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We present a biased atomic qubit, universally implementable across all atomic platforms, encoded as a
“spin cat” within ground state Zeeman levels. The key characteristic of our configuration is the coupling of
the ground state spin manifold of size Fg ≫ 1 to an excited Zeeman spin manifold of size Fe ¼ Fg − 1

using light. This coupling results in eigenstates of the driven atom that include exactly two dark states in the
ground state manifold, which are decoupled from light and immune to spontaneous emission from the
excited states. These dark states constitute the spin cat, leading to the designation “dark spin cat.” We
demonstrate that under strong Rabi drive and for large Fg, the dark spin cat is autonomously stabilized
against common noise sources and encodes a qubit with significantly biased noise. Specifically, the bit-flip
error rate decreases exponentially with Fg relative to the dephasing rate. We provide an analysis of dark
spin cats and their robustness to noise, and we discuss bias-preserving single qubit and entangling gates,
exemplified on a Rydberg tweezer platform.
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Development of quantum computing hardware faces the
requirements of scalability to large qubit numbers, while
maintaining high levels of control and low error rates. To
protect qubits from errors generated by imprecise control
and environmental interactions, fault-tolerant quantum
computing employs redundant encoding in logical qubits
built from many physical qubits to detect and correct errors
[1–6]. However, the large resource cost of fault-tolerant
quantum computing poses a significant challenge for
present quantum hardware. To mitigate this cost, one
approach is to find different hardware-level encodings to
suppress physical errors to higher order [7–9], introduce
error bias [10–15], or detect leakage errors [16–18].
Encodings with strong error bias are particularly alluring,
as they enable efficient quantum error correction (QEC)
schemes with high permissible threshold for logical
errors [12,19,20].
In light of remarkable advances with atomic quantum

computing, including scaling to a large qubit count

FIG. 1. Cat code: (a) phase space illustration of bosonic
coherent states j � αi, with displacement jαj ≫ 1, realizing a
cat code, with, e.g., photons in a cavity. (b) Wigner distribution of
spin coherent states realizing a biased spin-cat code for Fg ≫ 1.
(c) Error rates due to colored noise with correlation time 1=λ,
relative to noise strength, are highly biased (bit-flip error
decreases exponentially with Fg, while dephasing error only
increases polynomially) and suppressed by increasing the laser
Rabi frequency Ω. (d) Spin-cat codes are realizable with atomic
platforms, (e) by coupling Zeeman-split spin manifolds with
circularly polarized light Ωq (q ¼ �1). The spin coherent states
of (b) are DSs in the Fg manifold and distributed balanced over
the magnetic sublevels m (mixed blue/yellow coloring), giving
rise to a biased error model.
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[21–25], high fidelity gates [26–36], and early fault-tolerant
quantum computation [37,38], we describe below a robust
and biased qubit implementable across all atomic plat-
forms. In analogy to the bosonic cat code, we consider
encoding a qubit as a “spin cat” in a Zeeman Fg manifold
jFg;mi, with m ¼ −Fg;…;þFg, e.g., in a long-lived
(hyperfine) spin manifold of states (see Fig. 1). While
Ref. [39] discussed spin-cat encoding for “bare” Zeeman
levels, the defining feature of the present setup is that we
couple the ground state manifold Fg to an excited manifold
Fe ¼ Fg − 1 with light so that the eigenstates of the driven
atom contain exactly two dark states (DSs) in the Fg

manifold decoupled from light and unaffected by sponta-
neous emission from the excited states. We identify these
DSs with the spin cat, hence the name “dark spin cat.” In
contrast to Refs. [40–44], we are interested in the limit of
large Fg. For strong Rabi drive and large Fg, the dark spin
cat will be shown to be robust and autonomously stabilized
against typical noise sources and encode a qubit with
highly biased noise. In particular, the bit-flip error rate is
suppressed exponentially in Fg as compared to the dephas-
ing rate; Fig. 1(c) shows a characteristic example of qubit
robustness to “colored” noise. Below we discuss the unique
noise resilience of dark spin cats, bias-preserving (BP)
single qubit gates, and an illustration of entangling gates for
the Rydberg (Ry) tweezer platform.
System—The atomic system we have in mind is illus-

trated in Figs. 1(d) and 1(e). We consider two hyperfine
(HF) manifolds jFg;mi, jFe;mi with an overall energy
splitting ωeg, dipole coupled by a laser or microwave
radiation [45]. A static magnetic field B (defining
the quantization axis) generates a Zeeman splitting
δg;e ¼ gg;eμBjBj, where gg;e denote the manifolds’ Landé
g factors and μB the Bohr magneton. We consider atoms
with a large (nuclear) spin (Fg;e ≫ 1) such as alkali or
alkaline-Earth atoms or ions, and light fields with polari-
zation q∈ f0;�1g, oscillation frequency ωq, and Rabi
frequency Ωq fulfilling the Raman resonance criteria
ωq − ωq0 ¼ δgðq − q0Þ.

In a rotating frame defined by the transforma-
tion Û ¼ expfi½ω0P̂e þ δgðF̂e;z þ F̂g;zÞ�tg, the system
Hamiltonian is

ĤDS=ℏ ¼ −ΔP̂e − δF̂e;z þ
1

2

X
q¼0;�1

ðΩqĈq þ H:c:Þ: ð1Þ

Here F̂gðeÞ;i, with i∈ fx; y; zg, are spin operators, P̂e ¼P
m jFe;mihFe;mj, while Δ ¼ ω0 − ωeg denotes the over-

all detuning from the Fe states, and δ ¼ δg − δe the differ-
ential Zeeman splitting. The light coupling is described
by the operator Ĉq ¼

P
m CFe;mþq

Fg;m;1;qjFe;mþ qihFg;mj, with
CFe;mþq
Fg;m;1;q the Clebsch-Gordan (CG) coefficients incorporating

dipole selection rules; see Supplemental Material [46].
Within the Wigner-Weisskopf approximation, spontaneous
emission [47] from the Fe states with rate γ can be included
as −Δ → −Δ − iγ=2.
Dark states—For the case of Fe ¼ Fg − 1 there are

exactly two DSs, labeled jDS1;2i, fulfilling ĤDSjDS1;2i¼0

[48]. The two DSs are fully located in the Fg manifold, thus
immune to spontaneous emission, and are below identi-
fied as our qubit states. The DSs are up to an orthonorm-
alization given by two spin coherent states (SCSs)
jθ1;2;φ1;2i¼ expð−iφ1;2F̂g;zÞexpð−iθ1;2F̂g;yÞjFg;Fgi. The
pairs of angles ðθ1;2;φ1;2Þ are determined by the two
relative phases and amplitudes of the Rabi frequencies
Ωq. The two SCS are orthogonal, i.e., on opposite sides of
the Bloch sphere ðθ2;φ2Þ ¼ ðπ − θ1; π þ φ1Þ, if the Rabi
frequency’s Cartesian components Ωx¼ðΩ−1−Ωþ1Þ= ffiffiffi

2
p

,
Ωy ¼ iðΩ−1 þΩþ1Þ= ffiffiffi

2
p

and Ωz ¼ Ω0 are up to a global
phase real valued in the rotating frame defined by Û. In this
case, θ1 and φ1 are given by the polar and azimuthal angle
of Ω ¼ ðΩx;Ωy;ΩzÞ, respectively; see Fig. 2(a) and
Supplemental Material [46].
We now identify our dark spin-cat qubit with two SCSs

pointing along the �x axis,

j0̃i≡ e−i
π
2
F̂g;y jFg; Fgi ¼ jπ=2; 0i;

j1̃i≡ e−i
π
2
F̂g;y jFg;−Fgi ¼ e−iπFg jπ=2; πi; ð2Þ

see Fig. 1(b). The qubit states j0̃i and j1̃i are DSs when
Ωy;Ωz ¼ 0 and are identical to the maximally stretched
spin states along the x axis. The DS subspace is unaffected
by laser intensity and phase fluctuations when the drives
originate from the same source. States and operators labeled
by e· are associated with the logical qubit states hereafter.
A well-chosen adiabatic variation of laser parameters

enables transporting the qubit states along trajectories on
the Bloch sphere, with the two states always remaining
antipodal. This allows for the implementation of a set of
gates required for universal fault-tolerant quantum compu-
tation [11], where any errors will predominantly lead to

FIG. 2. (a) Wigner distribution of orthogonal dark spin-cat
states on the Bloch sphere and associated light coupling
scheme. (b) Dark spin-cat states on the equatorial plane and
visualization of adiabatic single qubit gate trajectories. The
associated parameter variations are displayed in panel (c), with
T denoting the gate time.
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dephasing (as discussed in detail below). Bit-flip errors
are instead exponentially suppressed by the spin length Fg,
if the states are antipodal. In Figs. 2(b) and 2(c) we
show the time-dependent ΩðtÞ sweeps and the correspond-
ing Fg Bloch sphere trajectories for a rotation around
the z̃ axis Ûz̃ðαÞ ¼ expð−iσ̂z̃α=2Þ by an angle α, and
a π rotation around the x̃ axis Ûx̃ ¼ expð−iσ̂x̃π=2Þ.
Here, σ̂x̃ ¼ j1̃ih0̃j þ H:c:, σ̂ỹ ¼ −iðj1̃ih0̃j − H:c:Þ and
σ̂z̃ ¼ j1̃ih1̃j − j0̃ih0̃j are the dark spin-cat Pauli operators;
thus, x̃; ỹ, and z̃ refer to the logical qubit Bloch sphere axes.
The implementation of Ûz̃ðαÞ is based on holonomic
quantum processes [49–52], with the enclosed area of
the loop on the Bloch sphere determining the angle α.
Error analysis—Dominant external sources of noise for

our system include fluctuating magnetic (electric) fields,
laser intensity and phase fluctuations [53], and nonmagic
trapping conditions for neutral atom quantum processors
[54,55]. These sources of errors are described in the
laboratory frame by low powers of spin operatorsQ

i¼x;y;zðF̂g;iÞni and typically
P

i ni ≤ 2 [39]. When trans-

formed into the rotating frame defined by Û, any off-
diagonal elements of such noise operators acquire time-
oscillating prefactors with frequency δg and can, hence, be
suppressed by an external magnetic field B ∝ δg [56].
Together with the observation that diabatic effects during
gate operation manifest also as F̂g;z (in a suitably chosen
frame, see Supplemental Material [46]), this leaves longi-
tudinal fields ∼ðF̂g;zÞnz as the main remaining source of
noise in the rotating frame [41]. In the following we show
that colored noise processes coupling to F̂g;z with a strength
and spectral width smaller than jΩj lead to a reduced and
biased error model in the limit Fg ≫ 1. Furthermore, if the
states jFe;mi are subject to spontaneous emission, the dark
spin cat is also autonomously stabilized.
We first analyze the potential for longitudinal field

perturbations (2Fg − nz ≫ 1) to cause bit-flip errors, which
will a priori only occur when the two SCSs are not
perfectly orthogonal, as, e.g., due to imperfect laser control.
For the case of a small error ϵ in the angles θ1;2;φ1;2, the
off-diagonal matrix elements of perturbations ðF̂g;zÞnz are
exponentially suppressed in Fg,

jhθ1;φ1jðF̂g;zÞnz jθ2;φ2ij

¼ jϵj2Fg−nz 2−2Fg
ð2FgÞ!

ð2Fg−nzÞ!
jsinðθ1ÞjkþOðFnz

g ϵ2Fgþ1−nzÞ:

ð3Þ

Here, k ¼ nz for ðθ2;φ2Þ ¼ ðπ − θ1 þ ϵ; π þ φ1Þ and
k ¼ 2Fg for ðθ2;φ2Þ ¼ ðπ − θ1; π þ φ1 þ ϵÞ. This expo-
nential suppression of bit-flip transitions is the basic
building block of the biased error model.

Moreover, keeping the SCSs close to the equatorial plane
makes them also robust against dephasing. This is evident
from the differential of the diagonal matrix elements in the
logical qubit subspace [41],

hθ1;φ1jðF̂g;zÞnz jθ1;φ1i − hθ2;φ2jðF̂g;zÞnz jθ2;φ2i
¼ 2ðFg cos θ1Þnz þ cos θ1OðFnz−1

g Þ; ð4Þ

for orthogonal SCS ðθ2;φ2Þ ¼ ðπ − θ1; π þ φ1Þ, which
vanishes for θ1 ¼ π=2.
Autonomous stabilization—Another type of error that

can occur is leakage from the logical qubit space. Such
leakage errors can be converted primarily into dephasing
errors by combining laser driving and spontaneous emis-
sion. It is useful to first consider a frame transformation,
by rotating the quantization axis to that determined by Ω;
see Supplemental Material [46]. In this frame, the laser
drive is linearly polarized, coupling only the interior levels
(jmj < Fg) to the Fe manifold; see Fig. 3(a). In this
eigenbasis, the DSs are the two maximally stretched spin
states of the Fg manifold, separated by 2Fg − 1 pairs of
bright states. Noise processes associated to ðF̂z;gÞnz , with
nz ≪ Fg, couple the DSs to the interior bright states. This
leakage is determined by the noise strength relative to the

FIG. 3. (a) Autonomous stabilization: laser coupling (Fg ¼ 3)
in the rotated coordinate system with quantization axis
Ω ¼ ðΩx; 0; 0ÞT . Note that Δ ¼ δ ¼ 0 and jFg=e; mxi are the
eigenstates of F̂x;g=e. A noise process F̂z;g couples states jFg;mxi
adjacent in mx. Decay of jFe;mxi is due to the CG coefficients
directed “toward” the closest DS, as illustrated by wavy arrows
indicating the average mx change. (b) Time derivative of the
diagonal elements of the PTM RðtÞ (effective error rates) for
different values of λ=jΩj. The time derivative is taken in the linear
regime tκ=ð2πÞ ∼ 1. This and the remaining panels all share
Δ ¼ δ ¼ 0, jΩj=γ ¼ 2π, Fg ¼ 4, κ ¼ 10−4jΩj, and NX ¼ 3.
Panel (c) displays the error channels for Ûz̃ðα ¼ π=3Þ, and
(d) shows the state jeþi state preparation protocol fidelity for
the same noise parameters as in (c).
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gap from the dark to the relevant bright state and, thus, can
be minimized by increasing jΩj.
Importantly, spontaneous emission, of strength γ, from

the Fe component of the bright states favors decay
processes toward the closest DS due to the associated
CG coefficients [47], effectively driving leaked population
directly back to the qubit state it originated from, con-
verting the error into dephasing. Hence, the combined
action of the laser driving and spontaneous emission is a BP
stabilization process, in analogy to bosonic systems [57].
The timescale of autonomous stabilization is in the limit
jΩj ≫ γ determined by γ=ð2Fg þ 1Þ as discussed in
Supplemental Material [46]. Autonomous stabilization is
particularly suited to broad F ↔ F − 1 laser-cooling tran-
sitions, with F ≫ 1, e.g., the ground state of Nd or
metastable excited states of Dy [58]. Further, the amplitude
error mentioned in [39] can be corrected passively
given that we can engineer specific polarizations of the
emission [59]; see Supplemental Material [46].
Colored noise—We now analyze the robustness of the

dark spin cat subjected to colored Markovian noise
processes XðtÞ, governed by an Ornstein-Uhlenbeck proc-
ess, with correlation time 1=λ and diffusion constant λ2κ=2,
coupling to F̂g;z, e.g., a fluctuating magnetic field. Note, κ is
the noise strength in the white noise limit λ=jΩj → ∞ [60].
Following Miao [61], we directly compute the stochastic
average of the system state ρ̂ðtÞ over all possible noise
trajectories [46,62,63]. The resulting error channel can be
characterized by the Pauli transfer matrix (PTM) [64,65],

Rn;mðtÞ ¼ tr½Ên ρ̂mðtÞ�=2 for ρ̂mð0Þ ¼ Êm; ð5Þ

with Ên ∈ f1̃; σ̂x̃; σ̂ỹ; σ̂z̃g, where 1̃ denotes the qubit sub-
space projector. The diagonal elements of RðtÞ carry
the relevant error channel information [66,67], where
Rx̃;x̃ðtÞ ¼ Rỹ;ỹðtÞ and Rz̃;z̃ðtÞ are associated with the dephas-
ing and bit-flip error, respectively; see Supplemental
Material [46].
In Figs. 1(c) and 3(b) we present the diagonal elements

of RðtÞ for dark spin-cat qubits subjected to colored noise,
exhibiting a suppression of both bit-flip and dephasing
errors by increasing laser coupling strength. Bit-flip error
rates decrease exponentially in Fg, while phase-flip
errors increase only polynomially. Note, in Fig. 1(c), the
same parameters as in Fig. 3(b) are used. Typical values
of Ω for electric dipole transitions are several hundred
MHz, for which we observe a severe reduction of
effective noise rates, even for very strong noise with
κ; λ ∼Oð10–100 kHzÞ. The overall strength of the error
rates is determined by the power spectral density at the
gap frequency ∝ jΩj. For λ≳ jΩj, the noise becomes white
and is described by Lindbladian dynamics with jump
operator

ffiffiffi
κ

p
F̂g;z [see Fig. 3(b)], for which we still observe

an exponential bias [46].

Logical operations—We now discuss error channels of
single-qubit gates in the presence of colored noise proc-
esses as discussed above. In Fig. 3(c) we present for Ûz̃ðαÞ
the diagonal elements of RðTÞ adjusted by the inverse
error-free unitary gate. Theworst-case gate infidelity is, due
to the biasedness of the channel 1−Rz̃;z̃ðTÞ≪1−Rx̃;x̃ðTÞ,
given by 1 − F ¼ ½1 − Rx̃;x̃ðTÞ�=2 [68]. At small T, the
gate fidelity is limited by adiabaticity violations, while at
large T the noise XðtÞ is the limiting factor. The former
can be mitigated with counterdiabatic driving techniques
[46,69]. Nevertheless, for jΩj ¼ 2π × 300 MHz, the gate
can be executed as fast as T ¼ 1 μs in a bias preserving
manner, with an infidelity below 10−2. We note that Ûx̃ can
be performed virtually, with perfect fidelity, by swapping
definitions of j0̃i and j1̃i.
Initialization—Preparation of a logical state, such as

jeþi ¼ ðj0̃i þ j1̃iÞ= ffiffiffi
2

p
, can be accomplished by first pre-

paring the qubit in the stretched state jFg;−Fgi (for
Ω−1 > 0) using optical pumping. This state is then adia-
batically converted by first ramping on Ωþ1, akin to a
STIRAP protocol [70] (see Supplemental Material [46]).
The corresponding fidelity, i.e., overlap, is presented
in Fig. 3(d). Measurement can be performed by reversing
the preparation method and subsequently monitoring the
population of jFg;−Fgi.
Entangling gates—A universal set of quantum gates

requires the implementation of an entangling operation,
which we exemplify here for neutral atoms laser excited
to Ry states. We consider dark spin-cat qubits encoded
in the maximally stretched HF manifold of the metastable
3P2 [71] fine structure manifold of fermionic divalent
atoms, such as 171Yb, 173Yb or 87Sr, for which Fg ¼ 5=2;
9=2; 13=2, respectively. Autonomous stabilization is
achieved by coupling to the maximally stretched lowest
3S1 manifold [72].
To harness full advantage of the dark spin cat’s biased

noise structure, BP operations have to be employed. First,
we outline the implementation of a ĈZ gate. For this, the
control and target atom are rotated to SCS pointing along
the z axis enabling selective excitation to a maximally
stretched 3S1 (Fr ¼ Fg − 1) Ry state [73] [see Fig. 4(a)],
which allows for the execution of state-of-the-art ĈZ gates
[33,74,75]. Additionally, neutral atom platforms are ame-
nable to erasure conversion techniques [17,33]. Especially,
3P2 dark spin-cat encoding offers the possibility to pump
leaked population to 1S0 from where it can be detected
[76,77]. For the ĈZ gate, only one of the two qubit states is
Ry excited. Leakage due to spontaneous emission thus
originates predominantly only from one of the qubit states,
enabling high-threshold QEC strategies based on biased
erasure [78]. Further, Ry decay events that return to the
encoded Fg manifold, which cannot be converted to
erasure, do not introduce bit-flip errors due to the
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separation of magnetic quanta and the autonomous stabi-
lization. This is in contrast to the existing protocols [17,78]
where no Pauli error bias exists when the population decays
back to the encoded subspace. Thus, dark spin-cat encoding
naturally realizes biased erasure conversion alongside a
more structured error model, which has the potential to
further enhance the error threshold.
The ĈZ gate, together with 1-qubit Ûz̃ðαzÞ and Ûx̃ðαxÞ

rotations, forms a universal gate set. Detailed information
on Ûx̃ðαxÞ is provided in Supplemental Material [46].
However, other entangling operations like a ĈX (CNOT)
gate implemented in this manner do not preserve Pauli error
bias. The direct execution of BP ĈX and cCCX (Toffoli) gates
is required for a full BP operation set that leads to universal
computing on the logical level [11] and usually results in a
higher threshold compared with the non-BP implementa-
tion of those operations [20,78]. We provide a detailed
protocol for a BP ĈX gate in the following. The imple-
mentation is based on an artificial local magnetic field μF̂z
(μ is the field strength), engineered through light-induced
AC Stark shifts [54,79], exchanging the qubit states of the
target atom. Its action can be made conditional on the state
of the control atom by means of the Ry blockade effect
[80,81]. The target qubit is encoded in SCSs along the
x axis with the stabilization turned off during the gate.
The artificial magnetic field responsible for exchanging the

qubit states is implemented by off-resonantly coupling the
states jFg;mi by two circularly polarised laser fields to
the Ry states mentioned for ĈZ labeled by jFr;mi. The
corresponding Hamiltonian is given by Eq. (1), but with the
replacement e ↔ r, Δ ¼ 0, and not on Raman resonance,
i.e., with couplings Ωq

r Ĉq expðiqΔrÞ; see Fig. 4(a). In
the limit jΩþ1

r j ¼ jΩ−1
r j ≪ jΔrj, the laser coupling gives

rise to an artificial magnetic field with strength
μ ¼ ðjΩq

r j2=4ΔrÞð1=FgÞ½ð2Fg − 1Þ=ð2Fg þ 1Þ� up to sec-
ond order in Ωq

r=Δr.
Similar to the ĈZ gate the control atom is rotated to the z

axis from where state selective Ry excitation is possible
[Fig. 4(a)]. Notably, the transformation to the z axis is
achieved by rotating the SCSs around the y axis, which is in
analogy to Ûx̃ a BP process. If excited, the control atom
shifts the energies of the target atom due to van der Waals
interactions [73], with an interaction shift V ≫ Δr, render-
ing the artificial magnetic field inoperative. The resulting
Hamiltonian reads ĤCX

¼ ð1 − P̂rÞ ⊗ μF̂z;g up to second
order in Ωq

r=Δr and first order in Ωq
r=V, where P̂r denotes

the Ry state projector. The desired entangling gate is then
effected by ĈX ¼ expð−iĤCX

TÞ, where T ∼ π=μ is the gate
time obtained from numerical simulations. Furthermore,
we consider different Ry states or even different species
for the control and target atoms in order to mitigate
crosstalk [46].
In Fig. 4(b) we present the time evolution of the target

atom if the control atom is not Ry excited, demonstrating a
swap of the qubit states. We also analyze a deliberate under-
rotation, inducing leakage from the qubit subspace. This
population can be repumped by turning on the autonomous
stabilization, ĤDS from Eq. (1). Overall, this leads to a bias
preserving gate, even in the presence of over- or under-
rotation errors [see left and middle panel Fig. 4(c)].
In the middle panel of Fig. 4(c) we present dephasing

and bit-flip errors when the control atom is Ry excited. The
bit-flip error is exponentially suppressed in Fg as compared
to the dephasing error. Deviations from exponential sup-
pression for large Fg are due to higher order corrections and
can be reduced by decreasing Ωq

r=Δr. In the right panel of
Fig. 4(c) we show the same errors as a function of the
Rydberg blockade strength V. The overall worst-case gate
infidelity 1 − F ¼ ½1 − Rx̃;x̃ðTÞ�=2 (as discussed above)
can be on the order of 10−3, with Ωq

r ¼ 2π × 3 MHz,
Δr ¼ 2π × 6 MHz resulting in Topt ¼ 8.5 μs requiring
V ∼ 2π ×Oð100 MHzÞ for Fg ¼ 4.
The proposed implementation of a BP ĈX gate comes

at the cost of an increased implementation complexity as
compared to state-of-the-art ĈZ gates. Specifically, com-
parably long gate times can render decay of the Ry excited
control atom relevant, leading to nonbias preserving proc-
esses. However, this decay could, for example, be mitigated
by multiplying the number of control atoms [82] or by

FIG. 4. Entangling gates: (a) ĈZ and ĈX laser coupling
scheme to Ry states for Fg ¼ 3. For the ĈZ gate execution
the target and control atom are encoded along the z axis, while for
the ĈX gate the control atom is encoded along the z axis and the
target atom along the x axis. (b) ĈX: time evolution of the target
atom starting from j0̃i, when the control atom is not Ry excited,
for two different gate times. P̂0̃, P̂1̃, P̂r denote projectors onto j0̃i,
j1̃i and all jFr;mi states, respectively. Here, and in all remaining
panels, Fg ¼ 4, Ωq

r=Δr ¼ 1=2, Ωq
r ¼ 2π × 3 MHz, and δr ¼ 0 if

not stated otherwise. (c) ĈX: diagonal elements of RðTÞ for
different gate times (left), at the optimal gate time Topt

for different Fg (middle) and when the control atom is Ry
excited for different V (right).
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detecting the decay of a control atom using erasure
conversion [33]. A thorough analysis incorporating control
atom decay and its mitigation is presented in the SM [46].
While initial experimental implementations of the BP ĈX
gate would likely struggle to achieve fidelities similar to
existing state-of-the-art ĈZ gates, the additional structure in
the error model in turn would lead to higher error thresholds
[20,78,83]. Investigating this trade-off could be an inter-
esting avenue for further study. Finally, we note that the
approach presented is highly modular, e.g., a cCCX gate can
be constructed by separately exciting two control atoms
instead of one.
Conclusions—We introduced an atomic dark spin-cat

qubit encoding featuring a BP error model and autonomous
stabilization. We provide proof-of-principle gate implemen-
tations on a Ry platform but emphasize that all results can not
only be improved significantly using optimal control tech-
niques or counteradiabatic driving [69,84] but also directly
extended to other platforms such as trapped ions [42]. In
particular, the single qubit control can be extended to trapped
ions and an entangling gate is realizable by rotating the qubits
to the z axis from where the geometric phase entangling
gate [85] is executable; however, we reserve detailed analysis
for future work. The encoding scheme could also benefit
quantum simulations with magnetic atoms 167Er or 161Dy and
heteronuclear molecules 40K87Rb, engineering a closed qubit
subspacewith strong and tunable dipolar interactions [86,87].
Higher order multipole couplings enable the construction
of “multilegged” spin cats, offering the possibility to redun-
dantly encode quantum information in a single atom in order
to toleratemore errorswhile preserving large error bias [8,88].
Overall, spin-cat encodings with biased error models imple-
mented in single atoms could provide a viable platform
enabling resource-efficient quantum error correction codes,
meeting the demanding requirements of fault-tolerant quan-
tum computation.

Note added—During the submission process, we became
aware of several experimental advances closely related to
our protocols, including spin-cat state preparation [89] and
the use of spin-cat states for measurement-free (autono-
mous) error correction against dephasing noise in a single
ion [90,91].
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