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ABSTRACT

In this paper I consider the e�ect of learning-by-doing and preference discovery on engage-

ment for users of a popular franchise video game. An important data aspect is competition�

players must budget their game time between competitive and non-competitive modes. I

observe that player behavior is consistent with learning and initial competition aversion. For

example, shares of time spent in competitive levels tend to drop upon new game adoption and

then rise with time played. Within this rich dataset, I also discover signi�cant heterogeneity

in usage patterns. Thus, a one-size-�ts-all approach is insu�cient. To study how the �rm

can increase player engagement, and to understand the relative values of competitive and

non-competitive play, I propose a novel structural model nesting Bayesian learning within a

multiple-discrete continuous framework. This allows me to jointly explain usage along the

extensive and intensive margins. With this model, I �nd that consumers can, broadly speak-

ing, be categorized as high types (�hardcore�) or low types (�casual�). High types tend to be

competition-seeking and more naturally engaged, while low types tend to be competition-

averse and drop out quickly before learning their true match values. I consider actions the

�rm can undertake to improve consumer engagement�in particular, I perform counterfactual

analysis on advertising and console switching (i.e. bundling) policies. I �nd that low types

tend to be more responsive to both policies and primarily respond by increasing consumption

along the extensive margin. I �nd that console switching has a signi�cant positive e�ect on

total play, but cause players to substitute away from competitive levels. This is consistent

with the learning framework, where players pay a skill or familiarity cost when switching

consoles. Finally, I discuss the value of engagement to the �rm, both qualitatively and with

respect to revenue-related outcomes.

x



CHAPTER 1

INTRODUCTION

The video game industry is both an important contributor to the US economy as well as

a signi�cant supplier of leisure goods to the US consumer. In 2016, consumers spent $23.5

billion on video games, hardware, and accessories. 63% of households contain at least one

person who plays over 3 hours per week and 48% own a dedicated game console (Entertain-

ment Software Association). Gamers spend over half of their non-social leisure time on games

(American Time Use Survey, 2016). Of course, as digital and online consumption continues

rising gaming is increasingly a channel, rather than a substitute, for socialization. 53% of

frequent gamers feel video games help them connect with friends and 42% feel they help

spend time with family (ESA, 2016). Further, the demographic of video gamers is shifting:

dedicated gaming console ownership now favors women (Pew Research Center, 2015) and

the average gamer is now 35 (ESA, 2016). Underlying these trends are the evolving, unob-

served motivations for play. For example, survey-based literature suggests that competition

is particularly important to younger or male gamers while strategy is relatively age-invariant

(Quantic Foundry, 2016). At the same time, video games are not monolithic. Unlike the tra-

ditional marketing case of CPG's, games are experiential and often have multiple modalities

that satisfy di�erent motivations (i.e. for socialization, competition, or immersion). Thus,

from the perspective of the video game �rm, it is crucial to deeply understand the interplay

between consumer preferences and game modalities that generate observed behavior.

The marketing literature has traditionally focused on the adoption or purchase stage

(e.g. Norton and Bass, 1987). Additionally, there has been work considering formation of

consumer consideration and search sets (e.g. Mehta et al., 2003; Honka et al., 2017). On the

other hand, research on post-adoption behavior has been relatively scant due to the dearth

of revealed preference data (Nevskaya and Albuquerque, 2019). This is certainly a rich �eld

and �lling in the gaps between repeat-purchase or product upgrade with usage data allows

1



for a deeper understanding of consumer preferences. For example, Huh and Kim (2008)

study repeat purchasing among smartphone users and �nd that sticky behavior is driven by

post-adoptive usage of brand-speci�c innovations. Conclusions of this type require a type

of data that is often simply unavailable. Usage behavior also tends to be leveraged in the

literature on churn in retention (see, e.g. Ascarza and Hardie, 2013; Braun and Schweidel,

2011 for applications to the warehouse retail and telecommunications industries).

In this paper I aim to structurally understand the drivers of product usage and its con-

sequences for consumer engagement. My primary research interest is discovering how �rms

can utilize observed usage data to understand the evolving preferences of consumers and

what �levers� may best be called upon to improve user engagement. In particular I posit a

structural model of usage framed within consumers learning-by-doing, resolving uncertainty

about the product at hand�this is especially relevant in the case of new products or inex-

perienced consumers. Moreover, I consider the scenario where usage is a non-binary vector,

i.e. multiple discrete-continuous1. This allows me to understand usage not only along the

extensive (use-or-not) and intensive (how much to use) margins, but also the composition of

modalities. The empirical application at hand is a proprietary dataset detailing users of a

major franchise console video game with sessions-level play over many game modes. Thus,

I am further interested in understanding motivations for play, and speci�cally, the role of

appetite for competition in driving usage and long-term engagement. Through this lens, a

consumer resolving uncertainty over game modes ordinally indexed by level of competition

can alternately be viewed as increasing her appetite for competition or potentially game

skill. To my knowledge, this is the �rst paper to consider: (1) learning in the framework

of multiple discrete-continuous models and (2) the nature of the relationship between com-

petitive appetite and play from an economically-founded point of view. Applying my model

1. In other words, this case is a generalization of the single discrete, multiple discrete, and single discrete-
continuous decisions oft considered in marketing literature.

2



to the play data, I �nd that there are two latent segments of consumers, which I de�ne to

be �hardcore� (high types) and �casuals� (low types). Relative to hardcore gamers, casuals

are characterized by a large degree of aversion towards the competitive modes and a high

degree of satiation. For all consumers, I �nd evidence of �upward� learning that is eventually

overwhelmed by declining novelty�on average there is a signi�cant amount of learning left

on the table, particularly for casuals. Turning to policy, I �nd that advertising has a 0.02-

0.06% elasticity (of play) and console switching (i.e. upgrading generations) has a markedly

larger e�ect on net play (up to 7%) but lead to a large degree of substitution away from

the competitive modes and have an empirically low uptake. Finally, I consider next-game

adoption and in-game purchasing and �nd a marginal but positive indirect e�ect (on the

order of 0.05%).

This work primarily draws from several streams of literature. First, it builds on research

in quantitative marketing/empirical industrial organization on understanding the relation-

ship between consumer behavior (speci�cally micro-level usage) and future outcomes. For

example, Hartmann and Viard (2008) look at frequency rewards programs for users of a golf

course. They �nd that high (low) frequency users place a high (low) ex ante value on both

the product and the reward, and that it is this valuation rather than switching costs that

drives observed loyalty patterns. In a similar application to this paper, Nevskaya and Al-

buquerque (2019) use popular MMO game World of Warcraft player behavior to estimate a

dynamic structural model of experiential good consumption. One particular novelty in their

paper is the observation of player content progression. Using this, they �nd that a signi�cant

driver of usage is pace of content updates and that save for a small contingent of �hardcore�

users, most users do not consume content quickly enough to justify current update frequency.

Similar to this literature is consumer learning, usually framed as Bayesian learning. For

a comprehensive survey of learning models in marketing, please refer to Ching et al., 2013.

3



For example, Narayanan et al., 2007 analyze consumers pre-committing to �xed or metered

telephone plans and �nd that those on metered plans learn their true usage more quickly

than those on �xed plans. In a similar vein I consider evolving consumer behavior through

the lens of uncertainty resolution and show that several prominent data patterns can be con-

sidered as players solving static budget problems with di�erential learning rates. Further,

the patterns I observe are similar to that in Huang, 2019, who studies the camera upgrade

behavior for users of the popular image-hosting website Flickr : we both observe an imme-

diate drop in the indexing variable (photograph ratings and competitive level, respectively)

following adoption which slowly rises again over time. Huang, 2019 attributes this pattern

to forward-looking consumers �investing� in more complex technologies with a higher quality

ceiling while I attribute it to the novelty-risk aversion tradeo�.

Methodologically, I also build upon work in the environmental economics/transportation

operations literature on multiple discrete-continuity. In particular, in this paper I extend

Bhat's (2008) multiple discrete-continuous nested extreme value (MDCNEV) model to ac-

commodate consumer learning. Similar models without learning have been previously intro-

duced in the marketing literature (cf. Satomura et al., 2011). Through a simulation study,

I present necessary conditions for model identi�cation and show it has su�cient �exibility

to explain several prominent patterns in the data. At the same time the model parameters

retain a simple, intuitive interpretation that lends naturally to answering the policy ques-

tions I am interested in: whether shifting consumer prior beliefs or improving �ow utility

can increase user engagement.

Additionally, I draw from the psychology and sociological literature on playful consump-

tion and competition to develop my modeling framework. In particular, this literature posits

that consumer utility is driven by intangibles (e.g. fantasy, emotion, novelty) in addition

to tangible attributes (e.g. Holbrook and Hirschman, 1982; Berlyne, 1970). Holbrook et al.
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(1984) show that personality-game compatibility and mastery are important drivers of en-

joyment in game play. Another stream of literature focuses on the e�ect of competition on

players (both in sports and games). Vorderer et al. (2003) show that competition and inter-

activity are key elements to explain the entertainment experience in videogames. Frey et al.

(2003) �nd that in competitive sports, there is signi�cantly greater recruitment of mental

skills in competitive vs. practice settings. Boudreau et al. (2016) �nd that in a tourna-

ment setting, increasing competition has a J-shaped e�ect on performance with respect to

underlying player skill. A similar line of inquiry is the e�ect of social play on outcomes. For

example, Jansz and Tanis (2007) �nd that the social interaction motive was the strongest

predictor of time played among Counterstrike players and Weibel et al. (2008) �nd that play-

ing vs. human (compared to computer) opponents leads to greater enjoyment and the a�ect

of �ow. Gu et al. (2016) �nd that highly social players have higher short-term engagement

but lower long-term retention while less social, casual players are the opposite. They caution

that �rms cannot expect social users to purchase more, nor expect increasing social play to

increase engagement: in fact the best predictor of future purchase is past purchasing. In

summary, this literature provides both a theoretic and empiric starting point in developing

my utility formulation that considers learning and competition as key drivers in usage.

While I specialize my model to the context of video game engagement, there are many

applications where joint estimation of extensive and intensive margins alongside consumer

learning is natural. Within the extant marketing literature, for example, researchers have

examined consumer packaged goods (CPGs) such as beverages (Satomura et al., 2011; Kifer,

2015) or yogurt (Kim et al., 2002). In these applications, it is important to allow both inte-

rior and boundary solutions within a utility maximization framework that enables consumer

welfare measurement. Here learning accommodates the introduction of new brands�perhaps

consumers are uncertain about new products but form partially informed priors based on

experiences with the umbrella brand. In fact, in the same way that omission of the MDC
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component can lead to biased price elasticities (cf. Bonnet and de Mouzon, 2014), the omis-

sion of learning where present also biases estimated parameters. A second stream of diverse

literature ranging from resource economics to transportation examines time-use decisions.

For example, researchers have studied recreation time budgeting (Bhat, 2005; Luo et al.,

2013), mobile application usage (Han et al., 2016), or motor vehicle usage (Fang, 2008).

These applications highlight the ability of the MDC model to recover structural parame-

ters and perform policy experiments. The machinery introduced in this paper is naturally

applicable to time use with preference evolution. While Luo et al. (2013) model dynamics

through skill accumulation, I explain similar data patterns through Bayesian learning. More

generally, Sanders (2016) shows that with su�ciently rich data, both human capital accu-

mulation and learning can be jointly identi�ed. Finally, it is important to caveat that there

are scenarios where this extension is unnatural and thus not recommended. For example,

physician learning over patient-drug matches is well-studied in marketing (cf. Chintagunta

et al., 2009; Ching and Lim, 2016; Coscelli and Shum, 2004). In these scenarios it is di�-

cult to imagine physicians are solving a budget problem, either over drug costs or dosages.

Thus while discrete-continuity may be a feature of the data, one should carefully examine

the context before blindly adopting the framework. In summary, the model I propose is

general and appropriate for both the standard utility maximization as well as usage budget-

ing frameworks when there exists uncertainty about alternatives that is then resolved with

usage. With all tools, however, it is up to the user to properly assess the circumstances and

suitability.

1.1 Paper Organization

The remainder of this paper is structured as follows: in Section 2 I give a brief overview of

the data and how it is cleaned. In Section 3 I present descriptive summaries for notable data

patterns alongside potential explanations and stylized facts. Following that in Section 4 I

present a structural model that has su�cient �exibility to accommodate these data patterns,
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then provide simulation results to establish identi�cation. In Section 5 I provide estimation

results of my model and show that it can recover important data patterns. In Section 6 I

employ the model augmented with ad e�ects to perform counterfactuals and discuss actions

the �rm can undertake to improve player engagement. Finally in Section 7 I discuss potential

model extensions and conclude.

7



CHAPTER 2

DATA

2.1 Data introduction

The data contains purchase and play behavior for consumers (players) of a franchise console

video game with annual releases over �ve years. While the central premise, game play, and

overarching feel of the game remain consistent, with each new release there may be substan-

tial mechanical and graphical changes. For example, individual game sessions are played

upon selection of a game mode. The �rst game I observe in the sample consists of 20 modes

while the �nal has 34�while there are certain core modes that consistently return, quite a

few modes are added or dropped each year. Further, there are often core mechanical tweaks

and qualify-of-life improvements year-over-year.

I observe play across 5 games in the franchise (and consequently 5 years of play data)

from a �left-censored� sample of players. By construction, all players from previous gener-

ations that adopt the next game are retained. In addition roughly 10,000 new players are

sampled each year. In Table 2.1 I present some basic summary statistics for each game. Due

to the accumulating nature of the sampling process, the number of players I observe playing

each game grows by around 15% annually. The mean number of game sessions also increases

rather signi�cantly the �rst few games before stabilizing in the �nal two games1. On the

other hand, the average session length is about one hour across all games. I observe that

about half of the players in each game are retained each year. Unsurprisingly, new players

churn out signi�cantly more than returning players.

1. A session is bookended by a player initializing and exiting the game. This is a somewhat nebulous
entity as it can range from a few seconds to several hours (e.g. the longest session I observe is almost 24
hours long and the 99% quantile is 5.5 hours). The mapping from session length to number of actual in-game
matches played, which is perhaps of greater interest, is unfortunately unobserved and di�cult to back out
in the data.
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Players Modes Sessions Min/ses. Retention rate Ret.|Returning Ret.|New
Game 1 15462 20 21.04 63.75
Game 2 19651 30 36.96 60.17 0.50 0.73 0.34
Game 3 20963 28 40.92 63.44 0.47 0.66 0.29
Game 4 25455 29 49.80 63.47 0.52 0.68 0.35
Game 5 26812 34 49.77 56.44 0.57 0.71 0.38

Table 2.1: Summary statistics for each game.

In this paper I will solely focus on explaining player behavior for the �nal game in the

sample (Game 5). Because my policy question relates to player engagement, I only consider

a single game and condition on adoption. While I show that more engaged players are likelier

to adopt the next game and it is certainly reasonable to ask whether increased engagement

has a causal e�ect on future adoption, that is outside the scope of the current paper. Con-

ditioning on adoption means my interest is moreso measuring a kind of �average treatment

e�ect on treated� (ATT) than the general ATE. I believe that from the perspective of the

�rm this conditional treatment e�ect is important.

The inclusion of the adoption decision would certainly allow me to tackle a greater range

of questions, but there are both data and modeling challenges that impede satisfactory

treatment of adoption. From a modeling perspective, a joint model of adoption and usage

necessitates the introduction of dynamics, as I must consider that consumers choose when

to upgrade. Unfortunately as I show in Section 3 for a majority of the players for whom I

have useful historical information the observed adoption times lack variation2, and for new

players for whom there is large variation in adoption times, there is zero information that

can be used to explain adoption�this includes any price information. Finally, as I show in

Section 4 the proposed model is highly complex and identi�cation is non-trivial. Typical

dynamic problems in the marketing literature are simple in the sense that the decision

variable is scalar discrete. Because I am modeling a multiple discrete-continuous outcome

(vector continuous), the computational and analytic burden would be tremendous. As I

2. For example, about 85% of highly experienced players adopt by the second week.
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show later, the proposed static model can su�ciently capture important data moments in

the post-adoptive framework.

2.2 Data cleaning

After basic cleaning, I observe 26,715 players from adoption of the �nal game until end of

sample for a possible maximum of 304 days. Due to a high degree of sparsity in daily ses-

sions data, I aggregate the data to a weekly level. After cleaning, I have around 898,000

player-weeks and have net play duration for each of 30 remaining game modes. Even after

the weekly aggregation, about 70% of player-weeks have no play. For player-weeks with play,

the median play duration is 2.7 hours (mean = 4.5 hours).

As I am interested in the consumer's evolution of appetite for competition, I then map

each of the 30 game modes to one of four levels of competition, detailed below. This

additionally serves the bene�t of reducing the dimensionality and sparsity of the play data.

1. Solo: single-player, played against AI. Includes training modes.

2. Friendly: multi-player, played with others from user's friends list, can be cooperative

or competitive. Includes �couch co-op� mode.

3. Competitive: multi-player, played against strangers in a matchmade environment,

purely competitive.

4. Ranked: same as competitive but with an additional �ranking score� attached to the

account.

2.2.1 Partitioning modes into ordinal levels

While there is a possibility that grouping several modes into one level throws away useful

information, I believe that the simplicity and gains to interpretability (as well as dimension
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reduction) more than compensate for the cost. Below I detail the reasoning used to form

these levels:

The distinction between Solo and other levels is fairly straightforward: single- vs multi-

player and is a common characterization used in industry. While it partitions modes that

o�er no competition vs those that do, it also partitions modes that have no social element

from those that do. In the literature there is signi�cant support both for the social e�ect

of gaming (e.g. Tyack et al., 2016; Yee, 2007) and the e�ect of playing against computer

vs human opponents (e.g. Williams and Clippinger, 2002). Empirically, a potential concern

then is that the social/network and competitive e�ects may be con�ated with this partition-

ing. I believe this may be resolved by construction of the Friendly level, which is the only

level to include a cooperative mode. Intuitively, the elasticity of substitution away from Solo

to Friendly compared to that of Solo to (Competitive + Ranked) can help pin down the

competitive relative to the social e�ect.

The distinction between Friendly and the next two levels is that games are purely com-

petitive and played against strangers. Again, there is signi�cant support in the psychology

literature that players fundamentally view cooperation and competition, even within the

same game, di�erently (see, e.g. Schmierbach, 2010; Ewoldsen et al., 2012). Additionally,

evidence suggests that playing against friends (even virtual) can be both di�erently moti-

vated and experienced than against complete strangers (see e.g. Tyack et al., 2016; Pollmann

and Krahmer, 2017).

Finally, the distinction between Competitive and Ranked is largely empirical: looking

over online discussion boards3, the general consensus appears to be that the ranked modes

3. Sources include the o�cial game forums maintained by the �rm, and various uno�cial enthusiast
discussion boards
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are the most �hardcore�. Consistent with competitive aversion, I observe that almost all

players have played a solo mode in their career (>95%), while over half have played a friendly

(65%) or competitive (50%) mode, while less than half (<40%) have ever touched the ranked

mode. Within the �rst four weeks of purchase, the numbers are 94%/51%/40%/24%, which

provides further justi�cation this de�nition.
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CHAPTER 3

DESCRIPTIVE SUMMARY

Below I give a high-level description of the data, and show patterns that motivate my model

and the empirical questions I plan to tackle. I visualize the data by partitioning the sample

into three groups: new players who are introduced to the franchise with the current game

(46%, denoted new), returning players who played less than the median duration in the

previous franchise game (28%, low exp), and returning players who were above the median

(26%, high exp). I consider the extensive margin to be number of players who play in any

given week and the intensive margin the conditional duration for those who decide to play.

I show that the low exp and new players behave rather similarly, while the high exp players

are signi�cantly di�erent in both intensive and extensive margins, and propose mechanisms

for the observed behavior.

3.1 Adoption Time

For completeness I present summary statistics for adoption here. There is signi�cant het-

erogeneity in adoption time for the game. As seen in the table below and Fig. 3.1, high exp

players purchase the game far earlier than new players, with low exp players somewhere in

between. In fact, by the second week 85% of high exp players have purchased (compared

to less than 20% of new players). Additionally note that around week 17 there is a spike

in purchases corresponding to a major US holiday. In that particular week, 14% of all new

players adopt compared to only 3% for high exp players. These numbers may suggest that

high exp (and to some extent low exp) players have already decided to deliberate, perhaps

requiring an exogenous holiday shock.
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Type Mean adoption Median adopt 3rd quartile adopt % adoption in �rst 2 weeks
New 15.27 17.00 22.00 0.18
Low exp 6.46 1.00 13.00 0.59
High exp 2.06 0.00 0.00 0.85

Table 3.1: Adoption statistics by type.

(a) (b)

Figure 3.1: Adoption time by type.

3.1.1 Hazard models for adoption

Next I use two simple hazard models to gain some intuition for the adoption process. As

I do not observe demographics, I have scant information to predict adoption times for new

players. For returning players, I use play in the previous game1. Below I present selected

results:

First, I consider the virtual Bass adoption model (VBM; Jiang et al., 2006). Recall it is

parameterized by the set (p, q, τ) where the CDF of adoption F1(At) is de�ned:

F1(Ait) =
1− e−(p+q)(τ+t))

(q/p)e−(p+q)(τ+t) + 1

where τ > 0, q > p. Here p, q represent the coe�cients of innovation and imitation, re-

spectively, and τ represents the initial �release� (i.e. when consumers begin forming mental

purchase commitments). I estimate p = 0.035, q = 0.054, τ = 9.8 which is reasonable given

1. Speci�cally, I restrict the previous game data to usage before the current game's release. This simpli�es
treatment of the models by abstracting away from �port-back� behavior (see e.g. Tao and Sweeting, 2019).
Among those who do adopt the current game (the sample of interest), I observe that there is very little play
in the previous game after release of the current game.
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that the typical product lifespan here is a single year. The game was o�cially announced

roughly 16 weeks before release, so the τ estimate suggests that players may not commit to

purchase until several weeks later.

Next, I incorporate history variables using a zero-in�ated exponential (which provides a

signi�cantly superior �t than ZI-Poisson despite �tting discrete data). Here I model density

f2(At) as:

f2(Ait) = πiI(Ait = 0) + (1− πi)λie−λiAit

where λi = eX
1
i0δ

1
, πi = (1 + eX

2
i0δ

2
)−1, so that covariates that a�ect the likelihood

of purchase on release and purchase after are allowed to di�er. In the Appendix I present

results for estimates on δ = (δ1, δ2) using a dummy for new player (i.e. no prior history),

log(previous game experience), and average level played in previous game. Roughly speaking,

a returning player is about 4 times more likely to purchase immediately, and it is strongly

increasing in both previous experience and average level played. Further, the rate associated

with the exponential function is decreasing in both experience variables as well as for new

players. The �t is signi�cantly better than the vanilla VBM. Predictions are given in Fig.

3.2.

3.2 Propensity to play

The literature on experiential product usage suggests that consumer utility depends not

only on product tangibles but also intangibles such as social and novelty e�ects (Holbrook

and Hirschman, 1982). Similar to Nevskaya and Albuquerque, 2019, I observe declining

play across all groups, consistent with diminishing novelty and reductions in social inter-

actions as other players stop playing as well. In another study relating to a popular game

in the multiplayer online battle arena (MOBA) genre, Tyack et al. (2016) �nd that many
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Figure 3.2: Predictions from hazard models

players quit primarily due to time constraints, competing interests in other games, and loss

of enjoyment; the primary reason for returning is game updates. Within a single game, I

do not observe a quit decision, and cannot determine whether a sequence of observed ze-

ros from time t until end of sample are structural (quit) or sampling (budget-allocated) zeros.

Below I present probability of play per week post-purchase by experience in the exact

way as Fig. 3.1. Note that low exp players are more similar to new players than high exp

players. The median number weeks played for new players is 3 (mean = 6.1) and returning

players is 12 (mean = 14.1). For high exp players, the median is 19 (mean = 19.2) and for

low exp players, it is 7 (mean = 9.2). In the Appendix, I show the pattern persists when the

outcome is total weeks with non-zero play.

3.3 Conditioning on play

The declining probability of play empirically dominates all other unconditional data mo-

ments. In other words declining engagement along the extensive margin (from e.g. declining
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Figure 3.3: Propensity to play (extensive margin) by type.

novelty, time constraints, or other games) masks trends in total play, competitive play, etc.

This leads to rather uninteresting patterns in the unconditional data moments. Thus I will

consider conditional data moments (conditioning on play). This will inevitably introduce

selection bias since the subsample that plays in each period shifts over time (note that these

subsamples are not necessarily decreasing in time). I account for this bias by conditioning

on churn proxied by last week played. Speci�cally, I provide visualizations for static sub-

samples of players who �churn-out� within similar bins2. By binning players with similar

attrition times, I believe structural group di�erences in play propensities can be approxi-

mately accounted for. As a robustness check, in the Appendix I provide visualizations using

alternate conditioning variables.

3.3.1 Play duration | play

In Fig. 3.4a I present conditional play durations for each of the three groups (by experience).

Note that even conditional play decreases over time for all groups, but high level players tend

to play more than low level players, who are similar to new players. This pattern is generally

preserved conditioning on churn-out quartiles (Fig. 3.4b). Again, this suggests that even

2. Here I use sample quartiles of last week played: 9, 16, 25, and 44 weeks.
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among hardcore fans of the game, the novelty of the game wears o�.

(a) (b)

Figure 3.4: Conditional play duration (intensive margin) by type.

3.3.2 Max level played (MLP) | play

For each user-time, I observe the play vector (x1, . . . , x4) where 1 denotes Solo and 4 denotes

Ranked. Here I consider max level played (MLP) de�ned as MLP = argmaxjxj , shown in

Fig. 3.5. It tends to be rather volatile but largely �at over time, with clear separation

once again between high exp and other players. Sliced by churn-out time there appears

to be a slightly declining trend for long-playing users. While a declining trend may be

consistent with experimentation, where consumers are trying more competitive levels than

their current tastes may otherwise dictate and dropping down afterwards (Sanders 2016), a

�at curve would rule it out.

(a) (b)

Figure 3.5: Conditional max level by type.
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3.3.3 Shares | play

Finally, I consider shares sj = xj/
∑
k xk which normalizes the declining intensive margin

and allows me to focus on how play behavior shifts between levels over time. First in Fig. 3.6a

I consider the shares of High levels, s34 = s3 + s4, which serves as a measure of competitive

appetite. Note that it is increasing for all players, suggesting players are increasingly seeking

out competition in play. High exp players appear to have greater competitive appetite than

the low exp and new players. Next in Fig. 3.6c I compute HHI, de�ned as
∑
j s

2
j . Recall

that for J alternatives, HHI has an upper bound of 1 when all consumption is allocated

to a single good and a lower bound of 1/J when consumption is evenly divided amongst

all alternatives. It is thus a measure of increasing concentration. Empirically, I observe

increasing HHI over time for all groups, indicating that all player groups are becoming

specialists and that, on average, players are far from uniform play allocation (with J = 4,

uniform play would correspond to an HHI of 0.25). Note that new and low exp players

tend to concentrate their play more than high exp players, possibly indicating an aversion to

certain levels. In Figs. 3.6b and 3.6d I show this e�ect persists for players conditioning on

churn-out time. Finally, in Fig. 3.7 I show the individual evolution of shares for each group.

Through the entire sampling period, the dominant level is Solo, although it is decreasing over

time (moreso for high exp players). High exp players are substituting away from Solo into all

three other levels, which generates the increasing High level shares. Low exp and new players

are substituting away from Solo and Friendly to Competitive, while Ranked play remains

low. This also generates increasing High level shares, but in a di�erent manner. These

visualizations suggest that, in general, players are increasingly competitive and specialize

away from the Solo levels. These patterns are suggestive of the Bayesian learning scenario

where users are ex ante more pessimistic or uncertain about the good with higher true

match value. An alternate explanation is that players are ex ante uncertain about their

own competitive appetite and resolve it through play. While shares of High level play are

increasing, low exp and new players do not necessarily end up substituting to the highest
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level (Ranked), indicating that there may be a plateau in the learning e�ect.

(a) (b)

(c) (d)

Figure 3.6: Conditional high level shares and HHI by type.

Figure 3.7: Evolution of individual level shares by type.

3.4 Cross generational patterns

Although the focus of my paper is solely current generation play patterns, I believe it is

useful to understand how players behave between game versions. In Fig. 3.8 note that for

returning players, there are signi�cant drops in both high level shares and HHI immediately
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after upgrading to the newer game3 This would once again be consistent with a learning

framework, where players are uncertain about their match values for game G's levels. This

is consistent with the fact that each franchise game introduces new core mechanics and game

modes. For example, a player's favorite game mode may even have been removed entirely

between game G − 1 and G. In the same vein, the drop in HHI can be interpreted as at-

tempts to experiment in order to learn about the new game's modes and resolve uncertainty.

A �nal note is that the low exp and new players are very similar in Fig. 3.8. Given that the

threshold for low exp was de�ned to be roughly 40 hours (<1 hour/week), it makes sense that

from an uncertainty and experience perspective, low exp players behave similarly to new ones.

These patterns are seen in Huang (2019), who attributes the immediate quality drop

when Flickr users purchase new cameras to a mental switching cost as users must accustom

themselves to the new technology. Thus, he rationalizes adoption of more advanced cameras

through the tradeo� between current skill and a higher future skill ceiling. On the other

hand, I argue that these patterns can be fully rationalized even without dynamics: for

example, consider pessimism over level j de�ned pessj = q∗j − q̄0j , i.e. di�erence between

true and initial valuation. Consider just the Competitive (j = 3) and Solo (j = 1) levels.

When pess3 > pess1 but q∗3 > q∗1, in other words a player is more pessimistic about the

Competitive level but it has better true match value, the observed high level shares can be

rationalized. The drop in HHI can similarly be explained by a jump in uncertainty over

game G relative to G− 1.

3. Here the plots are conditional on observing a play session, which leads to the obvious criticism of self-
selection. In the Appendix I replicate these plots for the subsample of high utilization players who recorded
at least one session in the �nal month and show this pattern remains. Without further assumptions I cannot
conclude anything about those low-utilization players who stopped playing game G− 1 much earlier�this is
a standard treatment e�ects issue (i.e. Rubin's potential outcomes).
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(a) (b)

Figure 3.8: Cross generational high level shares and HHI by type.

3.5 Covariates: cluster analysis

In this section I work backwards from outcome data to gain intuition on consumer �types�.

In particular, I cluster the sample using ex post summary behavioral data such as play du-

ration, max level played, etc.4 and examine the ex ante (game G − 1) covariates as well

as current-game play evolution for each cluster. While previous game covariates cannot be

generally considered exogenous, in my model I will condition on adoption, allowing treat-

ment of pre-adoption behavioral variables as given. Below I present results for K ∈ {2, 3, 5}

clusters, focusing on K = 5 clusters. In Fig. 3.9 I visualize the evolution of three data

moments�extensive margin, intensive margin, and high level shares for each cluster, and in

Table 3.2 I provide summary �demographics� (i.e. including previous game behavior) for

each cluster.

Table 3.2: Clustered behavioral and demographic means,
K = 5.

Clust. 1 Clust. 2 Clust. 3 Clust. 4 Clust. 5

No. games owned 1.58 3.58 2.95 2.88 3.54
No. yrs in samp. 0.34 1.84 1.61 1.44 2.01
Adopt day G 159.21 27.91 23.28 66.63 36.90

4. I use: no. weeks played, no. weeks owned, percent of weeks with play, last week played, overall max
level played, �rst {1, 4} weeks play duration/max level, total play in each level as well as overall, overall
high shares, and overall HHI for the current game.
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Table 3.2: Clustered behavioral and demographic means,
K = 5, continued.

Owns Xbox 360 0.11 0.06 0.07 0.07 0.06
Owns Xbox One 0.50 0.47 0.41 0.43 0.43
Owns PS3 0.05 0.03 0.07 0.08 0.05
Owns PS4 0.35 0.49 0.47 0.46 0.49
Owns Xbox 0.60 0.51 0.48 0.48 0.49
Owns PS 0.40 0.51 0.53 0.53 0.53
Owns older cons. 0.16 0.09 0.13 0.15 0.11
Owns multiple cons. 0.01 0.05 0.02 0.03 0.04

High exp 0.02 0.52 0.11 0.27 0.40
Low exp 0.14 0.23 0.42 0.25 0.27
Returning 0.16 0.75 0.53 0.52 0.67
New 0.84 0.25 0.47 0.48 0.33

Adopt day G− 1 131.34 59.19 61.61 63.32 54.12
No. wks. played G− 1 6.36 21.44 8.18 15.53 17.91
No. wks. owned G− 1 33.69 43.87 43.56 43.29 44.58
Pct. wks. played G− 1 0.21 0.48 0.20 0.36 0.40
Last wk. played G− 1 34.61 42.63 28.75 37.18 38.93
Overall max lvl G− 1 1.89 2.77 1.84 3.23 1.76
First wk. play G− 1 2.44 8.35 4.29 6.36 6.60
First 4 wks. play G− 1 6.95 25.80 11.36 19.28 20.29
First wk. max lvl G− 1 1.13 1.09 1.09 1.23 1.06
First 4 wks. max lvl G− 1 1.46 1.56 1.34 2.34 1.22
Total solo play G− 1 11.67 62.74 20.65 13.88 72.03
Total friendly play G− 1 3.83 10.35 4.02 5.53 6.92
Total competitive play G− 1 2.28 38.34 3.66 13.75 6.26
Total ranked play G− 1 1.98 17.78 2.19 41.39 1.97
Total play G− 1 19.76 126.78 30.52 74.57 86.67

Overall high shares G− 1 0.17 0.34 0.13 0.59 0.08
Overall HHI G− 1 0.74 0.59 0.76 0.65 0.79
Above med. high lvls, G− 1 0.14 0.67 0.17 0.70 0.24
Above med. low lvls, G− 1 0.33 0.77 0.47 0.45 0.79
Above med. ranked play G− 1 0.07 0.33 0.09 0.57 0.08
Above med. competitive play G− 1 0.08 0.56 0.11 0.33 0.20
Above med. friendly play G− 1 0.23 0.51 0.27 0.34 0.36
Above med. solo play G− 1 0.16 0.63 0.30 0.21 0.69
Above med. last wk. played G− 1 0.37 0.65 0.28 0.48 0.53
Above med. HHI G− 1 0.75 0.96 0.76 0.93 0.83
Above med. no. wks. played G− 1 0.14 0.68 0.21 0.50 0.60
Above med. high shares G− 1 0.36 0.75 0.32 0.85 0.27
Above med. max lvl played G− 1 0.25 0.65 0.22 0.77 0.21

23



Table 3.2: Clustered behavioral and demographic means,
K = 5, continued.

Adopted during weekend G− 1 0.40 0.18 0.26 0.22 0.19
Adopted 1st 2 weeks G− 1 0.15 0.54 0.54 0.52 0.57

N 6950 5162 4949 3430 6224

Cluster 1 represents the low-play, low-duration, and low-level players. They are over-

whelmingly likely to be new players. Additionally, they have by far the latest adoption

times. Returning players in this cluster also tended to repeat these patterns in the previous

game. Note they are the most likely to adopt on a weekend. I characterize this cluster as

the �newcomers.�

Cluster 2 is comprised of the greatest proportion of returning, as well as High Exp play-

ers. They are among the oldest players, and adopt the earliest. In almost every period,

they are both the most likely to play and play the longest. In the previous game, they

also tended to play the most. Similar to the newcomer group, they spent about half their

previous-game play time in the Solo level. However, they spent a far greater share of time

in the higher levels. They stand out as specialists in the Competitive level. This cluster can

be characterized as the �hardcore� players.

Clusters 3 & 4 are both comprised of around half returning players but exhibit drastically

di�erent characteristics. Cluster 3 has similar play patterns to the newcomers while Cluster

4 has medium-level play but play at the highest levels of any group. Interestingly, Cluster 3

di�ers from newcomers in their very early adoption (in both current and previous game) and

somewhat higher previous-game play. I consider this group the �casual fans� who exhibit

relatively high loyalty but low utilization. On the other hand, Cluster 4 are the �ranked

level specialists�, and among returning players have the greatest share of Ranked playtime.

They are not the highest utilization players in either the current or previous game. In the
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Figure 3.9: Evolution of extensive margin, intensive margin, and high level shares for each
cluster.

�rst week of the previous game, their average max level is on par with the other clusters,

but in the �rst four weeks their average max level is far greater than any cluster, perhaps

suggestive of experimentation or quick learning rate.

Finally, Cluster 5 is roughly two-thirds returning players and about 40% High Exp play-

ers. They play nearly as much as Cluster 2, but at consistently the lowest levels. This

pattern repeats for the previous game, where these players spend a far greater share of time

in the Solo level than even the newcomers. This cluster can best be characterized as �solo

specialists�.

Finally I note that with K = 2 the clustering seems to be new vs advanced (high exp)

players with low exp players roughly equally likely to belong to either cluster. Further, the

advanced players are more likely to own a PlayStation. With K = 3 the primary intuition

is that there is a group of players who play at a similar intensity to the advanced players
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but at a competitive level more like new players. In essence, this cluster is similar to the

solo specialists in the full 5 cluster speci�cation. These results are further detailed in the

Appendix.

To more precisely understand the relationship between �true� demographics, game G− 1

behavior, and game G behavior, I consider a set of regressions using various summary vari-

ables for the present game on these covariates. In Table 3.3 I regress log(total play)5 on a

selection of variables including console ownership and previous-game behavior for returning

users. First, note the signi�cant heterogeneity in cluster intercepts. One interpretation is

that the covariate dummies alone are insu�cient in teasing out behavioral di�erences be-

tween players in di�erent clusters. Nonetheless these variables clearly a�ect playtime. For

example, players with PlayStation, multiple, or newer consoles play more in total. In most

groups, low exp and new players have similar total play while high exp players have signif-

icantly greater play. For a cluster with a relatively larger proportion of returning players,

above median previous play in any level (except interestingly, Friendly) is associated with in-

creased current total play. Finally, weekend adoption is negatively associated with playtime.

Econometrically, it is important to note that the power of each within-cluster regression is

highly dependent on the proportion of returning players with historical data to draw from.

This is of course unsurprising, but serves to highlight the necessity of being able to di�eren-

tiate new players.

I brie�y summarize the above �ndings now. First, there is signi�cant heterogeneity in

play patterns, and broad categorizations such as high exp, low exp, and new provide useful

but limited predictions for next-game play. Second, previous game behavior is a strong

predictor of current game behavior. However, this information is completely missing for new

players. Further, new players do not neatly fall into any one group, and in fact exhibit great

5. At the end of sample, so each user represents one data point, i.e. a cross-sectional regression.

26



Dependent variable:

log(Total play G)
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 All

(Intercept) 0.07 3.94∗∗∗ 0.99∗∗∗ 1.98∗∗∗ 3.64∗∗∗ 1.29∗∗∗

(0.05) (0.03) (0.05) (0.06) (0.03) (0.03)
Owns PS 0.38∗∗∗ 0.06∗∗ 0.15∗∗∗ 0.21∗∗∗ 0.04∗∗ 0.37∗∗∗

(0.04) (0.02) (0.04) (0.05) (0.02) (0.02)
Owns older cons. −0.22∗∗∗ −0.13∗∗∗ −0.23∗∗∗ −0.17∗∗ 0.002 −0.33∗∗∗

(0.05) (0.05) (0.06) (0.07) (0.03) (0.03)
Owns multiple cons. 0.81∗∗∗ 0.22∗∗∗ 0.49∗∗∗ 0.31∗∗ 0.06 0.87∗∗∗

(0.22) (0.06) (0.18) (0.14) (0.05) (0.07)
No. games owned 0.15∗∗∗ −0.002 0.03 0.03 0.01 0.11∗∗∗

(0.04) (0.02) (0.03) (0.04) (0.01) (0.02)
No. yrs in samp. −0.05 0.02 0.06∗∗ 0.04 0.02∗∗ 0.02

(0.03) (0.01) (0.02) (0.03) (0.01) (0.01)
Low exp −0.03 −0.12∗ 0.23∗∗∗ 0.20 −0.01 0.35∗∗∗

(0.12) (0.07) (0.09) (0.14) (0.04) (0.05)
High exp 0.27 0.32∗∗∗ 0.28∗∗ 0.86∗∗∗ 0.44∗∗∗ 1.01∗∗∗

(0.27) (0.09) (0.14) (0.17) (0.06) (0.07)
Above med. ranked play G− 1 −0.24 0.15∗∗∗ −0.06 0.64∗∗∗ 0.09∗ 0.21∗∗∗

(0.21) (0.03) (0.12) (0.09) (0.05) (0.05)
Above med. competitive play G− 1 −0.23 0.29∗∗∗ 0.02 −0.03 0.39∗∗∗ 0.32∗∗∗

(0.21) (0.04) (0.12) (0.08) (0.04) (0.04)
Above med. friendly play G− 1 0.03 0.04 0.08 −0.14∗ −0.07∗∗∗ 0.05

(0.12) (0.03) (0.07) (0.07) (0.03) (0.03)
Above med. solo play G− 1 0.27 0.11∗∗∗ 0.58∗∗∗ −0.11 0.15∗∗∗ 0.47∗∗∗

(0.18) (0.04) (0.09) (0.09) (0.04) (0.04)
Above med. last wk. played G− 1 0.14 0.18∗∗∗ 0.19∗∗∗ 0.25∗∗∗ 0.13∗∗∗ 0.40∗∗∗

(0.11) (0.03) (0.07) (0.07) (0.02) (0.03)
Above med. HHI G− 1 0.16 0.003 0.05 0.10 −0.05 0.10∗∗

(0.13) (0.07) (0.08) (0.15) (0.03) (0.05)
Above med. no. wks. played G− 1 0.11 −0.05 −0.18∗ 0.20∗∗ −0.02 0.27∗∗∗

(0.20) (0.04) (0.10) (0.10) (0.03) (0.05)
Above med. high shares G− 1 −0.01 0.03 0.01 −0.16 −0.06 0.06

(0.14) (0.04) (0.09) (0.13) (0.04) (0.05)
Above med. max lvl played G− 1 −0.09 −0.02 −0.02 0.004 −0.17∗∗∗ 0.01

(0.15) (0.03) (0.09) (0.11) (0.04) (0.04)
Adopted during weekend G− 1 −0.04 −0.19∗∗∗ −0.24∗∗∗ −0.18∗∗ −0.13∗∗∗ −0.33∗∗∗

(0.10) (0.03) (0.07) (0.08) (0.03) (0.04)
Adopted 1st 2 weeks G− 1 −0.03 −0.08∗∗∗ −0.07 0.02 −0.06∗∗ −0.19∗∗∗

(0.14) (0.03) (0.06) (0.08) (0.03) (0.03)

Observations 6,950 5,162 4,949 3,430 6,224 26,715
R2 0.03 0.21 0.07 0.25 0.18 0.30

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.3: OLS of log(Total play G) for each cluster and overall.
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variation in play patterns. Third, adoption time does not appear to have an unconditionally

strong (or even consistently-directional) e�ect on play patterns. For example, on average,

the casual fans adopt the earliest but play very little while the ranked specialists are the

second-latest adopting group and play at the highest levels. Fourth, while the data contains

limited true demographic information6.

3.6 Stylized facts

So far I have given an exploratory description of the data. Using observations in the previous

sections, I will try to formulate some stylized facts about player behavior:

First, there is evidence in support of player learning-by-doing. Despite signi�cant het-

erogeneity in behavior, on average players tend to shift to competitive levels and specialize.

Furthermore, at the moment of adoption players tend to reduce their level of competition

and experiment across a greater variety of levels. These behaviors are consistent with players

learning about their true valuations for each level as they play. Additionally, I �nd evidence

that suggests it is not the adoption timing or player age, but rather amount of prior experi-

ence that in�uences player behavior�returning low utilization players play very similarly to

new ones.

Second, I �nd interesting patterns along both the extensive and intensive margins. In

particular, using both latent and observed segmentation I �nd that over time players are si-

multaneously less likely to play and play for shorter durations. Both patterns are consistent

with �ndings in the literature. For example, Nevskaya and Albuquerque (2019) �nd that de-

clining novelty is a signi�cant driver of usage among World of Warcraft players. Tyack et al.

(2016) �nd that alongside this loss of enjoyment, an increasingly dominant outside option

6. The only true demographic I observe is console information. However, as I show console ownership
does have explanatory power in behavior. This is supported by, e.g. branding, social, and performance
di�erences between consoles studied.
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(e.g. time constraints, competing games) is important in determining player behavior. It is

clear that these factors should a�ect player behavior along both margins. While there is a

plethora of research considering each in turn, a model that can jointly predict along both

margins would be highly useful.

Third, even though I observe a rich set of historical data (at least for returning players),

there is still signi�cant unobserved heterogeneity in behavior. This heterogeneity does not

appear to readily map to any observed characteristics, and is especially di�cult to identify

for new players. At the same time, it may be of signi�cant interest to the �rm to use this

rich data to target players for interventions that may, for example, improve engagement.
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CHAPTER 4

MODEL

4.1 Mapping stylized facts to model

The workhorse model I employ belongs in the class of multiple discrete-continuous models,

which allows for corner solutions. Intuitively, the probability of an interior solution translates

to the extensive margin and the conditional distribution of the strictly positive consumption

is the intensive margin. I further choose a speci�cation with a basis in microeconomic

theory and utility maximization, allowing recovery of deep structural parameters that I use to

perform policy simulations as well as avoid the endogeneity of conditioning on play. I explain

evolving play patterns using a combination of decreasing outside satiation, declining novelty,

and Bayesian learning, where uncertainty and risk aversion are key drivers of behavior. I

consider learning in the standard marketing sense: players have beliefs over their true match

value for each level and through play obtain signals for that match value. In this sense, my

model is similar to the one used by Narayanan et al. (2007), who utilize Bayesian learning

in a discrete-continuous model to explain phone plan-choice and usage under uncertainty.

As reasoned previously, I will not explicitly model adoption and simply condition on it.

However, the Bayesian framework can be highly useful to account for whatever endogeneity

is induced by conditioning on adoption. In particular, consider initial play after adoption

as dependent on priors derived from past play. Accounting for selection is then a simple

matter of modeling priors as functions of past play1. This learning framework naturally

both lends itself to explaining the di�erent play patterns observed between player types and

similarities in their evolution. I begin by introducing a fully general econometric model and

subsequently specialize that model to the one I will use.

1. This is supported by the observation that low exp players (recall they are de�ned as those who have
played, on average, less than 1 hr/week) behave similarly to new players. In a Bayesian learning framework,
we can say that their priors are still weak.
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4.2 General econometric model

Consider a game release at time t0. Individual i adopts the game at time ti > t0 and may

costlessly access the game in any period t = ti, ti + 1, . . . , T . The game is a quintessential

experience good. For the remainder of the exposition I will suppress the i subscript. During

each period the player allocates his/her luxury time to either the game or other recreational

activities (i.e. an outside good). Additionally, the game itself has several �levels� 1, . . . , J .

Wlog I assume these levels are ordered in increasing competition.

I assume players are uncertain about their true match values over the game's levels and

that they learn in a Bayesian manner over these match values as they play. Further, I assume

they are static optimizers which rules out experimentation in the typical marketing sense

(i.e. forward-looking consumers). In the Appendix I provide alternate mechanisms under

myopic consumers that can nonetheless explain data patterns resembling dynamics.

I will consider a variation on the model formulated in Bhat (2008) and assume consumers

solve the following problem at time t:

maxEq̃t

u0(x0t) +
∑
j>0

uj(xjt; qjt)

 s.t. x0t +
∑
j>0

xjt = E

u0(x0t) =
1

α0
Ψ0tx

α0
0t

uj(xjt) =
γj
αj

Ψjt(qjt)

[
(
xjt
γj

+ 1)αj − 1

] (4.1)

Here E represents the recreational time budget, x0t is time allocated to non-game ac-

tivities (i.e. �numeraire� good). Ψjt takes on the interpretation of baseline marginal utility

at the point of 0 consumption, αj < 1 are satiation parameters, and γj > 0 are trans-

lation parameters that allow corner solutions. As in Bhat (2005) I introduce a RUM by
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parameterizing Ψ0t = exp(ε0t) and de�ne:

Ψjt : Eq̃t [Ψj(qjt)] = exp(µjt − rσ2
jt + Zjtβ + εjt) (4.2)

I assume that qjt ∼ N(µjt, σ
2
jt), r is risk aversion, Zjt are observed characteristics, and

εt are demand shocks unobserved to the econometrician. The primary di�erence between

my model and Bhat's (2008) is the expectation taken over qjt.

Note that the utility speci�cation assumes additive separability, which as outlined in

Bhat (2008) immediately implies:

• None of the goods are a priori inferior. Considering �income� to be luxury time, I

believe this is an acceptable assumption.

• All goods are strictly Hicksian substitutes. Note that in the present context prices

do not have a readily available de�nition. Abstractly, I consider a price increase to

be anything that increases the time spent in a match holding utility �xed (recall only

total duration is observed, not individual matches, so this can only be an abstract

argument). Perhaps loading or matchmaking times are longer. Under the assumption

that these factors do not directly a�ect (dis)utility, the Hicksian substitute assumption

roughly states that if, say matchmaking times for level j increase time spent in mode

j′ will increase, compensating for utility.

• Marginal utility with respect to any good is independent of consumption levels of all

other goods. This is perhaps a problematic assumption in that it rules out cross-

satiation e�ects. However, I believe there are several accommodations I can make to

alleviate potential violations. First, I aggregate play sessions up to the weekly level.

While intra-day cross-satiation seems quite likely, abstracting away from a session- or

daily-level budget problem can also abstract away from the satiation e�ects on those
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scales. Second, because I treat the budget problem over all leisure activities, inside

consumption will generally represent a small percentage of total allocation. Thus,

it may be reasonable that relative to total budget, cross-satiation is not a signi�cant

e�ect. Finally, to induce correlations for marginal utilities for the inside goods, I impose

correlation structures in the error terms. In particular, I assume errors are distributed

nested extreme value with all inside goods (game levels) in one nest and the outside

good in another.

Additionally, I assume multiplicative separability between qj and xj so that discoveries

in preferences qj act solely as multipliers to baseline marginal utility.

4.2.1 Bayesian learning speci�cation

For the present I consider a general case where the consumer has prior preferences q̃0 =

(q10, ..., qJ0) distributed multivariate normal with mean (q̄10, ..., q̄J0) and covariance matrix

Σ0 with (Σ0)j,j′ ≡ σ2
jj′ . Wlog, we can let any or all of these parameters depend on player

characteristics and history. In the simulation section and the Appendix I discuss alternate

speci�cations as well as identi�cation.

Next, I assume that consumers are learning not only over choice occasions (extensive

margin) but the duration decision as well (intensive margin). As I explained in the stylized

facts, both margins contain information. Intuitively, a consumer who spent more time with

level j should resolve a greater amount of uncertainty than one with less, ceteris paribus.

To model this I discretize the learning process. Consider some small unit for time ∆. I

assume that when a player spends xjt time playing level j they receive kjt ≡ d
xjt
∆
e signals

informing them about their true preferences. Of course as ∆ → 0 this approaches the con-

tinuous learning process. For larger ∆ preference uncertainty and learning lose explanatory

power over variation in xjt. ∆ is not identi�ed in the model and must be calibrated ex

post. Empirically, an alternative to choosing a small ∆ is to consider the abstraction of
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�game matches� which are in fact discrete. Individual game sessions are not observed in the

data but it would seem that setting ∆ to an average session length may serve as a useful

approximation. A third solution would be to discrete the choice space entirely and solve a

multiple discrete-count problem (see, e.g. von Haefen and Phaneuf, 2003). I do not consider

that particular approach in this paper.

In the current speci�cation let Rjts be one signal observed by the consumer about level j

at time t (s = 1, ..., kjt). I assume signals are informative and unbiased for true level-speci�c

preferences. Let q∗i = (q∗i1, ..., q
∗
iJ ) denote true preferences. For exposition I consider the

general case where signals are serially uncorrelated but potentially correlated contemporane-

ously. Let Kt ≡
∑
j kjt be the total number of discretized signals observed by the consumer

at time t across all levels. Then the Kt × 1 vector ~Rt ≡ {Rjts}j=1,...,J ;s=1,...,kjt will have

Kt×Kt covariance matrix ΣRt. I now de�ne the J ×K collapsing matrix Mt whose j
th row

is comprised of 1's in the
∑
j′<j kj′ + 1, ...,

∑
j′<j kj′ + kj positions and 0 elsewhere. For

example, if J = 3 and k1 = 1, k2 = 3, k3 = 2, we have:

Mt =


1 0 0 0 0 0

0 1 1 1 0 0

0 0 0 0 1 1


Even without explicit assumptions over the structure of ΣRt we can still derive posteriors.

In particular, let the consumer's period t prior preferences be denoted q̃it ∼ N(q̄it,Σqt). Then

it can be shown2 that the posterior preferences (given Kt total signals) has distribution

q̃i,t+1 ≡ q̃it|~Rt ∼ N(q̄i,t+1,Σq,t+1) with:

2. See Appendix.
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Σ−1
q,t+1 = MtΣ

−1
RtM

′
t + Σ−1

qt

q̄i,t+1 = Σq,t+1

(
Σ−1
qt q̄it +MtΣ

−1
Rt
~Rt

) (4.3)

4.2.2 Solution to the constrained optimization

Equipped with a closed form expression for (µjt, σ
2
jt), I revisit Eq. (4.1). Note that under my

assumptions for Ψjt(·), the expected utility maximization problem here takes on the exact

same form as in Bhat (2005). In particular, the KKT conditions will be:

Vjt + εjt = V0t + ε0t, x∗jt > 0

Vjt + εjt < V0t + ε0t, x∗jt = 0

V0t = (α0 − 1) log(x∗0t), Vjt = µjt − rσ2
jt + Zjtβ + (αj − 1) log

(
x∗jt
γj

+ 1

) (4.4)

Note that it is always possible to compare Vjt to the outside option V0t because x
∗
0t > 0 w.p.

1. This is due to the lack of a translation parameter for the outside option3. Intuitively,

consumers should not spend all their leisure time on playing a single video game. Of course,

there are extreme outliers in the data (e.g. over 40 hours/week played) but they occur so

rarely that either dropping or censoring them seem reasonable enough.

4.2.3 Likelihood

In my empirical application I consider the case when errors are correlated�this assumption is

crucial as it allows cross-satiation for game levels. In this section I present a simpler likelihood

with independent errors ε
i.i.d.∼ Gumbel. Under this speci�cation an elegant, closed-form

3. A warning to this approach, particularly in the model without prices, is that the problem is no longer
scale invariant. In particular, scaling budget and consumption down by a positive factor will tend to distort
the model, with an extreme result that consumers are predicted to consume the outside good more as their
outside good satiation increases. More details are provided in the Appendix.
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expression is available for the likelihood of the solution vector (x∗0t, x
∗
1t, x

∗
2t, ..., x

∗
mt, 0, ..., 0)

for m ≤ J , where m ≥ 0 is the number of distinct levels played (Bhat 2005):

Pr(x∗0t, x
∗
1t, x

∗
2t, ..., x

∗
mt, 0, ..., 0) = det(TVt)

[ ∏m
i=0 expVit

(
∑J
i=0 expVit)

(m+1)

]
·m! (4.5)

where TVt is the Jacobian of the mapping εjt → Vj0 − Vjt and has closed form:

det(TVt) =

(
m∑
i=0

x∗it + γi
1− αj

)(
m∏
i=0

1− αj
x∗it + γi

)

I denote the probability in Eq. (4.5) by p(x∗it, q̃it; θ) to make explicit its dependence on

not just the choice vector but the current belief vector as well. In my current application

signals are unobserved so that q̃it is not precisely known. To resolve this I follow standard

marketing practice and simulate the unobserved learning process. If, for each consumer, I

draw S sequences of signals I can derive q̃sit, s = 1, ..., S and approximate a consumer's data

likelihood as:

Li(θ) ≈
1

S

∑
s

p(x∗iti , q̃0)
T∏

t=ti+1

p(x∗it, q̃
s
it; θ) (4.6)

When NEV errors are used, Eq. 4.5 must be modi�ed, but the remaining likelihood

components are the same. Bhat (2008) provides a constructive general derivation for con-

sumption probabilities and I present the expression for my particular nesting structure, which

despite its unwieldiness remains analytic, in the Appendix.

4.3 Speci�c model

In the previous section I presented a fully general model nesting Bayesian learning in a

MDCEV framework. Here I describe the particular speci�cation I use in my empirical appli-

cation. In particular, I restrict the utility speci�cation given in Eq. (4.1) due to identi�cation

concerns, specify the assumed generative process for the covariance matrices in the learning

framework, and allow for discrete consumer heterogeneity via latent segmentation.
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4.3.1 Restricted utility speci�cation

Bhat (2008) shows that the full utility speci�cation given in Eq. (4.1) is typically non-

identi�ed in empirical settings. In particular, α-models that restrict γj = 1 ∀j and γ-models

that restrict αj = 0 ∀j tend to �t data equally well. In the Appendix I show using simulation

that the γ-model is not identi�ed in the presence of learning and give some intuition for that

result. On the other hand, the α-model is identi�ed. In this case I reformulate the consumer's

problem as:

maxEq̃t

u0(x0t) +
∑
j>0

uj(xjt; qjt)

 s.t. x0t +
∑
j>0

xjt = E

u0(x0t) =
1

α0
Ψ0tx

α0
0t

uj(xjt) =
1

αj
Ψjt(qjt)

[
(xjt + 1)αj − 1

]
(4.7)

This is similar to Bhat's (2008) �rst utility form with an outside good. Consequently,

the KKT conditions are:

Vjt + εjt = V0t + ε0t, x∗jt > 0

Vjt + εjt < V0t + ε0t, x∗jt = 0

V0t = (α0 − 1) log(x∗0t), Vjt = µjt − rσ2
jt + Zjtβ + (αj − 1) log

(
x∗jt + 1

) (4.8)

The likelihood remains unchanged except in the computation of the Jacobian term there

is the restriction γi = 1 ∀i > 0.

4.3.2 Covariance speci�cation for learning components

For the present I consider the simplest speci�cation: uncorrelated learning. Speci�cally, I

de�ne the prior covariance to be diagonal: (Σ0)j,j′ = I(j = j′) · σ2
j0. Further, I assume
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Var(Rjts) = σ2
Rj , Cov(Rjts, Rj′ts′) = 0 ∀j 6= j′, s 6= s′. The signal covariance matrix is thus

also diagonal. Note that in the Bayes update, this implies the posterior precision can be

written:

Σ−1
q,t+1 = Σ−1

qt + ΛRt

(ΛRt)j,j′ = I(j = j′) ·
kjt

σ2
Rj

Simple algebra reveals that posteriors can be computed without recursion:

σ2
tj = (

1

σ2
0j

+
Njt

σ2
Rj

)−1

µtj = σ2
jt

[
q0j

σ2
0j

+
Njt−1

∑
t′<tRjt′

σ2
Rj

]

where Njt ≡
∑
t′<t kjt is the total number of signals observed before time t for good j

and
∑
t′<tRjt′ is the cumulative signal for good j observed before time t with distribution

N(Njtq
∗
j , N

2
jtσ

2
Rj) under the assumption of i.i.d. unbiased signals4. This non-recursive for-

mulation also has signi�cant implications for computation time, which is a non-trivial burden

for this model.

I discuss alternate learning speci�cations that incorporate correlated learning in the Ap-

pendix.

4. Note this formulation is very similar to that in the single-discreteness model in Jiang et al., 2006. The
treatment of discretized learning in continuous models is in fact identical to a multi-period single-discreteness
or single-period multiple-discreteness models.
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4.3.3 Latent segmentation

As described in Section 3, there is evidence of signi�cant consumer heterogeneity in the

sample. To account for this heterogeneity I will employ a latent segmentation approach5.

Following standard marketing protocol, I assume there are G homogeneous but unobserved

segments in the population. At best, the researcher can probabilistically assess individual

segment identities using observed individual characteristicsWi and segment identity loadings

δg:

Pr(i ∈ g) ≡ πg =
exp(Wiδg)

1 +
∑G
g′=2 exp(Wiδg′)

There are two empirical considerations here. First, a well-documented limitation of

latent segmentation models is their poor performance even under a moderate number of

speci�ed segments. In particular, if a non-segmentation model speci�es P parameters, the

segmentation model must solve for at least GP + (G − 1)|W | parameters. In addition, the

number of observations used in identifying segment-speci�c parameters decreases in G. As

a result most studies consider only G ∈ {2, 3}6. Second, in my current application I am

heavily constrained in the set of exogenous observed characteristicsWi. As a result I instead

estimate the intercept-only formulation:

πg =
exp(δg)

1 +
∑G
g′=2 exp(δg′)

This presents the additional advantage of amenability to direct likelihood maximization:

due to stability issues with quasi-Newton techniques in latent segmentation models (cf.

Bhat 1997), expectation-maximization (EM) is often employed instead (for an example of

latent segmentation in a MDCEV model estimated with EM, see Sobhani et al., 2013). In

5. For a survey of methods dealing with consumer heterogeneity in marketing, see Allenby and Rossi
(1998).

6. See Bhat (1997) for a more complete discussion of issues commonly encountered in latent segmentation
models.
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contrast, an ex ante constant prior with G = 2 segments only requires estimation of a single

θ parameter. Under latent segmentation, the consumer-level likelihood from Eq. (4.6) is

expanded to:

Li(θ) =
∑
g

πgLi(θ|i ∈ g) =
∑
g

πgLi(θg)

4.4 Identi�cation

In this section I discuss identi�cation for this model. Identi�cation of the multiple discrete-

continuous model with generalized extreme value (GEV) with random coe�cients (contin-

uous unobserved heterogeneity) is established in Bhat (2008). Separately, identi�cation of

Bayesian learning in a single discrete model with multiple signals per period is discussed

in Coscelli and Shum (2004). As noted previously, when a discrete-continuous outcome is

approximated by discretized signals, the results from Coscelli and Shum (2004) will apply.

However, it is unclear whether these results extend to any new parameters introduced by

MDC. For example, as described earlier and in the Appendix, the linear satiation (λ−) for-

mulation is not compatible with learning while the power satiation (α−) formulation is. In

the remainder of this section I extend my study to the rest of the model, seeking to provide

intuition for identi�cation, describe the critical role of tuning parameters in estimation, and

provide heuristics for estimating this class of models.

In the following simulation, I consider N = 1, 000 consumers who solve Eq. (4.7) with

J = 3 inside goods and budget E = 100 over T = 50 time periods. I assume each good

has 3 time-varying attributes, so M ≡ |Zijt| = 3. Consumers are risk averse with r = 0.10

and satiation parameter α0 = 0.8 for the outside option and α1 = . . . = αJ = 0.35 for each

inside option.

For the �rst simulation I assume individuals have common true preferences q∗1 = . . . =
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q∗J = 0 and vary priors: q̄01 = −1, q̄02 = 0, q̄03 = 1, which correspond to pessimistic, rational,

and optimistic priors, respectively. I assume prior variances are common as well as signal

variances: σ2
10 = . . . = σ2

J0 = 20, σ2
ν1 = . . . = σ2

νJ = 4.5. The prior and signal variances

are chosen so that by the end of simulation most consumers have selected an inside good at

least once, and ones that have multiple choices have updated their beliefs to be somewhat

close to the truth. Finally I assume learning is discretized over ∆ = 12.5, which roughly

corresponds to one signal per day if the budget were uniformly distributed over the week.

Simulation is performed solving the KKT conditions from Eq. (4.8) using the method

of moving asymptotes algorithm in the R package nloptr. Estimation is performed us-

ing the sequential quadratic programming algorithm (SQP) implemented by the Knitro

solver (called from Matlab7). To ensure constraints on certain parameters are satis�ed,

I re-parameterize αj = 1
1+exp(−δj)

as recommended in Bhat (2005) and all variance param-

eters as σ2
s = exp(γs). Further, it is known that to achieve asymptotic consistency and

e�ciency, we must have limN→∞
√
N/S → 0 (see, e.g. Lee, 1995). To gain some intuition

for the relative simulation draws needed in my model, in Table 4.1 I provide estimation

results varying number of simulation draws S.

First note the omission of certain parameters. It is well-known in the marketing literature

that risk aversion is di�cult to pin down in learning models. In fact, Coscelli and Shum

(2004) analytically show that (q̄0j , r) are not jointly identi�ed in the single-good case. They

further provide simulation-based evidence that the two are also not jointly identi�able with

J > 1. This result naturally extends here. I �x risk aversion at its true value and note that

bias in �xing risk aversion is given by the following relation: C = q̄0j − rσ2
0j for a constant

C. I further �nd that (σ2
0j , σ

2
νj ) (i.e. prior and signal variances) are di�cult to jointly iden-

tify so I �x one (prior) at its true value. By jointly �xing these parameters (regardless of

7. Documentation for the solver can be found on the Artelys website.
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S = 100 1000 2000 5000
True Est SE Est SE Est SE Est SE

β1 1 0.95 0.02 0.97 0.02 0.97 0.02 0.97 0.02
β2 -1 -0.96 0.02 -0.98 0.02 -0.98 0.02 -0.98 0.02
β3 0.5 0.5 0.01 0.51 0.01 0.51 0.01 0.51 0.01
α1 0.35 0.37 0.00 0.36 0.00 0.36 0.00 0.36 0.00
α2 0.35 0.37 0.00 0.36 0.00 0.36 0.00 0.36 0.00
α3 0.35 0.36 0.00 0.36 0.00 0.35 0.00 0.35 0.00
α0 0.8 0.79 0.00 0.79 0.00 0.79 0.00 0.79 0.00
q̄1 -1 -0.98 0.03 -0.97 0.03 -0.97 0.03 -0.97 0.03
q̄2 0 -0.08 0.00 -0.07 0.00 -0.07 0.00 -0.07 0.00
q̄3 1 0.96 0.04 0.97 0.04 0.98 0.04 0.98 0.04
q∗1 0 -0.08 0.00 -0.05 0.00 -0.04 0.00 -0.04 0.00
q∗2 0 -0.07 0.00 -0.05 0.00 -0.04 0.00 -0.04 0.00
q∗3 0 -0.08 0.00 -0.05 0.00 -0.05 0.00 -0.05 0.00

σ2
u1 4.5 3.09 0.14 3.89 0.19 3.87 0.19 4.15 0.21

σ2
u2 4.5 3.41 0.16 4.07 0.21 4.26 0.20 4.33 0.22

σ2
u3 4.5 3.07 0.15 3.87 0.21 3.89 0.21 4.1 0.22

Table 4.1: Simulation results varying no. of simulation draws S

correctness) I am able to recover: (1) ratio of signal to prior variance, (2) prior means up to

a constant multiple of prior variances.

Second note that under my assumptions even using a small number of draws (e.g.

S = 100) I am able to recover almost all parameters except perhaps the posterior vari-

ance8 which tends to be biased downwards. As I increase the number of draws this bias

continues to diminish (and uncertainty increases), until the true posterior variance is con-

tained in the con�dence interval.

In the follow sections I will study the result of selecting an incorrect risk aversion param-

eter r, incorrect prior variance σ2
0j , and incorrect discretization parameter ∆.

8. I note that coverage, in particular for true means and satiation parameters, is troublesome at this
number of draws. However, an eye test shows at S = 100 I am still able to recover useful estimates.
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4.4.1 Bias introduced by incorrect risk aversion parameter

In Table. 4.2 I give simulation results for the model varying r, the risk aversion parameter

�xing S = 1000. In the �rst set I assume the researcher knows the true risk aversion

parameter, which gives the same results as Table. 4.1, S = 1000. In the next two panels I

assume the researcher has under- and over-guessed r, respectively by a factor of 2. Because

my learning framework is purely within the realm of standard Bayesian models, I �nd the

results from Coscelli & Shum hold here and the bias is easily characterizable as:

Bias(ˆ̄q0j) = (rguess − r)σ2
0j

Note that in general, mis-specifying r still allows successful recovery of all other param-

eters.

r̃ = r r̃ = 0.5r r̃ = 2
True Est SE Est SE Est SE

β1 1 0.97 0.02 0.97 0.02 0.98 0.02
β2 -1 -0.98 0.02 -0.98 0.02 -0.98 0.02
β3 0.5 0.51 0.01 0.51 0.01 0.51 0.01
α1 0.35 0.36 0.00 0.36 0.00 0.36 0.00
α2 0.35 0.36 0.00 0.36 0.00 0.36 0.00
α3 0.35 0.35 0.00 0.35 0.00 0.35 0.00
α0 0.8 0.79 0.00 0.79 0.00 0.79 0.00
q̄1 -1 -0.97 0.03 -1.98 0.07 1.03 0.04
q̄2 0 -0.07 0.00 -1.07 0.04 1.93 0.07
q̄3 1 0.98 0.04 -0.02 0.00 2.98 0.12
q∗1 0 -0.04 0.00 -0.04 0.00 -0.04 0.00
q∗2 0 -0.04 0.00 -0.04 0.00 -0.04 0.00
q∗3 0 -0.05 0.00 -0.05 0.00 -0.05 0.00

σ2
u1 4.5 4.15 0.21 4.11 0.20 4.19 0.21

σ2
u2 4.5 4.33 0.22 4.42 0.23 4.43 0.23

σ2
u3 4.5 4.1 0.22 4.18 0.22 4.22 0.23

Table 4.2: Simulation results mis-specifying risk aversion parameter r with r̃.
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4.4.2 Bias introduced by incorrect prior variance

In Table 4.3 I give simulation results for the model varying σ2
νj , the prior variance �xing

S = 1000. For alternative j = 1 I set the prior variance to the correct value (20), j = 2 I

assume it is mis-speci�ed at half its true value (10) and for j = 3 I assume it is mis-speci�ed

at twice its true value (40). From the previous section, it is clear that mis-specifying prior

variance will also bias prior mean, even in the presence of a properly speci�ed risk aversion

parameter. Further, a mis-speci�ed risk aversion parameter will only serve to further amplify

the bias with a mis-speci�c prior variance.

Note here that signal variances can also be biased with mis-speci�ed prior variances. In

particular, mis-specifying the prior variance upward (downward) seems to bias the corre-

sponding signal variance downward (upward). However, the magnitude of the bias is unclear

given that it tends to be a di�cult parameter to pin down (even with 1000 simulation draws).

True Est SE
β1 1 0.97 0.02
β2 -1 -0.98 0.02
β3 0.5 0.51 0.01
α1 0.35 0.36 0.00
α2 0.35 0.36 0.00
α3 0.35 0.35 0.00
α0 0.8 0.79 0.00
q̄1 -1 -1.96 0.07
q̄2 0 -0.07 0.00
q̄3 1 2.98 0.12
q∗1 0 -0.03 0.00
q∗2 0 -0.04 0.00
q∗3 0 -0.05 0.00

σ2
u1 4.5 4.12 0.21

σ2
u2 4.5 4.33 0.22

σ2
u3 4.5 3.87 0.20

Table 4.3: Simulation results mis-specifying prior variance σ2
0j : j = 1 is halved, j = 2 is

correct, j = 3 is doubled.
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4.4.3 Bias introduced by incorrect discretization parameter

In Table 4.4 I give simulation results for the model varying ∆, the learning signal discretiza-

tion parameter �xing S = 1000. In the �rst set I assume the researcher knows the true value,

which gives the same results as Table. 4.1, S = 1000. In the next two panels I assume the

researcher has under- and over-guessed ∆, respectively by a factor of 2. Intuitively, (∆, σ2
νj )

characterize rate of learning with the former determining number of signals and the latter

the (lack of) informativeness of each signal. Thus, when the researcher mis-speci�es ∆ there

is a compensating e�ect on σ2
νj . For example, if ∆ is under-guessed (second panel), then the

model is estimating learning with too many signals and σ2
νj must be smaller and vice versa

(third panel).

Speci�cally, in vanilla Bayesian learning after K signals the variance is:

σ2
K =

(
1

σ2
0

+
K

σ2
ν

)−1

If K were instead constructive and mapped from total duration X and discretization

parameter ∆, i.e. K = dX∆e, then we would have:

σ2
X(∆) =

(
1

σ2
0

+

⌈
X

∆

⌉
1

σ2
ν

)−1

For small enough ∆ (i.e. so that the step function for K is roughly smooth), we would

expect (∆, σ2
νj ) to in fact be inversely proportional. Finally, note that mis-speci�cation of

∆ only biases estimation on σ2
νj .

4.5 Model discussion

In this section I discuss the simulation results, proposed model, and merits and challenges

to its application to my present data:
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∆̃ = ∆ ∆̃ = 0.5∆ ∆̃ = 2∆
True Est SE Est SE Est SE

β1 1 0.97 0.02 0.97 0.02 0.98 0.02
β2 -1 -0.98 0.02 -0.98 0.02 -0.98 0.02
β3 0.5 0.51 0.01 0.51 0.01 0.51 0.01
α1 0.35 0.36 0.00 0.36 0.00 0.35 0.00
α2 0.35 0.36 0.00 0.36 0.00 0.36 0.00
α3 0.35 0.35 0.00 0.35 0.00 0.35 0.00
α0 0.8 0.79 0.00 0.79 0.00 0.79 0.00
q̄1 -1 -0.97 0.03 -0.97 0.03 -0.97 0.03
q̄2 0 -0.07 0.00 -0.06 0.00 -0.07 0.00
q̄3 1 0.98 0.04 0.98 0.04 0.98 0.04
q∗1 0 -0.04 0.00 -0.05 0.00 -0.06 0.00
q∗2 0 -0.04 0.00 -0.04 0.00 -0.05 0.00
q∗3 0 -0.05 0.00 -0.04 0.00 -0.05 0.00

σ2
u1 4.5 4.15 0.21 5.77 0.32 3.44 0.17

σ2
u2 4.5 4.33 0.22 6.22 0.35 3.5 0.17

σ2
u3 4.5 4.1 0.22 6.31 0.37 3.07 0.16

Table 4.4: Simulation results mis-specifying discretization parameter ∆ using ∆̃.

Thus far, I have shown, via simulation, conditions under which a static multiple discrete-

continuous model with Bayesian learning can be consistently estimated. A brief discussion

of the empirical feasibility and implications of these conditions follows:

1. Simple, uncorrelated learning where a continuous �experience� is discretized into dis-

crete signals. In the Appendix I discuss alternate learning speci�cations that can

incorporate correlated learning. This would be an important extension to accommo-

date the fact that players' behaviors across levels are clearly related and would directly

allow for patterns such as increasing play of higher levels after moderate experience

with lower levels. However, theoretic properties of correlated learning in MDC are

currently unknown. Unfortunately, initial results from simulation experiments sug-

gest they are incredibly di�cult to pin down empirically. That said, all the patterns

described in Section 3 can be fully accommodated in an uncorrelated learning frame-

work. Even if players only learn about the levels they've played, they are still solving
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a budget problem. For example, if players have relatively optimistic priors over the

non-competitive levels that would produce the �upward learning� observed in the data.

What uncorrelated learning does rule out, however, is the skill accumulation explana-

tion: it makes little sense to consider learning as a proxy for skill improvement when

it is non-transferable across levels.

2. Risk aversion is a priori known. In the case that risk aversion is mis-speci�ed, I show

that prior mean estimates are biased. In the special case that players have the same

prior uncertainty over all goods, the order of prior mean estimates is preserved. To

fully accommodate patterns observed in the data, it is too restrictive of an assumption.

However, in my application I am solely interested in recovering the prior-to-signal ratio

and by setting prior variances the same can recover prior preference ordinality.

3. Prior uncertainty is a priori known. Mis-speci�cation of prior uncertainty in the pres-

ence of mis-speci�ed risk aversion both biases signal variance and compounds the bias

in prior preferences. As such, it will be a crucial empirical task to properly tune the

prior uncertainty. As discussed previously, one potential starting point is setting prior

variances equal to, at the very least, recover the correct ordering on prior preferences.

A more data-oriented approach may be to tune prior preferences using historical play

data and covariates such as adoption time.

4. Discretization parameter is a priori known. Note that mis-speci�cation of discretization

parameter biases only signal variances. Here it is useful to consider the underlying

learning process. In general, individual sessions tend to last 40-60 minutes and so

discretization by hours may be intuitively appealing. In the data, I also observe total

play duration by day and contiguous play sessions (e.g. from turn-on to turn-o� of

the console). Both of these can also serve as proxies for signals. Finally, in the case

that learning is truly continuous, setting the discretization parameter ∆ → 0 may be

reasonable.
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CHAPTER 5

ESTIMATION

5.1 Estimation preliminaries

In my empirical application I use nested extreme value (NEV) errors alongside G = 2

latent segments. I also collapse the inside goods to two, xLow = xSolo + xFriendly and

xHigh = xCompetitive + xRanked, so that players directly budget their game-time between

non-competitive (Low) and competitive (High) modes. I use the following parameteriza-

tions: satiation is parameterized as 1 − exp(x) to fall in (−∞, 1), signal-prior ratio is pa-

rameterized as exp(x), segment probabilities are multinomial logistic:
exp(x)

1+
∑
g<G exp(g)

, and

all inside goods are assumed to belong to one nest with nesting parameter parameterized

θ = 1
1+exp(−x)

. Recall this implies errors have Kendall rank-correlation τ = 1− θ.

I present results with the set of tuning parameters as described below. I let budget

E = 40: in this case, all users with a weekly play over 40 hours must be removed from the

sample. This represents a minuscule, non-representative fraction of the users (< 1%) that

have abnormally high play patterns1. I note here that the American Time Use Survey for

the relevant year gives average leisure as around 36 hours/week. I let risk aversion r = 1.

This term interacts with belief variance as an uncertainty penalty. It is not jointly identi�ed

with prior variance. I let discretization ∆ = 1. In sample, the average session length is

slightly less than one hour, so I assume users learn discretely from each session (on average).

Finally, I use R = 50 draws due to the size of my data. As noted above, this should not

a�ect consistency except possibly through signal-prior ratio.

Covariates as selected as follows. In baseline utility (β) I include a linear time trend to

capture declining novelty and console ownership demographics, which are taken to be exoge-

1. I consider a separate model with budget parameterized as E = 40+exp(x) and �nd the implied Ê ≈ 40.
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nous. I estimate inside satiation (αj) as a constant and outside satiation (α0) with a linear

time trend�this directly captures the competing e�ect of other games as noted in Tyack

et al. (2016) and allows an alternate pathway for loss of enjoyment to enter into the model.

Empirically I �nd that assigning novelty decline to only one of β or α0 was insu�cient to

explain the particular shape of the extensive margin evolution. In the Appendix I provide a

closed-form expression for play propensity of the single discrete-continuous model and show

that the two enter the play decision in di�erent places. For the prior means (q0) I incorpo-

rate historical information in the form of a suite of dummies, including whether a player is

returning, adopted previous game early, played at a high level, etc. Under the assumption

that unobserved heterogeneity is adequately captured by segmentation and within a segment

users only di�er with respect to their histories and experience2, true means (q∗) are constant.

Signal-prior ratio (σ2
ν/σ

2
0) includes a dummy for whether a player had above-median expe-

rience in the associated level in game G − 1: this re�ects the inverse relationship between

experience and uncertainty in the Bayesian framework. Finally, all parameters except the

error nesting parameter θ are allowed to vary between segments.

Estimation is performed in Matlab using the Knitro solver and bootstrapped standard

errors are provided. All estimates are presented in unrestricted parameter space. Below I

present estimation results and show the proposed model can adequately recover data pat-

terns. I present estimates in Table 5.2 and sample demographics for each cluster in Table

5.3.

2. In other words, conditional on being in the same segment, at time t user i di�ers from k only in
their current beliefs Q̃(Hit), Q̃(Hkt) which then di�ers only because of their di�ering histories H·t. In this
formulation history includes unobserved signals from playing so is still stochastic from the researcher's point
of view.
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5.2 Model I: pure behavioral

We can roughly characterize the latent segments into 1: high usage, majority returning

players (�hardcore�), and 2: low usage, majority new players (�casual�). The implied split is

around 55-45. Using K-means I previously showed that the sample can roughly be described

by a similar behavioral split3. Note that history-based parameters tend to have greater

precision in Segment 1, because the e�ective sample size (returning users) is greater there.

Log-MU is dominated by a declining novelty e�ect, more strongly for Segment 1, and as

discussed previously, there is some evidence for a �PlayStation� e�ect: positive coe�cient,

with a positive interaction with level for high types.

Across the board, prior means are most strongly positively associated with high play

amounts in the previous game and negatively associated with weekend adoption of the pre-

vious game. Above-average high shares in the previous games is positively associated with

priors in the high level (and vice versa). In general, priors seem to be most shaped by play

amounts and only moderately by play type. Relative to the intercept, heterogeneity in priors

is limited but still signi�cant. Further, because play is jointly determined by satiation, pri-

ors, and novelty, it is di�cult to directly interpret raw intercepts. Instead I consider ex ante

pessimism (prior bias) about a level j : ∆j = q∗j − q0j : In Table 5.1 above I compute average

Seg Lvl Prior True Pessimism

1 Low -10.64 -6.20 -4.43
1 High -11.94 -7.48 -4.46
2 Low -0.84 6.86 -7.70
2 High -2.49 3.67 -6.16

Table 5.1: Model I: Average pessimism by segment and level.

priors over each segment (using posterior segment probabilities as assignment). Note that

Segment 2 is much more pessimistic, on average, than Segment 1, and slightly less pessimistic

3. In fact, the latent segment demographics I compute here are very similar to those from the K-means
cluster demographics with K = 2 provided in the Appendix.
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about High levels while Segment 1 is equally pessimistic about each level. All di�erences are

statistically signi�cant. While all players are ex ante pessimistic, note that true means are

higher for the Low levels (vs High levels), potentially indicating competitive aversion.

Baseline signal-to-prior variance ratio is around 13-35% higher for Segment 1, which

suggests that newer players learn relatively quicker. In the Gaussian-conjugacy Bayesian

learning paradigm, recall that the lion's share of learning occurs in the initial few signals.

Thus, the coe�cient estimate is consistent with the hypothesis that these players have greater

ex ante uncertainty4. Note that playing High levels is signi�cant more informative (3.5x for

Segment 1 and 4.2x for Segment 2). One hypothesis for this result is that competitive levels

require greater attention and/or engagement from the player, leading to greater information

acquisition. Finally, the nesting parameter implies a roughly 0.26 correlation (Kendall's tau)

for the inside goods. The inclusion of this term is thus necessary and I �nd evidence for a

NEV vs MDC model (i.e. I reject the assumption that MU w.r.t. to any good is independent

of consumption levels of all other goods).

In Table 5.3 I present average pre-adoption (previous game) statistics for each latent

segment, where users are assigned to a segment based on their posterior segment probability:

i ∈ g∗ ⇔ πg∗Li(θg∗) = max
g

πgLi(θg)

For a more apples-to-apples comparison, I compare only returning players for all statistics

except the �nal block of statistics (experience type). In general, returning players in Seg-

ment 1 adopt earlier, play signi�cantly more and at a higher level. Further note that these

players are likelier to adopt during a weekend. The signi�cance of this is twofold: (1) the

4. Note, however, that as I only estimate signal-to-prior variance ratio and not prior variance, I can-
not conclusively rule out the alternate story: newer players both have lower uncertainty and learn faster.
However, this narrative seems to contrast basic intuition.
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game traditionally releases on a weekday so weekend adoption can signal not adopting upon

release5, and (2) intuitively, weekday adoption may imply either a more uniform budget dis-

tribution (w.r.t to days of week) or simply one shifted out. Finally, as noted in the previous

section, the unconditional segment probabilities are 0.55 and 0.45, respectively, and Segment

1 consists of the majority of High Exp players while Segment 2 comprises mostly New players

(with Low Exp players roughly splitting between the two).

Table 5.2: Model I: Estimated parameters.

Group Par Seg 1 Seg 2

log-MU, Weeks -8.474 -17.224
low levels (0.326) (0.735)

Owns PS 0.059 0.127
(0.014) (0.064)

Owns older cons. -0.008 0.028
(0.023) (0.044)

log-MU, Weeks -8.018 -14.582
high levels (0.343) (0.607)

Owns PS 0.099 0.095
(0.017) (0.125)

Owns older cons. 0.027 0.104
(0.033) (0.076)

Prior mean, Constant -11.096 -1.045
low levels (0.345) (0.868)

Returning 0.251 0.363
(0.064) (0.06)

Adopted 1st 2 weeks, G− 1 -0.087 0.162
(0.032) (0.056)

Adopted during weekend, G− 1 -0.143 -0.15
(0.029) (0.075)

Above med. max lvl played, G− 1 -0.246 -0.201
(0.085) (0.114)

Above med. high shares, G− 1 -0.039 -0.057
(0.059) (0.085)

Above med. no. wks. played, G− 1 0.398 0.335
(0.081) (0.112)

Above med. last wk. played, G− 1 0.251 0.131

5. Among returning players, 40% of those in Segment 1 adopted in the initial weekdays compared to 33%
in Segment 2.
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Table 5.2: Model I: Estimated parameters, continued.

(0.022) (0.117)
High exp 0.501 0.466

(0.075) (0.093)

Prior mean, Constant -12.417 -2.653
high levels (0.304) (0.911)

Returning -0.308 -0.422
(0.1) (0.072)

Adopted 1st 2 weeks, G− 1 -0.131 0.032
(0.032) (0.101)

Adopted during weekend, G− 1 -0.135 -0.088
(0.055) (0.123)

Above med. max lvl played, G− 1 0.309 0.398
(0.098) (0.087)

Above med. high shares, G− 1 0.801 1.04
(0.08) (0.108)

Above med. no. wks. played, G− 1 0.218 0.233
(0.118) (0.063)

Above med. last wk. played, G− 1 0.248 0.136
(0.033) (0.164)

High exp 0.562 0.616
(0.107) (0.114)

True means q∗1 -6.204 6.86
(0.386) (0.27)

q∗2 -7.475 3.67
(0.353) (0.309)

Signal-prior ratio, Constant 3.975 3.853
low levels (0.04) (0.058)

Above med. low lvls, G− 1 0.081 -0.094
(0.035) (0.063)

Signal-prior ratio, Constant 2.709 2.411
high levels (0.029) (0.107)

Above med. high lvls, G− 1 0.306 0.163
(0.034) (0.126)

Satiation α1 0.123 0.313
(0.015) (0.011)

α2 0.106 0.213
(0.011) (0.023)

α01 1.191 -0.602
(0.029) (0.665)

α0Weeks 0.182 -5.124
(0.022) (0.844)
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Table 5.2: Model I: Estimated parameters, continued.

Addl pars π1 0.228
(0.044)

θ1 1.024
(0.034)

-LL 1235175
N 26438

5.2.1 Recovery of data patterns

In this section I validate my model by simulating data at the estimated parameter values

and comparing the evolution of three key moments: (1) extensive margin, (2) intensive mar-

gin, and (3) shares of high levels. In Table 5.4 I show that these three moments can be

captured on the whole (unconditional, over both users and time periods). Next, in Fig. 5.1a

I compare these data moments over time and in Fig. 5.1b I condition on recovered latent

segment. It appears that my model can recover the extensive margin very well for both

segments but has some trouble with the intensive margin, particularly for Segment 2. Recall

this is the segment consisting mainly of low utilization players, re�ected in the rapid drop

in play probabilities. Past the initial third or so of the sampling period simulated moments

become quite noisy since I predict so few players will play. On the other hand, the intensive

margin is captured signi�cantly better for the high utilization Segment 1. Finally, while

I can capture the increasing competitiveness of play over time, it appears that my model

overshoots this growth. This is partly driven by the few remaining users in Segment 1 with

a streak of high draws who quickly converge to their true valuation6. However, due to the

shape of the outside satiation in Segment 2 (Fig. 5.2b) even these high draw players are

predicted to stop playing before the end of sample.

6. Note that the high level shares in Segment 2 are very noisy in the second of the sample as well.
Although the timing is o�, I do in fact manage to recover this noise.
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Var Seg. 1 Seg. 2 Signif

Adopt day, G− 1 60.318 74.190 *
No. wks. played, G− 1 18.500 9.643 *
No. wks. owned, G− 1 43.717 41.759 *
Pct. wks. played, G− 1 0.421 0.244 *
Last wk. played, G− 1 40.291 31.228 *
Overall max lvl, G− 1 2.347 2.072 *

First wk. play, G− 1 6.510 5.350 *
First 4 wks. play, G− 1 19.868 15.336 *
First wk. max lvl, G− 1 1.101 1.104
First 4 wks. max lvl, G− 1 1.508 1.494
Total solo play, G− 1 54.598 27.072 *
Total friendly play, G− 1 7.839 4.588 *
Total competitive play, G− 1 17.725 7.535 *
Total ranked play, G− 1 13.173 6.841 *
Total play, G− 1 93.335 46.036 *
Overall high shares, G− 1 0.245 0.224 *
Overall HHI, G− 1 0.693 0.730 *

Above med. high lvls, G− 1 0.444 0.293 *
Above med. low lvls, G− 1 0.710 0.492 *
Above med. ranked play, G− 1 0.234 0.168 *
Above med. competitive play, G− 1 0.333 0.187 *
Above med. friendly play, G− 1 0.413 0.275 *
Above med. solo play, G− 1 0.556 0.337 *
Above med. last wk. played, G− 1 0.573 0.326 *
Above med. HHI, G− 1 0.890 0.800 *
Above med. no. wks. played, G− 1 0.590 0.286 *
Above med. high shares, G− 1 0.517 0.450 *
Above med. max lvl played, G− 1 0.449 0.332 *
Adopted during weekend, G− 1 0.208 0.255 *
Adopted 1st 2 weeks, G− 1 0.535 0.467 *

High exp 0.372 0.114 *
Low exp 0.274 0.233 *
Returning 0.646 0.347 *
New 0.354 0.653 *

N 13790 12648

Table 5.3: Model I: Sample statistics by predicted segment identity.

In Fig. 5.2a I present the evolution of simulated beliefs for each segment. Note that

players in Segment 1 resolve a greater proportion of uncertainty (up to around 45% by end
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Var Data Sim

Pr(play) 0.31 0.35
E(dur.|play) 4.30 4.21
Pr(high lvl) 0.28 0.30

Table 5.4: Model I: Aggregate moments, data vs simulation.

of sample compared to 20% in Segment 2). Uncertainty about the High levels is always

comparatively greater than the Low levels. In the end, players in Segment 1 are much closer

to learning their true valuation7. Note that inside satiation is similar for both goods and

segments: slightly higher satiation rate than log-utility. On the other hand, the outside

good satiation is signi�cantly lower and converging towards 1 for Segment 2, implying the

outside good approaches linear utility. This is one of the primary drivers for the declining

play propensity observed in Fig. 5.1. On the other hand outside satiation initializes and

remains rather high for Segment 1.

5.3 Model II: advertising e�ects

In Section 5 I showed that my model can adequately recover important data moments and

illustrated observed player behavior as an function of the underlying competing forces of

learning, satiation, and novelty loss. While I am able to explain player behavior it is di�cult

to directly translate the estimated parameters into concrete actions the �rm can undertake

to improve engagement, at least without a large degree of abstraction. To explore this area

of my research question, I turn to a source of non-behavioral variation: advertising. In this

section I re-estimate my model with advertising e�ects. To begin I introduce the advertising

data, discuss its signi�cance in the context of my data/model, and present estimation results.

7. Final pessimism at end of sample is around 2 for Segment 1 and 4 to 5 for Segment 2.
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(a)

(b)

Figure 5.1: The model captures the extensive margin very well, as well as the noisiness in
conditional play behavior for Segment 2. There are however some shortcomings.

5.3.1 Advertising data

I use data obtained from the Nielsen Ad Intel database. I observe advertising through na-

tional (television and Internet) and local (television and radio) sources over a period ranging
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(a)

(b)

Figure 5.2: Segment 1 resolves a greater proportion of uncertainty. Note that Segment 2
both faces stronger novelty loss as well as outside satiation increase.

from around 100 days prior to around 120 days after game G release8. In Fig. 5.3a I present

8. Although the �rm release a new version of the game annually, within my sample period there is no
advertising observed for game G − 1 or G + 1, so I can safely ignore issues that arise from within-brand
cross-product advertising (i.e. Shapiro et al., 2019).
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the distribution of advertisements (by net impressions) over time from each source. It is clear

that exposure is dominated by national television advertising9. I drop radio advertising as

it comprises a trivial proportion of total advertising expenditure. Next I consider local tele-

vision advertising. It is clear that there is geographic targeting from the �rm�in particular

the �rm appears to concentrate advertising in major metropolitan areas10. Unfortunately

because I do not observe player locations in my data, I cannot measure the e�ect of this

targeting. This leads to two options: (1) aggregate national and local television advertis-

ing together or (2) discard local television advertising. Both options abstract away from

targeting and make strong assumptions about the �rm's pro�t function. In particular, for

the relevant outcome y (adoption or engagement), I must assume that at any given pair of

current advertising expenditures (Alocal,t, Anational,t) the next unit of advertising must have

the same return for both sources:
∂yt/∂Alocal,t
MC(Alocal,t)

=
∂yt/∂Anational,t
MC(Anational,t)

. This is a very strong as-

sumption but in the context of my model may have some validity. First, it may be reasonable

to assume that adoptions enter directly into the �rm's pro�t equation and engagement only

indirectly (through increased likelihood of purchasing in-game goods and future adoption).

Because I condition on adoption in my analysis, I can then treat advertising as indirect

targeting. Second, I �nd that less than 5% of total ratings come from local television ad-

vertising. Further, the correlation of daily (log) gross ratings computed with and without

local advertising is over 0.995 (see Appendix). Thus, I drop local television advertising going

forward.

I aggregate the remaining national-level advertising and compute total impressions11.

9. I surmise that expenditure follows a similar pattern, but unfortunately do not observe it for the second
largest advertising source: local advertising. In Fig. 5.3b I show that for media types that contain advertising
expenditures, it is reasonable to proxy impressions (or gross rating) for expenditures. One possible argument
is that the �rm is buying views at an ex-ante known price.

10. As I show in the Appendix, the four most-targeted DMAs are New York, Los Angeles, Philadelphia,
and Chicago and they account for over a quarter of total local advertising exposure.

11. From Fig. 5.3a it is clear that national TV ads dominate Internet ads by exposure. I could have also
dropped Internet ads and computed a pure ratings variable for national TV ads. Including Internet ads gives
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(a)

(b)

Figure 5.3: Weekly impressions by media source, and impressions vs expenditures for national
advertising. The heaviest expenditures are within a month of game release.

Then I de�ne advertising stock as SAt = κAt + (1 − κ)SAt−1, with κ = {1, 0.90, 0.75, 0.50}.

Recall that κ = 1 corresponds to zero carryover. Due to the temporal concentration of

advertising (immediately after release and roughly three months later) the speci�cations

all give a similar shape to the stock variable. In the Appendix I present the evolution of

advertising stock over the various levels of depreciation κ.

me slightly more variation in the advertising variable but means I can only compute total impressions.
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5.3.2 Advertising speci�cation

I assume advertising stock enters into the consumer's utility through their prior mean. Note

this is similar to the standard marketing operationalization of the persuasive e�ect (see

e.g. Narayanan and Manchanda, 2009) but di�ers slightly in that the persuasive e�ect is

speci�ed within the prior mean instead of the deterministic utility component, and leads to

a slightly di�erent learning shape. This operationalization implies that advertising a�ects

play behavior, but not true valuations. Moreover, I do not include post-adoption advertising

stock or �ow in the utility speci�cation. This rules out two e�ects: information and reminder.

The former is empirically ruled out because a sample of observed product advertisements

reveals little product information. In other words, after adoption learning-by-doing trivializes

the information e�ect. Although the latter may be economically signi�cant, I am unable to

identify it with my current model speci�cation�speci�cally because I look at play aggregated

over weeks. First, with cumulative play it is impossible to remove lookahead bias and recover

causal estimates. Second, the advertising reminder e�ect is often very short-lived (e.g. He

and Klein (2018) �nd that the reminder e�ect on lottery ticket sales is signi�cant for up

to 4 hours post-exposure). Since I face the additional constraint of not observing who

observes each ad, I believe estimates derived from the inclusion of advertising �ow would be

essentially uninterpretable. Ultimately, this means the advertising e�ect I back out is solely

the persuasive e�ect of advertising stock at the moment of purchase conditional on adoption.

5.3.3 Interpretation of advertising coe�cient

In this section I discuss the interpretation for the advertising coe�cient. There are several

model and data limitations that prevent treatment of the coe�cient as causal or one of the

standard (assumed unbiased) treatment e�ects typically recovered. I elaborate on each in

turn:

The �rst source of bias occurs when the adoption decision in unobserved (or here, un-
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modeled). For example, it might be reasonable to expect that users with higher beliefs are

both more likely to adopt earlier and play more in any given week. Because adoption is a dy-

namic program (i.e. optimal stopping problem) associating the advertising coe�cient purely

with �rst-period prior beliefs creates an upward bias: in the �true� DGP, advertising raises

net discounted value of all future play and not just the �rst-period. On the other hand,

it is also possible that advertising causes the marginal consumer to adopt: she will shift

the distribution of priors downward. Holding adoption �xed, the advertising coe�cient will

be biased downward. Finally, consider the case that advertising has no e�ect on consumer

beliefs. In that case the advertising coe�cient simply captures the degree to which early

adoptions (where players tend to play signi�cantly more) correlates with a glut of advertising

(which does indeed happen to be concentrated in the early parts of the game's release cycle).

The second source of bias is ubiquitous to the advertising literature: the timing and

quantity of advertising cannot be considered truly exogenous. It should be expected that

�rms are targeting in some way with advertisements. In my dataset I observe advertising

from a variety of media, including national TV, local TV, and Internet, along with estimated

ratings. Alongside temporal targeting, I �nd evidence of geographic targeting in local TV.

However, I �nd that local TV represents a signi�cantly low proportion of total ratings and

use only national level advertising. Therefore I abstract away from spatial endogeneity but

cannot separately identify using current data, for example, whether the uptick in adoptions

around the US holiday season is caused by the increase in advertising intensity. Finally,

because I cannot match users in-sample with viewed advertisements I can at best associate

each user-time observation with the national average at the time. Thus, I can at best esti-

mate a homogeneous intent-to-treat.

Given the above issues, it is clear that the resulting advertising coe�cient will be limited

in what it can reasonably measure. Speci�cally, I cannot measure the impact of actual expo-
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sure to advertising, its e�ect on adoption, or e�ects beyond the �rst period (week). Instead I

can only recover the e�ect of advertising holding the adopt decision and supply-side decision

�xed. With this result I am limited in the set of counterfactuals I can consider. This rules

out the following scenarios: (1) the �rm targets users for advertisements or the behavioral

e�ect of viewing an advertisement, (2) the �rm considers a di�erent advertising schedule, (3)

the advertising e�ect on a marginal consumer (w.r.t. adoption and adopt time). Nonethe-

less, the advertising coe�cient gives interpretation to a �unit� of prior mean. Even if it is

only among a subset of consumers, I can now attach some �rm-side cost to improving prior

beliefs. In particular, if δA is the estimated advertising stock coe�cient then an increase in

advertising stock from SAt to (1 + p)SAt can be approximately formulated as a prior mean

shift of pδA (in the log model).

5.3.4 Discussion of parameters

I present parameter estimates for Model II in Table 5.6. Note the log-likelihood is signi�-

cantly improved over Model I (around 0.68% better). In general, the estimated parameters

are robust between the two models. However, certain parameters (such as novelty decline)

do change, representing information now captured by the advertising coe�cient. Below I

discuss a selection of the parameters and in particular interpret the advertising coe�cient in

light of the previous discussion.

First, note that the two latent segments can still be characterized as 1: high usage,

majority returning players (�hardcores�) and 2: low usage, majority new players (�casuals�)

with an implied split of 65-35. The primary di�erence here is that prior experience types

is less useful in discriminating latent segments, indicating that the inclusion of advertising

data is valuable in determining latent types. Next, for Segment 2 both novelty decline and

estimated true means are signi�cantly reduced in magnitude. Recall these are o�setting
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e�ects. As Segment 2 represents low types who do not in general play much (and thus learn

poorly over their preferences), it is unsurprising that true match values are poorly identi-

�ed. However, there are implications for the estimated pessimism values, presented in Table

5.1. As expected, pessimism is now estimated to be smaller across the board. However, the

Seg Lvl Prior True Prior bias Signif

1 Low -9.02 -6.51 -2.51 *
1 High -11.87 -7.90 -3.97 *
2 Low 1.26 1.95 -0.69
2 High -3.41 1.06 -4.47 *

Table 5.5: Model II: Average prior bias by segment and level

results appear quite robust for Segment 1. The major di�erence is in Segment 1: for these

users rational expectations can no longer be ruled out for the Low level (on average), while

pessimism over the High level is very strong. This result is consistent with data patterns

described in Section 3.

Finally, note that all advertising coe�cients are signi�cant and positive, and that coe�-

cients for the Low levels are much larger than over High levels. From the previous discussion,

the rigorous interpretation is that holding �xed the adopt decision, a unit of advertising ex-

posure is positively associated with prior means, particularly the Low level. As periods

of high advertising are associated with a large amount of adoptions, one argument is that

marginal consumers select into adopting after viewing advertisements. These are the con-

sumers with high ex ante uncertainty and low ex ante value on competition in the game,

and as such the ad coe�cient simply captures this selection. A second argument is that the

advertisement contains a prestige e�ect on the Low level, and those who adopt shortly after

viewing the advertisement retain this e�ect through their beliefs. Within the constraint of

my data I cannot di�erentiate the two e�ects, and can only recover the conditional causal

e�ect (second argument) assuming both advertisement targeting and the adoption schedule

is unchanged.
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Table 5.6: Model II: Estimation results.

log-MU, Weeks -6.124 -4.856
low levels (1.028) (0.562)

Owns PS 0.055 0.122
(0.02) (0.023)

Owns older cons. -0.009 -0.067
(0.026) (0.03)

log-MU, Weeks -5.493 -4.477
high levels (1.053) (0.518)

Owns PS 0.113 0.127
(0.013) (0.024)

Owns older cons. 0.014 -0.01
(0.042) (0.032)

Prior mean, Constant -11.833 -2.606
low levels (0.425) (0.272)

Returning 0.296 0.488
(0.05) (0.04)

Adopted 1st 2 weeks, G− 1 -0.059 0.063
(0.023) (0.025)

Adopted during weekend, G− 1 -0.19 -0.217
(0.031) (0.041)

Above med. max lvl played, G− 1 -0.379 -0.214
(0.034) (0.06)

Above med. high shares, G− 1 0.034 -0.133
(0.023) (0.046)

Above med. no. wks. played, G− 1 0.235 0.359
(0.033) (0.078)

Above med. last wk. played, G− 1 0.234 0.287
(0.033) (0.034)

High exp 0.619 0.502
(0.04) (0.053)

Ad stock (κ = 1) 2.288 3.45
(0.415) (1.292)

Prior mean, Constant -13.183 -4.195
high levels (0.41) (0.23)

Returning -0.256 -0.224
(0.049) (0.053)

Adopted 1st 2 weeks, G− 1 -0.042 -0.044
(0.044) (0.027)

Adopted during weekend, G− 1 -0.165 -0.156
(0.043) (0.061)

Above med. max lvl played, G− 1 0.255 0.445
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Group Par Seg 1 Seg 2
(0.023) (0.07)

Above med. high shares, G− 1 0.861 0.941
(0.029) (0.071)

Above med. no. wks. played, G− 1 -0.008 0.253
(0.033) (0.071)

Above med. last wk. played, G− 1 0.213 0.299
(0.035) (0.036)

High exp 0.666 0.563
(0.037) (0.058)

Ad stock (κ = 1) 0.695 0.488
(0.186) (0.366)

True means q∗1 -6.665 1.963
(0.448) (0.301)

q∗2 -8.06 1.076
(0.39) (0.2)

Signal-prior ratio, Constant 3.887 2.85
low levels (0.036) (0.053)

Above med. low lvls, G− 1 0.054 -0.187
(0.021) (0.02)

Signal-prior ratio, Constant 2.671 1.639
high levels (0.021) (0.077)

Above med. low lvls, G− 1 0.251 0.022
(0.024) (0.03)

Satiation αLow 0.215 0.283
(0.011) (0.007)

αHigh 0.183 0.223
(0.011) (0.009)

α0,Constant 1.267 0.176
(0.032) (0.043)

α0,Weeks -0.018 -14.776
(0.083) (2.276)

Addl pars π1 0.608
(0.021)

θ1 1.293
(0.024)

-LL 1226732
N 26438
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Var Seg. 1 Seg. 2 Signif

Adopt day, G− 1 62.811 66.651 *
No. wks. played, G− 1 20.220 11.678 *
No. wks. owned, G− 1 43.364 42.824 *
Pct. wks. played, G− 1 0.460 0.281 *
Last wk. played, G− 1 41.177 34.044 *
Overall max lvl, G− 1 2.355 2.174 *

First wk. play, G− 1 6.422 5.880 *
First 4 wks. play, G− 1 20.115 16.909 *
First wk. max lvl, G− 1 1.109 1.097
First 4 wks. max lvl, G− 1 1.505 1.501
Total solo play, G− 1 61.069 32.454 *
Total friendly play, G− 1 8.143 5.609 *
Total competitive play, G− 1 20.937 8.843 *
Total ranked play, G− 1 15.027 7.772 *
Total play, G− 1 105.177 54.678 *
Overall high shares, G− 1 0.248 0.230 *
Overall HHI, G− 1 0.694 0.714 *

Above med. high lvls, G− 1 0.456 0.342 *
Above med. low lvls, G− 1 0.719 0.570 *
Above med. ranked play, G− 1 0.238 0.191 *
Above med. competitive play, G− 1 0.351 0.229 *
Above med. friendly play, G− 1 0.421 0.323 *
Above med. solo play, G− 1 0.569 0.412 *
Above med. last wk. played, G− 1 0.602 0.399 *
Above med. HHI, G− 1 0.892 0.834 *
Above med. no. wks. played, G− 1 0.626 0.376 *
Above med. high shares, G− 1 0.518 0.476 *
Above med. max lvl played, G− 1 0.455 0.373 *
Adopted during weekend, G− 1 0.215 0.230 *
Adopted 1st 2 weeks, G− 1 0.521 0.505

High exp 0.375 0.176 *
Low exp 0.256 0.254
Returning 0.631 0.430 *
New 0.369 0.570 *

N 9614 16824

Table 5.7: Model II: Sample statistics by predicted segment identity
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5.3.5 Segment summary statistics

In this section I �rst present average pre-adoption (previous game, G− 1) statistics for each

latent segment (Table 5.7). Next, I show that the inclusion of advertising data improves

qualitative aggregate data �t.

In Table 5.7 I compare only returning players for all statistics except the �nal group

(experience type). In general, I �nd that returning players in Segment 1 adopt earlier, play

signi�cantly more and at a higher level. Further note that these players are likelier to adopt

during a weekend. The signi�cance of this is twofold: (1) the game traditionally releases on

a weekday so weekend adoption can signal not adopting upon release12, and (2) intuitively,

weekday adoption may imply either a more uniform budget distribution (w.r.t to days of

week) or simply one shifted out. Finally, as noted in the previous section, the unconditional

segment probabilities are 0.35 and 0.65, respectively, and Segment 1 consists of the majority

of High Exp players while Segment 2 comprises mostly New players (with Low Exp players

roughly splitting between the two).

Var Data Sim

Pr(play) 0.31 0.36
E(dur.|play) 4.30 4.40
Pr(high lvl) 0.28 0.29

Table 5.8: Model II: Aggregate moments, data vs simulation.

In Fig. 5.4 I once again visualize the evolution of the three key data moments (extensive

margin, intensive margin, and high level shares), comparing simulated to raw data. I �nd that

I can �t play patterns in Segment 2 much better, partly due to the reduced novelty decline

parameter. However, the model still has some trouble properly recovering the intensive

12. Among returning players, 40% of those in Segment 1 adopted in the initial weekdays compared to 33%
in Segment 2.
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margin for Segment 1 (i.e. initial �hump� in play). Aggregate moments provided in Table 5.8

show that the model slightly overpredicts both the extensive and intensive margins overall.

In Fig. 5.5 I visualize the evolution of the latent model parameters over time. Note that

compared to Model I, I �nd that for Segment 2, novelty decline is less severe and initial

outside satiation is similar to the inside goods. Finally, I �nd that under these results

Segment 2 learns signi�cantly better over the Low levels than previously implied.
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(a)

(b)

Figure 5.4: Actual vs simulated data, aggregated and by estimated segment. All major data
patterns, except perhaps the tail end of High level shares for Segment 2, are adequately
captured.
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(a)

(b)

Figure 5.5: Implied evolution of parameters, learning and non-learning. Segment 1 learns
�better� than Segment 2. A major driver of Segment 2's patterns in the shape of their outside
satiation.
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CHAPTER 6

COUNTERFACTUALS

Here I provide several counterfactuals based on parameters from Model II. In particular, I will

consider the e�ect of increased advertising, console upgrading, and console brand-switching.

I then conclude with a brief summary of the value to the �rm of each policy.

6.1 Increased advertising

First I consider the e�ect of increasing national-level advertising by a percentage following

the same advertising schedule. As discussed previously, I can only back out the e�ect of

advertising conditional on �xing temporal and spatial targeting, and further assuming any

changes in advertising do not a�ect the adopt decision, either in the binary yes-no or timing.

Thus, I only consider the counterfactual where a �rm holds its advertising distribution �xed

but increases it globally by a certain percentage. Among other things, this maintains the

advertising ratio between any two points in time.

To reiterate, I observe the sequence of daily national-level advertising {At}120
t=−100 where

the game is released at time t = 0. I assume all users are exposed to a homogeneous ad-

vertising stock SAt = κAt + (1 − κ)SAt−1, which a�ects their prior mean belief at adoption.

Post-adoption I assume there is no persuasive e�ect of advertising w.r.t. play and that the

informative e�ect is strongly dominated by learning-by-doing. With the current speci�cation

of only immediate advertising e�ect (δ = 1), advertising before release is constrained to have

no behavioral e�ect1.

In Fig. 6.1 I present counterfactuals with advertising increased from a range of 10% to

1. Note this does not rule out the possibility that pre-release advertising a�ects adoption. However, as
I am modeling behavior conditional on adoption I have no way to capture it. That said, I believe it is far
more plausible to take δ = 1 in a conditional usage context than in an adoption (and possibly joint) one.
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30% (policies Ad10, Ad20, Ad30). The advertising e�ect on total play across both segments

is convexly increasing, ranging from 0.20% to 1.72% with increasing advertising. It ranges

from 0.02% to 0.78% for Segment 1 (hardcores) and from 0.53% to 3.45% for Segment 2 (ca-

suals). At low levels of increased advertising, this increase in play is primarily driven along

the extensive margin while at high levels the intensive margin begins to be more signi�cant.

For Segment 1 the extensive margin is further driven by an increase in high level play at

the expense of low level play, while for Segment 2 it is generally balanced (except Ad10,

when it is driven by an increase in low play). From Fig. 6.1 it appears that the increased

advertising slightly raises high level shares for Segment 1 and (noisily) lowers for Segment

2, with a positive aggregate e�ect. With the exception of Segment 2 resolving slightly more

uncertainty, learning curves do not perceptibly improve.

I posit that the conditional advertising e�ect is stronger for Segment 2 because they

are more likely to be low usage, newer players. Given that they do not have much prior

experience with the game, advertising could serve as a substitute for experience (potentially

informative e�ect2). As these players are signi�cantly more pessimistic about their match

values for the High level, the increase in play is manifested through the Low level. On

the other hand, Segment 1 is more balanced in their pessimism between levels. This may

partially explain why increasing advertising causes them to substitute away from the Low

to High level. Note that increasing advertising has two e�ects: (1) increases the likelihood

that a given player will have seen any ad by adoption, (2) for a user that has seen an ad,

increases the expected number of ad exposures. I posit that low increases in advertising

(e.g. AdLow) primarily increase the likelihood of any ad exposure (e�ect 1), which serve as

a sort of reminder e�ect in the sense that it may increase the likelihood of playing the game

entering into future consideration sets. As the �rm further increases advertising (→ AdHigh),

2. As I described previously, the observed advertisements for this game appear to contain little informative
content. As such I believe the informative e�ect to be very weak for newer players and practically non-existent
once these players have actually played the game.
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e�ect 1 reaches some saturation level. This is supported by the fact that for Segment 1 the

�nal increase in advertising to 30% does not increase play probability. On the other hand,

increasing advertising can a�ect the intensive margin of play via e�ect 2: ceteris paribus,

players who have seen more ads may associate it with greater prestige3.

6.2 Console switching

In this section I consider the console e�ect. In Table 5.6 I showed the existence of a strong,

positive PlayStation e�ect as well as weaker positive console generation e�ect. There are

several possible sources of this PlayStation e�ect. One potential explanation is that due to

intrinsic platform di�erences, more �hardcore� gamers self-select into PlayStation ownership.

For example, Gilbert (2018) notes that while hardware and prices are similar between the

PlayStation 4 and Xbox One, the PlayStation boasts a greater selection of console-exclusive

titles. Steiner et al. (2016) catalog motivational di�erences between hardcore and casual

gamers. They �nd that when considering platform adoption, hardcore gamers' valuation is

dominated by expected software quality while casual and social gamers pay more mind to

price, individual title availability, and socialization. A second explanation occurs at the game

level. While games are quintessentially identical between platforms, there are e.g. graphical

di�erences due to hardware di�erences. In fact a large review aggregator maintains separate

ratings for the same game on each console. At the margin, there is therefore an argument

for the potential causal e�ect of inducing a console switch. On the other hand, the e�ect of

upgrading a console to the next generation appears to be more obvious. Selection can be

framed through the lens of �innovators� versus �imitators� (e.g. the Bass adoption model).

This e�ect can be bolstered by network e�ects, as players must often be using the same

console version to play with friends. The canonical example of a platform-switching policy

is bundling�this is a rather common marketing strategy for video games (and other digital

3. Up until a satiation point, which is commonly cited as around 3, cf. Deighton et al., 1994; Pedrick and
Zufryden, 1991.
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(a)

(b)

Figure 6.1: Increasing advertising from 10% through 30% increases net engagement by a
range of 0.20% to 1.72%, holding all else constant.

goods), due to their low marginal costs4. In the context of direct upgrading, additional

4. For example, Derdenger and Vineet (2013) show that bundling for Nintendo games can increase sales
by (1) causing infra-marginal consumers to adopt earlier and (2) capture consumers who have ex ante low
valuation for the game. A key driver of their results is the power of bundles to segment consumers.
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(a)

(b)

Figure 6.2: Evolution of beliefs, increased advertising. Segment 2 appears to resolve slightly
more uncertainty over both levels.

policies such as progress carryover or backward-compatibility become relevant as well.

In my model I have included behavioral controls that I believe account for the selection in
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To: Xbox PS Prev. Curr.

From: Xbox 0.506 0.016 Prev. gen. 0.091 0.088
PlayStation 0.008 0.470 Curr. gen. 0.001 0.820

Table 6.1: Console switching. For brand (left), N = 13804; for generations (right), N =
12732.

the �rst explanation, e.g. play and adoption behavior in the previous game. I thus take the

view that the PlayStation and console generation coe�cients in Table 5.6 represent players'

(log) marginal utility over the console-speci�c attributes, such as network e�ects (from the

installed base), graphical di�erences, and performance improvements (in the case of newer

console). In Table 6.1 I present summary console statistics for returning players5. I observe

that there is a marginally positive net switching to PlayStation between games (0.478 to

0.486, p > 0.10) and a signi�cant net switching to current generation consoles (0.821 to

0.908, p << 0.05). The regression of (log) game G duration on the switching dummies gives

coe�cients of 0.15 (p = 0.13) and 0.50 (p = 0.07), respectively6. Finally, I �nd that return-

ing users who do not switch consoles are most likely to belong in Segment 1 (44.6-46.2%)

while Xbox to PlayStation switchers are the least frequent (37%, while PlayStation to Xbox

is 40%). With these descriptives I can pose the �rst set of console-related policy questions:

what is the console-switching e�ect on engagement for (1) previous-game Xbox users and

(2) non-console upgrading users.

In Fig. 6.3 I present counterfactuals for returning Xbox users switching to PlayStation

and in Fig. 6.4 the evolution of beliefs. I �nd that this switch increases total play by 8%, with

Segment 2 signi�cantly more a�ected. The play increase appears to be primarily driven by

5. I recover console ownership from observed play sessions. Thus, I do not know whether a switching
player still allocates signi�cant playtime to other games on the previous platform. I further �lter out users
with observed sessions on multiple platforms (< 1% of the sample).

6. While the PlayStation switching coe�cient is not signi�cant, I believe it has economic signi�cance. One
issue with this regression is a lack of power: only around 200 players switched from Xbox to PlayStation
while over 1000 switched from a previous to current generation console. Regression tables are provided in
the Appendix.
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the extensive margin and through Low level play. One potential explanation is adjustment

costs: players who purchase a new game concurrently with the new platform pay a mental

cost in both game and platform familiarity. This is especially true for Segment 2 players,

who decrease their High level shares signi�cantly more than Segment 1 players. While the

net increase of 8% appears rather signi�cant, this result is tempered by the low conversion

rate�recall that in-sample only around 3% of Xbox players switch console brands. Finally,

note that with this counterfactual, players are predicted to learn better over the Low levels

(especially Segment 2) and worse over the High ones.

Next in Fig. 6.5 I present results for console upgrade (holding �xed the brand). Note

that the predictions are noisy because the sample of players who remained using a previous

generation console is small (N = 1160). I �nd a much more modest e�ect to upgrading:

Segment 1 players play 0.90% more while Segment 2 plays 5.6% more, with an average e�ect

of 3.9%. The primary driver here appears to again be the extensive margin and High level

play is reduced for both segments, potentially due to a switching cost. Note that similar to

the brand switching, Segment 2 is signi�cantly more sensitive to the policy than Segment

1. Additionally, these players are far likelier to not upgrade their console in the �rst place.

This is consistent with the hypothesis that Segment 2 comprises the casual players described

in Steiner et al. (2016). Compared to the PlayStation switching policy, the console upgrade

policy appears to have a much more muted individual e�ect. However, it has signi�cantly

greater uptake: almost 50% of previous generation owners upgrade their console in sample.

Unfortunately, as I do not explicitly model the console-switching decision I cannot evaluate

which policy has a greater unconditional e�ect on engagement7. That said, it does appear

the �rm must trade o� the value of converting an Xbox user to its relative infrequency, and

vice versa for console upgrades.

7. In other words, rather than an average treatment e�ect I can only recover average treatment on
untreated.
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(a)

(b)

Figure 6.3: The average e�ect on play is 8%, and increases Low level play at the cost of High
level play. However, in-sample the conversion rate is only 3%.

Finally, I consider the e�ect of console switching for New players. Without historical

information, I have no measure for switching probabilities and can only describe the pol-
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(a)

(b)

Figure 6.4: Players learn better over the Low levels (particularly Segment 2), and slightly
worse over the High levels.

icy e�ect conditional on uptake. As the baseline, I observe that 48.6% of New players use

PlayStation and 84.6% are using a current generation console, which is qualitatively con-
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(a)

(b)

Figure 6.5: The average e�ect on play is 4%, primarily driven through the extensive margin.
Almost 50% of users upgrade between games.

sistent with the reasoning that these players are more casual8. I present Figures in the

8. In other words, it is more appropriate to think of New users as qualitatively di�erent than returning
users than as a mixture of Low and High types. This is compatible with beliefs under a Bayesian learning
framework.
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(a)

(b)

Figure 6.6: Learning curves are similar for the console upgrading policy.

Appendix. As a summary, I �nd that the PlayStation policy for new players is qualitatively

similar to that for returning players, with a net e�ect of 9% primarily driven through the

extensive margin. I �nd that it causes Segment 1 players to actually reduce their intensive

margin. I �nd the generation upgrade policy to have a modest e�ect for Segment 1 (4.2%)
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but actually decrease total play for Segment 2 (-0.2%). This decrease is driven by a reduction

in the intensive margin. Unfortunately without historical console information it is di�cult

to attribute this to any kind of skill or familiarity cost, and thus di�cult to make policy

recommendations for New players with regards to console switching.

6.3 Summary of counterfactuals

In Table 6.2 I present aggregate counterfactual moments. To brie�y summarize, the condi-

tional advertising elasticity is estimated to be around 0.02%. However, it is estimated to

be an increasing function, as an increase in advertising of 30% leads to a roughly 1.72%

increase in total play (elasticity of 0.06%). I �nd that at low levels of increased advertising

the increase is primarily driven by the extensive margin, and at high levels of advertising the

intensive margin growth begins to overtake the extensive margin growth. Segment 1 shifts

play towards the High level while Segment 2 has a somewhat balanced response.

I then analyze the response among di�erent consumer groups to policies promoting con-

sole switching. In particular, there is evidence from both the data and the literature that

type of platform use can a�ect player utility through tangibles such as networks, graphics,

or performance as well as intangibles such as prestige or familiarity. I �nd that a policy

such as bundling that causes consumers to switch from Xbox to PlayStation may increase

net engagement. Unfortunately, as I do not model platform switching I cannot assess the

unconditional e�ectiveness of said policies. Using observed switching patterns in the data,

I can however recover policy e�ects conditional on switching. Empirically, the baseline con-

version is around 3%. On the other hand, I �nd that a policy promoting console upgrading

has a much smaller unconditional e�ect but may be signi�cantly easier to achieve greater

conversion (in sample, there is an almost 50% rate). I �nd all these switching policies exact

a �skill� cost as consumers signi�cantly substitute away from the High levels afterward.
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Segment 1 Segment 2
Policy Play Pr(play) E(dur.|play) Pr(high lvl) N Play Pr(play) E(dur.|play) Pr(high lvl) N

Ad + 10% 0.02 0.14 -0.12 2.86 9614 0.53 0.68 -0.15 -1.57 16824
Ad + 20% 0.53 0.36 0.17 2.83 0.87 0.68 0.19 0.78
Ad + 30% 0.78 0.30 0.48 1.97 3.45 1.65 1.77 0.40

PS (returning) 3.16 1.82 1.31 -7.27 3099 11.89 9.07 2.58 -15.29 3752

Upgrade (returning) 0.90 1.12 -0.22 -10.13 398 5.55 4.72 0.79 -14.95 753

PS (new) 1.95 3.36 -1.36 -3.58 1756 11.74 10.04 1.54 -11.39 5124

Upgrade (new) 4.21 3.10 1.08 -14.21 565 -0.24 0.96 -1.18 -10.15 1459

Table 6.2: Data moments relative to baseline (as percentage), various counterfactuals.
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6.4 Firm relevance of engagement

Thus far I have evaluated the impact of several potential �rm-side actions on player engage-

ment. It is di�cult to directly quantify the value of this increased engagement to the �rm's

bottom line but several qualitative arguments can be made, in the context of my application,

for the value of engagement as the focal metric. First, increased engagement can create value

through network and word-of-mouth e�ects. For players seeking a competitive experience,

utility is a function of quality of game matches, which itself depends on the current distri-

bution of other players. Additionally high engagement users are more likely to innovate in

a way that bene�ts the �rm (Bogers et al., 2010; Nielsen, 2006). In my application, users

participate in on-line discussion boards and create a burgeoning media collection relating to

the game (i.e. written guides, recorded video). Users also provide direct feedback on their

satisfaction and critiques of the game through surveys. In the context of a franchise game

with annual releases, each generation's users can be thought of as ideal �beta testers� for the

next game. A case can be made, then, that increased play leads to better feedback (both

direct and behavioral) for the next iteration of the game.

That said it is not unreasonable to consider that increased engagement may also lead to

increased probability of future adoption or in-game purchasing�these are the outcomes that

may enter directly into the �rm's pro�t equation. In Figs. 6.7 and 6.8 I visualize the dis-

tribution of various engagement metrics, (1) between next-game adopters and non-adopters

and (2) wrt number of concurrent in-game purchases. It is clear that users who adopt be-

have very di�erent than those who do not, while users with increased in-game purchases

appears= to be best identi�ed using play time. However, because I explicitly model neither

adoption nor in-game purchasing, I cannot recover the average treatment e�ects. To formal-

ize for the case of adoptions, let Ai be the event that player i adopts the next game, Zi be

a set of exogenous covariates and Xi a set of behavioral covariates. Consider the observed

adoption decision as Ai = A(Xi, Zi, εi). Under some binary policy P ∈ {0, 1} we might
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consider the counterfactual APi = A(XP
i , Zi, P, εi). At the moment I have only estimated

Xi = X(Zi|θ̂) and can only estimate the impact on A of policy P through its e�ect on X, i.e.

ÂPi (XP
i , Zi, 0, εi). In other words, while a policy may directly increase adoption probability

and indirectly through increased engagement, I am limited to the latter e�ect. For instance,

this limits my counterfactuals to the case that advertising and bundling does not shift the

adopt decision for either the current or future games. To estimate this indirect adoption

function I consider the set of users in the previous game G− 1 and perform logistic regres-

sion of game G adoption on engagement. The crucial assumption here is latent ignorability

(i.e. conditional independence in the Rubin (1974) sense) which is non-trivial. To justify it

I include an exhaustive set of behavioral controls.

I present results in Table 6.39. In Regression (1) I consider the e�ect of total play on next-

game adoption while in Regression (2) I decompose total play into Low + High levels. Note

that Regression (1) actually provides superior �t (individual level plays are not signi�cant),

indicating that total play is more relevant. In Table 6.4 I present quasi-Poisson regression

results for total number of game G − 1 in-game purchases. Here I �nd, conversely, that it

is the individual level play that is important in predicting purchase, and Low level play in

particular10. The role of in-game purchases is limited to a subset to modes, both competitive

and non-competitive. In these modes, players earn in-game currency by playing and winning,

and invest this currency to improve their in-game power. In-game purchases directly provide

in-game currency, so are a direct substitute for playing. Players more e�ective at winning

can thus be considered to have more e�cient production functions for the in-game currency.

9. To more completely control for confounding e�ects I include all second-order interactions (with full
interactions I still have over 20,000 df). However I omit them here for parsimony. I present results with only
main e�ects in the Appendix. With only main e�ects an interesting result is that whether a player is new is
not predictive of future adoption (although number of previous games is, and that coe�cient incorporates
this information).

10. The number of in-game purchases is highly skewed, with an in-sample maximum of almost 500 and
99% percentile of 90. To reasonably estimate an e�ect I limit myself to users within this 99% percentile. My
�ndings are robust to di�erent percentile thresholds.
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One possible explanation then is that lower skilled players tend to play non-competitive

levels but are also less e�cient at producing in-game currency so substitute by making in-

game purchases. Thus, from the perspective of the �rm both total play and in each level are

important levers. Using these results I estimate that an increase in total play of 1% leads to a

0.21% increase in adoptions. With a 50-50 split in Low and High level play, this corresponds

to 0.51% increase in in-game purchases, while a 100-0 split corresponds to 0.92% increase

in in-game purchases. To quantify this in the context of the considered counterfactuals, an

increase in advertising of 10% would indirectly increase adoptions by 0.07% and in-game

purchasing by 0.28%. An increase of 10% in the number of users switching from Xbox to

PlayStation would increase overall adoptions by 0.003% and in-game purchasing by 0.02%.

An increase in 10% in the number of users upgrading to the current generation console would

increase overall adoptions by 0.007% and in-game purchasing by 0.02%.

Figure 6.7: Retained and churned consumers have di�erent behavior distributions.
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Dependent variable:

Game G adoption

(1) (2)

(Intercept) −1.208 (1.190) −1.162 (1.217)
log(Total play) 0.371∗∗ (0.155)
log(Low lvl. play) 0.188 (0.118)
log(High lvl. play) 0.096 (0.116)
New player −0.520 (0.593) −0.534 (0.592)
Num. prev. games 0.221 (0.291) 0.220 (0.290)
Adoption time 0.004 (0.003) 0.004∗ (0.003)
Is weekend adoption −0.284 (0.437) −0.284 (0.436)
PlayStation −1.186∗∗∗ (0.383) −1.197∗∗∗ (0.382)
Curr. gen. console −0.580 (0.400) −0.565 (0.400)
Num. sessions −0.018 (0.016) −0.012 (0.015)
log(Weekend play) −0.648 (0.436) −0.674 (0.446)
Avg. session length −1.297 (0.826) −1.294 (0.830)
Time from purch. to 1st play −0.008 (0.016) −0.008 (0.016)
Time from 1st to last play 0.006∗ (0.003) 0.006∗ (0.003)
High lvl. shares −0.715 (0.756) −0.776 (0.792)
HHI shares −0.867 (1.128) −0.919 (1.156)
log(First month play) 0.602 (0.378) 0.664∗ (0.379)
log(Last month play) −1.939∗ (1.128) −1.938∗ (1.128)
Avg. date played −0.001 (0.008) −0.001 (0.008)
% of time played on wkend 0.900 (1.050) 1.110 (1.060)
Played any High lvl. 2.274∗ (1.265) 2.166∗ (1.283)
Played any mult. lvls. −1.847 (1.238) −1.729 (1.243)

Observations 22,181 22,181
Log Likelihood −10,058.740 −10,060.160
Akaike Inf. Crit. 20,489.470 20,494.310

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6.3: Adoption as function of play, with interactions (main e�ects presented).
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Dependent variable:

In-game purchases

(1) (2)

(Intercept) −6.244∗∗∗ (2.043) −6.420∗∗∗ (2.313)
log(Total play) 0.795∗∗ (0.333)
log(Low lvl. play) 0.925∗∗∗ (0.274)
log(High lvl. play) 0.094 (0.097)
New player 2.390∗∗ (1.028) 2.377∗∗ (1.154)
Num. prev. games 0.977∗∗∗ (0.356) 0.932∗∗ (0.399)
Adoption time 0.002 (0.006) 0.003 (0.006)
Is weekend adoption −0.441 (0.703) −0.642 (0.793)
PlayStation 0.290 (0.587) 0.243 (0.658)
Curr. gen. console −0.129 (0.802) −0.180 (0.901)
Num. sessions 0.008 (0.013) 0.008 (0.013)
log(Weekend play) 0.573 (0.774) 0.310 (0.865)
Avg. session length −1.234 (1.604) −1.634 (1.797)
Time from purch. to 1st play 0.046∗∗ (0.021) 0.051∗∗ (0.023)
Time from 1st to last play 0.009∗∗ (0.005) 0.010∗ (0.005)
High lvl. shares 1.978 (1.231) 2.292 (1.442)
HHI shares 0.063 (1.630) 0.221 (1.873)
log(First month play) −0.263 (0.492) −0.354 (0.536)
log(Last month play) −1.720∗∗ (0.851) −1.745∗ (0.946)
Avg. date played −0.004 (0.012) −0.005 (0.013)
% of time played on wkend 1.960 (2.745) 2.921 (3.088)
Played any High lvl. 68.371 (713.119) 70.202 (822.162)
Played any mult. lvls. −65.709 (713.118) −67.743 (822.162)

Observations 21,960 21,960

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6.4: In-game purchases vs. play, with interactions (main e�ects presented, for pur-
chases ≤ 90).
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Figure 6.8: The strongest predictor of number of in-game purchases appears to be total play.
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CHAPTER 7

CONCLUSION

In this paper I analyzed a novel dataset containing session-level information for a panel of

players of a popular franchise video game. I focus on post-adoptive behavior for the most

recent release, and observe patterns consistent within a micro-economic framework of con-

sumers solving a budget problem over their leisure time. In particular I �nd that there is

a tension between players learning their true match values, which tend to be more positive

than their prior beliefs, and declining engagement due to novelty loss and outside interests.

An important feature of the game is that it is comprised of competitive and non-competitive

modes�I observe that players tend to substitute away from competition upon adoption of a

new game and slowly switch back with experience. This �nding is consistent with Bayesian

learning. Di�erential learning rates are captured by a multiple discrete-continuous model

that relates play intensity with learning intensity. An important advantage of this class of

models is their natural decomposition of consumption into the extensive and intensive mar-

gins, allowing for a deeper layer of policy analysis. I contribute to the methodology literature

by giving identi�cation results for the MDCNEV model under learning.

In my empirical application I �nd the data can be characterized by latent segments corre-

sponding to low (�casual�) and high (�hardcore�) types. Both tend to be ex ante pessimistic

about match values, and the low types are additionally more sensitive to satiation e�ects.

On average, neither player segment learns their true match values, and beyond the �rst few

weeks casual players become drastically di�cult to retain. These results suggest that in-

creasing player engagement would be bene�cial from the consumer welfare perspective. The

question then turns to what actions the �rm can do to increase engagement, and whether

play in the di�erent levels matters? Speci�cally, I consider counterfactuals where the �rm

(1) increases advertising and (2) promotes console upgrading (i.e. bundling). I �nd that

advertising has a small e�ect on engagement while bundling has a much stronger e�ect but
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faces the issue of low compliance. Casual players are more responsive to both policies and

primarily respond by playing more often. When players do switch consoles, they substitute

away from competitive levels. This �nding is in line with the hypothesis that players pay

a psychic cost when adopting a new platform. For the �rm, it is total play that drives

future adoption while non-competitive play drives in-game purchasing. The indirect e�ect

(i.e. increased purchasing due to increased play) of both policies is small, and unfortunately

assessing the direct policy e�ect is outside the scope of my model.

There are several extensions that can be considered for my model. First, I do not model

the adopt decision. A joint model would allow for direct measurement of more general out-

comes such as consumer lifetime value but unfortunately (1) would dramatically complicate

a model that is already highly complex, and (2) requires price data which I do not observe.

For a similar reason I do not consider dynamics. Second, I only consider the simplest form

of learning in my model. A joint learning speci�cation, for example, would allow the learn-

ing to be naturally interpreted as skill accumulation. Finally, I do not consider the case of

continuous unobserved heterogeneity. While two latent segments captures important data

moments I show there is certainly an argument to be made for greater player heterogeneity.
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APPENDIX A

DATA

A.1 Coe�cients in ZI-exponential adoption model

Xi δ̂1 δ̂2

Intercept -4.227∗∗∗ 2.815∗∗∗

Is new player 1.518∗∗∗ 0.422∗∗∗

log(Previous game exp.) 1.107∗∗∗ -1.829∗∗∗

Average level played in prev. game 0.177∗∗∗ 0.292∗∗∗

Table A.1: Zero-in�ated exponential adoption hazard model. Note that all coe�cients are
signi�cant, but in particular new player and the intercept have relatively large size.
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A.2 Additional �gures/tables for level vs experience groupings

Type Mean adoption Median adopt 3rd quartile adopt % adoption in �rst 2 weeks
New 15.3 17.00 22.00 0.177
Low level 4.24 0.00 3.00 0.717
High level 4.39 0.00 3.00 0.708

Table A.2: Adoption summaries, by player past level.

Adoption statistics grouped by median split on level played rather than experience.

(a) (b)

Figure A.1: Total play by di�erent groupings. Qualitatively similar �ndings to Fig. 3.3

(a) (b)

Figure A.2: No. of weeks played by di�erent groupings. Note that grouped by level, returning
players look rather similar while grouped by experience, there is a clear di�erence between
low and high exp players
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A.3 Conditional play patterns with alternate slicings

Below I present conditional play patterns sliced on (a) adoption date, and (b) number of

weeks played. I use sample quartiles to create slices. In general observe that except for

noisy-by-construction groups (i.e. 4th quartile adopters, or 1st quartile number of weeks

played), the same trends observed in aggregate appear to hold here as well.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.3: Conditional total duration, max level played, HHI, and high level shares.
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A.4 Conditional play patterns grouped by previous level

Instead of a median split on duration played here I group by median split on past level. Here

there is more separation between the low types and new players, except in play probabilities

(extensive margin) and high shares, which is unsurprising. As with the experience split, it

is important to note that conditional on an outcome variable gives rise to endogeneity and

the results can at best be considered illustrative.

(a) (b)

(c) (d)

Figure A.4: Conditional play duration and max level by previous level. Note that compared
to Fig. 3.4 the monotonicity between groups at each slice is signi�cantly blurrier. Further,
max level may be �at or slightly declining across all groups.
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(a) (b)

(c) (d)

Figure A.5: Conditional HHI and high level shares by previous level. Unsurprisingly past
high levels is predictive of current high levels.
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A.5 Correlation between (log) duration and (log) no. choices

(a)

(b)

Figure A.6: Note: only players with positive no. choices in a mode are considered. Unsur-
prisingly, correlation (a) is rather high. Conditional on high utilization (b), correlation is
signi�cantly lower. Here we start to see that the two variables contain di�erent information.
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A.6 Evolution of high level shares across all generations

(a)

(b)

Figure A.7: The pattern of increasing high level shares over the course of the game followed
by a sharp drop after the next game holds by cohort. However, selection cannot be ruled
out.
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A.7 Cluster analysis of K = 2, 3 clusters

Figure A.8: Data moments with K = 2 clusters.

Table A.3: Clustered behavioral and demographic means,
K = 2.

Clust. 1 Clust. 2

No. games owned 2.26 3.52
No. yrs in samp. 0.97 1.90
Adopt day G 97.07 34.48
Owns Xbox 360 0.09 0.06
Owns Xbox One 0.46 0.45
Owns PS3 0.06 0.05
Owns PS4 0.41 0.49
Owns Xbox 0.54 0.49
Owns PS 0.46 0.52
Owns older cons. 0.15 0.11
Owns multiple cons. 0.01 0.05

High exp 0.08 0.45
Low exp 0.26 0.24
Returning 0.34 0.70
New 0.66 0.30

Adopt day 15 78.56 56.61
No. wks. played G− 1 8.72 19.83
No. wks. owned G− 1 41.15 44.23
Pct. wks. played G− 1 0.23 0.45
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Table A.3: Clustered behavioral and demographic means,
K = 2, continued.

Last wk. played G− 1 31.57 40.81
Overall max lvl G− 1 1.81 2.53
First wk. play G− 1 4.03 7.57
First 4 wks. play G− 1 11.05 23.42
First wk. max lvl G− 1 1.09 1.11
First 4 wks. max lvl G− 1 1.34 1.60
Total solo play G− 1 23.46 60.27
Total friendly play G− 1 3.69 8.75
Total competitive play G− 1 3.02 22.78
Total ranked play G− 1 2.06 17.26
Total play G− 1 32.23 107.71

Overall high shares G− 1 0.13 0.30
Overall HHI G− 1 0.77 0.67
Above med. high lvls, G− 1 0.15 0.54
Above med. low lvls, G− 1 0.48 0.73
Above med. ranked play G− 1 0.07 0.30
Above med. competitive play G− 1 0.10 0.40
Above med. friendly play G− 1 0.25 0.44
Above med. solo play G− 1 0.33 0.58
Above med. last wk. played G− 1 0.33 0.59
Above med. HHI G− 1 0.75 0.93
Above med. no. wks. played G− 1 0.24 0.64
Above med. high shares G− 1 0.31 0.61
Above med. max lvl played G− 1 0.22 0.53
Adopted during weekend G− 1 0.29 0.18
Adopted 1st 2 weeks G− 1 0.44 0.56

N 14425.00 12290.00

First, I use K = 2 clusters. Here the main separation appears to be between newer and

advanced players: the average player in the second cluster is about one year younger and

much more likely to be new. Notably, low exp players are just as likely to belong to either

cluster. For returning players all the previous game play statistics indicate the �rst cluster

consists of more engaged players. Unsurprisingly, these players are more likely to both own

multiple consoles and newer consoles. What is surprising is that these "hardcore" players

are also more likely to own a PlayStation than an Xbox1.

1. p << 0.05. Gilbert (2018) concludes that the Xbox One and PlayStation 4 are ultimately very similar
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Figure A.9: Data moments with K = 3 clusters.

Table A.4: Clustered behavioral and demographic means,
K = 3.

Clust. 1 Clust. 2 Clust. 3

No. games owned 3.57 3.24 2.03
No. yrs in samp. 2.01 1.64 0.77
Adopt day G 32.96 46.65 108.87
Owns Xbox 360 0.06 0.06 0.09
Owns Xbox One 0.45 0.44 0.47
Owns PS3 0.05 0.05 0.06
Owns PS4 0.48 0.48 0.39
Owns Xbox 0.50 0.49 0.56
Owns PS 0.52 0.53 0.45
Owns older cons. 0.11 0.12 0.15
Owns multiple cons. 0.04 0.04 0.01

High exp 0.41 0.39 0.05
Low exp 0.28 0.25 0.24
Returning 0.69 0.64 0.28

except in one major dimension: the PS4 has a much larger library of system-exclusive games. Cruz et al.
(2017) note that trophy or achievement points (which accrue by user account across games but not consoles)
are an important driver of motivation, enjoyment, and engagement. I hypothesize then, that in addition to
brand loyalty, whether a player can retain their points contributes to the brand "stickiness". In my data
I note that across the latest two generations of games, 2% of users on a current-generation console switch
brands across games, while for those who upgrade consoles from previous- to current-generation alongside
games, brand-switching is 10%.
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Table A.4: Clustered behavioral and demographic means,
K = 3, continued.

New 0.31 0.36 0.72

Adopt day G− 1 54.79 60.88 88.24
No. wks. played G− 1 18.03 18.79 7.17
No. wks. owned G− 1 44.49 43.63 39.79
Pct. wks. played G− 1 0.41 0.43 0.20
Last wk. played G− 1 39.06 40.14 30.49
Overall max lvl G− 1 1.89 3.04 1.85
First wk. play G− 1 6.91 7.50 3.33
First 4 wks. play G− 1 21.08 22.99 8.92
First wk. max lvl G− 1 1.05 1.16 1.11
First 4 wks. max lvl G− 1 1.24 1.93 1.38
Total solo play G− 1 71.78 36.67 15.52
Total friendly play G− 1 7.86 7.88 3.69
Total competitive play G− 1 11.12 29.80 2.98
Total ranked play G− 1 2.72 29.68 2.08
Total play G− 1 92.32 102.94 24.27

Overall high shares G− 1 0.11 0.47 0.15
Overall HHI G− 1 0.76 0.60 0.75
Above med. high lvls, G− 1 0.30 0.70 0.15
Above med. low lvls, G− 1 0.79 0.63 0.40
Above med. ranked play G− 1 0.10 0.46 0.08
Above med. competitive play G− 1 0.25 0.48 0.09
Above med. friendly play G− 1 0.38 0.44 0.25
Above med. solo play G− 1 0.68 0.43 0.22
Above med. last wk. played G− 1 0.54 0.57 0.30
Above med. HHI G− 1 0.85 0.95 0.75
Above med. no. wks. played G− 1 0.59 0.60 0.17
Above med. high shares G− 1 0.34 0.82 0.33
Above med. max lvl played G− 1 0.27 0.73 0.23
Adopted during weekend G− 1 0.18 0.20 0.32
Adopted 1st 2 weeks G− 1 0.57 0.54 0.39

N 8382.00 7203.00 11130.00

Next I use K = 3 clusters, and observe that clusters 1 and 3 are exceedingly similar (and

seem to largely re�ect returning players) with one major behavioral di�erence: cluster 1

primarily stays in the low levels while cluster 3 plays the high levels. These patterns persist

from the previous game. Possible explanations for this pattern include preference hetero-

geneity and state-dependent, largely non-transferred learning. Finally, note that cluster 3

109



has play frequency and duration patterns similar to cluster 1, but high level shares similar

to cluster 2.
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A.8 Regressions of outcome variables for each of K = 5 clusters

and overall

Dependent variable:

No. wks. played G
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 All

(Intercept) 2.00∗∗∗ 16.27∗∗∗ 2.64∗∗∗ 6.03∗∗∗ 12.38∗∗∗ 4.87∗∗∗

(0.06) (0.33) (0.08) (0.30) (0.25) (0.12)
Owns PS 0.33∗∗∗ 0.74∗∗∗ 0.01 1.06∗∗∗ 0.04 1.04∗∗∗

(0.05) (0.23) (0.06) (0.24) (0.19) (0.10)
Owns older cons. 0.09 −0.93∗∗ −0.11 −0.67∗ −0.38 −1.20∗∗∗

(0.06) (0.46) (0.10) (0.35) (0.32) (0.15)
Owns multiple cons. 1.96∗∗∗ 2.34∗∗∗ 1.26∗∗∗ 1.88∗∗∗ 1.99∗∗∗ 4.58∗∗∗

(0.25) (0.59) (0.27) (0.73) (0.53) (0.30)
No. games owned 0.25∗∗∗ 0.20 0.14∗∗∗ 0.36∗ 0.31∗∗ 0.68∗∗∗

(0.04) (0.15) (0.04) (0.18) (0.13) (0.07)
No. yrs in samp. −0.10∗∗∗ −0.07 −0.005 −0.05 −0.04 −0.19∗∗∗

(0.04) (0.14) (0.04) (0.16) (0.11) (0.06)
Low exp −0.21 −0.92 0.47∗∗∗ −0.67 0.72∗ 0.23

(0.14) (0.73) (0.13) (0.72) (0.41) (0.23)
High exp −0.19 1.15 0.09 2.81∗∗∗ 2.97∗∗∗ 3.44∗∗∗

(0.31) (0.88) (0.21) (0.88) (0.56) (0.33)
Above med. ranked play G− 1 −0.27 0.93∗∗∗ −0.13 3.08∗∗∗ 0.17 1.08∗∗∗

(0.25) (0.32) (0.19) (0.45) (0.48) (0.21)
Above med. competitive play G− 1 −0.06 1.78∗∗∗ −0.32∗ −0.33 2.90∗∗∗ 2.54∗∗∗

(0.25) (0.37) (0.18) (0.40) (0.38) (0.20)
Above med. friendly play G− 1 0.07 0.39 0.32∗∗∗ −1.24∗∗∗ −0.42 0.29∗

(0.15) (0.28) (0.11) (0.36) (0.26) (0.15)
Above med. solo play G− 1 −0.22 0.27 0.40∗∗∗ −1.72∗∗∗ −0.09 1.46∗∗∗

(0.21) (0.38) (0.13) (0.45) (0.36) (0.19)
Above med. last wk. played G− 1 0.50∗∗∗ 2.79∗∗∗ 0.36∗∗∗ 2.43∗∗∗ 2.58∗∗∗ 3.42∗∗∗

(0.12) (0.29) (0.10) (0.36) (0.25) (0.15)
Above med. HHI G− 1 0.40∗∗∗ 0.52 0.23∗ 0.56 −0.46 0.36

(0.15) (0.74) (0.12) (0.75) (0.34) (0.22)
Above med. no. wks. played G− 1 0.44∗ 2.41∗∗∗ 0.76∗∗∗ 3.51∗∗∗ 3.11∗∗∗ 4.00∗∗∗

(0.23) (0.43) (0.15) (0.50) (0.34) (0.21)
Above med. high shares G− 1 −0.40∗∗ −0.60 −0.19 −0.91 −1.01∗∗∗ −0.05

(0.17) (0.43) (0.14) (0.65) (0.38) (0.21)
Above med. max lvl played G− 1 −0.12 −0.02 0.07 0.66 −1.52∗∗∗ 0.09

(0.18) (0.34) (0.14) (0.55) (0.35) (0.20)
Adopted during weekend G− 1 0.16 −1.37∗∗∗ −0.05 −0.45 −1.02∗∗∗ −1.51∗∗∗

(0.12) (0.34) (0.10) (0.40) (0.30) (0.16)
Adopted 1st 2 weeks G− 1 −0.09 −0.79∗∗ −0.24∗∗ −0.48 −0.82∗∗∗ −1.20∗∗∗

(0.17) (0.31) (0.10) (0.38) (0.27) (0.16)

Observations 6,950 5,162 4,949 3,430 6,224 26,715
R2 0.04 0.19 0.09 0.30 0.20 0.38

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.5: OLS of no. wks. played G for each cluster and overall.
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Dependent variable:

Last wk. played G
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 All

(Intercept) 27.87∗∗∗ 34.78∗∗∗ 9.78∗∗∗ 26.48∗∗∗ 31.98∗∗∗ 25.62∗∗∗

(0.24) (0.29) (0.27) (0.46) (0.27) (0.16)
Owns PS −1.08∗∗∗ −0.48∗∗ −0.40∗ −0.29 −0.85∗∗∗ −0.93∗∗∗

(0.19) (0.20) (0.22) (0.36) (0.20) (0.13)
Owns older cons. −1.90∗∗∗ −0.46 0.49 −1.42∗∗∗ −1.01∗∗∗ −1.77∗∗∗

(0.26) (0.41) (0.33) (0.53) (0.34) (0.21)
Owns multiple cons. 6.12∗∗∗ 2.04∗∗∗ 9.68∗∗∗ 5.27∗∗∗ 2.33∗∗∗ 6.18∗∗∗

(1.01) (0.52) (0.91) (1.10) (0.57) (0.42)
No. games owned 0.52∗∗∗ 0.25∗ 0.48∗∗∗ 1.12∗∗∗ 0.29∗∗ 0.95∗∗∗

(0.18) (0.14) (0.15) (0.28) (0.13) (0.10)
No. yrs in samp. −0.39∗∗ −0.69∗∗∗ −0.55∗∗∗ −1.37∗∗∗ −0.71∗∗∗ −1.30∗∗∗

(0.16) (0.12) (0.13) (0.25) (0.12) (0.09)
Low exp −1.37∗∗ −4.27∗∗∗ −0.69 −6.32∗∗∗ −3.14∗∗∗ −5.35∗∗∗

(0.55) (0.65) (0.44) (1.09) (0.44) (0.31)
High exp −0.33 −4.33∗∗∗ −2.59∗∗∗ −5.04∗∗∗ −3.28∗∗∗ −3.91∗∗∗

(1.25) (0.78) (0.72) (1.34) (0.60) (0.45)
Above med. ranked play G− 1 −0.23 0.37 −0.39 1.27∗ −0.49 0.38

(0.98) (0.28) (0.64) (0.69) (0.52) (0.28)
Above med. competitive play G− 1 −3.25∗∗∗ −0.10 −0.76 0.07 −0.15 0.43

(0.99) (0.33) (0.61) (0.61) (0.41) (0.28)
Above med. friendly play G− 1 0.95 0.58∗∗ 1.56∗∗∗ −0.10 −0.01 0.68∗∗∗

(0.58) (0.24) (0.37) (0.55) (0.28) (0.21)
Above med. solo play G− 1 −0.26 −0.07 −0.28 −0.94 −0.51 0.74∗∗∗

(0.85) (0.34) (0.45) (0.69) (0.39) (0.27)
Above med. last wk. played G− 1 1.52∗∗∗ 2.05∗∗∗ 1.17∗∗∗ 3.25∗∗∗ 2.88∗∗∗ 3.74∗∗∗

(0.49) (0.26) (0.36) (0.54) (0.26) (0.20)
Above med. HHI G− 1 −0.08 −0.02 0.73∗ 0.37 −0.63∗ 0.46

(0.59) (0.66) (0.41) (1.14) (0.36) (0.30)
Above med. no. wks. played G− 1 2.32∗∗ 1.64∗∗∗ 1.50∗∗∗ 3.27∗∗∗ 2.15∗∗∗ 3.89∗∗∗

(0.92) (0.38) (0.50) (0.76) (0.37) (0.29)
Above med. high shares G− 1 0.34 −0.68∗ −0.21 −2.50∗∗ −0.92∗∗ −0.17

(0.67) (0.38) (0.48) (0.98) (0.41) (0.30)
Above med. max lvl played G− 1 −0.45 0.05 0.07 1.58∗ −0.32 0.69∗∗

(0.71) (0.30) (0.49) (0.84) (0.37) (0.27)
Adopted during weekend G− 1 0.26 0.17 0.17 1.74∗∗∗ 0.97∗∗∗ 0.16

(0.46) (0.30) (0.35) (0.60) (0.32) (0.23)
Adopted 1st 2 weeks G− 1 −0.15 −1.54∗∗∗ −1.44∗∗∗ −2.82∗∗∗ −1.99∗∗∗ −3.33∗∗∗

(0.66) (0.27) (0.34) (0.58) (0.29) (0.22)

Observations 6,950 5,162 4,949 3,430 6,224 26,715
R2 0.02 0.10 0.05 0.09 0.10 0.10

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.6: OLS of last wk. played G for each cluster and overall.

112



Dependent variable:

Overall high shares G
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 All

(Intercept) 0.06∗∗∗ 0.40∗∗∗ 0.07∗∗∗ 0.70∗∗∗ 0.05∗∗∗ 0.16∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.003) (0.004)
Owns PS 0.02∗∗∗ 0.002 0.01 −0.01 −0.003 0.02∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.002) (0.003)
Owns older cons. 0.03∗∗∗ −0.003 0.01 0.04∗∗∗ −0.01∗ 0.01∗∗

(0.01) (0.01) (0.01) (0.01) (0.003) (0.01)
Owns multiple cons. 0.003 0.01 −0.004 −0.13∗∗∗ 0.01∗ 0.01

(0.03) (0.02) (0.02) (0.03) (0.01) (0.01)
No. games owned 0.01∗∗∗ −0.01 0.01∗∗∗ −0.01∗∗ 0.002 0.01∗∗∗

(0.005) (0.004) (0.004) (0.01) (0.001) (0.002)
No. yrs in samp. −0.01∗ 0.005 −0.01∗∗∗ 0.01∗ −0.003∗∗∗ −0.01∗∗∗

(0.004) (0.004) (0.003) (0.01) (0.001) (0.002)
Low exp 0.005 −0.03 −0.05∗∗∗ −0.09∗∗∗ −0.02∗∗∗ −0.07∗∗∗

(0.02) (0.02) (0.01) (0.03) (0.004) (0.01)
High exp 0.02 0.05∗ −0.04∗∗ 0.02 −0.03∗∗∗ 0.02

(0.03) (0.02) (0.02) (0.03) (0.01) (0.01)
Above med. ranked play G− 1 −0.02 0.10∗∗∗ 0.02 0.13∗∗∗ 0.01 0.18∗∗∗

(0.03) (0.01) (0.01) (0.02) (0.01) (0.01)
Above med. competitive play G− 1 0.08∗∗∗ 0.08∗∗∗ 0.05∗∗∗ 0.02 0.04∗∗∗ 0.07∗∗∗

(0.03) (0.01) (0.01) (0.02) (0.004) (0.01)
Above med. friendly play G− 1 −0.003 −0.03∗∗∗ −0.02∗∗ −0.07∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.003) (0.01)
Above med. solo play G− 1 −0.04 −0.12∗∗∗ −0.02∗ −0.11∗∗∗ 0.001 −0.15∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.004) (0.01)
Above med. last wk. played G− 1 −0.02 −0.0002 0.01 0.02 0.0002 0.01∗∗

(0.01) (0.01) (0.01) (0.01) (0.003) (0.01)
Above med. HHI G− 1 −0.03∗ −0.06∗∗∗ 0.02∗∗ −0.08∗∗∗ 0.01∗∗∗ 0.01

(0.02) (0.02) (0.01) (0.03) (0.004) (0.01)
Above med. no. wks. played G− 1 0.001 −0.03∗∗∗ −0.01 −0.04∗∗ −0.01∗∗∗ −0.01

(0.03) (0.01) (0.01) (0.02) (0.004) (0.01)
Above med. high shares G− 1 0.07∗∗∗ 0.06∗∗∗ 0.08∗∗∗ 0.12∗∗∗ 0.05∗∗∗ 0.12∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.004) (0.01)
Above med. max lvl played G− 1 0.05∗∗ 0.06∗∗∗ 0.03∗∗ 0.04∗ 0.02∗∗∗ 0.11∗∗∗

(0.02) (0.01) (0.01) (0.02) (0.004) (0.01)
Adopted during weekend G− 1 −0.02 −0.01 −0.002 0.0002 0.0003 −0.01∗∗

(0.01) (0.01) (0.01) (0.02) (0.003) (0.01)
Adopted 1st 2 weeks G− 1 −0.01 0.02∗∗ −0.01 0.005 −0.001 −0.01

(0.02) (0.01) (0.01) (0.01) (0.003) (0.01)

Observations 6,950 5,162 4,949 3,430 6,224 26,715
R2 0.02 0.17 0.06 0.13 0.14 0.22

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.7: OLS of overall high shares G for each cluster and overall.
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A.9 Advertising: evidence of geographic targeting

In Fig. A.10(a) I visualize cumulative gross rating points (GRP, which accounts for popu-

lation size) over each DMA from 14 to 120 days post-release. For instance, the four most-

targeted DMAs (New York, Los Angeles, Philadelphia, and Chicago) account for over a

quarter of total local advertising exposure. In Fig. A.10(b) I show that the exclusion of local

advertising does not qualitatively a�ect the measure of advertising (either �ow or stock with

50% depreciation).
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(a)

(b)

Figure A.10: Evidence of targeting in local ads. However, gross rating looks incredibly
similar with and without inclusion of local ads.
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A.10 Advertising: evolution of advertising stock, using di�erent

depreciation κ

(a)

Figure A.11: Advertising stock over time.
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A.11 Regression of outcomes on console switching

Table A.8: Outcomes on console upgrade dummy and controls

Dependent variable:

log(Dur) Pr(play) Cond. dur Shares (High)

(1) (2) (3) (4)

(Intercept) 0.880∗∗∗ 0.087∗∗∗ 1.715∗∗∗ 0.132∗∗∗

(0.193) (0.024) (0.280) (0.030)
Upgraded console 0.497∗∗∗ 0.091∗∗∗ 0.222∗∗ 0.001

(0.071) (0.009) (0.104) (0.011)
log(Total play, G− 1) 0.422∗∗∗ 0.026∗∗∗ 0.453∗∗∗ −0.038∗∗∗

(0.055) (0.007) (0.080) (0.009)
No. yrs in samp. −0.037 −0.003 −0.014 −0.006

(0.041) (0.005) (0.059) (0.006)
No. games owned 0.129∗∗∗ 0.008 0.041 0.015∗∗

(0.046) (0.006) (0.067) (0.007)
Adopt day, G− 1 0.0004∗∗ 0.0001∗∗∗ 0.0004 0.0001∗∗

(0.0002) (0.00002) (0.0003) (0.00003)
Adopted during weekend, G− 1 −0.242∗∗∗ −0.017∗ −0.462∗∗∗ −0.015

(0.079) (0.010) (0.114) (0.012)
Last wk. played, G− 1 −0.004 −0.0001 −0.005 −0.001

(0.004) (0.0005) (0.006) (0.001)
Pct. wks. played, G− 1 0.540∗∗ 0.235∗∗∗ 0.409 −0.015

(0.259) (0.032) (0.376) (0.040)
First 4 wks. play, G− 1 0.007∗∗ −0.0004 0.054∗∗∗ 0.001∗∗∗

(0.003) (0.0004) (0.005) (0.001)
Overall high shares, G− 1 0.238 0.042∗∗ 0.830∗∗∗ 0.501∗∗∗

(0.159) (0.020) (0.230) (0.025)
Is above med. high lvls, G− 1 −0.052 −0.008 −0.336∗ 0.117∗∗∗

(0.123) (0.015) (0.179) (0.019)
Above med. last wk. played, G− 1 0.142 0.018 −0.048 0.049∗∗

(0.125) (0.016) (0.181) (0.019)
Above med. HHI, G− 1 −0.277∗∗∗ −0.029∗∗ −0.634∗∗∗ 0.0003

(0.104) (0.013) (0.150) (0.016)
Above med. no. wks. played, G− 1 0.014 0.057∗∗∗ −0.547∗∗∗ 0.023

(0.125) (0.016) (0.181) (0.019)
Is high exp 0.171 0.013 0.366∗ 0.010

(0.136) (0.017) (0.197) (0.021)

R2 0.258 0.260 0.249 0.338
Residual Std. Error (df = 2241) 1.623 0.203 2.357 0.252
F Statistic (df = 15; 2241) 52.071∗∗∗ 52.546∗∗∗ 49.629∗∗∗ 76.221∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

117



Table A.10: Outcomes on PlayStation switch dummy and controls

Dependent variable:

log(Dur) Pr(play) Cond. dur Shares (High)

(1) (2) (3) (4)

(Intercept) 0.852∗∗∗ 0.084∗∗∗ 1.314∗∗∗ 0.083∗∗∗

(0.106) (0.015) (0.176) (0.017)
Xbox to PS 0.144 0.016 0.006 −0.013

(0.101) (0.014) (0.168) (0.016)
log(Total play, G− 1) 0.450∗∗∗ 0.026∗∗∗ 0.616∗∗∗ −0.012∗∗∗

(0.029) (0.004) (0.049) (0.005)
No. yrs in samp. −0.008 −0.011∗∗∗ 0.007 −0.011∗∗∗

(0.020) (0.003) (0.033) (0.003)
No. games owned 0.105∗∗∗ 0.015∗∗∗ 0.075∗∗ 0.013∗∗∗

(0.022) (0.003) (0.037) (0.004)
Adopt day, G− 1 0.0005∗∗∗ 0.0001∗∗∗ 0.001∗∗∗ 0.0001∗∗∗

(0.0001) (0.00002) (0.0002) (0.00002)
Adopted during weekend, G− 1 −0.246∗∗∗ −0.014∗∗ −0.387∗∗∗ −0.023∗∗∗

(0.043) (0.006) (0.072) (0.007)
Last wk. played, G− 1 0.003 0.0002 −0.002 −0.00003

(0.002) (0.0003) (0.003) (0.0003)
Pct. wks. played, G− 1 0.779∗∗∗ 0.335∗∗∗ 0.590∗∗∗ −0.014

(0.124) (0.017) (0.207) (0.020)
First 4 wks. play, G− 1 0.001 −0.0003 0.021∗∗∗ 0.001∗∗∗

(0.001) (0.0002) (0.002) (0.0002)
Overall high shares, G− 1 −0.027 −0.008 0.157 0.550∗∗∗

(0.082) (0.011) (0.136) (0.013)
Is above med. high lvls, G− 1 0.036 0.011 0.219∗∗ 0.075∗∗∗

(0.059) (0.008) (0.099) (0.010)
Above med. last wk. played, G− 1 0.099∗ 0.006 −0.005 0.010

(0.060) (0.008) (0.100) (0.010)
Above med. HHI, G− 1 −0.135∗∗ −0.010 −0.543∗∗∗ −0.0002

(0.060) (0.008) (0.100) (0.010)
Above med. no. wks. played, G− 1 −0.006 0.018∗∗ −0.694∗∗∗ −0.006

(0.061) (0.008) (0.102) (0.010)
Is high exp 0.073 0.011 0.163 0.010

(0.068) (0.009) (0.113) (0.011)

R2 0.344 0.304 0.228 0.375
Residual Std. Error (df = 7058) 1.467 0.202 2.446 0.236
F Statistic (df = 15; 7058) 246.681∗∗∗ 205.199∗∗∗ 139.141∗∗∗ 281.794∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.12 Counterfactual simulation visuals for New player console

switching

(a)

(b)

Figure A.12: The PlayStation counterfactual for new players is qualitatively similar as for
returning players, with a net e�ect of 9.2%.
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(a)

(b)

Figure A.13: Learning curves appear similar. Note that uncertainty resolution is broadly
worse for new players (vs returning).
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(a)

(b)

Figure A.14: With a relatively small sample, results are noisy. Note that Segment 2 players
are actually predicted to play less! Net e�ect on play is around 1%.
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(a)

(b)

Figure A.15: Observe the noisiness in learning curves, especially near the end of sample.
Empirically retention of New players (especially Segment 2) is low.
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A.13 Regressions of adoption/in-game purchases on play

The following tables contain only �rst-order e�ects. They may be more useful to get a sense

of the size of e�ects other than the primary three discussed in the main article.

Dependent variable:

Game G adoption

(1) (2)

(Intercept) −2.731∗∗∗ (0.184) −3.185∗∗∗ (0.212)
log(Total play) 0.470∗∗∗ (0.060)
log(Low lvl. play) 0.311∗∗∗ (0.049)
log(High lvl. play) 0.055 (0.036)
New player 0.008 (0.061) 0.013 (0.061)
Num. prev. games 0.638∗∗∗ (0.030) 0.639∗∗∗ (0.030)
Adoption time 0.0002 (0.0002) 0.0002 (0.0002)
Is weekend adoption −0.130∗∗∗ (0.040) −0.125∗∗∗ (0.040)
PlayStation 0.007 (0.035) 0.012 (0.035)
Curr. gen. console 1.175∗∗∗ (0.039) 1.170∗∗∗ (0.039)
Num. sessions 0.003∗∗ (0.001) 0.003∗∗ (0.001)
log(Weekend play) −0.052 (0.048) 0.028 (0.046)
Avg. session length −0.549∗∗∗ (0.084) −0.437∗∗∗ (0.081)
Time from purch. to 1st play 0.004∗∗∗ (0.001) 0.003∗∗∗ (0.001)
Time from 1st to last play 0.003∗∗∗ (0.0003) 0.003∗∗∗ (0.0003)
High lvl. shares −0.223∗∗∗ (0.078) 0.360∗∗∗ (0.135)
HHI shares −0.196 (0.148) 0.297∗ (0.178)
log(First month play) −0.048 (0.040) 0.018 (0.037)
log(Last month play) 0.316∗∗∗ (0.030) 0.319∗∗∗ (0.030)
Avg. date played 0.00002 (0.001) 0.001 (0.001)
% of time played on wkend 0.140 (0.090) 0.027 (0.088)
Played any High lvl. 0.177 (0.171) −0.109 (0.173)
Played any mult. lvls. −0.083 (0.169) 0.212 (0.170)

Observations 22,181 22,181
Log Likelihood −10,367.340 −10,377.620
Akaike Inf. Crit. 20,776.670 20,799.230

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.12: Adoption vs play, main e�ects only.

In Figs. A.13 I present predictions from the second-order interactions models. The

adoption model has an AUC of 0.85.
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Dependent variable:

In-game purchases

(1) (2)

(Intercept) −0.886∗∗ (0.373) −2.704∗∗∗ (0.481)
log(Total play) 0.846∗∗∗ (0.155)
log(Low lvl. play) 0.976∗∗∗ (0.124)
log(High lvl. play) 0.093∗ (0.050)
New player −0.407∗∗∗ (0.085) −0.403∗∗∗ (0.082)
Num. prev. games −0.046 (0.028) −0.045 (0.028)
Adoption time −0.002∗∗∗ (0.001) −0.002∗∗∗ (0.001)
Is weekend adoption −0.051 (0.057) −0.049 (0.055)
PlayStation −0.255∗∗∗ (0.044) −0.251∗∗∗ (0.043)
Curr. gen. console 0.315∗∗∗ (0.066) 0.309∗∗∗ (0.064)
Num. sessions −0.001 (0.001) −0.002∗∗ (0.001)
log(Weekend play) 0.477∗∗∗ (0.150) 0.352∗∗∗ (0.126)
Avg. session length −1.322∗∗∗ (0.148) −1.421∗∗∗ (0.146)
Time from purch. to 1st play 0.010∗∗∗ (0.001) 0.010∗∗∗ (0.001)
Time from 1st to last play 0.00004 (0.0004) −0.00003 (0.0004)
High lvl. shares −1.371∗∗∗ (0.110) 0.962∗∗∗ (0.337)
HHI shares −1.777∗∗∗ (0.163) −0.091 (0.304)
log(First month play) −0.081∗∗ (0.041) −0.084∗∗ (0.039)
log(Last month play) −0.088∗∗∗ (0.025) −0.084∗∗∗ (0.024)
Avg. date played −0.006∗∗∗ (0.001) −0.006∗∗∗ (0.001)
% of time played on wkend −0.845∗ (0.441) −0.489 (0.378)
Played any High lvl. 1.716∗∗ (0.758) 1.231 (0.749)
Played any mult. lvls. −0.418 (0.753) 0.052 (0.745)

Observations 21,960 21,960

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.13: In-game purchases vs. play, main e�ects only (for purchases ≤ 90).
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(a)

(b)

Figure A.16: Predicted purchasing behavior from the second-order interaction models. Note
that the relationship between High play and in-game purchases is stronger than for Low play.
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A.14 Varying ad stock speci�cations

In Fig. A.17 I present simulated data moments using di�erent capital depreciation rates κ

(denoted as percentage). Recall the advertising stock is de�ned SAt (κ) = κAt + (1−κ)SAt−1.

The implied moments are rather indistinguishable. I believe the speci�c advertising stock

formulation matters far less than the fact that in general periods of high advertising and

low advertising are identi�ed. In Table A.14 I present the advertising coe�cient estimates

alongside the model likelihood. I �nd that model log-likelihood for κ = 0.75 is 0.016% better

than complete decay. However, I do not believe that this �nding warrants consideration of

separate estimation of the advertising stock depreciation.

κ =

Ad coef. 100 90 75 50

Low level, Segment 1 2.18 2.00 3.01 3.37
High level, Segment 1 0.68 0.56 1.04 1.20
Low level, Segment 2 3.57 2.32 4.96 5.67
High level, Segment 2 0.58 0.21 0.84 1.12
-LL 1223833 1224267 1223620 1223804

Table A.14: Ad stock coe�cients by κ.
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(a)

(b)

Figure A.17: Predicted data moments are very similar under various advertising speci�ca-
tions.
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APPENDIX B

THEORY

B.1 Derivation of closed-form posterior distribution for Bayesian

learning speci�cation

Here I derive the posterior given in Eq. (4.3). In particular, I consider the following:

Let the prior mean be distributed Gaussian, i.e. p(µ) ∝ exp
[
−1

2(µ− µ0)′Σ−1(µ− µ0)
]

where µ is J × 1 and Σ is assumed known. Assume we then observe K = k1 + . . . kJ draws

R with kj coming from mean element µj . Again, we have the J × K collapsing matrix

M de�ned as block diagonal composed of ones row vectors of sizes k1, . . . , kJ , such that

E[R] = M ′µ. Here we do not impose any distributional structure on R besides Gaussianity,

with K ×K covariance, say ΣR. Then we have:

p(µ)p(R|µ) ∝ exp

{
−1

2

[
(µ− µ0)′Σ−1(µ− µ0) + (R−M ′µ)′Σ−1

R (R−M ′µ)
]}

= exp

{
−1

2

[
µ′(Σ−1 +MΣ−1

R M ′)µ− 2µ′(Σ−1µ0 +MΣ−1
R R) + const.

]}

Letting Σpost = (Σ−1 +MΣ−1
R M ′)−1 we complete the square as usual:

p(µ|R) ∝ exp

{
−1

2

[
(µ− Σpost(Σ

−1µ0 +MΣ−1
R R))′Σ−1

post(µ− Σpost(Σ
−1µ0 +MΣ−1

R R)) + const.
]}

Thus, we see that the posterior µ|R is distributed normal with:

V[µ|R] = (Σ−1 +MΣ−1
R M ′)−1

E[µ|R] = V[µ|R] · (Σ−1µ0 +MΣ−1
R R)
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In the usual case when k1 = . . . = kJ = 1 (i.e. one signal associated with each µ element),

M is simply IJ×J and the expressions above collapse into the standard Bayesian conjugacy

for Gaussian distributions. Note that when kj > 0∀j, there is at least one signal associated

with each element of µ so rank(M) = J and MΣ−1
R M ′ will be positive de�nite, meaning the

posterior covariance will be PD (i.e. valid covariance). In the case that some kj = 0 we have

rank(M) < J andMΣ−1
R M ′ will no longer be invertible. In particular, the rows and columns

associated with the unobserved signals will all be zero, while the sub-matrix associated with

the observed signals remains positive de�nite. Thus, the sum Σ−1 + MΣ−1
R M ′ remains

invertible.
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B.2 Alternate learning speci�cations

Here I discuss alternate learning speci�cations that incorporate correlated learning:

First, there is the model in Coscelli and Shum (2004), who study the spillover e�ects

of omeprazole prescriptions for di�erent patients and diagnoses. The authors use the same

prior covariance I do (diagonal), and a one-factor variance components structure on signals.

In particular, they de�ne:

Rjts = q̄j + ρjθt + νjts

where θt ∼ N(0, σ2
θ) are i.i.d. over t, νjts ∼ N(0, σ2

νj ) are i.i.d. over t, j, s. This induces the

following correlation structure:

Var(Rjts) = ρ2
jσ

2
θ + σ2

νj

Cov(Rjts, Rjts′) = ρ2
jσ

2
θ , s 6= s′

Cov(Rjts, Rj′ts′) = ρjρjj
′σ2
θ , j 6= j′

This model allows for a somewhat �exible correlation structure while restricting the num-

ber of covariance parameters to 2j + 1. Note that my current model uses a specialization

of this model restricting ρj = 0 ∀j. The major drawback to this model is that updates on

level j only show up in ΣRt if they are selected, i.e. kjt > 0. This implies that no correlated

learning occurs unless a level is selected.

Second, there is the model in Ching and Lim (2016), who study how doctors learn about

the general e�cacy of statins (category of drugs) from landmarks trials of individual statins.
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In this paper, the authors instead induce correlated learning by assuming �rst-period priors

are correlated while signals are uncorrelated. Recycling notation from above, they let Σ0 be

a general dense J × J matrix while Rjts = q̄j + νjts where νjts ∼ N(0, σ2
νj ). In the context:

Var(Rjts) = σ2
νj

Cov(Rjts, Rj′ts′) = 0, s 6= s′

The major drawback of this model is that an dense covariance matrix consisting of

J(J + 1)/2 terms must be estimated for the priors. In their empirical application J = 3 so

this was not a problem.

Note that updating for both the Coscelli and Shum (2004) and the Ching and Lim (2016)

models falls under the general structure I describe in the Model structure. Next I consider

models based on a missing data approach from Dominici and Parmigiani (2000). Here, con-

sider the J × 1 latent signal R
†
ts = q̄ + uts, uts ∼ N(0,Σu) where Σu is a J × J potentially

dense matrix. In this formulation, we can either think of a single play signal as a censored

draw from this distribution (e.g. a play session from level 1 is a draw from R
†
ts with only

the �rst element observed) or consider play signals jointly. The �rst approach is simply a

generalization of the Ching and Lim (2016) model. I focus on the second below:

As a motivating example, consider the case J = 3 where a user plays the levels 3, 5, 6

times (say starting from level 1 up). Here Kt = 14 but she is considered to have observed

max(kjt) = 6 signals. In particular, the �rst 3 signals will consist of fully observed realiza-

tions of R
†
t ; the next 2 will be R

†
t with the �rst element censored; the last 1 will be R

†
t with

both the �rst and second elements censored. We can then de�ne the censoring matrices:
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C1t = I3, C2t =

0 1 0

0 0 1

 , C3t =

[
0 0 1

]

Note that each matrix maps from the full J dimensions to the corresponding observed

subset. In general there are 2J − 1 possible permutations of observed subsets but due

to the ordered nature in each time period, there are only J − 1 possible censoring ma-

trices. Fixing t, the marginal distribution of signals from each censoring group will be

Ncg(Cg q̄, CgΣuC
T
g ), g = 1, ..., G ≤ J − 1. Letting priors be N(qt,Σt), Dominici and Parmi-

giani (2000) shows that the posterior will be distributed N(qt+1,Σt+1) with:

Σ−1
t+1 = Σ−1

t +
∑
g

ng(CgΣuC
T
g )−1

qt+1 = Σt+1(Σ−1
t qt +

∑
g

ng∑
s=1

(CgΣuC
T
g )−1R

†
ts, censored)

where ng is the number of signals in each group (3,2,1 respectively in this example), and

R
†
ts,censored is the censored signal. Note that unlike Coscelli and Shum (2004), this model

will allow learning for levels that are unexplored and unlike Ching and Lim (2016) we do

not have to assume correlated learning is completely driven by a priori beliefs. Further,

Dominici and Parmigiani (2000) notes that (Σu)j,j′ is identi�ed by observations where levels

j, j′ are jointly observed. In my empirical application, all 2J − 1 permutations of censor-

ing groups are observed, with the least common group containing at least 1,000 observations.

Finally, I consider the model in Chintagunta et al. (2009). In this paper, authors study

whether media and network e�ects a�ect joint learning about doctor beliefs over Cox-2 in-

hibitors. To induce correlated learning, they additively decompose the signal into a common

quality term and an idiosyncratic one. In other words, they let Rjts = Q̄0 + [q̄j − Q̄0] + νjts.

Consumers must then have priors over (Q̄0, [q̄j − Q̄0]). The authors show that the posterior
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precision has form:

Σ−1
it+1 =



s a1 . . . . . . aJ

a1 m1

...
. . . 0

... 0
. . .

aJ mJ


where:

s =
∑
j

nRjt

σ2
νj

+
1

σ2
Q0

aj =
nRjt

σ2
νj

mj =
nRjt

σ2
νj

+
1

σ2
q0

where nRjt is the number of total signals for level j up to and including time t, (σ2
Q0
, σ2
q0)

are prior variances for the common and idiosyncratic components, respectively, and σ2
νj is

the signal variance. The authors further provide an analytic form for the posterior variance

and show it is fully dense, implying fully correlated learning between levels. Crucially, note

that the authors observe both the common and idiosyncratic signals in their empirical appli-

cation. Further, they apply correlated learning over patients, so there are J Σjt's that grow

in size over time. In contrast, I apply correlated learning over levels, so there would be N

Σjt's that remain static over time.

For a general review of learning models in marketing (including models of correlated

learning), please see Ching et al. (2013).
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B.3 Non-identi�cation of the γ-model in the presence of learning

Here I present simulation-based evidence that the γ-model is not identi�ed in the presence

of Bayesian learning. In Fig. B.1 I plot the negative log-likelihood function using the same

simulation parameters as my Main simulation except with J = 1. The true values are given

by the point in red (γ = 1, σ2
ν = 4.5). Note that in this speci�cation, the likelihood is roughly

�at for signal variance at any given γ value (except as σ2
ν tends towards 0, implying perfect

knowledge). As a result, signal variance is not identi�ed here. Empirically, I �nd that γ also

tends to be di�cult to pin down reliably.

(Negative) log-likelihood function with respect to γ and σ2
ν , J = 1

Figure B.1: Note that at any given γ value, the likelihood is �at with respect to signal
variance except at very small values.

Next in Fig. B.2 I give the log-likelihood plane when J = 3, which corresponds to the

number of inside goods in my simulation study. Again, note that the plane is almost �at

with respect to signal variance at any given value of the translation parameter γ.
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(Negative) log-likelihood function with respect to γ1 and σ2
ν1, J = 3

Figure B.2: Note that again at any given γ value, the likelihood is �at with respect to signal
variance.
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B.4 Additional properties of the SDCEV model

Here I consider some additional properties of the MDCEV model without learning, which

in my application corresponds to the �rst observation from each user1. I focus on early

adopters, and present �rst week statistics by group in Table B.1. Due to the heavy right

skew in the data, note that the standard deviation of conditional play durations is about the

same as the conditional mean. Here I investigate the mapping from MDCEV parameters to

consumption distributions and conversely, what the empirical consumption patterns imply

about the underlying parameters.

Adoption Count % played E(duration|played) SD(duration|played) % playing high shares|played
0 10068 0.97 7.54 7.08 0.20
1 2125 0.95 4.43 4.90 0.16
2 664 0.94 3.88 4.76 0.16
3 512 0.89 3.12 3.93 0.17
4 396 0.93 3.54 4.33 0.16

Table B.1: First week statistics for early adopters, by week of adoption.

I reduce the problem to single discrete-continuous (SDC) by aggregating consumption of

each level into overall `inside' consumption (x1) and `outside consumption (x0) (relative to

a budget E). In that case, a consumer solves:

max
x0+x1≤E

1

α0
eε0xα00 +

1

α1
eZ1β+µ−rσ2+ε1 [(x1 + 1)α1 − 1] (B.1)

Recall ε0, ε1
iid∼ standard Gumbel and (α0, α1) are satiation parameters bounded from

above by 12. This form assumes some quantity of the outside good is consumed w.p. 1.

I further impose homogeneity in consumers, so that the baseline log-MU is constant, say

κ = Z1β + µ− rσ2. Then the log FOC of this problem can be expressed:

1. Empirically, over 95% of users do record a session the week they adopt.

2. Satiation of 1 implies linear utility (no satiation), of 0 implies log utility (CRRA), and negative implies
very high satiation.

136



g(x∗1, κ, α1, α0;E) ≡ κ+ (ε1 − ε0) + (α0 − 1) log(E − x∗1) + (α1 − 1) log(x∗1 + 1) ≤ 0 (B.2)

with equality i� x∗1 > 0 and inequality otherwise. Note then that the sum of the �rst

two terms are distributed logistic with location κ and scale 1, call this random variable ν.

Under homogeneity, the distribution of x∗1 is fully determined by ν. Further, it is simple to

see that the distribution of x∗1 is monotonic increasing in κ, which can be interpreted as log

ratio of MU's of inside vs outside good at the point of zero consumption, or a measure of the

relative preference for inside consumption. The expansion path of x∗1 as a function of

κ is governed by the satiation parameters (α1, α0).

To the �rst point, in Fig. B.3 I present a comparison of the simulated vs. empirical

distribution of �rst-week play (early adopters). To construct the simulated distribution I

note that it is parameterized by three values: α0, α1, κ. Then using Pr(x∗1 > 0),E[x∗1|x
∗
1 >

0],V[x∗1|x
∗
1 > 0] as moments, I use SMM to �t the parameters to the observed data. Note

that while I can capture the raw moments, the homogeneity assumption is overly restrictive

in �tting the data's shape. In particular, while the empirical distribution resembles a zero-

in�ated exponential, the pure SDCEV has a �hump� in its strict positive domain. Further,

the implied parameters here include α1 < 0, signifying very high inside satiation.

Besides this limitation, I note that the estimated results are also sensitive to the choice

of budget scaling, E3. In Fig. B.4 I show how the estimated parameters vary as I scale E

from 1 to 100 (baseline 40). The two primary trends are that α̂1 increase with scale and

that estimates become extreme, possibly unstable, at very small budget scales.

3. Lee et al. (2018) do recover the budget parameter in a Bayesian framework, but I am unable to estimate
the budget parameter in my frequentist framework. Whether it is the Bayesian structure or the omission of
learning that allows one to estimate budgets is a question for future work.
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(a) (b)

Figure B.3: Simulated vs empirical distribution of �rst week play, X∗1 .

Figure B.4: SMM estimates of (α0, α1, κ) varying the data scale

This relates to a second point: the expansion path of x∗1 wrt κ exhibits aberrant behavior

when the budget is su�ciently small. In Fig. B.5 I plot the expansion path holding one

α = 0.01 (close to log-utility), and present curves varying the other α from -5 to 0.95. The

LHS panels hold α1 and vary α0 while the RHS panels do the reverse. Note that for budget

scales greater than 1, there exists a crossover point in the LHS curves. Below the crossover

point, consumers behave rationally: increasing outside satiation decreases outside consump-

tion. However, above this crossover, increasing outside satiation leads to increasing outside
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consumption�this is clearly an anomalous consumption pattern. This same pattern is not

replicated in the RHS panels: increasing outside satiation always leads to decreasing outside

satiation.

Analytically, the regime change is de�ned by sgn(
∂x∗1
∂α0

), i.e.
∂x∗1
∂α0

< 0 represents �normal�

behavior while
∂x∗1
∂α0

> 0 is aberrant. Thus, given budget scale E the cross over point is

{xc :
∂x∗1
∂α0
|x∗1=xc = 0}. Assuming for now that the crossover point exists and is greater than

0, we can assume Eq. (B.2) holds with equality. Taking partials:

∂g

∂x∗1
=
α1 − 1

x∗1 + 1
+
α0 − 1

E − x∗1
< 0

∂g

∂α0
= − log(E − x∗1)

∂g

∂α1
= log(x∗1 + 1) > 0

∂g

∂κ
= 1

From this, we can see the following:

∂x∗1
∂κ

= −
(
α1 − 1

x∗1 + 1
+
α0 − 1

E − x∗1

)−1

> 0

∂x∗1
∂α1

=
− log(x∗1 + 1)

α1 − 1

x∗1 + 1
+
α0 − 1

E − x∗1

> 0

∂x∗1
∂α0

=
log(E − x∗1)

α1 − 1

x∗1 + 1
+
α0 − 1

E − x∗1

>
< 0

(B.3)

The �rst two partials in Eq. (B.3) are intuitively correct but note the third changes

sign at log(E − x∗1) = 0 ⇔ x∗0 = 1. In other words, while outside consumption is greater

than one unit, consumers behave as we expect. Once outside consumption dips below that
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(i.e. inside consumption increases to �near� budget) that is when the econometric issues arise.

Thus, the so-called crossover point has an extremely simple formula:

xcrossover = E − 1 (B.4)

I have shown that under this particular formulation of the SDCEV model, in which an

outside good is assigned and consumed w.p. 1, scale invariance does not hold. Distortions

are, however, small unless the budget scale is also small. In the special case where E = 1,

i.e. the problem is rescaled in terms of proportion of total budget, the distortions are severe.

B.4.1 Closed-form characterization of inside consumption

Here I continue analysis using the setup above. Again, I emphasize that the SDCEV model

is completely characterized by the complementarity condition:

g · x∗1 = 0

From this we can derive Pr(x∗1 > 0) as follows:

Pr(x∗1 = 0) = Pr(g < 0∀x)

= Pr( max
x∈(0,E)

g(x) < 0)

= Pr(lim
x↓0

g(x) < 0)

= Pr(κ+ ν − (α0 − 1) log(E) < 0)

= Pr(ν < (α0 − 1) log(E)− κ)

= [1 + exp(κ− (α0 − 1) log(E))]−1

where the third line follows from the fact that ∂g
∂x < 0, so g < 0 holding universally implies
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it must hold for the best case x = δ → 0. The �nal line follows from ν being distributed

standard logistic. Importantly, note that this probability is independent of α1! Intuitively,

this makes sense as satiation should play no part in whether a good is consumed at the point

of zero consumption. Further, this mirrors the single-discreteness case where utilities are

de�ned:

u0 = (α0 − 1) log(E) + ε0

u1 = κ+ ε1

where (α0 − 1) log(E) serves as a (dis)utility baseline for allocating all consumption to the

outside good4. Of course, the additional parameters (α0, E) are not identi�ed in this case

and become absorbed into the baseline utility for the inside good, κ.

4. Note that in full single-discreteness, all satiation parameters are 1, which leads to linear utility and
full allocation of consumption to whichever good has highest baseline utility. In that case, baseline u0 = ε0.
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Figure B.5: Crossover point in budget scale, holding α1 = 0.01.
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B.5 Likelihood of the nested extreme value (NEV) model

Bhat (2008) provides a constructive derivation of the likelihood under NEV errors and a toy

example. Here I provide exact expressions using that �blueprint� under the two nest struc-

ture: B1 = {0}, B2 = {1, 2, 3, 4} which has a single parameter θ de�ning the correlation

structure of the second nest. Here Nest 1 represents the outside good (consumed w.p. 1)

and Nest 2 the inside goods (i.e. playing any level of the game).

Formally, let (x1, x2, x3, x4) be the vector of inside consumption, with outside consump-

tion x0 = E −
∑4
j=1 xj > 0. Assume (ε1t, . . . ε4t) ∼ NEV (θ), and ε0t ⊥ εjt∀j 6= 0. De�ne

the following:

π =
1− θ
θ

A = eV0

B =
∑
j>0

e

Vj
θ

H = A+Bθ

Then likelihoods for each pattern Lr where r inside goods are consumed are given:
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L0(0, 0, 0, 0) =
A

H

L1(x1, 0, 0, 0) = det(TV )eV1/θ
ABθ

H2

L2(x1, x2, 0, 0) = det(TV )e
V1+V2
θ

[
2AB2θ−2

H3
+
ABθ−2

H2
· π

]

L3(x1, x2, x3, 0) = det(TV )e
V1+V2+V3

θ

[
6AB3θ−3

H4
+

6AB2θ−3

H3
· π +

ABθ−3

H2
· π(1 + 2π)

]

L4(x1, x2, x3, x4) = det(TV )e
V1+V2+V3+V4

θ

[
24AB4θ−4

H5
+

36AB3θ−4

H4
· π+

2AB2θ−4

H3
· (3π(3π + 1) + π(2π + 1)) +

ABθ−4

H2
· (3π + 2)(2π + 1)π

]

Note that for a model speci�cation using less inside goods, the likelihoods correspond-

ingly truncate. For example, in the case of only two inside goods, the possible observed

consumption patterns can be described by L0,L1,L2.
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B.6 Di�erentiation from existing projects

This paper is made possible through data granted by a joint partnership with the Wharton

Consumer Analytics Initiative (WCAI) alongside a corporate data sponsor. Through atten-

dance at the WCAI symposium, I have observed several other papers using the same data

that either utilize a similar framework or attempt to address a similar question to me. Here

I give a brief overview of those papers and explain how this particular paper di�ers from

past work:

Mechanically, my proposed model is similar to the model employed in Sunada (2019), in

which consumers optimize trial play and upgrade actions in a dynamic setting with Bayesian

learning. However, my fundamental research question and speci�c model di�er drastically.

While Sunada (2019) aims to solve for the optimal trial design in a dynamic setting with

a small discrete space, I am interested in characterizing the skill trajectories of players in a

static setting in a continuous space where usage duration matters (e.g. beyond the binary

use decision). Nevskaya and Albuquerque (2019), the main goal of my project is not to

predict purchase.

Furthermore, Tao and Sweeting (2019) also considers skill growth among franchise play-

ers. The paper primarily aims to determine the impact that incompatible game modes across

franchise games (e.g. across generations) has on port-back behavior (and quantifying the

resultant revenue loss). Skill is de�ned in a capital accumulation sense and primarily refers

to the physical construct of game save �les, where compatibility means saved progress is

ported forward to the next generation game. Operationally, this monotonically increasing

construct directly enters into the consumer's utility.

Similar to Tao and Sweeting (2019), I show using reduced form evidence that there is a

certain �switching cost� when upgrading game versions. I also observe a complementarity
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between (human) capital in the form of experience and increased utilization of �harder� (i.e.

more competitive) game modes. Similar patterns of behavior are commonly observed in the

literature for any substantial switch, e.g. when workers �nd a new job in a di�erent �eld

(Sanders, 2016) or when photographers upgrade to more advanced cameras (Huang, 2019).

However, while Tao explains this behavior in the context of forward-compatibility of

certain game modes, I explain this behavior as a result of uncertainty and risk aversion,

especially in the realm of competition and loss. For example, in a later section I show that

even experienced players reduce their level of play right after upgrading, but eventually climb

up to new highs. Uncertainty, for example, may arise from addition of new game modes as

well as new core mechanics to be mastered (e.g. updated catch or throw mechanics). Online

discussion boards are rife with questions from veteran players such as: �I just bought [game]

and am wondering what the gameplay changes are that I need to learn to master�5. A core

conceptual di�erence is that Tao entangles skill as both a physical construct (game progress)

and mental one (player experience) and considers it as mode-speci�c. I instead consider skill

as a purely psychic construct with potential spillover e�ects between modes. Intuitively,

this means that all modes are compatible with respect to capital, but players may still

have uncertainty about speci�c modes. Thus, when upgrading, there is a psychic switching

cost but I show that in both short- and long-run, experience is not fully lost. Finally, the

aims of my project di�er from Tao's: rather that consider the gains from compatibility, I

am concerned about possible gains from encouraging players to try more competitive game

modes or reducing player uncertainty about game modes.

5. From: https://www.reddit.com/
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