CH₂Cl₂) at 88 % ee.

Racemic Sample 1g



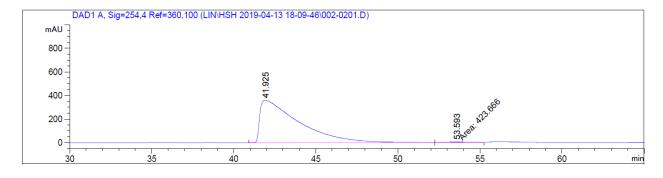
Enantiomeric Sample 1g

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	28.448	BB	0.9778	9.64094e4	1399.38074	93.7091
2	32.347	BB	1.1552	6472.22217	78.88539	6.2909



2h (16.1 mg) was isolated as a colorless oil in 38% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl**₃): δ 7.75 – 7.64 (m, 2H), 7.37 – 7.24 (m, 5H), 7.22 – 7.16 (m, 2H), 4.47 – 4.24 (m, 3H), 3.97 (dd, J = 17.3, 2.4 Hz, 1H), 3.89 (dd, J = 9.3, 8.0 Hz, 1H), 3.48 – 3.39 (m, 2H), 3.00 – 2.86 (m, 1H), 2.59 (dd, J = 10.9, 9.3 Hz, 1H), 2.52 – 2.42 (m, 2H), 2.41 – 2.21 (m, 5H), 2.11

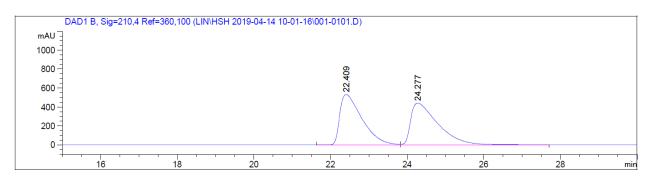
(dtd, J = 12.3, 4.9, 2.4 Hz, 1H), 1.52 (dddd, J = 14.5, 12.7, 11.6, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 196.96, 159.92, 143.97, 138.31, 132.56, 130.00, 129.82, 128.35, 127.74, 127.53, 127.39, 72.74, 68.54, 53.45, 50.93, 40.71, 36.58, 27.14, 26.42, 21.53. IR: v 2925, 1667, 1598, 1453, 1347, 1164, 1095, 816 cm⁻¹; HRMS calcd. For [M+H]⁺: 426.1734. Found: 426.1734.


Chiral HPLC of **2h** (Chiralpak IB, hexane:isopropanol = 92:8, 1 mL/min, 254 nm), $t_{minor} = 53.6$ min, $t_{major} = 41.9$ min. $\lceil \alpha \rceil_D^{22.6} = -299.0$ (c = 1.94, CH₂Cl₂) at 98 % ee.

Racemic Sample 2h

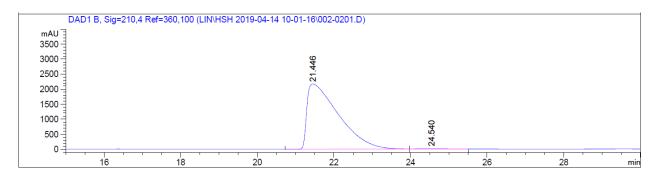
Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	િ
1	43.686	BB	1.8622	1.80186e4	135.25679	49.7106
2	50.604	ВВ	1.9752	1.82283e4	129.10634	50.2894

Enantiomeric Sample 2h

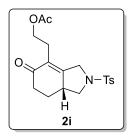


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
I						
1	41.925	BB	2.2364	5.90058e4	358.84818	99.2871
2	53.593	MM	1.7877	423.66602	3.94976	0.7129

1h (19.0 mg) was recycled as a colorless oil in 45% yield.

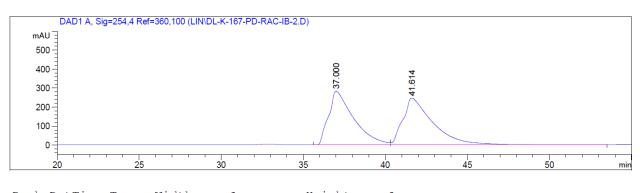

Chiral HPLC for **1h** (Chiralpak IB, hexane:isopropanol = 92:8, 1 mL/min, 210 nm), t_{minor} = 24.5 min, t_{major} = 21.4 min. [α] $_{D}^{22.6}$ = -77.2 (c = 2.06, CH₂Cl₂) at 98 % ee.

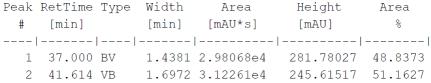
Racemic Sample 1h

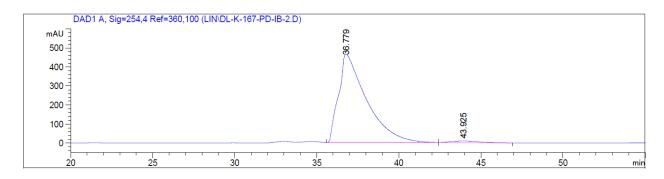


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	22.409	BV	0.6025	2.13362e4	531.27594	49.5921
2	24.277	VB	0.7323	2.16872e4	440.58420	50.4079

Enantiomeric Sample 1h

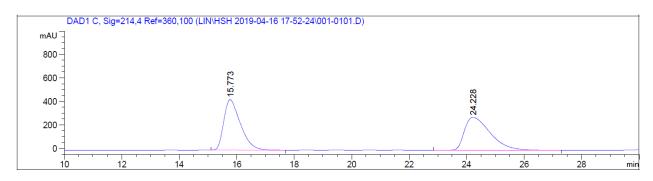



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
I						
1	21.446	BV	0.8401	1.23921e5	2170.38428	99.3717
2	24.540	VB	0.7599	783.51538	16.04070	0.6283


2i (17.5 mg) was isolated as a colorless oil in 46% yield. $R_f = 0.3$ (EtOAc/Hexane=1/2). ¹H NMR (400 MHz, CDCl₃): δ 7.81 – 7.69 (m, 2H), 7.46 – 7.33 (m, 2H), 4.30 (d, J = 17.2 Hz, 1H), 4.09 (ddd, J = 10.8, 6.7, 6.0 Hz, 1H), 4.00 (ddd, J = 10.9, 6.9, 6.0 Hz, 1H), 3.92 (dd, J = 9.3, 7.9 Hz, 1H), 3.86 (dd, J = 17.1, 2.4 Hz, 1H), 3.07 – 2.94 (m, 1H), 2.60 (dd, J = 10.9, 9.3 Hz, 1H), 2.57 – 2.42 (m, 5H), 2.42 – 2.27 (m, 2H), 2.15 (dtd, J = 12.3, 4.9, 2.4 Hz, 1H), 1.90 (s, 3H), 1.65 – 1.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 196.63, 170.71, 159.80, 144.17, 132.51, 129.94, 129.16, 127.77, 62.55, 53.39, 50.49, 40.81, 36.47, 26.33, 26.20, 21.56, 20.78. IR: v 2953, 1738, 1668, 1598, 1347, 1241, 1164, 1043, 817 cm⁻¹; HRMS calcd. For [M+H]⁺: 378.1370. Found: 378.1368. Chiral HPLC of 2i (Chiralpak IB, hexane:isopropanol = 80:20, 0.7 mL/min, 254 nm), t_{minor} = 43.9 min, t_{major} = 36.8 min. $[\alpha]_D^{22.6} = -271.3$ (c = 1.74, CH₂Cl₂) at 96 % ee.

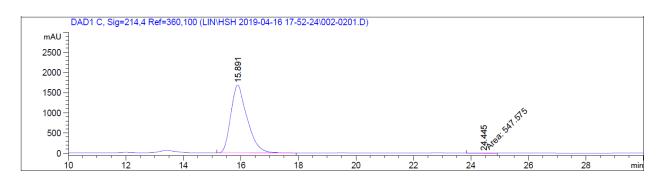
Racemic Sample 2i

Enantiomeric Sample 2i



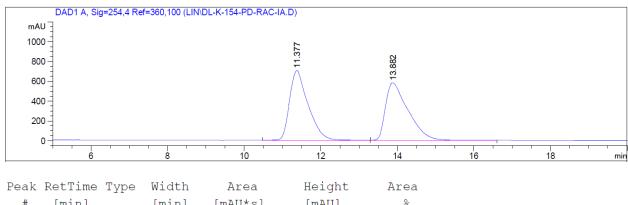
Peak	${\tt RetTime}$	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	36.779	BB	1.6022	5.47271e4	464.62576	98.2376	
2	43.925	BB	1.4614	981.81592	9.18286	1.7624	

1i (19.0 mg) was recycled as a colorless oil in 50% yield.

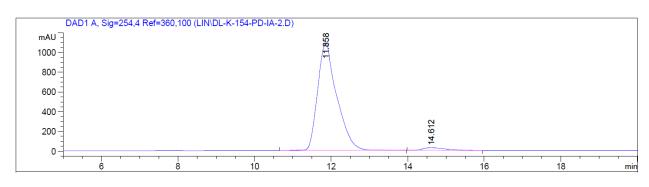

Chiral HPLC for **1i** (Chiralpak IA, hexane:isopropanol = 85:15, 1 mL/min, 214 nm), t_{minor} = 24.4 min, t_{major} = 15.9 min. [α]_D^{22.6} = -76.6 (c = 1.97, CH₂Cl₂) at 98 % ee.

Racemic Sample 1i

Peak	${\tt RetTime}$	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	15.773	BB	0.5999	1.71289e4	428.94064	49.7365
2	24.228	BB	0.9731	1.73103e4	279.27560	50.2635


Enantiomeric Sample 1i

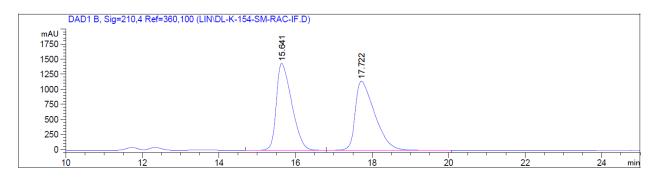
Ре	ak	${\tt RetTime}$	Type	Width	Area	Height	Area	
	#	[min]		[min]	[mAU*s]	[mAU]	용	
	1	15.891	VB	0.5757	6.58570e4	1678.60291	99.1754	
	2	24.445	MM	0.7602	547.57501	9.23121	0.8246	

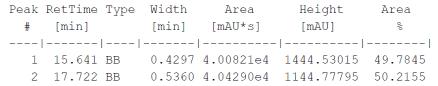

2j (19.0 mg) was isolated as a colorless oil in 43% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.64 (m, 2H), 7.49 – 7.31 (m, 2H), 4.33 (dt, J = 17.0, 1.2 Hz, 1H), 4.01 – 3.81 (m, 2H), 3.71 – 3.53 (m, 2H), 3.09 – 2.88 (m, 1H), 2.61 (dd, J = 10.9, 9.3 Hz, 1H), 2.50 (ddd, J = 17.2, 4.3, 2.4 Hz, 1H), 2.44 (s, 3H), 2.42 – 2.21 (m, 3H), 2.14 (dtd, J = 12.4, 4.8, 2.4 Hz, 1H), 1.57 (dddd, J = 14.5, 12.6, 11.6, 4.4 Hz, 1H), 0.79 (s, 9H), -0.06 (s, 3H), -0.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 197.02, 160.02, 143.93, 132.79, 130.00, 129.89, 127.73, 61.41, 53.32, 50.85, 40.87, 36.69, 30.10, 26.41, 25.86, 21.55, 18.24, -5.40, -5.51. IR: v 2928, 1669, 1472, 1350, 1256, 1165, 1096, 837 cm⁻¹; HRMS calcd. For [M+Na]⁺: 472.1948. Found: 472.1959. Chiral HPLC of 2j (Chiralpak IA, hexane:isopropanol = 90:10, 1 mL/min, 254 nm), t_{minor} = 14.6 min, t_{maior} = 11.9 min. $[\alpha]_D^{22.6} = -125.5$ (c = 1.45, CH₂Cl₂) at 94 % ee.

Racemic Sample 2j

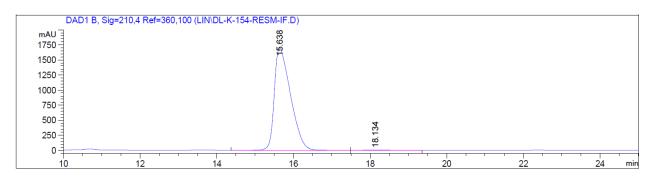
Pea	ak	${\tt RetTime}$	Type	Width	Area	Height	Area
=	#	[min]		[min]	[mAU*s]	[mAU]	%
	1	11.377	BB	0.4897	2.35040e4	703.69000	50.0046
	2	13.882	BB	0.5848	2.34997e4	579.81519	49.9954

Enantiomeric Sample 2j

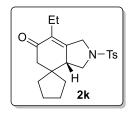



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	11.858	BB	0.5090	3.78350e4	1089.98828	97.2285
2	14.612	BB	0.5789	1078.47021	26.94623	2.7715

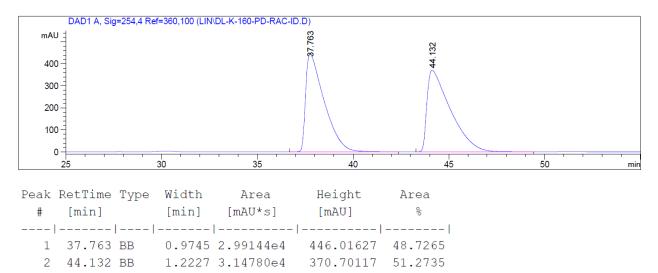
1j (17.8 mg) was recycled as a colorless oil in 40% yield.

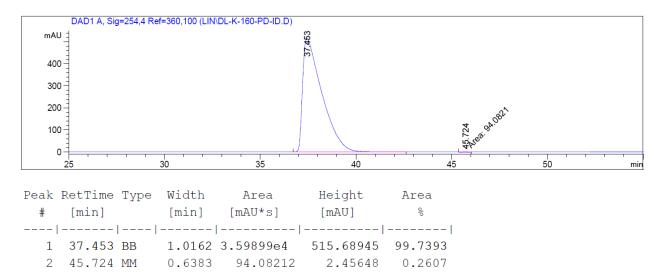

Chiral HPLC for $\bf{1j}$ (Chiralpak IF, hexane:isopropanol = 90:10, 1 mL/min, 210 nm), t_{minor} = 18.1 min, t_{major} = 15.6 min. [α] $_{D}^{22.6}$ = -63.4 (c = 1.72, CH $_{2}$ Cl $_{2}$) at 99 % ee.

Racemic Sample 1j



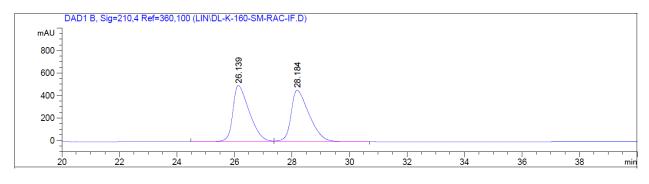
Enantiomeric Sample 1j


Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.638	BB	0.4537	4.98079e4	1700.44434	99.5962
2	18.134	BB	0.5668	201.95364	5.13556	0.4038

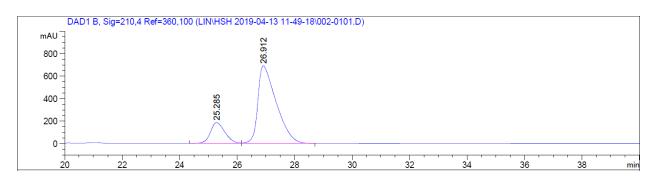

2k (11.9 mg) was isolated as a colorless oil in 32% yield. $R_f = 0.4$ (EtOAc/Hexane=1/3). ¹**H NMR** (**400 MHz, CDCl**₃): δ 7.80 – 7.66 (m, 2H), 7.44 – 7.34 (m, 2H), 4.22 (d, J = 16.9 Hz, 1H), 3.93 – 3.68 (m, 2H), 3.26 – 3.07 (m, 1H), 2.85 (dd, J = 10.6, 9.3 Hz, 1H), 2.49 – 2.41 (m, 4H), 2.26 (d, J = 16.0 Hz, 1H), 2.15 (dq, J = 14.9, 7.6 Hz, 1H), 2.09 – 1.98 (m, 1H), 1.71 – 1.54 (m, 3H), 1.52 –

1.39 (m, 3H), 1.32 – 1.23 (m, 1H), 1.18 (ddd, J = 13.7, 8.1, 6.4 Hz, 1H), 0.89 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 197.57, 155.24, 144.13, 134.29, 132.65, 129.90, 127.69, 51.69, 50.44, 49.72, 48.88, 46.80, 38.94, 30.17, 25.56, 24.68, 21.61, 19.51, 12.75. IR: v 2954, 1668, 1598, 1452, 1348, 1165, 1093, 816 cm⁻¹; HRMS calcd. For [M+Na]⁺: 396.1604. Found: 396.1613. Chiral HPLC of **2k** (Chiralpak ID, hexane:isopropanol = 90:10, 1 mL/min, 254 nm), t_{minor} = 45.7 min, t_{major} = 37.4 min. $\lceil \alpha \rceil_D^{22.6} = 294.4$ (c = 0.72, CH₂Cl₂) at 99.5 % ee.

Racemic Sample 2k


Enantiomeric Sample 2k

1k (16.0 mg) was recycled as a colorless oil in 43% yield.


Chiral HPLC for **1k** (Chiralpak IF, hexane:isopropanol = 92:8, 1 mL/min, 210 nm), t_{minor} = 25.3 min, t_{major} = 26.9 min. [α]_D^{22.6} = -443.6 (c = 0.78, CH₂Cl₂) at 65 % ee.

Racemic Sample 1k

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
		-				
1	26.139	BV	0.5970	1.98359e4	499.83862	49.7800
2	28.184	VB	0.6537	2.00112e4	458.07532	50.2200

Enantiomeric Sample 1k

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	25.285	BV	0.5393	6468.58789	184.35934	17.4563
2	26.912	VB	0.6545	3.05873e4	690.84247	82.5437

5.4.4 X-ray data

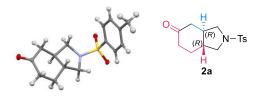


Table 5.10 Crystal Data and Structure Refinement for 2a

Identification code	cu_0767
Empirical formula	$C_{15}H_{19}NO_3S$
Formula weight	293.37
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	8.6148(2)
b/Å	14.8424(4)
c/Å	10.8526(3)
$lpha/^{\circ}$	90
β/°	95.3830(10)
γ/°	90
Volume/Å ³	1381.54(6)
Z	4
$\rho_{calc}g/cm^3$	1.410
μ/mm^{-1}	2.147
F(000)	624.0
Crystal size/mm ³	$0.17\times0.15\times0.1$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/	8.182 to 144.758
Index ranges	$-10 \le h \le 10, -18 \le k \le 18, -13 \le l \le 13$
Reflections collected	18690
Independent reflections	5193 [$R_{int} = 0.0371$, $R_{sigma} = 0.0440$]
Data/restraints/parameters	5193/1/363
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0319, wR_2 = 0.0786$
Final R indexes [all data]	$R_1 = 0.0339, wR_2 = 0.0798$
Largest diff. peak/hole / e Å-3	3 0.35/-0.27
Flack parameter	0.066(8)

5.5 References

(1) (a) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. 2002, 124, 13976. (b) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739. (c) Parker, E.; Cramer, N. Organometallics 2014, 33, 780. (d) Souillart, L.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 9640. (e) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001. (f) Zhou, X.; Dong, G. J. Am. Chem.

- Soc. 2015, 137, 13715. (g) Zhou, X.; Ko, H. M.; Dong, G. Angew. Chem. Int. Ed. 2016, 55, 13867.
- (2) (a) Ioannou, E.; Nappo, M.; Avila, C.; Vagias, C.; Roussis, V. J. Nat. Prod. 2009, 72, 1716.
 (b) Rateb, M. E.; Houssen, W. E.; Schumacher, M.; Harrison, W. T. A.; Diederich, M.; Ebel, R.; Jaspars, M. J. Nat. Prod. 2009, 72, 1471. (c) Abe, S.; Tanaka, N.; Kobayashi, J. i. J. Nat. Prod. 2012, 75, 484. (d) Wang, G.-W.; McCreanor, N. G.; Shaw, M. H.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2016, 138, 13501.
- (3) (a) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. *J. Am. Chem. Soc.* **2000**, *122*, 7815. (b) Matsuda, T.; Fujimoto, A.; Ishibashi, M.; Murakami, M. *Chem. Lett.* **2004**, *33*, 876. (c) Matsuda, T.; Makino, M.; Murakami, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 4608.
- (4) Deng, L.; Jin, L.; Dong, G. Angew. Chem. Int. Ed. 2018, 57, 2702.
- (5) (a) Asfaw, N.; Storesund, H. J.; Skattebøl, L.; Aasen, A. J. *Phytochemistry* 1999, 52, 1491. (b) Sinninghe Damsté, J. S.; Strous, M.; Rijpstra, W. I. C.; Hopmans, E. C.; Geenevasen, J. A. J.; van Duin, A. C. T.; van Niftrik, L. A.; Jetten, M. S. M. *Nature* 2002, 419, 708. (c) Yang, P.-S.; Cheng, M.-J.; Peng, C.-F.; Chen, J.-J.; Chen, I.-S. *J. Nat. Prod.* 2009, 72, 53. (d) Zheng, Y.; Shen, Y. *Org. Lett.* 2009, 11, 109. (e) Blakemore, D. C.; Bryans, J. S.; Carnell, P.; Carr, C. L.; Chessum, N. E. A.; Field, M. J.; Kinsella, N.; Osborne, S. A.; Warren, A. N.; Williams, S. C. *Bioorg. Med. Chem. Lett.* 2010, 20, 461. (f) Bohnert, M.; Miethbauer, S.; Dahse, H.-M.; Ziemen, J.; Nett, M.; Hoffmeister, D. *Bioorg. Med. Chem. Lett.* 2011, 21, 2003.
- (6) (a) Belluš, D.; Ernst, B. Angew. Chem. Int. Ed. 1988, 27, 797. (b) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449. (c) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485. (d) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740. (e) Carreira, E. M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257. (f) Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem. Int. Ed. 2015, 54, 11918. (g) Chen, P.-h.; Dong, G. Chem. Eur. J. 2016, 22, 18290.
- (7) For selected reviews on "cut-and-sew" chemistry: (a) Chen, P.-h.; Billett, B. A.; Tsukamoto, T.; Dong, G. ACS Cat. 2017, 7, 1340. (b) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410. (c) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404. For selected examples: see ref 1, 3, 4, and (d) Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 7567. (e) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. (f) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem. Int. Ed. 2014, 53, 1674. (g) Zhu, Z.; Li, X.; Chen, S.; Chen, P.-h.; Billett, B. A.; Huang, Z.; Dong, G. ACS Cat. 2018, 8, 845.
- (8) (a) Torres, Ò.; Roglans, A.; Pla-Quintana, A. *Adv. Synth. Catal.* **2016**, *358*, 3512. (b) Cassú, D.; Parella, T.; Solà, M.; Pla-Quintana, A.; Roglans, A. *Chem. Eur. J.* **2017**, *23*, 14889. (c) Crespin, L. N. S.; Greb, A.; Blakemore, D. C.; Ley, S. V. *J. Org. Chem.* **2017**, *82*, 13093. (d) Kim-Lee, S.-H.; Alonso, I.; Mauleón, P.; Arrayás, R. G.; Carretero, J. C. *ACS Cat.* **2018**, *8*, 8993. (e) Yudasaka, M.; Shimbo, D.; Maruyama, T.; Tada, N.; Itoh, A. *Org. Lett.* **2019**, *21*, 1098.
- (9) Venneri, P. C.; Warkentin, J. Can. J. Chem. **2000**, 78, 1194.

5.6 NMR Spectra

Figure 5.1 ¹H and ¹³C NMR spectrum of compound 1a

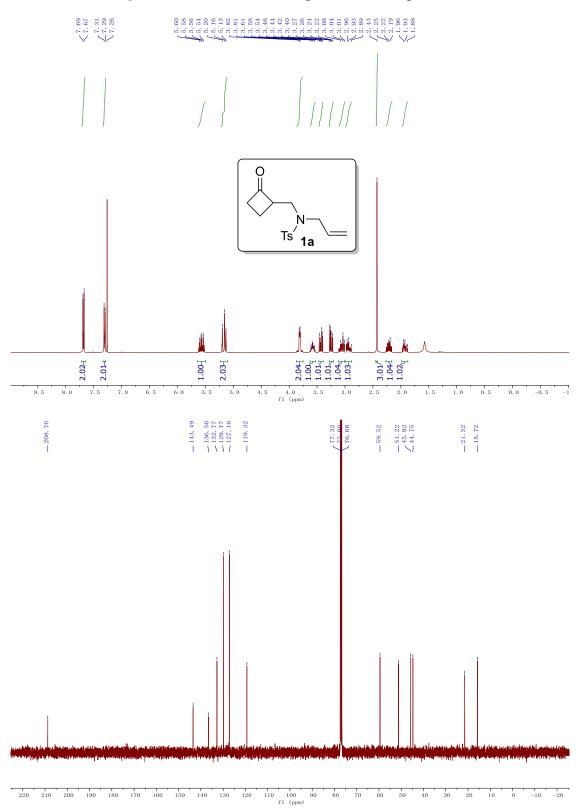


Figure 5.2 ¹H and ¹³C NMR spectrum of compound 1b

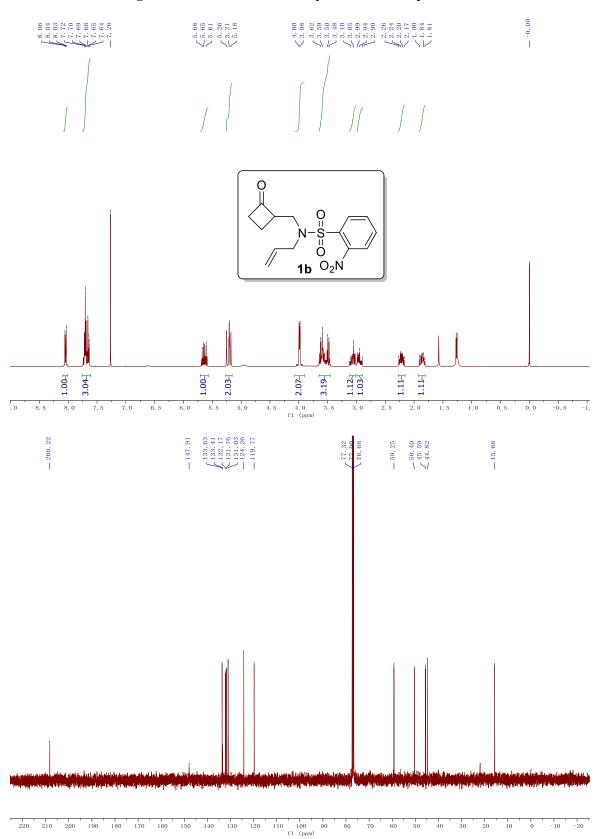


Figure 5.3 1 H and 13 C NMR spectrum of compound 1c

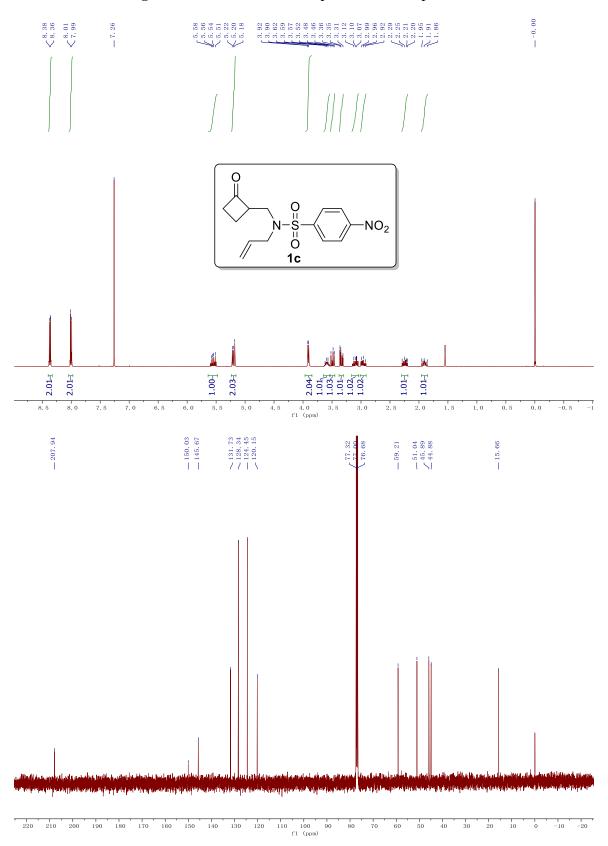


Figure 5.4 ¹H and ¹³C NMR spectrum of compound 1e

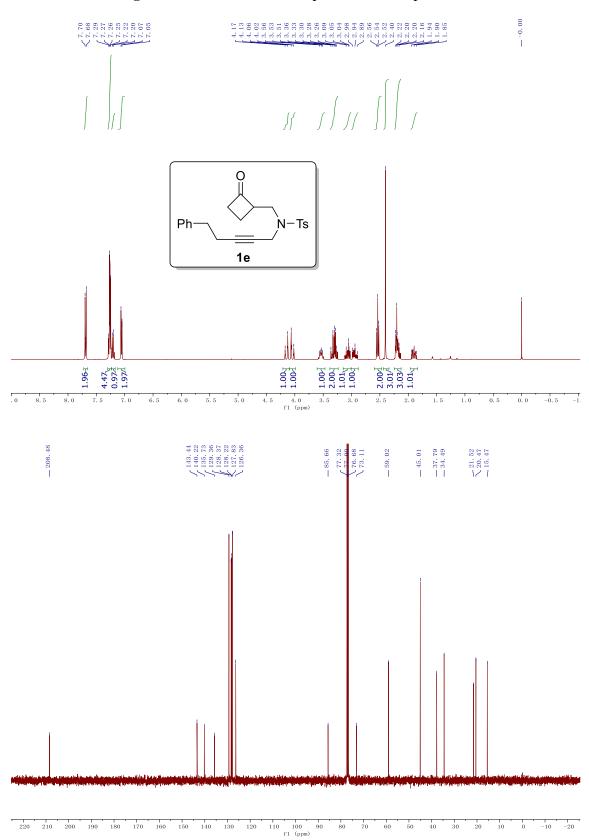


Figure 5.5 1 H and 13 C NMR spectrum of compound 1f

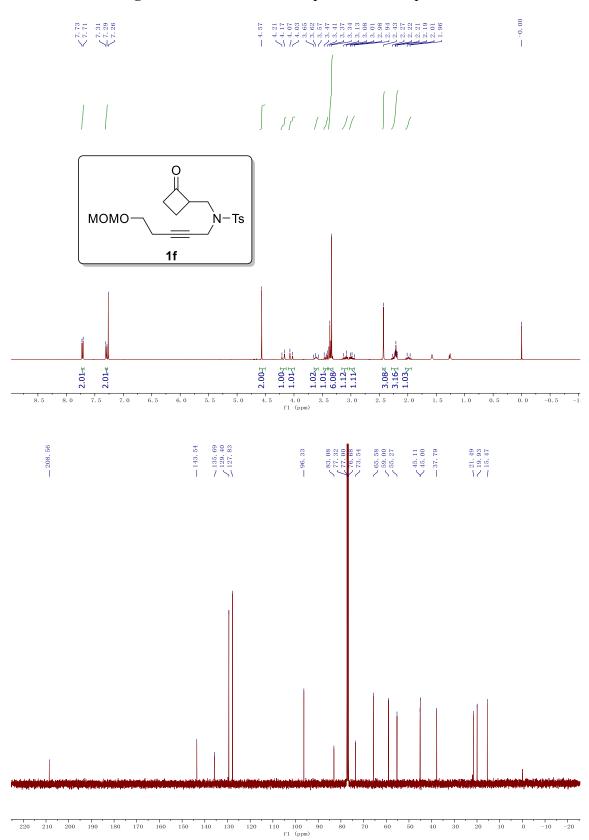


Figure 5.6 ¹H and ¹³C NMR spectrum of compound 1g

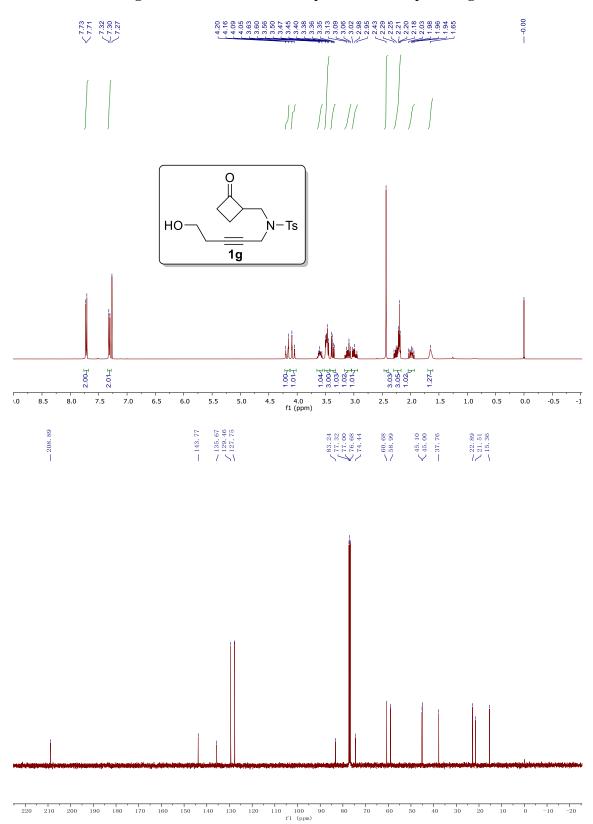


Figure 5.7 ¹H and ¹³C NMR spectrum of compound 1h

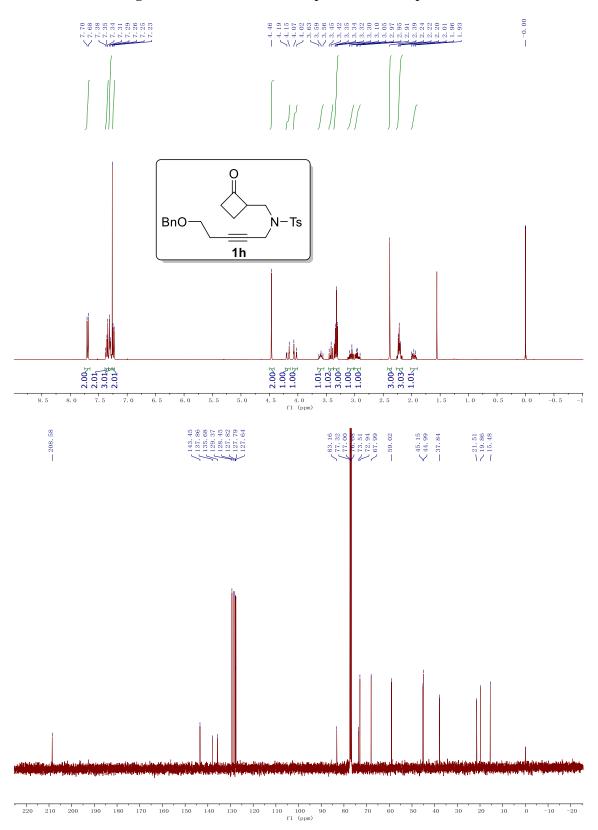


Figure 5.8 1 H and 13 C NMR spectrum of compound 1i

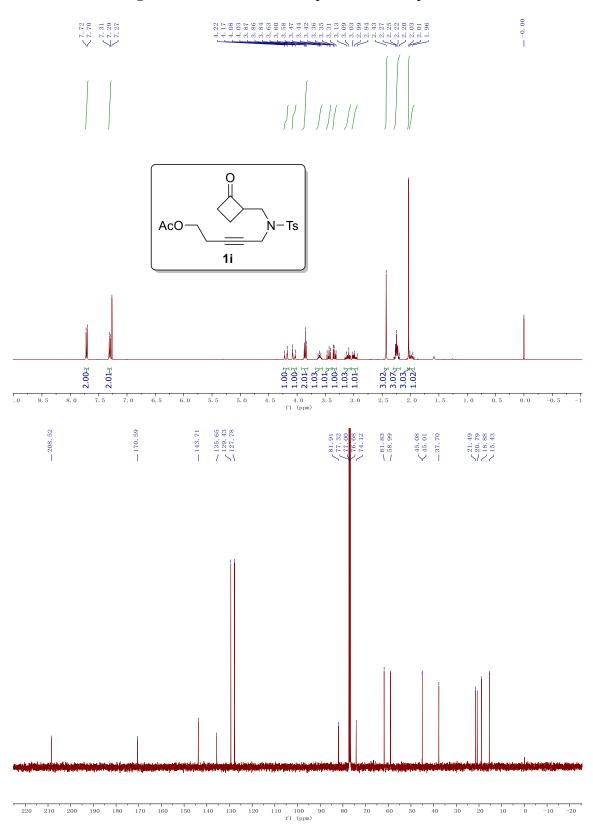


Figure 5.9 ¹H and ¹³C NMR spectrum of compound 1j

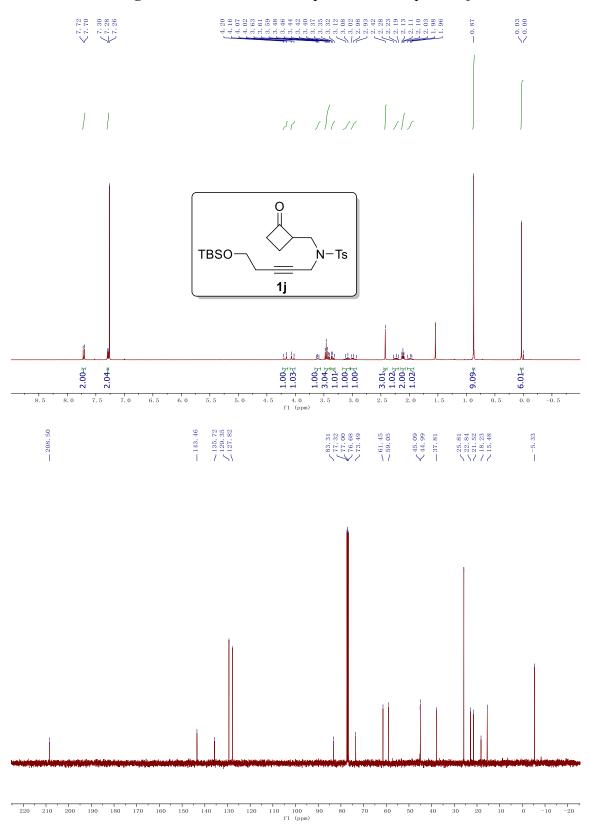


Figure 5.10 ¹H and ¹³C NMR spectrum of compound 1k

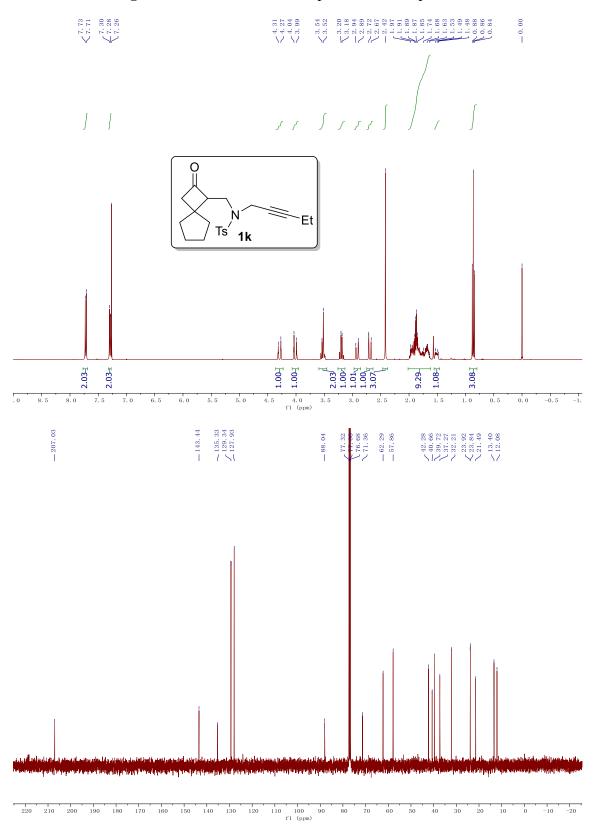


Figure 5.11 ¹H and ¹³C NMR spectrum of compound 2a

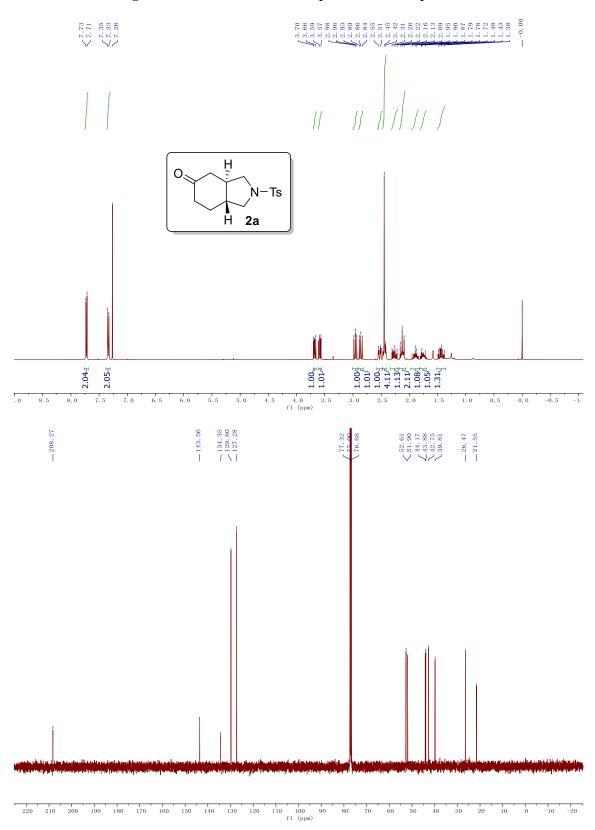


Figure 5.12 ¹H and ¹³C NMR spectrum of compound 2b

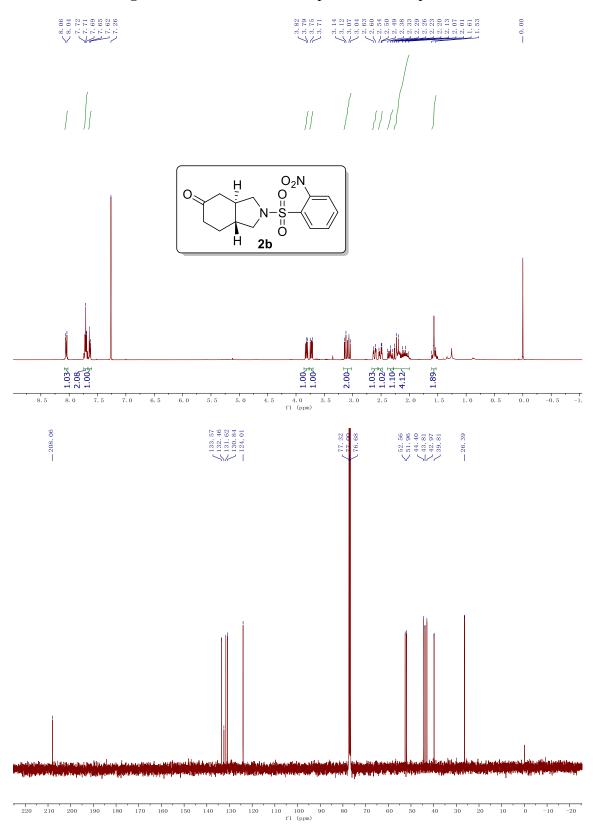


Figure 5.13 ¹H and ¹³C NMR spectrum of compound 2c

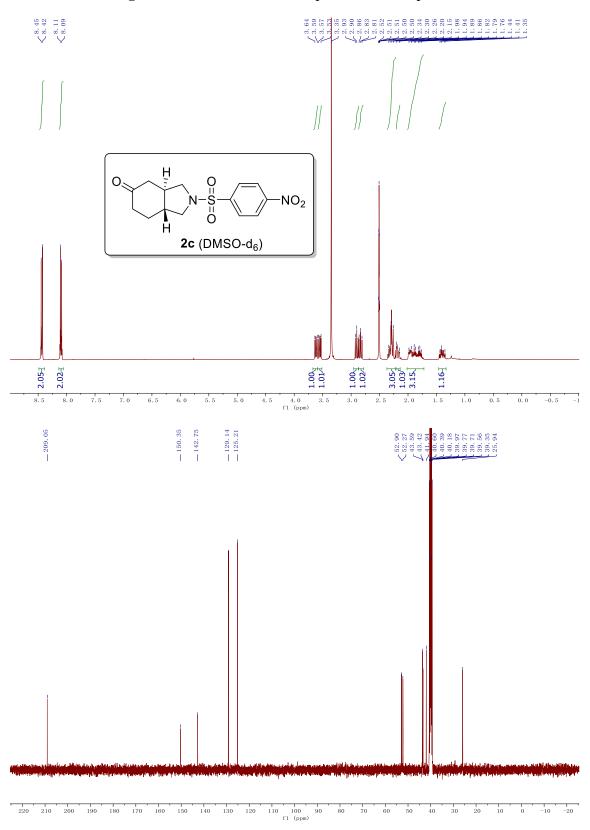
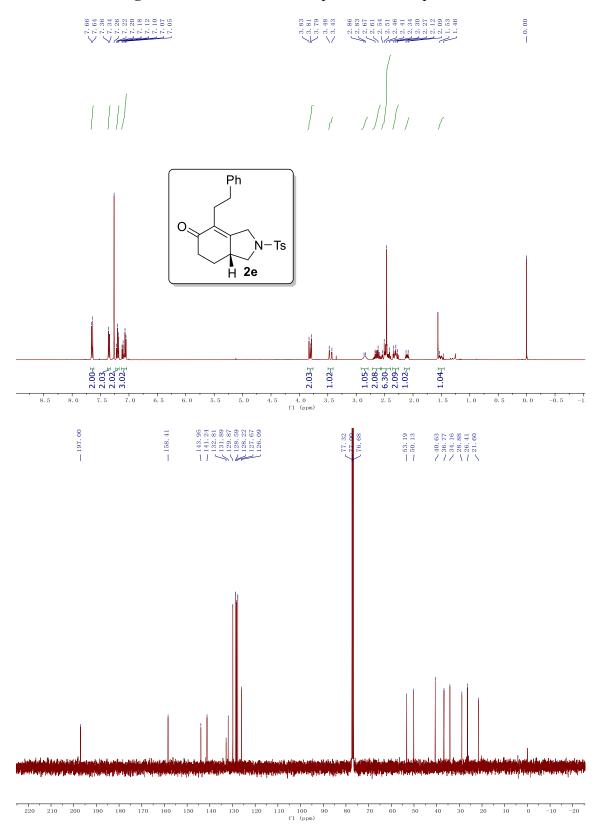



Figure 5.14 ¹H and ¹³C NMR spectrum of compound 2e

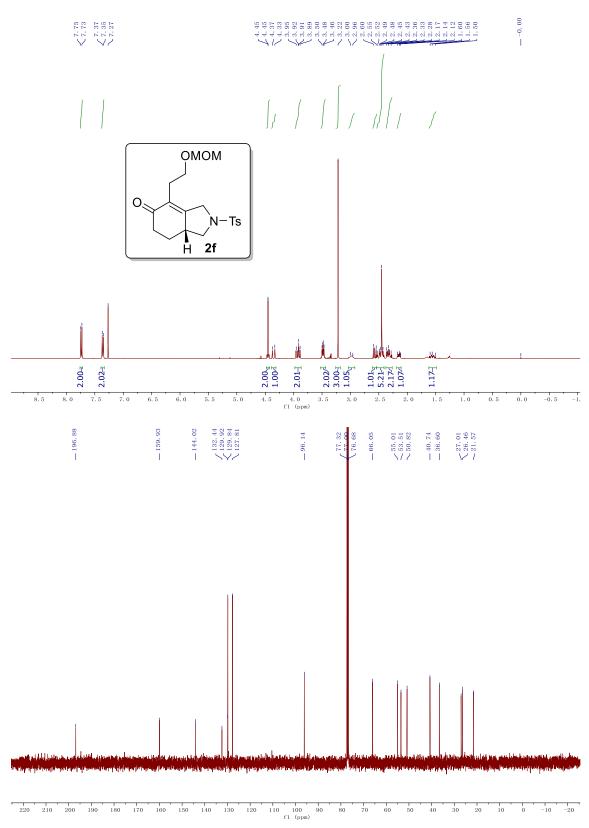


Figure 5.16 1 H and 13 C NMR spectrum of compound 2g

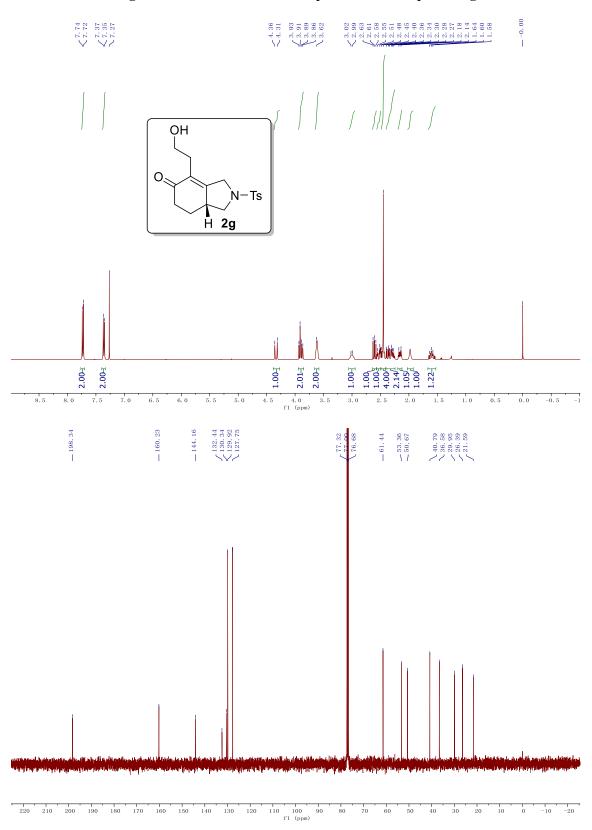


Figure 5.17 ¹H and ¹³C NMR spectrum of compound 2h

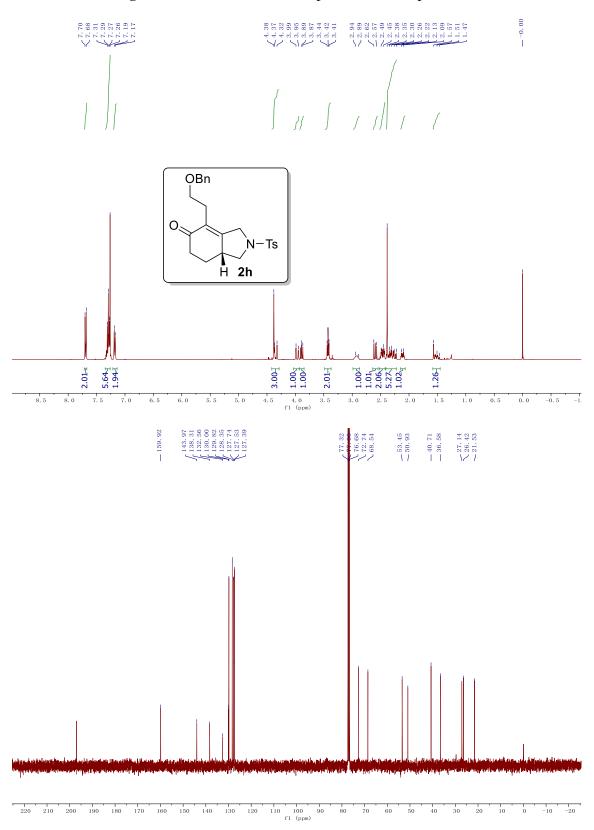


Figure 5.18 ¹H and ¹³C NMR spectrum of compound 2i

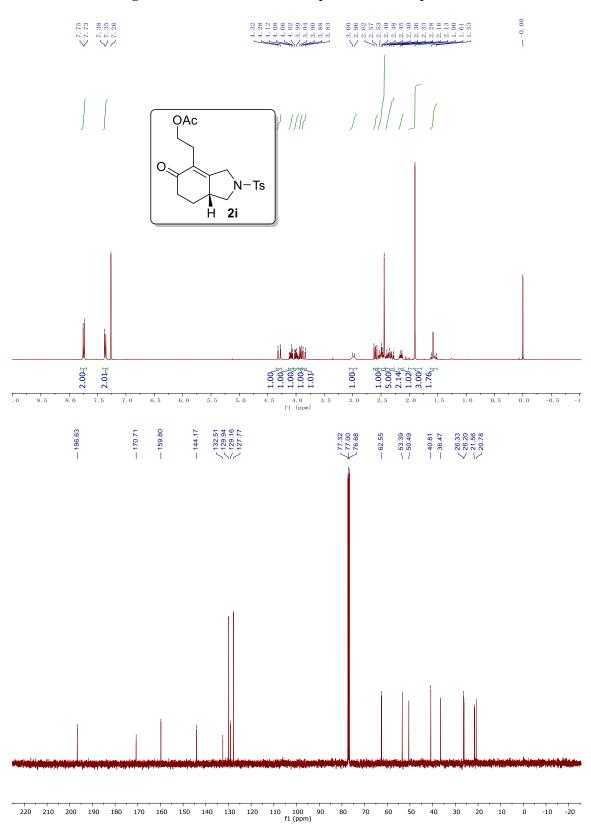


Figure 5.19 ¹H and ¹³C NMR spectrum of compound 2j

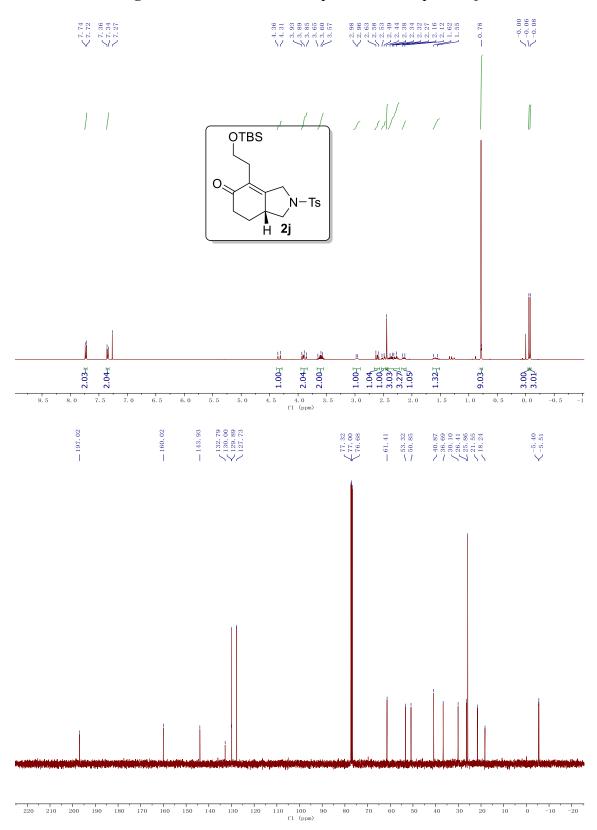
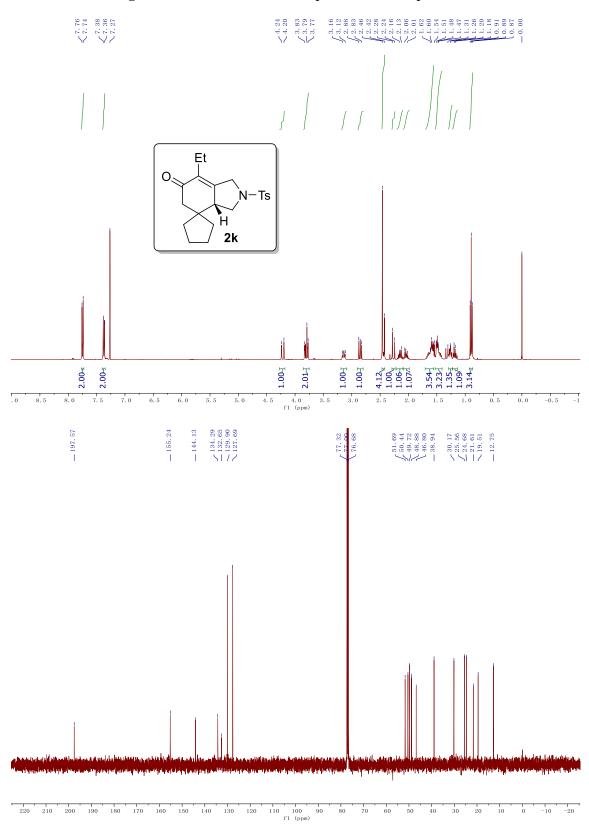



Figure 5.20 1 H and 13 C NMR spectrum of compound 2k

