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ABSTRACT

In the United States, breast cancer is the most frequently diagnosed non-skin cancer in
women, and one in five women who are diagnosed develop breast cancer before age 50.
Germline genetic variation is a known risk factor for breast cancer risk, and a suspected
risk factor for breast cancer mortality, but previous investigations have not comprehensively
identified all of the genetic variation that is expected to be associated with breast cancer.
One possible explanation for this gap in knowledge is the only relatively recent ability to
investigate the effect of rare germline genetic variation, which up until recently has been
too expensive and technically challenging to measure in the a large number of participants
that are necessary for genetic epidemiologic studies, and the methodological challenges of
identifying rare variants.

This thesis uses three complementary methods (single marker regression analysis, SKAT-
O gene-based tests, and candidate gene) to identify individual risk loci and three additional
complementary methods (Kriging whole genome prediction, polygenic risk scores, and
whole genome heritability estimates) to predict breast cancer risk and breast cancer mor-
tality using a population of women who were diagnosed with breast cancer before the age
of 50. Suggestively associated risk loci were examined for evidence of replication using an
independent sample.

For breast cancer risk, the identification analyses find three genes in which variation is
associated with risk of breast cancer: FGFR2 (discovery p = 2.18 - 103; replication p <
10_30), NEKI10 (discovery p =1.20- 1073, replication p < 10_30), and MKL1 (discovery
p=2.62- 107%; replication p < 10739). Previous studies had identified loci near each of
these genes as being associated with breast cancer risk, but conditional analyses indicate
that the associations in the MKL1 and NEK10 genes are driven by risk loci distinct from

those previously reported, and are driven by risk loci that would not have been identified
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using a single variant regression. The genetic data alone is able to predict breast cancer risk
with an AUC of 0.618 (95% CI 0.610-0.629). When the influence of a limited set of non-
genetic predictors is also incorporated, the combined model is able to predict breast cancer
risk with an AUC of 0.655 (95% CI: 0.649-0.660). This combined model is a significant
improvement over models that include only the genetic information or only the non-genetic
risk factors.

In contrast to the analyses of the genetic determinants of breast cancer development,
this analysis does not find any compelling evidence that breast cancer mortality is strongly
driven by germline genetics that could be measured by our study.

The identified genes all represent possible pharmacological targets for cancer chemo-
prevention. The prediction model for breast cancer risk improves upon existing methods
of prediction, and is strong enough to be useful at the population level. From a clinical
perspective, the model still has low levels of discrimination, but may be strong enough to
be used in very specific scenarios, such as interpretation of ambiguous screening results, or
to help individuals to understand their personal risk when considering other medical treat-
ments that may increase the risk of breast cancer such as hormone replacement therapy
or hormone-assisted reproductive therapy. In the context of breast cancer prognosis, these
investigations support other lines of evidence that suggest that for many women who are
diagnosed with breast cancer, germline genetic variation does not strongly influence the

risk of mortality.

Xiii



CHAPTER 1
INTRODUCTION

1.1 Background

Breast cancer is the most common cancer in women, and one in eight American women will
develop breast cancer over her lifetime.! Almost twenty five percent of women diagnosed
with breast cancer eventually die of the disease,? and fear of recurrence and mortality low-
ers the quality of life for women who are diagnosed.>© Breast cancer is a heterogeneous
disease that is caused by and progresses due to a complex array of risk factors. While any
individual woman’s cancer develops due to the unique set of exposures that she accrues
over a lifetime, these individual exposures give rise to patterns of risk. This thesis investi-
gates in-depth the risk factor of germline genetic variation, with a focus on germline genetic
variants that are rare and located within gene regions. The patterns of this risk factor have
been in not comprehensively described in breast cancer risk and prognosis, and a better
characterization of this risk factor will improve knowledge of biological mechanisms of
breast cancer, identify possible targets for therapeutic intervention, and translate into more
precise estimators of risk. Each analytic component of this thesis is motivated by one of
two complementary goals: to identify genetic risk factors for early onset breast cancer, and
to predict the overall risk women have from the disease. The results of this thesis develop
a cohesive narrative that identifies loci that are associated with breast cancer risk and prog-
nosis, describes the underlying characteristics of the genetic determinants of breast cancer
development and progression, and comprehensively quantifies the genetic contribution to a
given woman'’s risk of breast cancer.

Results from previous studies and biological plausibility indicate that germline genetic

variation can influence the risk breast cancer development. The exact mechanism of how
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genetics influences risk is not fully understood, but genetic variation may predispose a
person to genomic instability, provide a fertile cellular environment for a tumor, or impede
immune response to proto-oncogenic cells.”

The association between germline genetic variation and prognosis is less well estab-
lished than the association with risk, but previous research has implicated particular risk
variants, and the relationship is biologically plausible. Germline genetic variation may af-
fect a patient’s ability to metabolize a drug, which in turn can affect survival by altering
the amount of available active metabolites of pharmaceutical treatments, or increasing the
probability of treatment-limiting adverse events.3~12 Similarly, germline genetics may be
responsible for a cellular environment that favors metastases, or otherwise aggressive tu-
mors, and may alter cellular functions that are crucial to tumor proliferation such as angio-
genesis, growth signaling, telomere length, inflammation, immune response, DNA repair,
apoptosis, and cell cycle control.13-22

Age has a complex relationship with the risk and prognosis of breast cancer. While the
causal nature of the relationship is not completely understood, women who are diagnosed
before the age of 50 (one in five of those diagnosedz) have worse outcomes than those who
are diagnosed later in life.23-28 Some non- genetic risk factors, such as reproductive history
and obesity, change the direction of their effect in women who are diagnosed early when
compared to their effect in women who are diagnosed later.2? While several germline ge-
netic variants have been implicated in the risk of the late onset disease, their effect on the
development of the early onset disease has not been well characterized. Better understand-
ing of this relationship between age breast cancer etiology can help to both understand the
underlying biological mechanisms of breast cancer, and also help to develop more precise

risk scores for women.



1.2 Identification of Risk Variants in Breast Cancer

Given the many possible pathways by which germline genetic variation may influence
breast cancer risk and prognosis, analyses that identify individual risk loci may illuminate
the cellular pathways and implicate cellular processes that are involved in oncogenesis or
metastases. This can improve understanding of the underlying biological mechanisms that
are integral to breast cancer development. Beyond this biological insight, genes that are
associated with breast cancer may suggest targets for future pharmaceutical interventions
for chemoprevention or treatment of cancer.

Genetic data possess several distinct characteristics that must be accounted for when
attempting to identify germline genetic variation as a risk factor in any disease, and it is
necessary to use study designs and statistical methods that account for these characteris-
tics. One characteristic of genetic data that distinguishes it from other epidemiologic risk
factors is its high dimensionality. Each study participant has three billion possible vari-
ants that may be associated with disease, in addition to other genetic abnormalities such
as copy number variations and insertions and deletions. While many nucleotides are con-
stant, the number of loci that do vary is still much larger than can be handled by many
statistical methods. Methods have been developed that reduce this high dimensionality that
incorporate prior information to limit the search for associations. Investigations that scan
genome-wide for evidence of risk loci must balance the use of prior information while also
remaining agnostic enough to allow the data to implicate novel loci.

A framework that can be used to approach this balance considers two separate char-
acteristics of genetic variants that truly are risk factors: the relationship between its rarity
in the population and the magnitude of its effect on the trait, and its predicted functional-

ity. These characteristics of the causal variants have suggest the appropriate study design
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and statistical method that is required to identify them, but these characteristics are often

unknown for most diseases, including breast cancer.

1.2.1 Risk as a Function of Variant Rarity and Effect Size

A framework to consider the relationship between the rarity of the variant and the mag-
nitude of its effect on the trait was outlined by Manolio et al.30 and McCarthy et al 3
(Figure 1.1, from Zemunik and Boraska’2). For polygenic diseases that are affected by
multiple risk variants, causal variants have been discovered at multiple places along this ef-
fect size-rarity distribution. Since no statistical method is optimal to detect risk variants for
all combinations of effect size and rarity, it is common that multiple complementary statis-
tical methods will be required to fully characterize the genetic variants that drive polygenic
disease.

In breast cancer risk, prior research has established that risk variants are located at
least two quadrants of this spectrum-rare variants of large effect, and common variants
of modest effect. Rare variants of large effect, such as mutations in BRCA1, BRCA2,
and TP53,33 were largely discovered by linkage approaches that studied affected families.
These implicated genes are responsible for cellular processes such as DNA repair and cell

cycle control, and their identification as risk loci has confirmed the importance of these
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processes in oncogenesis. The risk variants are rare in the general population, and therefore
do not dominate population-level risk estimates, but for the people that carry those variants,
they confer a large risk of breast cancer.

Common variants that have a modest to low effect have also been implicated as risk
factors for both breast cancer risk and prognosis. For variants such as these, a person can
carry any single risk variant without having a risk that is dramatically increased, but, since
these variants are common, collectively they can contribute to a large risk burden. Single
marker regression association studies in genome-wide association study (GWAS) frame-
works successfully identified 128 variants throughout the genome that increase a woman’s
risk of breast cancer,>* and a smaller number of variants have been suggestively identified
as possibly associated with breast cancer mortality.

However, despite these successes, there still remains missing heritability in breast can-
cer risk. Despite studies and meta-analyses of 50,000 participants or more, variants that
have been identified only contribute about half of the total expected risk due to genetics
that is expected from family studies.> This suggests that the variants responsible for this
missing heritability may be characterized other combinations of effect size and rarity.

This thesis investigates variants that are rare in the general population, and confer
intermediate-to-modest risk of breast cancer (the center of Figure 1.1). This class of vari-
ants requires a different statistical approach to identify them. They cannot be interrogated
by single marker regression analyses of GWASs, either because they are not present at a
high enough frequency to be observed in studies of realistic sample sizes, or, if they are
seen, they are too so rare for a logistic regression to produce well defined odds ratios for
the effect size of that variant. Their modest effect size also makes them difficult to iden-
tify in linkage analyses. Current statistical approaches to identify the effects of this class
of variation require additional, sometimes restrictive, assumptions. These assumptions are

necessary in order to interrogate rare variations, but do place certain limitations on the
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interpretations of the analyses, and the appropriateness of these assumptions needs to be
evaluated in the context of each disease of interest.3

In this case of breast cancer, one plausible assumption is to posit that variants within
the same gene act collectively to alter risk. This behavior has already been observed in the
BRCAI1 and BRCA2 genes where variants at multiple loci all are capable of inactivating
the gene product, damaging the DNA repair capacity of the cell, and increasing breast

cancer risk.30

If variants do act in this collective manner, these genes can be identified
by implementing a family of tests known as gene-based tests. Gene-based tests shift the
hypothesis from the variant-level to the gene-level.

Gene-based tests do have some limitations, most prominently that variants that are out-
side gene regions (roughly 98% of the genome) cannot be interrogated. However, the tests
have benefits as well. Gene-based tests can incorporate rare variation, unlike single marker
regression analyses, and the method can be applied to study participants that are selected
from the general population using a standard epidemiologic case/control study design. The
direct functional relevance of gene products can make results of gene-based tests easier to
interpret than the result of single marker regression tests. While gene-based tests will not
be able to identify all causal loci, they will be able to well-interrogate gene regions, which
are highly likely to harbor at least some of the variation that is associated with disease.
These benefits justify their use in circumstances where prior biological understanding sug-
gests that low frequency variants of modest effect do affect the risk of disease. Evidence for
this includes diseases (such as breast cancer) where multiple well-powered single marker
regression analyses have only identified causal loci, but their collective effect still falls sort
of the estimated heritability in the trait.

A wide variety of gene-based tests have been proposed, and their appropriateness de-
pends on the sparsity of causal variants, and their distribution throughout the genome. In

circumstances where the assumptions of the given gene-based test match the genetic archi-
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tecture of the disease under study, gene-based tests are an effective method to implicate a
gene in disease. The optimal sequence kernel association test (SKAT-037) has emerged as
a strong gene-based test which is robust to some deviations from its underlying assump-
tions. SKAT-O has not been used in the context of any breast cancer phenotype to test for

variation within a gene that can collectively act to increase risk.

1.2.2  Risk as a Function of Variant Functionality

In addition to considering the frequency/effect size distribution of the causal variants, it
can also be helpful to consider the predicted functionality of possible causal variants. The
predicted functionality of a variant can help to suggest variants that are more likely to
be causal. Implicitly, gene-based tests incorporate variant functionality by restricting to
variants that can be grouped to a single gene, but more nuanced classifications are also
possible. An extreme way to incorporate functionality is to restrict the analysis to variants
that are predicted to cause a change in amino acid translation. If variants that confer risk of
breast cancer are mostly variants that cause changes in amino acid translation, then future
studies would be able to focus on just those variants. By only assaying them, the multiple
testing burden would be reduced and fewer truly causal variants would be identified as
not associated. However, there is strong evidence that in the case of breast cancer, disease
causing variants act through additional mechanisms of action besides changes in amino acid
translation. Many of the variants that have been identified through single marker regression
tests are exonic variants that do not cause changes in protein coding (although they may
tag a protein-coding variant by way of linkage disequilibrium), or are within a gene region
that are not in the exons (such as intronic variants), or are intergenic.34

For these reasons, analyses that only focus on variants that are predicted to alter amino

acid translation are expected to miss many truly causal variants. A more agnostic approach



would be to up-weight variants that were likely to be causal, while still keeping those that
have less strong prior evidence of association. The SKAT-O test can incorporate variant-
level weights. In most weighting scenarios, incorporating even incorrect weights will not

3

introduce bias or reduce power, 8 and incorporating weights that do reflect the true associ-

ation of a variant with disease can substantially increase power.37

However, the optimal method to translate past information on predicted functionality
into weights is still a matter of study. Several studies that have used gene-based tests have
weighted variants based only on their rareness. Other studies do not attempt to weight at
all, and restrict their analyses to variants that are either rare or predicted to cause protein
changes. However, given the late onset of breast cancer, the variants that are associated
with the disease would have a smaller-than-expected effect on fitness, and therefore may
not be as rare as would be expected from evolutionary models. A method that incorporates
a more nuanced understanding of predicted pathogenicity would be preferable. However,
several annotations and pathogenicity scores have been developed, and it is not clear which
annotation is best able to highlight variants that are likely to be involved in disease. Single-
dimensional annotations classify variants based on any of several features, such as pre-
dicted functionality, evidence of evolutionary constraint, previous association with disease,
and evidence of regulatory function. Translating these concepts into a single weight that
incorporates each of the dimensions has not been widely done. The Combined Annotation
Dependent Depletion (CADD) score is an overall deleterious score that incorporates each
of these single-dimensional annotations by estimating the extent each is able to predict
whether a variant has reach fixation in the general population.39 Weighting by an overall
deleteriousness score, as created by the developers of CADD would allow gene-based tests
to include all variants near gene regions, and would reflect the multi-dimensional charac-
teristics that define the relationship between germline genetic variation and disease. This

kind of deleterious score allows for an explicit incorporation of evolutionary and other
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constraints on the test, which is expected to be necessary for gene-based tests to perform

optimally.*0

1.3 Prediction of Breast Cancer Risk and Prognosis

The above discussion focuses on the ability to identify particular loci or genes that are
associated with disease, with that will highlight a particular cellular mechanism as being
associated with disease. A complementary question involves the ability to predict an indi-
vidual woman’s risk of breast cancer using genetic data. The goal of prediction is less to
identify the causal risk factors, but rather to infer their collective effect on risk and progno-
sis to produce an individual quantification of risk.

Both breast cancer risk and mortality have several known non-genetic risk factors that
are reproducibly associated with disease. For both outcomes, the predictive power of these
models is modest. These models can be used to predict the risk of a population, but their low
discrimination makes them less relevant for individual clinical risk decisions.*! Prediction
models that incorporate germline genetic variation can allow the whole genome to be used
to collectively infer the total burden of germline genetic variation on breast cancer risk and
prognosis, and will lead to a better prediction of those who are at high risk of developing
the disease or dying from it.

There are several methods that have been proposed to incorporate germline genetic in-
formation into a prediction model. Genetic relatedness matrix restricted maximum likelihood-
based (GREML) prediction models, including Kriging,42 allow for genetic variation through-
out the genome to contribute to prediction. GREML models do not require that the causal
variants already be identified in order to contribute to the model. Breast cancer risk has
already been determined to be a polygenic disease, in that multiple variants contribute to

any woman’s individual risk. Moreover, the missing heritability in breast cancer indicates
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that some of the causal variants are not yet identified. These features make the Kriging
method of prediction a strong choice for breast cancer risk.

Kriging can be implemented in a way that allows for different sets of variants to be
grouped together. The form of the variants’ collective association with disease can dif-
fer between these groups. These groups can be selected to reflect the different annotated
functionalities of the possible risk variants throughout the genome. While not as compre-
hensive as weighting (as the variants can only be divided into a relatively small number of
groups), this method of whole genome prediction does incorporate prior information about
the expected predicted functionality of a disease, and has been successful in incorporating

germline genetic variation into prediction of other traits.

1.4 Analysis

With the preceding as background, this thesis investigates the genetic determinants of breast
cancer risk and prognosis. The analyses focus on two complementary lines of questioning.
First, to identify genes that contain variants (including rare variants of modest effect) that
collectively contribute to risk and prognosis, and second, to predict overall breast cancer
risk using genome-wide measures of variation.

The primary data that are available to investigate these questions come from ten on-
going studies designed to assess the risk factors associated with early onset breast cancer.
Participants in these studies are women of European descent who were 51 years or younger
at the time of their diagnosis (for cases) or enrollment (for controls) and not known to carry
pathogenic mutations in the genes BRCA1 or BRCA2. DNA was available for 4914 par-
ticipants (3,876 cases and 1,038 controls) through blood draws. Each of these participants
was genotyped on an Illumina exome-chip genotyping array that measured 238,524 vari-

ants. The chip was designed to more closely interrogate often-rare variants in gene regions,
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with particular emphasis on nonsynonymous variants. A subset of 3357 participants addi-
tionally was genotyped on an Illumina genome-wide genotyping array, which interrogated
3,310,158 variants after imputation.

SKAT-O is implemented to identify genes associated with risk (Chapter 2) and prog-
nosis (Chapter 3), and CADD weights are applied to the variants for each analysis. Any
genes that are identified are subject to conditional analyses which determine whether the
associations are driven by (1) variants that are common enough or of strong enough effect
size to be identified through a GWAS framework in the same participants, or (2) variants
that are already known to be associated with breast cancer phenotypes through previously
published work.

Any genes that are identified are also examined for evidence of replication in an in-
dependent data set, which also gives evidence on whether the implicated genes are also
involved in the genetic architecture for women who are diagnosed later. The replication
data for the risk analyses are summary statistics from a meta-analysis of a single marker
logistic regression case control studies of breast cancer risk. This meta-analysis combined
data from 15,863 breast cancer cases and 41,461 controls and interrogated 2,608,508 vari-
ants after imputation. The prognosis replication sample is derived from the participants of
The Cancer Genome Atlas (TCGA) study (data generated by the TCGA Research Network:
http://cancergenome.nih.gov/). The women included were matched on race, and ultimately
711 cases and 6,087,804 genotyped or imputed variants are used for prognosis replication.

In addition to identifying genes associated with overall prognosis, Chapter 3 investi-
gates whether there is evidence that variation in genes is associated with known prognostic
indicators that can be discerned at the time of diagnosis: estrogen receptor status, proges-
terone receptor status, HER2 status, grade, and stage. Any genes that these analyses iden-
tify may be responsible for the development of particular subtypes of cancer that tend to be

more aggressive. A susceptibility to these histopathologically distinct tumors may suggest
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personalized targets for chemoprevention.. Additionally, Chapter 3 examines whether ge-
netic variation in any of the CYP family of genes is associated with mortality, and if this
association differs for women with estrogen receptor positive tumors. It has been a matter
of recent controversy whether mutations in the CYP family of genes are associated with
poorer outcomes.*3** These genes encode enzymes that metabolize tamoxifen, an effec-
tive treatment for women with estrogen receptor positive tumors, but it is unclear whether
an altered ability to metabolize tamoxifen translates into higher mortality, and the analyses
of Chapter 3 look for evidence of this association.

The whole genome prediction model (Chapter 4) is carried out using the Kriging method,
and separates the variants into categories based on their rareness and predicted function-
ality. Chapter 4 culminates in by presenting an optimal prediction model that combined
genetic data with non-genetic predictors. The Kriging method also investigates whether
the ability to predict breast cancer risk and prognosis is driven by variants that have already
been reported, or whether additional risk variants remain to be identified. This analysis
further probes the conclusions from family studies that suggest that there remains undis-

covered risk variants for both breast cancer risk and prognosis.

1.5 Gaps in Knowledge and Implications of Results

The investigations of this thesis provide new biological insight into the genetic determinants
of breast cancer risk and prognosis. The effect of germline genetic variation on breast
cancer risk has been the focus of many studies, but gaps in knowledge remain about both
individual risk loci that are involved and the overall genetic influence on risk. Investigations
into the genetic determinants of breast cancer mortality have been less widely reported, and

this thesis presents multiple complementary investigations into this relationship.
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The gene-based analyses of Chapters 2 and 3 are designed to identify genes that are
associated with breast cancer risk and prognosis. This can implicate unappreciated cellular
processes that affect breast cancer development and progression. Given the young age of
breast cancer onset of the participants in this study, the gene-based analyses will also pro-
vide evidence on whether genetic influences of the better-studied late onset disease are also
risk factors for women who will be diagnosed early. Similarly, these investigations suggest
whether the genes that are responsible for increased risk of developing breast cancer are
also involved in poorer prognosis in women who have already been diagnosed. While the
implications for risk assessment are large for each of these questions, their answers remain
unsettled.

There have been a limited number of prior studies that use the GWAS framework of
single marker regression association tests to investigate mortality in breast cancer cases at
the genome-wide level, and those that have been done were largely underpowered, making
it difficult to draw firm conclusions from this previous work. These previous studies found
few suggestive associations, most of which were not significant in the original study’s
replication sample, and none of which have been replicated in subsequent studies. This
dearth of prior research on an important health topic may be due to the long amount of
time needed to collect mortality data prospectively when compared to the relatively short
amount of time GWAS-style studies have been around. It may also reflect a publication
bias, where studies that do not find any association are not easily shared publicly.

Given the low effect size of most of the identified associations with breast cancer, most
women’s individual level of risk is not well defined by her genotype at one risk loci. For that
reason, risk models that incorporate all genetic variation are needed to quantify a woman’s
overall risk of disease. The prediction models of Chapter 4 will improve upon previous
work that does not currently incorporate germline genetic variation. Currently, models that

do not incorporate genetics can predict breast cancer risk with an area under the receiver
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operating characteristic curve (AUC) between 0.6 and 0.7,%+% and there have not been
any published models that are specific to early onset breast cancer. Similarly, models that
predict prognosis without genetic information can predict mortality with an AUC of around
0.7.47 The Kriging method of whole genome prediction may improve upon this predictive
power.

The prediction presented in Chapter 4 also informs the extent to which different classes
of predicted variant functionality are likely to contain the undiscovered variants that are as-
sociated with breast cancer risk and prognosis. This knowledge can suggest the appropriate
methods that can be used to identify the individual risk variants in future studies. While the
primary goal of prediction models is not to identify the specific variants that are associated
with disease, the Kriging prediction method can be used to characterize the unidentified
causal variants. In particular, the results of Chapter 4 suggest whether the variation that
drives breast cancer is common or rare, and whether that variation has a particular type
of predicted functionality. This knowledge helps to resolve long-running questions about
the relative importance of different portions of the genome in the genetic architecture of
cancer.

In addition to biological insights, these investigations represent the first application of
many statistical tools to the question of breast cancer. Whole genome prediction has not
been applied to either breast cancer risk or prognosis, and gene-based tests have only been
incorporated twice. These investigations represent only the third study of breast cancer risk
that has interrogated rare variation directly. In 2013 Haiman et al.*® and more recently
(September 2016) Haddad et al.*® and Zhou et al. used exome arrays, but each restricted
their analysis to rare putative functional variants rather than weighting, and Haiman used a
burden style test rather than a SKAT-O test. A third study5 O that investigated rare variation
using gene-based tests in a genome-wide setting in breast cancer also used a burden test,

and additionally did not directly interrogate the rare variants in gene regions, but rather
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inferred their existence by imputation. Their reported results are therefore limited by the
assumptions of the models they used. These study designs leave open questions about rare
variation and the effect of age and ancestry which can be answered by the results of this
thesis. While the data available for this thesis is of modest sample size, the success or lack
thereof of the analytic techniques employed in this thesis can inform whether additional,
better powered investigations using gene-based analyses or whole genome prediction are
likely to be fruitful.

In no previously published work that applies gene-based tests genome-wide for any
disease have the CADD weights been used (one candidate gene study used the CADD
score multiplied by minor allele frequency to investigate cardiovascular disease>!). The
results of the analyses that weight with CADD weights suggest whether this method is an
appropriate method to increase power by incorporating prior information.

Neither whole genome prediction models nor linear mixed model whole genome her-
itability estimates, which are based on the same conceptual methodology, have been pub-
lished for either breast cancer risk or prognosis. The estimations from Chapter 4 therefore
put their results into a larger context of heritability estimates. The current understanding of
heritability for breast cancer has been estimated from family studies, which may be biased
by shared environment.

The goals forwarded by this work, identification and predication, are complementary.
The results of both lines of inquiry may result in more efficient, optimized medical care,
and could confer many clinical benefits. Identified genes could provide valuable insight
into the genetic etiology of breast cancer risk and prognosis. Additionally genes may be
identified that can not affect population-level risk but are still important for a given person,
and could identify possible targets for pharmaceutical intervention.

Whole-genome prediction can quantify risk for a person without identifying the dis-

tinct variant that drives that predictive power and suggest classes of variants that may be
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more likely to hold causal variation. When combined with non-genetic information, the
prediction model will both more accurately predict population-level risk and also improve
upon current risk estimates to move towards prediction models that are clinically action-
able. A strong risk model would identify low-risk women who could be screened less often,
which would allow them to devote less energy searching for symptoms of a disease they
are unlikely to develop. Given the high prevalence of breast cancer, even a modest increase
in the total ability to predict risk could potentially impact the interpretation of ambiguous
screening results for many women,2 and could reduce both over-treatment and unidenti-
fied tumors. Additionally, a risk model could provide additional information for women
who are considering other medical interventions that may increase their breast cancer risk,
such as menopausal hormone therapy or hormonal assisted reproductive therapies.5 3

In the context of breast cancer mortality, a stronger prediction model could suggest
more aggressive monitoring and treatment for high-risk subgroups of patients, and could
also help to identify women who could pursue less aggressive treatments. These classifica-

5455 while

tions would reduce the morbidity associated with exposure to chemotherapies,
at the same time identifying those at high risk of mortality who may want to be treated

more aggressively.
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CHAPTER 2
THE EFFECT OF GERMLINE GENETIC VARIATION IN GENE

REGIONS ON THE RISK OF EARLY ONSET BREAST CANCER

2.1 Background

Breast cancer is the most frequently diagnosed cancer in American women,! and one in
five women who are diagnosed develop breast cancer before age 50.2 Genetic variation has
been identified as a risk factor for breast cancer. It has been hypothesized that germline
variants interact with somatic mutations within the tumor during tumorigenesis, and the
same somatic mutation may develop into a cancer cell in one women but not another due to
germline variation.” While the exact mechanism of how genetics influences breast cancer
risk is not fully understood, it is plausible that genetic variation may predispose a woman
to breast cancer through a predisposition to genomic instability, by providing a fertile cel-
lular environment for a tumor, or by impeding immune response to proto-oncogenic cells.”
Several non-genetic risk factors such as parity and the use of synthetic hormones confer an
increased risk of breast cancer early in life, but offer a protective benefit against the dis-
ease later in life. Although the implications for risk assessment are large, it is still unclear
the extents to which genetic influences of the better-studied late onset disease are also risk
factors for women who will be diagnosed early.

Investigating genetics as a risk factor can be a challenge due to the large number of
potential disease-causing variations, and the unknown pathway by which each variation
may contribute to disease risk. The most appropriate statistical method to investigate risk
will depend on how many variants ultimately are associated with disease,® their sparsity
throughout the genome,>’ the form of the relationship between the variation and disease

1risk,58 their rareness, and the strength of their effect on disease.30 Each of these charac-
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teristics may differ from variant to variant and between diseases, and are often unknown.
Single marker regression analysis examine the variants as independent predictors of dis-
ease, and is a method employed by genome-wide association studies (GWASs). Single
marker regressions have been successful in identifying causal variants for diseases where
the causal variants are common enough to include in a regression framework (this threshold

will vary depending on the sample size, but variants with a minor allele frequency greater
1

than (%) * are typically included®), and variants that have a strong enough association

with the disease in question. For context, the study sizes of single studies that have inves-
tigated breast cancer phenotypes with single marker regression techniques between 1000
and 5000 cases per study, and the median effect size of genome-wide significant results is
an odds ratio of 1.1.34:60

However, single marker regressions have limitations. They cannot identify risk loci
where variants are too rare or whose effect is too weak, and they are also limited by con-
cerns about type I error rate. Single marker regression analyses conduct a large amount
of tests, which requires employing a strict significance thresholds in order to exclude false
positives. In many cases, these thresholds can exclude many truly causal variants.%! There
is also evidence that in breast cancer risk, common variants are tagging the effect of rare
variants that are not always directly assayed.62

Much of the recent research into the genetic determinants of breast cancer has incorpo-
rated information from common variation assayed on genome-wide arrays, and the vari-

50,63-67

ants that can be reliably imputed from them. These studies suggest that some

of the genes associated with risk of late-onset disease also influence the early onset dis-
ease.50’68‘70However, there still remains “missing heritability” in breast cancer,35’71‘73

where genes that have been identified by research only contribute about half of the total

expected risk due to genetics.
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Variants in protein-coding regions of the genome are expected to harbor some of the
undiscovered variation that is associated with risk of breast cancer. While analyses that
focus on gene regions exclude a large percentage of the genome the central role of genes
in transcription and ultimately amino acid translation makes variants that reside in genes
represent biologically plausible candidates for association with disease,’* which justifies
the use of methods that can well-interrogate these regions, even if other complementary
methods will then be required to examine the rest of the genome.

A class of suitable tests has been developed for examining variation within a single
region, called set-based tests. Set-based tests shift the hypothesis from whether an indi-
vidual variant is associated with disease to whether a collection of variants is associated
with disease. The sets are often taken to be variants within gene boundaries to give the
set an immediate biological interpretation. In the context of genes, if a gene-defined set-
based analysis identifies a gene as associated with disease, this suggests that any variation
within that gene or gene proxy region collectively contributes to disease. Set-based tests
allow for variants that are too rare to test individually to contribute evidence for risk, and
also common variants whose effects are too modest to detect using standard single marker
regression approaches.

Many set-based tests have been developed that can be implemented as gene-based

tests,37’75‘77

with two of the most commonly used being burden tests and the sequence
kernel association test (SKAT). Burden tests’® sum the number of risk alleles within a
gene, and then estimate the combined effect of that number of risk variants on the disease.
SKAT37 estimates the effect of each variant within a gene-based on a linear mixed effect
model and tests for non-zero variation explained by genetic factors via a variance compo-
nent approach. The burden test is more powerful than the SKAT test if all of the variants

in a gene increase risk of disease. The SKAT test is more powerful than the burden test if

the variants within a gene may increase or decrease the disease risk. Since these assump-
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tions about the density of risk variants and the direction of their association are typically

78 an omnibus test that combines the test statistics from burden and SKAT was

not known,
developed, the optimal sequence kernel association test (SKAT-0).37 SKAT-O calculates
both the burden test statistic and a SKAT test statistic for each gene, and then uses the data
adaptively to weight and combine the two test statistics by a mixing factor, p, which ranges
from zero (where the test statistic is equivalent to the SKAT test statistic) to one (where
the test statistic is equivalent to the burden test statistic). A value of p that is small (less
than 0.1) indicates that the relationship between the gene and the risk of breast cancer was
better characterized by the assumptions of the SKAT test, and p greater than 0.5 indicates
that the relationship is better characterized by the assumptions of the burden test. The dis-
tribution, effect size, and sparsity of as-yet-unidentified causal variants within gene regions
that are associated with breast cancer risk is not totally established (although previously
studied single marker regression results indicate that the minor allele at a risk locus can
be both protective and deleterious>#). Given this uncertainty, the omnibus test may be a
more appropriate tool to identify genes harboring risk loci than either the SKAT or burden
test alone, especially since in most situations, SKAT-O is more powerful than either test
alone.3’

Many studies that have implemented gene-based tests include in their analysis only
variants that are either rare, or variants that independent annotation sources identify as
“functional” (e.g.: nonsynonymous variants). This decision is often justified as necessary
to remove noise and improve power by excluding variants that are unlikely to be associated
with disease. However, SKAT-O can also incorporate prior knowledge about variants that
are more likely to be associated with disease without fully excluding them by applying
weights to the individual variants. 7% Weighting allows analyses that use SKAT-O to in-

clude those variants that may be causal but are not yet defined by characteristics that have

been identified as suggestive of disease in the still-nascent understanding of molecular bi-
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ology. In most genome-wide analytic scenarios, the use of weights will not increase type I
or type II error rates,>® and a weight that reflects the true disease process can significantly
improve power.37

Currently, weighting is largely implemented by weighting according to the rareness, or
minor allele frequency (MAF) of the variant. Weighting by MAF operationalizes the as-
sumption that evolutionary constraints keep variants that strongly increase a risk of disease
at low frequency in the population. However, not all variants that cause disease are kept at
a low frequency.8 For this reason, many annotations have also been developed that incor-
porate more broad indicators of pathogenicity beyond MAF. These functional annotations
such as SIFT,81 PolyPhen,82 and CADD3? operationalize the knowledge from previous re-
search that variation at certain portions of the genome are expected to have a greater effect
on disease risk. Of these, the CADD algorithm combines many single-dimensional anno-
tations into one score of the predicted “deleteriousness” of that variant into a reproducible
single score. This score can then be used to up-weight variants in the SKAT-O tests that are
expected to cause disease.

In many cases summary statistics from a given study are more easily accessible due to
fewer privacy restrictions. In these cases, SKAT-O cannot calculate the significance of a
gene set. For this reason, other methods have been developed to calculate the significance of
a gene-based on summary-level statistics.”*3389 Of these, one of the most straightforward

test is Fisher’s method.?°

This method combines the p-value of i separate variants within a
gene using the formula —2Y" In(p;). Under certain assumptions, this statistic is distributed
as x% with i degrees of freedom. However, in the case of correlated p-values, which is
common in genetic regions with linkage disequilibrium (LD), Fisher’s method and others

that also do not take into account the LD, inflate the type I error rate of the genes tested. To

correct for this, the VEGAS methodS8 incorporates public use genetic data from HapMap
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to control for correlation among p-values within a gene to infer the significance of the
gene-based test statistic.

With this as background, this manuscript will investigate whether, in the context of early
onset breast cancer, SKAT-O using CADD weights is able to identify genes that are associ-
ated with disease risk. The analysis will use conditional analyses to investigate whether any
results are driven by common variation that would have been identified by a single marker
regression analysis. This manuscript will also employ conditional analysis to determine
whether any genes identified are driven by variants that are already known to be associated
with breast cancer phenotypes, which will determine whether the identified gene contains
novel risk loci. Simulations suggest that it is unlikely that there remain undiscovered risk
variants for breast cancer with a minor allele frequency greater than 5% and a magnitude of
effect that produces an odds ratio greater than 2,21 but this has not yet been definitively em-
pirically confirmed. The results will provide an opportunity to clarify whether rare variants
of modest effect size are important in the genetic etiology of breast cancer, and whether
gene-based tests are a useful tool to examine them. The investigations in this analysis will
implement gene-based tests that reflect a hypothesis that collectively variation within the
same gene can contribute to risk, and the choice of the specific SKAT-O test reflects the
hypothesis that in some genes that hold causal variation, the distribution of causal alleles
within that gene is relatively sparse, and in some causal variants, minor alleles may be
protective of brat cancer. The choice of weights in this investigation reflect the hypothesis
that variants that are predicted to be deleterious via the CADD algorithm have a higher
probability of being causal for breast cancer risk, and if this does indeed reflect the un-
derlying biological processes that drive breast cancer risk, the weighted analysis will have
more power to detect causal genes than the unweighted one. No previous study of any trait

has used the CADD scores directly as weights.
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These investigations represent only the fourth study of breast cancer risk that has inter-
rogated rare variation directly. In 2013 Haiman et al.*® and more recently (August 2016
and September 2016) Haddad et al.*° and Zhou et al.%? all used exome arrays. However,
each of these studies made methodological decisions that were sub optimal. Haiman et
al. used a burden style test rather than a SKAT-O, and all three restricted their analysis to
rare putative functional variants rather than weighting. A third study50 that investigated
rare variation using gene-based tests in a genome-wide setting in breast cancer also used a
burden test, and additionally did not directly interrogate the rare variants in gene regions,
but rather inferred their existence by imputation. The Zhou study controlled for things
that were possibly in the causal pathway of breast cancer risk. None of the investigations
found genes that were significant at the genome-wide level. Several studies that have im-
plemented whole-exome and whole-genome sequencing are underway, but their results are
not yet published. There have been several published gene-based analyses at the genome-
wide level that investigate the genetic determinants of many diseases, and the vast majority
has restricted the analysis to variants of a particular functionality or rareness. This analy-
sis will instead up-weights variants that are predicted to be functional, and will include all
resumed variants, and will assess whether any identified gene is driven by common varia-
tion through conditional analyses. This approach balances incorporating prior knowledge,
while also allowing identification of strong associations that occur between not-yet-well-
understood risk loci and disease.”®> This manuscript will discuss the appropriateness of
three weighting methods in the context of the results they give.

The participants of this study are all aged 50 or younger. The analyses presented here
will therefore provide evidence on whether genetic influences of the better-studied late
onset disease are also risk factors for women who will be diagnosed early, or if instead that

the genetic etiology of breast cancer risk differs for early onset cases.
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Any genes that are identified will implicate particular gene products as being respon-
sible at the cellular level for early onset breast cancer oncogenesis. This knowledge will
improve the understanding of the underlying biology of early onset breast cancer risk, and
may help to suggest possible targets for pharmaceutical chemoprevention. If genes of large
effect are discovered, the new risk loci would continue to expand the ability to predict what

patients are at risk for early onset breast cancer.

2.2 Methods

2.2.1 Population

The participants for these analyses were selected from ten ongoing studies designed to as-
sess the risk factors associated with early onset breast cancer. Participants were women of
European descent who were not known to carry pathogenic mutations in the genes BRCA1
or BRCA2. Details of the recruitment are found in Table 2.1. Ninety eight percent of
the cases were younger than 50 years old at the time of their diagnosis (for cases) and all
controls were younger than 50 at the time of enrollment. Six of the study sites (Australia,
Northern California, Ontario, Philadelphia, and New York) were members of the Breast
Cancer Family Registry (BCFR), whose methods have been described elsewhere.3 Briefly,
two of the BCFR centers (Northern California and Canada) recruited through population-
based registries, three (Utah, Philadelphia, and New York) recruited through clinic- and
community-based outreach, and one (Australia) recruited through a mix of population and
clinic-based outreach. Participants were also included from four studies not included in

64 and

the BCFR consortium. The German Genetic Epidemiologic Study of Breast Cancer;
Long Island Breast Cancer Study Project;65 and the Seattle study66 were population-based
case-control studies described elsewhere. The Chicago participants were identified from

the Chicago Multiethnic Breast Cancer Epidemiologic Cohort, a hospital-based study of
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Table 2.1: Characteristics of Studies Included in Exome-wide Analysis

Study Name Study Years Case Criteria Control Criteria Cases Controls
Location Recruit-
ing
Breast Cancer Australia 1992- Living in the Melbourne Randomly selected from 473 118
Family Registry 2000 and Sydney metro areas, electoral rolls, matched
family recruited from the  to cases on age and city
Victoria and NSW cancer
registries
Breast Cancer Northern 1996- SEER Cancer registry in Random digit dialing 176 65
Family Registry California 2003 the San Francisco metro in study area, matched
area to cases on age and
race/ethnicity
Breast Cancer Ontario 2001- Ontario Cancer Registry Random digit dialing in 582 152
Family Registry 2010 study area, matched to
cases on age
Breast Cancer Philadel- 1996- Living in Philadelphia N/A 333 0
Family Registry phia, 2000
Pennsylva-
nia
Breast Cancer New York, 1996- Living in New York, New  N/A 551 0
Family Registry New York 2000 Jersey, or Connecticut
Breast Cancer Utah 1996- Living in Salt Lake City N/A 152 0
Family Registry 2012
Genetic Germany 1992- 38 clinics in the Randomly selected 466 437
Epidemiologic 1995 Rhein-Neckar-Odenwald from local population
Study of Breast and Freiburg regions registries
Cancer by Age 50
Long Island New York 1996- Nassau and Suffolk Random digit dialing in 162 98
Breast Cancer 1999 counties study area, matched to
Study Project cases on age
Seattle Seattle, 1990- King, Pierce, and Random digit dialing in 288 103
Washington 1992 Snohomish counties; age study area, matched to
less than 45 at diagnosis cases on age and race
University of Chicago, 1998- Treated at the University N/A 326 0
Chicago Illinois 2010 of Chicago Cancer

Center

Cases and controls are numbers included in the analysis after QC
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breast cancer at the University of Chicago.94’95

For the Chicago study, demographic fac-
tors, clinical, and pathological data, were abstracted from medical chart, epidemiologic
risk factors, such as reproductive and lifestyle factors, were collected via structured ques-

tionnaire, and cancer relapse and survival were ascertained via patient medical records and

linkage to the national death index.

2.2.2 Genotyping

DNA was available for 4914 participants (3,876 cases and 1,038 controls) through blood
draws. The samples were whole genome amplified using the Qiagen Repli-G mini kit.
3956 (3121 cases and 835 controls) were genotyped on the Illumina HumanExome 12v1.0
chip, and 958 (755 cases and 203 controls) were genotyped on the Illumina HumanEx-
ome 12v1.1 chip. The samples were processed using 49 plates in two batches, and the
process was carried out according to the manufacturer’s protocol. To improve the quantity
and quality of available genomic DNA, the samples were whole genome amplified using
the Qiagen Repli-G mini kit,22 and were processed using 49 plates in two batches, fol-
lowing the manufacturer’s protocol. TeCan Evo was used for automation. Raw data was
processed by Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15,
per Illumina’s recommendation for Infinium chips. Clustering was done using the Illumina
supplied cluster files. After keeping only variants that were on both chips, 238,524 variants

were interrogated.
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2.2.3 Analysis methods

2.2.3.1 Quality Control

The quality control followed the protocol suggested by Guo et al.9%6 Participants were ex-
cluded for low genotyping rate (rate < 95%; 248 excluded), male sex (nine excluded), high
heterozygosity (F statistic greater than three standard deviations from the mean, or het-
erozygosity greater than four standard deviations from the mean; 52 excluded), one of each
pair of duplicated genotypes (twenty four samples excluded; three replicates, twelve du-
plicates from the same center, nine recruited into both the Long Island and New York City
studies), principal component outliers (three participants whose first or second principal
components (constructed from common variants) were more than six standard deviations
away from the mean). Additionally, due to the family-based case ascertainment of some
of the studies, we also excluded 126 participants whose genotypes were highly correlated
(estimated relatedness from a GCTA-created genetic relatedness matrix greater than 0.4).97

Variants were excluded from the analysis if they had a low call rate (rate < 95%; 4335
excluded), or if they were common variants (defined below) with Hardey-Weinberg equilib-
rium p-values of less than 2.5- 10~ in controls (p = 0.05 Bonferroni corrected for 200,000
tests; 39 excluded). The final variant-level exclusions were the result of evidence that on
some plates variants were unreliably assigned (a plate-by-plate single marker regression
analysis found that in some cases genotype could predict plate). For these variant-plate
combinations, variants were excluded for all participants on that plate if this single marker
regression p-value was smaller than 2.5- 1077, As a result of this QC step, 100 variant-plate
combinations were set to missing.

After these exclusions, the analysis set contained 3479 cases, 973 controls, and 238,524
variants. Of these, 135,931 were polymorphic in the study population. Variants were as-

signed to genes using the ANNOVAR software,”® and excluded if they were annotated to
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Figure 2.1. Variants Used in Analysis
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intergenic regions, leaving 125,388 polymorphic variants, which were annotated to 16,815

genes. Variants were classified as “common” and “rare” based on their MAF, with a thresh-
1

old at MAF equal to (ﬁ) *=0.0106.5% A schematic of the variants used in this analysis is

shown in Figure 2.1.

2.2.3.2  Controlling for Population Stratification

Rare variants and common variants have different correlations with ancestry, and therefore
will have different potential to induce confounding in genetic association studies.??-100
To counter this potential for inflated type I error rates, EIGENSTRAT!01:102 ¢ongtructed
two sets of principal components from the analysis set. One set was constructed using
“common” variants assayed by the array (PC.), and one using “rare” variants (PCy). In a
logistic regression that did not include genetic information, the first five PC. and the first
three PC, were associated with case status. Including any other principal components did

not improve the logistic model fit, as determined by a likelihood ratio test. These eight PC

were included in all subsequent analyses.
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2.2.3.3 Common Variation

To identify individual variants that would have been identified through single marker re-
gression GWAS methods as being associated with risk of early onset breast cancer, com-
mon variants that could be assigned to a gene were analyzed using a logistic regression
single marker regression framework with the PLINK software.103-104  Thjg analysis as-
sumed an additive model of inheritance. Results were visualized using the qqman105
and ggplotZlO6 R software packages.107 Variants whose p-values were smaller than the

Bonferroni-corrected level of 1.8-10~° would have been considered suggestive of associ-

ation with early onset breast cancer.

2.2.3.4 All Variation in Gene Regions

To examine whether variants within a gene collectively are associated with the risk of early

onset breast cancer, the variants were analyzed using the SKAT-O method.3’

The analysis
was conducted using the SKAT package for R, with the “SKATO” method in the function
SKATBinary with efficient resampling.108 The analysis was repeated three times: with
equal weights; with heavy weights on rare variants (as suggested by the SKAT authors,
weights on each variant equal to the beta function evaluated at the MAF of that variant in
controls with shape parameters o = 1 and = 25); and with weights on each variant equal
to the PHRED-like CADD score for that variant. For each of the methods, the significance
threshold was determined by correcting a p<0.05 threshold by the effective number of tests
computed, which was determined by the SKAT package. Genes whose p-values were less

than this threshold using any weighting method were considered suggestively associated

with early onset breast cancer.
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Table 2.2: Characteristics of Studies Included GAME-ON/DRIVE

Study Country Case Ascertainment Control Ascertainment  Genotyping Cases Controls
Platform
ABCFS Australia Recruitment through Recruitment from Tllumina 610k 282 285
cancer registries in electoral rolls in
Victoria and NSW Melbourne and Sydne
matched to cases by
age in 5-year
categories
DFBBCS Netherlands BRCA1/2 mutation Rotterdam study; 55 Cases: Illumina 464 3255
negative familial years or older at time 610k; Controls:
bilateral breast cancer of inclusion. Illumina 550k
patients selected from
five clinical genetics
centers
HEBCS Finland Helsinki University Population controls Cases: Illumina 726 1012
Central Hospital from Finish Genome 550k + 610;
Centre (NordicDB) Controls: Illumina
370k
BBCS UK UK Cancer Registries WTCCC2: 1958 Birth  Cases: Illumina 1609 2663
Cohort + UK National 370k; Controls:
Blood Service Illumina 1.2M
GCHBOC  Germany BRCA1/2 mutation KORA (Cooperative Cases: Affymetrix 634 477
negative cases from Health Research in the 5.0k; Controls
university clinics in Region Ausburg) Affymetrix 6.0k
Cologn and Munic
UK2 UK Cancer genetics clinics ~WTCCC2: 1958 Birth ~ Cases: Illumina 3628 2663
and oncology clinics Cohort + UK National ~ 370k; Controls:
Blood Service Illumina 1.2M
SASBAC Sweden Population-based Population-based Cases: Illumina 790 756
postmenopausal controls, age-matched 317k+240k;
women with breast to cases Controls: Illumina
cancer 550k
MARIE Germany Sample of ductal and KORA (Cooperative Cases: Illumina 652 470
lobular carcinomas Health Research in the 370k; Controls:
from the MARIE Region Ausburg) Tllumina 550k
study, oversampled 2:1
for lobular
BPC3 USA, Sample of ER negative ~ Controls from eight Illumina 660k, 2188 25519
Europe, cases from eight cohort studies Illumina 550k,
Poland cohort studies Tllumina 300k
BCFR* USA, Population-based Population-based Illumina 610k, 3523 2702
Europe, registries and controls, age-matched Cytol2
Canada, clinic-based to cases
Australia enrollment
SardiNIA Italy Clinic-based Sardinian  Sardinians with no Cases: Affymetrix 1367 1659

origin breast cancer
patients

history of cancer in
first degree relatives
recruited at
commuinty blood
donation centers

500k; Controls:
Affymetrix 6.0

Cases and controls are numbers included in the analysis after QC

*The participants referred to as “BCFR” in the GAME-ON/DRIVE meta-analysis differ from the BCFR participants from the exome
array analysis. The participants labeled “BCFR” in the meta-analysis are from sites in Australia, Ontario, California, Long Island,
Germany, Seattle, and USC. 2323 cases (17% of the cases in the replication) and 1034 controls (2% of the controls in the replication)
overlap with the participants in the exome array analysis.
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2.2.4  Replication: GAME-ON/DRIVE Summary Statistics

Genes and variants that showed suggestive association were then investigated for evidence
of significance in a population of breast cancer cases of all ages using the variant-level
summary statistics provided by the Discovery, Biology, and Risk of Inherited Variants in
Breast Cancer (DRIVE) study in the Genetic Associations and Mechanisms in Oncology
(GAME—ON109) consortium. The DRIVE study data combined information from twelve
genome-wide association studies of breast cancer. Details of the recruitment are found
in Table 2.2. Eight of the studies (Australia Breast Cancer Familial Study (ABCFS”O);
Rotterdam Study (DFBBCS!!!): Finland Breast Cancer Study (HEBCS!!2:113): British
Breast Cancer Study (BBCS!!%); German Hereditary Breast and Ovarian Cancer Study
(GCHBOC1 15 ); UK Breast Cancer Study 2 (UK21 16); Singapore and Sweden Breast Can-
cer Study (SASBAC!13); Mammary carcinoma Risk factor Investigation (MARIE'7) were

118,119 and the other three studies (National Can-

analyzed together, as described elsewhere,
cer Institute Breast and Prostate Cancer Cohort Consortium (BPC3120’12] ); Breast Cancer
Family Registry subset and associated trials (BCFR®3); and Sardinia'?%) were analyzed
separately using slightly different quality control, and then combined. The twelve studies
ultimately contributed 15,863 cases and 41,461 controls to the meta-analysis of 2,608,508
variants after imputation. The methods of this meta-analysis are detailed elsewhere.>”

If any variants passed the genome-wide significance threshold (1.8 - 1079) in the early
onset participants, they would be compared to the GAME-ON/DRIVE summary statistics
for replication and evidence that the same loci was causal in both the early onset and over-
all. If fewer than 20 variants had p-values smaller than the threshold in the early onset
population, then the variants with the 20 smallest p-values were compared to the GAME-

ON/DRIVE summary statistics. The variant would be identified as suggestively associated

with both early onset and all-ages breast cancer if the meta-analysis p-values were less
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than Bonferroni-corrected threshold (determined by 0.05 divided by the number of variants
tested for replication).

For the gene-based analyses, genes that any of the three SKAT-O weighting methods
identified as suggestively associated with early onset breast cancer would be examined for
evidence of also being involved in breast cancer diagnosed at any age. If fewer than 20
genes were suggestively associated with early onset breast cancer, then genes identified as
the 20 most significant in any weighting method were examined. This was done by first
annotating the GAME-ON variants into gene sets using ANNOVAR, and then combining
the p-values of the GAME-ON summary statistics into a gene-based statistic using the
VEGAS method. If the VEGAS method could not calculate a p-value for the summary
statistics, a p-value was calculated with the Fisher method. The resulting p-values of the
suggestive genes were compared to a Bonferroni-corrected threshold determined by 0.05
divided the total number of genes tested for replication. If the p-value was below this
threshold, that gene was considered suggestively associated with both breast cancer that is

diagnosed early and in all ages.

2.2.5 Comparison with GWAS-Identified Variants and Known Variants

In order to establish whether any suggestive findings were driven by variants that would
have been identified through a single marker regression, genes were re-analyzed while
controlling for any variants that were suggestively associated with early onset breast can-
cer or breast cancer of any age at diagnosis. Genes were selected for this analysis if their
analysis in the early onset cases met one of two criteria. First, if they were suggestively
associated with early onset breast cancer by having a p-value in any weighting method that
was below the genome-wide p-value threshold as determined by SKAT, and second if they

were suggestively associated with both the early onset disease and all-ages disease by the

32



Figure 2.2. Single Marker Logistic Regression Results for Common Variation Assayed on
the Exome Array
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The red line represents a p-value of 1.8-10~°, and the blue line represents the p-value of the twentieth most significant SNV.

replication analysis. This conditional analysis was repeated using all three weighting meth-
ods, and implemented using the prepCondScores and skatOMeta functions of the skatMeta
R package.123 This package calculates the SKAT-O test statistic and controls for linkage
disequilibrium with variants that are being conditioned upon by calculating p-values via
permutation.

In order to establish whether any suggestive findings were driven by variants that were
already known to be associated with a breast cancer phenotype, suggestive genes (genes
defined by the three categories in the previous paragraph) were cross-referenced with the
NHGRI-EBI GWAS Catalog.34’60 If the GWAS catalog reported established associations
(p-value <5 - 10*8) between a single nucleotide variant (SNV) in that gene and a breast
cancer phenotype, then the gene was re-analyzed using used the skatMeta R, conditional

on those variants.
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2.3 Results

2.3.1 Common variation

After controlling for the principal components, the single marker regression analysis of
the 27,168 common variants has a genomic inflation factor of 1.065. A summary of the
association results is shown in Figure 2.2, and details of the twenty SNVs with the smallest
p-values are shown in Table 2.3.

None of the SNVs are significant at the pre-set threshold. The most significant SNV is
located at chr10:123346116 in the intron of FGFR2. The p-value of this SNV is 6.64 - 1076,
Each additional allele increased the odds of breast cancer by 27% (OR: 1.268; 95% CI:
1.14-1.41). The most significant SNV that was predicted to cause a change in a translated
amino acid is a nonsynonymous SNV in LANCL?2, located at chr7:55433884. The p-value
of this variant is 3.3 - 10_5, and each additional risk allele is estimated to the odds of breast
cancer by 26% (OR: 1.264; 95% CI: 1.132-1.412).

Of the twenty SNVs with the smallest p-values, twelve are interrogated in the GAME-
ON/DRIVE meta-analysis, and the p-values of these variants are shown in Table 2.4. Of
these, three in the gene FGFR?2 are significant at the Bonferroni-corrected level of 2.5 - 1073
in the GAME-ON/DRIVE data. They are located at chr10:123337335, chr10:123346190,
and chr10:123352317.

2.3.2 Gene-based tests

Figure 2.3 summarizes the coverage of the exome array, and characterizes the rarity of the
variants within the gene. The median number of variants per gene was five, the median
number of total minor alleles in a gene was 898, and the median number of individuals

with at least one minor allele in a gene was 816.
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Figure 2.3. Distribution of Variants Per Gene, Minor Alleles Per Gene, and Participants
with Minor Alleles Per Gene
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Figure 2.4. Distribution of Variant Weights for Variants Analyzed from the Exome Array
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Figure 2.5. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with Equal Weights
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The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.

The SKAT-O gene-based tests were repeated using three weighting methods: once with
equal weights; once with each variant weighted by the beta function with @ = 1, = 25,
evaluated at the minor allele frequency of that variant in controls; and once by the CADD
deleteriousness score of that variant, transformed to a PHRED-like scale. The distributions
of the beta weights and CADD weights for analysis set are shown in Figure 2.4. The
distribution of the beta weights is skewed towards the maximum weight of 25, a result of
the rareness of most of the variants in the exome array.

After controlling for the principal components, the genomic inflation factor of the gene-
based tests produced by the SKAT-O analysis with equal weights is 1.12. A summary of the
gene-based results with equal weights is shown in Figure 2.5. The genomic inflation factor
is 1.09 in the SKAT-O analysis when the variant weights were equal to the beta function,
and is summarized in Figure 2.6. The genomic inflation factor is 1.10 in for the SKAT-O
analysis when the variant weights were equal to the variant’s CADD score, and this analysis
is summarized in Figure 2.7. P-values for all weighting schemes for genes that are in the

20 most significant in any weighting scheme are shown in Table 2.5.
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Figure 2.6. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with Beta Weights
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The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.

Figure 2.7. Sequence Kernel Association Test-Optimal Results for Exonic Variants As-
sayed on the Exome Array with CADD Weights
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The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant SNV.
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Table 2.5: Most Significant Genes Identified by Sequence Kernel Association Test-Optimal
with Three Weighting Methods

Gene Variants Total Count  p-value p-value beta  p-value
in Gene of Minor equal weights CADD
Alleles in  weights weights
Gene

ABCCS 6 3486 3.84e-01 6.72e-04* 4.33e-01
ACE 26 4269  3.04e-02 5.82e-04* 6.36¢e-04
AP2BI1 2 4262  5.05e-04* 5.64e-01 6.11e-04
CAMTA1 24 12762 1.05e-01 5.29e-01 2.08e-04*
CDON 18 16625 1.53e-03 1.00e+00 5.03e-04*
CELF2 2 11 2.45e-04* 2.45e-04* 2.45e-04*
DALRD3 4 2080 3.22e-04%* 5.16e-01 3.86e-04*
DDC 7 7064 6.80e-04 3.66e-01 5.99e-04*
EMLS5 6 2265  8.50e-02 1.74e-04* 5.71e-02
FGFR2 8 16044  1.01e-05* 1.30e-01 2.19e-05%*
GJA9 10 4456  3.85e-04* 1.00e+00 3.50e-01
HSF5 5 1947  3.69e-02 7.20e-04* 2.30e-02
HSPBP1 2 16 4.79e-04* 4.79e-04* 4.79e-04*
ILF3 4 2926 8.59e-02 4.28e-04* 3.73e-03
KPNA7 4 634  6.25e-01 3.46e-01 4.48e-05*
LANCL2 4 3047 3.97e-05%* 8.24e-01 9.86e-02
MAP4K1 6 60  9.64e-04 2.00e-03 4.58e-04*
MAPKAPI1 4 4051  7.55e-01 8.43e-05* 2.26e-01
MKL1 18 9844  1.50e-03 3.80e-02 3.19e-04*
MSGNI1 3 7258 1.00e+00 1.10e-19% 1.00e+00
NEK10 11 10381 3.61e-04* 6.85e-01 1.20e-03
NOXA1 4 2840 3.18e-01 8.54e-04* 8.65e-04
ORIIL1 12 3889 1.06e-03 1.14e-03 5.37e-04%*
PCLO 57 19585 5.86e-03 2.55e-01 2.97e-04%*
PLSCR4 9 8088  7.78e-05* 2.83e-01 6.21e-01
PSPH 5 33 6.54e-04 8.46e-04* 8.48e-04
PTPRCAP 5 236  6.30e-04 9.09e-04* 2.06e-01
RAB26 5 26 4.36e-04* 3.92e-04* 6.95e-04
RHBDL2 6 4135 3.28e-04* 1.00e+00 3.21e-04*
RUVBL2 3 4452  7.40e-01 1.64e-05* 1.44e-01
SH3BP4 19 2016  4.55e-01 4.64e-04* 4.04e-04*
SIVA1 4 1744 4.40e-04* 6.43e-01 4.03e-04*
SLFN14 10 12265 1.21e-04* 5.43e-01 1.75e-04*
SNURF 3 6 1.21e-04%* 1.21e-04* 1.21e-04*
SYNE2 104 19289  2.45e-04* 1.33e-01 6.24e-04
UPKI1B 8 388  4.21e-04* 7.52e-04* 5.36e-04*
VEPH1 23 3267 4.10e-01 3.05e-04* 1.60e-01
WBSCR17 10 9522  2.58e-04* 8.31e-01 5.89%¢-02
WEFDC11 1 19 2.22e-04* 2.22e-04* 2.22e-04*
ZNF665 6 8054 4.15e-04* 1.71e-01 9.37e-04

If the gene was one of the top 20 most significant genes for that weighting scheme, its p-value is marked with an asterisk
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Table 2.6: Annotation and Distribution of Variation within MSGN1 in Participants of Ex-
ome Array Study

Variant Annotation Minor Allele Minor Allele

in Cases in Controls
2:17998025, A—T exonic, synonymous SNV 2844 795
2:17998027, C—G exonic, nonsynonymous SNV 0 2
2:17998095, C—T exonic, synonymous SNV 2848 800

Annotation from ANNOVAR

One gene was found to be significant at the genome-wide level when weighting by the
beta function transformation of their minor allele frequency. For that weighting scheme, the
p-value of MSGN1 on chromosome 2 is highly significant, with a p-value of 1.10- 10719,
The exome array assayed three polymorphic variants within this gene, whose variants are
characterized in Table 2.6. Two of the MSGNI1 variants are common, and the third is
very rare, with a MAF of 0.000224, and was observed in two heterozygous controls. This
SNV, positioned at chr2:17998027 in the HG19 assembly, is given a weight of 24.86 by the
beta function. The p-values for MSGNI1 for the other two methods are not significant (the
p-value for both equal weights and CADD weights is 1.00).

The other two weighting methods do not identify any genes as associated with early
onset breast cancer at the pre-set significance threshold.

Given the importance of the HLA regions in many disease processes, the suggestive sig-
nificance of a variant within that region in the single marker regression analyses suggested
that a closer investigation of variants that were near that suggestive variant may be fruitful.
Figure 2.8 plots the significance of all variants within a 500 kilobase region around the
HLA-DOA gene that were included in the single variant regression analysis of the BCFR
participants. The p-values for the HLA-DOA gene were 0.548, 0.008, and 0.323 for the
equal weights, MAF weights, and CADD weights respectively. While this region may be a

promising region to explore for candidate gene studies in the future, there is no convincing
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Figure 2.8. Single Marker Logistic Regression Results for Common Variation Assayed on
the Exome Array near HLA-DOA
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Figure 2.9. Evidence of Shared Genetic Risk for Early- and All-Ages Onset of Breast
Cancer from Gene-Based-Tests in GAME-ON/DRIVE

-log10 p-value

Gene

The horizontal line represents a p-value threshold based on a Bonferroni correction of 1.25- 1073,
Genes whose p-values were smaller than 1073 are presented with p = 10730,

evidence in this population that variation within the HLA-DOA gene is associated with

breast cancer risk.

2.3.2.1 Comparison with Breast Cancer of All Ages of Onset

Forty genes were among the twenty most significant genes calculated by at least one of
the three weighting methods. Of these, thirty-eight contain at least one variant interrogated
by the GAME-ON/DRIVE summary statistics, and could therefore have a gene-based test
constructed for replication. The two genes that are not found in GAME-ON/DRIVE are
NOXTIA and SNURF, CELF2, SIVA1, and KPNA7. Figure 2.9 summarizes the results of
the gene-based tests based on the GAME-ON/DRIVE summary statistics of the genes. The
VEGAS software is limited in its ability to calculate very small p-values, and reports a p-
value of zero if 10,000 permutations continue to find smaller p-values. In Figure 2.9, these
genes are represented as having a p-value of 10739 for purposes of scale.

Three genes, FGFR2, NEK10 and MKLI, are significant in the GAME-ON/DRIVE

results using the VEGAS method of combining p-values.
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Table 2.7: Summary of p Mixing Parameter for Suggestive Genes

Gene Variants in ~ p Equal p MAF p CADD
Gene Weights weights Weights
FGFR2 8 0.0 0.0 0.5
MKL1 18 0.0 0.0 0.0
MSGNI1 3 1.0 1.0 1.0
NEK10 11 1.0 0.0 1.0

2.3.2.2 Appropriateness of SKAT-O

The genes MSGN1, NEK10, FGFR2, MKLI1, and SIVAL1 are identified as being sugges-
tively associated with breast cancer. In many weighting scenarios for these genes, the value
of p, the mixing parameter that combines the SKAT with the burden test in the SKAT-O
analysis is zero. In these genes (all weighting methods for MKL1; and under equal weight-
ing and beta weighting for FGFR2 and SIVAL1), the value of p indicates that the SKAT test
was more appropriate than the burden test. In contrast, for MSGNI, p is estimated to be
1 for all weighting methods, indicating that the burden test was more appropriate than the
SKAT test. The analysis of NEK10 requires a mixing parameter of 1 in the equal weights
and CADD weights scenario, and a mixing parameter of O in the beta weighting scenario,

as summarized in Table 2.7.

2.3.2.3 Novelty of Associations

The five genes were analyzed using conditional analyses that controlled for any SNVs that
were suggestively associated with breast cancer in the single marker regression analyses of
the same participants. Of these five genes, only FGFR2 contained variants that were sug-
gestively associated with breast cancer in the single marker regression analyses, and these
three are noted with a  in Table 2.8. After conditioning on these three variants, in none of

the weighting methods does the analysis produce a p-value that was less than 0.05. This
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Table 2.8: Annotation and Distribution of Variation within FGFR2 in Participants of Exome
Array Study

Variant Annotation Minor Allele Minor Allele

in Cases in Controls
10:123239388, T—C exonic, nonsynonymous SNV 2 0
10:123256135, A—G exonic, nonsynonymous SNV 1 1
10:123310871, G—A exonic, nonsynonymous SNV 22 3
10:123325158, A—G exonic, nonsynonymous SNV 17 11
10:123337335, A—>G*A intronic 3322 809
10:123346116, G—A* intronic 3249 786
10:123346190, G—A*A intronic 3205 780
10:123352317, A—G*» intronic 3162 774

Annotation from ANNOVAR

Positions refer to the HG19 assembly

*Variants identified by previous research as associated with a breast cancer phenotype
AVariants identified by the GWAS as associated with early onset breast cancer

suggests that the variants that could have been identified using single marker regression
methods, or those in close LD with them, drive the bulk of the association between FGFR2
and early onset breast cancer risk in this sample. The other four genes contain associations
with early onset breast cancer risk that would not have been identified using single marker
regression methods.

Next, these five genes were queried in the NHGRI-EBI catalog to determine if any har-
bor variants that are known to be associated with a breast cancer phenotype from an earlier
study. For FGFR2, the NHGRI-EBI catalog contains six variants that were significantly
associated with a breast cancer phenotype in at least one study, and four were assayed on
the exome array. These four variants were located at chr10:123337335, chr10:123346116,
chr10:123346190, and chr10:123352317. They are noted with an asterisk in Table 2.8. Af-
ter conditioning on the four previously-identified variants, in none of the weighting meth-
ods does the analysis produce a p-value that was less than 0.05: the p-value for equal
weights was 0.14; the p-value for beta weights was 0.16; and the p-value for CADD weights
was 0.08. This suggests that the already-identified variants, or those in close LD with them,

drive the bulk of the association between FGFR2 and breast cancer risk in this sample.
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Table 2.9: Annotation and Distribution of Variation within MKL1 in Participants of Exome

Array Study

Variant Annotation Minor Allele Minor Allele

in Cases in Controls
22:40813413, A—G exonic, nonsynonymous SNV 2 1
22:40814500, C—T exonic, nonsynonymous SNV 2770 750
22:40814533, T—C exonic, nonsynonymous SNV 1 0
22:40814542, A—G exonic, nonsynonymous SNV 1 0
22:40814581, T—C exonic, nonsynonymous SNV 0 1
22:40814749, T—C exonic, nonsynonymous SNV 1 2
22:40814878, T—C exonic, nonsynonymous SNV 2 1
22:40814950, T—C exonic, nonsynonymous SNV 2 0
22:40814988, A—G exonic, nonsynonymous SNV 2 0
22:40815256, T—C exonic, nonsynonymous SNV 27 1
22:40815309, T—C exonic, nonsynonymous SNV 1 0
22:40816431, A—G exonic, nonsynonymous SNV 1 1
22:40816443, A—G exonic, nonsynonymous SNV 1 1
22:40819589, TG exonic, nonsynonymous SNV 0 1
22:40820151, C—T intronic 2127 664
22:40820273, T—C exonic, synonymous SNV 27 1
22:40820311, T—C exonic, nonsynonymous SNV 1 0
22:40849704, C—A intronic 2684 810

Annotation from ANNOVAR
Positions refer to the HG19 assembly

Table 2.10: Annotation and Distribution of Variation within NEK10 in Participants of Ex-

ome Array Study

Variant Annotation Minor Allele Minor Allele

in Cases in Controls
3:27326097, T->G exonic, synonymous SNV 2049 492
3:27326131, C->T exonic, nonsynonymous SNV 2 0
3:27326451, G->A exonic, synonymous SNV 2106 507
3:27332820, G->A exonic, nonsynonymous SNV 2053 495
3:27333024, T->C exonic, nonsynonymous SNV 1 0
3:27338698, C->T exonic, nonsynonymous SNV 99 22
3:27338730, A->G exonic, synonymous SNV 1 0
3:27343261, T->C exonic, nonsynonymous SNV 70 16
3:27349047, A->G intronic 1893 515
3:27385817, T->C exonic, nonsynonymous SNV 1 0
3:27387641, T->C exonic, nonsynonymous SNV 40 14

Annotation from ANNOVAR
Positions refer to the HG19 assembly

46



Figure 2.10. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE
for FGFR2
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Annotation for each of the variants in these genes is found in Table 2.9 through Table2.10.
SIVA1 and MSGNI1 both had no known associations with a breast cancer phenotype. The
NHGRI-EBI catalog reports two variants that are known to be associated with breast cancer
in the MKL1 gene-rs6001930 and rs17001868. Both of these known variants are annotated
to intronic regions, and neither was assayed by the exome array. In the CEU population of
the 1000 Genomes, the highest 2 measure of LD between either of these SN'Vs and any of

the 18 SN'Vs in the exome array data was 0.03,124

suggesting that the association reported
at MKL1 was not driven by already-known single-variant associations. The segment of
chromosome 3 that contains NEK10 is gene dense. Previous single marker regression as-
sociations have been reported both for the intron of NEK10 itself and the 3 prime UTR of
SLC4A, which is immediately adjacent to NEK10. None of these variants were directly
interrogated by the exome array, and none were in high LD with any of the measured vari-
ants.

Since the identification of the four suggestively associated genes relied on replication

from the GAME-ON/DRIVE summary statistics which assayed different variation than the
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Figure 2.11. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE

for NEK10
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Figure 2.12. Linkage Disequilibrium and p-values of Variants from GAME-ON/DRIVE

for MKL1
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BCFR participants that were measured using an exome array, Figures 2.10 through ?? allow
for a closer examination of the p-values and correlations between the GAME-ON/DRIVE
variants that were included in the gene-based tests for each of the three genes that were
suggestively associated with early onset breast cancer. In these figures, the variant with the
most significant p-value in the GAME-ON/DRIVE analysis is highlighted, and the linkage
disequilibrium of every other variant with that SNV is presented (calculated as an r2).

One insight from this investigation is that some variants within NEK10 were genome-
wide statistically significant in the GAME-ON/DRIVE summary statistics (p < 5 - 1079),
but had not been individually reported within the manuscripts of the original study. There-
fore, the NHGRI-EBI catalog of GWAS results does not list NEK10 as associated with
breast cancer, even though previous study populations did contain evidence of its associa-
tion.

Other insights from the LocusZoom plots suggest which variants may be driving the
gene-based results. Within the GAME-ON/DRIVE participants, the association within
FGFR?2 is driven by variants with very small p-values; re-running the VEGAS analysis
including only the variants with a p-value less than 5 - 1078 no longer identified a statisti-
cally significant p-value. In contrast, the variants that were included within MKL1 were all
not statistically significant on their own, but collectively produce a gene-based p-value that
was statistically significant. The association found from the GAME-ON/DRIVE summary
statistics within NEK 10 appears to be driven by some variants that are statistically signif-
icant on their own, and some that did not reach the level of statistical significance, as a
re-run of the VEGAS analysis including only the variants with a p-value less than 5 - 10-8

still produces a p-value that was less than 10739,
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2.4 Discussion

This analysis identifies three genes in which variation is associated with risk of early onset
breast cancer: FGFR2 (discovery p =2.18- 10-3; replication p < 1030, NEK10 (discov-
ery p=1.20- 1073; replication p < 10739), MKL1 (discovery p =2.62- 10~4; replication
p< 10_30), and MSGN1 (discovery p =1.10- 10_19; replication p unavailable). Three of
these genes are also suggestively associated with an overall breast cancer sample (FGFR2,
MKLI, and NEK10). The association at MSGN1 appears to be an artifact that is induced
when MAF is used to weight.

All three of these genes are known to be instrumental in mechanisms that are associated
with cancer: FGFR2 is part of the known cancer pathway of PI3K-AKT,'?> NEKI10 is

1,126 and MKL1 has been linked to oncogenic pheno‘[ypes.127

involved in cell cycle contro
The gene-based nature of the SKAT-O test also suggests that the product of these genes may
be involved in breast cancer development, and the EMBL-EBI gene expression atlas!?® was
able to verify this. All four are expressed in breast tissue, and there is evidence that three
are differentially expressed in breast cancer tissue when compared to normal breast tissue:
FGFR2 (over expressed), NEK10 (under expressed), and MKL1 (under expressed).

Conditional analyses suggest that with the exception of FGFR2, the associations can-
not be explained by risk loci that either were already known to be associated with disease,
or that would be identified in a single marker regression analysis. This validates the ad-
ditional resources needed to interrogate the variants assayed with the exome array, and
analyze those variants using gene-based tests. In contrast, this investigation suggests that
the association found between FGFR2 and early onset breast cancer is largely driven by
loci that were already known to be associated with breast cancer risk.

This analysis also suggests that weighting by predicted functionality can highlight

genes that would not otherwise be identified, but that weighting by minor allele frequency
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alone may be problematic. While in neither of the weighting methods is the genomic in-
flation factor larger than the genomic inflation factor using equal weights (suggesting that
there is no systematic inflation of type I error rates for either weighting method), weighting
by minor allele frequency results in the MSGN1 gene returning an association p-value of
1.10-10719, while it was not even nominally significant using either of the other weighting
methods, or the replication data. While it is possible that the MAF weighting highlighted a
true causal gene that was missed by the other weighting methods, it is more likely that this
instead demonstrates an over-sensitivity of the MAF weighting method to very rare variants
in genes with a small amount of variation. Since rareness is not the strongest predictor of
risk, the CADD weights represent a possible preferable method to allow prior knowledge
to increase the power of gene-based tests. If an allele that is rare, but has no other a pri-
ori expectation of being involved in disease would be given a small weight by the CADD
score. The MKLI1 gene, which was found to be suggestively associated was only identified
as one of the top 20 most significant genes using the CADD weighting method.

This analysis also speaks to the appropriateness of using a gene-based test that incorpo-
rates both common and rare variants. The collective effect of the “common” variants in the
genes MKL1 and NEK10 are of sufficient strength to highlight these genes in gene-based
tests in the modest sample size of the primary data analysis, but no risk loci in those genes
were suggestively associated with risk in a single marker regression.

Similarly, this analysis also supports including all non-intergenic variants a gene-based
test, and not only those that are expected to cause a change in amino acid translation.
Sensitivity analyses (not shown) demonstrated that a analysis that was restricted to only
nonsynonymous variants would not have produced any associations, and the associations
were instead driven by variants that do not alter amino acid translation. The associations at

FGFR?2 and MKL1, and NEK10 are all driven by variants that were annotated to the introns

51



of those genes (that is, conditional analyses controlling for the intronic variants produced
non-significant p-values for almost all weighting methods).

Additionally, the analysis here provides possible insight into the genetic architecture of
genes that are associated with early onset breast cancer risk. The p mixing parameter esti-
mates indicate that SKAT is a more appropriate test than the burden test in many scenarios.
While the estimates of the mixing parameter varied from test to test, in general, the SKAT
test was more appropriate for genes that contained even a modest number of variants. This
suggests that that few variants in these genes were causal, and that the effects of the causal
variants may be both protective and deleterious. Conversely, the p estimate for the smaller
genes suggests that they were better interrogated by the burden test, which is consistent
with the assumptions of the burden test that each allele have the same magnitude and di-
rection of risk, and are all causal. It appears that genes with a small number of variants are
best analyzed using the burden test, as it is more likely that the small number of variants
within them all have the same direction and magnitude of effect. In contrast, the genes that
have more loci with variation are better assayed using SKAT. Similarly, the single marker
regression analyses, which identified nominally significant SNV that were both protective
and deleterious, support the use of a gene-based test such as SKAT that allows for bidirec-
tional effects. The heterogeneity of the pestimates validate the small loss in power that is
incurred by using the omnibus SKAT-O test.

This analysis suggests several next steps. Given the concerns with the MAF weighting
method that lead to the identification of MSGNI1, and the not-genome-wide-significant p-
values of the FEFR2, MKL1, and NEK10 in the primary analysis, these associations need to
be replicated in an independent analysis. The ideal study population for replication would
be restricted to women who developed breast cancer early, in order to better elucidate
any differences in the genetic risks between the early and late onset disease. Additional

extensions of this analysis may also be able to identify genes in which rare variation is
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associated with risk if they incorporated sequencing data. This would allow for a more
complete understanding of the relationship between exonic variation and early onset breast
cancer. Similarly, as methods emerge that allow non-exonic variants to be annotated to a
given gene, set-based tests will be able to expand understanding of how intergenic regions
can be associated with breast cancer risk. At the present time, there is only a rudimentary
ability to annotate non-exonic variants to genes, but this is a subject of much study. As
the understanding of biological pathways improves, variants will be able to be annotated
to a particular gene in ways that are more sophisticated than ANNOVAR’s annotation.
Regulatory variants that are not spatially near the genes that they regulate could be included
in the analysis. When this is combined with the increased ability to assay rare variants
that will be provided by next generation sequencing technologies, if these variants are
responsible for breast cancer risk, their inclusion will improve the ability of gene-based
tests to identify genes responsible for breast cancer.

The participants of these studies are all of a homogeneous age (younger than 51 at
diagnosis), ancestral background (European), and gender (women). As breast cancer af-
fects people of all ages, ancestral backgrounds, and genders, additional SKAT-O analyses
in populations with different characteristics will help to determine whether the genes that
harbor variation that is associated with breast cancer risk differ across populations. The
same analyses that were carried out in this thesis, when applied to different populations,
may uncover additional insight into the genetic basis of differences in risk and mortality
that are associated with these non-genetic traits.

This analysis has some limitations. Since the study population has an unequal distribu-
tion of cases and controls, rare variants are more likely to be seen in the cases, resulting in
more power to detect rare deleterious variants over rare protective ones. The participants in
the replication data set were selected from breast cancer patients of all ages, so it can best

provide evidence of replication for genes and variants whose effects are similar for both the
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early- and late-onset disease, and is only able to replicate evidence of generic drivers of the
early onset disease in the scenario that the gene is also causal in the late-onset disease. The
replication data set also did not explicitly interrogate rare variation, so this analysis could
only fully examine variants for replication if they could be well-imputed. The composition
of the replication data set also included many of the same participants as the discovery
analysis (17% of the cases in the replication and 2% of the controls), and replication with
a fully independent population would have been preferable. A third concern is related to
the external validity of the results. Different populations have distinct rare variants that are
present in disease associated genes.129 It would need to be verified whether novel SNVs in
the implicated genes have the same effect on breast cancer risk as the ones interrogated by
this study.

In conclusion, this analysis continues to suggest a role for the genes NEK10, FGFR2
and MKLI1 in the genetic etiology of breast cancer. The associations in the MKL1 and
NEK10 genes are driven by variants that had not been reported before, there may still be
additional variants to be discovered that contribute to disease risk. These three genes, if
validated, represent an increase in the understanding of the underlying biology of breast
cancer carcinogenesis, and implicate their gene-products as being associated with tumor
development. These four genes represent possible targets for future attempts at chemopre-
vention of breast cancer. The analysis indicates that the SKAT-O method identifies exonic
variation that would not be identified using single marker regression methods, and sug-
gests that analyses that restrict themselves to only single marker regressions will continue
to find missing heritability in early onset breast cancer risk. This validates the extra cost
and statistical complexity that is needed to measure them. This analysis also incorporates
prior knowledge about each variant in a novel way, and avoids discarding data in favor of
weighting each variant by the CADD deleterious score, and suggests that this weighting

method that can be used when investigating the genetic architecture of other diseases.
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CHAPTER 3
THE EFFECT OF GERMLINE GENETIC VARIATION IN GENE

REGIONS ON SURVIVAL OF EARLY ONSET BREAST CANCER

3.1 Background

One in eight American women will develop breast cancer over her lifetime.! While treat-
ments and survival rates improve over time, almost 25 percent of women who are diagnosed
with breast cancer will eventually die of the disease. Fear of recurrence and mortality re-
sults in a lower quality of life for women who are di:clgnosed.3_6 The risk factors that
contribute to mortality are still imperfectly understood even though a better understanding
of the drivers of mortality could help to develop interventions that prolong life.

Known risk factors for mortality include the maturity of the tumor at the time of de-

130.131 45 well as molecular

tection, comorbidities of the patient, and treatment decisions,
markers that quantify the inherent aggressiveness of the cancer.1327135 However, even
among women whose cancers are detected and treated similarly, differences in survival
persist after taking tumor subtype and stage at diagnosis into account.!3%137 Women who
are diagnosed with breast cancer before the age of fifty comprise one group of women
who are disproportionately likely to die from breast cancer. These women account for one
in five of those diagnosed with invasive breast Cancer,2 and have lower three-, five-, and
ten-year survival rates than women diagnosed after age 50.28 These younger women tend

138-141

to have both more aggressive tumor subtypes, and independent of tumor subtype,

poorer prognosis.2>—2’
Germline genetic variation may be responsible for a portion of the heterogeneity in

mortality outcomes. Many biologically plausible pathways exist to connect germline ge-

netic variation and breast cancer mortality, and any given causal variant may affect risk
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through any of these different pathways. Germline variation may affect a patient’s ability

to metabolize a drug, which in turn can affect survival by altering the amount of available

11,15,20,142-145

active metabolites of pharmaceutical treatments, or increase the probabil-

ity of treatment-limiting adverse events.310 Similarly, germline genetic variation may

7,12,146,147

be responsible for a cellular environment that favors metastases, and may alter

13,15

cellular functions such as angiogenesis, growth signaling,16 telomere length,17 in-

flammation,'® immune response,l9 DNA repair,20’148’]49 apoptosis,m’142 and cell cycle

control. !4

At least three lines of evidence have implicated germline genetic variation as a risk
factor for mortality in breast cancer patients: animal studies, family studies, and identified
loci from linkage and candidate gene studies. Recent in vivo animal studies identified sev-
eral variants in possible possibly drugable pathways that prevent metastases in mice.120-151
Family studies have compared outcomes of related and unrelated women, and found that
after controlling for shared environmental influences, the related women had more similar
disease trajectories.lsz’153 Specific variants and copy number alterations have been asso-

ciated with mortality,2!-144:148.154-165

most of which have been identified through linkage
analyses or candidate gene studies.

There is evidence that germline genetic variation plays a larger role in the etiology of
early onset breast cancer than the etiology of the late onset disease.20:160.167 Thjg suggests
that a unique set of variants may be responsible for poor outcomes in younger patients,
although this has not been definitively established yet.

There is suggestive evidence that germline genetic variation may play a role in mortality
in women diagnosed with breast cancer by mediating the effectiveness of pharmaceutical
treatments, particularly in women who are treated with adjuvant tamoxifen therapy. In

the early 1980’s, tamoxifen was established as effective treatment to reduce mortality for

women whose tumors were estrogen receptor positive (ER+). By 2002, adjuvant treatment
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of these tumors with tamoxifen or other estrogen receptor antagonists has been recom-
mended by the American Society of Clinical Oncology, which has lead to between 70 and
90% of women with ER+ tumor using tamoxifen as part of their therapy.l‘m’141

Tamoxifen is metabolized by several enzymes that are encoded by genes that contain
several highly polymorphic variants. Variation in the gene CYP2D6 has most convincingly
associated with differential presence of the active metabolites of tamoxifen. This has lead
to the suggestion that the presence of certain CYP2D6 genotypes could be used clinically to
determine an appropriate dose of tamoxifen.143-168:169 However, to this point, researchers
have not been able to definitively demonstrate that the variation in internal dose that is
a result of these polymorphisms translates to different survival outcomes. 344 A previ-
ous genome-wide investigation suggested that haplotype analyses that included CYP2D6
polymorphisms were associated with mortality, 145 although taken alone the CYP2D6 poly-
morphisms were not statistically significant, resulting in a still unknown significance of the
effect of these CYP2D6 polymorphisms on mortality.

In addition to estrogen receptor antagonists, the last decade has seen the release of
multiple other new pharmaceutical treatments for breast cancer that do not rely on cyto-
toxic chemotherapies. These newer drugs have pharmacodynamics that are not completely
understood, and variants that are with genes that encode enzymes that metabolize these
treatments (or variants that effect the expression of these enzymes) have a strong chance to
be able to influence survival. This has not yet been determined.

Many statistical methods have been developed to identify germline genetic variation
that is associated with disease. The most appropriate statistical method will depend on the
still-unknown characteristics of those variants: how many are associated with mortality;56
how they are distributed throughout the genome,5 7 and the what is the form and strength of
the relationship between the variant and mortality.s&15 3 For polygenic traits, it is likely that

the causal variants are distributed such that they may be found in multiple combinations of
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these aspects, and therefore multiple methods may need to be employed in order to identify
them all.

One method that has been employed to instigate the relationship between germline ge-
netic variation and mortality is single marker regression analyses. Single marker regression
analyses are an appropriate tool to identify loci that are associated with disease if the causal
variant is common and of at least moderate effect size, and if the single marker that is being
regressed is either the causal variant or tags it well. Studies have investigated the genome-
wide genetic determinants of breast cancer mortality using single marker regression are
summarized in Table 3.1 and Table 3.2.

In contrast to the evidence from animal studies, family studies, and candidate gene/linkage
studies, the results of these studies have largely been null, and also poorly replicated. Many
of the single marker regression analyses were carried out in small sample sizes (all but one
meta analysis had a sample size of less than 2000), and they were only able to follow their
cohort for a short amount of time relative to the expected median survival of breast cancer
patients (the median study of single marker regressions followed the cases for 6 years, and
none were able to follow for longer than 7 years).

Besides sample size, limitations inherent in single marker regression may have been the
cause of the largely null results. Single marker regressions cannot identify risk loci where
variants are too rare or too weak, and they are also limited by concerns about type I error
rate. Single marker regression analyses conduct a large amount of tests, which requires
employing strict significance thresholds in order to exclude false positives. In many cases,
these thresholds can exclude many truly causal variants.©!

To move beyond single marker regression tests, a class of tests has been developed
to examine variation within a single region: set-based tests. Set-based tests shift the hy-
pothesis from whether an individual variant is associated with a trait to whether any vari-

ation within a predefined set is associated with a trait. The sets are often defined as gene
58



201M] pAjuasardar aq [Im SISATeUR ©JOW © 0} PAINGIIIUOD Pue s)nsal Apmys-a[3urs yjoq paysiqnd jey) sarpns

Alquiasse 6] OH U3 03 1oja1 suonisod

zu1Sisousold

soge e Iooue)) IseaIg

uoI[[Iu [eAIAINS  JO USWIOM YSTUL] )M PAJBIOOSSY UOTIBLIBA

Apms HSOd S'L 0} ogroads pue ‘sisouSerp uowrwo)) Jo UoNeIYNUIPT

jueoyrusis ay) jo syuedonaed  payndwr 190UBD Je 193unoX 10 Ot 10J ApmS SISA[RUY-BION

opIm-awouss JuryioN euonippe €61 ‘IYISLY  LET sILK 9 THET searg  paSe uowom 3N 10T SPIA dUIOUID)

1I01[0J 19SU0-A[Ted L lie)

Qwres oy} woij [eATAINS jsearg Josuo-A[req

saseo Juapuadopur oyroads sisougerp ur sisou3old Surouanpuy

jueoyrusis 9161 ur padKjouad 130UBD Je 193unoX 10 O SUOTJBLIBA J1}oUD)

opIm-owouds SuryloN suoneroosse G¢ do],  964°L8 9¢T sk 9¢S jseorg  peSeuowom 3 €107 POILIOYU] JO UOTIBOYTUSP]
Apms
[J[eoH SosInN ur

PAUTWIEX? UOTJRIOOSSE oL 1APTIS UONEID0SSY

(ATuo K19A00S1p doy, ‘190ued J5821q IPIA -OWOUID)

Ul Ol v’ T=d  Im uSWoMm reysueys uawom ® Aq paynuap]

{01CE]T8Y:H11Y0) 091+ ur pajeordar Areyow  9s9UIYD) JUSPISAI [BAIAING IOOUR)) ISBAIY

66078LEST suoneroosse ¢ doL,  1€0°¢19 66¢ sieaok 9 0S61 [BI0L -reySueys 710 JO SISNIBIAL OTISUSD) [SAON

Kdeioy)

uogIxoure) cprosoueder

juean(pe ur sjuaned Iadue)) 1searq

Surareoax 10} Ade1ay ], udjixowe],

(g1-01-971=4d 100ULD JSBAIq jueAn(py Jo sawodnQ

paurquiod) payedrjdar [eAIAINS  QAIseAul ‘danisod [eSTUT[D) YIIM PIIRIOOSSY

(P18L6€9L:0T4Y2) 931} -101dodar Tebo1 1 snooT saynuapy

€LE€60S0TSI ‘sisA[eue S9sed /1] pue GO Jo -90UALINIYY uowIoy yim ApmS uoneroossy

Arewtd oy ur SANS S1 $39s Juopuadopur om], 0€ sk,  (ObCT sjuaned asoueder  110C IPIM-WOURD)
ysu

Je SIR9A QH1°]€ UMM [eAIAIDS hhliize) REhlile)

I9JURD JSBAIQ QAISBAUL oygroads JSBAIQ QAISBAUL jsearg ur sisougoid

jueoyusIs M UQWOM GECH I90UBD M USWOM Jo Apn)S UoOneId0SSY

OpIM-oWOUd3 SUIYION ur padKjouas (o1 dol,  76T'8TS €6 SIBIAQ  GHII 1searg [esnedousunisod Q10T IPIA -OWOUAD) Y

swny, dn
uondrosaq SJuAAY MOT[0] uondrosaq
s3urpurj uoneordoy  sjueLIEA ueIlpIN N QwoonQ uonendod  TeOX apiL Apms

AN[BUOIA J90uR)) 1SBalg pUE UONBLIEA O1JQUAL) SUI[ULIIN) U39M]2q UOTIRID0SSY A} JO SAIPNIS SPIM-9WOUdD) :[°¢ J[qRL

59



901M] pAjuasaIdar 2 [[1m SISA[BUR BIOW € 0} PAINQLIIUOD Puk s} nsal Apnis-o[3uls yjoq paysiqnd jeyy sarpni§

Alquiasse gTOH 9y 03 1oJa1 suonisod

BOIOY YINOS WOIJ
UaUWIOM [RUONIPPR
611 ul padAiouad

oM way P panduar
a1o<g)usy pue ¢ 1°dKigng
Ul SJUBRLIBA UOWIWOD  padA) [eAIAInS BIIOY] Jown], £q SIoYIRAl
Aue pue ‘1" < JYIN  -Oud3 Q213 yInog ‘[noas O1)AUIN) pue [BITUI]D)
JueoyTuSIS pue o O >dyum  085°01TT -00UQLINOAY Ur Sosed Jooued Surs() [eArAIng 100ue))
IpIm-awouasd SuryoN PayIuapI SANS Auy v1e sk ZELl 1$BAIQ JUAPIOU]  GIQT JsBaIg JO UOTIIPAI]
sage [
JO UQWOM YSIUL] o1 AdeIoy L surOpUy
[eAIAINS pue ‘sisouSerp 19)3e A[eoyroadg
oyroads Je 193uUnoX 10 Ot [BATAING J0URD)
jueoyrudis  syudned [ [0S YIm )9S I0ued  pagde uowom N Jsearg s101paid 14 €1be1
IpIm-owouasd SuryloN eiep Jjuopuadopur om],  §/4°98+ L¥S sk [ [¥El jsearg  JosisA[euB BN S10T e wisiydiowAjod
sosed
gaur 01-¢1=4d
‘8TS68ESTITT4Ud)
$196S07ST uor[[TIw Ansaoue
‘7T YS1y ur s1oylo 601 [eAIAInS ueadoing
Lepue (q_o1-61=d panduwr oyroads Jo suonendod ¢ [BATAING 1OUED)
$€012T6C91:2Y0) :000°00L I90UBd ut sarpms 158aIg JO SIOMNIRIAl OOUID)
L8Y09LBY 15T V/N  -000°00C 0062 sreaok ¢ 66 LE seorg  Jo sIsAeue-elRN  S10T [°AON JO uonedynuapy
ourny, dn
uonduosaq SIUAAY MO[[0] uonduosaq
sSurpury uoneordoy  SjueLIBA uelpo]N N QwoonQ uvonendod  TeOX aniL Apms

(PaNUNIU09) AJEIIOTA JOoUR)) }SBAI PUR UOTJBLIBA OT)JOUL) SUI[ULISN) UIIMI] UOTIBIOOSSY ) JO SAIPNIS OPIM-IUWIOUL) 17°¢ R,

60



boundaries, so that the results can be interpreted easily in the context of cellular biology.
Gene-based tests reduce the multiple testing burden when compared to a single marker
regression, and also allow for variants to contribute evidence for risk that could not be as-
sessed using standard single marker regression approaches, such as variants that are too
rare to test individually, and common variants whose effects are too modest to detect with
the strict significance thresholds necessitated by single marker regression tests. In the sce-
nario where any disruption to a gene product can increase risk of disease, gene-based tests
can detect those genes, even if any single variant is too weakly associated with disease to
be detected with single marker regression analyses.

In many diseases, variants in protein coding regions of the genome harbor much of the
variation that is associated with disease risk. While analyses that focus on gene regions
exclude a large percentage of the genome, the central role of genes in transcription and
ultimately amino acid translation makes variants that reside within gene boundaries repre-
sent biologically plausible candidates for association with disease.3*74176.177 1y addition,
variation outside of gene regions can be less reliably attributed to a particular gene, and
therefore are problematic to include in gene-based tests. These considerations can justify
the use of methods such as gene-based tests that can well-interrogate these regions, even if
other complementary methods will then be required to examine the rest of the genome.

Next generation sequencing would comprehensively interrogate all variation within
gene boundaries, but these technologies are still expensive to implement at a scale needed
for epidemiologic genome-wide studies. In contrast, exome-based arrays directly measure
some rare variation in gene regions, and cost less than whole-exome or whole-genome se-
quencing. Gene-based tests can also be easily implemented in studies that have measured
genetic variation with exome arrays.

Many set-based tests have been developed that can be implemented as gene-based

tests.3”"73=77 SKAT-037 combines two of the most commonly used methodologies: bur-
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den tests and the sequence kernel association test (SKAT). The burden test is more powerful
than the SKAT test if all of the minor variants in a gene increase risk of disease; and the
SKAT test is more powerful than the burden test if the minor variants within a gene both
increase and decrease the disease risk.)’ SKAT-O calculates both the burden test statistic
and a SKAT test statistic for each gene, and then uses the data adaptively to weight and
combine the two test statistics by a mixing factor. In most situations, SKAT-O is more
powerful than either test alone.3” The SKAT-O methodology has been extended to be im-

plemented as a Cox regression,178

allowing for an estimation of the hazard associated with
each additional minor allele.!”” No set-based tests have as yet been applied to investigate
the genome-wide genetic determinants of breast cancer prognosis.

Many studies that implement gene-based tests further restrict the variants, and include
only those that are (1) rare or (2) independent annotation sources identify as “functional”
(for example: nonsynonymous variants). “Nonfunctional “ or “common” variants are ex-
cluded in an attempt to remove noise that may be introduced if those variants are not asso-
ciated with the trait. However, these exclusions rest on one of two strong assumptions: (1)
that rare variants hold all disease causing variants or (2) that previous knowledge of genetic
function will continue to predict future variants that are associated with disease. Since the
era of genome-wide analyses has frequently found new discoveries of biology in variants
that were thought to be “junk” DNA, 180,181 5y approach that allows all variants in a set to
be interrogated would be preferable.

To this end, SKAT-O can incorporate prior knowledge about variants by means of a
weight on the individual variants.””’® In most genome-wide analytic scenarios, the use
of weights will not increase type I error rates,>® and a weight that reflects the true disease
process can significantly improve power.37

Currently, weighting is largely implemented in a way that up-weights variants that are

rare, which operationalizes the assumption that evolutionary constraints keep variants that
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strongly increase risk of disease at low frequency in the population. However, not all vari-
ants that cause disease are kept at a low frequency.80 Several annotations have been devel-
oped that more comprehensively assess the probability that a given variant may influence a
trait. These functional annotations include SIFT,81 PolyPhc::n,82 and combined annotation
dependent depletion (CADD) score.>? They each operationalize the knowledge that varia-
tion at certain portions of the genome are expected to have a greater effect on disease risk.
Of these, the CADD algorithm combines many single dimensional annotations into one
continuous score of the predicted “deleteriousness” of each variant in the genome. While
there have been few attempts to translate these annotations into weights, the CADD scaled
score has a range of values that is similar to the frequency weighting that is recommended
by the SKAT authors. The scaled CADD score can be directly used to up-weight variants
in the SKAT-O tests that are expected to affect survival, although this has not yet been done
for any trait.

With this as background, this manuscript will investigate whether variation in genes is
associated with mortality in a cohort of women who have been diagnosed with early onset
breast cancer using a SKAT-O methodology. Since the SKAT-O approach examines the
effect of all variants collectively, gene regions may be identified that contain rare variants
or common variants of weak effect that would not have been identified through a single
marker regression analysis alone. This manuscript will be the first to investigate directly
the influence of rare variants in gene regions on breast cancer mortality, as all previous
genome-wide investigations into the genetic determinants of breast cancer mortality have
incorporated information from common variation assayed on genome-wide arrays, and the
variants that can be reliably imputed from them.

This manuscript will also investigate whether germline genetic variation influences tu-
mor characteristics that are identified at the time of diagnosis and are themselves known

to be associated with prognosis: the tumor’s estrogen receptor (ER), progesterone receptor
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(PR), and human epidermal growth factor receptor 2 (HER2) expression statuses, and the
grade and stage of the tumor at diagnosis. While the participants of this study are followed
for a long time compared to most previous genome-wide survival studies in breast can-
cer, investigating the effect of germline genetic variations on these intermediate markers of
tumor aggressiveness will complement the mortality analysis, and may produce valuable
insight into genetic determinants of more deadly cancers that can be detected in their early
stages.

Despite the benefits of understanding how genetic variation is associated with mortality
in breast cancer patients, genome-wide investigations have not yet full characterized this
relationship. This manuscript will investigate to what extent this lack of consensus is due to
lack of use of gene-based tests, which can identify different classes of variation than single
marker regression tests.

In order to use all data available from the exome array, this analysis applies weights
that incorporate prior knowledge of the expected contribution of the variant. This approach
allows the analysis to include all measured variation in a gene region, which would allow
for the discovery of novel associations within that gene that were not a priori considered to
be likely associations.

Gene-based tests will also allow for an investigation into whether all variation in the
CYP2D6 region (or any other putative pharmacogenomic gene) collectively translates into
differences in survival outcomes, either in all participants, or those with ER+ tumors ( in
younger women with ER+ tumors from these areas, 80-90% of them are likely to have been
treated with tamoxifen!4%:141). Previous haplotype analyses have implicated this region,
which suggests that gene-based tests, which also combine strength across several causative
variants, may be an appropriate way to investigate this region.

This manuscript will also examine previously identified loci that have been identified

with mortality in our relatively larger sample. While the analyses of this manuscript inter-
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rogate a different set of variants than the previous genome-wide studies of mortality. Given
the low levels of replication in the mortality analysis, this will help bring more evidence to
whether the results from smaller studies represent a robust finding.

This analysis will also result in a better description of the similarities and differences of
the genetic determinants of breast cancer that may be a function of age, and also compare
the loci that are associated with risk with those that are associated with prognosis. The
participants in the primary analysis are largely under the age of 50. Since most previous
studies of breast cancer mortality were comprised of participants who were relatively older
than this study population, the results will compare the genetic determinants of mortality
between women who are diagnosed earlier and those diagnosed later. There is increasing
evidence that many of the variants that are responsible for risk do not play a large role in

182 and this manuscript will investigate whether previously identified variants

prognosis,
for risk are also involved in either mortality or the development of more aggressive tumors
in ways that can be measured at diagnosis (as measured by ER/PR/HER?2 status, stage, and
grade).

If genes are identified that are associated with breast cancer survival, this would im-
plicate that gene and allow for an improved understanding of the biological processes that
influence breast cancer mortality. If the effect sizes of the genes are large, the mortality
analysis could identify genetic markers that could be used in conjunction with other non-
genetic risk factors to identify patients who may benefit from additional treatment, and also
those who may safely be able to decide upon a less aggressive treatment with fewer side
effects. If the genetic prognostic factors from this population are similar than those found
in the late onset breast cancer cases, these results could support using the same genetic risk

scores for mortality for women with all ages of diagnosis, and if they differ, then further

work will be needed to develop a prediction model that is most appropriate for early onset
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Table 3.3: Characteristics of Studies Included in Primary Analysis

Study Name Study Location Years Case Criteria Cases
Recruiting
Breast Cancer Family Registry Australia 1992-2000 Living in the Melbourne and 477
Sydney metro areas, family
recruited from the Victoria and
NSW cancer registries
Breast Cancer Family Registry Ontario 2001-2010 Ontario Cancer Registry 559
Breast Cancer Family Registry Philadelphia, PA 1996-2000 Living in Philadelphia 272
Breast Cancer Family Registry New York, NY 1996-2000 Living in New York, New Jersey, or 393
Connecticut
Breast Cancer Family Registry Utah 1996-2012 Living in Salt Lake City 100
Genetic Epidemiologic Study of Germany 1992-1995 38 clinics in the 382
Breast Cancer by Age 50 Rhein-Neckar-Odenwald and
Freiburg regions
Long Island Breast Cancer Study ~ New York 1996-1999 Nassau and Suffolk counties 145
Project
Seattle Seattle, WA 1990-1992 King, Pierce, and Snohomish 288
counties; age less than 45 at
diagnosis
University of Chicago Chicago, IL 1998-2010 Treated at the University of Chicago 181

Cancer Center

Participants are those included in the analysis after QC

breast cancer. These results may also identify biological pathways that are responsible for

tumor aggressiveness, which might result in the discovery of drug-able targets.

In the event that no genes are clearly associated with risk of mortality, this would pro-
vide further evidence that any as-yet-undiscovered mortality loci have either small effect

sizes, or are driven by variants that were not measured by the exome array. This may help

to guide future studies of this topic.

3.2 Methods

3.2.1 Primary Data: Breast Cancer Family Registry and Associated

The participants for the primary analyses were identified from nine ongoing studies de-
signed to assess the risk factors associated with early onset breast cancer. Participants were

women of European descent and not known to be carriers of pathogenic mutations in the

Studies
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genes BRCA1 or BRCAZ2. Ninety eight percent of the cases were younger than 50 years old
at the time of their diagnosis. Details of the recruitment are found in Table 3.3. Five of the
study sites (Australia, Ontario, Philadelphia, and New York) are members of the Breast
Cancer Family Registry (BCFR), whose recruiting methods are described elsewhere.
Briefly, two of the BCFR centers (Northern California and Canada) recruited index patients
through population-based registries, three (Utah, Philadelphia, and New York) recruited
through clinic- and community-based outreach, and one (Australia) recruited through a mix
of population- and clinic-based outreach. Participants were also included from four studies
not included in the BCFR consortium. Three of these, the German Genetic Epidemiologic
Study of Breast Cancer;%* and Long Island Breast Cancer Study Project;65 and the Seattle
Study,66 are population-based case control studies whose recruiting methods are described
elsewhere. The Chicago participants were enrolled from the Chicago Multi-ethnic Breast
Cancer Epidemiologic Cohort, a hospital-based study of breast cancer at the University of

Chicag0.94’95

The Chicago participants were identified through a clinic-based recruitment.
Their demographic, clinical, and pathological data were gathered from medical chart, epi-
demiologic risk factors were collected via structured questionnaire, and mortality outcomes

were ascertained via medical records and linkages with the national death index.

3.2.2 Genotyping

Peripheral blood and mortality information was available for 3232 cases. The samples
were whole genome amplified using the Qiagen Repli-G mini kit. The Illumina HumanEx-
ome 12v1.0 chip was used on 2527 cases, and the Illumina HumanExome 12v1.1 chip was
used on 480 cases. The samples were processed using 49 plates in two batches, and the
process was carried out according to the manufacturer’s protocol. To improve the quantity

and quality of available genomic DNA, the samples were whole genome amplified using
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the Qiagen Repli-G mini kit, %% and were processed using 49 plates in two batches, fol-
lowing the manufacturer’s protocol. TeCan Evo was used for automation. Raw data was
processed by Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15,
per [llumina’s recommendation for Infinium chips. Clustering was done using the Illumina
supplied cluster files. After keeping only variants that were on both chips, 238,524 variants

were interrogated.

3.2.3  Primary Analysis

3.2.3.1 Quality Control

The quality control followed the protocol suggested by Guo et al %0 Participants were ex-
cluded for low genotyping rate (rate < 95%; 166 excluded), male sex (one excluded), high
heterozygosity (F statistic greater than three standard deviations from the mean, or het-
erozygosity greater than four standard deviations from the mean; 20 excluded), duplicated
genotypes (one of each pair of six duplicates excluded), and principal component outliers
(one participant whose first component was more than six standard deviations away from
the mean). The recruitment process for the BCFR studies targeted individuals who were
related to the index case, so an additional 16 participants who were likely related were ex-
cluded ( those with estimated relatedness from a GCTA-created genetic relatedness matrix
greater than 0.4).%7

A schematic of the variants used in this analysis is shown in Figure 3.1. Variants were
excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded). Variants
were excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded), or
if they were common variants (defined below) with Hardey-Weinberg equilibrium p-values

of less than 2.5-10~7 in controls (p = 0.05 Bonferroni corrected for 200,000 tests; 39

excluded). The final variant-level exclusions were the result of evidence that on some plates
68



Figure 3.1. Variants Used in Primary Analysis

242,898
Variants Assayed

_

238,524
Variants Passed QC
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Cas " Cases §
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- SKATO Anahsis
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Usedto Create PCe Used to Create PCr

variants were unreliably assigned (a plate-by-plate single marker regression analysis found
that in some cases genotype could predict plate). For these variant-plate combinations,
variants were excluded for all participants on that plate if this GWAS p-value was smaller
than 2.5-1077. As a result of this step, seventy variant-plate combinations were set to
missing.

After these exclusions, the analysis set contained 2954 cases and 238,524 variants. Of
these, 122,906 were polymorphic in the study population. Variants were assigned to genes
using the ANNOVAR software,”® and variants were excluded if they were annotated to in-
tergenic regions. This included in the analysis variants that were annotated as exonic (over-
lapping a coding region; n=105,888 variants), splicing (within two base pairs of a splicing
junction; n=811), non-coding exonic RNA (n=163), non-coding intronic RNA (n=871), 5’
and 3’ untranslated regions (n=186 and n=474, respectively), introns (n=5456), and vari-
ants within 1 kilobase of a transcription start or transcription end site (n=187 and n=170,
respectively). These 114,206 polymorphic variants from the exome array were annotated
to 16,317 genes. Variants were classified as “common” and “rare” based on their minor

1
allele frequency (MAF), with a threshold at MAF equal to (ﬁ) °=0.0130.5
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Table 3.4: Characteristics of Participants in Primary Analysis

Number of Participants 2954
Mean Age at Diagnosis (sd) 41 (6.2)
Median Years of Follow Up (IQR) 15 (9.5-17)
Number of Deaths Observed 728
Estrogen Receptor Status

Positive 1066

Negative 719

Missing 1169
Progesterone Receptor Status

Positive 1015

Negative 754

Missing 1185
HER?2 Status

Positive 280

Negative 378

Missing 2296
Tumor Grade

High Tumor Grade 865

Low Tumor Grade 925

Missing 1164
Tumor Stage

High Tumor Stage 351

Low Tumor Stage 1289

Missing 1314

Characteristics of the 2954 primary data participants that were included after quality
control are found in Table 3.4. Cases were followed up for a median of 15.2 years (in-

terquartile range: 9.5-17.0 years), and 728 deaths were observed.

3.2.3.2 Population Stratification

Rare variants and common variants have different correlations with ancestry, and therefore
have different potential to induce confounding in genetic association studies.?®-100 While
the study enrollment was limited to women of the same race (self-identified non-Hispanic
white women) the study included women from multiple centers in four different countries,
with an uneven case/control mix from each study. To counter this potential for spurious

associations between variation and prognosis, EIGENSTRAT!01102 ¢ongtructed two sets
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of principal components from the analysis set. One set was constructed using “common”
variants assayed by the array (PC.), and one using “rare” variants (PC;).

In a Cox regression that did not include genetic information, the first three PC, and the
second PC, were associated with mortality status. Including any other principal compo-
nents did not improve the model fit, as determined by a likelihood ratio test. These four
principal components were included in all subsequent mortality analyses. Similar analyses
with non-genetic information were done to determine the optimal number of PC, and PC,

to include in each of the five tumor characteristic logistic analyses.

3.2.3.3 All Variation in Gene Regions

To examine whether variants within a gene collectively were associated with mortality,
the variants were aggregated into their annotated genes and analyzed using SKAT-0.37
Each variant was weighted by the CADD scaled score of the minor allele. In addition to
controlling for principal components, the analysis also controlled for center. The analysis
was conducted in a Cox regression semi parametric framework to estimate the hazard ratio
associated with each additional minor allele using the skatMeta R package.123 The score
statistics for the individual variants were calculated using the likelihood ratio test. 178 Genes
whose p-values were smaller than the Bonferroni-corrected level of 3.06 - 10~¢ would be
considered associated with early onset breast cancer mortality. Results were visualized
using the qqmanlo5 and ggplot2106 R software packages.lo7

The analysis was repeated twice: on all cases (N = 2954), and on all cases with ER+
tumors (n=1067), to investigate whether variation germline genetics may be particularly
influential by way of genes that influence the metabolism of drugs that target the estrogen

receptor growth signaling pathway. While treatment information was not available for these

participants, and the date of initial diagnosis was not always available, it is likely that most
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were treated with tamoxifen, which has been a proven beneficial adjuvant therapy since the
1980°s,!83 and recommended by the American Society of Clinical Oncology as adjuvant
therapy for women with ER+ breast cancer tumors since 2002.134

To examine whether variants within a gene collectively were associated with tumor
characteristics that are known to be predictors of mortality, the variants were analyzed
using the SKAT-O method in a logistic regression framework. Five tumor characteristics
were assessed: ER status (ER status was non-missing for n=1785 cases), PR status (n=1769
cases), HER2 status (n=658 cases), whether the tumor grade was three or higher (n=1790
cases), and whether the tumor stage was three or higher (n=1640 cases). The analysis
was conducted using the SKAT package for R, with the “SKATO” method in the func-

tion SKATBinary with efficient resampling.108

The analysis weighted each variant by the
CADD score for the minor allele, and controlled for principal components as described
above. For each of the methods, the significance threshold was determined by correcting a
p<0.05 threshold by the effective number of tests computed, which was determined by the

SKAT package. Genes whose p-values were less than this threshold would be considered

associated with that tumor characteristic.

3.2.4 Replication Data and Comparison with Breast Cancer of All Ages

of Onset: TCGA

Data from participants of The Cancer Genome Atlas (TCGA) breast cancer study (data
generated by the TCGA Research Network: http://cancergenome.nih.gov/) were utilized to
replicate any suggestive findings (defined below) from the primary analysis, and to compare
results between early onset breast cancer cases and cases of all ages of onset. Clinical and
single nucleotide variant (SNV) data for all available breast cancer cases were downloaded

from the TCGA data portal in June 2015. The germline SNV data were measured using
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the Affymetrix Genome-Wide Human SNP 6.0 array, and the intensities were converted to
genotype calls using the Broad Birdsuite.!8> To be comparable with the primary analysis,
the analysis was restricted to female cases of European ancestry with mortality information
available, excluding any participants or samples annotated “DNU” (Do Not Use) (900,380
variants from 768 participants).

These samples were then subjected to the same quality control steps outlined above,
resulting in the following exclusions: two participants were excluded for high levels of
missingness; thirty nine were excluded for high heterozygosity; sixteen for outlying princi-
pal components, and none were highly related or duplicates. 42,150 variants were excluded
due to their low call rate, and 60 were excluded for failing Hardey-Weinberg equilibrium.
After these quality control procedures, 711 cases and 858,170 variants were brought for-
ward for imputation.

A schematic of the variants used at each stage of the analysis is found in Figure 3.2.
187

Imputation was implemented by the Michigan imputation server, 186 employing Shapel

to pre-phase the variants and minimac3!8® to impute variants that were not measured. In

189,190 32 w

order to best impute rare variants, the entire 1000 Genomes phase 3 release! as
used for a reference panel. Since the data from the TCGA participants was used to replicate
suggestive associations, it was decided to use a liberal threshold for imputation quality that
could still exclude low-quality variants, so variants with an imputation r? greater than 0.3
were kept (15,121,555 variants).121:192 These genotyped and imputed variants were then
annotated using ANNOVAR, and only polymorphic variants that could be annotated to a
gene were considered for analysis (6,087,804 variants). EIGENSTRAT was used to create
ten principal components out of common (MAF > 0.0265) variants. Characteristics of the
participants used for the replication analysis are found in Table 3.5.

To examine whether variants within genes that had been identified by the primary analy-

sis were collectively associated with mortality in the TCGA population, the TCGA variants
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Figure 3.2. Variants Used in Replication Analysis
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were aggregated into genes in the same manner described above, and those genes identified
as suggestively associated in the primary analysis were analyzed in the TCGA population
using a Cox regression and the SKAT-O method, controlling for the minimum necessary
principal components as described above. All 711 TCGA cases were included in the mor-
tality analysis, and the 538 ER+ cases were included in the ER+ only mortality analysis.
The tumor characteristic analysis included all TCGA participants that had non-missing
clinical data for that tumor characteristic: 670 cases for the analysis of ER status, 667 cases
for PR status, 492 for HER?2 status, and 699 cases for tumors with high stage (grade was
not available in the protected access TCGA clinical data).If fewer than 20 genes were as-
sociated with the trait in the primary analysis, the top 20 genes associated with each trait
in the primary analysis were then investigated for evidence of association with that trait in
the TCGA population. Genes with a p-value in the TCGA analysis that was less than the
Bonferroni corrected level threshold 0.0025 (p = %) would be considered suggestively

associated with the trait.
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Table 3.5: Characteristics of Participants in Replication Analysis

Number of Participants 711
Mean Age at Diagnosis (sd) 59 (13)
Median Years of Follow Up (IQR) 1.2 (0.4-3.4)
Number of Deaths Observed 73
Estrogen Receptor Status

Positive 538

Negative 132

Missing 41
Progesterone Receptor Status

Positive 469

Negative 198

Missing 44
HER?2 Status

Positive 106

Negative 386

Missing 219
Tumor Stage

High Tumor Stage 183

Low Tumor Stage 516

Missing 12

3.2.5 Comparison with Loci ldentified through Single Marker Regression

It is unclear whether genes that would be identified by the SKAT-O approach contain loci
that would also be identified using a single marker regression approach. To investigate this
in the context of the data provided by the primary study participants, the exonic genetic
variation measured on the primary sample was additionally analyzed in a single marker
regression framework. Common variants that could be assigned to a gene (MAF >0.0130,
25,938 common variants) were analyzed using a Cox regression with an additive model
of inheritance controlling for principal components and center using the GenABEL193.194
package for the R software. Variants whose p-values were smaller than the Bonferroni
corrected level of 1.93-10~° would be considered associated with early onset breast can-
cer mortality. Similarly, the common variants were assessed for their association with
tumor characteristic phenotypes using a logistic regression framework and the PLINK soft-

ware.103-104 A7) analyses controlled for principal components as described above.
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Figure 3.3. SKAT-O Cox regression Mortality Results for All Cases
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The red line represents a p-value of 3.06- 10—, and the blue line represents the p-value of the twentieth most significant gene.

3.2.6  Comparison with Previously Identified Risk Loci

Previous genome-wide studies that examined the effect of germline genetics on mortality
have had low levels of replication. To investigate whether loci in gene regions that had been
identified by previous research show evidence of association with mortality or tumor char-
acteristics in the gene-based analysis, the significance of genes near loci with established
associations to breast cancer phenotypes were highlighted in the analysis of the primary
data.

Genes were considered to have established associations if a variant was listed the
NHGRI-EBI GWAS catalog60 with a p-value < 5- 10~8 and mapped to a non-intergenic
region. The NHGRI-EBI catalog contained 348 entries of a breast cancer phenotype (ex-
cluding alopecia as a response to chemotherapy, and excluding telomere length). Of these,

174 variants met the p-value requirement, and 113 were annotated to 65 unique genes.
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Table 3.6: Comparison of Genes Suggestively Associated with Mortality in Primary and
Replication Analyses

Exome Chip TCGA
Gene Minor  Variants in p-value Minor  Variants in p-value
Allele Gene Allele Gene
Count Count
AKT2 13 5 4.70e-04 43,789 184 6.90e-01
ASXL2 77 13 7.43e-04 170,121 496 6.11e-01
BIVM 33 3 6.58¢-04 68,029 193 4.57e-01
CDHR4 406 7 1.05e-03 9331 38 1.89e-01
CFAPY7 3006 7 2.34e-04 13,1011 251 4.46e-01
CLCNG6 14 3 3.74e-04 61,332 249 5.21e-02
COL7A1 644 39 2.99¢-04 5738 73 8.80e-01
HLA-A 121 1 1.19e-04 164,007 308 5.22¢-01
HSPBAPI1 231 5 5.08e-04 85,394 309 6.98e-01
MPP2 47 4 7.88e-04 49,636 159 6.36e-01
OR4K14 208 3 6.25¢-04 9093 17 3.46e-01
PIHID2 330 5 1.17e-03 3426 36 1.21e-01
PRLR 496 12 6.50e-04 172,470 871 1.51e-02
SKIL 595 5 5.05e-04 38,076 178 7.79e-01
STYKI1 4 4 6.58e-04 146,794 304 1.70e-01
TASIR1 582 25 2.14e-04 18,748 78 5.13e-01
UGT2A3 33 3 9.36e-04 36,350 141 7.20e-01
ZNF134 651 11 2.66e-04 5266 44 5.13e-02
ZNF333 1152 12 7.79¢-04 104,105 243 1.30e-01
ZNF596 501 8 1.14e-04 25,040 81 7.56e-01
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3.3 Results

3.3.1 Association between Variation in Gene Regions and Mortality

A summary of the gene-based analysis of mortality in breast cancer cases is shown in Figure
3.3. There is no evidence of systemic inflation of p-values, since the estimate of genomic
inflation is A = 1.04. No genes are associated with mortality with a p-value of 3.06 - 10-6
or smaller. To determine if the results were sensitive to the weighting method, the analysis
was repeated using weights that were a beta transformation of the MAF (as suggested by
the SKAT authors), and equal weights. These two additional weighting methods produce
substantively similar null results.

Analysis of the genetic data provided by the participants of the TCGA study does not
provide any evidence that any of the genes suggestively identified in the primary data set
have an association with mortality in the TCGA population. Table 3.6 displays the p-values
of the top 20 most significant genes from this analysis, and contrasts this with the p-values
of those genes in the TCGA population. None of the genes that are considered suggestive in
the primary participants (labeled “Exome Chip”) are significant at the Bonferroni corrected
level in the TCGA analysis. One gene, PRLR is significant at the less stringent threshold
of p <0.05.

The subset of primary analysis patients with known ER+ tumors was included in a
second Cox analysis that assessed the association between genetic variation and mortality.
The results of this analysis when using CADD weights on each variant are summarized in
Figure 3.4. Genomic inflation is A = 0.995. No genes are associated with mortality with a
p-value of 3.06 - 1076 or smaller. Weighting by MAF and weighting using equal weights
produce substantively similar null results.

Table 3.6 displays the p-values of the top 20 most significant genes from the analysis

in the primary data, and contrasts this with the p-values of those genes in the analysis
78



Figure 3.4. SKAT-O Cox regression Mortality Results for ER+ Cases

Observed —logro(p)

—m-'-\- ‘
A SR
D tdahaiun, & o oot . e

.5: :;'_ A id
! i

Chromosome Expected —logro(p)

The red line represents a p-value of 3.06- 107, and the blue line represents the p-value of the twentieth most significant gene.

Table 3.7: Comparison of Genes Suggestively Associated with Mortality in ER+ Cases in
Primary and Replication Analyses

Exome Chip TCGA
Gene Minor  Variants in p-value Minor  Variants in p-value
Allele Gene Allele Gene
Count Count
ADGRA2 59 13 1.11e-03 12,396 101 6.02e-01
ALXI1 33 3 3.52e-05 5423 82 9.35e-01
ANXA3 16 6 1.88e-04 27,042 237 6.87e-01
CFLAR 239 1 9.95e-04 17,399 124 3.19¢-01
CHIA 1616 13 1.25e-03 56,892 292 4.13e-01
COL6A1 1127 14 1.20e-03 23,491 162 3.57e-02
CTH 323 3 1.32e-04 13,178 139 6.05e-01
DLST 30 2 1.44e-03 14,386 106 3.48e-01
ERG 942 2 5.43e-05 186,443 1562 9.65¢-02
GARI1 0 1 1.29¢-03 3587 57 5.56e-01
HNRNPU 9 3 9.93e-04 1776 23 7.31e-01
JSRP1 84 4 1.16e-03 1061 6 5.23e-01
MEDAG 147 2 1.25e-03 334 8 7.42e-01
NEFM 105 10 1.39¢-04 987 17 8.92e-01
PNPLA1 1246 10 1.25e-03 35,219 351 9.75e-01
PTPRCAP 18 3 6.53e-04 1272 8 2.81e-01
SEPN1 465 7 7.45e-04 11,724 66 2.56e-01
SHISAS 1 1 1.20e-03 5935 109 1.76e-01
THTPA 93 1 4.87e-04 299 6 3.73e-01
WNT10A 34 5 8.90e-04 1989 23 1.59¢-01
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Figure 3.5. SKAT-O Logistic Regression Results for ER Status
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package; the blue line represents the p-value of the twentieth most significant gene

of TCGA participants. None of the genes that are considered suggestive in the primary
analysis are significant at the Bonferroni corrected level in the TCGA analysis. One gene,
COLG6AL, is significant at the less stringent nominal p-value threshold of p < 0.05. The
gene CYP2D6, which encodes the enzyme which metabolizes tamoxifen into its active
form, is not associated with mortality in participants with ER+ breast cancers (p=0.880
in the primary analysis). Other genes in the CYP family produced similar non-significant

associations.

3.3.2 Association between Variation in Gene Regions and Tumor Subtype

A summary of the gene-based analysis of tumor characteristics in the BCFR cases is shown
in Figures 3.5 to 3.9. Estimated genomic inflation is low for each analysis: A = 1.013 for
ER status; A = 1.043 for PR status; A = 1.017 for HER2 status; A = 0.998 for high tumor
grade; and A = 1.066 for high tumor stage.

None of the genes reach the genome-wide threshold for significance in the primary
analysis for any of the tumor characteristics. Two neighboring genes on chromosome 17

that are located 90 kilobases downstream from the tumor suppressor gene TP53 are among
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Table 3.8: Comparison of Genes Suggestively Associated with ER Status in Primary and

Replication Analyses

Exome Chip TCGA
Gene Minor Variants in p-value Minor Variants in p-value
Allele Gene Allele Gene
Count Count
ARHGAP29 23 9 9.47e-04 21631 216 2.25e-01
ARL10 14 2 2.94e-04 5050 33 1.66e-01
C12o0rf60 1666 5 4.53e-04 12083 80 2.37e-01
C9orf47 1661 7 7.96e-04 4675 33 5.66e-01
ILIRAP 976 5 9.24e-04 95561 761 1.42e-01
KATNA1 10 4 5.88e-04 42989 200 5.19e-01
KCNI8 9 2 1.00e-03 397 14 5.37e-01
KLF10 13 4 7.49¢e-04 3667 38 1.00e+00
LRRK1 2511 23 1.08e-03 141047 954 8.03e-01
LY6GSB 1936 5 6.06e-04 1607 25 2.97e-01
MEIS3 17 4 1.40e-05 4214 36 7.19e-03
P3H3 2884 15 2.37e-04 12076 61 1.07e-01
POUSF1 5215 6 1.05e-03 17916 95 6.13e-01
PRDMS5 2531 5 2.56e-04 205478 1257 8.89¢-01
QRSL1 507 6 3.74e-04 37784 242 5.62e-02
SLC25A39 1676 2 3.99¢-04 4748 30 1.00e+00
SLC38A4 210 3 8.98e-04 39639 356 5.01e-01
TMEM209 33 6 8.42e-04 24913 171 2.75e-01
TSPYL1 583 4 9.25e-06 4728 33 5.29e-01
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Table 3.9: Comparison of Genes Suggestively Associated with PR Status in Primary and
Replication Analyses

Exome Chip TCGA
Gene Minor  Variants in p-value Minor  Variants in p-value
Allele Gene Allele Gene
Count Count
AIM1 2169 16 3.34e-05 67054 411 1.00e+00
BCLIL 68 8 2.44e-04 2868 41 6.70e-01
Cl12orf42 1835 5 6.50e-04 111518 989 8.73e-01
CD68 913 5 8.33e-06 2203 15 8.79¢-01
ILIRAP 964 5 9.08e-04 95092 761 7.60e-01
LIF 43 2 9.03e-04 4224 30 3.82e-01
MONI1B 72 4 5.30e-04 15354 80 4.41e-01
MPDU1 572 4 1.65e-05 1635 14 1.00e+00
MYH6 1643 13 7.55e-04 13928 135 4.45e-01
NPM1 1554 1 9.19¢-04 22640 86 4.36e-01
PCDHA4 1750 6 7.66e-04 4486 22 3.49¢-02
PDIA4 118 13 4.99¢-04 14658 139 6.83e-01
QRSL1 500 6 7.17e-06 37658 242 3.68e-01
RNF214 1259 2 5.71e-04 38468 274 3.76e-01
SHBG 403 4 4.25e-04 9594 68 8.89¢-01
SLC4A7 2604 9 8.35e-04 81498 538 3.72e-01
TDRDS5 2514 8 9.34e-04 88788 487 1.65e-01
TGFBI 46 16 2.13e-04 32096 183 6.85¢e-01
UBNI1 141 11 7.77e-04 32105 185 1.68e-02
UTP23 540 2 2.20e-04 3557 43 2.69¢-01

Figure 3.7. SKAT-O Logistic Regression Results for HER2 Status
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Table 3.10: Comparison of Genes Suggestively Associated with HER2 Status in Primary
and Replication Analyses

Exome Chip TCGA
Gene Minor  Variants in p-value Minor  Variants in p-value
Allele Gene Allele Gene
Count Count
ANGPT2 14 3 1.50e-03 80784 593 9.01e-01
CERS4 720 6 1.89e-04 32624 202 1.22e-01
CPM 23 2 3.06e-04 54047 636 6.27¢-01
CROCC 199 13 1.01e-03 15275 152 1.42e-01
CTSL 8 2 7.12e-04 2255 31 8.91e-01
DACT2 515 6 5.63e-04 22474 203 4.29¢-01
FAM171B 10 3 1.47e-03 23841 190 3.39¢e-01
GALNT16 1100 4 9.30e-04 64711 501 4.73e-01
GPT 661 9 1.50e-03 2003 8 6.99¢-01
HEATR6 98 8 6.17e-04 2894 69 5.23e-01
MCM7 385 8 4.03e-04 3023 28 6.73e-01
METAPI1D 556 6 1.27e-03 41095 442 1.25e-01
PCYOX1 245 2 1.01e-03 6244 88 4.32e-01
PIAS3 29 5 4.16e-04 34 1 9.17e-01
PIGP 226 3 4.14e-04 6035 49 8.13e-01
RECQL4 594 13 1.74e-04 4361 16 5.90e-01
RWDD4 291 1 7.73e-04 23355 141 2.62e-01
TFAP2B 495 4 9.89¢-04 11301 131 7.63e-01
VWC2 757 5 5.61e-04 57463 576 1.00e+00
ZNF620 59 4 8.75e-04 3274 27 5.39¢-01

Figure 3.8. SKAT-O Logistic Regression Results for High Tumor Grade
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Table 3.11: Genes Suggestively Associated with High Tumor Grade in Primary Analysis

Gene Minor  Variants in p-value
Allele Gene
Count
C8orf37-AS1 1057 2 5.47e-04
CNTNAP3 628 1 1.09e-04
COL27A1 7713 26 1.48e-04
CTDP1 604 5 1.21e-03
GUCY2C 26 5 5.01e-04
HOXC4 1596 3 2.52e-04
NPLOC4 1863 4 7.00e-04
NSUN2 686 5 2.36e-04
PNLIPRP3 306 8 5.98e-04
PNPLA7 329 14 1.05e-03
RBM27 15 3 7.47e-04
SCG2 84 4 2.06e-05
SH2D4A 837 7 2.21e-05
SSC4D 2202 6 7.28e-04
STRA6 2276 10 1.65e-04
TAF1C 1623 15 6.48e-04
TCTEI 1314 11 9.92e-04
TMEMI132A 886 9 1.17e-03
TMEMS&S8B 172 2 4.66e-04
ZBTB43 14 4 9.55e-04

Figure 3.9. SKAT-O Logistic Regression Results for High Tumor Stage

~logi(p)

Observed ~logia(p)

0

Chromosome Expected —logro(p)

The red line represents a p-value threshold based on a Bonferroni correction of the effective number of tests, as calculated by the SKAT
package; the blue line represents the p-value of the twentieth most significant gene

84



Table 3.12: Comparison of Genes Suggestively Associated with High Tumor Stage in Pri-
mary and Replication Analyses

Exome Chip TCGA
Gene Minor  Variants in p-value Minor  Variants in p-value
Allele Gene Allele Gene
Count Count
C8orf37-AS1 1057 2 5.47e-04 525417 3137 5.96e-01
CNTNAP3 628 1 1.09e-04 42217 161 8.01e-01
COL27A1 7713 26 1.48e-04 165929 986 1.46e-01
CTDP1 604 5 1.21e-03 92110 465 1.00e+00
GUCY2C 26 5 5.01e-04 14059 333 5.68e-01
HOXC4 1596 3 2.52e-04 14994 116 2.28e-01
NPLOC4 1863 4 7.00e-04 96837 387 3.65e-01
NSUN2 686 5 2.36e-04 48493 236 2.07e-01
PNLIPRP3 306 8 5.98e-04 11371 200 6.80e-01
PNPLA7 329 14 1.05e-03 20244 89 1.00e+00
RBM27 15 3 7.47e-04 33619 222 6.18e-01
SCG2 84 4 2.06e-05 346 23 4.21e-01
SH2D4A 837 7 2.21e-05 47631 522 4.89¢-01
SSC4D 2202 6 7.28e-04 27812 136 3.39¢-01
STRA6 2276 10 1.65e-04 20707 136 2.85e-01
TAF1C 1623 15 6.48e-04 15310 98 4.25e-01
TCTE1 1314 11 9.92e-04 10972 116 3.86e-01
TMEM132A 886 9 1.17e-03 16624 65 1.31e-01
TMEMS88B 172 2 4.66e-04 1058 11 7.67e-01
ZBTB43 14 4 9.55e-04 6467 111 6.02e-02
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Figure 3.10. Single Marker Regression Cox regression Mortality Results for All Cases

~loguolp)

mmmmmmmmm Expected —logro(p)
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the three most significant genes identified as being associated with PR status, CD68 (p =
8.33-107%) and MPDUI1 (p = 1.65-107).

Tables 3.8 to 3.12 show the p-values of the top genes for each analysis in the primary
analysis compared to their p-values in the analysis of the TCGA participants (tumor grade
was not assessed in TCGA, so Table 3.11 shows only the p-values in the primary analysis).
None of the genes that are considered suggestive of association in the primary analyses are
significant at the Bonferroni corrected threshold in the TCGA replication analysis. With a
less stringent threshold for replication of p<0.05, three genes were suggestively associated
with tumor characteristic. MEIS3 is the gene with the smallest p-value in the primary ER
analysis (p = 1.40- 1072) and nominally associated with ER status in the TCGA population
(p=1.19- 10-3). PCDHA4 and UBNI are in the top 20 genes associated with PR status
in the primary analysis (p = 7.66 - 1074 and 7.77- 1074, respectively, and had a p-value
smaller than 0.05 in the TCGA analysis (p =3.49- 10~2 and 1.68-1072).
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Figure 3.11. QQ Plots of SKAT-O Cox regression Mortality Results for Genes Previously
Reported as Associated with a Breast Cancer Phenotype
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3.3.3 Single Marker Regression Analysis

The single marker regression analysis of the association between each of the 25,938 com-
mon variants and mortality has a genomic inflation factor of 1.008 after controlling for the
principal components. A summary of the association results is shown in Figure 3.10, and
details of the twenty SN'Vs with the smallest p-values are shown in Table 3.13. None of the
SNVs meet the pre-set threshold for statistical significance. The most significant SNV is
located at chr6:35430686, a nonsynonymous SNV in exon of FANCE. The p-value of this
SNV is 1.58 - 107>

Results were similarly null for single marker regression analyses for mortality in ER+

tumors, ER status, PR status, HER2 status, high tumor grade, and high tumor stage.

3.3.4 Comparison with Previously ldentified Breast Cancer Phenotype

Loci

Previous GWASs identified 65 gene regions as being associated with breast cancer phe-

notypes with a p-value that was smaller than the genome-wide significance threshold of
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Figure 3.12. QQ Plots of SKAT-O Logistic Regression Results for Tumor Characteristics
for Genes Previously Reported as Associated with a Breast Cancer Phenotype
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5-1078. Fifty seven of these regions had variation in the primary data set, and the associ-
ations of these genes with mortality and tumor subtype are highlighted in Figures 3.11 and
3.12. These figures display quantile-quantile (QQ) plots of the p-values of these genes in
the primary analyses for mortality (Figure 3.11 A), mortality in ER+ cases (Figure 3.11 B),
ER status (Figure 3.12 A), PR status (Figure 3.12 B), HER2 status (Figure 3.12 C), high
tumor grade (Figure 3.12 D), and high tumor stage (Figure 3.12 E).

While the analysis for mortality does not produce strong evidence that any of the genes
that were previously reported as being associated with a breast cancer phenotype, QQ plots
are qualitatively inflated for ER status, PR status, and tumor grade. However, only the
analysis of PR status produces a gene whose p-value in the BCFR participants meets a

Bonferroni corrected threshold of significance with p < %; p=28.38- 10~%: SLC4A7.

195 and one meta-analysis which included

This gene was reported in one previous study,
that original study,'!® both of which identified a variant in the 3 prime UTR of SLC4A7
as being associated with the risk of breast cancer in European women, with p-values of
2-1078 for the single study and 2 - 10730 for the meta analysis. This same variant was also
identified by other studies, but not at a level that reached genome-wide-significance for that
study. Variants in the adjacent gene of NEK10 were previously associated with risk, both

in Chapter 2 and previous studies. The p-value for the adjacent gene, NEK10, is 6.19- 103

in the PR+ analysis of the primary study population.

3.3.5 Comparison with Previously ldentified Mortality Loci

The above analysis was repeated using only the loci reported in NHGRI-EBI as being
associated with mortality phenotypes. None of the loci that were previously identified as
being associated with mortality with a genome-wide significant p-value were nominally

(p<0.05) significant in any of the mortality analyses. Since so few statistically significant
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results had been previously reported, this analysis was repeated using all loci listed in
the NHGRI-EBI catalog as being associated at an significance level with breast cancer
mortality (28 genes at 11 loci). This analysis demonstrated substantively similar null results
for both mortality and mortality in ER+ breast cancer patients (no gene met a nominal

significance threshold of 0.05).

3.4 Discussion

These analyses do not identify any gene regions in which variation is associated with mor-
tality in breast cancer cases. These results represent the largest single study to investigate
the relationship between genome-wide variation and breast cancer mortality, in terms of
both the number of participants and the follow up time. The failure of single marker re-
gression analyses to identify any loci in gene region as being associated with mortality
provides complementary evidence that variation in gene regions is not responsible for a
substantial portion of the variability in breast cancer mortality.

This analysis also does not provide evidence for an association between variation in
gene regions and five traits that are indicators of tumor aggressiveness: ER status, PR
status, HER?2 status, high tumor grade, or high tumor stage with a significance that meets
the genome-wide threshold.

While null results from gene-based tests are to be expected if rare variants make a large
contribution to the trait,*" these results, when taken together with previous genome-wide
studies, suggest that variants that are associated with breast cancer mortality are either
not common, not measured by the exome array, or, if they were measured by the exome
array, that within any single gene, they collectively are responsible for a small fraction of

mortality.
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In agreement with other recent results,196’197

this analysis does not find an association
between variants in the CYP genes and survival in ER+ breast cancer patients, although the
patients had an unknown tamoxifen treatment history. A previous genome-wide investiga-
tion suggests that among older women with known tamoxifen treatment, haplotypes that
included CYP2D6 polymorphisms were associated with mortality.145 CYP2D6 is highly
polymorphic, but many of the polymorphisms that have been identified in the gene are
of uncertain clinical importance. The exome array only measured four nonsynonymous
variants on the exome array. While these variants likely would have tagged the effect of
most truly causal variants within the gene, this may have limited the ability to detect an
association between CYP2D6 and mortality

These analyses do identify a gene that was previously reported to be associated with
breast cancer risk, SLC4A7, as suggestively associated with tumor PR status. While this
association would need to be replicated, this suggests that women with variation in SLC4A7
may be particularly at risk for PR positive tumors. This information suggests that PR status,
which is an independent indicator of treatment efficacy and ultimately survival,198 may
be driven by variation in SLC4A7. It is possible that this information can help to guide
prophylactic treatment in women who are predisposed to the more lethal PR+ tumors.

These analyses also indicate that weighting by predicted functionality with the CADD
scaled score can produce SKAT-O estimates that do not have inflated type I error rates, as
the genomic inflation A estimates were all near one. This suggests that the CADD scores
are a valid way to incorporate a priori knowledge of genetic function into an analysis.
Weighting by the CADD score also allowed for the inclusion of all measured variants in
the gene rather than only rare variants, or only variants that were predicted to be functional.

This work suggests several next steps. At the present time, there is only a rudimentary
ability to annotate non-exonic variants to genes, but this is a subject of much study. As

the understanding of biological pathways improves, variants will be able to be connected
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with a particular gene in ways that are more sophisticated than ANNOVAR’s annotation.
Regulatory variants that are not spatially near the genes that they regulate could be included
in the analysis. At the same time next generation sequencing technologies are being widely
implemented, which will increase the ability to detect rare variants. If any of these newly
discovered or annotated variants are responsible for breast cancer mortality, their inclusion
will improve the ability of gene-based tests to identify genes that direct the underlying
cellular processes that confer this risk.

The participants of these studies are all of a homogeneous age (younger than 51 at
diagnosis), ancestral background (European), and gender (women). As breast cancer af-
fects people of all ages, ancestral backgrounds, and genders, additional SKAT-O analy-
ses in populations with different characteristics will help to determine whether in these
other populations, variation is associated with breast cancer mortality. Additional studies
that include women of different ancestry backgrounds may help to resolve a long-running
question about the determinants of differential mortality across ethnic groups.

Additional insight could also be gained by applying the analysis presented here to a
population with known treatment regimens, as the effect of germline genetic variation may
be heterogeneous across courses of treatment. Therefore, it would be fruitful to repeat
the analyses with a sample of known, homogeneous treatment. In particular, given the
still-unsettled relationship between variation in the CYP gene and survival, it would be of
clinical interest to repeat the mortality analysis in patients with estrogen receptor positive
tumors who were treated with tamoxifen.

There were some limitations to this analysis. The TCGA and BCFR samples differ in
aspects that create challenges in using the TCGA data to replicate BCFR findings. The par-
ticipants of the two studies were not well-matched on age (less than 750 TCGA participants
and a small number of deaths in all TCGA analyses). Also, the TCGA participants were

genotyped to measure variants that were largely common, and the presence of rare variation
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was inferred through imputation, while the BCFR participants were genotyped with an ex-
ome array that targeted nonsynonymous variants in gene regions. While the CADD scores
down-weighted intronic variants that were over sampled in the TCGA data and less likely
to be causal, it would have been preferable to repeat the original analysis on a data set that
interrogated more similar variants. It is possible that a larger secondary independent data
set of age-matched patients that directly assayed the same rare variants that were captured
by the primary data set may have been able to better replicate the BCFR analysis, and may
have highlighted causal genes. As more data become publicly available and the methods
to create gene-based tests from summary statistics improve, there will be a larger power to
detect drivers of mortality.

Additionally, while large in comparison to previous single studies of mortality, the sam-
ple size here is modest by genome-wide standards. A larger sample size would have likely
observed more rare variants, and could have more concretely demonstrated the association
(or lack thereof) between mortality and variation in gene regions.

The analysis also would have been stronger if the data had included information on
other treatment. Treatment is known to affect mortality, and may possibly interact with
genetics, such that particular germline genetic variants may only affect mortality in the
presence or absence of a particular kind of treatment. Similarly, tumor subtype is known to
be a prognostic factor in breast cancer. While these analyses investigated mortality in ER+
cases specifically, the number of participants were not powered detect modest associations
between germline genetic variation and morality within particular tumor subtypes.

In conclusion, this analysis suggests that variation assayed by the exome array does not
explain a large portion of variation in mortality in early onset breast cancer cases. When
combined with the evidence from family studies and heritability estimates that suggest that
mortality does have a heritable component, this suggests that future work to identify vari-

ants associated with morality need to incorporate variation that is not assayed on the exome
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array, and consider methods that allow for the detection of larger-than-gene pathways that
have modest effect size on risk. This analysis does indicate that germline variation within
SLC4A7 may predispose women with variation in that gene to a higher risk of PR+ tu-
mors. This could help to design future preventative interventions that could be tailored

specifically for the risk of tumors that over-express the progesterone receptor.
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CHAPTER 4
ROLE OF GERMLINE GENETIC VARIATION IN PREDICTING

RISK AND MORTALITY OF BREAST CANCER

4.1 Background

4.1.1 Non-genetic predictors of breast cancer risk and mortality

Breast cancer is the most frequently diagnosed cancer in women, with one in eight Amer-

ican women developing breast cancer over her lifetime.!

Almost twenty five percent of
women diagnosed with breast cancer eventually die of the disease,? and fear of recurrence
and mortality lowers quality of life for women who are diagnosed.3_6 Women who are
diagnosed with breast cancer before the age of fifty (one in five of those diagnosedz) are
more likely to die from breast cancer.2® There is also evidence that tumors of women who
develop breast cancer early are more likely to be driven by germline genetic variation than
cancers that develop later in life.’?

A strong prediction model of breast cancer risk and mortality would confer many clini-
cal benefits. The ability to predict which women will develop breast cancer would identify
low-risk women who could be screened less often, which would require less energy to be
devoted to searching for symptoms of a disease they are unlikely to develop. Prediction
models for breast cancer risk could also help to interpret an otherwise inconclusive screen-
ing result, and could reduce both unnecessary invasive procedures and unidentified tumors.
In the context of breast cancer mortality, the ability to predict which women are at risk
of death from the disease could identify high risk women who could benefit from more
aggressive monitoring and treatment for high-risk subgroups. A strong prediction model
would conversely also identify women who could pursue less aggressive treatments, which

would reduce the morbidity associated with exposure to chemotherapies.s4
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Both breast cancer diagnosis and mortality have several known risk factors that are
reproducibly associated with each trait. For both outcomes, existing prediction models
are statistically significant and adequate for predicting the risk of a population. However
their low discrimination makes them less relevant for individual risk decisions.*! Iden-
tified risk factors for breast cancer risk include age, race, socioeconomic status, age at
menarche, breast tissue characteristics, breastfeeding, reproductive history, hormone use,
menopause history, alcohol use, body mass index, smoking history, and physical activ-

29.33.34,46,199-202 The effect of age on risk is not straightforward, as it interacts with

ity
other risk factors. For example, nulliparity and obesity are associated with decreased breast
cancer risk in younger women, but increased risk later in life.!33-134 Prediction models for
risk that incorporate these risk factors have modest predictive power. Current prediction
models produce areas under the receiver operating characteristic curve (AUCs) between
0.6 and 0.7% (with AUCs that are significantly different than 0.5 interpreted as models that
are better than chance).

For women who have already been diagnosed with breast cancer, their survival is asso-
ciated with several factors that are ascertained as of the time of diagnosis, and others that
develop over the course of the disease: age, race, socioeconomic status, treatment, tumor
size, nodal status, grade, presence of metastases, estrogen receptor (ER) status, proges-
terone receptor (PR) status, HER2-positivity, gene profile, comorbidities, and the genetic
aberrations of the tumor.81-130:131,133,134,203 A< \ith breast cancer risk, the risk factors

for breast cancer mortality can also interact with age.133 The most effective models predict

breast cancer mortality with an AUC of approximately 0.7.47
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4.1.2 Genetic Prediction

In addition to the non-genetic factors mentioned above, germline genetic variation is con-
vincingly associated with breast cancer risk. Several high risk variants have been identified
that are highly penetrant but rare in the overall population, including mutations found in
BRCAI, BRCA2, and TP53.33 Additional risk variants have been implicated by single
marker regression analyses in genome-wide association studies (GWASs). These studies
have identified 128 risk loci that are common, and affect breast cancer phenotypes with
modest or moderate association strengths.60 However, despite these successes, there still
remains “missing heritability” in breast cancer, where variants that have been identified
only contribute about half of the total risk due to genetics that is expected from family

studies.35-46,71,72,204

The relationship between mortality and germline genetics is less clearly described than
the relationship between risk and germline genetics, but several lines of evidence suggest
that germline genetic variation contributes to mortality, including family studies,3 animal
studies, 170:173 highly penetrant uncommon variants such as those found in BRCA1 and
BRCA2205.206 (although their effect on mortality is counteracted by the susceptibility of
these tumors to DNA-damaging chemotherapies207), candidate gene studies,2%® and sin-
gle marker regression investigations (summarized in Table 4.1 and Table 4.2). Many of the
genome-wide investigations have been undertaken with small sample sizes, and the variants
that were highlighted have not been replicated widely, which has resulted in a lack of con-
sensus on the validity of the individual variants identified by the single marker regression
investigations.

Given the evidence that both risk and prognosis are influenced by germline genetics,
prediction models that incorporate genetic variation would likely improve the ability to

predict these two traits. However, genetic data posses several distinct characteristics that
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must be accounted for in prediction models: the number of variants to include can exceed
the number of study participants; the predictors are often correlated due to linkage disequi-
librium (LD) between the variants; the form that describes the relationship between variants
and disease is unknown; the sparsity and distribution of the causal variants throughout the
genome is unknown; and many of the putatively associated variants likely have small effect
on the trait.>> Two methods that can be appropriate for prediction given these challenges
are polygenic risk scores (PRS) and restricted maximum likelihood estimates (REML) from
linear mixed models (LMM) .

Polygenic risk scores multiply the per-allele risk (found in prior literature or a training
set of individuals) for each test individual by the number of risk alleles at a locus, and
sum this over each variant of interest to produce a score that reflects a test individual’s

209.210 jn most studies,

risk of disease. While PRSs can be implemented in many ways,
PRSs include a limited number of variants in the score, typically those that pass a signif-
icance threshold in association analyses in the training set. Before the advent of LMMs
for prediction, some investigators were able to successfully create PRSs with a large num-
ber (<10,000) of genotyped variants.2!! However, in general, PRS predictions that use a
large number of variants are often unstable,97 and most PRSs now contain fewer than 100
variants.

Polygenic risk scores are not a preferred method for whole genome prediction. It has
been shown that the prediction risk based on a per-allele odds ratio of a training set is likely
to be substantially inaccurate for rare alleles.!?® There is evidence that predictions from
PRS can be biased upwalrds,212 and that LD structure can lead to inconsistent results. Even
when unbiased, polygenic risk scores do not have much predictive power in a complex,
non-Mendelian trait, for intuitive reasons: 2 first, the effect sizes of rare variants are poorly

estimated, and therefore not able to be reflected in a PRS; and second, the threshold that is

used to include variants is arbitrary by its nature. Many causal single nucleotide variants
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(SNVs) may not meet the significance threshold, and lowering the significance threshold
introduces many variants into the risk score which are not truly causal.2!3 This can both
obscure the effect of a truly causal variant, and also increase the possibility of a spurious
associations driving a prediction.

PRSs are best suited to predict traits that have few causal variants of larger effects.
While not conclusive, previous studies along with the analyses of Chapters 2 and 3 suggest
that this is not the case in breast cancer risk or prognosis, but if it is, PRSs would be well-
suited incorporate genetic data into a prediction model. PRSs have been implemented for
breast cancer risk, but they have largely been poorly replicated214_2l6 (perhaps due to the
instability of the estimate), or produced a prediction that was statistically significant but not
clinically meaningfu1.217 These modest predictive powers are consistent with simulations
that have shown that large sample sizes (10,000 or more participants) are often necessary
to achieve enough power for PRSs to produce a statistically significant prediction for most
genetic traits.2!7

Genetic similarity has also been translated into prediction by REML LMM models
(GREML) that summarize genetic similarity in genetic relatedness matrices (GRMs). While
possible upward biases of heritability estimation using REML models has been debated,2!8-220

221,222

the current consensus is that they are largely accurate for prediction, and under cer-

tain plausible assumptions these predictions are the best linear unbiased prediction (BLUP).223
These methods begin with a training set of individuals with known disease status, and cal-
culate the genetic similarity between each individual in that training set and an individual

in the test set. The risk of this test individual is then computed as the weighted average of
the case statuses of the training set, with the weights calculated as a transformation of the
pairwise genetic similarity between the individuals.

GREML approaches are more appropriate than PRSs when the trait is highly poly-

genic.42’224’225 If a GREML-BLUP is implemented with a trait that is driven by a small
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number of causal variants, the prediction will have large variance, but be unbiased.?%> The
Kriging method developed by Wheeler et al.*? is equivalent to the BLUPs of GREML,
but is motivated differently. The Kriging method extends GREML predictions to integrate
more than one matrix of -omic similarity. This extension allows for the grouping of variants
based on prior information that indicates that variants within a single group affect the trait
under study in a similar manner. Separate GRMs are then constructed from the variants
in each of the groups. If variants are grouped together in a manner that reflects true simi-
larities of their underlying association with disease, the performance of the prediction can
substantially increase.*? The Kriging method is less model dependent than other GREMLs,
in that the weights of the different GRMs are found by maximizing prediction performance
(as measured by AUC for dichotomous outcomesz%) rather than direct estimation.

In the Kriging framework, covariates are added linearly to each pairwise similarity
vector before transformation into a similarity matrix.223 Under certain assumptions, this is
equivalent to regressing the outcome on the covariates, and then using the residuals for the
phenotype of the Kriging procedure. The incorporation of non-genetic covariates allows
for a final prediction model that represents both the genetic and non-genetic influences of
breast cancer.

While the primary goal of prediction models is not to identify the specific variants
that are associated with disease, the grouping allowed by the Kriging prediction method
can be used to characterize the causal variants. Using common annotation software, it is
possible to group variants based on whether it is common or rare, and by whether the variant
has a particular predicted functionality. When these GRMs are used in whole genome
prediction using Kriging, the magnitude of the weights on each GRM suggest whether the
variation that drives breast cancer is located in variants that common or rare (or both), and
whether that variation is likely to be found within variants of a particular type of predicted

functionality. This knowledge will help to resolve long-running questions about the relative
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importance of different portions of the genome. This analysis will help to design future
studies that may aim to identify risk variants. A priori, variants that are rare are more likely
to be associated with disease, as evolutionary constraints would likely keep them at a low
frequency in the population. This insight motivates many whole-genome and whole-exome
sequencing projects, which, although they are more expensive than studies that use an
array-based technology, identify rare variation more effectively. However, there are many
exceptions to this general rule, since for many diseases (including breast cancer), many
variants that have been identified as associated with disease are prevalent in the general
population.80 In the case of breast cancer, it is unclear if the not-yet-discovered variation
that is associated with disease is likely to be found in variation that is common or rare.

Similarly, the extent to which different classes of predicted variant functionality are
likely to drive genetic association with breast cancer risk and prognosis is still unknown.
A priori, variants that cause changes in the translation of amino acids are considered most
likely to affect a trait, and this has justified many studies that utilize whole exome se-
quencing and exome arrays. However, genome-wide analyses have frequently produced
new discoveries in variants that were thought to be “junk” DNA:180:-181 viariants near gene
regions that do not directly cause changes in proteins are over-represented in GWAS re-
sults;34+176:177 and intergenic variants often contribute to complex traits.>* It is currently
unclear whether, in the context of breast cancer, the missing heritability is driven by vari-
ants that will be identified by studies that focus only on variation in the exome.

An additional unanswered question is to what extent not-yet identified variants con-
tribute to risk and prognosis of breast cancer. Due to the instability of polygenic risk scores,
and the lack of a whole-genome based heritability estimate for breast cancer risk and prog-
nosis, it is unclear whether the 100+ variants that have already been associated with breast
cancer phenotypes drive the association with either diagnosis or mortality, or whether there

are additional risk loci that are associated with either breast cancer trait.
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In the context of Kriging, GRMs can be constructed so that each of these groups of
variants can contribute to prediction with a separate strength. The optimal weights of each
GRM will help to describe the relative importance of the variants that make up those GRMs.

This has not yet been done in for any breast cancer phenotype.

4.1.3 Gaps in knowledge

With the preceding as background, this manuscript will predict breast cancer risk and prog-
nosis for the first time using a Kriging framework in a way that will allow for variants
with different predicted functionality and different prevalences to contribute to risk with
different strengths. Given the already demonstrated polygenic nature of breast cancer risk,
the possible polygenic nature of breast cancer prognosis, and the lack of success of previ-
ous polygenic risk scores, Kriging represents a promising method to predict breast cancer
risk and mortality. No whole-genome prediction model has been reported for either breast
cancer risk or prognosis, and the analyses of this manuscript will illuminate the genetic
architecture of breast cancer and identify classes of variation that drive each trait.

When combined with non-genetic information, the prediction models may more accu-
rately predict population-level risk and also improve upon current risk estimates. If suc-
cessful, this will further a goal of precision medicine and produce individual prediction
models that are clinically actionable. Given the high prevalence of breast cancer (45,000
early onset diagnoses each year in American women and 231,000 diagnoses in American
women of all agesl), even a modest increase in the total ability to predict risk could po-

52 and

tentially impact the interpretation of ambiguous screening results for many women,
provide additional context for women who are considering other medical interventions that
may increase their breast cancer risk, such as menopausal hormone therapy or hormonal

assisted reproductive therapies.53 In the context of breast cancer prognosis, a more accu-
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Table 4.3: Characteristics of Studies Included in Analysis

Study Name Study Years Case Criteria Control Criteria Cases Controls
Location Recruit-
ing

Breast Cancer Australia 1992- Living in the Melbourne Randomly selected from 561 119
Family Registry 2000 and Sydney metro areas, electoral rolls, matched

family recruited from the  to cases on age and city

Victoria and NSW cancer

registries
Breast Cancer Northern 1996- SEER Cancer registry in Random digit dialing 180 65
Family Registry California 2003 the San Francisco metro in study area, matched

area to cases on age and

race/ethnicity
Breast Cancer Ontario 2001- Ontario Cancer Registry Random digit dialing in 574 154
Family Registry 2010 study area, matched to
cases on age
Genetic Germany 1992- 38 clinics in the Randomly selected 516 483
Epidemiologic 1995 Rhein-Neckar-Odenwald ~ from local population
Study of Breast and Freiburg regions registries
Cancer by Age 50
Long Island New York 1996- Nassau and Suffolk Random digit dialing in 198 110
Breast Cancer 1999 counties study area, matched to
Study Project cases on age
Seattle Seattle, 1990- King, Pierce, and Random digit dialing in 294 103
Washington 1992 Snohomish counties; age study area, matched to

less than 45 at diagnosis

cases on age and race

Cases and controls are numbers included in the analysis before quality control

rate prediction model would be able to better identify the estimated 60% of women who are
treated with toxic chemotherapies who extract little to no survival benefit from the treat-
ments,>> while also identifying those at high risk of mortality who may want to be treated

more aggressively.

4.2 Methods

4.2.1 Study Data

4.2.1.1 Participants

The participants for these analyses were selected from six ongoing studies designed to as-
sess the risk factors associated with early onset breast cancer. Participants are women of

European descent who were 51 years or younger at the time of their diagnosis (for cases)
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or enrollment (for controls) and not known to carry pathogenic germline mutations in the
genes BRCA1 or BRCA2. Details of the recruitment are found in Table 4.3. Three of
the study sites (Australia, Northern California, and Ontario) were members of the Breast
Cancer Family Registry (BCFR), whose methods have been described elsewhere.®? North-
ern California and Ontario recruited through population-based registries, and Australia
recruited through a mix of population and clinic-based outreach. Participants were also
included from three population-based case-control studies not included in the BCFR con-
sortium: the German Genetic Epidemiologic Study of Breast Cancer;%* the Long Island

Breast Cancer Study Project;65 and the Seattle study.66

4.2.1.2 Genetic Data and Quality Control

Germline DNA was extracted from blood drawn from 3357 participants (2323 cases and
1034 controls). Genetic variation was measured using two Illumina array-based genotyping
methods: (1) an exome array that that was designed to more closely interrogate often-rare
variants in the gene regions, with particular emphasis on nonsynonymous variants, and (2)
a GWAS array that was designed to interrogate common variation over the whole genome.

Two versions of the exome array were used: 1849 cases and 831 controls were geno-
typed on the Illumina HumanExome 12v1.0 chip, and 474 cases and 203 controls were
genotyped on the [llumina HumanExome 12v1.1 chip. To improve the quantity and quality
of available genomic DNA, the samples were whole genome amplified using the Qiagen
Repli-G mini kit,22 and were processed using 49 plates in two batches, following the man-
ufacturer’s protocol. TeCan Evo was used for automation. Raw data was processed by
Genome Studio on 2010.3 software, and the no-call threshold was set at 0.15, per Illu-

mina’s recommendation for Infinium chips. Clustering was done using the Illumina sup-
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plied cluster files. After keeping only variants that were on both chips, 238,524 variants
were interrogated.

The quality control followed the protocol outline by Guo et al.% Since the accuracy of
genotype calling from an exome array is slightly less than the accuracy of a genome-wide

array of common variants,?27-228

and the variants from the exome array was of particular
interest for this analysis, the quality control for the exome array was done separately from
the quality control for the GWAS array, and then the two were combined. Participants
were excluded for low genotyping rate (rate < 95%; 219 excluded), high heterozygosity
(F statistic greater than three standard deviations from the mean, or heterozygosity greater
than four standard deviations from the mean; 31 excluded), and one of each pair of dupli-
cated genotypes (eight samples excluded: three replicates; five duplicates from the same
center). Additionally, due to the family-based case ascertainment of some of the studies,
seven participants were excluded whose genotypes were highly correlated (estimated relat-

).97 Variants were

edness from a GCTA-created genetic relatedness matrix greater than 0.4
excluded from the analysis if they had a low call rate (rate < 95%; 4335 excluded), or if
they were common variants (defined below) with Hardey-Weinberg equilibrium p-values
of less than 2.5- 10~ in controls (p = 0.05 Bonferroni corrected for 200,000 tests; 39 ex-
cluded). The final variant-level exclusions were the result of evidence that on some plates
variants were unreliably assigned (a plate-by-plate single marker regression analysis found
that in some cases genotype could predict plate). For these variant-plate combinations,
variants were excluded for all participants on that plate if this GWAS p-value was smaller
than 2.5-10~7. As a result of this quality control step, 100 variant-plate combinations were
set to missing.

Variation genome-wide was additionally measured for the same 3357 participants. The

procedure to genotype and impute from variants assayed on the genome-wide array are de-

tailed elsewhere,>® and summarized on the left hand side of Figure 4.1. Briefly, the DNA
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was genotyped using the Illumina 610-Quad and Cyto12 v2 BeadChips, and standard lab-
oratory quality control procedures were applied. After quality control, 555,254 variants
and 3333 participants were brought forward to imputation, which was implemented by the

186

Michigan imputation server, °° employing ShapeIt187 to pre-phase the variants and mini-

189,190

mac3 to impute.188 In order to best impute rare variants, the entire 1000 Genomes

phase 3 release! 32

was used for a reference panel. While it might have been optimal to com-
bine the genotyped variants from both arrays before imputing, the non-imputed genome-
wide genotype data was no longer available. However, the LD structure of rare variants
differs from the LD structure of common variants,”® and previous research suggests that
few additional variants would have been imputed with high quality had the exome array

variants also been included in the imputation.227 Although variants with an imputation r?

191192 1are vari-

greater than 0.3 are generally considered adequate for association studies,
ants (which are of particular interest to this study) and have an estimated r2 with genotyped
variants that is more variable than common variants.?2 For these reasons, only imputed
variants with an imputation rzgreater than 0.8 were kept, consistent with other classifica-
tions of “high quality” imputati0n227’230’231 (3,310,158 variants).

After the quality control steps, 2869 participants were measured with both arrays. The
post-quality control, post-imputed genotypes from the two arrays were combined. A small
fraction of the variants were measured by both methods (14,054 variants), and of these, 124
variants were called differently for at least one participant. Of these 124 differences, 17
were variants that were genotyped on the genome-wide arrays, and the rest were imputed.
Since more than 85% of the discordant calls were a result of imputation, in the cases where
the two methods disagreed, the allele called from the genotyped exome array was used.

After the quality control steps, 3,534,628 polymorphic variants were available for 2869

participants. Of these, 3,245,343 could have their expected functionality annotated by the
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Figure 4.1. Variants Used in Primary Analysis
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ANNOVAR software”® and were retained for analysis. A schematic of the variants used in

this analysis is shown in Figure 4.1.

4.2.2  Classification of Variants and Creation of the Genetic Relatedness

Matrices

In previous work, a designation of “common” and “rare” variants roughly corresponded

with their ability to be included in a GWAS-framework single marker regression study.
1

Following this, a threshold of frequency equal to (2 n) 2= 0.0127 was used to distinguish

common variants from rare Variants,59 which resulted in 3,045,517 common variants and

199,826 rare variants. Three functional categories were also created: variants that are ex-

pected to cause a change in amino acid translation, variants that are located in gene regions

but not associated with amino acid translation, and intergenic variants. To identify variants
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Table 4.4: Genetic Relatedness Matrices Used in Prediction

Model Genetic Relatedness Matrix Variants in Geno- Imputed
Matrix typed Variants
Variants

Model 1 All Variants 3,245,343 436,208 2,809,135
Model 2 Common 3,045,517 344,649 2,700,868
Rare 199,826 91,559 108,267

Model 3 Protein Damaging 99,586 98,190 1,396
Other Gene Region 1,383,730 165,731 1,217,999

Intergenic 1,762,027 172,287 1,589,740

Model 4 Common Protein Damaging 16,175 14,912 1,263
Common Other Gene Region 1,327,056 160,115 1,166,941

Common Intergenic 1,702,286 169,622 1,532,664

Rare Protein Damaging 83,411 83,278 133

Rare Other Gene Region 56,674 5,616 51,058

Rare Intergenic 59,741 2,665 57,076

Model 5 Previously Identified 2,787 1,554 1,233
All Not Identified 3,242,556 434,654 2,807,902

Model 6 Previously Identified 2,787 1,554 1,233
Not Identified Common Protein Damaging 16,171 14,909 1,262

Not Identified Common Other Gene Region 1,324,780 158,630 1,166,150

Not Identified Common Intergenic 1,701,779 169,556 1,532,223

Not Identified Rare Protein Damaging 83,411 83,278 133

Not Identified Rare Other Gene Region 56,674 5,616 51,058

Not Identified Rare Intergenic 59,741 2,665 57,076

Only polymorphic variants are included in these counts
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that were likely to cause a change in the translated amino acid, a functional category of
damaging variants was created that included variants annotated by ANNOVAR as nonsyn-
onymous, stop-loss, stop-gain, frameshift substitution, or nonframeshift substitution in an
exon (99,586 variants). he final variant-level exclusions were the result of evidence that
on some plates variants were unreliably assigned (a plate-by-plate single marker regression
analysis found that in some cases genotype could predict plate). Variants near gene regions
that did not directly cause changes in amino acid translation included all other variants that
ANNOVAR annotated to genes, including introns, synonymous SNVs, UTRs, and vari-
ants within 1 kilobase of the start and stop sites (1,383,730 variants). Intergenic variants
contained all other variants (1,762,027 intergenic variants).

In addition to minor allele frequency and expected functionality, a third grouping of
variants was of interest: those that have been previously identified by other researchers as
being associated with a breast cancer phenotype in a single marker regression framework.
As of September 2016, 174 associations (128 unique SNVs) are listed in the NHGRI-EBI
GWAS catalog34 that connect germline genetic variation with a breast cancer phenotype
with a p-value less than the genome-wide significant threshold of 5- 1078, In order to also
include in this group of variants other SNV that may tag this previously known association

well, the Broad Institute’s SNAP program?32

was then used to identify a total of 2791
SNVs that were within 500kb of the original SNV, and in high LD with it (R*> > 0.8 in
the CEU 1000 Genomes!32 population). Out of this combination of previously identified
SNVs and those in high LD with them, 2,787 were interrogated in the genetic data of the
study population.

The above-described classifications were then used to create separate genetic related-

ness matrices to test six different prediction models, summarized in Table 4.4. The Kriging

method developed by Wheeler et al*? follows Yang et al®! and defines each element of the
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GRM as the non-standardized and non-centered correlation between the genotypes of each

individual:

G G
i (55-20) (5 0)
Ml:1 2pl(1_pl)

with 1 and j denoting individuals, Xi(l; the number of reference alleles of at marker I,
p; the frequency of the reference allele at marker 1, and M being the number of genomic

markers used in that GRM.

4.2.3 Prediction Models

Kriging was then used to predict two breast cancer phenotypes: case/control status (1998
cases and 871 controls), and ten year survival status (1903 cases with mortality information
and 400 deaths from any cause before 10 years after diagnosis). Ten year survival was
chosen because the low number of deaths by year five (229) would have resulted in an
underpowered analysis.

Kriging prediction was implemented using the R package “omicKriging.” For each
iteration of the model, the Kriging formula was implemented using ten-fold cross validation
to estimate a predicted value for each participant, with predicted values near zero indicating
a low risk of breast cancer, and values near one indicating a high risk of breast cancer. These
predictions were compared to that participant’s actual breast cancer status to compute an
AUC.

In order to produce a more stable estimate with valid confidence intervals, this proce-
dure was repeated two hundred times (which simulations suggest is more than sufficient to
produce a stable estimate given a sample > 1000233-234 ) The reported AUC is the mean

of the two hundred calculated AUCs, and the 95% confidence intervals reported are the
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2.5 and 97.5th percentiles of the replications. The models that contained multiple GRMs
(Models 2-6), determine the optimal weighting by applying a grid search to each separate
GRM in the model (the sum of the weights of the separate GRMS is constrained to equal
one). The weights that produce the highest AUC are reported.

The genetic-only model that produced the highest AUC for risk was then used to predict
overall cancer risk by incorporating non-genetic known risk factors. Non-genetic risk fac-
tors were available for 1903 cases and 855 controls, and included: age (although the cases
and controls in this study were age-matched); socioeconomic status as captured by educa-
tion (high school or less; some college; college degree or more) and marital status (married;
single; previously married; other); smoking history (never, past, current); hormonal con-
traceptive use (ever, never); gravid (yes, no); number of pregnancies; age at menarche;
and menopause (yes, no). Separate analyses (see Chapter 2) indicated that two principal
components were also predictive of breast cancer risk, and these were also included.

In the mortality analysis, the model that produced the highest AUC for mortality would
be used to predict overall cancer mortality by incorporating known clinical prognostic fac-
tors that were available for these participants: ER status, PR status, grade, and stage.

Uneven LD structure near causal SNVs can cause bias in heritability estimates from
disproportionate tagging of the same SNV.!%0 One method to avoid this bias is to construct
GRMs out of pairwise independent SN'Vs (e.g.: 500 kilobase sliding window, moved for-
ward 5kb at a time, remove variants with r2>0.8), or create multiple GRMs, stratified by
local LD.190 However, in the context of this analysis, either discarding variants or strati-
fying based on LD would obscure some of the relationships that were of interest. In order
to see if these results were sensitive to this possible bias, the prediction model that used
all annotated SNVs (Model 1) was repeated using GRMs that were stratified by local LD

structure, as described in Yang,190 and the results did not substantively change. This is
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consistent with other results that show that the bias induced by uneven LD (while varying

trait to trait) is typically low compared to the variance of the heritability estimation.221:235

4.2.4 Comparison with other methods

Heritability estimates and polygenic risk scores are two additional methods to describe the
predictive power of genetics that are complementary to Kriging. To put the Kriging results
in context with the results that are produced by these other methods, two additional analyses
were completed for both phenotypes. The first complementary method, heritability, was
computed using GCTA, using the GRM used in the Models 1 to estimate the heritability of
risk (using a background prevalence of 8%) and ten year mortality (using our study-specific
prevalence of 20%).

The second complementary method, polygenic risk scores, can be implemented ei-

ther by cross-validating using a single data set,217-236

or by using reported odds ratios of
already-identified variants.237 Due to the modest sample size of the participants in this
study, the second method was chosen in order to reduce the variability of the estimated
prediction. To create the polygenic risk score, the 128 unique SNVs that were listed in
the NHGRI-EBI catalog as being associated with breast cancer phenotypes were further
curated to keep only those that reported an odds ratio and were polymorphic in the par-
ticipants (81 variants used in polygenic risk score). If variants were reported by multiple
studies, the average of the reported odds ratios was used. In the analysis set, logs of the
previously-reported odds ratio were multiplied by the number of risk alleles a person had at

each locus, and summed across all 81 loci. This was transformed back to a predicted odds

ratio for each person, and then compared to the actual status of the participant using AUC.
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Table 4.5: Predictive Power and Optimal Weighting for Six Genetic-Only Predication Mod-
els of Breast Cancer Risk

Model Optimal AUC (95% CI) Optimal Weights

Model 1 0.570 (0.560-0.578)

Model 2 0.573 (0.564-0.583) common = 1.000
rare = 0.000

Model 3 0.578 (0.569-0.589) protein damaging = 0.333

other gene region = 0.333
intergenic = 0.334

Model 4 0.580 (0.570-0.590) rare protein damaging = 0.250
rare other gene region = 0.000

rare intergenic = 0.000

common protein damaging = 0.150

common other gene region = 0.300

common intergenic = 0.300

Model 5 0.609 (0.600-0.618) previously discovered = 0.300
not yet discovered = 0.700
Model 6 0.618 (0.610-0.629) previously discovered = 0.300

not yet discovered rare protein damaging = 0.175

not yet discovered rare other gene region = 0.000

not yet discovered rare intergenic = 0.000

not yet discovered common protein damaging = 0.105
not yet discovered common other gene region = 0.210
not yet discovered common intergenic = 0.210

4.3 Results

4.3.1 Risk

Table 4.5 summarizes the predictive power of each of the six genetic models and the
weights that were used to achieve the optimal prediction. Model 1 (AUC: 0.570, 95%
CI: 0.560-0.578), which considers all variants together and assumes that each variant fol-
lows the same normal risk distribution, is not as powerful of a predictive model as the
models that allow different classes of variants to have different associations with risk. Pre-
diction is improved by separating the genetic variants into both frequency and functional
classes (Model 4 AUC: 0.580, 95% CI 0.570-0.590). Additional improvement is achieved
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by allowing a separate GRM that contains the SNVs that have previously been associated
with disease, and those in high LD with them (Model 5 AUC: 0.609, 95% CI 0.600-0.618).
The optimal model is Model 6 (AUC: 0.618, 95% CI 0.610-0.629), which combines the
rationale of Models 4 and 5.

A grid search of the weights for Model 2 finds that any weight given to the rare GRM
produces a significantly lower AUC, and a grid search for Model 3 finds that giving approx-
imately one third weights to each functional class is optimal. Differing from this %/ % / %
split by more than 5% produces significantly lower AUCs.

In contrast, the analyses of Model 4, Model 5, and Model 6 produced optimal weights
were not unique (other weights could have been used to produce substantively similar pre-
diction metrics). In the analyses, Model 5 is optimized by a 30% weight on the GRM
constructed of previously identified risk loci, but AUC for weights ranging from 5% to
80% is also possibly optimal. Similarly, analyses Model 4 and Model 6, the grid search
revealed that as long as the weights on the GRMs made from rare intergenic and rare non-
coding gene region variants were kept at zero, many other combinations of weights on the
remaining four GRMs also produce an AUC with 95% confidence intervals that included
the optimal AUC.

With those caveats, the optimal weights do suggest the relative importance of each
of the variants that make up the GRM in predicting breast cancer risk. From Model 2,
rare variants collectively have very little power to predict breast cancer risk, and when
combined with Model 4, this can be refined to suggest that rare variants that do not cause
changes in amino acid have very little predictive power. This suggests that rare amino acid-
damaging variants have a different relationship with risk than other rare variants. Model
3 and Model 4 give strong evidence that the variants that are responsible for breast cancer

risk are not located exclusively near gene regions. Model 5 and Model 6 suggest that there
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Table 4.6: Characteristics of Participants in Risk Analysis

All Cases Controls

N with Genetic Data 2869 1998 871
n with Genetic and Non-Genetic Data 2758 1903 855
Age mean (sd) 41.3 (5.71) 41.4 (5.66) 41.2 (5.83)
Education High School or Less (%) 710 (25.7) 542 (28.5) 168 (19.6)
Some College (%) 1231 (44.6) 784 (41.2) 447 (52.3)

Bachelors or More (%) 817 (29.6) 577 (30.3) 240 (28.1)

Marital Status Married (%) 2146 (77.8) 1499 (78.8) 647 (75.7)
Single (%) 241 (8.74) 155 (8.15) 86 (10.1)

Previously Married (%) 347 (12.6) 239 (12.6) 108 (12.6)

Other (%) 24 (0.87) 10 (0.525) 14 (1.64)

Smoking History Never (%) 1296 (47) 902 (47.4) 394 (46.1)
Past (%) 772 (28) 530 (27.9) 242 (28.3)

Current (%) 690 (25) 471 (24.8) 219 (25.6)

Ever HC n (%) 2379 (86.3) 1665 (87.5) 714 (83.5)
Ever Pregnant n (%) 2299 (83.4) 1590 (83.6) 709 (82.9)
Number of Pregnancies mean (sd) 2.14 (1.45) 2.16 (1.46) 2.09 (1.44)
Age at Menarche mean (sd) 12.8 (1.5) 12.7 (1.47) 12.9 (1.56)
Post-Menopause n (%) 607 (22) 494 (26) 113 (13.2)

HC: Hormonal Contraceptives
sd: standard deviation

Table 4.7: Predictive Power of Models of Breast Cancer Risk

Model Optimal AUC (95% CI)
Non-Genetic Risk Factors Alone 0.601 (0.579-0.623)
Genetics Alone 0.630 (0.622-0.637)
Combined 0.655 (0.649-0.660)

are still undiscovered variants that are responsible for breast cancer risk, and that these
undiscovered variants are also found in all three functional categories.

The last analysis of breast cancer risk included covariates and combined their effect
with the effect of genetic variation, using the weights found in Model 6. This analysis
included the participants for whom non-genetic risk factors were also available (95% of
participants; characteristics summarized in Table 4.6). The results of the genetic-only, non-
genetic, and combined prediction models for these 2758 participants are summarized in

Table 4.7 and Figure 4.2. Using a linear model, the non-genetic risk factors alone can
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Figure 4.2. Optimal Predication Models of Breast Cancer Risk
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predict breast cancer risk in this population with an AUC of 0.601 (95% CI from 2000
bootstrap replicates: 0.579-0.623). The genetic only analysis in this subset of the popu-
lation has superior predictive power than the non-genetic only analysis in this subset, and
produces a prediction AUC of 0.630 (95% CI: 0.623-0.637). The prediction model that
combined the optimal whole genome genetic information with the non-genetic risk factors
was superior to both, with an AUC of 0.655 (95% CI: 0.649-0.660).

Figure 4.3 displays the distributions of the predicted risk of breast cancer in cases and
controls from the combined model. This demonstrates that while the means of the two
distributions are significantly different (0.627 for the controls and 0.717 for the cases; 95%
CI for the difference in the means: 0.102-0.077), many women are still misclassified by

this prediction model.

4.3.2 Prognosis

The risk of breast cancer mortality in cases was next predicted by the Kriging method in

the 1903 cases of the primary analysis set for which mortality information was available.
119



Figure 4.3. Predicted Risk of Breast Cancer for Cases and Controls
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Analyses indicate that germline genetic variation does not predict breast cancer mortality
in this population. A preliminary analysis estimated the AUC of predictions that were
computed using each of the twenty GRMs alone (without combining them with the non-
parametric weights). The results of these predictions are summarized in Table 4.8. No
GRM is able to predict breast cancer mortality with an AUC that was significantly different
than 0.5. A grid search of reasonable weights for each of the six models (not shown) also
indicates that the genetic information is unable to predict 10 year mortality from breast
cancer.

As a comparison, the known non-genetic clinical prognostic risk factors of ER status,
PR status, grade, and stage are available for 894 cases (Table 4.8), and predict breast cancer
mortality at 10 years with an AUC of 0.691 (95% CI from 2000 bootstrap replications of
0.667-0.750).
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Table 4.8: Predictive Power for Six Genetic-Only Predication Models of Breast Cancer

Mortality
Model Variants in GRM AUC (95% CI)
Model 1 All Variants 0.493 (0.479-0.510)
Model 2 Common 0.499 (0.484-0.514)
Rare 0.484 (0.469-0.500)
Model 3 Protein Damaging 0.487 (0.473-0.502)
Other Gene Region 0.484 (0.471-0.499)
Intergenic 0.504 (0.491-0.519)
Model 4 Rare Protein Damaging 0.489 (0.475-0.503)
Rare Other Gene Region 0.485 (0.473-0.500)
Rare Intergenic 0.497 (0.481-0.514)
Common Protein Damaging 0.500 (0.488-0.513)
Common Other Gene Region 0.490 (0.473-0.504)
Common Intergenic 0.505 (0.490-0.519)
Model 5 Previously Discovered 0.505 (0.479-0.541)
Not Yet Discovered 0.494 (0.479-0.507)
Model 6 Not Yet Discovered Rare Protein Damaging 0.489 (0.477-0.506)

Not Yet Discovered Rare Other Gene Region

Not Yet Discovered Rare Intergenic

Not Yet Discovered Common Protein Damaging
Not Yet Discovered Common Other Gene Region
Not Yet Discovered Common Intergenic

0.485 (0.469-0.503)
0.497 (0.480-0.508)
0.499 (0.484-0.518)
0.489 (0.473-0.503)
0.507 (0.494-0.520)

Table 4.9: Characteristics of Participants in Mortality Analysis

All Alive Died

N with Genetic Data 1903 1503 400
N with Genetic and Clinical Data 894 705 189
ER Positive n (%) 518 (57.9) 411 (58.3) 107 (56.6)
PR Positive n (%) 512 (57.3) 409 (58) 103 (54.5)
Grade Well Differentiated 108 (12.1) 100 (14.2) 8 (4.23)
Intermediate Differentiation 342 (38.3) 276 (39.1) 66 (34.9)

Poor Differentiation 398 (44.5) 290 (41.1) 108 (57.1)

Undifferentiated 46 (5.15) 39 (5.53) 7@3.7)

Stage 1 341 (38.1) 310 (44) 31 (16.4)
2 343 (38.4) 261 (37) 82 (43.4)

3 157 (17.6) 109 (15.5) 48 (25.4)

4 53 (5.93) 25 (3.55) 28 (14.8)
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4.3.3 Comparison with other methods

Heritability estimates for risk and ten-year mortality were carried out using the variants
from each of the trait’s Model 1. Heritability estimates using all annotated variants for
risk and mortality are 0.451 (standard error: 0.091) and 0.000002 (standard error: 0.2)
respectively.

The polygenic risk score using the associations reported by the 81 SN'Vs previously re-
ported as associated with breast cancer phenotypes. These analyses produce AUCs of 0.504
for risk (95% CI from 2000 bootstrap replications: 0.482-0.527) and 0.484 for mortality
(95% CI: 0.453-0.516).

4.4 Discussion

This analysis demonstrates the usefulness of the Kriging method to use genome-wide
germline genetic variation to predict early onset breast cancer risk. The Kriging model
that combines the predictive power of limited non-genetic information with whole genome
prediction predicts breast cancer risk with an AUC of 0.655 and is a significant improve-
ment over the predictions from a polygenic risk score model. This is consistent with other
studies that have found limited predictive power from the combination of variants that meet
genome-wide p-value thresholds.#253:236 The heritability estimate, which is derived using
similar techniques as Kriging, is also the first LMM-based heritability estimate for either
breast cancer risk or prognosis, and the results suggest that risk is associated with germline
genetic variation but prognosis is not.

This sample is composed of women who were younger than 51 at diagnosis. Since
whole genome prediction has not yet been done in any other breast cancer studies, future

research in older populations will be needed to investigate whether the Kriging method
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produces similar risk estimates and insight in women who are diagnosed later, or whether
younger women possess distinct genetic variants that drive breast cancer risk.

This analysis demonstrates that prediction is improved when the genome is partitioned
into different classes of variation based on frequency and predicted functionality. This
indicates that the underlying architecture may differ for common and rare variants (with
common variants contributing more to risk), but may be similar for variants of different
predicted functionality.

Compellingly, this analysis suggests breast cancer risk is associated with that variants
tagged by this study but have not yet been identified. These variants span all functional
categories and are both common and rare (although the rare causal variants appear to be
concentrated in variants that cause changes to amino acid translation). Given the results of
Chapter 2 (which found few exons where rare risk variants or risk variants of low effect
clustered), and given the extensive previous research to look for common variation that is
associated with breast cancer risk (which suggests that it is unlikely that common variants
exist that are associated with risk with an OR greater than 260y, subsequent studies will
likely require very large sample sizes to identify individual variants that are associated
with risk. These conclusions are consistent with recent analyses that suggest that there are
few high-penetrance causal genes left to be discovered, and if they do exist, they likely
exist in only a small number of families, and will not contribute much to population-level
risk.33

Beyond suggesting that a large sample size would be needed to identify undiscovered
variants that are associated with breast cancer risk, this analysis also can inform the method-
ologies that will be most efficient for subsequent studies of breast cancer risk. With the
exception of rare variants that cause changes in amino acid transcription, rare variants col-
lectively show little evidence of being associated with risk of breast cancer. It is possi-

ble that there is still predictive power in rare variants that are not well measured by the
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genome-wide array or the exome array. However, the GCTA estimate of heritability using
all annotated variants is statistically significant, and at 0.451, approaches the total heri-
tability estimated from family studies.3>-71:72 Consequently, if unmeasured rare variation
contributes to risk, it is likely to have a modest effect on overall prediction beyond what is
tagged by the variants measured in this study. For this reason, while some variation that
is associated with risk is likely to be uncovered by next generation sequencing (which can
uncover novel rare variants), the overall impact on prediction of the variants discovered by
those methods is likely to be small in breast cancer, and similar predictive power could have
been achieved by array-based assays. However, since this analysis suggests that intergenic
and non-coding variants contribute to risk, subsequent investigations using just exome ar-
rays are unlikely to provide enough information to classify the genetic contribution of a
women’s risk of breast cancer.

In contrast to the risk analysis, this investigation does not find any compelling evidence
that breast cancer prognosis is strongly driven by germline genetics. Two complementary
methods, Kriging and polygenic risk scores, both produce null results, and the heritability
estimate is consistent with mortality not being a heritable trait. This may be a result of a
known downward bias of prediction that is calculated through GREML methods when vari-
ants that truly have multiple distributions that characterize their association with disease are
included in the same GRM. 22 If that is the case in this analysis, and none of the constructed
GRMs reflect the true classes of association between mortality and germline genetics, then
the true prediction signal would be obscured. Sample size may also have been insufficient
(the GCTA authors recommend a sample size of 3000 for heritability analyses,238 and the
estimate of heritability had a large standard error, which may be indicative of an under-
powered analysis). However, the sample size for mortality was not unreasonably small,
and previous applications of Kriging have found predictive power in sample sizes of 99.42

The statistical assumptions of Kriging may also have been violated such as linearity in the
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GRM:s, independence of the GRMs, and modeling a hazard as a linear outcome. Mortality
might be better predicted using methods that do not share these assumptions. However,
the linear assumptions of Kriging are fairly robust to deviations from 1inearity,225 and the

null result presented here is consistent with the mostly null results found by previous single

154,170-174,239 240

marker regression analyses and polygenic risk score analyses.

While these analyses do not rule out the possibility that germline genetic variation has
an effect on breast cancer mortality, it does suggest limits on the genetic architecture of that
association. If mortality were driven by variation in a small number (>10) of highly pene-
trant variants, or a limited number (>100) of variants of modest effect, Kriging would also

have limited ability to detect that.*?

However, if that were the case, if they are present at a
sufficient frequency to be included in the single marker regression analyses, they had a high
probability of being identified by the analysis in Chapter 3 or previous single studies. The
influence of germline genetics on mortality may also be mediated through genetic interac-
tions, rather than a linear relationship, and in many circumstances this genetic architecture
would not be well captures by either GREML methods or polygenic risk scores. Another
possible explanation for the null results may be a limitation of the variants that were in-
terrogated for this study. Since rare variants or copy number variants are less likely to be
tagged by the variants in this study, it is possible that rare variants may affect mortality in
a way that was not captured by the prediction models.

It is also possible that germline genetic variation is a predictor of mortality, but only
for a subset of the cases, and this analysis was not designed or powered to detect any of
these interactions. For example, germline genetic variation may have a larger influence on
breast cancer mortality in populations that have different background risk factors such as
age (this sample was young), ancestry (this sample was of European ancestry), or coun-

try of origin (this sample was recruited from affluent countries). It is also possible that

genetic variation may be responsible for risk by way of an interaction with treatment, as
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198 Since treatment decisions were not available for these

suggested by previous analyses.
participants, we were unable to estimate any treatment-by-genetic interactions. Given the
young age of these women, they may have been treated more aggressively compared to
older women who may have had more comorbidities. It is possible that germline genetics
has less of an impact on survival in the presence of aggressive surgery or treatment, than
otherwise. Other interactions that could not have been detected are gene by gene inter-
actions, particularly with highly penetrant but rare mutations in BRCA2. The women in
this sample are not carriers of known pathogenic mutations in BRCA2. Recent research33
indicates that BRCA2 mutations interact with other lower penetrance germline variation to
produce worse outcomes. If that is the case, a prediction model using Kriging might be
able to capture that association, but without any BRCAZ2 carriers in the study population,
this could not be tested in this analysis.

This study has some limitations. The variation measured in this analysis is obtained
from two array-based methods. Rare variation, which often does not have the same LD

structure as common variation,”?-100

and therefore is tagged poorly by common SNVs, is
mostly ascertained through imputation, and not interrogated comprehensively outside of
gene regions. While this may underestimate the relative importance of rare variants, it
is unlikely to affect overall prediction, since LMM heritability estimates (that are derived
from similar methods to Kriging) indicate that the measured variation already accounts for
most of the variation that is expected to be due to germline genetics. A second concern is
that population stratification can induce upwards bias in prediction models using GREML

220,222

methods, when used to estimate the genetic component alone. This may upwardly

bias the prediction for the genetic-only model (although there are low levels of population
stratification in our sample), but would not upwardly bias the combined prediction.42

A third concern is related to the external validity of the results. As with all prediction

models, these results may not produce prediction models that are accurate for women with
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different characteristics than the study sample. This model would need to be verified in
additional populations before being applied to them.

Tumor subtype is known to be a prognostic factor in breast cancer. While these analyses
investigated mortality in ER+ cases specifically, the number of participants were not pow-
ered detect modest associations between germline genetic variation and morality within
particular tumor subtypes.

In the context of breast cancer risk, the prediction method described here is an improve-
ment on existing models. From an epidemiological perspective, the predictions are useful at
the population level, and the understanding of the relative contributions of different classes
of variants that is advanced by this analysis will help to better design future studies. From
a clinical perspective, the model still has low levels of discrimination, but may be strong
enough to be used in very specific scenarios, such as being used to augment the interpreta-
tion of screening tools such as mammography (which often return uncertain results), or to
help individuals to decide their personal risk/benefit for other medical treatments that may
increase the risk of breast cancer. In the context of breast cancer prognosis, these inves-
tigations support other lines of evidence that suggest that germline genetic variation does
not strongly influence the prognosis of early onset breast cancer. While germline genetic
variation may still influence mortality outcomes for some subsets of breast cancer patients,
particularly for patients treated with specific systemic treatments, these investigations are

unable to find evidence of this.
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CHAPTER 5
CONCLUSIONS

5.1 Summary of Results

This thesis contributes to the field of cancer epidemiology through a thorough investigation
into the genetic determinants of early onset breast cancer incidence and mortality. Chap-
ters two and three present analyses that are designed to identify gene regions that harbor
germline genetic variation that is associated with early onset breast cancer. Chapter two
investigates this with respect to risk of developing early onset breast cancer in the gen-
eral population, and chapter three investigates this with respect to the hazard of mortality
for women who were diagnosed early in life. Chapter four presents analyses that predict
a women’s overall risk of both developing and dying from early onset breast cancer by
incorporating whole-genome measures of variation.

The results of this thesis discovered novel risk loci which add meaningfully to the
known genetic determinants of breast cancer, and the prediction model has significantly
more predictive power than a model that uses only non-genetic risk factors. These insights
represent a synthesis of multiple complementary methods, most of which had not been
applied to any breast cancer phenotype.

The two complementary goals, identification and prediction, are investigated by analy-
sis of genetic data of participants of existing studies that recruited women who developed
breast cancer at a relatively young age. This population is not well-studied, and some
non-genetic risk factors have opposite effects in early- and late-onset cases. While not
conclusively able to reject this hypothesis, this investigation suggests that the genetic de-

terminants of breast cancer do not systematically differ as a function of age of onset.

128



5.1.1 Identification of Genes Associated with Breast Cancer Risk

The analyses in Chapter 2 identify three genes in which variation is associated with risk of
breast cancer: FGFR2 (discovery p =2.18- 1073 ; replication p < 10_30), NEK10 (discov-
ery p=1.20- 1073; replication p < 10739), and MKL1 (discovery p =2.62- 10~4; repli-
cation p < 10*30). Previous genome-wide association studies (GWASs) had identified loci
at each of these genes as being associated with breast cancer risk, but compellingly, con-
ditional analyses indicate that the associations in the MKL1 and NEK10 genes are driven
by risk loci are distinct from those previously reported. This suggests that there are risk
loci whose combination of rareness or modest effect size cannot be identified by a single
marker regression. The SKAT-O test does not directly calculate the magnitude of each of
these genes’ effect on risk. However, the results of the prediction analysis in Chapter 4
indicate that while their effect is statistically significant, it is likely was small.

Within breast cancer cases, the analysis of Chapter 3 also indicates that women with
variation in SLC4A7, and to a lesser extent, the adjacent gene NEK10, are at a higher
risk of developing progesterone receptor positive breast cancer (SLC4A7 p = 8.8 - 1074,
and contains a previously identified risk loci; NEK10 p=6.19 - 103). This suggests that
future prevention efforts can be targeted to deliver chemoprevention that works through the
progesterone receptor pathway to women who are most likely to benefit from it.

The analyses of Chapter 2 also characterize the sparsity of causal variants in genes that
are identified as associated with risk. There have been few previously published descrip-
tions of this characteristic of the genes that are responsible for breast cancer risk and prog-
nosis, even though the sparsity of causal loci within genes dictates the optimal statistical
method to identify those genes. The p mixing parameter indicates that the sequence kernel
association test (SKAT) was a more appropriate test than the burden test for genes in which

even a modest number of variants were measured (more than five variants), although there
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were some exceptions. This suggests that many variants in those larger genes are not asso-
ciated with risk, and that the directions of effect of the minor alleles that are causal can be
both protective and deleterious. This is consistent with the single marker regression coeffi-
cients from Chapter 2 and previous research,3* which report beta coefficients for the minor
alleles that are both greater than and less than zero. This observation strongly suggests
that in the case of breast cancer phenotypes, burden-style gene-based statistical approaches
are not going to be optimally-powered to identify genes that are associated with risk, par-
ticularly if the variants are interrogated with sequencing techniques (the variants on the
exome array used for this study are enriched for variants that were likely to be causal, and
sequencing methods would likely detect many more not-associated variants, whose noise
could further overwhelm burden-style tests). Since in some genes the burden style test was
more appropriate than the SKAT test, omnibus tests such as the optimal SKAT (SKAT-0)
that can detect genes in both sparsity scenarios will most likely be the optimal choice for

future studies.

5.1.2 Whole Genome Prediction of Breast Cancer Risk

This thesis presents a prediction model of breast cancer risk in Chapter 4 that incorporates
the effect of all measured germline genetic variation. The genetic data alone is able to pre-
dict breast cancer risk with an area under the receiver operating characteristic curve (AUC)
of 0.618 (95% CI 0.610-0.629). When the influence of a limited set of non-genetic predic-
tors is also incorporated, the combined model is able to predict breast cancer risk with an
AUC of 0.655 (95% CI: 0.649-0.660). This combined model is a significant improvement
over models that include only the genetic information or only the non-genetic risk factors.

The analyses of Chapter 4 also begin to characterize variants that are responsible for

breast cancer risk. The prediction method that was implemented allows for groupings
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of variants, and for the variants within the separate groups to each be characterized by
separate distributions that describe their contribution to breast cancer risk. The analyses in
Chapter 4 grouped variants by predicted functionality and rareness, and the weights on each
of these groups represent the relative strength of these associations between the variants
within that group with risk. These weights suggest that the variants that are responsible for
breast cancer risk are annotated to all classes of predicted functionality. Variants that cause
changes in amino acid translation, variants that are located within or near genes but do not
cause changes in amino acid translation, and intergenic variants as a class have some power
to predict breast cancer risk. The weights also are able to characterize the causal variants in
terms of their rareness. The weights suggest that rare variants are largely not able to predict
breast cancer risk, with the exception of rare variants that alter amino acid translation.

The analyses in Chapter 4 also suggest that there are still undiscovered variants that
are responsible for breast cancer risk, and that these undiscovered variants are also found
in all categories of annotated functionality. These findings have direct consequences for
future studies of breast cancer risk that may attempt to identify novel risk loci. The results
suggest that studies that exclusively measure variation with technologies such as whole-
exome sequencing or exome arrays, which do not assay variants outside of the exons,
will not capture the effect of all of the risk variants that are driving the whole genome
predictive power. However, additional rare variants that can be measured are expected
to contribute only small amounts to disease risk (see discussion in section 5.2). For this
reason, whole-genome sequencing may not be an efficient use of resources compared to
array-based methods. This implies that despite the gaps in their ability to interrogate rare
variants, array based methods and imputation may continue to be a cost-effective way to
identify novel risk loci.

These results together suggest that undiscovered variation that is associated with breast

cancer risk within gene regions is likely to be characterized by one of three descriptions:
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(1) of large effect size, but so rare as to not have much effect on population-level risk
of disease; (2) common in the population, but increases the risk of breast cancer by a
very small amount; (3) or both rare and of weak effect size. Undiscovered variation that
lies outside of gene regions may be slightly more common or of larger effect than the
undiscovered variation within gene regions, but is still and rare enough or of small enough
effect size to not have been identified by previous single marker regression analyses, or
influence the overall prediction model. This suggests that there is not much additional
predictive power to be gained from their identification, and if they are rare with large effects
(as is to be expected if they are under purifying selection*?), then family-based studies may

be more appropriate than population-based studies to identify them.

5.1.3 Genetic Determinants of Breast Cancer Prognosis

In contrast to the analyses of the genetic determinants of breast cancer development, the
investigations of Chapters 3 and 4 do not find any compelling evidence that breast cancer
mortality is strongly driven by germline genetics that could be measured by our study. Five
complementary methods (single marker regression analyses, SKAT-O, Kriging, polygenic
risk scores, and the heritability estimation) all find null results.

Mortality analysis in estrogen receptor positive patients did not find a significant as-
sociation between any of the CYP genes and mortality. While recognizing that this null
result was found in a modest sample size, interrogated a limited number of polymor-
phisms, and did not incorporate actual treatment information, this is consistent with other
recent research that questions whether polymorphisms in the CYP genes translate into
poorer outcomes for women whose metabolism of tamoxifen is affected by CYP poly-

morphisms. 196,197
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In terms of intermediate markers of prognosis, the analyses of Chapter 3 do find sug-
gestive evidence that progesterone receptor status in cases is associated with variants in
the solute carrier family 4 member 7 gene (SLC4A7). The SLC4A7 protein has a known
role in neural sensory transmission, but it has been implicated in single marker regression
34

analyses as being associated with both breast cancer and cardiovascular complex traits.

The nature of its role in cancer phenotypes has not yet been established.

5.1.4 Novel use of Methods

This thesis applies five complementary methods to investigate the relationship between
germline genetic variation and the risk and prognosis of breast cancer: single marker re-
gression associations of common variation in gene regions; SKAT-O associations of all
variation in gene regions; whole-genome Kriging prediction; polygenic risk score predic-
tion using previously associated loci; and whole-genome heritability estimation. For three
of these methods (SKAT-O, Kriging, and heritability estimation), these analyses represent
the first applications of those methods in the context of breast cancer.

The previous investigations into breast cancer risk that used gene-based tests all used
burden-style analyses. Our analyses of the p mixing parameter of the risk analyses suggest
that the assumptions of the burden test are not always reflective of the genetic architecture
of breast cancer risk, and therefore the results of these studies may not be optimal.

In addition to the statistical methods, this thesis represent only the third study to directly
interrogate rare variants and their association with either breast cancer risk or prognosis
(this study and two previous ones measured rare variation using an exome array; whole-
genome and whole-exome sequencing projects have not yet been completed). The success
of the SKAT-O risk analyses in identifying genes that are suggestively associated with

breast cancer risk suggests that better powered studies may find more such genes.
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In the context of any application of gene-based tests, this thesis also represents the first
ever use of the Combined Annotation Dependent Depletion (CADD) scores as weights
for any phenotype. The investigations suggest that the CADD weights do improve power,
and do not increase the rate of type I error. The CADD weights appear to have better
performance than the often-used beta-transformation-of-minor-allele-frequency weights,
and their use allows for all measured variation to be included in the analyses.

These analyses demonstrate the usefulness of the Kriging method to predict early onset
breast cancer risk, and Kriging methods are a significant improvement in predictive power
over the predictions from a polygenic risk score model. This is consistent with other stud-
ies that have found limited predictive power from the combination of variants that meet

genome-wide p-value thresholds.42-3-236

5.2 Limitations

The analyses presented in this thesis have some limitations, which can be classified as being

related to the study participants, the variants measured, and the analytical techniques.

5.2.1 Participants

The composition of the participants of the primary data used for this study, in particular
their young age of onset, was both a strength and a weakness. Given the complex rela-
tionship between some non-genetic risk factors for breast cancer and age, the focus of the
BCFR studies on women who developed breast cancer before menopause made it possi-
ble to directly investigate hypotheses about the differences and similarities of the genetic
determinants of breast cancer by age. However, after the initial analysis there were no
genes or loci that were so strongly related in the initial sample that they did not need to

be confirmed in a second independent sample. Therefore, although a primary rationale for
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enrolling women with an early onset of breast cancer was to be able to directly interrogate
questions about the interaction between age and germline genetic risk factors, ultimately
the analysis in Chapter 2 was only able to identify genes that were associated with breast
cancer risk in women of all ages of onset.

The conclusions drawn from these analyses may have been more cohesive if the char-
acteristics of the replication data sets better matched the characteristics of the discovery
set. The participants in the replication data sets are of a different age. It is possible that a
larger secondary independent data set of age-matched patients may have been able to better
replicate the primary analysis. As more data become publicly available and the methods
to create gene-based tests from summary statistics improve, there will be a better ability to
match the characteristics of replication samples to those in the primary analysis, and there
will be a greater ability to detect drivers of breast cancer risk and mortality.

The analyses are also limited by sample size. Although the analyses presented in Chap-
ters 3 and 4 represent the largest single-study whole-genome investigation into breast can-
cer mortality, the number of participants is relatively modest, and may not be powered to
detect some true associations. In particular, given the known relationship between tumor
subtype and mortality, a future mortality studies may want to limit themselves to partic-
ipants with homogeneous tumor subtypes in order to not introduce a possible source of
noise into the analysis.

The analyses were also limited by the type of covariates that were collected, and the
limited power to be able to detect interactions between environmental, tumor, and treat-
ment characteristics and germline genetic variation. The BCFR participants were all of the
same ancestry, and all recruited from OECD countries, it is possible that the diagnostic and
treatment trajectories differed between the treatment sites. Treatment information was not

available, and only limited diagnostic information was available, and even if further infor-
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mation was known, the modest sample size of this study would not have been powered to

detect differences in risk and mortality between those unmeasured confounders.

5.2.2 Variants Measured

The variants that were assayed in these studies likely did not tag all variants that are asso-
ciated with breast cancer. In Chapters 2 and 3, the variation in gene regions was assayed
using a genotyping array, which is only able to interrogate ~250,000 variants throughout
gene regions, and can only detect the effect of causal variants that are in high linkage
disequilibrium (LD) with a genotyped variant. Those variants were selected by Illumina
because previous sequencing projects identified variation at those positions. It is almost
certain that most individuals in this study are carriers of rare mutations that were not able
to be interrogated. For this reason, sequencing of the whole gene region, which, unlike
array based methods, does not require prior knowledge of variation at a locus to identify it,
would have provided a more comprehensive analysis.

Similarly, in the whole genome prediction models of Chapter 4, whole-genome se-
quencing would have been preferable to the array-based ascertainment (augmented by im-
putation). Using the array based technologies, outside of gene regions, rare variation was
almost exclusively inferred through imputation. Since rare variation often does not have

the same LD structure as common variation,”?-100

and therefore often is tagged poorly
by common single nucleotide variants (SNVs), it is almost certain that many rare variants
existed in this sample that were not able to be included in the prediction model.

However, while this may result in an underestimate of the relative importance of rare
variants in the Kriging model’s optimal weights, it is unlikely to affect overall prediction,

since the heritability estimate using all measured variants is already quite high, and of sim-

ilar magnitude to estimates from family studies. Similarly, while the inclusion of more rare
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variants may have identified additional genes in which variation is significantly associated
with risk, the magnitude of the additional risk conferred by those genes is likely to be quite
modest, or only affect a small number of women.

In addition to being limited by the technologies that were used to measure rare variation,
the gene-based analyses of Chapter 2 are also limited due to the unbalanced ascertainment
of rare variation that is a result of the uneven number of cases and controls. In an attempt
to be well powered for a prognosis analysis, the risk analyses included 3479 cases and
973 controls. Since many of the rare variants were only observed in one participant, this
imbalance in cases and controls resulted in a sample where rare variants were more likely
to be seen in the cases, resulting in more power to detect rare deleterious rare variants over
rare protective ones. This exacerbates the known bias in which single variant regressions
of rare variants are known to be biased towards odds ratios larger than one.!2?

The conclusions drawn from these analyses may have been stronger if the variants
measured by the replication data sets better matched the variants measured by the discovery
set. In Chapters 2 and 3, the participants in the replication data sets have their genetic
variation interrogated with genome-wide arrays and imputation rather than an exome array.
As a result, the replication genetic data interrogated fewer rare variants in exons, but also
was able to include many more common variants that were located elsewhere within gene
regions (e.g.: introns). This came about because the exome array used in the discovery
analysis targeted nonsynonymous SNVs, and other variants in gene regions were omitted
due to the limited space on the array. While the CADD weights limit the effects of this
ascertainment difference by effectively down-weighting the additional variants that were
assayed in the replication sample, the different makeup of the replication genetic data is

not ideal.
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5.2.3 Analysis

During the quality control and analysis of the data, several decisions were made that in-
cluded implicit assumptions that also present limitations for the interpretation of these re-
sults.

The quality control of the exome array excluded participants based on genotyping rate,
gender mismatch, high heterozygosity, duplicated genotypes, principal component outliers,
and participants whose genotypes were highly correlated. Ultimately, almost 10% of the
participants who were genotyped were excluded, mostly due to high heterozygosity (52
excluded) or high estimated relatedness (126 excluded). While some of relatedness may
be explained by family-based ascertainment of the breast cancer cases, both high heterozy-
gosity and highly correlated genotypes may also be a marker for contamination between
samples. There was also some evidence that on some plates variants were unreliably as-
signed, which also decreases confidence in the exome chip assay.

The variants that were used in the discovery sample to suggest that genes were sugges-
tively associated with early onset breast cancer differed from the variants that were used in
the GAME-ON/DRIVE analysis to attempt to replicate those signals. This decision com-
plicates the interpretation of the suggestively associated genes of Chapter 2 and the largely
null results of Chapter 3. In the suggestively associated genes identified by Chapter 2 as as-
sociated with breast cancer risk, an interpretation is that disruption within the gene regions
of FGFR2, MKL1, and NEK10 is associated with risk. The discovery data set was able to
identify the effect of this disruption that was caused or tagged by largely rare, nonsynony-
mous variants, and the replication data set was able to identify the effect of this disruption
that was caused or tagged by common variants. If this interpretation is correct, than only
genes in which both common and rare variation contributes to breast cancer risk could have

been identified.
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Additionally, Chapter 2, the method used to create a gene-based test differed between
the discovery and replication samples. Being able to directly use SKAT-O in both analyses

would have been preferable.

5.3 Next Steps

The conclusions of this thesis suggest several next steps. Given the modest sample size
and the suggestive nature of the results in Chapter 2, the identified genes would have more
robust evidence of association if their association is replicated in an independent set of
cases and controls that are well matched in age and genetic ascertainment (or studies that
interrogated all variants, such as sequencing studies). This would more comprehensively
describe the role of rare variants in breast cancer risk.

It would also be fruitful to further investigate the genes that are identified in Chapter
2. While a search of gene expression databases indicate that they are expressed in breast
tissue, the magnitude of the effect of polymorphisms on this gene on both the gene product
and downstream phenotypes would further elucidate their role in breast cancer risk, and
help to better describe the mechanism by which they increase that risk. Functional studies
in model systems would help to further study the way by which these genes influence the
progression of breast cancer.

As our understanding of the interactions within the genome improves, future analyses
with this same study population may produce additional results. At the present time, there
is only a rudimentary ability to annotate non-exonic variants to genes, but this is a subject
of intense interest. As the understanding of biological pathways improves, variants will be
able to be annotated to a particular gene in ways that are more sophisticated than ANNO-
VAR’s annotation, which is used in these analyses. For example, regulatory variants that

are not spatially near the genes that they regulate could be included in the analyses, and, if
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these variants are responsible for breast cancer risk, their inclusion will improve the ability
of gene-based tests to identify genes responsible for breast cancer.

The participants of these studies are all of a homogeneous age (younger than 51 at
diagnosis), ancestral background (European), and gender (women). While ancestrally ho-
mogeneous samples have more power to detect the effect of rare variants (which are often
population-specific), breast cancer affects people of all ages, ancestral backgrounds, and
genders. For this reason, additional SKAT-O analyses in populations with different char-
acteristics will help to determine whether the genes that harbor variation that is associated
with breast cancer risk differ in their effect across populations. Genome-wide germline
genetic variation is publically available for women of Latina,2*! African American,2%?
Japanese,243 and Chinese?*3 ancestry for case control studies of women of all ages, and
possible future collaborations could allow for the sharing of mortality information in the
cases. The same analyses that were carried out in this thesis, when applied to different
populations, may uncover additional insight into the genetic basis of differences in risk and
mortality that are associated with these non-genetic traits.

Mortality may be affected by germline genetics in the context of particular treatment
regimens. Therefore, it would be fruitful to repeat the analyses of Chapters 3 and 4 with
a sample of known, homogeneous treatment. In particular, given the still-unsettled rela-
tionship between variation in the CYP gene and survival, it would be of clinical interest
to repeat the mortality analyses of Chapter 3 on patients with estrogen receptor positive
tumors who were treated with tamoxifen.

The success of the risk prediction model in Chapter 4 also suggests that incorporating
all known non-genetic risk factors (rather than the limited set of non-genetic risk factors
available for our study population) would produce a prediction model with even more pre-
dictive power, and may even produce a model whose predictive power is sufficient to be

used in a clinical setting.
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The largely null association between mortality and germline genetics is complicated
by the results of family based studies,> which suggest that mortality does have heritable
component, as first degree relatives have more similar mortality outcomes than would be
expected by chance. These family studies may be biased by shared environment. However,
the results of this thesis do not preclude a possible role for germline genetic variation in
the survival of early onset breast cancer, but they do suggest some limits on the strengths
of that association and the characteristics of the variants that drive it. To more compre-
hensively approach this question, future work to identify variants associated with morality
would be able to investigate the genetic determinants of prognosis if the study (1) has many
participants (both to be able to ascertain the existence of rare variants and also have sta-
tistical power to detect their association with disease), (2) incorporate more variation than
is assayed on the exome array, (3) consider methods that allow for the detection of larger-
than-gene pathways that have modest effect size on risk, and (4) enrolls participants with

homogeneous and known treatment regimens.

5.4 Implications

These analyses identified three genes that are suggestively associated with breast cancer
risk, and one that is suggestively associated with progesterone receptor status in cases.
These all represent possible pharmacological targets for cancer chemoprevention. These
analyses also developed a prediction model for breast cancer risk that improves upon exist-
ing methods of prediction, and is strong enough to be useful at the population level. From
a clinical perspective, the model still has low levels of discrimination, but may be strong
enough to be used in very specific scenarios, such as interpretation of ambiguous screen-
ing results, or to help individuals to understand their personal risk when considering other

medical treatments that may increase the risk of breast cancer such as hormone replacement
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therapy or hormone-assisted reproductive therapy. In the context of breast cancer progno-
sis, these investigations support other lines of evidence that suggest that for many women
who are diagnosed with breast cancer, germline genetic variation does not strongly influ-
ence the risk of mortality. While germline genetic variation may still influence mortality
outcomes for some subsets of breast cancer patients (and patients treated with specific sys-
temic treatments are of particular interest in terms of patients who may have their mortality

influenced by germline genetics), these investigations are unable to find evidence of this.
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