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The effect of decoherence on topological order (TO) has been most deeply understood for the toric
code, the paragon of Abelian TOs. We show that certain non-Abelian TOs can be analyzed and
understood to a similar degree, despite being significantly richer. We consider both wave-function
deformations and quantum channels acting on D4 TO, which has recently been realized on a quantum
processor. By identifying the corresponding local statistical mechanical spin or rotor model with D4

symmetry, we find a remarkable stability against proliferating non-Abelian anyons. This is shown by
leveraging a reformulation in terms of the tractable O(2) loop model in the pure state case and n coupled
O(2) loop models for Rényi-n quantities in the decoherence case—corresponding to worldlines of the
proliferating anyon with quantum dimension 2. In particular, we find that the purity (n ¼ 2) remains
deep in the D4 TO for any decoherence strength, while the n → ∞ limit becomes critical upon
maximally decohering a particular anyon type, similar to our wave-function deformation result. The
information-theoretic threshold (n → 1) appears to be controlled by a disordered version of these
statistical mechanical models, akin to the toric code case although significantly more robust. We
furthermore use Monte Carlo simulations to explore the phase diagrams when multiple anyon types
proliferate at the same time, leading to a continued stability of the D4 TO in addition to critical phases
with emergent U(1) symmetry. Instead of loop models, these are now described by net models
corresponding to different anyon types coupled together according to fusion rules. This opens up the
exploration of statistical mechanical models for decohered non-Abelian TO, which can inform optimal
decoders and which in an ungauged formulation provides examples of non-Abelian strong-to-weak
symmetry breaking.
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I. INTRODUCTION

Exploring and defining mixed-state quantum phases of
matter is receiving ever-growing interest [1–40] at the
intersection of condensed matter and quantum informa-
tion. The motivation descends in part from the rapid
development of highly controlled quantum platforms,
whose sources of decoherence are more accurately

characterized via effective (e.g., Pauli) noise models
rather than by more traditional thermal ensembles [41].
This endeavor is also of intrinsic theoretical interest, as
pursuing stable quantum coherent phenomena under
imperfect conditions requires generalizing the conven-
tional pure “ground-state” paradigm [42,43] to open
quantum systems.
One of the most striking emergent quantum phenomena

is that of topological order (TO), for which a deep
understanding has been achieved under ideal conditions
[42,43]. Characterized by emergent anyons [44–46] and
ground-state degeneracy [47], these systems can be
exploited to robustly store and manipulate quantum
information [48–52]. The simplest TO corresponds to a
two-dimensional Z2 deconfined gauge theory [53,54],
which is microscopically realized by the celebrated toric
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code model on a square lattice [48]. Correspondingly,
much literature [5–10,15–25,55], inspired by the seminal
work of Dennis et al. [56], has focused on extending this
TO to mixed states, appearing as a result of local
decohering processes. While this quantum memory
breaks down at any finite temperature [1,3,57–60], it
has been found—originally in the context of quantum
error correction—that quantum information encoded on
the ground-state subspace is stable if decoherence does
not exceed a certain strength [56]. It turns out that this
error-correction threshold pc (corresponding to an ideal
decoder) is set by the finite-temperature phase transition
of the 2D random bond Ising model (RBIM), where the
disorder is sourced by different error configurations [61].
More recently, Refs. [5–7] followed a different, more
agnostic approach to specific error-correction schemes
and proposed to directly characterize the decohered
density matrix ρ by evaluating various information-
theoretic quantities. However, since such quantities are
generally difficult to compute, the authors proposed to
look at their n-Rényi generalizations associated with
different moments trðρnÞ to detect the nontrivial effects of
decoherence. Even though these critical thresholds pðnÞ

c

do, in general, depend on the Rényi index n, such
generalizations simplify the calculations and connect
to simpler statistical mechanical (“stat-mech”). The
“intrinsic” (or “information-theoretic”) error threshold
pc can be obtained by taking an n → 1 replica limit,

although finite pðnÞ
c ’s already inform about singularities

in the spectrum of ρ.
However, the rich landscape of TOs consists mostly of

non-Abelian states [62–65], whose anyons have internal
structure—forming the hardware of a topological quan-
tum computer [48,51]. Previous works considering the
effect of decoherence on non-Abelian TO have either
focused on error-correcting schemes for certain classes of
TOs (without identifying stat-mech models) [66–72] or
explored what type of novel intrinsically mixed phases
can, in principle, emerge for maximal decoherence rate
[16–18]. However, it is a priori not clear whether one can
hope to understand the effects of decoherence of any non-
Abelian TO to a degree that is akin to our understanding
of the structurally much simpler Abelian case; it is
similarly unclear whether one should expect the physics
to be significantly different and more interesting. Here,
we answer both these open questions in the affirmative. In
particular, we study D4 TO, which has recently been
experimentally realized in a trapped-ion processor [73].
The fact that this was the first non-Abelian TO to be
realized using a quantum processor is due to it, in some
sense, being the simplest non-Abelian TO—thereby
making it an ideal candidate to play a paradigmatic role
akin to the toric code for Abelian TO. Indeed, although it
has as many as 22 anyons [74], it is rather minimal, since
all non-Abelian anyons fuse to Abelian ones. This is

known as acyclic or nilpotent property and was crucial to
the theory proposal [76] of its realization. This is related
toD4 TO being achingly close to an Abelian TO: It can be
thought as a “twisted” Abelian gauge theory [78–81].
Although the (doubled) Ising anyon TO shares a similar
property, D4 TO has an emergent (nonfermionic) gauge
group symmetry, similar to the toric code.
With this motivation, the present work is a detailed

study of decohering D4 TO. We consider both pure wave-
function deformations—realized as imaginary time evo-
lutions for a time β acting on theD4 topologically ordered
ground state—as well as local quantum channels acting
on an initial pure density matrix with some error rate p.
In the following, we refer to both kinds of scenarios
as errors. Pure wave-function deformations have
been previously considered in the literature (see, e.g.,
Refs. [82,83] for deformations of the toric code wave
function and Refs. [84–88] when considering non-
Abelian topological order), exploiting both numerical
and analytical tractability, in particular, using tensor
network formalism. However, our motivations to consider
such wave-function deformations as a prelude to under-
standing decohered mixed states are the following. First,
this scenario provides a conceptually simple way to
perturb the pure state while retaining a corresponding
local parent Hamiltonian for the modified wave function
and involves similar algebraic calculations. Second, the
combination of such deformations on top of zero-corre-
lation length wave functions together with local quantum
channels allows us to controllably induce a finite-corre-
lation length in the system, which will turn out to provide
useful insights. And, finally, as we find, the deformed
wave functions turn out to be relevant for understanding
the behavior of the stat-mech model appearing in trðρnÞ in
the n → ∞ limit.
A key finding of this work is that while Abelian

errors lead, as for the toric code case, to Ising-like
stat-mech models, we find that the proliferation of
non-Abelian anyons in D4 TO leads to a D4-symmetric
spin model. This larger symmetry gives rise to a field
theory description at the critical threshold which show-
cases an emergent U(1) symmetry and, hence, vastly
stabilizes the system against both types of errors. We
discuss this formulation hand in hand with an exact high-
temperature expansion of this model, which is given by
an O(2) loop model on a honeycomb lattice [89–91]
[indeed, the usual Ising model is an O(1) loop model]. It
is no coincidence that d ¼ 2 is the quantum dimension of
the non-Abelian anyon proliferated by the underly-
ing error.
First, when subjecting D4 TO to the proliferation of

Abelian anyons via Pauli noise, we recover the same
phenomenology as found for the decohered toric code
ground state [6]. Specifically,D4 TO breaks down beyond a
certain error strength. However, when deforming the wave
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function by creating non-Abelian anyons pairs, we find
that the system is robust to any finite deformation. This
stability relates to the fact that the norm of the deformed
wave function, signaling ground-state phase transitions,
maps to an O(2) loop model (see the review in Ref. [91]).
Here, loop configurations correspond to the worldlines of
non-Abelian anyons with quantum dimension d ¼ 2,
contributing with a topological tension on top of a local
string tension given by the error strength. This is then able
to give rise to a critical state, which in this case
corresponds to a Berezinskii-Kosterlitz-Thouless (BKT)
critical point and that can be pushed to an extended
gapless phase.
Similarly, when subjecting the system to decoherence,

we find that trðρnÞ leads to n coupled O(2) loop models.
For example, when computing the purity (trðρ2Þ, both
copies are strongly coupled leading to an O(4) loop
model. This translates into the robustness of D4 TO even
at the maximum error rate (under Pauli noise). While the
phase diagram of higher Rényis with n > 2 is more
subtle, we can also argue that in n → ∞ is very stable

and is likely to attain a threshold pð∞Þ
c only at the

maximum error rate. On more rigorous footing, we have
shown that, unlike what has been found for the toric code

[6], the thresholds pðnÞ
c for different Rényi index n are not

a monotonic increasing function of n. However, the
intrinsic threshold pc (as discussed in Ref. [56]) is
controlled by the “replica limit” n → 1 or, rather, by a
transition in information-theoretical quantities that
involve the Von Neumann entanglement of ρ. We are
able to identify the local stat-mech model determining this
threshold (analogous to the RBIM for the toric code) for
the decohered density matrix at the maximal error rate,
where we can perform a full diagonalization. In particular,
we find that the robustness of this non-Abelian quantum
memory can be characterized by the free energy cost of
inserting a symmetry defect line on a disordered D4

rotor model.
Finally, we combine both “Abelian” and “non-Abelian”

errors and characterize the resulting phase diagram for both
pure wave-function deformations and for the decohered
mixed state as signaled by a singular behavior in the purity
trðρ2Þ. We find a rich phase diagram that displays several
short-range correlated phases, corresponding to various
types of TOs, as well as an extended critical phase in the
former case which is now stabilized by the presence of
Abelian anyons (see Sec. V). Such characterization is
possible due to the alternative and equivalent formulations
of the resulting loop models using explicitly local variables,
which permits an efficient implementation of classical
Monte Carlo simulations and the use of local order
parameters.
We organize the remainder of the paper as follows.

In Sec. II, we start by reviewing a microscopic
model realizing D4 TO and its connection to a

symmetry-enriched Z2 × Z2 toric code by via a (un)
gauging unitary transformation. We then consider the
effect of local phase Z errors in Sec. III, which proliferate
pairs of Abelian charges. First, we characterize the
resulting phase diagram of the corresponding deformed
wave function (Sec. III A) and then the fate of the
decohered density matrix as measured by the purity
(Sec. III B). Section IV then follows a similar structure,
first discussing X pure wave-function deformations in
Sec. IVA, which proliferates pairs of non-Abelian fluxes.
We show that the worldlines of these non-Abelian anyons
with quantum dimension d ¼ 2 lead to O(2) loop models
when computing the norm of the deformed wave func-
tion, which is, in turn, reformulated in terms of local
Ising-like interactions and as a four-state clock model. In
Sec. IV C, we then follow a similar discussion for the
purity. However, this section includes three additional
results: First, in Sec. IV D, we compute higher moments
trðρnÞ of the decohered density matrix where the non-
Abelian nature of the proliferating anyon establishes a
clear difference with respect to the toric code case.
Second, in Sec. IV E, we consider the limit n → ∞ and
prove that the phase diagram as characterized by trðρ∞Þ
matches that of the deformed wave function. In Sec. V, we
then combine both Z Abelian and X non-Abelian errors
on different sublattices and study the phase diagram of
both the resulting deformed wave function and decohered
density matrix. We also include the statistical models
characterizing the effect of proliferating more than one
type of non-Abelian anyons in Sec. V C. Finally, we
employ the ungauging maps to relate the decoherence
transition of D4 TO to the phenomenon of strong-to-weak
spontaneous D4 symmetry breaking in Sec. VI. We
conclude in Sec. VII, discussing the main conclusions
of this work as well as various open questions.
In a companion work [92], we explore and confirm some

of these results for a broad range of TOs, including the
quantum double construction and the Kitaev honeycomb
model. The latter provides an example of a nonfixed point
wave function with the noise model creating non-Abelian
anyons which neither are self-bosons nor have an integer
quantum dimension. Moreover, this companion work
shows the dependence of the results on the underlying
microscopic lattice.

II. REVIEW OF D4 TOPOLOGICAL ORDER

We consider a microscopic model with D4 non-Abelian
TO following Ref. [78]. It is a solvable spin-1=2 model
which is in the same phase of matter as the quantum double
DðD4Þ [93–95], which can be thought of as the deconfined
phase of an (emergent) D4 gauge theory. Since the dihedral
group D4 ≅ Z4 ⋊ Z2 is the symmetry group of the square
and, hence, non-Abelian, this deconfined phase has non-
Abelian anyon excitations, as we discuss. However, the
model introduced in Ref. [78] can also be thought of as a
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Z2 × Z2 × Z2 gauge theory with a subtle kind of “twist”
which is responsible for its non-Abelian nature [79–81,96].
In Sec. II B, we use an alternative perspective, where this
non-Abelian phase of matter is obtained by gauging the
Z2 × Z2 symmetry of a symmetry-enriched toric code
[97–100].
Our Hilbert space consists of spin-1=2 (qubits) on the

vertices of a kagome lattice, and for convenience we work
with periodic boundary conditions. Since this lattice is
tripartite, we distinguish among red (RR), green (RG), and
blue (RB) sublattices; see Fig. 1(a). Equivalently, one can
think of qubits lying on the edges of three interleaved
honeycomb lattices colored R, G, and B [the red honey-
comb lattice corresponding to RR is shown in Fig. 1(b)].

A. Microscopic Hamiltonian and anyon content

In this work, we denote by X, Y, and Z the three Pauli
matrices corresponding to σx, σy, and σz, respectively. We
consider a spin-1=2 Hamiltonian realizing D4 topological
order on the sites of the kagome lattice [78] (following the
notation of Ref. [73]):

H ¼ −
X

s∈ f✡g
As −

X
t∈ f⊳;⊲g

Bt ð1Þ

with the 12-body operators As ¼
Q

6
iin¼1 CZiin;iinþ1×Q

6
iout¼1 Xiout and the three-body triangle operators Bt ¼Q
j∈⊳;⊲ Zj. For the former, CZi;j ¼ 1

2
ð1þ Zi þ Zj −

ZiZjÞ ¼ eiπ½ð1−ZiÞ=2�½ð1−ZjÞ=2� denotes the controlled-Z gate
which assigns the phase −1 if and only if the two spins
sitting at sites i, j are in the j↓i state. The first product

runs over the iin sites lying within the internal hexagon
of a star A, while the second product runs over the exterior
iout sites. See Fig. 1(a) for the graphical definition
of As and Bt.
Analogously to the 2D toric code, As’s can be viewed as

plaquette operators defined on the intertwined colored
honeycomb lattices, while the Bt’s correspond to star
operators imposing Gauss’s law on each honeycomb-lattice
vertex. Each of these operators have an associated color
inherited from the three-colorable lattice. Although
½As; Bt� ¼ 0 and ½Bt; Bt0 � ¼ 0, the As’s fail to commute
with each other (due to the CZ rings lying within each
plaquette term). The latter property is important, because
otherwise the Hamiltonian would reduce to three decoupled
copies of the 2D toric code. Fortunately, the ground-state
manifold corresponds to Bt ¼ þ1 in every triangle. In this
sector, ½As; As0 �jBt¼þ1 ¼ 0. Consequently, As ¼ Bt ¼ þ1

holds in the ground-state subspace.
This topological order hosts a total of 22 anyons (for a

detailed description, see the Appendixes of Refs. [73,101]).
Of these anyons, eight are Abelian (i.e., have quantum
dimension d ¼ 1), and the remaining are non-Abelian with
quantum dimension d ¼ 2. All Abelian anyons, modulo the
trivial particle, correspond to self-bosonic electric charges
[102] that we label eR, eG, eB, eRG, eRB, eBG, and eRGB
[103]. The first three charges—which generate the others
via fusion (i.e., for example, eRG ¼ eR × eG)—arise from
violation of a kagome star operator As. Namely, a kagome
star with As ¼ −1 corresponds to a charge eR, eG, or eB
depending on the color of the flipped operator. These
anyons can be created in pairs by the action of local Pauli Z
operators. For example, a pair of eB ’s are created at the
blue stars si and sf by the action of the Wilson operator
Z

sf
si ≡

Q
b∈ γx;y

Zb, where γx;y is any open string with
support only on the blue sublattice RB and with x and y
vertices lying in si and sf, respectively. Hence, for closed
contractible loops with si ¼ sf, Z

si
si acts as the identity on

theD4 ground state, since such an operator creates and then
fuses Abelian anyons. Logical operators ZR;G;B—which
can act nontrivially in the ground-state manifold—corre-
spond to the product of Z operators along closed non-
contractible (both horizontal and vertical) loops with
si ¼ sf and with support only on the corresponding
sublattice RR;G;B.
The remaining 14 non-Abelian anyons have either

bosonic, fermionic, or semionic self-statistics depending
on their topological spin. The fundamental fluxes mR, mG,
and mB—which together with the electric charges above
generate all anyons via fusion—can also be created in pairs
and correspond to violations of the triangle operator
Bt ¼ −1. For example, a pair of fluxes on nearby triangles
can be generated by a single Pauli X operator acting on the
common vertex [see the two coinciding red triangles in
Fig. 1(a)]. Creation of a pair of distant fluxes mR at red

(a) (b)

FIG. 1. Microscopic realization of D4 topological order on the
kagome lattice. (a) Local Hamiltonian terms As and Bt (specifi-
cally, we show As and Bt) in Eq. (1). Pairs of non-Abelian
(Abelian) mR (eB) fluxes (charges) are created by the action of
local Xr (Zb) Paulis acting on the red (blue) sublattice RR (RB).
(b) The worldlines of non-Abelian mR anyons form closed loops
(LR, red) on the honeycomb lattice (whose vertices lie at the
center of triangle terms Bt). On the other hand, Abelian charges
eG and eB either form closed loops on a triangular lattice (whose
vertices lie at the center of star terms AG

s and AB
s ) or they can end

on the red loop, due to the nontrivial fusion mR ×mR ¼
1þ eB þ eG þ eB × eG. This configuration space defines a
net model.
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triangles ti and tf, however, requires a string of X’s
supplemented by a unitary circuit whose depth is linear
(in the distance between the two triangles) [73]:

X
tf
ti ¼

Y
r∈ γx;y

Xr

Y
b<g∈ γx;y

CZbg; ð2Þ

where γx;y is an open string connecting sites x and y lying
on triangles ti and tf, respectively, and where b < g∈ γx;y
means we go over all blue and green sites which are passed
upon traversing the red string and consider all pairs where
blue is on the left of green [104]. The additional CZ’s
along the path appear due to the non-Abelian nature of the
mR’s: Unlike for Abelian anyons, fusion of two non-
Abelian fluxes leads to more than one possible outcome,
e.g., mR ×mR ¼ 1þ eG þ eB þ eGeB. Consequently,
with only a product of X’s, non-Abelian anyons created
by adjacent X operators would fuse nontrivially—creating
a superposition of allowed anyon fusion products along
the entire length of the X string. (This point is very
important in later sections.) The CZ’s “clean up” these
excitations such that the operator X

tf
ti creates a pair of

fluxes in the trivial fusion channel, without excess anyons
in the intervening region. See additional details in
Ref. [73]. A graphical example of this operator is shown
in Fig. 14. We note that Eq. (2) also affects the As
operators with ti, tf lying at their center, such that As takes
an indefinite value with hAsi ¼ 0, which is related to the
higher-dimensional internal space associated with the
non-Abelian anyons. Similarly to the logical operators
ZR;G;B discussed above, a second set of logical operators
XR;G;B analogously correspond to closed noncontractible
loop configurations with ti ¼ tf.
Hereafter, we take jD4i to correspond to the ground state

where all Z logical operators of the theory act as the
identity.

B. Ungauging and disentangling maps

Here, we highlight a particular change of variables that
prove useful later on. It involves dualizing some of the
sublattices, which can be interpreted as ungauging, thereby
mapping it to a simpler theory.
In Sec. IV, we study the proliferation of fundamental

non-Abelian fluxes. Since all three sublattices are mani-
festly on the same footing in the above D4 TO model,
without loss of generality we choose to proliferate fluxes
mR associated to the red sublattice. For this reason, the
following change of variables treats the red sublattice on a
different footing than blue and green. In particular, we
interpret the red sites of the kagome lattice as living on the
links of a honeycomb lattice. We then dualize the green and
blue sublattices of the kagome lattice in the sector
BB
t ¼ BG

t ¼ 1, such that they map to spin-1=2’s living
on the vertices of the aforementioned honeycomb lattice

(with blue and green corresponding to the two sublattices of
the honeycomb).
In conclusion, we map the kagome lattice to a “heavy-

hexagonal” lattice, with spin-1=2’s on the vertices and
bonds of the honeycomb lattice. Operators (within the
BB
t ¼ BG

t ¼ 1 sector) map to the new Hilbert space as
follows: While ZR → ZR is unchanged, we have

ð3Þ

ð4Þ

and similarly upon exchanging the blue and green sub-
lattices. We have not shown how As and As map, since it is
somewhat more complicated [105] and is not explicitly
used in the main text; however, when acting on states where
BR
t ¼ 1, they simply map to single-site XB and XG,

respectively. We use a tilde ∼ to refer to the ungauged
degrees of freedom on the green and blue sublattices. Here
and in the following section, we make a slight abuse of
notation and use RG;B to denote both green and blue
sublattices on the kagome lattice, as well as sublattices of
the honeycomb lattice, respectively.
One can straightforwardly see that the above mapping

indeed preserves the Pauli algebra. The precise structure of
the mapping was chosen such that it maps the D4 TO to a
much simpler state:

jD4ikagome → jTCiRR
⊗ jþ̃i⊗jRGj

g ⊗ jþ̃i⊗jRBj
b|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼jþ̃i⊗Nsites

: ð5Þ

Indeed, it can be checked that AR
s maps to the usual toric

code stabilizer
Q

j∈⎔ Xj. This can be interpreted as
mapping the D4 TO to a toric code which is symmetry
enriched with a Z2 × Z2 symmetry corresponding to
spin-flip symmetries of the blue and green sublattices
[99,100], where we have chosen to put the symmetry
enrichment in the operator algebra rather than the state
[106]. The result of mapping the (red) Wilson operator
X

tf
ti in Eq. (2) is

X
tf
ti →

 Y
r∈ γx;y

XR
r

!
× CZxy; ð6Þ
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which is just the usual toric code anyon string, dressed
with a CZ connecting its two end points. We provide a
visual derivation of this in Fig. 14 in Appendix B.
In the next two sections, we consider Pauli errors of a

single type, leaving the combination of several types of
errors for later sections. For these, the previous mapping is
of great use to simplify the calculations and map the system
to local stat-mech models. We first consider errors that
generate Abelian charges and, hence, are parallel to
previous studies of the toric code ground state under
decoherence [5–10,16,19,21–25,55,56]. We then consider
the proliferation of non-Abelian anyons. For each case, we
examine pure wave-function deformation and then treat
decohered mixed states.

III. Z PHASE ERROR: ABELIAN ANYON
PROLIFERATION

In this section, we first study the effects of proliferating
the Abelian anyons eR, eG, and eB of D4 topological order.
This, in large part, reproduces the phenomenology known
for the toric code, but it allows us to introduce useful
concepts and provides a point of comparison for when we
consider the effect of non-Abelian anyons in Sec. IV.
Moreover, in Sec. V, we study the interplay of proliferating
both Abelian and non-Abelian anyons at the same time.

A. Pure wave-function deformation

We start by considering pure wave-function deforma-
tions of the form

jψðβzB; βzG; βzRÞi ¼
Y

c∈ fB;G;Rg
eβ

z
c=2
P

j∈Rc
Zj jD4i: ð7Þ

Here, we allow for different deformation strengths βzc in
each sublattice. The exponential represents a nonunitary
operator that restructures the weight on the configurations
present in jD4i. As we saw in Sec. II, Z operators generate
pairs of Abelian charges ec, where their color c ¼ R, G, B
depends on the sublattice on which the Z’s act. Since this
“Abelian” local deformation does not couple different
sublattices, it turns out that the resulting phase transitions
are decoupled for each of the three colors. Hence, we start
by focusing on a single color—B for concreteness.
To characterize the phase diagram of jψðβzBÞi (where

βzG ¼ βzR ¼ 0), it is sufficient to look at the wave-function
overlap

ZjψiðβzBÞ ¼ hψðβzBÞjψðβzBÞi: ð8Þ

If we expand out jψðβzBÞi into a basis which is diagonal in

the nonunitary perturbation (in this case, e
ðβzb=2Þ

P
j∈Rb

Zj),
we can directly interpret ZjψiðβzBÞ as a two-dimensional
classical partition function. All its classical correlation
functions directly capture observables which are diagonal

in that basis. In fact, we prove in Appendix A that all local
observables (even off-diagonal ones) of the quantum state
are captured by correlation functions in the classical model
(due to our perturbation involving only local inter-
actions [107]). We have, thus, reduced this two-dimen-
sional quantum problem to studying a two-dimensional
classical problem.
To calculate this partition function, we use the fact that

eαn⃗·σ⃗ ¼ coshðαÞ þ sinhðαÞn⃗ · σ⃗, where σ⃗ ¼ ðX; Y; ZÞ and n⃗
is any unit vector:

ZjψiðβzBÞ ¼ hD4jeβ
z
B

P
j∈RB

Zj jD4i
∝ hD4j

Y
j∈RB

½1þ tanhðβzBÞZj�jD4i; ð9Þ

where we drop the analytic prefactor coshðβzBÞjRBj.
Expanding out the product yields

ZjψiðβzBÞ ¼
XjRBj

nB¼0

tanhðβzBÞnB
X

frjgnBj¼1

hD4j
YnB
j¼1

Zrj jD4i ð10Þ

up to an overall prefactor that in the following we also
ignore. Here, nB counts the number of Pauli Z’s that
act on the D4 ground state at vertices frjg. To evaluate
hD4j

QnB
j¼1 Zrj jD4i, recall that Zrj creates pairs of Abelian

anyons eB at the center of the kagome star operators AB
s . IfQ

n
j¼1 Zrj acting on the ket jD4i includes at least one open

string that generates unfused eB anyons, then the overlap
with hD4j vanishes. Conversely, if

Q
n
j¼1 Zrj forms a set of

closed loops LB—either contractible or noncontractible—
then it acts on jD4i as the identity as discussed in the
previous section. (Contractible closed loops act trivially
because they create and then fuse Abelian anyons in a
way that smoothly connects to doing nothing; noncontrac-
tible loops are trivial because we consider the ground state
where Z-type logical operators act trivially on jD4i.)
Closed-loop configurations LB correspondingly yield
hD4j

QnB
j¼1 Zrj jD4i ¼ 1.

In summary, we find that (up to an inconsequential
prefactor) Eq. (10) reduces to the partition function of an
Oð1Þ loop model on the triangular lattice:

ZN¼1ðtBÞ ¼
X
LB

tjLBj
B ; ð11Þ

defined on a triangular lattice with tension tB ≡ tanhðβzBÞ.
An example of a closed loop is shown in Fig. 2. Figure 2(a)
shows a closed-loop configuration LB on the original
kagome lattice, while Fig. 2(b) shows the same loop
configuration in the effective triangular lattice. In the
exponent, jLBj denotes the total loop length in a given
closed-loop configuration LB. The derivation illustrates that
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we can think of these closed loops as worldlines of the
Abelian anyons. As the name suggests, the Oð1Þ loop
model is a special case of theOðNÞ loop model, where each
loop component [108] is weighted by an additional topo-
logical factor N [91]. We argue that it is not a coincidence
that here we obtain N ¼ 1 for an Abelian anyon. As we see
in Sec. IV, for non-Abelian anyons with nontrivial quantum
dimension d, a loop model with N ¼ d can arise. We
explore this for a broad range of non-Abelian TOs in a
companion paper [92].
Let us explore the phase diagram of Eq. (11). When the

perturbation is small and positive (0 ≤ βzB ≪ 1), we see that
the string tension tB ≪ 1 penalizes loops. This small-loop
phase corresponds to the initial D4 TO. As we increase the
perturbation, we eventually cross a critical tension tc,
beyond which loops proliferate at all scales. Physically,
this corresponds to a condensate of eB. To infer the
resulting phase of matter, let us consider the βzB → ∞ limit
and examine the local terms As and Bt in the Hamiltonian
[Eq. (1)] for each of the three colored sublattices. In this
limit, all qubits in the blue sublattice RB are projected into
the j↑i state, and, hence, all BB

t ’s become trivial. Physically,
this property reflects the confinement of mB fluxes by
condensing eB charges. Of the remaining four types of As
and Bt “stabilizers,” the red Bt and green Bt triangle
operators are left untouched, while in the limit βzB → ∞
all controlled-Z gates in As and As become identity [109].
We, therefore, obtain two decoupled sets of (commuting)
stabilizers As, Bt and As, Bt for the red and green
sublattices, respectively, corresponding to two decoupled
copies of the toric code. In particular, the resulting phase of
matter [110] is, thus, Abelian.
It turns out the critical value of the string tension is

tc ¼ 2 −
ffiffiffi
3

p
≈ 0.268, i.e., βc ¼ lnð3Þ=4, and at this point

the system is described by the Ising universality class. To
see this, it is useful to note that the Oð1Þ loop model
Eq. (11) can be rewritten as an exact high-temperature
expansion of the Ising model on the triangular lattice with
inverse temperature βzB, for which the critical temperature is
known via the Kramers-Wannier duality and star-triangle

relation [112]. In fact, we can directly derive the Ising
model by using the ungauging transformation in Eq. (4):

ZjψiðβzBÞ ¼ hD4jeβ
z
B

P
j∈RB

Zj jD4i ð12Þ

¼ 1

2N B

X
σ̃

e
βzB
P

hb;b0i
△

σ̃bσ̃b0 : ð13Þ

The phase where eB anyons condense corresponds to the
ordered phase. Indeed, the two-point correlator hZ̃bZ̃b0 i on
the blue sublattice which diagnoses long-range magnetic
order maps to the Wilson operator hZsf

si i under the (un)
gauging map.
While one benefit of the loop model representation (11)

is that it makes manifest the physics of the model (i.e.,
proliferation of anyon worldlines), one advantage of the
Ising model representation (13) is that the partition function
remains manifestly positive even if βzB < 0. This introduces
frustration to the triangular lattice Ising model. This can
also be seen in the loop model picture: Different worldlines
can now destructively interfere, such that anyon conden-
sation is more difficult to achieve [113]. The consequence
is that the D4 phase is robust for any finite negative
perturbation strength. In the limit βzB → −∞, the system
becomes critical, described by a conformal field theory
(CFT) with central charge c ¼ 1 [115,116]. Indeed, in this
limit, it is well known that the ground-state manifold of the
triangular lattice Ising model can be mapped onto a dimer
model on the honeycomb lattice, since each triangle has
exactly one frustrated bond [117–121]. Since the honey-
comb lattice is bipartite, this gives rise to a U(1) gauge
theory with algebraic correlations. Interestingly, similarly
to the ferromagnetic case, it can be shown that the
remaining (green and red) sublattices define two decoupled
toric codes, coexisting with the gapless degrees of freedom
residing on the blue sublattice.
Lastly, we note that very similar results follow when

considering Abelian deformations on two different sub-
lattices—say, blue and green. For instance, in the strongly
ferromagnetic (tB; tG ≫ 1) case, the system becomes a
single copy of the toric code on the honeycomb lattice with
stabilizers given by As and Bt after setting Zb ¼ Zg ¼ þ1.

B. Decohered mixed state

Next, we consider deformations implemented by a
composition of local Z quantum channels (i.e., completely
positive trace preserving maps) Ejðρ0Þ ¼ ð1 − pBÞρ0 þ
pBZjρ0Zj, with pB the error rate and ρ0 ¼ jD4ihD4j the
pure-state density matrix for D4 topological order.
Allowing for such errors on all sites j on the blue sublattice
RB, the density matrix evolves according to

(a) (b)

FIG. 2. Abelian anyons moving on a triangular lattice. Abelian
charges eB move on the blue triangular lattice corresponding to
the center of the star operators AB

s . (a) shows a closed-loop
configuration formed by the action of local Pauli Z acting onRB.
These form a closed (intersecting) loop configuration on the
triangular lattice (b).
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ρ0 → ρ ¼ Eðρ0Þ ¼
Y
j

Ejðρ0Þ: ð14Þ

Unlike for ground states, the meaning of a mixed-state
phase—even an operational definition—is an active area
of research. From the perspective of quantum error cor-
rection, one cares about the amount of quantum informa-
tion preserved under the action of a quantum channel
(as measured by the coherent information) [6,7,56].
Alternatively, one might characterize the decohered density
matrix ρ according to the existence, or lack thereof, of an
unraveling in terms of short-range entangled states [9,122].
These two characterizations correspond to the more “intrin-
sic” properties of ρ. Yet, such quantities are generally
difficult to calculate; see, e.g., Ref. [25]. Recently, various
works [5,7,13,122,123] have considered looking for sin-
gularities of the moments trðρnÞ of the density matrix [of
which the purity trðρ2Þ is typically the simplest moment],
since these moments determine the full spectrum of ρ [124].
This approach provides valuable insight, although it may
not suffice for defining a mixed-state phase [36]. (In the
context of strong-to-weak spontaneous symmetry breaking,
Ref. [36] showed that mixed-state phases can instead be
characterized by the behavior of the quantum fidelity.) In
fact, both the universality of the transition as well as its
location, in general, depend on n. This property stands to
reason: For example, when computing trðρnÞ for a thermal
density matrix, the inverse temperature is amplified by a
factor of n. Following the above references, in this
subsection, we characterize the effect of Z errors on D4

topological order via the purity trðρ2Þ, delaying a more
detailed discussion of the “intrinsic” threshold to later
sections where we also focus on the more interesting case
of proliferating non-Abelian anyons.
Although it is not essential and an alternative derivation

is discussed in later sections, a similar approach to the
deformed wave function (Sec. III A) can be applied to a
decohered density matrix ρ. To this end, we vectorize ρ
by mapping it to a vector jρ⟫∈H ⊗ H in a doubled
Hilbert space (a detailed explanation can be, e.g., found in
Appendix B. 2 of Ref. [122]). The quantum channel then
becomes a non-negative (and nonunitary) operator acting in
the doubled Hilbert space. Upon vectorizing the pure-state
density matrix [122] as jρ0⟫ ¼ jD4i ⊗ jD4i, the vectorized
decohered density matrix reads

jρðpBÞ⟫ ¼ jEðρ0Þ⟫ ¼
Y
j∈RB

ð1 − pB þ pBZj ⊗ ZjÞjρ0⟫:

ð15Þ

Equivalently, we can write

jρðpBÞ⟫ ∝ e
μB
P

j∈RB
Zj⊗Zj jρ0⟫ ð16Þ

with tanhðμBÞ ¼ ½pB=ð1 − pBÞ�, which resembles the form
of the deformed pure state jψðβzBÞi.
The norm of jρðpBÞ⟫ corresponds to the purity trðρ2Þ

and can be written as

trðρ2Þ ¼ ⟪ρðpBÞjρðpBÞ⟫
∝ ⟪ρ0j

Y
j∈RB

ð1þ rBZj ⊗ ZjÞjρ0⟫: ð17Þ

Here, rB ≡ ½2pBð1 − pBÞ�=½ð1 − pBÞ2 þ p2
B�, which is

invariant under pB → 1 − pB. Adopting the same steps
as used to derive Eq. (11), we again find the partition
function of an Oð1Þ loop model on a triangular lattice:

trðρ2Þ ∝decohere

eB

X
LB

rjLBj
B ; ð18Þ

with tension given by rB ∈ ½0; 1�. Notice that in this
case μB (rB) is always non-negative, and, hence, there is
no analog of the antiferromagnetic case discussed in the
previous version. Similar to the deformed wave function,
this decohered mixed state showcases a finite-temperature
phase transition separating a disordered from a ferro-
magnetically ordered phase at a finite pB < 1=2. This
transition indicates that, beyond a finite error threshold

pðn¼2Þ
c ¼ 1

2
ð1 − 3−1=4Þ ≈ 0.12, the D4 topological order is

lost as measured by the purity.
For completeness, we note that, following the usual

computations demonstrated for the square lattice [9,25],
one can show that the spectrum of ρ is given by the
RBIM [125–132] on the honeycomb lattice with inverse
temperature β ¼ 1

2
ln½ð1 − pÞ=p� or, equivalently, p ¼

1=ð1þ e2βÞ. More precisely, different eigenvalues are
labeled by different disorder realizations of the RBIM,
each of which can undergo a critical point. In fact, the
largest eigenvalue of this ensemble corresponds to the clean
Ising model, which on the honeycomb lattice has a critical
βc ¼ lnð2þ ffiffiffi

3
p Þ=2. This informs us that limn→∞ trðρnÞ has

a transition at pðn¼∞Þ
c ¼ 1=ð3þ ffiffiffi

3
p Þ ≈ 0.21. If one instead

takes the whole ensemble into consideration, it turns out
the weighting is such that the disorder probability p
coincides with the decoherence rate p. This means that the
Von Neumann entropy then corresponds to the quenched
average free energy of the 2D RBIM along the Nishimori
line [127]. On the honeycomb lattice, this is known to

occur at pðn¼1Þ
c ≈ 0.068 [132]. Note that the critical values

grow monotonically with the above Rényi indices
(n ¼ 1; 2;∞), which has also been observed in earlier
work [6]. However, we argue this does not need to hold for
non-Abelian cases.
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IV. X FLIP ERROR: NON-ABELIAN ANYON
PROLIFERATION

We now consider deforming the D4 topological order by
applying local X Paulis. We first consider a single sublattice
(e.g., RR), since, together with the previous section, this
analysis will give us the main insights to obtain the
corresponding stat-mech models for general (commuting)
deformations. As in the Abelian case, we first consider pure
wave-function deformation (Sec. IVA) as a warm-up
before advancing to the mixed-state setup (Sec. IV C).

A. Pure wave-function deformation

As we saw in Sec. II, X Paulis creates pairs of non-
Abelian mR charges with quantum dimension d ¼ 2. The
red sublattice RR itself forms a (super)kagome lattice.
It is useful to interpret this as the medial lattice of a
honeycomb lattice, such that the red qubits live on its bonds
[see Fig. 1(b)]. Then, the non-Abelian mR’s lie on the
vertices of this honeycomb lattice. We consider a nonuni-
tarily deformed unnormalized wave function

jψðβxRÞi ¼ e
βxR=2
P

j∈RR
Xj jD4i: ð19Þ

Following precisely the same steps as for Z errors in the
previous section, the norm can be expressed as

ZjψiðβxRÞ ¼ hD4jeβ
x
R

P
j∈RR

Xj jD4i
∝ hD4j

Y
j∈RR

½1þ tanhðβxRÞXj�jD4i

¼
XjRRj

nR¼0

tanhðβxRÞnR
X

frjgnRj¼1

hD4j
YnR
j¼1

Xrj jD4i: ð20Þ

To proceed, we need to evaluate hD4j
QnR

j¼1 Xrj jD4i with
frjg a collection of nR vertices. Let us first intuitively
understand which configurations yield a nonzero contri-
bution. Similar to the case of Z errors, the expectation value
vanishes unless

Q
n
j¼1 Xrj forms a closed-loop configura-

tion LR. Indeed, any open strings yield unfused non-
Abelian anyons in the D4 ket, leading to orthogonality
with the D4 bra. We thus have

ZjψiðβxRÞ ∝
X
LR

tanhðβxRÞjLRjfðLRÞ; ð21Þ

with LR any contractible [133] closed-loop configuration,
and fðLRÞ≡ hD4j

Q
j∈LR

XjjD4i.
Similarly to the Abelian case, we again find a loop model

(albeit now on the honeycomb lattice), and tanhðβxRÞ
contributes to the string tension [134]. However, unlike
the Abelian case, we now have the remaining expectation
value hD4j

Q
j∈LR

XjjD4i. In the Abelian case, this would

simply be unity, since it is the expectation value of a
(product of) ground-state stabilizer(s). This is not the case
now: Only the expectation value of the true non-Abelian
anyon string operator would give a unity value in the
ground state, but that is a complicated linear-depth circuit
[see Eq. (2)]. Instead, we can think of fðLRÞ as the overlap
between the ground state hD4j and a state

Q
j∈LR

XjjD4i
where we have first created jLRj=2 pairs of adjacent mR
fluxes which are then pairwise fused as sketched in Fig. 3.
However, this fusion can contain nontrivial anyons:

mR ×mR ¼ 1þ eB þ eG þ eB × eG: ð22Þ

Only the “1” term gives a nonzero overlap with the ground
state. We, thus, expect fðLRÞ < 1.
We momentarily give a physical way of deriving fðLRÞ

using the fusion-based interpretation, but let us first show
the algebraic way. We exploit the ungauging and disen-
tangling maps introduced in Sec. II B, which tells us:

fðLRÞ ¼ hþ̃j⊗jRGj
g hþ̃j⊗jRBj

b

Y
hg;bi∈LR

fCZgbjþ̃i⊗jRGj
g jþ̃i⊗jRBj

b

ð23Þ

¼
Y

lR ∈LR

1

2jlRj
tr

 YjlRj
n¼1

fCZn;nþ1

!
; ð24Þ

where we have decomposed LR ¼ ⨁lR into its connected
components and where the trace is over a circuit of CZ’s
on a ring with periodic boundary conditions. We note
that this expression was also obtained in a study of

FIG. 3. Closed-loop condition. Every local Xr acting on the red
sublattice creates a pair of mR fluxes. Finite contributions in the
partition function (20) correspond to fusing pairs of nearby fluxes
mR ×mR into the identity channel mR ×mR → 1. For anyons
belonging to different pairs, this fusion process occurs with
probability 1=d2mR

, giving rise to a finite tension in the loop
model. Every closed string, moreover, contributes with a topo-
logical factor given by the quantum dimension to the number of
connected components of the loop configuration 2CLR .
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symmetry-protected topological phases [135]. Focusing on
a single component and by writing Eq. (24) as tensor
network (see Appendix C 1), one can straightforwardly
show that

fðLRÞ ¼
1ffiffiffi
2

p jLRj trðH
jLRjÞ ¼ trð1Þffiffiffi

2
p jLRj ¼

2ffiffiffi
2

p jLRj ; ð25Þ

where H ¼ ½ðX þ ZÞ= ffiffiffi
2

p � is the Hadamard matrix and we
use that jLRj is automatically even on a honeycomb lattice.
Putting everything together, we obtain that the wave-

function norm is described by the following honeycomb
loop model:

ZjψiðβxRÞ ∝
X
LR

tjLRj
R 2CLR ; ð26Þ

with a string tension tR ¼ tanhðβxRÞ=
ffiffiffi
2

p
and where CLR

counts the number of loops (or, equivalently, connected
components) in the closed-loop configuration LR.
Consider, for example, the loop configuration in Fig. 3
with only one loop, and, hence, CLR

¼ 1.
A more physical way of deriving the above expression

for fðLRÞ is as follows. As we discussed, the (normalized)
wave function jLRi≡Qj∈LR

XjjD4i includes all possible
outcomes resulting from the fusion of two nearby fluxes
mR, one of which leads to a term proportional to the ground
state jD4i. To obtain its numerical prefactor, we can use the
fact that different anyon pairs are created separately, and
then the fusion outcomes of two (causally disconnected)
anyons belonging to two different pairs occur with a
probability weighted by the quantum dimension of the
fusion product [136,137], i.e., pðmR ×mR → aÞ ¼
da=d2mR

. Moreover, for every connected component of the
closed-loop configuration LR, an additional dmR

appears.
This is a consequence of the fact that, once jLRj − 1 such
pairs have fused into the vacuum, then the remaining
pair is necessarily in the trivial channel, since all pairs were
created from the vacuum (indeed, now the remaining anyons
are no longer causally disconnected). Hence, we find

jLRi ¼
2CLRffiffiffi
2

p jLRj jD4i þ � � � ; ð27Þ

where � � � is orthogonal to jD4i. Clearly, fðLRÞ ¼ hD4jLRi
exactly picks up this prefactor, arriving at Eq. (25). The

reason why here we find
ffiffiffiffiffiffiffiffi
dmR

p jLRj rather than djLRj
mR is

because for this microscopic model a pair of nearest mR
anyons can fuse only into either the trivial or an Abelian
charge ec whose color c ¼ G, B depends on the lattice site.
Indeed, more generally, the length-dependent factor can
depend on microscopic details, but the topological piece of
dCR
mR which depends on the number of components should

be universal.

Equation (26) is the partition function for an Oð2Þ loop
model with tension tR defined on the RR honeycomb
lattice [89,90,138]. Since all loop configurations have
even length jLRj, the result does not depend on the sign of
βxR. It is useful to contrast the O(2) loop model in Eq. (26)
to the O(1) loop model we obtained in Eq. (11) when
proliferating Abelian eB charges via Z deformation.
Unlike for the latter, proliferating non-Abelian fluxes
with quantum dimension d ¼ 2 gives rise to an additional
topological factor 2CLR that enhances the probability of
having a larger number of disconnected loops than in the
Abelian case. In fact, this observation is key to understand
the robustness of the jD4i ground state to the proliferation
of mR fluxes.
In general, OðNÞ loop models with loop weight

N ∈ ½−2; 2� showcase two different phases separated by
a critical point at the critical tension tcðNÞ ¼ ð2þffiffiffiffiffiffiffiffiffiffiffiffi
2 − N

p Þ−1=2 [90]: a dilute (or small loop) phase for t <
tcðNÞ and a dense phase for t > tcðNÞ. For N ¼ 2, the
critical point at tcð2Þ ¼ 1=

ffiffiffi
2

p
is described by a BKT

transition which extends into an extended gapless phase
described by a Luttinger liquid with central charge c ¼ 1

(see also Ref. [91]). Since tR ≤ 1=
ffiffiffi
2

p
for all βxR ∈ ½0;∞Þ,

we find that jD4i is robust to arbitrary large deformations
of the type given in Eq. (19) and turns into a critical state in
the projective limit βxR ¼ ∞ (where each red qubit is
projected into X ¼ 1). In summary, its phase diagram is

B. From loop to local spin models

As in the Abelian case, it is useful to characterize the
system by a local statistical-mechanics model, as it can
reveal hidden symmetries of the system and also provides
insight into the decohered case. As before, such a model
can be derived by applying the ungauging maps directly at
the level of the wave function. In Sec. II B, we saw how the
D4 state maps to a honeycomb toric code on the red lattice.
Using the constraint As ¼

Q
j∈⎔ Xj ¼ þ1 on each pla-

quette, we can, moreover, dualize this toric code to a trivial
paramagnet on the vertices of the honeycomb lattice. This
procedure leads to [compare to Eq. (3)]

jTCiRR
→ ⊗

v
jþiv;

XR
l
fCZb;g → ZR

bZ
R
g
fCZb;g: ð28Þ

Hence, through these mappings, the original kagome lattice
is mapped to a bilayer honeycomb lattice with red σ ¼ �1
Ising variables on the top layer and σb and σg on the bottom
one with g∈G and b∈B denoting the two different
sublattices [see Fig. 4(a)].
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In summary, we can write the partition function obtained
from the self-overlap of the deformed jD4i wave function
(19) as an Ising-like partition function:

ZjψiðβxRÞ ¼
X
fσ;σ̃g

e−β
x
RHjψiðσ;σ̃Þ; ð29Þ

with the bilayer honeycomb Hamiltonian

Hjψi ¼ −
X
hi;ji⎔

σiσjfCZi;j; ð30Þ

where fCZij ¼ 1
2
ð1þ σ̃i þ σ̃j − σ̃iσ̃jÞ∈ f−1; 1g; the inter-

action is shown in Fig. 4(a). It can be shown that an exact
high-temperature expansion gives a closed-loop model on
the honeycomb model [139]—similar to the Ising case—
but the dressing on the bottom layer fCZij leads to an
additional loop factor given by Eq. (24), which, thus, gives
an Oð2Þ loop model in agreement with Eq. (26).
Crucially, the spin Hamiltonian (30) has an internal D4

symmetry. To make this symmetry manifest, it is useful to
repackage this honeycomb bilayer of Ising spins as a single
honeycomb lattice with two-component spins [140]:

Hjψi ¼ −
ffiffiffi
2

p X
hb;gi

nb · ng ¼ −
ffiffiffi
2

p X
hb;gi

cosðθb − θgÞ; ð31Þ

where

nb ¼
1

2

�
σb þ σbσ̃b

σb − σbσ̃b

�
and ng ¼

1ffiffiffi
2

p
�

σg

σgσ̃g

�
ð32Þ

has been used in the first equality. Moreover, since these
vectors are normalized (i.e., jnbj ¼ jngj ¼ 1), we can
interpret them as taking values on the unit circle, although
their discrete values depend on whether we are on the blue
or green sublattice:

ð33Þ

Hence, we use the angle variables

nb ¼
�
cosðθbÞ
sinðθbÞ

�
and ng ¼

�
cosðθgÞ
sinðθgÞ

�
ð34Þ

in the second equality of Eq. (31). These representations
make clear that Hjψi is symmetric under an internal D4 ≅
Z4 ⋊ Z2 ⊂ Oð2Þ symmetry. More precisely, nb · ng is
invariant if each nj transforms under the symmetry group
of the square, D4 ≅ hR; SjR4 ¼ S2 ¼ 1; SRS ¼ R−1i,
where R rotates the vector counterclockwise by 90° and
S mirrors top and bottom:

On the two-component vector, R is represented by −iσy
and S by σz, defining a two-dimensional irrep of D4. From
Eq. (32), we infer that the D4 symmetry acts as follows in
the original variables of Eq. (30):

S∶
�
σ̃g → −σ̃g;
σb → σbσ̃b;

; RS∶
�
σ̃b → −σ̃b;
σg → σgσ̃g;

ð35Þ

where R ¼ ðRSÞ × S.
In addition to this internal D4 symmetry, the model has

a spatial Z2 symmetry, denoted M, that swaps the blue
and green sublattices in Eq. (30). This operation acts as a
Hadamard matrix on the two-component vector, which
geometrically corresponds to a mirror across an axis at
22.5°. Interestingly, MS acts as an effective 45° rotation.
Hence, the internal and external symmetries combine into
a D8 ≅ Z8 ⋊ Z2 symmetry. This enlarged symmetry is
important for understanding the stability of a critical phase
upon perturbing this model.
Lastly, we note that Eq. (32) also makes apparent that we

can write the model as a two-body Ising spin model by
performing a change of basis σi → σi, and σ̃i → σiσ̃i on
every site. We then obtain

Hjψi ¼ −
1

2

X
hi;ji⎔

ðσiσj þ σiσ̃j þ σ̃iσj − σ̃iσ̃jÞ: ð36Þ

We have found that this representation is especially useful
for Monte Carlo simulations of (perturbations of this)
model (see Appendix G), as we explore later. On the other
hand, the rotor representation (31) proves rather useful for
more analytic arguments.

(a) (b)

FIG. 4. Explicitly local stat-mech models for the deformed
wave function. Formulation of the explicitly local stat-mech
models in Secs. IV B and VA to characterize the phase diagram
of the deformed D4 wave function with non-Abelian mR anyons.
(a) corresponds to the formulation in terms of Ising variables on
two honeycomb layers, while (b) is given in terms of a single-
layer four-state clock model.
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C. Decohered mixed state from purity

The above detailed study of the wave-function-deformed
case is useful for understanding the effect of decohering
D4 TO with non-Abelian anyons, which we turn to now.
The composition of local quantum channels of the form
EX
j ðρ0Þ ¼ ð1 − pRÞρ0 þ pRXjρ0Xj acting on the red sub-

lattice RR leads to the proliferation of incoherent mR
fluxes. Similarly to the Abelian case (Sec. III), we first
study the purity trðρ2Þ of the decohered density matrix
ρ ¼Qj E

X
j ðρ0Þ. For this, we again turn to the vectorized

representation of ρ:

jρ⟫ ¼
Y

j∈RR

ð1 − pR þ pRXj ⊗ XjÞjρ0⟫

∝ eμR
P

j∈R
Xj⊗Xj jρ0⟫ ð37Þ

with tanhðμRÞ ¼ pR=ð1 − pRÞ and jρ0⟫ ¼ jD4i ⊗ jD4i.
Since trðρ2Þ ¼ ⟪ρjρ⟫, we can repeat the derivation in
the previous subsection, which again leads to a honeycomb
loop model, but now fðLRÞ2 appears, rather than just fðLRÞ
as given in Eq. (25). As a result, we now obtain an O(4)
honeycomb loop model rather than an O(2) loop model:

trðρ2Þ ∝decohere

mR

X
LR

�
rR
2

�jLRj
4CLR ; ð38Þ

with rR ¼ ½2pRð1 − pRÞ�=½p2
R þ ð1 − pRÞ2�∈ ½0; 1�. The

fact that the loop weight N is given by the square of the
quantum dimension of mR, i.e., N ¼ d2a, instead of by
N ¼ da, is understood from the fact that such a local error
creates pairs of fluxes mRmR combining the bra and ket
subspaces together, similar to the toric code case [5]. This
dependence is clarified when we consider higher moments
trðρnÞ of the decohered density matrix.
Unlike the O(2) loop model, the OðNÞ honeycomb

loop model does not proliferate to a large loop phase
[142] for N > 2. Hence, as far as the purity is concerned,
decohering D4 topological order with mR anyons does not
lead to a transition, even if p ¼ 1

2
. It is important to notice

that the decohered density matrix ρ1=2 ¼ EXðρ0Þ when
taking the error rate pR ¼ 1

2
is a fixed point of the quantum

channel EX for any pR, i.e., EXðρ1=2Þ ¼ ρ1=2 for any pR

[144]. Hence, a single application of the channel with pR ¼
1
2

is sufficient to reach its fixed point. This fact in
combination with the lack of singularity in trðρ2Þ indicates
that D4 topological order is infinitely robust under an X-
decoherence channel acting on one of the sublattices, as far
as the purity is concerned. However, as we mentioned in

the Introduction, the critical threshold pðnÞ
c depends on the

moment trðρnÞ of the density matrix that is considered, with
the “intrinsic” (i.e., quantum-information-theoretic) thresh-
old pc appearing when evaluating the Von Neumann

entropy (formally, n → 1). In the following sections, we
find indications of robustness also for other values of n,
although we find a transition for n ¼ ∞.
Similarly to the previous section for the pure wave-

function deformation, one can rewrite the resulting loop
model in terms of an explicitly local Ising-like
Hamiltonian:

trðρ2Þ ∝decohere

mR

X
e−2μRHρ : ð39Þ

In this case, due to the doubling of degrees of freedom, we
find a tetralayer (rather than bilayer) honeycomb model,
governed by a Hamiltonian of the form

Hρ ¼ −
X
hi;ji⎔

σ1i σ
1
j
fCZð2Þ

ij σ
3
i σ

3
j
fCZð4Þ

ij ; ð40Þ

with tanhðμRÞ ¼ ½pR=ð1 − pRÞ�. Here, σ1 and σ̃2i ; σ̃2i live on
the first and second layer, respectively [with the second set
living on the two different sublattices as in Eq. (30)], while
σ3 and σ̃4i ; σ̃

4
i live on layers 3 and 4 (see Fig. 5 expressed in

terms of rotor variables). However, one can effectively
reduce the number of layers from four to three by defining a
new variable σ1i → σi ¼ σ1i σ

3
i . The Hamiltonian then sim-

plifies to a trilayer honeycomb model with interactions

FIG. 5. Stat-mech model for trðρnÞ. The nth moment of the
density matrix obtained by decohering D4 TO with incoherent
non-Abelian mR anyons leads to an n-fold stack of honeycomb
rotor models, each layer with a discrete D4 symmetry acting on
the four-state rotors. The Hamiltonian of the stat-mech model has
a nearest-layer interaction (49), as shown in the figure. Alter-
natively, instead of four-state rotors, one can also express each
layer as an Ising bilayer as in Eq. (50). These interactions
resemble those encountered in the wave-function deformation in
Secs. IVA and IV B. The case of purity (n ¼ 2) is studied in
detail in Sec. IV C.
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Hρ ¼ −
X
hi;ji⎔

σiσjfCZð2Þ
ij
fCZð3Þ

ij : ð41Þ

This has at least two independent D4 symmetries involving
the pair of layers (1, 2) and (1, 3).
We can use this statistical mechanical model to evaluate

specific information-theoretic diagnostics—or, rather,
simpler-to-compute Rényi versions—of the stability of this
topological order, as Ref. [6] did for the toric code. In
particular, let us consider the Rényi-2 quantum relative
entropy measuring the distinguishability of two states ρ
(namely, the decohered D4 TO state) and ρxy (to be
specified later on). This quantity is defined as

Dð2ÞðρjjρxyÞ≡ − log

�
trðρρxyÞ
trðρ2Þ

�
ð42Þ

and diverges when ρ and σ are orthogonal (hence, dis-
tinguishable), while it saturates to a finite value when the
two corrupted states cannot be distinguished. Since anyonic
excitations are a defining characteristic of TO, checking
whether they are still well defined (i.e., orthogonal to the
vacuum) for the decohered D4 TO is relevant. Hence,
we take ρxy to be the decohered state after applying the
quantum channel EX to the initial state Xy

xjD4i, hosting two
non-Abelian anyons mR located on triangles x and y; see
Eq. (2). Using the same ungauging maps previously
employed in this section (in particular, Appendix B), the
Rényi-2 quantum relative entropy becomes the thermal
correlation function

Dð2ÞðρjjρxyÞ ¼ − ln ðhσxσyfCZð2Þ
xy
fCZð3Þ

xy iÞ ð43Þ

evaluated on the stat-mech model of Eq. (41). Since for all
error rates the resulting O(4) loop model lies within the

small loop phase, hσxσyfCZð2Þ
xy
fCZð3Þ

xy i decays exponentially
with the distance and, hence, Dð2ÞðρjjρxyÞ ∼ jy − xj
diverges with the distance between the two mR anyons.
The previous discussion, in particular, the content of

Eq. (38), appears to be at odds with the fact that fusion of
mR anyons can also lead to Abelian charges eG;B. In
particular, one might wonder why additional contributions
coming from such anyons are absent from the partition
functionZρðpRÞ. More plainly put, why do we obtain clean
loop models where mR ×mR always fuses trivially? This
property relates to the particular choice of quantum channel
which proliferates only mR (which is discussed more in
later sections), but it also reflects the fixed-point nature of
the initial D4 wave function we are considering. In Sec. V,
we study the deformation and decoherence proliferating
both Abelian and non-Abelian anyons. Let us state a key
result here, in the context of X error on top of the deformed
wave function we already introduced in Sec. III A for
perturbing with Abelian anyons. First, the relevant stat-

mech model corresponds to a net (rather than loop) model,
with closed red loops LR together with blue γB and green γG
closed loops or strings ending on LR loop configurations
[see Fig. 1(b)]. For the pure wave-function deformation, we
again derive Eq. (21), however now with

fðLR; tG; tBÞ ¼ fðLRÞ × ZLR
ðtG; tBÞ; ð44Þ

where fðLRÞ was given in Eq. (25). Here,
tG;B ¼ tanhðβzG;BÞ, and ZLR

ðtG; tBÞ is given by

ZLR
ðtG; tBÞ ¼

X
γG;γB

σLR
ðγB; γGÞtjγGjG tjγBjB : ð45Þ

The symbol σLR
ðγB; γGÞ ¼ �1 is a sign assignment which

is consistent with anyon braiding properties and is specified
in Appendix C 2. Hence, Abelian charges eG;B are generi-
cally generated when detuning from the fixed-point
wave function. Notice that, when either tG or tB vanish,
ZLR

ðtG; tBÞ becomes positive, and, hence, it corresponds to
a classical partition function for every LR.
Computing the purity trðρ2Þ involves a similar calcu-

lation where the main difference is replacing the topologi-
cal factor in Eq. (44), by its square: fðLR; tG; tBÞ →
fðLR; tG; tBÞ2. Hence, the purity of the decohered density
matrix reads

trðρ2Þ ∝decohere

mR

X
LR

�
rR
2

�jLRj
4CLRZ2

LR
ðtG; tBÞ: ð46Þ

This expression simplifies when both tG; tB ≪ 1. First-
order contributions in these tensions are given by the
shortest configurations γG and γB. These correspond either
to jγGj ¼ jγBj ¼ 0 or to a string with the shortest possible
length of either blue or green errors (namely, with
jγGj; jγBj ¼ 1) whose end points terminate on a closed-
loop configuration LR. An example of such configuration
is shown in Fig. 1(b). For a given LR, the partition func-
tion ZLR

ðtG; tBÞ then becomes ZLR
ðtG; tBÞ ≈ 1þ

ðjLRj=2ÞðtG þ tBÞ ≈ ½1þ ðtG þ tBÞ=2�jLRj, which can be
interpreted as dressing the loop LR. Hence, we find that
the purity

trðρ2Þ ∝decohere

mR

X
LR

�
rRð2þ tG þ tBÞ

4

�jLRj
4CLR ð47Þ

is again given by an O(4) honeycomb loop model where the
tension is tuned by rR as well as by the tensions tG and tB.
This proves useful later for detuning away from acciden-
tally fine-tuned points.

D. Higher moments trðρnÞ
So far, we characterized the decohered mixed state ρ in

terms of quantities that can be computed from its second
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moments [i.e., evaluating the expectation value of the
density matrix ρ2=trðρ2Þ]. We can similarly derive loop
model descriptions of the higher moments trðρnÞ. This is
most convenient to do in terms of the so-called error picture
[6,56], where we observe that we can write ρ as a classical
mixture of corrupted states

Q
j Xrj jD4i. Then, trðρnÞ is

naturally expressed in terms of overlaps of such corrupted
wave functions, similarly to what we saw in Secs. IVA
and IV C. Since we have already obtained a general
expression for this wave-function overlap in Eq. (25),
we straightforwardly obtain stat-mech models for these
higher moments. In particular, since Eq. (25) took the form
of the weight of an O(2) loop model, we naturally write
trðρnÞ as ∼n coupled O(2) loop models. Indeed, the O(4)
loop model we obtained for n ¼ 2 can be thought of as two
tightly bound O(2) loop models. Similarly, trðρ3Þ admits a
particularly simple expression as a coupled O(2) loop
model:

trðρ3Þ ∝
X

Lð1Þ;Lð2Þ

Y
L∈ fLð1Þ;Lð2Þ;Lð1Þ⊕Lð2Þg

t̃jLj2CL; ð48Þ

with t̃2 ¼ ½ðp − p2Þ=ð2 − 6pþ 6p2Þ� and where the sums
are over contractible closed-loop configurations Lð1Þ and
Lð2Þ on the honeycomb lattice. This can be thought of as
three O(2) loop models, with a strong coupling that
enforces the symmetric difference of all three loops to
vanish. The coupled loop models for higher n are sum-
marized in Appendix D, although they take a more
complicated form. In a companion work, we show how
such coupled OðNÞ loop models arise more generally for
other types of topological order, with the loop weight N
corresponding to the quantum dimension of the proliferat-
ing anyon [92].
However, to the best of our knowledge, the physics of

these stat-mech loop models has not yet been explored in
the literature, in contrast to the O(2) and O(4) loop models
discussed above. For this reason, we focus on the local spin
model representation of these stat-mech models. In par-
ticular, similar to the previous section, we can show that
trðρnÞ can be written in terms of n coupled “ZZCZ”
models:

trðρnÞ ∝
X

fσðsÞj ;σ̃ðsÞj gns¼1

exp

 
β
X
hi;ji⎔

Xn
s¼1

hðsÞi;j h
ðsþ1Þ
i;j

!
; ð49Þ

where tanhðβÞ ¼ ½pR=ð1 − pRÞ�∈ ½0; 1� and each replica is
a Ising honeycomb bilayer with

hðsÞi;j ¼ σðsÞi σðsÞj
fCZðsÞ

ij and hðnþ1Þ
i;j ¼ hð1Þi;j : ð50Þ

This is direct generalization of the n ¼ 2 case in Eq. (39).
This is derived in Appendix D using the error picture.

There, we also show an equivalent rewriting, which reduces
to the known result for the toric code case [6] if we were to

set fCZij → 1. We note that hðsÞi;j is the same interaction we
encountered in the section on wave-function deformation
[Secs. IVA and IV B, in particular, Eq. (30)]. One can,
thus, also express it in terms of rotors as in Eq. (31), to
make the internal D4 symmetry manifest. In other words,
trðρnÞ can be regarded as a local coupling of n layers of
rotors, each with D4 symmetry. We visually represent the
model in Fig. 5.
We have already seen that for n ¼ 2 (i.e., purity), the

local stat-mech model fails to order, even at zero temper-
ature. This tells us that the purity does not detect any
transition out of D4 TO. If we increase n and thereby add
more layers to our stat-mech model (49), can this increase
the tendency to order? To answer this question, it is
instructive to consider the zero-temperature limit β → ∞,
more precisely, setting pR ¼ 1

2
, where the model has the

highest chance of ordering. Note that, in this limit, Eq. (49)
has nonzero (and equal) weight only for configurations

where hðsÞi;j h
ðsþ1Þ
i;j ¼ 1. In other words, for the maximal

decoherence rate pR ¼ 1
2
, the resulting stat-mech model is

the infinite-temperature ensemble in the constrained con-

figuration space where hðsÞi;j ¼ hðs
0Þ

i;j ≡ ηij ∈ f�1g. Hence,

trðρnÞ ∝
pR→1=2

X
fηijg

�X
fσj;σ̃jg

Y
hi;ji ½1þ ηijσiσjfCZij�

�
n
:

ð51Þ

Considerable insight can be gained from Eq. (51). For
instance, it indicates the fate of the n → ∞ limit, which is
where the spin model (49) becomes a full-fledged 3D stat-
mech model. Taking this limit in Eq. (51) means only that
the fηijg configuration leading to the largest weight will
survive. This turns out to be ηij ¼ 1, as we prove in the next
subsection [145]. Hence,

lim
n→∞

ffiffiffiffiffiffiffiffiffiffiffiffi
trðρnÞn

p
∝

pR→1=2

X
fσj;σ̃jg

Y
hi;ji

½1þ σiσjfCZij�: ð52Þ

This is exactly the zero-temperature limit of the stat-mech
model we encountered when studying the pure wave-
function deformation in Secs. IVA and IV B. There, we
found that this model is perched at BKT criticality, with
algebraic correlations. This shows that, unlike for n ¼ 2,

there exists a critical threshold pð∞Þ
c for the n → ∞ replica

limit whose value is pð∞Þ
c ≤ 1

2
(in fact, in the next sub-

section, we argue pð∞Þ
c ¼ 1

2
) [146]. In particular, this shows

that pðnÞ
c is not an increasing function of n, unlike for the

decohered toric code case [6]. This distinct behavior can be
linked to the topological weights in the loop model
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representation: For n ¼ 2 the strong coupling of the two
layers led to an O(4) loop model which is unable to
proliferate, but for n → ∞ the effects of the coupling are
suppressed, revealing the critical point of the O(2) loop
model, of which the local spin model in Eq. (52) is an
equivalent representation.
The result in Eq. (51) even allows us to infer properties

of the “true” threshold. Indeed, the form is amenable to
taking the replica limit n → 1. From this, one can infer that
the Von Neumann entropy (at pR ¼ 1

2
) is dictated by a

random-bond version of the ZZCZ model, which we
discuss more rigorously and in detail in the next subsection.
This suggests that the fate of D4 as a quantum memory
subjected to decoherence is tied up with whether or not
this disordered spin model orders—and we have already
established that even the clean model reaches quasi-long-
range order only at zero temperature. However, we can
avoid having to take the replica limit altogether: We now
show how one can fully diagonalize ρ for pR ¼ 1

2
, which

means we have access not only to the full spectrum, but also
to all eigenstates, which, in turn, gives insight to how these
results inform about pR < 1

2
.

E. Solving maximal decoherence pR = 1=2

We have seen that, unlike decohering with Abelian
anyons, TO can be remarkably stable to decohering with
non-Abelian anyons. For instance, the purity sees no
transition at all upon maximally decohering mR in D4.
This raises the question: Can the TO be stable even at
maximal decoherence to the proliferation of a given (set of)
anyons? Here, we show how one can shed light on this
question by exactly diagonalizing the decohered density
matrix ρ1=2 at maximum error rate pR ¼ 1

2
in terms of a

disordered spin model.
To diagonalize ρ1=2, we notice that the local quantum

channel EX
r (for pR ¼ 1

2
) acting on a site r of RR can be

written as a random projector channel:

EX
r ð·Þ ¼

X
ηr¼�1

Pηrð·ÞPηr ; ð53Þ

with Pηr ¼ 1
2
ð1þ ηrXrÞ. Hence, acting on jD4i and on all

sites of the red sublattice leads to the maximally decohered
density matrix

ρ1=2 ¼
1

4jRRj
X
η

jηihηj ð54Þ

with η ¼ fηr ¼ �1g and where the (unnormalized) states
jηi associated to a given configuration η are given by

jηi ¼
Y

r∈RR

ð1þ ηrXrÞjD4i: ð55Þ

The orthogonality of the projectors Psr directly leads to
the orthogonality condition hηjη0i ¼ hηjηiQr∈RR

δηr;η0r ;
hence, the states jηi correspond to eigenvectors of ρ1=2.
In other words, Eq. (54) constitutes a diagonalized density
matrix. The corresponding (non-negative) eigenvalues
are then given by PðηÞ ¼ hηjηi=4jRRj, which more explic-
itly reads

PðηÞ ¼ 1

4jRRj
X
LR

 Y
e∈LR

ηeffiffiffi
2

p
!
2CLR ; ð56Þ

where we have explicitly used that fðLRÞ ¼ 2CLR =
ffiffiffi
2

p jLRj

[see Eq. (25)]. Therefore, the eigenvalues PðηÞ correspond
to the partition function of a random O(2) loop model with
a signed-disorder tension given by ηe=

ffiffiffi
2

p
on a bond e of

the honeycomb lattice.
Let us now consider the stat-mech model appearing

in the limit limn→∞ trðρnÞ1=n which equals to maxη PðηÞ
(up to a system-size-dependent constant factor related to its
degeneracy). Since fðLRÞ ≥ 0, one finds the largest eigen-
value to be

max
η

PðηÞ ¼ 1

4jRRj
X
LR

2CLRffiffiffi
2

p
LR

; ð57Þ

which is attained for all eigenstates for which
Q

e∈⎔ ηr ¼
þ1 for all plaquettes ⎔. This provides a derivation of
Eq. (52), which is written as the local stat-mech model
formulation of the O(2) loop model at the BKT critical
point. As discussed in the previous subsection, this shows

that, unlike the case for purity (n ¼ 2), there is a pð∞Þ
c ≤ 1

2
.

In fact, we now argue pð∞Þ
c ¼ 1

2
.

The previous calculation can be repeated when consid-
ering the deformed wave function jψðβzG; βzBÞi instead of
jD4i (see Sec. IV C, where we discuss the case of purity). In
this case, the eigenvalues become

PðηÞ ¼ 1

4jRRj
X
LR

 Y
e∈LR

ηeffiffiffi
2

p
!
2CLR

ZLR
ðtG; tBÞ

Z∅ðtG; tBÞ
; ð58Þ

where Z∅ðtG; tBÞ ≥ 0 is the norm of jψðβzG; βzBÞi, which
agrees with Eq. (45) for the trivial loop configuration
LR ¼ ∅. Moreover, whenever ZLR

ðtG; tBÞ ≥ 0, one finds
the largest eigenvalue is given by

max
η

PðηÞ ¼ 1

4jRRj
X
LR

2CLRffiffiffi
2

p jLRj
ZLR

ðtG; tBÞ
Z∅ðtG; tBÞ

: ð59Þ

The condition ZLR
ðtG; tBÞ ≥ 0 for all LR is clearly satisfied

when either tG or tB vanish [since in this case σLR
ðγG; γBÞ in

Eq. (45) is positive] or when both of them are positive but
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sufficiently small as shown at the end of Sec. IV C. In this
case, we then find that

lim
n→∞

trðρnÞ1=n ≈
X
LR

2CLR

�
tRffiffiffi
2

p
�jLRj ð60Þ

corresponds to the partition function of the O(2) loop
model on the honeycomb lattice with (tunable) tension
tR ≈ 1þ ½ðtB þ tGÞ=2�. Therefore, for tB; tG > 0, the sys-
tem lies within the extended gapless phase; attains a critical
point for tB ¼ tG ¼ 0; and finally lies within the shortly
correlated phase for negative tB, tG. This means that any
infinitesimal negative value of tB or tG is sufficient to
prevent there being a transition for n ¼ ∞, similar to the

purity case (n ¼ 2). If we presume pð∞Þ
c is a continuous

function of tB, tG, this suggests that, for tB ¼ 0 ¼ tG, we

have pð∞Þ
c ¼ 1

2
. However, this is based on the aforemen-

tioned perturbative expansion, the validity of which would
be interesting to explore in future work.
Knowledge of the full spectrum of ρ1=2 allows us to

compute various information-theoretic quantities which
relate to the underlying random O(2) loop model stat-mech
model. To do so, it is desirable to express the eigenvalues
PðηÞ in Eq. (58) as the partition function of a local stat-
mech model with non-negative Boltzmann weights. In
particular, (up to η-independent overall factors) Eq. (58)
can be rewritten as

PðηÞ ∝
X
fσ;σ̃g

Y
hi;ji

�
1þ ηijσiσjfCZij

�
× eβ

z
B

P
⟪b;b0⟫σ̃bσ̃b0þβzG

P
⟪g;g0⟫σ̃gσ̃g0 ; ð61Þ

defined on a bilayer honeycomb lattice as in Fig. 4(a)
[recall that tG ¼ tanhðβzGÞ and tB ¼ tanhðβzBÞ]. Note that
this agrees with Eq. (51) for βzB ¼ βzG ¼ 0. The Von
Neumann entropy of ρ1=2 then corresponds to the quenched
disorder average of the free energy of the partition function
in Eq. (61):

SVNðρ1=2Þ ¼ −
X
η

PðηÞ ln½PðηÞ�: ð62Þ

The fact that the probability of a given disorder configu-
ration η is proportional to the partition function PðηÞ itself
is an example of a Nishimori condition [127].
Equation (62) suggests that determining whether the D4

topological quantum memory persists to the maximal-
decoherence limit is equivalent to asking whether this
disordered ZZCZ model remains in the paramagnetic phase
[147]. Indeed, since we have full access to the eigenstates
of ρ1=2, one can confirm that the fidelity between the
decohered copies of two (initially) distinct logical states
[148] of the D4 can be related to a thermodynamic quantity

of the disordered spin model. Writing ρ ¼ EXðjD4ihD4jÞ
and σ ¼ EXðX jD4ihD4jXÞ with X the logical operator as
defined below Eq. (2), acting on a noncontractible loop
(e.g., the horizontal direction) around the torus, the quan-
tum fidelity between these two quantities reads

Fðρ; σÞ≡ tr
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pq 

∝
1

2

X
fηg

PðηÞ j1 − e−ΔFC j
1þ e−ΔFC

; ð63Þ

whereΔFC is the free energy difference of inserting a line of
flipped (antiferromagnetic) bonds along a noncontractible
loop C perpendicular to X , i.e., with a symmetry defect line
[149]. See details of the derivation in Appendix E. In the
paramagnetic phase, this symmetry defect line is invisible
such thatFðρ; σÞ ≈ 0 in the thermodynamic limit, whereas in
the ordered phase the defect would frustrate the order
ΔFC ≈ jCj, making the fidelity nonzero and, hence, signaling
the breakdown of the (non-Abelian) quantum memory.
Notice that the same condition, namely, the free energy
cost of inserting a domain wall, is usually employed
(although in the opposite direction with the ferromagnetic
phase corresponding to a good quantum memory) to
diagnose the breakdown of an Abelian quantum memory
[55,56,150].
This then raises the question: What is the fate of the

disordered spin model? We already discussed that in the
clean case, i.e., for ηgb ¼ þ1 on every link, the system
showcases quasi-long-range order only for βxR ¼ ∞. It is
then suggestive that if this “ferromagnetic” model fails to
develop long-range order, the disordered one will follow
the same fate. Hence, we expect that disorder will hinder
even more the system from ordering, leading to lower
ordering temperatures and, in turn, to the absence of a
transition all together. This intuition appears to be sup-
ported by the observation that

PðηÞ ≈
X
LR

2CLR

 Y
e∈LR

ηetRffiffiffi
2

p
!
; ð64Þ

appearing in the regime tG; tB ≪ 1 for any disorder
configuration η, resembles disordered XY models previ-
ously studied in the literature [151,152]. Notice that the
clean versions of the XY model and that of the O(2) loop
model in Eq. (64) share the same critical behavior. It has
been found that, for the former, various forms of disorder
cause the critical temperature separating a quasi-long-range
order from a paramagnetic phase to decrease with increas-
ing disorder strength. Hence, it is suggestive that a similar

outcome holds for Eq. (64), in which case either pð1Þ
c ¼ 1

2
or

the D4 quantum memory would be stable even in the
maximal-decoherence limit (which seems especially likely
if we allow ourselves to tune to negative tG or tB in the initial
wave function, as discussed above). Nonetheless, we notice
that, unlike the XY model, the system in Eq. (64) appears to
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be highly frustrated, so we cannot exclude that disorder
increases the critical temperature by partially alleviating the

frustration (which would, in turn, imply a finite pð1Þ
c ). We

leave a more careful analysis for future work.

V. COMBINED ABELIAN AND NON-ABELIAN
ERRORS

We now combine both Abelian Z and non-Abelian
errors X acting on different sublattices on the initial wave
function jD4i [153]. As the previous section has made
explicit, the evaluation of the expectation values of the
corresponding errors on the jD4iTO ground state gives rise
to a nontrivial coupling among different errors. In particu-
lar, we consider X acting on RR and Z acting on RB and
RG with different tunable strengths.

A. Pure wave-function deformation

Let us consider the unnormalized wave function

jψðβxR;βzG ¼ 0;βzBÞi ¼ e
ðβxR=2Þ

P
j∈RR

Xje
ðβzB=2Þ

P
j∈RB

Zj jD4i:
ð65Þ

One finds that its norm reads (again neglecting overall
analytic prefactors)

ZjψiðβxR; tBÞ ¼
X
LR

X
γB

tanhðβxRÞjLRj

× tjγBjB hD4j
Y
j∈LR

Xj

Y
i∈ γB

ZijD4i; ð66Þ

with tB ¼ tanhðβzBÞ and where now the errors are coupled
through the last factor. As before, only closed red loop
configurations LR on the honeycomb lattice lead to a non-
vanishing contribution (since RR and RB do not overlap).
Deferring detailed calculations to Appendix C 2, we now
explain the constraint on the possible configurations of γB
(since it is no longer simply closed loops, we use γB rather
than LB to emphasize this). First, recall that, while the O(2)
loop model describing the proliferation of non-Abelian
fluxes is defined on the RR honeycomb lattice, the ana-
logous formulation for Abelian eB charges is given in
terms of O(1) loop model on a triangular lattice (see Fig. 2).
This corresponds to the dual triangular lattice of the RB
honeycomb. The case where LR and γB do not intersect
reduces to the discussion in the previous section, with γB
required to be a closed-loop configuration. However, since
an LR loop contains eB Abelian anyons coming from
the fusion channel mR ×mR ¼ 1þ eB þ eG þ eBeG, a γB
configuration can end on a LR loop. Putting it all together,
we find

ZjψiðβxR; tBÞ ¼
X
LR

X
γB

tjγBjB

�
tanhðβxRÞffiffiffi

2
p

�jLRj
2CLR ; ð67Þ

i.e., coupled O(2) and O(1) loop models where
P

γB
corresponds to the sum over all configurations in the
triangular blue sublattice that either form closed loops or
strings whose end points terminate on a LR loop [see
Fig. 1(b)].
As a next step, we add Abelian Z errors on the remaining

RG sublattice. A similar calculation to the one above leads
to the classical partition function

ZjψiðβxR; tG; tBÞ ¼
X
LR

X
γB

X
γG

σLR
ðγB; γGÞ

× tjγBjB tjγGjG

�
tanhðβxRÞffiffiffi

2
p

�jLRj
2CLR ; ð68Þ

where now both γB and γG are loop configurations that
can be either closed or end up on a LR loop configuration
on the blue and green triangular sublattices, respectively.
This corresponds to two O(1) loop models (one per
excited Abelian anyon type) coupled to a O(2) loop
model describing the proliferation of non-Abelian
charges. Moreover, unlike for vanishing βzG, there is an
additional sign contribution σLR

ðγB; γGÞ ¼ �1. Since in
the following this sign turns out not to be necessary, we
defer a more detailed discussion to Appendix C 2.
Similarly to Eq. (29), we can alternatively derive an

Ising-like Hamiltonian which now reads (including the
inverse temperature dependence)

Hjψi ¼ −βxR
X
hi;ji⎔

σiσjfCZi;j − βzB
X

⟪b;b0⟫⎔

σ̃bσ̃b0

− βzG
X

⟪g;g0⟫⎔

σ̃gσ̃g0 ; ð69Þ

with b; b0; g; g0 sites on the blue B and green G sublattices
of the bottom layer, respectively, as shown in Fig. 4(a).
Notice that D4 symmetry is enlarged to a D8 symmetry
group when βzG ¼ βzB, due to the additional M mirror
symmetry defined below Eq. (35).

1. Order parameters

The D4 symmetry group has eight different proper
nontrivial subgroups which correspond to either Z2

(appearing 5 times), Z4 (appearing once), or Z2 × Z2

(appearing twice). These label the different possible ther-
mal phases that can appear as a result of spontaneous
symmetry breaking in the corresponding stat-mech model.
The advantage of the explicitly local formulation in terms
of Ising variables as in Eq. (69), relative to that in Eq. (68),
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is to permit an efficient characterization of the system using
Monte Carlo methods. In particular, one can numerically
investigate the phase diagram via the three order parameters
discussed in the following.
First, and as discussed in Sec. III A, condensation of eB

charges is measured by long-range order of the two-point
correlation WeBðb; b0Þ≡ hσ̃bσ̃b0 i in the limit jx − yj → ∞.
It is useful to repackage this into a single number which is
nonzero only in the condensed phase:

WeB ≡
P

b;b0WeBðb; b0ÞP
b;b01

¼ 1

jRBj2
* X

b;b0 ∈RB

σ̃bσ̃b0

+
ð70Þ

with a similar definition ofWeG for the green sublattice. As
usual, WeB ≠ 0 implies condensation of the order param-
eter hPb σ̃bi. Using Eq. (34), we can also rewrite WeB as
follows:

WeB ∝

* X
b;b0 ∈RB

cosð2θb − 2θb0 Þ
+
: ð71Þ

If in the thermodynamic limit WeB ≠ 0 (WeG ≠ 0), the
resulting state can be invariant only under the Z2 × Z2

group generated by S; R2 (SR; R2) defined in Eq. (35). If
both WeB and WeG are nonzero, only the Z2 subgroup
generated by R2 remains as a potential symmetry.
Analogous to the Abelian case, an order parameter can

be defined for the “condensation” of non-Abelian anyons
mR. Apart from the application of a string of X on RR,
one requires a linear-depth circuit to fix the mR ×mR
fusion channel into the identity one as described
in Eq. (2). Under the ungauging map specified in
Sec. II B, the Wilson operator maps to the (local) thermal
correlation WmR

ðg; bÞ≡ hσgσbfCZg;bi (see the derivation
at the end of Appendix B). Similarly to the Abelian case,
we can repackage this into a single symmetric order
parameter that is efficiently computable via Monte Carlo
methods:

WmR
≡ 1

jRGjjRBj

*X
g∈RG

X
b∈RB

σgσbfCZg;b

+
: ð72Þ

In terms of the four-state clock formulation discussed in
Sec. IV B [in particular, around Eq. (31)], this correlation
becomes

WmR
∝

*X
g∈RG

X
b∈RB

ng · nb

+

∝

*X
g∈RG

X
b∈RB

cosðθg − θbÞ
+
; ð73Þ

a form that we exploit to understand the remaining sym-
metry after different symmetry-breaking patterns. Notice
that the variable θg − θb is invariant under the symmetry
transformation R, i.e., π=2 rotations. In the following, we
find that WmR

takes a finite value only when, in addition,
either WeG or WeB is also nonvanishing. As detailed in
Table I, for a finite value of WmR

the D4 symmetry is
either broken down to a Z2 subgroup generated by either
SR or S or fully broken. Other symmetry-breaking
patterns can potentially also arise and would be interest-
ing to explore but do not appear to be relevant for the
present study.

2. Phase diagram

In the following, we combine the knowledge of the
phase diagram of decoupled O(1) and O(2) loop models,
together with Monte Carlo simulations, to characterize the
phase diagram of the deformed wave function in Eq. (65).
Recall that, at the end of Sec. IV E, we found that this
phase diagram corresponds to that of trðρnÞ for the
decohered density matrix in the limit n → ∞. Sketches
of the resulting phase diagrams for βzG ¼ 0 and for
βzG ¼ βzB, respectively, appear in Figs. 6(a) and 6(b).
Numerical results obtained via Monte Carlo simulations
are additionally shown in Figs. 7 and 8, respectively.
These were obtained using a bilayer honeycomb lattice
with linear sizes N x ¼ 80 and N y ¼ 40 and periodic
boundary conditions in both directions. Final data were
then obtained averaging over N x ×N y × 7 × 104 realiza-
tions. Additional details regarding Monte Carlo simula-
tions are contained in Appendix G.
Let us first consider small deformations. We note that,

by combining the ungauging and disentangling mappings
in Sec. II B with Witten’s conjugation method [154,155],
one can find a local Hamiltonian for which jψðβxR; βzG; βzBÞi
is a ground state. In particular, small deformations
correspond to small perturbations at the Hamiltonian

TABLE I. Order parameters and remaining symmetry group for
a deformed pure wave function. Phase diagram as characterized
by the order parameters WeG , WeB , and WmR

. These signal
spontaneous symmetry breaking of the D4 symmetry down to a
subgroup specified in the first column. The resulting quantum
many-body phase is specified in the rightmost column. When
βzG ¼ βzB, an additional mirror sublattice symmetry M exists.

Remaining symmetry WeG WeB WmR
Phase

Z2 × Z2 ≅ hSR; R2i ≠ 0 0 0 jTCijTCi
Z2 × Z2 ≅ hS; R2i 0 ≠ 0 0 jTCijTCi
Z2 ≅ hSRi ≠ 0 0 ≠ 0 jTCi
Z2 ≅ hSi 0 ≠ 0 ≠ 0 jTCi
Z2 ≅ hR2i ≠ 0 ≠ 0 0 jTCi
∅ ≠ 0 ≠ 0 ≠ 0 Trivial
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level. Since jD4i is the ground state of a gapped
Hamiltonian, jψðβxR; βzG; βzBÞi remains within the D4

TO phase for sufficiently small βxR, β
z
G, and βzB. Within

this phase, none of the order parameters introduced
in the previous section picks up a finite expectation
value—consistent with the presence of a fully D4 sym-
metric phase. This phase corresponds to the lower left
corners in Figs. 6(a) and 6(b).

Now, by tuning βxR, β
z
G, and β

z
B to larger values, a ground-

state phase transition associated to the condensation of
different types of anyons can occur. To simplify matters, let
us first consider the scenario with βG ¼ 0. Weights appear-
ing in the loop model partition function ZjψiðβxR; βzBÞ then
become positive, leading to the simplified expression in
Eq. (67). The cases where either βxR or βzB are set to zero,
respectively, correspond to O(1) and O(2) loop models that
we already encountered in Secs. III A and IVA. The former
admits a finite-temperature phase transition at tanhðβzBÞ ¼
2 −

ffiffiffi
3

p
, beyond which the D4 TO becomes an Abelian TO

equivalent to two copies of the TC, as already discussed in
Sec. III A, including the subtlety mentioned in Ref. [102].
We label this phase by the state j2TCi [upper left corner in
Fig. 6(a)]. This phase transition can be diagnosed by the
quantity WeB acquiring a finite value for sufficiently
large βzB. This corresponds to the spontaneous symmetry
breaking of D4 down to the Z2 × Z2 subgroup generated
by hR2; Si. This characterization is consistent with our
numerical results in Fig. 7(a), where indeed WeB acquires
a finite value at tanhðβzBÞ > 2 −

ffiffiffi
3

p
(dashed black hori-

zontal line). Moreover, Figs. 7(b) and 7(c) show that in
this phase WmR

¼ WeB ¼ 0. In Fig. 8, we also character-
ize the phase diagram when tuning βzG ¼ βzB. While the
loop model for βzB and βzG finite has negative Boltzmann
weights, its Ising-like formulation in Eqs. (30) and (36)
does not, allowing one to address them using
Monte Carlo. Numerical results are shown in Fig. 8(a),
where WeB and WeG take the same numerical values due
to the M mirror symmetry. Only the Z2 symmetry group
generated by R2 then remains, and the system reduces to
the TC phase jTCi.

(a) (b)

FIG. 6. Schematic phase diagram for pure wave-function
deformations. Both panels include the value of the relevant order
parameters indicating condensation of anyons as well as the
resulting phases (see Ref. [102]) labeled as D4 → D4 topological
order, 2TC → topological order equivalent to two copies of the
toric code phase, TC → toric code phase. (a) shows the phase
diagram as a function of βxR and βzB for βzG ¼ 0. (b) displays the
phase diagram as a function of βxR and βzG ¼ βzB. This shows an
additional “gapless” phase diagnosed by the power-law decay of
two-point correlation functions as shown in Fig. 9. Transitions
among phases can be understood as condensation of anyons
indicated by an arrow. The underlying stat-mech model in the
Ising-like representation is displayed in Eq. (69).

(a) (b) (c)

FIG. 7. Numerical phase diagram for pure wave-function deformations with βzG ¼ 0 using Monte Carlo. Numerical Monte Carlo
simulations with linear sizes N x ¼ 80 and N y ¼ 40 and periodic boundary conditions. The dashed black horizontal line indicates the
value of βzB ¼ lnð3Þ=4 at which an Ising transition takes place for βxR ¼ 0. Similarly, the dot-dashed gray vertical line marks the Ising
transition occurring in the limit βzB ¼ ∞ attained at βxR ¼ coth−1ð ffiffiffi

3
p Þ. (a) and (b) show the behavior of the order parameters WeB and

WeG defined in Eq. (70) signaling the condensation of Abelian eB and eG charges, respectively. (c) shows instead the behavior of WmR

signaling the condensation of non-Abelian fluxes mR. Results are averaged over 70000 metropolis steps. Additional details of the
simulations are provided in Appendix G.
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Our numerical results also show that this critical point
[corresponding to one (two decoupled) Ising critical
points when βzG ¼ 0 (βzG ¼ βzB)] extends into a line when
tuning βxR to finite values [see the dashed black horizontal
line in Figs. 7(a) and 8(a)]. But how large can βxR become
before a different transition occurs? Let us consider the
regime with βzB → ∞, i.e., tanhðβzBÞ → 1 (upper horizontal
boundaries in Fig. 6). To understand this limit, we set
again βzG ¼ 0 and exactly rewrite the partition function in
Eq. (67) as

ZjψiðβxR; βzBÞ ¼
X
LR

�
tanhðβxRÞffiffiffi

2
p

�jLRj Y
lR ∈LR

ZIsing
lR

ðβ̃zBÞ; ð74Þ

where ZIsing
lR

ðβ̃zBÞ is the partition function of the 2D Ising
model on the honeycomb lattice within the interior of a
connected component lR of the loop configuration
LR ¼⊕ lR, at inverse temperature e−2β̃

z
B ¼ tanhðβzBÞ.

Here, the factor 2CLR is reabsorbed into the Ising partition
function ZIsing

lR
ðβ̃zBÞ in a given component lR, using the

exact relation ZIsing
lR

ðβ̃zBÞ ¼ 2ZOð1Þ
lR

ðβzBÞ [156]. To perform
this mapping, one can imagine there are two blue Ising
spins on every vertex of the honeycomb lattice, which are
decoupled if a red loop runs through and which are
infinitely coupled otherwise. In this formulation, we
can see that in the limit βzB → ∞ (i.e., β̃zB → 0),

ZIsing
lR

ðβ̃zBÞ ¼ 2NðlRÞ, where NðlRÞ corresponds to the
number of spins in a component lR. Hence,

ZjψiðβxR; βzB → ∞Þ ¼
X
LR

�
tanhðβxRÞffiffiffi

2
p

�jLRj ffiffiffi
2

p jLRj

¼
X
LR

tanhðβxRÞjLRj; ð75Þ

namely, we recover an O(1) loop model on the
honeycomb lattice which has an Ising critical point at
tanhðβxRÞ ¼ 1=

ffiffiffi
3

p
[112]. Physically, we can interpret this

result as showing that condensing eB anyons dresses up
the non-Abelian mR anyons—downgrading them to
Abelian, i.e., dmR

¼ 2 → 1. In fact, this is consistent with
the condensation picture: Upon condensing eB, the non-
Abelian flux mR (and similarly for mG) splits up into

quantum-dimension-one mð1Þ
R anyons, mR¼mð1Þ

R ⊕mð1Þ
R eG.

These correspond to the Abelian anyons of the j2;TCi
phase with stabilizers ATC

s ; Bt and ATC
s ; Bt, where ATC

s is
defined via ATC

s ¼Qj∈⎔ Xj, and analogously for ATC
s .

This is analogous to splitting of the boson σσ into charge
and flux when condensing ψψ̄ in an Ising × Ising
TO [157].
Suppose now that the system lies deep within the j2TCi

phase (namely, βzB → ∞ and βxR ≪ 1) and that we increase
the value of βxR. We just found that a phase transition can
occur at a finite βxR, where the Z2 × Z2 can break down to
either the trivial or a Z2 subgroup. The latter can be
generated by either S or SR. As specified in Table I, the
former path ðZ2 × Z2 → hSiÞ is signaled by a nonzero
value of the quantity WmR

. Figure 7(c) shows that WmR

acquires a finite value roughly beyond tanhðβxRÞ ¼ 1=
ffiffiffi
3

p
,

as also happens in the limit βzB → ∞. Nonetheless, we can
follow a similar discussion as in Sec. III A and understand
the fate of j2TCi by looking at its stabilizers in the limit
βxR → ∞. In this limit, mR anyons—now corresponding to
Abelian excitations of Bt—condense, leading to the
confinement of eR charges, with which they braid non-
trivially. Algebraically, this makes the stabilizers ATC

s to
become trivial ATC

s → 1, and, hence, a single TC copy is
left. This is stabilized by the commuting operators
ATC
s and Bt.
Instead, when taking βzG ¼ βzB, and assuming that the

system lies deeply within the jTCi phase [upper left
phase in Fig. 8(b)], the system is a common eigenstate of
the stabilizers ATC

s and Bt. In the limit βxR → ∞, one then
predicts a condensation transition of the (now Abelian)
fluxes mR leading to a topologically trivial phase. This is
captured by WmR

acquiring a finite value as shown in
Fig. 8(b).
Finally, let us explore the regime with βxR → ∞ but

finite βzB and βzG. Following our discussion at the end of
Sec. IV E, we find that in the limit βxR → ∞ [vertical right

(a) (b)

FIG. 8. Numerical phase diagram for pure wave-function
deformations with βzG ¼ βzB using Monte Carlo. Numerical
Monte Carlo simulations with linear sizes N x ¼ 80 and N y ¼
40 and periodic boundary conditions. Because of the choice
βzG ¼ βzB, the order parameters WeB and WeG shown in (a) nu-
merically agree throughout the phase diagram. (b) shows instead
the behavior of WmR

signaling the condensation of non-Abelian
fluxes mR. The lightly shaded region in both panels corresponds
to a gapless phase. For any point in this region, the three order
parameters decay with system size. Moreover, in Fig. 9, we show
the power-law behavior of two-point correlations evaluated for
the parameters indicated by ⋆. Additional details of numerical
simulations are the same as in Fig. 7.
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boundary in Figs. 6(a) and 6(b)], the system is described
by the stat-mech model

P
LR
ð2CLR =

ffiffiffi
2

p jLRjÞZLR
ðtG; tBÞ,

which corresponds an O(2) loop model for tG ¼ tB ¼ 0 at
the BKT critical point separating an extended gapless
phase from one with exponentially decaying correlations
[91]. As we already found, in the limit of small (and
positive) tG and tB, one can then explore its extended
gapless phase. In the next section, we argue that, while
only a critical line separating the D4 TO from the TC
phase remains when setting tG ¼ 0 [see Fig. 6(a)], an
extended gapless phase appears for small but finite tG ¼
tB [see lower right triangular region in Fig. 6(b)], whose
stability is related to the enhancedD4 → D8 symmetry for
this choice of parameters. See the next subsection. In fact,
a closer look at the numerical results in Fig. 8 shows that,
for a point [blue star ⋆ in Fig. 8(a)] within the lightly
shaded triangular region below the dashed black hori-
zontal critical line, all order parameters WmR

, WeG , and
WeB scale down with increasing system size—consistent
with a gapless, symmetric phase with power-law-
decaying correlations (see Fig. 9) emerging in those
regions.

3. Field theory description

In this section, we aim to provide a consistent field
theory interpretation of the results we discussed above. For
this is useful to rewrite the local Hamiltonian in Eq. (69)
using four-state clock variables in Eq. (32). Recalling that

nb ¼ ½cosðθbÞ; sinðθbÞ�T and ng ¼ ½cosðθgÞ; sinðθgÞ�T , we
find that the Hamiltonian (69) takes the form

H ¼ −
ffiffiffi
2

p
βxR
X
hb;gi⎔

cosðθb − θgÞ − βzB
X

⟪b;b0⟫⎔

cosð2θb − 2θb0 Þ

− βzG
X

⟪g;g0⟫⎔

cosð2θg − 2θg0 Þ: ð76Þ

Here, we have used that σ̃jσ̃j0 ¼ cosð2θj − 2θj0 Þ when j
and j0 lie on the same sublattice. Recall that, for all values
of the parameters, the model has a D4 ¼ hR; Si symmetry.
Let us first set βzG ¼ βzB ¼ 0. In this case, the system

is described by an O(2) loop model which at the critical
point—attained at βxR ¼ ∞—corresponds to a compact
boson at the BKT point. With this continuum formulation
in mind, we define a 2π-periodic, real-valued function
θðx; yÞ living on lattice sites now labeled ðx; yÞ, constrained
such that θðx; yÞ ¼ θg if ðx; yÞ∈G and θðx; yÞ ¼ θb if
ðx; yÞ∈B. On θðx; yÞ, symmetry transformations act via
R∶θ → θ þ π=2, while S∶θ → −θ. Moreover, the mirror
symmetry M now acts as M∶θðx; yÞ → π=4 − θð−x; yÞ,
namely, θg → π=4 − θb and vice versa. To relax the
four-state constraint in Eq. (32), we can include a softening
potential with minima at the physical values of θðx; yÞ; in
general, this potential takes the form þgB cosð4θbÞ−
gG cosð4θgÞ þ � � �, where the ellipsis denotes higher har-
monics. Importantly, when M symmetry is enforced, as is
the case here, since βzG ¼ βzB, we must have gB ¼ gG.
Taking now the continuum limit by assuming that slowly
varying configurations dominate [158], the leading sym-
metry-allowed harmonic has the form −g cosð8θÞ due to
cancellation of the cosð4θÞ contributions by M symmetry.
One can view the surviving −g cosð8θÞ piece as imple-
menting a common field constraint on the two sublattices.
We then arrive at the Hamiltonian density

H ¼ K
2π

cosð∇θÞ − g cosð8θÞ: ð77Þ

One can recognize H as the XY model [159,160], whose
low-temperature physics can be recovered [provided the
cosð8θÞ is irrelevant] by the (2þ 0)-dimensional quadratic
theory H ¼ ½K=ð2πÞ�ð∇θÞ2 or as the (1þ 1)-dimensional
quantum field theory

H ¼ 1

2π

	
Kð∂xθÞ2 þ

1

4K
ð∂xφÞ2



− g cosð8θÞ − λ cosðφÞ;

ð78Þ

namely, a Luttinger liquid with Luttinger parameter K in
the presence of additional potential terms. Here, φ is a dual
2π-periodic field satisfying ½φðxÞ; ∂yθðyÞ� ¼ i2πδðx − yÞ,
symmetric under R and transforming as φ → −φ under S
[161]. Hence, cosðφÞ is a symmetry-allowed local term

FIG. 9. Power-law decay of correlations for βzG ¼ βzB. Numeri-
cal evaluation of correlation functions WeBðb; b0Þ≡ hσ̃bσ̃bi and
WmR

ðb; gÞ≡ hσbσgfCZb;gi within the extended gapless phase for
parameters tanhðβzBÞ ¼ 0.15 and tanhðβzBÞ ¼ 0.85 indicated with
⋆ in Fig. 8(a). For the former x and y belong to the blue
sublattice, while for the latter x∈G and y∈B. The average h·i
corresponds to the thermal expectation value evaluated with
respect the classical Hamiltonian in Eq. (69). Numerical data
correspond to system size N x ¼ 520;N y ¼ 260 with periodic
boundary conditions, 7 × 104 equilibration time steps, and
12 × 104 Metropolis steps to obtain the plotted data.
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with the smallest scaling dimension. The scaling dimen-
sion of cosðmθÞ is given by m2=ð4KÞ and that of cosðnφÞ
by n2K. The resulting compact boson field theory for-
mulation when additional cosine terms are irrelevant
exactly matches the fact that the O(2) loop model can
be rewritten as a restricted solid-on-solid height-field
model [discretized version of

R ð∇φÞ2], whose critical
point is described by a BKT transition [163,164]. It turns
out that, when βzG ¼ βzB ¼ 0, the O(2) loop model is
parked [165] at K ¼ 2 [166]. For this value of the
Luttinger parameter, the cosðφÞ term is marginally irrel-
evant for one choice of the sign of λ and marginally
relevant for the other and is then responsible for gapping
out the system into the “short loop phase.” In this work, λ
is tuned by βxR such that λ → 0 when βxR → ∞
(i.e., only one sign of λ can be explored), and the short
loop phase corresponds to D4 TO.
So far, we provided a field theory description along the

horizontal axis in Fig. 6 and close to the critical point
βxR ¼ ∞. Let us now include weak βzG; β

z
B ≠ 0. One

important effect of this perturbation is to modify the
value of K, and, hence, we expect additional transitions.
First, when βzG and βzB differ, theM symmetry is broken—
allowing a cosð4θÞ perturbation which is marginal for
K ¼ 2, coexisting with the cosðφÞ term. When the former
becomes relevant (i.e., for K > 2), the BKT point will be
gapped out due to the pinning of θ by cosð4θÞ. This
scenario takes place when setting βzG ¼ 0 while keeping
βzB finite, leading to the toric code phase in Fig. 6(a),
where θb is pinned, and, hence, WeB takes a finite
value. On the other hand, for K < 2, cosðφÞ becomes
relevant, driving a transition into the gappedD4 TO phase.
Finally, βzG ¼ βzB ≠ 0 [for which the cosð4θÞ term is
again forbidden by symmetry] can lead to an extended
gapless phase [see lower right triangle labeled “gapless”
in Fig. 6(b)] if 2 < K < 8, since then both cosðφÞ and
cosð8θÞ become irrelevant.
We validate the consistency of this hypothesis by

numerically evaluating the correlations WeBðx; yÞ and
WmR

ðx; yÞ on a point belonging to this phase with para-
meters tanhðβxRÞ ¼ 0.85 and tanhðβzGÞ ¼ tanhðβzBÞ ¼ 0.15.
Using the previous mapping and assuming the existence of
this gapless phase, one finds that

WmR
ðx; yÞ ¼ hcos½θðxÞ − θðyÞ�i ∼ jx − yj−1=2K ð79Þ

and, similarly,

WeBðx; yÞ ¼ hcosf2½θðxÞ − θðyÞ�gi ∼ jx − yj−2=K: ð80Þ

Hence, both correlations are expected to decay as a power
law with the distance, where the power-law exponent of
WeBðx; yÞ is 4 times larger than that of WmR

ðx; yÞ regard-
less the value of K. Figure 9 shows that (i) both corre-
lations indeed decay as a power law with jx − yj and

(ii) the data approximately satisfy the relation WeBðx; yÞ ∼
½WmR

ðx; yÞ�4 at long distances. Moreover, assuming
Eq. (80), we extract that the Luttinger parameter is given
by K ≈ 4 > 2.
Finally, if βzG and βzB are strong, one sees from the lattice

Hamiltonian that we should be able to condense, e.g.,
cosð2θÞ without condensing cosðθÞ. This can be accom-
plished by, e.g., introducing new “Ising” variables σ that
have the same symmetry charges as cosð2θÞ. We provide a
consistent field theory formulation in Appendix F.

B. Local quantum channels

We now describe the fate of the decohered density
matrix as measured by the purity trðρ2Þ, when subjecting
D4 TO to the composition of the following commuting
local quantum channels:

EX
r ðρ0Þ ¼ ð1 − pRÞρ0 þ pRXrρ0Xr;

EZ
bðρ0Þ ¼ ð1 − pBÞρ0 þ pBZbρ0Zb;

EZ
g ðρ0Þ ¼ ð1 − pGÞρ0 þ pGZgρ0Zg; ð81Þ

with tunable error rates pR; pG; pB ∈ ½0; 1=2�.

1. Phase diagram from trðρ∞Þ
As discussed at the end of Sec. IV E, the limit

limn→∞ trðρnÞ1=n at pR ¼ 1
2
is given by the norm of the

deformed wave function jψðβxR; βzG; βzBÞi (up to possibly
overall factors) when βxR ¼ ∞, as long as the weight
ZLR

ðtG; tBÞ ≥ 0 in Eq. (45) is non-negative. First, we
showed that this is always true when βzG ¼ 0, and, hence,
the phase diagram of trðρ∞Þ is given by the right vertical
boundary of the phase diagram in Fig. 6(a). As explicitly
shown in Fig. 10(a), this showcases an unstable BKT critical
point at βzB ¼ 0 beyond which D4 TO is completely lost.
On the other hand, we also argued that, even when

βzG and βzB are finite, ZLR
ðtG; tBÞ remains non-negative.

We use this fact to conjecture that the phase diagram of
limn→∞ trðρnÞ1=n as a function of βzG and βzB corresponds to
the right vertical boundary in Fig. 6(b). Unlike the previous
case, this contains an extended gapless phase described by
a compact boson for values of βzG and βzB below a threshold.
The corresponding phase diagram is shown in Fig. 10(b).
Recall that as argued in Sec. IV E the critical threshold for

the n → ∞ limit, pð∞Þ
c , lower bounds the intrinsic threshold

(a) (b)

FIG. 10. Phase diagram of trðρ∞Þ for initial state
jψðβzG; βzB; βzR ¼ 0Þi in Eq. (7) at pR ¼ 1

2
. The phase diagrams

include the D4 topological order phase, a gapless phase, and a
“trivial” phase [102].
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beyond which the capacity of D4 TO as a good quantum
memory decreases.

2. Phase diagram from purity

Following a similar derivation as in the previous sec-
tions, one finds that the purity of the decohered density
matrix takes the general form

trðρ2Þ ∝decohere

mR;eG;eB

X
LR

X
γB

X
γG

ðrzBÞjγBjðrzGÞjγGj
�
rxR
2

�jLRj
4CLR ;

ð82Þ

i.e., three coupledOðNÞ loop models with N ¼ 1, 4. Notice
the absence of the sign function σLR

when comparing to
Eq. (68), the reason being that now every contribution for
the pure wave-function deformation is squared. Alter-
natively, one can write these coupled loop models in an
explicitly local way similar to Eq. (41) and given by
(including temperature factors)

Hρ ¼ −βxR
X
hi;ji⎔

σiσjfCZð2Þ
ij
fCZð3Þ

ij − βzB
X

⟪b;b0⟫⎔

σ̃ð2Þb σ̃ð2Þb0 σ̃
ð3Þ
b σ̃ð3Þb0

− βzG
X

⟪g;g0⟫⎔

σ̃ð2Þg σ̃ð2Þg0 σ̃
ð3Þ
g σ̃ð3Þg0 ; ð83Þ

defined on three honeycomb layers (one more than the
stat-mech model associated to the deformed wave func-
tion). As discussed in previous sections, this model has an
enhanced symmetry group, since Hρ is invariant under D4

symmetry transformations involving either layers 1 and 2
or 1 and 3.

While a more detailed characterization of the resulting
phase diagram as in Ref. [16] is left for future work, we
now briefly discuss the thresholds beyond which D4 TO is
lost in the presence of decoherence assuming pG ¼ pB.
As for the pure wave-function deformation, the previous
formulation permits a numerical evaluation of the phase
diagram of the decohered density matrix using standard
Monte Carlo methods. We directly simulate Hρ in Eq. (83)
on a trilayer honeycomb lattice with a brick-wall configu-
ration with linear system sizes N x ¼ 80 and N y ¼ 40.
Numerical results together with a sketch of the resulting
phase diagram are shown in Fig. 11(a).
From a physics perspective, the main difference between

decohering a density matrix and then computing its purity
and analyzing a pure wave-function deformation is that
anyons are simultaneously created on both the bra and ket
in the former case. Indeed, let us, e.g., consider the effect of
the quantum channel EZ

b in Eq. (81) and recall that the
purity corresponds (up to an overall constant) to the norm
of the unnormalized state

jρ⟫ ¼ e
μB
P

b∈RB
Zj⊗Zj jD4i ⊗ jD4i; ð84Þ

with tanhðμBÞ ¼ pB=ð1 − pBÞ. Hence, pairs of fluxes
eB × ēB are simultaneously created on the first and second
copies [5]. The corresponding order parameter capturing
the condensation of these pairs is given by

WeB×eB ≡
1

jRBj2
* X

b;b0 ∈RB

σ̃ð2Þb σ̃ð3Þb σ̃ð2Þb0 σ̃
ð3Þ
b0

+
ð85Þ

(a) (b) (c)

FIG. 11. Phase diagram for decohered mixed state with pG ¼ pB via trðρ2Þ. (a) Schematic phase diagram including the values of the
relevant order parameters. D4 TO is robust to finite error rates (light blue region). This is signaled by the order parameters acquiring
a finite value for sufficiently large error rates. (b),(c) Numerical phase diagram with linear system sizes N x ¼ 40 and N y ¼ 20 and
with periodic boundary conditions. Dashed black horizontal and gray dot-dashed lines indicate the critical values pG ¼ pB ¼
ð1 − 3−1=4Þ=2 ≈ 0.12 and pR ¼ ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pp
Þ=2 ≈ 0.24, respectively. (b) and (c) show numerical results for the order parameters

WeG×eG ¼ WeB×eB [Eq. (85)] and WmR×mR
[Eq. (86)], respectively.
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and analogously defined forWeG×eG. On the other hand, the
condensation of mR ×mR is signaled by

WmR×mR
≡ 1

jRGjjRBj

*X
g∈RG

X
b∈RB

σgσbfCZð2Þ
g;b
fCZð3Þ

g;b

+
: ð86Þ

Figures 11(b) and 11(c) show the dependence of these
order parameters as a function of pR and pG ¼ pB,
resulting in the sketched diagram appearing in Fig. 11(a).
For this numerical analysis, we considered a smaller
system size N x ¼ 40;N y ¼ 20, since we found that close
to the zero-temperature regime (pR → 1=2) the algorithm
takes longer to converge. We believe the reason is the use
of single site updates while interactions in Hρ involve
local six-spin terms. Similar to the pure wave-function
deformation, an Ising phase transition occurs when
pR ¼ 0 and for pG ¼ pB ¼ ð1 − 3−1=4Þ=2. In this case,
the partition function with Hamiltonian Hρ in Eq. (83)
corresponds to two decoupled 2D ferromagnetic Ising
model lying on a triangular lattice. Figure 11(b) shows
that, in fact, this point extends into a critical line (dashed
black horizontal line) for finite values of pR. Also,
similarly to our analysis of the deformed wave function,
we find an Ising critical point in the limit pG ¼ pB → ∞
for pR ¼ ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pp
Þ=2, which also extends into a

critical line (dot-dashed gray vertical line) as shown in
Fig. 11(c). However, unlike for the deformed wave
function, attaining a critical point at βxR → ∞ for
βzG ¼ βzB ¼ 0, the horizontal axis with vanishing pG and
pB is described by an O(4) loop model—which shows no
critical behavior for any value of pR. Finally, our numeri-
cal results indicate that, even for pR ¼ 1=2,D4 topological
order is robust to finite error rates pG ¼ pB. This seems
natural, since, when pG ¼ pB ¼ 0, the system is well
within the shortly correlated small loop phase
of the O(4) loop model, and so, by infinitesimally
increasing the coupling to γG and γB, large red loop
configurations LR (indicative of the dense loop phase) are
not expected to be suddenly generated. Hence, a finite
threshold is expected.

C. Competing non-Abelian errors

At this point, we have explored scenarios involving
either a single non-Abelian error or a combination of
Abelian and non-Abelian errors acting on two different
sublattices. In this last subsection, we consider the
scenario of non-Abelian X errors acting on either two
or all three sublattices. Suppose that X errors act on both
RR and RB sublattices, hence proliferating pairs of mR
and mB fluxes, respectively. Unlike in our previous
analysis, two non-Abelian anyons of different color have
nontrivial braiding statistics. In fact, even when two pairs
of mR and mB are generated out of the vacuum, their

braiding toggles the fusion channel of both pairs from 1 to
eG. Hence, when annihilated, a pair of eG are left behind
[73]. This scenario corresponds to either the deformed
wave function

jψðβxR; βxBÞi ¼ e
βxR=2
P

r∈RR
Xre

βzB=2
P

b∈RB
Xb jD4i ð87Þ

or the composition of the local quantum channels

EX
r ðρ0Þ ¼ ð1 − pRÞρ0 þ pRXrρ0Xr;

EX
b ðρ0Þ ¼ ð1 − pBÞρ0 þ pBXbρ0Xb; ð88Þ

with r∈RR and b∈RB. We find the classical partition
function (see Appendix C 2 b)

ZjψiðβxR; βxBÞ ¼
X
LB;LR

tanhðβxRÞjLRj tanhðβxBÞjLBjffiffiffi
2

p jLR∪LBj 2CLR∪LB

ð89Þ

for the deformed pure wave function and

trðρ2Þ ∝decohere

mR;mB

X
LB;LR

rjLRj
R rjLBj

B

2jLRjþjLBj 4
CLR∪LB ð90Þ

when computing the purity of the resulting decohered
density matrix. Here, we have used the fact that only
closed-loop configurations LR and LB on the red RR and
blue RB sublattices, respectively, lead to nonvanishing
contributions. Moreover, CLR∪LB

corresponds to the num-
ber of independent loops in the (colorless) union LR ∪ LB
or, equivalently and perhaps more clearly, the number of
faces enclosed [see Fig. 12(a) for an example with
CLR∪LB

¼ 4]. This coupling effectively works as an
attractive potential between loops of different color that

FIG. 12. Competing non-Abelian errors. Resulting coupled
O(2) loop models when considering the proliferation of two
non-Abelian errors acting on different sublattices. For the
configuration shown in the figure, CLR∪LB

¼ 4.

PABLO SALA, JASON ALICEA, and RUBEN VERRESEN PHYS. REV. X 15, 031002 (2025)

031002-24



increases their probability of crossing. This enhancement
is directly related to their nontrivial braiding. If the
models were decoupled, we would have instead found
2CLR

þCLB . Hence, we find that the combination of two
non-Abelian errors leads to two coupled O(2) loop
models. Unfortunately, we are not aware of previous
works studying the phase diagram of the resulting
coupled loop model, so we leave their study to future
work. Finally, including the action of an X error on the
remaining green sublattice RG follows a similar logic.
However, in this case, three (instead of two) different
colored loops can intersect in two different ways and
results in vanishing contributions. What would be the fate
of D4 TO under the simultaneous action of these errors?
Does the braiding have an impact on the robustness of D4

TO under decoherence?

VI. D4 STRONG-TO-WEAK SPONTANEOUS
SYMMETRY BREAKING

Previous sections have dealt with the loss of coherence
arising from coupling to an environment, which can result
in a topologically ordered state losing its ability to store
quantum information. However, the effect of a quantum
channel does not necessarily lead to featureless stationary
mixed states stripped of quantum correlations. There are
various ways to avoid this fate—e.g., by fine-tuning the
environment [167–171] or restricting to strongly sym-
metric quantum channels, namely, those for which every
Kraus operator is symmetric [7,22,26,36,37,172,173].
As an example, the phenomenon of strong-to-weak
spontaneous symmetry breaking (sw-SSB) has been
shown to trigger long-range order in mixed states
as measured by nonlinear observables in the density
matrix [7,22,26,36].
Following these works, let us introduce the concept by

considering a Z2-symmetric short-range correlated initial
state jψ0i, under the action of a strongly Z2-symmetric
local quantum channel. For example, take jψ0i ¼ jþi⊗N in
the X basis and suppose that every Kraus operator com-
mutes with the Z2 generator G ¼Qj Xj. Such a symmetric
channel can be given by the composition of local quantum
channels

ρ0 → Ei;jðρ0Þ ¼ ð1 − pÞρ0 þ pZiZjρ0ZiZj ð91Þ

acting on every bond ði; jÞ of a square lattice. Notice that
the resulting decohered density matrix ρ is invariant under
both left and right multiplication by the symmetry trans-
formation G. When this is the case, ρ is said to be strongly
G symmetric.
While a local quantum channel cannot modify the scaling

of linear correlations of the form trðρOxOyÞ as imposed
by Lieb-Robinson bounds, the phenomenon of sw-SSB is

signaled by the generation of long-range correlations in
nonlinear quantities like the Rényi-2 correlators

Rð2Þ
Z2
ðx; yÞ≡ trðρOxOyρOxOyÞ

trðρ2Þ ; ð92Þ

withOx a charged operator underG, e.g., Zx. The definition
of sw-SSB, up to subtleties that are discussed later on, is
as follows [36]: A strongly G-symmetric mixed state ρ has

sw-SSB if the Rényi-2 correlator Rð2Þ
Z2
ðx; yÞ of some

charged local operator (e.g., Zx in this case) is nonvanishing
in the limit jx − yj → ∞, while the conventional correlation
function trðρZxZyÞ shows no long-range order. When
evaluating Rð2Þðx; yÞ for jψ0i, one finds that this corre-
sponds to the thermal correlation hσxσyi2β on the 2D Ising
model at inverse temperature 2βwith tanhðβÞ ¼ p=ð1 − pÞ.
Hence, for error rates larger than a critical value pð2Þ

c , this
metric reveals that the density matrix ρ displays sw-SSB. It

follows that for pð2Þ > pð2Þ
c the decohered density matrix is

not “symmetrically invertible”; namely, no mixed state ρ̃
exists such that ρ ⊗ ρ̃ can be connected to a symmetric
product state via a local quantum channel [36], showcasing
the nontrivial structure of ρ.
While a priori this phenomenon appears to be unrelated

to a decoherence transition for TO states, it has been shown
that, in fact, these phenomena are intimately related. One
can connect the Z2 sw-SSB transition discussed above to
decohering the TC wave function via an Z quantum channel
using Wegner’s duality [7,9,174]. This duality maps the
toric code wave function to a trivial paramagnet jþi⊗N and
vice versa. Similarly here, the combination of the gauging
and entangling maps introduced in Sec. II B together with
Eq. (28) provides a complementary dual picture of sub-
jecting theD4 topological order to decoherence as aD4 sw-
SSB transition. To reveal this connection, we consider a
bilayer system where each of the layers corresponds to a
honeycomb lattice with qubits lying on the vertices as in
Fig. 4(a). The upper layer hosts red qubits initialized in
the product state jþi≡ jþi⊗jRRj, while the lower layer
hosts green jeþi≡ jeþi⊗jRGj and blue jeþi≡ jeþi⊗jRBj qubits
lying on the two RG and RB sublattices, respectively. The
state of the system jψ0i ¼ jþijþ̃ijþ̃i is then invariant
under the D4 symmetry transformation generated by R and
S as defined below Eq. (35). Following our discussion in
the previous sections, one can readily find strongly D4

symmetric local quantum channels corresponding to the
“ungauged” version of the quantum channels in Eqs. (81).
These are given by the composition of the commuting local
quantum channels

EX
i;jðρ0Þ ¼ ð1 − pxÞρ0 þ pxZiZj

fCZijρ0ZiZj
fCZij; ð93Þ
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acting on every link ði; jÞ of the bilayer system, and

EZ
b;b0 ðρ0Þ ¼ ð1 − pzÞρ0 þ pzZ̃bZ̃b0ρ0Z̃bZ̃b0 ; ð94Þ

EZ
g;g0 ðρ0Þ ¼ ð1 − pzÞρ0 þ pzZ̃gZ̃g0ρ0Z̃gZ̃g0 ; ð95Þ

with b; b0 ∈RB and g; g0 ∈RG. Consequently, characteriz-
ing the possible spontaneous symmetry-breaking patterns
of D4 is equivalent to the characterization of the possible
ways on which the decoherence channels in Eqs. (81)
affect D4 TO.
In this case, one can diagnose sw-SSB by the non-

vanishing of the Rényi-2 correlators

Rð2Þ
D4
ðb; gÞ ¼ trðρZbZg

fCZbgρZbZg
fCZbgÞ

trðρ2Þ ð96Þ

and

Rð2Þ
G ðg; g0Þ ¼ trðρZ̃gZ̃g0ρZ̃gZ̃g0 Þ

trðρ2Þ ; ð97Þ

Rð2Þ
B ðb; b0Þ ¼ trðρZ̃bZ̃b0ρZ̃bZ̃b0 Þ

trðρ2Þ ð98Þ

in the limit jg − g0j; jb − b0j → ∞. The former Rð2Þ
D4
ðb; gÞ

corresponds to the thermal expectation value

hZbZg
fCZð2Þ

bg
fCZð3Þ

bg i evaluated on the three-honeycomb-layer
stat-mech model introduced in Eq. (39). This quantity
exactly matches the expectation value WmR×mR

(when
summed over all sites x, y) signaling the condensation
of flux pairs mR ×mR. The latter two in Eq. (97) corre-
spond to the condensation of eG × eG and eB × eB pairs,
respectively, as signaled by the respective order parameters
WeG×eG and WeB×eB . From this perspective, these correla-
tors detect different symmetry-breaking patterns with the
corresponding phase diagram resembling that in Fig. 11. A
detailed analysis of this phase diagram will be included
somewhere else.
Before closing this section, we notice that an alternative,

and inequivalent, characterization of sw-SSB is via the
so-called fidelity correlator [36] (corresponding to a gen-
eralization of the quantum fidelity involving the state ρ).
Unlike for Rényi-2 correlators, this quantity acquiring
a finite value permits one to prove a stability theorem
that establishes sw-SSB as a universal mixed-state
property [36]. Similar to the relation, through Kramers-
Wannier duality, between the toric code ground state under
bit-flip noise and the Z2 sw-SSB [7,9,36], we notice that
the fidelity correlator to diagnose D4 sw-SSB maps to the
quantum fidelity defined in Eq. (63), after replacing the
closed noncontractible loop X by the open string X

tf
ti and

performing the ungauging map in Sec. II B. Hence, in

combination to our findings in Sec. IV E for pG ¼ pB ¼ 0,
it is plausible that the critical point for D4 sw-SSB is
attained at maximum error rate.

VII. CONCLUSIONS AND OUTLOOK

We have characterized the effect of decoherence and
wave-function deformation for a microscopic realization
of D4 TO. For the case of proliferating Abelian anyons,
we recovered the phenomenology found in previous
works for the toric code ground state, where the random
bond Ising model governs the (intrinsic) quantum cor-
rection threshold pc [6,56]. Our main focus is on the
proliferation of non-Abelian anyons. We found that, even
if we decohere all possible non-Abelian anyons of a
certain type (here, mR), the D4 TO is infinitely robust as
characterized by the purity. However, a finite threshold
exists for the largest moment trðρ∞Þ of the decohered

density matrix ρ, and we further argued that pð∞Þ
c ¼ 1=2

(i.e., even for n → ∞ we lose only D4 TO at the maximal
decoherence rate). This scenario contrasts to the behavior
of the toric code ground state, where the finite threshold

pðnÞ
c monotonically increases with the Rényi-index n [6].

We argued that the underlying cause is the presence of a
nontrivial loop weight appearing for non-Abelian anyons.
Indeed, we showed how loop models provide a natural
stat-mech model for these systems, physically corre-
sponding to the worldlines of the “poisoning” anyons,
whose quantum dimensions lead to topological loop
weights.
Furthermore, by exactly diagonalizing ρ at maximal

error rate p ¼ 1=2 for the error proliferating non-Abelian
anyons (namely, with quantum dimension dmR

¼ 2),
we found that its spectrum is given by a random O(2)
loop model. We equivalently write this as a random D4

symmetric four-state clock model, at a tuning parameter
where the clean model is critical. This can be further
pushed into the extended gapless phase by initially con-
sidering a deformed wave function with a finite correlation
length. We argued that the presence of disorder likely
lowers the ordering temperature compared to the clean
model, implying that the non-Abelian quantum memory
might be stable to arbitrary decoherence of mR anyons—
although future work will have to clarify the effect of the
frustration of the model. As a concrete diagnostic, we
showed that the robustness of this non-Abelian memory (in
terms of the quantum fidelity between two topologically
distinct ground states) is encoded in the free energy cost of
inserting a symmetry defect line in this disordered D4

rotor model.
We then considered the action of various types of Pauli

errors proliferating both Abelian and non-Abelian anyons,
the former appearing as fusion channels of the latter. This
gave rise to a rich phase diagram both for pure wave-
function deformations (Fig. 6) as well as for the effect of
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decoherence as characterized by the purity (Fig. 11). These
were obtained by a combination of analytical results
pertaining the analysis of the underlying stat-mech models
in certain regimes and numerical analysis via Monte Carlo
methods. Here, we found that different (condensation)
transitions can be diagnosed by local order parameters
of the underlying stat-mech model. An important finding
for the deformed wave function was the appearance of an
extended gapless phase showcasing power-law decaying
correlations of the Wilson operators associated with the
proliferated anyons. It would be interesting for future work
to further explore the physical reason for this critical phase.
It is suggestive that it arises due to an inability to condense
mR anyons in isolation, which require a formalism beyond
those of the recent Refs. [17,18], which discussed the
emergence of nonmodular TOs in mixed states. Moreover,
we notice that this gapless phase is reminiscent of that
appearing in Ref. [20]. It would be interesting to understand
whether the tools discussed in this work can be used to
investigate that setup. For the decohered density matrix, we
then found that, even when non-Abelian errors are max-
imally proliferated on top of D4 TO, the system is still
robust to a finite proliferation of Abelian anyons. The
characterization of the resulting mixed-state “phases”
appearing beyond these thresholds is left as an open
question. It would also be worthwhile to analyze the setting
where the initial wave function is not at the fixed point of
the topologically ordered phase and whether this allows one
to tune the effective string tension of the resulting loop
model. Finally, we discussed the direct application of these
results to the analysis of D4 strong-to-weak spontaneous
symmetry breaking, exploiting a similar relation as the
relating Z2 sw-SSB to the decoherence transition of the
toric code [7,9].
Our work also gives rise to other open questions both

regarding the fate of D4 TO to decoherence, as well as to
that of other non-Abelian topological orders. First, it
appears that the non-Abelian nature of the phase makes
it robust against errors proliferating anyons of nontrivial
quantum dimension. In a companion paper [92], we indeed
show that decohering quantum doubles with anyons with
larger quantum dimension again produces loop models
which prevent a straightforward proliferation. This moti-
vates the question: Are non-Abelian topological orders
with only large quantum dimensions more stable? Second,
while here we considered a combination of errors leading
to anyons with trivial braiding, it would be interesting to
explore whether the case with nontrivial braiding leads to
distinct error thresholds. This scenario could be explored
by the configuration discussed in Sec. V C, where two
or three different non-Abelian anyons with nontrivial
braiding are produced. Here, the underlying stat-mech
model corresponds to two (or three) coupled O(2) loop
models where the braiding leads to a cancellation of certain
configurations.

Our work shows that a simple generalization of the Ising
model (the ZZCZ model) dictates much of what happens to
deforming and decohering D4 non-Abelian TO. Here, we
focused on the “intrinsic” properties of the decohered
density matrix as in Ref. [6], agnostic to a particular
error-correction scheme. The aforementioned work found
that the threshold pc does indeed match the one obtained
from an optimal error-correction protocol (when assuming
perfect syndrome measurements). It would be relevant to
perform a similar analysis for D4 TO: Can one indeed
correct for arbitrary strong decoherence proliferating
(only) mR anyons? Moreover, how would the presence
of faulty measurements affect this conclusion? Does a 3D
version of the ZZCZ model then emerge? Moreover, our
work shows that detailed studies for non-Abelian deco-
hered models similar to those for the toric code are
possible, including the formulation of relevant stat-mech
models. With this new insight, it would be exciting to
explore whether similar structures can be identified for
other non-Abelian TOs.
Finally, while we were able to harness known results

about loop models on the honeycomb lattice, our work
points the way to various new kinds of loop models [e.g.,
the coupled O(2) loop models appearing for trðρnÞ in
Eq. (49) or the coupled O(2) loop models appearing when
including two or three non-Abelian anyons discussed
in Sec. V C]. We believe these new stat-mech models
can be of interest in their own right, and, in addition,
these can, in turn, inform about error thresholds for non-
Abelian TO. In particular, what is the fate of the corre-
sponding random models even at the maximum error rate?
It would be interesting to perform a numerical study of the
fidelity as shown in Eq. (63), an analysis we leave for
previous work.
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APPENDIX A: PURE WAVE-FUNCTION
DEFORMATIONS AND GROUND-STATE

PHASE TRANSITIONS

Let us consider pure wave-function deformations of the
form

jψðβÞi ¼ eβ=2
P

j∈R
Ôj jTOi ðA1Þ

with R a subset of the lattice, Ôj a Pauli or combination of
Pauli operators of different strength, and β > 0. In the main
text, we focus on the norm of jψðβÞi as a function of β,
which can be interpreted as the partition function of a
classical stat-mech model

ZðβÞ≡ hψðβÞjψðβÞi: ðA2Þ

One may wonder whether singularities in ZðβÞ, i.e., finite-
temperature phase transitions in the (2þ 0)-dimensional
classical stat-mech model, necessarily correspond to
ground-state phase transitions in the corresponding parent
Hamiltonians. We claim that these are equivalent as long as
the corresponding stat-mech model involves only local
interactions as we argue in the following. Let us assume
that the partition function can be written as

ZðβÞ ¼ hψðβÞjψðβÞi ¼
X
fσg

e−βHðfσgÞ ðA3Þ

with HðfσgÞ ¼Pr hr a local spin Hamiltonian with hr ¼
− 1

2

P
r σr
P

j∈N r
σj in terms of “Ising”-like variables σr.

Then, diagonal correlations (i.e., those involving only Ẑ
Paulis) are given by thermal correlations evaluated on the
corresponding stat-mech model:

hψðβÞjZrZr0 jψðβÞi ¼ hσrσr0 iβ: ðA4Þ

Moreover, off-diagonal correlations can also be computed
as a thermal average of local observables [107]:

hXrXr0 i ¼
1

Z

X
fσg

e−βHðfσgÞeβhreβhr0

¼ heβhreβhr0 iβ ðA5Þ

and

hYrYr0 i ¼
1

Z

X
fσg

e−βHðfσgÞðiσreβhrÞðiσr0eβhr0 Þ

¼ −hσreβhrσr0eβhr0 iβ: ðA6Þ

On the one hand, we recall that a ground-state phase
transition corresponds to closing the gap, and this affects
the scaling of certain correlation functions, e.g., modify-
ing their scaling from exponential, to constant or to
power-law decay. On the other, it is clear that phase
transitions in ZðβÞ (as a function of β) are captured by the
scaling of diagonal correlations, but as we showed before,
the stat-mech model can also be used to evaluate off-
diagonal ones.

APPENDIX B: (UN)GAUGING AND (DIS)
ENTANGLING MAPPINGS

The ground state of the D4 topological order model in
Eq. (1) is specified by the following stabilizers (including
the mirrored version) equaling unity:

It is useful to keep track of the three RR, RG, and RB

sublattices of the model (on the kagome lattice) as shown in
Fig. 13. A key property we use is that if, e.g., X appears
only on red, then blue and green have conserved Bt ¼ Z⊗3,
which we can use to dualize (i.e., gauge the 1-form or
ungauge the Z2 symmetry).

FIG. 13. Kagome lattice. Three color sublattices red, green,
and blue.
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1. “Ungauging” the green sublattice

Doing this first for green, we use Z⊗3 ¼ 1 to map the
problem to the following lattice:

where a green Z on the original lattice maps to ZZ on the
new lattice. Now our state has mapped to jD4i → jRG̃Bi.

We now work out the structure of jRG̃Bi by specifying its
stabilizers on this new lattice.
The stabilizers for this state are as follows: The simplest

ones are the Z⊗3 stabilizers on the red and blue sublattices,
which have not changed at all. Second, the 12-body
stabilizer whose X’s were living on the green sublattice
now map to the following:

Finally, the other 12-body stabilizers (i.e., where the X’s are
on blue or red) map as follows:

where in the last step we use the Z⊗3 ¼ 1 stabilizer to simplify the CZ’s. A similar stabilizer of course holds upon replacing
blue and red.

2. Ungauging the blue sublattice

We now use the Z⊗3 stabilizer on the blue sublattice to similarly map to the following lattice, where a single blue Z maps
to two ZZ’s on the new blue sublattice:
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Since this is starting to get a bit messy, note that we can
also draw these points as lying on the following Lieb
(“heavy hex”) honeycomb lattice:

Our wave function on this lattice then becomes jRG̃ B̃i,
with stabilizers:
(1) The red sublattice still has the usual Z⊗3 stabilizer.
(2) For every blue vertex, we have

(3) For every green vertex, we have

where the last step again involves using the Z⊗3

stabilizer. The resulting stabilizer is equivalent to the
blue one (after exchanging blue and green), which
confirms that blue and green are playing equivalent
roles in this formulation.

(4) Lastly, there is an X-type stabilizer associated to the
red sublattice:

3. (Dis)entangling

Thus far, we got jRG̃ B̃i on a honeycomb Lieb lattice
(i.e., vertices and bonds of the honeycomb lattice), where
jRG̃ B̃i is specified by the above list of stabilizers.

We now further simplify this state by acting with a
(dis)entangler U consisting of a three-body CCZ gate on
every bond. Note that every bond has three qubits: blue and
green vertex qubits and a red bond qubit. We can, thus,
write

U ¼
Y
hv;v0i

CCZv;hv;v0i;v0 : ðB1Þ

The action of this unitary on our state is quite simple, by
just repeatedly using the fact that conjugating Xi (or Xj) by
CCZi;j;k gives XiCZj;k (or XjCZi;k). Thus,

UjψðβÞi ∝ eβ
P

r∈R
XrCZb;gðUjRG̃ B̃iÞ; ðB2Þ

where XrCZb;g is to be understood as a three-body operator
on a single bond, acting with X on the red bond qubit and
acting with CZ on the blue and green vertices of that bond,
and where UjRG̃ B̃i is defined by the following list of
stabilizers:
(1) The red sublattice still has the usual Z⊗3 stabilizer.
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(2) For every blue and green vertex, we just have the
stabilizers Xb ¼ 1 and Xg ¼ 1. Explicitly, for the
green sublattice,

(3) Lastly, the red X stabilizer also disentangles:

In conclusion, at this point, UjRG̃ B̃i consists of trivial
product states on the blue and green sublattices and a usual
toric code state on the red sublattice.

4. Dualizing and then ungauging the red sublattice

Since our imaginary time evolution does not commute
with the red Z⊗3 stabilizer of our initial state, we cannot use
the latter to ungauge the model, unlike what we did for the
green and blue sublattices. However, we can do so if we
first perform an e −m duality, i.e., using the X instead of Z
stabilizer. In particular, note that the red six-body X⊗6

stabilizer does commute with our imaginary time evolution.
This means we can perform a Kramers-Wannier trans-
formation such that the red qubits now live on the sites of
the honeycomb lattice. For convenience, we choose the
convention that a bond X qubit maps to a ZZ interaction on
the new lattice. This maps the toric code on the red
sublattice into a jþi⊗N product state. Note that the effective
lattice is a honeycomb lattice with two qubits per site. If we
denote the Pauli operators as X, Z and X̃; Z̃, then we can
write our resulting state as follows:

jψðβÞi ∝ eβ
P

hv;v0iZ̃vZ̃v0CZv;v0 jþi⊗N ⊗ jeþi⊗N: ðB3Þ

We can think of this as a honeycomb bilayer, where the
coupling consists of Z̃ Z̃ on the bond of one layer coupled
to CZ on the bond of the other layer.
The result of applying these mappings to the Wilson

operator X
tf
ti in Eq. (2) is provided in Fig. 14.

FIG. 14. Ungauging X
tf
ti in Eq. (2).
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APPENDIX C: FROM D4 TOPOLOGICAL ORDER
TO OðNÞ LOOP MODELS: ANALYTICAL

DERIVATIONS

This appendix contains the analytical derivations show-
ing that the action of pure wave-function deformations and
quantum channels acting on the D4 topological ordered
ground state of Hamiltonian in Eq. (1) with all logical
operators Z ¼ þ1 can be exactly mapped to OðNÞ loop
models. We show that N is given by the quantum
dimension da (respectively, d2a) of the anyon the said
deformation (quantum channel) can proliferate. We provide
additional details to the derivations presented in the
main text.

1. Non-Abelian error X

In this section, we compute the expectation value
hD4j

Q
j∈LR

XjjD4i. To do so, we make use of the ungaug-
ing and disentangling maps introduced in Appendix B,
leading to

hD4j
Y
j∈LR

XjjD4i ¼ hþ̃jhTCj
Y
e∈LR

Xe
fCZeþ;e− jþ̃ijTCi; ðC1Þ

where, in the first equality, e corresponds to a bond of the
honeycomb lattice as in Fig. 1 with vertex boundaries
denoted by e�, the latter hosting spin-1=2’s on the state
jþ̃i along X, and with fCZi;j ¼ 1

2
ð1þ Z̃i þ Z̃j − Z̃iZ̃jÞ

coupling B and G sublattices. Notice that this operator is
left invariant under the exchange Z̃i ↔ Z̃j. Using

hþ̃jhTCj
Y
e∈LR

Xe
fCZeþ;e− jþ̃ijTCi

¼ hTCj
Y
e∈LR

XejTCihþ̃j
Y
e∈LR

fCZeþ;e− jþ̃i; ðC2Þ

we again find that only closed-loop configurations LR
(now on the honeycomb lattice) lead to nonvanishing
hTCjQe∈LR

XejTCi ¼ 1. Everything that remains is to eva-

luate WLR
≡ hþ̃jQe∈LR

fCZeþ;e− jþ̃i on such closed-loop
configurations. In the following, we prove that WLR

¼
2CLR =

ffiffiffi
2

p jLRj, where CLR
corresponds to the number of

disconnected components in LR. Let us denote by l∈LR
a connected component of LR, and define CZl ¼Q

e∈l CZeþ;e− . Then, one finds

WLR
¼
Y
l∈LR

1

2jlj
trðCZlÞ: ðC3Þ

Hence, we need only to evaluate trðCZlÞ on every connected
component l. First of all, CZ being a diagonal (in the Z
basis) two-body gate, it can be written as

ðC4Þ

since when σi ¼ σj ¼ −1 the result is the same configura-
tions multiply by an overall−1 phase and byþ1 in any other
configuration. Here, the symbol

ðC5Þ

corresponds to the identity tensor δσiσjσj which is non-
vanishing and equals 1 only if σi ¼ σj ¼ σj. For example,
multiplying two overlapping CZ gates CZijCZjk corre-
sponds to

ðC6Þ

Therefore, we just found that trðCZlRÞ ¼
ffiffiffi
2

p jLRjtrðHjlRjÞ
with H ¼ ðX þ ZÞ= ffiffiffi

2
p

the Hadamard matrix. Since the
Hadamard transformation H has eigenvalues λ� ¼ �1, we
then find that trðCZlÞ ¼ 2

ffiffiffi
2

p jlRj if lR has even length jlj
but vanishing otherwise. However, lR being a closed loop on
the honeycomb lattice, its length is always even. Notice that
this also implies ð�1ÞjLRj ¼ þ1when summing over closed-
loop configurations. Hence,

WLR
¼

Y
lR ∈LR

1

2jlRj
2
ffiffiffi
2

p jlRj ¼ 2CLR2−jLRj=2: ðC7Þ

An alternative way to obtain the value of
hD4j

Q
j∈LR

XjjD4i is by mapping the D4 TO to a Z3
2

symmetry-protected topological (SPT) phase following
Ref. [78]. This corresponds to applying the “ungauging
map” not only to operators commuting with green and blue
plaquettes terms Bt ¼ Z⊗3, but also on the red sublattice,
instead of following Appendix B 4. Let us consider a
single-loop configuration LR. First, notice that the product
of Xj ∈RR along the boundary of LR can be written as the
product of the six-body operators X⊗6 with X acting on the
tips of a star ✡ lying on RR:Y

j∈LR

Xj ¼
Y

✡∈ intðLRÞ
X⊗6: ðC8Þ

Then, following Ref. [78], we map jD4i → jSPTi, andY
✡∈ intðLRÞ

X⊗6 ⟶
Y

✡∈ intðLRÞ
X✡ ðC9Þ

with X✡ lying at the center of ✡. In fact, this SPT is defined
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on a triangular lattice (which is also a trivalent lattice), with
the stabilizers on the red sublattice given by

ðC10Þ

and, hence,

ðC11Þ

Then, we find that

hD4j
Y
j∈LR

XjjD4i ¼ hSPTj
Y
b∈LR

CZbjSPTi; ðC12Þ

where we have used the fact that CZ2
b ¼ 1 and with b∈LR

a bond of the honeycomb lattice lying on LR. Finally, the
SPT can be mapped to a trivial product state jþi on every
site of the triangular lattice by applying a CCZ unitary
transformation

hD4j
Y
j∈LR

XjjD4i ¼ hþj
Y
b∈LR

CZbjþi ðC13Þ

and then obtaining the same expression for WLR
as

in Eq. (C2).

2. Combined errors

In this section, we combine both Abelian Z and non-
Abelian errors X acting on one or several sublattices. As the
previous section has made explicit, the difference will come
from the evaluation of expectation of the corresponding
errors on the jD4i To ground state.

a. Abelian plus non-Abelian errors on different
sublattices

We start by combining an X deformation acting on the
red sublattice and Z acting on blue and green sublattices. If
βzG ¼ 0, one finds that the norm of the deformed wave
function

jψðβxR; βzBÞi ¼ e
βxR=2
P

j∈RR
Xje

βzB=2
P

j∈RB
Zj jD4i ðC14Þ

is given by

ZjψiðβxR; βzBÞ ¼ Z0;RZ0;B

X
closed LR

X
γB

tanhðβxRÞjLRj

× tanhðβzBÞjγBjhD4j
Y
j∈LR

Xj

Y
i∈ γB

ZijD4i;

ðC15Þ

where now the errors are coupled through the last factor.
As in Appendix C 1, we know that only closed red loop
configurations LR on the honeycomb lattice lead to a finite
contribution, and, hence, we need to evaluate

WLR
ðγBÞ≡ hD4j

Y
j∈LR

Xj

Y
i∈ γB

ZijD4i

¼ hþ̃j
Y
e∈LR

fCZeþ;e−

Y
b∈ γB

Z̃bþ Z̃b− jþ̃i; ðC16Þ

where once again γB collects the coordinates of the bonds
on the (blue) triangular lattice—or, equivalently, blue sites
of the original kagome lattice—which corresponds to a
sublattice of the honeycomb. Now we need to distinguish
two possible scenarios. The case where LR and γB do not
intersect reduces to the discussion in the previous sections,
with γB required to be a closed-loop configuration. On the
other hand, one can wonder whether γB needs to be closed
if they intersect, given that an LR loop contains eB Abelian
anyons as coming from the fusion channel mR ×mR ¼
1þ eB þ eG þ eBeG. To compute WLR

ðγBÞ, we recall

that trðCZLR
Þ ¼ ffiffiffi

2
p jLRjtrðHjLRjÞ, and, hence, the weight

requires calculating quantities of the form

trðHH…HZH…HZH…HH…HÞ ðC17Þ

with an even number of H for any closed-loop configu-
ration LR on the honeycomb lattice. Using the cyclicity
of the trace, that H2 ¼ 1, and finally that ZH ¼ HX, one
finds that Eq. (C17) is nonvanishing only if there are an
even number of Z’s. Hence, γB needs to intersect (on the
blue sublattice) each single connected component lR of
LR ¼∪ lR an even number of times. Let us assume the
coordinates of these points along one of these components
are given by fbjg2nj¼1 with b1 < b2 < � � � < b2n. Then,

hþ̃j
Y
e∈lR

fCZeþ;e−

Y2n
j¼1

Z̃bj jþ̃i

¼
ffiffiffi
2

p jlRj

2jlRj
tr
�
ZHb2−b1ZHb3−b2 � � �ZHjlRj−ðb2n−b1Þ�; ðC18Þ

where H lies on the links of the honeycomb lattice.
This calculation can be efficiently performed by intro-
ducing a graphical notation shown in Fig. 15. Notice
that there are always an even number of H in between
two consecutive Z’s, and using H2 ¼ 1 we find that
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hþ̃jQe∈lR
fCZeþ;e−

Q
2n
j¼1 Z̃bj jþ̃i ¼ 2

ffiffiffi
2

p −jlRj. Hence, we
find the weight

WLR
ðγBÞ ¼

2CLRffiffiffi
2

p jLRj ; ðC19Þ

whenever either closed loops in γB do not intersect with LR
or if components of γB end on LR. See Fig. 1. This result
can be understood from the fact that indeed eB anyons are
contained in the fusion channel of mR ×mR, and, hence,
a loop γB can close on an LR loop. Putting it all together,
we find

ZjψiðβxR; βzBÞ ¼ Z0;RZ0;B

X
LR

X
γB

tanhðβzBÞjγBj

×

�
tanhðβxRÞffiffiffi

2
p

�jLRj
2CLR ; ðC20Þ

where
P

“closed”γB is a sum over all loop configurations in
the triangular blue sublattice that either are closed or end up
on a LR loop. These correspond to eB anyons lying on a
closed LR loop. As a next step, we can add Abelian Z errors
on the remaining (green) sublattice. A similar calculation to
the one above leads to the classical partition function

ZjψiðβxR; βzB; βzGÞ ¼ Z0;RZ0;BZ0;G

X
LR

X
γB

X
γG

σLR
ðγB; γGÞ tanhðβzBÞjγBj tanhðβzGÞjγGj

�
tanhðβxRÞffiffiffi

2
p

�jLRj
2CLR ; ðC21Þ

where now both γB and γG are loop configurations that can
either be closed or end up on an LR loop configuration on
the blue and green sublattices, respectively. Moreover,
unlike for vanishing βzG, there is an additional sign con-
tribution σLR

ðγB; γGÞ which comes from evaluating a
weight analogous to that in Eq. (C18) for every connected
component γ of LR, which now includes both Z as well as Z
insertions. For a given γB, γG, and LR, this sign is then
given by

σLR
ðγB; γGÞ ¼ sgn

" Y
lR ∈LR

trðZHZHZZ � � �HZHZÞ
#
;

ðC22Þ

where every nonvanishing factor contains in total an even
number of Z and Z insertions. However, as explained in the
main text, a closed expression for this sign is not necessary
to characterize the phase diagram of the deformed wave
function. Moreover, notice that by construction an H needs
to appear in between insertions of different color, as they
lie on different sublattices. The analogous result for the
decohered mixed state reads

tr½ρðrxR; rzB; rzGÞ2� ∝
X
LR

X
γB

X
γG

ðrzBÞjγBjðrzGÞjγGj

×

�
rxR
2

�jLRj
4CLR ; ðC23Þ

i.e., three coupled OðNÞ loop models with N ¼ 1, 4.

b. Only non-Abelian errors on different sublattices

We now consider the scenario of two non-Abelian errors
acting on different sublattices (e.g., red and blue):

jψðβxR; βxBÞi ¼ e
βxR=2
P

r∈RR
Xre

βxB=2
P

b∈RB
Xb jD4i: ðC24Þ

In this case, the classical partition function reads

ZjψiðβxR; βzBÞ ¼ Z0;RZ0;B

X
LR

X
LB

tanhðβxRÞjLRj

× tanhðβxBÞjLBjhD4j
Y
r∈LR

Xr

Y
b∈LB

XbjD4i;

ðC25Þ

FIG. 15. Example of the computation of the weight in Eq. (C18).
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where we have used the fact that only closed-loop con-
figurations LR and LB in either the red or blue sublattices,
respectively, have nonvanishing contributions. Nonethe-
less, we still need to evaluate

WðLR; LBÞ ¼ hD4j
Y
r∈LR

Xr

Y
b∈LB

XbjD4i: ðC26Þ

To do so, we notice that products of X’s around a closed red
(blue) loop can be written as a product of six-body
operators X⊗6 acting on the vertices of stars ✡ and lying
within the loop. Hence, we can follow the same approach
shown at the end of Appendix C 1, map jD4i to a Z3

2 SPT
defined on a triangular lattice, and finally apply the CCZ
disentangling transformation in Appendix B 3. One then
finds

WðLR; LBÞ ¼ hþjCZLR
CZLB

jþi; ðC27Þ

similar to the result in Appendix C 1, where CZLR
is

defined as the product of two-qubit CZ gates along the
loop configuration LR. However, unlike in that section, the
weight includes two different loops LR and LB which can
now overlap as shown in Fig. 12. Hence, we should rather
consider the global loop configuration LR ⊕ LB given by
the union. Let us denote by l a connected component of
LR ⊕ LB lying on the intertwined red and blue honeycomb
lattices as in Fig. 12. Then, WðLR; LBÞ ¼

Q
l∈LR⊕LB

Wl,
with Wl given by

Wl ¼ 1

2jlj−jVj
tr

 Y
e∈l

CZe

!
¼ 2jVjffiffiffi

2
p jlj tr

 Y
e∈l

He

!
; ðC28Þ

where jVðlÞj is the number of vertices of the resulting
planar graph drawn by l (namely, vertices where LR and
LB intersect). The difference to the calculation for a single
type of error is that now l is a closed-loop configuration on
the intersection of two honeycomb lattices. However, we
can then use the fact that, on every connected component l,
only an even number of Hadamards can appear between
intersections of two loops and, hence, can be paired up,
resulting in a factor of 2 for every (colorless) connected
component. Hence, we find

Wl ¼ 2jVðlÞjþ1ffiffiffi
2

p jlj ¼ 2jVðlÞjþ1ffiffiffi
2

p jlj ; ðC29Þ

where we have used that for a planar graph Euler’s
theorem applies together with the fact that the number
of vertices is twice the number of edges, leading to the
relation jVðlÞj þ 1 ¼ jFðlÞj − 1≡ Cl, with Cl the num-
ber of loops or also called cyclomatic number, namely, the
minimum number of edges that must be removed from l to

break all its cycles, making it into a tree. In the example in
Fig. 12, CLR⊕LB

¼ 4.

APPENDIX D: STAT-MECH FORMULATION
OF trðρnÞ FOR NON-ABELIAN NOISE

1. Coupled O(2) loop model representation

Let us consider the decohered density matrix

ρ¼ ð1−pÞjRRj
X
E

tjEj
 Y

r∈E

Xr

!
jD4ihD4j

 Y
r∈E

Xr

!
; ðD1Þ

appearing as a result of applying an X Pauli channel on the
sublattice RR. The goal of this appendix is to compute
trðρnÞ for any n and provide representation in terms of a
local stat-mech model. Here, t≡ ½pR=ð1 − pRÞ�, and E is a
collection of sites in RR. To compute trðρnÞ, we need to
evaluate the overlaps hD4j

Q
r∈E⊕E0 XrjD4i that we already

encountered in the main text to give

hD4j
Y

r∈E⊕E0
jD4i ¼ fðE ⊕ E0Þ≡ 2CðE⊕E0Þffiffiffi

2
p jE⊕E0j ; ðD2Þ

when E ⊕ E0 is a contractible closed-loop configuration
and zero otherwise. To lighten the notation, let us denote
jEi ¼Qr∈E XrjD4i. Then, the nth power of ρ reads

ρn ¼ ð1 − pÞnjRRj
X

fEðsÞgns¼1

Yn
s¼1

tjEðsÞjjEðsÞihEðsÞj: ðD3Þ

From here, we can compute any moment trðρnÞ, which
requires one to evaluate the overlaps hEðsÞjEðsþ1Þi with
Eðnþ1Þ ¼ Eð1Þ. This explicitly shows that each pair of layers
contribute with a topological weight that relates to the
quantum dimension dmR

¼ 2 of mR. From here, we find

trðρnÞ ¼ ð1−pÞnjRRj
X0

fEðsÞgns¼1

Yn
s¼1

tjEðsÞjYn
s¼1

f
�
EðsÞ ⊕ Eðsþ1Þ�;

ðD4Þ

where the sum over EðsÞ is constrained to those for which
EðsÞ ⊕ Eðsþ1Þ forms a closed-loop configuration. Notice
that this condition implies that all combinations EðsÞ ⊕
Eðs0Þ for any s; s0 ¼ 1;…; n correspond to a contractible
loop. This also implies that any EðsÞ with s > 1 is related to
Eð1Þ via a contractible closed-loop configuration Lðs−1Þ as
EðsÞ ¼ Eð1Þ ⊕ Lðs−1Þ. Hence, Eq. (D4) admits the equiv-
alent representation
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trðρnÞ ¼ ð1 − pÞnjRRj
X
Eð1Þ

tjEð1Þj X
fLðsÞgn−1s¼1

Yn−1
s¼1

tjEð1Þ⊕LðsÞjfðLð1ÞÞ
 Yn−2

s¼1

f
�
LðsÞ ⊕ Lðsþ1Þ�!fðLðn−1ÞÞ: ðD5Þ

2. Local spin model representation

For convenience, we start from the “ungauged” representation of the channel as in Sec. VI:

EX
i;jðρ0Þ ¼ ð1 − pRÞρ0 þ pRĥijρ0ĥij where ĥij ¼ ZiZj

fCZij ðD6Þ

and where the initial state is a trivial product state jψ0ihψ0j with jψ0i ¼ jþijþ̃ijþ̃i.
Hence, up to an irrelevant prefactor, we have

trðρnÞ ¼
X

fEðsÞgns¼1

tjEð1ÞjþjEð2Þjþ���þjEðnÞjhψ0j
Y

hiji∈Eð1Þ⊕Eð2Þ
ĥijjψ0ihψ0j

Y
hiji∈Eð2Þ⊕Eð3Þ

ĥijjψ0i � � � hψ0j
Y

hiji∈EðnÞ⊕Eð1Þ
ĥijjψ0i ðD7Þ

with t ¼ ½pR=ð1 − pRÞ�. Since jψ0i is a superposition of all classical states, we can replace the expectation values by a sum
over all classical hðsÞij ¼ σðsÞi σðsÞj

fCZðsÞ
ij for each of the s ¼ 1; 2;…; n expectation values, namely,

hψ0j
Y

hiji∈Es⊕Esþ1

ĥijjψ0i →
X
fσðsÞj g

X
fσ̃ðsÞj g

Y
hiji∈Es⊕Esþ1

hðsÞij ðD8Þ

with Enþ1 ¼ Eð1Þ. This gives the following classical stat-mech model:

trðρnÞ ¼
X

fσðsÞj gns¼1

X
fσ̃ðsÞj gns¼1

X
fEðsÞgns¼1

tjEð1ÞjþjEð2Þjþ���þjEðnÞj Y
hiji∈Eð1Þ⊕Eð2Þ

hð1Þij ×
Y

hiji∈Eð2Þ⊕Eð3Þ
hð2Þij × � � � ×

Y
hiji∈EðnÞ⊕Eð1Þ

hðnÞij ðD9Þ

¼
X

fσðsÞj gns¼1

X
fσ̃ðsÞj gns¼1

X
fEðsÞgns¼1

Y
hiji∈Eð1Þ

thðnÞij hð1Þij ×
Y

hiji∈Eð2Þ
thð1Þij h

ð2Þ
ij × � � � ×

Y
hiji∈EðnÞ

thðn−1Þij hðnÞij ðD10Þ

¼
X

fσðsÞj gns¼1

X
fσ̃ðsÞj gns¼1

Y
hi;ji⎔

Yn
s¼1

ð1þ thðsÞij h
ðsþ1Þ
ij Þ ∝

X
fσðsÞj gns¼1

X
fσ̃ðsÞj gns¼1

exp

 
β
X
hi;ji⎔

Xn
s¼1

hðsÞij h
ðsþ1Þ
ij

!
; ðD11Þ

where tanhðβÞ ¼ t. In the second step, we have used thatY
hiji∈EðsÞ⊕Eðsþ1Þ

hðsÞij ¼
Y

hiji∈EðsÞ
hðsÞij

Y
hiji∈Eðsþ1Þ

hðsÞij : ðD12Þ

This derives Eq. (49) in the main text. We note that tracing out the σ variables in Eq. (D9) would directly rederive the loop
model representation in Eq. (D4), thereby establishing a direct link between these two equivalent formulations.

a. Alternative spin model

One can reduce the number of Ising spins σðsÞi . Note that if we flip all replicas σðsÞi → −σðsÞi for a fixed index i, the model is

symmetric. This means that, without loss of generality, we can fix the σ spins on the last layer: σðnÞi ¼ 1 (up to an irrelevant
prefactor of the partition function). There are now n − 1 σ spins remaining. It is convenient to introduce a change of
variables:

τð1Þi ¼ σð1Þi σð2Þi ; τð2Þi ¼ σð2Þi σð3Þi ;…; τðn−2Þi ¼ σðn−2Þi σðn−1Þi ; τðn−1Þi ¼ σðn−1Þi : ðD13Þ

Note that this implies
Q

n−1
s¼1 τ

ðsÞ
i ¼ σð1Þi ¼ σðnÞi σð1Þi . In conclusion, we arrive at
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trðρnÞ ¼
X

fτðsÞj gn−1s¼1

X
fσ̃ðs−1=2Þj gns¼1

exp

 
β
X
hi;ji⎔

"Xn−1
s¼1

hðsÞi;j þ
Yn−1
s¼1

hðsÞi;j

#!
;

ðD14Þ

where each local term for s ¼ 1;…; n − 1 is given by

hðsÞi;j ¼ τðsÞi τðsÞj
fCZðs−1=2Þ

ij
fCZðsþ1=2Þ

ij ; ðD15Þ

here, we have labeled thee· spins by a half-integer index to
emphasize that we can think of them as living in between
the τ-spin layers. Note that this formulation closely
resembles the structure found for the toric code in
Ref. [6]: n − 1 terms and a last term involving all replicas.
In fact, one can recover the same result by setting CZ → 1.

APPENDIX E: QUANTUM FIDELITY

The quantum fidelity between two density matrices ρ
and σ is defined as

Fðρ; σÞ≡ ðtr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ
ffiffiffi
ρ

pq
Þ2 ðE1Þ

and quantifies how distinguishable these density matrices
are. Sometimes, F →

ffiffiffiffi
F

p
is also used as a definition of

quantum fidelity. For example, when ρ ¼ jψρihψρj and
σ ¼ jψσihψσj are projectors on normalized pure states, then
the quantum fidelity agrees with the overlap

Fðρ; σÞ ¼ jhψρjψσij2: ðE2Þ

This vanishes when jψρi is orthogonal to jψσi.
Let us now consider the two initial states jD4i andX jD4i

and apply EX at maximum error rate pR ¼ 1=2, such that
ρ ¼ EXðjD4ihD4jÞ and σ ¼ EXðX jD4ihD4jXÞ. Using the
fact that EX can be written as a random projector channel as
in Eq. (53), we denote

jηi ¼
Y

r∈RR

1

2
ð1þ ηrXrÞjD4i; ðE3Þ

jX ; ηi ¼
Y

r∈RR

1

2
ð1þ ηrXrÞX jD4i: ðE4Þ

Then,

ρ ¼
X
fηg

jηihηj; σ ¼
X
fηg

jX ; ηihX ; ηj; ðE5Þ

where hηjη0i ¼ δη;η0 hηjηi due to the orthogonality of the
projectors P�;j. Hence,

ffiffiffi
ρ

p ¼
X
fηg

jηihηjffiffiffiffiffiffiffiffiffiffihηjηip ; ðE6Þ

and we, thus, have

ffiffiffi
ρ

p
σ
ffiffiffi
ρ

p ¼
X
fηg

jhηjX ; ηij2
hηjηi jηihηj; ðE7Þ

which implies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ
ffiffiffi
ρ

pq
¼
X
fηg

jhηjX ; ηij
hηjηi jηihηj: ðE8Þ

One then finds that the (square-root) fidelity equals the
average overlap

F0ðρ; σÞ ¼
X
fηg

jhηjX ; ηij ¼
X
fηg

PðηÞ jhηjX ; ηij
hηjηi ðE9Þ

with

PðηÞ ¼ hηjηi ¼ 1

4jRRj
X
LR

 Y
e∈LR

ηeffiffiffi
2

p
!
2CLR

∝
1

2
½ZðηÞ − Z−ðηÞ� ðE10Þ

with

ZðηÞ ¼
X
fσ;σ̃g

Y
hi;ji

�
1þ ηijσiσjfCZij

�
; ðE11Þ

agreeing with the partition function of the disorder O(2)
loop model, and Z−ðηÞ a partition function taking the same
form but with a line of flipped antiferromagnetic bonds
along a noncontractible loop C perpendicular to X . On the
other hand, the overlap hηjX ; ηi ¼ hηjX jηi corresponds to
a similar partition function but constrained to include an
odd number of noncontractible loops on each configuration
LR. This constraint can be naturally accounted for on the
local-stat mech model in terms of Ising variables by writing

jhηjX jηij ¼ 1

2
jZðηÞ − Z−ðηÞj: ðE12Þ

Indeed, the difference ZðηÞ − Z−ðηÞ vanishes whenever an
even number of noncontractible closed loops intersects this
defect line. Hence, the fidelity becomes
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F0ðρ; σÞ ¼ 1

2

X
fηg

PðηÞ jZðηÞ − Z−ðηÞj
ZðηÞ þ Z−ðηÞ

¼ 1

2

X
fηg

PðηÞ j1 − e−ΔFC j
1þ e−ΔFC

ðE13Þ

as stated in the main text, with e−ΔFC ¼ f½Z−ðηÞ�=½ZðηÞ�g.

APPENDIX F: CONSISTENT FIELD THEORY

A consistent field theory description characterizing the
phase diagrams in Fig. 6(b) is given by

H ¼ 1

2π

	
Kð∂xθÞ2 þ

1

4K
ð∂xφÞ2



− g cosð8θÞ − λ cosðφÞ

− Jσg sinð2θÞ − Jσb cosð2θÞ −mεg −mεb; ðF1Þ

when βzG ¼ βzB. Here, J ≥ 0; λ and m can take both posi-
tive and negative values; and finally σg, σb and εg, εb,
respectively, correspond to the order and energy fields
for the Ising CFT [175,176]. The motivation to include
these new Ising variables is the following: If βzB is large,
cosð2θb − 2θb0 Þ tries to develop long-range order in
cosð2θbÞ ¼ �1. If we think of the four values that θb
can take (namely, θb ∈ f0; π=2; π; 3π=2g), this implies the
following two patterns:

Hence, we expect a type of “nematic” order for large βzB,
where either the system spontaneously chooses either the
horizontal or vertical axis. Note that this nematic ordering
would indeed be Ising-like: It would break D4 down to a
remaining Z2 × Z2, which means only one Z2 is sponta-
neously broken. That is consistent with the solvable limit
where βxR ¼ βzG ¼ 0, because we already know that βzB by
itself leads to an Ising transition. A similar reasoning
applies when βzG is large.
For the green sublattice, the Z2 Ising symmetry is given

by S, which acts as S∶ σg → −σg and sinð2θÞ → − sinð2θÞ.
For the blue sublattice, this corresponds to RS, which
similarly acts on σb and cosð2θÞ. The corresponding phase
diagram for βzG ¼ 0 is shown in Fig. 6(a). Moreover, under
M, σg and σb are exchanged, and sinð2θÞ ↔ cosð2θÞ.
When instead βzG ≠ βzB, this field theory includes an addi-
tional potential term cosð4θÞ and the parameters J and m
can take a different value on each sublattice, namely, J →
JG; JB and similarly m → mG;mB. Moreover, since the
condensation of cosð2θÞ and sinð2θÞ gives rise to the Ising

transition that we found in the previous section when tuning
βzG ¼ βzB, we expect that the mass of each species of Ising
variables is controlled by mG ∼ βzG, mB ∼ βzB. Once the
system undergoes the Ising transition indicated with a
horizontal black line in the lower right corner in Fig. 6(b), one
can replace σb; σg → const, and, hence, the terms cosð2θÞ
and sinð2θÞ are effectively added to the Hamiltonian for the
compact boson. Then, WeB (and also WeG when βzG ¼ βzB)
picks up a finite value, leading to the trivial (toric code) phase
in the upper right in Fig. 6(a) [Fig. 6(b)]. At this point, cosðθÞ
has also acquired a finite value.
Hence, once the system undergoes the Ising transi-

tion σb; σg → const, the terms cosð2θÞ and sinð2θÞ become
relevant perturbations for the compact boson Hamiltonian,
pinning the value of θ. Upon minimizing − sinð2θÞ−
cosð2θÞ, one finds that the minimum is attained for
θ ¼ π=8, π þ π=8, right in between the possible values
that θg and θb can take and along the symmetry axis on
which the M symmetry is defined below Eq. (35). Given
these constraints, one of the symmetry-breaking patterns
consistent with this minimization is given by

APPENDIX G: NUMERICAL SIMULATION
USING MONTE CARLO

In this appendix, we provide details about the
Monte Carlo simulations that we use to obtain the numeri-
cal results shown in Figs. 7–9 when considering pure wave-
function deformations and Fig. 11 when dealing with the
decohered mixed states characterized by the purity. To
simplify the numerical implementation, we coordinate each
honeycomb layer with a brick wall structure shown below:

We take even linear system sizes such that we can fix
periodic boundary conditions and take the number of sites
in the horizontal directionN x doubled of that in the vertical
one N y, i.e., N x ¼ 2N y. For the characterization of the
phase diagrams in Figs. 7, 8, and 11, we take N y ¼ 40,
while N y ¼ 260 in the simulations in Fig. 9.
To address the deformed pure wave-function scenario,

we consider a bilayer system composed of two stacked
honeycomb layers as shown in Fig. 4(a). No tilde σj ¼ �1

spins lie on the upper layer, while tilde spins σ̃j lie on the
lower one. Moreover, we refer to the two honeycomb
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sublattices on each layer as green G and B. To numerically
tackle this problem, we consider two equivalent formula-
tions. On the one hand, we utilize the Hamiltonian as
presented in Eq. (69) in the main text, to evaluate the order
parameterWmR

. Second, after performing the unitary trans-
formation σ̃j → σjσ̃j; σj → σj explained above Eq. (36),
an equivalent presentation of the Hamiltonian reads
(including the temperatures)

Hjψi ¼ −
βxR
2

X
hi;ji⎔

�
σiσj þ σiσ̃j þ σ̃iσj − σ̃iσ̃j

�
− βzG

X
⟪g;g0⟫

σgσ̃gσg0 σ̃g0 − βzB
X
⟪b;b0⟫

σbσ̃bσb0 σ̃b0 ; ðG1Þ

that we observe leads to less fluctuation numerical results
for the order parameters WeG and WeB .
The algorithm then runs as follows:
(1) Fix parameters βxR, β

z
G, and βzB.

(2) Initialize random configuration of �1 per site on the
bilayer system.

(3) Perform eqSteps ¼ 7 × 104 number of Metropolis
steps—each of them involving 2 ×N x ×N y single-
site updates—with the acceptance ratio given by the
energy difference with respect to the energy function
Eq. (G1). Notice that we assume that single-site
updates lead to nonreducible dynamics with the
unique stationary distribution given by e−Hjψi.

(4) Compute average quantities by performing addi-
tional mcSteps ¼ 7 × 104 Metropolis steps.

When dealing with the decohered density matrix, as
characterized by the purity, we instead use the representa-
tion of the stat-mech model given by Eq. (83). Here, we use
eqSteps ¼ 6 × 104 and mcSteps ¼ 7 × 104.
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