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ABSTRACT

In the United States, breast cancer is the most frequently diagnosed non-skin cancer in

women, and one in five women who are diagnosed develop breast cancer before age 50.

Germline genetic variation is a known risk factor for breast cancer risk, and a suspected

risk factor for breast cancer mortality, but previous investigations have not comprehensively

identified all of the genetic variation that is expected to be associated with breast cancer.

One possible explanation for this gap in knowledge is the only relatively recent ability to

investigate the effect of rare germline genetic variation, which up until recently has been

too expensive and technically challenging to measure in the a large number of participants

that are necessary for genetic epidemiologic studies, and the methodological challenges of

identifying rare variants.

This thesis uses three complementary methods (single marker regression analysis, SKAT-

O gene-based tests, and candidate gene) to identify individual risk loci and three additional

complementary methods (Kriging whole genome prediction, polygenic risk scores, and

whole genome heritability estimates) to predict breast cancer risk and breast cancer mor-

tality using a population of women who were diagnosed with breast cancer before the age

of 50. Suggestively associated risk loci were examined for evidence of replication using an

independent sample.

For breast cancer risk, the identification analyses find three genes in which variation is

associated with risk of breast cancer: FGFR2 (discovery p = 2.18 · 10−5; replication p <

10−30), NEK10 (discovery p = 1.20 ·10−3; replication p < 10−30), and MKL1 (discovery

p = 2.62 · 10−4; replication p < 10−30). Previous studies had identified loci near each of

these genes as being associated with breast cancer risk, but conditional analyses indicate

that the associations in the MKL1 and NEK10 genes are driven by risk loci distinct from

those previously reported, and are driven by risk loci that would not have been identified

xii



using a single variant regression. The genetic data alone is able to predict breast cancer risk

with an AUC of 0.618 (95% CI 0.610-0.629). When the influence of a limited set of non-

genetic predictors is also incorporated, the combined model is able to predict breast cancer

risk with an AUC of 0.655 (95% CI: 0.649-0.660). This combined model is a significant

improvement over models that include only the genetic information or only the non-genetic

risk factors.

In contrast to the analyses of the genetic determinants of breast cancer development,

this analysis does not find any compelling evidence that breast cancer mortality is strongly

driven by germline genetics that could be measured by our study.

The identified genes all represent possible pharmacological targets for cancer chemo-

prevention. The prediction model for breast cancer risk improves upon existing methods

of prediction, and is strong enough to be useful at the population level. From a clinical

perspective, the model still has low levels of discrimination, but may be strong enough to

be used in very specific scenarios, such as interpretation of ambiguous screening results, or

to help individuals to understand their personal risk when considering other medical treat-

ments that may increase the risk of breast cancer such as hormone replacement therapy

or hormone-assisted reproductive therapy. In the context of breast cancer prognosis, these

investigations support other lines of evidence that suggest that for many women who are

diagnosed with breast cancer, germline genetic variation does not strongly influence the

risk of mortality.
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CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer is the most common cancer in women, and one in eight American women will

develop breast cancer over her lifetime.1 Almost twenty five percent of women diagnosed

with breast cancer eventually die of the disease,2 and fear of recurrence and mortality low-

ers the quality of life for women who are diagnosed.3–6 Breast cancer is a heterogeneous

disease that is caused by and progresses due to a complex array of risk factors. While any

individual woman’s cancer develops due to the unique set of exposures that she accrues

over a lifetime, these individual exposures give rise to patterns of risk. This thesis investi-

gates in-depth the risk factor of germline genetic variation, with a focus on germline genetic

variants that are rare and located within gene regions. The patterns of this risk factor have

been in not comprehensively described in breast cancer risk and prognosis, and a better

characterization of this risk factor will improve knowledge of biological mechanisms of

breast cancer, identify possible targets for therapeutic intervention, and translate into more

precise estimators of risk. Each analytic component of this thesis is motivated by one of

two complementary goals: to identify genetic risk factors for early onset breast cancer, and

to predict the overall risk women have from the disease. The results of this thesis develop

a cohesive narrative that identifies loci that are associated with breast cancer risk and prog-

nosis, describes the underlying characteristics of the genetic determinants of breast cancer

development and progression, and comprehensively quantifies the genetic contribution to a

given woman’s risk of breast cancer.

Results from previous studies and biological plausibility indicate that germline genetic

variation can influence the risk breast cancer development. The exact mechanism of how

1



genetics influences risk is not fully understood, but genetic variation may predispose a

person to genomic instability, provide a fertile cellular environment for a tumor, or impede

immune response to proto-oncogenic cells.7

The association between germline genetic variation and prognosis is less well estab-

lished than the association with risk, but previous research has implicated particular risk

variants, and the relationship is biologically plausible. Germline genetic variation may af-

fect a patient’s ability to metabolize a drug, which in turn can affect survival by altering

the amount of available active metabolites of pharmaceutical treatments, or increasing the

probability of treatment-limiting adverse events.8–12 Similarly, germline genetics may be

responsible for a cellular environment that favors metastases, or otherwise aggressive tu-

mors, and may alter cellular functions that are crucial to tumor proliferation such as angio-

genesis, growth signaling, telomere length, inflammation, immune response, DNA repair,

apoptosis, and cell cycle control.13–22

Age has a complex relationship with the risk and prognosis of breast cancer. While the

causal nature of the relationship is not completely understood, women who are diagnosed

before the age of 50 (one in five of those diagnosed2) have worse outcomes than those who

are diagnosed later in life.23–28 Some non-genetic risk factors, such as reproductive history

and obesity, change the direction of their effect in women who are diagnosed early when

compared to their effect in women who are diagnosed later.29 While several germline ge-

netic variants have been implicated in the risk of the late onset disease, their effect on the

development of the early onset disease has not been well characterized. Better understand-

ing of this relationship between age breast cancer etiology can help to both understand the

underlying biological mechanisms of breast cancer, and also help to develop more precise

risk scores for women.
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1.2 Identification of Risk Variants in Breast Cancer

Given the many possible pathways by which germline genetic variation may influence

breast cancer risk and prognosis, analyses that identify individual risk loci may illuminate

the cellular pathways and implicate cellular processes that are involved in oncogenesis or

metastases. This can improve understanding of the underlying biological mechanisms that

are integral to breast cancer development. Beyond this biological insight, genes that are

associated with breast cancer may suggest targets for future pharmaceutical interventions

for chemoprevention or treatment of cancer.

Genetic data possess several distinct characteristics that must be accounted for when

attempting to identify germline genetic variation as a risk factor in any disease, and it is

necessary to use study designs and statistical methods that account for these characteris-

tics. One characteristic of genetic data that distinguishes it from other epidemiologic risk

factors is its high dimensionality. Each study participant has three billion possible vari-

ants that may be associated with disease, in addition to other genetic abnormalities such

as copy number variations and insertions and deletions. While many nucleotides are con-

stant, the number of loci that do vary is still much larger than can be handled by many

statistical methods. Methods have been developed that reduce this high dimensionality that

incorporate prior information to limit the search for associations. Investigations that scan

genome-wide for evidence of risk loci must balance the use of prior information while also

remaining agnostic enough to allow the data to implicate novel loci.

A framework that can be used to approach this balance considers two separate char-

acteristics of genetic variants that truly are risk factors: the relationship between its rarity

in the population and the magnitude of its effect on the trait, and its predicted functional-

ity. These characteristics of the causal variants have suggest the appropriate study design

3



Figure 1.1. Possible Distributions of the Strength of Variant Associations with their Fre-
quencies

and statistical method that is required to identify them, but these characteristics are often

unknown for most diseases, including breast cancer.

1.2.1 Risk as a Function of Variant Rarity and Effect Size

A framework to consider the relationship between the rarity of the variant and the mag-

nitude of its effect on the trait was outlined by Manolio et al.30 and McCarthy et al.31

(Figure 1.1, from Zemunik and Boraska32). For polygenic diseases that are affected by

multiple risk variants, causal variants have been discovered at multiple places along this ef-

fect size-rarity distribution. Since no statistical method is optimal to detect risk variants for

all combinations of effect size and rarity, it is common that multiple complementary statis-

tical methods will be required to fully characterize the genetic variants that drive polygenic

disease.

In breast cancer risk, prior research has established that risk variants are located at

least two quadrants of this spectrum-rare variants of large effect, and common variants

of modest effect. Rare variants of large effect, such as mutations in BRCA1, BRCA2,

and TP53,33 were largely discovered by linkage approaches that studied affected families.

These implicated genes are responsible for cellular processes such as DNA repair and cell

cycle control, and their identification as risk loci has confirmed the importance of these
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processes in oncogenesis. The risk variants are rare in the general population, and therefore

do not dominate population-level risk estimates, but for the people that carry those variants,

they confer a large risk of breast cancer.

Common variants that have a modest to low effect have also been implicated as risk

factors for both breast cancer risk and prognosis. For variants such as these, a person can

carry any single risk variant without having a risk that is dramatically increased, but, since

these variants are common, collectively they can contribute to a large risk burden. Single

marker regression association studies in genome-wide association study (GWAS) frame-

works successfully identified 128 variants throughout the genome that increase a woman’s

risk of breast cancer,34 and a smaller number of variants have been suggestively identified

as possibly associated with breast cancer mortality.

However, despite these successes, there still remains missing heritability in breast can-

cer risk. Despite studies and meta-analyses of 50,000 participants or more, variants that

have been identified only contribute about half of the total expected risk due to genetics

that is expected from family studies.35 This suggests that the variants responsible for this

missing heritability may be characterized other combinations of effect size and rarity.

This thesis investigates variants that are rare in the general population, and confer

intermediate-to-modest risk of breast cancer (the center of Figure 1.1). This class of vari-

ants requires a different statistical approach to identify them. They cannot be interrogated

by single marker regression analyses of GWASs, either because they are not present at a

high enough frequency to be observed in studies of realistic sample sizes, or, if they are

seen, they are too so rare for a logistic regression to produce well defined odds ratios for

the effect size of that variant. Their modest effect size also makes them difficult to iden-

tify in linkage analyses. Current statistical approaches to identify the effects of this class

of variation require additional, sometimes restrictive, assumptions. These assumptions are

necessary in order to interrogate rare variations, but do place certain limitations on the
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interpretations of the analyses, and the appropriateness of these assumptions needs to be

evaluated in the context of each disease of interest.36

In this case of breast cancer, one plausible assumption is to posit that variants within

the same gene act collectively to alter risk. This behavior has already been observed in the

BRCA1 and BRCA2 genes where variants at multiple loci all are capable of inactivating

the gene product, damaging the DNA repair capacity of the cell, and increasing breast

cancer risk.36 If variants do act in this collective manner, these genes can be identified

by implementing a family of tests known as gene-based tests. Gene-based tests shift the

hypothesis from the variant-level to the gene-level.

Gene-based tests do have some limitations, most prominently that variants that are out-

side gene regions (roughly 98% of the genome) cannot be interrogated. However, the tests

have benefits as well. Gene-based tests can incorporate rare variation, unlike single marker

regression analyses, and the method can be applied to study participants that are selected

from the general population using a standard epidemiologic case/control study design. The

direct functional relevance of gene products can make results of gene-based tests easier to

interpret than the result of single marker regression tests. While gene-based tests will not

be able to identify all causal loci, they will be able to well-interrogate gene regions, which

are highly likely to harbor at least some of the variation that is associated with disease.

These benefits justify their use in circumstances where prior biological understanding sug-

gests that low frequency variants of modest effect do affect the risk of disease. Evidence for

this includes diseases (such as breast cancer) where multiple well-powered single marker

regression analyses have only identified causal loci, but their collective effect still falls sort

of the estimated heritability in the trait.

A wide variety of gene-based tests have been proposed, and their appropriateness de-

pends on the sparsity of causal variants, and their distribution throughout the genome. In

circumstances where the assumptions of the given gene-based test match the genetic archi-
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tecture of the disease under study, gene-based tests are an effective method to implicate a

gene in disease. The optimal sequence kernel association test (SKAT-O37) has emerged as

a strong gene-based test which is robust to some deviations from its underlying assump-

tions. SKAT-O has not been used in the context of any breast cancer phenotype to test for

variation within a gene that can collectively act to increase risk.

1.2.2 Risk as a Function of Variant Functionality

In addition to considering the frequency/effect size distribution of the causal variants, it

can also be helpful to consider the predicted functionality of possible causal variants. The

predicted functionality of a variant can help to suggest variants that are more likely to

be causal. Implicitly, gene-based tests incorporate variant functionality by restricting to

variants that can be grouped to a single gene, but more nuanced classifications are also

possible. An extreme way to incorporate functionality is to restrict the analysis to variants

that are predicted to cause a change in amino acid translation. If variants that confer risk of

breast cancer are mostly variants that cause changes in amino acid translation, then future

studies would be able to focus on just those variants. By only assaying them, the multiple

testing burden would be reduced and fewer truly causal variants would be identified as

not associated. However, there is strong evidence that in the case of breast cancer, disease

causing variants act through additional mechanisms of action besides changes in amino acid

translation. Many of the variants that have been identified through single marker regression

tests are exonic variants that do not cause changes in protein coding (although they may

tag a protein-coding variant by way of linkage disequilibrium), or are within a gene region

that are not in the exons (such as intronic variants), or are intergenic.34

For these reasons, analyses that only focus on variants that are predicted to alter amino

acid translation are expected to miss many truly causal variants. A more agnostic approach
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would be to up-weight variants that were likely to be causal, while still keeping those that

have less strong prior evidence of association. The SKAT-O test can incorporate variant-

level weights. In most weighting scenarios, incorporating even incorrect weights will not

introduce bias or reduce power,38 and incorporating weights that do reflect the true associ-

ation of a variant with disease can substantially increase power.37

However, the optimal method to translate past information on predicted functionality

into weights is still a matter of study. Several studies that have used gene-based tests have

weighted variants based only on their rareness. Other studies do not attempt to weight at

all, and restrict their analyses to variants that are either rare or predicted to cause protein

changes. However, given the late onset of breast cancer, the variants that are associated

with the disease would have a smaller-than-expected effect on fitness, and therefore may

not be as rare as would be expected from evolutionary models. A method that incorporates

a more nuanced understanding of predicted pathogenicity would be preferable. However,

several annotations and pathogenicity scores have been developed, and it is not clear which

annotation is best able to highlight variants that are likely to be involved in disease. Single-

dimensional annotations classify variants based on any of several features, such as pre-

dicted functionality, evidence of evolutionary constraint, previous association with disease,

and evidence of regulatory function. Translating these concepts into a single weight that

incorporates each of the dimensions has not been widely done. The Combined Annotation

Dependent Depletion (CADD) score is an overall deleterious score that incorporates each

of these single-dimensional annotations by estimating the extent each is able to predict

whether a variant has reach fixation in the general population.39 Weighting by an overall

deleteriousness score, as created by the developers of CADD would allow gene-based tests

to include all variants near gene regions, and would reflect the multi-dimensional charac-

teristics that define the relationship between germline genetic variation and disease. This

kind of deleterious score allows for an explicit incorporation of evolutionary and other
8



constraints on the test, which is expected to be necessary for gene-based tests to perform

optimally.40

1.3 Prediction of Breast Cancer Risk and Prognosis

The above discussion focuses on the ability to identify particular loci or genes that are

associated with disease, with that will highlight a particular cellular mechanism as being

associated with disease. A complementary question involves the ability to predict an indi-

vidual woman’s risk of breast cancer using genetic data. The goal of prediction is less to

identify the causal risk factors, but rather to infer their collective effect on risk and progno-

sis to produce an individual quantification of risk.

Both breast cancer risk and mortality have several known non-genetic risk factors that

are reproducibly associated with disease. For both outcomes, the predictive power of these

models is modest. These models can be used to predict the risk of a population, but their low

discrimination makes them less relevant for individual clinical risk decisions.41 Prediction

models that incorporate germline genetic variation can allow the whole genome to be used

to collectively infer the total burden of germline genetic variation on breast cancer risk and

prognosis, and will lead to a better prediction of those who are at high risk of developing

the disease or dying from it.

There are several methods that have been proposed to incorporate germline genetic in-

formation into a prediction model. Genetic relatedness matrix restricted maximum likelihood-

based (GREML) prediction models, including Kriging,42 allow for genetic variation through-

out the genome to contribute to prediction. GREML models do not require that the causal

variants already be identified in order to contribute to the model. Breast cancer risk has

already been determined to be a polygenic disease, in that multiple variants contribute to

any woman’s individual risk. Moreover, the missing heritability in breast cancer indicates
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that some of the causal variants are not yet identified. These features make the Kriging

method of prediction a strong choice for breast cancer risk.

Kriging can be implemented in a way that allows for different sets of variants to be

grouped together. The form of the variants’ collective association with disease can dif-

fer between these groups. These groups can be selected to reflect the different annotated

functionalities of the possible risk variants throughout the genome. While not as compre-

hensive as weighting (as the variants can only be divided into a relatively small number of

groups), this method of whole genome prediction does incorporate prior information about

the expected predicted functionality of a disease, and has been successful in incorporating

germline genetic variation into prediction of other traits.

1.4 Analysis

With the preceding as background, this thesis investigates the genetic determinants of breast

cancer risk and prognosis. The analyses focus on two complementary lines of questioning.

First, to identify genes that contain variants (including rare variants of modest effect) that

collectively contribute to risk and prognosis, and second, to predict overall breast cancer

risk using genome-wide measures of variation.

The primary data that are available to investigate these questions come from ten on-

going studies designed to assess the risk factors associated with early onset breast cancer.

Participants in these studies are women of European descent who were 51 years or younger

at the time of their diagnosis (for cases) or enrollment (for controls) and not known to carry

pathogenic mutations in the genes BRCA1 or BRCA2. DNA was available for 4914 par-

ticipants (3,876 cases and 1,038 controls) through blood draws. Each of these participants

was genotyped on an Illumina exome-chip genotyping array that measured 238,524 vari-

ants. The chip was designed to more closely interrogate often-rare variants in gene regions,
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with particular emphasis on nonsynonymous variants. A subset of 3357 participants addi-

tionally was genotyped on an Illumina genome-wide genotyping array, which interrogated

3,310,158 variants after imputation.

SKAT-O is implemented to identify genes associated with risk (Chapter 2) and prog-

nosis (Chapter 3), and CADD weights are applied to the variants for each analysis. Any

genes that are identified are subject to conditional analyses which determine whether the

associations are driven by (1) variants that are common enough or of strong enough effect

size to be identified through a GWAS framework in the same participants, or (2) variants

that are already known to be associated with breast cancer phenotypes through previously

published work.

Any genes that are identified are also examined for evidence of replication in an in-

dependent data set, which also gives evidence on whether the implicated genes are also

involved in the genetic architecture for women who are diagnosed later. The replication

data for the risk analyses are summary statistics from a meta-analysis of a single marker

logistic regression case control studies of breast cancer risk. This meta-analysis combined

data from 15,863 breast cancer cases and 41,461 controls and interrogated 2,608,508 vari-

ants after imputation. The prognosis replication sample is derived from the participants of

The Cancer Genome Atlas (TCGA) study (data generated by the TCGA Research Network:

http://cancergenome.nih.gov/). The women included were matched on race, and ultimately

711 cases and 6,087,804 genotyped or imputed variants are used for prognosis replication.

In addition to identifying genes associated with overall prognosis, Chapter 3 investi-

gates whether there is evidence that variation in genes is associated with known prognostic

indicators that can be discerned at the time of diagnosis: estrogen receptor status, proges-

terone receptor status, HER2 status, grade, and stage. Any genes that these analyses iden-

tify may be responsible for the development of particular subtypes of cancer that tend to be

more aggressive. A susceptibility to these histopathologically distinct tumors may suggest
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personalized targets for chemoprevention.. Additionally, Chapter 3 examines whether ge-

netic variation in any of the CYP family of genes is associated with mortality, and if this

association differs for women with estrogen receptor positive tumors. It has been a matter

of recent controversy whether mutations in the CYP family of genes are associated with

poorer outcomes.43,44 These genes encode enzymes that metabolize tamoxifen, an effec-

tive treatment for women with estrogen receptor positive tumors, but it is unclear whether

an altered ability to metabolize tamoxifen translates into higher mortality, and the analyses

of Chapter 3 look for evidence of this association.

The whole genome prediction model (Chapter 4) is carried out using the Kriging method,

and separates the variants into categories based on their rareness and predicted function-

ality. Chapter 4 culminates in by presenting an optimal prediction model that combined

genetic data with non-genetic predictors. The Kriging method also investigates whether

the ability to predict breast cancer risk and prognosis is driven by variants that have already

been reported, or whether additional risk variants remain to be identified. This analysis

further probes the conclusions from family studies that suggest that there remains undis-

covered risk variants for both breast cancer risk and prognosis.

1.5 Gaps in Knowledge and Implications of Results

The investigations of this thesis provide new biological insight into the genetic determinants

of breast cancer risk and prognosis. The effect of germline genetic variation on breast

cancer risk has been the focus of many studies, but gaps in knowledge remain about both

individual risk loci that are involved and the overall genetic influence on risk. Investigations

into the genetic determinants of breast cancer mortality have been less widely reported, and

this thesis presents multiple complementary investigations into this relationship.
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The gene-based analyses of Chapters 2 and 3 are designed to identify genes that are

associated with breast cancer risk and prognosis. This can implicate unappreciated cellular

processes that affect breast cancer development and progression. Given the young age of

breast cancer onset of the participants in this study, the gene-based analyses will also pro-

vide evidence on whether genetic influences of the better-studied late onset disease are also

risk factors for women who will be diagnosed early. Similarly, these investigations suggest

whether the genes that are responsible for increased risk of developing breast cancer are

also involved in poorer prognosis in women who have already been diagnosed. While the

implications for risk assessment are large for each of these questions, their answers remain

unsettled.

There have been a limited number of prior studies that use the GWAS framework of

single marker regression association tests to investigate mortality in breast cancer cases at

the genome-wide level, and those that have been done were largely underpowered, making

it difficult to draw firm conclusions from this previous work. These previous studies found

few suggestive associations, most of which were not significant in the original study’s

replication sample, and none of which have been replicated in subsequent studies. This

dearth of prior research on an important health topic may be due to the long amount of

time needed to collect mortality data prospectively when compared to the relatively short

amount of time GWAS-style studies have been around. It may also reflect a publication

bias, where studies that do not find any association are not easily shared publicly.

Given the low effect size of most of the identified associations with breast cancer, most

women’s individual level of risk is not well defined by her genotype at one risk loci. For that

reason, risk models that incorporate all genetic variation are needed to quantify a woman’s

overall risk of disease. The prediction models of Chapter 4 will improve upon previous

work that does not currently incorporate germline genetic variation. Currently, models that

do not incorporate genetics can predict breast cancer risk with an area under the receiver
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operating characteristic curve (AUC) between 0.6 and 0.7,45,46 and there have not been

any published models that are specific to early onset breast cancer. Similarly, models that

predict prognosis without genetic information can predict mortality with an AUC of around

0.7.47 The Kriging method of whole genome prediction may improve upon this predictive

power.

The prediction presented in Chapter 4 also informs the extent to which different classes

of predicted variant functionality are likely to contain the undiscovered variants that are as-

sociated with breast cancer risk and prognosis. This knowledge can suggest the appropriate

methods that can be used to identify the individual risk variants in future studies. While the

primary goal of prediction models is not to identify the specific variants that are associated

with disease, the Kriging prediction method can be used to characterize the unidentified

causal variants. In particular, the results of Chapter 4 suggest whether the variation that

drives breast cancer is common or rare, and whether that variation has a particular type

of predicted functionality. This knowledge helps to resolve long-running questions about

the relative importance of different portions of the genome in the genetic architecture of

cancer.

In addition to biological insights, these investigations represent the first application of

many statistical tools to the question of breast cancer. Whole genome prediction has not

been applied to either breast cancer risk or prognosis, and gene-based tests have only been

incorporated twice. These investigations represent only the third study of breast cancer risk

that has interrogated rare variation directly. In 2013 Haiman et al.48 and more recently

(September 2016) Haddad et al.49 and Zhou et al. used exome arrays, but each restricted

their analysis to rare putative functional variants rather than weighting, and Haiman used a

burden style test rather than a SKAT-O test. A third study50 that investigated rare variation

using gene-based tests in a genome-wide setting in breast cancer also used a burden test,

and additionally did not directly interrogate the rare variants in gene regions, but rather
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inferred their existence by imputation. Their reported results are therefore limited by the

assumptions of the models they used. These study designs leave open questions about rare

variation and the effect of age and ancestry which can be answered by the results of this

thesis. While the data available for this thesis is of modest sample size, the success or lack

thereof of the analytic techniques employed in this thesis can inform whether additional,

better powered investigations using gene-based analyses or whole genome prediction are

likely to be fruitful.

In no previously published work that applies gene-based tests genome-wide for any

disease have the CADD weights been used (one candidate gene study used the CADD

score multiplied by minor allele frequency to investigate cardiovascular disease51). The

results of the analyses that weight with CADD weights suggest whether this method is an

appropriate method to increase power by incorporating prior information.

Neither whole genome prediction models nor linear mixed model whole genome her-

itability estimates, which are based on the same conceptual methodology, have been pub-

lished for either breast cancer risk or prognosis. The estimations from Chapter 4 therefore

put their results into a larger context of heritability estimates. The current understanding of

heritability for breast cancer has been estimated from family studies, which may be biased

by shared environment.

The goals forwarded by this work, identification and predication, are complementary.

The results of both lines of inquiry may result in more efficient, optimized medical care,

and could confer many clinical benefits. Identified genes could provide valuable insight

into the genetic etiology of breast cancer risk and prognosis. Additionally genes may be

identified that can not affect population-level risk but are still important for a given person,

and could identify possible targets for pharmaceutical intervention.

Whole-genome prediction can quantify risk for a person without identifying the dis-

tinct variant that drives that predictive power and suggest classes of variants that may be
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more likely to hold causal variation. When combined with non-genetic information, the

prediction model will both more accurately predict population-level risk and also improve

upon current risk estimates to move towards prediction models that are clinically action-

able. A strong risk model would identify low-risk women who could be screened less often,

which would allow them to devote less energy searching for symptoms of a disease they

are unlikely to develop. Given the high prevalence of breast cancer, even a modest increase

in the total ability to predict risk could potentially impact the interpretation of ambiguous

screening results for many women,52 and could reduce both over-treatment and unidenti-

fied tumors. Additionally, a risk model could provide additional information for women

who are considering other medical interventions that may increase their breast cancer risk,

such as menopausal hormone therapy or hormonal assisted reproductive therapies.53

In the context of breast cancer mortality, a stronger prediction model could suggest

more aggressive monitoring and treatment for high-risk subgroups of patients, and could

also help to identify women who could pursue less aggressive treatments. These classifica-

tions would reduce the morbidity associated with exposure to chemotherapies,54,55 while

at the same time identifying those at high risk of mortality who may want to be treated

more aggressively.
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CHAPTER 2

THE EFFECT OF GERMLINE GENETIC VARIATION IN GENE

REGIONS ON THE RISK OF EARLY ONSET BREAST CANCER

2.1 Background

Breast cancer is the most frequently diagnosed cancer in American women,1 and one in

five women who are diagnosed develop breast cancer before age 50.2 Genetic variation has

been identified as a risk factor for breast cancer. It has been hypothesized that germline

variants interact with somatic mutations within the tumor during tumorigenesis, and the

same somatic mutation may develop into a cancer cell in one women but not another due to

germline variation.7 While the exact mechanism of how genetics influences breast cancer

risk is not fully understood, it is plausible that genetic variation may predispose a woman

to breast cancer through a predisposition to genomic instability, by providing a fertile cel-

lular environment for a tumor, or by impeding immune response to proto-oncogenic cells.7

Several non-genetic risk factors such as parity and the use of synthetic hormones confer an

increased risk of breast cancer early in life, but offer a protective benefit against the dis-

ease later in life. Although the implications for risk assessment are large, it is still unclear

the extents to which genetic influences of the better-studied late onset disease are also risk

factors for women who will be diagnosed early.

Investigating genetics as a risk factor can be a challenge due to the large number of

potential disease-causing variations, and the unknown pathway by which each variation

may contribute to disease risk. The most appropriate statistical method to investigate risk

will depend on how many variants ultimately are associated with disease,56 their sparsity

throughout the genome,57 the form of the relationship between the variation and disease

risk,58 their rareness, and the strength of their effect on disease.30 Each of these charac-
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teristics may differ from variant to variant and between diseases, and are often unknown.

Single marker regression analysis examine the variants as independent predictors of dis-

ease, and is a method employed by genome-wide association studies (GWASs). Single

marker regressions have been successful in identifying causal variants for diseases where

the causal variants are common enough to include in a regression framework (this threshold

will vary depending on the sample size, but variants with a minor allele frequency greater

than
(

1
2n

)1
2 are typically included59), and variants that have a strong enough association

with the disease in question. For context, the study sizes of single studies that have inves-

tigated breast cancer phenotypes with single marker regression techniques between 1000

and 5000 cases per study, and the median effect size of genome-wide significant results is

an odds ratio of 1.1.34,60

However, single marker regressions have limitations. They cannot identify risk loci

where variants are too rare or whose effect is too weak, and they are also limited by con-

cerns about type I error rate. Single marker regression analyses conduct a large amount

of tests, which requires employing a strict significance thresholds in order to exclude false

positives. In many cases, these thresholds can exclude many truly causal variants.61 There

is also evidence that in breast cancer risk, common variants are tagging the effect of rare

variants that are not always directly assayed.62

Much of the recent research into the genetic determinants of breast cancer has incorpo-

rated information from common variation assayed on genome-wide arrays, and the vari-

ants that can be reliably imputed from them.50,63–67 These studies suggest that some

of the genes associated with risk of late-onset disease also influence the early onset dis-

ease.50,68–70However, there still remains “missing heritability” in breast cancer,35,71–73

where genes that have been identified by research only contribute about half of the total

expected risk due to genetics.
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Variants in protein-coding regions of the genome are expected to harbor some of the

undiscovered variation that is associated with risk of breast cancer. While analyses that

focus on gene regions exclude a large percentage of the genome the central role of genes

in transcription and ultimately amino acid translation makes variants that reside in genes

represent biologically plausible candidates for association with disease,74 which justifies

the use of methods that can well-interrogate these regions, even if other complementary

methods will then be required to examine the rest of the genome.

A class of suitable tests has been developed for examining variation within a single

region, called set-based tests. Set-based tests shift the hypothesis from whether an indi-

vidual variant is associated with disease to whether a collection of variants is associated

with disease. The sets are often taken to be variants within gene boundaries to give the

set an immediate biological interpretation. In the context of genes, if a gene-defined set-

based analysis identifies a gene as associated with disease, this suggests that any variation

within that gene or gene proxy region collectively contributes to disease. Set-based tests

allow for variants that are too rare to test individually to contribute evidence for risk, and

also common variants whose effects are too modest to detect using standard single marker

regression approaches.

Many set-based tests have been developed that can be implemented as gene-based

tests,37,75–77 with two of the most commonly used being burden tests and the sequence

kernel association test (SKAT). Burden tests76 sum the number of risk alleles within a

gene, and then estimate the combined effect of that number of risk variants on the disease.

SKAT37 estimates the effect of each variant within a gene-based on a linear mixed effect

model and tests for non-zero variation explained by genetic factors via a variance compo-

nent approach. The burden test is more powerful than the SKAT test if all of the variants

in a gene increase risk of disease. The SKAT test is more powerful than the burden test if

the variants within a gene may increase or decrease the disease risk. Since these assump-
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tions about the density of risk variants and the direction of their association are typically

not known,78 an omnibus test that combines the test statistics from burden and SKAT was

developed, the optimal sequence kernel association test (SKAT-O).37 SKAT-O calculates

both the burden test statistic and a SKAT test statistic for each gene, and then uses the data

adaptively to weight and combine the two test statistics by a mixing factor, ρ , which ranges

from zero (where the test statistic is equivalent to the SKAT test statistic) to one (where

the test statistic is equivalent to the burden test statistic). A value of ρ that is small (less

than 0.1) indicates that the relationship between the gene and the risk of breast cancer was

better characterized by the assumptions of the SKAT test, and ρ greater than 0.5 indicates

that the relationship is better characterized by the assumptions of the burden test. The dis-

tribution, effect size, and sparsity of as-yet-unidentified causal variants within gene regions

that are associated with breast cancer risk is not totally established (although previously

studied single marker regression results indicate that the minor allele at a risk locus can

be both protective and deleterious34). Given this uncertainty, the omnibus test may be a

more appropriate tool to identify genes harboring risk loci than either the SKAT or burden

test alone, especially since in most situations, SKAT-O is more powerful than either test

alone.37

Many studies that have implemented gene-based tests include in their analysis only

variants that are either rare, or variants that independent annotation sources identify as

“functional” (e.g.: nonsynonymous variants). This decision is often justified as necessary

to remove noise and improve power by excluding variants that are unlikely to be associated

with disease. However, SKAT-O can also incorporate prior knowledge about variants that

are more likely to be associated with disease without fully excluding them by applying

weights to the individual variants.?,79 Weighting allows analyses that use SKAT-O to in-

clude those variants that may be causal but are not yet defined by characteristics that have

been identified as suggestive of disease in the still-nascent understanding of molecular bi-
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ology. In most genome-wide analytic scenarios, the use of weights will not increase type I

or type II error rates,38 and a weight that reflects the true disease process can significantly

improve power.37

Currently, weighting is largely implemented by weighting according to the rareness, or

minor allele frequency (MAF) of the variant. Weighting by MAF operationalizes the as-

sumption that evolutionary constraints keep variants that strongly increase a risk of disease

at low frequency in the population. However, not all variants that cause disease are kept at

a low frequency.80 For this reason, many annotations have also been developed that incor-

porate more broad indicators of pathogenicity beyond MAF. These functional annotations

such as SIFT,81 PolyPhen,82 and CADD39 operationalize the knowledge from previous re-

search that variation at certain portions of the genome are expected to have a greater effect

on disease risk. Of these, the CADD algorithm combines many single-dimensional anno-

tations into one score of the predicted “deleteriousness” of that variant into a reproducible

single score. This score can then be used to up-weight variants in the SKAT-O tests that are

expected to cause disease.

In many cases summary statistics from a given study are more easily accessible due to

fewer privacy restrictions. In these cases, SKAT-O cannot calculate the significance of a

gene set. For this reason, other methods have been developed to calculate the significance of

a gene-based on summary-level statistics.?,83–89 Of these, one of the most straightforward

test is Fisher’s method.90 This method combines the p-value of i separate variants within a

gene using the formula −2∑ ln(pi). Under certain assumptions, this statistic is distributed

as χ2 with i degrees of freedom. However, in the case of correlated p-values, which is

common in genetic regions with linkage disequilibrium (LD), Fisher’s method and others

that also do not take into account the LD, inflate the type I error rate of the genes tested. To

correct for this, the VEGAS method88 incorporates public use genetic data from HapMap

21



to control for correlation among p-values within a gene to infer the significance of the

gene-based test statistic.

With this as background, this manuscript will investigate whether, in the context of early

onset breast cancer, SKAT-O using CADD weights is able to identify genes that are associ-

ated with disease risk. The analysis will use conditional analyses to investigate whether any

results are driven by common variation that would have been identified by a single marker

regression analysis. This manuscript will also employ conditional analysis to determine

whether any genes identified are driven by variants that are already known to be associated

with breast cancer phenotypes, which will determine whether the identified gene contains

novel risk loci. Simulations suggest that it is unlikely that there remain undiscovered risk

variants for breast cancer with a minor allele frequency greater than 5% and a magnitude of

effect that produces an odds ratio greater than 2,91 but this has not yet been definitively em-

pirically confirmed. The results will provide an opportunity to clarify whether rare variants

of modest effect size are important in the genetic etiology of breast cancer, and whether

gene-based tests are a useful tool to examine them. The investigations in this analysis will

implement gene-based tests that reflect a hypothesis that collectively variation within the

same gene can contribute to risk, and the choice of the specific SKAT-O test reflects the

hypothesis that in some genes that hold causal variation, the distribution of causal alleles

within that gene is relatively sparse, and in some causal variants, minor alleles may be

protective of brat cancer. The choice of weights in this investigation reflect the hypothesis

that variants that are predicted to be deleterious via the CADD algorithm have a higher

probability of being causal for breast cancer risk, and if this does indeed reflect the un-

derlying biological processes that drive breast cancer risk, the weighted analysis will have

more power to detect causal genes than the unweighted one. No previous study of any trait

has used the CADD scores directly as weights.
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These investigations represent only the fourth study of breast cancer risk that has inter-

rogated rare variation directly. In 2013 Haiman et al.48 and more recently (August 2016

and September 2016) Haddad et al.49 and Zhou et al.92 all used exome arrays. However,

each of these studies made methodological decisions that were sub optimal. Haiman et

al. used a burden style test rather than a SKAT-O, and all three restricted their analysis to

rare putative functional variants rather than weighting. A third study50 that investigated

rare variation using gene-based tests in a genome-wide setting in breast cancer also used a

burden test, and additionally did not directly interrogate the rare variants in gene regions,

but rather inferred their existence by imputation. The Zhou study controlled for things

that were possibly in the causal pathway of breast cancer risk. None of the investigations

found genes that were significant at the genome-wide level. Several studies that have im-

plemented whole-exome and whole-genome sequencing are underway, but their results are

not yet published. There have been several published gene-based analyses at the genome-

wide level that investigate the genetic determinants of many diseases, and the vast majority

has restricted the analysis to variants of a particular functionality or rareness. This analy-

sis will instead up-weights variants that are predicted to be functional, and will include all

resumed variants, and will assess whether any identified gene is driven by common varia-

tion through conditional analyses. This approach balances incorporating prior knowledge,

while also allowing identification of strong associations that occur between not-yet-well-

understood risk loci and disease.93 This manuscript will discuss the appropriateness of

three weighting methods in the context of the results they give.

The participants of this study are all aged 50 or younger. The analyses presented here

will therefore provide evidence on whether genetic influences of the better-studied late

onset disease are also risk factors for women who will be diagnosed early, or if instead that

the genetic etiology of breast cancer risk differs for early onset cases.
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Any genes that are identified will implicate particular gene products as being respon-

sible at the cellular level for early onset breast cancer oncogenesis. This knowledge will

improve the understanding of the underlying biology of early onset breast cancer risk, and

may help to suggest possible targets for pharmaceutical chemoprevention. If genes of large

effect are discovered, the new risk loci would continue to expand the ability to predict what

patients are at risk for early onset breast cancer.

2.2 Methods

2.2.1 Population

The participants for these analyses were selected from ten ongoing studies designed to as-

sess the risk factors associated with early onset breast cancer. Participants were women of

European descent who were not known to carry pathogenic mutations in the genes BRCA1

or BRCA2. Details of the recruitment are found in Table 2.1. Ninety eight percent of

the cases were younger than 50 years old at the time of their diagnosis (for cases) and all

controls were younger than 50 at the time of enrollment. Six of the study sites (Australia,

Northern California, Ontario, Philadelphia, and New York) were members of the Breast

Cancer Family Registry (BCFR), whose methods have been described elsewhere.63 Briefly,

two of the BCFR centers (Northern California and Canada) recruited through population-

based registries, three (Utah, Philadelphia, and New York) recruited through clinic- and

community-based outreach, and one (Australia) recruited through a mix of population and

clinic-based outreach. Participants were also included from four studies not included in

the BCFR consortium. The German Genetic Epidemiologic Study of Breast Cancer;64 and

Long Island Breast Cancer Study Project;65 and the Seattle study66 were population-based

case-control studies described elsewhere. The Chicago participants were identified from

the Chicago Multiethnic Breast Cancer Epidemiologic Cohort, a hospital-based study of
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Table 2.1: Characteristics of Studies Included in Exome-wide Analysis
Study Name Study

Location
Years
Recruit-
ing

Case Criteria Control Criteria Cases Controls

Breast Cancer
Family Registry

Australia 1992-
2000

Living in the Melbourne
and Sydney metro areas,
family recruited from the
Victoria and NSW cancer
registries

Randomly selected from
electoral rolls, matched
to cases on age and city

473 118

Breast Cancer
Family Registry

Northern
California

1996-
2003

SEER Cancer registry in
the San Francisco metro
area

Random digit dialing
in study area, matched
to cases on age and
race/ethnicity

176 65

Breast Cancer
Family Registry

Ontario 2001-
2010

Ontario Cancer Registry Random digit dialing in
study area, matched to
cases on age

582 152

Breast Cancer
Family Registry

Philadel-
phia,
Pennsylva-
nia

1996-
2000

Living in Philadelphia N/A 333 0

Breast Cancer
Family Registry

New York,
New York

1996-
2000

Living in New York, New
Jersey, or Connecticut

N/A 551 0

Breast Cancer
Family Registry

Utah 1996-
2012

Living in Salt Lake City N/A 152 0

Genetic
Epidemiologic
Study of Breast
Cancer by Age 50

Germany 1992-
1995

38 clinics in the
Rhein-Neckar-Odenwald
and Freiburg regions

Randomly selected
from local population
registries

466 437

Long Island
Breast Cancer
Study Project

New York 1996-
1999

Nassau and Suffolk
counties

Random digit dialing in
study area, matched to
cases on age

162 98

Seattle Seattle,
Washington

1990-
1992

King, Pierce, and
Snohomish counties; age
less than 45 at diagnosis

Random digit dialing in
study area, matched to
cases on age and race

288 103

University of
Chicago

Chicago,
Illinois

1998-
2010

Treated at the University
of Chicago Cancer
Center

N/A 326 0

Cases and controls are numbers included in the analysis after QC
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breast cancer at the University of Chicago.94,95 For the Chicago study, demographic fac-

tors, clinical, and pathological data, were abstracted from medical chart, epidemiologic

risk factors, such as reproductive and lifestyle factors, were collected via structured ques-

tionnaire, and cancer relapse and survival were ascertained via patient medical records and

linkage to the national death index.

2.2.2 Genotyping

DNA was available for 4914 participants (3,876 cases and 1,038 controls) through blood

draws. The samples were whole genome amplified using the Qiagen Repli-G mini kit.

3956 (3121 cases and 835 controls) were genotyped on the Illumina HumanExome 12v1.0

chip, and 958 (755 cases and 203 controls) were genotyped on the Illumina HumanEx-

ome 12v1.1 chip. The samples were processed using 49 plates in two batches, and the

process was carried out according to the manufacturer’s protocol. To improve the quantity

and quality of available genomic DNA, the samples were whole genome amplified using

the Qiagen Repli-G mini kit,22 and were processed using 49 plates in two batches, fol-

lowing the manufacturer’s protocol. TeCan Evo was used for automation. Raw data was

processed by Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15,

per Illumina’s recommendation for Infinium chips. Clustering was done using the Illumina

supplied cluster files. After keeping only variants that were on both chips, 238,524 variants

were interrogated.
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2.2.3 Analysis methods

2.2.3.1 Quality Control

The quality control followed the protocol suggested by Guo et al.96 Participants were ex-

cluded for low genotyping rate (rate < 95%; 248 excluded), male sex (nine excluded), high

heterozygosity (F statistic greater than three standard deviations from the mean, or het-

erozygosity greater than four standard deviations from the mean; 52 excluded), one of each

pair of duplicated genotypes (twenty four samples excluded; three replicates, twelve du-

plicates from the same center, nine recruited into both the Long Island and New York City

studies), principal component outliers (three participants whose first or second principal

components (constructed from common variants) were more than six standard deviations

away from the mean). Additionally, due to the family-based case ascertainment of some

of the studies, we also excluded 126 participants whose genotypes were highly correlated

(estimated relatedness from a GCTA-created genetic relatedness matrix greater than 0.4).97

Variants were excluded from the analysis if they had a low call rate (rate < 95%; 4335

excluded), or if they were common variants (defined below) with Hardey-Weinberg equilib-

rium p-values of less than 2.5 ·10−7 in controls (p = 0.05 Bonferroni corrected for 200,000

tests; 39 excluded). The final variant-level exclusions were the result of evidence that on

some plates variants were unreliably assigned (a plate-by-plate single marker regression

analysis found that in some cases genotype could predict plate). For these variant-plate

combinations, variants were excluded for all participants on that plate if this single marker

regression p-value was smaller than 2.5 ·10−7. As a result of this QC step, 100 variant-plate

combinations were set to missing.

After these exclusions, the analysis set contained 3479 cases, 973 controls, and 238,524

variants. Of these, 135,931 were polymorphic in the study population. Variants were as-

signed to genes using the ANNOVAR software,98 and excluded if they were annotated to
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Figure 2.1. Variants Used in Analysis

intergenic regions, leaving 125,388 polymorphic variants, which were annotated to 16,815

genes. Variants were classified as “common” and “rare” based on their MAF, with a thresh-

old at MAF equal to
(

1
2n

)1
2 = 0.0106.59 A schematic of the variants used in this analysis is

shown in Figure 2.1.

2.2.3.2 Controlling for Population Stratification

Rare variants and common variants have different correlations with ancestry, and therefore

will have different potential to induce confounding in genetic association studies.99,100

To counter this potential for inflated type I error rates, EIGENSTRAT101,102 constructed

two sets of principal components from the analysis set. One set was constructed using

“common” variants assayed by the array (PCc), and one using “rare” variants (PCr). In a

logistic regression that did not include genetic information, the first five PCc and the first

three PCr were associated with case status. Including any other principal components did

not improve the logistic model fit, as determined by a likelihood ratio test. These eight PC

were included in all subsequent analyses.
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2.2.3.3 Common Variation

To identify individual variants that would have been identified through single marker re-

gression GWAS methods as being associated with risk of early onset breast cancer, com-

mon variants that could be assigned to a gene were analyzed using a logistic regression

single marker regression framework with the PLINK software.103,104 This analysis as-

sumed an additive model of inheritance. Results were visualized using the qqman105

and ggplot2106 R software packages.107 Variants whose p-values were smaller than the

Bonferroni-corrected level of 1.8 ·10−6 would have been considered suggestive of associ-

ation with early onset breast cancer.

2.2.3.4 All Variation in Gene Regions

To examine whether variants within a gene collectively are associated with the risk of early

onset breast cancer, the variants were analyzed using the SKAT-O method.37 The analysis

was conducted using the SKAT package for R, with the “SKATO” method in the function

SKATBinary with efficient resampling.108 The analysis was repeated three times: with

equal weights; with heavy weights on rare variants (as suggested by the SKAT authors,

weights on each variant equal to the beta function evaluated at the MAF of that variant in

controls with shape parameters α = 1 and β = 25); and with weights on each variant equal

to the PHRED-like CADD score for that variant. For each of the methods, the significance

threshold was determined by correcting a p<0.05 threshold by the effective number of tests

computed, which was determined by the SKAT package. Genes whose p-values were less

than this threshold using any weighting method were considered suggestively associated

with early onset breast cancer.
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Table 2.2: Characteristics of Studies Included GAME-ON/DRIVE

Study Country Case Ascertainment Control Ascertainment Genotyping
Platform

Cases Controls

ABCFS Australia Recruitment through
cancer registries in
Victoria and NSW

Recruitment from
electoral rolls in
Melbourne and Sydne
matched to cases by
age in 5-year
categories

Illumina 610k 282 285

DFBBCS Netherlands BRCA1/2 mutation
negative familial
bilateral breast cancer
patients selected from
five clinical genetics
centers

Rotterdam study; 55
years or older at time
of inclusion.

Cases: Illumina
610k; Controls:
Illumina 550k

464 3255

HEBCS Finland Helsinki University
Central Hospital

Population controls
from Finish Genome
Centre (NordicDB)

Cases: Illumina
550k + 610;
Controls: Illumina
370k

726 1012

BBCS UK UK Cancer Registries WTCCC2: 1958 Birth
Cohort + UK National
Blood Service

Cases: Illumina
370k; Controls:
Illumina 1.2M

1609 2663

GCHBOC Germany BRCA1/2 mutation
negative cases from
university clinics in
Cologn and Munic

KORA (Cooperative
Health Research in the
Region Ausburg)

Cases: Affymetrix
5.0k; Controls
Affymetrix 6.0k

634 477

UK2 UK Cancer genetics clinics
and oncology clinics

WTCCC2: 1958 Birth
Cohort + UK National
Blood Service

Cases: Illumina
370k; Controls:
Illumina 1.2M

3628 2663

SASBAC Sweden Population-based
postmenopausal
women with breast
cancer

Population-based
controls, age-matched
to cases

Cases: Illumina
317k+240k;
Controls: Illumina
550k

790 756

MARIE Germany Sample of ductal and
lobular carcinomas
from the MARIE
study, oversampled 2:1
for lobular

KORA (Cooperative
Health Research in the
Region Ausburg)

Cases: Illumina
370k; Controls:
Illumina 550k

652 470

BPC3 USA,
Europe,
Poland

Sample of ER negative
cases from eight
cohort studies

Controls from eight
cohort studies

Illumina 660k,
Illumina 550k,
Illumina 300k

2188 25519

BCFR* USA,
Europe,
Canada,
Australia

Population-based
registries and
clinic-based
enrollment

Population-based
controls, age-matched
to cases

Illumina 610k,
Cyto12

3523 2702

SardiNIA Italy Clinic-based Sardinian
origin breast cancer
patients

Sardinians with no
history of cancer in
first degree relatives
recruited at
commuinty blood
donation centers

Cases: Affymetrix
500k; Controls:
Affymetrix 6.0

1367 1659

Cases and controls are numbers included in the analysis after QC
*The participants referred to as “BCFR” in the GAME-ON/DRIVE meta-analysis differ from the BCFR participants from the exome
array analysis. The participants labeled “BCFR” in the meta-analysis are from sites in Australia, Ontario, California, Long Island,
Germany, Seattle, and USC. 2323 cases (17% of the cases in the replication) and 1034 controls (2% of the controls in the replication)
overlap with the participants in the exome array analysis.
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2.2.4 Replication: GAME-ON/DRIVE Summary Statistics

Genes and variants that showed suggestive association were then investigated for evidence

of significance in a population of breast cancer cases of all ages using the variant-level

summary statistics provided by the Discovery, Biology, and Risk of Inherited Variants in

Breast Cancer (DRIVE) study in the Genetic Associations and Mechanisms in Oncology

(GAME-ON109) consortium. The DRIVE study data combined information from twelve

genome-wide association studies of breast cancer. Details of the recruitment are found

in Table 2.2. Eight of the studies (Australia Breast Cancer Familial Study (ABCFS110);

Rotterdam Study (DFBBCS111); Finland Breast Cancer Study (HEBCS112,113); British

Breast Cancer Study (BBCS114); German Hereditary Breast and Ovarian Cancer Study

(GCHBOC115); UK Breast Cancer Study 2 (UK2116); Singapore and Sweden Breast Can-

cer Study (SASBAC113); Mammary carcinoma Risk factor Investigation (MARIE117) were

analyzed together, as described elsewhere,118,119 and the other three studies (National Can-

cer Institute Breast and Prostate Cancer Cohort Consortium (BPC3120,121); Breast Cancer

Family Registry subset and associated trials (BCFR63); and Sardinia122) were analyzed

separately using slightly different quality control, and then combined. The twelve studies

ultimately contributed 15,863 cases and 41,461 controls to the meta-analysis of 2,608,508

variants after imputation. The methods of this meta-analysis are detailed elsewhere.50

If any variants passed the genome-wide significance threshold (1.8 ·10−6) in the early

onset participants, they would be compared to the GAME-ON/DRIVE summary statistics

for replication and evidence that the same loci was causal in both the early onset and over-

all. If fewer than 20 variants had p-values smaller than the threshold in the early onset

population, then the variants with the 20 smallest p-values were compared to the GAME-

ON/DRIVE summary statistics. The variant would be identified as suggestively associated

with both early onset and all-ages breast cancer if the meta-analysis p-values were less
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than Bonferroni-corrected threshold (determined by 0.05 divided by the number of variants

tested for replication).

For the gene-based analyses, genes that any of the three SKAT-O weighting methods

identified as suggestively associated with early onset breast cancer would be examined for

evidence of also being involved in breast cancer diagnosed at any age. If fewer than 20

genes were suggestively associated with early onset breast cancer, then genes identified as

the 20 most significant in any weighting method were examined. This was done by first

annotating the GAME-ON variants into gene sets using ANNOVAR, and then combining

the p-values of the GAME-ON summary statistics into a gene-based statistic using the

VEGAS method. If the VEGAS method could not calculate a p-value for the summary

statistics, a p-value was calculated with the Fisher method. The resulting p-values of the

suggestive genes were compared to a Bonferroni-corrected threshold determined by 0.05

divided the total number of genes tested for replication. If the p-value was below this

threshold, that gene was considered suggestively associated with both breast cancer that is

diagnosed early and in all ages.

2.2.5 Comparison with GWAS-Identified Variants and Known Variants

In order to establish whether any suggestive findings were driven by variants that would

have been identified through a single marker regression, genes were re-analyzed while

controlling for any variants that were suggestively associated with early onset breast can-

cer or breast cancer of any age at diagnosis. Genes were selected for this analysis if their

analysis in the early onset cases met one of two criteria. First, if they were suggestively

associated with early onset breast cancer by having a p-value in any weighting method that

was below the genome-wide p-value threshold as determined by SKAT, and second if they

were suggestively associated with both the early onset disease and all-ages disease by the
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Figure 2.2. Single Marker Logistic Regression Results for Common Variation Assayed on
the Exome Array

The red line represents a p-value of 1.8 ·10−6, and the blue line represents the p-value of the twentieth most significant SNV.

replication analysis. This conditional analysis was repeated using all three weighting meth-

ods, and implemented using the prepCondScores and skatOMeta functions of the skatMeta

R package.123 This package calculates the SKAT-O test statistic and controls for linkage

disequilibrium with variants that are being conditioned upon by calculating p-values via

permutation.

In order to establish whether any suggestive findings were driven by variants that were

already known to be associated with a breast cancer phenotype, suggestive genes (genes

defined by the three categories in the previous paragraph) were cross-referenced with the

NHGRI-EBI GWAS Catalog.34,60 If the GWAS catalog reported established associations

(p-value <5 · 10−8) between a single nucleotide variant (SNV) in that gene and a breast

cancer phenotype, then the gene was re-analyzed using used the skatMeta R, conditional

on those variants.
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2.3 Results

2.3.1 Common variation

After controlling for the principal components, the single marker regression analysis of

the 27,168 common variants has a genomic inflation factor of 1.065. A summary of the

association results is shown in Figure 2.2, and details of the twenty SNVs with the smallest

p-values are shown in Table 2.3.

None of the SNVs are significant at the pre-set threshold. The most significant SNV is

located at chr10:123346116 in the intron of FGFR2. The p-value of this SNV is 6.64 ·10−6.

Each additional allele increased the odds of breast cancer by 27% (OR: 1.268; 95% CI:

1.14-1.41). The most significant SNV that was predicted to cause a change in a translated

amino acid is a nonsynonymous SNV in LANCL2, located at chr7:55433884. The p-value

of this variant is 3.3 ·10−5, and each additional risk allele is estimated to the odds of breast

cancer by 26% (OR: 1.264; 95% CI: 1.132-1.412).

Of the twenty SNVs with the smallest p-values, twelve are interrogated in the GAME-

ON/DRIVE meta-analysis, and the p-values of these variants are shown in Table 2.4. Of

these, three in the gene FGFR2 are significant at the Bonferroni-corrected level of 2.5 ·10−3

in the GAME-ON/DRIVE data. They are located at chr10:123337335, chr10:123346190,

and chr10:123352317.

2.3.2 Gene-based tests

Figure 2.3 summarizes the coverage of the exome array, and characterizes the rarity of the

variants within the gene. The median number of variants per gene was five, the median

number of total minor alleles in a gene was 898, and the median number of individuals

with at least one minor allele in a gene was 816.
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Figure 2.3. Distribution of Variants Per Gene, Minor Alleles Per Gene, and Participants
with Minor Alleles Per Gene

Figure 2.4. Distribution of Variant Weights for Variants Analyzed from the Exome Array
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Figure 2.5. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with Equal Weights

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.

The SKAT-O gene-based tests were repeated using three weighting methods: once with

equal weights; once with each variant weighted by the beta function with α = 1, β = 25,

evaluated at the minor allele frequency of that variant in controls; and once by the CADD

deleteriousness score of that variant, transformed to a PHRED-like scale. The distributions

of the beta weights and CADD weights for analysis set are shown in Figure 2.4. The

distribution of the beta weights is skewed towards the maximum weight of 25, a result of

the rareness of most of the variants in the exome array.

After controlling for the principal components, the genomic inflation factor of the gene-

based tests produced by the SKAT-O analysis with equal weights is 1.12. A summary of the

gene-based results with equal weights is shown in Figure 2.5. The genomic inflation factor

is 1.09 in the SKAT-O analysis when the variant weights were equal to the beta function,

and is summarized in Figure 2.6. The genomic inflation factor is 1.10 in for the SKAT-O

analysis when the variant weights were equal to the variant’s CADD score, and this analysis

is summarized in Figure 2.7. P-values for all weighting schemes for genes that are in the

20 most significant in any weighting scheme are shown in Table 2.5.
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Figure 2.6. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with Beta Weights

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.

Figure 2.7. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with CADD Weights

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.
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Table 2.5: Most Significant Genes Identified by Sequence Kernel Association Test-Optimal
with Three Weighting Methods

Gene Variants
in Gene

Total Count
of Minor

Alleles in
Gene

p-value
equal
weights

p-value beta
weights

p-value
CADD
weights

ABCC5 6 3486 3.84e-01 6.72e-04* 4.33e-01
ACE 26 4269 3.04e-02 5.82e-04* 6.36e-04
AP2B1 2 4262 5.05e-04* 5.64e-01 6.11e-04
CAMTA1 24 12762 1.05e-01 5.29e-01 2.08e-04*
CDON 18 16625 1.53e-03 1.00e+00 5.03e-04*
CELF2 2 11 2.45e-04* 2.45e-04* 2.45e-04*
DALRD3 4 2080 3.22e-04* 5.16e-01 3.86e-04*
DDC 7 7064 6.80e-04 3.66e-01 5.99e-04*
EML5 6 2265 8.50e-02 1.74e-04* 5.71e-02
FGFR2 8 16044 1.01e-05* 1.30e-01 2.19e-05*
GJA9 10 4456 3.85e-04* 1.00e+00 3.50e-01
HSF5 5 1947 3.69e-02 7.20e-04* 2.30e-02
HSPBP1 2 16 4.79e-04* 4.79e-04* 4.79e-04*
ILF3 4 2926 8.59e-02 4.28e-04* 3.73e-03
KPNA7 4 634 6.25e-01 3.46e-01 4.48e-05*
LANCL2 4 3047 3.97e-05* 8.24e-01 9.86e-02
MAP4K1 6 60 9.64e-04 2.00e-03 4.58e-04*
MAPKAP1 4 4051 7.55e-01 8.43e-05* 2.26e-01
MKL1 18 9844 1.50e-03 3.80e-02 3.19e-04*
MSGN1 3 7258 1.00e+00 1.10e-19* 1.00e+00
NEK10 11 10381 3.61e-04* 6.85e-01 1.20e-03
NOXA1 4 2840 3.18e-01 8.54e-04* 8.65e-04
OR11L1 12 3889 1.06e-03 1.14e-03 5.37e-04*
PCLO 57 19585 5.86e-03 2.55e-01 2.97e-04*
PLSCR4 9 8088 7.78e-05* 2.83e-01 6.21e-01
PSPH 5 33 6.54e-04 8.46e-04* 8.48e-04
PTPRCAP 5 236 6.30e-04 9.09e-04* 2.06e-01
RAB26 5 26 4.36e-04* 3.92e-04* 6.95e-04
RHBDL2 6 4135 3.28e-04* 1.00e+00 3.21e-04*
RUVBL2 3 4452 7.40e-01 1.64e-05* 1.44e-01
SH3BP4 19 2016 4.55e-01 4.64e-04* 4.04e-04*
SIVA1 4 1744 4.40e-04* 6.43e-01 4.03e-04*
SLFN14 10 12265 1.21e-04* 5.43e-01 1.75e-04*
SNURF 3 6 1.21e-04* 1.21e-04* 1.21e-04*
SYNE2 104 19289 2.45e-04* 1.33e-01 6.24e-04
UPK1B 8 388 4.21e-04* 7.52e-04* 5.36e-04*
VEPH1 23 3267 4.10e-01 3.05e-04* 1.60e-01
WBSCR17 10 9522 2.58e-04* 8.31e-01 5.89e-02
WFDC11 1 19 2.22e-04* 2.22e-04* 2.22e-04*
ZNF665 6 8054 4.15e-04* 1.71e-01 9.37e-04

If the gene was one of the top 20 most significant genes for that weighting scheme, its p-value is marked with an asterisk
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Table 2.6: Annotation and Distribution of Variation within MSGN1 in Participants of Ex-
ome Array Study

Variant Annotation Minor Allele
in Cases

Minor Allele
in Controls

2:17998025, A→T exonic, synonymous SNV 2844 795
2:17998027, C→G exonic, nonsynonymous SNV 0 2
2:17998095, C→T exonic, synonymous SNV 2848 800

Annotation from ANNOVAR

One gene was found to be significant at the genome-wide level when weighting by the

beta function transformation of their minor allele frequency. For that weighting scheme, the

p-value of MSGN1 on chromosome 2 is highly significant, with a p-value of 1.10 ·10−19.

The exome array assayed three polymorphic variants within this gene, whose variants are

characterized in Table 2.6. Two of the MSGN1 variants are common, and the third is

very rare, with a MAF of 0.000224, and was observed in two heterozygous controls. This

SNV, positioned at chr2:17998027 in the HG19 assembly, is given a weight of 24.86 by the

beta function. The p-values for MSGN1 for the other two methods are not significant (the

p-value for both equal weights and CADD weights is 1.00).

The other two weighting methods do not identify any genes as associated with early

onset breast cancer at the pre-set significance threshold.

Given the importance of the HLA regions in many disease processes, the suggestive sig-

nificance of a variant within that region in the single marker regression analyses suggested

that a closer investigation of variants that were near that suggestive variant may be fruitful.

Figure 2.8 plots the significance of all variants within a 500 kilobase region around the

HLA-DOA gene that were included in the single variant regression analysis of the BCFR

participants. The p-values for the HLA-DOA gene were 0.548, 0.008, and 0.323 for the

equal weights, MAF weights, and CADD weights respectively. While this region may be a

promising region to explore for candidate gene studies in the future, there is no convincing
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Figure 2.8. Single Marker Logistic Regression Results for Common Variation Assayed on
the Exome Array near HLA-DOA
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Figure 2.9. Evidence of Shared Genetic Risk for Early- and All-Ages Onset of Breast
Cancer from Gene-Based-Tests in GAME-ON/DRIVE

The horizontal line represents a p-value threshold based on a Bonferroni correction of 1.25 ·10−3.
Genes whose p-values were smaller than 10−30 are presented with p = 10−30.

evidence in this population that variation within the HLA-DOA gene is associated with

breast cancer risk.

2.3.2.1 Comparison with Breast Cancer of All Ages of Onset

Forty genes were among the twenty most significant genes calculated by at least one of

the three weighting methods. Of these, thirty-eight contain at least one variant interrogated

by the GAME-ON/DRIVE summary statistics, and could therefore have a gene-based test

constructed for replication. The two genes that are not found in GAME-ON/DRIVE are

NOX1A and SNURF, CELF2, SIVA1, and KPNA7. Figure 2.9 summarizes the results of

the gene-based tests based on the GAME-ON/DRIVE summary statistics of the genes. The

VEGAS software is limited in its ability to calculate very small p-values, and reports a p-

value of zero if 10,000 permutations continue to find smaller p-values. In Figure 2.9, these

genes are represented as having a p-value of 10−30 for purposes of scale.

Three genes, FGFR2, NEK10 and MKL1, are significant in the GAME-ON/DRIVE

results using the VEGAS method of combining p-values.
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Table 2.7: Summary of ρ Mixing Parameter for Suggestive Genes

Gene Variants in
Gene

ρ Equal
Weights

ρ MAF
weights

ρ CADD
Weights

FGFR2 8 0.0 0.0 0.5
MKL1 18 0.0 0.0 0.0
MSGN1 3 1.0 1.0 1.0
NEK10 11 1.0 0.0 1.0

2.3.2.2 Appropriateness of SKAT-O

The genes MSGN1, NEK10, FGFR2, MKL1, and SIVA1 are identified as being sugges-

tively associated with breast cancer. In many weighting scenarios for these genes, the value

of ρ , the mixing parameter that combines the SKAT with the burden test in the SKAT-O

analysis is zero. In these genes (all weighting methods for MKL1; and under equal weight-

ing and beta weighting for FGFR2 and SIVA1), the value of ρ indicates that the SKAT test

was more appropriate than the burden test. In contrast, for MSGN1, ρ is estimated to be

1 for all weighting methods, indicating that the burden test was more appropriate than the

SKAT test. The analysis of NEK10 requires a mixing parameter of 1 in the equal weights

and CADD weights scenario, and a mixing parameter of 0 in the beta weighting scenario,

as summarized in Table 2.7.

2.3.2.3 Novelty of Associations

The five genes were analyzed using conditional analyses that controlled for any SNVs that

were suggestively associated with breast cancer in the single marker regression analyses of

the same participants. Of these five genes, only FGFR2 contained variants that were sug-

gestively associated with breast cancer in the single marker regression analyses, and these

three are noted with a ^ in Table 2.8. After conditioning on these three variants, in none of

the weighting methods does the analysis produce a p-value that was less than 0.05. This
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Table 2.8: Annotation and Distribution of Variation within FGFR2 in Participants of Exome
Array Study

Variant Annotation Minor Allele
in Cases

Minor Allele
in Controls

10:123239388, T→C exonic, nonsynonymous SNV 2 0
10:123256135, A→G exonic, nonsynonymous SNV 1 1
10:123310871, G→A exonic, nonsynonymous SNV 22 3
10:123325158, A→G exonic, nonsynonymous SNV 17 11
10:123337335, A→G*^ intronic 3322 809
10:123346116, G→A* intronic 3249 786
10:123346190, G→A*^ intronic 3205 780
10:123352317, A→G*^ intronic 3162 774

Annotation from ANNOVAR
Positions refer to the HG19 assembly
*Variants identified by previous research as associated with a breast cancer phenotype
^Variants identified by the GWAS as associated with early onset breast cancer

suggests that the variants that could have been identified using single marker regression

methods, or those in close LD with them, drive the bulk of the association between FGFR2

and early onset breast cancer risk in this sample. The other four genes contain associations

with early onset breast cancer risk that would not have been identified using single marker

regression methods.

Next, these five genes were queried in the NHGRI-EBI catalog to determine if any har-

bor variants that are known to be associated with a breast cancer phenotype from an earlier

study. For FGFR2, the NHGRI-EBI catalog contains six variants that were significantly

associated with a breast cancer phenotype in at least one study, and four were assayed on

the exome array. These four variants were located at chr10:123337335, chr10:123346116,

chr10:123346190, and chr10:123352317. They are noted with an asterisk in Table 2.8. Af-

ter conditioning on the four previously-identified variants, in none of the weighting meth-

ods does the analysis produce a p-value that was less than 0.05: the p-value for equal

weights was 0.14; the p-value for beta weights was 0.16; and the p-value for CADD weights

was 0.08. This suggests that the already-identified variants, or those in close LD with them,

drive the bulk of the association between FGFR2 and breast cancer risk in this sample.
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Table 2.9: Annotation and Distribution of Variation within MKL1 in Participants of Exome
Array Study

Variant Annotation Minor Allele
in Cases

Minor Allele
in Controls

22:40813413, A→G exonic, nonsynonymous SNV 2 1
22:40814500, C→T exonic, nonsynonymous SNV 2770 750
22:40814533, T→C exonic, nonsynonymous SNV 1 0
22:40814542, A→G exonic, nonsynonymous SNV 1 0
22:40814581, T→C exonic, nonsynonymous SNV 0 1
22:40814749, T→C exonic, nonsynonymous SNV 1 2
22:40814878, T→C exonic, nonsynonymous SNV 2 1
22:40814950, T→C exonic, nonsynonymous SNV 2 0
22:40814988, A→G exonic, nonsynonymous SNV 2 0
22:40815256, T→C exonic, nonsynonymous SNV 27 1
22:40815309, T→C exonic, nonsynonymous SNV 1 0
22:40816431, A→G exonic, nonsynonymous SNV 1 1
22:40816443, A→G exonic, nonsynonymous SNV 1 1
22:40819589, T→G exonic, nonsynonymous SNV 0 1
22:40820151, C→T intronic 2127 664
22:40820273, T→C exonic, synonymous SNV 27 1
22:40820311, T→C exonic, nonsynonymous SNV 1 0
22:40849704, C→A intronic 2684 810

Annotation from ANNOVAR
Positions refer to the HG19 assembly

Table 2.10: Annotation and Distribution of Variation within NEK10 in Participants of Ex-
ome Array Study

Variant Annotation Minor Allele
in Cases

Minor Allele
in Controls

3:27326097, T->G exonic, synonymous SNV 2049 492
3:27326131, C->T exonic, nonsynonymous SNV 2 0
3:27326451, G->A exonic, synonymous SNV 2106 507
3:27332820, G->A exonic, nonsynonymous SNV 2053 495
3:27333024, T->C exonic, nonsynonymous SNV 1 0
3:27338698, C->T exonic, nonsynonymous SNV 99 22
3:27338730, A->G exonic, synonymous SNV 1 0
3:27343261, T->C exonic, nonsynonymous SNV 70 16
3:27349047, A->G intronic 1893 515
3:27385817, T->C exonic, nonsynonymous SNV 1 0
3:27387641, T->C exonic, nonsynonymous SNV 40 14

Annotation from ANNOVAR
Positions refer to the HG19 assembly
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Figure 2.10. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE
for FGFR2

Annotation for each of the variants in these genes is found in Table 2.9 through Table2.10.

SIVA1 and MSGN1 both had no known associations with a breast cancer phenotype. The

NHGRI-EBI catalog reports two variants that are known to be associated with breast cancer

in the MKL1 gene-rs6001930 and rs17001868. Both of these known variants are annotated

to intronic regions, and neither was assayed by the exome array. In the CEU population of

the 1000 Genomes, the highest r2 measure of LD between either of these SNVs and any of

the 18 SNVs in the exome array data was 0.03,124 suggesting that the association reported

at MKL1 was not driven by already-known single-variant associations. The segment of

chromosome 3 that contains NEK10 is gene dense. Previous single marker regression as-

sociations have been reported both for the intron of NEK10 itself and the 3 prime UTR of

SLC4A, which is immediately adjacent to NEK10. None of these variants were directly

interrogated by the exome array, and none were in high LD with any of the measured vari-

ants.

Since the identification of the four suggestively associated genes relied on replication

from the GAME-ON/DRIVE summary statistics which assayed different variation than the
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Figure 2.11. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE
for NEK10

Figure 2.12. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE
for MKL1

48



BCFR participants that were measured using an exome array, Figures 2.10 through ?? allow

for a closer examination of the p-values and correlations between the GAME-ON/DRIVE

variants that were included in the gene-based tests for each of the three genes that were

suggestively associated with early onset breast cancer. In these figures, the variant with the

most significant p-value in the GAME-ON/DRIVE analysis is highlighted, and the linkage

disequilibrium of every other variant with that SNV is presented (calculated as an r2).

One insight from this investigation is that some variants within NEK10 were genome-

wide statistically significant in the GAME-ON/DRIVE summary statistics (p < 5 · 10−8),

but had not been individually reported within the manuscripts of the original study. There-

fore, the NHGRI-EBI catalog of GWAS results does not list NEK10 as associated with

breast cancer, even though previous study populations did contain evidence of its associa-

tion.

Other insights from the LocusZoom plots suggest which variants may be driving the

gene-based results. Within the GAME-ON/DRIVE participants, the association within

FGFR2 is driven by variants with very small p-values; re-running the VEGAS analysis

including only the variants with a p-value less than 5 ·10−8 no longer identified a statisti-

cally significant p-value. In contrast, the variants that were included within MKL1 were all

not statistically significant on their own, but collectively produce a gene-based p-value that

was statistically significant. The association found from the GAME-ON/DRIVE summary

statistics within NEK10 appears to be driven by some variants that are statistically signif-

icant on their own, and some that did not reach the level of statistical significance, as a

re-run of the VEGAS analysis including only the variants with a p-value less than 5 ·10−8

still produces a p-value that was less than 10−30.
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2.4 Discussion

This analysis identifies three genes in which variation is associated with risk of early onset

breast cancer: FGFR2 (discovery p = 2.18 ·10−5; replication p < 10−30), NEK10 (discov-

ery p = 1.20 ·10−3; replication p < 10−30), MKL1 (discovery p = 2.62 ·10−4; replication

p < 10−30), and MSGN1 (discovery p = 1.10 ·10−19; replication p unavailable). Three of

these genes are also suggestively associated with an overall breast cancer sample (FGFR2,

MKL1, and NEK10). The association at MSGN1 appears to be an artifact that is induced

when MAF is used to weight.

All three of these genes are known to be instrumental in mechanisms that are associated

with cancer: FGFR2 is part of the known cancer pathway of PI3K-AKT,125 NEK10 is

involved in cell cycle control,126 and MKL1 has been linked to oncogenic phenotypes.127

The gene-based nature of the SKAT-O test also suggests that the product of these genes may

be involved in breast cancer development, and the EMBL-EBI gene expression atlas128 was

able to verify this. All four are expressed in breast tissue, and there is evidence that three

are differentially expressed in breast cancer tissue when compared to normal breast tissue:

FGFR2 (over expressed), NEK10 (under expressed), and MKL1 (under expressed).

Conditional analyses suggest that with the exception of FGFR2, the associations can-

not be explained by risk loci that either were already known to be associated with disease,

or that would be identified in a single marker regression analysis. This validates the ad-

ditional resources needed to interrogate the variants assayed with the exome array, and

analyze those variants using gene-based tests. In contrast, this investigation suggests that

the association found between FGFR2 and early onset breast cancer is largely driven by

loci that were already known to be associated with breast cancer risk.

This analysis also suggests that weighting by predicted functionality can highlight

genes that would not otherwise be identified, but that weighting by minor allele frequency
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alone may be problematic. While in neither of the weighting methods is the genomic in-

flation factor larger than the genomic inflation factor using equal weights (suggesting that

there is no systematic inflation of type I error rates for either weighting method), weighting

by minor allele frequency results in the MSGN1 gene returning an association p-value of

1.10 ·10−19, while it was not even nominally significant using either of the other weighting

methods, or the replication data. While it is possible that the MAF weighting highlighted a

true causal gene that was missed by the other weighting methods, it is more likely that this

instead demonstrates an over-sensitivity of the MAF weighting method to very rare variants

in genes with a small amount of variation. Since rareness is not the strongest predictor of

risk, the CADD weights represent a possible preferable method to allow prior knowledge

to increase the power of gene-based tests. If an allele that is rare, but has no other a pri-

ori expectation of being involved in disease would be given a small weight by the CADD

score. The MKL1 gene, which was found to be suggestively associated was only identified

as one of the top 20 most significant genes using the CADD weighting method.

This analysis also speaks to the appropriateness of using a gene-based test that incorpo-

rates both common and rare variants. The collective effect of the “common” variants in the

genes MKL1 and NEK10 are of sufficient strength to highlight these genes in gene-based

tests in the modest sample size of the primary data analysis, but no risk loci in those genes

were suggestively associated with risk in a single marker regression.

Similarly, this analysis also supports including all non-intergenic variants a gene-based

test, and not only those that are expected to cause a change in amino acid translation.

Sensitivity analyses (not shown) demonstrated that a analysis that was restricted to only

nonsynonymous variants would not have produced any associations, and the associations

were instead driven by variants that do not alter amino acid translation. The associations at

FGFR2 and MKL1, and NEK10 are all driven by variants that were annotated to the introns
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of those genes (that is, conditional analyses controlling for the intronic variants produced

non-significant p-values for almost all weighting methods).

Additionally, the analysis here provides possible insight into the genetic architecture of

genes that are associated with early onset breast cancer risk. The ρ mixing parameter esti-

mates indicate that SKAT is a more appropriate test than the burden test in many scenarios.

While the estimates of the mixing parameter varied from test to test, in general, the SKAT

test was more appropriate for genes that contained even a modest number of variants. This

suggests that that few variants in these genes were causal, and that the effects of the causal

variants may be both protective and deleterious. Conversely, the ρ estimate for the smaller

genes suggests that they were better interrogated by the burden test, which is consistent

with the assumptions of the burden test that each allele have the same magnitude and di-

rection of risk, and are all causal. It appears that genes with a small number of variants are

best analyzed using the burden test, as it is more likely that the small number of variants

within them all have the same direction and magnitude of effect. In contrast, the genes that

have more loci with variation are better assayed using SKAT. Similarly, the single marker

regression analyses, which identified nominally significant SNVs that were both protective

and deleterious, support the use of a gene-based test such as SKAT that allows for bidirec-

tional effects. The heterogeneity of the ρestimates validate the small loss in power that is

incurred by using the omnibus SKAT-O test.

This analysis suggests several next steps. Given the concerns with the MAF weighting

method that lead to the identification of MSGN1, and the not-genome-wide-significant p-

values of the FEFR2, MKL1, and NEK10 in the primary analysis, these associations need to

be replicated in an independent analysis. The ideal study population for replication would

be restricted to women who developed breast cancer early, in order to better elucidate

any differences in the genetic risks between the early and late onset disease. Additional

extensions of this analysis may also be able to identify genes in which rare variation is
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associated with risk if they incorporated sequencing data. This would allow for a more

complete understanding of the relationship between exonic variation and early onset breast

cancer. Similarly, as methods emerge that allow non-exonic variants to be annotated to a

given gene, set-based tests will be able to expand understanding of how intergenic regions

can be associated with breast cancer risk. At the present time, there is only a rudimentary

ability to annotate non-exonic variants to genes, but this is a subject of much study. As

the understanding of biological pathways improves, variants will be able to be annotated

to a particular gene in ways that are more sophisticated than ANNOVAR’s annotation.

Regulatory variants that are not spatially near the genes that they regulate could be included

in the analysis. When this is combined with the increased ability to assay rare variants

that will be provided by next generation sequencing technologies, if these variants are

responsible for breast cancer risk, their inclusion will improve the ability of gene-based

tests to identify genes responsible for breast cancer.

The participants of these studies are all of a homogeneous age (younger than 51 at

diagnosis), ancestral background (European), and gender (women). As breast cancer af-

fects people of all ages, ancestral backgrounds, and genders, additional SKAT-O analyses

in populations with different characteristics will help to determine whether the genes that

harbor variation that is associated with breast cancer risk differ across populations. The

same analyses that were carried out in this thesis, when applied to different populations,

may uncover additional insight into the genetic basis of differences in risk and mortality

that are associated with these non-genetic traits.

This analysis has some limitations. Since the study population has an unequal distribu-

tion of cases and controls, rare variants are more likely to be seen in the cases, resulting in

more power to detect rare deleterious variants over rare protective ones. The participants in

the replication data set were selected from breast cancer patients of all ages, so it can best

provide evidence of replication for genes and variants whose effects are similar for both the
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early- and late-onset disease, and is only able to replicate evidence of generic drivers of the

early onset disease in the scenario that the gene is also causal in the late-onset disease. The

replication data set also did not explicitly interrogate rare variation, so this analysis could

only fully examine variants for replication if they could be well-imputed. The composition

of the replication data set also included many of the same participants as the discovery

analysis (17% of the cases in the replication and 2% of the controls), and replication with

a fully independent population would have been preferable. A third concern is related to

the external validity of the results. Different populations have distinct rare variants that are

present in disease associated genes.129 It would need to be verified whether novel SNVs in

the implicated genes have the same effect on breast cancer risk as the ones interrogated by

this study.

In conclusion, this analysis continues to suggest a role for the genes NEK10, FGFR2

and MKL1 in the genetic etiology of breast cancer. The associations in the MKL1 and

NEK10 genes are driven by variants that had not been reported before, there may still be

additional variants to be discovered that contribute to disease risk. These three genes, if

validated, represent an increase in the understanding of the underlying biology of breast

cancer carcinogenesis, and implicate their gene-products as being associated with tumor

development. These four genes represent possible targets for future attempts at chemopre-

vention of breast cancer. The analysis indicates that the SKAT-O method identifies exonic

variation that would not be identified using single marker regression methods, and sug-

gests that analyses that restrict themselves to only single marker regressions will continue

to find missing heritability in early onset breast cancer risk. This validates the extra cost

and statistical complexity that is needed to measure them. This analysis also incorporates

prior knowledge about each variant in a novel way, and avoids discarding data in favor of

weighting each variant by the CADD deleterious score, and suggests that this weighting

method that can be used when investigating the genetic architecture of other diseases.
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CHAPTER 3

THE EFFECT OF GERMLINE GENETIC VARIATION IN GENE

REGIONS ON SURVIVAL OF EARLY ONSET BREAST CANCER

3.1 Background

One in eight American women will develop breast cancer over her lifetime.1 While treat-

ments and survival rates improve over time, almost 25 percent of women who are diagnosed

with breast cancer will eventually die of the disease. Fear of recurrence and mortality re-

sults in a lower quality of life for women who are diagnosed.3–6 The risk factors that

contribute to mortality are still imperfectly understood even though a better understanding

of the drivers of mortality could help to develop interventions that prolong life.

Known risk factors for mortality include the maturity of the tumor at the time of de-

tection, comorbidities of the patient, and treatment decisions,130,131 as well as molecular

markers that quantify the inherent aggressiveness of the cancer.132–135 However, even

among women whose cancers are detected and treated similarly, differences in survival

persist after taking tumor subtype and stage at diagnosis into account.136,137 Women who

are diagnosed with breast cancer before the age of fifty comprise one group of women

who are disproportionately likely to die from breast cancer. These women account for one

in five of those diagnosed with invasive breast cancer,2 and have lower three-, five-, and

ten-year survival rates than women diagnosed after age 50.28 These younger women tend

to have both more aggressive tumor subtypes,138–141 and independent of tumor subtype,

poorer prognosis.23–27

Germline genetic variation may be responsible for a portion of the heterogeneity in

mortality outcomes. Many biologically plausible pathways exist to connect germline ge-

netic variation and breast cancer mortality, and any given causal variant may affect risk
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through any of these different pathways. Germline variation may affect a patient’s ability

to metabolize a drug, which in turn can affect survival by altering the amount of available

active metabolites of pharmaceutical treatments,11,15,20,142–145 or increase the probabil-

ity of treatment-limiting adverse events.8–10 Similarly, germline genetic variation may

be responsible for a cellular environment that favors metastases,7,12,146,147 and may alter

cellular functions such as angiogenesis,13,15 growth signaling,16 telomere length,17 in-

flammation,18 immune response,19 DNA repair,20,148,149 apoptosis,21,142 and cell cycle

control.14

At least three lines of evidence have implicated germline genetic variation as a risk

factor for mortality in breast cancer patients: animal studies, family studies, and identified

loci from linkage and candidate gene studies. Recent in vivo animal studies identified sev-

eral variants in possible possibly drugable pathways that prevent metastases in mice.150,151

Family studies have compared outcomes of related and unrelated women, and found that

after controlling for shared environmental influences, the related women had more similar

disease trajectories.152,153 Specific variants and copy number alterations have been asso-

ciated with mortality,21,144,148,154–165 most of which have been identified through linkage

analyses or candidate gene studies.

There is evidence that germline genetic variation plays a larger role in the etiology of

early onset breast cancer than the etiology of the late onset disease.26,166,167 This suggests

that a unique set of variants may be responsible for poor outcomes in younger patients,

although this has not been definitively established yet.

There is suggestive evidence that germline genetic variation may play a role in mortality

in women diagnosed with breast cancer by mediating the effectiveness of pharmaceutical

treatments, particularly in women who are treated with adjuvant tamoxifen therapy. In

the early 1980’s, tamoxifen was established as effective treatment to reduce mortality for

women whose tumors were estrogen receptor positive (ER+). By 2002, adjuvant treatment
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of these tumors with tamoxifen or other estrogen receptor antagonists has been recom-

mended by the American Society of Clinical Oncology, which has lead to between 70 and

90% of women with ER+ tumor using tamoxifen as part of their therapy.140,141

Tamoxifen is metabolized by several enzymes that are encoded by genes that contain

several highly polymorphic variants. Variation in the gene CYP2D6 has most convincingly

associated with differential presence of the active metabolites of tamoxifen. This has lead

to the suggestion that the presence of certain CYP2D6 genotypes could be used clinically to

determine an appropriate dose of tamoxifen.145,168,169 However, to this point, researchers

have not been able to definitively demonstrate that the variation in internal dose that is

a result of these polymorphisms translates to different survival outcomes.43,44 A previ-

ous genome-wide investigation suggested that haplotype analyses that included CYP2D6

polymorphisms were associated with mortality,145 although taken alone the CYP2D6 poly-

morphisms were not statistically significant, resulting in a still unknown significance of the

effect of these CYP2D6 polymorphisms on mortality.

In addition to estrogen receptor antagonists, the last decade has seen the release of

multiple other new pharmaceutical treatments for breast cancer that do not rely on cyto-

toxic chemotherapies. These newer drugs have pharmacodynamics that are not completely

understood, and variants that are with genes that encode enzymes that metabolize these

treatments (or variants that effect the expression of these enzymes) have a strong chance to

be able to influence survival. This has not yet been determined.

Many statistical methods have been developed to identify germline genetic variation

that is associated with disease. The most appropriate statistical method will depend on the

still-unknown characteristics of those variants: how many are associated with mortality;56

how they are distributed throughout the genome,57 and the what is the form and strength of

the relationship between the variant and mortality.58,153 For polygenic traits, it is likely that

the causal variants are distributed such that they may be found in multiple combinations of
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these aspects, and therefore multiple methods may need to be employed in order to identify

them all.

One method that has been employed to instigate the relationship between germline ge-

netic variation and mortality is single marker regression analyses. Single marker regression

analyses are an appropriate tool to identify loci that are associated with disease if the causal

variant is common and of at least moderate effect size, and if the single marker that is being

regressed is either the causal variant or tags it well. Studies have investigated the genome-

wide genetic determinants of breast cancer mortality using single marker regression are

summarized in Table 3.1 and Table 3.2.

In contrast to the evidence from animal studies, family studies, and candidate gene/linkage

studies, the results of these studies have largely been null, and also poorly replicated. Many

of the single marker regression analyses were carried out in small sample sizes (all but one

meta analysis had a sample size of less than 2000), and they were only able to follow their

cohort for a short amount of time relative to the expected median survival of breast cancer

patients (the median study of single marker regressions followed the cases for 6 years, and

none were able to follow for longer than 7 years).

Besides sample size, limitations inherent in single marker regression may have been the

cause of the largely null results. Single marker regressions cannot identify risk loci where

variants are too rare or too weak, and they are also limited by concerns about type I error

rate. Single marker regression analyses conduct a large amount of tests, which requires

employing strict significance thresholds in order to exclude false positives. In many cases,

these thresholds can exclude many truly causal variants.61

To move beyond single marker regression tests, a class of tests has been developed

to examine variation within a single region: set-based tests. Set-based tests shift the hy-

pothesis from whether an individual variant is associated with a trait to whether any vari-

ation within a predefined set is associated with a trait. The sets are often defined as gene
58



Ta
bl

e
3.

1:
G

en
om

e-
w

id
e

St
ud

ie
s

of
th

e
A

ss
oc

ia
tio

n
be

tw
ee

n
G

er
m

lin
e

G
en

et
ic

V
ar

ia
tio

n
an

d
B

re
as

tC
an

ce
rM

or
ta

lit
y

St
ud

y
Ti

tle
Y

ea
r

Po
pu

la
tio

n
D

es
cr

ip
tio

n
O

ut
co

m
e

N
M

ed
ia

n
Fo

llo
w

U
p

Ti
m

e
E

ve
nt

s
V

ar
ia

nt
s

R
ep

lic
at

io
n

D
es

cr
ip

tio
n

Fi
nd

in
gs

A
G

en
om

e-
W

id
e

A
ss

oc
ia

tio
n

St
ud

y
of

Pr
og

no
si

s
in

B
re

as
t

C
an

ce
r91

20
10

Po
st

m
en

op
au

sa
l

w
om

en
w

ith
in

va
si

ve
br

ea
st

ca
nc

er

B
re

as
t

ca
nc

er
sp

ec
ifi

c
su

rv
iv

al

11
45

6
ye

ar
s

93
52

8,
25

2
To

p
10

ge
no

ty
pe

d
in

43
35

w
om

en
w

ith
in

va
si

ve
br

ea
st

ca
nc

er
w

ith
38

,1
48

ye
ar

s
at

ri
sk

N
ot

hi
ng

ge
no

m
e-

w
id

e
si

gn
ifi

ca
nt

A
G

en
om

e-
w

id
e

A
ss

oc
ia

tio
n

St
ud

y
Id

en
tifi

es
L

oc
us

at
10

q2
2

A
ss

oc
ia

te
d

w
ith

C
lin

ic
al

O
ut

co
m

es
of

A
dj

uv
an

t
Ta

m
ox

if
en

T
he

ra
py

fo
r

B
re

as
tC

an
ce

rP
at

ie
nt

s
in

Ja
pa

ne
se

14
5

20
11

Ja
pa

ne
se

pa
tie

nt
s

w
ith

ho
rm

on
e

re
ce

pt
or

-
po

si
tiv

e,
in

va
si

ve
br

ea
st

ca
nc

er
re

ce
iv

in
g

ad
ju

va
nt

ta
m

ox
if

en
th

er
ap

y

R
ec

ur
re

nc
e-

fr
ee

su
rv

iv
al

24
0

7
ye

ar
s

30
47

0,
79

6
Tw

o
in

de
pe

nd
en

ts
et

s
of

10
5

an
d

11
7

ca
se

s
15

SN
V

s
in

th
e

pr
im

ar
y

an
al

ys
is

;r
s1

05
09

37
3

(c
hr

10
:7

63
97

81
4)

re
pl

ic
at

ed
(c

om
bi

ne
d

p
=

1.
26
·1

0−
10

)

N
ov

el
G

en
et

ic
M

ar
ke

rs
of

B
re

as
tC

an
ce

rS
ur

vi
va

l
Id

en
tifi

ed
by

a
G

en
om

e-
W

id
e

A
ss

oc
ia

tio
n

St
ud

y17
0

20
12

Sh
an

gh
ai

-
re

si
de

nt
C

hi
ne

se
w

om
en

To
ta

l
m

or
ta

lit
y

19
50

6
ye

ar
s

29
9

61
3,

03
1

To
p

49
as

so
ci

at
io

ns
re

pl
ic

at
ed

in
41

60
Sh

an
gh

ai
w

om
en

w
ith

br
ea

st
ca

nc
er

;T
op

as
so

ci
at

io
n

ex
am

in
ed

in
N

ur
se

s
H

ea
lth

St
ud

y

rs
37

84
09

9
(c

hr
14

:6
82

83
21

0;
p
=

1.
44
·1

0−
8

in
di

sc
ov

er
y

on
ly

)

Id
en

tifi
ca

tio
n

of
In

he
ri

te
d

G
en

et
ic

V
ar

ia
tio

ns
In

flu
en

ci
ng

Pr
og

no
si

s
in

E
ar

ly
-o

ns
et

B
re

as
t

C
an

ce
r17

1

20
13

U
K

w
om

en
ag

ed
40

or
yo

un
ge

ra
t

di
ag

no
si

s

B
re

as
t

ca
nc

er
sp

ec
ifi

c
su

rv
iv

al

53
6

4
ye

ar
s

23
6

48
7,

49
6

To
p

35
as

so
ci

at
io

ns
ge

no
ty

pe
d

in
1,

51
6

in
de

pe
nd

en
tc

as
es

fr
om

th
e

sa
m

e
ea

rl
y-

on
se

tc
oh

or
t

N
ot

hi
ng

ge
no

m
e-

w
id

e
si

gn
ifi

ca
nt

G
en

om
e

W
id

e
M

et
a-

A
na

ly
si

s
St

ud
y

fo
r

Id
en

tifi
ca

tio
n

of
C

om
m

on
V

ar
ia

tio
n

A
ss

oc
ia

te
d

w
ith

B
re

as
tC

an
ce

r
Pr

og
no

si
s17

2

20
14

U
K

w
om

en
ag

ed
40

or
yo

un
ge

ra
t

di
ag

no
si

s,
an

d
Fi

ni
sh

w
om

en
of

al
la

ge
s

B
re

as
t

ca
nc

er
sp

ec
ifi

c
su

rv
iv

al

13
41

6
ye

ar
s

23
7

47
5,

14
1,

im
pu

te
d

to
7.

5
m

ill
io

n

15
23

ad
di

tio
na

l
pa

rt
ic

ip
an

ts
of

th
e

PO
SH

st
ud

y

N
ot

hi
ng

ge
no

m
e-

w
id

e
si

gn
ifi

ca
nt

po
si

tio
ns

re
fe

rt
o

th
e

H
G

19
as

se
m

bl
y

St
ud

ie
s

th
at

pu
bl

is
he

d
bo

th
si

ng
le

-s
tu

dy
re

su
lts

an
d

co
nt

ri
bu

te
d

to
a

m
et

a
an

al
ys

is
w

ill
be

re
pr

es
en

te
d

tw
ic

e

59



Ta
bl

e
3.

2:
G

en
om

e-
w

id
e

St
ud

ie
so

ft
he

A
ss

oc
ia

tio
n

be
tw

ee
n

G
er

m
lin

e
G

en
et

ic
V

ar
ia

tio
n

an
d

B
re

as
tC

an
ce

rM
or

ta
lit

y
(c

on
tin

ue
d)

St
ud

y
Ti

tle
Y

ea
r

Po
pu

la
tio

n
D

es
cr

ip
tio

n
O

ut
co

m
e

N
M

ed
ia

n
Fo

llo
w

U
p

Ti
m

e
E

ve
nt

s
V

ar
ia

nt
s

R
ep

lic
at

io
n

D
es

cr
ip

tio
n

Fi
nd

in
gs

Id
en

tifi
ca

tio
n

of
N

ov
el

G
en

et
ic

M
ar

ke
rs

of
B

re
as

t
C

an
ce

rS
ur

vi
va

l17
3

20
15

M
et

a-
an

al
ys

is
of

st
ud

ie
s

in
po

pu
la

tio
ns

of
E

ur
op

ea
n

an
ce

st
ry

B
re

as
t

ca
nc

er
sp

ec
ifi

c
su

rv
iv

al

37
,9

54
5

ye
ar

s
29

00
20

0,
00

0-
70

0,
00

0;
im

pu
te

d
to

9
m

ill
io

n

N
/A

rs
14

87
60

48
7

(c
hr

2:
16

29
22

10
3;

p
=

1.
5
·1

0−
8 )a

nd
27

ot
he

rs
in

hi
gh

L
D

;
rs

20
59

61
4

(c
hr

11
:1

25
38

95
28

;
p
=

1.
3
·1

0−
9

in
E

R
-

ca
se

s
Po

ly
m

or
ph

is
m

at
19

q1
3.

41
Pr

ed
ic

ts
B

re
as

t
C

an
ce

rS
ur

vi
va

l
Sp

ec
ifi

ca
lly

af
te

r
E

nd
oc

ri
ne

T
he

ra
py

17
4

20
15

M
et

a
an

al
ys

is
of

U
K

w
om

en
ag

ed
40

or
yo

un
ge

ra
t

di
ag

no
si

s,
an

d
Fi

ni
sh

w
om

en
of

al
la

ge
s

B
re

as
t

ca
nc

er
sp

ec
ifi

c
su

rv
iv

al

13
41

7
ye

ar
s

54
7

48
6,

47
8

Tw
o

in
de

pe
nd

en
td

at
a

se
ts

w
ith

50
11

pa
tie

nt
s

N
ot

hi
ng

ge
no

m
e-

w
id

e
si

gn
ifi

ca
nt

Pr
ed

ic
tio

n
of

B
re

as
t

C
an

ce
rS

ur
vi

va
lU

si
ng

C
lin

ic
al

an
d

G
en

et
ic

M
ar

ke
rs

by
Tu

m
or

Su
bt

yp
es

17
5

20
15

In
ci

de
nt

br
ea

st
ca

nc
er

ca
se

s
in

Se
ou

l,
So

ut
h

K
or

ea

R
ec

ur
re

nc
e-

fr
ee

su
rv

iv
al

17
32

4
ye

ar
s

21
4

2,
21

0,
58

0
ge

no
-

ty
pe

d
an

d
im

pu
te

d

A
ny

SN
V

s
id

en
tifi

ed
w

ith
p
<

10
−

6
an

d
M

A
F

>
.1

,a
nd

an
y

co
m

m
on

va
ri

an
ts

in
hi

gh
(r

2
>

0.
4)

L
D

w
ith

th
em

w
er

e
ge

no
ty

pe
d

in
14

94
ad

di
tio

na
lw

om
en

fr
om

So
ut

h
K

or
ea

N
ot

hi
ng

ge
no

m
e-

w
id

e
si

gn
ifi

ca
nt

po
si

tio
ns

re
fe

rt
o

th
e

H
G

19
as

se
m

bl
y

St
ud

ie
s

th
at

pu
bl

is
he

d
bo

th
si

ng
le

-s
tu

dy
re

su
lts

an
d

co
nt

ri
bu

te
d

to
a

m
et

a
an

al
ys

is
w

ill
be

re
pr

es
en

te
d

tw
ic

e

60



boundaries, so that the results can be interpreted easily in the context of cellular biology.

Gene-based tests reduce the multiple testing burden when compared to a single marker

regression, and also allow for variants to contribute evidence for risk that could not be as-

sessed using standard single marker regression approaches, such as variants that are too

rare to test individually, and common variants whose effects are too modest to detect with

the strict significance thresholds necessitated by single marker regression tests. In the sce-

nario where any disruption to a gene product can increase risk of disease, gene-based tests

can detect those genes, even if any single variant is too weakly associated with disease to

be detected with single marker regression analyses.

In many diseases, variants in protein coding regions of the genome harbor much of the

variation that is associated with disease risk. While analyses that focus on gene regions

exclude a large percentage of the genome, the central role of genes in transcription and

ultimately amino acid translation makes variants that reside within gene boundaries repre-

sent biologically plausible candidates for association with disease.34,74,176,177 In addition,

variation outside of gene regions can be less reliably attributed to a particular gene, and

therefore are problematic to include in gene-based tests. These considerations can justify

the use of methods such as gene-based tests that can well-interrogate these regions, even if

other complementary methods will then be required to examine the rest of the genome.

Next generation sequencing would comprehensively interrogate all variation within

gene boundaries, but these technologies are still expensive to implement at a scale needed

for epidemiologic genome-wide studies. In contrast, exome-based arrays directly measure

some rare variation in gene regions, and cost less than whole-exome or whole-genome se-

quencing. Gene-based tests can also be easily implemented in studies that have measured

genetic variation with exome arrays.

Many set-based tests have been developed that can be implemented as gene-based

tests.37,75–77 SKAT-O37 combines two of the most commonly used methodologies: bur-
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den tests and the sequence kernel association test (SKAT). The burden test is more powerful

than the SKAT test if all of the minor variants in a gene increase risk of disease; and the

SKAT test is more powerful than the burden test if the minor variants within a gene both

increase and decrease the disease risk.57 SKAT-O calculates both the burden test statistic

and a SKAT test statistic for each gene, and then uses the data adaptively to weight and

combine the two test statistics by a mixing factor. In most situations, SKAT-O is more

powerful than either test alone.37 The SKAT-O methodology has been extended to be im-

plemented as a Cox regression,178 allowing for an estimation of the hazard associated with

each additional minor allele.179 No set-based tests have as yet been applied to investigate

the genome-wide genetic determinants of breast cancer prognosis.

Many studies that implement gene-based tests further restrict the variants, and include

only those that are (1) rare or (2) independent annotation sources identify as “functional”

(for example: nonsynonymous variants). “Nonfunctional “ or “common” variants are ex-

cluded in an attempt to remove noise that may be introduced if those variants are not asso-

ciated with the trait. However, these exclusions rest on one of two strong assumptions: (1)

that rare variants hold all disease causing variants or (2) that previous knowledge of genetic

function will continue to predict future variants that are associated with disease. Since the

era of genome-wide analyses has frequently found new discoveries of biology in variants

that were thought to be “junk” DNA,180,181 an approach that allows all variants in a set to

be interrogated would be preferable.

To this end, SKAT-O can incorporate prior knowledge about variants by means of a

weight on the individual variants.77,79 In most genome-wide analytic scenarios, the use

of weights will not increase type I error rates,38 and a weight that reflects the true disease

process can significantly improve power.37

Currently, weighting is largely implemented in a way that up-weights variants that are

rare, which operationalizes the assumption that evolutionary constraints keep variants that
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strongly increase risk of disease at low frequency in the population. However, not all vari-

ants that cause disease are kept at a low frequency.80 Several annotations have been devel-

oped that more comprehensively assess the probability that a given variant may influence a

trait. These functional annotations include SIFT,81 PolyPhen,82 and combined annotation

dependent depletion (CADD) score.39 They each operationalize the knowledge that varia-

tion at certain portions of the genome are expected to have a greater effect on disease risk.

Of these, the CADD algorithm combines many single dimensional annotations into one

continuous score of the predicted “deleteriousness” of each variant in the genome. While

there have been few attempts to translate these annotations into weights, the CADD scaled

score has a range of values that is similar to the frequency weighting that is recommended

by the SKAT authors. The scaled CADD score can be directly used to up-weight variants

in the SKAT-O tests that are expected to affect survival, although this has not yet been done

for any trait.

With this as background, this manuscript will investigate whether variation in genes is

associated with mortality in a cohort of women who have been diagnosed with early onset

breast cancer using a SKAT-O methodology. Since the SKAT-O approach examines the

effect of all variants collectively, gene regions may be identified that contain rare variants

or common variants of weak effect that would not have been identified through a single

marker regression analysis alone. This manuscript will be the first to investigate directly

the influence of rare variants in gene regions on breast cancer mortality, as all previous

genome-wide investigations into the genetic determinants of breast cancer mortality have

incorporated information from common variation assayed on genome-wide arrays, and the

variants that can be reliably imputed from them.

This manuscript will also investigate whether germline genetic variation influences tu-

mor characteristics that are identified at the time of diagnosis and are themselves known

to be associated with prognosis: the tumor’s estrogen receptor (ER), progesterone receptor
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(PR), and human epidermal growth factor receptor 2 (HER2) expression statuses, and the

grade and stage of the tumor at diagnosis. While the participants of this study are followed

for a long time compared to most previous genome-wide survival studies in breast can-

cer, investigating the effect of germline genetic variations on these intermediate markers of

tumor aggressiveness will complement the mortality analysis, and may produce valuable

insight into genetic determinants of more deadly cancers that can be detected in their early

stages.

Despite the benefits of understanding how genetic variation is associated with mortality

in breast cancer patients, genome-wide investigations have not yet full characterized this

relationship. This manuscript will investigate to what extent this lack of consensus is due to

lack of use of gene-based tests, which can identify different classes of variation than single

marker regression tests.

In order to use all data available from the exome array, this analysis applies weights

that incorporate prior knowledge of the expected contribution of the variant. This approach

allows the analysis to include all measured variation in a gene region, which would allow

for the discovery of novel associations within that gene that were not a priori considered to

be likely associations.

Gene-based tests will also allow for an investigation into whether all variation in the

CYP2D6 region (or any other putative pharmacogenomic gene) collectively translates into

differences in survival outcomes, either in all participants, or those with ER+ tumors ( in

younger women with ER+ tumors from these areas, 80-90% of them are likely to have been

treated with tamoxifen140,141). Previous haplotype analyses have implicated this region,

which suggests that gene-based tests, which also combine strength across several causative

variants, may be an appropriate way to investigate this region.

This manuscript will also examine previously identified loci that have been identified

with mortality in our relatively larger sample. While the analyses of this manuscript inter-
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rogate a different set of variants than the previous genome-wide studies of mortality. Given

the low levels of replication in the mortality analysis, this will help bring more evidence to

whether the results from smaller studies represent a robust finding.

This analysis will also result in a better description of the similarities and differences of

the genetic determinants of breast cancer that may be a function of age, and also compare

the loci that are associated with risk with those that are associated with prognosis. The

participants in the primary analysis are largely under the age of 50. Since most previous

studies of breast cancer mortality were comprised of participants who were relatively older

than this study population, the results will compare the genetic determinants of mortality

between women who are diagnosed earlier and those diagnosed later. There is increasing

evidence that many of the variants that are responsible for risk do not play a large role in

prognosis,182 and this manuscript will investigate whether previously identified variants

for risk are also involved in either mortality or the development of more aggressive tumors

in ways that can be measured at diagnosis (as measured by ER/PR/HER2 status, stage, and

grade).

If genes are identified that are associated with breast cancer survival, this would im-

plicate that gene and allow for an improved understanding of the biological processes that

influence breast cancer mortality. If the effect sizes of the genes are large, the mortality

analysis could identify genetic markers that could be used in conjunction with other non-

genetic risk factors to identify patients who may benefit from additional treatment, and also

those who may safely be able to decide upon a less aggressive treatment with fewer side

effects. If the genetic prognostic factors from this population are similar than those found

in the late onset breast cancer cases, these results could support using the same genetic risk

scores for mortality for women with all ages of diagnosis, and if they differ, then further

work will be needed to develop a prediction model that is most appropriate for early onset
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Table 3.3: Characteristics of Studies Included in Primary Analysis

Study Name Study Location Years
Recruiting

Case Criteria Cases

Breast Cancer Family Registry Australia 1992-2000 Living in the Melbourne and
Sydney metro areas, family
recruited from the Victoria and
NSW cancer registries

477

Breast Cancer Family Registry Ontario 2001-2010 Ontario Cancer Registry 559
Breast Cancer Family Registry Philadelphia, PA 1996-2000 Living in Philadelphia 272
Breast Cancer Family Registry New York, NY 1996-2000 Living in New York, New Jersey, or

Connecticut
393

Breast Cancer Family Registry Utah 1996-2012 Living in Salt Lake City 100
Genetic Epidemiologic Study of
Breast Cancer by Age 50

Germany 1992-1995 38 clinics in the
Rhein-Neckar-Odenwald and
Freiburg regions

382

Long Island Breast Cancer Study
Project

New York 1996-1999 Nassau and Suffolk counties 145

Seattle Seattle, WA 1990-1992 King, Pierce, and Snohomish
counties; age less than 45 at
diagnosis

288

University of Chicago Chicago, IL 1998-2010 Treated at the University of Chicago
Cancer Center

181

Participants are those included in the analysis after QC

breast cancer. These results may also identify biological pathways that are responsible for

tumor aggressiveness, which might result in the discovery of drug-able targets.

In the event that no genes are clearly associated with risk of mortality, this would pro-

vide further evidence that any as-yet-undiscovered mortality loci have either small effect

sizes, or are driven by variants that were not measured by the exome array. This may help

to guide future studies of this topic.

3.2 Methods

3.2.1 Primary Data: Breast Cancer Family Registry and Associated

Studies

The participants for the primary analyses were identified from nine ongoing studies de-

signed to assess the risk factors associated with early onset breast cancer. Participants were

women of European descent and not known to be carriers of pathogenic mutations in the
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genes BRCA1 or BRCA2. Ninety eight percent of the cases were younger than 50 years old

at the time of their diagnosis. Details of the recruitment are found in Table 3.3. Five of the

study sites (Australia, Ontario, Philadelphia, and New York) are members of the Breast

Cancer Family Registry (BCFR), whose recruiting methods are described elsewhere.63

Briefly, two of the BCFR centers (Northern California and Canada) recruited index patients

through population-based registries, three (Utah, Philadelphia, and New York) recruited

through clinic- and community-based outreach, and one (Australia) recruited through a mix

of population- and clinic-based outreach. Participants were also included from four studies

not included in the BCFR consortium. Three of these, the German Genetic Epidemiologic

Study of Breast Cancer;64 and Long Island Breast Cancer Study Project;65 and the Seattle

Study,66 are population-based case control studies whose recruiting methods are described

elsewhere. The Chicago participants were enrolled from the Chicago Multi-ethnic Breast

Cancer Epidemiologic Cohort, a hospital-based study of breast cancer at the University of

Chicago.94,95 The Chicago participants were identified through a clinic-based recruitment.

Their demographic, clinical, and pathological data were gathered from medical chart, epi-

demiologic risk factors were collected via structured questionnaire, and mortality outcomes

were ascertained via medical records and linkages with the national death index.

3.2.2 Genotyping

Peripheral blood and mortality information was available for 3232 cases. The samples

were whole genome amplified using the Qiagen Repli-G mini kit. The Illumina HumanEx-

ome 12v1.0 chip was used on 2527 cases, and the Illumina HumanExome 12v1.1 chip was

used on 480 cases. The samples were processed using 49 plates in two batches, and the

process was carried out according to the manufacturer’s protocol. To improve the quantity

and quality of available genomic DNA, the samples were whole genome amplified using
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the Qiagen Repli-G mini kit,22 and were processed using 49 plates in two batches, fol-

lowing the manufacturer’s protocol. TeCan Evo was used for automation. Raw data was

processed by Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15,

per Illumina’s recommendation for Infinium chips. Clustering was done using the Illumina

supplied cluster files. After keeping only variants that were on both chips, 238,524 variants

were interrogated.

3.2.3 Primary Analysis

3.2.3.1 Quality Control

The quality control followed the protocol suggested by Guo et al.96 Participants were ex-

cluded for low genotyping rate (rate < 95%; 166 excluded), male sex (one excluded), high

heterozygosity (F statistic greater than three standard deviations from the mean, or het-

erozygosity greater than four standard deviations from the mean; 20 excluded), duplicated

genotypes (one of each pair of six duplicates excluded), and principal component outliers

(one participant whose first component was more than six standard deviations away from

the mean). The recruitment process for the BCFR studies targeted individuals who were

related to the index case, so an additional 16 participants who were likely related were ex-

cluded ( those with estimated relatedness from a GCTA-created genetic relatedness matrix

greater than 0.4).97

A schematic of the variants used in this analysis is shown in Figure 3.1. Variants were

excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded). Variants

were excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded), or

if they were common variants (defined below) with Hardey-Weinberg equilibrium p-values

of less than 2.5 · 10−7 in controls (p = 0.05 Bonferroni corrected for 200,000 tests; 39

excluded). The final variant-level exclusions were the result of evidence that on some plates
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Figure 3.1. Variants Used in Primary Analysis

variants were unreliably assigned (a plate-by-plate single marker regression analysis found

that in some cases genotype could predict plate). For these variant-plate combinations,

variants were excluded for all participants on that plate if this GWAS p-value was smaller

than 2.5 · 10−7. As a result of this step, seventy variant-plate combinations were set to

missing.

After these exclusions, the analysis set contained 2954 cases and 238,524 variants. Of

these, 122,906 were polymorphic in the study population. Variants were assigned to genes

using the ANNOVAR software,98 and variants were excluded if they were annotated to in-

tergenic regions. This included in the analysis variants that were annotated as exonic (over-

lapping a coding region; n=105,888 variants), splicing (within two base pairs of a splicing

junction; n=811), non-coding exonic RNA (n=163), non-coding intronic RNA (n=871), 5’

and 3’ untranslated regions (n=186 and n=474, respectively), introns (n=5456), and vari-

ants within 1 kilobase of a transcription start or transcription end site (n=187 and n=170,

respectively). These 114,206 polymorphic variants from the exome array were annotated

to 16,317 genes. Variants were classified as “common” and “rare” based on their minor

allele frequency (MAF), with a threshold at MAF equal to
(

1
2n

)1
2 = 0.0130.59
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Table 3.4: Characteristics of Participants in Primary Analysis

Number of Participants 2954
Mean Age at Diagnosis (sd) 41 (6.2)
Median Years of Follow Up (IQR) 15 (9.5-17)
Number of Deaths Observed 728
Estrogen Receptor Status

Positive 1066
Negative 719
Missing 1169

Progesterone Receptor Status
Positive 1015
Negative 754
Missing 1185

HER2 Status
Positive 280
Negative 378
Missing 2296

Tumor Grade
High Tumor Grade 865
Low Tumor Grade 925
Missing 1164

Tumor Stage
High Tumor Stage 351
Low Tumor Stage 1289
Missing 1314

Characteristics of the 2954 primary data participants that were included after quality

control are found in Table 3.4. Cases were followed up for a median of 15.2 years (in-

terquartile range: 9.5-17.0 years), and 728 deaths were observed.

3.2.3.2 Population Stratification

Rare variants and common variants have different correlations with ancestry, and therefore

have different potential to induce confounding in genetic association studies.99,100 While

the study enrollment was limited to women of the same race (self-identified non-Hispanic

white women) the study included women from multiple centers in four different countries,

with an uneven case/control mix from each study. To counter this potential for spurious

associations between variation and prognosis, EIGENSTRAT101,102 constructed two sets
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of principal components from the analysis set. One set was constructed using “common”

variants assayed by the array (PCc), and one using “rare” variants (PCr).

In a Cox regression that did not include genetic information, the first three PCc and the

second PCr were associated with mortality status. Including any other principal compo-

nents did not improve the model fit, as determined by a likelihood ratio test. These four

principal components were included in all subsequent mortality analyses. Similar analyses

with non-genetic information were done to determine the optimal number of PCc and PCr

to include in each of the five tumor characteristic logistic analyses.

3.2.3.3 All Variation in Gene Regions

To examine whether variants within a gene collectively were associated with mortality,

the variants were aggregated into their annotated genes and analyzed using SKAT-O.37

Each variant was weighted by the CADD scaled score of the minor allele. In addition to

controlling for principal components, the analysis also controlled for center. The analysis

was conducted in a Cox regression semi parametric framework to estimate the hazard ratio

associated with each additional minor allele using the skatMeta R package.123 The score

statistics for the individual variants were calculated using the likelihood ratio test.178 Genes

whose p-values were smaller than the Bonferroni-corrected level of 3.06 · 10−6 would be

considered associated with early onset breast cancer mortality. Results were visualized

using the qqman105 and ggplot2106 R software packages.107

The analysis was repeated twice: on all cases (N = 2954), and on all cases with ER+

tumors (n=1067), to investigate whether variation germline genetics may be particularly

influential by way of genes that influence the metabolism of drugs that target the estrogen

receptor growth signaling pathway. While treatment information was not available for these

participants, and the date of initial diagnosis was not always available, it is likely that most
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were treated with tamoxifen, which has been a proven beneficial adjuvant therapy since the

1980’s,183 and recommended by the American Society of Clinical Oncology as adjuvant

therapy for women with ER+ breast cancer tumors since 2002.184

To examine whether variants within a gene collectively were associated with tumor

characteristics that are known to be predictors of mortality, the variants were analyzed

using the SKAT-O method in a logistic regression framework. Five tumor characteristics

were assessed: ER status (ER status was non-missing for n=1785 cases), PR status (n=1769

cases), HER2 status (n=658 cases), whether the tumor grade was three or higher (n=1790

cases), and whether the tumor stage was three or higher (n=1640 cases). The analysis

was conducted using the SKAT package for R, with the “SKATO” method in the func-

tion SKATBinary with efficient resampling.108 The analysis weighted each variant by the

CADD score for the minor allele, and controlled for principal components as described

above. For each of the methods, the significance threshold was determined by correcting a

p<0.05 threshold by the effective number of tests computed, which was determined by the

SKAT package. Genes whose p-values were less than this threshold would be considered

associated with that tumor characteristic.

3.2.4 Replication Data and Comparison with Breast Cancer of All Ages

of Onset: TCGA

Data from participants of The Cancer Genome Atlas (TCGA) breast cancer study (data

generated by the TCGA Research Network: http://cancergenome.nih.gov/) were utilized to

replicate any suggestive findings (defined below) from the primary analysis, and to compare

results between early onset breast cancer cases and cases of all ages of onset. Clinical and

single nucleotide variant (SNV) data for all available breast cancer cases were downloaded

from the TCGA data portal in June 2015. The germline SNV data were measured using
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the Affymetrix Genome-Wide Human SNP 6.0 array, and the intensities were converted to

genotype calls using the Broad Birdsuite.185 To be comparable with the primary analysis,

the analysis was restricted to female cases of European ancestry with mortality information

available, excluding any participants or samples annotated “DNU” (Do Not Use) (900,380

variants from 768 participants).

These samples were then subjected to the same quality control steps outlined above,

resulting in the following exclusions: two participants were excluded for high levels of

missingness; thirty nine were excluded for high heterozygosity; sixteen for outlying princi-

pal components, and none were highly related or duplicates. 42,150 variants were excluded

due to their low call rate, and 60 were excluded for failing Hardey-Weinberg equilibrium.

After these quality control procedures, 711 cases and 858,170 variants were brought for-

ward for imputation.

A schematic of the variants used at each stage of the analysis is found in Figure 3.2.

Imputation was implemented by the Michigan imputation server,186 employing ShapeIt187

to pre-phase the variants and minimac3188 to impute variants that were not measured. In

order to best impute rare variants,189,190 the entire 1000 Genomes phase 3 release132 was

used for a reference panel. Since the data from the TCGA participants was used to replicate

suggestive associations, it was decided to use a liberal threshold for imputation quality that

could still exclude low-quality variants, so variants with an imputation r2greater than 0.3

were kept (15,121,555 variants).191,192 These genotyped and imputed variants were then

annotated using ANNOVAR, and only polymorphic variants that could be annotated to a

gene were considered for analysis (6,087,804 variants). EIGENSTRAT was used to create

ten principal components out of common (MAF > 0.0265) variants. Characteristics of the

participants used for the replication analysis are found in Table 3.5.

To examine whether variants within genes that had been identified by the primary analy-

sis were collectively associated with mortality in the TCGA population, the TCGA variants
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Figure 3.2. Variants Used in Replication Analysis

were aggregated into genes in the same manner described above, and those genes identified

as suggestively associated in the primary analysis were analyzed in the TCGA population

using a Cox regression and the SKAT-O method, controlling for the minimum necessary

principal components as described above. All 711 TCGA cases were included in the mor-

tality analysis, and the 538 ER+ cases were included in the ER+ only mortality analysis.

The tumor characteristic analysis included all TCGA participants that had non-missing

clinical data for that tumor characteristic: 670 cases for the analysis of ER status, 667 cases

for PR status, 492 for HER2 status, and 699 cases for tumors with high stage (grade was

not available in the protected access TCGA clinical data).If fewer than 20 genes were as-

sociated with the trait in the primary analysis, the top 20 genes associated with each trait

in the primary analysis were then investigated for evidence of association with that trait in

the TCGA population. Genes with a p-value in the TCGA analysis that was less than the

Bonferroni corrected level threshold 0.0025 (p = 0.05
20 ) would be considered suggestively

associated with the trait.
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Table 3.5: Characteristics of Participants in Replication Analysis

Number of Participants 711
Mean Age at Diagnosis (sd) 59 (13)
Median Years of Follow Up (IQR) 1.2 (0.4-3.4)
Number of Deaths Observed 73
Estrogen Receptor Status

Positive 538
Negative 132
Missing 41

Progesterone Receptor Status
Positive 469
Negative 198
Missing 44

HER2 Status
Positive 106
Negative 386
Missing 219

Tumor Stage
High Tumor Stage 183
Low Tumor Stage 516
Missing 12

3.2.5 Comparison with Loci Identified through Single Marker Regression

It is unclear whether genes that would be identified by the SKAT-O approach contain loci

that would also be identified using a single marker regression approach. To investigate this

in the context of the data provided by the primary study participants, the exonic genetic

variation measured on the primary sample was additionally analyzed in a single marker

regression framework. Common variants that could be assigned to a gene (MAF >0.0130,

25,938 common variants) were analyzed using a Cox regression with an additive model

of inheritance controlling for principal components and center using the GenABEL193,194

package for the R software. Variants whose p-values were smaller than the Bonferroni

corrected level of 1.93 ·10−6 would be considered associated with early onset breast can-

cer mortality. Similarly, the common variants were assessed for their association with

tumor characteristic phenotypes using a logistic regression framework and the PLINK soft-

ware.103,104 All analyses controlled for principal components as described above.
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Figure 3.3. SKAT-O Cox regression Mortality Results for All Cases

The red line represents a p-value of 3.06 ·10−6, and the blue line represents the p-value of the twentieth most significant gene.

3.2.6 Comparison with Previously Identified Risk Loci

Previous genome-wide studies that examined the effect of germline genetics on mortality

have had low levels of replication. To investigate whether loci in gene regions that had been

identified by previous research show evidence of association with mortality or tumor char-

acteristics in the gene-based analysis, the significance of genes near loci with established

associations to breast cancer phenotypes were highlighted in the analysis of the primary

data.

Genes were considered to have established associations if a variant was listed the

NHGRI-EBI GWAS catalog60 with a p-value < 5 · 10−8 and mapped to a non-intergenic

region. The NHGRI-EBI catalog contained 348 entries of a breast cancer phenotype (ex-

cluding alopecia as a response to chemotherapy, and excluding telomere length). Of these,

174 variants met the p-value requirement, and 113 were annotated to 65 unique genes.
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Table 3.6: Comparison of Genes Suggestively Associated with Mortality in Primary and
Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

AKT2 13 5 4.70e-04 43,789 184 6.90e-01
ASXL2 77 13 7.43e-04 170,121 496 6.11e-01
BIVM 33 3 6.58e-04 68,029 193 4.57e-01
CDHR4 406 7 1.05e-03 9331 38 1.89e-01
CFAP97 3006 7 2.34e-04 13,1011 251 4.46e-01
CLCN6 14 3 3.74e-04 61,332 249 5.21e-02
COL7A1 644 39 2.99e-04 5738 73 8.80e-01
HLA-A 121 1 1.19e-04 164,007 308 5.22e-01
HSPBAP1 231 5 5.08e-04 85,394 309 6.98e-01
MPP2 47 4 7.88e-04 49,636 159 6.36e-01
OR4K14 208 3 6.25e-04 9093 17 3.46e-01
PIH1D2 330 5 1.17e-03 3426 36 1.21e-01
PRLR 496 12 6.50e-04 172,470 871 1.51e-02
SKIL 595 5 5.05e-04 38,076 178 7.79e-01
STYK1 4 4 6.58e-04 146,794 304 1.70e-01
TAS1R1 582 25 2.14e-04 18,748 78 5.13e-01
UGT2A3 33 3 9.36e-04 36,350 141 7.20e-01
ZNF134 651 11 2.66e-04 5266 44 5.13e-02
ZNF333 1152 12 7.79e-04 104,105 243 1.30e-01
ZNF596 501 8 1.14e-04 25,040 81 7.56e-01
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3.3 Results

3.3.1 Association between Variation in Gene Regions and Mortality

A summary of the gene-based analysis of mortality in breast cancer cases is shown in Figure

3.3. There is no evidence of systemic inflation of p-values, since the estimate of genomic

inflation is λ = 1.04. No genes are associated with mortality with a p-value of 3.06 ·10−6

or smaller. To determine if the results were sensitive to the weighting method, the analysis

was repeated using weights that were a beta transformation of the MAF (as suggested by

the SKAT authors), and equal weights. These two additional weighting methods produce

substantively similar null results.

Analysis of the genetic data provided by the participants of the TCGA study does not

provide any evidence that any of the genes suggestively identified in the primary data set

have an association with mortality in the TCGA population. Table 3.6 displays the p-values

of the top 20 most significant genes from this analysis, and contrasts this with the p-values

of those genes in the TCGA population. None of the genes that are considered suggestive in

the primary participants (labeled “Exome Chip”) are significant at the Bonferroni corrected

level in the TCGA analysis. One gene, PRLR is significant at the less stringent threshold

of p < 0.05.

The subset of primary analysis patients with known ER+ tumors was included in a

second Cox analysis that assessed the association between genetic variation and mortality.

The results of this analysis when using CADD weights on each variant are summarized in

Figure 3.4. Genomic inflation is λ = 0.995. No genes are associated with mortality with a

p-value of 3.06 · 10−6 or smaller. Weighting by MAF and weighting using equal weights

produce substantively similar null results.

Table 3.6 displays the p-values of the top 20 most significant genes from the analysis

in the primary data, and contrasts this with the p-values of those genes in the analysis
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Figure 3.4. SKAT-O Cox regression Mortality Results for ER+ Cases

The red line represents a p-value of 3.06 ·10−6, and the blue line represents the p-value of the twentieth most significant gene.

Table 3.7: Comparison of Genes Suggestively Associated with Mortality in ER+ Cases in
Primary and Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

ADGRA2 59 13 1.11e-03 12,396 101 6.02e-01
ALX1 33 3 3.52e-05 5423 82 9.35e-01
ANXA3 16 6 1.88e-04 27,042 237 6.87e-01
CFLAR 239 1 9.95e-04 17,399 124 3.19e-01
CHIA 1616 13 1.25e-03 56,892 292 4.13e-01
COL6A1 1127 14 1.20e-03 23,491 162 3.57e-02
CTH 323 3 1.32e-04 13,178 139 6.05e-01
DLST 30 2 1.44e-03 14,386 106 3.48e-01
ERG 942 2 5.43e-05 186,443 1562 9.65e-02
GAR1 0 1 1.29e-03 3587 57 5.56e-01
HNRNPU 9 3 9.93e-04 1776 23 7.31e-01
JSRP1 84 4 1.16e-03 1061 6 5.23e-01
MEDAG 147 2 1.25e-03 334 8 7.42e-01
NEFM 105 10 1.39e-04 987 17 8.92e-01
PNPLA1 1246 10 1.25e-03 35,219 351 9.75e-01
PTPRCAP 18 3 6.53e-04 1272 8 2.81e-01
SEPN1 465 7 7.45e-04 11,724 66 2.56e-01
SHISA5 1 1 1.20e-03 5935 109 1.76e-01
THTPA 93 1 4.87e-04 299 6 3.73e-01
WNT10A 34 5 8.90e-04 1989 23 1.59e-01
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Figure 3.5. SKAT-O Logistic Regression Results for ER Status

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene

of TCGA participants. None of the genes that are considered suggestive in the primary

analysis are significant at the Bonferroni corrected level in the TCGA analysis. One gene,

COL6A1, is significant at the less stringent nominal p-value threshold of p < 0.05. The

gene CYP2D6, which encodes the enzyme which metabolizes tamoxifen into its active

form, is not associated with mortality in participants with ER+ breast cancers (p=0.880

in the primary analysis). Other genes in the CYP family produced similar non-significant

associations.

3.3.2 Association between Variation in Gene Regions and Tumor Subtype

A summary of the gene-based analysis of tumor characteristics in the BCFR cases is shown

in Figures 3.5 to 3.9. Estimated genomic inflation is low for each analysis: λ = 1.013 for

ER status; λ = 1.043 for PR status; λ = 1.017 for HER2 status; λ = 0.998 for high tumor

grade; and λ = 1.066 for high tumor stage.

None of the genes reach the genome-wide threshold for significance in the primary

analysis for any of the tumor characteristics. Two neighboring genes on chromosome 17

that are located 90 kilobases downstream from the tumor suppressor gene TP53 are among
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Table 3.8: Comparison of Genes Suggestively Associated with ER Status in Primary and
Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

ARHGAP29 23 9 9.47e-04 21631 216 2.25e-01
ARL10 14 2 2.94e-04 5050 33 1.66e-01
C12orf60 1666 5 4.53e-04 12083 80 2.37e-01
C9orf47 1661 7 7.96e-04 4675 33 5.66e-01
IL1RAP 976 5 9.24e-04 95561 761 1.42e-01
KATNA1 10 4 5.88e-04 42989 200 5.19e-01
KCNJ8 9 2 1.00e-03 397 14 5.37e-01
KLF10 13 4 7.49e-04 3667 38 1.00e+00
LRRK1 2511 23 1.08e-03 141047 954 8.03e-01
LY6G5B 1936 5 6.06e-04 1607 25 2.97e-01
MEIS3 17 4 1.40e-05 4214 36 7.19e-03
P3H3 2884 15 2.37e-04 12076 61 1.07e-01
POU5F1 5215 6 1.05e-03 17916 95 6.13e-01
PRDM5 2531 5 2.56e-04 205478 1257 8.89e-01
QRSL1 507 6 3.74e-04 37784 242 5.62e-02
SLC25A39 1676 2 3.99e-04 4748 30 1.00e+00
SLC38A4 210 3 8.98e-04 39639 356 5.01e-01
TMEM209 33 6 8.42e-04 24913 171 2.75e-01
TSPYL1 583 4 9.25e-06 4728 33 5.29e-01

Figure 3.6. SKAT-O Logistic Regression Results for PR Status

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene
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Table 3.9: Comparison of Genes Suggestively Associated with PR Status in Primary and
Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

AIM1 2169 16 3.34e-05 67054 411 1.00e+00
BCL9L 68 8 2.44e-04 2868 41 6.70e-01
C12orf42 1835 5 6.50e-04 111518 989 8.73e-01
CD68 913 5 8.33e-06 2203 15 8.79e-01
IL1RAP 964 5 9.08e-04 95092 761 7.60e-01
LIF 43 2 9.03e-04 4224 30 3.82e-01
MON1B 72 4 5.30e-04 15354 80 4.41e-01
MPDU1 572 4 1.65e-05 1635 14 1.00e+00
MYH6 1643 13 7.55e-04 13928 135 4.45e-01
NPM1 1554 1 9.19e-04 22640 86 4.36e-01
PCDHA4 1750 6 7.66e-04 4486 22 3.49e-02
PDIA4 118 13 4.99e-04 14658 139 6.83e-01
QRSL1 500 6 7.17e-06 37658 242 3.68e-01
RNF214 1259 2 5.71e-04 38468 274 3.76e-01
SHBG 403 4 4.25e-04 9594 68 8.89e-01
SLC4A7 2604 9 8.35e-04 81498 538 3.72e-01
TDRD5 2514 8 9.34e-04 88788 487 1.65e-01
TGFBI 46 16 2.13e-04 32096 183 6.85e-01
UBN1 141 11 7.77e-04 32105 185 1.68e-02
UTP23 540 2 2.20e-04 3557 43 2.69e-01

Figure 3.7. SKAT-O Logistic Regression Results for HER2 Status

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene

82



Table 3.10: Comparison of Genes Suggestively Associated with HER2 Status in Primary
and Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

ANGPT2 14 3 1.50e-03 80784 593 9.01e-01
CERS4 720 6 1.89e-04 32624 202 1.22e-01
CPM 23 2 3.06e-04 54047 636 6.27e-01
CROCC 199 13 1.01e-03 15275 152 1.42e-01
CTSL 8 2 7.12e-04 2255 31 8.91e-01
DACT2 515 6 5.63e-04 22474 203 4.29e-01
FAM171B 10 3 1.47e-03 23841 190 3.39e-01
GALNT16 1100 4 9.30e-04 64711 501 4.73e-01
GPT 661 9 1.50e-03 2003 8 6.99e-01
HEATR6 98 8 6.17e-04 2894 69 5.23e-01
MCM7 385 8 4.03e-04 3023 28 6.73e-01
METAP1D 556 6 1.27e-03 41095 442 1.25e-01
PCYOX1 245 2 1.01e-03 6244 88 4.32e-01
PIAS3 29 5 4.16e-04 34 1 9.17e-01
PIGP 226 3 4.14e-04 6035 49 8.13e-01
RECQL4 594 13 1.74e-04 4361 16 5.90e-01
RWDD4 291 1 7.73e-04 23355 141 2.62e-01
TFAP2B 495 4 9.89e-04 11301 131 7.63e-01
VWC2 757 5 5.61e-04 57463 576 1.00e+00
ZNF620 59 4 8.75e-04 3274 27 5.39e-01

Figure 3.8. SKAT-O Logistic Regression Results for High Tumor Grade

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene
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Table 3.11: Genes Suggestively Associated with High Tumor Grade in Primary Analysis

Gene Minor
Allele
Count

Variants in
Gene

p-value

C8orf37-AS1 1057 2 5.47e-04
CNTNAP3 628 1 1.09e-04
COL27A1 7713 26 1.48e-04
CTDP1 604 5 1.21e-03
GUCY2C 26 5 5.01e-04
HOXC4 1596 3 2.52e-04
NPLOC4 1863 4 7.00e-04
NSUN2 686 5 2.36e-04
PNLIPRP3 306 8 5.98e-04
PNPLA7 329 14 1.05e-03
RBM27 15 3 7.47e-04
SCG2 84 4 2.06e-05
SH2D4A 837 7 2.21e-05
SSC4D 2202 6 7.28e-04
STRA6 2276 10 1.65e-04
TAF1C 1623 15 6.48e-04
TCTE1 1314 11 9.92e-04
TMEM132A 886 9 1.17e-03
TMEM88B 172 2 4.66e-04
ZBTB43 14 4 9.55e-04

Figure 3.9. SKAT-O Logistic Regression Results for High Tumor Stage

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene
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Table 3.12: Comparison of Genes Suggestively Associated with High Tumor Stage in Pri-
mary and Replication Analyses

Exome Chip TCGA

Gene Minor
Allele
Count

Variants in
Gene

p-value Minor
Allele
Count

Variants in
Gene

p-value

C8orf37-AS1 1057 2 5.47e-04 525417 3137 5.96e-01
CNTNAP3 628 1 1.09e-04 42217 161 8.01e-01
COL27A1 7713 26 1.48e-04 165929 986 1.46e-01
CTDP1 604 5 1.21e-03 92110 465 1.00e+00
GUCY2C 26 5 5.01e-04 14059 333 5.68e-01
HOXC4 1596 3 2.52e-04 14994 116 2.28e-01
NPLOC4 1863 4 7.00e-04 96837 387 3.65e-01
NSUN2 686 5 2.36e-04 48493 236 2.07e-01
PNLIPRP3 306 8 5.98e-04 11371 200 6.80e-01
PNPLA7 329 14 1.05e-03 20244 89 1.00e+00
RBM27 15 3 7.47e-04 33619 222 6.18e-01
SCG2 84 4 2.06e-05 346 23 4.21e-01
SH2D4A 837 7 2.21e-05 47631 522 4.89e-01
SSC4D 2202 6 7.28e-04 27812 136 3.39e-01
STRA6 2276 10 1.65e-04 20707 136 2.85e-01
TAF1C 1623 15 6.48e-04 15310 98 4.25e-01
TCTE1 1314 11 9.92e-04 10972 116 3.86e-01
TMEM132A 886 9 1.17e-03 16624 65 1.31e-01
TMEM88B 172 2 4.66e-04 1058 11 7.67e-01
ZBTB43 14 4 9.55e-04 6467 111 6.02e-02
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Figure 3.10. Single Marker Regression Cox regression Mortality Results for All Cases

The red line represents a p-value of 1.93 ·10−6, and the blue line represents the p-value of the twentieth most significant SNV.

the three most significant genes identified as being associated with PR status, CD68 (p =

8.33 ·10−6) and MPDU1 (p = 1.65 ·10−5).

Tables 3.8 to 3.12 show the p-values of the top genes for each analysis in the primary

analysis compared to their p-values in the analysis of the TCGA participants (tumor grade

was not assessed in TCGA, so Table 3.11 shows only the p-values in the primary analysis).

None of the genes that are considered suggestive of association in the primary analyses are

significant at the Bonferroni corrected threshold in the TCGA replication analysis. With a

less stringent threshold for replication of p<0.05, three genes were suggestively associated

with tumor characteristic. MEIS3 is the gene with the smallest p-value in the primary ER

analysis (p= 1.40 ·10−5) and nominally associated with ER status in the TCGA population

(p = 7.19 · 10−3). PCDHA4 and UBN1 are in the top 20 genes associated with PR status

in the primary analysis (p = 7.66 · 10−4 and 7.77 · 10−4, respectively, and had a p-value

smaller than 0.05 in the TCGA analysis (p = 3.49 ·10−2 and 1.68 ·10−2).
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Figure 3.11. QQ Plots of SKAT-O Cox regression Mortality Results for Genes Previously
Reported as Associated with a Breast Cancer Phenotype

3.3.3 Single Marker Regression Analysis

The single marker regression analysis of the association between each of the 25,938 com-

mon variants and mortality has a genomic inflation factor of 1.008 after controlling for the

principal components. A summary of the association results is shown in Figure 3.10, and

details of the twenty SNVs with the smallest p-values are shown in Table 3.13. None of the

SNVs meet the pre-set threshold for statistical significance. The most significant SNV is

located at chr6:35430686, a nonsynonymous SNV in exon of FANCE. The p-value of this

SNV is 1.58 ·10−5.

Results were similarly null for single marker regression analyses for mortality in ER+

tumors, ER status, PR status, HER2 status, high tumor grade, and high tumor stage.

3.3.4 Comparison with Previously Identified Breast Cancer Phenotype

Loci

Previous GWASs identified 65 gene regions as being associated with breast cancer phe-

notypes with a p-value that was smaller than the genome-wide significance threshold of
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Figure 3.12. QQ Plots of SKAT-O Logistic Regression Results for Tumor Characteristics
for Genes Previously Reported as Associated with a Breast Cancer Phenotype
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5 ·10−8. Fifty seven of these regions had variation in the primary data set, and the associ-

ations of these genes with mortality and tumor subtype are highlighted in Figures 3.11 and

3.12. These figures display quantile-quantile (QQ) plots of the p-values of these genes in

the primary analyses for mortality (Figure 3.11 A), mortality in ER+ cases (Figure 3.11 B),

ER status (Figure 3.12 A), PR status (Figure 3.12 B), HER2 status (Figure 3.12 C), high

tumor grade (Figure 3.12 D), and high tumor stage (Figure 3.12 E).

While the analysis for mortality does not produce strong evidence that any of the genes

that were previously reported as being associated with a breast cancer phenotype, QQ plots

are qualitatively inflated for ER status, PR status, and tumor grade. However, only the

analysis of PR status produces a gene whose p-value in the BCFR participants meets a

Bonferroni corrected threshold of significance with p < 0.05
57 ; p = 8.8 · 10−4: SLC4A7.

This gene was reported in one previous study,195 and one meta-analysis which included

that original study,119 both of which identified a variant in the 3 prime UTR of SLC4A7

as being associated with the risk of breast cancer in European women, with p-values of

2 ·10−8 for the single study and 2 ·10−30 for the meta analysis. This same variant was also

identified by other studies, but not at a level that reached genome-wide-significance for that

study. Variants in the adjacent gene of NEK10 were previously associated with risk, both

in Chapter 2 and previous studies. The p-value for the adjacent gene, NEK10, is 6.19 ·10−3

in the PR+ analysis of the primary study population.

3.3.5 Comparison with Previously Identified Mortality Loci

The above analysis was repeated using only the loci reported in NHGRI-EBI as being

associated with mortality phenotypes. None of the loci that were previously identified as

being associated with mortality with a genome-wide significant p-value were nominally

(p<0.05) significant in any of the mortality analyses. Since so few statistically significant
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results had been previously reported, this analysis was repeated using all loci listed in

the NHGRI-EBI catalog as being associated at an significance level with breast cancer

mortality (28 genes at 11 loci). This analysis demonstrated substantively similar null results

for both mortality and mortality in ER+ breast cancer patients (no gene met a nominal

significance threshold of 0.05).

3.4 Discussion

These analyses do not identify any gene regions in which variation is associated with mor-

tality in breast cancer cases. These results represent the largest single study to investigate

the relationship between genome-wide variation and breast cancer mortality, in terms of

both the number of participants and the follow up time. The failure of single marker re-

gression analyses to identify any loci in gene region as being associated with mortality

provides complementary evidence that variation in gene regions is not responsible for a

substantial portion of the variability in breast cancer mortality.

This analysis also does not provide evidence for an association between variation in

gene regions and five traits that are indicators of tumor aggressiveness: ER status, PR

status, HER2 status, high tumor grade, or high tumor stage with a significance that meets

the genome-wide threshold.

While null results from gene-based tests are to be expected if rare variants make a large

contribution to the trait,40 these results, when taken together with previous genome-wide

studies, suggest that variants that are associated with breast cancer mortality are either

not common, not measured by the exome array, or, if they were measured by the exome

array, that within any single gene, they collectively are responsible for a small fraction of

mortality.
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In agreement with other recent results,196,197 this analysis does not find an association

between variants in the CYP genes and survival in ER+ breast cancer patients, although the

patients had an unknown tamoxifen treatment history. A previous genome-wide investiga-

tion suggests that among older women with known tamoxifen treatment, haplotypes that

included CYP2D6 polymorphisms were associated with mortality.145 CYP2D6 is highly

polymorphic, but many of the polymorphisms that have been identified in the gene are

of uncertain clinical importance. The exome array only measured four nonsynonymous

variants on the exome array. While these variants likely would have tagged the effect of

most truly causal variants within the gene, this may have limited the ability to detect an

association between CYP2D6 and mortality

These analyses do identify a gene that was previously reported to be associated with

breast cancer risk, SLC4A7, as suggestively associated with tumor PR status. While this

association would need to be replicated, this suggests that women with variation in SLC4A7

may be particularly at risk for PR positive tumors. This information suggests that PR status,

which is an independent indicator of treatment efficacy and ultimately survival,198 may

be driven by variation in SLC4A7. It is possible that this information can help to guide

prophylactic treatment in women who are predisposed to the more lethal PR+ tumors.

These analyses also indicate that weighting by predicted functionality with the CADD

scaled score can produce SKAT-O estimates that do not have inflated type I error rates, as

the genomic inflation λ estimates were all near one. This suggests that the CADD scores

are a valid way to incorporate a priori knowledge of genetic function into an analysis.

Weighting by the CADD score also allowed for the inclusion of all measured variants in

the gene rather than only rare variants, or only variants that were predicted to be functional.

This work suggests several next steps. At the present time, there is only a rudimentary

ability to annotate non-exonic variants to genes, but this is a subject of much study. As

the understanding of biological pathways improves, variants will be able to be connected
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with a particular gene in ways that are more sophisticated than ANNOVAR’s annotation.

Regulatory variants that are not spatially near the genes that they regulate could be included

in the analysis. At the same time next generation sequencing technologies are being widely

implemented, which will increase the ability to detect rare variants. If any of these newly

discovered or annotated variants are responsible for breast cancer mortality, their inclusion

will improve the ability of gene-based tests to identify genes that direct the underlying

cellular processes that confer this risk.

The participants of these studies are all of a homogeneous age (younger than 51 at

diagnosis), ancestral background (European), and gender (women). As breast cancer af-

fects people of all ages, ancestral backgrounds, and genders, additional SKAT-O analy-

ses in populations with different characteristics will help to determine whether in these

other populations, variation is associated with breast cancer mortality. Additional studies

that include women of different ancestry backgrounds may help to resolve a long-running

question about the determinants of differential mortality across ethnic groups.

Additional insight could also be gained by applying the analysis presented here to a

population with known treatment regimens, as the effect of germline genetic variation may

be heterogeneous across courses of treatment. Therefore, it would be fruitful to repeat

the analyses with a sample of known, homogeneous treatment. In particular, given the

still-unsettled relationship between variation in the CYP gene and survival, it would be of

clinical interest to repeat the mortality analysis in patients with estrogen receptor positive

tumors who were treated with tamoxifen.

There were some limitations to this analysis. The TCGA and BCFR samples differ in

aspects that create challenges in using the TCGA data to replicate BCFR findings. The par-

ticipants of the two studies were not well-matched on age (less than 750 TCGA participants

and a small number of deaths in all TCGA analyses). Also, the TCGA participants were

genotyped to measure variants that were largely common, and the presence of rare variation
93



was inferred through imputation, while the BCFR participants were genotyped with an ex-

ome array that targeted nonsynonymous variants in gene regions. While the CADD scores

down-weighted intronic variants that were over sampled in the TCGA data and less likely

to be causal, it would have been preferable to repeat the original analysis on a data set that

interrogated more similar variants. It is possible that a larger secondary independent data

set of age-matched patients that directly assayed the same rare variants that were captured

by the primary data set may have been able to better replicate the BCFR analysis, and may

have highlighted causal genes. As more data become publicly available and the methods

to create gene-based tests from summary statistics improve, there will be a larger power to

detect drivers of mortality.

Additionally, while large in comparison to previous single studies of mortality, the sam-

ple size here is modest by genome-wide standards. A larger sample size would have likely

observed more rare variants, and could have more concretely demonstrated the association

(or lack thereof) between mortality and variation in gene regions.

The analysis also would have been stronger if the data had included information on

other treatment. Treatment is known to affect mortality, and may possibly interact with

genetics, such that particular germline genetic variants may only affect mortality in the

presence or absence of a particular kind of treatment. Similarly, tumor subtype is known to

be a prognostic factor in breast cancer. While these analyses investigated mortality in ER+

cases specifically, the number of participants were not powered detect modest associations

between germline genetic variation and morality within particular tumor subtypes.

In conclusion, this analysis suggests that variation assayed by the exome array does not

explain a large portion of variation in mortality in early onset breast cancer cases. When

combined with the evidence from family studies and heritability estimates that suggest that

mortality does have a heritable component, this suggests that future work to identify vari-

ants associated with morality need to incorporate variation that is not assayed on the exome
94



array, and consider methods that allow for the detection of larger-than-gene pathways that

have modest effect size on risk. This analysis does indicate that germline variation within

SLC4A7 may predispose women with variation in that gene to a higher risk of PR+ tu-

mors. This could help to design future preventative interventions that could be tailored

specifically for the risk of tumors that over-express the progesterone receptor.
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CHAPTER 4

ROLE OF GERMLINE GENETIC VARIATION IN PREDICTING

RISK AND MORTALITY OF BREAST CANCER

4.1 Background

4.1.1 Non-genetic predictors of breast cancer risk and mortality

Breast cancer is the most frequently diagnosed cancer in women, with one in eight Amer-

ican women developing breast cancer over her lifetime.1 Almost twenty five percent of

women diagnosed with breast cancer eventually die of the disease,2 and fear of recurrence

and mortality lowers quality of life for women who are diagnosed.3–6 Women who are

diagnosed with breast cancer before the age of fifty (one in five of those diagnosed2) are

more likely to die from breast cancer.28 There is also evidence that tumors of women who

develop breast cancer early are more likely to be driven by germline genetic variation than

cancers that develop later in life.50

A strong prediction model of breast cancer risk and mortality would confer many clini-

cal benefits. The ability to predict which women will develop breast cancer would identify

low-risk women who could be screened less often, which would require less energy to be

devoted to searching for symptoms of a disease they are unlikely to develop. Prediction

models for breast cancer risk could also help to interpret an otherwise inconclusive screen-

ing result, and could reduce both unnecessary invasive procedures and unidentified tumors.

In the context of breast cancer mortality, the ability to predict which women are at risk

of death from the disease could identify high risk women who could benefit from more

aggressive monitoring and treatment for high-risk subgroups. A strong prediction model

would conversely also identify women who could pursue less aggressive treatments, which

would reduce the morbidity associated with exposure to chemotherapies.54
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Both breast cancer diagnosis and mortality have several known risk factors that are

reproducibly associated with each trait. For both outcomes, existing prediction models

are statistically significant and adequate for predicting the risk of a population. However

their low discrimination makes them less relevant for individual risk decisions.41 Iden-

tified risk factors for breast cancer risk include age, race, socioeconomic status, age at

menarche, breast tissue characteristics, breastfeeding, reproductive history, hormone use,

menopause history, alcohol use, body mass index, smoking history, and physical activ-

ity.29,33,34,46,199–202 The effect of age on risk is not straightforward, as it interacts with

other risk factors. For example, nulliparity and obesity are associated with decreased breast

cancer risk in younger women, but increased risk later in life.133,134 Prediction models for

risk that incorporate these risk factors have modest predictive power. Current prediction

models produce areas under the receiver operating characteristic curve (AUCs) between

0.6 and 0.746 (with AUCs that are significantly different than 0.5 interpreted as models that

are better than chance).

For women who have already been diagnosed with breast cancer, their survival is asso-

ciated with several factors that are ascertained as of the time of diagnosis, and others that

develop over the course of the disease: age, race, socioeconomic status, treatment, tumor

size, nodal status, grade, presence of metastases, estrogen receptor (ER) status, proges-

terone receptor (PR) status, HER2-positivity, gene profile, comorbidities, and the genetic

aberrations of the tumor.81,130,131,133,134,203 As with breast cancer risk, the risk factors

for breast cancer mortality can also interact with age.133 The most effective models predict

breast cancer mortality with an AUC of approximately 0.7.47

97



4.1.2 Genetic Prediction

In addition to the non-genetic factors mentioned above, germline genetic variation is con-

vincingly associated with breast cancer risk. Several high risk variants have been identified

that are highly penetrant but rare in the overall population, including mutations found in

BRCA1, BRCA2, and TP53.33 Additional risk variants have been implicated by single

marker regression analyses in genome-wide association studies (GWASs). These studies

have identified 128 risk loci that are common, and affect breast cancer phenotypes with

modest or moderate association strengths.60 However, despite these successes, there still

remains “missing heritability” in breast cancer, where variants that have been identified

only contribute about half of the total risk due to genetics that is expected from family

studies.35,46,71,72,204

The relationship between mortality and germline genetics is less clearly described than

the relationship between risk and germline genetics, but several lines of evidence suggest

that germline genetic variation contributes to mortality, including family studies,35 animal

studies,150,173 highly penetrant uncommon variants such as those found in BRCA1 and

BRCA2205,206 (although their effect on mortality is counteracted by the susceptibility of

these tumors to DNA-damaging chemotherapies207), candidate gene studies,208 and sin-

gle marker regression investigations (summarized in Table 4.1 and Table 4.2). Many of the

genome-wide investigations have been undertaken with small sample sizes, and the variants

that were highlighted have not been replicated widely, which has resulted in a lack of con-

sensus on the validity of the individual variants identified by the single marker regression

investigations.

Given the evidence that both risk and prognosis are influenced by germline genetics,

prediction models that incorporate genetic variation would likely improve the ability to

predict these two traits. However, genetic data posses several distinct characteristics that
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must be accounted for in prediction models: the number of variants to include can exceed

the number of study participants; the predictors are often correlated due to linkage disequi-

librium (LD) between the variants; the form that describes the relationship between variants

and disease is unknown; the sparsity and distribution of the causal variants throughout the

genome is unknown; and many of the putatively associated variants likely have small effect

on the trait.52 Two methods that can be appropriate for prediction given these challenges

are polygenic risk scores (PRS) and restricted maximum likelihood estimates (REML) from

linear mixed models (LMM) .

Polygenic risk scores multiply the per-allele risk (found in prior literature or a training

set of individuals) for each test individual by the number of risk alleles at a locus, and

sum this over each variant of interest to produce a score that reflects a test individual’s

risk of disease. While PRSs can be implemented in many ways,209,210 in most studies,

PRSs include a limited number of variants in the score, typically those that pass a signif-

icance threshold in association analyses in the training set. Before the advent of LMMs

for prediction, some investigators were able to successfully create PRSs with a large num-

ber (<10,000) of genotyped variants.211 However, in general, PRS predictions that use a

large number of variants are often unstable,97 and most PRSs now contain fewer than 100

variants.

Polygenic risk scores are not a preferred method for whole genome prediction. It has

been shown that the prediction risk based on a per-allele odds ratio of a training set is likely

to be substantially inaccurate for rare alleles.129 There is evidence that predictions from

PRS can be biased upwards,212 and that LD structure can lead to inconsistent results. Even

when unbiased, polygenic risk scores do not have much predictive power in a complex,

non-Mendelian trait, for intuitive reasons:52 first, the effect sizes of rare variants are poorly

estimated, and therefore not able to be reflected in a PRS; and second, the threshold that is

used to include variants is arbitrary by its nature. Many causal single nucleotide variants
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(SNVs) may not meet the significance threshold, and lowering the significance threshold

introduces many variants into the risk score which are not truly causal.213 This can both

obscure the effect of a truly causal variant, and also increase the possibility of a spurious

associations driving a prediction.

PRSs are best suited to predict traits that have few causal variants of larger effects.

While not conclusive, previous studies along with the analyses of Chapters 2 and 3 suggest

that this is not the case in breast cancer risk or prognosis, but if it is, PRSs would be well-

suited incorporate genetic data into a prediction model. PRSs have been implemented for

breast cancer risk, but they have largely been poorly replicated214–216 (perhaps due to the

instability of the estimate), or produced a prediction that was statistically significant but not

clinically meaningful.217 These modest predictive powers are consistent with simulations

that have shown that large sample sizes (10,000 or more participants) are often necessary

to achieve enough power for PRSs to produce a statistically significant prediction for most

genetic traits.217

Genetic similarity has also been translated into prediction by REML LMM models

(GREML) that summarize genetic similarity in genetic relatedness matrices (GRMs). While

possible upward biases of heritability estimation using REML models has been debated,218–220

the current consensus is that they are largely accurate for prediction,221,222 and under cer-

tain plausible assumptions these predictions are the best linear unbiased prediction (BLUP).223

These methods begin with a training set of individuals with known disease status, and cal-

culate the genetic similarity between each individual in that training set and an individual

in the test set. The risk of this test individual is then computed as the weighted average of

the case statuses of the training set, with the weights calculated as a transformation of the

pairwise genetic similarity between the individuals.

GREML approaches are more appropriate than PRSs when the trait is highly poly-

genic.42,224,225 If a GREML-BLUP is implemented with a trait that is driven by a small
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number of causal variants, the prediction will have large variance, but be unbiased.225 The

Kriging method developed by Wheeler et al.42 is equivalent to the BLUPs of GREML,

but is motivated differently. The Kriging method extends GREML predictions to integrate

more than one matrix of -omic similarity. This extension allows for the grouping of variants

based on prior information that indicates that variants within a single group affect the trait

under study in a similar manner. Separate GRMs are then constructed from the variants

in each of the groups. If variants are grouped together in a manner that reflects true simi-

larities of their underlying association with disease, the performance of the prediction can

substantially increase.42 The Kriging method is less model dependent than other GREMLs,

in that the weights of the different GRMs are found by maximizing prediction performance

(as measured by AUC for dichotomous outcomes226) rather than direct estimation.

In the Kriging framework, covariates are added linearly to each pairwise similarity

vector before transformation into a similarity matrix.223 Under certain assumptions, this is

equivalent to regressing the outcome on the covariates, and then using the residuals for the

phenotype of the Kriging procedure. The incorporation of non-genetic covariates allows

for a final prediction model that represents both the genetic and non-genetic influences of

breast cancer.

While the primary goal of prediction models is not to identify the specific variants

that are associated with disease, the grouping allowed by the Kriging prediction method

can be used to characterize the causal variants. Using common annotation software, it is

possible to group variants based on whether it is common or rare, and by whether the variant

has a particular predicted functionality. When these GRMs are used in whole genome

prediction using Kriging, the magnitude of the weights on each GRM suggest whether the

variation that drives breast cancer is located in variants that common or rare (or both), and

whether that variation is likely to be found within variants of a particular type of predicted

functionality. This knowledge will help to resolve long-running questions about the relative
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importance of different portions of the genome. This analysis will help to design future

studies that may aim to identify risk variants. A priori, variants that are rare are more likely

to be associated with disease, as evolutionary constraints would likely keep them at a low

frequency in the population. This insight motivates many whole-genome and whole-exome

sequencing projects, which, although they are more expensive than studies that use an

array-based technology, identify rare variation more effectively. However, there are many

exceptions to this general rule, since for many diseases (including breast cancer), many

variants that have been identified as associated with disease are prevalent in the general

population.80 In the case of breast cancer, it is unclear if the not-yet-discovered variation

that is associated with disease is likely to be found in variation that is common or rare.

Similarly, the extent to which different classes of predicted variant functionality are

likely to drive genetic association with breast cancer risk and prognosis is still unknown.

A priori, variants that cause changes in the translation of amino acids are considered most

likely to affect a trait, and this has justified many studies that utilize whole exome se-

quencing and exome arrays. However, genome-wide analyses have frequently produced

new discoveries in variants that were thought to be “junk” DNA:180,181 Variants near gene

regions that do not directly cause changes in proteins are over-represented in GWAS re-

sults;34,176,177 and intergenic variants often contribute to complex traits.34 It is currently

unclear whether, in the context of breast cancer, the missing heritability is driven by vari-

ants that will be identified by studies that focus only on variation in the exome.

An additional unanswered question is to what extent not-yet identified variants con-

tribute to risk and prognosis of breast cancer. Due to the instability of polygenic risk scores,

and the lack of a whole-genome based heritability estimate for breast cancer risk and prog-

nosis, it is unclear whether the 100+ variants that have already been associated with breast

cancer phenotypes drive the association with either diagnosis or mortality, or whether there

are additional risk loci that are associated with either breast cancer trait.
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In the context of Kriging, GRMs can be constructed so that each of these groups of

variants can contribute to prediction with a separate strength. The optimal weights of each

GRM will help to describe the relative importance of the variants that make up those GRMs.

This has not yet been done in for any breast cancer phenotype.

4.1.3 Gaps in knowledge

With the preceding as background, this manuscript will predict breast cancer risk and prog-

nosis for the first time using a Kriging framework in a way that will allow for variants

with different predicted functionality and different prevalences to contribute to risk with

different strengths. Given the already demonstrated polygenic nature of breast cancer risk,

the possible polygenic nature of breast cancer prognosis, and the lack of success of previ-

ous polygenic risk scores, Kriging represents a promising method to predict breast cancer

risk and mortality. No whole-genome prediction model has been reported for either breast

cancer risk or prognosis, and the analyses of this manuscript will illuminate the genetic

architecture of breast cancer and identify classes of variation that drive each trait.

When combined with non-genetic information, the prediction models may more accu-

rately predict population-level risk and also improve upon current risk estimates. If suc-

cessful, this will further a goal of precision medicine and produce individual prediction

models that are clinically actionable. Given the high prevalence of breast cancer (45,000

early onset diagnoses each year in American women and 231,000 diagnoses in American

women of all ages1), even a modest increase in the total ability to predict risk could po-

tentially impact the interpretation of ambiguous screening results for many women,52 and

provide additional context for women who are considering other medical interventions that

may increase their breast cancer risk, such as menopausal hormone therapy or hormonal

assisted reproductive therapies.53 In the context of breast cancer prognosis, a more accu-
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Table 4.3: Characteristics of Studies Included in Analysis
Study Name Study

Location
Years
Recruit-
ing

Case Criteria Control Criteria Cases Controls

Breast Cancer
Family Registry

Australia 1992-
2000

Living in the Melbourne
and Sydney metro areas,
family recruited from the
Victoria and NSW cancer
registries

Randomly selected from
electoral rolls, matched
to cases on age and city

561 119

Breast Cancer
Family Registry

Northern
California

1996-
2003

SEER Cancer registry in
the San Francisco metro
area

Random digit dialing
in study area, matched
to cases on age and
race/ethnicity

180 65

Breast Cancer
Family Registry

Ontario 2001-
2010

Ontario Cancer Registry Random digit dialing in
study area, matched to
cases on age

574 154

Genetic
Epidemiologic
Study of Breast
Cancer by Age 50

Germany 1992-
1995

38 clinics in the
Rhein-Neckar-Odenwald
and Freiburg regions

Randomly selected
from local population
registries

516 483

Long Island
Breast Cancer
Study Project

New York 1996-
1999

Nassau and Suffolk
counties

Random digit dialing in
study area, matched to
cases on age

198 110

Seattle Seattle,
Washington

1990-
1992

King, Pierce, and
Snohomish counties; age
less than 45 at diagnosis

Random digit dialing in
study area, matched to
cases on age and race

294 103

Cases and controls are numbers included in the analysis before quality control

rate prediction model would be able to better identify the estimated 60% of women who are

treated with toxic chemotherapies who extract little to no survival benefit from the treat-

ments,55 while also identifying those at high risk of mortality who may want to be treated

more aggressively.

4.2 Methods

4.2.1 Study Data

4.2.1.1 Participants

The participants for these analyses were selected from six ongoing studies designed to as-

sess the risk factors associated with early onset breast cancer. Participants are women of

European descent who were 51 years or younger at the time of their diagnosis (for cases)
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or enrollment (for controls) and not known to carry pathogenic germline mutations in the

genes BRCA1 or BRCA2. Details of the recruitment are found in Table 4.3. Three of

the study sites (Australia, Northern California, and Ontario) were members of the Breast

Cancer Family Registry (BCFR), whose methods have been described elsewhere.63 North-

ern California and Ontario recruited through population-based registries, and Australia

recruited through a mix of population and clinic-based outreach. Participants were also

included from three population-based case-control studies not included in the BCFR con-

sortium: the German Genetic Epidemiologic Study of Breast Cancer;64 the Long Island

Breast Cancer Study Project;65 and the Seattle study.66

4.2.1.2 Genetic Data and Quality Control

Germline DNA was extracted from blood drawn from 3357 participants (2323 cases and

1034 controls). Genetic variation was measured using two Illumina array-based genotyping

methods: (1) an exome array that that was designed to more closely interrogate often-rare

variants in the gene regions, with particular emphasis on nonsynonymous variants, and (2)

a GWAS array that was designed to interrogate common variation over the whole genome.

Two versions of the exome array were used: 1849 cases and 831 controls were geno-

typed on the Illumina HumanExome 12v1.0 chip, and 474 cases and 203 controls were

genotyped on the Illumina HumanExome 12v1.1 chip. To improve the quantity and quality

of available genomic DNA, the samples were whole genome amplified using the Qiagen

Repli-G mini kit,22 and were processed using 49 plates in two batches, following the man-

ufacturer’s protocol. TeCan Evo was used for automation. Raw data was processed by

Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15, per Illu-

mina’s recommendation for Infinium chips. Clustering was done using the Illumina sup-
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plied cluster files. After keeping only variants that were on both chips, 238,524 variants

were interrogated.

The quality control followed the protocol outline by Guo et al.96 Since the accuracy of

genotype calling from an exome array is slightly less than the accuracy of a genome-wide

array of common variants,227,228 and the variants from the exome array was of particular

interest for this analysis, the quality control for the exome array was done separately from

the quality control for the GWAS array, and then the two were combined. Participants

were excluded for low genotyping rate (rate < 95%; 219 excluded), high heterozygosity

(F statistic greater than three standard deviations from the mean, or heterozygosity greater

than four standard deviations from the mean; 31 excluded), and one of each pair of dupli-

cated genotypes (eight samples excluded: three replicates; five duplicates from the same

center). Additionally, due to the family-based case ascertainment of some of the studies,

seven participants were excluded whose genotypes were highly correlated (estimated relat-

edness from a GCTA-created genetic relatedness matrix greater than 0.4).97 Variants were

excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded), or if

they were common variants (defined below) with Hardey-Weinberg equilibrium p-values

of less than 2.5 ·10−7 in controls (p = 0.05 Bonferroni corrected for 200,000 tests; 39 ex-

cluded). The final variant-level exclusions were the result of evidence that on some plates

variants were unreliably assigned (a plate-by-plate single marker regression analysis found

that in some cases genotype could predict plate). For these variant-plate combinations,

variants were excluded for all participants on that plate if this GWAS p-value was smaller

than 2.5 ·10−7. As a result of this quality control step, 100 variant-plate combinations were

set to missing.

Variation genome-wide was additionally measured for the same 3357 participants. The

procedure to genotype and impute from variants assayed on the genome-wide array are de-

tailed elsewhere,50 and summarized on the left hand side of Figure 4.1. Briefly, the DNA
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was genotyped using the Illumina 610-Quad and Cyto12 v2 BeadChips, and standard lab-

oratory quality control procedures were applied. After quality control, 555,254 variants

and 3333 participants were brought forward to imputation, which was implemented by the

Michigan imputation server,186 employing ShapeIt187 to pre-phase the variants and mini-

mac3 to impute.188 In order to best impute rare variants,189,190 the entire 1000 Genomes

phase 3 release132 was used for a reference panel. While it might have been optimal to com-

bine the genotyped variants from both arrays before imputing, the non-imputed genome-

wide genotype data was no longer available. However, the LD structure of rare variants

differs from the LD structure of common variants,99 and previous research suggests that

few additional variants would have been imputed with high quality had the exome array

variants also been included in the imputation.227 Although variants with an imputation r2

greater than 0.3 are generally considered adequate for association studies,191,192 rare vari-

ants (which are of particular interest to this study) and have an estimated r2 with genotyped

variants that is more variable than common variants.229 For these reasons, only imputed

variants with an imputation r2greater than 0.8 were kept, consistent with other classifica-

tions of “high quality” imputation227,230,231 (3,310,158 variants).

After the quality control steps, 2869 participants were measured with both arrays. The

post-quality control, post-imputed genotypes from the two arrays were combined. A small

fraction of the variants were measured by both methods (14,054 variants), and of these, 124

variants were called differently for at least one participant. Of these 124 differences, 17

were variants that were genotyped on the genome-wide arrays, and the rest were imputed.

Since more than 85% of the discordant calls were a result of imputation, in the cases where

the two methods disagreed, the allele called from the genotyped exome array was used.

After the quality control steps, 3,534,628 polymorphic variants were available for 2869

participants. Of these, 3,245,343 could have their expected functionality annotated by the
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Figure 4.1. Variants Used in Primary Analysis

ANNOVAR software98 and were retained for analysis. A schematic of the variants used in

this analysis is shown in Figure 4.1.

4.2.2 Classification of Variants and Creation of the Genetic Relatedness

Matrices

In previous work, a designation of “common” and “rare” variants roughly corresponded

with their ability to be included in a GWAS-framework single marker regression study.

Following this, a threshold of frequency equal to
(

1
2n

)1
2 = 0.0127 was used to distinguish

common variants from rare variants,59 which resulted in 3,045,517 common variants and

199,826 rare variants. Three functional categories were also created: variants that are ex-

pected to cause a change in amino acid translation, variants that are located in gene regions

but not associated with amino acid translation, and intergenic variants. To identify variants
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Table 4.4: Genetic Relatedness Matrices Used in Prediction

Model Genetic Relatedness Matrix Variants in
Matrix

Geno-
typed

Variants

Imputed
Variants

Model 1 All Variants 3,245,343 436,208 2,809,135
Model 2 Common 3,045,517 344,649 2,700,868

Rare 199,826 91,559 108,267
Model 3 Protein Damaging 99,586 98,190 1,396

Other Gene Region 1,383,730 165,731 1,217,999
Intergenic 1,762,027 172,287 1,589,740

Model 4 Common Protein Damaging 16,175 14,912 1,263
Common Other Gene Region 1,327,056 160,115 1,166,941
Common Intergenic 1,702,286 169,622 1,532,664
Rare Protein Damaging 83,411 83,278 133
Rare Other Gene Region 56,674 5,616 51,058
Rare Intergenic 59,741 2,665 57,076

Model 5 Previously Identified 2,787 1,554 1,233
All Not Identified 3,242,556 434,654 2,807,902

Model 6 Previously Identified 2,787 1,554 1,233
Not Identified Common Protein Damaging 16,171 14,909 1,262
Not Identified Common Other Gene Region 1,324,780 158,630 1,166,150
Not Identified Common Intergenic 1,701,779 169,556 1,532,223
Not Identified Rare Protein Damaging 83,411 83,278 133
Not Identified Rare Other Gene Region 56,674 5,616 51,058
Not Identified Rare Intergenic 59,741 2,665 57,076

Only polymorphic variants are included in these counts
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that were likely to cause a change in the translated amino acid, a functional category of

damaging variants was created that included variants annotated by ANNOVAR as nonsyn-

onymous, stop-loss, stop-gain, frameshift substitution, or nonframeshift substitution in an

exon (99,586 variants). he final variant-level exclusions were the result of evidence that

on some plates variants were unreliably assigned (a plate-by-plate single marker regression

analysis found that in some cases genotype could predict plate). Variants near gene regions

that did not directly cause changes in amino acid translation included all other variants that

ANNOVAR annotated to genes, including introns, synonymous SNVs, UTRs, and vari-

ants within 1 kilobase of the start and stop sites (1,383,730 variants). Intergenic variants

contained all other variants (1,762,027 intergenic variants).

In addition to minor allele frequency and expected functionality, a third grouping of

variants was of interest: those that have been previously identified by other researchers as

being associated with a breast cancer phenotype in a single marker regression framework.

As of September 2016, 174 associations (128 unique SNVs) are listed in the NHGRI-EBI

GWAS catalog34 that connect germline genetic variation with a breast cancer phenotype

with a p-value less than the genome-wide significant threshold of 5 ·10−8. In order to also

include in this group of variants other SNVs that may tag this previously known association

well, the Broad Institute’s SNAP program232 was then used to identify a total of 2791

SNVs that were within 500kb of the original SNV, and in high LD with it (R2 > 0.8 in

the CEU 1000 Genomes132 population). Out of this combination of previously identified

SNVs and those in high LD with them, 2,787 were interrogated in the genetic data of the

study population.

The above-described classifications were then used to create separate genetic related-

ness matrices to test six different prediction models, summarized in Table 4.4. The Kriging

method developed by Wheeler et al42 follows Yang et al61 and defines each element of the
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GRM as the non-standardized and non-centered correlation between the genotypes of each

individual:

1
M

M

∑
l=1

(
XG

il −2pl

)(
XG

jl −2pl

)
2pl (1− pl)

with i and j denoting individuals, XG
il the number of reference alleles of at marker l,

pl the frequency of the reference allele at marker l, and M being the number of genomic

markers used in that GRM.

4.2.3 Prediction Models

Kriging was then used to predict two breast cancer phenotypes: case/control status (1998

cases and 871 controls), and ten year survival status (1903 cases with mortality information

and 400 deaths from any cause before 10 years after diagnosis). Ten year survival was

chosen because the low number of deaths by year five (229) would have resulted in an

underpowered analysis.

Kriging prediction was implemented using the R package “omicKriging.” For each

iteration of the model, the Kriging formula was implemented using ten-fold cross validation

to estimate a predicted value for each participant, with predicted values near zero indicating

a low risk of breast cancer, and values near one indicating a high risk of breast cancer. These

predictions were compared to that participant’s actual breast cancer status to compute an

AUC.

In order to produce a more stable estimate with valid confidence intervals, this proce-

dure was repeated two hundred times (which simulations suggest is more than sufficient to

produce a stable estimate given a sample > 1000233,234 ). The reported AUC is the mean

of the two hundred calculated AUCs, and the 95% confidence intervals reported are the
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2.5 and 97.5th percentiles of the replications. The models that contained multiple GRMs

(Models 2-6), determine the optimal weighting by applying a grid search to each separate

GRM in the model (the sum of the weights of the separate GRMS is constrained to equal

one). The weights that produce the highest AUC are reported.

The genetic-only model that produced the highest AUC for risk was then used to predict

overall cancer risk by incorporating non-genetic known risk factors. Non-genetic risk fac-

tors were available for 1903 cases and 855 controls, and included: age (although the cases

and controls in this study were age-matched); socioeconomic status as captured by educa-

tion (high school or less; some college; college degree or more) and marital status (married;

single; previously married; other); smoking history (never, past, current); hormonal con-

traceptive use (ever, never); gravid (yes, no); number of pregnancies; age at menarche;

and menopause (yes, no). Separate analyses (see Chapter 2) indicated that two principal

components were also predictive of breast cancer risk, and these were also included.

In the mortality analysis, the model that produced the highest AUC for mortality would

be used to predict overall cancer mortality by incorporating known clinical prognostic fac-

tors that were available for these participants: ER status, PR status, grade, and stage.

Uneven LD structure near causal SNVs can cause bias in heritability estimates from

disproportionate tagging of the same SNV.190 One method to avoid this bias is to construct

GRMs out of pairwise independent SNVs (e.g.: 500 kilobase sliding window, moved for-

ward 5kb at a time, remove variants with r2>0.8), or create multiple GRMs, stratified by

local LD.190 However, in the context of this analysis, either discarding variants or strati-

fying based on LD would obscure some of the relationships that were of interest. In order

to see if these results were sensitive to this possible bias, the prediction model that used

all annotated SNVs (Model 1) was repeated using GRMs that were stratified by local LD

structure, as described in Yang,190 and the results did not substantively change. This is
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consistent with other results that show that the bias induced by uneven LD (while varying

trait to trait) is typically low compared to the variance of the heritability estimation.221,235

4.2.4 Comparison with other methods

Heritability estimates and polygenic risk scores are two additional methods to describe the

predictive power of genetics that are complementary to Kriging. To put the Kriging results

in context with the results that are produced by these other methods, two additional analyses

were completed for both phenotypes. The first complementary method, heritability, was

computed using GCTA, using the GRM used in the Models 1 to estimate the heritability of

risk (using a background prevalence of 8%) and ten year mortality (using our study-specific

prevalence of 20%).

The second complementary method, polygenic risk scores, can be implemented ei-

ther by cross-validating using a single data set,217,236 or by using reported odds ratios of

already-identified variants.237 Due to the modest sample size of the participants in this

study, the second method was chosen in order to reduce the variability of the estimated

prediction. To create the polygenic risk score, the 128 unique SNVs that were listed in

the NHGRI-EBI catalog as being associated with breast cancer phenotypes were further

curated to keep only those that reported an odds ratio and were polymorphic in the par-

ticipants (81 variants used in polygenic risk score). If variants were reported by multiple

studies, the average of the reported odds ratios was used. In the analysis set, logs of the

previously-reported odds ratio were multiplied by the number of risk alleles a person had at

each locus, and summed across all 81 loci. This was transformed back to a predicted odds

ratio for each person, and then compared to the actual status of the participant using AUC.
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Table 4.5: Predictive Power and Optimal Weighting for Six Genetic-Only Predication Mod-
els of Breast Cancer Risk

Model Optimal AUC (95% CI) Optimal Weights

Model 1 0.570 (0.560-0.578)

Model 2 0.573 (0.564-0.583) common = 1.000
rare = 0.000

Model 3 0.578 (0.569-0.589) protein damaging = 0.333
other gene region = 0.333

intergenic = 0.334

Model 4 0.580 (0.570-0.590) rare protein damaging = 0.250
rare other gene region = 0.000

rare intergenic = 0.000
common protein damaging = 0.150
common other gene region = 0.300

common intergenic = 0.300

Model 5 0.609 (0.600-0.618) previously discovered = 0.300
not yet discovered = 0.700

Model 6 0.618 (0.610-0.629) previously discovered = 0.300
not yet discovered rare protein damaging = 0.175
not yet discovered rare other gene region = 0.000

not yet discovered rare intergenic = 0.000
not yet discovered common protein damaging = 0.105
not yet discovered common other gene region = 0.210

not yet discovered common intergenic = 0.210

4.3 Results

4.3.1 Risk

Table 4.5 summarizes the predictive power of each of the six genetic models and the

weights that were used to achieve the optimal prediction. Model 1 (AUC: 0.570, 95%

CI: 0.560-0.578), which considers all variants together and assumes that each variant fol-

lows the same normal risk distribution, is not as powerful of a predictive model as the

models that allow different classes of variants to have different associations with risk. Pre-

diction is improved by separating the genetic variants into both frequency and functional

classes (Model 4 AUC: 0.580, 95% CI 0.570-0.590). Additional improvement is achieved
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by allowing a separate GRM that contains the SNVs that have previously been associated

with disease, and those in high LD with them (Model 5 AUC: 0.609, 95% CI 0.600-0.618).

The optimal model is Model 6 (AUC: 0.618, 95% CI 0.610-0.629), which combines the

rationale of Models 4 and 5.

A grid search of the weights for Model 2 finds that any weight given to the rare GRM

produces a significantly lower AUC, and a grid search for Model 3 finds that giving approx-

imately one third weights to each functional class is optimal. Differing from this 1
3/

1
3/

1
3

split by more than 5% produces significantly lower AUCs.

In contrast, the analyses of Model 4, Model 5, and Model 6 produced optimal weights

were not unique (other weights could have been used to produce substantively similar pre-

diction metrics). In the analyses, Model 5 is optimized by a 30% weight on the GRM

constructed of previously identified risk loci, but AUC for weights ranging from 5% to

80% is also possibly optimal. Similarly, analyses Model 4 and Model 6, the grid search

revealed that as long as the weights on the GRMs made from rare intergenic and rare non-

coding gene region variants were kept at zero, many other combinations of weights on the

remaining four GRMs also produce an AUC with 95% confidence intervals that included

the optimal AUC.

With those caveats, the optimal weights do suggest the relative importance of each

of the variants that make up the GRM in predicting breast cancer risk. From Model 2,

rare variants collectively have very little power to predict breast cancer risk, and when

combined with Model 4, this can be refined to suggest that rare variants that do not cause

changes in amino acid have very little predictive power. This suggests that rare amino acid-

damaging variants have a different relationship with risk than other rare variants. Model

3 and Model 4 give strong evidence that the variants that are responsible for breast cancer

risk are not located exclusively near gene regions. Model 5 and Model 6 suggest that there
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Table 4.6: Characteristics of Participants in Risk Analysis

All Cases Controls

N with Genetic Data 2869 1998 871

n with Genetic and Non-Genetic Data 2758 1903 855
Age mean (sd) 41.3 (5.71) 41.4 (5.66) 41.2 (5.83)
Education High School or Less (%) 710 (25.7) 542 (28.5) 168 (19.6)

Some College (%) 1231 (44.6) 784 (41.2) 447 (52.3)
Bachelors or More (%) 817 (29.6) 577 (30.3) 240 (28.1)

Marital Status Married (%) 2146 (77.8) 1499 (78.8) 647 (75.7)
Single (%) 241 (8.74) 155 (8.15) 86 (10.1)
Previously Married (%) 347 (12.6) 239 (12.6) 108 (12.6)
Other (%) 24 (0.87) 10 (0.525) 14 (1.64)

Smoking History Never (%) 1296 (47) 902 (47.4) 394 (46.1)
Past (%) 772 (28) 530 (27.9) 242 (28.3)
Current (%) 690 (25) 471 (24.8) 219 (25.6)

Ever HC n (%) 2379 (86.3) 1665 (87.5) 714 (83.5)
Ever Pregnant n (%) 2299 (83.4) 1590 (83.6) 709 (82.9)
Number of Pregnancies mean (sd) 2.14 (1.45) 2.16 (1.46) 2.09 (1.44)
Age at Menarche mean (sd) 12.8 (1.5) 12.7 (1.47) 12.9 (1.56)
Post-Menopause n (%) 607 (22) 494 (26) 113 (13.2)

HC: Hormonal Contraceptives
sd: standard deviation

Table 4.7: Predictive Power of Models of Breast Cancer Risk

Model Optimal AUC (95% CI)

Non-Genetic Risk Factors Alone 0.601 (0.579-0.623)
Genetics Alone 0.630 (0.622-0.637)
Combined 0.655 (0.649-0.660)

are still undiscovered variants that are responsible for breast cancer risk, and that these

undiscovered variants are also found in all three functional categories.

The last analysis of breast cancer risk included covariates and combined their effect

with the effect of genetic variation, using the weights found in Model 6. This analysis

included the participants for whom non-genetic risk factors were also available (95% of

participants; characteristics summarized in Table 4.6). The results of the genetic-only, non-

genetic, and combined prediction models for these 2758 participants are summarized in

Table 4.7 and Figure 4.2. Using a linear model, the non-genetic risk factors alone can
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Figure 4.2. Optimal Predication Models of Breast Cancer Risk

predict breast cancer risk in this population with an AUC of 0.601 (95% CI from 2000

bootstrap replicates: 0.579-0.623). The genetic only analysis in this subset of the popu-

lation has superior predictive power than the non-genetic only analysis in this subset, and

produces a prediction AUC of 0.630 (95% CI: 0.623-0.637). The prediction model that

combined the optimal whole genome genetic information with the non-genetic risk factors

was superior to both, with an AUC of 0.655 (95% CI: 0.649-0.660).

Figure 4.3 displays the distributions of the predicted risk of breast cancer in cases and

controls from the combined model. This demonstrates that while the means of the two

distributions are significantly different (0.627 for the controls and 0.717 for the cases; 95%

CI for the difference in the means: 0.102-0.077), many women are still misclassified by

this prediction model.

4.3.2 Prognosis

The risk of breast cancer mortality in cases was next predicted by the Kriging method in

the 1903 cases of the primary analysis set for which mortality information was available.
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Figure 4.3. Predicted Risk of Breast Cancer for Cases and Controls

Analyses indicate that germline genetic variation does not predict breast cancer mortality

in this population. A preliminary analysis estimated the AUC of predictions that were

computed using each of the twenty GRMs alone (without combining them with the non-

parametric weights). The results of these predictions are summarized in Table 4.8. No

GRM is able to predict breast cancer mortality with an AUC that was significantly different

than 0.5. A grid search of reasonable weights for each of the six models (not shown) also

indicates that the genetic information is unable to predict 10 year mortality from breast

cancer.

As a comparison, the known non-genetic clinical prognostic risk factors of ER status,

PR status, grade, and stage are available for 894 cases (Table 4.8), and predict breast cancer

mortality at 10 years with an AUC of 0.691 (95% CI from 2000 bootstrap replications of

0.667-0.750).
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Table 4.8: Predictive Power for Six Genetic-Only Predication Models of Breast Cancer
Mortality

Model Variants in GRM AUC (95% CI)

Model 1 All Variants 0.493 (0.479-0.510)
Model 2 Common 0.499 (0.484-0.514)

Rare 0.484 (0.469-0.500)
Model 3 Protein Damaging 0.487 (0.473-0.502)

Other Gene Region 0.484 (0.471-0.499)
Intergenic 0.504 (0.491-0.519)

Model 4 Rare Protein Damaging 0.489 (0.475-0.503)
Rare Other Gene Region 0.485 (0.473-0.500)
Rare Intergenic 0.497 (0.481-0.514)
Common Protein Damaging 0.500 (0.488-0.513)
Common Other Gene Region 0.490 (0.473-0.504)
Common Intergenic 0.505 (0.490-0.519)

Model 5 Previously Discovered 0.505 (0.479-0.541)
Not Yet Discovered 0.494 (0.479-0.507)

Model 6 Not Yet Discovered Rare Protein Damaging 0.489 (0.477-0.506)
Not Yet Discovered Rare Other Gene Region 0.485 (0.469-0.503)
Not Yet Discovered Rare Intergenic 0.497 (0.480-0.508)
Not Yet Discovered Common Protein Damaging 0.499 (0.484-0.518)
Not Yet Discovered Common Other Gene Region 0.489 (0.473-0.503)
Not Yet Discovered Common Intergenic 0.507 (0.494-0.520)

Table 4.9: Characteristics of Participants in Mortality Analysis

All Alive Died

N with Genetic Data 1903 1503 400

N with Genetic and Clinical Data 894 705 189
ER Positive n (%) 518 (57.9) 411 (58.3) 107 (56.6)
PR Positive n (%) 512 (57.3) 409 (58) 103 (54.5)
Grade Well Differentiated 108 (12.1) 100 (14.2) 8 (4.23)

Intermediate Differentiation 342 (38.3) 276 (39.1) 66 (34.9)
Poor Differentiation 398 (44.5) 290 (41.1) 108 (57.1)
Undifferentiated 46 (5.15) 39 (5.53) 7 (3.7)

Stage 1 341 (38.1) 310 (44) 31 (16.4)
2 343 (38.4) 261 (37) 82 (43.4)
3 157 (17.6) 109 (15.5) 48 (25.4)
4 53 (5.93) 25 (3.55) 28 (14.8)
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4.3.3 Comparison with other methods

Heritability estimates for risk and ten-year mortality were carried out using the variants

from each of the trait’s Model 1. Heritability estimates using all annotated variants for

risk and mortality are 0.451 (standard error: 0.091) and 0.000002 (standard error: 0.2)

respectively.

The polygenic risk score using the associations reported by the 81 SNVs previously re-

ported as associated with breast cancer phenotypes. These analyses produce AUCs of 0.504

for risk (95% CI from 2000 bootstrap replications: 0.482-0.527) and 0.484 for mortality

(95% CI: 0.453-0.516).

4.4 Discussion

This analysis demonstrates the usefulness of the Kriging method to use genome-wide

germline genetic variation to predict early onset breast cancer risk. The Kriging model

that combines the predictive power of limited non-genetic information with whole genome

prediction predicts breast cancer risk with an AUC of 0.655 and is a significant improve-

ment over the predictions from a polygenic risk score model. This is consistent with other

studies that have found limited predictive power from the combination of variants that meet

genome-wide p-value thresholds.42,53,236 The heritability estimate, which is derived using

similar techniques as Kriging, is also the first LMM-based heritability estimate for either

breast cancer risk or prognosis, and the results suggest that risk is associated with germline

genetic variation but prognosis is not.

This sample is composed of women who were younger than 51 at diagnosis. Since

whole genome prediction has not yet been done in any other breast cancer studies, future

research in older populations will be needed to investigate whether the Kriging method
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produces similar risk estimates and insight in women who are diagnosed later, or whether

younger women possess distinct genetic variants that drive breast cancer risk.

This analysis demonstrates that prediction is improved when the genome is partitioned

into different classes of variation based on frequency and predicted functionality. This

indicates that the underlying architecture may differ for common and rare variants (with

common variants contributing more to risk), but may be similar for variants of different

predicted functionality.

Compellingly, this analysis suggests breast cancer risk is associated with that variants

tagged by this study but have not yet been identified. These variants span all functional

categories and are both common and rare (although the rare causal variants appear to be

concentrated in variants that cause changes to amino acid translation). Given the results of

Chapter 2 (which found few exons where rare risk variants or risk variants of low effect

clustered), and given the extensive previous research to look for common variation that is

associated with breast cancer risk (which suggests that it is unlikely that common variants

exist that are associated with risk with an OR greater than 260), subsequent studies will

likely require very large sample sizes to identify individual variants that are associated

with risk. These conclusions are consistent with recent analyses that suggest that there are

few high-penetrance causal genes left to be discovered, and if they do exist, they likely

exist in only a small number of families, and will not contribute much to population-level

risk.33

Beyond suggesting that a large sample size would be needed to identify undiscovered

variants that are associated with breast cancer risk, this analysis also can inform the method-

ologies that will be most efficient for subsequent studies of breast cancer risk. With the

exception of rare variants that cause changes in amino acid transcription, rare variants col-

lectively show little evidence of being associated with risk of breast cancer. It is possi-

ble that there is still predictive power in rare variants that are not well measured by the
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genome-wide array or the exome array. However, the GCTA estimate of heritability using

all annotated variants is statistically significant, and at 0.451, approaches the total heri-

tability estimated from family studies.35,71,72 Consequently, if unmeasured rare variation

contributes to risk, it is likely to have a modest effect on overall prediction beyond what is

tagged by the variants measured in this study. For this reason, while some variation that

is associated with risk is likely to be uncovered by next generation sequencing (which can

uncover novel rare variants), the overall impact on prediction of the variants discovered by

those methods is likely to be small in breast cancer, and similar predictive power could have

been achieved by array-based assays. However, since this analysis suggests that intergenic

and non-coding variants contribute to risk, subsequent investigations using just exome ar-

rays are unlikely to provide enough information to classify the genetic contribution of a

women’s risk of breast cancer.

In contrast to the risk analysis, this investigation does not find any compelling evidence

that breast cancer prognosis is strongly driven by germline genetics. Two complementary

methods, Kriging and polygenic risk scores, both produce null results, and the heritability

estimate is consistent with mortality not being a heritable trait. This may be a result of a

known downward bias of prediction that is calculated through GREML methods when vari-

ants that truly have multiple distributions that characterize their association with disease are

included in the same GRM.225 If that is the case in this analysis, and none of the constructed

GRMs reflect the true classes of association between mortality and germline genetics, then

the true prediction signal would be obscured. Sample size may also have been insufficient

(the GCTA authors recommend a sample size of 3000 for heritability analyses,238 and the

estimate of heritability had a large standard error, which may be indicative of an under-

powered analysis). However, the sample size for mortality was not unreasonably small,

and previous applications of Kriging have found predictive power in sample sizes of 99.42

The statistical assumptions of Kriging may also have been violated such as linearity in the
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GRMs, independence of the GRMs, and modeling a hazard as a linear outcome. Mortality

might be better predicted using methods that do not share these assumptions. However,

the linear assumptions of Kriging are fairly robust to deviations from linearity,225 and the

null result presented here is consistent with the mostly null results found by previous single

marker regression analyses154,170–174,239 and polygenic risk score analyses.240

While these analyses do not rule out the possibility that germline genetic variation has

an effect on breast cancer mortality, it does suggest limits on the genetic architecture of that

association. If mortality were driven by variation in a small number (>10) of highly pene-

trant variants, or a limited number (>100) of variants of modest effect, Kriging would also

have limited ability to detect that.42 However, if that were the case, if they are present at a

sufficient frequency to be included in the single marker regression analyses, they had a high

probability of being identified by the analysis in Chapter 3 or previous single studies. The

influence of germline genetics on mortality may also be mediated through genetic interac-

tions, rather than a linear relationship, and in many circumstances this genetic architecture

would not be well captures by either GREML methods or polygenic risk scores. Another

possible explanation for the null results may be a limitation of the variants that were in-

terrogated for this study. Since rare variants or copy number variants are less likely to be

tagged by the variants in this study, it is possible that rare variants may affect mortality in

a way that was not captured by the prediction models.

It is also possible that germline genetic variation is a predictor of mortality, but only

for a subset of the cases, and this analysis was not designed or powered to detect any of

these interactions. For example, germline genetic variation may have a larger influence on

breast cancer mortality in populations that have different background risk factors such as

age (this sample was young), ancestry (this sample was of European ancestry), or coun-

try of origin (this sample was recruited from affluent countries). It is also possible that

genetic variation may be responsible for risk by way of an interaction with treatment, as
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suggested by previous analyses.198 Since treatment decisions were not available for these

participants, we were unable to estimate any treatment-by-genetic interactions. Given the

young age of these women, they may have been treated more aggressively compared to

older women who may have had more comorbidities. It is possible that germline genetics

has less of an impact on survival in the presence of aggressive surgery or treatment, than

otherwise. Other interactions that could not have been detected are gene by gene inter-

actions, particularly with highly penetrant but rare mutations in BRCA2. The women in

this sample are not carriers of known pathogenic mutations in BRCA2. Recent research33

indicates that BRCA2 mutations interact with other lower penetrance germline variation to

produce worse outcomes. If that is the case, a prediction model using Kriging might be

able to capture that association, but without any BRCA2 carriers in the study population,

this could not be tested in this analysis.

This study has some limitations. The variation measured in this analysis is obtained

from two array-based methods. Rare variation, which often does not have the same LD

structure as common variation,99,100 and therefore is tagged poorly by common SNVs, is

mostly ascertained through imputation, and not interrogated comprehensively outside of

gene regions. While this may underestimate the relative importance of rare variants, it

is unlikely to affect overall prediction, since LMM heritability estimates (that are derived

from similar methods to Kriging) indicate that the measured variation already accounts for

most of the variation that is expected to be due to germline genetics. A second concern is

that population stratification can induce upwards bias in prediction models using GREML

methods,220,222 when used to estimate the genetic component alone. This may upwardly

bias the prediction for the genetic-only model (although there are low levels of population

stratification in our sample), but would not upwardly bias the combined prediction.42

A third concern is related to the external validity of the results. As with all prediction

models, these results may not produce prediction models that are accurate for women with
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different characteristics than the study sample. This model would need to be verified in

additional populations before being applied to them.

Tumor subtype is known to be a prognostic factor in breast cancer. While these analyses

investigated mortality in ER+ cases specifically, the number of participants were not pow-

ered detect modest associations between germline genetic variation and morality within

particular tumor subtypes.

In the context of breast cancer risk, the prediction method described here is an improve-

ment on existing models. From an epidemiological perspective, the predictions are useful at

the population level, and the understanding of the relative contributions of different classes

of variants that is advanced by this analysis will help to better design future studies. From

a clinical perspective, the model still has low levels of discrimination, but may be strong

enough to be used in very specific scenarios, such as being used to augment the interpreta-

tion of screening tools such as mammography (which often return uncertain results), or to

help individuals to decide their personal risk/benefit for other medical treatments that may

increase the risk of breast cancer. In the context of breast cancer prognosis, these inves-

tigations support other lines of evidence that suggest that germline genetic variation does

not strongly influence the prognosis of early onset breast cancer. While germline genetic

variation may still influence mortality outcomes for some subsets of breast cancer patients,

particularly for patients treated with specific systemic treatments, these investigations are

unable to find evidence of this.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Results

This thesis contributes to the field of cancer epidemiology through a thorough investigation

into the genetic determinants of early onset breast cancer incidence and mortality. Chap-

ters two and three present analyses that are designed to identify gene regions that harbor

germline genetic variation that is associated with early onset breast cancer. Chapter two

investigates this with respect to risk of developing early onset breast cancer in the gen-

eral population, and chapter three investigates this with respect to the hazard of mortality

for women who were diagnosed early in life. Chapter four presents analyses that predict

a women’s overall risk of both developing and dying from early onset breast cancer by

incorporating whole-genome measures of variation.

The results of this thesis discovered novel risk loci which add meaningfully to the

known genetic determinants of breast cancer, and the prediction model has significantly

more predictive power than a model that uses only non-genetic risk factors. These insights

represent a synthesis of multiple complementary methods, most of which had not been

applied to any breast cancer phenotype.

The two complementary goals, identification and prediction, are investigated by analy-

sis of genetic data of participants of existing studies that recruited women who developed

breast cancer at a relatively young age. This population is not well-studied, and some

non-genetic risk factors have opposite effects in early- and late-onset cases. While not

conclusively able to reject this hypothesis, this investigation suggests that the genetic de-

terminants of breast cancer do not systematically differ as a function of age of onset.
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5.1.1 Identification of Genes Associated with Breast Cancer Risk

The analyses in Chapter 2 identify three genes in which variation is associated with risk of

breast cancer: FGFR2 (discovery p = 2.18 ·10−5; replication p < 10−30), NEK10 (discov-

ery p = 1.20 ·10−3; replication p < 10−30), and MKL1 (discovery p = 2.62 ·10−4; repli-

cation p < 10−30). Previous genome-wide association studies (GWASs) had identified loci

at each of these genes as being associated with breast cancer risk, but compellingly, con-

ditional analyses indicate that the associations in the MKL1 and NEK10 genes are driven

by risk loci are distinct from those previously reported. This suggests that there are risk

loci whose combination of rareness or modest effect size cannot be identified by a single

marker regression. The SKAT-O test does not directly calculate the magnitude of each of

these genes’ effect on risk. However, the results of the prediction analysis in Chapter 4

indicate that while their effect is statistically significant, it is likely was small.

Within breast cancer cases, the analysis of Chapter 3 also indicates that women with

variation in SLC4A7, and to a lesser extent, the adjacent gene NEK10, are at a higher

risk of developing progesterone receptor positive breast cancer (SLC4A7 p = 8.8 · 10−4,

and contains a previously identified risk loci; NEK10 p=6.19 · 10−3). This suggests that

future prevention efforts can be targeted to deliver chemoprevention that works through the

progesterone receptor pathway to women who are most likely to benefit from it.

The analyses of Chapter 2 also characterize the sparsity of causal variants in genes that

are identified as associated with risk. There have been few previously published descrip-

tions of this characteristic of the genes that are responsible for breast cancer risk and prog-

nosis, even though the sparsity of causal loci within genes dictates the optimal statistical

method to identify those genes. The ρ mixing parameter indicates that the sequence kernel

association test (SKAT) was a more appropriate test than the burden test for genes in which

even a modest number of variants were measured (more than five variants), although there

129



were some exceptions. This suggests that many variants in those larger genes are not asso-

ciated with risk, and that the directions of effect of the minor alleles that are causal can be

both protective and deleterious. This is consistent with the single marker regression coeffi-

cients from Chapter 2 and previous research,34 which report beta coefficients for the minor

alleles that are both greater than and less than zero. This observation strongly suggests

that in the case of breast cancer phenotypes, burden-style gene-based statistical approaches

are not going to be optimally-powered to identify genes that are associated with risk, par-

ticularly if the variants are interrogated with sequencing techniques (the variants on the

exome array used for this study are enriched for variants that were likely to be causal, and

sequencing methods would likely detect many more not-associated variants, whose noise

could further overwhelm burden-style tests). Since in some genes the burden style test was

more appropriate than the SKAT test, omnibus tests such as the optimal SKAT (SKAT-O)

that can detect genes in both sparsity scenarios will most likely be the optimal choice for

future studies.

5.1.2 Whole Genome Prediction of Breast Cancer Risk

This thesis presents a prediction model of breast cancer risk in Chapter 4 that incorporates

the effect of all measured germline genetic variation. The genetic data alone is able to pre-

dict breast cancer risk with an area under the receiver operating characteristic curve (AUC)

of 0.618 (95% CI 0.610-0.629). When the influence of a limited set of non-genetic predic-

tors is also incorporated, the combined model is able to predict breast cancer risk with an

AUC of 0.655 (95% CI: 0.649-0.660). This combined model is a significant improvement

over models that include only the genetic information or only the non-genetic risk factors.

The analyses of Chapter 4 also begin to characterize variants that are responsible for

breast cancer risk. The prediction method that was implemented allows for groupings
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of variants, and for the variants within the separate groups to each be characterized by

separate distributions that describe their contribution to breast cancer risk. The analyses in

Chapter 4 grouped variants by predicted functionality and rareness, and the weights on each

of these groups represent the relative strength of these associations between the variants

within that group with risk. These weights suggest that the variants that are responsible for

breast cancer risk are annotated to all classes of predicted functionality. Variants that cause

changes in amino acid translation, variants that are located within or near genes but do not

cause changes in amino acid translation, and intergenic variants as a class have some power

to predict breast cancer risk. The weights also are able to characterize the causal variants in

terms of their rareness. The weights suggest that rare variants are largely not able to predict

breast cancer risk, with the exception of rare variants that alter amino acid translation.

The analyses in Chapter 4 also suggest that there are still undiscovered variants that

are responsible for breast cancer risk, and that these undiscovered variants are also found

in all categories of annotated functionality. These findings have direct consequences for

future studies of breast cancer risk that may attempt to identify novel risk loci. The results

suggest that studies that exclusively measure variation with technologies such as whole-

exome sequencing or exome arrays, which do not assay variants outside of the exons,

will not capture the effect of all of the risk variants that are driving the whole genome

predictive power. However, additional rare variants that can be measured are expected

to contribute only small amounts to disease risk (see discussion in section 5.2). For this

reason, whole-genome sequencing may not be an efficient use of resources compared to

array-based methods. This implies that despite the gaps in their ability to interrogate rare

variants, array based methods and imputation may continue to be a cost-effective way to

identify novel risk loci.

These results together suggest that undiscovered variation that is associated with breast

cancer risk within gene regions is likely to be characterized by one of three descriptions:
131



(1) of large effect size, but so rare as to not have much effect on population-level risk

of disease; (2) common in the population, but increases the risk of breast cancer by a

very small amount; (3) or both rare and of weak effect size. Undiscovered variation that

lies outside of gene regions may be slightly more common or of larger effect than the

undiscovered variation within gene regions, but is still and rare enough or of small enough

effect size to not have been identified by previous single marker regression analyses, or

influence the overall prediction model. This suggests that there is not much additional

predictive power to be gained from their identification, and if they are rare with large effects

(as is to be expected if they are under purifying selection40), then family-based studies may

be more appropriate than population-based studies to identify them.

5.1.3 Genetic Determinants of Breast Cancer Prognosis

In contrast to the analyses of the genetic determinants of breast cancer development, the

investigations of Chapters 3 and 4 do not find any compelling evidence that breast cancer

mortality is strongly driven by germline genetics that could be measured by our study. Five

complementary methods (single marker regression analyses, SKAT-O, Kriging, polygenic

risk scores, and the heritability estimation) all find null results.

Mortality analysis in estrogen receptor positive patients did not find a significant as-

sociation between any of the CYP genes and mortality. While recognizing that this null

result was found in a modest sample size, interrogated a limited number of polymor-

phisms, and did not incorporate actual treatment information, this is consistent with other

recent research that questions whether polymorphisms in the CYP genes translate into

poorer outcomes for women whose metabolism of tamoxifen is affected by CYP poly-

morphisms.196,197
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In terms of intermediate markers of prognosis, the analyses of Chapter 3 do find sug-

gestive evidence that progesterone receptor status in cases is associated with variants in

the solute carrier family 4 member 7 gene (SLC4A7). The SLC4A7 protein has a known

role in neural sensory transmission, but it has been implicated in single marker regression

analyses as being associated with both breast cancer and cardiovascular complex traits.34

The nature of its role in cancer phenotypes has not yet been established.

5.1.4 Novel use of Methods

This thesis applies five complementary methods to investigate the relationship between

germline genetic variation and the risk and prognosis of breast cancer: single marker re-

gression associations of common variation in gene regions; SKAT-O associations of all

variation in gene regions; whole-genome Kriging prediction; polygenic risk score predic-

tion using previously associated loci; and whole-genome heritability estimation. For three

of these methods (SKAT-O, Kriging, and heritability estimation), these analyses represent

the first applications of those methods in the context of breast cancer.

The previous investigations into breast cancer risk that used gene-based tests all used

burden-style analyses. Our analyses of the ρ mixing parameter of the risk analyses suggest

that the assumptions of the burden test are not always reflective of the genetic architecture

of breast cancer risk, and therefore the results of these studies may not be optimal.

In addition to the statistical methods, this thesis represent only the third study to directly

interrogate rare variants and their association with either breast cancer risk or prognosis

(this study and two previous ones measured rare variation using an exome array; whole-

genome and whole-exome sequencing projects have not yet been completed). The success

of the SKAT-O risk analyses in identifying genes that are suggestively associated with

breast cancer risk suggests that better powered studies may find more such genes.
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In the context of any application of gene-based tests, this thesis also represents the first

ever use of the Combined Annotation Dependent Depletion (CADD) scores as weights

for any phenotype. The investigations suggest that the CADD weights do improve power,

and do not increase the rate of type I error. The CADD weights appear to have better

performance than the often-used beta-transformation-of-minor-allele-frequency weights,

and their use allows for all measured variation to be included in the analyses.

These analyses demonstrate the usefulness of the Kriging method to predict early onset

breast cancer risk, and Kriging methods are a significant improvement in predictive power

over the predictions from a polygenic risk score model. This is consistent with other stud-

ies that have found limited predictive power from the combination of variants that meet

genome-wide p-value thresholds.42,53,236

5.2 Limitations

The analyses presented in this thesis have some limitations, which can be classified as being

related to the study participants, the variants measured, and the analytical techniques.

5.2.1 Participants

The composition of the participants of the primary data used for this study, in particular

their young age of onset, was both a strength and a weakness. Given the complex rela-

tionship between some non-genetic risk factors for breast cancer and age, the focus of the

BCFR studies on women who developed breast cancer before menopause made it possi-

ble to directly investigate hypotheses about the differences and similarities of the genetic

determinants of breast cancer by age. However, after the initial analysis there were no

genes or loci that were so strongly related in the initial sample that they did not need to

be confirmed in a second independent sample. Therefore, although a primary rationale for
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enrolling women with an early onset of breast cancer was to be able to directly interrogate

questions about the interaction between age and germline genetic risk factors, ultimately

the analysis in Chapter 2 was only able to identify genes that were associated with breast

cancer risk in women of all ages of onset.

The conclusions drawn from these analyses may have been more cohesive if the char-

acteristics of the replication data sets better matched the characteristics of the discovery

set. The participants in the replication data sets are of a different age. It is possible that a

larger secondary independent data set of age-matched patients may have been able to better

replicate the primary analysis. As more data become publicly available and the methods

to create gene-based tests from summary statistics improve, there will be a better ability to

match the characteristics of replication samples to those in the primary analysis, and there

will be a greater ability to detect drivers of breast cancer risk and mortality.

The analyses are also limited by sample size. Although the analyses presented in Chap-

ters 3 and 4 represent the largest single-study whole-genome investigation into breast can-

cer mortality, the number of participants is relatively modest, and may not be powered to

detect some true associations. In particular, given the known relationship between tumor

subtype and mortality, a future mortality studies may want to limit themselves to partic-

ipants with homogeneous tumor subtypes in order to not introduce a possible source of

noise into the analysis.

The analyses were also limited by the type of covariates that were collected, and the

limited power to be able to detect interactions between environmental, tumor, and treat-

ment characteristics and germline genetic variation. The BCFR participants were all of the

same ancestry, and all recruited from OECD countries, it is possible that the diagnostic and

treatment trajectories differed between the treatment sites. Treatment information was not

available, and only limited diagnostic information was available, and even if further infor-
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mation was known, the modest sample size of this study would not have been powered to

detect differences in risk and mortality between those unmeasured confounders.

5.2.2 Variants Measured

The variants that were assayed in these studies likely did not tag all variants that are asso-

ciated with breast cancer. In Chapters 2 and 3, the variation in gene regions was assayed

using a genotyping array, which is only able to interrogate ~250,000 variants throughout

gene regions, and can only detect the effect of causal variants that are in high linkage

disequilibrium (LD) with a genotyped variant. Those variants were selected by Illumina

because previous sequencing projects identified variation at those positions. It is almost

certain that most individuals in this study are carriers of rare mutations that were not able

to be interrogated. For this reason, sequencing of the whole gene region, which, unlike

array based methods, does not require prior knowledge of variation at a locus to identify it,

would have provided a more comprehensive analysis.

Similarly, in the whole genome prediction models of Chapter 4, whole-genome se-

quencing would have been preferable to the array-based ascertainment (augmented by im-

putation). Using the array based technologies, outside of gene regions, rare variation was

almost exclusively inferred through imputation. Since rare variation often does not have

the same LD structure as common variation,99,100 and therefore often is tagged poorly

by common single nucleotide variants (SNVs), it is almost certain that many rare variants

existed in this sample that were not able to be included in the prediction model.

However, while this may result in an underestimate of the relative importance of rare

variants in the Kriging model’s optimal weights, it is unlikely to affect overall prediction,

since the heritability estimate using all measured variants is already quite high, and of sim-

ilar magnitude to estimates from family studies. Similarly, while the inclusion of more rare
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variants may have identified additional genes in which variation is significantly associated

with risk, the magnitude of the additional risk conferred by those genes is likely to be quite

modest, or only affect a small number of women.

In addition to being limited by the technologies that were used to measure rare variation,

the gene-based analyses of Chapter 2 are also limited due to the unbalanced ascertainment

of rare variation that is a result of the uneven number of cases and controls. In an attempt

to be well powered for a prognosis analysis, the risk analyses included 3479 cases and

973 controls. Since many of the rare variants were only observed in one participant, this

imbalance in cases and controls resulted in a sample where rare variants were more likely

to be seen in the cases, resulting in more power to detect rare deleterious rare variants over

rare protective ones. This exacerbates the known bias in which single variant regressions

of rare variants are known to be biased towards odds ratios larger than one.129

The conclusions drawn from these analyses may have been stronger if the variants

measured by the replication data sets better matched the variants measured by the discovery

set. In Chapters 2 and 3, the participants in the replication data sets have their genetic

variation interrogated with genome-wide arrays and imputation rather than an exome array.

As a result, the replication genetic data interrogated fewer rare variants in exons, but also

was able to include many more common variants that were located elsewhere within gene

regions (e.g.: introns). This came about because the exome array used in the discovery

analysis targeted nonsynonymous SNVs, and other variants in gene regions were omitted

due to the limited space on the array. While the CADD weights limit the effects of this

ascertainment difference by effectively down-weighting the additional variants that were

assayed in the replication sample, the different makeup of the replication genetic data is

not ideal.
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5.2.3 Analysis

During the quality control and analysis of the data, several decisions were made that in-

cluded implicit assumptions that also present limitations for the interpretation of these re-

sults.

The quality control of the exome array excluded participants based on genotyping rate,

gender mismatch, high heterozygosity, duplicated genotypes, principal component outliers,

and participants whose genotypes were highly correlated. Ultimately, almost 10% of the

participants who were genotyped were excluded, mostly due to high heterozygosity (52

excluded) or high estimated relatedness (126 excluded). While some of relatedness may

be explained by family-based ascertainment of the breast cancer cases, both high heterozy-

gosity and highly correlated genotypes may also be a marker for contamination between

samples. There was also some evidence that on some plates variants were unreliably as-

signed, which also decreases confidence in the exome chip assay.

The variants that were used in the discovery sample to suggest that genes were sugges-

tively associated with early onset breast cancer differed from the variants that were used in

the GAME-ON/DRIVE analysis to attempt to replicate those signals. This decision com-

plicates the interpretation of the suggestively associated genes of Chapter 2 and the largely

null results of Chapter 3. In the suggestively associated genes identified by Chapter 2 as as-

sociated with breast cancer risk, an interpretation is that disruption within the gene regions

of FGFR2, MKL1, and NEK10 is associated with risk. The discovery data set was able to

identify the effect of this disruption that was caused or tagged by largely rare, nonsynony-

mous variants, and the replication data set was able to identify the effect of this disruption

that was caused or tagged by common variants. If this interpretation is correct, than only

genes in which both common and rare variation contributes to breast cancer risk could have

been identified.
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Additionally, Chapter 2, the method used to create a gene-based test differed between

the discovery and replication samples. Being able to directly use SKAT-O in both analyses

would have been preferable.

5.3 Next Steps

The conclusions of this thesis suggest several next steps. Given the modest sample size

and the suggestive nature of the results in Chapter 2, the identified genes would have more

robust evidence of association if their association is replicated in an independent set of

cases and controls that are well matched in age and genetic ascertainment (or studies that

interrogated all variants, such as sequencing studies). This would more comprehensively

describe the role of rare variants in breast cancer risk.

It would also be fruitful to further investigate the genes that are identified in Chapter

2. While a search of gene expression databases indicate that they are expressed in breast

tissue, the magnitude of the effect of polymorphisms on this gene on both the gene product

and downstream phenotypes would further elucidate their role in breast cancer risk, and

help to better describe the mechanism by which they increase that risk. Functional studies

in model systems would help to further study the way by which these genes influence the

progression of breast cancer.

As our understanding of the interactions within the genome improves, future analyses

with this same study population may produce additional results. At the present time, there

is only a rudimentary ability to annotate non-exonic variants to genes, but this is a subject

of intense interest. As the understanding of biological pathways improves, variants will be

able to be annotated to a particular gene in ways that are more sophisticated than ANNO-

VAR’s annotation, which is used in these analyses. For example, regulatory variants that

are not spatially near the genes that they regulate could be included in the analyses, and, if
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these variants are responsible for breast cancer risk, their inclusion will improve the ability

of gene-based tests to identify genes responsible for breast cancer.

The participants of these studies are all of a homogeneous age (younger than 51 at

diagnosis), ancestral background (European), and gender (women). While ancestrally ho-

mogeneous samples have more power to detect the effect of rare variants (which are often

population-specific), breast cancer affects people of all ages, ancestral backgrounds, and

genders. For this reason, additional SKAT-O analyses in populations with different char-

acteristics will help to determine whether the genes that harbor variation that is associated

with breast cancer risk differ in their effect across populations. Genome-wide germline

genetic variation is publically available for women of Latina,241 African American,242

Japanese,243 and Chinese243 ancestry for case control studies of women of all ages, and

possible future collaborations could allow for the sharing of mortality information in the

cases. The same analyses that were carried out in this thesis, when applied to different

populations, may uncover additional insight into the genetic basis of differences in risk and

mortality that are associated with these non-genetic traits.

Mortality may be affected by germline genetics in the context of particular treatment

regimens. Therefore, it would be fruitful to repeat the analyses of Chapters 3 and 4 with

a sample of known, homogeneous treatment. In particular, given the still-unsettled rela-

tionship between variation in the CYP gene and survival, it would be of clinical interest

to repeat the mortality analyses of Chapter 3 on patients with estrogen receptor positive

tumors who were treated with tamoxifen.

The success of the risk prediction model in Chapter 4 also suggests that incorporating

all known non-genetic risk factors (rather than the limited set of non-genetic risk factors

available for our study population) would produce a prediction model with even more pre-

dictive power, and may even produce a model whose predictive power is sufficient to be

used in a clinical setting.
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The largely null association between mortality and germline genetics is complicated

by the results of family based studies,35 which suggest that mortality does have heritable

component, as first degree relatives have more similar mortality outcomes than would be

expected by chance. These family studies may be biased by shared environment. However,

the results of this thesis do not preclude a possible role for germline genetic variation in

the survival of early onset breast cancer, but they do suggest some limits on the strengths

of that association and the characteristics of the variants that drive it. To more compre-

hensively approach this question, future work to identify variants associated with morality

would be able to investigate the genetic determinants of prognosis if the study (1) has many

participants (both to be able to ascertain the existence of rare variants and also have sta-

tistical power to detect their association with disease), (2) incorporate more variation than

is assayed on the exome array, (3) consider methods that allow for the detection of larger-

than-gene pathways that have modest effect size on risk, and (4) enrolls participants with

homogeneous and known treatment regimens.

5.4 Implications

These analyses identified three genes that are suggestively associated with breast cancer

risk, and one that is suggestively associated with progesterone receptor status in cases.

These all represent possible pharmacological targets for cancer chemoprevention. These

analyses also developed a prediction model for breast cancer risk that improves upon exist-

ing methods of prediction, and is strong enough to be useful at the population level. From

a clinical perspective, the model still has low levels of discrimination, but may be strong

enough to be used in very specific scenarios, such as interpretation of ambiguous screen-

ing results, or to help individuals to understand their personal risk when considering other

medical treatments that may increase the risk of breast cancer such as hormone replacement
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therapy or hormone-assisted reproductive therapy. In the context of breast cancer progno-

sis, these investigations support other lines of evidence that suggest that for many women

who are diagnosed with breast cancer, germline genetic variation does not strongly influ-

ence the risk of mortality. While germline genetic variation may still influence mortality

outcomes for some subsets of breast cancer patients (and patients treated with specific sys-

temic treatments are of particular interest in terms of patients who may have their mortality

influenced by germline genetics), these investigations are unable to find evidence of this.
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