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Ultracold silver-atom collisions and the formation of silver dimers
by photo- and magneto-association
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We have performed three theoretical simulations relevant for describing collisions among laser-cooled silver
atoms and for the formation of Ag2 molecules from these colliding atoms. Firstly, we determined the relativistic
electronic structure of Ag2 molecules in ground and low-lying excited states. Secondly, we computed rotational
and vibrational levels of the ground and excited electronic states as well as rovibrationally averaged electric
transition dipole moments. Using this knowledge, we analyzed a simplified quantum-mechanical model of
the one-photon photoassociation process to form electronically excited Ag2 from microkelvin Ag atoms and
make predictions for lineshapes and saturation effects as functions of laser frequency and intensity. Finally and
thirdly, we performed coupled-channels calculations, numerical solutions of sets of coupled radial Schrödinger
equations of ultracold ground-state Ag collisions in an external magnetic field. These calculations include the
effects of two Born-Oppenheimer potentials as well as hyperfine Fermi-contact and Zeeman interactions. We
discuss the expected range of s-wave scattering lengths as well as strengths and distribution of Fano-Feshbach
resonances as a function of the magnetic-field strength for the 107Ag and 109Ag isotopes. We highlight the
periodicity of the scattering length with small changes in the depths of the Born-Oppenheimer potentials. The
Fano-Feshbach resonances can be used to magneto-associate ultracold Ag atoms into weakly bound ground-state
Ag2 dimers.
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I. INTRODUCTION

Recent theoretical analyses [1–4] suggest that silver-
containing diatomic molecules, such as FrAg and RaAg, can
be sensitive detectors of broken symmetries in the hadronic
sector of particle physics. Specifically, the heavy, radioac-
tive francium-223 (223Fr) and radium-225 (225Ra) isotopes
have octupole-deformed nuclei with so-called PT-odd nuclear
Schiff moments. A review on using atoms and molecules to
address open questions in fundamental physics can be found
in Ref. [5]. Our recent theoretical description on the forma-
tion of ultracold FrAg molecules from laser-cooled Fr and
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laser-cooled Ag atoms and on the efficient control of these
molecules [6] provides information that can be used to guide
and conduct the precision frequency measurements needed to
detect the broken symmetries. Additional recent calculations
have shown that the strong electron affinity of the Ag atom
leads it to form ionic bonds with most alkali-metal atoms,
resulting in molecules with exceptionally large electric dipole
moments [7]. Such strongly polar alkali-metal-Ag molecules
could be of great utility [8,9] for quantum simulations of
strongly coupled many-body systems [10], quantum informa-
tion processing [10–13], or the generation of entanglement for
quantum-enhanced metrology [14].

Of course, an ultracold atomic or homonuclear-diatomic
silver gasses are many-body systems that can also be brought
to quantum degeneracy and, as its two stable isotopes are
bosons, Bose condensation and other quantum degenerate
phenomena as occur when particles are trapped in spatially
and/or time periodic potentials should be observable [15,16].
These states of matter for silver have as yet to be observed and
can be of interest in their own right.
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For all these experiments, the starting point is an ultracold
gas containing both Ag and optionally another atom with
which to pair it. These gasses are at temperatures of tens of
µK or well below. The 2S ground state of the silver atom is an
electronic configuration with a closed 4d10 shell and an easily
polarizable singly occupied, open 5s outer shell. The lowest
excited states of opposite parity are the 4d105p(2Pj=1/2,3/2)
and the long-lived 4d95s2(2Dj=3/2,5/2) configurations with
nearly degenerate and, in fact, interleaved energies [17]. Still,
the electronic structure of Ag atoms is sufficiently similar
to that of alkali-metal atoms, with their outer-most open s
electron orbital, that silver atoms can be manipulated with the
same laser-cooling methods as alkali-metal atoms [8,18–21].
The first report on laser cooling and magneto-optical trapping
of silver atoms on the 328 nm 5s(2S) to 5p(2P3/2) transition
was published in Ref. [22]. These methods lead to sufficiently
high atom number densities and sufficiently low temperatures,
often corresponding to phase-space densities just below those
required for the formation of Bose-Einstein condensates, that
molecule assembly from ultracold atoms can be effective.

For molecular assembly of ultracold Ag-bearing
molecules, including homonuclear Ag2, we can use the
method of photoassociation (PA) [23–45]. A review can
be found in Ref. [46]. Here, one of the ultracold 2S atoms
resonantly absorbs a photon from a laser to assemble into a
weakly bound rovibrational level of a molecular electronic
excited state dissociating to one of the 2S + 2P j limits. That
is, the energy of the laser photon is smaller than the 2S to
2P1/2 or 2P3/2 transition energy. This rovibrational level of
the electronically excited state then quickly falls apart into
hot atom pairs, with typically tens to hundreds of kelvin
relative kinetic energy, or into rovibrational states of the
ground-state potentials by spontaneously emitting a photon in
a random direction. A schematic representation of one-photon
PA of two silver atoms, where the atom pair decays into a
rovibrational level of a ground-state potential of Ag2, is
shown in Fig. 1. Spontaneous emission leads to a detectable
decrease in the number of trapped atoms when the PA laser
is “resonant” with a weakly bound rovibrational level. Matrix
elements of the transition electric dipole moment with respect
to the scattering and rovibrational wave functions determine
the rate of atom loss or strength of the resonances. The rates
and binding energies of a set of weakly bound rovibrational
states can be used to accurately determine atomic transition
dipole moments and s-wave scattering lengths, which quantify
ultracold atomic collisions. Photoassociation experiments are
typically performed without the use of a magnetic field.

Homonuclear Ag2 molecules can also be formed using
Fano-Feshbach resonances that appear in the collision of
ultracold silver atoms in the presence of an external mag-
netic field. A review on these resonances can be found in
Ref. [47]. Some selected articles from this field are found in
Refs. [48–55]. Slow time-dependent sweeps of the magnetic
field near Fano-Feshbach resonances can transfer colliding
atoms into weakly bound rovibrational states. This process is
called magneto-association.

The experimental setup for a candidate molecule requires
considerable investments and thus the need to carefully
analyze and predict the atomic and molecular properties
is beneficial. Analysis can include the determination of

FIG. 1. Schematic of one-photon photoassociation starting from
two colliding Ag atoms (red spheres with black arrows) and using
a laser with frequency ω1 (vertical red arrow). The sinusoidal curve
represents spontaneous decay of a rovibrational level of an excited
electronic state into a rovibrational level of a ground-state potential.

spectroscopic properties of and between electronic states as
well as scattering cross sections and collisional rate coeffi-
cients, where electronic potential-energy surfaces, strengths
of radiative electronic transitions and static and dynamic po-
larizabilities need to be computed.

In this paper, we first describe a calculation of the
electronic potential-energy surfaces of the ground and en-
ergetically lowest excited states of Ag2. We then analyze
one-photon photoassociation spectroscopy of ultracold collid-
ing Ag atoms to weakly bound molecular states in electronic
excited states. Finally, we focus on magnetic Fano-Feshbach
resonances in the collision of ultracold Ag atoms. These sim-
ulations require coupled-channel calculations accounting for
spin-spin couplings between molecular electronic states and
hyperfine and Zeeman interactions due to the nonzero electron
and nuclear spins of Ag isotopes. Thus, these quantum-
mechanical calculations include a breakdown of the adiabatic
approximation as first defined by Born and Oppenheimer in
1927 [56].

For analytical insights into these photoassociation and col-
lisional processes, we separate the atom-atom interactions into
short- and long-range regions of the internuclear or atom-atom
separation R. These two radial regions, roughly defined by
whether the electron wave function of the atoms does or does
not significantly overlap, are characterized by very different
energy and length scales. Molecular physics is typically con-
cerned with strong short-range interactions associated with
tightly bound “ordinary molecules.” Ultracold physics is con-
cerned with scattering states in the Wigner threshold limit
near zero collision energy as well as weakly bound molecular
states. In the long-range region electronic potential-energy
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surfaces are sums of polarization and dispersions terms, each
proportional to 1/Rn, where n = 3 or 6 for two neutral alkali-
metal, alkaline-earth, and group-11 atoms, and (approximate)
analytical solutions of the Schrödinger equation for scatter-
ing and rovibrational wave functions or binding energies are
available. We use these analytical solutions to understand pho-
toassociation rate coefficients and Fano-Feshbach resonances.

In this paper h is the Planck constant, h̄ is the reduced
Planck constant, e is the positive elementary charge, k is the
Boltzmann constant, and c is the speed of light in vacuum.
Furthermore, we use fine-structure constant α, vacuum elec-
tric permittivity ε0, electron mass in atomic mass units me/mu,
Hartree energy Eh, and Bohr radius a0. Their values were
taken from Ref. [57]. The atomic masses of Ag isotopes in
atomic mass units mu are found in Ref. [58].

II. ELECTRONIC POTENTIAL-ENERGY
SURFACES OF Ag2

Silver atom dimers have been experimentally studied since
the late 1950s. Schissel [59] determined dissociation ener-
gies of potential-energy surfaces of Ag2 and other group
11, coinage metal dimers such as Cu2 and Au2. This re-
searcher measured dissociation energy De = 1.78(0.10) eV
or, equivalently, hc × 14400(800) cm−1 for the X 1�+

g elec-
tronic ground state of Ag2, where the numbers in parentheses
here and elsewhere are one standard-deviation uncertainties
in the last significant digits. An early theoretical attempt to
determine this dissociation energy by Andzelm et al. [60] us-
ing nonrelativistic calculations within the local–spin–density
method and equivalent relativistic calculations including
scalar-relativistic effects led to dissociation energies of 1.7
and 2.0 eV, respectively, for this electronic state.

In 2021, Jasik et al. [61] modeled the decay of hot sil-
ver dimer anions by spontaneous electron emission and by
dissociation to a silver anion and a neutral atom in order to
compare with experimental data for this process [62]. For
this model, Jasik et al. determined nonrelativistic electronic
potential-energy curves for the ground state of the anion Ag−

2
and that of neutral Ag2. They used the coupled-cluster method
with an effective-core-potential and a large basis set including
single, double, and noniterative triple [CCSD(T)] excitations.
In the same year, Śmiałkowski et al. [7] published calculations
of the electronic state of van der Waals complexes between
alkali-metal atoms and Ag and Cu atoms, which also included
results for the Ag2 dimer. These authors also used the non-
relativistic CCSD(T) coupled-cluster method but with larger
electron basis sets. Śmiałkowski et al. [7] provide spectro-
scopic parameters for the X 1�+

g and a 3�+
u states of Ag2, both

dissociating to two Ag atoms in their electronic ground state.
We have independently computed the adiabatic electronic

potential-energy surfaces of ground and excited electronic
states of Ag2 as functions of atom-atom separation R. The
X 1�+

g and a 3�+
u electronic states, dissociating to two

silver atoms in their 2S electronic ground state, have been
calculated with a nonrelativistic spin-restricted coupled-
cluster method, while relativistic adiabatic excited states
dissociating to a silver atom in its ground state and
a silver atom in its lowest-energy 2P excited state
have been calculated with a nonrelativistic multireference

FIG. 2. Our potential-energy surfaces for the X 1�+
g and a 3�+

u

states of the Ag2 molecule as functions of internuclear separation
R. The data have been obtained with a nonrelativistic spin-restricted
coupled-cluster method. The data for these curves are available from
the Supplemental Material [63].

configuration-interaction method combined with spin-orbit
matrix elements between all computed nonrelativistic ground
and excited states. The configuration-interaction calculations
do not include excitations to the 4d95s2 configuration as,
currently, the computations are impractical. Radial- or R-
dependent energy shifts due to spin-orbit effects for the
ground X 1�+

g state are small compared with the uncertain-
ties in our nonrelativistic coupled-cluster calculations of this
potential. Finally, we have computed the small second-order
spin-orbit interaction, lifting degeneracies in the a 3�+

u state,
using the nonrelativistic configuration-interaction method as
well as methods with relativistic electrons. Details regard-
ing these calculations and a comparison with the data from
Refs. [7,61] can be found in Appendix A.

Figure 2 shows the short-range shapes of the X 1�+
g and

a 3�+
u potentials. They have depths or dissociation limits

De = hc × 13 837(200) cm−1 and hc × 460(80) cm−1, re-
spectively. For separations larger than shown in the figure,
both potentials approach the same attractive dispersion po-
tential −C6/R6 with C6 = 342(85)Eha6

0. In practice, we also
include a small common −C8/R8 contribution with C8 =
61 190Eha8

0, as described in Appendix A.
In Fig. 3 we show the sixteen excited-state potentials dis-

sociating to the relativistic 4d105p(2Pj=1/2,3/2) + 4d105s(2S)
limits. The main figure shows the short-range, small-R be-
havior of the potentials. Here, the relativistic spin-orbit
interactions are small compared with nonrelativistic splittings
and states can be assigned Hund’s case-(a) 2S+1�g/u labels,
where quantum number S = 0 or 1 represents the total molec-
ular electron spin and � = � or � for 0 or 1, respectively,
represents the absolute value of the projection of the total
molecular electron orbital angular momentum. Gerade and
ungerade (g and u) states indicate even and odd inversion
symmetry with respect to the center of charge of the molecule.
Our short-range excited-state potentials compare favorably
with those obtained in Ref. [64].
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FIG. 3. The sixteen relativistic adiabatic potentials of states dis-
sociating to a silver atom in its 2S ground state and one in the
2P1/2,3/2 states as functions of internuclear separation R. Molecular
states are assigned Hund’s case-(a) 2S+1�g/u labels as well as Hund’s
case-(c) �±

g/u labels in parentheses after each Hund’s case-(a) label.
The inset shows the long-range behavior of the potentials. The zero
of energy is the energy of the separated atom limit for two 2S
ground-state atoms. The data have been obtained with a nonrelativis-
tic multireference configuration-interaction method plus spin-orbit
matrix elements between all computed nonrelativistic states. The
nearly degenerate 4d95s2 configuration was not included in these
simulations. The gerade and ungerade potentials are represented by
the dashed and solid lines, respectively. Black, red, orange, and blue
lines represent 0+, 1, 0−, and 2 states, respectively. The data for these
curves are available from the Supplemental Material [63].

The long-range, large-R behavior of the excited-state po-
tentials is shown in the inset of Fig. 3. For these separations
the spin-orbit interactions are the dominant interactions and
states are better described by Hund’s case-(c) �±

g/u labels.
Here, � is the absolute value of the projection of the total elec-
tronic spin and orbital angular momentum on the internuclear
axis and, when � = 0, superscript ± represents even or odd
reflection symmetry of the electron wave function through a
plane containing the internuclear axis. For separations larger
than those shown in the inset, the potentials are proportional
to C3/R3 with a positive or negative �±

g/u-dependent C3 co-
efficient that is fully determined by the product of the line
strength of the 4d105s(2S) and 4d105p(2P) transition and a
matrix element describing a recoupling of the electron spins
and orbital angular momenta. See Ref. [65] for a derivation.

A glance at Figs. 2 and 3 and Figs. 7 and 8 of Ref. [46]
shows that there are similarities with the potential-energy sur-
faces for heavy homonuclear diatomic alkali-metal molecules.
This is due to the single active open valence s orbital of both
alkali-metal and silver atoms. Thus, we find a deep X 1�+

g

ground state and a shallow a 3�+ state in Fig. 2. These states
dissociate to two 2S ground-state atoms. Next, we observe a
crossing between the 1�+

u and 3�u potentials that dissociate
to an excited 2P atom and a ground 2S atom at a separation
R near 4.5a0, just smaller than the equilibrium separation of
the 3�u potential. More precisely, this is an avoided cross-
ing between two 0+

u Hund’s case-(c) levels. For alkali-metal
dimers these Hund’s case-(c) states and their avoided crossing

FIG. 4. The splitting between the � = 1u and 0−
u components

of the a 3�+
u state of Ag2 as a function of internuclear separation

R due to the second-order spin-orbit interaction (red filled circles)
as well as that due to minus the magnetic dipole-dipole interaction
(green curve). The orange dashed line segment corresponds to the
inner turning point of the a 3�+

u potential at zero collision energy.
The black curve corresponds to a least-squares fit to these data
assuming the double-exponential function given in the figure with
length parameters in units of a0 and energies in units hc cm−1. The
gray banded region is the 40 % fractional standard uncertainty in the
splitting.

also exist, except that the avoided crossing now occurs at a
separation that is larger than the equilibrium separation of the
3�u potential. Other similarities exist as well.

We stress that we cannot yet include the 4d95s2(2D) con-
figuration in our simulations. We expect additional potential-
energy curves and avoided crossings among the curves in
Fig. 3 as, for example, the energy of the 2D5/2 lies in between
that of the 2Pj=1/2,3/2 states. For simulations of photoassocia-
tion rate coefficients described in the next section, we focus on
weakly bound vibrational levels of electronic states with ener-
gies just below the 2S + 2Pj=1/2 limit. Then these vibrational
levels are mostly unaffected by the 4d95s2(2D) configuration.

Figure 4 shows the small, positive splitting V�=1(R) −
V�=0(R) between the � = 1u and 0−

u components of the a 3�+
u

state (dropping the sub- and superscripts in the formula for
clarity) due to the relativistic spin-orbit interaction as a func-
tion of interatomic separation R. The splitting, which only
appears in second-order perturbation theory in the spin-orbit
interaction, is a rapidly decreasing function with increas-
ing R, whose parametrization in terms of the sum of two
exponentials is shown in the figure. An exponential R de-
pendence with length scales of order 1/a0 implies that the
effect depends on the exponentially suppressed overlap of
the 5s valence electron from the two Ag atoms. The inner
turning point of the a 3�+

u potential at zero collision energy is
located at R ≈ 5.2a0. The second-order spin-orbit splitting is
approximately hc × 1.3 cm−1 at this separation. The standard
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TABLE I. Summary of parameters relevant for the scattering of two ultracold 109Ag atoms and for one-color photoassociation spectroscopy
near the Ag 4d105s(2S) to 4d105p(2P) transition. Reduced matrix elements 〈2S+1L′||d||2S+1L〉 of the atomic electric dipole moment operator
d between nonrelativistic atomic states |2S+1L〉 and |2S+1L′〉 are defined using the conventions of Ref. [66]. Numbers in parentheses are one
standard deviation uncertainties in the last significant digit(s) of the value. The origin of these values and their uncertainties is discussed in
the text. Values for parameters are independent of isotopologues of Ag with the exceptions of β6, ā, and E6, which are evaluated for the
homonuclear 109Ag + 109Ag system.

Quantity Equation Value

Atomic properties

Transition energy between barycenters of the 2P and 2S states 
E = E (2P) − E (2S) hc × 30 166 cm−1

Spin-orbit splitting between the 2P3/2 and 2P1/2 states 
 = E (2P3/2 ) − E (2P1/2) hc × 920.6 cm−1

Line strength of the 2P to 2S transition S2P→2S 17.4(2.5)e2a2
0

Square of the reduced 2P to 2S transition dipole moment |〈2P||d||2S〉|2 = S2P→2S/6 2.9(4)e2a2
0

Einstein A coefficient of the 4d105p(2P) excited state AP = 4
3

Eh
h̄ α3(
E/Eh )3|〈2P||( d

ea0
)2||2S〉|2 1.6(2) × 108 s−1

Natural linewidth of the 4d105p(2P) excited state γP = h̄AP/h 2π × 25.6(3.7) MHz

Ground-state 2S + 2S collisions

van der Waals coefficient for the 2S + 2S collision C6 342(80)Eha6
0

van der Waals length β6 = (2μC6/h̄2)1/4 90.8(5.3)a0

Mean van der Waals scattering length ā ≈ 0.478β6 43.4(2.5)a0

van der Waals energy E6 = h̄2/(2μβ2
6 ) k × 193(23) µK

Excited-state 2S + 2P interaction strengths

Strength of the resonant 2S ↔ 2P dipole-dipole interaction C3 = |〈2P||d||2S〉|2/(4πε0 ) 2.9(4)Eha3
0

Nonresonant dispersion coefficient C6,0+
u

1600(400)Eha6
0

uncertainty of V2nd−SO(R) is 40 % independent of R, found
by comparing the splitting obtained with various electronic
structure methods.

III. ONE-COLOR PHOTOASSOCIATION OF ULTRACOLD
SILVER ATOMS

One-color photoassociation of ultracold, ground-state sil-
ver atoms is the process whereby a pair of colliding silver
atoms resonantly absorbs a photon from a continuous wave
(cw) laser and is excited to a weakly bound rovibrational level
of an electronically excited state. These excited levels are
short lived and the atom pair decays back to two much-hotter
ground state atoms or a ground-state molecule by spontaneous
emission of a photon. These products are typically no longer
held in the magnetic, optical, or magneto-optical trap in which
the ultracold atoms are stored or held. Hence, resonant one-
color photoassociation leads to loss of atoms from their trap,
which can often be easily detected. A review of this process
can be found in Ref. [46].

In simulating photoassociation of ultracold, ground-state
silver atoms, we consider laser light with wave numbers de-
tuned up to 100 cm−1 to the red of the ground 4d105s(2S)
to excited 4d105p(2P1/2) or D1 transition. Specifically, we
imagine 107Ag or 109Ag atoms in a magneto-optical trap,
where these atoms are in the energetically lowest f = 1 hyper-
fine state with all three Zeeman sublevels equally populated.
Weakly bound rovibrational levels of attractive excited-state
electronic potentials dissociating to the 5s(2S1/2) + 5p(2P1/2)
limit can be modeled using the relativistic adiabatic Hamil-
tonian of Ref. [65] for atom-atom separations R, where the
binding energies of these potentials are significantly smaller
than the spin-orbit splitting 
 ≈ hc × 920.6 cm−1 between

the 5p(2P1/2) and 5p(2P3/2) states of Ag. We omit the effects
of the nearly degenerate 4d95s2(2D) configuration on the
4d105p(2P) states. The model of Ref. [65] has been successful
in describing photoassociation of ultracold alkali-metal atom
gasses [46].

There exist six relativistic adiabatic states whose potential
energies approach that of the 5s(2S1/2) + 5p(2P1/2) limit for
large R. The energetically lowest state is labeled by �±

σ = 0+
u .

For � = 0 states hyperfine interactions can be ignored for our
purposes. With the help of Ref. [65], we derive that the long-
range tail of the excited 0+

u state is well described by

V (R; 0+
u ) = −4

3

C3

R3
−

[
2

9

(C3)2



+ C6,0+

u

]
1

R6
+ O

(
1

R8

)
,

(1)

where the resonant dipole-dipole coefficient C3 =
|〈2P||d||2S〉|2/(4πε0) with reduced matrix element 〈2P||d||2S〉
of the atomic dipole moment operator d with respect to
nonrelativistic atomic states |2S+1L〉 using the conventions of
Ref. [66]. Finally, the repulsive C6,0+

u
/R6 potential represents

the dispersion contribution from doubly excited molecular
states.

Table I gives our values for the parameters used in Eq. (1).
The nonrelativistic or weighted atomic transition energies be-
tween the barycenters of ground state 4d105p(2S) and excited
state 4d105p(2P) and the relativistic spin-orbit splitting be-
tween the 4d105p(2P1/2) and 4d105p(2P3/2) states have been
derived from data in Ref. [17] and can be considered ex-
act for our purposes. The table also gives the weighted line
strength S2P→2S , the square of the reduced transition matrix
element for the 4d105p(2S) and 4d105p(2P) transition as well
as the Einstein A coefficient and natural linewidth γP of the
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FIG. 5. Eigenenergies (colored line segments) of the “rotation-
less” J = 1 vibrational levels of the excited 0+

u potential of 109Ag2

within hc × 100 cm−1, hc × 10 cm−1, and hc × 1 cm−1 of its
5s(2S1/2) + 5p(2P1/2) dissociation limit in panels (a), (b), and (c),
respectively. The orange curve correspond to the 0+

u potential. We
have used C3 = 2.9Eha3

0 for this graph.

nonrelativistic 4d105p(2P) state. We use the theoretical value
for the line strength of Ref. [67] and obtained by third-order
many-body perturbation theory. We conservatively inferred a
15 % standard uncertainty from the discussion in the first col-
umn of page 5 of Ref. [67]. The value for S2P→2S by Ref. [67]
coincides with a recent theoretical evaluation in Ref. [68],
while the authors of Refs. [69,70] prefer a value close to
the lower bound of our S2P→2S . Experimental determinations
also favor a value close to this lower bound, approximately
15e2a2

0 [71–73]. The most precise experimental evaluation
gives S2P→2S = 15.10(5)e2a2

0 [73]. A review of all measure-
ments can be found in Ref. [74]. Our value for C3 and C6,0+

u
,

the latter derived from our electronic structure calculations of
excited Ag2 states, are listed in Table I.

Figure 5 shows the long-range potential-energy curve of
our 0+

u state as well as eigenenergies Ev of J = 1 vibrational
levels v of this potential for the 109Ag2 isotopologue. From left
to right the three panels in the figure show eigenenergies down
to hc × 100 cm−1, hc × 10 cm−1, and hc × 1 cm−1 below
its 5s(2S1/2) + 5p(2P1/2) dissociation limit, respectively. The
eigenenergies have been computed numerically by discretiz-
ing the Hamiltonian containing the sum of the relative radial
kinetic-energy operator of the atoms −(h̄2/2μ)d2/dR2 with
reduced mass μ, centrifugal potential h̄2J (J + 1)/(2μR2),
and the potential-energy curve of our 0+

u state using the
discrete variable representation of Ref. [75] and solving the
resulting matrix eigenvalue problem with a linear algebra
package. For small separations, where the binding energies of
the 0+

u potential are larger than hc × 100 cm−1, we smoothly
connect the long-range potential in Eq. (1) to our electronic
structure calculation of this state as described in Sec. II.
We observe that the outer turning points RO, defined as
V (RO; 0+

u ) = Ev , range from 20a0 for binding energies near
hc × 100 cm−1 to around 200a0 for binding energies near
hc × 0.1 cm−1. The accuracy of our 0+

u potential is not suf-
ficient to predict the location of individual levels. The level
spacing or density, however, is reasonably accurate.

Within the model of Ref. [65] we can also estimate
the molecular transition dipole moments to, and natural
linewidths of, weakly bound rovibrational levels of the excited
0+

u state dissociating to the 4d105s(2S) + 4d105p(2P1/2) limit.
First, we realize that in one-color photoassociation experi-
ments with an ultracold Ag gas with atoms in the f = 1
hyperfine state and equal population in the m states, we collide
in superpositions of the X 1�+

g and a 3�+
u electronic states.

Photon selection rules only allow transitions from the X 1�+
g

component of the superposition to the excited 0+
u state. Some

algebra shows that the molecular electric transition dipole
moment between the X 1�+

g and the excited 0+
u states and the

natural linewidth of the excited 0+
u state are

deff (0+
u ) =

√
2

3
〈2P||d||2S〉 and γ0+

u
= 2

3
γP, (2)

respectively. We expect that the transition dipole moment for
the superposition state is within factors of two from deff (0+

u )
and, for simplicity, we assume that deff (0+

u ) is the correct value
for the dipole moment for the remainder of this paper.

Second, we recall that for R > 20a0 the potential ener-
gies of the X 1�+

g and a 3�+
u states are identical and to

good approximation are given by the van der Waals poten-
tial VvdW(R) = −C6/R6. Our preferred values for dispersion
coefficient C6, van der Waals length β6 = (2μC6/h̄2)1/4, and
energy E6 = h̄2/(2μβ2

6 ) are given in Table I. From Fig. 5, we
observe that for R > 20a0 the rovibrational levels of the ex-
cited 0+

u state have binding energies less than hc × 100 cm−1.
We are now ready to introduce the event rate coefficient

of photoassociation for two ultracold atoms colliding with
relative kinetic or collision energy E assuming that s or � = 0
partial-wave collisions contribute to rovibrational level v of
the J = 1 excited 0+

u state using laser light with photon energy
h̄ω. In fact, we have the event rate coefficient [76–78]

Kv (h̄ω, E )

= vrel
π

k2
rel

h̄2γ0+
u
γv (E )

{E + h̄ω − [E∞ + Ev (0+
u )]}2 + h̄2[γ0+

u
+ γv (E )]2/4

(3)

for each vibrational level v, where E = h̄2k2
rel/2μ = μv2

rel/2,
γ0+

u
is the natural linewidth of the excited-state vibrational

level, E∞ is the asymptotic energy of the excited 0+
u state

relative to that of the ground state when R → ∞, Ev (0+
u ) < 0

is the binding energy of the vibrational level, and stimulated
width

γv (E ) = 2π

h̄
|〈�v (0+

u )|d · Eelec|ψ (+)
g (E )〉|2. (4)

Here, ψ (+)
g (R, E ) = 〈R|ψ (+)

g (E )〉 and �v (R; 0+
u ) =

〈R|�v (0+
u )〉 are radial wave functions of the ground and

excited state as functions of R, respectively. Excited 0+
u

rovibrational wave functions are unit normalized with∫ ∞
0 dR|�v (R; 0+

u )|2 = 1 and the s-wave scattering wave
function is energy-normalized with

ψ (+)
g (R, E ) → eiηg(E )

√
2μ

π h̄2

sin[krelR + ηg(E )]√
krel

(5)

for R → ∞, where ηg(E ) is the scattering phase shift.
Moreover, operator −d · Eelec represents the light-induced
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coupling, where vector d is the dipole moment operator and
vector Eelec = E0ε cos(kLz − ωt ) is the electric field of the
laser beam propagating along the space-fixed z axis. The
field has polarization ε, wave number kL = ω/c, and electric-
field strength E0. Using the rotating-wave approximation and
Eq. (2) we have

−d · Eelec → −1

2
deff (0+

u )E0 = −Q
deff (0+

u )

ea0

√
I

W/cm2 , (6)

energy Q = a0[2παh̄(1 W/cm2)]1/2 = h × 17.561 264 MHz,
and laser intensity I . In addition to the approximations in-
herent in Eq. (2), we have also omitted angular-momentum
factors, of order unity, from evaluating d · ε for colliding
f = 1 hyperfine states and J = 1 levels of the 0+

u state.
In ultracold-atom experiments both atoms are lost in the

photoassociation process and thus the observed thermal-
ized loss rate coefficient is Ktot (h̄ω, kT ) = 2

∑
v〈Kv (h̄ω, E )〉,

where the angled brackets indicate a thermal average assum-
ing a Boltzmann distribution at temperature T of the atomic
gas. Photoassociation lineshapes of Ktot (h̄ω, kT ) have been
studied in Ref. [79]. In practice, energy widths h̄γs and kT
are orders of magnitude smaller than the energy spacing be-
tween vibrational levels. Finally inspection of Eq. (3) and the
observation that γv (E ) ∝ √

E for small E , as shown later on,
implies that Kv (h̄ω, E ) is independent of E for E → 0.

Julienne in Ref. [77] also derived that for ultracold col-
lisions the stimulated width γv (E ) has an accurate analytical
form based on the reflection approximation, where (1) the ma-
trix element of −d · Eelec is mainly determined by the radial
scattering and bound-state wave functions over a small spa-
tial region near the outer turning point RO or more precisely
the Condon point RC of the transition and (2) |VvdW(R)| �
|V (R; 0+

u )| for R > 20a0. The Condon point is that separation,
where for a given laser frequency the local kinetic energies in
the ground and excited state are the same. Then the reflection
approximation gives

γv (E ) = 2π

h̄
Q2 I

W/cm2

(
deff (0+

u )

ea0

)2 dEv (0+
u )

dv

1

DC
|ψ (+)

g

× (RC, E )|2, (7)

a function proportional to the square of the absolute value of
the ground-state scattering wave function, where slope

DC =
∣∣∣∣ d

dR
[V (R; 0+

u ) − VvdW(R)]R=RC

∣∣∣∣ ≈ 4
C3

R4
C

(8)

and the Condon point is found from

−4

3

C3

R3
C

= Ev (0+
u ) (9)

ignoring the dispersion contributions from both potentials.
Furthermore, the LeRoy-Bernstein approximation for weakly
bound states of an attractive 1/R3 potential [80] gives

dEv (0+
u )

dv
= s3

(
−Ev (0+

u )

E3

)5/6

E3, (10)

with energy E3 = h̄2/(2μβ2
3 ), length β3 = 2μ(4C3/3)/h̄2

evaluated for the coefficient of the 1/R3 potential of the 0+
u

at
FIG. 6. Stimulated widths γv (E ) for the transition from two

colliding ultracold 109Ag atoms to J = 1 vibrational levels of the
excited 0+

u state as functions of their binding energy at laser intensity
I = 1 W/cm2 and collision energy E = E6 ≈ k × 193 µK. The col-
ored and dashed curves are for the scattering lengths a = −0.5β6, 0,
0.25β6, 0.5β6, β6, and 2β6, respectively. We have used the nominal,
most-likely value for the van der Waals coefficient C6 for the ground-
state collision and nominal values for 4C3/3, deff (0+

u ), and γ0+
u

using
Eq. (2) and the data in Table I. Widths for other laser intensities and
collision energies E � E6 can be found from γv (E ) ∝ I

√
E .

state, and s3 = 6
√

π�(4/3)/�(5/6) = 8.413 092 . . . , where
�(z) is the Gamma function.

Our final ingredient in obtaining an analytical expression
for the stimulated width is observing that the s-wave ground-
state wave function for collision energies around and below
the van der Waals energy E6, i.e., assuming the Wigner thresh-
old law for E → 0, is [28,81–83]

ψ (+)
g (R, E )= 1√

2π

1√
E6β6

√
krelβ6

√
x

{
�(3/4)J−1/4(1/[2x2])

− 2
a

β6
�(5/4)J1/4(1/[2x2])

}
(11)

for R > 20a0 and krel|R − a| < π/2, where x = R/β6, a is the
scattering length, and Jν (z) is the Bessel function of the first
kind. Inserting Eq. (11) into Eq. (7) shows that the stimulated
width γv (E ) ∝ √

E as promised. Currently, the uncertainties
of the short-range, R < 20a0 shape of the potentials of the
X 1�+

g and a 3�+
u states is such that the value for a is unknown

and can lie between −∞ and +∞. The authors of Ref. [81],
however, have shown that the probability distribution for a is a
Cauchy or Lorentz distribution with its maximum at the mean
scattering length ā = �(3/4)β6/[2

√
2�(5/4)] ≈ 0.478β6 and

its half-width at half-maximum (HWHM) also equal to ā. See
Table I for the value for ā for 109Ag + 109Ag.

Figure 6 shows stimulated widths for the excited 0+
u state

and ultracold 109Ag atoms at laser intensity I = 1 W/cm2 and
collision energy E = E6 based on our analytical expression
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for s-wave collisions as functions of binding energy Ev (0+
u )

for several scattering lengths a around ā. A laser intensity of
1 W/cm2 is typical for photoassociation experiments while
the temperature of Ag atoms in a magneto-optical trap is
of order E6/k. In optical dipole traps the temperature is
much smaller than E6/k. In an experiment the curves are
only sampled at a discrete set of Ev (0+

u ) corresponding to
the measured binding energies. We have used the nominal,
most likely parameter values from Table I. The stimulated
widths for other I and E < E6 follow from the fact that
γv (E ) ∝ I

√
E .

The stimulated widths as a function of binding energy in
Fig. 6 alternate between zeros and maxima with maximum
values ranging from 2π × 0.01 MHz to 2π × 0.1 MHz for
energies |Ev (0+

u )| < hc × 5 cm−1. The location of the zeros is
very sensitive to the scattering length, where for increasing a
the zeros move to less negative binding energies. These zeros
in the widths correspond to the zeros of the radial scattering
wave function of Eq. (11) using the relationship between
the Condon point and Ev (0+

u ) from Eq. (9). In fact, the ze-
ros in γv (E ) for binding energies in hc × [−40,−15] cm−1

and <hc × −10 cm−1 correspond to nodes in the scatter-
ing wave function between R = [27a0, 40a0] and R > 40a0,
respectively. Hence, the precise binding energy of the ze-
ros in the stimulated width can be used to determine the
scattering length and, to a lesser extent, the van der Waals
coefficient. Finally, the various curves cross at Ev (0+

u )/hc ≈
46.0 cm−1 and 14.9 cm−1, where the Bessel function mul-
tiplying the scattering length is zero. While visually striking,
the crossings cannot be used to determine a from experimental
data.

For binding energies in hc × [−1, 0] cm−1, the stimu-
lated width is on the order of the natural linewidth of 2π ×
17(3) MHz for the 0+

u state even for I = 1 W/cm2. For vi-
brational levels in this binding-energy range, the event rate
coefficient can thus saturate and approach the unitarity limit
vrelπ/k2

rel when γv (E ) = γ0+
u
, which is 1.8 × 10−11 cm3/s at

E = E6 for Ag + Ag.
Finally, we note that the validity of the Wigner threshold

law with which we derived Eq. (11) is not guaranteed for
collision energies near E6, especially for scattering lengths
a � β6. For example, phase factor eiηg(E ) in Eq. (5) can sig-
nificantly deviate from one. In practice, numerical simulations
of the scattering wave function are required for energies larger
than E6. Nevertheless, we show widths at E = E6 as it is the
natural energy scale of the van der Waals potential and we can
use their

√
E dependence to infer widths at smaller collision

energies.
Figure 7 shows stimulated widths as a function of binding

energy between hc × [−10, 0] cm−1 for two line strengths
S2P→2S but the same van der Waals coefficient and scattering
length a = +0.5β6, close to the mean scattering length. The
two S2P→2S correspond to our nominal value of 17.4e2a2

0 from
Table I and that obtained from the most accurate measurement
of Ref. [73] of 15.1e2a2

0. A different line strength implies a
change in the long-range −(4/3)C3/R3 potential of the excited
0+

u state. Hence, even though the zeros in the scattering wave
function are at the same separations, Eq. (9) implies that in
the binding-energy domain the zeros of the stimulated width
occur at different Ev (0+

u ). For a = +0.5β6 we have a zero near

at
FIG. 7. Stimulated widths γv (E ) for the transition from two col-

liding ultracold 109Ag atoms to J = 1 vibrational levels of the excited
0+

u state as functions of their binding energy at I = 1 W/cm2 and
E = E6 ≈ k × 193 µK. The two curves correspond to widths at two
different line strengths S2P→2S but the same a = 0.5β6. We have used
the nominal value for the van der Waals coefficient C6 from Table I.
Widths for other laser intensities and collision energies E � E6 can
be found from γv (E ) ∝ I

√
E .

hc × −4 cm−1, where the vibrational level spacing is about
hc × 0.25 cm−1 from Fig. 5(b).

IV. FANO-FESHBACH RESONANCES IN ULTRACOLD
SILVER ATOM COLLISIONS

In this section we describe our simulations of ultracold col-
lisions between two silver atoms in their electronic spin-1/2 2S
ground state. The goal is to determine the properties of Fano-
Feshbach resonances in these collisions. The structure of the
Hamiltonian for two silver atoms is the same as that for alkali-
metal atoms [48,84]. The kinetic-energy operator contained in
the Hamiltonian is (−h̄2d2/dR2 + �2/R2)/2μ, where � is the
relative mechanical angular-momentum operator for the two
atoms. Next, Fermi-contact interactions describe the coupling
between the electron spin s j of silver atom j = 1 or 2 couples
to its nuclear spin i j . Zeeman interactions for each spin de-
scribe the effects of a magnetic field with strength B, where
the direction of the magnetic field defines our quantization
axis for the spins. The nuclear-spin quantum number of both
107Ag and 109Ag isotopes is 1/2.

Three additional interactions that depend on separation R
and/or orientation R̂ relative to the magnetic-field direction
are included. The strongest by far leads to the X 1�+

g and
a 3�+

u Born-Oppenheimer (BO) electronic states. These are
states with total molecular electron spin S = s1 + s2 equal to
0 and 1, respectively. Their electronic potential-energy sur-
faces are shown in Fig. 2. The remaining interactions are the
weaker and anisotropic second-order spin-orbit and magnetic
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(a) (b)

FIG. 8. The four hyperfine states of the electronic ground state
of (a) 107Ag and (b) 109Ag isotopes as functions of magnetic field
strength B. The four states are labeled a, b, c, and d in order
of increasing energy. Here, a field strength of 1 G corresponds to
0.1 mT [85].

dipole-dipole interactions that couple the electron spins s j of
the atoms to the mechanical rotation of the di-atom and lift the
degeneracy of the � = 0−

u and 1u components of the a 3�+
u

state, where � is the absolute value of the projection quantum
number of the sum of all electron angular momenta along the
internuclear axis. The splitting between the � = 0−

u and 1u

components is shown in Fig. 4.
The energies of the hyperfine states of 107Ag and 109Ag

atoms as functions of B are shown in Fig. 8. Absent a magnetic
field, the total atomic angular momentum f j = s j + i j and
its projection operator f jz along the magnetic-field direction
are conserved with quantum numbers f j = 0 or 1 and mj . At
finite B only f jz is conserved and atomic hyperfine states are
B-dependent superpositions of f j = 0 and f j = 1 states for
mj = 0 and pure f j = 1 states for mj = ±1. Unlike atomic
hydrogen, both silver isotopes have an inverted hyperfine
structure, where at B = 0, the three states with quantum num-
ber f j = 1 have lower energies than that of the f j = 0 state.
For the remainder of this paper, we label the four states by a,
b, c, and d in order of increasing energy. Further details about
the Hamiltonian can be found in Appendix B.

Figures 9(a) and 9(b) show scattering lengths as as func-
tions of B up to 1500 G for ultracold, colliding 107Ag atoms
with both atoms in hyperfine states a and b, respectively, us-
ing our nominal, most likely BO potentials and second-order
spin-orbit interaction. Absent inelastic processes, where the
hyperfine state of one or both atoms changes in the colli-
sion, the scattering length for � = 0 collisions is defined as
as = −[tan η(E )]/k ∈ (−∞,+∞) in the limit E → 0 [47]
with collision energy E = h̄2k2/2μ, collision wave number
k, and reduced mass μ given by half the mass of the silver
atom. Here, η(E ) is the energy-dependent � = 0 scattering
phase shift of the only open channel in the calculation. For the
collision between two a hyperfine states, we have mtot = −2
and only include � = 0 and 2 states; that is, s and d partial
waves. This choice leads to eight coupled channels, with ex-
actly one s-wave channel. Only the s- and d-wave |{aa}+〉 or

FIG. 9. Scattering length as for the zero energy collision of 107Ag
atoms in hyperfine state (a) a and (b) b as functions of magnetic field
B. Notice the different scales along the y axes of the two panels. We
have used our nominal atom-atom interaction potentials.

a + a channels are open. For the collision of two b hyperfine
states, we have mtot = 0 and only include � = 0 or s-wave
channels. This choice leads to four coupled channels, where
the |{bb}+〉 or b + b channel is the only open channel. In
actuality, the calculations presented in this figure and other
figures concerning Fano-Feshbach resonances have been per-
formed at E = k × 1 µK. Finally, we note that experimentally
gasses of ultracold atoms can be prepared in any hyperfine
state using microwave spectroscopy. A description of this
technique applied to cesium atoms can be found in Ref. [86].

We observe that Figs. 9(a) and 9(b) have magnetic-field
regions where the scattering length rapidly changes between
+∞ and −∞. These are the Fano-Feshbach resonances [47]
of colliding ultracold silver atoms and near each resonance the
scattering length can be modeled by the function [87]

as(B) = abg

(
1 − 


B − B0

)
, (12)

where abg is the B-independent background scattering length,
B0 is the resonant magnetic-field strength, and 
 is the mag-
netic width of the resonance. Here, abg and 
 can have
negative or positive values. The scattering length is zero
when B = B0 + 
. The nearest-neighbor spacing between the
resonances is typical for that observed for alkali-metal and
chromium atoms [47] and is thus orders of magnitude larger
than that observed for magnetic lanthanide atoms [52].

The magnetic widths of the Fano-Feshbach resonances
for a + a collisions in Fig. 9(a) are positive and no larger
than 0.1 G (but typically much smaller). These widths, found
by fitting as(B) for a small-B-field region around each res-
onance to Eq. (12), are sufficiently large for experiments
aiming to form weakly bound molecular states using magneto-
association. The seven resonances in the a + a collision are
absent when only the single s-wave channel is included in
the scattering calculations. Hence, they are d-wave reso-
nances where coupling between s- and d-wave channels is
solely due to the weak anisotropic second-order spin-orbit and
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FIG. 10. (a) Scattering length as for the zero-energy collision of
107Ag atoms in hyperfine state a and (b) the energies of the least-
bound mtot = −2 di-atomic bound states as functions of magnetic
field B. The scattering length is infinite when a bound state has
zero binding energy. Blue curves correspond to calculations that
only include s- and d-wave channels. Red curves correspond to
calculations that include s-, d-, and g-wave channels. On the scale
of the figures the red and blue curves are often indistinguishable and
thus underneath each blue curve there lies a red curve. We have used
the nominal atom-atom interaction potentials.

magnetic dipole-dipole interactions. Angular-momentum
analysis shows that the s-wave channel is, in fact, a molecular
electron spin S = 1 state and we find that the background
scattering length away from the resonances is to very good
approximation equal to the +14.7a0 scattering length of our
nominal a 3�+

u potential.
The magnetic widths of the three Fano-Feshbach reso-

nances for b + b collisions in Fig. 9(b) are also positive and on
the order of 10 G, much larger than those for a + a collisions.
The resonances define so-called s-wave resonances. When we
add d-wave channels with mtot = 0 in the calculations for
b + b collisions, not shown in this panel, the rate coefficients
for the inelastic or spin-flip processes to � = 2, a + b and � =
2, a + a channels are extremely small, less than 10−13 cm3/s
for all B < 1500 G, except when |B − B0| � 
. Including
d-wave channels also adds narrow Fano-Feshbach resonances
with magnetic widths of the same order of magnitude as those
observed in a + a collisions. The broader s-wave Feshbach
resonances can be useful for simulating quantum many-body
Hamiltonians. The background scattering length for b + b col-
lisions in Fig. 9(b) is approximately 20a0, decreases by about
5a0 over 1500 G, and neither corresponds to the scattering
length of the our nominal X 1�+

g and a 3�+
u potentials.

We can compare the background scattering lengths for
a + a and b + b collision with the most likely or mean value
for the scattering length [81] defined in the previous sec-
tion. For 107Ag + 107Ag, we have ā = 43.2(2.5)a0. In other
words, for our nominal interaction potentials the background
scattering lengths are relatively small. Table I lists ā for the
109Ag + 109Ag isotopologue.

Figure 10 provides two additional observations about the
Fano-Feshbach resonances of 107Ag. Figure 10(a) shows the
scattering length of ultracold a + a collisions as a function
of B when we only include s- and d-wave channels with
mtot = −2 as well as when we include all � = 4 or g-wave
channels with mtot = −2. We observe additional narrow so-
called g-wave resonances when we include g-wave channels.
The already present d-wave resonances change their reso-
nance position by no more than 0.05 G. Similarly, the value
of the resonance width and background scattering length does
not change significantly, i.e., by less than 1 %.

Figure 10(b) shows the binding energies of the most
weakly bound bound states with mtot = −2 as functions of the
magnetic field. Each collisional Fano-Feshbach resonance in
Fig. 10(a) corresponds to the appearance of a bound state with
zero binding energy at the same magnetic-field strength. Less
visible is that all bound levels avoid each other as a function
of B. We also observe that the magnetic field lifts Zee-
man level degeneracies at B = 0. At B = 0 and ignoring the
weak anisotropic interactions, orbital angular momentum �,
molecular angular momentum F = f1 + f2, and its space-fixed
projection operator Fz are conserved. Hence, we assign the
corresponding quantum numbers �, F , and M to each bound
level. For example, the single level with a B-independent
binding energy of −h × 0.25 GHz is the last s-wave bound
state of the a 3�+

u potential. The two levels with a binding
energy of −h × 0.85 GHz at B = 0 are d-wave F = 1 levels
with M = 0 and −1 leading to Fano-Feshbach resonances
near B = 290 G and 460 G, respectively.

The shapes of the two Born-Oppenheimer potentials are to
a certain degree uncertain because both their depth and the
common long-range van der Waals coefficient have uncertain-
ties. For example, the potentials of the X 1�+

g and a 3�+
u states

have 131(1) and 38.0(0.5) � = 0 or s-wave vibrational levels
for 107Ag2 when C6 = 342Eha6

0, respectively, where the num-
ber in parentheses corresponds to the standard uncertainty in
the number of bound states when the depths of the short-range
potentials are varied within their standard uncertainties of
hc × 200 cm−1 for the X 1�+

g state and hc × 80 cm−1 for the
a 3�+

u state. Changing the shape of the potentials changes the
location and magnetic width of the Fano-Feshbach resonances
as well as the background scattering length.

In Fig. 11 we show the changes in resonance locations B0

and magnetic widths 
 for 107Ag a + a collisions including
only s- and d-wave channels with mtot = −2 as functions
of the change in depth 
VX of the X 1�+

g potential by just
over one standard uncertainty of the depth of this potential.
The depth change in 
VX is hc[−255, 5] cm−1, where our
nominal X 1�+

g potential has 
VX/hc = 0 cm−1. The depth of
the a 3�+

u potential and the long-range dispersion coefficients
are those used to obtain the two previous figures; that is,

Va/hc = 0 cm−1 and C6 = 342Eha6

0. We describe how the
depth of the Born-Oppenheimer potentials is changed without
introducing discontinuities in Appendix A.

Figure 11(a) shows that the locations of the resonance over
this range of depth are “repeating” over a depth range of
≈hc × 270 cm−1, slightly larger than shown in the figure.
That is, the resonance positions and their slopes dB0/d
VX on
the left- and right-hand sides of Fig. 11(a) are the same. This
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FIG. 11. Panel (a) shows locations B0 of the narrow d-wave
Fano-Feshbach resonances for a + a collisions of 107Ag atoms
as functions of the change in depth 
VX of the X 1�+

g Born-
Oppenheimer potential at fixed long-range van der Waals coefficient
C6 = 342Eha6

0. S- and d-wave channels with mtot = −2 have been
included. The horizontal black dashed lines highlight the “repeat-
ing” locations of the Fano-Feshbach resonances as explained in the
text. Panel (b) shows a parametric graph of magnetic widths 
 and
resonance locations B0 as a function of 
VX. The range of 
VX is the
same as that shown in panel (a). Note that a blue (red) section of the
curve in panel (b) corresponds to one and only one blue (red) curve
in panel (a).

behavior is reinforced in Fig. 11(b), where we parametrically
plot the resonance widths and positions as functions of 
VX

for each of the seven resonances. The seven sections form a
single continuous curve, where the broadest but still narrow
resonances occur around magnetic field values of 1500 G.
Following Ref. [47] resonances are considered narrow when

 � 1 G. The origin of the repeating pattern and the contin-
uous 
 versus B0 function is the fact that, over a depth range
of ≈hc × 270 cm−1 the X 1�+

g potential loses exactly one s-
as well as one d-wave bound state. Moreover, the last s-wave
X 1�+

g bound state for 
VX = hc × −255 cm−1 has approx-
imately the same binding energy as its last s-wave bound
state when 
VX = hc × 15 cm−1, as the least-bound bound
states have outer turning points where the potential is well
characterized by the dispersion potential. Small breakdowns
to this repeating pattern exist and are due to the finite depth of
the X 1�+

g potential.
Figure 12 shows similar data for 107Ag b + b collisions

including only s-wave channels with mtot = 0 and showing a
slightly different range of 
VX. The repetition with respect to
depth change 
VX over ≈hc × 270 cm−1 is again apparent.
The magnetic width of the resonances, however, is large with
values as large as 180 G.

The full dependence of the Ag + Ag resonance locations
and widths follows from varying both the depths of the singlet
X 1�+

g and the triplet a 3�+
u potentials as well as van der

Waals coefficient and second-order spin-orbit strength. For a
changing depth of the a 3�+

u potential the resonance locations
repeat when this triplet potential loses a bound state. In fact, at

FIG. 12. Panel (a) shows locations B0 of the broad s-wave Fano-
Feshbach resonances for b + b collisions of 107Ag atoms as functions
of the change in depth 
VX of the X 1�+

g Born-Oppenheimer poten-
tial at fixed long-range van der Waals coefficient C6 = 342Eha6

0. Only
s-wave channels with mtot = 0 have been included. The horizontal
black dashed lines highlight the “repeating” locations of the Fano-
Feshbach resonances as explained in our discussion of Fig. 11. Panel
(b) shows a parametric graph of magnetic widths 
 and resonance
locations B0 as a function of 
VX. The range of 
VX is the same as
that shown in panel (a). Note again that a blue (red) section of the
curve in panel (b) corresponds to one and only one blue (red) curve
in panel (a).

a fixed van der Waals coefficient and second-order spin-orbit
strength, the repeating pattern of resonance locations can be
encoded on the surface of a torus. Changing the van der Waals
coefficient or the second-order spin-orbit strength does not
lead to repeating patterns.

The parameters in the X 1�+
g and a 3�+

u Born-
Oppenheimer potentials, i.e., 
VX, 
Va, and C6, can also be
constrained by comparing the positions of the Fano-Feshbach
resonance for the three isotopologues 107Ag + 107Ag, 109Ag +
109Ag, and 107Ag + 109Ag. The only changes in the
Hamiltonian are the values for the reduced mass in the
kinetic-energy operator, the hyperfine constants, and
nuclear g factors. That is, to very good approximation
the Born-Oppenheimer potentials are independent of
isotopologue. Figure 13 shows such a comparison for
the collision, where both Ag atoms are in hyperfine state b
including only the allowed s-wave channels with mtot = 0 and
E/k = 1 µK. The graphs shows resonance locations B0 as
functions of the change in depth of the X 1�+

g -state potential
over the same range as in Figs. 11 and 12, again using the
nominal a 3�+

u potential and C6 = 342Eha6
0. We observe

two or three s-wave resonances in the magnetic-field range
below 1500 G for each of the homonuclear 107Ag + 107Ag
and 109Ag + 109Ag isotopologues, and twice as many for the
heteronuclear 107Ag + 109Ag system (corresponding to the
near doubling of the number of closed channels).

V. CONCLUSION

In this paper, we have reported on computations prob-
ing bound states of the ground and excited states of the
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FIG. 13. Locations B0 of the broad s-wave Fano-Feshbach
resonances for b + b collisions of 107Ag + 107Ag (red curves),
109Ag + 109Ag (blue curves), and 107Ag + 109Ag (orange curves) iso-
topologues as functions of the change in depth 
VX of the X 1�+

g

Born-Oppenheimer potential at fixed long-range van der Waals coef-
ficient C6 = 342Eha6

0. Only s-wave channels with mtot = 0 have been
included.

Ag2 molecule by one-photon photoassociation spectroscopy
and magneto-association. We have suggested means to ac-
curately determine the long-range dispersion coefficients for
ground and excited-state potentials. Our findings will aid ef-
forts to produce ultracold gases of Ag atoms, as knowledge
of s-wave scattering lengths is needed to perform efficient
evaporative cooling. Our results are also an important step
towards efficient and coherent production of Ag2 molecules
via association from ultracold atoms using Fano-Feshbach
resonances. Ultracold Ag2 molecules have bright prospects
for novel quantum gases with long-range and anisotropic in-
teractions, and applications in precision measurements.
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APPENDIX A: ELECTRONIC POTENTIAL-ENERGY
SURFACES

We have determined the electronic potential-energy sur-
faces correlating to the Ag(5s)-Ag(5s) asymptote with
the nonrelativistic partially spin-restricted coupled-cluster

method [88,89] using effective-core-potentials and large ba-
sis sets of quintuple-ζ quality augmented with additional
midbond-functions and using single, double, and perturba-
tional triple excitations [RCCSD(T)], as implemented in
Molpro [90,91]. The reference electronic wave function or de-
terminant for the ground spin singlet X 1�+

g and excited spin
triplet a 3�+

u states in the coupled-cluster method are taken
from restricted Hartree-Fock calculations. The shape of the
molecular orbitals are optimized during the coupled-cluster
calculations, i.e., the orbitals are not frozen.

We describe the electronic structure of Ag atoms using
an effective core-potential (ECP) that accounts for scalar-
relativistic effects. The core potential describes the first 28
electrons and is denoted ECP28MDF in the Stuttgart li-
brary [92]. The remaining 19 electrons of each Ag atom are
treated explicitly with the augmented, correlation-consisted
quintuple-ζ basis set (aug-cc-pwcv5z-PP) of Peterson et al.
[93] with weighted core-valence correlation. The basis set
was obtained from the Basis Set Exchange Platform [94]. We
further augment this atomic basis with 3s3p2d2 f 1g mid-bond
functions as used by Śmiałkowski et al. [7]. The mid-bond
functions improve the description of electronic correlation be-
tween the atoms and bring the computed energy closer toward
the complete basis set limit.

We perform the coupled-cluster calculations on a discrete
grid of 106 separations from R = 3.25a0 to 36a0 for the
X 1�+

g and a 3�+
u states. We observed that the single reference

Hartree-Fock wave function provides a good description for
the X 1�+

g state up to around R = 8a0. For larger separations
the single-reference approach fails and the potential has un-
physical repulsive maximum. The spin triplet a 3�+

u surface
behaves correctly for large R as for high-spin cases the disso-
ciation can be described by a single Hartree-Fock determinant.

Coupled-cluster calculations determine the total energies
of the eigenstates of the electron Hamiltonian as functions
of atom-atom separation R. In principle, potential-energy sur-
faces can be obtained by subtracting the total energies for
R → ∞. We, however, compute these surfaces using the su-
permolecular method to correct for the basis set superposition
error by applying the counter-poise correction procedure of

TABLE II. Equilibrium separation Re and well depths De of the
X 1�+

g and a 3�+
u of Ag2 for nonrelativistic restricted CCSD(T)

potentials and a comparison with experimental data where available.
Numbers in parentheses for De are standard uncertainties in the last
two or three significant digits.

Reference Re/a0 De/hc (cm−1)

X 1�+
g

This work Theory 4.769 13837(200)
Jasik et al. (2021) [61] Theory 4.769 13694.94
Śmiałkowski et al. (2021) [7] Theory 4.904 13902
Schissel (1957) [59] Expt. 14360(800)
Beutel et al. (1993) [96] Expt. 4.782 13400(250)

a 3�+
u

This work Theory 5.936 460(80)
Śmiałkowski et al. (2021) [7] Theory 5.937 459
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Ref. [95]. In brief, at each R the interaction energy is com-
puted by subtracting total energies of the Ag atoms computed
using the same dimer-centered basis set from the total energy
of the Ag2 dimer.

Table II shows our equilibrium interatomic separations Re

and well depths De for the X 1�+
g and a 3�+

u Ag2 poten-
tials and compares those with several other experimental and
theoretical results from the literature. Our standard uncer-
tainties for the depths of the X 1�+

g and a 3�+
u potentials

correspond to the differences in depth from calculations using
the quintuple-ζ basis with additional mid-bond and the less
extensive quadruple-ζ (aug-cc-pwcvqz-PP) basis now without
mid-bond functions. We find that our calculated well depth of
the X 1�+

g state potential is in good agreement with experi-
mental results of Beutel et al. [96] and the older experimental
result of Schissel [59] taking their large uncertainties into
account. The equilibrium separation of the X 1�+

g state com-
puted in our work agrees very well with the experimental
result by Beutel et al. Our computed well depths for both
the X 1�+

g and a 3�+
u state agree very well with theoretical

results of Śmiałkowski et al. [7]. We, however, find that the
equilibrium separation of the X 1�+

g state potential is slightly

overestimated by Śmiałkowski et al. [7]. We find the same Re

for the ground-state potential as reported by Jasik et al. [61].
The short-range parts of the X 1�+

g and a 3�+
u potentials,

VX,CC(R) and Va,CC(R) as computed with the coupled-cluster
method, are connected to the same long-range attractive dis-
persion potential Vdisp(R) = −C6/R6 − C8/R8. We use the van
der Waals coefficient C6 = 342(85)Eha6

0 from Refs. [70,97]
with a standard uncertainty of 25 % based on their analysis of
the uncertainties of atomic transition dipole moments and po-
larizabilities. This value can be compared with C6 = 258Eha6

0

from Śmiałkowski et al. [7]. Fitting the long-range tail of the
X 1�+

g potential of Ref. [61] gives C6 = 330Eha6
0. The C6

coefficient for Ag + Ag is 5 to 10 times smaller than those
between alkali-metal atoms. We use C8 = 61 190Eha8

0 found
from fitting the long-range tail of the a 3�+

u state potential
after subtracting the van der Waals contribution using the
smaller C6 value of Ref. [7]. This C8 value is three times
larger than that found in Ref. [97]. As the uncertainty of C6 is
rather large and the −C8/R8 potential is comparatively small
for R > 20a0, we choose to use a fixed value for C8 and do not
quote an uncertainty.

In routines to numerically construct the X 1�+
g and a 3�+

u
potentials, we interpolate potentials determined on a discrete
set of separations using the reproducing kernel Hilbert space
(RKHS) method [98] and smoothly join the short and long
range using

Vk (R) = Sk (R)[Vk,CC(R) + 
Vk] + [1 − Sk (R)]Vdisp(R),

(A1)

with k = X or a and Sk (R) = {1 − tanh[βk (R − R0,k )]}/2,
where R0,k = 7.15a0 and 18.15a0 and βk = 2.5/a0 and
1.1/a0 for k = X and a, respectively. Finally, variables 
Vk

are user-controlled energies that can shift the short-range
coupled-cluster potentials within their uncertainties. The
nominal shifts are 
Vk/hc = 0 cm−1. In this paper, ultracold
scattering cross sections and Fano-Feshbach resonances are
studied as functions of these shifts.

FIG. 14. Excitation energies of the 4d105p(2Pj ) (black lines) and
4d95s2(2Dj ) (red lines) excited states of the silver atom relative to
that of its electronic ground state. From left to right, we compare
theoretical data from MRCISD + Q + spin-orbit calculations using
two electronic basis sets to the experimental data from NIST’s atomic
spectra database [17].

Next, we describe our calculations of excited adiabatic
relativistic electronic potentials of electronic states dissoci-
ating to an excited 2P and a ground state 2S silver atom.
These states can be accessed in one-photon photoassocia-
tion experiments. We employ nonrelativistic multireference
configuration-interaction calculations with single and double
excitations and Davidson corrections to estimate the effect
of higher excitations (i.e., MRCISD + Q), as implemented
in Molpro [90]. The relativistic potentials are obtained by
first computing matrix elements of electronic spin-orbit in-
teractions described within the Breit-Pauli Hamiltonian with
respect to the MRCISD + Q wave functions and then diago-
nalize the resulting, small matrix Hamiltonian.

The MRCISD + Q calculations are performed with the
segmented all-electron relativistically contracted basis set of
Rolfes et al. [99] designed for scalar relativistic Douglas-Kroll
Hamiltonian with triple-zeta size (SARC-DKH2-TZVP). This
SARC-DKH2-TZVP basis is specially tailored to describe the
silver atom and provides a better description of spin-orbit
splittings in atomic Ag compared with the ECP-based aug-cc-
pwcv5z-PP basis set of Peterson et al. [93]. The MRCISD+Q
calculations have been performed using the symmetry group
D2h with eight active molecular orbitals, that is, the 5s and
5p orbitals, and 18 molecular orbitals kept doubly occupied
but whose shape is optimized in the Hartree-Fock stage of the
simulations. The remaining inner orbitals are static and kept
as a frozen core. The 4d95s2 configuration is not included in
our molecular calculations due to computational limitations.

It is informative to show the effects of the SARC-DKH2-
TZVP and aug-cc-pwcv5z-PP basis sets on the energy levels
of a silver atom. For an atom we can simultaneously include
the 4d105s, 4d105p, as well as the 4d95s2 configurations in the
active space. In Fig. 14 we compare the calculated excitation
energies of excited states of silver using the approach based
on MRCISD+Q with spin-orbit matrix elements with the two
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basis sets to the experimental transition energies found in the
NIST atomic spectra database [17]. The two fine-structure
states of the 4d105p(2P) and 4d95s2(2D) intermingle, where
those of the 2Dj state are inverted. Only the levels based on
the SARC-DKH2-TZVP basis set, however, have the correct
order for the Ag atom.

We finish with a discussion of the second-order spin-orbit
splitting of the a 3�+

u state. We have computed this split-
ting with three distinct approaches to solving the electronic
motion. The first is the same as the one we used to deter-
mine the excited adiabatic relativistic electronic potentials
described in the previous two paragraphs (MRCISD + Q plus
spin-orbit matrix elements). The second and third methods
rely on the relativistic Dirac Hamiltonian for the electrons
with Coulomb interactions among the charged particles.
Then our second approach uses the relativistic equation-
of-motion coupled-cluster method with single and double
excitations (EOM-CCSD) with aug-cc-pwcvqz-PP basis [93]
and ECP28MDF [92] effective core potential as implemented
in the DIRAC software package [100]. The third approach
is a configuration-interaction calculation using a relativistic
valence-bond (CI-RVB) method [101] based on numerical
atomic electron orbitals rather than Gaussian-based molecular
electron orbitals. The spin-orbit splittings predicted by the
MRCISD + Q, EOM-CCSD, and CI-RVB methods are all
rapidly decreasing functions of R, where that from the MR-
CISD + Q method is smaller than that from the EOM-CCSD
method which is smaller than that from the CI-RVB method.
We have chosen the splittings from the EOM-CCSD calcula-
tion as the most likely and taken a 40 % standard uncertainty,
independent of R, reflecting the differences between the three
approaches.

APPENDIX B: FANO-FESHBACH RESONANCES
AND MAGNETO-ASSOCIATION OF Ag ATOMS

The Hamiltonian for ultracold collisions between two
ground-state silver atoms has multiple contributing terms.
The first is the kinetic energy for the relative motion of the
two atoms −h̄2∇2/2μ with differential nabla operator ∇ for
relative coordinate R and where μ is the reduced mass of the
atom pairs. The next terms are the Fermi-contact and Zeeman
interactions for each atom, which are assumed to be indepen-
dent of the atom-atom separation R and orientation R̂. Both
stable isotopes of silver, 107Ag and 109Ag, have nuclear spin
1/2 and are composite bosons. The atomic masses, strengths
of the contact interaction, and electronic and nuclear g factors
of these isotopes can be found in Refs. [58,102,103].

Three interactions that depend on coordinate R = (R, R̂)
with separation R and orientation R̂ relative to the magnetic-
field direction are included. The strongest by far leads to
the X 1�+

g and a 3�+
u Born-Oppenheimer (BO) electronic

states. These are states with total molecular electron spin
S = s1 + s2 equal to 0 and 1, respectively. The corresponding

BO potentials only depend on R and have depths De = hc ×
13 837(200) cm−1 and hc × 460(80) cm−1 for the X 1�+

g

and a 3�+
u states, respectively, as discussed in the previous

sections. For large separations, the BO potentials approach

the same attractive dispersion potential −C6/R6 − C8/R8 with
coefficients C6 = 342(85)Eha6

0 and C8 = 61 190Eha8
0.

The two remaining interactions are the weaker and
anisotropic second-order spin-orbit and magnetic dipole-
dipole interactions that couple the electron spins s j of the
atoms to the mechanical rotation of the di-atom and lift the
degeneracy of the � = 0−

u and 1u components of the a 3�+
u

state. Equivalently, the sum of the two anisotropic interac-
tions is given by Vaniso(R)[3(s1 · R̂)(s2 · R̂) − (s1 · s2)], where
Vaniso(R) = V2nd−SO(R) − α2Eha3

0(ge/2)2/R3 and ge is the g
factor of the electrons of the electronic ground state of silver.
The positive second-order spin-orbit strength V2nd−SO(R) is
a rapidly decreasing exponential with increasing R, while
the magnetic dipole-dipole interaction decreases slowly as
1/R3. Figure 4 shows the splitting V�=1(R) − V�=0(R) =
3Vaniso(R)/2 between the � = 1u and 0−

u components of the
a 3�+

u state due to the second-order spin-orbit interaction
as well as that due to minus the magnetic dipole-dipole in-
teraction. For R < 9a0 the second-order spin-orbit strength
is larger than that of the magnetic dipole-dipole interac-
tion and the � = 1u state has a higher energy than the
� = 0−

u state. For R > 9a0 the � = 0−
u state has a larger

energy.
The scattering and bound-state solutions of the Hamil-

tonian are found by numerically solving coupled radial
Schrödinger equations, where each equation corresponds to
a basis function or channel Y�m(R̂)|{β1β2}σ 〉, where β j ∈
{a, b, c, d} are the B-dependent hyperfine states of atom j
and Y�m(R̂) are spherical harmonic functions as functions
of the orientation of the internuclear axis R̂. The spherical
harmonic functions are unit-normalized eigenfunctions of the
square of the relative orbital angular-momentum operator �

of the di-atom. Moreover, σ = (−1)� for our bosonic iso-
topes, |{β1β2}σ 〉 = (|β1β2〉 + σ |β2β1〉)/

√
2(1 + δβ1β2 ), β1 �

β2 assuming the alphabetic ordering of states, and δi j is the
Kronecker δ function. Only even and odd � are coupled by
the Hamiltonian while mtot = m1 + m2 + m is conserved. The
two BO potentials only couple channels with the same �

and m, and thus the same m1 + m2, while the anisotropic
second-order spin-orbit and magnetic dipole-dipole interac-
tions couple states with different � and m. Channels are open
or closed depending on whether the total energy in a collision
is larger or smaller than the sum of the atomic hyperfine
energies. We use the conventions of Ref. [66] for the required
angular-momentum algebra to set up the Hamiltonian. We
assume that the BO potentials and Vaniso(R) are the same for
the 107Ag and 109Ag isotopes and that only the radial kinetic
energy and atomic hyperfine and Zeeman operators depend on
the isotope.
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