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ABSTRACT 
 

Teachers commonly use actions-on-objects (or actions with manipulatives) to help 

students understand mathematical concepts. This practice is based on the assumption that 

performing actions on external objects facilitates learning by changing or creating new internal 

ideas. Gestures are abstract, representational hand movements that can also help children to learn 

new ideas, but they differ from actions-on-objects in a key way -- they do not require learners to 

directly interact with the physical environment. I explore how this key difference between 

actions-on-objects and gestures affects learning outcomes in a particularly challenging area of 

elementary school mathematics, linear measurement. In Chapter 1, I find that for children with 

lower prior knowledge of measurement at pre-test, gesture-based instruction is largely 

ineffective. By contrast, actions-on-objects are effective for both higher and lower prior 

knowledge participants. In Chapters 2 and 3, I replicate this interaction between prior knowledge 

and movement type and further probe the boundaries of this effect. I end by situating the findings 

within the broader literature on the efficacy of gesture in instructional contexts. From a 

theoretical standpoint, the results suggest that the very features that make gesture so powerful 

and flexible in some instructional contexts (i.e. the fact that it does not necessitate physical 

interaction with specific objects) might make it inaccessible to some learners.  
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CHAPTER 1 - INTRODUCTION 
 

General Overview 
 
 The overarching goal of this dissertation is to understand how individual differences in 

children’s conceptual knowledge about linear measurement interacts with their propensity to 

learn through actions and gestures. To begin, I review the existing literature on learning-by-

doing, a broadly defined term that captures a fascinating phenomenon: humans can acquire new 

conceptual knowledge through physical interactions with their environments. The first section 

focuses on when and how children can learn new ideas through their own actions-on-objects and 

through the actions of others. I then transition to the second section in which I review the 

existing literature on how children learn through hand gestures, which share some properties of 

transitive actions but also differ in some crucial ways. In the final section, I explore how 

individual differences in the learner might predict learning outcomes, and I review the existing 

literature on children’s misconceptions in a particularly difficult area of mathematics, linear 

measurement.  

Part I: Learning Through Action 
 
 1.1 Defining Action. Actions are a broad category that, when used colloquially, can refer 

to any time something is done or performed, or something is in a process or state of being active 

(e.g., “It’s back in action”). In language, actions can be either transitive verbs, in which an action 

is directed at something named in the sentence (e.g., “I kicked the ball”; “I pointed at the sign”) 

or intransitive verbs, in which the action is not directed at something named in the sentence (e.g., 

“I walk to school”). In this dissertation, the word “action” will be used to refer to a very specific 
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subset of transitive actions—those that affect some type of change on an external object or 

representation.  For example, drawing a diagram, moving a block from one place to another, in 

any way changing the spatial arrangement of objects, or erasing something would all be 

classified as actions. Tapping or pointing to an external representation would not be classified as 

“actions”, as they do not affect any lasting change in the world. This classification will be 

important later, as the characteristics of gesture are defined to clearly include bodily actions or 

movements that do not change external representations.  

 

 1.2 Historical Perspective. John Dewey was a philosopher, psychologist and educational 

reformer and is perhaps one of the most famous early proponents of hand-on learning. In his 

book, Democracy and Education, first published in 1916, he wrote, “If knowledge comes from 

the impressions made upon us by natural objects, it is impossible to procure knowledge without 

the use of objects which impress the mind” (Dewey, 1916). He believed that education was a 

path to social reform, and that a true education and transmission of knowledge could not be 

achieved through the use of words alone, but instead that those words must be presented 

alongside the objects with which they are associated. He also believed strongly in the power of 

experimentation with physical materials as a path to acquiring new knowledge.  

 One of Dewey’s contemporaries, Dr. Maria Montessori, founder of the modern day 

Montessori school was another vocal advocate for the idea of learning through action. Her 

educational philosophy was based on her experience that young children did not need to be 

verbally taught new ideas, but that they appeared to simply acquire new ideas through active 

exploration of their environments (Montessori, 1909; 1995). Such an observation was 

revolutionary at the time, and led Dr. Montessori to a long and illustrious career of real-world 
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experimentation with classrooms of children in countries around the globe who learned not 

through traditional classroom lectures, but through touching, manipulating and exploring. These 

children could acquire new ideas simply by exploring enriched environments with thoughtfully 

designed toys, puzzles, tools and games. Modern day Montessori classrooms even have material 

where learners can discover ideas like the Pythagorean theorem.  

 In 1966, Jerome Bruner, a psychologist and education researcher wrote an influential 

book called, Toward a Theory of Instruction.  In it, he suggests ways to alter the manner in 

which academic instruction is designed. For example, Bruner outlines a learning trajectory in 

which a child begins with concrete objects and multiple exemplars of a concept, then moves 

towards an abstract or symbolic understanding, but keeps hold of those original concrete 

exemplars as a way to continually anchor their abstract symbolic representations (Bruner, 1966). 

Bruner goes on to suggest that while not all discoveries need to be made by the child on their 

own, encouraging a process of self-discovery in the learner will help them to acquire the 

necessary concrete exemplars needed to serve as a basis for subsequent manipulation and 

generalization of more abstract ideas.  

 Dewey’s, Montessori’s, and Bruner’s conclusions were echoed by Jean Piaget, the father 

of modern developmental psychology. In his work entitled, Development and Learning, Piaget 

explains his belief that children learn best in an environment of interaction.  He writes, 

“Knowledge is not a copy of reality. To know an object, to know an event, is not simply to look 

at it and make a mental copy, or image, of it. To know an object is to act on it.” (Piaget, 1974). 

He goes on to argue that these operations on objects or representations, when added together, 

“constitute the basis of knowledge”. In this influential work, Piaget unabashedly extols not just 

the virtues, but the necessity of learning through acting before being capable of succeeding on 
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problems with symbolic representation.  As an example of the importance of action on objects, 

Piaget provides an anecdote of a young boy discovering the theory of conservation by 

continuously reordering pebbles. The boy forms many arrangements of pebbles and counts them 

each time, always coming up with the same answer. This, Piaget argues, is an example of why 

learning through acting is crucial. The boy did not discover a property of pebbles, per se, but 

through his actions on pebbles, discovered a more broadly applicable theory about conservation 

of number. 

 As these ideas grew in popularity, they began to influence policy and practice in the 

United States. The United States Institute of Education was first established in 1972 and one of 

the first large scale reports it funded was a series of investigations known as the Mathematics 

Education Information Reports. The relevant section for the current dissertation is from the 1977 

version of the report and is entitled, “Activity-Based learning in Elementary School 

Mathematics: Recommendations from Research” (Suydam & Higgins, 1977). The report focused 

primarily on the use of manipulative materials and diagrams in elementary mathematics 

education. It argues that while activity-based curricula had become a popular technique for 

teaching mathematics, there was little to no official reports of which parts of these increasingly 

popular programs were working and which were not. It summarizes the existing literature up to 

that point, citing studies with conflicting results as to benefit of physical manipulatives, and 

generates other factors to consider in evaluating the effectiveness of teaching tools. Some of the 

same issues raised in this 1977 report are still unanswered questions today. How does prior 

knowledge of the learner interact with manipulatives? Does the type of representation matter? Is 

it better to start with something concrete and then transition to symbolic representations or vice 

versa? Does the content of the problem matter? Is it important that the learner manipulates the 
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object, or can the instructor do so with as great an effect? While the report was unable to speak 

definitively to many of these questions, its official recommendations were ultimately based on 

the finding that children, overall, tended to learn more from lessons taught with accompanying 

concrete materials than from lessons with “symbolic treatments alone”. This official report, in 

many ways ahead of its time, marks the beginning of the transition from earlier theories of 

action-based learning to formal policy recommendations and implementation plans.  

 As evidenced by this rich history, the idea that one can learn through action is not 

anything new. In fact, this idea has continued to gain momentum and influence as time has 

passed, affecting both classroom practice and cognitive science and education research. One 

clearly related theory from the field of cognitive science is embodied cognition theory. In its 

purest form, embodied cognition is the idea that people’s active experiences and interactions 

with the world form the basis for all of human cognition and language (e.g., Neidenthal, 2007; 

Raymond & Gibbs, 2006; Wilson, 2002; Clark, 1997; Glenberg, 2008; Smith, 2005). Those who 

endorse the tenants of embodied cognition believe that thinking and reasoning are not purely 

internal processes of the brain, but rather rely on a dynamic system that includes brain, body and 

environment. This framework for understanding human cognition clearly has its roots in the 

learning-through-action phenomena popularized by the likes of Montessori, Piaget and Bruner. 

Moreover, it provides one of the first comprehensive theories to posit a mechanism by which 

external information can affect the internal cognitive system.  

In sum, the early psychologists, educators, and philosophers that first popularized the 

idea of action-based learning have spurred decades of experimental work and advances in 

curriculum design and development. Paradoxically, this research has probably raised more 

questions that it has answered. Recent research has started to focus not only on whether or not 
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action-based learning is beneficial, but when, how and for whom. Answers to these mechanistic 

questions have started to come from closely controlled behavioral work, neuroscience 

methodologies, and continuing advances in cognitive theories of learning more broadly. I will 

review many of these findings here, in an attempt to synthesize the current state of the field 

before moving on to explore how and why learning through gesture differs in crucial ways from 

learning via actions-on-object.  

 

 1.3 Learning Through Actions. Acting on external objects can permanently change our 

internal representations. This phenomenon has been documented even very early in life and is 

not limited to what we think of as traditionally “academic” domains. For example, in a study by 

Dr. Jessica Sommerville and colleagues, three-month old infants were randomly assigned to have 

active experience reaching for an object or not (Sommerville, Woodward, & Needham, 2005). 

Because grasping an object is a prohibitively difficult task for most three-month olds, the 

children assigned to the active experience condition were outfitted with ‘sticky mittens’, which 

would stick to an object if the infant’s hand grazed the object at any point during the session.  

Infants who were given this experience were better able to subsequently interpret another 

person’s reaching action than infants who did not. The author’s suggest a tight link between an 

infant’s own ability to successfully perform a reaching action and their ability to interpret a goal-

directed reaching action in another actor. A second study by this group showed 10 and 12-month 

old infants a scene where an actor pulled at a cloth in order to get a toy (Sommerville & 

Woodward, 2005). While 12-month olds, in general, understood the goal-directed nature of this 

scene, 10-month olds were mixed; those who could perform the action on their own understood 

it, while those who were unable to complete the action successfully did not. This provides 
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another example of how an infant’s own motor experience allows them to learn about the actions 

and intentions of others. 

Though motor experience is clearly an important part of learning during infancy (see 

Campos et al., 2000 for further examples of how locomotion in infancy affects infant’s social 

and cognitive development), there is evidence that this relationship between action and learning 

persists across the lifespan. For example, in a study by Karin James, pre-literate children were 

either given experience actively writing the letters of the alphabet, or experience visually 

recognizing letters (James, 2010). Children in the writing condition showed more activation in 

visual association cortex during an fMRI scan than children who were given lots of visual 

identification practice. This finding suggests that practice physically writing out letters may be 

particularly crucial for children who are learning the alphabet and learning to read. Similarly, 

adults learning about angular momentum learned more when they were given the opportunity to 

physically experience the consequences of torque in an active learning environment than when 

they learned about angular momentum in a more traditional verbal format (Kontra, Lyons, 

Fischer and Beilock, 2012).  

Perhaps the most commonly studied domain of learning through action is research on 

mathematical manipulatives. Manipulatives are objects that are designed to represent an abstract 

concept in a tangible, physical way. For example, young children may learn to count or add 

using blocks or other sets of small objects before they are expected to count Arabic numerals 

(e.g., Huttenlocher, Jordan, & Levine, 1994). Similarly, older children may initially learn about 

geometric principles, fractions, place value, currency, or balancing equations by using 

manipulatives such as tangrams, pizza-shaped disks, Cuisenaire rods, play money, or a balancing 

scale. Plenty of qualitative and experimental research supports the use of such tools in 
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mathematics education. Manipulatives allow children to “offload cognition” onto the 

environment, encourage the formation useful conceptual metaphors (Manches & O’Malley, 

2012), direct attention to the relevant components of a complex problem (Mix, 2010), and 

engage young learners with limited attention spans (Peterson and McNeil, 2008). “Offloading 

cognition” is like making a list on a piece of paper; it describes the process of using the physical 

environment as a sort of temporary placeholder where you can store information or ideas until 

you need to retrieve them again (Mix, 2010). For example, a young child may have trouble 

adding four addends in his head (e.g.: 7 + 2 + 6 + 4 = __). Moving around groups of blocks that 

represent the quantities of each addend may help the child keep track of what has been added 

already and what is still left to add without requiring him to keep everything stored in working 

memory. Manipulatives also support conceptual metaphor formation when the properties of the 

physical object (such as the length of a Cuisenaire rod) clearly correspond to a property of the 

target math concept (in this case, place value). These relationships can encourage analogical 

reasoning that leads to further insight and understanding.  

 

1.4 Mechanisms of Learning Through Action. This section reviews proposed mechanistic 

explanations of how action-based instruction or experience might lead to learning over and above 

verbal instruction. The first part explores the role of the motor system in forming long-lasting 

neural representations of learned concepts. The second part investigates how actions-on-objects 

can direct (and hold) a learner’s attention to relevant components of complex problems. Finally, 

we turn to the literature on embodied cognition to understand how physical interactions with 

objects might help learners to create useful conceptual metaphors for more abstract problems.  

It has long been established that motor encoding improves recall and memory for words 
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and sentences over and above verbal repetition alone (e.g., Engelkamp, 1991; Cohen, 1983; 

Nilsson & Cohen, 1988; Saltz, 1988), and that this effect is stronger for doing actions than for 

seeing actions. According to the theory of Parallel Distributed Processing (PDP), a widely 

accepted framework for thinking about the process of encoding and recall, forming a mental 

association between a motor action and a new concept increases the size and strength of the 

neural network that represents that concept, making it more likely that it will be appropriately 

reconstructed when cued (e.g., McClelland, 1994). To demonstrate this phenomenon 

mechanistically, researchers typically begin by establishing a behavioral advantage for those 

participants who learn a new idea or concept via action. Then, to reveal the ‘neural signature’ of 

such a process, they use neuroimaging methods to show that learners who have learned 

something (a novel word, object, idea) paired with an action will subsequently show motor 

activity even when they are no longer physically acting. For example, participants who are trying 

to learn paired associations between novel objects and novel sounds show faster and more 

accurate learning from self-generated motor actions on objects than from passive manipulations 

of the objects (Butler and James, 2013). Importantly, in this same paradigm, active learners show 

greater motor reactivation and greater connectivity between motor and visual cortices at later test 

than participants who learn through observing an experimenter perform actions (Butler, James & 

James, 2011). In addition, this paradigm promotes stronger neural associations between multi-

sensory regions of the cortex (eg: superior temporal sulcus, which is implicated in audiovisual 

integration). To date, this kind of effect seems to be especially strong for self-generated actions, 

a finding that may be particularly true in younger populations (James and Swain, 2011). In one 

of the first studies investigating action-based learning from a neurological perspective in 

children, 5- and 6-year-olds were taught about novel object and word pairings. Only children 
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with active experience showed motor reactivation during an auditory perception task in the 

scanners (James and Swain, 2011). Taken together, these findings imply that active learning may 

be a particularly beneficial way to enrich the representations of a new idea or object in one’s 

memory to make it easier for subsequent recall.   

Actions can also help to direct a learner’s attention to important components of a 

complex problem. In the domain of mathematics, an expert can see mathematical relationships 

everywhere in the external environment, but for a novice, it may take a well designed 

manipulative and a proscribed set of actions to focus that learner’s attention on the relevant 

properties of the environment (Mix, 2010). For example, a child who is learning about fractions 

may have been exposed to sliced pizza and half-full juice containers their entire lives without 

extracting a concept like the part-whole relationship of fractions. Exposure to a perceptually 

simple manipulative with accompanying actions that highlight the components of the formal 

definition of fractions (e.g., adding or removing parts of a whole circle while labeling each newly 

created fraction) can direct a learner’s attention to important relationships in the environment 

more effectively than passive exposure to natural stimuli or manipulatives. Performing an action 

with an object may also make that object more interesting and engaging to a learner more 

generally, something that is particularly useful when instructing young children (Peterson & 

McNeil, 2008). 

Beyond the creation of enriched neural representations and the ability to engage and 

direct a learner’s attention, the theory of embodied cognition offers a stronger hypothesis about 

the power of action-based learning. As a reminder, embodied cognition posits that human 

thought is grounded in action because the brain is, by definition, situated within a moving, acting 

body. As such, it follows that actions are uniquely suited to help new conceptual information 
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‘enter’ the cognitive system. Art Glenburg argues that the body is specifically and specially 

evolved to perceive, act and emote, and that many of these processes contribute directly to 

“higher” cognitive processes (Glenburg, 2008). He claims that the body and higher order 

thinking, such as mathematics, are not simply related, but inextricably linked throughout 

development (see Andres, Seron & Olivier, 2007 for a TMS study relating adult counting to the 

hand long after finger counting has ceased). Other researchers have echoed these sentiments, 

arguing that all of mathematics, for example, is actually grounded in physical metaphors (Lakoff 

& Nunez, 2000).  While somewhat controversial in it’s strongest form, this theoretical position is 

consistent with many of the findings on action-based learning. For example, thinking of the brain 

and the body as a bidirectional cognitive system could explain why learners can acquire new 

information through actions and use their actions to ‘offload cognition’ onto the external 

environment and decrease demands on working memory (Mix, 2010). It can also help to explain 

why the physical properties of mathematical manipulatives (e.g., weight, length, size, location), 

can give learners unique insight into mathematical ideas that they can use to create conceptual 

metaphors, which are then translated into more abstract symbols like Arabic numerals, diagrams, 

or mathematical equations (Manches & O’Malley, 2012). 

1.5 Drawbacks and Complications of Learning Through Action. In the domain of 

mathematics, the area of focus in this dissertation, action-based learning almost always refers to 

the use of mathematical manipulatives. As mentioned previously, manipulatives are objects 

whose physical properties are meant to instantiate some kind of math concept or idea, or whose 

properties afford actions that represent a specific mathematical concept (e.g. counting or 

comparison of length). They are used ubiquitously in classroom settings, particularly during 



	
  
	
  
	
  
	
  

12	
  

elementary school. Until this point, we have primarily focused on the benefits of action-based 

learning, and the mechanisms that may underlie these benefits. However, there is a growing 

literature that has found drawbacks of action-based learning, and cautions against blind 

implementation of manipulative-based lessons (eg: Mix, 2010; Kamii, Lewis & Kirkland, 2001; 

Uttal, Scudder and DeLoache, 1997; Ball, 1992; Friedman, 1978; Fuson & Briars, 1990; 

Goldstone & Sakamoto, 2003; Goldstone & Son, 2005; Kaminski, Sloutsky & Heckler, 2005; 

2006a, 2006b; Moyer, 2001; Peterson, Mercer & O’Shea, 1988; Resnick & Omanson, 1987; 

Sowell, 1989; Suydam & Higgins, 1977; Wearne & Hiebert, 1988). In the final section of Part I, 

I will discuss some of these potential drawbacks of action-based instruction. I focus on 

mathematical manipulatives, though the issues identified here are likely more broadly applicable 

to any object-based instructional technique. 

In some cases, mathematical manipulatives are not only ineffective, but are harmful to 

students’ ability to learn and generalize new mathematical concepts (e.g.: Mix, 2010; Kamii, 

Lewis & Kirkland, 2001; Uttal, Scudder and DeLoache, 1997; Ball, 1992; McNeil, Uttal, Jarvin 

& Sternberg, 2009; McNeil & Uttal, 2009). In the initial learning process, children do not always 

spontaneously create the appropriate conceptual metaphor that links the physical objects to the 

abstract concept they are meant to represent. For example, when learning to balance a 

mathematical equation, children might be presented with a physical scale that allows them to 

physically balance sets of weights. Though the link between the physical scale and the symbolic 

equation is clear to the instructor or teacher, the child may not spontaneously make this 

connection. Without this connection, it might also be hard for children to understand which 

physical properties of the stimulus are actually relevant to the underlying concept (Uttal, 

O’Doherty, Newland, Hand & DeLoache, 2009). The smooth texture or color of a block is 
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completely irrelevant to its function as a counting object, but this may not be immediately 

apparent to a young learner.  

One way to explain these difficulties for learners is to consider that even ‘concrete’ 

manipulatives have symbolic properties (Uttal, Scudder and DeLoache, 1997). And to 

successfully use these tools in an action-based lesson, children must keep track of the relevant 

properties of the physical object they are manipulating and the properties of the broader, abstract 

concept symbolized by those movements. This task for the learner, coined the “dual 

representation” problem, offers one explanation as to why object-based instruction may lead 

learners to see any learned actions as relevant only to the materials at hand, rather than to some 

broader, generalizable idea (DeLoache, 2000).  

This dual representation hypothesis also has implications for the ideal perceptual 

properties of manipulatives. Perceptually rich objects may be most likely to obscure the crucial 

link between the object and it’s abstract conceptual counterpart. For example, we know that 

flashy or colorful materials, while they may get children’s attention, tend to cause learners to 

focus on the properties of the object rather than of its symbolic counterpart (Uttal et al., 2009). 

This may be especially true for manipulatives that serve an alternative, familiar function to the 

learning, like using toy cars to learn how to count (Peterson and McNeil, 2008). While some 

schools in the United States have adopted the use of perceptually sparse materials (e.g., 

Montessori schools), it is common in classrooms to use many exemplars of exciting, engaging 

materials on the assumption that these will be more beneficial to children than using the same 

simple materials over and over. In a cross-cultural comparison between Japanese and American 

schools, one study noted that American teachers tended to seek variety in their materials during a 

math lesson, while the Japanese teachers purposefully repeatedly used the same standard kit of 
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materials (Stevenson and Stigler, 1992). While a number of other cultural factors are also at play, 

it is notable that Japanese students consistently outperform American students on international 

mathematical assessments across elementary, middle and high school (TIMSS, 2011; Foy, Arora 

& Stanco, 2013; PISA, 2012), suggesting that in some cases, perceptually simple materials might 

be best. 

In addition to some of the issues with learning outlined above, it is also important to 

consider the degree to which students can transfer learned knowledge to novel situations and 

contexts. Transfer is one of the hallmarks of “deep learning” (the other being retention across 

time). A 2009 study by Kaminski and colleagues showed that while perceptually rich concrete 

symbols initially helped children learn new mathematical symbols, it was actually children in a 

“language only” training condition who were more readily able to transfer their understanding to 

new symbols (Kaminksi, Sloutsky, and Heckler, 2009). A similar pattern of results was reported 

in some of my own recent work whereby children in an action-based condition were less able to 

generalize to novel problem types than children in a more abstract gesture training condition 

(Novack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014).   

 

1.6 Interim Conclusions. Overall, it appears that manipulatives can be very useful for 

engaging learners and helping them to understand abstract concepts by grounding ideas in the 

physical properties of an object. Yet these very same strengths are also identified as some of the 

biggest limitations of manipulative-based learning. What can explain this apparent contradiction? 

A newer field of research on gesture-based instruction points towards possible answers. Gesture, 

as a type of action, involves movement of the body. Unlike action, however, gesture does not 

involve interacting directly with the physical environment of affecting permanent change on any 
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external representations. What are the implications of this crucial difference? When does gesture 

help learners? When does it harm learners? What are some of the mechanisms of gesture-based 

instruction and learning and how is it similar or different from object-based action instruction? 

These are the questions that will be explored in the next section.  

 

Part II: Learning Through Gesture 

2.1 Defining Gesture. Gestures are movements performed with the hands that do not 

interact directly with objects or cause changes in the physical environment. They often 

accompany speech and have been described and categorized by scholars into several broad, 

descriptive classes (see Ekman & Friesen, 1969; Kendon, 2004; McNeill, 1992 for classification 

systems). In my dissertation I primarily focus on one specific type of gesture, representational 

gesture, which is very common in instructional contexts. Representational gestures include 

iconic gestures, which convey information through the similarity between their form and their 

referent (e.g., using ones hands as the edges of a triangle to talk about the angles of the triangle), 

deictic gestures, which identify objects or locations in the world (e.g., pointing to the edge of a 

triangle drawn on the chalkboard), and metaphoric gestures, which represent ideas through a 

metaphoric relationship between their form and their meaning (e.g., making one’s hands into a 

triangle to talk about the components of a mediation analysis).  

Gestures differ from actions-on-objects in a few key ways. The first way, as mentioned 

above, is that gesture does not cause a lasting change in the external world. When teachers use 

their hands to act on directly on representations in the physical world (e.g., moving around 

mathematical manipulatives, conducting science demonstrations, or drawing diagrams on the 

chalkboard), they are producing object-directed actions, not gestures. However, if a teacher 
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moves her hands towards objects without touching them, or moves her hands in a way that 

represents or mimic a previously performed action, these movements are construed by both the 

teacher and the children as gestures, and are processed categorically differently than object-

directed actions (Novack, Wakefield, & Goldin-Meadow, 2016). 

The second important difference between gesture and other forms of movement is that 

gesture can represent information through its form or movement trajectory (e.g., making a 

twisting hand motion with curved fingers could represent taking the lid off of a jar). This makes 

gestures different from object-directed actions, which typically represent themselves (e.g., 

actually taking a lid off of a jar), and from movements that are performed for their own sake, 

such as dancing or exercising (Schachner & Carey, 2013). Because the purpose of a gesture is 

not the movement itself, but rather the idea that that movement represents, gestures are 

considered representational actions, and this special feature of gesture has crucial implications 

for thinking and learning. For example, gestures are produced prolifically in educational contexts 

while teachers are explaining new ideas, particularly in STEM (Science, Technology, 

Engineering, Mathematics) classes. Imagine, for example, you are a science teacher trying to 

explain what makes a molecule a stereoisomer. You need to explain to your students how 

mentally rotate the molecule comparing the locations of the various atoms. Describing this 

complicated mental transformation in words would likely be confusing and cumbersome, 

however, using your hands to show the rotation might be more natural, and make more sense to 

the students. Teachers will also spontaneously gesture while linking new concepts in math 

instruction in a classroom setting (Alibali et al., 2014), or when instructing children individually 

on math problems (Goldin-Meadow, Kim, & Singer, 1999) as well as when explaining new ideas 

about geoscience (Roth, 2007; Roth & Lawless, 2002). In fact, it is rare for teachers not to 
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gesture while explaining new concepts (Goldin-Meadow, Kim & Singer, 1999). Students 

themselves are also likely to gesture while trying to learn new ideas. They spontaneously gesture 

while explaining their reasoning to Piagetian conservation problems (Church & Goldin-Meadow, 

1986), mathematical equivalence problems (Perry, Church, & Goldin-Meadow, 1988), 

geological phenomena (Atit et al., 2013; Kastens, Agrawal, & Liben, 2007), or chemistry 

structures (Stieff, 2011). 

 

2.2 Spontaneous Gestures and Learning. Teachers of all grade levels, including college 

professors, use gestures spontaneously, prolifically, and often unconsciously to help draw their 

student’s attention to important components of a problem, demonstrate spatial relations between 

objects, or pantomime dynamic processes (Goldin-Meadow, Kim & Singer, 1999). But crucially 

for the current dissertation, spontaneous gesture is not just useful for clarifying a message to a 

listener; it also serves a function for the speaker or learner. For example, a blind individual 

talking to another blind individual will naturally produce gesture, as will a person who is talking 

on the phone (Goldin-Meadow, 2005). In neither case is the speaker gesturing for the benefit of 

clarifying a message to her audience. One favored hypothesis to explain this phenomenon is that 

producing gesture can reduce working memory demand on a speaker (Baddeley, 1986), 

particularly when the gesture is meaningful to the speaker rather than a series of meaningless 

movements (Cook, Yip & Goldin-Meadow, 2012). In an educational setting, this reduction in 

working memory demand could free up limited neural resources to help a learner reason through 

a difficult problem or situation.  

Moreover, we know that the gestures that children produce when thinking through 

difficult problems can convey important conceptual information that is often absent from their 



	
  
	
  
	
  
	
  

18	
  

verbal explanations. For example, a toddler still in the process of learning her numbers may say 

the wrong number if asked how many buttons are shown (e.g., say “two” when the correct 

answer is 3). Yet that same child may be able to use her hands to show the correct number of 

buttons (i.e., holding up three fingers) (Gunderson, Spaepen, Gibson, Goldin-Meadow, & 

Levine, 2015). Similarly, a 3rd grader given a missing addend equivalence problem (e.g., 4+6+9 

=__+9) may incorrectly say that she can solve the problem by adding up all of the numbers (e.g., 

“I added the 4, 6, 9, and 9, and got 28”). However, while saying that, the student could sweep 

one hand under the left side of the problem (as she talks about adding up the numbers) and then 

sweep her other hand under the other side of the problem (while talking about arriving at the 

incorrect answer, 19), a subtle demonstration that she is beginning to notice something 

meaningful about the fact that the equation has two separate sides (Perry, Church & Goldin-

Meadow, 1988).  

These fascinating speech-gesture mismatches, in which learners provide more 

information in their gesture than in their speech, occur across age ranges and different academic 

domains. Importantly, learners who produce speech-gesture mismatches are actually more likely 

to learn from instruction than learners who do not (Alibali & Goldin-Meadow, 1993). In addition 

to the domain of mathematics, the phenomenon of speech-gesture mismatches predicting 

learning has been demonstrated among toddlers on the cusp of producing two word utterances 

(Iverson & Goldin-Meadow, 2005), 5-7 year olds learning about Piagetian conservation (Church 

& Goldin-Meadow, 1986), 9-year-olds discussing moral reasoning dilemmas (Beaudoin-Ryan & 

Goldin-Meadow, 2014), and even college students learning about organic chemistry (Ping, 

Decatur, Larson, Zinchenko, & Goldin-Meadow, 2016). Across all of these instances, the 

learner’s spontaneous gesture and how the meaning expressed in its form or motion trajectory 
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relates to the meaning expressed in speech can serve as a marker that a student is ‘ready to 

learn’, more so than focusing on the spoken explanations alone.  

 

2.3 Manipulating Gesture to Promote Learning. The prevalence of learners’ spontaneous 

gestures in learning and instruction settings led researchers to ask whether manipulating learners’ 

gesture production might lead to insight. As it turns out, just like asking a child to perform a 

specific set of actions with a mathematical manipulative, you can ask a child to perform specific 

representational gestures to improve learning outcomes. This effect has been replicated across a 

variety of academic domains including algebra, chemistry, geometry and word learning (e.g., 

Wakefield & James, 2015; Macedonia, Müller, & Friederici, 2011; Ping & Goldin-Meadow, 

2008; Valenzeno, Alibali, & Klatzky, 2003; Singer & Goldin-Meadow, 2005). There is even 

some promising evidence that producing gesture helps children to transfer their knowledge to 

new contexts (Cook, Duffy & Fenn, 2013; Novack, Congdon, Hemani-Lopez & Goldin-

Meadow, 2014) and better retain newly learned information across time (e.g., Cook, Mitchell & 

Goldin-Meadow, 2008; Levine, Goldin-Meadow, Carlson & Hemani-Lopez, 2016).  

For example, in one study, children were taught to produce a grouping gesture (a v-point 

to the first two addends on the left hand side of the equation, followed by a one-finger point to 

the blank) while saying an equalizer strategy aloud (“I want to make one side equal to the other 

side”) (Goldin-Meadow, Cook & Mitchell, 2009). In the equation, 4+2+7=__+7, the children 

would make a v-point gesture to the 4 and the 2, then a single point to the blank. A second group 

of children was taught the same mismatching speech and gesture, but they were taught to 

produce the grouping gesture toward the incorrect grouping addends (2 and 7 in the example 

above). A third group of children was only taught to reproduce the spoken equalizer strategy. 
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Importantly, children in the two gesture conditions were never told the meaning of the gesture. 

Results showed that children who were taught to produce the correct gesture and mismatching 

speech learned significantly more from training than their peers who did not produce any 

gesture. This suggests that mismatching speech and gesture, even when it is artificially 

manipulated, still promotes conceptual change. Somewhat surprisingly, children in the incorrect 

gesture training condition learned more from training than children in the speech alone 

condition. This could mean that the idea conveyed in the gesture (i.e., add two numbers 

together), and not just the attention to specific numbers by the gesture, may have aided in 

conceptual change. Finally, across both gesture groups, children actually incorporated the 

grouping strategy into their spoken explanations after training, meaning that they learned and 

internalized a new problem-solving strategy that they had only ever produced in gesture.   

   

2.4 Mechanisms of Learning Through Gesture. In thinking about the differences between 

actions-on-objects and gestures and how they may differentially promote learning and insight, it 

is useful to consider the known mechanisms underlying each type of movement experience. In 

Part I, we explored how self-produced actions engage the motor system, direct a learner’s 

attention, and help learners to develop conceptual metaphors through guided physical 

interactions with real-world objects. Here, we explore some of the mechanisms that have been 

proposed to explain gesture’s effect on learning outcomes. Similar to actions-on-objects, gestures 

engage the motor system and direct a learner’s attention to relevant components of a problem. In 

contrast to actions-on-objects, gestures are produced in perfect synchrony with spoken language 

during communicative and instructional settings, and they are representational and are physically 
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removed from the actions or ideas they represent. All four of these mechanisms has implications 

for information encoding, learning, and memory.  

Like other kinds of actions, gesture engages the motor system and can change the way 

information is processed. For example, in one study, participants were either allowed or 

prohibited the use of gesture when solving a spatial gear-task. Those who were allowed to 

gesture persisted in using a perceptual-motor based strategy whereas those who could not, used 

an abstract reasoning strategy (Alibali, Spencer, Knox & Kita, 2011). In a different study, when 

individuals were asked to explain their solution to a Tower of Hanoi puzzle problem, the gestures 

they produced during their explanations influenced their internal representations of the problem, 

which affected how they subsequently solved it (Beilock & Goldin-Meadow, 2010; Goldin-

Meadow & Beilock, 2010). There is even some behavioral evidence using a motor interference 

task that interpreting someone else’s gesture engages one’s own motor system (Ping, Goldin-

Meadow, & Beilock, 2014). That is, if a listener is asked to move their arms or hands while a 

speaker is gesturing, the listener’s comprehension of the speaker’s gestures is impaired.  

Neuroimaging evidence further supports the role of the motor system in processing 

information learned through gesture. When watching co-speech gesture, adults show activation 

in motor planning regions (Wakefield, James, & James, 2013), directly supporting the behavioral 

finding of Ping et al. (2014). After producing symbolic or iconic gestures while learning new 

information, such as musical melodies or new vocabulary words, motor areas are also activated 

when these stimuli are subsequently encountered (Macedonia, Muller, & Friederici, 2011; 

Wakefield & James, 2011), suggesting that the learner formed a link between the concept and 

corresponding motor movements. Recent work has also found that children who learned the 

concept of mathematical equivalence through a speech and gesture strategy activated motor 
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regions when later solving math problems, compared to children who learned through a speech 

alone strategy (Wakefield, Congdon, Novack, Goldin-Meadow, & James, 2016). These 

neuroimaging results, together with the behavioral finding that gesture instruction enhances 

learning, suggest that the motor engagement during learning with gesture may cause subsequent 

motor reactivation, which provides learners with richer and more robust representations of newly 

acquired ideas.  

Gesture, like some kinds of action-on-objects, can also help to direct a learner’s visual 

attention to important locations in the spatial environment. Even children as young as 4.5 months 

will shift their visual attention following a dynamic, deictic gesture (Rohlfing, Longo, & 

Bertenthal, 2012). Adult learners also pay attention to gestures, particularly those that pause in 

space, as those gestures are often indicating the relevance of a particular spatial location 

(Gullberg & Holmqvist, 2006). In a chaotic visual world with many competing sources of 

potential information, this ability to direct or capture visual attention has clear consequences for 

learning. For example, gesturing towards the referent for a new word can facilitate learning a 

label for that object (Rader & Zukow-Goldring, 2012); tracing an outline of two symmetrical 

objects highlights the relation between the two objects and facilitates learning of the concept of 

symmetry (Valenzeno, Alibali, & Klatzky, 2003); and gesturing towards two sides of a 

mathematical equivalence problem can clarify the role of the equals sign (e.g., Cook, Duffy, & 

Fenn, 2013). 

We know that gesture itself can highlight particular regions of space and represent 

information, but it does not do this in a vacuum. Gestures are predominately produced with 

spoken language, and some have even argued that these two streams of communication, gesture 

and speech, emerge from a single integrated system (McNeill, 1992, 2005). As such, it may be 
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the case that gesture’s privileged relationship with speech is one of the key mechanisms 

underlying its power to promote learning. For example, when a learner’s own gesture reveals 

semantic information that is different but complementary to the information found in speech (a 

speech-gesture mismatch), that learner is very likely to profit from instruction. Singer and 

Goldin-Meadow (2005) investigated whether the same was true when children were watching 

gesture instruction. Children were given instruction on mathematical equivalence by a teacher 

who explained either one or two strategies, and varied whether these strategies were presented 

through speech, speech with ‘matching’ gesture (expressing the same information as speech), or 

speech and ‘mismatching’ gesture (expressing two correct, but different strategies in speech and 

gesture). Children performed best on a posttest if they learned through gesture and speech that 

expressed different information, suggesting that the integration of the two complementary ideas 

across two modalities provided the most comprehensive instruction.  

In my own recent work, I expanded upon these findings by showing that the temporal 

simultaneity of the information in the mismatching speech and gesture instruction is crucial for 

learning (Congdon et al, 2016). In a comparison of instruction through simultaneous speech-and-

gesture, sequential speech-then-gesture instruction, and sequential speech-then-speech 

instruction, children learned most from the simultaneous speech-and-gesture training condition. 

We argued that part of the facilitative effects of gesture on learning stem from the integration of 

information from speech and gesture that occur when these modes of communication are 

presented simultaneously. Because speech and gesture can both communicate information, but 

do so through different modalities, speech and gesture instruction is uniquely situated to allow 

for this integration. Neuroimaging data supports this claim, finding that processing speech and 

gesture activates overlapping neural regions (e.g., Holle, Obleser, Rueschemeyer, & Gunter, 
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2010; Willems, Özyürek, & Hagoort, 2009). Kelly and colleagues (2014) found that information 

present in gesture influenced how simultaneous speech was processed and vice versa. Crucially 

for the purposes of this dissertation, gesture seems to share a privileged relation to speech that is 

not shared by other forms of action: in the same study, the authors found a significantly smaller 

bidirectional influence of speech and object-directed action processing (Kelly, Healy, Ozyurek & 

Holler, 2014). 

Finally, gestures are highly representational. That is, the form or motion of the gesture 

can represent ideas, actions, spatial information or spatial relationships (Kita & Ozyurek, 2003; 

McNeill, 1992). For example, when explaining mathematical equivalence, an instructor might 

make a v-point gesture to the first two addends of the equation to represent the idea that those 

two addends should be combined into a single quantity. Or someone who is reasoning through a 

difficult mental rotation task may use their hands to represent the features of the to-be-rotated 

object (Chu & Kita, 2008). Eye tracking studies with adults suggest that when we look directly 

towards these kinds of representational gestures (Beattie, Webster, & Ross, 2010), it is typically 

because the form of this type of gesture has previously provided us with useful semantic 

information. Adults are especially likely to attend to gestures during the stroke phase of a gesture 

when that semantic information is most likely to be present (Beattie et al., 2010). 

The fact that gestures, unlike other forms of actions-on-objects can convey semantic 

information or ideas without directly manipulating the physical world may be a particularly 

important component of gesture. As mentioned in Part I, actions-on-objects can occasionally 

cause learners to focus on irrelevant physical features of the objects. Gesture, by contrast, are not 

beholden to the affordances of any single object or set of objects, but instead can provide an 

abstract representation that highlights only the most crucial features of a concept or idea. Such a 
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possibility is supported by my work showing that children who learned a novel concept through 

gesturing towards objects were able to generalize that concept to novel problem types, more so 

than children who learned through actions-on-objects (Novack, Congdon, Hemani-Lopez, & 

Goldin-Meadow, 2014). This work suggests that the features that make gesture different from 

actions-on-objects, while still engaging the motor system and directing a learner’s visual 

attention, may also be important to its effects on learning, retention, and generalization.  

 

 2.5 Potential Drawbacks and Complications. Just like object-based instruction, there is 

reason to think that gesture-based instruction may not work well under all circumstances. Very 

young children can understand another person’s action, like demonstrating how to twist off the 

top of a container, long before they can interpret a gesture that represents that action, like 

miming a twisting motion near the top of a container (Novack et al, 2014). This evidence 

suggests that iconic gesture interpretation follows a later and more protracted developmental 

time span than action interpretation. Consequently, the meaning of iconic gestures may be 

opaque to some children, particularly if they are unfamiliar with the specific problem or context 

being demonstrated. There is also a possibility that gestures may be better suited for teaching 

abstract problems, or problems that require flexible conceptual understanding, while actions-on-

objects may be better suited for teaching more concrete problems. In general though, the 

drawbacks and limitations of gesture-based instruction are poorly characterized. As such, this 

will be a major focus of the current dissertation. 

To date, research suggests that because gestures are flexible and dynamic in form and do 

not require interaction with objects, they are free from the influence of any potentially 

misleading physical properties of manipulatives. As such, they may be better suited than actions-
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on-objects for promoting learning, transfer, and generalization. In this dissertation, I explore 

whether gesture’s physical and metaphorical “distance” from the object-based action may make 

the meaning of a gesture unclear to some learners, particularly learners who have lower levels of 

prior conceptual knowledge. In other words, what are the potential boundaries of gesture’s 

positive effects on learning, and how can that inform our understanding of the conceptual 

representations formed by young learners when they are trying to learn a new idea through 

actions or gestures? 

 

Part III: Individual Differences, Mathematics, and Measurement 
 
 3.1 Individual Differences in the Learner. The goal of this dissertation is to understand 

how action- and gesture-based instruction on a linear measurement task might differentially 

promote learning for children who are at different stages of conceptual development. In doing so, 

it is important to understand the existing literature on individual differences in learners and how 

that can predict the efficacy of different types of instruction. For example, in some recent work 

by Siler and Willows, the concreteness of the lesson in a modular arithmetic task interacted with 

both age and ability (Siler and Willows, 2014) such that younger, 6th grade students or students 

who were low performers at pre-test benefitted most from a more concrete representation and 

older, 8th grade students or students who were high performers at pre-test seemed to benefit most 

(and transfer best) after learning from a more abstract representation of the concept. In this work, 

the authors demonstrate that the benefits of concreteness during instruction depend on the age of 

the child, the deductive reasoning skills of the child, and the characteristics of the task itself.  

 When one group of children learns best from one type of instruction and another group of 

children learns best from another type of instruction, this is referred to as an ‘aptitude-treatment 
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interaction’ (Cronbach and Snow, 1977; Snow, 1989). For example, in a study teaching college 

students a new concept in chemistry, participants with lower working memory learned 

significantly more from audiovisual input than from visual-only input (Seufert, Schütze & 

Brünken, 2008). Participants with higher working memory learned equally well from both types 

of input. Crucially, higher working memory students showed much higher rates of transfer from 

visual-only input, while lower working memory students showed much higher rates of transfer 

after audiovisual input. This effect can also be modulated by a learner’s prior knowledge of a 

given domain. For example, in multimedia learning, instructional design that may help a learner 

with low prior knowledge may not help, or may even hinder learning for someone with higher 

prior knowledge (Kalyuga, 2005). In the learning process, the learner must integrate the new 

information in the instruction with their pre-existing knowledge, a process that must, necessarily, 

be calibrated to that level of prior knowledge to avoid unhelpful or harmful interference.  

 There are also some cases where one group of children shows lower rates of learning 

overall, irrespective of instruction type. In previous work within the domain of linear 

measurement, children who began a training study with a more severe misconception learned 

less from instruction overall than their higher prior knowledge peers across four different types 

of interventions (Kwon, Ping, Congdon & Levine, 2016). In measurement, children who have 

this more severe misconception also tend to be the younger students, or students from lower 

socio-economic status (SES) backgrounds (Levine, Kwon, Huttenlocher, Ratliff, & Dietz, 2009). 

Being from a low SES background, in particular, is generally correlated with slower rates of 

learning and cognitive change throughout ontogenetic development and across multiple domains 

(e.g., Landry, Denson & Swank, 1997; Alexander, Entwisle & Olsen, 2001; Hoff, 2008). In the 

domain of word learning, researchers found that children who had low phonological competency 
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learned less from instruction overall than children who had high phonological competency 

(Wakefield & James, 2015).  

 

 3.2 Mathematics as a Domain. Many of the examples in this text have centered on the 

field of mathematics. For several reasons, mathematics may be a particularly fruitful domain in 

which to consider this question of how children learn new conceptual ideas through actions and 

gestures. From a practical perspective, children in the United Stated consistently perform poorly 

on international assessments of mathematics achievements as compared to other developed 

countries (TIMSS, 2011; Foy, Arora & Stanco, 2013).  Furthermore, early success in 

mathematics is highly predictive of a number of positive educational attainment outcomes 

including graduation rate, college attendance, and success in STEM (science, technology, 

engineering, mathematics) disciplines (The National Science Education Standards, National 

Research Council, 1996). With ever-widening racial and socio-economic achievement gaps in 

our nation (Lee, 2002 and Reardon, 2011, respectively), there has never been a more important 

time to support research that aims to understand and optimize mathematical learning outcomes 

for all students. 

 From a more theoretical perspective, mathematics offers a variety of subdomains that 

vary in the degree to which they are abstracted away from the physical world. For example, areas 

like Euclidean geometry and measurement have very clear links to the concrete, physical world. 

By contrast, areas like category theory and model theory are so far removed from their origins in 

the physical world that even mathematicians do not see them as having any relevant connection 

to concrete examples. Something like algebra, which has origins in the physical world but is 

typically taught as a set of more abstract rules, might fall someone in between the two extreme 
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ends of the spectrum. Overall, the majority of mathematics, even geometry and measurement, 

might be considered abstract on some level, in that the purpose of the domain is to quantify 

relationships in the natural world through the use of symbols and agreed-upon conventional 

notation that can be generalized to any number of novel contexts.  

 Determining the efficacy of teaching interventions or understanding ‘instructional 

complexity’ while taking into consideration the content area, the individual characteristics of the 

learner, the learning goal, and the type of instruction is a computationally prohibitive problem for 

researchers (Koedinger, Booth & Klahr, 2014). For now, the recommended course of action is to 

choose a computationally tractable set of variables, understand the boundaries of the 

instructional effect, and then expand outwards to consider other factors and how they may 

interact with the documented phenomenon.  

 

 3.3 Focus on Measurement. In the current dissertation, I accomplish this goal by focusing 

on a particular content area within mathematics, linear measurement. Linear measurement is a 

relatively concrete area of elementary school mathematics that also happens to be a source of 

pervasive student misconceptions. In fact, measurement remains the only domain of mathematics 

in which elementary school children consistently perform lower than the international average 

(TIMSS, 2011; Foy, Arora & Stanco, 2013). A true understanding of units of measurement 

requires children to understand that equal partition of space is important. However, almost all 

mathematics curricula focus on teaching procedural strategies of measurement, and focus less on 

improving a necessary conceptual understanding of measurement (Sophian, 2003; Smith et al, 

2008; Smith, Males, Dietiker, Lee, & Mosier, 2013).  
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 When children are asked to measure an object that is not aligned with the “0” point of a 

ruler, they consistently make one of two kinds of well-documented errors, which reflect two 

distinct levels of conceptual understanding (Lehrer, Jenkins & Osana, 1998; Solomon, 

Vasilyeva, Huttenlocher, & Levine, 2015). Some children incorrectly count the hatch mark lines 

instead of the intervals of space that fall between an object’s left-most and right-most edges 

(hatch-mark counting strategy). Other children simply read off the number on the ruler that 

aligns with the rightmost edge of the object (read-off strategy). Importantly, both strategies 

consistently provide the correct answer when the object to be measured is aligned at the “0” 

point of a ruler, a scenario typical of classroom instruction.  These errors on shifted-object 

measurement tasks make it clear that children are largely dependent on a set of procedural rather 

than conceptual skills that help them arrive at the correct answer on traditional kinds of 

measurement test items (Kamii & Clark, 1997; Martin & Strutchens, 2000; Lehrer, Jenkins & 

Osana, 1998). Moreover, this work shows that children consistently struggle with conventional 

rules such as where to start counting, what to count, and the significance of the hatch marks and 

numbers on the ruler (Solomon et al., 2015).   

 To date, the majority of research on linear measurement has documented the nature of 

children’s difficulties and misconceptions. Very little research has focused on designing effective 

ways to address though misconceptions. From the field of education research, one group did an 

in-depth case study with eight students who were given a number of different measurement 

instruction activities and continuously assessed across nearly a full year (Barrett et al., 2012). 

Based on their findings, the authors propose some useful instructional tasks that might help push 

children from one conceptual stage of measurement understanding to the next. However, this 

work used many instructional strategies at once, and did so over a long period of development, 
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making it difficult to ascertain which specific features of the instruction might be driving 

improvement. In some of my own previous work, I tested two principles from the field of 

cognitive science, disconfirming evidence and structural alignment, to see which was most 

effective in improving children’s performance after a very short training intervention (Kwon, 

Ping, Congdon & Levine, 2016). We gave children a lesson on either shifted-object ruler 

problems or more traditional unshifted-object ruler problems with either small plastic unit chips 

or no chips. We found that shifted-object practice was crucial, and that alignment of discrete 

plastic unit chips marginally increased the speed of learning during the training session.  

 In the current study, I aim to expand upon this literature by testing a new type of unit 

representation, gesture. More specifically, I explore the relative efficacy of action- and gesture-

based instruction within two groups of students at different levels of conceptual understanding 

(read-off strategy vs. hatch-mark strategy). In doing so, I explore the boundaries and limitations 

of these types of instruction, and identify the features of gesture, in particular, which prove 

difficult for low prior knowledge learners. This effort represents the beginning of a broader 

discussion of learning through action and gesture, and the general discussion will situate my 

findings within a broader literature that is addressing different pieces of this question.  
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CHAPTER 2 – ESTABLISHING THE ROLE OF PRIOR KNOWLEDGE 
 

Introduction 
 
 We know from decades of experimental psychology research that asking children to act 

directly on external representations can affect their internal ideas (e.g., Wilson, 2002; 

Sommerville & Woodward, 2010; James, 2010; Kontra, Goldin-Meadow & Beilock, 2012; 

Gerson, Beckering & Hunnius, 2014). In fact, children succeed in solving many problems 

grounded in the physical world well before they can succeed with abstract, symbolic forms of 

parallel problems (Bruner, Olver & Greenfield, 1966; Piaget, 1953). These findings suggest that 

acting on, or manipulating, objects is a powerful way for children to learn new ideas.   

 Gestures -- a special category of action – can represent information, engage the motor 

system, and reference external representations in an instructional context, but unlike actions-on-

objects, gestures are representational and do not create lasting change in the external 

environment. Here, we directly compare gestures with actions-on-objects in a linear 

measurement lesson with first grade children to investigate whether these different kinds of 

actions might differentially affect children’s understanding of spatial units of measure. This 

foundational math concept is one that many children struggle with throughout elementary school 

and even middle school (Lindquist & Kouba, 1989). While traditional classroom instruction 

activities are largely ineffective, there is some recent work showing that giving children 

instruction with actions on manipulatives and self-discovered feedback, or ‘disconfirming 

evidence’, can improve learning outcomes (Kwon, Ping, Congdon & Levine, 2016). 

 In general, previous research identifies both benefits and drawbacks of learning through 

action in math contexts. Using manipulatives, objects designed to represent abstract math 
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concepts in a tangible, physical way is one of the most common ways that action-based learning 

is instantiated in elementary school math lessons. For example, young children may learn to add 

using blocks or other sets of small objects before they are able to add Arabic numerals (e.g., 

Huttenlocher, Jordan, & Levine, 1994). Acting with manipulatives allows children to offload 

cognition onto the environment and encourages the formation of useful conceptual metaphors 

(Manches & O’Malley, 2012). It also directs attention to the relevant components of a complex 

problem (Mix, 2010), and engages young learners with limited attention spans (Peterson and 

McNeil, 2008). Yet some recent research cautions against action-based learning, citing instances 

where children may become distracted by irrelevant components of the manipulatives such as 

color or texture (Peterson, 2008), or may see the learned actions as relevant only to a specific set 

of objects rather than to a broader mathematical principle (e.g., Uttal, Scudder & DeLoache, 

1997; DeLoache, 2000; Kaminski, Sloutsky & Heckler, 2009).  

 Gestures differ from actions on manipulatives in that they do not require children to 

interact directly with physical objects and do not result in changes in the location or orientation 

of these objects. Importantly, research shows that asking learners to gesture can promote learning 

and insight across a variety of academic domains including algebra, chemistry, geometry and 

word learning (e.g. Wakefield & James, 2015; Macedonia, Müller, & Friederici, 2011; Ping & 

Goldin-Meadow, 2008; Valenzeno, Alibali, & Klatzky, 2003; Singer & Goldin-Meadow, 2005). 

Gesture may be a particularly effective way of helping children to focus on important relational 

structures or spatial features of a problem. Consistent with this possibility, children instructed in 

mathematical equivalence problems (e.g., 3 + 4 + 5 = _+ 5) learn more from a lesson with a 

gesture that emphasizes making the two sides of the equation equal than from verbal instruction 

alone (Singer & Goldin-Meadow, 2005; Cook, Mitchell & Goldin-Meadow, 2008). 
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 Although both action and gesture can be used as powerful learning tools, there is an open 

question as to who can best take advantage of the properties each type of tool offers.  In fact, the 

very features that differentiate gestures from actions (i.e. the fact that they are representational, 

do not interact with objects, and do not affect change on the external world) may make gestures 

difficult to understand for some learners. In other words, some children may have trouble either 

mapping the form of a gesture to its symbolic content, or perhaps keeping all the pieces of a 

problem active in their minds, which could render gesture ineffective as a teaching tool for that 

child.  In support of this idea, we know that very young children can understand another person’s 

actions, like demonstrating how to twist off the top of a container, before they can interpret a 

gesture that represents that action, like miming a twisting motion near the top of a container 

(Novack, Goldin-Meadow & Woodward, 2015). This evidence suggests that iconic gesture 

interpretation follows a later and more protracted developmental time span than action 

interpretation. Consequently, the meaning of iconic gestures may be unclear to some children, 

particularly if they are unfamiliar with the specific concept being represented by the gesture.  

 One study to date has directly compared action and gesture in a learning paradigm 

(Novack et al, 2014). In this study, the authors trained 3rd grade children to produce a problem-

solving strategy with either an action, a concrete gesture or an abstract gesture in a mathematical 

equivalence task (i.e.: 3+7+2=__+2). While children in all groups performed similarly on a post-

test, children in both of the gesture conditions performed better on a near-transfer task, and 

children in the abstract gesture condition performed best on a far-transfer task. The intriguing 

findings suggest that the features that differentiate gesture from action may be particularly 

helpful for giving children an abstract, flexible, and generalizable understanding of an idea. Yet 
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this study raises the question of whether abstract gesture is more helpful than actions-on-objects 

for all students, even if they have a very rudimentary understanding of a concept.  

 To address this open question, we gave children a lesson with either action or gesture on 

a linear measurement task. Linear measurement provides a fitting case study for two reasons. 

First, measurement is a foundational mathematical concept that young children consistently 

struggle with, making it an important focus of research on math learning. In fact, measurement 

remains the only domain of mathematics in which elementary school children in the US 

consistently perform lower than the international average (TIMSS, 2011; Foy, Arora & Stanco, 

2013). Second, children consistently and robustly make one of two interesting errors on shifted-

object linear measurement problems (problems where the to-be-measured object is not aligned 

with the zero-point on the ruler). These errors, described in more detail below, allow us to 

directly ask how action and gesture training might interact with learning outcomes in two groups 

of children that are at distinctly different levels of conceptual understanding.  

 In a hatch-mark counting error, children count the hatch mark lines on the part of the 

ruler that is aligned with the object being measured instead of the intervals of space that fall 

between an object’s left-most and right-most edges. In a read-off error, children simply read off 

the number on the ruler that aligns with the rightmost edge of the object no matter where the 

object’s left most edge starts on the ruler. Notably, both errors provide the correct answer on 

typical measurement problems where the object-to-be-measured is aligned with the zero point of 

the ruler (e.g. Blume, Galindo, & Walcott, 2007; Kamii & Clark, 1997; Lehrer, Jenkins, & 

Osana, 1998; Solomon, Vasilyeva, Huttenlocher, & Levine, 2015). There is reason to believe 

that children who primarily use the read-off strategy on shifted-object problems are more behind 

in their understanding of linear measurement than those who use the hatch-mark strategy. For 
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one, the hatch mark strategy at least reflects knowledge that measurement involves counting 

some kind of unit. Second, the read-off strategy generally negatively correlates with both age and 

socio-economic status (Solomon et al., 2015; Levine et al., 2009). Third, we know from previous 

work that some students switch their strategy from read-off to hatch-mark counting after 

instruction, but the reverse pattern is never observed (Kwon, Ping, Congdon & Levine, 2016). 

Taken together, these pieces of evidence suggest that children who use the read-off strategy at 

pre-test have lower conceptual knowledge of linear measurement than those who use the 

counting hatch mark strategy at pre-test.   

 In the current study, we begin by assessing first grade children’s measurement pre-test 

strategies to determine whether they primarily use a hatch-mark strategy or a read-off strategy on 

shifted-object measurement problems. We then explore whether children at these two different 

levels of conceptual understanding benefit differentially from a short lesson that is accompanied 

by either an action (moving discrete plastic unit chips) or a gesture (counting units with a thumb-

and-forefinger pinching gesture). Lastly, we look for any evidence that action or gesture 

instruction differentially promote generalization to other unit-based tasks.   

 

Method 
 
 Subjects: 122, 1st grade students (60 females; 62 males; mean age at test: 7.13 years) 

were recruited and tested at a Chicago area private school. Children whose parents signed a 

consent form participated in three one-on-one sessions across two weeks (Session I; Session II; 

Session III).   

 Procedure: At each of the three visits, all children received a 14 question multiple-choice 

paper and pencil test (see Figure 1 for a sample question). Trials were pseudo-randomized into 
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three versions of the task, counterbalanced across visit so each child received each version only 

once across the three sessions.  In the first four test items, the crayon image was aligned with the 

“0” point on the ruler (“unshifted problems”). In the 10 subsequent test items the crayons were 

shifted to different points on the ruler (“shifted problems”). All crayons started and ended at a 

whole unit. The four answer choices reflected the correct answer, a read-off strategy answer, a 

hatch-mark strategy answer, and a fourth random choice that did not match any of the other three 

strategy-related options.  This multiple-choice test was the main outcome of interest. 

 
 
 
 
 
 
 
 
 
Figure 1. A sample “shifted item” from the multiple choice crayon measurement task. 

	
  
 Because we were interested in the effect of training, we excluded children who already 

understood how to correctly answer these questions. Children who answered 6 or more of the 10 

“shifted object” multiple-choice problems correctly on this task in Session 1 were excluded from 

the study and did not participate in Session II or III. This criterion was based on probability 

values of the binomial distribution. Answering 6 or more multiple-choice questions correctly on 

a task with 4 options is significantly above chance (p < .01). Accordingly, 27 children were 

excluded at Session 1, leaving 95 children in the final sample.   

  

 Session I: In addition to the multiple-choice crayon task (Pre-Test), children in the first 

session also received a set of tasks that were intended to assess their understanding of linear units 
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and measurement tools more broadly. The first task required children to “draw a picture of a 

ruler that is 8-units long” on a blank piece of paper.  The second task required children to 

examine a set of four computer drawn images of rulers, which either had equal or unequal spaces 

and numbers or no numbers. The experimenter asked the child if each ruler, in turn, was a 

“useful ruler” and the child was asked to explain their answer. The purpose of this task was to 

assess whether or not children believe that numbers and/or evenly spaced units are crucial 

components of a useful measuring tool. 

 In the third task, participants were asked to “color a unit” on a picture of a blank ruler. 

The purpose of this task was to directly assess understanding of the word “unit”. The fourth task 

was a perimeter measurement task in which children were presented with two hatch-marked 

shapes and asked, “How many units would it take to go all the way around the outside edge of 

the shape?” Finally, the children concluded the first session with a number line task in which 

they were asked to place 6 different numbers on a number line that ran from 0 to 100, and 6 

numbers on a number line that ran from 0 to 1000 (e.g., Siegler & Opfer, 2003). Half of the 

participants received the 0-100 number line first, and half received the 0-1000 number line first. 

Children did not receive any experimenter feedback on any of the tasks in Session I. 

  

 Session II: In Session II, which took place at a convenient time between one and seven 

days after the first session (mean delay = 3.33 days, SD = 1.67 days), children were pseudo-

randomly assigned to one of four training conditions, counterbalanced by both the gender of the 

child and their dominant answer strategy on pre-test trials (hatch-mark counting strategy or read-

off strategy). The four training conditions were: unshifted unit, shifted unit, unshifted gesture and 

shifted gesture (Figure 2).  In all four conditions, an experimenter showed children how to 



	
  
	
  
	
  
	
  

39	
  

measure a colorful wooden stick with a 9-unit paper ruler and either discrete plastic unit chips or 

a thumb and forefinger gesture. After the experimenter placed the stick above the ruler, 

participants were asked to guess how long the stick was. Then they were told to check their 

answer with either the unit chips or the “gesture unit”. The unit chip instruction conditions were 

modeled after a linear measurement training study with 2nd grade students (Kwon, Ping, 

Congdon & Levine, 2016). The gesture training conditions were developed to represent the same 

concepts as the unit chip instruction using a gesture that is spontaneously produced when people 

talk about the size or length of small objects. In addition, there is some previous work showing 

that children as young as 2.5 years old can map this gesture to the size of an object (Novack, 

Filippi, Goldin-Meadow & Woodward, 2016). The child was corrected if he or she performed 

any of the movements incorrectly. Finally, the experimenter performed the movements while 

counting aloud to ensure each child understood the correct answer for each trial. This procedure 

was repeated 8 times with different colorful sticks that varied in length. Following training, 

children received a second version of the multiple-choice crayon measurement task (Post Test). 
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Figure 2. A photograph of each of the four training conditions. A – Unshifted unit chip training 
condition; B – Shifted unit chip training; C – Unshifted gesture training; D – Shifted gesture 
training 

 
 Session III: One week after the second session (mean delay = 7.05 days, SD = 1.77 days), 

each participant received the multiple-choice crayon task a third time followed by a series of 

generalization tasks aimed at characterizing each child’s ability to transfer his or her 

understanding of the shifted ruler task to other tasks tapping the concept of spatial unit.  In one 

generalization task, children were asked to measure three real-world objects with a “broken” 

ruler, which started with a jagged edge at the 2.5- or 3.5-unit mark. The purpose of this task was 

to see whether or not children would try to align the object with the broken edge of the ruler, or 

whether they would use the middle of the ruler to give an answer that reflected either a read-off 

strategy, a hatch-mark counting strategy, or the correct strategy. On a second generalization task, 

we asked children to use two paper clips to measure how many “paper clip units” it would take 

to measure a line.  In addition, to assess growth across the training session, each child was again 
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asked to color a unit on a picture of a blank ruler, complete the number line task, and find the 

perimeter of two novel but similar test items to those used on the pre-training perimeter task.  

 

Results 
 
 As expected, performance on the four unshifted items on the multiple-choice crayon test 

was virtually perfect at all three time points for all participants (M=3.93, SD=0.39 at pre-test; 

M=3.92, SD=0.38 at immediate posttest; M=3.95, SD=0.37 at the 1-week follow-up). As such, 

we only carried out formal analyses on children’s performance on the ten shifted-item questions.  

 Main Outcome: The first analysis examined whether children’s starting strategy (read-off 

vs. hatch-mark) interacted with the efficacy of the two different training conditions. Because 

individual children tended to get most of the problems right or most of the problems wrong at 

each of the three sessions, the data were non-normally distributed (Figure 3). (Note that children 

who got most of the problems correct at pretest are not represented in this figure because they 

were excluded from the training). Accordingly, instead of performing an analysis on average 

scores, the data were fit with a mixed effects binomial logistic regression model that predicted 

correct performance on each shifted-object test item. All analyses were performed using R (R 

Development Core Team, 2008). In the first model, participant was a random effect, and session 

(pre-test, posttest, follow-up), training condition (unshifted unit, shifted unit, unshifted gesture, 

shifted gesture), starting strategy (read-off or hatch-mark), gender, and the two-way interaction 

between starting strategy and condition were used as fixed effects.   
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Figure 3. Each panel shows the non-normal distribution of scores on shifted-problem test trials 
for all children in the sample, regardless of training condition, at each of the three time points.  

 
 An analysis of variance of the factors in the regression model showed a main effect of 

training condition (Χ2 = 46.80, p<.001) and a main effect of starting strategy (Χ2 = 35.78, 

p<.001). Importantly, these main effects were qualified by a marginal, though theoretically 

significant, condition x starting strategy interaction (Χ2 = 7.62, p=.054). There was also a 

strongly significant main effect of session (Χ2 = 335.31, p<.0001) and a marginal effect of 

gender (Χ2 = 3.54, p=.060). To better explore these results, particularly the interaction between 

starting strategy and training condition, we built two separate models; one for children who 

predominantly used the hatch-mark counting strategy at pre-test, and one for those who began by 

using the read-off strategy. Means and standard errors of the means for the two groups at each 

session are displayed in Figure 4.  
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Figure 4. Average performance by starting strategy and training condition across the three 
sessions. Bars represent +/- 1 standard error of the mean when the data are aggregated by 
participant1.  

 
 For the children who began the study by counting hatch-marks, an analysis of variance of 

a binomial linear regression model with subject as a random effect and training condition, 

session, gender and the interaction between condition and session as fixed effects revealed a 

main effect of condition (Χ2 = 29.74, p<.001), whereby the shifted gesture and shifted unit 

training conditions were more effective than the two unshifted conditions. There was also a main 

effect of session (Χ2 = 170.51, p<.001) whereby responses at posttest and follow-up were 

significantly more likely to be correct than responses at pre-test. These main effects were 

qualified by a significant condition by session interaction (Χ2 = 102.95, p<.001), driven by the 

fact that there was no effect of training condition at pre-test but significant differences at posttest 

and follow-up. There was no effect of gender in this model (Χ2 = 0.46, p=.50).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Note that the graphs present mean performance of participants, but the data are analyzed using a 
binomial model with a random effect of participant. The model is sensitive to the largely bimodal nature 
of the data (i.e., some children failed to learn at all, and those who did learn got most or all of the 
problems correct on a given test) and thus more accurately reflects children’s performance than the means 
presented in the graph. 
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 For the read-off strategy participants, analyses revealed a main effect of condition (Χ2 = 

13.30, p<.01), whereby children in the shifted unit condition performed better overall than each 

of the other three conditions. Again, there was an expected main effect of session (Χ2 = 41.74, 

p<.001), with a higher chance of correct responses at posttest and follow-up than at pre-test. 

Finally, in this model, there was a main effect of gender (Χ2 = 4.61, p<.05), whereby girls 

outperformed boys. This gender effect was likely driving the marginal effect of gender reported 

in the original omnibus model, and future work should investigate why males in the read-off 

group were less receptive to instruction than females.  

 Strategy Analysis: Motivated by the low overall rates of learning in the read-off strategy 

group, we performed a descriptive analysis of the kinds of errors children in both groups were 

making before and after training to ask whether some children were showing qualitative 

improvements that were not captured by our main outcome (Figure 5).  This analysis showed that 

training led some children in the read-off group to switch their strategy to the more sophisticated, 

yet still incorrect, hatch mark strategy.  While the strongest effect was observed in the most 

successful training condition, shifted unit training, there were some children who switched to the 

hatch-mark strategy after training in each of the other three conditions. By contrast, none of the 

children in the hatch-mark group switch to a read-off strategy after training in any instructional 

condition. The overall pattern further supports the original distinction between the two groups as 

being at different levels of understanding. In other words, these data suggest a progression in 

learning from the most rudimentary strategy (read-off) to a more sophisticated but incorrect 

strategy (hatch-mark counting), though our data are clear that the intermediate hatch-mark 

counting stage is not a necessary precursor to correct performance (as a few read-off children did 

jump right to a correct strategy after our brief training, particularly the shifted unit training). 
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Figure 5. Each trial was coded based on the child’s response. This chart, broken down by starting 
strategy (hatch-mark and read-off), training condition (aligned unit, shifted unit, aligned gesture, 
shifted gesture), and time point (pre-test, posttest, follow-up) shows the distribution of strategy 
use across the entire study. While some children in the read-off group switched to the hatch-mark 
strategy after training, children in the hatch-mark group never switched to the read-off strategy.  

 
 Pre-Training and Generalization Tasks: For the two tasks administered only at pre-test, a 

set of simple linear regression models used performance on the pre-test task to predict learning 

score on the main ruler and crayon outcome (post-test score minus pre-test score) after 

controlling for training condition. Children’s ability to appropriately draw a ruler predicted their 

propensity to learn from subsequent training.  This suggests that familiarity with the key features 

of a ruler may have been an important foundation for successful training (Table 1).  

 For the tasks administered at both Session I and Session III, a set of linear regression 

models used improvement on the main ruler and crayon outcome (post-test score minus pre-test 

score); training condition; and the interaction between condition and improvement to predict the 

change in performance on the generalization task from Session I to Session III. For the last set of 

transfer tasks, which were administered only at Session III, the same fixed effects were used to 

predict performance on each transfer task. For each of these models, an analysis of variance of 
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the regression model gives an estimate of the main effects and interaction terms, reported here as 

Χ2 values (Tables 2 and 3).  

 Somewhat surprisingly, these analyses of each generalizations task revealed very little 

evidence that training condition differentially affected transfer. The results show that while a few 

of the tasks (Draw a Ruler, Perimeter, Color a Unit, Broken Ruler) were at least marginally 

related to learning outcomes in general, there was no evidence of any significant effects of 

training condition or any interactions between learning and training condition.  

 

A. Task 
Group Means 
(SD) 

Group 
Comparison 

All Participants 
Relation to Learning  

 Draw A Ruler RO = 0.51 (.66) 
HM = 0.78 (.86) p = 0.11† β= 0.95 (p = 0.031)* 

 Useful Ruler RO = 0.79 (.98) 
HM = 0.98 (.98) p= 0.37 β= 0.17 (p = 0.42) 

 
Table 1. This shows children’s performance on the tasks that were administered only at pre-test.  
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B. Task 
Group Means of  
Δ Score (SD) 

Group 
Comparison 

All Participants 
Relation to Learning  

 
Perimeter RO = 0.29 (.67) 

HM = 0.57 (.81) p = 0.086† 
Χ2

 Learning= 1.93 (p = 0.06)† 
Χ2

Condition= 2.83 (p = 0.17) 
Χ2

Interaction= 1.58 (p = 0.41) 
 Number Line  

(1 – 100) 
RO = 0.06 (.54) 
HM = 0.10 (.61) p= 0.72 

Χ2
 Learning= 0.06 (p = 0.67) 

Χ2
Condition= 0.96 (p = 0.42) 

Χ2
Interaction= 0.33 (p = 0.81) 

 Number Line 
(1 – 1000) 

RO = 0.03 (0.38) 
HM = -0.02 
(0.47) 

p = 0.63 
Χ2

 Learning= 0.06 (p = 0.59) 
Χ2

Condition= 0.98 (p = 0.18) 
Χ2

Interaction= 0.11 (p = 0.90) 
 

Color a Unit RO = 0.11 (0.47) 
HM = 0.27 (0.52) p = 0.16 

Χ2
 Learning= 1.48 (p = 0.01)** 

Χ2
Condition= 1.37 (p = 0.13) 

Χ2
Interaction= 0.95 (p = 0.27) 

 
Table 2. This shows children’s performance on the tasks that were administered at both pre-test 
and follow-up. Improvement on the perimeter task and on the color a unit task were correlated 
with learning, even after controlling for condition.  
 

C. Task 
Group Means 
(SD) 

Group 
Comparison 

All Participants 
Relation to Learning  

 
Broken Ruler RO = 0.63 (.84) 

HM = 1.28 (.90) p = 0.00074** 
Χ2

 Learning= 2.44 (p = 0.09)† 
Χ2

Condition= 5.01 (p = 0.12) 
Χ2

Interaction= 2.51 (p = 0.40) 
 

Paperclip Task RO = 0.33 (.48) 
HM = 0.50 (.50) p= 0.124 

Χ2
 Learning= 0.13 (p = 0.48) 

Χ2
Condition= 0.76 (p = 0.40) 

Χ2
Interaction= 0.005 (p = 0.99) 

 
Table 3. This shows children’s performance on the tasks that were administered only at follow-
up. Children in the read-off group performed worse than children in the hatch-mark group on the 
broken ruler task, and performance on this task marginally correlated with learning outcomes 
overall.  
 
 Spatial Language and Gesture: In order to ensure that improvement on the main task was 

driven by an improved understanding of spatial units or spatial extent, rather than by 

unintentionally teaching children some other pattern, trick, or algorithm, we coded the speech 
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and gesture of a subset of the participants (66% of read-off; 75% of hatch-mark)2 as they 

explained their answers on the final two trials of the crayon task. One research assistant, blind to 

experimental condition, transcribed the child’s spoken responses and transcribed the child’s 

gestures by noting the hand shape, motion, and location of each hand movements. That same 

research assistant coded the transcriptions for evidence of spatial language and gesture. A second 

trained coder coded a randomly selected 30% of the trials for reliability purposes (agreement was 

very high = 95%, un weighted Kappa = .83). In speech, a child was coded as using spatial 

language if she used the word “unit(s)”, or “space(s)” or appropriately described the spatial 

extent of the crayon, even in the absence of a unit-like word (e.g. “It started at the 3 and went to 

the 8 so I knew it was 5 long”). Simply counting aloud (e.g. “1, 2, 3”), a common verbal 

response, was not considered sufficient evidence of spatial language. Children’s gestures were 

coded as correct, unit-based gestures if they pointed to the spaces (but not the lines), traced the 

exact extent of the crayon, or framed the extent of the crayon with either hands or fingers. For 

example, if a child counted aloud, “1, 2, 3”, while pointing to the spaces on the ruler, she would 

be coded as having spatial gestures, but not spatial language.  

 Figure 6 displays the proportion of children who showed evidence of spatial thinking in 

their speech or gesture. As expected, we found evidence of a general increase in spatial language 

and spatial gesture after training. In a set of two binomial linear regression models, we used 

training condition to predict 1) spatial language and 2) spatial gesture use at the follow-up 

session after controlling for use at pre-test for children in the hatch mark group. Analyses 

showed that there were no significant differences by condition for spatial talk (X2 =1.28, p=0.74), 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Videos that are not included in this analysis were corrupted due to experimenter error and could not be 
transcribed or coded. The sample of videos lost is believed to be random, allowing us to draw conclusions 
for the remaining, representative videos. 
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but for spatial gesture, children in the shifted chip condition increased their spatial gestures 

significantly more than those in the aligned chip condition (B=2.84, p=0.047) and marginally 

more than those in the aligned gesture condition (B=1.91, p=0.10). All other comparisons were 

non-significant. The extreme nature of the data in the read-off group (in which no children 

produced spatial language or spatial gesture at either the pretest or the follow-up in three of the 

four training conditions) precluded us from performing any statistical analysis. Qualitatively, 

however, we observe an increase in both spatial language and spatial gesture in the shifted chip 

condition, the only effective training condition.  

 

 
Figure 6. This figure shows the change in the proportion of subjects who reveal correct unit-
based strategies in either speech or gesture after training.  

 

Discussion 
 
 The results of this study add to a growing literature that explores how the qualitative 

differences between actions and gestures, two similar though not identical types of movement, 
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contribute to learning and cognition. Specifically, this study is the first to show that it is critical 

to consider individual differences in children’s conceptual understanding of a given problem 

before implementing gesture-based instruction. Overall, the results suggest that the abstract 

properties of gesture, the very properties that may make it so powerful for generalization in some 

scenarios, can also make it inaccessible to some learners in problem-solving contexts.  

 From a practical perspective, this study emphasizes the necessity of providing children 

with linear measurement instruction involving shifted-object problem types. As reported in 

previous work, these types of problems reveal children’s misconceptions about measurement in a 

way that unshifted problems do not, and also support learning in a way that shifted problems do 

not (Solomon et al, 2015; Kwon et al., 2016). They discourage the use of simple procedural 

strategies and encourage the development of a more flexible and conceptually rich understanding 

of measurement. The kind of rapid and robust learning observed in the current study can best be 

explained by the idea of disconfirming evidence, or prediction error (e.g., Rescorla & Wagner, 

1972; Ramscar, Dye, Poppick, O’Donnell-McCarthy, 2011).  Encouraging a child to make a 

guess and then allowing them to discover that their answer is consistently wrong can powerfully 

drive conceptual change and adoption of new strategies by causing learners to question their 

current strategies and assumptions (Siegler & Svetina, 2006).  

 Although shifted-object training was necessary for improvement in the current study, it 

was not sufficient. Instead, we found an interaction between a child’s starting level of conceptual 

knowledge and the effectiveness of gesture- and action-based instruction. First, the results 

suggest that representational gesture is more abstract than actions-on-objects, and that this 

distinction has context-dependent implications for cognition and learning. Second, the results 

add to existing literature claiming that the read-off strategy is a more rudimentary procedural 
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strategy than counting hatch marks (Solomon, Vasilyeva, Huttenlocher & Levine, 2015; Kwon, 

Ping, Congdon & Levine, 2016). Not only did children in the hatch mark group learn more from 

training overall, but we found that after training, some children in the read-off group switched to 

the hatch-mark counting strategy, and we never observed the opposite change in error type. 

Taken together, these results demonstrate that in the context of linear measurement, children who 

have a more rudimentary understanding require more concrete, tangible tools, while those with a 

more advanced albeit still erroneous understanding can learn from either action or gesture.  

 So which property or properties of gesture are driving this dissociative effect? There are 

several intriguing possibilities that emerge from examining the differences between the two 

kinds of movement.  The first possibility is that the meaning of the gesture itself was opaque to 

the children in the read-off strategy group, and the meaning of the plastic unit chip was more 

obvious, or perhaps more familiar to those same students. Gesture understanding and 

interpretation does follow a more protracted developmental time course than does action 

understanding (Novack, Goldin-Meadow & Woodward, 2015). Indeed, even adults require 

certain contextual cues to consider something gesture and to be able to interpret it appropriately 

(Novack, Wakefield & Goldin-Meadow, 2015). Therefore, the failure of the children in the read-

off group to learn from gesture is potentially reflective of the fact that they did not have the 

appropriate preexisting conceptual basis upon which to map the iconic gesture. Recall that 

students who use the read-off strategy have not demonstrated any of the conceptual bases for 

measuring spatial extent with units. In lacking this conceptual foundation, they may have been 

unable to glean any novel insights from the iconic “pinching” size gesture. This may not be a 

problem of gesture, per se, but perhaps is a more general phenomenon that learners must have a 

conceptual basis upon which to map any symbolic or representational learning tool. Indeed, a 
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prior study (Kwon, Ping, Congdon & Levine, 2016) showed that in a group of slightly older 

second-grade children who were persisting in using the read-off strategy on a linear 

measurement pretest, even training with unit chips was unsuccessful. This finding suggests that 

even the unit chips, which are, themselves representational of a unit, may not be immediately 

apparent to all learners, particularly for those children who have continued to use a rudimentary 

strategy as they progress through elementary school.  

 The second possibility, which is not mutually exclusive from the first, is that gesture is 

cognitively demanding in this particular context because it is iterative and does not leave a trace. 

In other words, it is possible that even if children in the read-off group understood that the 

gesture was meant to represent a small length or unit of measure, they were subsequently 

overwhelmed by the pragmatics of the problem; unable to keep in mind the gesture instructions, 

what they were supposed to be counting with the gesture, what the gesture represented, and what 

the final numerical answer mapped onto. In contrast, the plastic unit chips are manipulable, 

countable, objects that create a lasting trace in the form of a set that can be counted. Thus, it’s 

possible that children in the read-off group, who had to make a larger conceptual leap than their 

peers who began with the hatch-mark strategy, found the gesture counting task unduly taxing for 

their working memories. Decreasing working memory load has been offered before as a potential 

benefit of using real-world manipulatives to offload some cognitive processes (Manches & 

O’Malley, 2012). And while similar mechanisms have been suggested for gesture-based 

instruction (e.g., Morsella & Krauss, 2004; Ping & Goldin-Meadow, 2008; Cook, Yip & Goldin-

Meadow, 2012), it is possible that some familiarity with the target concept is necessary to 

capitalize on that feature of gesture.   
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 While we did find some evidence of transfer in the current study, action and gesture did 

not differentially predict rates of transfer as has been reported in previous work (Novack et al., 

2014). There are several ways to interpret this finding. First, there is existing research on how 

difficult it is for learners to apply newly acquired knowledge in novel contexts (e.g., Catrambone 

& Holyoak, 1989; Mix, 2010). The training we provided here was not only brief, but required 

children to switch between a real-world, 3D training scenario and a 2D posttest even before we 

assessed “transfer”. Such a dimensional shift between training and testing could push the limits 

of flexibility in children’s representational systems (Barr, 2010). Furthermore, the low rates of 

transfer on the farther generalization tasks would suggest that perhaps the tasks were not 

appropriately calibrated to capture meaningful differences by training condition.  

 The second possibility, however, is that for linear measurement, it is the learning and 

insight process itself that matters for success on transfer tasks and not the manner in which the 

task was learned.  Though there are many features that differentiate the current study from that of 

Novack et al., one notable difference is the type of mathematics problem being trained (linear 

measurement vs. mathematical equivalence). Perhaps gesture, a more abstract tool, is better 

suited for learning and transfer in a more abstract mathematical domain like algebraic 

equivalence and equation balancing. By contrast, linear measurement is a spatial problem, and it 

may be the case that either action-based or gesture-based instruction is sufficient for gaining 

insight and mastering this particular, highly spatial concept. Understanding these complicated 

interactions between content domain and effective instruction techniques is a computationally 

overwhelming problem (Koedinger, Booth & Klahr, 2014) and there is much work to be done to 

discover guiding principles of when and how to implement movement-based instruction.  
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 The current study provides a promising beginning towards this ambitious goal by 

highlighting two features of an instructional context that must be considered when teaching 

children new ideas through hand movements. Though there is some compelling research 

showing that gesture, in particular, can promote learning, generalization, and retention across a 

number of different domains and age groups (e.g., Wakefield & James, 2015; Macedonia, 

Müller, & Friederici, 2011; Ping & Goldin-Meadow, 2008; Valenzeno, Alibali, & Klatzky, 2003; 

Singer & Goldin-Meadow, 2005; Cook, Mitchell & Goldin-Meadow, 2008; Novack, Congdon, 

Hemani-Lopez & Goldin-Meadow, 2014; Cook, Duffy & Fenn, 2013; Levine, Goldin-Meadow, 

Carlson & Hemani-Lopez, 2016), the current findings underscore the need to consider the 

learner’s level of conceptual understanding prior to instruction, as well as the nature of the target 

concept, before implementing gesture-based instruction. The very same properties of gesture that 

differentiate it from action and facilitate long-lasting and flexible conceptual change in certain 

problem solving contexts may make it ineffective in other problem-solving contexts and 

altogether inaccessible to certain learners, who benefit more from actions-on-objects. 
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CHAPTER 3 – TEACHING MEASUREMENT FROM ACTION TO ABSTRACTION 

General Overview 
	
  
 The findings from Chapter 2 demonstrate that when lower prior knowledge children 

encountered a difficult linear measurement task, actions-on-objects were far more effective than 

gesture-based instruction. By contrast, children with higher prior knowledge were able to learn 

from either action or gesture. Importantly, the performance within this higher prior knowledge 

group shows that either type of movement can be very effective under certain circumstances.  

Given these intriguing results, Chapters 3 and 4 explore this interaction between prior knowledge 

and instruction type and ask why the children in the read-off strategy group struggled to learn 

from the gesture-based instruction while their hatch-mark counting peers were successful. 

 In the discussion in Chapter 2, two possibilities were raised to explain this phenomenon. 

The first is that the children with lower prior knowledge simply do not understand the 

representational content of the gesture. This hypothesis is consistent with the idea that children 

who use the read-off strategy have a relatively sparse conceptual understanding of linear 

measurement. In other words, the thumb-and-forefinger gesture, intended to represent a unit of 

spatial extent, may have been seen as a meaningless movement for children with very low prior 

conceptual knowledge. Children and even adults have difficulty interpreting gestures as 

meaningful hand movements if they are not given enough context in which to interpret a 

movement (Wakefield, Novack & Goldin-Meadow, 2016; Novack, Wakefield & Goldin-

Meadow, 2015). The second possibility is that children are able to interpret the gesture as a 

meaningful representation at first, but they subsequently have trouble tracking the transient, 

iterative, abstract movement throughout the training session. Under this hypothesis, children with 
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lower conceptual knowledge might be experiencing higher demands on their working memory, 

and could become confused when trying to understand how counting the abstract gesture maps 

onto a correct final answer. In the remaining chapters, I explore each of these possibilities in turn 

to try to better understand how and why gesture might prove challenging for low prior 

knowledge learners.    

Introduction 
	
  
 In Experiment 2, I ask whether providing children with the action-based instruction and 

the gesture-based instruction in a single training session might improve learning outcomes by 

helping children in the read-off group to understand the action-based referent of the gesture. In 

this four-condition design, one group of children received instruction with only gesture, one 

group received only action, one received action followed by gesture, and one received gesture 

followed by action. This design allows me to a) replicate findings from Experiment 1, b) ask 

whether it is helpful to provide children with multiple representations of units within a single 

training session and c) ask whether the order of those representations matters for learning 

outcomes.  

 The first possibility is that lower prior knowledge learners will learn best when they 

receive action-based instruction followed by gesture-based instruction. This hypothesis is loosely 

based on the Piagetian idea that across ontogenetic development, children learn best when they 

begin with more concrete representations and experiences before they move onto more symbolic 

ones (Piaget, 1953). More recently, researchers coined the term “concreteness fading” to refer to 

the practice of transitioning from concrete representations to symbolic ones over instructional 

time (Goldstone & Son, 2005; McNeil & Fyfe, 2012; Fyfe, McNeil, Son & Goldstone, 2014). In 
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this work, researchers show that across different domains and different age groups, introducing 

learners to a concrete or more real-world example (e.g., a physical balancing scale) before 

introducing them to a more abstract schematic (e.g., a balanced mathematical equation) is better 

for learning outcomes than introducing either representation alone, or presenting the 

representations in the opposite order.  

 An alternative possibility is that the order of presentation of the action-based instruction 

and the gesture-based instruction will not matter, but that there will be a main effect of the 

number of instruction types. For example, it might be useful for children with lower prior 

knowledge to see multiple exemplars of a ‘unit’ within one lesson. This hypothesis is inspired by 

principles of category learning and verb learning in the domain of language. Multiple exemplar 

training (MET) shows that giving children more than one exemplar of a category helps them to 

extract the relevant characteristics of that category, remember the rules better, and apply them to 

novel situations (e.g., Smiley & Huttonlocher, 1995; Gentner, 2003; Luciero, Becera & 

Valverde, 2007; Horst, Twomey & Ranson, 2013). In the domain of mathematics, there is 

evidence that providing young children with varied examples of perceptually distinct triangles 

can better help them to extract the defining features of triangles (Smith et al., 2014).  

 On the other hand, it is possible that children with lower prior knowledge will do poorly 

when given multiple representations, particularly if they are unable to make the appropriate 

conceptual links between the two movement types or if they become overwhelmed by too much 

information in a short lesson. For example, in order to extract the benefits of multiple exemplars, 

it could be necessary to present action and gesture simultaneously, or to interweave them, rather 

than present them sequentially as in the current design. Or, based on some evidence from the 

language learning literature, children may do best when only presented with one representation 
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that they can focus on mastering. For example, infants learning a new verb learned and extended 

that learning best when only exposed to one exemplar as compared to four (Maguire, Hirsh-

Pasek, Golinkoff & Brandone, 2008), and infants learning spatial prepositions learned best when 

shown the same exemplar multiple times, rather than different exemplars (Casasola, 2005). Both 

of these studies suggest a ‘less is more’ hypothesis in which one good exemplar is better than 

many different exemplars.  

 The third possibility is that demonstrating the action-on-objects (i.e., using the unit chips) 

will not be sufficient to give the read-off children the necessary context to interpret and learn 

from the gesture. Under this hypothesis, I would expect to find that any of the three instructional 

conditions that incorporate the gesture are not be as effective as the instructional condition that 

relies on action alone. Or perhaps that gesture followed by action-on-objects would be successful 

primarily because of a recency effect – that is, that the training will conclude with the action, 

allowing the children to ignore any confusion stemming from the gesture instruction. Based on 

the findings in Chapter 2, I predicted that across all four conditions, children in the higher prior 

knowledge group would improve after instruction. 

Method 
	
  
 Subjects. 117, 1st grade students (68 females; 49 males; mean age at test: 6.97 years, SD 

= 0.37 years) were recruited and tested at several Chicago area schools. In contrast to the sample 

reported in Chapter 2, children in this sample were from a broader range of socio-economic 

backgrounds. Based on a categorical income questionnaire, children in the current study reported 

ranges from 1 (lowest possible score) to 6 (highest possible score). In the previous study, the 

range was 4-6. Overall though, the average score reported in the current sample was still quite 
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high (5.38 out of 6, SD = 1.34), and SES was a non-significant predictor in all models and thus is 

not included in any final analyses. Children whose parents signed a consent form participated in 

two one-on-one sessions one week apart in a quiet area of their school (Session 1 and Session II).   

 Session I. To assess pre-test strategy, children were given a 14-question multiple-choice 

paper and pencil test (see Figure 1, Chapter 2). As described in Chapter 2, the first four test items 

were of a crayon that was aligned with the “0” point on the ruler (“unshifted problems”). In the 

10 subsequent test items the crayons were shifted to different points on the ruler (“shifted 

problems”). All crayons started and ended at a whole unit. The four answer choices reflected the 

correct answer, a read-off strategy answer, a hatch-mark strategy answer, and a fourth random 

choice that did not match any of the other three strategy-related options.  This multiple-choice 

test was re-administered right after training, and is the main outcome of interest. 

 Based on performance on the pretest shifted crayon items, children were categorized into 

a particular strategy group if 6 or more of the 10 shifted-object items were answered in a way 

that was consistent with a single strategy. This criterion was based on probability values of the 

binomial distribution: on a task with 4 options, answering 6 out of 10 using a particular strategy 

means that that child is using that strategy more often than would be predicted by chance or 

random guessing (p < .01). By this metric, there were 12 children in the ‘correct’ group (N=9 

males); 46 children in the ‘hatch-mark’ group’ (N=19 males); 57 in the ‘read-off’ group (N=20 

males); and 2 children (N=1 male) whose dominant strategy was ‘random’ or did not meet 

criteria for inclusion in one of the other groups. Children who were in the ‘correct’ group were 

excluded from further analyses given that the small sample size and limited room for 

improvement after training, and children in the ‘random’ group were excluded due to sample 
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size. Four children were excluded for missing data on the follow-up session, and one child was 

excluded due to a language barrier. Thus, the final sample consisted of 98 children. 

 Immediately after completing the multiple-choice crayon task (Pre-Test), children in 

Session I received a set of three tasks that were intended to assess growth in other unit-based 

tasks following training. Given the generally low rates of transfer reported in Experiment 1, 

several new tasks were piloted and selected for the current study (Experiment 2). The first task 

was an image of a crayon with numbered circles below it instead of a ruler. This task was 

intended to test what children would do in a situation where there are no hatch marks to count. 

The second task involved asking children how many units long an object was, and then giving 

them an array of laminated unit chips to find the answer. The unit chips were either .75 inches or 

1.5 inches long, and half of each length of unit was pink and half was yellow. The purpose of this 

task was to see whether participants would spontaneously select equal-sized units, or whether 

they would be distracted by the irrelevant feature (i.e. the color). To ensure that students were 

forced to contend with both of these dimensions, there were not enough chips provided of any 

single type to be able to fully measure the object. The third task was called “Going to the Store” 

and involved reading a short scenario to children in which a fictional character wants to take the 

shortest possible path to one of two stores. Participants were told to select the closer store by 

determining which was the shorter path, and were told to, “Use the ruler if you think it will 

help.” Each participant was given two trials at pre-test and two trials at follow-up: the ‘easy 

trials’ had two straight paths, and the ‘hard trials’ had two zigzag paths.   

 After completing the baseline transfer tasks, children were randomly assigned to one of 

four between-subjects training conditions. Assignment was counter-balanced by children’s 

dominant initial measurement strategy. The four training conditions were: Action only (N = 25; 
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N = 13 read-off); Gesture only (N = 25; N = 13 read-off); Action-then-Gesture (N = 24; N = 12 

read-off) and Gesture-then-Action (N = 24; N = 12 read-off).  Based on the results from 

Experiment 1 in which no children improved after training on unshifted objects, all training in 

Experiment 2 was performed with shifted objects (See Chapter 2, Figure 2 for images of the 

shifted-object training conditions). As in Experiment 1, all children received a total of 8 training 

trials with experimenter feedback.  For the training conditions with two different types of 

movement instruction, action and gesture, children received 4 training trials of one type and 4 of 

the other for a total of 8.  During the transition from one movement type to the other, the 

experimenter stated, “Now we are going to play the same game, but with a different kind of 

unit”, and then introduced the child to the new movement type. All other training procedures 

were identical to those reported in Experiment 1. Following training, children received a second 

version of the multiple-choice crayon measurement task (Posttest). 

 

 Session II. Approximately one week after the second session (mean delay = 7.05 days, 

SD = 0.48 days), each participant received a third version of the multiple-choice crayon task 

(Follow-Up) followed by a series of generalization tasks aimed at characterizing each child’s 

ability to transfer his or her understanding of the concept of a “unit”. In one generalization task, 

children were asked to measure three real-world objects with a “broken” ruler, which started 

with a jagged edge at the 2.5 or 3.5-unit mark. For the second generalization task, we asked 

children to find the perimeter of 4 different figures of varying difficulty (see Figure 7 for sample 

items). In addition, to assess growth across the training session, each child was again asked to do 

the numbered circles crayon measurement task, the color/size unit measuring task, and the 

“Going to the Store” task.  
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Figure 7. Sample perimeter test items. This task was administered only in Session II.  

 

Results 
 
 As expected, performance on the four unshifted items on the multiple-choice crayon test 

was very high at all three time points for all participants (M=3.94, SD=0.49 at pre-test; M=3.81, 

SD=0.84 at immediate posttest; M=3.75, SD= 0.97 at the 1-week follow-up). As such, we only 

carried out formal analyses on children’s performance on the ten shifted-item questions.  

 On the main outcome of interest, the crayon and ruler task, the data were non-normally 

distributed (children either got most problems right or wrong). Accordingly, the data were fit 

with a mixed effects binomial logistic regression model that predicted correct performance on 

each shifted-object test item. All analyses were performed using R (R Development Core Team, 

2008). Based on a priori predictions about differences between the higher and lower prior 

knowledge groups, I built two separate models: one for children who predominantly used the 

hatch-mark counting strategy at pre-test, and one for those who began by using the read-off 

strategy. Means and standard errors of the means for the two groups at each session are displayed 

in Figure 8.  
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Figure 8. Average performance by starting strategy and training condition across the three 
sessions. Bars represent +/- 1 standard error of the mean when the data are aggregated by 
participant.  

 
 For the children who began the study by counting hatch-marks, I built a model with 

training condition, testing session (pre-test; posttest; follow-up) and the interaction between the 

two as fixed effects. Subject was entered as a random effect, and I controlled for the test item and 

the gender of the child. An analysis of variance of the model revealed a main effect of testing 

session (Χ2 = 240.59, p < .0001), which was qualified by a marginal testing session X condition 

interaction (Χ2 = 15.90, p < .05). There was no main effect of training condition (Χ2 = 1.70, p = 

0.64) and gender was not significant (Χ2 = 0.32, p = 0.57). Across the conditions, there were no 

significant differences by condition within each of the three testing sessions.  

 For the children who began the study by using the read-off strategy, I first determined 

whether the general pattern of learning in the current study replicated the results of Experiment 

2. I ran a simple model with condition as a fixed effect and subject and question as random 

effects. Overall, children in the Action group marginally outperformed those in the Gesture 

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"
10"

Pre/test" Pos3est" Follow/up"

Av
er
ag
e'
Co

rr
ec
t'(
of
'1
0)
'

Hatch3mark'Group'

Pre/test" Pos3est" Follow/up"

Read3off'Group'
Ac;on"
Ac;on"/>"Gesture"
Gesture"/>"Ac;on"
Gesture"* *

*



	
  
	
  
	
  
	
  

64	
  

group (β= 2.62, p<.08) and significantly outperformed children in the Action-then-Gesture group 

overall (β= 4.15, p<.001). This pattern was true at both post-test and follow-up. 

 Next, I built a model with training condition, testing session (pre-test; posttest; follow-up) 

and the interaction between the two as fixed effects for the read-off group. An analysis of 

variance of the model showed a main effect of condition (Χ2 = 11.03, p<.05) and a main effect of 

testing session (Χ2 = 57.61, p<.0001), which were qualified by a significant condition by testing 

session interaction (Χ2 = 29.96, p<.001). Gender was a non-significant predictor and thus was 

dropped from further analysis in this group (Χ2 = 0.04, p=.83). To explore the condition by 

training session interaction, I built a model for each training session separately and used the 

Action-then-Gesture group as the comparison baseline, as they had the overall lowest 

performance. There were no condition differences at pre-test, but at posttest, the Gesture-then-

Action group showed higher performance than the Action-then-Gesture group (β= 20.81, 

p<.001). Re-leveling the model with Gesture as the baseline showed that children in the Gesture-

then-Action group outperformed children in the Gesture group too (β= 20.54, p<.001).  Thus, at 

post-test, the Gesture-then-Action group showed the largest gains, which were significant larger 

than the gains for either the Action-then-Gesture group or the Gesture group. At follow-up, the 

Action group showed higher performance than the Action-then-Gesture group (β= 21.83, 

p<.001). All other group comparisons were non-significant. Thus, there was only one significant 

difference at Follow-up – the Action Group outperformed the Action-then-Gesture group. 

 Another set of analyses compared conditions that used one or two representations.  For 

both the hatch-mark counting group and the read-off group, there was no effect of the number of 

representations (one vs. two) at any time point (all p’s > 0.69). 
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 Strategy Analysis. Once again, I performed a descriptive analysis of the kinds of errors 

children in both groups were making before and after training to ask whether some children were 

showing qualitative improvements that were not captured by our main outcome (Figure 9).  This 

analysis showed that training led some children in the read-off group to switch their strategy to 

the more sophisticated, yet still incorrect, hatch mark strategy across all four training conditions. 

By contrast, none of the children in the hatch-mark group switch to a read-off strategy after 

training in any instructional condition.  

 
 
Figure 9. Each trial was coded based on the child’s response. This chart, broken down by starting 
strategy (hatch-mark and read-off), training condition (action-then-gesture; action; gesture-then-
action; gesture), and time point (pre-test, posttest, follow-up) shows the distribution of strategy 
use across the entire study. While some children in the read-off group switched to the hatch-mark 
strategy after training, children in the hatch-mark group never switched to the read-off strategy.  

 
 Transfer Tasks. There were three tasks that were administered at both pre-test and follow-

up to assess growth across the session (numbered circles; colored unit chips; ‘going to the 

store’). For these tasks, a set of linear regression models used improvement on the main ruler and 

crayon outcome (post-test score minus pre-test score); training condition; and the interaction 

0%#
10%#
20%#
30%#
40%#
50%#
60%#
70%#
80%#
90%#
100%#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Pr
e0
te
st
#

Po
s4

es
t#

Fo
llo
w
0u
p#

Ac<on#
Gesture#

Ac<on# Gesture#
Ac<on#

Gesture# Ac<on#
Gesture#

Ac<on# Gesture#
Ac<on#

Gesture#

Hatch0mark#Group# Read0off#Group#

Random#

Read#Off#

Hatch#Mark#

Correct#



	
  
	
  
	
  
	
  

66	
  

between condition and improvement to predict the change in performance on the generalization 

task from Session I to Session II (Table 4). For the two tasks that were administered only at 

follow-up to assess transfer (perimeter and ‘broken ruler’), the same fixed effects were used to 

predict performance on each transfer task (Table 5). While performance on some the tasks was 

correlated with improvement on the measurement task overall (numbered circles, broken ruler, 

and perimeter), there were no interactions with training condition for any of the tasks.  

A. Task 
Group Means of  
Δ Score (SD) 

Group 
Comparison 

All Participants 
Relation to Learning  

 Numbered 
Circles 

RO = 0.72 (.95) 
HM = 0.09 (.67) p = 0.0003*** 

Χ2
 Learning= 6.92 (p < 0.01)** 

Χ2
Condition= 4.13 (p = 0.12)1 

Χ2
Interaction= 0.74 (p = 0.78) 

 Colored Unit 
Chips 

RO = 0.06 (.68) 
HM = 0.02 (.60) p= 0.79 

Χ2
 Learning= 0.00 (p = 0.97) 

Χ2
Condition= 2.18 (p = 0.16) 

Χ2
Interaction= 0.80 (p = 0.59) 

 ‘Going to the 
Store’ 

RO = 0.06 (0.74) 
HM = 0.18 (0.61) p = 0.39 

Χ2
 Learning= 0.88 (p = 0.16) 

Χ2
Condition= 1.92 (p = 0.25) 

Χ2
Interaction= 1.67 (p = 0.31) 

 
Table 4. This shows children’s improvement in performance on the transfer tasks that were 
administered at both pre-test and follow-up.  
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Though there was no main effect of condition overall, an analysis within the read-off group 
showed a marginal main effect of condition (Χ2 = 3.92, p = 0.07) even after controlling for 
follow-up score, which was a significant predictor (Χ2 = 15.39, p < 0.001). In this analysis 
children in the Gesture-then-Action group improved marginally more than children in the Action 
group (p = .13) and significantly more than the Gesture group (p < .05) on the numbered circles 
task.  
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B. Task 
Group Means 
(SD) 

Group 
Comparison 

All Participants 
Relation to Learning 

 
Broken Ruler RO = 0.81 (.71) 

HM = 1.58 (1.25) p = 0.0002*** 
Χ2

 Learning= 16.18 (p<.001)*** 
Χ2

Condition= 2.36 (p = 0.46) 
Χ2

Interaction= 3.36 (p = 0.30) 
 

Perimeter RO = 0.38 (.96) 
HM = 0.93 (1.01) p= 0.007** 

Χ2
 Learning= 6.87 (p < 0.05)* 

Χ2
Condition= 1.21 (p = 0.76) 

Χ2
Interaction= 0.76 (p = 0.87) 

 
Table 5. This shows children’s performance on the tasks that were administered only at follow-
up.  
 
 Learning Trajectory During Training. The pattern of performance in the read-off group 

did not map on cleanly to any of the a priori predictions about possible learning outcomes. Given 

this surprising result, I decided to look at the trajectory of learning during the training process to 

see whether there were any identifiable issues during the training itself.  Recall that each child 

received 8 total training trials. In the Gesture-then-Action and the Action-then-Gesture groups, 

children saw 4 training trials of one type and the 4 of another. A trained coder re-watched each 

video and simply marked whether each child answered each training problem correctly on his or 

her first guess (before using the gesture or action to check the answer). The results are displayed 

in Figures 10 and 11. Overall, there do not appear to be dramatic differences by condition in 

performance during training, suggesting that these learning trajectories cannot explain the 

observed differences at post-test.  
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Figure 10. The proportion of hatch-mark counting children in each training condition who 
answer each of the 8 training trials correctly.  

 

 
Figure 11. The proportion of read-off strategy children in each training condition who answer 
each of the 8 training trials correctly.  

 
 Finally, to investigate whether there were any qualitative differences during training 

within the two sequential training conditions for the read-off group, a trained coder determined 

from the videotape whether each child was properly performing the movement on each of the 

training trials. A ‘proper’ movement was one that closely matched that of the experimenter and 

did not require corrections or additional modeling. The results of this coding are displayed in 
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Figure 12 and reveal that children who were asked to perform gesture during the first half of the 

training struggled with producing the movement correctly.  

 

 
 

Figure 12. The proportion of children who were correctly performing the movement the 
experimenter had modeled during the two sequential training conditions of interest. The vertical 
black line marks the point in training where the training switched from one movement-type to 
the other.  

	
  

Discussion 
 
 In Experiment 2, I replicated the pattern of results from Experiment 1 and tested a new 

hypothesis. The replication, in general, showed that children who used a read-off strategy at pre-

test learned more from action-based instruction than gesture-based instruction and performed 

worse on transfer tasks than children in the hatch-mark group. With two new training conditions, 

I also tested whether children in the read-off group might benefit from seeing a unit represented 

through both action and gesture in the same training session. Contrary to my predictions, 

children in the read-off group did not benefit from instruction that began with a concrete, 

physical demonstration and transitioned to a more abstract, gesture-based demonstration, nor did 
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they benefit from seeing multiple representations overall. Instead, they learned most when the 

abstract gesture training was followed by the concrete action training. Here, I discuss several 

possible explanations for the observed pattern of results, and outline some remaining questions 

that were raised by these data.  

 The first observation from these data is that overall, two representations (acting on and 

gesturing about units) are not better for learning than a single representation. This pattern was 

true for both the lower and higher prior knowledge groups on both immediate learning and 

transfer tasks. Secondly, within the hatch-mark group, children improved significantly after all 

types of training, and maintained that improvement at follow-up. These children also showed 

significantly higher rates of transfer than those in the read-off group, particularly on the two 

tasks that were administered only at Session II.  

 Within the read-off group, I found that the order of the presentation of action and gesture 

mattered for learning outcomes. Children performed significantly worse when they saw action 

followed by gesture than when it was presented the other way around. One possibility is that 

these data are the result of a recency effect whereby children in the read-off group were 

essentially ignoring the first half of training and focusing on the second half of training. Under 

this hypothesis, children who concluded the training with a concrete action should outperform 

those who concluded the training with an abstract gesture. However, an investigation of the 

learning trajectories during training does not support this hypothesis. Children’s performance, 

particularly in the two sequential training groups (the dashed lines in Figure 12), track 

remarkably closely with one another and with the other training conditions across the training 

session. If children were overtly ignoring the first part of the training in either of the sequential 
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training conditions, performance during the first part of training should be markedly lower – a 

pattern I do not observe.  

 An alternative possibility to explain these data is that the abstract gesture in the Gesture-

then-Action training condition is actually serving as a kind of placeholder for children. Under 

this hypothesis, the abstract gesture is still confusing for children in the read-off group, but when 

they see the gesture then the action, the confusion is resolved. The theory underlying this 

explanation comes from the ‘desirable difficulties’ literature, which states that providing children 

with a challenge makes them more receptive to subsequent information and improves learning 

and transfer outcomes over and above a scenario with no such challenge (e.g., Bjork, 1994). In 

this case, gesture is providing the challenge, and immediately following that challenge with a 

more concrete action really helps children to learn. In the current study, children in the Gesture-

then-Action condition showed very high performance at post-test, and though there was a slight 

decrease in performance on follow-up, an investigation of strategy use shows that many of the 

children maintained some learning by reverting to a more advanced hatch-mark counting strategy 

rather than reverting fully back to the read-off strategy. Also, while there was very limited 

evidence of condition-dependent transfer in this study as a whole, there was one task that did 

show a pattern within the read-off group. On the numbered circles task, read-off children in the 

Gesture-then-Action group improved marginally more than children in the Action only group 

and significantly more than children in the Gesture only group. This pattern is consistent with the 

hypothesis that the Gesture-then-Action condition was a powerful driver of deeper learning and 

transfer. Finally, an investigation of the form of children’s movements during the training 

process showed that children who saw the gesture first were really struggling to properly perform 

the movement. In other words, they appeared to be struggling more or working harder to achieve 
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similar levels of performance on the training, which is also consistent with a ‘desirable 

difficulties’ hypothesis. Taken together, the qualitative and quantitative performance during 

training, performance after training at post-test and follow-up, and improvement in performance 

on the numbered circles transfer task, are suggestive of a desirable difficulties gesture story. 

More research is needed to further explore this intriguing hypothesis.  

 Limitations. One clear limitation of this study was the degree to which the selected 

transfer tasks did not differentiate learning outcomes by condition (with the exception of the 

numbered circles task for the read-off group). In contrast to Experiment 1, the majority of tasks 

reported here did correlate with improvement on the main task. However, once again, overall 

rates of improvement and performance were quite low on the transfer tasks. This particular 

limitation means that it can be difficult to capture qualitative differences in learning or 

differences in ‘deep learning’ that cannot be detected by performance on the main outcomes of 

interest.  It also could be the case that instruction on the main task needs to be more prolonged 

and involve deeper discussion of units in order to transfer to other related tasks.  

 It remains unclear from the current study how generalizable the findings are to other 

domains of math and to other types of instruction. The results show that in this paradigm, neither 

the higher prior knowledge group nor the lower prior knowledge group benefitted drastically 

more from multiple types of movement instruction in the same session. It is possible, however, 

that benefits would start to emerge after a higher dosage of training (i.e., 8 trials of each, 16 trails 

total), or with multiple exemplars of another type (i.e., actions paired with a more 

representationally transparent gesture). Relatedly, although we did not find the predicted benefit 

of concrete-to-abstract training within the read-off group, it is possible that such a benefit would 

emerge if the dosage of training were increased, or if the transition from concrete to abstract was 
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spread out over a longer period of ontogenetic development (i.e., concrete training followed by 

abstract training several weeks later). These are open questions for future investigation.   

 Conclusions. In the current study, children in the hatch-mark counting group improved 

dramatically after all four training conditions. Children in the read-off group did best if they 

received the Gesture-then-Action condition or the Action only training condition. Furthermore, 

there was a trend whereby children in the read-off group who received Gesture-then-Action 

training showed higher rates of transfer than those in the Action alone training. One potential 

interpretation of these data is that gesture is serving as a placeholder that challenges children’s 

assumptions and creates a cognitive dissonance. In the Gesture-then-Action training condition, 

this dissonance is immediately resolved. In the Gesture only condition and the Action-then-

Gesture condition, this dissonance and potential confusion is carried into post-test, which may 

reflect the significantly lower scores in these two training conditions. While future work is 

needed to confirm this hypothesis, one clear overarching finding is that the abstract gesture poses 

a challenge for children in the lower prior knowledge read-off group in a lesson about spatial 

units of measurement. In Experiment 3, I ask whether this challenge stems from the fact that the 

gesture is abstract and representational, or whether it stems from the fact that it is iterative and 

does not leave a permanent trace in the external environment. In Experiment 3, I also collect 

spatial and verbal working memory measures to see if they might explain some of the individual 

variability in learning outcomes.  
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CHAPTER 4 – ACTION, GESTURE, AND THE ROLE OF WORKING MEMORY 
 

Introduction 
 
 Both Experiment 1 and Experiment 2 emphasize that gesture can be difficult for lower 

prior knowledge learners. Across two studies and eight different training conditions, the only 

training condition with a gesture component that was successful in improving learning outcomes 

was a training condition with gesture that was immediately followed by an action demonstration. 

From these findings, it is clear that children with lower prior knowledge have difficulty 

interpreting or using the thumb-and-forefinger gesture, but it remains unclear precisely why, 

particularly when it poses no such issues for children with higher prior knowledge. In the final 

study of this dissertation, I deconstruct some of the features of the thumb and forefinger gesture 

that might prove challenging to children. Specifically, I ask whether training with a single 

iterated unit chip, which is similar to gesture in many ways but is not abstractly representational, 

will behave more like the multiple unit chip instruction, or more like the iterated, abstract gesture 

condition. In doing so, I hope to determine whether the gesture is difficult for lower prior 

knowledge learners because it is abstractly representational, or whether the difficulty stems from 

the other features of the gesture instruction that differentiate it from action (i.e., that it is iterated 

and does not leave a trace). 

 One possibility is that the iterated unit chip training condition will have a similar effect 

on learning outcomes as the gesture condition. That is – children in the read-off group might 

struggle to learn from the iterated unit chip. If so, it would indicate that lower prior knowledge 

learners may struggle to learn from gesture because it does not permanently change the 

environment. In fact, changing aspects of the external environment or ‘offloading cognition’ onto 



	
  
	
  
	
  
	
  

75	
  

the environment while problem solving is one of the arguments put forth for why physical 

mathematical manipulatives are so useful for learners (Mix, 2010). Gestures, which do not 

interact directly with the environment, do not create this type of physical change. And when a 

learner is just beginning to learn a new idea, a movement that is transient might not give the 

learner the opportunity to process and remember that information as effectively as if it had 

created more lasting change. While it has mostly been characterized in adults, the ‘time-based 

resource sharing model’ of working memory simply states that representations in working 

memory decay over time unless they are refreshed (Barrouillet, Bernardin, & Camos, 2004). 

Under this model, children with lower prior knowledge who have larger conceptual gaps may 

simply have more trouble learning from any instruction that is transient and therefore more 

taxing on working memory.  

 The alternative possibility is that children in the read-off group will learn more 

successfully from the iterated unit chip than from the gesture. This pattern of results would 

suggest that gesture is difficult for children with lower prior knowledge because its 

representational content is opaque, not because it is iterative and transient. There is research to 

support this possibility as well. Production of spontaneous gestures during learning has been 

linked to improvements in working memory performance for the speaker (Goldin-Meadow, 

Nusbaum, Kelly & Wagner, 2001; Ping & Goldin-Meadow, 2010; Wagner, Nusbaum & Goldin-

Meadow, 2004), but we know that this effect is only true for meaningful and not meaningless 

hand movements (Cook, Yip & Goldin-Meadow, 2012). Furthermore, we know from some 

recent work that young children and even adults do not always interpret representational hand 

movements as gestures, but instead may see them as meaningless hand movements or 

movements for their own sake if they are not provided with enough context (Wakefield, Novack, 
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Goldin-Meadow, 2016; Novack, Wakefield & Goldin-Meadow, 2016). Thus, it is possible that if 

children in the read-off group see the thumb-and-forefinger gesture as meaningless or irrelevant 

movement, they will not glean any of the working memory benefits that are normally associated 

with gesture-based instruction and will have worse learning outcomes as a result. In fact, it is 

possible that asking a child to produce a gesture they do not understand is more detrimental for 

learning than incorporating no movement into instruction at all, as it might provide the child with 

a sort of dual task. This particular part of the hypothesis is not directly tested here, as all of the 

current training conditions contain movement components, but it may be a comparison worthy of 

future research.  

 In both of the hypotheses outlined here (action > iterated chip = gesture; action = iterated 

chip > gesture), working memory capacity plays a role in helping to explain why gesture, and 

potentially the iterated chip, might be difficult for some learners. Because of this, Experiment 3 

includes measures of both spatial and verbal working memory, to explore whether this particular 

measure of individual difference can explain any of the variability we see in learning outcomes 

within each of the instruction types or across the instruction sessions more broadly. For example, 

if it is the case that gesture-based instruction is taxing on spatial working memory for some 

children, we might expect only those students with relatively high spatial working memory to be 

successful in that instructional condition. Interest in this particular measure of individual 

difference comes from a large body of literature that establishes a strong relationship between 

working memory capacity and math performance in adults (e.g., Ashcraft & Kraus, 2007; 

Beilock & Carr, 2005) and between working memory and math learning outcomes in children 

(Swanson & Beebe-Frankenberger, 2004), even controlling for other factors like IQ and domain 

knowledge (Alloway, 2009). In particular, children with lower mathematical ability and slower 
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learning trajectories appear to have specific deficits in inhibitory control and working memory 

(Bull & Scerif, 2001). There is also some work with adults looking at the interaction between 

working memory, domain knowledge and performance on a non-mathematical task that shows 

that working memory predicts performance over and above domain knowledge (Hambrick & 

Engle, 2002). Taken together, these findings identify working memory as a predictor of interest 

in the current mathematical learning task.  

Methods 
 
 Subjects. 94, 1st grade students (46 females; 48 males; mean age at test: 6.99 years, SD = 

0.34 years) were recruited and tested at several Chicago area schools. As with Experiment 2, 

children in this sample were from a broader range of socio-economic backgrounds. Based on a 

categorical income questionnaire, children in the current study reported ranges from 2 to 6 (6 is 

the highest possible score). In Experiment 1, the range was 4-6; in Experiment 2, the range was 

1-6. Overall, the average score reported in the current sample was still quite high (5.30 out of 6, 

SD = 1.28), and SES was a non-significant predictor in all models and thus is not included in any 

final analyses. Children whose parents signed a consent form participated in two one-on-one 

sessions with an experimenter, which took place one week apart in a quite area of their school 

(Session 1 and Session II).  

  

 Session I. To assess pre-test strategy, children were given a 14-question multiple-choice 

paper and pencil test (see Figure 1, Chapter 2). As described previously, the first four test items 

were of a crayon that was aligned with the “0” point on the ruler (“unshifted problems”). In the 

10 subsequent test items the crayons were shifted to different points on the ruler (“shifted 
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problems”). All crayons started and ended at a whole unit. The four answer choices reflected the 

correct answer, a read-off strategy answer, a hatch-mark strategy answer, and a fourth random 

choice that did not match any of the other three strategy-related options.  This multiple-choice 

test was the main outcome of interest. 

 Children were categorized into a particular strategy group if 6 or more of the 10 shifted-

object items were answered in a way that was consistent with a single strategy. This criterion 

was based on probability values of the binomial distribution: on a task with 4 options, answering 

6 out of 10 using a particular strategy means that that child is using that strategy more often than 

would be predicted by chance or random guessing (p < .01). By this metric, there were 22 

children in the ‘correct’ group (N=16 males); 38 children in the ‘hatch-mark’ group’ (N=18 

males); 30 in the ‘read-off’ group (N=11 males); and 4 children (N=3 males) whose dominant 

strategy was ‘random’ or did not meet criteria for inclusion in one of the other groups. Children 

who were in the ‘correct’ group were excluded from further analyses given limited room for 

improvement after training, and children in the ‘random’ group were excluded due to the small 

sample size. One additional child from the read-off group was excluded for missing data on the 

follow-up session. Thus, the final sample consisted of 67 children. 

 Immediately after completing the multiple-choice crayon task (Pre-Test), children in 

Session I received two other unit-based tasks that were also administered at Session II to capture 

growth across the whole experiment.  The ‘numbered circles’ crayon task, which captured some 

differences by training condition in Experiment 2, was once again administered at pre-test and 

posttest. Two trials of the perimeter task were also administered before and after training, as that 

task has consistently correlated with learning outcomes in both of the two previous studies.  
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 After completing the two baseline transfer tasks, children were randomly assigned to one 

of three between-subjects training conditions. Assignment was counter-balanced by children’s 

dominant initial measurement strategy. The three training conditions were: Action (N = 21; N = 

9 read-off); Gesture (N = 23; N = 10 read-off); and Iterated Action (N = 23; N = 10 read-off).  

Once again, all training in Experiment 3 was performed with shifted objects (see Figure 13 for 

images of the training conditions). All children received a total of 8 training trials with 

experimenter feedback. Following training, children received a second version of the multiple-

choice crayon measurement task (Posttest). 

 

 
Figure 13. Still shots of the three training conditions: A) Action, B) Gesture, and C) Iterated 
Action.  

 
 Session II. One week after the second session (mean delay = 7.09 days, SD = 0.87 days), 

each participant received a third version of the multiple-choice crayon task (Follow-Up) 

followed by a verbal working memory and a spatial working memory assessment. The verbal 

working memory task was a Letter Span task in which children were read a list of letters (e.g., 

“B-R”) and then asked to repeat the list back in the same order. The length of the list increased 

by one letter every two trials. To move to the next level, a child had to get at least one of the two 

trials correct. The child’s final score was calculated by adding up the total number of items 

answered correctly (out of a maximum of 16 trials over 8 levels). The spatial working memory 

measure was a Corsi Block task (Corsi, 1972; Milner, 1971; Pagulayan et al., 2006). In this task, 
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the experimenter uses her finger to tap the tops of cubes in a predetermined order. The child is 

then asked to repeat the tapping sequence in the same order. For ease of administration, the 

experimenter can see small numbers printed on the cubes, while the child sees only plain cubes 

(see Figure 14 for an image of the testing apparatus). The first level in this task is a sequence of 

three taps and each successive level increases by one tap. In order to move to the next level, the 

child has to answer at least one of the three trials correctly at a given length. If the child got all 

three trials of a certain block length incorrect, no further trials were administered. The child’s 

final score is calculated by adding up the total number of items answered correctly (out of a 

maximum of 18 across 6 levels). In addition to the verbal and spatial working memory measures, 

each child was again asked to do the numbered circles crayon measurement task and the 

perimeter task to assess growth across the session.  

 

 
Figure 14. This figure shows the experimenter view of the Corsi block task. The child’s view 
does not have any visible numbers. 

Results 
 
 Once again, performance on the four unshifted items on the multiple-choice crayon test 

was very high at all three time points for all participants (M=3.94, SD=0.49 at pre-test; M=3.76, 
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SD=0.95 at immediate posttest; M=3.91, SD= 0.59 at the 1-week follow-up). As such, formal 

analyses focus on children’s performance on the ten shifted-item questions.  

 On the main outcome of interest, the crayon and ruler task, the data were non-normally 

distributed (children either got most problems right or most problems wrong). Accordingly, the 

data were fit with a mixed effects binomial logistic regression model that predicted correct 

performance on each shifted-object test item. All analyses were performed using R (R 

Development Core Team, 2008). Based on a priori predictions about difference between the 

higher and lower prior knowledge groups, I built two separate models: one for children who 

predominantly used the hatch-mark counting strategy at pre-test, and one for those who began by 

using the read-off strategy. Means and standard errors of the means for the two groups at each 

session are displayed in Figure 15.  

 

 
Figure 15. Average performance by starting strategy and training condition across the three 
sessions. Bars represent +/- 1 standard error of the mean when the data are aggregated by 
participant.  

 
 For the children who began the study by counting hatch-marks, I built a model with 

training condition, testing session (pre-test; posttest; follow-up) and the interaction between the 

two as fixed effects. Subject was entered as a random effect, and I controlled for the test item and 
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the gender of the child. An analysis of variance of the model revealed a main effect of testing 

session (Χ2 = 266.36, p<.0001), which was qualified by a significant testing session X condition 

interaction (Χ2 = 14.49, p<.01). There was no main effect of training condition (Χ2 = 0.10, 

p=0.95) and gender was not significant (Χ2 = 0.24, p=0.63) and thus was dropped from future 

analysis. To explore the condition by training session interaction, I built a model for each 

training condition separately and used posttest as a baseline comparison group. Question and 

subject were both included as random effects. This analysis showed that performance in all three 

groups dropped from posttest to follow-up, but the drop was smallest in the Action group and 

largest in the Gesture group (β= -0.76, p < .05 for Action; β= -1.04, p < .01 for Iterated Action; 

β= -2.84, p < .00001 for Gesture). Despite these minor differences in learning trajectory within 

the conditions, there were no significant differences by condition within each of the three testing 

sessions (all p’s > 0.28), and learning across all conditions was quite high.  

 For the children who began the study by using the read-off strategy, I built a similar 

model with training condition, testing session (pre-test; posttest; follow-up) and the interaction 

between the two as fixed effects. An analysis of variance of the model showed a main effect of 

testing session (Χ2 = 80.77, p<.0001). Gender was a non-significant predictor and thus was 

dropped from further analysis in this group (Χ2 = 2.40, p=.12). The interaction between training 

condition and testing session was not statistically significant (Χ2 = 6.19, p=.19), but it was 

trending towards significance as was reported in Experiments 1 and 2. To look at performance by 

condition within each testing session, I built a model for each session separately and used the 

Gesture group as the comparison baseline, as they had the overall lowest performance. There 

were no condition differences at pre-test or posttest, but at follow-up, the Action group and the 
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Iterated Action group showed higher performance than the Gesture group (β= 6.3, p = .07 and β= 

7.8, p < .05, respectively).  

 

 Strategy Analysis. Once again, I performed a descriptive analysis of the kinds of errors 

children in both groups were making before and after training to ask whether some children were 

showing qualitative improvements that were not captured by the main outcome (Figure 16).  This 

analysis showed that training led some children in the read-off group to switch their strategy to 

the more sophisticated, yet still incorrect, hatch mark strategy. This effect was most pronounced 

within the Gesture group and the Action group. Very few read-off strategy users in the Iterated 

Action condition switched to a hatch-mark counting strategy. Consistent with Experiment 1 and 

Experiment 2, none of the children in the hatch-mark group switch to a read-off strategy after 

training in any instructional condition.  

 
 
Figure 16. Each trial was coded based on the child’s response. This chart shows the distribution 
of strategy use across the entire study.  
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 Transfer Tasks. For the tasks administered at both Session I and Session II (numbered 

circles and perimeter), I ran a set of linear regression models with improvement on the main ruler 

and crayon outcome (post-test score minus pre-test score); training condition; and the interaction 

between condition and improvement to predict the change in performance on the transfer task 

from Session I to Session II. In the numbered circles task, improvement was correlated with 

learning outcomes, but was not related to training condition in any way. In the perimeter task, 

improvement from pre-test to follow-up was marginally correlated with learning outcomes 

overall, and there was a significant main effect of training condition whereby children in the two 

action-based condition (Action and Iterated Action) improved significantly more than the 

children in the Gesture condition (β = 0.46, p < .05 for Action compared to Gesture and β= 0.47, 

p < .01 for Iterated Action compared to Gesture).  

 
 

A. Task 
Group Means of  
Δ Score (SD) 

Group 
Comparison 

All Participants 
Relation to Learning 

 Numbered 
Circles 

RO = 0.69 (1.00) 
HM = 0.18 (.65) p = 0.015* 

Χ2
 Learning= 4.27 (p < 0.05)* 

Χ2
Condition= 0.78 (p = 0.58)  

Χ2
Interaction= 0.033 (p = 0.98) 

 
Perimeter RO = 0.17 (.60) 

HM = 0.026 (.64) p= 0.34 
Χ2

 Learning= 0.10 (p = 0.11) † 
Χ2

Condition= 3.33 (p < 0.05) * 
Χ2

Interaction= 0.63 (p = 0.40) 
 
Table 6. This shows children’s change in performance on the tasks that were administered at 
both pre-test and follow-up. On the numbered circle task, children in the hatch-mark counting 
group were performing near ceiling at pre-test, which is why improvement is significantly 
greater in the read-off group.  
 
 Working Memory. Working memory tasks were administered for three reasons. First, to 

determine whether there were any global differences in working memory capacity based on 

children’s starting strategy. Second, to see whether spatial working memory, verbal working 

memory, or both were predictive of learning or retention irrespective of condition. And finally, 
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to see whether a certain type of working memory (spatial vs verbal) predicted performance 

differentially based on training condition.  

 For the first analysis, I ran a simple model using starting strategy (read-off and hatch 

mark) to predict performance on each of the working memory measures. I used hatch-mark 

counting as the baseline strategy group, and also controlled for both SES and Gender in the 

models. For the letter span task, there was no relation to strategy (β= -0.45, p = .21), but there 

was a significant relation to strategy for the Corsi Block Task (β= -2.15, p < .001), whereby 

children in the hatch-mark counting group had higher spatial working memory than children in 

the read-off group. See Figure 17 for means and standard error of the means for both tasks. 

Gender and SES were not significant predictors in either model (all p’s > 0.29).  

 

 
Figure 17. Mean performance on the two working memory tasks. Error bars are +/- 1 SE of the 
mean. 

 
 Beyond these overall differences by starting strategy, there was a large distribution of 

scores within each type of working memory task, suggesting a big range of individual 

differences (Figure 18). For the second analysis, I tested whether these individual differences in 

either spatial or verbal working memory were predictive of whether a child was a learner at 

posttest or retained learning at follow-up, irrespective of starting strategy.  
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Figure 18. Distribution of scores on spatial and verbal working memory measures. 

 
 I first coded each child as a ‘learner’ or ‘non-learner’ at each session to create a binomial 

outcome measure of learning. A participant was considered a ‘learner’ if he or she answered 6 or 

more of the 10 crayon measurement items correct at a given session. Again, this coding scheme 

was appropriate given the bimodal distribution of the data – most children answered either all or 

none of the questions correctly. I then built a series of simple regression models using either 

spatial or verbal working memory to predict learning status at post-test or retention status at 

follow-up. Figure 19 displays the average scaled scores for learners and non-learners on each of 

the working memory tasks at posttest and follow-up. To scale the scores, I used a standard 

method – subtracting the mean score from each participant’s score and dividing by the standard 

deviation, to give a mean of 0 and a standard deviation of 1 for each working memory measure 

across all participants. The scaling process allows me to compare effect sizes between the two 

working memory measures, which had slightly different levels of average difficulty and slightly 

different total possible scores. These scaled scores are used in the remainder of the working 

memory analyses. Overall, this first analysis shows that spatial working memory is marginally 

predictive of learning and significantly predictive of retention (β= 0.54, p = .067 at post and β= 
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0.71, p < .01 at follow-up). Verbal working memory was not predictive of learning and was only 

marginally predictive of retention (β= 0.17, p = .49 for post and β= 0.427, p = .059 for follow-

up). When both measures are entered into the same model, only spatial working memory is 

predictive of performance (Corsi: β= 0.09, p = .08 for post and β= 012, p < .05 for follow-up; 

Letter Span: β= 0.02, p = .78 for post and β= 0.09, p = .17 for follow-up).  

 

 
Figure 19. This figure displays the mean scores on each working memory task for learners and 
non-learners at posttest and follow-up. Error bars are +/- 1 SE of the mean.  

  
 The final set of analyses investigates whether spatial or verbal working memory 

differentially predict learning or retention within each training condition (Figure 20). Given the 

small sample size for this final question, findings should be considered preliminary. The analysis 

reveal that spatial working memory marginally predicts learning in the action condition (β= 0.15, 

p = .111) and retention in the gesture group (β= 0.14, p = .07). Verbal working memory 

marginally predicts retention in the iterated chip group (β= 0.186, p = .055). While these findings 

are marginal due to the small sample sizes, the patterns are suggestive of the idea that the 

different training conditions rely on different aspects of working memory.  
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Figure 20. This figure displays the mean scores on each working memory task for learners and 
non-learners at posttest and follow-up within each training condition. Error bars are +/- 1 SE of 
the mean. 

Discussion 
 
 The findings from Experiment 3 are threefold. First, though there were non-significant 

differences in learning on immediate posttest, children with lower prior knowledge performed 

significantly better at follow-up after Action instruction as compared to Gesture instruction. This 

replicates the general pattern of results reported in Experiment 1 and Experiment 2.  Second, 

within the read-off group, children in the newer condition of interest, Iterated Action, performed 

significantly better than those in the Gesture training and did not perform any differently from 

those in the Action condition. Finally, Experiment 3 explores the role of both verbal and spatial 

working memory and suggests some exciting areas for future research.  
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 Though the general pattern of results for children in the read-off group is similar in this 

study to that reported in the previous two studies, one notable difference is that the effect does 

not emerge as a significant difference until the follow-up session. It is not clear at this juncture 

why the group differences emerge primarily at Session II, though it could be related to the 

slightly lower SES than Experiment 1 -- the learning differences have been attenuated in the 

more diverse SES samples, combined with a smaller sample size than Experiment 2 -- a larger 

sample could make the trending differences at posttest statistically significant. The alternative 

possibility is that for reasons unexplained by the demographic information collected (age, SES, 

school, gender), children in this sample were more familiar with gesture on average or more 

likely to learn from it for some other unidentified reason (12% learned from the Gesture training 

in Experiment 1; 25% in Experiment 2; 44% in Experiment 3). Nevertheless, there was still 

remarkable variability within the group, in that some read-off children learned well from gesture, 

but the majority of children continued to struggle with it.  

 The primary training condition of interest in the current study was the Iterated Action 

condition. This condition was designed to share some features with the Gesture training – it was 

iterated and did not leave a permanent trace -- and some features with the Action training – there 

was a concrete unit chip to touch and manipulate rather than just the abstract idea of a unit 

represented by gesture. Children learned quite well from this training condition and maintained 

that learning over time more so than children in the Gesture condition. This result is consistent 

with the idea that it is the specific, representational features of the thumb-and-forefinger gesture 

that make it difficult for children, and not the other properties of the movement (that it is iterative 

and leaves no trace). From an educational perspective, this finding emphasizes the importance of 

considering the exact form of the gesture being used in instruction. It raises the possibility that a 
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different representational gesture, perhaps one that traces the unit space from left to right, or one 

that simply indicates the space between two lines, could be more effective in this learning 

situation. From a theoretical perspective, this finding suggests that the key in selecting an 

effective gesture for any learning scenario might rest on whether the representational content of 

the gesture is accessible to a given learner. This dissertation underscores that a child’s prior 

conceptual knowledge is a strong predictor of this access to representational content.  

 Beyond the immediate learning outcomes, there were also two transfer tasks administered 

at both pre-test and follow-up to assess growth across the sessions. Improvement on both tasks 

correlated at least marginally with learning outcomes, but only the perimeter task reflected 

differences based on training condition. Children improved significantly more after training in 

both of the action-based conditions (Action and Iterated Action) than they did in the Gesture 

condition even after controlling for differences in the rates of learning. Despite the fact that the 

perimeter task has been administered in all three experiments in various forms, this is the first 

time that it has reflected such significant condition differences. However, revisiting the results 

from Experiment 1, the only other time when the perimeter task was administered twice to assess 

growth, reveals that there was a marginal effect of condition after controlling for learning in that 

study as well (p = 0.17). The data show a similar trend whereby children in both of the action 

conditions improve marginally more after training than children in both of the gesture conditions. 

These patterns seem somewhat contradictory to some of my own previous work extolling the 

benefits of gesture-based instruction to promote transfer (Novack, Congdon, Hemani-Lopez & 

Goldin-Meadow, 2014). One possible explanation that arises from these data is that action 

instruction is more appropriate for promoting transfer in this scenario because units are concrete, 

spatial entities rather than abstract ideas, like mathematical equivalence. Overall though, transfer 
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rates remain quite low across all three of these studies, so future work is needed to investigate the 

strength and generalizability of this effect.  

 Finally, the current study addressed three questions about the relationship between spatial 

working memory and verbal working memory and performance on a linear measurement task. 

The first finding was a strong and significant interaction between working memory and starting 

strategy. There were no differences in verbal working memory between children in the read-off 

group and the hatch-mark group, but there was a large difference in spatial working memory 

whereby hatch-mark counting children had higher spatial working memory scores than their 

read-off strategy peers. This is consistent with some previous literature showing that verbal 

working memory is less predictive of math achievement than visuo-spatial working memory 

(Holmes & Adams, 2006). This finding also seems parsimonious with the argument that linear 

measurement is a spatial task, which could mean that higher spatial working memory should 

correlate with a better understanding of the task. To date, this finding is simply correlational and 

it would be interesting to probe the causal link between spatial working memory and higher 

conceptual knowledge of linear measurement.  

 Additional analyses explored the relationship between individual differences in spatial 

and verbal working memory and learning status at posttest and follow-up. The results showed 

that spatial working memory was a predictor of learning status at both sessions and that verbal 

working memory was a marginal predictor of learning status at follow-up irrespective of training 

condition and starting strategy. Again, spatial working memory could be a stronger predictor 

overall because linear measurement is a spatial task. It is less clear why individual differences in 

verbal working memory would marginally relate to performance at follow-up and not during 

learning itself. One possibility is that verbal working memory is serving as a proxy for verbal 
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skills more broadly (e.g., Baddeley, 2003), and higher verbal skills could play a role in 

remembering a lesson over time, though this specific link is not well established by previous 

research. Furthermore, when both factors were entered into the same model, only spatial working 

memory was predictive of learning outcomes, meaning the link between verbal working memory 

and learning outcomes is tenuous at best. In the final set of analyses looking at how the two types 

of working memory might contribute differentially to learning based on the type of training, 

spatial working memory was marginally related to success in the Gesture condition and the 

Action condition, whereas verbal working memory marginally contributed to success in the 

Iterated Action condition. Due to the relatively small sample sizes, this is only preliminary 

evidence that spatial and verbal working memory may contribute to success differentially 

depending on the features of the training condition. More work is needed to explore this 

intriguing possibility. 

 Conclusions. In the current study, children in the hatch-mark counting group improved 

dramatically after all three training conditions. Children in the read-off group did best in the 

Action and Iterated Action conditions and did not do as well in the Gesture training condition. 

This result suggests that gesture may be difficult for some learners because its representational 

meaning is unclear, and not because it is iterative or leaves no permanent change in the 

environment. Furthermore, success in the Gesture training condition was associated with higher 

spatial working memory, suggesting that gesture may be drawing heavily on spatial working 

memory resources during training (resources that are significantly lower in the read-off group). 

Interestingly, when there was evidence of transfer to another unit-based task, it was strongest in 

the action-based training conditions, suggesting that this particular domain of mathematics, 

linear measurement, could be better suited to action-based instruction. Overall, Experiment 3 
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provides convincing evidence that lower prior knowledge in the domain of linear measurement 

means that children struggle with the representational content of a gesture that is perfectly clear 

to their higher prior knowledge peers. This difficulty cannot be explained by the fact that the 

gesture is iterative and does not leave a trace, as children in the read-off group had no trouble 

learning from an Iterative Action condition. Thus, Experiment 3 underscores the importance of 

considering the type of gesture used during instruction in addition to the child’s prior knowledge 

of a domain.  
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CHAPTER 5 – GENERAL DISCUSSION 
 

 The goal of this dissertation has been to understand how individual differences in a 

learner’s prior knowledge might predict their propensity to learn from action versus gesture 

during instruction. Across three experiments, I demonstrated that children with lower prior 

conceptual knowledge learn better from action-based instruction, while their higher prior 

knowledge peers can learn equally well from actions and gestures. In doing so, I also explored 

some of the features of gesture that make it challenging for naïve learners, and found at least one 

example where those same challenging features, when presented in the right context, actually 

provided a ‘desirable difficulty’ for learners that led to deeper learning. In this final chapter, I 

discuss the direct theoretical and practical implications of these findings; I explore the 

generalizability of the effects reported; and I review open questions for future research.  

Part I: Practical Implications 

 Linear measurement is an important foundational mathematical concept, yet children in 

the United States struggle more with measurement than they do with any other subdomain of 

mathematics (TIMSS, 2011; Foy, Arora & Stanco, 2013). This difficulty is most pronounced on 

standardized test items where children are asked to measure objects that are shifted away from 

the start edge of the ruler. Alarmingly, difficulties on these problems can persist as late as middle 

school, when up to 38% of 8th grade students will answer a shifted measurement problem 

incorrectly (Lindquist & Kouba, 1989).   

 In the current dissertation, a total of 333 first grade students were assessed for their 

understanding of linear measurement on shifted-object items. Only 18% of these students 

answered the majority of items correctly, while 43% used a hatch-mark counting strategy, 37% 
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used a read-off strategy, and 2% did not have a consistent strategy at all.  These results are 

consistent with research showing that children rarely, if ever, see shifted-object measurement 

items in their classrooms. In fact, the majority of classroom exercises ask students to align an 

object with the start of a ruler, and read off the number that corresponds to the right edge of the 

object (Smith, Males, Dietiker, Lee, & Mosier, 2013). While this technique is effective for 

getting the proper result, this type of exercise leads to a shallow, procedural understanding of 

measurement rather than a rich, conceptual understanding of units of measure.  

 The current dissertation shows that after one brief training session, children can learn to 

solve shifted-object measurement problems through exposure and training on these particularly 

difficult problems. Across all training conditions and across both the hatch-mark and read-off 

groups, 60% of children who got shifted-object training significantly improved from pre-test to 

posttest, while only 10% of the children in more traditional, unshifted training conditions 

(administered only in Experiment 1) showed improvement. Shifted-object items cause children 

to reevaluate their preexisting strategies because children can discover for themselves that their 

own intuitions do not lead to a correct answer. This process, known as disconfirming evidence, 

has been established in some of my own previous work as a powerful driver of learning on linear 

measurement tasks (Kwon, Ping, Congdon & Levine, 2016).  

 Another major contribution of the current dissertation is a better characterization of the 

two major misconceptions in linear measurement, reading-off and hatch-mark counting. First, the 

findings clearly demonstrate that children in the read-off group are further behind in their 

conceptual understanding of linear measurement. Across all studies, children in the hatch-mark 

counting group outperformed those in the read-off group at pre-test and on all other unit-based 

tasks at baseline and at follow-up. Children in the hatch-mark group also learned more from 
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instruction overall -- 64% of children in the hatch-mark group significantly improved from pre-

test to posttest but only 36% of children in the read-off group showed significant improvement 

after training. In addition, there was evidence that children in the read-off group sometimes 

switched to a hatch-mark counting strategy after training, but the reverse pattern was never 

observed. Finally, Experiment 3 is the first study that characterizes working memory differences 

based on linear measurement strategy. While the two groups were matched on their verbal 

working memory on average, children who used a hatch-mark counting strategy at pre-test had 

significantly higher spatial working memory.   

 Despite these big gaps in pre-test performance and learning outcomes between the two 

strategy groups, the general implications of this dissertation are positive. In each experiment 

presented here, children were given a very short (3-4 minute) training session, and overall, there 

were rapid and long-lasting gains in understanding. Moreover, Experiment 1 offered an in-depth 

look at children’s verbal explanations after training to show that the training caused an improved 

conceptual understanding of units and spatial extent, rather than of some procedural trick for 

‘getting the right answer’.  Given that a strong conceptual understanding of units is central to a 

number of other mathematical topics like fractions, place-value, and division (Sophian, 2007), 

catching and addressing unit-based misconceptions early in development might be a particularly 

powerful way to positively affecting a child’s long-term success in mathematics. This 

dissertation suggests that even a very brief, well-designed lesson could serve as such a catalyst 

for far-reaching conceptual change.   
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Part II: Theoretical Implications 

  There is ample experimental evidence demonstrating the benefits of learning through 

actions-on-objects. In the domain of mathematics, manipulatives allow children to “offload 

cognition” onto the environment, encourage the formation useful conceptual metaphors 

(Manches & O’Malley, 2012), direct attention to the relevant components of a complex problem 

(Mix, 2010), and engage young learners with limited attention spans (Peterson and McNeil, 

2008). There is also ample research showing that children can learn new ideas through gesture 

across a variety of academic domains including algebra, chemistry, geometry and word learning 

(e.g. Wakefield & James, 2015; Macedonia, Müller, & Friederici, 2011; Ping & Goldin-

Meadow, 2008; Valenzeno, Alibali, & Klatzky, 2003; Singer & Goldin-Meadow, 2005). 

Producing gesture may even help children to transfer their knowledge to new contexts (Cook, 

Duffy & Fenn, 2013) and better retain newly learned information across time (e.g., Cook, 

Mitchell & Goldin-Meadow, 2008; Levine, Goldin-Meadow, Carlson & Hemani-Lopez, 2016).  

 In the current dissertation, I directly compare these similar, though not identical types of 

movement within the same instructional paradigm. In doing so, I demonstrate three main 

findings. The first finding is that actions-on-objects and gestures have very different effects on 

learning and cognition despite their similarities (they both engage the motor system, they can 

direct a learner’s attention to relevant components of a complex problem, and they even look 

somewhat similar to an outside observer). Second, I show that the prior conceptual knowledge of 

the learner is a strong predictor of the efficacy of each type of movement. And finally, I pull 

apart some of the features that differentiate gesture from action in a linear measurement context, 

and I show that it is the representational content of the gesture that makes it challenging for 

lower prior knowledge learners, rather than the fact that the gesture is iterative and transient. In 
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Experiment 2, I demonstrate that this challenge may not necessarily be a bad thing, given that 

children seem to show deeper learning when they see gesture followed by action than when they 

see action alone. Given the right context, the same features that make gesture challenging may 

also be responsible for its power.   

 One possibility raised by the current findings is that gesture might not really be true 

‘gesture’ if the learner performing it does not understand its meaning. There is some recent work 

showing that without enough contextual cues, like the presence of objects, children are likely to 

interpret another person’s gestures as movements for their own sake, or movements with no 

communicative or instructive purpose (Wakefield, Novack & Goldin-Meadow, 2016). Even 

adults are less likely to interpret something as a purposeful gesture if it is not accompanied by 

speech or if there are no objects present (Novack, Wakefield & Goldin-Meadow, 2016). Based 

on this work, it is likely that children in the read-off strategy group did not see the gesture as a 

gesture, per se, but rather as a meaningless or irrelevant hand movement. Irrelevant movements 

do not show the same learning benefits as meaningful, relevant gestures (Brooks & Goldin-

Meadow, 2015). This hypothesis is further supported by coding in Experiment 2, which showed 

that children who were asked to produce the thumb-and-forefinger gesture without having ever 

seen the action, were very likely to perform the movement incorrectly or hesitantly. This type of 

gesture analysis, which focuses on the form and trajectory of the hand rather than on the intended 

representation, has recently been used as a way to mark the moment of insight when a child 

learns how to properly solve a mathematical equivalence problem (Harden, 2015). In this work, 

the physical properties of the child’s own hand movements reflect the child’s own understanding 

of what the movements, or gestures, are intended to represent.  Taken together, there is reason to 

believe that children with lower prior knowledge in the current study are conceptualizing the 
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gesture differently than their higher prior knowledge peers, which explains the lower learning 

rates in the gesture-based training conditions.  

Part III: Beyond Measurement 

 Overall, the current dissertation shows an advantage for action-based instruction during 

both learning and transfer on a linear measurement task. How can this finding be reconciled with 

previous work showing the power of gesture to promote learning (see Novack & Goldin-

Meadow, 2015 for a review), and some of my own work showing that abstract gesture may 

promote transfer even more so than action (Novack, Congdon, Hemani-Lopez & Goldin-

Meadow, 2014)?  

 First, it is helpful to set aside the question of transfer for a moment to consider immediate 

learning outcomes in any study that has directly compared action and gesture within the same 

learning paradigm. In Novack et al., 2014, a child’s prior knowledge, as predicted by the number 

of speech-gesture mismatches (see Church & Goldin-Meadow, 1986 for a definition of a 

mismatch), did not significantly interact with training condition to predict learning outcomes on 

a mathematical equivalence task (Novack et al., 2014). However, as an author on this paper, I 

used the child’s prior knowledge as an a priori hypothesis to explore the learning patterns further 

and found that children with lower prior knowledge, who did not produce any pre-test 

mismatches, learned significantly less from the abstract gesture instruction session than their 

higher prior knowledge mismatching peers. Both groups of children learned equally well from 

action-based instruction. In a replication of that study, which also tested the effect of sequential 

action and gesture instruction in the domain of mathematical equivalence, I found the same 

pattern. Children with lower prior knowledge did not learn as much from the abstract gesture 
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condition as their higher prior knowledge peers (Congdon, Novack & Goldin-Meadow, in prep). 

Moreover, that same study showed that lower prior knowledge children learned more from 

gesture-then-action than they did from action-then-gesture, which mirrors the pattern of results 

reported in Experiment 2 of the current dissertation. Overall, these findings suggest a robust and 

generalizable phenomenon whereby children with lower prior knowledge struggle to learn from 

gesture, but if that gesture is immediately followed by an action demonstration, the learning rates 

recover nicely. Even outside of the domain of mathematics, there is some recent evidence from a 

linguistic learning task that children with higher phonological knowledge showed a learning 

boost from gesture-based instruction, while their peers with lower phonological knowledge did 

not (Wakefield & James, 2015).  

 The patterns of results in the domain of mathematical equivalence start to diverge from 

that of the current dissertation when you look beyond immediate learning to consider the 

question of transfer. In the domain of linear measurement, there are either no differences in 

transfer based on movement type, or there is a slight advantage of action-based instruction. The 

one exception to this rule is the sequential gesture-then-action training condition in Experiment 

2, in which gesture seems to set the stage for action and together they promote learning and 

transfer. By contrast, children who learn from gesture (or gesture-then-action) in each of the 

mathematical equivalence paradigms show stronger transfer than children who learn from action 

alone (Novack et al., 2014; Congdon et al, in prep).   

 There are many differences between the current dissertation and the mathematical 

equivalence paradigm. For example, prior knowledge is characterized differently (mismatching 

versus problem-solving strategy) and transfer is assessed differently across the two sets of 

studies (different formats of the same problem versus entirely new unit-based tasks). These 



	
  
	
  
	
  
	
  

101	
  

procedural differences could be partially responsible for the dissociation in patterns of transfer 

after action and gesture instruction that are reported above.  If so, we might start to see similar 

patterns of transfer with minor adjustments in the procedure. However, the paradigms also differ 

along two theoretically important dimensions: content domain and age of the learner. As such, 

one possibility is that action-based instruction is better suited for learning and transfer on a 

concrete, spatial problem like linear measurement. Gesture-based instruction, though difficult for 

some learners, could be better suited for learning and transfer on a more abstract, symbolic 

problem like mathematical equivalence.   

 Alternatively, it could be the case that action is generally more appropriate for younger 

children and gesture is more appropriate for older children, irrespective of domain. In the current 

dissertation, all children were in first grade, whereas children in the mathematical equivalence 

studies were in third or fourth grade. Recall Piaget’s claim that children must first learn in 

concrete situations before they can succeed with symbolic representations (Piaget, 1951). Piaget 

argued for a stage-theory of cognitive development, which meant that in his view, this transition 

from concrete to abstract representations was happening over ontogenetic, developmental time. 

There is some evidence from current research that also supports this general age-related 

hypothesis. For example, we know that young children can interpret other people’s failed actions 

before they can interpret other people’s gestures (Novack, Goldin-Meadow & Woodward, 2015), 

and that neural correlates of gesture processing change over developmental age, potentially 

reflecting more gesture-processing expertise with age (Wakefield, James & James, 2013). More 

research is needed to test these hypotheses.  
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Part IV: Open Questions 

 One question raised by the current dissertation is whether a different iconic gesture would 

have been more effective than the thumb-and-forefinger gesture. After an informal piloting study 

with adults, this particular gesture was selected because it was spontaneously produced to 

describe a small measure of spatial extent. In addition, there is some previous work showing that 

children as young as 2.5 years old can map this exact gesture to the size of an object (Novack, 

Filippi, Goldin-Meadow & Woodward, 2016). In the current dissertation, children occasionally 

spontaneously produced the thumb-and-forefinger gesture when explaining their reasoning 

during the experiment, even when they were not in the gesture-based training condition. Finally, 

after this gesture produced interesting individual variability in learning outcomes in Experiment 

1, it seemed logical to continue to use the same iconic gesture across all subsequent experiments.  

 From a practical perspective, if an educator were tasked with selected the ‘best’ possible 

gesture for teaching children about units of measure, there is reason to think that the thumb-and-

forefinger gesture would be a poor choice. To start, we know from Experiment 2 that the 

physical form of the gesture was difficult for some students to produce, particularly those who 

did not seem to have clear access to its representational content. Second, there is a possibility 

that the gesture misled children into focusing on the lines of the ruler rather than the space, as 

both the thumb and forefinger lie directly on a hatch-mark to frame the unit space. Some support 

for this argument comes from the fact that some read-off children did switch to a hatch-mark 

strategy after training. Future work could investigate whether another form of iconic gesture, 

such as a single point to the unit space or a sweeping point along the extent of the space, would 

create this same shift from the read-off strategy to the hatch-mark strategy. 
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 Despite these potential pitfalls, there is also reason to believe that the thumb-and-

forefinger gesture was a good selection. For example, some recent descriptive work investigating 

conceptual learning trajectories in the domain of linear measurement argues that the most 

advanced state of conceptual understanding is one that incorporates all of the components of the 

ruler, including the hatch-marks (Barrett et al., 2012). The authors argue that asking children to 

ignore the lines on the ruler to focus on the spaces leads to an incomplete conceptual 

understanding. By this metric, the thumb-and-forefinger gesture, which incorporates the lines, 

the space, and a counting routine (the child says “one” while touching two hatch marks and 

framing the first unit and “two” while framing the second unit, etc…), could actually be a very 

powerful way to learn about the units of a ruler, so long as the child has the necessary context to 

interpret the movement. In other words, this more challenging gesture may have been driving the 

desirable difficulties effect reported in Experiment 2, an effect we might not have observed with 

a less complex gesture (such as a point to the blank space). Lastly, children in the read-off group 

switched to the hatch-mark strategy across all training conditions, and arguably did so even more 

often in the action-based training conditions, which makes it difficult to claim that the gesture 

was causing this strategy shift. Future research is required to investigate the efficacy of other 

forms of iconic ‘unit’ gestures.  

Part V: Broader Impact and Conclusions  

 Overall, this dissertation has practical implications for how to improve children’s 

understanding of linear measurement through exposure to shifted-object problems and action-

based training. It also contributes to the existing literature on two of the most pervasive linear 

measurement misconceptions, reading off and counting hatch marks, by characterizing children’s 
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pre-test performance on number of different tasks and testing the effect of various interventions 

on children’s learning trajectories. Finally, from a theoretical perspective, this dissertation serves 

as a powerful demonstration of why it is crucial to consider the characteristics of the learner 

when evaluating the efficacy of gesture and action in an instructional context. Children with 

lower prior knowledge and lower spatial working memory need additional scaffolding to extract 

the full benefit of gesture’s power.  

 Future work will investigate other factors that influence this effect including the age of 

the learner, the content domain of the target concept, and the exact form of the representational 

movements. I also plan to test the effect of doing the actions versus seeing the actions, and I 

would like to compare action and gesture on a task that is more skill-based, rather than based on 

insight. In considering all of these dimensions, my ultimate goal is to better understand the 

powers and limitations of actions and gestures while building a unified theoretical framework to 

make accurate a priori predictions about the efficacy of these movement-based interventions.  
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