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We investigate the influence of boundaries and spatial nonreciprocity on nonequilibrium driven-
dissipative phase transitions. We focus on a one-dimensional lattice of nonlinear bosons described by a
Lindblad master equation, where the interplay between coherent and incoherent dynamics generates
nonreciprocal interactions between sites. Using a mean-field approach, we analyze the phase diagram
under both periodic and open boundary conditions. For periodic boundaries, the system always forms a
condensate at nonzero momentum and frequency, resulting in a time-dependent traveling wave pattern. In
contrast, open boundaries reveal a far richer phase diagram, featuring multiple static and dynamical phases,
as well as exotic phase transitions, including the spontaneous breaking of particle-hole symmetry
associated with a critical exceptional point and phases with distinct bulk and edge behavior. Our model
does not require postselection and is experimentally realizable in platforms such as superconducting
circuits.
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Introduction—Driven-dissipative many-body systems
have emerged as a versatile platform for exploring novel
nonequilibrium phenomena that are inaccessible in equi-
librium. These systems exhibit a rich variety of exotic
phases of matter, phase transitions, and unique dynamical
behaviors [1]. Much of the interest is driven by the rise of
programmable quantum simulators across various plat-
forms, including exciton-polariton systems in semiconduc-
tors [2], ultracold atomic systems [3], photonic platforms
[4,5], and superconducting circuits [6], where both coher-
ent interactions and dissipation can be engineered.
Recent years have seen a surge of interest in non-

reciprocally interacting many-body systems. Prototypical
examples often consist of multispecies systems where
the interactions between different species are asymmetric
[7–14]. Nonreciprocal interactions have also been shown to
give rise to exotic nonequilibrium phases of matter, such as
long-range order in two spatial dimensions [15–17], time-
crystalline order [8,10–12,14], nonequilibrium boundary
modes [18], and chaotic phases [19]. These phenomena
have attracted significant attention in diverse fields such as
active matter [20], biology [21], and neural networks [22],

with explorations of analogous quantum systems also
beginning to emerge [23–27].
Another example of nonreciprocity arises when a system

exhibits preferred spatial directionality [28–33]. A para-
digmatic example is the Hatano-Nelson model [34,35],
a one-dimensional system governed by a non-Hermitian
Hamiltonian with asymmetric left and right hopping rates.
This asymmetry causes exponential localization of all
eigenstates at one boundary under open boundary condi-
tions (OBC), while under periodic boundary conditions
(PBC), the eigenstates remain extended—a phenomenon
known as the non-Hermitian skin effect (NHSE) [36–38].
While recent studies have explored nonlinear extensions of
such models [27,31,39–45], the impact on phase transitions
and the specific role of boundaries, particularly beyond the
framework of non-Hermitian Hamiltonians, remains largely
underexplored.
In this work, we investigate the interplay of nonreciproc-

ity, interactions, and boundary conditions on nonequili-
brium phase transitions in a minimal driven-dissipative
condensate. Driven dissipative condensates have been
extensively studied across a range of systems [2,46–56].
Recent theoretical [57] and experimental [58] works have
begun to explore condensates in nonreciprocal settings, but
the impact of nonreciprocity on phase transitions remains
unexplored. We focus on a mean-field treatment of a one
dimensional condensate described by a Lindblad master
equation, and find that the steady state is highly sensitive to
boundary conditions. While periodic boundary conditions
lead to a single phase characterized by a finite momentum
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and frequency condensate, open boundaries result in a rich
variety of static and dynamical phases. These include exotic
phase transitions associated with the breaking and dynami-
cal restoration of particle-hole symmetry, boundary-induced
critical exceptional points [9,12,13,24,25,59–63], and
regimes with qualitatively distinct edge and bulk dynamics.
Model—We consider a chain (or a ring) of bosonic sites

[see Fig. 1(a)] described by a quantum master equation

[64] ∂tρ̂ ¼ −i½Ĥ; ρ̂� þ P
μ¼1;2;3

P
j D½L̂ðμÞ

j �ρ̂ where the

Hamiltonian, Ĥ¼−J
P

jðâ†j âjþ1þ â†jþ1âjÞ describes hop-
pings with rate J, where âj and â

†
j are the site-j creation and

annihilation operators. The dissipators D½L̂�ρ̂ ¼ L̂†ρ̂ L̂ −
1
2
fL̂†L̂; ρ̂g describe three types of incoherent processes:

single particle pumping with rate κ ðL̂ð1Þ
j ¼ ffiffiffiffiffi

2κ
p

â†jÞ, two
particle decay with rate Γ ðL̂ð2Þ

j ¼ ffiffiffiffiffiffi
2Γ

p
â2jÞ, and correlated

single particle decay with rate γ ½L̂ð3Þ
j ¼ ffiffiffiffiffi

2γ
p ðâj− ieiθâjþ1Þ�.

At the quadratic level (i.e., Γ ¼ 0), this realizes the
dissipative version of the Hatano-Nelson model [65–67].
This can be seen, for example, from the Heisenberg
equations of motion i∂tân ¼

P
mðHHNÞnmâm, where the

(single-particle) Hatano-Nelson Hamiltonian HHN is

HHN ¼
X
j

ðΔjjihjjþJþjjihjþ1jþJ−jjihj−1jÞ; ð1Þ

whereΔ¼ iðκ−2γÞ, Jþ ¼−ðJþ γeiθÞ, J− ¼ −ðJ − γe−iθÞ.
The interplay between the coherent dynamics (J) and the
correlated loss (γ) generates asymmetric hoppings rates
Jþ ≠ J−, favoring left- (right-) propagating modes when
θ ¼ 0ðθ ¼ πÞ. The NHSE is reflected in the spectrum of
Eq. (1), illustrated in Figs. 1(b)–1(d). The PBC spectrum is
an ellipse in the complex plane, whereas for OBC the
spectrum always falls on a line [Figs. 1(b) and 1(c)]. For

θ ¼ �π=2, the model is reciprocal (i.e., jJþj ¼ jJ−j), and
the ellipse shrinks into a line signaling the absence of the
NHSE [Fig. 1(d)].
The quadratic system (Γ ¼ 0) can be dynamically

unstable; with these interaction terms (Γ ≠ 0) the system
is always stable and becomes genuinely many-body. Here,
we study the mean-field dynamics of the Lindbladian,
described by the equation of motion

i∂tαj ¼ iðκ − 2γÞαj − iΓjαj2jαj
− ðJ þ γeiθÞαjþ1 − ðJ − γe−iθÞαj−1; ð2Þ

where αj ≡ hâji is the coherent state amplitude on
each site.
Periodic boundary conditions—We begin with a study

of the steady-state solutions of Eq. (2) with PBC,
i.e., αNþ1 ¼ α1. For large N, the vacuum state αj ¼ 0 is
unstable for any κ > 0. This can be seen from the spectrum
of Eq. (1) which is diagonalized in momentum space
HHN ¼ P

qðiκ − iγq þ ωqÞjqihqj, where

γq ¼ 2γ½1þ sinðqþθÞ�; ωq ¼−2J cosðqÞ; ð3Þ

are the decay rate and energy for momentum q ¼
2πm=N;m ¼ 0;…; N − 1. For any θ, the mode at qþ θ ¼
−π=2 (a dark mode of all L̂ð2Þ

j dissipators) experiences no
dissipation and can be excited with infinitesimal κ
(for N → ∞).
Despite the nonlinearity in Eq. (2) coupling these plane

waves, the time-dependent traveling wave states (i.e., finite
momentum condensates)

αjðtÞ ¼ rqeiqj−iωqt; rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
κ − γq
Γ

r
; ð4Þ

are solutions of Eq. (2) with PBC whenever γq < κ. Not all
of these plane-wave solutions are stable: a momentum-q
traveling wave can become unstable against creation of
pairs at momenta q� k, for some k that depends on κ and γ
[see Supplemental Material (SM) for details [68] ]. Figure 2
shows the resulting stability diagram for θ ¼ π and
γ=J¼ 0.5. For κ→ 0, only the q� mode such that γq� → 0

is stable (q� ¼ π=2 for θ ¼ π), as expected. As κ → ∞, on
the other hand, all the modes in a range of π centered about
q� ¼ −π=2 − θ are stable (corresponding to all the right-
moving modes for θ ¼ π). Numerically, these traveling
waves appear to be the only possible behavior at long times.
For PBC and θ ¼ π, we thus find that the system always
condenses into a single positive, finite momentum mode
(chosen by the initial conditions), with a nonzero frequency
ωq (unless q ¼ π=2). Other choices of θ lead to qualita-
tively similar results, with everything in Fig. 2 shifted to
q� ¼ −π=2 − θ. Analogous traveling wave solutions also
appear in the complex Landau-Ginzburg equation [69,70],

(a)

(b) (c) (d)

FIG. 1. (a) Schematic illustration of the system. (b), (c) Spec-
trum of the Hatano-Nelson Hamiltonian Eq. (1) in the regime of
maximal nonreciprocity. (d) Spectrum in the reciprocal case.
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the continuum version of the reciprocal θ ¼ −π=2 limit of
our model, where the stable possible condensates are
centered about q� ¼ 0.
Open boundary conditions—For PBC, the angle θ (and

hence the nonreciprocity jJþj − jJ−j) does not play a
significant role. In contrast, for OBC, the value of θ is
crucial to the physics. At θ ¼ 0; π, the hopping is max-
imally nonreciprocal, and the full nonlinear system has
an antilinear Z2 particle-hole PH symmetry. At the level
of Eq. (2), this symmetry implies that if αjðtÞ is a
solution, then so is PH½αjðtÞ� ¼ eiπjα�jðtÞ. We will dem-
onstrate below that this symmetry can be spontaneously
broken for OBC. At the level of the linear Γ ¼ 0 theory,
this symmetry transforms the quadratic Hatano-Nelson
Hamiltonian as ðPHÞHHNðPHÞ−1 ¼ −HHN [71]. In con-
trast, for more general θ ≠ 0; π, the PH symmetry is
explicitly broken, making nontrivial steady states time
dependent. Here, we focus on the PH-symmetric, max-
imally nonreciprocal case of θ ¼ 0; π, choosing θ ¼ π for
concreteness. The corresponding phase diagram is shown
in Fig. 3(a).
The first intriguing feature of the OBC phase diagram is

that the vacuum solution, αj ¼ 0, becomes stable within a
certain range of parameters, shown in yellow in Fig. 3(a).
This is in sharp contrast to the PBC case, where the vacuum
is always unstable for κ > 0. The linear stability of the OBC
vacuum phase is determined by examining the imaginary
parts of the eigenvalues of Eq. (1) with OBC. The spectrum
of Eq. (1) differs qualitatively depending on whether γ < J
or γ > J [Figs. 1(b) and 1(c)], with γ ¼ J marking an N th
order exceptional point. The eigenvalues are given by [68]

Em ¼
(
iðκ − 2γÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − γ2

p
cosðqmÞ for γ < J;

i½κ − 2γ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − J2

p
cosðqmÞ� for γ > J;

ð5Þ

where qm ¼ πm=ðN þ 1Þ, m ¼ 1;…; N. For γ < J, all
eigenstates have the same damping rate, and the phase
transition occurs at κcrit ¼ 2γ [black line in Fig. 3(a)] where
all linear modes become unstable simultaneously. For
γ > J, the m ¼ 1 mode (q → 0 in the thermodynamic
limit) is the first to become unstable, yielding the critical
value κcrit ¼ 2γ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − J2

p
.

For γ > J, as κ is increased above κcrit, the system
undergoes a continuous phase transition from the vacuum
phase (hαjij ¼ 0) to a time-independent static condensate
[blue region in Fig. 3(a)] with hαjij ≠ 0 [Fig. 3(c)], where
hoij denotes the spatial average of o. Up to a spontaneously
chosen global Uð1Þ phase, the complex amplitudes in the
static phase are given by αsj ¼ rsje

iqsj, where qs ¼
π=2ð−π=2Þ for θ ¼ πðθ ¼ 0Þ. Interestingly, this phase
order corresponds to the minimal-damping wave vector
of the PBC system in Eq. (3). This finite-momentum
condensate emerges as κ increases in the form of a kink
that sweeps across the system from right to left [Fig. 3(b)].
Numerically, we find that the height of the kink is

ffiffiffiffiffiffiffiffi
κ=Γ

p
.

In fact, the uniform state αj ¼
ffiffiffiffiffiffiffiffi
κ=Γ

p
eiπj=2 solves Eq. (2)

(with θ ¼ π) for all j except at the edges (j ¼ 1; N). As
κ → ∞, the system approaches this uniform state.
Just above the phase transition, the kink first emerges at

the right edge (j ¼ N), reflecting the localization of linear
eigenstates at this boundary for θ ¼ π in the vacuum phase.
As κ increases further, the kink shifts toward the left
boundary, leading to a continuous increase in the average
amplitude hrjij [Fig. 3(c)]. Numerically, we find that the

kink position scales as ðκ − κcritÞβ with β ¼ −0.5 near the
phase transition [inset in Fig. 3(c)]. This critical exponent
can be understood as follows: nonreciprocity induces
directional propagation toward the right (for θ ¼ π).
This net current balances with the local pump and loss,
saturating the right-most sites at an amplitude of

ffiffiffiffiffiffiffiffi
κ=Γ

p
.

Disregarding these saturated sites, the remaining sites with
zero amplitude form an effective smaller system. The finite-
size expression in Eq. (5) can then be used to determine the
new, slightly larger κ required for the vacuum of this
smaller system to become unstable. Alternatively, solving
Eq. (5) for the effective system size—or, equivalently, the
kink position—as a function of the distance from the phase
transition (κ − κcrit) yields precisely β ¼ −0.5.
Next, we examine the green region of the phase diagram

in Fig. 3(a), which corresponds to time-dependent (dynami-
cal) phases. This region contains multiple attractors that
encompass a variety of phases. We will primarily focus on
the most prominent phase, which spans nearly the entire
region. For fixed γ=J < 1, dynamical phases exist only
within a finite range of κ: they transition to the vacuum
phase at small κ and become unstable to the static
condensate phase at large κ. To locate this upper phase
boundary, we perform a numerical linear stability analysis

FIG. 2. Stability diagram of the PBC solutions in Eq. (4) for
θ ¼ π; γ=J ¼ 0.5. Colored region corresponds to the stable sol-
utions for N → ∞, with the color corresponding to the amplitude
rq. Dots correspond to stable solutions for a finite system of
N ¼ 40, with the color showing the oscillation frequency ωq

[Eq. (3)]. Red line is the momentum decay rate [Eq. (3)].
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of the static condensate state, yielding the red line in
Fig. 3(a). Notably, the static condensate state αsj is PH
symmetric (i.e., PH½αsj� ¼ αsj).
Decreasing κ along the leftmost white dashed line in

Fig. 3(a) towards the red line, the dynamical matrix
describing fluctuations of the static condensate develops a
second zero eigenvalue, whose eigenvector coalesces with
the Goldstone mode [associated with the spontaneous Uð1Þ
symmetry breaking]. We thus identify this portion of the red
line as a second-order critical exceptional point [68]. Below
the red line of Fig. 3(a), the system spontaneously breaks the
PH symmetry, giving rise to two bistable time-dependent
travelingwave states (wave vectors q� ¼ qs � ϵ) analogous
to the PBC solutions in Eq. (4). The wave vector q� evolves
continuously as κ is lowered, bifurcating from q� ¼ qs ¼
π=2 in the static phase (ϵ ¼ 0) to either q− ¼ 0 or qþ ¼ π at
the point where the system enters the vacuum phase
(ϵ ¼ π=2). Similarly, as shown in Fig. 3(d), the frequency
evolves continuously from zero, bifurcating into two
branches corresponding to clockwise (CW) or counterclock-
wise (CCW) rotations (analogous to the “chiral” states in
Ref. [8]). The PH symmetry maps one solution onto the
other, transforming a CW rotating state into a CCWone (i.e.,
flipping the sign of ω), while simultaneously flipping the
wave vector from qs þ ϵ to qs − ϵ, and vice versa.
Remarkably, the PBC result for the frequency in Eq. (3)
holds perfectly for these two states, using the numerically
extracted average wave vector hqij.
Edge and bulk phase transitions—So far, we have

considered cases where only the phase of each site varied
in time. In this section, we will briefly discuss some
additional dynamical phases where the amplitudes also
fluctuate. These fluctuations occur predominantly at the

left edge, leading to distinct bulk versus edge behavior
[Fig. 4(a)]. In fact, Fig. 3(d) already contains such an
example. This is illustrated in Fig. 3(e), which displays the
time- and space-averaged absolute value of the rate of
change of the magnitude, hj∂tr2j jij;t. This quantity becomes
nonzero at κ=J ∼ 1.9–2.2. The inset in Fig. 3(e) shows an
example of the time-averaged spatial profile (hj∂tr2jijt) of
these amplitude fluctuations, revealing that they are peaked
at the left edge. Away from the edge, this quantity quickly
drops, and then exponentially decays into the bulk.
Notably, these amplitude fluctuations do not affect the
hωij order parameter shown in Fig. 3(d), as the dominant
Fourier component, even for the left-most sites, remains at
the same bulk value as the average value hωij depicted in
Fig. 3(d).
The dynamical region (∂tαj ≠ 0) includes additional

phases with distinct edge and bulk behaviors, with some
regions exhibiting multistability, indicated by stripes in
Fig. 4(a). Phase IV, indicated in purple in Fig. 4(a), features
amplitude fluctuations at the left edge and phase-only
oscillations in the bulk. A representative example
(γ ¼ 0.3, κ ¼ 2.2) of the amplitude and phase space-time
dynamics is shown in Figs. 4(b)(i) and 4(b)(ii), respec-
tively. Left of the black dashed line in Fig. 4(a), the two
limit cycles of phase I—the CW and the CCW solutions—
merge, resulting in more complex dynamics. The phases of
the bulk sites act as pendula, involving both CWand CCW
rotations [see Fig. 4(e)]. In some parts of this phase,
particularly at smaller γ, the dynamics is nevertheless
periodic. Notably, theZ2 symmetry is dynamically restored
in this case, corresponding to PH accompanied by the
breaking of continuous time translation symmetry [72,73].
Specifically, thePH operation acts as a translation by a half

(a) (b) (d)

(e)(c)

FIG. 3. (a) Steady-state OBC phase diagram for θ ¼ 0; π. Dashed lines at γ=J ¼ 0.2 and γ=J ¼ 2 correspond to line cuts shown in
panels (d), (e) and (b), (c), respectively. (b) Spatial profile of the amplitude in the static condensate phase for different values of κ near the
phase transition for γ=J ¼ 2; θ ¼ π. (c) Average amplitude as a function of κ. The inset shows the kink position near the phase transition,
with the solid line representing a power-law fit yielding a critical exponent β ¼ −0.5. (d) Average frequency (left axis, blue) and average
wave vector (right axis, green) as functions of κ=J for γ=J ¼ 0.2; θ ¼ π. The dashed line (overlapping with the numerically obtained
solid blue line) represents the PBC dispersion from Eq. (3). (e) Time and space average of the magnitude of the rate of change of density
as a function of κ. The inset shows the spatial profile of the time-averaged density rate of change at κ=J ¼ 2.1 (dashed line).
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period, and the steady state satisfies αjðtÞ ¼ PH½αjðtþ
T=2Þ� for some period T [68]. Additional details on these
phases and their symmetry classification are provided in the
End Matter.
In Phase IV, the steady state alternates between exhibit-

ing periodic and chaotic dynamics until a critical value of γ
[black dashed line in Fig. 4(a)] beyond which only the
chaotic dynamics persists. Surprisingly, we find that despite
the onset of chaos, the dynamics at the edge remain regular
[68]. We also find a region [phase III in Fig. 4(a)] with a
hierarchy of steady states with varying edge lengths. A
representative example (γ ¼ 0.4, κ ¼ 1.25) is shown in
Fig. 4(c). The bulk dynamics is PH broken, with CW or
CCW phase oscillations [Fig. 4(e)] as in phase I. We
observe five steady states with progressively longer edge-
amplitude fluctuations, shown in Fig. 4(d), although it
remains unclear whether additional steady states exist.
While the bulk dynamics in phases II and III are periodic,
the edge exhibits quasiperiodicity, breaking time transla-
tional symmetry and introducing an additional zero mode
(beyond the existing Goldstone mode [68]). Exploring
these edge phase transitions in greater detail is left for
future work.
Conclusions and outlook—We have demonstrated how

the NHSE and spatial nonreciprocity can fundamentally

alter the phase diagram of driven-dissipative systems in a
manner that strongly depends on boundary conditions. The
remarkable differences between OBC and PBC seen here
are in stark contrast to the fermionic and spin counterparts
of our model [27,67], where excitations generically have
finite lifetimes and decay before reaching the edge, leaving
bulk properties unchanged. In contrast, our bosonic system
can possess an undamped Goldstone mode, allowing
excitations to propagate to the boundaries and making
boundary effects significant.
In our model, OBC result in a particularly rich phase

diagram, where even the condensation phase transition
exhibits unconventional features compared to its reciprocal
counterpart. This intriguing difference invites further
exploration to understand whether they differ in their
critical behavior. More broadly, the role of classical and
quantum fluctuations beyond mean-field theory presents an
exciting avenue for future research. Additionally, a deeper
understanding of the observed edge phase transitions and
their underlying mechanisms requires further investigation.
Extending this work to higher dimensions [43] could
uncover additional novel spatiotemporal patterns and exotic
phases. Lastly, exploring the manifestation of these phe-
nomena in active matter and other nonequilibrium systems
remains an exciting direction for future studies.
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End Matter

Symmetry classification of OBC phases—We discuss
here how each phase in our model can be elegantly
classified in terms of distinct broken symmetries. There
are three explicit symmetries of interest in the model.
For all values of θ, Eq. (2) of the main text admits a
Uð1Þ ≅ SOð2Þ symmetry, as well as a time-translational
symmetry. For specific values of θ, there is also be a
discrete particle-hole symmetry, where the particle-hole
operator is defined as PH½αj� ¼ eiπjα�jðtÞ which is an
involution.
More explicitly, when θ ¼ 0; π, PH½αjðtÞ� obeys the

same equation of motion as αjðtÞ, resulting in a Z2

symmetry via application of the PH operator. The full
symmetry group for θ ¼ 0; π becomes Oð2Þ ≅ SOð2Þ⋊Z2

allowing for a richer phase diagram and collective phe-
nomena. The continuous time-translation symmetry of the
model noted above can be broken to a discrete time
translation symmetry, resulting in what is often termed a
time-crystalline or limit-cycle phase (see, e.g., [72,73]).
The remaining discrete time translational symmetry can be
further broken, so that it only remains intact on a subset of
measurements; this is known as quasiperiodicity. Time
translational symmetry can also be completely broken, as is
the case when one has chaotic dynamics.
Table I summarizes how each of the above symmetries

are broken across the various condensed phases of our
model. Notably, almost all of the finite number of allowed
symmetry-breaking combinations are realized in this work
(though a few combinations do not seem to be realized,
e.g., a Z2-symmetry broken chaotic phase).
In the static phase, the solutions takes the form αj ¼

rjeiðϕþjπ=2Þ with the phase ϕ determined by the sponta-
neous breaking of Uð1Þ. PH is left unbroken as
αj ∼ PH½αj�, where we use ∼ to mean equivalent up to
a global rotation (αj → eiφαj). In phase I, the long-time
behavior admits two branches of possible solutions with the
form α�j ¼ rjeið�ωtþjq�þϕÞ, where q� ¼ π=2� ϵ. The two
branches of solutions are related byPH½α�j � ∼ α∓j implying
that the PH symmetry is broken because there does not
exist a fixed Uð1Þ transformation that allows PH½α�j ðtÞ� to
equal α�j ðtÞ for all times.

In the remaining phases, the quasiperiodic or chaotic
breaking of continuous time translational symmetry can be
determined via the numerical computation of the associated
Lyapunov characteristic exponents (LCEs). In Fig. 5(a), we
plot the four largest LCEs for a horizontal cut through the
phase diagram of Fig. 4(a) for a fixed κ ¼ 2.2. We divide
phase IV into two parts (left and right), depending on
whether the value of γ is to the left or right of the dashed
line in Fig. 4(a). In phase I, there is a single zero mode
[associated with the breaking of Uð1Þ symmetry], while in
phase II and phase IV (left) the onset of edge amplitude
dynamics coincides with the existence of two zero modes.
Phase III [not shown in Fig. 5(a)] also admits two zero
modes. The existence of multiple zero modes corresponds
generically to quasiperiodic dynamics due to the modes
oscillating at incommensurate frequencies.
For further insight, we plot in Fig. 5(b) phase trajectories

of two sites near the left edge for various parameter regimes.
For parameters corresponding to phases II and III, one
clearly sees nonrepeating dynamics, whereas periodic
motion is retained in trajectories corresponding to phases
I and IV (Left). In phases II and III, the quasiperiodicity is
primarily localized near the left edge of the chain (where
both the phases and amplitudes are time dependent). Far
from the edge, the dynamics becomes less distinguishable
from periodic motion. The combination of amplitude and
phase dynamics in phases II and III is similar to the “chiral
+swap” phase observed in Ref. [8] in a different model.
Returning to Fig. 5(a), note that the region of phase IV

(Left) plotted always has a single stable attractor. However,
depending on the value of γ, the phase can be chaotic (i.e.,
there can be a single positive LCE). Phase IV (right)
generically admits multiple positive Lyapunov exponents,
a situation termed in dynamical systems theory as hyperchaos
[75,76], implying that this phase admits a higher dimensional
chaotic attractor than the chaos seen in phase IV (left).
In the nonchaotic portion of phase IV (left), the system

retains periodicity despite the existence of two zero modes.
The total phase variable Φ ≔

P
ϕi=N is static in this

phase, in contrast to the PH-broken phase I, where
Φ̇ ¼ �ω. The discrete time translation symmetry is
restored because the Goldstone mode associated with Φ

TABLE I. Classification of OBC phases by the symmetry actions.

Phase Uð1Þ Z2 Continuous time translation

Vacuum Unbroken Unbroken Unbroken
Static Broken Unbroken Unbroken
Phase I (Periodic pair) Broken Broken Broken to discrete translations
Phase II, III (Quasiperiodic) Broken Broken Broken (except certain measurements)
Phase IV Left (Periodic individual) Broken Dynamically Restored Broken to discrete translations
Phase IV Right (Chaotic) Broken Restored on Attractor Completely broken
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is now at zero frequency, making the two zero modes
commensurate. A Z2 symmetry restoration also takes place
with the explicit form αjðtÞ ∼ PH½αjðtþ T=2Þ�. In Fig. 6(a),
we demonstrate the symmetry restoration at a periodic point
of phase IV (left). By comparing (a)(i) and (a)(ii) in Fig. 6, one
sees that the conjugated solution is simply a time translationof
the original solution. The difference between the original and
thePH-conjugate solution shiftedbyahalf period is shown to
be within numerical error of zero in Fig. 6(a)(iii).
In the periodic portion of phase IV, the Z2 symmetry

restoration αjðtÞ ∼ PH½αjðtþ T=2Þ� implies that the PH
operation maps the entire limit cycle trajectory back onto

itself. This symmetry appears to be retained as the periodic
orbit bifurcates into a chaotic attractor such that the set of
points on the chaotic attractor is now invariant under thePH
operation. This is demonstrated in Fig. 6(b). In Fig. 6(b)(i),
we use a delay coordinate representation to give a low
dimensional projection of the chaotic attractor. The attractor
generated by thePH-conjugated initial condition, shown in
6(b)(ii), is nearly identical to the original attractor, up to
small deviations due to only plotting a finite sample of the
attractor. This invariance of the attractor in the chaotic phase
implies that a Z2 symmetry remains despite the state not
retaining any subgroup of the time translational symmetry.

(a) (b)

FIG. 5. (a) Sweep of the 4 largest Lyapunov characteristic exponents at κ ¼ 2.2 and N ¼ 100. The LCEs are computed using the
Benettin et al. algorithm [74]. Phase IV (left) and (right) refer to the portion of phase IVon the corresponding side of the dotted black line
in Fig. 4(a) of the main text. (b) A phase space plot of ϕjðtÞ ≔ arg½αjðtÞ� for two sites near the edge of the chain with the phase I
trajectory at κ ¼ 2.2, γ ¼ 0.1 with i ¼ 1, j ¼ 2, phase II at κ ¼ 2, γ ¼ 0.2 with i ¼ 1, j ¼ 2, phase III at κ ¼ 1.25, γ ¼ 0.4 with i ¼ 11,
j ¼ 12, and phase IV at κ ¼ 2.2, γ ¼ 0.35 with i ¼ 11, j ¼ 12.

(a) (b)

FIG. 6. (a) Demonstration of the PH restoration at κ ¼ 2.2, γ ¼ 0.3, corresponding to point (b) in Fig. 4(a) of the main text.
(a)(i) Space-time dynamics of the phase differences, δϕjðtÞ ≔ ϕjþ1ðtÞ − ϕjðtÞ. (a)(ii) Space-time dynamics of the phase differences of

the PH-conjugated solution, i.e., PH½δϕjðtÞ� ≔ argðPH½αjþ1ðtÞ�Þ − argðPH½αjðtÞ�Þ. (a)(iii) Magnitude of δαT=2j ðtÞ ≔ αjðtÞ −
PH½αjðtþ T=2Þ�, where T ≈ 26.66 for these parameters. The global phase of αjðtÞ is chosen so no additional rotation is needed
for αjðtÞ − PH½αjðtþ T=2Þ� to be zero. (b) Time-delay embedding of the chaotic attractor at site j ¼ 50 for κ ¼ 2.2, γ ¼ 0.5, using
phase values at times t and tþ T with delay T ¼ 14=J, comparable to the return time. (i) Original attractor. (ii) PH-conjugate attractor,
with PH½ϕjðtÞ� ≔ argðPH½αjðtÞ�Þ.
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