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ABSTRACT
Spatial selection plays a central role in visual cognition, allowing us to prioritize processing at
relevant locations. An emerging view is that alpha-band (8-12 Hz) oscillations play a key role in
this core cognitive process. In this dissertation, | show that alpha-band oscillations track of
spatial priority with remarkable spatial and temporal resolution, and across a range of contexts.
To this end, | develop an encoding model approach to reconstruct spatially selective response
profiles (called channel-tuning functions, or CTFs) from alpha-band power measured with EEG.
These alpha-band CTFs reflect the spatial selectivity of the population-level activity that is
measured with EEG. In Chapter 2, | show that alpha activity precisely tracks the locus of
attention, and that the time course of this activity tracks trial-by-trial variations in the latency of
covert orienting, establishing it as a powerful means of tracking the temporal dynamics of covert
spatial attention. In Chapter 3, | show that alpha activity precisely encodes spatial positions held
in working memory, consistent with the broad hypothesis that there is considerable functional
overlap between attention and working memory. In Chapter 4, | show that alpha activity tracks
the spatial position of non-spatial memoranda held in working memory, even when space is
wholly irrelevant to the task, suggesting that spatial attention is also recruited during the
maintenance of non-spatial features in working memory. Finally, having established a tight link
between alpha oscillations and spatial selection, in Chapter 5 | examine the consequences of
spatial attention. Here, | show that spatial attention increases the amplitude of population-level
representations of stimulus position. Together, these studies establish that alpha-band oscillations
enable spatially and temporally resolved tracking of spatial attention, and highlights the central

role that spatial attention plays in a range of cognitive contexts.

xi



CHAPTER 1. OVERVIEW

As we navigate our environment, we are confronted with a remarkable amount of visual
information. However, our capacity to represent this information is limited (Rensink, Regan, &
Clark, 2003; Tsubomi, Fukuda, Watanabe, & Vogel, 2013). Therefore, we must prioritize the
processing of relevant information. Spatial attention plays a central role this effort, enabling us to
prioritize information at relevant locations (Posner, 1980; Posner, Snyder, & Davidson, 1980).
Often, we prioritize relevant locations overtly, by fixating the relevant location to bring it into
high-resolution foveal vision (Posner, 1980). However, eye movements to relevant stimuli are
not always possible: some stimuli come and go before the observer can initiate an eye
movement, other times we must monitor multiple locations in the visual field at once (Awh &
Pashler, 2000; Drew & Vogel, 2008; M. M. Miiller, Malinowski, Gruber, & Hillyard, 2003).
Situations like these require covert spatial attention — spatial selection in the absence of eye
movements. There is considerable evidence that covert attention plays a central role in vision:
covert spatial attention enhanced the fidelity and speed of processing at attended locations
(Carrasco & McElree, 2001; Posner, 1980; for review, see Carrasco, 2011), and governs what
stimuli we do and do not become aware of (Lavie, 2005; Mack & Rock, 1998).Thus, there is a
strong motivation to understand the neural basis of this core cognitive process.

In this dissertation, I show that neural oscillations in the alpha frequency band (8—12 Hz)
are intimately linked with spatial attention. I show that alpha activity precisely tracks where
attention is deployed, and when it is deployed. Furthermore, I show that this selection

mechanism is recruited in a range of contexts, including the selection of relevant locations in



perception, and the maintenance of information in working memory. Below, I outline the

contributions of each of the chapters that follow.

Alpha-band oscillations precisely track covert spatial attention

Given the central role of covert attention in perception, there is strong motivation to
understand the spatial and temporal dynamics of process (Egeth & Yantis, 1997). In service of
this goal, one promising line of work has shown that oscillations in the alpha frequency band (8—
12 Hz) are linked with covert spatial attention (for review, see Foxe & Snyder, 2011; Jensen &
Mazaheri, 2010). Human electroencephalogram (EEG) studies have found that alpha oscillations
track where attention is deployed. For example, when observers covertly attend one side of
space, alpha-band power is reduced at posterior electrodes contralateral to the attended location
(Kelly, Lalor, Reilly, & Foxe, 2006; Thut, Nietzel, Brandt, & Pascual-Leone, 2006; Worden,
Foxe, Wang, & Simpson, 2000). More recent work suggests that the topographic distribution of
alpha power tracks not just the attended hemifield but also covaries with the specific location in
the visual field that is attended (Rihs, Michel, & Thut, 2007; Worden et al., 2000). In this
dissertation, I build on this past work to show that alpha activity enables spatially and temporally
resolved tracking of covert spatial attention. To this end, I use the inverted encoding model
(IEM) approach, which initially gained traction with functional MRI (fMRI) data (Brouwer &
Heeger, 2009, 2011; Serences & Saproo, 2012; Sprague & Serences, 2013), to reconstruct
spatially selective channel-tuning functions (CTFs) from the scalp distribution of alpha-band
power. In Chapter 2, I use this approach to show that alpha-band oscillations not only precisely
track where in the visual field attention is deployed, but also track trial-by-trial variations in the

latency of covert orienting. This chapter establishes a powerful approach for tracking the spatial



and temporal dynamics of covert spatial attention, and provides new evidence for the tight link
between alpha-band activity and spatial attention.
The role of alpha activity in the maintenance of online representations

Working memory (WM) is a system that allows us to hold relevant information in an
online state .There is now substantial evidence for functional overlap between attention and WM
(Awh & Jonides, 2001; Awh, Vogel, & Oh, 2006; Chun, 2011; Gazzaley & Nobre, 2012). For
example, Awh and colleagues argued that covert spatial attention plays a key role in the
maintenance of spatial locations in WM (Awh & Jonides, 2001). In support of this view, Awh
and colleagues showed that holding locations in WM has the many of the same consequences as
covertly attending those locations: stimuli that are presented at a remembered location are better
processed (Awh, Jonides, & Reuter-Lorenz, 1998) and evoke a stronger neural response (Awh et
al., 1999; Awh, Anllo-Vento, & Hillyard, 2000). Motivated by this view, in Chapter 3 I examine
whether alpha activity tracks spatial positions held in WM as it does the locus of spatial
attention. I show that alpha oscillations precisely track spatial positions maintained in WM. This
finding provides new support for the functional overlap between attention and WM, and
establishes spatially selective modulations of alpha-band activity as a common selection process
that is recruited during selection of relevant locations in perception and during the maintenance
of relevant locations in WM.

There is evidence that the contribution of spatial attention to WM is not limited to the
maintenance of spatial information, but also support the maintenance of non-spatial information
in WM. For example, in a color-WM task, Williams and colleagues (Williams, Pouget, Boucher,

& Woodman, 2013) showed that observers tended to fixate the original locations of remembered



stimuli once the stimuli were no longer present, suggesting that observers spontaneously attend
these locations even though they no longer contain relevant information (also see Kuo, Rao,
Lepsien, & Nobre, 2009; Theeuwes, Kramer, & Irwin, 2011). Furthermore, Williams and
colleagues found that diverting spatial attention away from the locations of the remembered
stimuli disrupted memory for the remembered colors. In Chapter 4, | examine whether active
representations of spatial position are maintained in non-spatial memory tasks in which spatial
position was wholly irrelevant to the task. Here, too, I show that alpha activity tracks of the
original stimulus position that persisted throughout the retention interval, even when spatial
positon was not behaviorally relevant. This finding provides further evidence that spatial
selection is also recruited during the maintenance of non-spatial information in WM. Thus,
alpha-band oscillations reflect a general selection mechanism that operates in a range of

cognitive contexts.

Spatial attention enhances population-level representations
Together, chapters 2-4 provide compelling evidence that alpha activity precisely tracks

spatial selection in perception and during the maintenance of online representations. In Chapter
5, I address a distinct by related issue. In Chapter 5, I examine how spatial attention modulates
population-level representations of visual stimuli (i.e., the consequences of spatial selection).
Improved perception at attended locations is underpinned by improved neural coding of stimuli
appearing at those locations (Maunsell, 2015; Sprague, Saproo, & Serences, 2015). Single-unit
recordings in non-human primates have provided overwhelming evidence that spatial attention
improves coding of stimulus properties at the level of individual neurons. For example, attention

increases the amplitude of feature-selective tuning functions (e.g. McAdams & Maunsell, 1999).



However, perception is thought to be supported by the joint activity of populations of neurons
(Saxena & Cunningham, 2019; Sprague et al., 2015), providing a strong motivation to
understand how attention modulates population codes. In recent years, researchers have used the
encoding model approach combined with fMRI data to examine how attention modulates
population-level stimulus representations (e.g. Kay, Weiner, & Grill-Spector, 2015; Saproo &
Serences, 2014; Sprague & Serences, 2013; Vo, Sprague, & Serences, 2017). However, with
fMRI it has proven difficult to disentangle stimulus representations encoded by stimulus-driven
neural activity from top-down selection signals that are independent of the stimulus-driven
response (see Chapter 5 for further discussion). In Chapter 5, | apply the IEM approach to
stimulus-evoked EEG signals to examine how attention modulates population-level
representations of stimulus position. | show that attention enhances population-level

representations of stimulus position by increasing the amplitude of these representations.



CHAPTER 2. ALPHA-BAND OSCILLATIONS ENABLE SPATIALLY AND

TEMPORALLY RESOLVED TRACKING OF COVERT SPATIAL ATTENTION

Introduction

A typical visual scene contains more information than an observer can process at once.
Therefore, the observer must focus limited processing resources on the most relevant aspects of
the environment. Spatial attention plays a central role in this effort, enhancing the quality and
speed of processing at attended locations (Carrasco & McElree, 2001; Eriksen & Hoffman, 1974;
Posner, 1980; for review, see Carrasco, 2011). Because spatial attention is essential for normal
perceptual function, there is great interest in understanding the neural basis of this process. One
promising approach has been to examine the links between attentional states and rhythmic brain
activity. A growing body of evidence suggests that oscillatory activity in the alpha frequency
band (8—12 Hz) is integral to covert spatial attention. Measurements of the topographic
distribution of alpha power across the scalp have revealed that alpha power is reduced
contralateral to an attended location (e.g. Kelly et al., 2006; Sauseng et al., 2005; Thut et al.,
2006). Further work has shown that the topography of alpha power tracks not just the hemifield
but also the specific location that an observer is attending (e.g., Bahramisharif et al., 2010; Rihs
et al., 2007; Worden et al., 2000). These findings suggest that spatially specific alpha-band
activity directly tracks the deployment of spatial attention (Foxe & Snyder, 2011; Jensen &
Mazaheri, 2010).

Nevertheless, the hypothesis that alpha-band activity is integral to spatial attention makes
a clear prediction that remains untested: The topography of alpha-band activity should track not

only the spatial locus of attention but also the time course of covert orienting. Extant studies



have not provided a rigorous analysis of the time course of spatially specific alpha activity or
examined whether the time course of this activity tracks variations in the latency of covert spatial
orienting. Thus, our goal was to determine whether dynamic changes in alpha-band activity
provide a sensitive index of the speed of covert spatial orienting.

To this end, we used electroencephalography (EEG) recordings and an inverted encoding
model (IEM; Brouwer & Heeger, 2011, 2009; Sprague & Serences, 2013; for review, see
Sprague et al., 2015) to examine the time course of spatially specific alpha-band activity. This
approach assumes that the topographic pattern of alpha power across the scalp reflects the
activity of a number of underlying spatially tuned channels (or neuronal populations; Figure 2-
la). By first estimating the relative contributions of these channels to each electrode on the scalp
(Figure 2-1b), the model can then be inverted so that the underlying response of these spatial
channels can be estimated from the pattern of alpha power across the scalp (Figure 2-1c). The
resulting profile of responses across the spatial channels (termed channel-tuning functions, or
CTFs) reflects the spatial tuning of population-level alpha power, as measured with EEG. Thus,
the IEM approach enables a straightforward quantification of spatially selective activity from a
higher-dimensional pattern of alpha power on the scalp. By performing this analysis across
separate points in time, we were able to examine the temporal dynamics of spatially selective
alpha-band activity (also see J. J. Foster, Sutterer, Serences, Vogel, & Awh, 2016; Samaha,

Sprague, & Postle, 2016).
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Figure 2-1. Illustration of the inverted encoding method for reconstructing spatial channel-
tuning functions (CTFs) from the pattern of alpha-band power across the scalp.

We modeled alpha power measured at each electrode as the weighted sum of eight spatially
tuned channels (C1-C8). Each curve in (a) shows the predicted response of one of the channels
across eight possible attended angular locations (the locations shown here were used in
Experiment 2-1; in Experiment 2-2, we used 22.5°, 67.5°, 112.5°, etc.). The gray circles on the
right indicate how locations were labeled. In the training phase (b), we used predicted channel
responses to estimate a set of channel weights that characterized the relative contribution of each
of the spatial channels to the response measured at each of the scalp electrodes. The example
shown here is for an attended location at 45°. In the test phase (¢), using an independent set of
data, we used the channel weights determined from the training data to estimate the channel
responses from the observed pattern of alpha power on the scalp. The resulting CTF reflects the
spatial selectivity of population-level alpha power, as measured by electroencephalography
(EEG). The example shown here is for an attended location at 135°. For more details, see the
Inverted Encoding Model section.



In two experiments, we tested whether the topographic distribution of alpha-band activity
tracks the time course of covert orienting. In Experiment 2-1, subjects performed a spatial-cueing
task, which allowed us to examine the time course of alpha-band CTFs as subjects shifted covert
attention to the cued location following an attention-directing cue. In Experiment 2-2, subjects
performed a visual search task, in which we manipulated the latency of covert orienting toward
the target by varying search difficulty. This design allowed us to directly test whether the time
course of alpha-band CTFs tracked differences in the latency of target selection across different
levels of search difficulty and as a function of within-subject variations in orienting latency

across trials, as indexed by reaction times.
General Method

Subjects

Fifty volunteers (20 in Experiment 2-1, 30 in Experiment 2-2') participated in the
experiments for monetary compensation ($10 per hr). Subjects were between 18 and 35 years
old, reported normal or corrected-to-normal visual acuity, and provided informed consent
according to procedures approved by the institutional review board at the University of Oregon.

In Experiment 2-1, we did not analyze data from subjects who provided fewer than 700
artifact-free trials (i.e., trials that were not contaminated by recording or ocular artifacts). This
exclusion criterion was set during data collection and was chosen on the basis of our work using
the IEM method to track locations stored in working memory (J. J. Foster et al., 2016). Two

subjects were excluded because of excessive artifacts, and two subjects were excluded because

1 Three additional volunteers completed the practice session for Experiment 2-2 (see Procedures)
but did not return for the EEG session.
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of an error with stimulus presentation. Thus, the final sample included a total of 16 subjects. > All
subjects in the final sample provided data for at least 700 artifact-free trials (M = 1165, SD =
173).

In Experiment 2-2, we did not analyze data from subjects who provided fewer than 600
artifact-free trials (with correct responses) for each condition. We relaxed the exclusion criterion
in Experiment 2-2 because we obtained fewer trials per condition, because Experiment 2-2
included two conditions rather than one. The exclusion criterion was determined during the
course of data collection but before the data were analyzed. Seven subjects were excluded
because of excessive artifacts, which left a total of 23 subjects. > All subjects in the final sample
provided data for at least 600 trials per search condition (M = 772, SD = 79) after artifacts and

incorrect responses were discarded.

Apparatus and Stimuli

We tested the subjects in a dimly lit, electrically shielded chamber. Stimuli were
generated using MATLAB (The Mathworks, Natick, MA) and the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997) and were presented on a 17-in. CRT monitor (refresh rate = 60 Hz)
at a viewing distance of approximately 100 cm. Stimuli were rendered in dark gray against a

medium-gray background.

Z For Experiment 2-1, our target sample size was 16 subjects, in keeping with our previous work
using the method we used here to track locations held in spatial working memory (J. J. Foster et
al., 2016).
3 For Experiment 2-2, our target sample was a minimum of 20 subjects. Our target sample size
was larger for Experiment 2-2 than for Experiment 2-1 because we had not run comparable tests
for latency differences in previous work. Our lab was soon to relocate at the time of data
collection. Thus, we continued data collection beyond our minimum sample until we no longer
had access to the apparatus.
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Procedure

After providing informed consent, the subjects were fitted with a cap embedded with 20
scalp electrodes before completing the experimental task. Including preparation time and
experimental time, Experiment 2-1 took approximately 3 hr to complete, and Experiment 2-2
took approximately 3.5 hr to complete.

Experiment 2-1: spatial cueing task. Subjects in Experiment 2-1 completed a spatial-
cuing task in which they were required to identify a target digit among distractor letters (Figure
2-2a). Subjects initiated each trial by pressing the space bar. Each trial began with a central
fixation point (0.24° in diameter), surrounded by equally spaced placeholder rings (1.7° in
diameter, with a border of 0.08°). Each placeholder was centered 2.4° from the fixation point.
The exact angular position of the placeholders were jittered on each trial within a 45° wedge.
Thus, the position of the first placeholder varied between —22.5° and 22.5°, the second varied

between 22.5° and 67.5°, and so on. This jitter was not necessary for the [EM analysis.
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Figure 2-2. Task and results from Experiment 2-1.

In the spatial-cuing task (a), a central cross (cue) with three arms of one color and one arm of a
different color directed the subjects to attend one of eight placeholders. After a 1,000-ms delay,
the target digit was displayed among distractor letters and then masked with a pound sign. The

graph in (b) shows target-discrimination accuracy (proportion correct) separately for trials with
valid and invalid cues. The top graph in (c) shows the average alpha-band channel-tuning

12



Figure 2-2, continued..

function (CTF) across time for all eight locations. The yellow band shows the peak channel
response. The eight graphs below that show the average CTF for each of the eight cued locations
separately. In (d), the graph shows the average slope of the alpha-band CTF as a function of
time. The red marker indicates the area of reliable CTF selectivity. The shaded areas indicate 1
bootstrapped SEM. The graphs in (e) show the channel-response profile recovered using the
standard graded basis function (left) and a nongraded basis function (right). The shaded areas
indicate =1 bootstrapped SEM. The slopes of the CTFs reconstructed from the topographic
distribution of oscillatory power across a broad range of frequencies (4—50 Hz, in increments of
1 Hz) are plotted in (f). Points at which the CTF slope was not reliably above zero as determined
by a permutation test are set to zero (dark blue).

After a variable interval between 800 and 1,500 ms, a central cue (87.5% valid),
presented for 250 ms, indicated the likely location of a subsequent target. The cue was a small
cross (0.6° wide; arms were 0.08° thick) with three green arms and one blue arm (or vice versa,
counterbalanced across subjects). The uniquely colored arm of the cue pointed toward the cued
placeholder. In a target display presented 1,250 ms after cue onset, each placeholder was
occupied by a letter or digit. The display included one target (a digit between 1 and 9) among
distractors (uppercase letters). Digits and letters were approximately 0.9° tall and 0.8° wide. The
distractor letters were randomly selected without replacement from all possible letters (except for
“I,” “S,” and “Z” because of their similarity to the digits “1,” “5,” and “2,” respectively). The
target was backward-masked with a pound symbol (“#”) presented for 400 ms. Following the
mask, the subjects reported the target identity using the number pad on a standard keyboard;
there was no time limit. The reported digit appeared ~1° above the fixation point, and the
subjects could correct their response if they pressed a wrong key. Finally, the subjects confirmed
their response by pressing the space bar.

To encourage the subjects to attend the cued location in advance of the target display, we

adjusted the duration of the target display for each subject using a staircase procedure. Subjects
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completed one or two blocks (72 trials per block) of this procedure at the start of the session.
During the staircase procedure, the cue was valid on all trials, and the subjects were instructed to
attend the cued location. Exposure duration was decreased by 16.7 ms (i.e., one refresh cycle at
60 Hz) when the subjects made a correct response or increased by 33.3 ms (i.e., two refresh
cycles at 60 Hz) when the subjects made an incorrect response, until performance reached an
asymptote. The resulting duration of the target display varied between 33.3 ms and 66.7 ms
across subjects. This staircase procedure was somewhat coarse because changing exposure
duration by 16.7 ms had a considerable effect on task difficulty. Nevertheless, this procedure
ensured that target identification was adequately difficult for all the subjects: Target
identification accuracy ranged be-tween 65.7% and 97.0% (M = 83.5%, SD = 9.5) on trials with
valid cues, and all subjects showed a large spatial-cuing effect, which ranged between 26.6% and
69.8% (M = 46.6%, SD = 13.0).

After the staircase procedure, the subjects completed as many blocks of the spatial-cuing
task as time permitted, but the goal was 20 blocks. Each block contained 72 trials, and all
subjects completed at least 13 blocks. Each of the eight placeholders was cued equally often
within each block of trials.

Experiment 2-2: visual search task. Subjects in Experiment 2-2 performed a visual
search task in which they searched for a target (a vertical or horizontal bar) among distractors
(Figure 2-3a). Each item in the search display consisted of a dark gray bar (1.5° x 0.2°)
superimposed on a gray circle (2.1° in diameter). The items were equally spaced in a circle
around a dark gray fixation point (0.2° in diameter). Each item was centered 3° from the fixation

point. Stimulus positions were not jittered in Experiment 2-2.

14



Visual Search Task Aggregate RT Distributions

W Easy Search
I ¥ Hard Search
500

4,000 -

Target:
3,000 4

Ior_

Frequency
N
o
o
o

1,000 -
Easy Search
04 |

0 1,000 1,500 2,000
RT (ms)
C 0
Alpha CTFs: All Trials
Hard Search 010
[«b]
g 005
w
e
< 0.00
-0.05 5 > . . :
0 500 1,000 1,500 2,000
Time (ms)
d e
0.08 4 0.08 - — Fast-RT Trials
0.06 4 0.06 === Slow-RT Trials
& 0.04 & 0.047
o =]
o 0.024 b 0,02 -
= =
(<o) (&)

0.00

L 2

== Easy Search
=== Hard Search -0.02 1

002
0 50 1000 1500 2,000 0 500 1,000 1500 2,000
Time (ms) Time (ms)

Figure 2-3. Task and results from Experiment 2-2.

Subjects searched for a target (a vertical or horizontal bar) among distractors and reported the
target’s orientation (a). The histogram in (b) shows the distributions of response times (RT) for
easy and hard search. In (c), the plot shows the selectivity of the average target-related alpha-
band channel-tuning function (CTF) across time, collapsed across the search conditions (easy
and hard). Time points at which CTF selectivity was reliable are indicated by the red marker.
The plots in (d) and (e) show the average target-related CTF slope across time for (d) easy and
hard search and (e) for fast- and slow-RT trials (regardless of search condition). The filled circles
mark the points at which the target-related CTF reached the onset criterion (50% of maximum
amplitude). The shaded areas in (c), (d), and (e) represent £1 bootstrapped SEM.
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We varied the difficulty of visual search by manipulating both distractor variability (i.e.,
distractor orientation was uniform or varied) and target-distractor similarity (i.e., the extent to
which the distractors resembled the target). In the easy-search condition, all distractors were
identical and were rotated 45° clockwise or counter clockwise from the possible target
orientations (Figure 2-3a). Thus, distractor variability and target-distractor similarity were low.
In the hard-search condition, the distractors were heterogeneous and were rotated 22.5° from the
possible target orientations (Figure 2-3a). Thus, distractor variability and target-distractor
similarity were higher than in the easy-search condition, resulting in a more difficult search
(Duncan & Humphreys, 1989).

Each search array was presented for 2 s, separated by a variable intertrial interval
between 1.8 and 2.3 s, during which only the fixation point remained visible. Subjects reported
whether the target was vertical or horizontal by pressing the “z” key (left index finger) or *“/” key
(right index finger), respectively. Subjects were instructed to respond as quickly and as
accurately as possible. Feedback (mean response time, or RT, and accuracy) was provided at the
end of each block of trials. To minimize artifacts during the stimulus display and a 300-ms
prestimulus baseline period, the subjects were instructed to maintain fixation throughout each
block of the search task and to blink (if necessary) immediately after the offset of the search
array.

The subjects completed 30 blocks of 64 trials each. The search conditions (easy or hard)
were blocked, and the blocks alternated between conditions. The order of the conditions (easy
first or hard first) was counterbalanced across subjects. Before beginning the session, the

subjects completed two blocks of practice trials (easy search followed by hard search).
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The subjects also completed a short practice session the day before the EEG session to
familiarize themselves with the visual search task. During this session, the subjects completed
three blocks of the easy-search condition followed by three blocks of the hard-search condition.
Electrophysiology

EEG was recorded using 20 tin electrodes mounted in an elastic cap (Electro-Cap
International, Eaton, OH). We recorded from International 10/20 sites F3, FZ, F4, T3, C3, CZ,
C4, T4, P3, PZ, P4, TS5, T6, O1, and O2, along with five nonstandard sites: OL midway between
T5 and O1, OR midway between T6 and O2, PO3 midway between P3 and OL, PO4 midway
between P4 and OR, and POz midway between PO3 and PO4. All sites were recorded with the
left mastoid as a reference; they were re-referenced off-line to the algebraic average of the left
and right mastoids. To detect horizontal eye movements, we used horizontal electrooculography
(EOQG) recorded from electrodes placed approximately 1 cm from the external canthus of each
eye. To detect blinks and vertical eye movements, we recorded vertical EOG from an electrode
placed below the right eye and referenced to the left mastoid. The EEG and EOG were amplified
using an SA Instrumentation (San Diego, CA) amplifier with a band-pass filter of 0.01 to 80 Hz
and were digitized at 250 Hz using LabVIEW 6.1 (National Instruments, Austin, TX) running on
a PC. Trials were visually inspected for artifacts, and we discarded trials (both EEG and
behavioral data) contaminated by blocking (i.e., amplifier saturation), blinks, detectable eye
movements, excessive muscle noise, or skin potentials. Removal of ocular artifacts was
effective: Variation in the grand-averaged horizontal EOG waveforms by cued and target
locations was less than 3 pV. Given that eye movements of about 1° of visual angle produce a

deflection in the horizontal EOG of approximately 16 uV (Lins, Picton, Berg, & Scherg, 1993a),
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the residual variation in the average horizontal EOG corresponds to variations in eye position of
less than 0.2° of visual angle (i.e., smaller than the size of the fixation point).
Time-Frequency Analysis

Time-frequency analyses were performed using the Signal Processing toolbox and
EEGLAB toolbox (Delorme & Makeig, 2004) for MATLAB (The Mathworks, Natick, MA). To
isolate frequency-specific activity, we band-pass-filtered the raw EEG signal using a two-way
least-squares finite-impulse-response filter ("eegfilt.m" from EEGLAB Toolbox; Delorme &
Makeig, 2004). This filtering method uses a zero-phase forward and reverse operation, which
ensures that phase values are not distorted, as can occur with forward-only filtering methods. A
Hilbert Transform (Matlab Signal Processing Toolbox) was applied to the bandpass-filtered data,

producing the complex analytic signal, z(t), of the filtered EEG, f(t):

z(8) = f(O) +if ()

where £(t) is the Hilbert Transform of £(t), and i = v/—1. The complex analytic signal was
extracted for each electrode using the following Matlab syntax:

hilbert(eegfilt(data,F,f1,{2)")’)
In this syntax, data is a 2-D matrix of raw EEG (number of trials x number of samples), F'is the
sampling frequency (250 Hz), /1 is the lower bound of the filtered frequency band, and /2 is the
upper bound of the filtered frequency band. For alpha-band analyses, we used an 8- to 12-Hz
band-pass filter; thus, f1 and /2 were 8 and 12, respectively. For the time-frequency analysis, we
searched a broad range of frequencies (4-50 Hz, in increments of 1 Hz with a 1-Hz band pass).

For these analyses, f1 and f2 were 4 and 5 to isolate 4- to 5-Hz activity, 5 and 6 to isolate 5- to 6-
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Hz activity, and so forth. Instantaneous power was computed by squaring the complex

magnitude of the complex analytic signal.

Inverted Encoding Model

In keeping with our previous work on spatial working memory (J. J. Foster et al., 2016),
we used an IEM to reconstruct location-selective CTFs from the topographic distribution of
oscillatory power across electrodes. We assumed that power measured at each electrode reflected
the weighted sum of eight spatial channels (i.e., neuronal populations), each tuned for a different
angular location (see Brouwer & Heeger, 2009; Sprague & Serences, 2013). We modeled the
response profile of each spatial channel across angular locations as a half sinusoid raised to the
seventh power:

R = sin(0.56)7

where 0 is angular location (ranging from 0° to 359°) and R is the response of the spatial channel
in arbitrary units. This response profile was shifted circularly for each channel such that the peak
response of each spatial channel was centered over one of the eight locations (corresponding to
the cued locations 0°, 45°, 90°, etc., for Experiment 2-1 and the target locations 22.5°, 67.5°,
112.5°, etc., for Experiment 2-2; see Figure 2-1a).

An [EM routine was applied to each time point in the alpha-band analyses and each time-
frequency point in the time-frequency analysis.* We partitioned our data into independent sets of

training data and test data (for details, see the Training and Test Data section). The routine

4 For the time-frequency analysis, the IEM was applied across many frequency bands. To reduce
computation time, we down- sampled power values from 250 Hz to 50 Hz (i.e., one sample every
20 ms). We down-sampled power values after filtering and applying the Hilbert transform so that
down-sampling did not affect how power values were obtained.
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proceeded in two stages (training and test). In the training stage (Figure 2-1b), the training data
(BI) were used to estimate weights that approximated the relative contributions of the eight
spatial channels to the observed response (i.e., oscillatory power) measured at each electrode.
We define B/ (m electrodes x nl measurements) as a matrix of the power at each electrode for
each measurement in the training set, C/ (k channels X n/ measurements) as a matrix of the
predicted response of each spatial channel (specified by the basis function for that channel) for
each measurement, and W (m electrodes x k channels) as a weight matrix that characterizes a
linear mapping from channel space to electrode space. The relationships among B/, C1, and W
can be described by a general linear model of the following form:
B; =W(C;

The weight matrix was obtained via least squares estimation was as follows:

W =B,¢"(c.c,")”
In the test stage (Figure 2-1c), we inverted the model to transform the test data, B2 (m electrodes
x n2 measurements), into estimated channel responses, C, (k channels x n2 measurements),
using the estimated weight matrix, W, that we obtained in the training phase:

G = (W'W) 'W'B,
Each estimated channel-response function was circularly shifted to a common center, so that the
center channel was the channel tuned for the cued or target location (i.e., 0° on the channel offset
axes of Figure. 2-2c and Figure 2-2¢). We then averaged these shifted channel-response

functions to obtain the CTF averaged across the eight cued (or target) locations. The IEM routine

was performed separately for each time point.
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Finally, because the exact contributions of the spatial channels to electrode responses
(i.e., the channel weights, ) were expected to vary by subject, the IEM routine was applied
separately for each subject, and statistical analyses were performed on the reconstructed CTFs.
This approach allowed us to disregard differences in how location-selective activity was mapped
to scalp-distributed patterns of power across subjects and instead focus on the profile of activity
in the common stimulus, or information, space (J. J. Foster et al., 2016; Sprague et al., 2015).
Training and Test Data

For the IEM procedure, we partitioned artifact-free trials for each subject into
independent sets of training data and test data. Specifically, we divided the trials into three sets.
For each of these sets, we averaged power across trials for each cued location (Experiment 2-1)
or target location (Experiment 2-2), which resulted in three 20 (electrodes) x 8 (locations)
matrices of power values, one for each set. We used a leave-one-out cross-validation routine
such that two of these matrices served as the training data (81, 20 electrodes x 16
measurements), and the remaining matrix served as the test data (B2, 20 electrodes x 8
measurements). Because no trial belonged to more than one of the three sets, the training and test
data were always independent. We applied the IEM routine using each of the three matrices as
the test data, and the remaining two matrices as the training data. The resulting CTFs were
averaged across the three test sets.

When we partitioned the trials into three sets, we constrained the assignment of trials to
the sets so that all eight locations in all three sets had the same number of trials. To that end, we
determined the minimum number of trials per subject for any location, #, and assigned n/3 trials

for each location to each set. For example, if » was 100, we assigned 33 trials for each location to
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each set. Because of this constraint, some excess trials did not belong to any block. In
Experiment 2-2, we compared CTFs across search conditions (easy or hard) and across trials
with fast and slow RTs. To obtain a CTF for each condition separately, we partitioned each
condition into three sets of data as described, which resulted in six sets in total (three for each
condition). We constrained the assignment of trials as in Experiment 2-1. Note that this ensured
that the same number of trials was used for each of the conditions.

We used an iterative approach to make use of all available trials. For each iteration, we
randomly partitioned the trials into three sets (as just described) and performed the IEM routine
on the resulting training and test data. We repeated this process of partitioning trials into sets
multiple times (5 times for the full time-frequency analyses, 10 times for the alpha-band
analyses, and 100 times for the latency analyses in Experiment 2-2). For each iteration, the
subset of trials that were assigned to blocks was randomly selected. Therefore, the trials that
were not included in any block were different for each iteration. We averaged the resulting
channel-response profiles across iterations. This iterative approach reduced noise in the resulting
CTFs by minimizing the influence of idiosyncrasies that were specific to any given assignment
of trials to blocks.

Statistical Analysis

Quantifying CTF selectivity. To quantify the location selectivity of CTFs, we used
linear regression to estimate CTF slope (i.e., slope of channel response as a function of location
channels after collapsing across channels that were equidistant from the channel tuned to the

location of the evoking stimulus). Higher CTF slope indicates greater location selectivity.
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Permutation test. In Experiment 2-1, to test whether CTF selectivity was reliably above
chance, we tested whether CTF slope was greater than zero using a one-sample 7 test. Because
mean CTF slope may not be normally distributed under the null hypothesis, we used a Monte
Carlo randomization procedure to empirically approximate the null distribution of the ¢ statistic.
Specifically, we implemented the IEM as described earlier but randomized the location labels
within each block so that the labels were random with respect to the observed responses in each
electrode. This randomization procedure was repeated 1,000 times to obtain a null distribution of
¢ statistics. To test whether the observed CTF selectivity was reliably above chance, we
calculated the probability of obtaining (from the surrogate null distribution) a # statistic that was
greater than or equal to the observed ¢ statistic (i.e., the probability of a Type I error). Our
permutation test was therefore a one-tailed test. CTF selectivity was deemed reliably above
chance if the probability of a Type I error was less than .01. This testing procedure was applied
to each time-frequency point in the time-frequency analyses and to each time point in the alpha-
band analyses.

Jackknife test for latency differences. In Experiment 2-2, we tested for differences in
CTF onset latency between easy-search and hard-search trials and between trials with fast RTs
and trials with slow RTs. We used a jackknife-based procedure (Miller, Patterson, & Ulrich,
1998) to test for latency difference in CTF onset. CTF onset latency was measured as the earliest
time at which CTF slope reached 50% of its maximum amplitude. The latency difference
between conditions, D, was measured as the difference in onset latency between conditions in the
time courses of the CTF slopes averaged across subjects. We used a jackknife procedure (Miller

et al., 1998) to estimate the standard error of the latency difference, SEp, from the latency
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differences obtained for subsamples that included all but one subject. Specifically, the latency
differences, D_; (fori=1, ..., N, where N is the sample size), were calculated where D_; was
the latency difference for the sample with all subjects except for subject i. The jackknife estimate

of the was calculated as

N — 1~V _
SE, =jTE,=1(Di—])2

where ] is the mean of the differences obtained for all subsamples (i.e., ] = Y. D_;/N).
A jackknifed ¢ statistic, t;, was then calculated as

,_D
)~ SE,

which follows an approximate ¢ distribution with N — 1 degrees of freedom under the null
hypothesis. Our jackknife tests for latency differences in CTF onsets were one-tailed because we
had clear directional hypotheses: that CTF onset would be delayed for hard search compared
with easy search and for trials with slow RTs compared with trials with fast RTs. The jackknife
approach to testing for latency differences between conditions circumvents the need to calculate
latency differences for individual subjects, which are often noisy because of the low signal-to-
noise ratio of EEG data (Miller et al., 1998).
Results

Experiment 2-1

Subjects in Experiment 2-1 performed a spatial-cuing task in which they identified a
target digit among distractor letters (Figure 2-2a). A central cue indicated the likely location of
the target (valid on 87.5% of trials). We observed a robust spatial-cuing effect in the accuracy of

target discrimination (Figure 2-2b): Target-discrimination accuracy was higher on trials with a
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valid cue (M = 83.5%, SD = 9.5) than on those with an invalid cue (M =36.9%, SD = 18.2), #(15)
=14.33, p <.001, Cohen’s d, = 3.58.

Having established that the subjects attended the cued location, we tested whether the
topography of alpha-band activity tracked shifts of covert attention to the cued location
(collapsing across trials with valid and invalid cues). Using an IEM, we reconstructed spatial
CTFs from the scalp distribution of alpha power. A spatially selective CTF emerged several
hundred milliseconds after cue onset and was sustained until the search array was presented
(Figure 2-2c, top). Figure 2-2d shows CTF selectivity across time (quantified as CTF slope; see
General Method). A permutation test revealed that CTF selectivity was reliably above chance
beginning 304 ms after cue onset. Therefore, covert attention must have been shifted to the cued
location by this time at the latest. The time course of the attention-related CTF dovetails with
past behavioral work, which has shown that endogenously cued shifts of attention typically take
200 to 400 milliseconds to execute (Cheal & Lyon, 1991; Eriksen & Collins, 1969; Liu, Stevens,
& Carrasco, 2007; H. J. Miiller & Rabbitt, 1989; Nakayama & Mackeben, 1989; for review, see
Egeth & Yantis, 1997).

Next, we examined whether alpha-band activity tracked the specific location that was
attended. The alpha-band CTFs that we have reported so far reflected channel response profiles
that were averaged across all possible cued locations. We did observe reliable spatial selectivity
in the averaged CTF. Nevertheless, it is possible that the spatial selectivity of the averaged CTF
reflects selectivity for some locations but not others, which leads to reliable spatial selectivity on
average (J. J. Foster et al., 2016). Thus, we inspected the alpha-band CTFs for each cued location

separately (Figure 2-2c, bottom). For each location, the CTF peaked at the channel tuned for the
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cued location (i.e., a channel offset of 0°) starting approximately 300 ms after cue onset, which
demonstrated that time-resolved alpha-band CTFs tracked which of the eight locations was
attended. Thus, alpha-band activity tracks the locus of covert attention in a spatially precise
fashion.

Alpha-band CTFs showed a graded response profile: The strongest response was in the
channel tuned for the cued location, and responses steadily decreased across channels tuned for
other locations (Figure 2-2e, left). However, our standard set of basis functions (the basis set)
specified a graded channel-response profile across locations. Therefore, the graded profile of
alpha-band CTFs might be imposed by the graded basis function rather than reflecting truly
graded spatially selective activity. To test this possibility, we reconstructed CTFs with the [EM
again, with a basis set of Kronecker delta functions (stick functions; J. J. Foster et al., 2016).
These basis functions do not specify a graded channel-response profile. Thus, a graded CTF
profile seen when using this modified basis set necessarily reflects graded activity in the data
itself rather than a pattern imposed by the basis function. Alternatively, if spatially selective
alpha activity does not follow a graded format, then we should recover a peak in the channel
tuned for the attended location and uniform responses across the other channels. Using this
modified basis set, we found that alpha-band CTFs (averaged from 300 through 1,250 ms)
showed a graded profile across channels (Figure 2-2e, right), which demonstrated that the graded
profile of alpha-band CTFs reflects the underlying spatial selectivity of covert spatial attention.

Having established that the topographic distribution of alpha power tracked the spatial
locus of covert attention, we tested whether such spatially selective activity was specific to the

alpha band (8-12 Hz). We used the IEM to search a range of frequencies (4-50 Hz, in
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increments of 1 Hz) across time to identify the frequency bands in which the topographic
distribution of power carried information about the attended location (Figure 2-2f). We found
that spatially selective oscillatory activity was largely restricted to the alpha band.
Experiment 2-2

In Experiment 2-1, we showed that spatially selective CTFs can be reconstructed from
the topographic distribution of alpha power after a central, attention-directing cue. This spatially
selective activity emerged several hundred milliseconds after cue onset, so that it dovetailed with
behavioral estimates of the time course of endogenous shifts of spatial attention (e.g., H. J.
Miiller & Rabbitt, 1989). Although this finding suggests that alpha-band CTFs track spatial
attention in a temporally resolved fashion, a direct test requires a manipulation of covert
orienting speed. Thus, in Experiment 2-2, we manipulated the speed of target selection during
visual search. Subjects performed a visual search task in which they searched for a target (a
horizontal or vertical bar) among distractors (Figure 2-3a). We varied the difficulty of search by
manipulating both distractor variability and target-distractor similarity (Duncan & Humphreys,
1989), and we measured reaction time to obtain a trial-by-trial estimate of the time taken to
attend the target. This approach allowed us to test whether the time course of alpha-based CTFs
tracked differences in the latency of target selection across different levels of search difficulty
and as a function of within-subject differences in orienting latency across trials.

Figure 2-3b shows the aggregate RT distributions for easy and hard search. Our
manipulation of search difficulty was effective: Median RTs were slower for hard search (M =
829 ms, SD = 153) than for easy search (M =593 ms, SD =71), #22) = 12.31, p <.001, Cohen’s

d, =2.57, and accuracy was lower for hard search (M = 91.7%, SD = 4.4) than for easy search
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(M =97.0%, SD =2.4), 1(22) = 6.09, p <.001, Cohen’s d, = 1.27. We first tested whether alpha-
band CTFs tracked orienting to the target location during the visual search task. As in
Experiment 2-1, we quantified the spatial selectivity of alpha-band CTFs as CTF slope (see
General Method). A spatially selective alpha-band CTF emerged soon after onset of the search
array (Figure 2-3¢). A permutation test revealed that CTF selectivity was reliably above chance
starting 196 ms after cue onset. Thus, alpha-band CTFs tracked covert orienting to the target’s
location during visual search. To test whether alpha-band CTFs track the latency of covert
orienting to the search target, we compared the onset latency of target-related CTFs between the
easy- and hard-search conditions. To measure the difference in onset latency of target-related
CTF between the search conditions, we used a jackknife-based procedure with a 50% maximum
amplitude criterion (Miller, Patterson, & Ulrich, 1998; see General Method). The filled circles in
Figure 3d mark the CTF onset estimates during easy and hard search. We found that the target-
related CTF onset was 440 ms later for hard-search trials than for easy-search trials, #(22) = 2.48,
p=.011, Cohen’s d, = 0.52 (one-tailed test). Thus, the onset latency of the target-related CTF
was delayed in hard search compared with easy search, which demonstrated that alpha-based
CTFs revealed the difference in the latency of orienting attention to the target between the search
conditions.

Although RTs were generally slower for the hard-search condition than for the easy-
search condition, there was also considerable overlap in RTs between the easy- and hard-search
conditions (Figure 2-3b). This overlap was expected because target selection should sometimes
occur very quickly during hard search, when the target happens to be one of the initial items to

be selected. Given the overlap in RTs between conditions, we examined the onset latency of
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target-related CTFs split by RT, comparing the 50% of trials with the fastest RTs (fast trials)
with the 50% of trials with the slowest RTs (slow trials), regardless of search condition (Figure
2-3e). If alpha-band CTFs reveal the latency of target selection, CTF latency should covary with
trial-by-trial reaction times. Indeed, we found that the target-related CTF onset was 372 ms later
for slow trials than for fast trials, #(22) = 7.22, p <.001, Cohen’s d, = 1.51 (one-tailed test),
which provides further evidence that the onset of target-related CTFs tracks the latency of covert

orienting to the target item during visual search.

Discussion

The central role of covert spatial attention in visual cognition has motivated a sustained
effort to elucidate the neural mechanisms that underpin this process. One productive avenue has
been to examine the links between oscillatory alpha-band activity and spatial attention. A
growing body of evidence has shown that the topographic distribution of alpha power tracks the
locus of spatial attention (e.g., Kelly et al., 2006; Rihs et al., 2007; Thut et al., 2006; Worden et
al., 2000), which suggests that alpha oscillations play a role in biasing visual processing toward
attended locations (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010). According to this view, the
topographic distribution of alpha power should track the temporal dynamics of covert spatial
attention. However, this prediction has not previously been subjected to a rigorous test.

Our findings provide a compelling confirmation of this prediction. In Experiment 2-1, we
showed that variations in scalp distribution of alpha power enabled the reconstruction of spatially
specific response profiles (i.e., CTFs) that track the endogenous orienting of spatial attention
after a central cue. These alpha-band CTFs precisely discriminated the attended position

beginning approximately 300 ms after the onset of the central cue, consistent with past estimates
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of the time taken to endogenously shift attention (e.g., H. J. Miiller & Rabbitt, 1989; Nakayama
& Mackeben, 1989; for review, see Egeth & Yantis, 1997). Critically, Experiment 2-2 extended
this finding by showing that dynamic changes in alpha topography tracked the latency of covert
orienting during visual search. The onset of alpha-band CTFs was delayed during difficult search
compared with easy search and for trials with slow responses compared with trials with fast
responses. Together these findings demonstrate that moment-by-moment changes in the
topography of alpha-band activity track the temporal dynamics of covert spatial attention, which
closes a significant gap in the evidence linking alpha activity with covert spatial orienting.

Experiment 2-2 also provides important evidence that spatially specific alpha-band
activity plays a role in covert spatial attention in a range of paradigms. It has long been thought
that covert spatial orienting plays a central role in visual search (e.g., Kim & Cave, 1995; Luck,
Fan, & Hillyard, 1993). However, evidence linking alpha-band activity to covert orienting during
visual search has been lacking because studies that have linked alpha-band activity with spatial
attention have relied almost exclusively on spatial-cuing tasks (e.g., Thut et al., 2006; Worden et
al., 2000). Our finding that alpha-band CTFs tracked the latency of orienting to a target during
visual search provides clear evidence for the role of alpha-band activity in visual search. Thus,
spatially specific alpha-band activity plays a general role in covert orienting in a range of
paradigms.

Our findings also have important methodological implications for a field that has had a
long-standing interest in the spatial and temporal dynamics of covert orienting (Egeth & Yantis,
1997). Early work relied on overt behavioral responses to probe these dynamics (e.g., Downing,

1988; H. J. Miiller & Rabbitt, 1989). More recently, however, neural signals that track the
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allocation of attention have played a central role in this endeavor, in part because they
circumvent the need for overt behavioral responses. Functional magnetic resonance imaging
(fMRI) precisely tracks the spatial locus of covert attention (e.g., Brefczynski & DeYoe, 1999;
Tootell et al., 1998) but provides little information about the time course of attention because of
the slow hemodynamic response. Thus, researchers have relied on electrophysiological signals to
examine the temporal dynamics of attention (e.g. Garcia, Srinivasan, & Serences, 2013; M. M.
Miiller, Teder-Sélejarvi, & Hillyard, 1998).

One productive approach has been to measure the consequences of spatial attention by
examining stimulus-evoked potentials rather than directly measuring endogenous, attention-
related activity. Sensory components that are amplified by spatial attention (e.g., the P1
component; Hillyard, Vogel, & Luck, 1998) have allowed researchers to probe the spatial
allocation of attention. For example, Hopfinger and Mangun (1998) showed that the P1 response
evoked by a probe stimulus was amplified after an exogenous spatial cue, which means that
exogenous orienting shapes early stages of visual processing. However, although this approach
has provided important insights into how and when attention modulates evoked visual responses,
it does not reveal the time course of covert orienting before the evoking stimulus. To overcome
this limitation, some studies have focused on the rhythmic brain activity—called a steady-state
visual evoked potential—evoked by a flickering stimulus; this activity is amplified by spatial
attention (Morgan, Hansen, & Hillyard, 1996). Thus, by examining the time course of amplitude
modulations, it has been possible to measure the latency of orienting toward a flickering target
(e.g. M. M. Miiller et al., 1998). Nevertheless, stimulus-evoked approaches are not without

limitations. Note that because these approaches rely on stimulus-evoked activity, they cannot be
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used to track attention to empty locations, which restricts the kinds of questions that can be
addressed with these methods. Thus, there is much to be gained from a temporally resolved
signal that tracks spatial attention in the absence stimulus-evoked activity.

Our findings suggest that spatially specific alpha-band activity provides such an
opportunity. Alpha-band CTFs tracked the locus of covert spatial attention in balanced visual
displays and in the absence of transient evoked activity, suggesting that spatially specific alpha-
band activity reflects endogenous shifts of spatial attention rather than stimulus-evoked activity.
Thus, given its spatial and temporal precision, this method provides a promising approach for
obtaining a moment-by-moment index of the locus of covert attention across a broad range of

paradigms.

Conclusions

In the current study, we showed that the topographic distribution of alpha-band activity
tracked the spatial locus of covert attention after attention-directing cues and during visual
search. These results demonstrate that alpha-band activity plays a central role in covert orienting
in a range of paradigms. Critically, the time course of spatially specific alpha activity tracked
trial-by-trial variations in the speed of covert orienting during visual search. Our results provide

critical new evidence for the link between alpha-band activity and covert spatial attention.
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CHAPTER 3. THE TOPOGRAPHY OF ALPHA-BAND ACTIVITY TRACKS THE

CONTENT OF SPATIAL WORKING MEMORY

Introduction

A range of evidence suggests that neuronal oscillations in the alpha band (8-12 Hz) play
a central role in the selection and storage of information in the brain (Canolty & Knight, 2010;
Fries, 2005; Klimesch, 2012). For instance, many studies have shown that alpha-band activity
covaries with the deployment of spatial attention, such that posterior alpha power is reduced
contralateral to attended locations (e.g., Gould, Rushworth, & Nobre, 2011; Kelly, Lalor, Reilly,
& Foxe, 2006; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). Indeed, the topographic
distribution of alpha power not only tracks the attended visual hemifield, but also the specific
retinotopic coordinates that are attended (Rihs et al., 2007; Worden et al., 2000). For example,
Rihs and colleagues cued participants to attend one of eight placeholder locations around a
central fixation point and found that the topography of alpha power systematically varied with
the cued location, with more similar topographies associated with adjacent locations (Rihs et al.,
2007). Extending these findings, others have decoded both horizontal and vertical shifts of
attention from patterns of alpha power (Bahramisharif et al., 2010; van Gerven & Jensen, 2009),
and shown that lateralized modulations of alpha power are sensitive to the eccentricity of the
attended location (Bahramisharif, Heskes, Jensen, & van Gerven, 2011). Thus, alpha-band
activity enables tracking of the locus of spatial selective attention.

Here, motivated by past work positing a strong functional overlap between spatial
attention and spatial working memory (WM; Awh & Jonides, 2001; Awh, VVogel, & Oh, 2006;
Gazzaley & Nobre, 2012), we examined whether alpha-band activity tracks spatial
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representations held in WM. Consistent with this possibility, past work has already shown that
alpha power is reduced contralateral to locations held in spatial WM (Medendorp et al., 2007,
Van Der Werf, Jensen, Fries, & Medendorp, 2008; van Dijk, Van Der Werf, Mazaheri,
Medendorp, & Jensen, 2010). However, these contralateral modulations do not establish whether
alpha-band activity — as in the case of spatial selective attention — tracks the specific locations
that are stored. Instead, these modulations might reflect a lateralized memory operation (e.g., a
top-down control signal) that tracks the visual hemifield of the remembered location but not the
exact location that is stored. Here, we tested whether alpha-band activity relates to the coding of
the precise positions stored in WM, rather than a lateralized memory process than is not sensitive
the specific content of spatial WM.

In three experiments, participants performed spatial WM tasks that required them to
remember the precise angular location of a stimulus, sampled from a 360° space. Using an
inverted spatial encoding model (IEM; Brouwer & Heeger, 2011, 2009; for review, see Sprague
et al., 2015), we identified the oscillatory frequency bands in which the topographic distribution
of power — measured using EEG — carried location-specific information. We found that the
topographic distribution of both evoked (i.e., activity phase-locked to stimulus onset) and total
(i.e., activity regardless of phase) power across a range of low-frequency bands transiently
tracked stimulus location. However, only the topography of total power in the alpha-band
tracked the content of spatial WM throughout the delay period, indicating that alpha-band
activity is directly related to the coding of spatial representations held in WM. The IEM allowed
us to reconstruct spatially specific response profiles (termed channel-tuning functions, or CTFs)

that tracked the stored location during both encoding and delay periods of WM tasks. Thus,
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alpha-band activity enables time-resolved tracking of spatial representations held in WM. These
findings underscore the central role that alpha-band activity plays in coding the content of spatial
WM, and provide new evidence for the functional overlap between spatial WM and spatial
attention.
Materials and Methods

Subjects

Fifteen volunteers took part in each experiment for monetary compensation ($10 per
hour). The participants in each experiment were non-overlapping, with the exception of one
participant who took part in both Experiments 3-1 and 3-3. Participants reported normal or
corrected-to-normal vision, were between 18 and 35 years old, and provided informed consent
according to procedures approved by the University of Oregon Institutional Review Board.
Participants were replaced if more than 25% of trials were lost due to recording or ocular
artifacts, and/or if the participants did not complete all trials during the session (five in

Experiment 3-1, seven in Experiment 3-2, and three in Experiment 3-3).

Stimulus Displays

Stimuli were generated in Matlab (Mathworks, Inc.) using the Psychophysics Toolbox
(Brainard, 1997; Pelli, 1997), and were presented on a 17-inch CRT monitor (refresh rate: 60 Hz)
at a viewing distance of ~100 cm. All stimuli were rendered in dark gray against a medium gray
background.

The spatial WM tasks required participants to remember the angular location of a sample
stimulus. The stimulus was a circle (1.6° in diameter) centered 4° of visual angle from the central

fixation point (0.2° in diameter). For each trial, the angular location of the stimulus was sampled
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from one of eight location bins spanning 0-315° (in angular location), in steps of 45°, with jitter
added to cover all 360° of possible locations to prevent categorical coding of stimulus location.
In all experiments, the location of the sample stimulus was drawn from each bin equally often,

and in a random order, within each block of trials.

Procedures

After providing informed consent, participants were fitted with a cap embedded with 20
scalp electrodes before completing a spatial WM task (see below for details). Testing took place
in a dimly lit, electrically shielded chamber. In each experiment, the spatial WM task comprised
15 blocks of 64 trials, and took approximately 2-2.5 hours to complete.

Delayed estimation task. Participants in Experiments 3-1 and 3-2 performed a spatial
delayed-estimation task (Wilken & Ma, 2004; Zhang & Luck, 2008) (see Figure 3-1). These
experiments differed only in trial timing. Participants began each trial by pressing the spacebar.
The trial began with a fixation display lasting between 600-1500 ms. A sample stimulus was then
presented (250 ms in Experiment 3-1; 1000 ms in Experiment 3-2), followed by a delay period
during which only the fixation point remained visible (1750 ms in Experiment 3-1; 1000 ms in
Experiment 3-2). After the delay period, participants used a mouse to click on the perimeter of a
probe ring (8° in diameter, 0.2° thick) to report the remembered location of the sample disc as
precisely as possible. Before starting the task, participants completed a brief set of practice trials

to ensure they understood the task.
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Figure 3-1. Spatial working memory tasks used in Chapter 3.

(a) In experiments 3-1 and 3-2, participants performed a delayed estimation task. Participants
maintained fixation while they remembered the angular location of a sample stimulus, which
they reported after a delay period by clicking on the perimeter of a rim. Experiments

land 2 differed only in trial timing. (b) In experiment 3-3, participants performed a change
detection task. Rather than report the location of the sample stimulus, a test stimulus was
presented after the delay period and participants reported whether or not the location of the
stimulus had changed. Stimuli not perfectly to scale.

Spatial change detection task. Participants in Experiment 3-3 performed a spatial
change detection task (see Figure 3-1). Rather than reporting the remembered location after the
delay period with a mouse click, a test stimulus (identical to the sample stimulus) was presented
for 250 ms. On half of trials, the test stimulus was presented in the same location as the sample
stimulus (no-change trials), while on the other half of trials the test stimulus was shifted 20°
clockwise or anticlockwise from the sample location (change trials). Participants indicated with
a key press whether or not the location of the stimulus had changed. The timing of the task was
identical to Experiment 3-1 (i.e., 250 ms sample stimulus, 1750 ms delay period). Before starting

the task, participants completed a brief set of practice trials with feedback to ensure they knew

the size of the change to expect for change of trials.
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Modeling Response Error Distributions

In the delayed estimation experiments (Experiments 3-1 and 3-2), response error, the
angular difference between the reported and presented locations, could range from -180° to 180°.
The response error distribution for each participant was modeled as the mixture of a von Mises
distribution and a uniform distribution, corresponding to trials in which the sample stimulus was
successfully or unsuccessfully stored, respectively (see Zhang & Luck, 2008). Maximum
likelihood estimates were obtained for three parameters: (1) the mean of the von Mises
component (W), corresponding to response bias; (2) the dispersion of the von Mises distribution
(s.d.), corresponding to mnemonic precision; and (3) the height of the uniform distribution (Ps),
corresponding to the probability of forgetting the sample stimulus. Parameter estimates were
obtained using the ‘MemFit.m’ function of MemToolbox (Suchow, Brady, Fougnie, & Alvarez,
2013).
EEG Acquisition

We recorded EEG from 20 tin electrodes mounted in an elastic cap (Electro-Cap
International, Eaton, OH). We recorded from International 10/20 sites F3, FZ, F4, T3, C3, CZ,
C4, T4, P3,PZ, P4, T5, T6, O1, and O2, along with five nonstandard sites: OL midway between
T5 and O1, OR midway between T6 and O2, PO3 midway between P3 and OL, PO4 midway
between P4 and OR, and POz midway between PO3 and PO4. All sites were recorded with a
left-mastoid reference, and were re-referenced offline to the algebraic average of the left and
right mastoids. To detect horizontal eye movements, horizontal electrooculogram (EOG) was
recorded from electrodes placed ~1 cm from the external canthus of each eye. To detect blinks

and vertical eye movements, vertical EOG was recorded from an electrode placed below the
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right eye and referenced to the left mastoid. The EEG and EOG were amplified with an SA
Instrumentation amplifier with a bandpass of 0.01 to 80 Hz and were digitized at 250 Hz using
LabVIEW 6.1 running on a PC. Trials were visually inspected for artifacts, and we discarded
trials contaminated by blocking, blinks, detectable eye movements, excessive muscle noise, or
skin potentials. An average of 12.2% (SD = 5.6%) of trials were rejected per participant across
all three experiments.
Time-Frequency Analysis

Time-frequency analyses were performed using Matlab in conjunction with the Signal
Processing and EEGLAB toolbox (Delorme & Makeig, 2004). To isolate frequency-specific
activity, the raw EEG signal was bandpass filtered using a two-way least-squares finite impulse
response filter (Delorme & Makeig, 2004). This filtering method uses a zero-phase forward and
reverse operation, which ensures that phase values are not distorted, as can occur with forward-
only filtering methods. A Hilbert Transform (Matlab Signal Processing Toolbox) was applied to
the bandpass-filtered data, producing the complex analytic signal, z(t), of the filtered EEG,
(), where z(t) = f(t) +if (t) = A(t)e®®, from which instantaneous amplitude, A(t), was
extracted; f£(t) is the Hilbert Transform of f(t), and i = v—1. The complex analytic signal
was extracted for each electrode using the following Matlab syntax:

hilbert(eegfilt(data,F,f1,{2)")’)

where data is a 2D matrix of raw EEG (number of trials x number of samples), F is the sampling
frequency (250 Hz), f1 is the lower bound of the filtered frequency band, and 2 is the upper
bound of the filtered frequency band. For alpha-band analyses, we used an 8-12 Hz bandpass

filter, thus f1 and f2 were eight and twelve, respectively. For the time-frequency analysis, we
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searched a broad range of frequencies (4-50 Hz, in increments of 1 Hz with a 1 Hz bandpass).
For these analyses f1 and f2 were four and five to isolate 4-5 Hz activity, five and six to isolate 5-
6 Hz activity, and so on.

Total power was computed by squaring the complex magnitude of the complex analytic
signal, and then averaging across trials. Thus, total power reflects ongoing activity irrespective of
its phase-relationship to onset of the sample stimulus. In contrast, evoked power was calculated
by first averaging the complex analytic signal across trials, and then squaring the complex
magnitude of the averaged analytic signal. Evoked power reflects activity phase-locked to
stimulus onset because only activity with consistent phase across trials remains after averaging
the complex analytic signal.

Because calculating evoked power requires averaging across trials, artifact-free trials
were partitioned into three blocks. To prevent bias in our analysis, we equated the number of
observations across location bins within each block. To this end, we calculated the minimum
number of trials for any given location bin n for each participant, and assigned n/3 many trials
for each location bin to each of the three blocks. Importantly, the blocks were independent (i.e.,
no trial was repeated across blocks) to prevent circularity in the cross-validation procedures used
for the IEM routine (see Inverted Encoding Model). Evoked and total power was then calculated
for each location bin for each block, resulting in an I*b x m x s matrix of both evoked and total
power values, where | is the number of location bins, b is the number of blocks, m is the number
of electrodes, and s is the number of time samples. For the analysis in which the IEM is applied

across many frequency bands, we down-sampled the data matrix to a sample rate of 50 Hz (i.e.,
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one sample every 20 ms) to reduce computation time. The data matrix was not down-sampled for
analyses restricted to the alpha-band.

Finally, because we equated the number of trials across location bins within blocks, a
random subset of trials were not included in any block. Thus, we randomly generated multiple
block assignments (five for the full time-frequency analyses, and ten for the alpha-band
analyses), each resulting in an I*b x m x s power matrix. The IEM routine (see Inverted
Encoding Model) was applied to the matrices of power values for each block assignment, and
their outputs (i.e., channel response profiles) were averaged. This approach better utilized the
complete data set for each participant and minimizes the influence of idiosyncrasies in estimate

of evoked and total power specific to certain assignments of trials to blocks.

Inverted Encoding Model

We used an IEM to reconstruct location-selective CTFs from the topographic distribution
of oscillatory power across electrodes. We assumed that power measured at each electrode
reflects the weighted sum of eight spatial channels (i.e., neuronal populations), each tuned for a
different angular location (c.f. Brouwer & Heeger, 2011, 2009; Sprague, Ester, & Serences,
2014; Sprague & Serences, 2013). We modeled the response profile of each spatial channel
across angular locations as a half sinusoid raised to the seventh power, given by:

R = sin(0.560)7,

where @ is angular location (ranging from 0° to 359°), and R is the response of the spatial
channel in arbitrary units. This response profile was circularly shifted for each channel such that

the peak response of each spatial channel was centered over one of the eight location bins (i.e.,
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0°, 45°, 90° etc.). The predicted channel responses for each location bin were derived from these
basis functions (calculated using the angular location at the center of each bin).

An IEM routine was applied to each time-frequency point in the time-frequency analyses,
and to each time point in the alpha-band analyses. This routine proceeded in two stages (train
and test). In the training stage, training data B1 were used to estimate weights that approximate
the relative contribution of the eight spatial channels to the observed response measured at each
electrode. Let B1 (m electrodes x ny observations) be the power at each electrode for each
measurement in the training set, C1 (k channels x ny observations) be the predicted response of
each spatial channel (determined by the basis functions) for each measurement, and W (m
electrodes x k channels) be a weight matrix that characterizes a linear mapping from “channel
space” to “electrode space”. The relationship between B1, C1, and W can be described by a
general linear model of the form:

B, = W(,

The weight matrix was obtained via least-squares estimation as follows:

W = B¢ (66"
In the test stage, with the weights in hand, we inverted the model to transform the observed test
data B2 (m electrodes x nz observations) into estimated channel responses, C2 (k channels x n,
observations):

G = (W'W) 'W'B,
Each estimated channel response function was circularly shifted to a common center (i.e., 0° on

the “Channel Offset” axes of the figures) by aligning the estimated channel responses to the

channel tuned for the stimulus bin to yield CTFs. The IEM routine was performed separately for
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each sample point from 500 ms prior to stimulus onset through to the end of the delay period
(2000 ms).

Importantly, we used a “leave-one-out” cross validation routine such that two blocks of
estimated power values (see Time-Frequency Analysis) served as B1 and were used to estimate ,
and the remaining block served as B, and was used to estimate C,, Thus, the training and test data
were always independent. This process was repeated until each of the three blocks were held out
as the test set, and the resulting CTFs were averaged across each test block.

Finally, because the exact contributions of each spatial channel to each electrode (i.e., the
channel weights, W) will likely vary by subject, the IEM routine is applied separately for each
subject, and statistical analyses were performed on the reconstructed CTFs. This approach
allowed us to disregard differences in the how location-selectivity is mapped to scalp-distributed
distributed patterns of power across subjects, and instead focus on the profile of activity in the
common stimulus or “information” space (Sprague & Serences, 2015).

Statistical Analysis

To quantify the location selectivity of CTFs, we used linear regression to estimate CTF
slope (i.e., slope of channel response as a function of location channels after collapsing across
channels that were equidistant from the channel tuned to the location of the evoking stimulus),
where higher CTF slope indicates greater location selectivity. To test whether CTF selectivity
was reliably above chance, we tested whether CTF slope was greater than zero using a one-
sample t test. Because mean CTF slope may not be normally distributed under the null
hypothesis, we employed a Monte Carlo randomization procedure to empirically approximate the

null distribution of the t statistic. Specifically, we implemented the IEM as described above but
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randomized the location labels within each block so that the labels were random with respect to
the observed responses in each electrode. This randomization procedure was repeated 1000 times
to obtain a null distribution of t statistics. To test whether the observed CTF selectivity was
reliably above chance, we calculated the probability of obtaining a t statistic from the surrogate
null distribution greater than or equal to the observed t statistic (i.e., the probability of a Type 1
Error). Our permutation test was therefore a one-tailed test. CTF selectivity was deemed reliably
above chance if the probability of a Type 1 Error was less than .01. This permutation testing
procedure was applied to each time-frequency point in the time-frequency analyses, and to each
time point in the alpha-band analyses.
Quantifying Biases in Eye Position

Although we discarded trials with detectable eye movements, small but systematic biases
in eye position towards the remembered location may still exist. Indeed, we found evidence for
very small but reliable biases in horizontal EOG amplitude that tracked stimulus location (see
Results). If eye position is biases towards stimulus location, then there should be a linear
relationship between the horizontal position of the stimulus and horizontal EOG amplitude.
Thus, we used linear regression to calculate an eye bias score to quantify the extent to which eye
position covaried with stimulus location. The eye bias score was calculate as the slope of the best
fitting linear function describing horizontal EOG amplitude (in uV) as a function of the
horizontal location of the stimulus ( in degrees of visual angle). Higher eye bias scores therefore
reflect greater changes in eye position as a function of stimulus location. This eye bias score was

calculated across time for each participant separately.
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Results

Behavior

Task performance confirmed that participants were engaged in the spatial WM tasks in
all three experiments. In the delayed-estimation experiments (Experiments 3-1 and 3-2),
mnemonic precision computed from a mixture model (Suchow et al., 2013; Zhang & Luck,
2008) was high, indicated by low s.d. values (Experiment 3-1: M = 6.6°, SD = 1.8°; Experiment
3-2: M =5.2°, SD = 1.6°), and the probability that the stimulus was forgotten, Ps, was extremely
low (Experiment 3-1: M = .002, SD = .002; Experiment 3-2: M =.002, SD = .002). In the spatial
change detection task (Experiment 3-3), change detection accuracy was high (M =90.1%, SD =
4.7%).
Experiment 3-1

Identifying frequency bands that track the content of spatial working memory. We
first sought to identify the frequency bands in which the topographic distribution of oscillatory
power tracked the content of spatial WM. To this end, we used an IEM to reconstruct location-
selective CTFs (see Materials and Methods). Using the IEM, we searched a broad range of
frequencies (4-50 Hz, in increments of 1 Hz) across time to identify the frequency bands in
which the topographic distribution of evoked and total power tracked the location of the sample
stimulus. If the multivariate pattern of power across electrodes carries information about
stimulus location, then the IEM should reveal a graded CTF profile, with a clear peak in the
channel tuned for the remembered location. On the other hand, if the multivariate pattern of
power does not carry information about stimulus location, then the IEM should produce a flat

CTF profile, indicating no location tuning. Figure 3-2 shows location selectivity of reconstructed
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CTFs (as measured by CTF slope) as a function of time and frequency for both evoked and total
power. We performed a permutation test at each time-frequency point to identify the points at
which CTF slope was reliably above zero (see Materials and Methods). We found the
topographic distribution of both evoked and total power transiently tracked the location of the
sample stimulus across a range of low frequencies (~4-20 Hz; Figure 3-2a). In contrast, only
total alpha power (~8-12 Hz) enabled sustained tracking of the stored location throughout the

blank delay (Figure 3-2b). Thus, the topographic distribution of total alpha power tracked spatial

representations held in WM.
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Figure 3-2. Identifying the frequency bands that track the content of spatial working
memory in Experiment 3-1.

An IEM was used to reconstruct location-selective channel-tuning functions (CTFs) from the
topographic distribution of evoked (a) or total (b) power across a broad range of frequencies (4—
50 Hz, in increments of 1 Hz) and time. Evoked and total power transiently tracked stimulus
location after stimulus onset across a broad range of frequencies (4 to ~20 Hz). However, only
total alpha power tracked the content of spatial WM throughout the delay period. Color
represents CTF slope, a measure of CTF selectivity that quantifies the location-specific activity

in the topographic distribution of power. Points at which CTFs slope was not reliably above zero
as determined by a permutation test are set to zero (dark blue).
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Alpha power tracks the content of spatial WM with fine-grained spatial resolution.
Previous work has demonstrated that alpha power decreases contralateral to a location held in
spatial WM (Medendorp et al., 2007; Van Der Werf et al., 2008; van Dijk et al., 2010). It is
possible that location-selectivity in the alpha-band, measured using CTF slope, simply reflects
sensitivity of alpha power to the hemifield (or quadrant) of the remembered location. Such
coarse location tuning could give rise to a graded CTF when shifted and averaged across location
bins. To test this possibility, we examined the channel responses profiles reconstructed from total
alpha (8-12 Hz) power in Experiment 3-1 for each of the eight location bins separately. If the
topographic distribution of alpha power tracks the precise location held in WM, then the channel
response profiles should differ for each of the eight location bins. Specifically, for each location
bin, we should observe a graded tuning profile, with a peak response in the channel tuned for the
remembered location. Figure 3-3 shows the channel responses (averaged across time from 0-
2000 ms) for each of the eight location bins. Indeed, we found that the peak channel response
was always seen in the channel tuned for the remembered location, providing clear evidence that

the topography of alpha power tracked the specific angular location held in WM.
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Figure 3-3. CTFs precisely track the location of the remembered stimulus.
Unshifted channel responses reconstructed from total alpha power after stimulus onset (averaged
from 0-2,000 ms) shown for each of the eight stimulus location bins in Experiment 3-1. For all
location bins, the peak response is seen in the channel tuned for that stimulus location,
confirming that the topography of alpha power tracked the precise location held in spatial WM.
Examining the format of spatial representations tracked by alpha power. Next we
examined the format of the spatial representations tracked by the topographic distribution of
alpha power. Our standard basis set specified a “graded” channel response profile, with the peak
response in the channel tuned for the remembered location, and with gradually diminishing
response for channels tuned for other locations. This graded response profile across feature-
selective cells is the hallmark of population coding of sensory variables (Pouget et al., 2000),
rather than more abstracted (e.g., categorical) representations. We found that CTFs reconstructed
from alpha-band activity showed this graded profile, suggesting that that modulations of alpha

power follow a graded, sensory format (Figure 3-4a). However, using an IEM, it is always

possible that the graded CTF profile reflects the graded basis function itself rather than truly
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graded location-selective activity (Ester, Sprague, & Serences, 2015; Saproo & Serences, 2014).
To rule out this possibility, we reconstructed CTFs with the IEM, this time with a modified basis
set of eight orthogonal Kronecker delta functions, each centered on one of the eight location
bins. These functions do not specify a graded profile of responses across channels. Thus, if a
graded profile is observed using this basis function it must reflect a graded pattern in the data
itself. In contrast, if the spatial representations tracked by alpha-band power does not follow this
graded format, we would expect to recover a peak in the channel tuned for the remembered, and
uniform responses across the rest of the channels. Using this orthogonal basis set, reconstructed
CTFs had a graded profile (Figure 3-4b), confirming that graded location tuning is an intrinsic
property of alpha activity and is not imposed by the graded basis function. Figure 3-4c shows
that this graded profile was consistent across time. Therefore, alpha-band activity follows the

expected format of a sensory code.
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Figure 3-4. Examining the format of spatial representations tracked by alpha power.

CTFs reconstructed from total alpha (8—12 Hz) power after stimulus onset (averaged from 0—
2,000 ms) using the standard, “graded” basis set (a) and using a basis set of eight orthogonal
Kronecker delta functions (b) for Experiment 3-1. CTFs reconstructed using the orthogonal basis
set still showed a smooth, graded profile, demonstrating that the intrinsic tuning properties of
alpha power are well-described by the graded basis function of the spatial encoding model.
Shaded error bars reflect bootstrapped standard error of the mean. (¢) Time-resolved CTF
reconstructed using the orthogonal basis set, showing that the graded CTF profile was consistent
across time points.

Ruling out biases in eye position. Eye movements generate electrical potentials that
affect EEG recordings. We instructed participants to maintain fixation during the spatial WM
task, and discarded trials with detectable eye movements. Nevertheless, small but systematic
biases in eye position towards the remembered location may still exist. To examine this
possibility, we inspected horizontal electrooculogram as a function of stimulus location. We

found a reliable bias in eye position that tracked stimulus position. However, this bias was
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remarkably small (< 2 pV), corresponding to shifts from fixation of less than 0.15° of visual
angle on average (Lins, Picton, Berg, & Scherg, 1993b; Lins et al., 1993a). We found that CTF
slope in the alpha-band is greatest early in the trial, and decreased towards the end of the delay
period (Figure 3-5a). In contrast, bias in eye position, quantified using an eye bias metric (see
Materials and Methods), increased gradually as the delay period progressed (Figure 3-5Db).
Therefore, subtle biases in eye position cannot explain the link between alpha activity and the

content of spatial WM.
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Figure 3-5. Ruling out biases in eye position as a source of spatially selective alpha power.
Alpha CTF selectivity and small biases in eye position toward the remembered location show
different time courses. (a) Location-selectivity of CTFs reconstructed from total alpha (8—12 Hz)
power across time. Although CTF selectivity is robust throughout the delay period, it gradually
declines across time. (b) Eye bias score quantifying bias in eye position toward (positive values)
or away (negative values) from the remembered location. This score reflects the change in
HEOG amplitude (in pV) seen when the horizontal stimulus position changes by one degree of
visual angle. In contrast to CTF selectivity, bias in eye position toward the remembered location
increases across time, demonstrating that location-selective patterns of alpha power are not
accounted for by small but reliable biases in eye position. Shaded error bars reflect bootstrapped
standard error of the mean.
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Experiment 3-2: Alpha activity tracks spatial representations when the stimulus remains in
view

In Experiment 3-1, we demonstrated that that topographic patterns of alpha power track
the content of spatial WM during the delay period of a WM task. Recent work suggests that WM
is important not only for maintaining representations of stimuli that are no longer externally
available but also for representing stimuli that remain within view (Chun, 2011; Tsubomi et al.,
2013). In Experiment 3-2, we used an extended encoding period (1000 ms) to examine whether
the topographic distribution of alpha power track the spatial representation of a stimulus that
remains in view. We observed location-selective CTFs reconstructed from total alpha activity
(Figure 3-6b). Importantly, robust CTFs were seen throughout both the stimulus (0-1000 ms) and
delay (1000-2000 ms) periods, demonstrating that alpha activity tracks the location of a to-be-
remembered stimulus, even when the stimulus remains in view. Thus, total alpha power tracks
spatial representations both in the presence and absence of visual input.

In Experiment 3-2, we again found that evoked alpha power generated reliable CTFs
following stimulus onset (Figure 3-6a). However, weak but reliable CTF selectivity was also
seen following stimulus offset (at 1000 ms). This second burst of location-specific evoked
activity may reflect resynchronization of low-frequency activity caused by abrupt visual transient
of stimulus offset (Gruber, Klimesch, Sauseng, & Doppelmayr, 2005; Hanslmayr et al., 2007).

However, further work is necessary to test this possibility.
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Figure 3-6. Total alpha activity tracks stimulus location when the stimulus remains in view.
Location CTFs reconstructed from evoked (a) and total (b) alpha (8-12 Hz) activity during the
spatial WM task with a long encoding period (1,000 ms; Experiment 3-2). Despite the stimulus
remaining in view from 0 to 1,000 ms, total alpha power tracked stimulus location during this
period, demonstrating that total alpha power tracks spatial representations both in the presence
and absence of visual input. Evoked alpha power showed reliable but weaker location selectivity
during the delay period. White markers along the top of the panels indicate the points at which
CTF slope was reliably above chance as determined by a permutation test.

Experiment 3-3: Ruling out response confounds

In our first two experiments, we used a delayed-estimation task in which participants
used a mouse to click on a ring around fixation to report the remembered location (Figure 3-1a).
Consequently, the remembered location covaried with the required response. In Experiment 3-3,
we sought to rule out the possible contribution of preparatory motor activity to the location-
selective CTFs that we observed in the delayed-estimation task. To this end, participants

performed a spatial change detection task, in which they remembered the precise location of a
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sample stimulus, and reported whether the location of a test stimulus — presented after the delay
period — differed from that of the sample stimulus (Figure 3-1b). Critically, participants could not
plan their response (“change” vs. “no change”) until the test stimulus was presented. Therefore,
any location-selective delay activity cannot reflect a planned response. As in Experiment 3-1,
evoked CTFs only transiently tracked stimulus location (Figure 3-7a), while the topographic
distribution of total alpha power tracked the remembered location, allowing for the
reconstruction of reliable CTFs throughout the delay period (Figure 3-7b). Thus, findings from
Experiment 3-3 solidify our conclusion that alpha activity tracks the contents of spatial memory,

rather than the trajectory of a planned response.
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Figure 3-7. Ruling out response confounds.

Location CTFs reconstructed from evoked (a) and total (b) alpha (8—12 Hz) power during a

spatial change detection task (Experiment 3-3). Because participants could not anticipate the

response (“‘change” vs. “no change”) during the delay period, this task eliminated any

contribution of preparatory motor activity to the location CTFs. Nevertheless, total alpha power
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Figure 3-7, continued..

tracked location held in spatial WM throughout the delay period, whereas evoked alpha power
only transiently tracked stimulus position. White markers along the top of the panels indicate the
points at which CTF slope was reliably above chance as determined by a permutation test.

Location-selective activity is specific to the alpha band: A cross-experiment analysis

In our analyses of experiments 3-2 and 3-3 so far, we focused exclusively on the alpha-
band (8-12 Hz) because this frequency band was implicated in WM storage in Experiment 3-1.
These analyses replicated the finding that the topographic distribution of alpha power tracks the
content of spatial WM. However, because we focused on the alpha-band, these analyses did not
replicate the finding that sustained, location-selective activity is specific to the alpha-band. Next,
we sought to identify the frequency bands in which oscillatory power tracked stimulus location
across all three experiments. To this end, we used the IEM to search time-frequency space for
frequencies that carried location-specific information in Experiments 3-2 and 3-3 (as we
previously reported for Experiment 3-1) to obtain maps of CTF slope across time and frequency
(4-50 Hz, in increments of 1 Hz) for each experiment (Figure 3-8a). With these maps in hand, we
then identified the points in time-frequency space that showed reliable CTF selectivity across all
three experiments to create a cross-experiment map of location-selective oscillatory activity
(Figure 3-8-b). This simple but conservative analysis revealed that evoked and total power across
a range of frequency bands (~4-20 Hz) transiently tracked stimulus location, while only total
alpha power tracked the remembered location throughout the delay period. The cross-experiment

maps combined data from three independent experiments, with non-overlapping groups of
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participants.! Therefore, this analysis provides clear evidence that location-selective oscillatory
activity during WM maintenance, as reflected in the topographic distribution of oscillatory

power, is specific to the alpha-band.
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Figure 3-8. Location selectivity is specific to the alpha band.
(a) slope of CTFs reconstructed from the topographic distribution of evoked and total power
across a broad range of frequencies (4-50 Hz, in increments of 1 Hz) and time for experiments

1 One participant took part in both experiments 3-1 and 3-3. This subject was excluded from the
Experiment 3-3 dataset for the purpose of the cross-experiment map to ensure that the data from
each experiment were independent.
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Figure 3-8, continued..

3-1, 3-2, and 3-3. Points at which CTF slope was not reliably above zero as determined by a
permutation test are set to zero (dark blue). (b) cross-experiment map of the points for which
CTF slope was reliably above chance for all three experiments. Reliable points are shown in light
blue. Across three experiments, evoked and total power transiently tracked stimulus location
after stimulus onset across a broad range of frequencies (4 to ~20 Hz) while only total alpha
power tracked the content of spatial WM throughout the delay period.

Our results provide decisive evidence that the topography of alpha power tracks the
location held in spatial WM, suggesting that alpha-band activity is related to the coding of spatial
representations in WM. However, it is less clear whether other frequency bands play similar
roles. Theta- and gamma-band activity (i.e., 4-7 Hz and ~30-100 Hz, respectively) are of
particular interest because they have been proposed to play a central role in coordinating cellular
assembles that code the content of WM (Lisman, 2010; Roux & Uhlhaas, 2013). Given that we
observed no evidence of sustained location-selectivity in the topographic distribution of theta or
gamma power, it is tempting to conclude that the frequency bands do not contribute to the coding
of spatial representations in WM. However, it is possible that these frequency bands contribute to
the coding of spatial WM representations in ways that do not result in location-specific patterns
of EEG power across the scalp. For example, location-specific patterns of theta-band activity
may exist in hippocampal local field potentials (e.g. Agarwal et al., 2014). However, such
location-selectivity might not necessarily produce location-specific patterns of theta power on

the scalp. Thus, our results do not rule out potential roles for oscillatory activity outside the

alpha-band in coding the content of spatial WM.

Discussion
Previous work has demonstrated that alpha power is reduced contralateral to locations

held in spatial WM (Medendorp et al., 2007; Van Der Werf et al., 2008; van Dijk et al., 2010).
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However, those studies left it unanswered whether the topographic distribution of alpha activity
tracked the precise location held in WM, or whether alpha activity reflected a lateralized memory
process (e.g., a contralateral control signal) that is insensitive to the specific location that is
stored. Here, we provide clear evidence that the topographic pattern of total alpha-band power
precisely tracks the angular location maintained in WM. We used an inverted encoding model
(IEM) to reconstruct CTFs from the pattern of EEG power across the scalp, which provided an
assay of location-selective activity across the neuronal populations reflected in EEG activity. A
clear pattern of results emerged over three independent experiments: while evoked and total
power across a range of frequency bands transiently tracked the location of the sample stimulus,
only total alpha power tracked the remembered location throughout the delay period.
Furthermore, these location-specific patterns of alpha power showed the hallmark graded profile
of a sensory population code. This result clearly demonstrates that alpha activity coordinates
location-tuned neuronal populations rather than populations that code for more abstract variables,
such as top-down control signals or categorical representations of location. Together, these
results demonstrate that alpha activity is related to the sensory coding of spatial representations
in WM.

Our findings build on a foundation of human neuroimaging work demonstrating that the
feature content of visual WM can be recovered from voxel-wise patterns of activity (e.g.
Christophel, Hebart, & Haynes, 2012; Emrich, Riggall, Larocque, & Postle, 2013; Ester,
Anderson, Serences, & Awh, 2013; Ester et al., 2015; Harrison & Tong, 2009; Pratte & Tong,
2014; Riggall & Postle, 2012; Serences, Ester, Vogel, & Awnh, 2009; Sprague et al., 2014).

While stimulus-specific activity measured with functional magnetic resonance imaging (fMRI)
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allows for reconstruction of feature-selective CTFs (e.g. Ester et al., 2013, 2015), the temporal
precision of this approach is limited by the sluggish haemodynamic response. In a recent study,
Garcia and colleagues reconstructed time-resolved CTFs that from patterns of power evoked by a
flickering stimulus, highlighting the potential of combining IEMs with EEG recordings to
obtained temporally-resolved stimulus-specific activity (Garcia et al., 2013). Here, we find that
total alpha power tracks the content of spatial WM throughout a delay period, in the absence of
rhythmic visual stimulation. Thus, the intrinsic role that alpha-band activity plays in spatial WM
storage enables moment-by-moment tracking of location-specific activity, without the need for a
flickering stimulus. Given that the topography of alpha power covaries with attended locations
(Bahramisharif et al., 2011, 2010; Rihs et al., 2007; van Gerven & Jensen, 2009), we expect that
this approach should also provide a powerful tool for tracking the dynamics of covert attention.
The IEM approach allowed us to reconstruct CTFs, providing an assay of location-
specific activity across large populations of neurons (Serences & Saproo, 2012). While single
neurons are the building block for sensory codes, it is the joint activity of a population of cells
that guide behavior (Butts & Goldman, 2006; Jazayeri & Movshon, 2006). Thus, population-
level encoding models provide a good approach for linking brain and behavior (Sprague et al.,
2015). This approach has already enjoyed some success. For example, Sprague and colleagues
(Sprague et al., 2014) used a spatial encoding model to obtain population-level reconstructions of
stimulus location from patterns of activity measured with fMRI during a spatial WM task.
Sprague and colleagues found that amplitude of spatial reconstructions tracked the decline in
mnemonic precision that is seen with increasing set size in a WM tasks. The location-specific

patterns of alpha power we report here provide a new window onto population-level coding.
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Although we do not demonstrate it here, we expect that the topography of alpha activity should
also track changes in the quality of population codes and predict behavior. Furthermore, because
of the temporal resolution that EEG affords, this approach may be sensitive to rapid changes in
the quality of population codes. Further work is necessary to test these predictions.

What are the cortical origins of the topographic pattern of alpha power that track the
content of spatial WM? In studies of spatial attention, changes in topographic patterns of alpha
power are thought to reflect synchronization of posterior visual areas tuned for unattended
locations, reflecting suppression of processing in these regions (Kelly et al., 2006; Rihs et al.,
2007; Thut et al., 2006). While it is tempting to conclude that the location-specific modulations
of alpha activity reflect synchronization within visual cortex, it is difficult to infer the cortical
source of oscillations based on EEG recordings alone. Neuroimaging studies have revealed
location-specific activity in frontal, parietal, and occipital cortex during spatial attention and WM
tasks (Silver & Kastner, 2009; Sprague et al., 2014; Sprague & Serences, 2013). Thus, it is
possible that location-specific patterns of alpha power might reflect synchronization within or
between any of the location-selective regions.

We found that alpha activity tracked stimulus location not only during the delay period,
but also while the stimulus remained in view throughout an extended encoding period.
Traditionally, visual WM has been characterized as a system for the maintenance of visual inputs
that are no longer present. However, recent work has challenged this view, instead suggesting
that WM also constrains representation of externally available stimuli (Chun, 2011; Tsubomi et
al., 2013). For example, Tsubomi and colleagues demonstrated that memory-load dependent

contralateral delay activity (CDA) — an electrophysiological marker of maintenance in visual
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WM- showed a similar profile across both stimulus-absent and stimulus-present periods under
the same task demands (Tsubomi et al., 2013). Here, we show that the alpha-band activity, like
the CDA, plays a role in maintaining active spatial representations in both the presence and
absence of visual input.

Our finding that the topography of alpha power tracks the content of spatial WM is
consistent with the broad hypothesis that neuronal oscillations synchronize the cellular
assemblies that code for mental representations (Fell & Axmacher, 2011; Hebb, 1949; Nicolelis,
Fanselow, & Ghazanfar, 1997; Sejnowski & Paulsen, 2006; Singer, 1999; Singer & Gray, 1995;
Watrous, Fell, Ekstrom, & Axmacher, 2015). Applied to WM, this view predicts that patterns of
oscillatory activity should not only track spatial representations held in WM, but also non-spatial
representations (e.g., color and orientation). Indeed, Salazar and colleagues found content-
specific synchronization between frontal and parietal local field potentials in monkeys, peaking
at 15 Hz. Fronto-parietal synchronization tracked both the location and identity (i.e., shape) of a
remembered stimulus in a delayed-match to sample task, suggesting that both identity and
location are encoded in patterns of synchronization (Salazar, Dotson, Bressler, & Gray, 2012).
However, evidence for the role of oscillations in coordinating the code of non-spatial features is
sparse, and further work is needed to examine whether neuronal synchrony plays a general role

in coordinating feature-selective cellular assemblies that code the content of WM.

Conclusions
Using an inverted spatial encoding model, we demonstrated that the topographic

distribution of alpha power tracks spatial representations held in WM. These findings show that
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alpha-band activity plays a role in coding for spatial information held in WM, and this approach

provides a time-resolved tool for tracking the content of spatial WM.

62



CHAPTER 4. ALPHA-BAND ACTIVITY REVEALS SPONTANEOUS
REPRESENTATIONS OF SPATIAL POSITION IN VISUAL WORKING MEMORY
Summary

An emerging view suggests that spatial position is an integral component of working
memory (WM), such that non-spatial features are bound to locations regardless of whether space
is relevant (Rajsic & Wilson, 2014; Schneegans & Bays, 2017). For instance, past work has
shown that stimulus position is spontaneously remembered when non-spatial features are stored.
Item recognition is enhanced when memoranda appear at the same location where they were
encoded (Dill & Fahle, 1998; D. H. Foster & Kahn, 1985; Zaksas, Bisley, & Pasternak, 2001),
and accessing non-spatial information elicits shifts of spatial attention to the original position of
the stimulus (Kuo et al., 2009; Theeuwes et al., 2011). However, these findings do not establish
that a persistent, active representation of stimulus position is maintained in WM because similar
effect have also been documented following storage in long-term memory (Martarelli & Mast,
2013; Nazir & O’Regan, 1990). Here, we show that the spatial position of the memorandum is
actively coded by persistent neural activity during a non-spatial WM task. We used a spatial
encoding model in conjunction with EEG measurements of oscillatory alpha-band (8-12 Hz)
activity to track active representations of spatial position. The position of the stimulus varied
trial-to-trial but was wholly irrelevant to the tasks. We nevertheless observed active neural
representations of the original stimulus position that persisted throughout the retention interval.
Further experiments established that these spatial representations are dependent on the volitional
storage of non-spatial features rather than being a lingering effect of sensory energy or initial
encoding demands. These findings provide strong evidence that online spatial representations are
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spontaneously maintained in WM — regardless of task relevance — during the storage of non-

spatial features.

Results

In Experiment 4-1, human observers performed a single-item color WM task (Figure 4-
1a). Observers reported the color of a sample stimulus by clicking on a color wheel following a
1200-ms retention interval. Although the spatial position of the memorandum varied trial-to-trial,
the position of the stimulus was wholly irrelevant to the task: observers never reported stimulus
position, and the position of the test probe did not co-vary with the position of the memorandum.
This design provided a strong test of whether observers spontaneously maintained an active
representation of the irrelevant spatial position in WM. We assessed memory performance using
the angular difference between the reported and studied color on the color wheel. We modeled
these response errors as a mixture between a von Mises (circular normal) distribution and a
uniform distribution (Zhang & Luck, 2008). The model fits established that observers rarely

guessed, and precisely reported the color of the sample stimulus (Table 4-1).

Sample (100 ms) Delay (1200 ms) Report color

Figure 4-1. Color working memory task used in Experiment 4-1.

Observers in experiment 4-1 performed a color WM task. Observers saw a brief sample stimulus
(100 ms). After a 1,200-ms retention interval, observers reported the color of the sample stimulus
as precisely as possible by clicking on a color wheel. The position of the sample stimulus varied
trial to trial but was wholly irrelevant to the task.
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Table 4-1 Summary of parameter estimates (mean + SEM) for mixture models fitted to
response error distributions for each experiment.

SD Pg Ps
Exp. 4-1 (360° color space) 135°+£1.0 0.8% +0.3 N/A
Exp. 4-2a (360° color space) 16.5°+£ 0.6 0.5% +0.2 0.3% +0.1
Exp. 4-2b (180° orientation space) 12.2°+£ 0.6 2.6% + 0.6 0.3% +0.1
Exp. 4-2c (180° orientation space) 10.1°£ 0.7 0.8% +0.3 N/A
Exp. 4-3 (360° color space) 15.0°+£0.7 0.6% +0.1 1.2% +£0.2

An emerging view suggests that spatial position is an integral component of WM
representations (Rajsic & Wilson, 2014; Schneegans & Bays, 2017). Consistent with this view,
behavioral studies have shown that observers spontaneously remember stimulus position when it
is not task relevant (Dill & Fahle, 1998; D. H. Foster & Kahn, 1985; Kuo et al., 2009; Theeuwes
etal., 2011; Zaksas et al., 2001). For example, item recognition is faster and more accurate when
memoranda appear at the same location where they were encoded (Dill & Fahle, 1998; D. H.
Foster & Kahn, 1985; Zaksas et al., 2001). However, behavioral signatures of spatial storage do
not establish that a persistent, active representation of stimulus position is maintained in WM
because they could instead reflect spatial representations that are stored in other memory systems
(e.q., latent representations in episodic memory). Indeed, these behavioral signatures of storage
of an irrelevant position are also seen following storage in long-term memory (Martarelli &
Mast, 2013; Nazir & O’Regan, 1990). Therefore, it has remained unclear whether active
representations of spatial position are spontaneously maintained in WM when position is

irrelevant to the task. Here, we reasoned that persistent spatially selective neural activity tracking
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the position of the memorandum could provide unambiguous evidence for online representations
of space. Thus, we used ongoing oscillatory activity to test for active spatial representations
during the delay period of non-spatial WM tasks.

We focused on oscillatory activity in the alpha-band (8-12 Hz) because past work has
established that alpha-band activity encodes spatial positions that are actively maintained in WM
(J. J. Foster et al., 2016). We used an inverted encoding model (IEM; J. J. Foster et al., 2016;
Sprague et al., 2014; Sprague & Serences, 2013) to test for active alpha-band representations of
the spatial position of the stimulus throughout the delay period (see Figure 4-2b-d and Materials
and Methods). Our spatial encoding model assumed that the pattern of alpha-band power across
the scalp reflects the activity of a number of spatially tuned channels (or neuronal populations;
figures 4-2a and 4-2b). In a training phase (Figure 4-2c), we used a subset of the EEG data
during the color WM task to estimate the relative contribution of these channels to each electrode
on the scalp (the channel weights). Then, in a test phase (Figure 4-2d), using an independent
subset of data, we inverted the model to estimate the response of the spatial channels from the
pattern of alpha power across the scalp. This procedure produces a profile of responses across the
spatial channels (termed channel-tuning functions or CTFs), which reflects the spatial selectivity
of the large-scale neuronal populations that are measured by scalp EEG (J. J. Foster et al., 2016;
Lopes da Silva, 2013; Nunez & Srinivasan, 2006). We performed this analysis at each time point
throughout the trial, which allowed us to test whether active spatial representations were

maintained throughout the retention interval.
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Figure 4-2. The inverted encoding model for reconstructing spatial channel-tuning
functions.

(a) The sample stimulus could appear anywhere along an isoeccentric band around the fixation
(dotted white lines). We categorized stimuli as belonging to one of eight positions bins centered
at 0°, 45°, 90°, and so forth. Each position bin spanned a 45° wedge of positions (e.g., 22.5° to
67.5° for the bin centered at 45°). (b) We modeled oscillatory power at each electrode as the
weighted sum of eight spatially selective channels (C1-C8), each tuned for the center of one of
the eight position bins shown in (a). Each curve shows the predicted response of one of the
channels across the eight positions bins (i.e., the “basis function™). (¢) In the training phase, we
used the predicted channel responses, determined by the basis functions shown in (b), to estimate
a set of channel weights that specified the contribution of each spatial channel to the response
measured at each electrode. The example shown here is for a stimulus presented at 45°. (d) In the
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Figure 4-2, continued..
test phase, using an independent set of data, we used the channel weights obtained in the training
phase to estimate the profile of channel responses given the observed pattern of activity across
the scalp. The resulting CTF reflects the spatial selectivity of population-level oscillatory
activity, as measured using EEG. The example shown here is for a stimulus presented at 135°.
For more details, see Materials and Methods.

Our analysis revealed that precise representations of stimulus position were maintained in
WM. Alpha-band CTFs revealed robust spatial selectivity, which persisted throughout the
retention interval (Figure 4-3a). A permutation testing procedure (see Materials and Methods)
confirmed that this spatial selectivity was reliably above chance throughout the retention interval
(Figure 4-3b). In line with past work (J. J. Foster et al., 2016), we found that this spatially
selective delay activity was restricted to the alpha-band (Figure 4-4). To examine the precision of
the spatial representations encoded by alpha-band activity, we inspected the time-resolved
channel-response profiles for each of the eight position bins separately (Figure 4-3c). For each
position bin, the peak response was seen in the channel tuned for that position (i.e., a channel
offset of 0°), which established that the recovered alpha-band CTFs tracked which of the eight
positions that the stimulus had appeared in. Thus, stimulus position was precisely represented in
alpha-band activity. In summary, Experiment 4-1 established that observers spontaneous

maintained an active representation of stimulus position that persisted throughout the delay

period of a color WM task, even though spatial position was completely irrelevant.
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Figure 4-3. Spatial alpha-band CTFs during the storage of a color stimulus in working
memory.

(a) Average alpha-band CTF in Experiment 4-1. Although the position of the stimulus was
irrelevant to the task, we observed a robust, spatially selective alpha-band CTF throughout the
delay period. (b) The selectivity of the alpha-band CTF across time (measured as CTF slope, see
Materials and Methods). The magenta marker shows the period of reliable spatial selectivity. The
shaded error bar reflects +1 bootstrapped SEM across subjects. (c) Alpha-band CTFs for each
position separately. The magenta markers show to which of the eight stimulus position bins each
subplot corresponds.
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Figure 4-4. Spatially selective oscillatory activity is specific to the alpha band (8-12 Hz).
CTF selectivity (measured as CTF slope) as a function of time and frequency (4-50 Hz, in 1-Hz
bands) Points at which CTF selectivity was not reliable above chance, as determined by
permutation testing, are set to zero (dark blue). To reduce computation time, we down-sampled
power values from 250 Hz to 50 Hz (i.e., one sample every 20 ms). Note that we down-sampled
power values after filtering and applying the Hilbert transform so that down-sampling did not
affect how power values were obtained.

Another possibility is that the decoded spatial activity reflects lingering sensory activity
that was evoked by the sample stimulus, rather than the online maintenance of the stimulus color
in WM. In experiments 4-2a and 4-2b, we tested whether spatial alpha-band CTFs depend on the
volitional storage goals of the observer. Observers performed a selective storage task in which
they were instructed to store a non-spatial feature of a target that was presented alongside a
distractor. In Experiment 4-2a, observers performed a color version of this task (Figure 4-5a):
observers saw two shapes (a circle and a triangle) and were instructed to remember the color of
the target shape, which was consistent throughout the experiment (see Materials and Methods).
In Experiment 4-2b, observers performed an orientation version of the selective storage task
(Figure 4-5b): observers saw two oriented gratings (one blue and one green) and were required to

remember the orientation of the grating in the target color. Modeling of response errors revealed

that observers rarely guessed or misreported the distractor item instead of the target (Table 4-1).
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Figure 4-5. Tasks and results for experiments 4-2a and 4-2b.

(a) In experiment 4-2a, observers performed a selective storage task. The sample display
contained two colored shapes (a circle and a triangle). One shape served as a target and the other
as a distractor. We instructed observers to remember and report the color of the target and to
ignore the distractor. The target shape did not change throughout the session and was
counterbalanced across observers. (b) In experiment 4-2b, observers performed an orientation
version of the selective storage task used in experiment 4-2a. In this experiment,

observers saw two oriented gratings (one green and one blue) and were instructed to remember
and report the orientation of the grating in the target color (counterbalanced across observers).
(a’-b’) Spatial selectivity of alpha-band CTFs in experiments 4-2a and 4-2b. In experiment 4-2a
(a’) and experiment 4-2b (b”), we examined the spatial selectivity (measured as CTF slope) for
the target position (blue) and distractor position (red). In both experiments, spatial selectivity
was higher for the target-related CTF than for the distractor-related CTF. This modulation of
CTF selectivity by storage goals reveals a component of spatial selectivity that is related to the
volitional storage of non-spatial features in WM. The markers at the top of each plot mark the
periods of reliable spatial selectivity. All shaded error bars reflect +1 SEM.
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In both experiments, we varied the spatial positions of the target and distractor
independently, which allowed us to compare target- and distractor-related alpha-band CTFs. By
comparing target- and distractor-related CTFs, we were able to isolate spatially selective activity
that must be related to the volitional storage of the target in WM. If sustained alpha-band CTFs
are an automatic consequence of sensory activity evoked by the onset of a visual stimulus, then
we should see identical alpha-band CTFs for the target and distractor items. Instead, we found
that CTF selectivity was higher for the target location than for the distractor location (figures 4-
5a’ and 4-5b’). Bootstrap resampling tests confirmed that delay-period CTF selectivity (averaged
from 100-1250 ms after stimulus onset) was reliably greater for the target location than for the
distractor location in both experiments (Experiment 4-2a: p < 0.001; Experiment 4-2b: p <
0.001). While it is likely that there is a sensory contribution to the alpha-band CTFs, the
amplified CTF selectivity observed for the target shows that these spatial representations cannot
be wholly explained by stimulus-driven activity. Instead, they are strongly shaped by the
observer’s volitional storage goals.

Although we saw clear modulation of CTFs by the relevance of the stimulus, we also saw
a spatial CTF for the distractor location that lasted for most of the retention interval (Figures 4-
5a’ and 4-5b”). In a further analysis, we found that the representation of the distractor position
resembled that of the target position (Figure 4-6). We think it is unlikely that the sustained
distractor-related CTF reflects lingering sensory activity alone. While observers have top-down
control over the stimuli that are stored in WM, this control is imperfect, resulting in the

unnecessary storage of irrelevant items (McNab & Klingberg, 2008; Vogel, McCollough, &
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Machizawa, 2005). Therefore, the spatially specific distractor-related activity may in part reflect

the unnecessary storage of the distractor in WM.
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Figure 4-6. Spatial representations of the distractor position resemble the spatial
representation of the target position.
In our standard IEM procedure, we obtained target-related CTFs by training and testing on the
target position (see Materials and Methods). Similarly, we obtained distractor-related CTFs by
training and testing on the distractor position. This analysis leaves open the possibility that the
pattern of alpha-band activity that represents target and distractor positions is different. To test
this possibility, we ran an analysis in which we trained the IEM on the target position and tested
on the distractor position using the data from Experiment 4-2a (see Materials and Methods). The
plot shows the selectivity of resulting distractor-related CTF across time (measured as CTF
slope). We observed a reliable distractor-related CTF when training the IEM on the target
position. This result demonstrates that the alpha-band representation of the distractor position
resembles that of the target position. The magenta marker at the top of the plot shows the period
of reliable spatial selectivity. The shaded error bar reflects +1 bootstrapped SEM across subjects.

In Experiment 4-2c, we used a different approach to eliminate stimulus-driven activity as
a source of spontaneous spatial representations during the delay period. We used a balanced
visual display in which eight items were equally spaced around the fixation point (Figure 4-7a).
We instructed observers to remember the orientation of the line in the target item (defined by

color, with the relevant color varied across observers), and to reproduce the target orientation

following the retention interval. Because the sample displays were visually balanced, stimulus-
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driven activity was not spatially selective for the target position. Therefore, any spatially
selective activity must be related to storage of the target item in WM. We observed a robust,
target-related alpha-band CTF (Figure 4-7b), which emerged between 200 and 300 ms after onset
of the stimulus array, and sustained throughout the retention interval. This observation provides a
clean look at the spatial alpha-band representation when spatially selective stimulus-driven
activity is eliminated. Taken together, experiments 4-2a-c provide clear evidence for a persistent
active representation of the spatial position of memoranda stored in WM, even when stimulus-

driven activity is controlled for.
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Figure 4-7. Task and results for Experiment 4-2c.

(a) Observers saw a balanced array of stimuli and were instructed to remember and report the
orientation of the line in the target-colored circle. The target color did not change throughout the
experiment and was varied across observers. The markers at the top of each plot mark the
periods of reliable spatial selectivity. (b) We saw a robust alpha-band CTF that tracked the target
position throughout the retention interval. In this experiment, we completely eliminated spatially
specific stimulus-driven activity by presenting the target stimulus in a balanced visual display.
Thus, the alpha-band CTF in this experiment must be related to the storage of the target
orientation in WM. Shaded error bars reflect +1 SEM.
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Finally, we considered whether biased attention at the time of encoding could explain the
stronger spatial selectivity observed for the target relative to the distractor items in experiments
2a-c. Given that the target-defining feature was constant during experiments 4-2a and 4-2b, it is
possible that observers could have encoded the relevant feature of the target without fully
directing attention towards the distractor; this may have yielded a lingering advantage for the
target during the subsequent delay period. Experiment 4-3 tested this possibility with a task that
required full attention towards both the target and distractor items. Observers saw two colored
circles, each containing a digit, and the target was the circle that contained the larger digit
(Figure 4-8a). Again, we instructed observers to remember the color of the target, and to
disregard the distractor. Critically, this task forced subjects to attend both items to identify the
target (Pashler & Badgio, 1985). Thus, any observed difference in alpha-band CTFs for the
target and distractor cannot be attributed to biased attention toward the target during encoding.
Indeed, we did not see any difference in CTF selectivity in the 500-ms period following onset of
the sample display (0-500 ms, p = 0.42, bootstrap resampling test; Figure 4-8b), which far
exceeds the time required to encode simple visual objects (Vogel, Woodman, & Luck, 2006). In
contrast, when we examined the entire delay period (150-1500 ms), we found that alpha-band
CTF selectivity was higher for the target than for the distractor throughout the delay period (p <
0.01, bootstrap resampling test). Together, our results provide clear evidence that alpha-band
activity tracks active spatial representations that persist during the storage of non-spatial features

in WM.
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Figure 4-8. Task and results for Experiment 4-3.

(a) In Experiment 4-3, observers performed a variant on the selective storage task used in
experiments 2a and 2b. Observers saw two colored circles, each containing a digit (between 0
and 7). The target was the circle that contained the larger digit. Observers were instructed to
remember and report the color of the target and to disregard the distractor. Critically, this task
forced observers to attend and encode both items in order to determine which one was the target.
(b) Spatial selectivity (measured as CTF slope) for the target position (blue) and distractor
position (red). Spatial selectivity was higher for the target-related CTF than for the distractor-
related CTF. This modulation of CTF selectivity by storage goals cannot be explained by
differential attention to the target during encoding, because our task forced subjects to attend and
encode both items. Therefore, this modulation of CTF selectivity must reflect the continued
maintenance of the target item in WM. The markers at the top of the plot mark the periods of
reliable spatial selectivity. Shaded error bars reflect +1 SEM.

Discussion

Past work has established that human observers can voluntarily control which visual
features are stored in WM (Serences et al., 2009; Woodman & Vogel, 2008; Yu & Shim, 2017).
For example, Serences and colleagues (2009) instructed observers to remember the color or
orientation of a grating during a retention interval. VVoxel-wise patterns of activity in visual
cortex were measured with functional magnetic resonance imaging (fMRI) and revealed active
coding of the relevant dimension but not the irrelevant dimension. Likewise, Woodman and
Vogel (Woodman & Vogel, 2008) showed that contralateral delay activity, an

electrophysiological marker of WM maintenance, was higher in amplitude for orientation stimuli
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than for color stimuli. Critically, this “orientation bump” was only seen when observers
voluntarily stored the orientation dimension of conjunction stimuli. These studies demonstrated
that observers can control which aspects of the stimuli are held in visual WM, such that specific
stimulus dimensions are excluded when they are behaviorally irrelevant. Here, we showed that
stimulus position is a striking exception to this rule. We observed active representations of
stimulus position that were spontaneously maintained throughout the delay period, even though
location was never relevant to the task.

This finding lends support to models that posit a central role for space in the storage of
non-spatial information in WM (Rajsic & Wilson, 2014; Schneegans & Bays, 2017). It has been
a longstanding hypothesis that space is an integral component of an observer’s representation of
non-spatial information (Johnston & Pashler, 1990; Nissen, 1985; Tsal & Lavie, 1993).
However, evidence for spontaneous representation of stimulus position in WM has been elusive.
In non-human primates, there is evidence that spatial position is spontaneously represented when
irrelevant (Salazar et al., 2012; Sereno & Amador, 2006). However, these studies found that non-
spatial dimensions (e.g., shape) were also spontaneously represented when irrelevant (Sereno &
Amador, 2006), raising the possibility that these findings might reflect a general failure of non-
human primates to exclude any behaviorally irrelevant feature — spatial or non-spatial alike —
from WM. In contrast, it has been well-established that human observers exclude irrelevant non-
spatial features from storage in visual WM (Serences et al., 2009; Woodman & Vogel, 2008; Yu
& Shim, 2017). Therefore, our finding that human observers spontaneously maintain spatial

position in WM provides clear evidence that spatial position holds a special status in WM.
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Our IEM approach also sheds light on the nature of spontaneous spatial representations in
WM. By presenting stimuli at many spatial positions in conjunction with an IEM, we established
that alpha-band activity precisely tracked the position of the stimulus (Figure 4-3c). This result
rules out the possibility that spatially selective activity reflects an imprecise spatial signal that
does not track the specific location of the stimulus (e.g., a signal that tracks hemifield).
Furthermore, because scalp EEG activity reflects the synchronous activity of large neuronal
populations (Lopes da Silva, 2013; Nunez & Srinivasan, 2006), our findings show that spatial
position was robustly represented in a large-scale population code rather than an isolated group
of spatially selective neuronal units.

Do these spontaneous spatial representations play a functional role in the online
maintenance of non-spatial features? Past work has shown that observers recognize an item
faster and more accurately when it appears at the location where it was encoded than when it
appears elsewhere (Dill & Fahle, 1998; D. H. Foster & Kahn, 1985; Zaksas et al., 2001), thereby
suggesting that access to a non-spatial feature is intertwined with spatial memory. Furthermore,
Williams and colleagues (Williams et al., 2013) showed that color WM performance was
impaired when observers were prevented from fixating or covertly attending the positions where
the memoranda were presented. Thus, spatial attention toward the original locations of the items
improved performance in a color WM task. That said, recognition memory in Williams and
colleagues’ study required knowledge of stimulus position. Thus, more work is needed to
determine whether sustained spatial focus on an item’s initial position will enhance the

maintenance of non-spatial features alone.
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A substantial body of work has linked spatially specific alpha-band activity with covert
spatial attention (J. J. Foster, Sutterer, Serences, Vogel, & Awh, 2017; Foxe & Snyder, 2011;
Jensen & Mazaheri, 2010; Thut et al., 2006), which raises the possibility that the spatial
representations that we observed reflect sustained attention to the original location of the
stimulus. If this activity does reflect covert spatial attention, does it qualify as a working memory
for spatial position? Persistent stimulus-specific neural activity is an unambiguous signature of
active maintenance in WM (Sreenivasan, Curtis, & D’Esposito, 2014), and the sustained
spatially-selective activity that we observed satisfies this criterion. Furthermore, a broad array of
evidence has shown that there is considerable overlap between attention and WM (Awh &
Jonides, 2001; Awh et al., 2006; Gazzaley & Nobre, 2012), such that spatial attention supports
maintenance of both locations and non-spatial features in WM (Awh, Anllo-Vento, & Hillyard,
2000; Awh, Jonides, & Reuter-Lorenz, 1998; Williams et al., 2013). Thus, while it is difficult to
draw a precise line between spatial attention and spatial WM, our findings provide clear
evidence that storing non-spatial features in WM elicits the spontaneous and sustained
maintenance of an online spatial representation. Indeed, if the observed spatial representations
are best interpreted as sustained covert attention, it is striking that this spatial focus was
maintained throughout the delay period even though space was completely irrelevant to the task.
This empirical pattern contrasts with findings from explicit studies of spatial attention, where
behavioral relevance determines whether attention is sustained at a given location (Carrasco,
2011; Egeth & Yantis, 1997). Therefore, this perspective on our findings also highlights the

special status of spatial position in visual WM.
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In Summary, we found that human observers spontaneously maintained active neural
representations of stimulus position that persisted during the storage of non-spatial features in
WM. These spatial representations were precise and robustly coded by population-level alpha-
band activity. Although human observers can exclude non-spatial features (e.g., orientation or
color) from WM when they are irrelevant (Serences et al., 2009; Woodman & Vogel, 2008; Yu
& Shim, 2017), our results show robust and sustained spatial representations despite hundreds of
trials in which spatial position was behaviorally irrelevant.

Materials and Methods
Subjects

Subjects were human adults between 18 and 35 years old, who reported normal or
corrected-to-normal vision. Twelve subjects (7 female, 5 male) participated in Experiment 4-1,
21 subjects (5 female, 16 male) participated in Experiment 4-2a, 20 subjects (14 female, 6 male)
participated in Experiment 4-2b, 18 subjects (8 female, 10 male) participated in Experiment 4-2c,
and 19 subjects (8 female, 11 male) participated in Experiment 4-3. Subjects in Experiment 4-1
provided informed consent according to procedures approved by the University of Oregon
Review board. Subjects in all other experiments provided informed consent according to
procedures approved by the University of Chicago Institutional Review Board.

Apparatus and Stimuli

We tested subjects in a dimly lit, electrically shielded chamber. Stimuli were generated
using Matlab (The Mathworks, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997). In Experiment 4-1, stimuli were presented on a 17-in CRT monitor (refresh rate =

60 Hz) at a viewing distance of 100 cm. In experiments 4-2a and 4-2b, stimuli were presented on
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a 24-in LCD monitor (refresh rate = 120 Hz) at a viewing distance of 100 cm. In experiments 4-
2¢ and 4-3, stimuli were presented on a 24-in LCD monitor (refresh rate = 120 Hz) at a viewing

distance of 77cm.

Task Procedures

Experiment 4-1. Subjects performed a delayed color-estimation task (Figure 4-1). On
each trial, subjects saw a sample stimulus and reported its color as precisely as possible
following a retention interval. Subjects initiated each trial with a spacebar press. A fixation point
(0.24° of visual angle) appeared for 800-1500 ms before a sample stimulus appeared for 100 ms.
The sample stimulus was a circle (1.6° in diameter), centered 3.8° of visual angle from the
fixation point. The angular position of the stimulus varied trial-to-trial, and was sampled from
one of eight position bins around fixation (each bin spanned a 45° wedge of angular positions,
bins were centered at 0°, 45°, 90°, and so forth). Critically, the position of the stimulus was
irrelevant to the task, and subjects were told that this was the case at the start of the session. The
color of the sample stimulus was chosen from a continuous color wheel that included 360
different colors. Following a 1200-ms retention interval during which only the fixation point
remained on screen, a color wheel (8.0° in diameter, 0.5° thick) appeared around fixation, and
subjects reported the color of the sample stimulus by clicking on the color wheel with a mouse.
The orientation of the color wheel was randomized on each trial to ensure that subjects could not
plan their response until the color wheel appeared. Before starting the task, subjects completed a
brief set of practice trials to ensure that they understood the instructions. Subjects then completed

15 blocks of 64 trials (960 trials in total), or as many blocks as time-permitted (all subjects
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completed at least 13 blocks; one subject completed 2 extra blocks, thus completed 17 blocks in
total).

Experiments 4-2a and 4-2b. Subjects in Experiments 4-2a and 4-2b performed a
selective storage version of the delayed-estimation task (figures 4-5a and 4-5b). In this
procedure, two sample stimuli were presented on each trial (a target and a distractor). Subjects
were instructed to remember the color (Experiment 4-2a) or orientation (Experiment 4-2b) of the
target, and to ignore the distractor. As in Experiment 4-1, the angular positions of each stimulus
around the fixation point were drawn from eight position bins, each spanning a 45° wedge of
angular positions. The position bins that the target and distractor stimuli occupied were fully
counterbalanced across trials for each subject. Thus, the position of one stimulus was random
with respect to the other, allowing us to reconstruct spatial CTFs for the target and the distractor
positions independently, disregarding the other. When the target and distractor stimuli occupied
the same position bin, their exact position within the bin was constrained so that they did not
overlap.

In Experiment 4-2a, subjects performed a color version of the selective storage task
(Figure 4-5a). Subjects initiated each trial with a spacebar press. A fixation point (0.2°) appeared
for 500-800 ms. Next, the sample display was presented for 100 ms. The sample display
contained two stimuli: a circle (0.7° in diameter) and an equilateral triangle (length of edges were
0.94°, such that the circle and triangle were equated for area). The target shape was
counterbalanced across subjects. Each shape was presented 4° of visual angle from the fixation
point. Subjects were instructed to remember the color of the target shape (circle or triangle) as

precisely as possible, and to ignore the distractor shape. Following an 1150-ms retention interval,
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during which only the fixation point remained on the screen, a color wheel (8° in diameter, 0.4°
thick) appeared centered around the fixation point, and subjects reported the color of the sample
stimulus by clicking on the color wheel with a mouse. As in Experiment 4-1, the orientation of
the color wheel was randomized on each trial to ensure that subjects could not plan their
response until the color wheel appeared. Before starting the task, subjects completed a brief set
of practice trials to ensure that they understood the instructions. Subjects then completed 15
blocks of 64 trials (960 trials in total), or as many blocks as time permitted (all subjects
completed at least 11 blocks, one subject completed 2 extra blocks, thus completed 17 blocks in
total).

In Experiment 4-2b, subjects performed an orientation version of the selective storage
task (Figure 4-5b). The timing of the task was identical to Experiment 4-2a. Here, the sample
display contained two oriented gratings (diameter, 1°; spatial frequency, 7 cycles/®), one green
and one blue (equated for luminance), each presented 4° of visual angle from the fixation point.
The spatial phase of each grating was randomized on each trial. Subjects were instructed to
remember the orientation of the grating in the target color (blue or green) as precisely as
possible, and to ignore the grating in the distractor color. The target color was counterbalanced
across subjects. Following the retention interval, a white grating appeared at fixation, and
subjects adjusted the orientation of this probe grating to match the remembered orientation of the
target using a response dial (PowerMate USB Multimedia Controller, Griffin Technology, USA).
The initial orientation of the probe grating was randomized on each trial to ensure that subjects
could not plan their response until the probe appeared. Once subjects had finished adjusting the

orientation of the probe grating, they registered their response by pressing the spacebar. Before
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starting the task, subjects completed a brief set of practice trials to ensure that they understood
the instructions. Subjects then completed 15 blocks of 64 trials (960 trials in total).

Experiment 4-2c. In Experiment 4-2c, a single target item was presented among seven
distractors (Figure 4-7a). Subjects were instructed to remember the orientation of the line inside
the circle in the target color (which was varied across subjects), and to ignore the distractor
items. Subjects initiated each trial with a spacebar press. A fixation point (0.2°) appeared for
500-800 ms. Next, the sample display was presented for 150 ms. This display contained eight
circles (1.8° in diameter), equally spaced around the fixation (each item was centered 4° of visual
angle from the fixation point). In this experiment, the eight stimuli always occupied fixed
locations at 0°, 45°, 90°, and so forth. Each circle contained a white line (1.2° long, 0.2° wide)
presented at a randomly selected orientation. Each of the eight circles were presented in a
different color (red, pink, yellow, green, light blue, dark blue, orange, and grey). These colors
were chosen because they were easily discriminated. The target (i.e., the circle in the target
color) appeared in each of the eight positions equally often, and the positions of the remaining
seven colors were randomized. Following an 1100-ms retention interval, a white line appeared at
fixation and subjects adjusted the orientation to match the remembered target orientation using a
response dial. The initial orientation of the probe was randomized on each trial to ensure that
subjects could not plan their response until the probe appeared. Once subjects had finished
adjusting the orientation of the probe, they registered their response by pressing the spacebar.
Immediately following their response, subjects were shown their response error (i.e., the angular

difference between the target orientation and reported orientation) for 500 ms. Before starting the
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task, subjects completed a practice block of 64 trials to ensure that they understood the
instructions. Subjects then completed 16 blocks of 64 trials (1024 trials in total).

Experiment 4-3. Subjects in Experiment 4-3 performed a variant of the two-item
selective storage task used in experiments 4-2a and 4-2b (Figure 4-8a). In this experiment, both
stimuli (the target and distractor) were colored circles (1.8° in diameter) containing a digit (1.6°
tall and 0.8° wide) between 0 and 7. Subjects were instructed to remember and report the color of
circle that contained the larger digit (i.e., the target). On each trial, the target digit was randomly
sampled from the digits 1-7, and the distractor was randomly sampled from the subset of digits
that were less than that the target. Critically, this task ensured that subjects had to attend and
encode both stimuli to the extent that they could identify the digit in each of the items, in order to
determine which item was the target (Pashler & Badgio, 1985). The sample display was
presented for 150 ms, and was followed by a 1350-ms retention interval. The trial timing was
otherwise identical to that in experiments 2a and 2b. In this experiment, subjects were shown
their response error for 500 ms immediately following their response. Before starting the task,
subjects completed a practice block of 64 trials to ensure that they understood the instructions.
Subjects then completed 16 blocks of 64 trials (1024 trials in total).

EEG Recording

Experiment 4-1. We recorded EEG using 20 tin electrodes mounted in an elastic cap
(Electro-Cap International, Eaton, OH). We recorded from International 10/20 sites: F3, Fz, F4,
T3, C3,Cz,C4,T4,P3, Pz, P4, T5, T6, O1, and O2, along with five nonstandard sites: OL
midway between T5 and O1, OR midway between T6 and O2, PO3 midway between P3 and OL,

PO4 midway between P4 and OR, and POz midway between PO3 and PO4. All sites were
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recorded with a left-mastoid reference, and were re-referenced offline to the algebraic average of
the left and right mastoids. Eye movements and blinks were monitored using electrooculogram
(EOG). To detect horizontal eye movements, horizontal EOG was recorded from a bipolar pair
of electrodes placed ~1 cm from the external canthus of each eye. To detect blinks and vertical
eye movements, vertical EOG was recorded from an electrode placed below the right eye and
referenced to the left mastoid. The EEG and EOG were amplified with an SA Instrumentation
amplifier with a bandpass of 0.01 to 80 Hz and were digitized at 250 Hz using LabVIEW 6.1
running on a PC. Impedances were kept below 5 kQ.

All other experiments. We recorded EEG activity using 30 active Ag/AgCl electrodes
mounted in an elastic cap (Brain Products actiCHamp, Munich, Germany). We recorded from
International 10-20 sites: FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5,
CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, 01, Oz, and O2. Two additional
electrodes were placed on the left and right mastoids, and a ground electrode was placed at
position FPz. All sites were recorded with a right-mastoid reference, and were re-referenced
offline to the algebraic average of the left and right mastoids. Eye movements and blinks were
monitored using EOG, recorded with passive electrodes. Horizontal EOG was recorded from a
bipolar pair of electrodes placed ~1 cm from the external canthus of each eye. Vertical EOG was
recorded from a bipolar pair of electrodes placed above and below the right eye. Data were
filtered online (low cut-off = .01 Hz, high cut-off = 80 Hz, slope from low- to high-cutoff = 12
dB/octave), and were digitized at 500 Hz using BrainVision Recorder (Brain Products, Munich,
Germany) running on a PC. For three subjects in Experiment 4-2b, data were digitized at 1000

Hz because of an experimenter error. The data for these subjects were down-sampled to 500 Hz
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offline. Impedances were kept below 10 kQ. For one subject in Experiment 3c, data from one
electrode (F8) was discarded because of excessive noise.
Eye Tracking

In experiments 4-2a-c and 4-3, we monitored gaze position using a desk-mounted
infrared eye tracking system (EyeLink 1000 Plus, SR Research, Ontario, Canada). According to
the manufacturer, this system provides spatial resolution of 0.01° of visual angle, and average
accuracy of 0.25-0.50° of visual angle. In Experiments 2a and 2b, gaze position was sampled at
500 Hz, and data were obtained in remote mode (without a chin rest). In Experiments 4-2c and 4-
3, gaze position was sampled at 1000 Hz, and head position was stabilized with a chin rest. We
obtained usable eye-tracking data for 11, 11, 13, and 15 subjects in experiments 4-2a, 4-2b, 4-2c,
and 4-3, respectively.
Artifact Rejection

We visually inspected EEG for recording artifacts (amplifier saturation, excessive muscle
noise, and skin potentials), and EOG for ocular artifacts (blinks and eye movements). For
subjects with usable eye tracking data, we also inspected the gaze data for ocular artifacts. We
discarded trials contaminated by artifacts. Subjects were excluded from the final samples if fewer
than 600 trials remained after discarding trials contaminated by recording or ocular artifacts. For
the analyses of gaze position, we further excluded any trials in which the eye tracker was unable
to detect the pupil, operationalized as any trial in which gaze position was more than 15° of

visual angle from the fixation point.

87



Subject Exclusions

Experiment 4-1. Two subjects were excluded because of excessive artifacts (see Artifact
Rejection). The final sample included 10 subjects with an average of 785 (SD = 92) artifact-free
trials.

Experiment 4-2a. Four subjects were excluded because of excessive artifacts, and one
subject was excluded due to poor task performance (prevalence of guesses and swaps ~14%,
estimated by fitting a mixture model to response errors). The final sample included 16 subjects
with an average of 762 (SD = 99) artifact-free trials.

Experiment 4-2b. One subject was excluded because of excessive artifacts. Data
collection was terminated early for two subjects because of excessive artifacts. Finally, one
subject was excluded because of poor task performance (prevalence of guesses and swaps
~23%). The final sample included 16 subjects with an average of 775 (SD = 92) artifact-free
trials.

Experiment 4-2c. One subject was excluded because of excessive artifacts. Data
collection was terminated for two subjects because of excessive eye movements. Data collection
was terminated for one subject because of an equipment failure. The final sample included 14
subjects with an average of 823 (SD = 92) artifact-free trials.

Experiment 4-3. Two subjects were excluded because of excessive artifacts. The final

sample included 17 subjects with an average of 835 (SD = 103) artifact-free trials.

Modeling Response Error Distributions
In all experiments, response errors were calculated as the angular difference between the

reported and presented color or orientation. Response errors could range between -180° and 180°
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for the 360°-color space, and between -90° and 90° for the 180°-orientation space. To quantify
performance in experiments 4-1 and 4-2c, we fitted a mixture model to the distribution of
response errors for each subject using MemToolbox (Suchow et al., 2013). We modeled the
distribution of response errors as the mixture of a von Mises distribution centered on the correct
value (i.e., a response error of 0°), corresponding to trials in which sample color or orientation
was remembered, and a uniform distribution, corresponding to guesses in which the reported
color was random with respect to the sample stimulus (Zhang & Luck, 2008). We obtained
maximum likelihood estimates for two parameters: (1) the dispersion of the von Mises
distribution (SD), which reflects response precision; and (2) the height of the uniform
distribution (Pg), which reflects the probability of guessing. For experiments 4-2a, 4-2b, and 4-3
(the experiments with one target and one distractor) we fitted a mixture model that also included
an additional von Mises component centered on the color/orientation value of the distractor,
corresponding to trials in which subjects mistakenly report the value of the distractor stimulus
instead of the target stimulus (i.e., 'swaps', Bays, Catalao, & Husain, 2009). We obtained
maximum likelihood estimates for the same parameters as in the previous model, with one
additional parameter (Ps), which reflects the probability of swaps. The parameter estimates for
each experiment are summarized in Table 4-1.
Time-Frequency Analysis

Time-frequency analyses were performed using the Signal Processing toolbox and
EEGLAB toolbox (Delorme & Makeig, 2004) for MATLAB (The Mathworks, Natick, MA). To
isolate frequency-specific activity, we band-pass-filtered the raw EEG signal using a two-way

least-squares finite-impulse-response filter ("eegfilt.m" from EEGLAB Toolbox; Delorme &
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Makeig, 2004). This filtering method used a zero-phase forward and reverse operation, which
ensured that phase values were not distorted, as can occur with forward-only filtering methods. A
Hilbert transform (MATLAB Signal Processing Toolbox) was applied to the band-pass-filtered
data, producing the complex analytic signal, z(t), of the filtered EEG, f(t):
z(t) = f(1) +if ()
where f(t) is the Hilbert transform of £(t), and i = v—1. The complex analytic signal was
extracted for each electrode using the following MATLAB syntax:
hilbert(eegfilt(data,F,f1,{2)’)’

In this syntax, data is a 2-D matrix of raw EEG (number of trials x number of samples), F is the
sampling frequency (250 Hz in Experiment 4-1, 500 Hz in all other experiments), f1 is the lower
bound of the filtered frequency band, and f2 is the upper bound of the filtered frequency band.
For alpha-band analyses, we used an 8- to 12-Hz band-pass filter; thus, f1 and f2 were 8 and 12,
respectively. For the time-frequency analysis (Figure 4-4), we searched a broad range of
frequencies (4-50 Hz, in increments of 1 Hz with a 1-Hz band pass). For these analyses, f1 and
f2 were 4 and 5 to isolate 4- to 5-Hz activity, 5 and 6 to isolate 5- to 6-Hz activity, and so forth.
Instantaneous power was computed by squaring the complex magnitude of the complex analytic
signal.
Inverted Encoding Model

In keeping with our previous work on spatial working memory and spatial attention (J. J.
Foster et al., 2016; J. J. Foster, Sutterer, et al., 2017), we used an IEM to reconstruct spatially
selective CTFs from the topographic distribution of oscillatory power across electrodes (Figure

4-2). We assumed that power measured at each electrode reflected the weighted sum of eight
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spatial channels (i.e., neuronal populations), each tuned for a different angular position (Figure
4-2b). We modeled the response profile of each spatial channel across angular positions as a half
sinusoid raised to the seventh power:

R = sin(0.560)7
where @is the angular position (ranging from 0° to 359°) and R is the response of the spatial
channel in arbitrary units. This response profile was shifted circularly for each channel such that
the peak response of each spatial channel was centered over one of the eight positions
(corresponding to the centers of eight position bins: 0°, 45°, 90°, etc., see Figure 4-2b).

An IEM routine was applied to each time point in the alpha-band analyses and each time-
frequency point in the time-frequency analysis. We partitioned our data into independent sets of
training data and test data (for details, see the Training and Test Data section). The routine
proceeded in two stages (training and test). In the training stage (Figure 4-2c), the training data
(B1) were used to estimate weights that approximated the relative contributions of the eight
spatial channels to the observed response (i.e., oscillatory power) measured at each electrode.
We define B1 (m electrodes x n; measurements) as a matrix of the power at each electrode for
each measurement in the training set, C1 (k channels x n1 measurements) as a matrix of the
predicted response of each spatial channel (specified by the basis function for that channel; in
experiments 4-2a, 4-2b, and 4-3, the predicted channel responses are determined by the target
position bin when reconstructing target-related CTFs, and by the distractor position bin when
reconstructing distractor-related CTFs) for each measurement, and W (m electrodes x k channels)

as a weight matrix that characterizes a linear mapping from channel space to electrode space.
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The relationships among By, C1, and W can be described by a general linear model of the
following form:
B, =WC(,

The weight matrix was obtained via least squares estimation as follows:

W =B,¢"(C.cT)
In the test stage (Figure 4-2d), we inverted the model to transform the test data, B, (m electrodes
x Ny measurements), into estimated channel responses, C, (k channels x n, measurements), using
the estimated weight matrix, I, that we obtained in the training phase:

G = (W'w) 'W'B,
Each estimated channel-response function was circularly shifted to a common center, so that the
center channel was the channel tuned for the position of the stimulus of interest (i.e., 0° on the
channel offset axes of figures 4-3a and 4-3c). We then averaged these shifted channel-response
functions to obtain the CTF averaged across the eight stimulus position bins. The IEM routine
was performed separately for each time point.

Finally, because the exact contributions of the spatial channels to electrode responses

(i.e., the channel weights, W) were expected to vary by subject, we applied the IEM routine to
each subject separately. This approach allowed us to disregard differences in how spatially
selective activity was mapped to scalp-distributed patterns of power across subjects and instead
focus on the profile of activity in the common stimulus, or information, space (J. J. Foster et al.,

2016; Sprague et al., 2015).
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Training and Test Data

For the IEM procedure, we partitioned artifact-free trials for each subject into
independent sets of training data and test data. Specifically, we divided the trials into three sets.
For each of these sets, we averaged power across trials in which the relevant stimulus (see
below) appeared in the same position bin. For example, trials in which the sample stimulus was
presented at 32° and 60° were averaged because these positions both belonged the position bin
centered at 45° (which spanned 22.5°-67.5°). For each set of trials, we obtained an i (electrodes)
x 8 (position bins) matrix of power values, one for each set (note that the number of electrodes i
was not the same in all experiments). We used a leave-one-out cross-validation routine such that
two of these matrices served as the training data (B,, i electrodes x 16 measurements), and the
remaining matrix served as the test data (B, i electrodes x 8 measurements). Because no trial
belonged to more than one of the three sets, the training and test data were always independent.
We applied the IEM routine using each of the three matrices as the test data, and the remaining
two matrices as the training data. The resulting CTFs were averaged across the three test sets.

When we partitioned the trials into three sets, we constrained the assignment of trials to
the sets so that the number of trials was equal for all eight position bins within each set. To
ensure that the number of trials per position would be equal within each of the three sets, we
calculated the minimum number of trials per subject for a given position bin, n, and assigned n/3
trials for that position bin to each set. For example, if n was 100, we assigned 33 trials for each
position bin to each set. Because of this constraint, some excess trials did not belong to any

block.
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We used an iterative approach to make use of all available trials. For each iteration, we
randomly partitioned the trials into three sets (as just described) and performed the IEM routine
on the resulting training and test data. We repeated this process of partitioning trials into sets 10
times for the alpha-band analyses, and 5 times for the full time-frequency analysis. For each
iteration, the subset of trials that were assigned to blocks was randomly selected. Therefore, the
trials that were not included in any block were different for each iteration. We averaged the
resulting channel-response profiles across iterations. This iterative approach reduced noise in the
resulting CTFs by minimizing the influence of idiosyncrasies that were specific to any given
assignment of trials to blocks.

Note that when reconstructing target-related CTFs, we organized trials based on the
position bin that the target stimulus appeared in, and when reconstructing distractor-related
CTFs, we organized trials based on the position bin that the distractor stimulus appeared in.
Thus, we trained and tested on the target’s position bin to obtain target-related CTFs, and trained
and tested on distractor’s position bin to obtain distractor-related CTFs. In a supplemental
analysis, we trained on the target position and tested on the distractor position (Figure 4-6). In
this analysis, we assigned training blocks as in our standard analysis, and assigned all remaining
trials to the test block.

CTF Selectivity

To quantify the spatial selectivity of alpha-band CTFs, we used linear regression to
estimate CTF slope. Specifically, we calculated the slope of the channel responses as a function
of spatial channels after collapsing across channels that were equidistant from the channel tuned

for the position of the stimulus. Higher CTF slope indicates greater spatial selectivity.

94



Permutation Tests

To determine whether CTF selectivity was reliably above chance, we tested whether CTF
slope was greater than zero using a one-sample t test. Because mean CTF slope may not be
normally distributed under the null hypothesis, we employed a Monte Carlo randomization
procedure to empirically approximate the null distribution of the t statistic. Specifically, we
implemented the IEM as described above but randomized the position labels within each block
so that the labels were random with respect to the observed responses in each electrode. This
randomization procedure was repeated 1000 times to obtain a null distribution of t statistics. To
test whether the observed CTF selectivity was reliably above chance, we calculated the
probability of obtaining a t statistic from the surrogate null distribution greater than or equal to
the observed t statistic (i.e., the probability of a Type 1 Error). Our permutation test was
therefore a one-tailed test. CTF selectivity was deemed reliably above chance if the probability
of a Type 1 Error was less than .01.
Bootstrap Resampling Tests

We used a subject-level bootstrap resampling procedure (Efron & Tibshirani, 1993) to
test for differences in spatial selectivity (measured as CTF slope) of target- and distractor-related
CTFs. We drew 10,000 bootstrap samples, each containing N-many subjects sampled with
replacement, where N is the sample size. For each bootstrap sample, we calculated the mean
difference in CTF slope (target — distractor), yielding a distribution of 10,000 mean difference
values. We tested whether these difference distributions significantly differenced from zero in
either direction, by calculating the proportion of values > or < 0. We doubled the smaller value to

obtain a 2-sided p value.
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Eye Movement Controls

To check that removal of ocular artifacts was effective, we examined baselined HEOG
(baseline period: -300 to 0 ms, relative to onset of the sample display). Variation in the grand-
averaged HEOG waveforms as a function of stimulus position was < 3 uV in all experiments.
Given that eye movements of about 1° of visual angle produce a deflection in the HEOG of ~16
MV (Lins et al., 1993a), the residual variation in the average HEOG corresponds to variations in
eye position of < 0.2° of visual angle.

In experiments 4-2a-c and 4-3, we also inspected gaze position (averaged from stimulus
onset to the end of the delay period) as a function of the target’s position bin. We drift-corrected
gaze position data by subtracting the mean gaze position measured during a pre-stimulus window
(-300 to -100 ms, relative to onset of the sample display) to achieve optimal sensitivity to
changes in eye position relative to the pre-stimulus period (Cornelissen, Peters, & Palmer, 2002).
This analysis revealed remarkable little variation in gaze position (< 0.05° of visual angle) as a
function of target position in all four experiments with eye tracking data (Figure 4-9a-d),
showing we achieved an extremely high standard of fixation compliance once trials with artifacts

were discarded.
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Figure 4-9. Eye movement controls.
(a-d) Mean horizontal (left) and vertical (right) gaze position (following the onset of the sample
array) as a function of the position bin that the target appeared in. Gaze position was drift
corrected to maximize sensitivity to any small changes in gaze position from the pre-stimulus
period. We observed remarkable little variation in mean gaze position as a function of the
position of the target position (less than 0.05° of visual angle), showing that we achieved an
extremely high standard of fixation compliance. Each panel indicates the number of subjects that
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Figure 4-9, continued..

had usable eye tracking data out of the total sample in each experiment. Error bars represent +1
SEM across subjects. (¢) Mean gaze position for each trial sorted in eight gaze position bins for a
sample subject. The radial axis is in degrees of visual angle. (f) Alpha-band CTFs reconstructed
on the basis of the target position bin (black line) and gaze position bin (pink line) in Experiment
4-2c. We observed a clear target-related CTF but did not observe clear evidence for a gaze-
position-related CTF. This analysis shows that alpha-band activity tracks the location of the
target position rather than small variations in gaze position. Shaded error bars represent +1
bootstrapped SEM across subjects.

Although residual bias in gaze position is very small, it is possible that alpha-band
activity might track small biases in gaze position rather than spatial representation in working
memory. We ran a control analysis to test this possibility. We reasoned that if eye movements
drive spatially specific alpha-band activity, then we should observe more robust alpha-band
CTFs when we reconstruct CTFs on the basis of gaze position than on the basis of the stimulus
position. We sorted trials for each subject in Experiment 4-2c into eight “gaze position bins” on
the basis of the mean gaze position (drift corrected) during the post-stimulus period (0-1250 ms;
see Figure 4-9¢). We then used these gaze position bins to perform the CTF analysis. The
number of trials available in each position bin limits the number of trials that can be assigned to
the training/test sets. Two subjects were excluded from this analysis because they had fewer than
30 trials in a given gaze position bin. We also re-ran the target-related CTF analysis, this time
equating the number of trials that were included in the training/test sets with the gaze position
analysis. We did not see clear evidence for a gaze-position-related CTF (Figure 4-9f). However,
we did observed a clear target-related CTF, confirming that we had enough trials to detect

spatially selective alpha-band activity. This analysis shows that alpha-band activity tracks the

location of the target position rather than small variations in gaze position.
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CHAPTER 5. ATTENTION ENHANCES THE SPATIAL TUNING OF STIMULUS-

EVOKED POPULATION RESPONSES

Introduction

Covert spatial attention improves visual processing at attended locations via enhanced
neural representations of attended stimuli (Maunsell, 2015; Sprague et al., 2015). One important
line of work has measured how attention impacts the responses of single cells, showing that the
amplitude of neural responses to attended stimuli is increased ( Luck, Chelazzi, Hillyard, &
Desimone, 1997; McAdams & Maunsell, 1999; Treue & Martinez-Trujillo, 1999), and that
spatial receptive fields are shifted towards attended stimuli (Anton-Erxleben & Carrasco, 2013;
Anton-Erxleben, Stephan, & Treue, 2009; Connor, Preddie, Gallant, & Van Essen, 1997;
Womelsdorf, Anton-Erxleben, Pieper, & Treue, 2006; Womelsdorf, Anton-Erxleben, & Treue,
2008). Ultimately, however, perception relies on information coded across large populations of
cells (Pouget et al., 2000; Saxena & Cunningham, 2019), and the perceptual benefits of attention
are thought to be mediated by changes in population codes (Cohen & Maunsell, 2009; Sprague et
al., 2015). Thus, there is strong motivation to understand how attention modulates population-
level neural responses (Sprague et al., 2015; Sprague & Serences, 2013).

In recent years, researchers have used functional MRI (fMRI) to examine how attention
influences population-level representations of spatial position (Fischer & Whitney, 2009;
Itthipuripat, Sprague, & Serences, 2018; Kay et al., 2015; Sprague, Itthipuripat, Vo, & Serences,
2018; Sprague & Serences, 2013; Vo, Sprague, & Serences, 2017). Sprague and Serences
(2013), for example, used an inverted encoding model (IEM; Brouwer & Heeger, 2011, 2009) to

reconstruct a population-level, spatial representation of a visual stimulus. This approach assumed
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that the response of each voxel (in a visually responsive region) reflects the summed activity of a
number of spatially tuned channels. In a training phase, the authors estimated the relative
contributions of each of these channels (called “weights™) to each voxel. Then, once the weights
were estimated, they inverted the model to estimate the response of each of the spatially tuned
channels given the pattern of activity across all voxels in each condition. Using this approach,
Sprague and Serences (2013) found that attention to the stimulus increased the amplitude of
spatial representations in visual areas without reliably changing their size, a finding that has been
replicated by subsequent work (Itthipuripat et al., 2018; Vo et al., 2017; but see Fischer &
Whitney, 2009).

At first glance, this finding seems to provide clear evidence that attention increases the
gain of population-level representations. However, emerging evidence suggests that the effect of
attention on the blood-oxygen-level-dependent (BOLD) signal that is measured with fMRI does
not reflect an amplification of the stimulus-driven response, but instead reflects a shift in
baseline activity in cortex tuned for the attended location that is additive with the stimulus-driven
response (Buracas & Boynton, 2007; Murray, 2008). If the effect of attention on the BOLD
response reflects a straightforward amplification of the stimulus-driven response, then the effect
of attention should be greater for higher-contrast stimuli that drive a stronger neural response
(Hillyard et al., 1998). Instead, attending a stimulus increases the BOLD response in visual
cortex by the same amount, regardless of stimulus contrast (Buracas & Boynton, 2007;
Itthipuripat et al., 2018; Murray, 2008; Pestilli, Carrasco, Heeger, & Gardner, 2011; Sprague,
Itthipuripat, et al., 2018; but see Li, Lu, Tjan, Dosher, & Chu, 2008). This finding is consistent

with earlier work that found that an increased BOLD response in regions of visual cortex tuned
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for an attended location in balanced visual displays (Brefczynski & DeYoe, 1999; Kastner,
Pinsk, De Weerd, Desimone, & Ungerleider, 1999; Tootell et al., 1998). Taken together, these
studies suggest that the effect of attention on the BOLD signal reflects a stimulus-independent
shift in baseline activity that does not reveal the impact of attention on the stimulus-evoked
response.

Although fMRI may not be well suited to determine how attention modulates the
stimulus-driven response, visually evoked potentials measured with EEG show more promise.
The effect of attention on visually evoked potentials scales with stimulus contrast (Itthipuripat,
Ester, Deering, & Serences, 2014; Itthipuripat et al., 2018), suggesting that they provide an
opportunity to examine how attention influences stimulus-driven responses. Thus, the goal of the
present work was to combine the EEG method with an IEM analytic approach that enabled us to
characterize how attention modulates the spatial tuning of stimulus-evoked population activity.
Furthermore, the temporally resolved nature of the EEG signal enabled a clear examination of
how attention shapes the earliest stages of visual processing, occurring within the first few
hundred milliseconds following stimulus onset.

We focused our analysis on stimulus-evoked EEG activity (i.e., activity phase-locked to
stimulus onset), which provided a means of separating stimulus-driven activity from ongoing
neural activity that is independent of the stimulus. In addition, we used the IEM approach to
reconstruct spatially selective channel-tuning functions (CTFs) from stimulus-evoked EEG
activity. In two experiments, we show that attention increases the amplitude of spatially tuned,

stimulus-evoked responses within ~100 ms after stimulus onset, providing clear evidence that
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attention enhances the selectivity of spatial population codes during the first wave of visual
sensory activity.

Materials and Methods
Participants

Volunteers recruited from the University of Chicago and surrounding community
participated for monetary compensation ($15/hr). Participants were between the ages of 18 and
35, reported normal or corrected-to-normal visual acuity, and provided informed consent
according to procedures approved by the University of Chicago Institutional Review Board.

Experiment 5-1. Twenty-one volunteers participated in Experiment 5-1 (8 male, 13
female; mean age = 22.7 years, SD = 3.2). Four participants were excluded from the final sample
for the following reasons: we were unable to prep the participant for EEG (n = 1); we were
unable to obtain eye tracking data (n = 1); the participant did not complete enough blocks of the
task (n = 1); and residual bias in eye position (see Artifact Rejection) was too large (n = 1). The
final sample size was 17 (6 male, 11 female; mean age = 22.7 years, SD = 3.4).

Experiment 5-2. Twenty-four volunteers participated in Experiment 5-2 (6 male, 16
female; mean age = 24.0 years, SD = 3.0). For four participants, we terminated data collection
and excluded the participant from the final sample for the following reasons: we were unable to
obtain eye tracking data (n = 1); the participant had difficulty performing the task (n = 1); the
participant made too many eye movements (n = 2). The final sample size was 20 (5 male, 15

female; mean age = 24.0 years, SD = 2.8).
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Task and Stimuli

Participants were tested in a dimly lit, electrically shielded chamber. Stimuli were
generated using Matlab (MathWorks, Natick, MA) and the Psychophysics toolbox (Brainard,
1997; Pelli, 1997). Participants viewed the stimuli on a contrast-linearized 24” LCD monitor
(refresh rate: 120 Hz, resolution 1080 x 1920 pixels) with their chin rested on a padded chin rest
(viewing distance: 76 cm in Experiment 5-1, 75 cm in Experiment 5-2). Stimuli were presented
against a mid-gray background (~61 cd/m?).

On each trial, observers viewed a sequence of four bullseye stimuli at a fixed location
(Figure 5-1). Across blocks, we manipulated whether observers attended the bullseye stimuli
(attend-stimulus condition) or attended the central fixation dot (attend-fixation condition). In the
attend-stimulus condition, observers monitored the sequence of bullseyes for a bullseye that was
lower contrast than the rest (while maintained fixation). In the attend-fixation condition,
observers monitored the fixation dot for a brief reduction in contrast. In both conditions, changes
in contrast occurred in both the attended and unattended stimulus, and we instructed participants
to disregard changes in the unattended stimulus. Contrast changes occurred in each stimulus
(bullseye or fixation) on 50% of trials. The trials that contained changes in the bullseye contrast

and changes in the fixation contrast were determined independently.
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ISI: 500-800 ms

Stimulus: 100 ms

ISI: 500-800 ms x4

Cue: 300 ms

Figure 5-1. Illustration of task.

(a) On each trial, a series of bullseye stimuli appeared at a fixed location. The trial began with a
cue that indicated where the bullseyes would appear. In the attend-stimulus condition, observers
covertly monitored the bullseyes for one bullseye that was lower contrast than the rest. In the
attend-fixation condition, observers monitored the fixation dot for a brief dimming.

Observers fixated the fixation dot (0.1° in diameter, 56.3% contrast) before pressing
spacebar to initiate each trial. Each trial began with a 400 ms fixation display. A cue (0.25° in
diameter, 32.8% contrast) presented for 300 ms, indicated where the bullseyes would appear. On
each trial, the bullseye stimuli appeared at one of eight positions 4° from fixation (Figure 5-2a).
Each bullseye (1.6° in diameter, 0.12 cycles/®) was presented for 100 ms, and was preceded by a
jittered inter-stimulus interval (ISI) between 500 and 800 ms. The final bullseye was followed by
a 500 ms ISI. The lower-contrast bullseye was never the first stimulus in the sequence, so that
the first stimulus established the pedestal contrast for the trial. Decrements in the contrast of the
fixation dot lasted 100 ms, and co-occurred with one of the bullseye stimuli (but never the first in

the sequence). Each trial ended with a response screen that prompted observers to report whether

the attended stimulus changed in contrast. Observers responded using the numberpad (“1” =
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change, “2” = no change). The observer’s response appeared above the fixation dot, and the
observer could correct their response if they pressed the wrong key. Finally, observers confirmed
their response by pressing the spacebar. In Experiment 5-2, the experimenter manually provided
feedback to the observer to indicate whether they had noticed blinks or eye movements during
the trial by pressing a key outside the recording chamber. The feedback, “blink™ or “eye
movement” was presented in red for 500 ms after the observer had made their response.

In Experiment 5-1 the pedestal contrast of the bullseye was always 90%. Participants
completed a 3.5-hour EEG session. The session began with a staircase procedure to adjust task
difficulty (see Staircase Procedures). Participants then completed 12-20 blocks (40 trials each)
during which we recorded EEG. Thus, participants completed between 480 and 800 trials (1920-
3200 stimulus presentations). The blocks alternated between the attend-stimulus and attend-
fixation conditions, and we counterbalanced task order across participants.

In Experiment 5-2, we parametrically manipulated pedestal contrast. We included 5
pedestal contrasts (6.25, 12.5, 25.0, 50.0, and 90.6%). Thus, there were 10 conditions in total (2
attention conditions x 5 pedestal contrasts). Participants completed three sessions: a 2.5-hour
behavior session to adjust task difficulty in each condition (see Staircase Procedures), followed
by two 3.5-hour EEG sessions. All sessions were completed within 10 days (M = 6 days, SD =
2). Across the EEG session, participants completed 20 blocks. Each block consisted of 104 trials:
eight trials for each of the 10 conditions, and an additional 12 trials in each condition at the
highest pedestal contrast (90.6% contrast) for the purpose of training the encoding model (see
Training and Test Data). Each block included a break at the halfway point. As in Experiment 5-

1, the blocks alternated between the attend-stimulus and attend-fixation conditions, and we
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counterbalanced task order across participants. We aimed to run each participant through 20
blocks, to obtain 160 testing trials for each condition (640 stimulus presentations), and 480
training trials (1920 stimulus presentations). All participants completed 20 blocks with the
following exceptions: three participants completed 18 blocks, and one participant completed 24

blocks.

Staircase Procedures

Experiment 5-1. We used a staircase procedure to match difficulty across conditions. We
adjusted difficulty by adjusting the size of the contrast decrement for each condition (attend-
stimulus and attend-fixation) independently. In Experiment 5-1, participants completed six
staircase blocks of 40 trials (three blocks for each condition) before we started the EEG blocks of
the task. Thus, participants completed 120 staircase trials for each condition. We used a 3-down-
1-up procedure to adjust task difficulty: after three correct responses in a row, we reduced the
size of the contrast decrement by 2%; after an incorrect response, we increased the size of the
contrast decrement by 2%. This procedure was designed to hold accuracy at ~80% correct
(Garcia-Pérez, 1998). The final size of the contrast decrements in the staircase blocks were used
for the EEG blocks of the task. Every four blocks (two blocks of each condition), we examined
accuracy in each condition, and manually adjusted the size of the contrast decrements to hold
accuracy as close to 80% as possible.

Experiment 5-2. In Experiment 5-2, participants completed a 2.5-hour staircase session
prior to the EEG sessions. We adjusted difficulty for each of the 10 conditions independently (2
attention conditions x 5 pedestal contrast). Participants completed 16 blocks of 40 trials,

alternating between the attend-fixation and attend-stimulus conditions. The five contrast levels
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were randomized within each block. Thus, observers completed 64 staircase trials for each of the
10 conditions. In Experiment 5-2, we used a weighted up/down procedure to adjust task
difficulty: after a correct response, we reduced the size of the contrast decrement by 5%; after an
incorrect response, we increased the size of the contrast decrement by 17.6%. This procedure
held accuracy fixed at ~76%. The staircase procedure continued to operate throughout the EEG

sessions.

Eye Tracking

We monitored gaze position using a desk-mounted EyeLink 1000 Plus infrared eye-
tracking camera (SR Research, Ontario, Canada). Gaze position was sampled at 1000 Hz. Head
position was stabilized with a chin rest. According to the manufacturer, this system provides
spatial resolution of 0.01° of visual angle, and average accuracy of 0.25-0.50° of visual angle.
We calibrated the eye tracker every 1-2 blocks of the task. We re-calibrated they eye tracker

during the blocks of the task (between trials) if necessary.

EEG Recording

We recorded EEG activity from 30 active Ag/AgCI electrodes mounted in an elastic cap
(Brain Products actiCHamp, Munich, Germany). We recorded from International 10-20 sites:
FP1, FP2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, CP5, CP1,
CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2. Two additional electrodes were affixed with stickers
to the left and right mastoids, and a ground electrode was placed in the elastic cap at position
FPz. Eye movements and blinks were also monitored using electrooculogram (EOG), recorded
with passive Ag/AgCI electrodes. Horizontal EOG was recorded from a bipolar pair of electrodes

placed ~1 cm from the external canthus of each eye. Vertical EOG was recorded from a bipolar
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pair of electrodes placed above and below the right eye. Data were filtered online (low cut-off =
.01 Hz, high cut-off = 80 Hz, slope from low- to high-cutoff = 12 dB/octave), and were digitized
at 500 Hz using BrainVision Recorder (Brain Products, Munich, German) running on a PC.
Impedance values were kept below 10 kQ.

Preprocessing

EEG and eye tracking data were preprocessed using custom Matlab scripts. We drift-
corrected the eye tracking data for each trial by subtracting the mean gaze position measured
during a 200 ms window immediately before the onset of the cue. We re-referenced EEG data to
the algebraic mean of the two mastoids. We excluded data from some electrodes for some
participants because of low quality data (excessive high-frequency noise or sudden steps in
voltage). We excluded no more than three electrodes for any given participant. In Experiment 5-
2, we excluded electrodes FP1 and FP2 for all participants because we obtained poor-quality data
(high-frequency noise and slow drifts) at these sites for most participants.

The data were segmented into epochs time-locked to the onset of each bullseye stimulus
(starting 300-ms before stimulus onset, ending 500 ms after stimulus onset). We visually
inspected the segmented EEG data for artifacts (amplifier saturation, excessive muscle noise, and
skin potentials), and the eye tracking data for ocular artifacts (blinks, eye movements, and
deviations in eye position from fixation), and discarded any epochs contaminated by artifacts. In
Experiment 5-1, all subjects included in the final sample had at least 800 artifact-free epochs for
each condition. In Experiment 5-2, all subjects included in the final sample had at least 450
artifact-epochs for testing the IEM in each condition, and at least 1500 artifact-free epochs for

training the IEM (see Training and Test Data).
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After artifact rejection, for each participant we inspected mean gaze position as a function
of stimulus position for the attend-stimulus and attend-fixation conditions separately. For all
participants in the final samples, mean gaze position varied by less than 0.2° of visual angle
across stimulus positions. One subject in Experiment 5-1 was excluded from the final subject
because they did not meet this criterion. To verify that removal of ocular artifacts was effective,
we inspected mean gaze position (during the 100ms presentation of each stimulus) as a function
of stimulus position for the attend-stimulus and attend-fixation conditions separately. In both
experiments, we observed very little variation in mean gaze position (across subjects) as a
function of stimulus position (< 0.05° of visual angle) in both the attend-stimulus and attend-
fixation conditions. Thus, we achieved an extremely high standard of fixation compliance after

epochs with artifacts were removed.

Evoked Power

A Hilbert Transform (Matlab Signal Processing Toolbox) was applied to the segmented
EEG data to obtain the complex analytic signal, z(t), of the EEG, f(t):

z(t) = f(O) +if (t)
where £(t) is the Hilbert Transform of f(t), and i = v/—1. The complex analytic signal was
extracted for each electrode using the following Matlab syntax:
hilbert(data’)’

where data is a 2D matrix of segmented EEG (number of trials x number of samples). We
calculated evoked power by first averaging the complex analytic signals across trials, and then
squaring the complex magnitude of the averaged analytic signal. Evoked power isolates activity

phase-locked to stimulus onset because only activity with consistent phase across trials remains
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after averaging the complex analytic signal across trials. Trial averaging was performed for each
stimulus position separately within each block of training or test data (see Training and Test
Data).

For some analyses, we high-pass filtered the data with a low-cutoff of 4-Hz before
calculating power to remove low-frequency activity. We used EEGLAB’s eegfilt() function
(Delorme & Makieg, 2004), which implements a two-way least-squares finite impulse response
filter. This filtering method uses a zero-phase forward and reverse operation, which ensures that

phase values are not distorted, as can occur with forward-only filtering methods.

Inverted Encoding Model

We used an inverted encoding model (Brouwer & Heeger, 2009, 2011) to reconstruct
spatially selective channel-tuning functions (CTFs) from the distribution of power across
electrodes (also see J. J. Foster, Bsales, Jaffe, & Awh, 2017; J. J. Foster et al., 2016). We
assumed that the power at each electrode reflects the weighted sum of eight spatially selective
channels (i.e., neuronal populations), each tuned for a different angular position (figures 5-2A
and 5-2B). We modeled the response profile of each spatial channel across angular locations as a
half sinusoid raised to the twenty-fifth power:

R = sin(0.50)%°

where 0 is angular location (0—-359°), and R is the response of the spatial channel in arbitrary
units. This response profile was circularly shifted for each channel such that the peak response of
each spatial channel was centered over one of the eight positions corresponding to the eight

positions bins (0°, 45°, 90°, etc.).

110



Stimulus positions Spatial channels
C1t C2 C3 C4 C5 Cé6 C7

Response

0 45 90 135 180 225 270 315
Angular Position (°)

C Training: estimate channel weights

Stimulus position Predicted channel responses

? Observed data

.
@ @

C1 C2 C3 C4 C5C6C7C8

Response

D Test: estimate channel responses

Stimulus position Observed data CTF

— Weights™ —p

Response

[ ] (]
C1 C2 C3 C4 C5 C6 C7 C8

Figure 5-2. Inverted encoding model procedure.

(a) The eight spatial positions around the fixation dot where the bullseye stimuli could appear.
(b) We modeled power at each electrode as the weighted sum of eight spatially selective
channels (C1-C8), each tuned for the center of one of the eight stimulus positions. Each curve
shows the predicted response of one of the channels across the eight stimulus positions (i.e., the
“basis function”). (¢) In the training phase, we used the predicted channel responses, determined
by the basis functions shown in (b), to estimate a set of channel weights that specified the
contribution of each spatial channel to the response measured at each electrode.(d) In the test
phase, using an independent set of data, we used the channel weights obtained in the training
phase to estimate the profile of channel responses given the pattern of activity across the scalp.
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An IEM routine was applied to each time point. We partitioned our data into independent
sets of training data and test data (see Training and Test Data). This routine proceeded in two
stages (training and test). In the training stage (Figure 5-2C), training data (B1) were used to
estimate weights that approximate the relative contribution of the eight spatial channels to the
observed response measured at each electrode. Let B1 (m electrodes x ny measurements) be the
power at each electrode for each measurement in the training set, C1 (k channels x n;
measurements) be the predicted response of each spatial channel (determined by the basis
functions, see Figure 5-2B) for each measurement, and W (m electrodes x k channels) be a
weight matrix that characterizes a linear mapping from “channel space” to “electrode space”.
The relationship between B, C1, and W can be described by a general linear model of the form:

B, =WC(,

The weight matrix was obtained via least-squares estimation as follows:

W = B¢ (66
In the test stage (Figure 5-2D), we inverted the model to transform the observed test data B> (m
electrodes x n, measurements) into estimated channel responses, C2 (k channels x n
measurements), using the estimated weight matrix, W, that we obtained in the training phase:

G = (W'W) 'W'B,
Each estimated channel response function was then circularly shifted to a common center, so the
center channel was the channel tuned for the position of the probed stimulus (i.e., 0° on the
“Channel Offset” axes), then averaged these shifted channel-response functions across the eight
position bins to obtain a CTF. Finally, because the exact contributions of each spatial channel to
each electrode (i.e., the channel weights, W) likely vary across participants, we applied the IEM
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routine separately for each participant, and statistical analyses were performed on the
reconstructed CTFs. This approach allowed us to disregard differences in the how location-
selective activity is mapped to scalp-distributed patterns of power across participants, and instead
focus on the profile of activity in the common stimulus or “information” space (Sprague et al.,
2015).

Training and Test Data

For the IEM analysis, we partitioned artifact-free epochs into three independent sets: two
training sets and one test set. Within each set, we calculated evoked power (see Evoked Power)
across the epochs for each stimulus position to obtain a matrix of power values across all
electrodes for each location bin (electrodes x stimulus positions, for each time point). We
equated the number of epochs for each stimulus position in each set. Because of this constraint,
some excess epochs were not assigned to any set. Thus, we used an interactive approach to make
use of all available trials. For each of 500 iterations, we randomly partitioned the data into
training and test data (see below for details of how data partitioned into training and test sets in
each experiment). We averaged the resulting CTFs across iterations.

Experiment 5-1. When comparing CTF parameters across conditions, it is important to
estimate a single encoding model that is then used to reconstruct CRFs for each condition
separately (Sprague, Adam, et al., 2018). Thus, for Experiment 5-1, we estimated the encoding
model using a training set consistent of equal numbers of trials from each condition. Specifically,
we partitioned data for each condition (attend-stimulus and attend-fixation) into three sets (with
the constraint that the number of trials per location in each set was also equated across

conditions). We obtained condition-neutral training data by combining data across the two
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conditions before calculating evoked power, resulting in two training sets that included equal
numbers of trials from each condition. We then tested the model using the remaining set of data
for each condition separately. Thus, we used the same training data to estimate a single encoding
model, and varied only the test data that was used to reconstruct CTFs for each condition.

Experiment 5-2. In Experiment 5-2, we included additional trials in the highest contrast
conditions (90.6% contrast) to train the encoding model (see Task and Stimuli). For each
iteration of the analysis, we partitioned this data into two training sets, and generated a single test
set for each of the 10 conditions separately. We equated the number of trials in included in each
of the test sets. As described above, we averaged the resulting CTFs across 500 iterations of the
analysis.
Statistical Analysis

Model fitting. To quantify how attention influenced stimulus-evoked CTFs, we fitted
CTFS with an exponentiated cosine function (Figure 5-3) of the form:

fG0) = B+ a(ekcost-n1)

where x is a vector of the angular offsets of each channel (-180°, -135°, -90° ..., 135°). We fixed
the p parameter, which determines the center of the tuning function, at a channel offset of 0°
(i.e., the peak of the function was fixed at the channel tuned for the stimulus position). The
function had three free parameters: baseline (f) determines the vertical offset of the function
from zero; amplitude («) determines the height of the function above baseline function;
concentration (k) determines the width of the function, with higher values corresponding to
narrower tuning. We fitted the function with a general linear model combined with a grid search

procedure (Ester et al., 2015). Rather than reporting k values (which are inversely related to CTF
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width), we report the full-width half-maximum (fwhm) of the fitted function, measured as the

width of the function in angular degrees halfway between baseline and the peak of the function.

width (fwhm) amplitude

I baseline

0 L " " " " L .
-180-135-90 -45 0 45 90 135 180
Angular Position (°)

Figure 5-3. Parameters of the exponentiated cosine function.

The baseline parameter measured the overall offset of the function from zero The amplitude
parameter measured the peak response of the CTF above baseline. The width parameter
measured the width of the function halfway between baseline and the peak of the function
(i.e. full-width half-maximum, or fwhm).

Resampling tests. We used a subject-level resampling procedure to test for differences in
the parameters of the fitted function across conditions. We drew 10,000 bootstrap samples, each
containing N-many subjects sampled with replacement, where N is the sample size. For each
bootstrap sample, we fitted the exponentiated cosine function as described above to the mean
CTF across subjects in the bootstrap sample. In Experiment 5-1, to test for differences between
conditions for each parameter, we calculated the difference for the parameter between the attend-
stimulus and attend-fixation conditions for each bootstrap sample, which yielded a distribution of
10,000 values. We tested whether these difference distributions significantly differed from zero
in either direction, by calculating the proportion of values > or < 0. We doubled the smaller value
to obtain a 2-sided p value.

In Experiment 5-2, we tested for main effects of attention and contrast, and for an

attention x contrast interaction, for each parameter. To test for a main effect of attention, we
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averaged parameter estimates across contrast levels for each bootstrap sample, and calculated the
difference in each parameter estimate across attention conditions for each bootstrap sample. We
tested whether these difference distributions significantly differed from zero in either direction,
by calculating the proportion of values > or < 0. To test for a main effect of contrast, we
averaged the parameter estimates across the attention conditions, and fitted a linear function to
the parameter estimates as a function of contrast. For each bootstrap sample, we calculated the
slope of the best-fit linear function. We tested whether the resulting distribution of slope values
significantly differed from zero in either direction by calculating the proportion of values > or <
0. Finally, to test for an attention x contrast interaction, we fitted a linear function to the
parameter estimates as a function of contrast for the attend-stimulus and attend-fixation
conditions separately For each bootstrap sample, we calculated the difference in the slope of
these functions between the attend-stimulus and attend-fixation conditions. We tested whether
the resulting distribution of differences-in-slope values significantly differenced from zero
differed from zero in either direction by calculating the proportion of values > or < 0. For both
main effects and the interaction, we doubled the smaller p value to obtained a 2-sided p value.
Results

Experiment 5-1

In Experiment 5-1, we developed a paradigm to examine how spatial attention modulates
the spatial tuning of the stimulus-evoked response. On each trial, observers saw a sequence of
four bullseye stimuli were presented at one of eight positions around the fixation dot (Figure 5-
1). Each trial began with a peripheral cue, which indicated where the bullseye stimuli would

appear. The stimuli in the sequence were separated by a jittered (500-800-ms) inter-stimulus
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interval so that we could isolate the visually evoked response to each stimulus. To examine how
spatial attention modulates the visually evoked response, we manipulated whether observers
attended the bullseye stimuli or the central fixation dot (c.f. Sprague & Serences, 2013). In the
attend-stimulus condition, observers covertly monitored the sequence of bullseyes for one
bullseye that was lower contrast than the rest. In the attend-fixation condition, observers covertly
monitored the fixation dot for a brief decrement in contrast that co-occurred with one of the
bullseye presentations. At the end of the trial, observers reported whether or not a contrast
decrement occurred in the relevant stimulus (contrast changed occurred on 50% of trials). We
closely matched difficulty in the attend-stimulus and attend-fixation conditions by adjusting the
size of the contrast decrement in each task independently (see Materials and Methods). Accuracy
was comparable in the attend-stimulus (M = 81.0%, SD = 3.7) and the attend-fixation (M =
80.0%, SD = 2.2) conditions.

We sought to characterize how attention modulates the stimulus-driven representations of
the stimulus. To isolate stimulus-driven activity from activity independent of the stimulus, we
measured the power of stimulus-evoked activity (i.e., activity phase-locked to stimulus onset; see
Materials and Methods). We used an IEM (Brouwer & Heeger, 2009, 2011) to reconstruct
spatially selective channel-tuning functions (CTFs) from the scalp distribution of stimulus-
evoked power. This approach assumes that power measured at each electrode on the scalp
reflects the underlying activity of a number of spatially tuned channels (or neuronal populations),
each tuned for a different spatial position (Figure 5-2b). In a training phase, we estimated the
relative contribution of each of these channels (called “channel weights”) to the response

measured at each electrode on the scalp (Figure 5-2¢). Then, in a test phase, we used independent
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set of data to estimate the response of the spatial channels given the pattern of activity across
electrodes (Figure 5-2d). The resulting response channel-response profiles, called channel-tuning
functions (CTFs) allowed us to measure the spatial selectivity of the population-level neural
activity captured by EEG.

Human ERP studies have established that visually evoked responses are modulated by
attention as early as 100 ms after stimulus onset (Hillyard & Anllo-Vento, 1998). Thus, we
focused our analysis in an early window (80-130 ms after stimulus onset) to capture the early
visually evoked response. We reconstructed spatial CTFs from stimulus-evoked activity for both
the attend-stimulus and attend-fixation conditions, having estimated channel weights using a
training set that included data from both the attend-stimulus and attend-fixation conditions. To
quantify how attention modulates the CTFs, we fit CTFs with an exponentiated cosine function
(see Materials and Methods), which enabled us to measure three parameters of the CTF:
baseline, amplitude, and width (Figure 5-3). The baseline parameter measured the overall offset
of the function from zero. An increase in baseline reflects an upward shift of entire CTF. Thus,
changes in baseline do not reflect a change in the spatial selectivity of the CTF. The amplitude
parameter measured the peak response of the CTF above baseline. An increase in amplitude
reflects an increase in the spatial selectivity of the CTF. Finally, the width of the CTF (measured
as full-width half-maximum, or fwhm) measured the width of the function halfway between
baseline and the peak of the function, such that larger width values reflect broader spatial tuning.
Figure 5-4a shows the reconstructed CTFs with the best fitting functions. We found that
stimulus-evoked CTFs were higher amplitude (p < .0001) and more broadly tuned (p <.0001) in

the attend-stimulus condition than in the attend fixation condition (Figure 5-4b). We observed no
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difference in baseline between the conditions (p = .998). However, as we will see in the next
section, the finding that CTFs were broader in the attend-stimulus condition than in the attend-
stimulus appears to be an artifact of lingering activity from the preceding stimulus event.
Furthermore, this effect did not replicate in Experiment 5-2. Thus, the primary effect of attention
is to increase the spatial selectivity of population-level neural activity via an increase in the

amplitude of spatially graded CTFs.
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Figure 5-4. Stimulus-evoked CTFs and parameter estimates as a function of attention

condition.

(a) Stimulus-evoked CTFs (measured 80-130 ms after stimulus onset) with best fitting functions.

(b) Parameter estimates of the best fitting functions. Asterisks mark differences between the

conditions at the .05 level. Error bars show + 1 bootstrapped SEM.

We designed our task to measure activity evoked by each of the four stimuli presented
within each trial. We jittered the inter-stimulus interval (IS1) between each stimulus so that
activity evoked by each stimulus could be isolated from activity evoked by the stimulus before or
after it in the sequence. A jittered ISI will ensure that activity evoked by the prior stimulus will

not be phase-locked to the onset of the current stimulus. Therefore, by examining activity phase-

locked to stimulus onset, we should eliminate activity evoked by the preceding stimulus in the
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sequence. However, when we examined the amplitude of stimulus-evoked CTFs through time
(Figure 5-5), we found pre-stimulus tuning (in the 300 ms preceding stimulus onset) that was
higher amplitude in the attend-stimulus than attend-fixation condition (p <.0001). We
hypothesized that this pre-stimulus activity reflects activity evoked by the preceding stimulus in
the sequence that had a low enough frequency that it was not eliminated by the temporal jitter
between stimulus events. Because this pre-stimulus activity was higher amplitude in the attend-
stimulus condition than in the attend-fixation condition, it could have contaminated the apparent
attentional modulations of stimulus-evoked activity that we observed 80-130 ms after stimulus
onset. Thus, we assessed the effect of this lingering activity by examining CTFs as a function of
position in the sequence of four stimuli within each trial. Within each trial, the second, third, and
fourth stimuli were preceded by a high-contrast stimulus. In contrast, the first stimulus was
preceded by the small, low-contrast cue (Figure 5-1) that would have had a much weaker effect
on the stimulus-evoked signal to the first target in the sequence. Figure 5-6 shows the
reconstructed CTFs from activity evoked by stimuli in each position on the sequence. For this
analysis, we trained the IEM on all but the tested stimulus. For example, when testing on the first
stimulus in the sequence, we training on stimuli in positions 2-4. We found a robust effect of
attention on the amplitude of the stimulus-evoked CTFs across stimuli in all positions in the
sequence (all ps < .05). In contrast, we found that the CTFs were broader in the attend-stimulus
and attend-fixation conditions for the second, third, or fourth stimuli in the sequence (all ps <
.05), but not for the first stimulus in the sequence (p = .635), when the influence of lingering
stimulus-evoked activity should be greatly reduced. These results suggest that the increase in

CTF width was driven by lingering activity evoked by the preceding stimulus in the sequence.
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Figure 5-5. Amplitude of stimulus-evoked CTFs as a function of time in Experiment 5-1.
Amplitude of stimulus-evoked CTFs as a function of time (0 ms indicates onset of the stimulus).
Error bars reflect +1 bootstrapped SEM.
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Figure 5-6. Stimulus-evoked CTFs as a function of position of the stimulus in the sequence
in Experiment 5-1.

Stimulus-evoked CTFs (measured 80-130 ms after stimulus onset) with best fitting functions
(left) and parameter estimates of the best fitting functions (right) for each stimulus in the
sequence (a-d). Asterisks mark differences that are significant at the .05 level. Error bars show *
1 bootstrapped SEM.
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Next, to obtain converging evidence for this conclusion, we took a different approach to
eliminate lingering activity evoked by the preceding stimulus while still collapsing across all
stimulus positions in the sequence. It is primarily low-frequency components will survive
temporal jitter. Thus, we reanalyzed the data, this time applying a 4-Hz high-pass filter to
remove very low-frequency activity (Figure 5-7). We found that high-pass filtering the data
eliminated the pre-stimulus difference in spatial selectivity between the attend-stimulus and
attend-fixation conditions (p = .286), suggesting that the pre-stimulus activity was restricted to
low frequencies. Having established that a high-pass filter eliminated pre-stimulus activity, we
re-examined stimulus-evoked CTFs in our window of interest (80-130 ms) after high-pass
filtering (Figure 5-8). Again, we found that the CTFs were higher amplitude when the stimulus
was attended (p < .0001). We also found that CTFs were more broadly tuned when the stimulus
was attended (p < .01). However, the width effect was considerably smaller after high-pass
filtering the data than for the unfiltered data. As we will see in Experiment 5-2, this effect of
attention on CTF width did not replicate in Experiment 5-2, suggesting that the primary effect of

attention is to increase the amplitude of stimulus-evoked CTFs.
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Figure 5-8. Stimulus-evoked CTFs and parameter estimates as a function of condition after

high-pass filtering (low cutoff = 4 Hz)
(@) Stimulus-evoked CTFs (measured 80-130 ms after stimulus onset) with best fitting functions.
(b) Parameter estimates of the best fitting functions. Error bars show + 1 bootstrapped SEM.

124



Experiment 5-2

Past fMRI work has found that the effect of attention on the BOLD signal is stimulus-
independent (Buracas & Boynton, 2007; Itthipuripat et al., 2018; Murray, 2008; Sprague,
Itthipuripat, et al., 2018). This finding suggests that fMRI is not well suited to examine how
attention modulates the stimulus-driven response. In contrast, the effect of attention on stimulus-
evoked EEG signals scales with stimulus contrast (Itthipuripat et al., 2014, 2018), consistent with
sensory gain models of attention, which hold that attention amplifies stimulus-driven responses
(Hillyard et al., 1998). Thus, to replicate and further characterize the effect of attention on
stimulus-evoked CTFs in Experiment 5-2, we manipulated stimulus contrast. Observers
performed the same attend-stimulus and attend-fixation tasks as in Experiment 5-1, but we
parametrically varied the pedestal contrast of the bullseye stimulus (five contrast levels ranging
from 6.25 to 90.6%). We adjusted the size of the contrast decrement independently for each of
the conditions using a staircase procedure designed to hold accuracy at ~76% correct (see
Materials and Methods). Figure 5-9 shows accuracy as a function of pedestal contrast of the
stimulus and attention condition. Accuracy was well matched across condition: mean accuracy

across subjects did not deviate from 76% by more than 1% any condition.
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Figure 5-9. Task performance in Experiment 5-2.
Accuracy in Experiment 5-2 as a function of attention condition and pedestal contrast. Error bars
reflects +1 SEM across participants.

We reconstructed CTFs independently for each of the conditions, having estimated
channel weights using additional trials (with a pedestal contrast of 90.6%) that were included in
for this purpose (see Materials and Methods). In Experiment 5-2, we again used a high-pass filter
to remove lingering activity evoked by the preceding stimulus in the sequence. Figures 5-10a and
5-10b show the reconstructed CTFs as a function of contrast for the attend-stimulus and
attention-fixation conditions. We again fitted each CTF with an exponentiated cosine function to
measure amplitude, width, and baseline of CTFs. For each of the three parameters, we performed
a resampling test to test for a main effect of contrast, a main effect of attention, and an attention
x contrast interaction. First, we examined CTF amplitude (Figure 5-10c). We found that CTF
amplitude increased with stimulus contrast (main effect of contrast: p <.0001), and CTF
amplitude was larger in the attend-stimulus condition than in the attend-fixation condition (main

effect of attention: p <.0001). Critically, the effect of attention on CTF amplitude increased with
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stimulus contrast (attention x contrast interaction, p <.001), as predicted by sensory gain
accounts of attention (Hillyard et al., 1998). This finding provides clear evidence that the effect
of attention on stimulus-evoked CTFs is not additive with stimulus contrast, as is the case with
the BOLD signal (Buracas & Boynton, 2007; Itthipuripat et al., 2018; Murray, 2008; Sprague,
Itthipuripat, et al., 2018). Next, we examined CTF width (Figure 5-10d). We found that estimates
of CTF width were very noisy for the 6.25 and 12.5% contrast conditions because of the low
amplitude of the CTFs in these conditions, precluding confidence in those estimates. Thus, we
restricted our analysis to the higher contrast conditions (25.0, 50.0, and 90.6% contrast). We
found no main effect of attention (p = .824), and no main effect of contrast (p = .112). However,
we found a reliable attention x contrast interaction (p = .031), such that CTFs were narrower
when the stimulus was attended for the 90.6% contrast condition and 50% contrast condition,
and were broader for the 25% contrast condition, but none of these differences between the
attend-stimulus and attend fixation conditions survived Bonferoni correction (p = .031, p =.292,
and p = .286, respectively; acorrected = .05/3 = .017). Thus, we did not replicate the finding from
Experiment 5-1 that stimulus-evoked CTFs were broader when the stimulus was attended.
Finally, we examined CTF baseline (Figure 5-10e). We found that CTF baseline was higher in
the attend-stimulus condition than in the attend-fixation condition (main effect of attention, p <

.01), but found no main effect of contrast (p = .678) or attention x contrast interaction (p = .132)
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Figure 5-10. Stimulus-evoked CTFs and parameter estimates in Experiment 5-2.
Stimulus-evoked CTFs as a function of stimulus contrast in the attend-stimulus (a) and attend-
fixation (b) conditions. (c-e) parameter estimates as a function of task condition and stimulus
contrast. Error bars reflect +1 bootstrapped SEM across subjects.

Discussion
Past work that has examined the effect of attention on population-level representations of
stimulus position has relied on BOLD activity measured with fMRI. These studies have found
that attention primarily increases the amplitude of representations of stimulus position (Fischer &
Whitney, 2009; Sprague, Itthipuripat, et al., 2018; Sprague & Serences, 2013; Vo et al., 2017).
However, the effect of attention on the BOLD signal is best described as a stimulus-independent

shift in baseline activity rather than reflecting a modulation of the stimulus-driven response
128



(Buracas & Boynton, 2007; Itthipuripat et al., 2018; Murray, 2008; Sprague, Itthipuripat, et al.,
2018). Thus, it has remained unclear how attention modulates the spatial selectivity of stimulus-
driven activity. Here, we provide compelling evidence regarding the effects of attention on
stimulus-evoked activity. Across two experiments, we found clear evidence that attention
increased the amplitude of stimulus-evoked CTFs. In Experiment 5-2, we parametrically varied
stimulus contrast. Unlike with the BOLD signal, we found that the effect of attention on the
amplitude of the stimulus-evoked CTF increased with stimulus contrast, confirming that this
effect reflects an attentional modulation of the stimulus-driven signal rather than activity that is
independent of the stimulus. Taken together, our results provide clear evidence that attention
increases the amplitude of the spatially tuned stimulus-evoked representations.

The IEM approach also enabled us to examine how attention influenced width of
stimulus-evoked CTFs. However, the evidence that attention changes the width of stimulus-
evoked CTFs was equivocal. Stimulus-evoked CTFs were broader for attended stimuli than for
unattended stimuli in Experiment 5-1, but this finding was largely eliminated when the influence
of prior stimulus events was minimized, and the effect did not replicate in Experiment 5-2. It is
tempting to conclude that attention does not change the width of stimulus-evoked CTFs.
However, it is possible that the lack of a reliable effect of attention on the width of stimulus-
evoked CTFs could reflect a lack of sensitivity of our approach to small changes in the width of
spatially selective activity. Another possibility is that a different target discrimination task, one
that requires precise encoding of the spatial position of the stimulus rather than of stimulus
contrast (as in the current experiments), may be more conducive to a modulation of tuning width

(e.g. Fischer & Whitney, 2009). Thus, more work is needed to assess the sensitivity of our
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approach to changes in the width of tuning. One promising approach to address this issue is to
parametrically increase the physical size of a stimulus, which should directly translate into
broader CTFs. This is an important avenue for future work.

A core strength of our EEG-based approach is that it enabled temporally precise
measurement of population-level CTFs. Past studies that have relied on the BOLD signal (e.g.
Fischer & Whitney, 2009; Sprague & Serences, 2013; Vo et al., 2017) are limited by the sluggish
hemodynamic response, which peaks several seconds after stimulus onset. The slow time course
of the BOLD response makes it difficult to establish what stage of processing is influenced by
attention. In contrast, the temporal resolution that EEG affords allowed us to isolate early
visually evoked activity occurring ~100 ms after stimulus onset. Thus, our findings provide
robust evidence that attention enhances the amplitude of population representations of stimulus

position as early as early as 100 ms after stimulus onset.
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CHAPTER 6. GENERAL DISCUSSION
Our capacity to process visual information is limited. Therefore, we must prioritize
processing at relevant locations. In this dissertation, I have shown that alpha-band oscillations
precisely track spatial priority in a range of contexts. To this end, | developed an encoding model
approach to reconstruct spatially selective response profiles (called channel-tuning functions, or
CTFs) from alpha-band power measured with EEG. These alpha-band CTFs reflect the spatial
selectivity of the population-level activity that is measured with EEG. In Chapter 2, I showed
that alpha oscillations precisely track where attention is deployed following central cues and
during visual search. Furthermore, I showed that the time course of spatially selective alpha
activity is sensitive to trial-by-trial variations in the latency of covert orienting. In Chapter 3, 1
showed that alpha activity precisely track locations held in working memory. In Chapter 4, I
showed that alpha activity tracks the spatial position of memoranda held in working memory,
even when spatial positon is completely irrelevant. Together, these studies show that-alpha band
activity tracks a general selection mechanism that plays a general role in perception and in the
maintenance of online representations in working memory. Finally, in Chapter 5, I leveraged the
encoding model approach to examine the consequences of spatial attention. I showed that
attention enhances population-level representations of stimulus position. In the following
sections, I discuss open questions about the role of alpha oscillations in spatial selection.
Does alpha-band activity reflect signal enhancement or distractor suppression?
What aspect of visual selection does alpha activity reflect? The modal view is that alpha
activity mediates the suppression or gating of irrelevant visual inputs (Clayton, Yeung, & Cohen

Kadosh, 2015, 2017; Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Payne & Sekuler, 2014).
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This view falls in line with the consensus that distractor exclusion is a critical component of
visual attention (Desimone & Duncan, 1995). However, it is broadly acknowledged that
improved perception at a relevant location can also occur via signal enhancement, which directly
improves processing at attended locations (Carrasco, 2011; Hillyard et al., 1998). While many
studies have shown that alpha activity tracks the attended positions in the visual field (Kelly et
al., 2006; Thut et al., 2006; Worden et al., 2000), even in the absence of irrelevant distractors
(Kelly, Foxe, Newman, & Edelman, 2010; Rihs et al., 2007; Thut et al., 2006), recent work has
cast doubt on whether alpha activity tracks locations at which distractors are expected (Noonan
et al., 2016). At first glance, this may seem to point towards a role in signal enhancement rather
than distractor suppression. However, a neural signal that suppresses interference at all
unattended locations may also enable precise tracking of target position. Thus, the fact that alpha
activity precisely tracks the selected locations — but not the locations of distractors — still leaves
open the question of how alpha activity supports selective attention.

In support of the distractor suppression account, past work has emphasized the finding in
spatial-cueing tasks that alpha power decreases contralateral to the cued location and/or
increases contralateral to the uncued location (Kelly et al., 2006; Rihs et al., 2007; Thut et al.,
2006; Worden et al., 2000). This finding has been presented as suggesting that higher alpha
power contralateral to the uncued location reflects increased suppression of irrelevant stimuli
(Clayton et al., 2015, 2017; Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Payne & Sekuler,
2014). But this empirical pattern is equally compatible with the view that reduced alpha-band
power reflects signal enhancement. Another finding that has motivated a suppression account of

alpha activity is the inverse relationship between alpha power and other neural signals such as
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spiking activity (Haegens, Nacher, Luna, Romo, & Jensen, 2011) and gamma-band oscillations
(Spaak, Bonnefond, Maier, Leopold, & Jensen, 2012). However, these findings do not establish
whether alpha activity influences the quality of sensory representations because the information
content of neural activity can be disconnected from the overall amount of neural activity (e.g.
Postle, 2015). For example, inhibition of specific neural units could improve the fidelity of a
sensory representation. Thus, it is unclear whether these inverse relationships reflect an inverse
relationship between alpha power and the strength of sensory representations. Even though there
is some evidence for an inverse relationship between alpha power and the strength of sensory
representations measured via BOLD responses in visual cortex (Zumer, Scheeringa, Schoffelen,
Norris, & Jensen, 2014), these data are still compatible with the hypothesis that decreased alpha
power reflects a relative increase in signal enhancement over the attended regions.

However, a more diagnostic approach for distinguishing between suppression and
enhancement accounts is to use experimental designs that selectively manipulate the process of
interest. If the degree of distractor suppression can be manipulated while signal enhancement is
held constant, this provides an opportunity to link specific neural signals with suppression per se.
For example, Serences and colleagues (Serences, Yantis, Culberson, & Awh, 2004) used this
approach to test whether preparatory activity measured with fMRI reflected distractor exclusion.
Spatial attention increases baseline activity measured with fMRI in visual cortex tuned for the
attended location (Kastner et al., 1999; Tootell et al., 1998). To test whether this preparatory
activity reflects distractor exclusion, Serences et al. varied the probability that distractors
accompanied visual targets, a manipulation that has been shown to increase resistance to

distractor interference without affecting performance with distractor-free displays (Awh,
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Matsukura, & Serences, 2003). The selective effect of the probability manipulation suggests a
specific effect on distractor exclusion, because changes in that process should not affect
performance when there are no distractors to exclude. Critically, Serences et al. found that
preparatory activity, measured via retinotopic changes in the amplitude of the BOLD signal, was
greater when the probability of distractors was higher, suggesting that this preparatory activity
plays a specific role in distractor exclusion. Therefore, this work provides a clear example of
how preparatory activity can be unambiguously linked with distractor exclusion.

Of the substantial body of work that links alpha-band power with covert attention, only a
few studies have attempted to selectively manipulate distractor suppression (Haegens, Luther, &
Jensen, 2012; Janssens, De Loof, Boehler, Pourtois, & Verguts, 2018; Kelly et al., 2010; Noonan
et al., 2016). In one study, Kelly and colleagues (Kelly et al., 2010) cued the location of an
upcoming target. In some blocks, the target appeared alone, while in others a distractor appeared
in the uncued hemifield. Kelly et al. reasoned that if spatially specific alpha-band power reflects
distractor exclusion, then lateralized alpha-band should be stronger when observers expect a
distractor than when no distractor is expected. Interestingly, lateralization of alpha-band power
was weaker when distractors were expected (also see Haegens et al., 2012, which found no effect
of the strength of distractors on the lateralization of alpha-band power in a somatosensory task).
However, one caveat here is that there was no behavioral evidence that distractor exclusion was
increased in blocks that contained distractors. Thus, the null effect on alpha laterality may not
provide strong evidence against a distractor exclusion account.

Handel and colleagues (Handel, Haarmeier, & Jensen, 2011) took a different approach.

Rather than manipulating the degree of distractor exclusion, they sought to test whether the
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degree of lateralization of alpha-band activity predicted individual differences in distractor
exclusion. The authors reasoned that if lateralized alpha-band activity predicted processing of the
stimulus in the uncued hemifield (on invalidly cued trials) but not processing of the stimulus in
the cued hemifield (on validly cued trials), then this would provide evidence in favor of the
distractor exclusion account of alpha-band power. Their results followed this pattern, but there
was considerably more variability in performance for the uncued stimulus than for the cued
stimulus. Thus, the failure to detect a relationship between alpha-band lateralization and
processing of the cued stimulus may reflect a restriction of range for performance at the cued
position.

In another study, Noonan and colleagues (Noonan et al., 2016) successfully manipulated
distractor exclusion. Observers responded to a target stimulus. Noonan et al. varied whether or
not the target was accompanied by a distractor in different blocks of trials, and found that the
presence of a distractor reliably slowed response times. In some blocks, Noonan et al. cued the
location of the target or the distractor in advance. Unsurprisingly, a spatial cue indicating the
target location speeded responses (compared to trials with no cue). Interestingly, a spatial cue
indicating the distractor location also speeded responses (again, compared to trials with no cue).
Critically, this distractor-cueing benefit was not seen when the distractor was absent, providing
clear evidence that cues indicating the location of a distractor selectively enabled distractor
exclusion. Strikingly, Noonan et al. found that alpha-band activity tracked the cued location
when the target location was cued but not when the distractor location was cued, suggesting that
alpha-band activity plays a role in signal enhancement but providing no evidence for a role in

distractor exclusion.
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To summarize, while it is clearly the modal view that alpha activity reflects the
suppression of irrelevant visual information, the evidence is equivocal. Extant work linking alpha
activity with spatial attention is compatible with an account in which alpha supports target
selection via signal enhancement. Thus, there is strong motivation for further work in which
alpha-band activity is assessed during selective manipulations of different aspects of spatial
selection, preferably with analytic approaches that focus on spatially-selective alpha-band
activity rather than overall power in that frequency band. For example, given prior work that has
reported covariations of alpha power and BOLD activity (Hermes, Nguyen, & Winawer, 2017),
it may be worthwhile to use an approach similar to that of Serences et al. (Serences et al., 2004)
to examine how alpha activity is affected by selective changes in distractor exclusion. Until such
work is conducted, the jury is still out regarding the computational role played by alpha activity
during spatial selection.

Do alpha-band oscillations play a causal role in spatial selection?

The vast majority of evidence — including the work presented in this dissertation — is
correlational. Although alpha activity precisely tracks selected locations, these findings do not
provide evidence that alpha activity plays a causal role in spatial selection. To test for a causal
relationship, one must manipulate alpha activity to and test whether this has consequences for
spatial selection. Furthermore, the manipulation must be a selective manipulation of alpha
activity: if the manipulation also influences other neural activity, then any effect of that
manipulation on spatial selection could be mediated other neural consequences of the

manipulation.
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To date, just one study has sought to selectively manipulate alpha activity to test for a
causal relationship between alpha activity and spatial selection. In this study, Romei and
colleagues (Romei, Gross, & Thut, 2010) aimed to manipulate oscillatory activity in occipito-
parietal cortex by stimulating cortex with rhythmic transcranial magnetic stimulus (TMS).
Observers performed a visual detection task. On each trial, observers reported whether or not a
near-threshold target appeared, which could appear in the left or right hemifield. Immediately
before the target, Romei and colleagues applied a train of TMS pulses over occipito-parietal
cortex, either contralateral or ipsilateral to the impending target. The authors applied 10-Hz
stimulation to manipulate parieto-occipital alpha activity (Thut et al., 2011). Because alpha
power is usually higher ipsilateral to an attended location, Romei and colleagues reasoned that
stimulation (intended to increase alpha activity) should improve performance when it is applied
ipsilateral to the target. Indeed, they found that target detection rate was improved following
ipsilateral stimulation. Furthermore, this effect was not seen when stimulation was applied at 5-
Hz or 20-Hz, showing that the effect was specific to 10-Hz stimulation. These findings led the
authors to conclude that alpha oscillations play a causal role in modulating visual processing.

However, this finding must be interpreted with caution. The conclusion that alpha
oscillations specifically play a causal role rest firmly on the assumption that the manipulation
selectively influences alpha oscillations. While there is evidence that rhythmic TMS does drive
neural oscillations (Thut et al., 2011), it remains unclear whether this kind of stimulation
selectively influences alpha oscillations without changing other neuronal dynamics, leaving open

the possibility that some other change in neural activity produced the change in behavior.
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Therefore, whether alpha-band activity plays a causal role in spatial selection remains an

important question for future work.

Conclusions

The work presented in this dissertation establishes that alpha-band oscillations are
intimately linked with spatial priority in the human brain. I showed that alpha oscillations
provide a spatially and temporally resolved index of spatial attention, establishing a powerful
tool for precisely tracking spatial selection. Furthermore, I showed that this selection mechanism
is recruited in a range of contexts — both during the selection of relevant locations during
perception and during the maintenance of information in working memory. Although questions
remain about the exact computational role that alpha-band activity plays in spatial selection, it is
clear that alpha oscillations provide a powerful means of tracking spatial priority in the human

brain.
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