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The phenotypic effect of a mutation may depend on the genetic background in
which it occurs, a phenomenon referred to as epistasis. One source of epistasis in
proteins is direct interactions between residues in close physical proximity to one
another. However, epistasis may also occur in the absence of specific interactions
between amino acids if the genotype-to-phenotype map is nonlinear. Disentangling
the contributions of these two phenomena—specific and global epistasis—from noisy,
high-throughput mutagenesis experiments is highly nontrivial: The form of the
nonlinearity is generally not known and model misspecification may lead to over-
or underestimation of specific epistasis. In contrast to previous approaches, we do
not attempt to model the fitness measurements directly. Rather, we begin with the
observation that global epistasis, under the assumption of monotonicity, imposes
strong constraints on the rank statistics of a combinatorial mutagenesis experiment.
Namely, the rank-order of mutant phenotypes should be preserved across genetic
backgrounds. We exploit this constraint to devise a simple semiparametric method
to detect specific epistasis in the presence of global epistasis and measurement
noise. We apply this method to three high-throughput mutagenesis experiments,
uncovering known protein contacts with similar accuracy to existing, more complicated
procedures. Our method immediately generalizes beyond proteins, providing a simple,
yet powerful framework for interpreting the epistasis observed in combinatorial
datasets.

global epistasis | genotype-to-phenotype map | deep mutational scanning | protein |
fitness landscape

The question of measurement scale has been central to the definition and detection of
genetic interactions—referred to henceforth as epistasis—since R. A. Fisher introduced
the notion of “epistacy” in the context of quantitative traits (1, 2). For example, the
analysis of genetic effects which combine multiplicatively on an additive scale would
result in the appearance of widespread epistasis—a phenomenon Fisher referred to as
“metrical bias” (3). He supposed that metrical bias could often be removed by applying
an appropriate, likely rank-preserving, transformation (3–6).

The question of the appropriate measurement scale has continued to animate studies
of interactions across disciplines (e.g., refs. 7–11), including protein biophysics (e.g., refs.
12 and 13). Here, contemporary mutagenesis experiments, referred to as deep mutational
scans (DMSs), assay the phenotypes of thousands to millions of protein mutants
simultaneously with high-throughput sequencing-based methods (14, 15). In DMSs
assaying the combined fitness effects of two or more mutations (Fig. 1 A and B), observed
epistasis is often categorized into two types: specific epistasis (SE), where the effect of
a mutation at one position depends on the identity of the amino acid at another via a
direct interaction; and global epistasis (GE)—the analog of Fisher’s metrical bias—where
apparent interactions between mutations emerge from the presence of nonlinearities
in the genotype-to-phenotype map (12, 13, 16, 17). The former, SE, is most often
associated with amino acids in close proximity in the protein structure (Fig. 1C ; 18, 19),
while GE may be attributed to many causes, including a thermodynamic equilibrium
between conformational states or detection limits imposed by an experimental assay
(Fig. 1D; 12, 13, 16, 17, 20, 21). Another body of work suggests that GE can arise
from widespread SE (22–24), a scenario which we return to in Discussion. The extent
to which SE and GE contribute to the epistasis observed in a given experiment and, in
turn, shape protein fitness landscapes is an open question (25–27), with consequences
for how proteins evolve and function (28–30). In the simulated example in Fig. 1E, GE
almost completely obscures SE.
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Fig. 1. Potential sources of observed epistasis in proteins. (A) A crystal structure of protein GB1 (PDB: 2J52). Mutated positions, here 0 and 2, are denoted in
black. (B) In a deep mutational scan, mutations (black circles) are introduced into a wildtype background (white circles). (C) If the genotype-to-phenotype map
is multiplicative, as is simulated here, we expect the detected epistasis, ēij (Left), to reflect specific epistasis induced by the contact map (Right, derived from A),
when epistatic effects are computed with respect to a multiplicative fitness map. (D) Nonlinearities in the genotype-to-phenotype (x to Λ to Y ) map of biological
(Right, gtrue, solid black line) and/or experimental origin (gapp, dashed orange line), may introduce epistasis (Left), even in the absence of specific interactions.
Here, the preponderance of deleterious mutations—illustrated in the histogram of simulated single mutant Λ values (Right)—coupled with saturation at the
lower end of the measurement range induces widespread positive epistasis. (E) Observed epistasis from simulations when both physical interactions and global
nonlinearities determine the genotype-to-phenotype map. GE may significantly obscure SE, as is simulated here. For simulation procedures, see SI Appendix,
section 1H.

Formally, under a model of GE, each single mutation i has an
independent effect �i on a latent additive trait Λ, where Λ may,
for example, correspond to the energy associated with protein
folding or ligand binding (e.g., ref. 31). The phenotype, Y , is a
potentially nonlinear, monotonic function g of Λ,

Λ(x) := Λwt +
L∑

i=1
�ixi and Y (x) = g[Λ(x)], [1]

where Λwt is the value of Λ for the wildtype sequence (Fig. 1
D, Right; e.g., ref. 13). For exposition, we let x ∈ {0, 1}L be a
binary, L-length protein sequence. In practice, mutations often
occupy a larger state space (e.g., the 20 amino acids).

We consider two factors that may result in deviations from
Eq. 1. A set of mutation pairs i and j may exhibit second-order
effects, �ij, on the additive trait (Eq. 2a). We refer to the �ij as
specific epistatic effects. In addition, the observed phenotype may
be a noisy measurement of Y . Incorporating these two features,
the estimated phenotype associated with x, Ŷ (x), is modeled as,

Λ(x) := Λwt +
L∑

i=1
�ixi +

∑
j<i

�ijxixj [2a]

Ŷ (x) := g[Λ(x)] + �, [2b]

where � is the measurement error with a potentially unknown
distribution (e.g., ref. 13).

In the event that g is nonlinear, estimation of the �ij under the
assumption of an additive model—equivalent to assuming that
g is a linear function—may lead to spurious inference of many
nonzero higher-order coefficients (compare Fig. 1 C–E). More
broadly, misspecification of the form of g is apt to distort features
of the genotype-to-phenotype map, over- or underrepresenting
the importance of higher-order interactions (12, 13, 31).

Thus motivated, researchers have developed several methods to
account for GE when estimating genotype-to-phenotype maps.
Several of these methods rely on strong assumptions about the
form of the nonlinearity: For example, assuming that g is logistic
(25), follows from a thermodynamic model (31, 32), or is
otherwise of a prespecified form (12, 21, 33, 34). Although other
procedures impose fewer modeling assumptions, they do not
provide a principled hypothesis testing framework for identifying
epistasis (19), or they involve potentially cumbersome fitting
procedures (13, 21, 35).

Indeed, developing a hypothesis testing framework in the
presence of GE is highly nontrivial. First, fitness measurements
are often derived from noisy, sequencing-based assays with
systematic variation in precision across the measurement range
(36, SI Appendix, section 1H). This heteroskedasticity arises
from the fact that less fit variants are associated with relatively
fewer read counts and implies that statistical power to detect SE
in a well-calibrated statistical test should similarly vary across
the measurement range. Second, if not properly accounted
for, uncertainty in the estimation of g may lead to over- or
underestimation of the prevalence of SE.
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In contrast to previous approaches for detecting SE in the
presence of GE, we do not attempt to explicitly estimate the
form of the nonlinearity, nor to model the fitness measurements
directly. We do not even assume that g is nonlinear. Rather,
our work begins with the observation that GE imposes strong
constraints on the rank statistics of a DMS. Namely, if the latent
space is unidimensional, which we will assume going forward
(though see Model Misspecification and SI Appendix, section 2D),
and if the nonlinearity g is monotonic and strictly increasing
(or decreasing), then g is also order preserving in the absence of
measurement noise. In other words, when g is monotonic, the
ordering of mutations is shared across genetic backgrounds. This
observation similarly motivated (37) to introduce a rank-based
loss function for phenotypic prediction in the context of GE.
Our work further exploits the (assumed) monotonicity of GE to
detect SE, which disrupts the ordering of mutations.

We first demonstrate that rank statistics are a natural frame-
work for the analysis of combinatorial datasets, a notion which has
only recently been developed in the literature (38, 39) and applied
to protein DMSs (37). We then define a rank-based measure of
SE and use it to develop a semiparametric test for deviations of
mutation pairs from GE that accounts for heteroskedasticity,
which may arise due to variation in the shape of g or scale
of the measurement noise (or both) across the measurement
range. Our procedure—referred to as Resample and Reorder
or R&R—requires minimal preprocessing of the data beyond
generating variant read counts, is invariant under monotonic
transformations of the data, and is agnostic to the form of the
nonlinearity beyond monotonicity. We apply R&R to simulated
and empirical DMSs of proteins, demonstrating its ability to
recover true epistatic effects and physical contacts, respectively.
Finally, we explore the consequences of misspecification of the
GE model on the results of our inference procedure. In particular,
we consider a scenario where there are two, rather than one, latent
additive traits. While we motivate R&R using DMSs of proteins,
the method generalizes almost immediately to other types of
combinatorial datasets.

Modeling Framework

Rank Statistics As a Natural Framework for Global Epistasis.
Under the assumption of GE (Eq. 1), the monotonicity of the
nonlinearity g implies that the rank-order of mutations should be
preserved regardless of the background in which the mutations
occur. As a consequence, in the absence of measurement noise
and SE, the Spearman’s correlation between mutant phenotypes
measured in distinct backgrounds i and j, �̂ij, is equal to
one. Measurement noise, however, may result in Spearman’s
correlations that deviate substantially from one, even when SE is
sparse or absent (Fig. 2B).

Consider the ordering of two mutations m and n in the
background of mutation i. If the difference between their true
fitness values, Yim and Yin, is small relative to the magnitude of
the measurement noise, �� , then each of the possible orderings
of their estimated fitness values, Ŷim > Ŷin and Ŷim < Ŷin, is
approximately equally likely. In the absence of SE, such small
differences arise when 1) differences in the mutations’ effects
on the latent trait, �m and �n, are small; 2) the slope of the
nonlinearity g in the neighborhood of the background i is small;
or, 3) �� is large. More succinctly,

ℙ{Ŷim > Ŷin} ≈
1
2
⇐⇒ g ′(�i)[�m − �n]� �� , [3]

where, for the sake of exposition, we have assumed that both �m
and �n are small (SI Appendix, section 2F). Therefore, variation
in the slope of the nonlinearity and the magnitude of noise across
the measurement range may induce systematic variation in �̂ij as
a function of single mutant fitness (Fig. 2B).

To illustrate how the presence of a nonlinearity and noise
introduce variation in the �̂ij values among mutant backgrounds,
we simulate a DMS under the assumption of a two-state
thermodynamic model where the effects of single mutations on
binding are specified by their estimated values from Otwinowski
(31) (Fig. 2A). In addition, we introduce SE between amino
acids at nearby positions (≤5 Å; SI Appendix, section 1H).
An important feature of this model is saturation at both very
small and large values of Λ: In the background of a very
deleterious mutation, additional deleterious mutations will not
further reduce fitness, and vice versa for very fit mutations.

At these two extremes, fitness differences among mutants will
be small relative to measurement noise, and thus, the double
mutant phenotypes will be approximately uniformly ordered.
This implies that for a very deleterious (or beneficial) mutation i,
�̂ij ≈ 0 for all mutations j 6= i. In addition, row maximum will
systematically increase with single mutant rank until reaching a
critical rank at which it begins to decrease (Fig. 2 B and C and
see SI Appendix, section 2F). In these GB1-based simulations,
reductions in the row maximum of �̂ij among the fittest mutations
are small due to the oversampling of deleterious mutations (Fig. 1
D, Right and 2 C , Right). Additionally, SE is sufficiently sparse
to preserve the systematic variation in �̂ij induced by GE.

In other words, the estimated rank of a mutation m in the
background of a very deleterious mutation i, R̂im, is uncorrelated
with its estimated single mutant rank, R̂m (Fig. 2 C , Left). In
contrast, mutations in the background of a typical mutation will
be well-ordered, with small deviations due to measurement noise
and large deviations due to SE (Fig. 2C , Center). We will exploit
the latter feature to detect SE.

Detecting Specific Epistasis. We formally define SE as the
presence of a nonzero interaction between two mutations i and m,
with respect to the latent additive trait Λ, i.e., �im 6= 0 in Eq. 2a.
If the magnitude of �im is large enough, it will lead to deviations
from the expected ordering under a model of GE (Eq. 1). For
exposition, consider again the ordering of the phenotypes of two
mutations m and n in the background of mutation i. Suppose,
without loss of generality, that �n > �m and, in accordance, the
estimated fitness of single mutant n exceeds that of mutant m,
i.e., Ŷn > Ŷm. If mutations i and m exhibit SE, and �im > 0, the
probability that Ŷim is greater than Ŷin can be approximated by,

ℙ{Ŷim > Ŷin} ≈ ℙ{g ′(�i)[�m − �n + �im] > �im − �in}, [4]

when �m, �n, and �im are small (and �in = 0); and, �im and �in
are the measurement errors of the double mutants (SI Appendix,
section 2F). Therefore, when the epistatic effect �im exceeds
a threshold set by the measurement noise, the slope of the
nonlinearity in the neighborhood of �i, and the difference in
first-order fitness effects, i.e.,

�im ≳
��

g ′(�i)
+ (�n − �m), [5]

SE will likely result in a change in the ordering of the double
mutants with respect to that of the single mutants: Ŷim > Ŷin
while Ŷm < Ŷn (SI Appendix, section 2F). Moreover, for any n
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Fig. 2. Rank statistics as a natural framework for detecting specific epistasis in the presence of global epistasis. (A) Probability of binding, Y , as a function
of the latent trait Λ (solid black line). Three focal mutations, in brown, red, and gray, with distinct Λ values (dashed vertical lines) from a deep mutational
scan simulated under the assumption of a two-state thermodynamic model. Histograms correspond to the Λ values of double mutants containing the focal
mutations, representing the 0.05, 0.4, and 1.0 quantiles for single mutant fitness. (B) Spearman’s correlation matrix for all pairs of mutations i and j, computed
from the estimated double mutant phenotypes Ŷij , and ordered by single mutant ranks R̂i . (C) Distributions of Ŷij for each of the focal backgrounds (Top row).
Double mutant ranks R̂ji for each background as a function of R̂i (Bottom). Each point is colored by its true specific epistatic effect, �ij . (D) Observed values of
D̂ij for a subset of mutations at adjacent positions (20 to 29) in position order (Top). Mutations are reordered (Bottom) by their single mutant fitness values Ŷi ,
denoted Ŷ(r) (gray scale heatmap). Three focal rank pairs are outlined with solid black squares. (E) New values of Ŷi and Ŷij are generated under the assumption
of a particular error model (Top), shuffling which mutation is associated with a given rank in a given bootstrapped replicate b (Bottom). (F ) Empirical distributions
of |D̂| plotted for the three focal pairs denoted in (D). (G) Position pairs enriched for SE colored by average sign and shown with respect to physical contacts
(≤5 Å, dark gray) and less proximate positions (≤8 Å, light gray). The size of the point is proportional to the −log10 P-value of enrichment.

such that Eq. 5 holds, Ŷim > Ŷin is a likely outcome. Thus, a
natural summary of the magnitude of SE in the context of rank
statistics is the difference between the rank of the double mutant
im compared to the rank of the single mutant m.
A rank-based test statistic. The aim of our inference procedure
is to assess whether a given pair of mutations exhibits SE, while
allowing for the presence of a global nonlinearity (Eq. 2). Namely,
the null hypothesis is given by

H0 : �ij = 0, for i 6= j. [6]

Under the null hypothesis and the assumption of GE, and in
the absence of measurement noise, the rank of mutation j in the
background of mutation i, denoted as Rij, is equal to the rank
of mutation j in the wildtype background, Rj. More concisely,
Rij = Rj. Thus, a natural, rank-based estimate of SE is given by,

D̂ij := R̂ji − R̂i + R̂ij − R̂j, [7]

where we have summed the two rank deviations to obtain a
symmetric test statistic. When calculating D̂ij in practice, we

4 of 11 https://doi.org/10.1073/pnas.2509444122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 K
ir

st
en

 V
al

le
e 

on
 O

ct
ob

er
 3

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
99

.7
.2

.4
8.



A B

C

D

E

F

Fig. 3. Resample and reorder accurately identifies specific epistasis in sim-
ulations. A deep mutational scan was simulated under the assumption of a
two-state thermodynamic model with specific epistasis (SE). (A) Histograms of
the single mutant latent trait values Λi (Top), and double mutant phenotypes
as a function of Λij (Bottom) in the Uniform (Left) and GB1-low simulations
(Right). The latent trait value for the wildtype is denoted by a black dashed line.
(B) True positive rate as a function of the magnitude of the midpoint of each
�ij bin, defined by evenly spaced quantiles, for the Uniform (gray), GB1-high
(dark blue), and GB1-low (light blue) simulations analyzed with R&R (circles)
and D+M (x’s). (C) The proportion of nonzero interactions, �ij 6= 0, among
positions within evenly spaced single mutant fitness, Ŷi , bins for the Uniform
(Left) and GB1-low (Right) simulations. (D) True positive rate for each pair of
bins for R&R analysis of the Uniform (Left) and GB1-low (Middle) simulations,
and D+M analysis of the latter (Right). (E) False positive rates, as in (D). (F )
Average sign of test statistics with P-values below �. For R&R, � = 0.1. For
D+M, � = 0.06.

account for missing data by transforming the ranks onto the
same scale (Materials and Methods and SI Appendix, section 1C).

A deviation of D̂ij from zero would naïvely provide evidence
for SE between mutations i and j. However, in the presence
of measurement noise and GE, the variances of the constituent
quantities may vary systematically across the measurement range
(see Fig. 2C for R̂ji as a function of R̂i in three different
backgrounds j). In addition, even in the absence of SE, the
expected value of D̂ij is not necessarily equal to zero. For
example, the value of the test statistic for the two most deleterious
mutations will be nonnegative, as ranks are bounded below by
zero. Thus, correct calibration of the proposed hypothesis test

requires estimation of the distribution of D̂ij for each pair of
ranks, R̂i and R̂j, in the presence of measurement noise.
Resample and reorder, a bootstrapping approach. To estimate
the null distributions of D̂ij for each pair of mutations i 6= j,
we take a simple, yet non-standard, bootstrapping approach.
The bootstrapping procedure requires specification of an error
model—the parametric component of R&R. The choice of
error model, however, is not conceptually fundamental to our
approach and necessarily depends on the application. When
fitness estimates are defined by the ratio of sequencing reads
after and before selection—as in the DMSs considered in this
study—a Poisson error model is a natural choice (13, 36, 40,
Materials and Methods; SI Appendix, section 1H).

In each bootstrap replicate b = 1, . . . , B, we generate a
synthetic dataset by sampling new fitness estimates for all
observed single and double mutants from the specified error
model (Fig. 2 E , Top). The mutants are then ranked according to
their fitness estimates, generating a new set of single mutant ranks,
R̂b

i , for all mutants i = 1, . . . , M , and a new matrix of double
mutant ranks, R̂b

ij for j 6= i. The test statistic is then computed
for every pair of mutations in each replicate, yielding D̂b

ij values
for all possible pairs of mutations i and j (Fig. 2 E , Bottom).

The key feature of our procedure is that the mutants with given
ranks r and s will vary across simulations (Fig. 2E). This shuffling
allows us to estimate the distribution of D̂ as a function of the
ranks of the constituent mutations, rather than their identities,
ultimately yielding empirical distributions of D̂(r,s), for each pair
of mutant ranks r and s (Fig. 2F ). The P-value for a given
pair of mutations with observed ranks R̂i = r and R̂j = s is
then computed with reference to the empirical distribution of
the absolute value of test statistic, |D̂(r,s)| (Fig. 2F, Materials
and Methods). While bootstrapping has been used previously to
estimate uncertainty in rankings (e.g., ref. 41), R&R additionally
capitalizes on the randomness in the identities of mutants with
a given pair of ranks to estimate the distributions of the rank-
indexed test statistics.

To identify SE at the level of position pairs, and to overcome
the multiple testing burden, each pair of positions is tested for
enrichment of P-values below a fixed threshold � among all
observed amino acid combinations at the two positions (Fig. 2G
and SI Appendix, section 1G).

Evaluating R&R on Simulated and Empirical
Datasets

R&R Identifies True Epistatic Effects in Simulations. To evaluate
R&R, we simulate a DMS inspired by Olson et al. (42) and
Otwinowski (31) in which the global nonlinearity is specified by
a two-state thermodynamic model, and fitness has been estimated
for all single and most double mutants (SI Appendix, section 1H).

We first consider an ideal scenario in which 1) all single and
all double mutants are represented at equal frequencies in the
initial library, respectively, and 2) the effects �i on the latent trait
Λ are uniformly distributed (Fig. 3 A, Top Left). To introduce
SE, we randomly sample �ij for nearby mutation pairs (within
5 Å), and otherwise set �ij to zero. Pre- and post selection read
counts for each variant are sampled from Poisson distributions
parameterized by initial cell count and true fitness to generate
fitness estimates (Fig. 3 A, Bottom row; and see SI Appendix,
section 1H). To apply R&R, we generate B = 1,000 bootstrap
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samples under the assumption of a Poisson error model (Materials
and Methods).

Not surprisingly, true positive rate increases as a function of
the magnitude of �ij (Fig. 3B, gray dots). However, statistical
power is lowest for combinations of poorly or highly ranked single
mutations despite the uniform distribution of true epistatic effects
over the measurement range (Fig. 3 C and D, Left column). Two
factors likely contribute to the systematic reduction in power
for these extreme pairs. First, in the two-state model, the slope
of the nonlinearity approaches zero for both deleterious and
beneficial mutations. As a consequence, the variance of the test
statistic is larger for extreme pairs. Second, even in the absence of
saturation, power to detect beneficial or deleterious interactions
is asymmetric. A deleterious interaction (�ij < 0) will only
minimally reduce the fitness of a double mutant composed of
two very deleterious mutations (and likewise for �ij > 0 and two
beneficial mutations), resulting in systematic biases in the inferred
sign of epistasis (Fig. 3 F , Left). The extreme pairs also contribute
disproportionately to the false positive rate, presumably due to
greater variance of the test statistic (Fig. 3 E , Left).

Next, we simulate more realistic DMSs with the effects of
single mutations on energy �i specified (with modification) by
their estimates from a DMS of GB1 (31, 42), nonspecific binding,
and variation in measurement precision (Fig. 3 A, Right and SI
Appendix, section 1H). Unlike in our prior simulations, SE is
concentrated among pairs of deleterious mutations, as mutations
at positions engaged in many physical contacts tend to reduce
fitness (Fig. 3 C , Right). In SI Appendix, we consider the effects
of several of these amendments in isolation.

When R&R is applied to this GB1-like DMS, we observe a
wholesale reduction in power relative to the uniform simulations
(Fig. 3 B and D). Reductions in power are exacerbated when we
reduce the initial cell counts by a factor of ten, further decreasing
measurement precision—a scenario referred to as GB1-low in
Fig. 3B. Compared to the uniform simulations, we observe more
pronounced asymmetry in R&Rs ability to detect positive and
negative epistasis in different areas of the measurement range.
In particular, R&R almost exclusively detects negative epistasis
among pairs of deleterious and beneficial mutations (Fig. 3F
and SI Appendix, Fig. S2). This asymmetry likely arises due
to saturation at the low end of the measurement range, and
could potentially be mitigated by a two-sided hypothesis test (SI
Appendix, section 1J and Fig. S10).

To further benchmark R&R, we compare its performance to
that of an existing procedure which combines the fitness estimates
of DiMSum (36) with a neural network-based GE inference
framework, MoCHI (21), referred to henceforth as D+M. D+M
tests for SE by examining the residuals of the double mutant
fitness estimates with respect to a fitted GE model, here a sum of
sigmoid functions.

The P-values of R&R and D+M are highly correlated though
they exist on vastly different scales (Spearman’s � ≈ 0.75).
And, like R&R, D+M is relatively less powered to detect SE
among deleterious mutations (Fig. 3 D, Center and Right and SI
Appendix, Fig. S2). To provide a meaningful comparison between
the methods, we fix the false positive rate across the two methods
in each simulation scenario (SI Appendix, section 1I). Under
this parameterization, D+M is better powered to detect weak
SE relative to R&R, with less appreciable differences in power
for the GB1-low simulations (Fig. 3B). R&Rs reduced power
relative to D+M is not surprising given overdispersion in the
bootstrap sample (SI Appendix, section 2B) and the fact that
D+M explicitly estimates the form of g. Rather, we emphasize

that R&R can achieve comparable results—particularly when
fitness measurements are less precise—without estimating the
nonlinearity and at a fraction of the computational cost.

Resample and Reorder Identifies Protein Contacts in Empirical
Datasets. We apply R&R to two DMSs, for which previous
studies support models of single-trait GE and a strong association
between inferred SE and the physical proximity of amino acids
in the crystal structure (19, 32, 43).

In the first, Diss and Lehner (32) conducted a DMS of two
alpha-helical proteins, Fos and Jun, which form a heterodimeric
transcription factor in vivo (Fig. 4A). The authors estimated the
interaction strength of all single mutants and the majority of dou-
ble trans-mutants—pairwise combinations of single mutations in
each protein—in a high-throughput, sequencing-based assay. In
the second, Zarin and Lehner (43) estimated the binding affinities
of almost all single and the majority of double trans-mutants of a
large portion of the third PDZ domain of PSD-95, PDZ3, for its
8-residue cognate ligand CRIPT (Fig. 4F ). Due to batch effects
and variable sequencing coverage, we separately analyze two 43
amino acid segments of PDZ3, referred to henceforth as blocks
1 and 2 (SI Appendix, section 2E).

We implement R&R with B = 1,000 bootstrap replicates
under the Poisson model (Materials and Methods). In SI Appendix,
section 2, we summarize the results of R&R at the level
of position–amino acid pairs. Here, we follow previous work
(18, 19, 43) and test whether specific position pairs are enriched
for SE, defined as mutated amino acid pairs with P-values below
a threshold � (Materials and Methods).
Fos–Jun. Consistent with prior studies (19), enriched position
pairs after correcting for multiple testing (44) are sparse and
predominantly constrained to protein contacts, defined as amino
acids within 5 Å in the crystal structure (Fig. 4 B and D), with
R&R achieving comparable or higher contact prediction accuracy
relative to previous analyses (18, 19, 32) and D+M (SI Appendix,
Fig. S12).

Specific epistasis among enriched protein contacts—position
pairs which are both significantly enriched after correcting for
multiple testing (44, �BH = 0.1) and contacts—is dispropor-
tionately positive, consistent with ref. 32 (Fig. 4C ). In Fig. 4E ,
we highlight an extreme example—positions L4 and L4 in Fos
and Jun, respectively—for which all of the ≈30 amino acid
interactions with P-values below � = 0.05 are positive (SI
Appendix, Fig. S5). The predominance of positive interactions
is likely, in part, explained by two considerations: 1) the majority
of mutations at positions engaged in protein–protein contacts
are deleterious in isolation (SI Appendix, Fig. S3) and 2) R&R
is relatively underpowered to detect negative interactions among
the most deleterious mutations (Fig. 3). The latter limitation is
not unique to R&R (see SI Appendix, Figs. S2, S10, and S11 for
a comparison with D+M).

Positions T8 Fos and V8 Jun present a notable exception to the
widespread positive epistasis among protein contacts, as ≈95%
of interactions between T8 and V8 with P-values below � are
negative in each replicate, a result that cannot readily be explained
by methodological biases nor technical artifacts (Fig. 4E and SI
Appendix, Fig. S5).
PDZ3-CRIPT. Sequencing coverage in the PDZ3-CRIPT dataset
was lower than for that of Fos-Jun. As a consequence, overes-
timation of single mutant fitness values due to low initial read
counts may have resulted in spurious detection of negative SE
(SI Appendix, section 2E and Fig. S19).
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Fig. 4. Resample and reorder identifies protein contacts in empirical datasets. (A) Crystal structure of the mutated region of the Fos–Jun complex (PDB: 1FOS).
Three position pairs enriched for specific epistasis (SE; �BH ≤ 0.01) are highlighted and colored according to the average sign of the test statistic, D̂ij . (B) All
position pairs enriched for SE (�BH = 0.1) are indicated by points, colored by the average sign of amino acid pairs with P-values below � (� = 0.05); the size of
the point is proportional to the −log10 enrichment P-value. Pairs significant at �BH = 0.01 are outlined in black. (C) Histograms of the average value of the test
statistic, D̄ij , across replicates for amino acid pairs with P-values below � among enriched protein contacts (≤5 Å, �BH = 0.1; Top, dark gray) and noncontacts
(>5 Å, Bottom, light gray). (D) The number of P-values below � associated with a given position pair as a function of physical distance (Å), where the dotted black
line denotes the significance threshold (�BH = 0.1). (E) Each column corresponds to a different enriched position pair. Histograms of the corresponding D̄ij
values, averaged over replicates (Top), and average double mutant rank, R̄i(k),j(`), as a function of the single Jun (Middle) and Fos (Bottom) mutant ranks. The
shading of each point denotes the meta P-value, p̃ij . Points corresponding to the focal pairs are outlined in color and labeled by amino acid. (F ) Crystal structure
of the mutated region of the PDZ3-CRIPT complex (PDB: 5HEB). Three significant position pairs are highlighted, as in (A). (G) The same plot as in (D), except the
number of positive interactions with P-values below � is shown for each PDZ3-CRIPT pair (�1 = 0.034, �2 = 0.021). Pairs involving positions in blocks 1 and 2 are
represented by x’s and points, respectively. (H) All position pairs enriched for SE, as in (B). In addition, position pairs enriched for positive SE at �BH = 0.1,0.01
are denoted by dotted and solid black boxes, respectively. (I) The same plots as in (E) for select PDZ3-CRIPT position pairs.

To be conservative in the detection of enriched position pairs,
we chose the P-value threshold � in each block to maximize
contact precision and recall (SI Appendix, Fig. S15, �1 = 0.034,
�2 = 0.021). As in ref. 43, we also identify position pairs enriched
for positive interactions using the same values of �, respectively.
While the pairs most enriched for positive interactions are
within 5 Å—partly by design—several position pairs in block
1 overtly contravene this trend. Specifically, S-1 CRIPT and
L342 and G345 in PDZ3, and T-2 CRIPT and G330 PDZ3
at distances of approximately 8, 11, and 10 Å, respectively, are

significant after correction for multiple testing (�BH = 0.01;
Fig. 4 G and H ). These position pairs were previously identified
as “specificity-changing mutations” (43) and/or implicated in
allosteric regulation in PDZ3 binding (45). In isolation, both T-
2 CRIPT and G330 PDZ3 harbor many of the most deleterious
mutations (Fig. 4I ). However, a subset of amino acid pairs at these
positions results in appreciable fitness gains (Fig. 4I ), though
with absolute fitness still below that of wildtype (SI Appendix,
Fig. S16). In contrast, S-1 CRIPT and L342 and G345 PDZ3
single mutations have more modest effects on fitness, with some
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C D

pseudo-false 
positive rate

A B

Fig. 5. Model misspecification results in spurious detection of specific
epistasis. (A) The rank of the average rank of each mutation in GB1 (42) across
all backgrounds, R̄·,i , as a function of single mutant rank, R̂i . Where possible,
each mutation is colored by its independently estimated folding energy ,
�̂fold
i (46). Mutations associated with “qualitative” and missing measurements

are in dark gray and white, respectively (see ref. 46). (B) Residuals, defined
as the difference between the y and x-axis values of (C), as a function of
�̂fold
i . The dotted line denotes a linear fit (to the quantitative measurements).

Residuals for the qualitative measurements are shown to the Right. Each
single mutation is colored by the number of associated P-values below �
(� = 0.1). (C) Figure 1b of ref. 31 reproduced, with each mutation additionally
colored by its residual [y-axis in (D)]. The size of the point corresponds to
the number of pseudo-false positives involving each mutation, defined as a
P-value below �, where the mutations are at distances greater than 8 Å. (D)
Pseudo-false positive rate computed for mutation pairs binned by fitness, Ŷi
(Top) and �̂fold

i (Bottom).

amino acid pairs exhibiting negative SE (Fig. 4I and SI Appendix,
Fig. S16).

H372 PDZ3 and T-2 CRIPT exhibit the largest number of
amino acid pairs with P-values below �, with the test statistic
approaching its maximum value for several pairs (Fig. 4I and
SI Appendix, Fig. S16). Though, as with the G330 PDZ3/T-
2 CRIPT pairs, SE does not fully recover wildtype fitness (SI
Appendix, Fig. S16). As the ranks of single mutations at H372
and T-2 are similarly deleterious, and many amino acid pairs
exhibit large, positive rank deviations, R&R may underestimate
the proportion of nonzero interactions (Fig. 4I ). For example, the
P-values associated with H372V and T-2R are above � = 0.05
in each replicate. However, the observed rank deviations are
unlikely to be explained by experimental noise, as suggested by
the corresponding meta P-value (P̃ = 0.013).

Model Misspecification Leads to Spurious Detection of Specific
Epistasis. Finally, we analyze a comprehensive DMS of 55 of the
56 amino acids in the immunoglobin fragment G (IgG) binding
domain of protein G, GB1 (42). Our primary interest in the
DMS of GB1 is that single-trait GE is a priori thought to be
insufficient to explain GB1-IgG binding. Instead, prior work
supports a three-state equilibrium model, where the protein’s
folding and binding energies govern transitions among unfolded,
folded, and ligand-bound states (31, 46). In this case, fitness—
a proxy for binding affinity—is a bivariate nonlinear function

of two latent additive traits, Λfold and Λbind (SI Appendix,
Eq. S15). The presence of two latent traits implies that, even
in the absence of measurement noise, the ranks of mutations will
not necessarily be preserved across backgrounds, violating the
underlying assumption of R&R. Indeed, the contact accuracy of
R&R at the level of position-pairs is substantially lower than for
Fos-Jun, though R&R performs comparably to or slightly below
prior procedures (SI Appendix, Figs. S13 and S14). When D+M
is used to fit a three-state model, contact prediction accuracy
improves appreciably (SI Appendix, Fig. S13). As such, the DMS
of GB1 presents an opportunity to evaluate the consequences of
model misspecification, in the form of an additional latent trait,
on R&Rs detection of SE in an empirical dataset.

A key feature of the three-state model is that a mutation i
with an adverse effect on binding is more deleterious in the
background of an unstable mutation j. In this scenario, the
rank of mutation i in the background of j will likely be lower
than expected given its single mutant rank, i.e., E[R̂ji] < E[R̂i],
resulting in a preponderance of negative D̂ij values and spurious
negative SE among all such pairs. The converse holds when a
stabilizing mutation i occurs in the background of a mutation j
with adverse effects on folding: E[R̂ji] > E[R̂i] yielding D̂ij > 0
and spurious positive SE.

We therefore suspected that a mutation’s residual, defined as
the difference between its rank based on all possible backgrounds
and single mutant rank (Fig. 5A), would correlate with its effects
on folding energy, �fold

i . Indeed, variants with adverse effects on
�̂fold—independently measured by Nisthal et al. (46)—exhibit
more negative residuals relative to more stable variants (Fig. 5B,
linear fit, R2 = 0.26), larger numbers of interactions with
P-values below � (Fig. 5B), and higher pseudo-false positive rates
(Fig. 5 D, Lower triangle). Indeed, �̂fold

i is a much better predictor
of pseudo-false positive rate than single mutant phenotype (Fig. 5
D, Upper triangle). To better visualize this phenomenon, we
reproduce Figure 1b of ref. 31, in which the inferred folding
and binding energies of each GB1 mutation are plotted with
respect to the wildtype sequence (Fig. 5C ). Here, we observe that
variants with estimated adverse effects on folding (Λ̂fold

i > 0)
and fitness approximating the wildtype fitness exhibit the highest
pseudo-false positive rates; in Fig. 5C , the size of each point is
proportional to the number of false positives. Simulations under
the assumption of a three-state model without SE qualitatively
reproduce these results (SI Appendix, Fig. S14).

Discussion

Quantifying epistasis usually requires specification of the mea-
surement scale, e.g., additive or multiplicative. Existing semi-
parametric methods relax this constraint by defining (specific)
epistasis as a deviation from a model of GE fitted under minimal
assumptions about the form of the nonlinearity, g. For example,
modeling g as a sum of monotonic functions, such as spline
functions or sigmoids (13, 21). Nonparametric procedures, such
as refs. 47–49, impose even fewer constraints on scale, but may
overestimate the prevalence of SE in not explicitly accounting for
any global nonlinearities.

By redefining epistasis in the context of rank statistics, R&R
entirely circumvents the choice of scale. Our work follows
from the observation that, as long as g is monotonic—but not
necessarily nonlinear—SE can be detected as a deviation from a
given reference order.
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We contribute a principled hypothesis testing procedure,
R&R, that accounts for heteroskedasticity in the test statistic
due to variation in 1) the slope of the nonlinearity, 2) the density
of single effects on the latent trait Λ, and 3) variance of the
fitness estimates conditional on Λ. To “learn” the distribution
of D̂ as a function of the ranks of the constituent mutations,
R&R generates an ensemble of synthetic datasets under the
assumption of an error model—the only context-specific and
parametric element of R&R. In the analyses of protein DMSs
presented here, we employed a Poisson error model, allowing
R&R to operate on minimally processed variant count data.
Additional postprocessing and alternative error models, e.g.,
normally distributed errors, would allow R&R to combine
information across replicates, account for batch effects, as in ref.
43, and explicitly model overdispersion (e.g., ref. 36), potentially
improving statistical power and reducing false positives.

Despite its simplicity, R&R accurately identified true SE and
protein contacts in a diverse set of simulated and empirical
datasets—with substantial variation in measurement precision—
demonstrating its robustness, while also revealing several limita-
tions:

The test statistics for a given mutation are correlated across
variants as they are all computed with reference to the single
mutant rank. When the fitness values of single mutants are
estimated with high precision, errors in the single mutant
ranks will make minimal contributions to the false positive
rate. However, when single mutant ranks are estimated with
nonnegligible error—as in the PDZ3-CRIPT dataset—we expect
to, and likely do, detect spurious SE. Alternative definitions of
the test statistic could potentially mitigate susceptibility to errors
in the single fitness estimate.

R&R implicitly assumes that the estimated fitness values are
independent and identically distributed conditional on their
latent trait values. Variation in measurement precision will
increase the volatility of the bootstrap sample, reducing power to
detect SE among more precise fitness measurements. To mitigate
this bias, one could potentially integrate over uncertainty in the
double mutant rank when computing the test statistic or devise
a more sophisticated bootstrapping scheme that accounts for
variation in measurement precision.

R&Rs power to detect SE depends on the density of SE
in a mutation’s single effect neighborhood. When SE is not
sparse, R&R will detect the largest interactions, as observed
for mutations of H372 PDZ3 and T-2 CRIPT, potentially
underestimating the complexity of the genotype-to-phenotype
map.

More profoundly, analyzing DMSs from a rank-based per-
spective exposes systematic biases in the detection of SE—with
R&R or other procedures—across the measurement range. For
example, both R&R and D+M are underpowered to detect
SE, and particularly negative SE, among deleterious mutations.
Our ability to derive general principles about proteins from
distinct DMSs requires an understanding of how experimental
and statistical biases influence the distribution of SE detected in a
given experiment. For example, to conclude that SE is on average
positive or negative, necessitates a proper accounting of statistical
power to detect SE of one sign versus the other. To the extent
possible, experimentalists can maximize power to detect SE by
measuring single mutant fitness with high accuracy, increasing
the measurement range, and achieving equal representation of
each mutant in the library as well as uniform sequencing coverage
across mutants.

In the present work, we have arguably treated the nonlin-
earity g as a “nuisance,” which conceals the “true” epistatic

landscape. When g is induced entirely by experimental design,
for example, by a lower detection threshold, this treatment is
uncontroversial. However, when g emerges from the physics of
the protein, one can not necessarily neatly distinguish between
a global nonlinearity and direct physical interactions (see ref.
50). For one, recent work demonstrates that GE can emerge
from numerous microscopic interactions among mutations at
many orders (23, 24). This finding reveals a fundamental
ambiguity in the specification of genotype-to-phenotype maps:
Is a GE model—where the latent additive trait includes sparse
higher-order terms—to be privileged over a dense model, with
numerous epistatic interactions at many orders, that does not
explicitly account for global nonlinearities (e.g., see refs. 26
and 48)?

Our work presents immediate areas for future research. R&R
relies on sufficient numbers of mutations at a given order to
estimate the distributions of the rank-indexed test statistic—
hence our focus on DMSs with large numbers of single and
double mutants. Many DMSs, however, more sparsely sample the
sequence space and include higher-order mutants. For example,
“pathway” DMSs assay a combinatorially complete set of mutants
that interpolate between two sequence endpoints (e.g., refs. 51–
54). Extending R&R, and applying rank-based procedures for
detecting interactions more generally (see refs. 38 and 39) to
these more common, sparser datasets may provide additional
insights into epistasis across proteins.

While monotonicity is common in biology, it is by no
means a rule (16). Despite violating a fundamental assumption
of R&R, nonmonotonic GE may still systematically constrain
the rank statistics of combinatorial DMSs, for example, if g
is unimodal. Such constraints could potentially be exploited
to detect interactions in the presence of nonmonotonic GE.
In addition, as we demonstrated in Model Misspecification,
the presence of an additional latent trait results in spurious
inference of SE. Extending rank-based detection of SE to higher
dimensional models of GE—where mutations combine addi-
tively in a multidimensional latent space—demands advances
in our mathematical understanding of how multidimensional
(monotonic) GE constrains the rank statistics of combinatorial
DMSs, representing a rich area for future work.

Finally, in our applications of R&R, we have assumed that
single-trait, monotonic GE is the appropriate model. Non- or
semiparametric tests that formally assess this hypothesis would
provide a powerful tool in the analysis and interpretation of
combinatorial DMSs.

Materials and Methods

Processing the Deep Mutational Scan Data. For the GB1 DMS (42), we
removed variants with fewer than 21 reads in the input pool.

For the Fos–Jun DMS (32), we processed the raw sequencing reads to produce
pre- and post selection read counts for each variant in each of the three replicates.
We then removed observations with fewer than 11 initial reads.

For the PDZ3-CRIPT DMS (43), we removed all positions for which the
average single mutant read coverage was below 20 across the three replicates,
observations with fewer than 11 initial reads, and any variants with more than
95% missing data across all double mutants. Due to batch effects, we analyzed
the two halves of PDZ3 separately, with blocks 1 and 2 spanning positions
303-345aa and 353-395aa, respectively.

Computing the Test Statistic. Given an L-length protein and M possible
states, one can observe Ld := (L− 1)× (M− 1) double mutants in a given
background. Thus, to compute the test statistic D̂ij Eq. 7, we adjust the single
rank of i by excluding all mutations at position j (and vice versa), where we
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have abused notation in using i and j to refer to both position and amino acid
mutant.

As fewer mutations may be observed in some backgrounds due to insufficient
coverage in the initial sequencing pool, all of the ranks are transformed onto the
same scale such that the ranks in each background range from 0 to Ld − 1 (SI
Appendix, section 1C). Tied values are resolved using mid-ranks (SI Appendix,
section 1B). In the PDZ3-CRIPT dataset, where the number of PDZ3 mutations far
outnumbered that of CRIPT, we employ a reweighted test statistic (SI Appendix,
section 1E).

Poisson Error Model. The pre- and postselection read counts in the b-th
bootstrap replicate N0,b

i and N1,b
i for mutant i, respectively, are assumed to be

Poisson distributed with means specified by their observed value, N̂0
i and N̂1

i ,

N0,b
i ∼ Poisson(N̂0

i + �) and N1,b
i ∼ Poisson(N̂1

i + �), where � = 1 is
a pseudocount. The fitness estimate for mutant i in the b-th replicate is then
given by,

Ŷbi :=

{
(N1,b

i + �)/(N0,b
i + �) for N0,b

i ≥ N∗

missing else.
[8]

where N̂0
i is the observed initial read count and N∗ is a minimum initial read

count threshold, and likewise for double mutants.

Estimating the P-Value of Interactions Between Mutations. The bootstrap-
ping procedure described in the main text is used to generate an ensemble of test
statistics for each pair of double mutant ranks, r and s. The empirical distribution
of D̂(r,s) is then given by, F̂(r,s)(d) := 1

B+1
∑B

b=1 1{|D̂
b
(r,s)| < d}, where

D̂b
(r,s) is computed from Eq. 7 for the mutants ranked r-th and s-th in the

b-th simulation. As certain combinations of mutant ranks are not observed in a
given bootstrap replicate, the matrix D̂(b) is imputed using a nearest neighbor
approach (SI Appendix, section 1D). The P-value for a pair of mutations i and j

with estimated ranks r and s, is then given by, pij := 1− F̂(r,s)

(
|D̂ij|

)
, where

D̂ij is the observed test statistic.

Method Comparison. DiMSum (36) was applied to simulated and empirical
datasets after filtering on initial read counts, to estimate the mean (log) relative
fitness values and their SEs under a Poisson error model. The estimates from
DiMSum were used as input to MoCHI (21) to fit a GE model, where the
nonlinearity was assumed to take the form of 1) a sum of arbitrary sigmoid
functions (simulations and Fos–Jun), 2) a two-state thermodynamic model (GB1),
and 3) a three-state thermodynamic model (GB1). See SI Appendix, section 1I
for more details.

Data, Materials, and Software Availability. All experimental data were
previously made available to the public. All code required to reproduce the
analyses is available at: github.com/marync/resample_and_reorder. Previously
published data were used for this work (32, 42, 43).
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