
Noninvertible Peccei-Quinn Symmetry and the Massless Quark Solution
to the Strong CP Problem

Clay Córdova,1,2 Sungwoo Hong,3 and Seth Koren 1,4

1Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
2Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois, USA

3Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
4Department of Physics and Astronomy, University of Notre Dame, South Bend, Indiana, USA

(Received 4 April 2024; revised 11 March 2025; accepted 1 May 2025; published 10 July 2025)

We consider theories of gauged quark flavor and identify noninvertible Peccei-Quinn symmetries arising
from fractional instantons when the resulting gauge group has nontrivial global structure. Such symmetries
exist solely because the standard model has the same number of generations as colors, Ng ¼ Nc, which
leads to a massless down-type quark solution to the strong CP problem in an ultraviolet SUð9Þ theory of
quark color-flavor unification. We show how the Cabibbo-Kobayashi-Maskawa flavor structure and weak
CP violation can be generated without upsetting our solution.
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I. INTRODUCTION

It has been 100 years since the birth of quantum physics,
and it is still uncertain how long it will take to reach
maturity. However, for a century, we have known the true
mechanical laws that govern our Universe. What is the
status of our understanding of the fundamental physical
nature of the matter from which we are composed? The
main conclusion is that the standard model of particle
physics is a simple theory that represents the truly remark-
able success of reductionism. It is astounding that we can
understand the structure of the Universe down to distances
of about 10−19 m, and the standard model description
works exceedingly well.
The subleading story is that the structure of the standard

model itself remains mysterious, and physicists have long
been interested in pushing the program of reductionism
even further: Wewish to uncover a theory that explains why
we exist at this point in the standard model’s parameter
space. The SM requires a couple dozen numbers that we
must input, including a variety of angles and some very
large ratios of scales. Beyond general qualitative consid-
erations (cf. Dirac [1]), the structure of quantum field
theory characterizes how difficult it is, in general, to have
an ultraviolet theory that explains the variety of numbers
needed (cf. ’t Hooft [2]), and the SM poses certain
challenges.

The multiplicity of inputs arises mainly from the Yukawa
sector, where three separate generations of matter means
there are many masses and mixing angles. The Yukawa
couplings themselves have the benefit that they are “tech-
nically natural,” which suggests that the question of their
sizes can be solved at small distances. The couplings yu, yd,
and ye (and yν with neutrino masses) are the sole breakings
of the Uð3Þ5 flavor symmetries in three independent
directions, so a spurion analysis tells us that, in the SM,
they evolve with scale proportionally to themselves
δyi ∝ yi. This means we may hope to begin with (some
of) these as exact symmetries and produce the needed sizes
of yukawa couplings at some high scale, without this
solution being disrupted by low-energy physics.
Indeed, in Ref. [3], we focused on the technically natural

but ludicrously small Dirac neutrino Yukawas in the low-
energy SM with right-handed neutrinos, where
yν3=yτ ≲ 10−11, comparing the heaviest charged and neutral
leptons. [4] With only the SM gauge group, the neutrino
Yukawas are spurions for a familiar, invertible symmetry.
However, an analysis of generalized symmetries in the
lepton sector found that the neutrino Yukawas can be
protected by a noninvertible symmetry in lepton flavor
gauge theories like Uð1ÞLμ−Lτ

. This subtle interplay
between the physics of lepton flavor monopoles and
neutrino masses then guided us to a theory that produces
these small numbers and is fully Dirac natural.
We wrote down an ultraviolet SUð3ÞH theory wherein all

global symmetries are either good classical symmetries or
explicitly broken by Oð1Þ numbers like yτ. Then, instanton
effects of the ultraviolet theory break a classical symmetry
and thus naturally produce small Dirac neutrino Yukawas
from a Dirac natural theory yν ∼ yτ expð−8π2=g2HÞ.
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In understanding this model, we effectively began creating
a roadmap of model building using noninvertible sym-
metries by showing how a technically natural, invertible
spurion could be upgraded to a noninvertible spurion and
then given a fully natural origin.
However, the standard model also contains parameters

that do not have the protection of technical naturalness, and
there is one such problem at each mass dimension 0, 2, and
4. Supersymmetry, which could have protected the cos-
mological constant (CC), is broken at a scale of at least
ΛSUSY=ΛCC ≳ TeV=meV ∼ 1015 larger than the energy
scale of the CC, and it presents a major challenge to
understanding the far infrared in our normal framework of
Wilsonian effective field theory. Likewise, the Higgs
mass μ2H†H has no protective symmetry in the SM,
which indicates the danger of the electroweak hierarchy
problem—first realized as the doublet-triplet splitting
problem of grand unification but an important issue more
generally in any UV field theory that introduces additional
scales giving rise to δμ2 ∝ Λ2. Finally, the CP-violating
phase in the strong sector, θ̄, is renormalized by the other
source of quark CP violation, the Cabibbo-Kobayashi-
Maskawa (CKM) phase δCKM. This lack of technical
naturalness signals the strong CP problem.
One may naively wonder if generalized symmetries can

be useful for more serious naturalness problems of the SM
where we cannot rely on the low-energy theory being
technically natural. In this paper, we show that this is
indeed the case: As we will discuss below, the protective
symmetries of the strong CP problem are quite subtle in the
SM; we find that a noninvertible symmetry can shed light
on a UVmodel that is fully Dirac natural, and the smallness
of the strong CP angle is explained. Admittedly, strong CP
is special, and the strong phase is closely related to the
technically natural parameters of the Yukawa sector; thus,
we do not wish to give the impression that solving the big,
dimensionful hierarchy problems is close at hand. Yet it is
intriguing that we can go further than one might expect, and
we do not know where else generalized symmetries may
lead us. For other applications of generalized global
symmetries in particle physics, see, e.g., Refs. [3,5–31];
for recent reviews, see Refs. [32–37].
In this work, we examine the generalized symmetries of

the quark sector and identify a noninvertible symmetry in
the standard model when extended by a gauged horizontal
symmetry of quarks that has nontrivial global structure.
This process will require a more sophisticated generalized
symmetry than our earlier work, where the noninvertible
symmetry structure involved a Uð1Þð1Þ magnetic 1-form
symmetry and could be located from familiar triangle
anomaly computations. Here, the noninvertible symmetry

will connect a discrete Zð1Þ
3 magnetic 1-form symmetry

with a 0-form symmetry of quarks, and uncovering this
structure will require us to examine our field theory on
S2 × S2 to find the relevant fractional instantons. The

payoff will be discovering a generalized symmetry that
exists specifically because the SM bears out Nc ¼ Ng, with
the same number of colors as generations.
After finding this noninvertible symmetry and identifying

the spurions of the symmetry structure, our understanding of
the breaking of generalized symmetries then provides us as
infrared effective field theorists with additional model-
building guidance. In particular, we learn that an ultraviolet
theory that includes Z3 color-flavor monopoles necessarily
breaks this noninvertible symmetry explicitly and thus
generates nonvanishing values of the spurions from non-
perturbative gauge theory effects. Having identified the
down-type Yukawas as spurions for such a symmetry, this
analysis tells us that noninvertible symmetry breaking in an
ultraviolet theory containing these monopoles can poten-
tially revive a “massless down-type quark” solution to the
strong CP problem using small instantons. We are then
pointed to a particularly simple theory of SUð9Þ color-flavor
unification that can solve strong CP in this manner without
requiring any new fermions.
It is remarkable that such theories of nontrivial gauge-

flavor unification are possible with the SM structure [38],
and an intense study of their full phenomenologies is surely
merited. We attempt to factorize the various physics effects
here—for reasons we will discuss later, slightly richer
structure is needed to find SM flavor, and we postpone a
more detailed discussion to future work. Here, our main
goal is to understand and explain the intriguing non-
perturbative physics such models possess, as informed
by the generalized symmetry analysis, and to show how
such models can solve the strongCP problem. We hope our
work motivates increased activity on the perturbative
structure of these theories, including detailed flavor model
building, as well as consideration of complementary
signatures such as their early Universe cosmologies.
In the rest of this introduction, we briefly review the

strong CP problem as well as the original massless up-
quark solution. Then, in Sec. II, we provide a generalized
symmetry analysis in the infrared theories of gauged quark
flavor. In Sec. III, we introduce the ultraviolet model of
SUð9Þ color-flavor unification; we explain how it solves
the strong CP problem in the UV and how this can be
preserved while generating the CKM matrix. Various
further directions are discussed in Sec. IV.
Some technical and pedagogical material is reserved for

the appendixes. In Appendix A, we review the construction
of fractional instantons. In Appendix B, we review the
global structure of gauge groups. In Appendix C, we
discuss one-loop corrections to ’t Hooft vertices.

A. Strong CP problem

The strong CP angle is the field-redefinition-invariant
CP-odd phase combining the color topological density
with the quark Yukawa determinants,
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θ̄ ¼ arg e−iθ det ðyuydÞ; ð1:1Þ

where iθ=32π2 is the coefficient ofGG̃ in the Lagrangian; if
θ̄ ¼ 0; there is a field basis in which the quark Yukawas
have real eigenvalues. Impressive searches for, and con-
straints on, the electric dipole moment of the neutron
indeed give us the upper bound θ̄ ≲ 10−10 [39,40]. If θ̄ were
the only CP-violating parameter in the theory of quarks,
then it would be technically natural, as spurious CP
symmetry would imply that small θ̄ is stable under
renormalization group (RG) flow δθ̄ ∝ θ̄.
However, there is more CP violation allowed in the

quark Yukawas for Ng ≥ 3 generations. The other CP-
violating parameter is the “CKM phase” δCKM, which arises
from the misalignment of the quark Yukawas with the weak
interaction basis and can be invariantly parametrized by the
other CP-odd field-redefinition-invariant combination of
Yukawas, the Jarlskog invariant, [41]

J̃ ¼ Im det ½y†uyu; y†dyd�: ð1:2Þ
The size of J̃ is often understood by going to the mass
basis where the Yukawas are diagonal and quark mixing is
in the CKM matrix, and then parametrizing the CKM
matrix in terms of mixing angles and a single CP-violating
phase, δCKM ∼ 1.14 [43]. This parameter is responsible for
the CP violation originally observed in decays of neutral
kaons [44].
While the CKM phase obeys Dirac’s naturalness prin-

ciple in being an Oð1Þ angle, θ̄ is not technically natural,
and in the limit of small θ̄, its renormalization group
evolution goes as

δθ̄ ∝ cδCKM: ð1:3Þ
Thus, it seems there is no protection of θ̄ against quantum
mechanical destabilization. Now, it is numerically true that
the coefficient c in the standard model is very small [45] as
a result of the many approximate symmetries, which we
will discuss further in the next section. Given only the SM
content, the running from Eq. (1.3) does not result in an
infrared θ̄ in excess of the constraints.
Still, the qualitative difference of θ̄ not being the only

CP-odd spurion indicates that it can be a general concern in
further UV theories. Indeed, ultraviolet field theories can
easily allow operators that could quickly introduce addi-
tional CP-violating phases into the quark sector and
destabilize θ̄ far more than δCKM. Since θ̄ is not the only
CP-violating parameter, simply imposing a CP symmetry
on the ultraviolet theory is not straightforwardly available.
This naturalness tension has motivated decades of work

on how physics beyond the standard model might square
these two facts. One approach is to forge ahead by
imposing a discrete symmetry in the ultraviolet (e.g., CP
à la Nelson-Barr [46–48] or parity [49–52]), and by clever

model-building explain how δCKM is generated while θ̄ is
not. These models have many interesting phenomenologies
and observational signatures. They also require many new
colored fermions (sometimes introduced in very particular
structures), and they are often in danger of being destabi-
lized at loop order (see, e.g., Refs. [16,53–58] for various
concerns).
An alternative approach takes advantage of θ being quite

special as a CP-odd spurion, in that it can also be a spurion
for anomalous chiral symmetries. The relative benefit of
such strategies is that they do not need to impose a discrete
spacetime symmetry at any energy scale. Rather, the
structure of the theory is such that one particular CP-
violating parameter, the strong CP angle, is naturally set to
zero regardless of the CP violation present elsewhere in the
theory, and we now turn to explaining this structure.
Other approaches to strong CP can be found in, for

example, Refs. [59–72], among many others. Useful
reviews include Refs. [73–76].

B. Peccei-Quinn for strong CP

The sort of solution to the strong CP problem that we
will pursue engages directly with the fact that the theta
angle can have an intricate spurionic structure in a theory of
colored fermions, such that CP is not the only symmetry
at play.
Consider an SUð3ÞC gauge theory that includes some θ

topological angle, [77]

S ⊃ i
θ

8π2

Z
M

TrðG ∧ GÞ; ð1:4Þ

with G the strong gauge field strength. Obviously, θ is an
odd spurion for P or CP because the Levi-Civita symbol is
a pseudotensor, but this is not necessarily the only spurionic
charge for θ. We consider adding to our theory some
colored fermions generically denoted as fqig. Then, for any
global Uð1Þj symmetry rotation by an angle αj acting on
the fermions as

Uð1Þj∶ qi → qieigijαj ; ð1:5Þ
for some integer charges gij, if it has an Adler-Bell-Jackiw
(ABJ) [78,79] anomaly,

ASUð3Þ2C×Uð1Þj ≡Aj ¼
X

Iigij; ð1:6Þ

where Ii is the Dirac index of fermion qi, then such a
rotation of the quarks does not leave the theory invariant.
Rather, it effects a change in the partition function as

Z → Z exp

�
iAj

αj
8π2

Z
M

TrðG ∧ GÞ
�
: ð1:7Þ

This transformation effectively modifies the θ angle, or
in other words, θ has become a spurion transforming
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nonlinearly under Uð1Þj∶ θ → θ þAjαj. In the quark
sector, such anomalous symmetries are often known as
Peccei-Quinn (PQ) symmetries [80,81]. If Uð1Þj is a good
symmetry, then the partition function remains invariant
under an αj transformation, so the physics does not depend
on the value of θ.
Now, the effect of the anomaly is not just to give θ a

spurionic charge, and the true structure here is a bit subtle.
If there is an anomaly, Aj ≠ 0, then Uð1Þj is never truly a
good, invertible symmetry—the ABJ anomaly from non-
Abelian instantons always implies explicit breaking of
order proportional to expð−8π2=g2Þ. However, in an
asymptotically free gauge theory, g2 → 0 at high energies,
and the instanton violation decouples quickly; thus, it
makes sense to talk about Uð1Þj as a good symmetry in
this limit. Then, as one evolves to low energies, explicit
violation of Uð1Þj appears from the dynamical growth of
the gauge coupling. Solutions to the strong CP problem
involving PQ symmetries make intrinsic use of this low-
energy violation of what began as a good UV symmetry.
The axion approach is to introduce a complex scalar ϕ

that is charged under Uð1ÞPQ and spontaneously breaks it.
When ϕ obtains a vev, its angular degree of freedom a is a
Goldstone for Uð1ÞPQ, so it shifts nonlinearly under PQ
symmetry transformations like θ. In pure QCD, it is known
quite generally that the gauge effects produce a potential
VðθÞ minimized at θ ¼ 0 [82]. Now, including an axion
modifies the gluon action schematically as i

R ðθ þ aÞGG̃;
thus, QCD instantons generate a PQ-violating but CP-
preserving potential Vðaþ θÞ that is minimized at a ¼ −θ.
While, in pure QCD, VðθÞ only tells us about the relative
vacuum energy of different theories with different θ
parameter values, a is now a dynamical degree of freedom.
If Uð1ÞPQ began as a good symmetry, then this instanton

effect generates the only potential for the axion. Thus, a can
cosmologically relax to this solution to “screen” whatever
CP-violating θ angle was present and allow the observed
strong CP violation to vanish. Unfortunately, the minimal
version of this model, the Weinberg-Wilczek axion [83,84],
which directly couples ϕ to the SM quarks and sponta-
neously breaks one of the SM PQ symmetries, has long
since been ruled out. Axion models are revived by adding
new, vectorlike, colored fermions with their own Uð1ÞPQ
symmetries that ϕ can spontaneously break. These “invis-
ible axion”models have been a subject of increased interest
in recent years, so there is no need to mention that they have
rich, fascinating phenomenological signatures. However,
using axions is not the only way to take advantage of a
good Uð1ÞPQ to solve the strong CP problem.
The idea of the massless up quark solution was to instead

posit that a SM Uð1ÞPQ is not spontaneously broken. Since
the up quark has the lightest mass in the infrared, one can
imagine an ultraviolet symmetry acting on the up quark in
such a way as to forbid a mass term,

Uð1ÞPQ∶ ū1 → ū1eiα ⇒ det yu ¼ 0: ð1:8Þ

Such a good symmetry implies that strong CP violation
vanishes, but there is a slight subtlety in how we talk about
it, given the standard definition of θ̄ in Eq. (1.1). Let us
define the complex parameter M∈C, which is the field-
redefinition-invariant combination of the quark Yukawa
eigenvalues,

M ≡ e−iθ detðyuydÞ; ð1:9Þ

where the definition of the strongCP phase above is simply
θ̄≡ argM. The confusion is that this definition fails when
jMj → 0, such as when Uð1ÞPQ is imposed. Of course,
when the magnitude vanishes, the phase is undefined,
which is sometimes discussed as θ̄ becoming unphysical
in such a scenario. However, this language merely encodes
an artifact of using polar coordinates to parametrize M.
Alternatively, we could work in Cartesian coordinates;
then, we have the CP-odd spurion

CP∶ ImðMÞ → − ImðMÞ; ð1:10Þ

which manifestly behaves smoothly as jMj → 0. Clearly,
CP is preserved when ImðMÞ ¼ 0, and θ̄ ¼ 0 corresponds
to M∈Rþ. When we have a good Uð1ÞPQ symmetry,
jMj → 0; then, we could say θ̄ is unphysical, or we can just
say that the CP-odd mass parameter vanishes, ImðMÞ ¼ 0.
Now that we have discussed this subtlety, let us return to

the massless up-quark solution, having begun in the UV
with such a Uð1ÞPQ symmetry. As we have long known
from current algebra and hadron masses, the obvious
issue is that the up-quark mass does not vanish in the
infrared—Uð1ÞPQ has been broken. However, this is
sensible since it is an anomalous symmetry. Just as
QCD instantons violating Uð1ÞPQ provide a potential for
the axion that localizes θ̄ to the CP-conserving value, they
could also potentially accord a good UV PQ symmetry with
the observed quark masses. Indeed, the contributions of
instantons to the masses of quarks automatically preserve
the form of the CKM matrix in which θ̄ ¼ 0 [85–88]. In
other words, the instanton effects will violate jMj ¼ 0 but
only along the real axis. Whatever phases appear in the
Yukawas, we continue to have ImðMÞ ¼ 0 as a basis-
independent statement. Then, the idea is that mu might be
zero in the UV, corresponding to a high-quality Uð1ÞPQ,
which is broken solely by QCD instantons that provide the
observed mu > 0.
After the massless up-quark solution was proposed in

the mid-1980s, the observational status of this idea was
held in limbo for some decades because the analytic
calculation of instanton effects in QCD is not under
theoretical control [89,90]. Eventually, numerical compu-
tations of QCD on the lattice became powerful enough to
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resolve whether a vanishing up-quark mass could fit data.
Alas, the standard model does not bear out the massless up-
quark solution [91,92]. In other words, one must begin at
energies Λ ≫ ΛQCD with some nontrivial Yukawa for the
up quark already present in order to fit the far-infrared
observables.
In recent years, it has been realized that this solution may

be revived in UV completions of the SM in which SUð3ÞC
emerges from a larger gauge group in which it is non-
trivially embedded [93,94] (see also earlier work on the
possible relevance of small color instanton effects, e.g.,
Refs. [95–97]). In some cases, instantons from the UV
scale of the breaking H → SUð3ÞC can provide a dominant
contribution to the mass of the up quark (or the axion
potential [98,99]). This possibility has been studied in
flavor deconstruction [93] and in composite Higgs
models [100].
Here, we identify extensions of the SM with gauged

quark flavor symmetries in which θ becomes a spurion for a
noninvertible Peccei-Quinn symmetry. This understanding
of the generalized symmetry structure of the standard
model reveals a minimal realization of a small instanton
approach to the massless quark solution in the context of
color-flavor unification. That such nontrivial structures are
even possible with the SM chiral matter content is very
suggestive. This approach will have various benefits, as we
will see below, including the possibility to separate the
scales of the instanton effects at a UV symmetry-breaking
scale and the flavor-breaking effects at the scale
H → SUð3ÞC. By starting with more of the SM’s approxi-
mate global symmetries as gauge symmetries, we begin
with an extremely simple theory, and we must understand
how the SM structure is generated. However, unification
has tremendous reductionist appeal, and the grand chal-
lenge in this model will be no more and no less than
understanding a fully predictive theory of the quark
Yukawas. In this work, we factorize issues and show
how this new strong CP solution will work whether or
not we obtain the mass hierarchies and mixing angles
exactly, which we will leave to a future pursuit.

II. MASSLESS QUARKS FROM NONINVERTIBLE
PECCEI-QUINN SYMMETRIES

We seek to generate Yukawa couplings by breaking
noninvertible chiral symmetries in certain extensions of the
SM that result from gauging an (approximate) global
symmetry of the SM fields. In the lepton sector, this
analysis leads to a model of neutrino masses [3]. In the
quark sector, such chiral symmetries might be termed
“noninvertible Peccei-Quinn symmetries,” and we inves-
tigate them by examining anomalies of SM fields. The
material we present and our setup are aimed toward the
strong CP problem, but our analysis of noninvertible
symmetries may potentially be of broader interest. The
result of the noninvertible symmetry analysis will be to

learn that certain parameters of a theory protected by
noninvertible symmetry are necessarily generated by non-
perturbative gauge theory effects in a UVembedding of the
SM fields that introduces quark color-flavor monopoles.
The analysis of this section is brief and self-contained. A

deeper analysis of noninvertible chiral symmetry can be
found in Refs. [101,102]. We also provide a review of
fractional instantons associated with nontrivial global struc-
ture in Appendix A, as well as a discussion on the global
structure of the SM gauge group in Appendix B [103].

A. Noninvertible chiral symmetry

To start, let us briefly recall some aspects of noninver-
tible chiral symmetry [101,102] that will appear below.
These symmetries often arise in chiral gauge theories. The
simplest example concerns a current Jμ for a chiral
symmetry that is violated by an ABJ anomaly:

∂
μJμ ¼

k
32π2

FαβFγδε
αβγδ; ð2:1Þ

where, in the above, k∈Z is an integral anomaly coef-
ficient and Fαβ is the field strength of an Abelian gauge
field. The current Jμ is no longer conserved, but as is well
known, the absence of Abelian instantons implies that, at
the level of the S-matrix (or, relatedly, local operator
correlation functions), the chiral symmetry selection rules
are still enforced. Noninvertible symmetry provides a way
for us to understand this phenomenon nonperturbatively
and to understand the unique features of such chiral
symmetries. The key idea is to recognize that the right-
hand side of Eq. (2.1) is a composite operator, which is
itself built from symmetry currents. Indeed, the Bianchi
identity implies that the field strength operator is closed, or
more explicitly,

∂
μðεαβμνFαβÞ ¼ 0: ð2:2Þ

This finding signals the presence of a higher symmetry: the
magnetic 1-form symmetry of an Abelian gauge
theory [105]. The charged objects under this symmetry
are ’t Hooft lines, which physically represent the worldlines
of probe magnetic monopoles.
The appearance of a higher-form symmetry current in the

anomaly equation (2.1) enables us to construct the operator
(symmetry defect) that performs finite chiral symmetry
transformations on Hilbert space. Let Σ denote the spatial
slice (fixed time locus) where we wish to transform the
fields by a chiral rotation by a finite angle 2π=kN for
integralN. If the symmetry were invertible (k ¼ 0), then we
would simply construct a symmetry defect operator for an
arbitrary phase α as

Uα½Σ� ¼ eiα
R
Σ
J; ð2:3Þ
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where we recognize Q½Σ�≡ R
Σ J as the Noether charge.

With the ABJ anomaly, it fails to be topological, and a new
ingredient is needed. In addition to the exponentiated
integrated current, along Σ, we must also include new
topological degrees of freedom to cancel the ABJ anomaly
and define a consistent conserved charge. These topologi-
cal degrees of freedom are charged under a 1-form
symmetry and hence can couple to the bulk through the
magnetic 1-form symmetry current discussed above. In
more detail, the Lagrangian on Σ for the additional
topological degrees of freedom involves a new dynamical
Uð1Þ gauge field Cμ and takes the form of a Chern-Simons
action:

LΣ ¼
iN
4k

Z
Σ
d3xCμ∂νCσε

μνσþ i
2π

Z
Σ
d3xCμ∂νAσε

μνσ; ð2:4Þ

where Fμν ¼ ∂
μAν − ∂

νAμ. More generally, this construc-
tion can be carried out for any finite chiral transformation
by a rational angle, resulting in a conserved charge
(topological operator) that can implement the desired chiral
transformation. The consequence of coupling the additional
topological degrees of freedom on the worldvolume means,
in modern terminology, that the symmetry has become
noninvertible. In other words, it is no longer represented by
unitary operators acting on Hilbert space.
The noninvertible nature of the chiral symmetry trans-

formation has important technical and physical conse-
quences. To illustrate these consequences, let us denote
by DkNðΣÞ the operator on Σ described above, which
implements a finite chiral transformation, and let D̄kNðΣÞ
denote the transformation by the opposite angle. When
composed, these transformations do not equal unity but
instead leave behind a condensate of magnetic 1-form
symmetry operators [101,102,106–108]:

DkNðΣÞ × D̄kNðΣÞ

∼
X

two-cycles S⊂Σ
exp

�
i

16πN

Z
S
FαβdSμνεαβμν

�
: ð2:5Þ

One term on the right-hand side, corresponding to a trivial
cycle S, is the unit operator, which is the naive result of the
multiplication. It is the only relevant term when acting on
local operators. The remaining terms on the right-hand side
are visible only when acting on states carrying magnetic
charge or, equivalently, on ’t Hooft line operators.
The interplay of magnetic charge and the chiral sym-

metry transformation is the inevitable result of the anomaly
equation (2.1). Indeed, while there are no Abelian instan-
tons in spacetimes with trivial topology, in a richer
geometry such as those produced effectively by magnetic
charges, Abelian instantons are possible and the anomaly
can be saturated. More formally, it is natural to topologi-
cally view spacetime R4 with an infrared regulator as a

four-sphere S4. The absence of Abelian instantons is then a
consequence of the fact that there are no topologically
nontrivial two-cycles and hence no locus where a magnetic
flux can be nontrivial. By contrast, including a ’t Hooft line
effectively modifies the spacetime topology: The two-
sphere linking the worldline of the charge is now a
nontrivial two-cycle, and, in general, in such configura-
tions, Abelian instantons exist. Thus, the noninvertible
symmetry analysis above gives a formal way to understand
selection rules that arise from the absence of instantons on
S4. Note that this analysis also reveals the importance of the
fact that the right-hand side of Eq. (2.1) is composed of
Abelian field strengths. In general, for non-Abelian field
strengths, instanton configurations exist already on S4,
and hence there are no resulting noninvertible chiral
symmetries.
A crucial physical consequence of the fusion algebra in

Eq. (2.5) is that it reveals a channel for noninvertible
symmetry breaking. Consider a model with dynamical
magnetic monopoles. Below the scale of their mass, the
worldline of the monopoles appears in the infrared effective
Abelian gauge theory as a ’t Hooft line. Above the higgsing
scale, the monopoles reveal themselves as fluctuating
modes, and the magnetic 1-form symmetry is broken [109].
In other words, at this scale, Eq. (2.2) no longer holds.
However, since the magnetic 1-form charges appear in the
algebra of the chiral symmetries (2.5), they in turn must
also be broken by the presence of magnetic charges. At a
practical level, this means that loops of magnetic monop-
oles break the chiral symmetry. Since magnetic monopoles
are solitons, the effects of such loops are generally non-
perturbative in gauge theory couplings. To estimate their
size, we parametrize their mass as

mmon ∼
v
g
; ð2:6Þ

where v is the Higgs vev and g the gauge coupling. A
monopole loop exists for a characteristic proper time δτ that
is inversely proportional to the effective cutoff set by theW-
boson mass and hence δτ ∼ 1=ðgvÞ. The corrections from
monopole loops therefore have a characteristic size:

δL ∼ exp ð−SmonÞ ∼ exp ð−mmonδτÞ ∼ exp ð−#=g2Þ: ð2:7Þ

Thus, when the chiral symmetry violation is mediated by
1-form symmetry breaking effects of magnetic monopoles,
the above estimate yields the expected size of the leading
corrections.
We also note that Eq. (2.7) is precisely the characteristic

size of non-Abelian instanton effects. Indeed, loops of
magnetic monopoles—and, more generally, dyons—can
be viewed as describing instanton corrections to the
action [11], which is natural since a dyon has nonvanishing
E · B and hence can saturate the topological term in the
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action. The breaking of a noninvertible chiral symmetry by
magnetic monopole loops can therefore alternatively be
understood as the direct breaking of chiral symmetry in the
non-Abelian gauge theory by instanton effects. Conversely,
the lens of noninvertible symmetry provides a key tool to
understanding when instantons will yield the leading
contribution to a given physical process and can thus guide
us toward interesting UV models. We will utilize this
model-building perspective below.
Thus far, we have seen how noninvertible chiral sym-

metry provides a language for dealing with Abelian ABJ
anomalies. In our application below, we will instead require
a more sophisticated version of this construction that goes
beyond the physics of Abelian gauge theories. Specifically,
we will employ noninvertible chiral symmetries that exist
due to the presence of discrete magnetic 1-form symmetries
in non-Abelian gauge theories.
In general, discrete magnetic 1-form symmetries occur in

non-Abelian gauge theories where the gauge group has a
nontrivial fundamental group, which we often refer to as a
nontrivial global structure. For instance, the gauge group
SUðNÞ does not have any discrete magnetic 1-form
symmetry, while the gauge group SUðNÞ=ZN has mag-
netic symmetry ZN. Physically, the gauge group
SUðNÞ=ZN has a richer spectrum of magnetic monopoles
(realized as nondynamical ’t Hooft lines), which carry
conserved ZN quantum numbers. Crucial for our purposes,
discrete magnetic 1-form symmetry also signals the pres-
ence of fractional instantons. The hallmark of such field
configurations is that the instanton number is no longer an
integer, but instead, its fractional part can be expressed as a
suitable square of a discrete magnetic flux [see, e.g.,
Eq. (2.21)]. As above, this feature implies that, in a
topologically trivial setup—without two-cycles or, equiv-
alently, ’t Hooft lines—the minimal allowed instanton
number cannot be saturated. Indeed, on R4 (or, more
precisely, the IR regulated S4), non-Abelian instanton
numbers are always integral.
In the context of ABJ anomalies and chiral symmetries,

fractional instantons therefore have an effect similar to the
Abelian instantons discussed above. In particular, there can
again be chiral symmetries where the minimum allowed
anomaly coefficient cannot be saturated on S4. In this
situation, the (typically discrete) chiral symmetry is then,
in fact, noninvertible. The symmetry defect operator sup-
ports a fractional Hall state, which now couples to the
bulk non-Abelian gauge fields through the discrete mag-
netic flux. (For more explicit formulas, see Ref. [102].)
Thus, discrete noninvertible chiral symmetries depend, in
detail, on the precise global form of the gauge group and
can, in turn, point toward specific UV completions where
these symmetries are then violated by new loops of
dynamical monopoles or, equivalently, new small instan-
ton effects. We exploit these mechanisms in our mod-
els below.

B. Approximate symmetries of the standard model

We now apply these considerations in the SM and
beyond. We recall the basic structure of the SM fermions
as reviewed in Table I. Throughout, we use conventions
where hypercharge is integrally normalized.
The SM includes the Yukawa interactions coupling the

fermions to the Higgs field H:

L ⊃ yiju H̃Qiūj þ yijd HQid̄j þ yije HLiēj; ð2:8Þ

we H̃ ≡ iσ2H⋆. The observed Yukawa matrices y (equiv-
alently, the fermion masses and flavor changing processes)
explicitly break all of the non-Abelian continuous global
symmetries, as they provide different masses for the
generations. We first consider models that have vanishing
down-type Yukawas yd → 0 and later aim to regenerate
these couplings through symmetry-breaking effects. Our
analysis will reveal that the down-type quark Yukawa yd
can be protected by certain kinds of noninvertible sym-
metries. We note that the same analysis with yu ↔ yd
instead would give the same conclusions, but our analysis
will ultimately be the right choice for our purposes. At the
classical level, nonvanishing, general yu leaves the follow-
ing Abelian flavor symmetries unbroken:

Y3
i

Uð1ÞB̃i
×Uð1Þd̄i ; ð2:9Þ

where B̃i and the conventional baryon number Bi are
defined as

B̃i ¼ Qi − ūi; Bi ¼ B̃i − d̄i ¼ Qi − ūi − d̄i: ð2:10Þ

In fact, the full Uð3Þd̄ is thus far a full symmetry, but it is
the analysis of theUð1Þ factors that is pertinent below. Here
and elsewhere, we will abuse notation in reusing the
symbols for the SM fields to also refer to the charges of
Uð1Þ symmetries that act on those species.
In Table II, we list the Adler-Bell-Jackiw [78,79]

anomaly coefficients of these global symmetries with the
SM gauge group and additional gauge groups appearing in

TABLE I. Representations of the standard model Weyl fer-
mions under the classical gauge and global symmetries. We
normalize eachUð1Þ so the least-charged particle has unit charge.
We also list the charges of the right-handed neutrino N and the
Higgs boson H.

Qi ūi d̄i Li ēi Ni H

SUð3ÞC 3 3̄ 3̄ � � � � � � � � � � � �
SUð2ÞL 2 � � � � � � 2 � � � � � � 2
Uð1ÞY þ1 −4 þ2 −3 þ6 � � � −3
Uð1ÞB þ1 −1 −1 � � � � � � � � � � � �
Uð1ÞL � � � � � � � � � þ1 −1 −1 � � �
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extensions discussed below. One immediate lesson we can
extract from Table II is that there exists no noninvertible
symmetry within the quark sector with gauge group
SUð3ÞC × SUð2ÞL ×Uð1ÞY=Γ with Γ ¼ 1. This is because
each of these Uð1Þ global symmetries and any linear
combinations of them are dominantly broken by non-
Abelian instantons, or they remain good invertible sym-
metries, e.g., d̄1 − d̄2. Indeed, as reviewed in Sec. II A
above, noninvertible chiral symmetry arises from a classical
Uð1Þ dominantly broken either by an Abelian instanton or a
fractional instanton of non-Abelian gauge theory. As we
show in Appendix B 2, the absence of noninvertible
symmetries of the quark sector with up Yukawas turned
on remains the case even with nontrivial global struc-
ture Γ∈ fZ6;Z3;Z2g.
So far, our analysis has revealed no surprising sym-

metries. With vanishing down-quark Yukawas, some PQ
symmetries are restored, and hence strong CP is conserved.
However, such a scenario, like the massless up-quark
solution, is excluded since it fails to reproduce the observed
IR physics of QCD. Instead, we consider two minimal
extensions of the SM that enjoy noninvertible chiral
symmetry acting on the quarks and suggest a natural
UV completion. The new symmetries we find will protect
the down-Yukawa couplings in such a way that UV
symmetry breaking can generate the observed nonzero
values while setting the strong CP phase θ̄ to zero.
Our extensions are based on gauging certain “horizontal”

symmetries of the quark sector. In Sec. II C, we discuss a Z0
extension by a Uð1ÞH gauge group with

H ¼ B1 þ B2 − 2B3; ð2:11Þ

and an extension by non-Abelian SUð3ÞH gauged hori-
zontal flavor symmetry will be presented in Sec. II D. Each
model below may be viewed as a separate candidate
extension of the SM. Alternatively, it is also possible to
think of them as two different phases of the same theory
along a renormalization group flow. Starting from a UV

theory [for instance, the SUð9Þmodel presented in Sec. III],
one flows to the SUð3ÞH extension as an intermediate
phase. Further flowing to the IR leads to the Uð1ÞH
extension. Finally, spontaneous breaking of Uð1ÞH at yet
a lower scale brings us to the SM (see Fig. 1). Ultimately,
as discussed in Sec. III, to achieve the IR physics of the
SM, we must break the new chiral symmetries under
consideration. First, however, we present the approxi-
mate symmetries from the infrared as a key guide to
our model.

C. Uð1ÞH extension

One interesting possible Z0 extension that is free of cubic
and mixed anomalies (hence can be gauged with no
additional matter) is the horizontal baryon number sym-
metry Uð1ÞH given by Eq. (2.11). [110] Similar lepton
family difference symmetries that are anomaly-free [e.g.,
Uð1ÞLμ−Lτ

] have received much attention as Z0 models for
reasons both formal and phenomenological. They are exact
symmetries of the standard model with zero neutrino
masses, but they are not exact symmetries of the real
world. The similarity of the lepton and quark sectors in the
SM (especially if neutrinos are Dirac type) suggests also
investigating the quark family difference symmetries.
Indeed, they are also approximate global symmetries of
nature but are less well preserved in the infrared because the
quark Yukawas are much larger. Further motivation for this
particular choice of Uð1ÞH will be given presently.
Before proceeding with a detailed analysis of the

symmetries, we note a crucial discrete identification of
the gauge and global symmetry groups. Specifically, with
the matter content of the SM, the following groups act
identically on all fields:

½ZH
3 ⊂ Uð1ÞH� ¼ ½ZC

3 ⊂ SUð3ÞC� ¼ ½ZY
3 ⊂ Uð1ÞY �

¼ ½ZB
3 ⊂ Uð1ÞB�: ð2:12Þ

TABLE II. ABJ anomalies of chiral symmetries of the quark
sector with SM gauge groups and a gauged Uð1ÞH≡
Uð1ÞB1þB2−2B3

. We also show the anomaly coefficients in the
fractional instanton background, denoted as [CH] (for “color-H”
admixture), appearing in the SUð3ÞC × Uð1ÞH=Z3 extension.

Uð1ÞB̃1
Uð1ÞB̃2

Uð1ÞB̃3
Uð1Þd̄1 Uð1Þd̄2 Uð1Þd̄3

SUð3Þ2C þ1 þ1 þ1 þ1 þ1 þ1

SUð2Þ2L Nc Nc Nc 0 0 0

Uð1Þ2Y −14Nc −14Nc −14Nc 4Nc 4Nc 4Nc

Uð1Þ2H Nc Nc 4Nc Nc Nc 4Nc

Uð1ÞYUð1ÞH −2Nc −2Nc 4Nc −2Nc −2Nc 4Nc

[CH] 1 1 2 1 1 2 FIG. 1. For visual reference, the organization of phases gov-
erning the quarks in this work. In the model of Sec. III, we do not
make use of the possible Uð1ÞH phase, though there is also a
noninvertible symmetry in this phase as discussed in Sec. II C.
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Thus, various diagonal Z3 subgroups act trivially on all
fields, and we can modify the theory by quotienting the
gauge group by any of these trivially acting subgroups. In
our case, the relevant choice is between the gauge groups

SUð3ÞC ×Uð1ÞH and ðSUð3ÞC ×Uð1ÞHÞ=Z3; ð2:13Þ

while other possible quotients do not play a role in our
analysis. This choice can be clarified physically in the
language of higher symmetries as follows. If we do not
quotient by Z3, then the theory has an electric Z3 1-form
global symmetry whose charged objects are Wilson lines
that cannot be screened by dynamical matter. By contrast,
in the theory with the Z3 quotient, these representations are
removed; correspondingly, Dirac quantization allows new
magnetic monopoles whose ’t Hooft lines are charged
under a dual Z3 magnetic 1-form symmetry. Relatedly, the
theory with the quotient admits fractional instantons. These
effects will be crucial to our theory, and hence we focus on
the case where the gauge group has the Z3 quotient [right-
hand side of Eq. (2.13)]. We note that this possible gauge
group global structure relies precisely on our choice of
horizontal gauge group and exists due to the fact
that Ng ¼ Nc.
The ABJ anomaly coefficients of the global symmetries

listed in Eq. (2.9) with Uð1ÞH are given in Table II. In
searching for noninvertible symmetries, we are interested in
global Uð1Þ factors that are anomalous only due to the
Uð1ÞH effect [or at least where Uð1ÞH provides the
dominant anomalous breaking]. It is useful to notice that
SM anomalies are flavor universal; therefore, B̃i − B̃j and
d̄i − d̄j, with any choice of i, j ¼ 1, 2, 3, are SM-anomaly
free. There are then four obvious candidates:

A1 ¼ d̄3 − d̄1; A2 ¼ d̄3 − d̄2;

A3 ¼ B̃3 − B̃1; A4 ¼ B̃3 − B̃2: ð2:14Þ

However, we note that the combination

A1 þ A2 − A3 − A4 ¼ H ð2:15Þ

is gauged, so the generators in Eq. (2.14) above represent
three possible flavor symmetries.
Consider first the effect of the familiar ABJ anomaly on

these symmetries. From Table II, we have the anomaly
coefficients

½Uð1ÞAi¼1;…;4
�½Uð1ÞH�2 ¼ 3Nc;

½Uð1ÞAi¼1;…;4
�½Uð1ÞY �½Uð1ÞH� ¼ 6Nc; ð2:16Þ

which breaks each Uð1ÞAi
to a Z3Nc

invertible symmetry.
Meanwhile, the rest of Uð1ÞAi

forms an infinite noninver-
tible symmetry acting as rotations with a rational angle
different fromZ3Nc

. In the case where the gauge group does

not have a Z3 quotient, this concludes the analysis, and the
down Yukawas are spurions of invertible symmetries.
However, in the case with ðSUð3ÞC ×Uð1ÞHÞ=Z3, addi-
tional fractional instantons further modify these
symmetries.

1. Symmetry breaking from fractional
ðSUð3ÞC × Uð1ÞHÞ=Z3 instantons

We now analyze the effects of fractional instantons on
the symmetries. Focusing on Uð1ÞH=Z3, the first obser-
vation is that the magnetic flux is now fractionally
quantized in units of one-third:

Z
Σ

FH

2π
∈

1

3
Z: ð2:17Þ

Those fluxes above which are integrally quantized are
standard field configurations of Uð1ÞH, while those that are
fractional are new configurations allowed by the quotient.
More subtly, the SUð3ÞC=Z3 also admits new flux con-
figurations that are not allowed in SUð3ÞC. These are
labeled by a discrete analog of the magnetic flux, some-
times referred to as a second Stiefel-Whitney class:

ωðACÞ∈H2ðM;Z3Þ; ð2:18Þ

whereM is the spacetime four-manifold and AC is the color
gauge field. Concretely, this means that ω is an object that
may be integrated over any two-cycle Σ in spacetime,
yielding an integer that is well defined modulo 3,

Z
Σ
ωðACÞ∈Z3; ð2:19Þ

and should be viewed as the non-Abelian analog of the
fractional part of the magnetic flux in Eq. (2.17).
In our situation, the gauge group ðSUð3ÞC ×Uð1ÞHÞ=Z3

does not have independent quotients but rather one quotient
that acts simultaneously on the two factors. This finding, in
turn, implies that the fractional magnetic fluxes between the
Abelian and non-Abelian factors are correlated, which we
express as

FH

2π
¼ 1

3
ωðACÞ − X: ð2:20Þ

Here, X∈H2ðM;ZÞ can be viewed as a standard quantized
flux, and each term can be thought of as a cohomology
class (equality holds upon integration on any two-cycle).
The final technical tool we need is an analysis of the

instanton number for gauge groups with discrete quotients.
As reviewed in Appendix A, the quotient implies that the
instanton number N C of SUð3ÞC is no longer integral but
is, in general, fractional, with the fractional part controlled
by the discrete magnetic flux Eq. (2.19),
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N C¼
1

8π2

Z
M
TrðFC ∧FCÞ¼

1

3

Z
M
ω∧ω mod 1; ð2:21Þ

where the notation above means that the fractional parts of
the left- and right-hand sides agree. Using Eq. (2.20), we
can also express this case in terms of the flux FH:

N C ¼ 3

Z
M

�
FH

2π
þ X

�
∧
�
FH

2π
þ X

�
mod 1

¼ 6

�
1

8π2

Z
M
FH ∧ FH

�
þ 6

Z
M

F
2π

∧ X

þ 3

Z
M
X ∧ X mod 1

¼ 6

�
1

8π2

Z
M
FH ∧ FH

�
mod 1

¼ 6N H mod 1; ð2:22Þ

where, in the third line, we have used Eq. (2.20) to show
that the contributions involving X do not modify the
fractional part, and in the last line, we have introduced
N H, which is the instanton density of Uð1ÞH=Z3:

N H ¼ 1

8π2

Z
M
FH ∧ FH: ð2:23Þ

The final result of Eq. (2.22) shows that instantons of
ðSUð3ÞC × Uð1ÞHÞ=Z3 have a correlated fractional part;
i.e., N C can only be fractional if N H is also fractional.
We can now use the above to compute the most refined

anomaly coefficients in the presence of fractional instan-
tons and discover the final fate of the symmetries in our
problem. Using the notation ψ i ¼ fQi; ūi; d̄ig to denote a
general charged fermion, the Dirac index for ψ i in an
instanton background is computed as

Iψ i
¼ nψ i

Tψ i
N C þ dimψ i

nψ i
ðqHψ i

Þ2N H; ð2:24Þ

where nψ i
is the multiplicity of ψ i, including both flavor

and SUð2ÞL gauge degrees of freedom. Here, Tψ i
denotes

the Dynkin index of ψ i under SUð3ÞC (which is 1 for all
ψ i), dimψ i

is the dimension of the SUð3ÞC representation
(which is 3 for all ψ i), and finally, qHψ i

is the Uð1ÞH charge.
Importantly, even though the instanton numbers N C and
N H are, in general, individually fractional, the indices
above are always integral due to Eq. (2.22) and the fact that
the matter content is consistent with the Z3 quotient. The
anomaly coefficient for an Abelian flavor symmetry f in
the presence of a general instanton background is then
given by the formula

Af ¼
X
ψ i

qfψ i Iψ i

¼ 3N H

X
ψ i

qfψ inψ i
ð2þ ðqHψ i

Þ2Þ þ k
X
ψ i

qfψ inψ i
; ð2:25Þ

where we have used Eq. (2.22) as well as the details of our
fermion spectra discussed above to simplify the index
formula, and k ¼ N C − 6N H is an integer. The strongest
constraints now come from choosing the most fractional
instantons possible, which, from Eq. (2.17), areN H ¼ 1=9
and k ¼ 0 (so that N C ¼ 2=3). Carrying out the sum then
leads to the anomaly coefficients summarized in the final
row of Table II.
From this analysis, one sees that, for each of the

symmetries Ai defined in Eq. (2.14), we have

½Uð1ÞAi¼1;…;4
�½CH� ¼ 1: ð2:26Þ

Therefore, the fractional instantons of ðSUð3ÞC ×
Uð1ÞHÞ=Z3 completely turn each Uð1ÞAi

into noninvertible
symmetries, of which a discrete Z3 subgroup is particu-
larly notable. Consider the following equality of charges
modulo 3:

B̃þ d̄ ¼ H þ A1 þ A2; ðmod 3Þ: ð2:27Þ

As H is gauged, the diagonal flavor combination A1 þ A2

generates a discrete flavor symmetry ZB̃þd̄
3 , which acts in a

generation-independent way. According to our analysis
above, ZB̃þd̄

3 is a noninvertible symmetry. As we will see
below, this discrete symmetry plays a key role in protecting
quark masses.
More generally, our calculations of the anomaly coef-

ficient also allow us to deduce the subgroup of invertible
symmetries, i.e., those that do not participate in any
anomalies involving H. A general charge J can be
expressed in terms of integers li as

J ¼ l1A1 þ l2A2 þ l3A3 þ l4A4: ð2:28Þ

From Eq. (2.26), the condition that J defines an invertible
symmetry is then

l1 þ l2 þ l3 þ l4 ¼ 0: ð2:29Þ

Modding out by theH gauge redundancy leaves a rank-two
invertible flavor symmetry. These symmetries are summa-
rized in Table III.

2. Massless down quarks from noninvertible
PQ symmetry

Having identified all symmetries of the theory, we now
discuss the spurion structure of the down-quark Yukawa
terms,
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Lyd ¼ yijd HQid̄j: ð2:30Þ

Of course, in our analysis above, we set yijd → 0. Thus, we
can now see which symmetries must inevitably be broken
to regenerate nonzero Yukawas.
First, we must enforce Uð1ÞH gauge invariance:

Uð1ÞH allowed∶ Q1d1; Q2d2; Q3d3 ðdiagonalÞ ð2:31Þ

Q1d2; Q2d1 ðoff-diagonalÞ
Uð1ÞH forbidden∶ Q1d3; Q3d1; Q2d3; Q3d2: ð2:32Þ

This result is a simple consequence of the disparity in
Uð1ÞH charge assignments between the first two gener-
ations and the third generation, which clearly implies there
is no mixing of the third generation with the first or second.
Since Uð1ÞA1;2

acts only on d̄, it is easy to see that all
Uð1ÞH-invariant components listed above are forbidden by
noninvertible Peccei-Quinn symmetries. In particular, we
note that all Uð1ÞH-allowed components of the Yukawa
matrix are forbidden by the ZB̃þd̄

3 noninvertible discrete
symmetry. Thus, even if all other symmetries are broken, in
the Uð1ÞH phase with ZB̃þd̄

3 , the down-quark Yukawa
matrix must vanish. Conversely, we may also view nonzero
entries of the down Yukawa matrix as spurions of the
noninvertible symmetry [111].
As discussed before and after Eq. (1.10), we see that

when the noninvertible Peccei-Quinn symmetry is pre-
served, there are massless quarks and CP is a symmetry of
the strong sector of the SM. For this reason, such models
inform us about massless down-quark solutions to the
strong CP problem. We note that this class of models—
and, in particular, the tight interplay with noninvertible
symmetry—only occurs for the choice of global form of the
gauge group ðSUð3ÞC × Uð1ÞHÞ=Z3, which in turn is only
possible because Nc ¼ Ng. Of course, in reality, down
quarks are massive, implying that the noninvertible sym-
metry must be explicitly broken. The completion of the
massless down-quark solution therefore requires a mecha-
nism of noninvertible symmetry violation and the gener-
ation of observed quark masses, mixings, and the CKM
phase, which we discuss in Sec. III.

D. SUð3ÞH extension

We now consider gauging the entire anomaly-free non-
Abelian quark flavor symmetry SUð3ÞH. We again make a

nontrivial choice of quotient in the color-flavor gauge
group:

SUð3ÞC × SUð3ÞH
Z3

: ð2:33Þ

The quarks transform in bifundamental representations
summarized in Table IV. For instance, the quark doublet
(now boldfaced)Q is both a 3 of SUð3ÞC unifying the color
(red, green, and blue) quantum numbers as well as a 3 of
SUð3ÞH unifying the flavor (e.g., up, charm, and top)
quantum numbers as a gauge symmetry. That all colored
SM matter obeys this pattern allows the nontrivial global
structure chosen in Eq. (2.33).
Much of the symmetry analysis parallels that of the

Abelian horizontal extension discussed above. We again
consider the limit of vanishing down-type Yukawas and
further restrict the up-type Yukawas to be family symmetric
and hence compatible with SUð3ÞH. The relevant classical
symmetries are now flavor independent,

Uð1ÞB
Z3

× Uð1Þd̄; ð2:34Þ

which have charges listed in Table IV. Here, theZ3 quotient
on Uð1ÞB arises because that subgroup is gauged as noted
in Eq. (2.12).
We first consider the anomalies that do not probe the

global structure of the gauge group. The relevant anomaly
coefficients are summarized in Table V. The net breaking
effect is given by the greatest common divisor of all
anomaly coefficients, which shows that the classical global
symmetries are broken down to

TABLE III. Symmetries of the standard model with no down
Yukawas after gauging Uð1ÞH with nontrivial global structure.

Gauged Uð1ÞB1þB2−2B3

Invertible Uð1ÞB̃3−d3−B̃1þd1 × Uð1ÞB̃3−d3−B̃1þd2
Noninvertible Uð1Þd̄1þd̄2−2d̄3 ⊃ ZB̃þd̄

3

TABLE IV. Symmetry and matter content of the SUð3ÞH
extension.

SUð3ÞC SUð3ÞH Uð1ÞB Uð1Þd̄
Q 3 3 þ1 0
ū 3̄ 3̄ −1 0
d̄ 3̄ 3̄ −1 þ1

TABLE V. ABJ anomalies of chiral symmetries of the quark
sector with gauged SUð3ÞH. We also show anomaly coefficients
with fractional instantons, denoted as [CH] (for color-H admix-
ture), allowed by the global structure ðSUð3ÞC × SUð3ÞHÞ=Z3.

Uð1ÞB Uð1Þd̄
SUð3Þ2C 0 Ng

SUð2Þ2L NcNg 0
Uð1Þ2Y −18NcNg 4NcNg

SUð3Þ2H 0 Nc

[CH] 0 2
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Uð1ÞB
Z3

×Uð1Þd̄ →
ZB

9

Z3

× Zd̄
3 ≅ ZB

3 × Zd̄
3: ð2:35Þ

Without the quotient on the gauge group in Eq. (2.33),
the above concludes the analysis of the symmetries.
However, with the Z3 quotient, there are further instanton
configurations to consider. Specifically, there are now
gauge fields with nontrivial Stiefel-Whitney classes for
both the color and horizontal gauge groups with

w2ðACÞ ¼ w2ðAHÞ∈H2ðM;Z3Þ: ð2:36Þ

Instantons of both the color and horizontal gauge group can
then have fractional instanton numbers valued in 1

3
Z.

However, because of Eq. (2.36), the fractional parts of
the instanton numbers must be equal. More technically, the
analog of Eq. (2.22) relating the fractional part of the
instanton numbers is now

N C ¼ N H; mod 1: ð2:37Þ

To compute anomalies, we must evaluate the general
sum of indices weighted by charges. For a general flavor
symmetry f, the anomaly coefficient Af is

Af ¼
X
ψ i

qfψ i Iψ i
¼ 3ðN CþNHÞð2qfQþqf

d̄
þqfūÞ: ð2:38Þ

Thus, we see that, in the minimal fractional instanton, for
which N C ¼ N H ¼ 1=3, we have

AB ¼ 0; Ad̄ ¼ 2: ð2:39Þ

Therefore, fractional instantons leave the baryon symmetry
B untouched but turn Zd̄

3 into a noninvertible symmetry.
As in our analysis in Sec. II C 2, we now arrive at a

model where the down-type Yukawa coupling must van-
ish due to the presence of noninvertible chiral symmetry.
Indeed, SUð3ÞH gauge invariance means that the Yukawa is
reduced to a single number yd:

Lyd ¼ ydδij̄HQid̄j̄: ð2:40Þ

The down quarks transform under the noninvertible Zd̄
3;

hence, as long as this is a good symmetry, the down-type
quarks are massless.
Just as in the Uð1ÞH extension, we see that when the

noninvertible Zd̄
3 Peccei-Quinn symmetry is preserved,

there are massless quarks, and CP is a symmetry of the
strong sector of the SM. Moreover, this class of models
exists only for the choice of global form of the gauge group
ðSUð3ÞC × SUð3ÞHÞ=Z3, which in turn is only possible
because Nc ¼ Ng. We now turn to a UV completion of
these models, which can break these symmetries and

generate physical quark masses, mixings, and the
CKM phase.

III. NONINVERTIBLE SYMMETRY BREAKING
FROM COLOR-FLAVOR UNIFICATION

The noninvertible chiral symmetries of the infrared
theories above point us to an ultraviolet theory where
small instantons dynamically break these symmetries. The
minimal choice is SUð9Þ color-flavor unification, where the
three colors and three generations of each quark field are
intermingled in the fundamental of SUð9Þ. We will
describe this theory in Sec. III A and show how its
Uð1ÞPQ symmetry protects down-quark masses and
ensures that strong CP violation vanishes in the UV. In
Sec. III B, we show that, at the scale Λ9 where
SUð9Þ → ðSUð3ÞC × SUð3ÞHÞ=Z3, the instantons dynami-
cally generate a flavor-symmetric yd while keeping θ̄ ¼ 0
(further details on the ’t Hooft vertices are given in
Appendix C). In Sec. III C, we generate nontrivial flavor
structure and weak CP violation at the scale Λ3, where
ðSUð3ÞC × SUð3ÞHÞ=Z3 → SUð3ÞC, while ensuring θ̄ con-
tinues to vanish, and in Sec. III D, we discuss determining
Λ9=Λ3 from the running of the strong gauge coupling.
In the spirit of the massless up-quark solution to the

strongCP problem—which does not work in the SMwhere
the instanton effects are not large enough—our ultraviolet
color-flavor unified SUð9Þ theory contains additional
instantons that can have larger effects in generating quark
masses. An additional physics benefit is the possibility to
separate the scale of instanton effects Λ9 where SUð9Þ →
SUð3Þ2=Z3 and the scale of flavor Λ3 where SUð3ÞH is
broken. Of course, this unification results in breaking of the
noninvertible chiral symmetries of quarks discussed in
detail in Sec. II, which make up the basic framework for
this massless quark solution.
However, while our embedding in a flavor-unified gauge

theory simplifies the UV description, on the contrary, it also
makes theUV theoryway too flavor symmetric and imposes
the familiar, nontrivial challenges of UV flavor model
building. Thus, writing down a fully realistic model requires
a predictive theory of the entire quark Yukawa sector, which
is a lofty and important goal; however, for now, we will
attempt to factorize issues and return to the task of flowing
precisely to the SM in future work. Of course, we must
ensure that we can perform this breaking and generate the
nontrivial Yukawa matrices yu, yd without upsetting
our achievement in providing the boundary condition
θ̄ðΛ9Þ ¼ 0. In particular, this process includes generating
the CP-violating phase in the CKM matrix, as invariantly
parametrized by Jarlskog, J̃ ¼ Im detð½y†uyu; y†dyd�Þ.
Many approaches to strong CP protect θ̄ from δCKM in a

way that intrinsically relies on the small sizes of some
entries in the CKM matrix. In contrast, we describe one
possible, general scheme to implement flavor breaking in
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which θ̄ continues to vanish without relying on the specific
structure of the low-energy SM. We use the gauged flavor
symmetry to our advantage in recognizing that it provides a
good way to generate nontrivial complex structure in the
Yukawas while keeping them Hermitian, y†u ¼ yu; y

†
d ¼ yd

(in the canonical UV basis). With the UV PQ symmetry
producing θ̄ðΛ9Þ ¼ 0, this method of communicating non-
trivial flavor and weak CP violation to the quarks at the
scale Λ3 guarantees that the strong CP problem continues
to be solved. We will make a more precise statement in
Sec. III C. While a fully realistic understanding of flavor in
these theories will require additional work, the structure we
describe shows a general scheme for solving the strong CP
problem in this framework.

A. The SUð9Þ unified theory and θ̄ðΛ9Þ= 0
An example of a unified theory that provides the Z3

magnetic monopoles (or Z3 small instantons) that break the
1-form symmetry of the SUð3Þ2=Z3 gauge theory, hence
breaking the noninvertible symmetry, is the embedding in
SUð9Þ color-flavor unification. This embedding is minimal
in that it requires no new fermions, being simply a gauging
of the global symmetries of the standard model quark
fields [38], as evinced in the fermion content given in
Table VI. Of course, one could consider alternative ultra-
violet theories that also introduce the correct magnetic
monopoles, but generically, these theories require addi-
tional structure to lift extra fermion species.
In the UV Lagrangian, we explicitly write down the

“top” Yukawa, and in a general basis, the UV Lagrangian
contains

L0 ¼ ytH̃Qūþ H:c:þ iθ9
32π2

FF̃; ð3:1Þ

where our notation is Qū ¼ QAūA [A ¼ 1;…; 9 is an
SUð9Þ index] and Fμν is the field strength of the SUð9Þ
gauge field with its dual defined as usual, F̃μν ¼ 1

2
ϵμνρσFρσ.

The full UV theory includes a couple more terms, for
reasons that wewill explain in detail below. For now, we list
those terms and give a brief motivation for each of them.
In addition to L0, our UV theory includes the follow-
ing terms.

(1) LΦ ¼ jDμΦj2 − VðΦÞ
Here, Φ is a scalar field transforming in the three-

index symmetric representation of SUð9Þ. It is
responsible for the breaking SUð9Þ → SUð3Þ2=Z3

at a high scale hΦi ¼ Λ9. Even after this breaking, the
gauged quark flavor symmetry SUð3ÞH implies that
the quark Yukawas continue to be flavor symmetric.

(2) LΣ ¼ jDμΣ1j2 þ jDμΣ2j2 − VðΣ1; Σ2Þ; VZ4
ðΣÞ ¼

η1TrðΣ4Þ þ η2TrðΣ2Þ2 þ H:c:
We introduce two SUð9Þ adjoint scalars Σ1

and Σ2 to further break SUð3Þ2=Z3 → SUð3ÞC,
and we assume such a breaking occurs at a scale
hΣi ¼ Λ3 ≲ Λ9. Since reproducing the observed SM
requires not only real entries of 3 × 3 mass matrices
(quark masses and flavor mixings) but also a
complex CP-violating phase (δCKM), we need to
introduce CP-violating parameter(s). In our theory,
the vevs of Σ1;2 generate the desired texture, and
complex parameters in their potential VðΣÞ provide
necessary CP-violating phases. When the theory
respects Z4 symmetry of Σ (which, however, is not
essential for our mechanism to work, as we elaborate
on below), the potential takes a simple form as
shown above. There, we combined two Σ1;2 to form
a single “complex” adjoint field Σ ¼ Σ1 þ iΣ2, and
η1;2 are two complex parameters. However, note that
there are additional terms but with real parameters,
e.g., TrðΣ†ΣÞ2, which we have not written down
because they do not play a key role.

(3) Lρχ¼jDμρj2þiχ†∂χþλdd̄ρχþa1ρΣρ†þa2ρΣΣρ†þ
H:c:þρðc1Σ†Σþc2ΣΣ†Þρ†
Since the Jarlskog invariant J̃ ∝ Im det ½y†uyu; y†dyd�

measures the “misalignment” of the up vs down
Yukawas, generating the desired flavor structure (both
real texture and the CP-violating phase) requires that
the up- and down-type quarks are not treated identi-
cally. We implement this up-down asymmetry by
introducing one completely sterile Weyl fermion χ
and one SUð9Þ fundamental scalar ρwith hypercharge
such that only “down-philic” interactions among these
and the SM quarks are allowed. [112] Note that ρ is
charged under Uð1ÞPQ but does not obtain a vev.

SUð9Þ representations of these additional fields are sum-
marized in Table VII. In addition, in Table VIII, we list how

TABLE VI. Standard model matter content of the ultraviolet
color-flavor unified gauge theory with classical global sym-
metries.

SUð9Þ Uð1ÞB̃ Uð1Þd̄
Q 9 þ1 0
ū 9̄ −1 0
d̄ 9̄ 0 þ1

H 1 0 0

TABLE VII. Additional matter content used to break down to
the SM in the infrared. The SUð9Þ-charged fields are all scalars,
and χ is a singlet fermion.

SUð9Þ Uð1ÞB̃þd̄

Φ 165 0
Σ1;2 80 0
ρ 9 −1
χ 1 0
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various SUð9Þ representations decompose upon symmetry
breaking.
In the remaining part of this subsection, we show

explicitly that strong CP violation is absent in the
SUð9Þ phase of the theory. Subsequent threshold correc-
tions, generation of the CKM phase, and potential renorm-
alization of θ̄ will be discussed in the following sections.
We first note that the top Yukawa explicitly breaks the

separate classical global symmetries for Q; ū down to the
diagonal Uð1ÞB̃. This process leaves two classical Uð1Þ s,
which, at the quantum level, are subject to ABJ anomalies
SUð9Þ2Uð1ÞB̃ ¼ SUð9Þ2Uð1Þd̄ ¼ 1; thus, they should be
arranged into the familiar SUð9Þ-anomaly-free baryon num-
berB ¼ B̃ − d̄. The other direction is a flavor-unified Peccei-
Quinn symmetry, which we take as B̃þ d̄. [113] Since the
theory is asymptotically free, in the far UV, the violation of
the Peccei-Quinn symmetry by the anomaly becomes arbi-
trarily weak, expð−2π=αÞ → 0. We assume this is a good
symmetry of the UV and its only breaking is by these
instanton effects. [114] Then, at the classical level, the down
Yukawa yd is forbidden by the Peccei-Quinn symmetry.
In a general basis, yt ¼ jytjeiθt is some complex number,

and the gauge theory has a phase θ ¼ θ9. We may perform a
field redefinition ū ¼ ū0e−iθt to make the up Yukawa real,
bearing out the general EFT understanding of using
spurions to count physical phases (see, e.g., Ref. [115]).
The ū rotation is anomalous, so this rotation also changes
the topological density term to θ ¼ θ9 − θt. Since the down
quark is classically massless, we can then perform a
rotation d̄ ¼ d̄0e−iðθ9−θtÞ to manifestly remove the depend-
ence of the Lagrangian on the topological density term.
Thus, there is a “canonical” basis in which the theta angle is
absent and the masses are all real; i.e., there is no strong CP
violation in the SUð9Þ phase with a good Uð1ÞPQ.
Quantum mechanically, however, the Peccei-Quinn sym-

metry is broken by the instantons of SUð9Þ, and we will
discuss this effect in Sec. III B along with the breaking of
SUð9Þ, which dictates the small instanton scale. We give
additional details in Appendix C.

B. SUð9Þ breaking and instanton effects

The first step of symmetry breaking to SUð3Þ2=Z3 may
be achieved by the condensation of a three-index sym-
metric ΦABC, which obtains a vev

hΦABCi ¼ Λ9ε
abcεijk; ð3:2Þ

where the SUð9Þ indices are reinterpreted as multi-indices
under the two SUð3Þ factors, which are manifestly
preserved, A∈f1;2;…;8;9g↔ ai∈f11;12;…;23;33g.
The fundamental 9 branches to the bifundamental 3 ⊗ 3 as

ūA ¼

0
B@

ū1

� � �
ū9

1
CA ¼

0
B@

ūru ūgu ūbu

ūrc ūgc ūbc

ūrt ūgt ūbt

1
CA ¼ ūai; ð3:3Þ

and one may usefully envision this as an “outer product”
decomposition into a matrix of the quark colors and flavors.
The different SUð3Þ factors now act as left or right matrix
multiplication, and the nontrivial global structure is seen
simply because a left multiplication by an element of the
center, ω1C with ω a cube root of unity, commutes through
and can cancel against a right multiplication by ω−11H. In
other words, for some general center rotations,

0
B@
ei

2π
3
nh 0 0

0 ei
2π
3
nh 0

0 0 ei
2π
3
nh

1
CA
0
B@
ūru ūgu ūbu

ūrc ūgc ūbc

ūrt ūgt ūbt

1
CA
0
B@
ei

2π
3
nc 0 0

0 ei
2π
3
nc 0

0 0 ei
2π
3
nc

1
CA

¼ei
2π
3
ðnhþncÞūai; ð3:4Þ

and all the matter in the theory is invariant along the
nh ¼ −nc direction since all the other irreducible repre-
sentations are contained in products of the fundamental
and antifundamental. The Φ branches as 165 → ð1; 1Þ þ
ð8; 8Þ þ ð10; 10Þ, where the 8’s are the adjoints, the 10’s are
the three-index symmetric tensor, and the entire (8,8) is
eaten by the gauge bosons. The SM matter fields are as in
Table IV.
Since the SUð9Þ theory is asymptotically free, the

dominant contribution to the ’t Hooft vertices arises at the
scale Λ9 where the breaking SUð9Þ → SUð3Þ2=Z3 occurs.
Note also that, across Λ9, the gauge couplings are non-
trivially matched as 1=g23 ¼ 3=g29, as there is a nontrivial
“index of embedding” [22,98,116] of SUð3Þ2=Z3 into
SUð9Þ. Nontrivial index of embeddingmeans the following.
Given a breaking of a gauge group G → H, if the index of
embedding is greater than 1, then not all of the G-instanton
effects are captured by unbroken H instantons. Here, the

TABLE VIII. Branching of some SUð9Þ representations to ðSUð3ÞC × SUð3ÞHÞ=Z3 and ðSUð3ÞC × Uð1ÞHÞ=Z3,
where non-Abelian representations are in parentheses and Abelian charges are subscripts, with the multiplicity of
representations as a prefactor.

SUð9Þ ðSUð3ÞC × SUð3ÞHÞ=Z3 ðSUð3ÞC ×Uð1ÞHÞ=Z3

9 (3, 3) 2ð3Þþ1 þ ð3Þ−2
80 ð8; 8Þ þ ð8; 1Þ þ ð1; 8Þ 5ð8Þ0 þ 2ð8Þþ3 þ 2ð8Þ−3 þ 4ð1Þ0 þ 2ð1Þþ3 þ 2ð1Þ−3
165 ð10; 10Þ þ ð8; 8Þ þ ð1; 1Þ ð10Þ−6 þ 2ð10Þ−3 þ 3ð10Þ0 þ 4ð10Þþ3 þ 4ð8Þ0 þ 2ð8Þ−3 þ 2ð8Þþ3 þ ð1Þ0
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index of embedding is 3. Thus, there are SUð9Þ instantons
that appear to be Z3 fractional instantons of SUð3Þ2=Z3

theory, as our analysis in Sec. II showed could occur. These
instantons are precisely what we need to explicitly break the
noninvertible symmetries. The nontrivial index of embed-
ding not only increases the size of UV instanton effects but
also decreases the number of legs of the ’t Hooft vertex.
Together, these effects are crucial for our solution.
The instantons of the SUð9Þ theory, in violating the

anomalous global symmetries, generate the ’t Hooft vertex
of Fig. 2. Since we avoided adding any additional SUð9Þ-
charged fermions, the ’t Hooft vertices include only the SM
fermion zero modes. However, the additional charged
scalars will affect the instanton density, and we defer a
fuller discussion of the sizes of the effects of ’t Hooft
vertices to Appendix C. Here, we content ourselves with
the rough result that instantons generate a down-type
Yukawa that violates Uð1ÞB̃þd̄ PQ symmetry by two units.
Flowing down in energies and momentarily staying at some
scale Λ > Λ9, instantons begin to generate

LðΛÞ ∼ ytHQūþ y⋆t eiθ9e
− 2π
α9ðΛÞHQd̄þ H:c:

þ iθ9
32π2

FF̃: ð3:5Þ

We see that a color-flavor symmetric down-type Yukawa is
generated with a rough size,

yd ∼ y⋆t eiθ9e
− 2π
α9ðΛÞ: ð3:6Þ

A key point is that such an instanton-induced Yukawa
comes with just the right phase to ensure

θ̄ ¼ arg e−iθ9 det yuyd ¼ −θ9 þ arg jytj2eiθ9 ¼ 0; ð3:7Þ

where, because of the color-flavor gauge symmetry, the
Yukawas are simply numbers. This seeming conspiracy
among phases is guaranteed by the good PQ symmetry of
the UV. In the canonical basis, the Yukawas remain real.
Now, moving to the theory at the matching scale, in a

general basis, we have

LðΛ9Þ ∼ ytHQūþ y⋆t eiθ9e
− 2π
3αsðΛ9ÞHQd̄þ H:c:

þ i3θ9
32π2

ðGG̃þ KK̃Þ; ð3:8Þ

where αsðΛ9Þ ¼ α9ðΛ9Þ=3 is the QCD coupling evolved
from the infrared up to the Λ9 scale. Here, G and K are the
SUð3ÞC and SUð3ÞH gauge field strengths, respectively.
The nontrivial matching of the theta angles accounts for the
Yukawas being upgraded from single numbers to 3 × 3
matrices [from the perspective of SUð3ÞC] and ensures

θ̄ ¼ −3θ9 þ arg det jytj2eiθ9 ¼ 0; ð3:9Þ

which, again in the canonical basis, reduces to the state-
ment that the Yukawas are all real and thus have real
eigenvalues. This finding is the core of the massless quark
solution to the strong CP problem [85–88].
In contrast to our generation of Dirac neutrino masses

from the charged lepton masses [3], here the required
suppression from the top to the bottom Yukawa is not
so large, yb=yt ∼ 1=40. From the naive one-instanton
Eq. (3.8), we can estimate αsðΛ9Þ ≃ 0.57, and we comment
on the effects of quadratic fluctuations around this solution
in Appendix C. In the end, it is difficult to obtain a reliable
analytic estimate of the instanton effects for our SUð9Þ
theory. Just as with the original massless up-quark solution,
lattice simulations will be needed in order to determine
precisely how well this works. However, we are aided by
the gauge coupling increasing due to the nonminimal index
of embedding at the SUð9Þ scale; we also have a natural
model-building handle to slow down or reverse its one-loop
running through colored particles with masses below Λ9,
which will be discussed further in Sec. III D.

C. Flavor breaking and keeping θ̄ ≈ 0

Having described a color-flavor unified theory that
guarantees θ̄ ¼ 0 in the ultraviolet, we need to understand
how δCKM ∼Oð1Þ may appear without spoiling it. As
discussed above, making use of gauged flavor symmetry
forces us to confront the generation of the non-flavor-
symmetric SM Yukawa sector. Here, we pursue the
simplest possibility of a single, further symmetry-breaking
step ðSUð3ÞC × SUð3ÞHÞ=Z3 → SUð3ÞC, in which we
break the horizontal symmetry all at once at a lower scale,
Λ3 < Λ9. Our strategy to not destabilize our UV achieve-
ment will be to communicate flavor and CP breaking to the
SM quarks in a way that keeps the Yukawas Hermitian.
Hermiticity of the quark Yukawas has been used in different
ways for the strong CP problem before—for example, in
parity-symmetric theories [117] or with supersymmetry
[62,63] or in an effective 2HDM [118]—but our usage will
be quite novel. In a theory of gauged flavor, it will be a
natural possibility as we will see below.

FIG. 2. The ’t Hooft vertex in the SUð9Þ theory by which
instantons generate the down-type Yukawa from the up-type
Yukawa.
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This separation of the scales at which the instantons
generate noninvertible symmetry violation and at which
the flavor structure is generated is a possibility in this
theory that differs from the theories considered in
Refs. [93,94]. [119] Generally, it could aid in keeping θ̄
small, but here we will describe a mechanism to generate
flavor that automatically preserves θ̄ ¼ 0 without utilizing
this structural possibility. As seen in the prior sections, we
begin with Yukawas proportional to the identity matrix
yu; yd ∝ 1. Generating the nontrivial flavor structure, espe-
cially flavor hierarchies, using higher-dimensional opera-
tors suppressed by powers of Λ3=Λ9 means that there is a
tension between reproducing the SM flavor structure and
having a large ratio of scales in this scheme [120]. That is,
we will not ask for any large hierarchy between these two
scales, nor will we discuss a predictive theory of their
origins.
There may be many choices of how to break SUð3ÞH and

match onto the SM. As our symmetry-breaking sector, we
choose two SUð3ÞH adjoint scalar fields Σ1;2, which,
together, can entirely break SUð3ÞH → ∅. We find it useful
to join these scalar fields together into the “complex
adjoint” Σ≡ Σ1 þ iΣ2, which can be seen merely as an
accounting measure to keep track of their would-be
SOð2Þ ≃ Uð1ÞΣ global symmetry. Their nonzero commu-
tator ½Σ1;Σ2� ¼ ½Σ†;Σ�=ð2iÞ is required to fully break the
SUð3ÞH symmetry. In addition, as the SM Jarlskog invari-
ant is written in terms of a commutator of flavor spurions, it
will be proportional to this single, nonvanishing commu-
tator in this model.
With only the SM fermions, there are no renormalizable

interactions allowed with Σ, and its breaking of SUð3ÞH is
communicated to the quarks solely through the broken
SUð9Þ gauge bosons. [121] As these flavor-breaking effects
must include the generation of the CP-violating δCKM,
we must ensure that this scalar sector can break CP.
Indeed, the most general potential for Σ includes many
CP-violating phases, and for simplicity, we can find a more
tractable potential by imposing a Z4 symmetry,

VZ4
ðΣÞ ¼ η1TrðΣ4Þ þ η2TrðΣ2Þ2 þ H:c:

þ terms with real coefficients; ð3:10Þ

where we have left off the terms that do not break Uð1ÞΣ.
This potential has a single CP-odd phase, which is captured
by the field-redefinition-invariant η†1η2. We assume it has
some random complex phase, explicitly breaking CP. In
this simplified scenario, there is no spontaneous violation
of CP when Σ obtains a vev because η1 and η2 both have
charge −4 under the spurious Uð1ÞΣ symmetry [122]. In
general, without imposing Z4, the Σ potential will both
explicitly and spontaneously violate CP. Either way is fine;
the mechanism we now describe works no matter how CP

violation appears in Σ’s potential, and we will explore the
spontaneous case further in forthcoming work [123].
Despite the fact that we now have flavor and CP

breaking, in this model, θ̄ ¼ 0 continues to hold because
the effects of Σ (both in producing the Yukawa texture and
in CP violation) are transferred to the SM fields only
through the SUð9Þ heavy-gauge bosons. As a result, for any
coupling that one could attach to an external Σ leg to obtain
a complex contribution to a Yukawa coupling, there is also
always a Hermitian conjugate coupling to be attached to
the Σ† leg. See, for example, Fig. 3. As a whole, our
mechanism works in a way such that corrections to the
Yukawas always leave them Hermitian. Note that this
argument applies just as well to the RG evolution during
the ðSUð3ÞC × SUð3ÞHÞ=Z3 phase when the Σ fields
appear only in closed loops—while there are many-loop
diagrams proportional to η†1η2, there are compensating
diagrams proportional to η†2η1 that sum up to real
Yukawas in the ðSUð3ÞC × SUð3ÞHÞ=Z3 phase when they
are still just numbers.
Then, below the SUð3Þ-breaking scale Λ3, the basic

structure of the up-type Yukawas, for example, is given by

ðyuÞab ∼ yt

�
1ab þ

α9
ð4πÞ

fΣ†;Σgab
2Λ2

9

þ other terms with real coefficients

þ α9
ð4πÞ

η†1ðΣ†4Þab þ η†2TrðΣ†2ÞðΣ†2Þab
Λ4
9

þ α9
ð4πÞ

η1ðΣ4Þab þ η2TrðΣ2ÞðΣ2Þab
Λ4
9

þ…

�
; ð3:11Þ

where we have only given some naive power counting for a
notion of the size of these effects, and it should be
understood that these are vevs of Σ. The anticommutator
fΣ†;Σg=2 ¼ Σ2

1 þ Σ2
2 is the structure hat appears from the

gauge interactions, and these must respect the Uð1ÞΣ

FIG. 3. The Λ9 threshold contribution to the up-type Yukawas,
which eventually gives flavor and CP breaking proportional to
α9η

†
1hΣ†i4ab =ð4πÞ. The Hermitian conjugate contribution is gen-

erated by the same diagram with an η1 insertion on the conjugate
scalar leg; thus, together, they yield a Hermitian up-type Yukawa.
Here, Σ is the SUð3ÞH adjoint.
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spurious “flavor” symmetry. This anticommutator is the
leading correction to the flavor structure which is mani-
festly real, all of which we group on the top line. In the
second line, we give the first corrections through which a
complex phase enters the Yukawas in the simplified
scenario where theZ4 symmetry of Σ controls the potential.
So far, the corrections consist of a sum over diagrams

attaching a vertexwith a complex coefficient to theΣ line and
fromattaching its conjugate vertex to theΣ† line. Then,while
the generated Yukawas are no longer real, they remain
Hermitian, which suffices to guarantee det yu; det yd ∈R,
and so θ̄ ¼ 0. Note also that, while in the unbroken phase the
CP violation is necessarily invariantly parametrized only by
η†1η2, at low energies afterΣ obtains a vev, we integrate out its
fluctuations, and it appears only as an external source. Thus,
the combination η†1TrhΣi†4 þ η†2TrðhΣi†2Þ2 can also invari-
antly parametrize CP violation.
However, while we now have complex, SUð3ÞH-violat-

ing Yukawas, this setup cannot yet generate the CKM CP
angle. The issue is that the SUð9Þ dynamics affect the up
and down quarks symmetrically, whereas a nonvanishing
CKM phase appears from a mismatch in the form of the
Yukawa couplings, sin δCKM ∝ Im detð½y†uyu; y†dyd�Þ. Thus,
we must introduce another ingredient to skew the Yukawas
apart while not upsetting the solution.
In particular, we can introduce some fields that interact

only with, say, the down quark and not the up quark. This is
simplest if it does not allow for any new CP phases in
operators containing quarks nor introduce any new color-
flavored fermions which would appear in our ’t Hooft
vertices. With two new fields ρ and χ, a new Yukawa is
allowed, where one allocation of quantum numbers is for
the scalar ρ to be a down squark and the fermion χ to be
sterile. The scalar can furthermore couple directly to Σ,

Lρχ ⊃ λdd̄ρχ þ a1ρΣρ† þ a2ρΣΣρ† þ H:c:

þ ρðc1Σ†Σþ c2ΣΣ†Þρ†; ð3:12Þ

where we have suppressed indices to avoid notational
clutter, e.g., ρΣΣρ† ¼ ρaΣa

bΣb
cðρ†Þc. These “down-philic”

interactions generate a loop correction to the down-type
Yukawas that is not present for the up-type Yukawas, which
allows a CKM phase to be generated, as we now discuss.
We can use a χ rotation to make λd real, and c1;2 are real by
self-Hermiticity of the operators. Note that a1;2 are set to
zero if the Z4 is imposed or, in general, have complex
phases and lead to further field-redefinition-invariant
CP-odd parameters such as a21a

†
2 or η†1a

2
2. In either case,

the interactions of ρ to Σ allow further flavor violation to be
communicated to the quarks in a way that does not upset
our mechanism: Σ couples to ρ†ρ, such that it will always
enter in a Hermitian manner. See Fig. 4.
Overall, this mechanism works by having all

CP-violating phases in the scalar sector and communicat-
ing them to the SM quark sector via a bosonic mediation. In
particular, the interactions of the Σ fields with the mediators
(who will transfer the flavor and CP breaking to the SM
quarks) are always Hermitian in the mediator fields, though
not necessarily in the Σ fields. Then, the requirement that
the Lagrangian is Hermitian itself ensures that, for any
diagram with possibly complex phases, there always exists
a conjugate diagram where the Uð1ÞΣ charges are all
reversed, and one obtains the complex conjugate phase.
This case would not be true if the CP-violating phases were
directly coupled to the SM fermions since conjugating the
diagram would then require charge conjugating the fermion
legs, resulting in a different diagram from the original one.
Instead, here we automatically obtain a sum over all Σ and
Σ† source insertions when computing the Yukawa correc-
tions, which keeps them Hermitian.
Now, let us examine the form of the Yukawas and the

CP-violating phases we have generated. Recall that, aside
from the strong CP angle itself, the only field-redefinition-
invariant CP-odd parameter in the theory of quarks is the
Jarlskog invariant,

J̃ ¼ Im detð½y†uyu; y†dyd�Þ: ð3:13Þ

FIG. 4. Threshold corrections to the down-type Yukawas. The left diagram preserves Z4 and gives a flavor-breaking but CP-
preserving contribution proportional to jλdj2c1hΣ†Σiab. The right diagram is present in the general Z4-violating case, and it gives flavor
and CP breaking proportional to jλdj2a1hΣiab. Again, the Hermitian conjugate contribution is generated by the same diagram, with an a†1
insertion of Σ†, so they sum to yield a Hermitian down-type Yukawa. These ρ-mediated corrections appear solely for the down-type
quarks.
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This parameter is small, J̃ ≃ ½ðmcÞ=ðmtÞ�½ðmsÞ=ðmbÞ�J ∼
5 × 10−9.
Since the only object breaking the flavor symmetry is Σ,

the CKM phase must depend on ½Σ;Σ†� as the only
nonvanishing commutator. Now, working even more sche-
matically just to see the structure, in the Z4-conserving
case, we have (see the left panel of Fig. 4)

yu ∼ 1þ fΣ†;Σg þ ðηΣ4 þ η†Σ†4Þ þ…; ð3:14Þ

yd ∼ 1þ cΣ†Σþ fΣ†;Σg þ ðηΣ4 þ η†Σ†4Þ…; ð3:15Þ

where we have only written down enough terms to see both
that CP violation enters (through the η complex self-
couplings of Σ) and that the two structures differ (due to
the c couplings of ρ to Σ). Moreover, we have absorbedΛ−1

9

into the scalar field, and we have left off most of the
constants, including the overall proportionality factors yu ∝
yt and yd ∝ yb, where yb ∼ y⋆t eiθ9e−2π=α9ðΛ9Þ. As discussed
above, we can choose a basis where both are real numbers,

and for convenience, we do so. To analyze the Jarlskog
invariant, it can be useful to split yd ¼ ryu þ rΔy into a
piece that is simply a real rescaling (r∈R) of the yu
structure (so will manifestly commute) and an extra piece,
which, for us, is given by the extra effects of the ρ and χ
interactions. Here, r ∼ e−2π=α9ðΛ9Þ and Δy ∼ cΣ†Σ, with
c∈R. Then, we have

J̃ ¼ Im det ðr2½y2u; fyu;Δyg þ Δy2�Þ ð3:16Þ

⫈ Im det ð4r2½ηΣ4 þ η†Σ†4; cΣ†Σ�Þ þ…; ð3:17Þ

where, in the second line, we only show the lowest-order
structure that can contribute to weakCP violation assuming
Z4 invariance. In general, without Z4, this could come in at
a lower order. The r2 dependence reflects the fact that J̃ is
proportional to y2d, while c dependence shows that J̃ ¼ 0

without the up-down asymmetry factor. We can rewrite this
case in terms of the commutator ½Σ;Σ†� as

J̃ ∝ Im detðηð½Σ;Σ†�Σ4 þ Σ½Σ;Σ†�Σ3 þ Σ2½Σ;Σ†�Σ2 þ Σ3½Σ;Σ†�ΣÞ
− η†ðΣ†½Σ;Σ†�Σ†3 þ Σ†2½Σ;Σ†�Σ†2 þ Σ†3½Σ;Σ†�Σ† þ Σ†4½Σ;Σ†�ÞÞ:

¼ Im detðηð½Σ;Σ†�Σ4 þ Σ½Σ;Σ†�Σ3 þ Σ2½Σ;Σ†�Σ2 þ Σ3½Σ;Σ†�ΣÞ − H:c:Þ: ð3:18Þ

This result will be generically nonvanishing so long as
η ∉ R and ½Σ;Σ†� ≠ 0, which is also necessary for hΣi to
properly break the horizontal symmetry.
Therefore, we have succeeded in generating the weak

CP phase of the quarks while keeping the strong phase
vanishing due to the Hermiticity. In a more general case that
does not preserve Z4, the power counting can turn out
differently. For example, because we can rely on CP
violation in the coupling ρ†ðaΣþ a†Σ†Þρ rather than in
only Σ self-couplings. This will yield

J̃ ∝ Im detða†ð½Σ;Σ†�Σ† þ Σ†½Σ;Σ†�Þ
− aðΣ½Σ;Σ†� þ ½Σ;Σ†�ΣÞÞ: ð3:19Þ

While still suppressed by the gauge coupling, the bottom
Yukawa, and two loop factors as before, we have less
suppression now, by a factor of about ðΛ3=Λ9Þ3.
Let us review the model to discuss what values of θ̄ these

models predict. In the SUð9Þ phase above Λ9, there is no
strong CP violation as a result ofUð1ÞPQ. At Λ9, instantons
generate PQ violation but ensure θ̄ ¼ 0. In the
ðSUð3ÞC × SUð3ÞHÞ=Z3 phase, the Yukawas are simply
numbers, so there is no other CP-odd quark parameter. The
RG evolution in this phase and the matching at Λ3 when Σ
obtains a vev both have a structure that generates complex,
but Hermitian Yukawas, keeping θ̄ ¼ 0. Only below Λ3,

after integrating out Σ, is the CKM phase δCKM present to
renormalize θ̄. However, now we are back to the SM field
content, so this renormalization isminuscule andprotected by
the SM structure, with the finite renormalization producing
only θ̄ ∼ 10−16, as estimated by Ellis and Gaillard [45].
Before concluding this section on SUð3ÞH breaking, let

us emphasize what we have achieved. Often, ensuring that
models designed to solve the strong CP problem do not
generate unacceptably large θ̄ relies explicitly on the small
entries of the SM Yukawa matrices. Recall that this is the
case in the SM itself, as many loops are needed to generate
θ̄ from δCKM, so it is sensible to model build toward that
same conclusion. One such example is the flavor-decon-
structed massless quark solution of Ref. [93]. However, in
this work, we start with the flavor symmetry fully gauged,
and we need to generate the nontrivial Yukawas. Then,
utilizing small quark mixing angles to keep θ̄ small is more
challenging for us since we would first need to construct a
predictive theory of flavor, i.e., specify the full texture of
hΣi and scalar potential compatible with observations.
Instead, we propose a mechanism that factorizes the

issue of strong CP from the precise details of the SM flavor
structure. Namely, our tactic is to describe a way to
generate nontrivial flavor structure and weak CP violation
that does not automatically produce nonvanishing θ̄. When
the flavor structure of hΣi; hΣ†i is communicated to the SM
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quarks in the way described above, the Yukawas continue
to be Hermitian and θ̄ ¼ 0 holds, no matter what the flavor
structure is. In other words, this solution would continue to
work even if the quark sector were fully anarchic and the
Yukawas were described only with Oð1Þ numbers.
Furthermore, we note that this mechanism has an imme-
diate application to a flavorful theory of spontaneous CP
violation, which we will report on in forthcoming
work [123].

D. Scales and running

We want to find the scale Λ9 at which color unification
occurs, which is dictated by the gauge coupling α9ðΛ9Þ
being the right size to generate the bottom Yukawa from the
top Yukawa. Since we need relatively large gauge coupling,
this scale is subject to theoretical uncertainty and lattice
simulations are needed to accurately determine the size of
instanton effects. Furthermore, the evolution of the gauge
coupling is dictated by the entire charged matter spectrum,
which depends both on the representations we have added
to implement flavor breaking and also on their masses, so,
in principle, there is a lot of freedom.
Across the breaking scale Λ9, SUð3ÞC is embedded

nontrivially into SUð9Þ with an index of embedding of 3,
such that the gauge coupling is rescaled as

α9ðΛ9Þ ¼ 3αsðΛ9Þ: ð3:20Þ

This relative factor of 3 strengthens the small SUð9Þ
instanton effects with respect to those at lower energies,
which is one reason they may achieve some qualitatively
new effects. However, as discussed above, the gauge
coupling needed is large, and there may need to be
additional running between the SUð9Þ-breaking scale Λ9

and the scale Λ3 at which we break to SUð3ÞC.
Above Λ9, the SUð9Þ theory should be asymptotically

free, which is easily achieved because of the large number
of colors. At the scale Λ3, we match onto the SM, and
heavy-gauge bosons generate flavor-changing four-Fermi
operators that are tightly constrained; thus, we must have
Λ3 ≳ 1000 TeV [124,125]. In between these scales, the
theory must switch to being IR-free such that the coupling
grows into the UV by the beta function

α−1s ðΛ9Þ ≃ α−1s ðΛ3Þ þ
β3
2π

log

�
Λ9

Λ3

�
; ð3:21Þ

β3 ¼
�
11

3
Nc −

4

3
nfIf −

1

3
nsIs −

1

6
nrIr

�
; ð3:22Þ

where the charged matter consists of nf Dirac fermions, ns
complex scalars, and nr real scalars with Dynkin indices If,
Is, and Ir, respectively. The SM has nf ¼ 2Ng fundamental
Dirac fermions. We normalize the SUðNÞ generators so that
the Dynkin index for the fundamental representation is 1=2,

giving If ¼ 1=2. As outlined in Table VII, our breaking
sector has added 2 × ð1þ 8Þ adjoint scalars with Ir ¼ Nc
coming from Σ, ten three-index symmetric scalars with
Is ¼ 15=2 coming from the components of Φ that were not
eaten, and Ng fundamental scalars with Is ¼ 1=2 from ρ.
Thus, we have far more than enough colored matter to
overpower the gluonic contribution if these scalars, for
some reason, do not become massive until a scale belowΛ9.
Then, one only needs an extremely mild hierarchy for
appreciable running to take place, with β3 ¼ −55=2.
From the bottom up, we have precisely measured the

low-energy value of the strong coupling, and the PDG gives
the world average αsðMZÞ ≈ 0.118 [43]. From the scales
MZ up to Λ3, we have the SM degrees of freedom, which
contribute to a beta function βQCD ¼ ð11 − 2=3nfÞ, with
nf ¼ 5 below mt ≈ 173 GeV and nf ¼ 6 above.
For simplicity, we consider a scenario where all of the

new colored scalar degrees of freedom obtain masses only
at Λ3 ¼ 106 GeV, and in Fig. 5, we plot the relationship
between Λ9 and α9ðΛ9Þ ¼ 3αsðΛ9Þ by integrating the one-
loop RGE. In this scenario, depending on the size of α9
needed for instanton effects to be large enough, the UV
unification scale Λ9 need be no more than a loop factor
above the flavor-breaking scale Λ3. Suppressing the col-
ored scalar masses relative to Λ9 is then only a mild tuning.
Of course, one could also consider increasing Λ3, or
consider the scalars obtaining an intermediate mass,
Λ3 < M < Λ9, or keeping fewer scalars light and having
larger scale separation; we leave further consideration for
future work aimed at more realistic phenomenology.

E. No quality problem

Axion solutions to strong CP famously suffer a severe
quality problem that their Uð1ÞPQ symmetries are easily

FIG. 5. The strong coupling at the matching scale in a
simplified scenario where the colored scalars all have a common
mass, Λ3 ¼ 106 GeV. At Λ9, the gauge coupling increases by the
index of embedding α9ðΛ9Þ ¼ 3αSðΛ9Þ, but above Λ9, the theory
is again asymptotically free. For some very rough guidance, the
dashed line is the naive estimate of Eq. (3.8) to generate the
bottom Yukawa.
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destabilized. While it is true that we also require a good
Uð1ÞPQ symmetry, our model is not plagued by a quality
problem. There are two issues to discuss. First, the purely
field theoretic issue is how to clearly understand what it
means to impose an anomalous symmetry on a classical
action. While the program of generalized symmetries may
lead us to better understand the sense in which we can think
of instanton effects as spurions for the anomalous sym-
metry, this issue is not yet entirely clear.
A further and more general concern is that quantum

gravitational effects are expected to violate any global
symmetries, such that demanding an exact global symmetry
in the UV seems theoretically unsound. We still have little
understanding of precisely how such violation occurs, but
one is at least motivated to consider the effects of Planckian
operators made out of the fields in our theory that preserve
only gauge symmetries and violate global ones. The
potentially disastrous implications for axion models were
first discussed in Refs. [126–129].
This challenge is far worse for the axion solution than for

the massless quark solution for the following reasons:
(1) The presence of a scalar field ϕ charged under

Uð1ÞPQ symmetry allows global-symmetry-violat-
ing terms of any dimension, e.g., L ⊃ cnM4−n

Pl ϕn,
which could conceivably be generated by quantum
gravitational effects.

(2) Astrophysical constraints on weakly coupled par-
ticles interacting with SM quarks impose a lower
limit on the “axion decay constant,” fa ¼ hϕi,
fa ≳ 108 GeV [130].

(3) The gravitational, global-symmetry violating oper-
ators must be subleading to the QCD-sized potential,
which must localize a ∼ −θ to very high accuracy.
Thus, the struggle is between Λ4

QCDð1 − cosðaþ θÞÞ
and f4aðfa=MPlÞn−4ð1 − cosðnaþ φnÞÞ, where φn ¼
arg cn, and the minimum of aþ θ must end up
smaller than θ̄.

The symmetry-violating effects of operators generated by
quantum gravity should vanish in the limitMpl → ∞ where
gravity is turned off. With no other scales around, this
justifies the idea that we should consider Planck-suppressed
irrelevant operators, as we cannot write coefficients of
marginal or relevant terms that have the correct limiting
behavior. Considering the least-suppressed irrelevant oper-
ator, if the dimension-5 operator has a random Oð1Þ phase,
its coefficient must satisfy

jc5j≲ 10−35
�

θ̄

10−10

��
108 GeV

fa

�
5

; ð3:23Þ

very clearly violating any naturalness principle and stretch-
ing the plausibility of these models unless there is extra
structure that forbids these operators to high orders.
In contrast, the quality requirement for the massless

quark solution is far less stringent. Beginning in the UV

with a PQ symmetry at ReðMÞ ¼ ImðMÞ ¼ 0, instantons
violate the PQ symmetry but not CP to produce an additive
renormalization of M in the direction ReðMÞ > 0. A PQ-
violating operator with an Oð1Þ phase results in an addi-
tional contribution to M in a general direction in the
complex plane, but as long as the overall size of this
contribution is small, then the resulting M is near the real
axis and θ̄ ∼ ImðMÞ=ReðMÞ stays small.
In the standard model massless up-quark solution, the

leading dimensionful PQ-violating gauge-invariant operator
is jHj2H̃Qū=M2

Pl, and the effects of this operator must only
compete with the dimensionless Yukawa couplings. An
additional such “bare” contribution to the up-quark mass
does not upset the massless up-quark solution so long as
ImðmuÞ≲ θ̄mu, which is easily satisfied as v2=M2

Pl ∼ 10−32.
Now, in comparison to the SM solution, which we know

is not realized in nature, the model above necessarily needs
new gauge dynamics at larger scales. Thus, there will be
irrelevant operators with UV scalars that obtain larger vevs,
for example, jΦj2H̃Qd̄=M2

Pl or H̃QΣd̄=MPl. In the former
case, these operators are completely safe so long as
hΦi ∼ Λ9 ≲ 1013 GeV, while in the latter case, there are
no naturalness concerns so long as hΣi ∼ Λ3 ≲ 108 GeV.
Then, there are no issues with the model of Sec. III even if
these PQ-violating operators are generated by quantum
gravity with Oð1Þ coefficients and random phases.
Overall, rather than posing a problem, these naturalness

considerations motivate the part of this model’s parameter
space in which the effects are most visible in low-energy
experiments. In other words, while generallyΛ3 could be at
some high scale and the model still works well, the above
quantum-gravitational concerns suggest BSM quark flavor-
changing physics should be, at worst, still in striking
distance in the mid-to-long term [131].

IV. FURTHER ISSUES AND DIRECTIONS

In this work, we have uncovered and explored a new
feature of colored standard model fermions. Remarkably,
the known particle spectrum admits gauged flavor sym-
metries that bear out noninvertible symmetry structures
through which ultraviolet instantons may resolve infrared
naturalness issues. In the quark sector, this noninvertible
symmetry appears when there is a nontrivial global
structure for the gauge group—a possibility that is permit-
ted because Nc ¼ Ng. Following our infrared noninvertible
symmetry analysis, we have sketched a scheme for imple-
menting the massless down-type quark solution into the
strong CP problem in SUð9Þ → SUð3Þ2=Z3 → SUð3ÞC.
There are many directions for further investigation, and we
briefly discuss some of them, in no particular order.
Alternative symmetry breaking.—It is potentially appeal-

ing to skip the SUð3ÞH phase of the theory entirely and go
directly from SUð9Þ to ðSUð3ÞC × Uð1ÞHÞ=Z3 before
breaking to SUð3ÞC. From the UV, this route might allow
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us to avoid introducing the large Higgs representation 165,
which is called for by SUð9Þ → SUð3Þ2=Z3, which would
imply less suppression of the instanton density. From the
IR, the Abelian horizontal symmetry is constrained only to
a few TeV; see Refs. [132,133] for constraints from the
LHC and low-energy flavor, and Ref. [134] for the general
framework. An Abelian horizontal phase then allows
potentially more visible observational signatures of such
theories at the energy frontier.
Full flavor.—The model we studied above did not have

enough structure to generate a realistic flavor sector, and
we can easily understand the sense in which we are
missing ingredients. Keeping the Higgs H as a color-
flavor singlet means that the flavor-singlet coupling to
the SM Higgs is allowed and generically leads to
yu; yd ∝ 1þ perturbations. Unfortunately, the observed
SM quark spectrum is not so amenable to fitting this
structure while keeping a good notion of power counting
for the perturbations. Likely, the needed solution is to
embed the Higgs in a color-flavor adjoint. The SM Higgs
then arises as a linear combination of the colorless, flavor
adjoint 80 ⊃ ð1; 8Þ, and the orientation of the Higgs in this
matrix provides another handle for producing the SM
Yukawa structure. This sort of structure has recently
been utilized in Ref. [135] in a UV theory which is
conceptually related to ours.
Interplay with other strong CP strategies.—We have

utilized a mechanism of producing Hermitian Yukawas to
ensure our UV boundary condition θ̄ðΛ9Þ is not disrupted
while generating the CKM matrix, but there may be other
choices. The addition of vectorlike quarks would allow
much greater freedom in shaping the Yukawas but may
require a Nelson-Barr-like structure to avoid introducing
dangerous phases. On the other hand, our avoidance of
vectorlike quarks makes the scheme of Sec. III C seem well
suited as a novel sort of model for spontaneous CP
violation, which we will explore in the forthcoming work,
Ref. [123]. There may also be a role for parity symmetry in
a left-right extension of this model, where the broken
SUð2ÞR is responsible for the initial distinction between up
and down quarks. Another obvious strategy we are cur-
rently pursuing [136] is to spontaneously break the Uð1ÞPQ
to find a model for a heavy QCD axion with additional
mass provided by the small instantons, whose phenom-
enology has been much discussed in recent years (see,
e.g., Refs. [64,94,95,99,137–147]) and whose domain
walls have rich phenomenology due to the noninvertible
symmetry [22].
Relation to Agrawal and Howe [93].—The scenario of

Agrawal and Howe also utilizes small instantons to revive
the massless quark solution to the strong CP problem but
not in a unified manner. They employ a flavor deconstruc-
tion of SUð3ÞC ⊂ SUð3Þ1 × SUð3Þ2 × SUð3Þ3 and begin
with three free diagonal Yukawas (top, charm, and down);
then, at the breaking scale Λ3, the instantons of their three

different gauge groups generate the three other diagonal
Yukawas with appropriate sizes. As a result, the only model
building they need to do is generate the off-diagonal
entries. Indeed, by cleverly adding a few fields with
judiciously chosen charges, they are able to fit the full
CKM structure of the SM including δCKM. They then find
that this process induces θ̄ as a two-loop correction that
depends on the small off-diagonal Yukawas of the SM
quarks and thus can be slightly below the current upper
bound, Δθ̄ ≲ 10−10, and within experimental reach.
We note that (at least structurally) one could attempt to

embed the model of Agrawal and Howe in the same UV
theory that we have, SUð9Þ ⊃ SUð3Þ3. With the aesthetic
and reductionist appeal of unification, one would have
additional challenges of explaining how to obtain the
appropriate flavor-asymmetric PQ symmetries, as well as
the varying sizes of nonzero Yukawas and gauge couplings
g1 > g2 > g3, rather than inputting these by hand. A
particular difficulty in this case may be that the up-type–
down-type hierarchy flips in the first generation relative to
the others, and it seems nontrivial for such a PQ to appear,
starting with a flavor-unified theory. Still, it would be
interesting to study in more detail a unified model embed-
ding Agrawal and Howe, which would mirror the strategy
of Davighi and Tooby-Smith [135], implementing flavor
deconstruction and reunification in the electroweak sector.
If such a scheme can work, the two-step breaking pattern
from SUð9Þ to SUð3ÞC has the advantage of generating the
diagonal and off-diagonal structures at different scales but
misses out on having the instantons and flavor breaking at
different scales.
Quark-lepton color-flavor unification.—We were led to

this model by a parallel with our earlier work on neutrino
masses protected by noninvertible symmetries [3]. A
unification of these parallel stories generating both tiny
Dirac neutrino masses and small, strong CP violations may
be achievable in a flavor-twisted Pati-Salam theory,
SUð12Þ × SUð2ÞL × SUð2ÞR, which we are currently
investigating. Such nontrivial gauge-flavor unified theories
have received astonishingly little attention [135,148,149]
and are ripe for further phenomenological study.
Very generally, the discovery of such unified theories

gives interesting top-down motivation to study separate
gauged quark and lepton flavor symmetries. It is evident
from experimental bounds that the scale at which non-
Abelian flavor physics is generated in the quark sector is far
beyond the reach of the energy frontier. Naively, one might
conclude that if we ultimately want quark-lepton unifica-
tion, this should imply that there is a single flavor
symmetry acting on both, meaning that the non-Abelian
lepton flavor scale is also necessarily very high. This is
not the case, as breaking SUð12Þ → SUð9Þquarks ×
SUð3Þleptons ×Uð1ÞB−L means that lepton flavor may yet
be generated at accessible energy scales consistently with
unification. In particular, this idea provides further UV
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motivation for a muon collider to explore the energy
frontier of lepton flavor physics (see, e.g., Ref. [150]).
Higgsed lattice field theory.—To fully understand the

phenomenological potential of this model, we would like to
know the bottom-to-top Yukawa ratio generated by the
SUð9Þ instantons over the entire parameter space. Since
perturbative corrections are enhanced byN in large-N gauge
theories for a given gauge coupling α, we quickly lose
control, so numerical computations will be necessary to
accurately understand the physics. Lattice computations of
Higgs-Yang-Mills theories have received relatively little
attention recently, but for early discussions, see, e.g.,
Refs. [151–153]. Here, we also have the challenge of trying
to understand the size of the SUð9Þ instanton effects without
needing to specify a fully realistic theory in which we could
check that we land on the SM spectrum of hadrons. One
could perhaps input a potential which only condenses the
scalar field Φ effecting SUð9Þ → SUð3Þ2=Z3, letting the
flavor group confine as well, and inferring the ratio of
yukawas from the relative masses of the flavor-symmetric
Δþþ ¼ uct and Δ− ¼ dsb.
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APPENDIX A: FRACTIONAL AND CFU
INSTANTONS

In this appendix, we review a few facts about fractional
instantons. Noninvertible symmetries appearing in this

work are connected to a certain kind of fractional instanton
configuration that may be loosely thought of as a special
linear combination of fractional instantons of more than
one gauge group factor, e.g., SUð3ÞC × SUð3ÞH. They are
examples of color-flavor-Uð1Þ (CFU) instantons intro-
duced in Ref. [104] (see also Ref. [155]). The discussion
presented here closely follows Refs. [32,104,156].

1. Fractional instantons

The simplest example of a gauge theory with fractional
instantons is PSUðNÞ ¼ SUðNÞ=ZN gauge theory, and we
will focus on it here. Let us first consider an SUðNÞ gauge
theory with only matter fields in the adjoint representation.
In this case, the entire set of fields, including the gauge
fields, are invariant underZN center transformations, which
in turn means that there are ZN-charged Wilson lines that
cannot be screened since there is no charged particle that
can cut those lines: Such a theory enjoys 1-form electric

Zð1Þ
N symmetry. Since it is a good quantum symmetry, it (or

any subgroup of it) can be gauged. If we gauge the entire

Zð1Þ
N electric center, the resulting theory is SUðNÞ=ZN

gauge theory. The latter no longer has 1-form electric

symmetry, but now it has 1-form dual magnetic Zð1Þ
N center

symmetry. This fact can also be checked from the fact that
π1ðSUðNÞ=ZNÞ ¼ ZN . As we describe now, the path
integral of SUðNÞ=ZN gauge theory includes a summation
over dynamical 2-form ZN gauge fields B2, which turn on
ZN-valued magnetic flux,

I
Σ2

B2

2π
¼ 1

N
Z: ðA1Þ

In addition, the theory contains fractional instanton con-
figurations, as well as regular integer-valued instantons.
To see this case more explicitly, we start with UðNÞ ¼

f½SUðNÞ ×Uð1Þ�=ZNg gauge theory and reduce it down to
SUðNÞ=ZN in two steps. First, we project down the local
degree of freedom associated with the Uð1Þ factor by
adding a Lagrange multiplier term to the action of theUðNÞ
theory,

S ¼ 1

g2

Z
Trðf̂2 ∧ �f̂2Þ þ

i
2π

Z
F2 ∧ Trðf̂2Þ

þ iθ
8π2

Z
Trðf̂2 ∧ f̂2Þ: ðA2Þ

Here, f̂2 is the 2-form field strength of the UðNÞ gauge
field â1, and F2 is a 2-form Lagrange multiplier whose
equation of motion imposes Trðf̂2Þ ¼ 0 which projects out
the Uð1Þ degree of freedom. This theory is just SUðNÞ and
thus still has a Z-valued instanton spectrum. To achieve
SUðNÞ=ZN theory with fractional instantons, we impose

1-form Zð1Þ
N symmetry. To this end, we introduce the
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SUðNÞ gauge field a1 and its field strength f2. They are
related to UðNÞ fields as

â1 ¼ a1 þ
1

N
A11; f̂2 ¼ f2 þ

1

N
dA11; ðA3Þ

where A1 is aUð1Þ gauge field and 1 is aUð1Þ is the N × N

identity matrix. Next, we impose Zð1Þ
N symmetry under

which fields transform as

a1 → a1; A1 → A1 − Nλ1

⇒ â1 → â1 − λ11; f̂2 → f̂2 − dλ11; ðA4Þ

where λ1 is the 1-form symmetry transformation parameter.
One then realizes that the action (A2) is not invariant under
the above symmetry transformation. It can be made
invariant by introducing a 2-form field B2 and assigning
a symmetry transformation rule B2 → B2 − dλ1. Then, the
invariant action is given by

S ¼ 1

g2

Z
Tr½ðf̂2 − B21Þ ∧ �ðf̂2 − B21Þ�

þ i
2π

Z
F2 ∧ Trðf̂2 − B21Þ

þ iθ
8π2

Z
Tr½ðf̂2 − B21Þ ∧ ðf̂2 − B21Þ�: ðA5Þ

The appearance of the combination ðf̂2 − B21Þ can be
thought of as coupling the theory to the 2-form gauge field

B2 of the Zð1Þ
N electric symmetry. To understand the

instanton spectrum, we first note that Trðf̂2Þ ¼ dA1.
Then, the Lagrange multiplier term turns into

i
2π

Z
F2 ∧ ðdA1 − NB2Þ; ðA6Þ

which describes ZN gauge theory (often called a BF
theory). Specifically, the term ½ðiNÞ=ð2πÞ�F2 ∧ B2 corre-
sponds to the usual Lagrangian for the ZN BF theory, and
the above action is obtained by dualizing the 1-form gauge
field in F2 ¼ dÃ1 to A1. One may interpret Eq. (A5) as
SUðNÞ theory coupled to this ZN BF theory [157]. A brief
review on BF theory can be found in Appendix B of
Ref. [21], and for more detailed discussions, we refer to
Refs. [32,157,158]. For instance, the equation of motion for
F2 sets B2 ¼ dA1=N, showing that B2 is a ZN gauge field.

Finally, the θ-angle term is given by

Sθ ¼
iθ
8π2

Z
Trðf̂2 ∧ f̂2Þ − NB2 ∧ B2

¼ iθ
8π2

Z
Trðf̂2 ∧ f̂2Þ − Trðf̂2Þ ∧ Trðf̂2Þ

þ iθ
8π2

Z
NðN − 1ÞB2 ∧ B2

¼ iθnþ iθ

�
N − 1

2N

�Z
w2 ∧ w2: ðA7Þ

In the second line, we subtracted and added the combina-
tion Trðf̂2Þ ∧ Trðf̂2Þ so that the first integral becomes the
standard integer-valued SUðNÞ instanton number n, while
the second term captures the fractional instanton effects. To
obtain the last line, we defined w2 ¼ N½B2=ð2πÞ� (called
the second Stiefel-Whitney class), whose integral is integer
valued,

I
w2 ¼ 0; 1;…; ðN − 1Þ: ðA8Þ

In a theory where fermions can be introduced (technically, a
spin structure can be defined),

R
w2 ∧ w2 ∈ 2Z, which

clearly shows that the second term in the last line of
Eq. (A7) indeed corresponds to the fractional instanton.

2. CFU instantons

Having described the fractional instantons of SUðNÞ=ZN
theory, we now briefly discuss CFU (color-(non-Abelian)
flavor-Uð1Þ) instantons [104]. The original construction
given in Ref. [104] is the most general, and it refines
background fields for the 1-form electric center symmetry
of SUðNÞ gauge theory. The novelty is that, given fermion
contents with non-Abelian flavor symmetry—say, SUðFÞ
and a global Uð1Þ symmetry—CFU background analysis
yields the most general electric 1-form symmetry of the
theory. This then allows us to determine the largest set of
mixed 0-form and 1-form ’t Hooft anomalies, hence the
strongest constraints on the IR phases of the strongly
coupled gauge theory.
Let us denote the set of matter content as fΨig. In

addition, let us write Gc,Gf, andGu for color, non-Abelian
flavor, and Uð1Þ groups. However, the following analysis
can be generalized to any choice and any number of groups.
Then, we write 0-form center transformations acting on
Ψi’s as zc ∈ZðGcÞ; zf ∈ZðGfÞ, and zu ∈ZðGuÞ. Calling
Wilson lines of Gc, Gf, and Gu as Wc, Wf, and Wu, the 1-
form electric symmetry can be figured out by understand-
ing the spectrum of topologically protected (i.e.,
unscreened by local charges) Wilson lines, including all
possible composite Wilson lines of the form
Wl

cWm
f W

n
u;l; m; n∈Z. The protected Wilson line
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spectrum is obtained by solving so-called “cocycle con-
ditions.” The basic idea is to determine the most general set
of center transformations that act trivially on the entire
fΨig (and gauge fields),

Ψi → zczfzuΨi ¼ Ψi ∀ i: ðA9Þ

Since the fields of the theory are uncharged under any
such center transformations, associated (composite) Wilson
lines are not screened; therefore, electric 1-form symmetry
is determined. Focusing on the case Gc ¼ SUðNÞ,
Gf ¼ SUðFÞ, and Gu ¼ Uð1Þ, the solutions take the form

zc ¼ e
2πi
N l; zf ¼ e

2πi
F m; zu ¼ e2πin; ðA10Þ

with l¼0;…;ðN−1Þ;m¼0;…;ðF−1Þ;n∈½0;1�. Then, we
can show that a particular combination (determined by
fl; m; ng) of 2-form background gauge fields—called Bc,
Bf, Bu—of individual 1-form electric center symmetry can
be consistently activated. If no solution with only a single
center factor exists, e.g., ðl ≠ 0; m ¼ 0; n ¼ 0Þ, 1-form
electric symmetry is only defined in terms of composite
Wilson operators; in that case, one has to turn on a specific
combination of 2-form background fields controlled by the
solution fl; m; ng as an acceptable configuration.
Nonvanishing 2-form background gauge fields lead to

CFU instantons (or CFU topological charge). Using the
expression of fractional instanton, Eq. (A7), it is given by
the combination of the following three (C, F, and U)
fractional instantons:

N c ¼
�
N − 1

N

�Z
wc ∧ wc

2
¼ l1l2

�
1 −

1

N

�
; ðA11Þ

N f ¼
�
F − 1

F

�Z
wf ∧ wf

2
¼ m1m2

�
1 −

1

F

�
; ðA12Þ

N u ¼
Z

Bu ∧ Bu

8π2
¼ n1n2; ðA13Þ

where w fields are defined in terms of B fields as in
the previous section [see below Eq. (A7)]. Also, when
fl1; m1; n1g ≠ fl2; m2; n2g, the above expression means
the following. Consider the spacetime manifold of the form
M4 ¼ S2 × S2. Then, given two solutions fl1; m1; n1g and
fl2; m2; n2g to the cocycle conditions, we take a back-
ground configuration that is a formal sum of fl1; m1; n1g
units of CFU fluxes piercing the first S2 with zero flux
through the second S2 and a configuration with zero flux
through the first S2 and fl2; m2; n2g units of CFU fluxes
through the second S2. For the color part, this process
leads to

I
S2×S2

wc ∧ wc

2
¼ l1l2; ðA14Þ

and similarly for the flavor and Uð1Þ parts. Finally, we
stress again that N c, N f, and N u separately are not well-
defined configurations. Only the whole combination makes
sense and gives rise to integer-valued (i.e., sensible) Dirac
indices. When the electric 1-form symmetries are gauged,
then the background fields Bc;f;u are path-integrated
dynamical fields, and the CFU configurations turn into
dynamical instantons of the theory. See Ref. [104] for more
details and for usage of CFU instantons.

APPENDIX B: GLOBAL STRUCTURE
AND NONINVERTIBLE SYMMETRIES

1. SM global structure

In Sec. II, we learned that the noninvertible symmetries
of ðSUð3ÞC × Uð1ÞHÞ=Z3 or ðSUð3ÞC × SUð3ÞHÞ=Z3

depend sensitively on the global structure, and the effects
of interest are not present in the absence of this “modding”
of the gauge group. With the goal of providing additional
background to readers unfamiliar with these concepts, in
this appendix, we review the global structure of the SM
itself, GSM ¼ ðSUð3ÞC × SUð2ÞL ×Uð1ÞYÞ=Γ, and con-
clude that the SM noninvertible symmetries do not depend
on the choice Γ∈ f1;Z2;Z3;Z6g. We refer to Ref. [159]
for a discussion of the line operator spectrum (Wilson,
’t Hooft, and dyonic) depending on the SM global
structure, to Ref. [12] for the (fractional) instanton spec-
trum and related cosmological impacts, and to Ref. [22] for
the discussion of SM global structure and axion non-
invertible symmetry, as well as the resulting observational
implications in terms of axion domain-wall physics.
In Table I, we show the representations of the SM

fermions under the gauge symmetries and classical global
symmetries of the SM, in addition to the right-handed
neutrinos and the Higgs boson. One may observe that there
are certain combinations of center transformations that act
trivially on all of the fields of the SM. For example, the
center of SUð2ÞL is a Z2 subgroup whose nontrivial
element acts as ð−1Þ12 on the fields charged under
SUð2ÞL. These effects can be compensated exactly by a
rotation by π of hypercharge, the Z2 ⊂ Uð1ÞY subgroup;
thus, if we perform a diagonal transformation by ð−12ÞeiπY,
then, e.g.,

Qi → Qið−1Þeiπðþ1Þ ¼ Qi; Li → Lið−1Þeiπð−3Þ ¼ Li;

ūi → ūieiπð−4Þ ¼ ūi;…; ðB1Þ

and all the SM fields are invariant under such a rotation
[recall that the W gauge fields are in the adjoint, two-index
representation of SUð2Þ, so they transform as ð−1Þ2]. The
fact is that the observed fields with odd numbers of SUð2Þ
indices also have odd hypercharge, while those with even
numbers of SUð2Þ indices have even hypercharge. It is not
difficult to see that the quarks have just the right
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hypercharges that a similar diagonal Z3 subgroup of
SUð3ÞC ×Uð1ÞY also acts trivially on the known fields.
In fact, it is not too difficult to show that the entire SM

fields, matter as well as gauge fields, are invariant under Z6

center transformations. To show this explicitly, we first note
that the centers of SUð3ÞC and SUð2ÞL and the Z6 center of
Uð1ÞY are generated by

e2πiλ8=3 ¼ e2πi=313 ∈ SUð3ÞC;
e2πiT3=2 ¼ −12 ∈ SUð2ÞL; e2πiqY=6 ∈Uð1ÞY; ðB2Þ

where λ8 ¼ diagð1; 1;−2Þ and T3 ¼ diagð1;−1Þ, and qY
denotes the generator of Uð1ÞY normalized as e2πiqY ¼ 1.
Then, the statement is that the representations of SM fields
are such that the combination

e2πiλ8=3 × e2πiT3=2 × e2πiqY=6 ðB3Þ

acts trivially (i.e., as an identity) on all fields of the SM.
Realizing Eq. (B3) as the generator of Z6 proves that the
whole SM is uncharged under Z6.
In terms of 1-form symmetry and related global struc-

ture, this result can be explained as follows. Let us denote a
general Wilson line of the SM as Wa

CW
b
LW

c
Y , where WC,

WL, andWY are charge-1 Wilson lines of SUð3ÞC, SUð2ÞL,
and Uð1ÞY , respectively, and a; b; c∈Z. This particular
Wilson line can be thought of as the worldline of a probe
particle whose representation is such that it carries N-ality
(roughly the number of boxes of Young tableau) of ða; b; cÞ
under the Lie algebra suð3ÞC × suð2ÞL × uð1ÞY . If there
exists a dynamical, light particle with N-ality that is a
divisor of ða; b; cÞ, then pair production can cut the Wilson
line, and we say that the corresponding line is screened. In
the absence of dynamical charges to screen, on the other
hand, the Wilson line is stable, and we can discuss 1-form
global symmetry. In particular, such a topologically pro-
tected Wilson line shows the existence of electric 1-form
center symmetry. Representations of SM are then consis-

tent with the existence ofZ6 stable Wilson lines and Zð1Þ
6 1-

form electric symmetry, which is the case when the global
structure is Γ ¼ 1.
Nontrivial Γ ¼ Z2;Z3;Z6 is obtained if electric Zð1Þ

6 or
its subgroup is gauged. Thus, the 2-form background gauge
field of the 1-form electric center, denoted before as B2, is
now path integrated. If we gauge Zq ⊂ Z6; q ¼ 2, 3, 6, we
obtain Γ ¼ Zq. Gauging an electric symmetry generates the
dual magnetic symmetry [160]. Indeed, with Zq ⊂ Z6

gauged, the SM now has Zð1Þ
6=qðeÞ × Zð1Þ

q ðmÞ, where the
first (second) is the electric (magnetic) 1-form symmetry.

2. Absence of noninvertible symmetries of the SM

In this appendix, we show that, with the up Yukawas yu
turned on, the SM does not possess any noninvertible

symmetries acting on quark fields for all choices of global
structure Γ.
To this end, we recall that noninvertible symmetry can

exist if there is global Uð1Þ that is primarily broken by
Uð1Þ or fractional instantons. In this sense, it is already
clear from Table II that noninvertible symmetry is not
present in the SM with any choice of Γ∈ fZ6;Z3;Z2g:
ABJ anomaly coefficients are flavor universal, and cru-
cially, the SUð3ÞC instanton already achieves maximal
breaking of all Uð1Þ symmetries of the theory. While
fractional instantons, in general, lead to smaller anomaly
coefficients, and hence more breaking of Uð1Þ symmetry,
the above fact clearly shows that the best Z6 fractional
instantons of SUð3ÞC × SUð2ÞL × Uð1ÞY=Z6 can do is to
break Uð1Þ symmetries as much as regular SUð3ÞC
instantons do. What is left is to demonstrate that this is
indeed the case.
A Z6 fractional instanton configuration can be con-

structed following Appendix A. TheZ6 fractional instanton
is given by a combination of the Z3 instanton of
SUð3ÞC=Z3, the Z2 instanton of SUð2ÞL=Z2, and the
instanton of Uð1ÞY=Z6. Following the notation defined
in Appendix A, we can write topological charges as

N C ¼ l1l2

�
1 −

1

Nc

�
; N L ¼ m1m2

�
1 −

1

2

�
;

N Y ¼ n1n2: ðB4Þ

A consistent, minimal Z6 fractional instanton can be found
by solving cocycle conditions [104]. The result is the
combination of N C, N L, and N Y with l1 ¼ l2 ¼ −1,
m1 ¼ m2 ¼ 1, and n1 ¼ n2 ¼ − 1

6
. Calling this configura-

tion [CLY], topological charges take values N C ¼ 2
3
,

N L ¼ 1
2
, and N Y ¼ 1

36
. The ABJ anomalies of Uð1ÞB̃i

and Uð1Þd̄i are independent of the flavor index i and are
computed as

B̃i½CLY� ¼ 1; d̄i½CLY� ¼ 1: ðB5Þ

We conclude that Z6 fractional instantons break Uð1Þ
symmetries ΠiUð1ÞB̃i

×Uð1Þd̄i of the SM with yd ¼ 0 just
as much as non-Abelian SUð3ÞC instantons do; Therefore,
no noninvertible symmetry exists with any choice of Γ.

APPENDIX C: ’t HOOFT VERTICES IN SUð9Þ
In the quantum theory of SUð9Þ, nonperturbative gauge-

theoretic effects generate ’t Hooft vertices that dynamically
violate the anomalous quantum numbers. As depicted in
Fig. 2, this process results in the generation of the down-
type Yukawa, which, in a general basis, is parametrically

L ∼ y⋆t eiθ9e−SinstHQd̄; ðC1Þ
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where, with Sinst ¼ fð8π2Þ=½g29ðΛ9Þ�g, we obtain the lead-
ing estimate for the instanton effects. Note that the
instanton-induced down-type Yukawa is yb ∝ y⋆t , which
ensures that the effective θ̄ still vanishes exactly: Using
chiral rotations, one may move phases in yt and yb into the
θ term, and they exactly cancel. This finding is just an
explicit manifestation of the observation made in Ref. [87].
These ’t Hooft vertices are precisely analogous to those

that generate Dirac neutrino masses in the lepton SUð3ÞH
theory of Ref. [3]. However, our purpose here is to generate
the bottom Yukawa—which is not parametrically small
—yb=yt ∼ 1=40, which requires a more precise under-
standing of the instanton-induced interaction. In particular,
we must include the polynomial factor that arises from
quadratic fluctuations around the instanton background.
We will ultimately find that, in the parameter space where
large yb could be generated, the one-instanton computation
is not fully trustworthy, and the honest viability of this
scenario will need to be determined by lattice simulations.
Thus, we aim at demonstrating the plausibility of generat-
ing yb of the right order of magnitude within this one-
instanton approximation, and we discuss the features of the
quadratic fluctuations that enter the result only at this level.
The one-loop instanton gas computation was first per-

formed in the pioneering work Ref. [161] by ’t Hooft, and
for our usage, it essentially consists of calculating

hHðx1ÞQðx2Þd̄ðx3Þi1-instanton; ðC2Þ

which is the three-point correlator summed over all
possible 1-instanton backgrounds, and then performing
Lehmann-Symanzik-Zimmermann reduction to obtain the
three-point amplitude. As effective field theorists, we can
think of finding the Wilsonian action obtained by integrat-
ing out instantons at smaller sizes ρ (ρ is the size modulus
of the instanton) by matching to the amplitude
MðH;Q; d̄Þ. Eventually, we will integrate out “all” the
instanton effects at the scale ρ ∼ Λ−1

9 . To justify this
procedure in a Higgsed gauge theory, recall that, in the
case of a 1-instanton background, the action for the gauge
field at the scale ρ−1 is given by

e−8π
2=g2ðρÞ ¼ e−8π

2=g2ðΛUVÞðρΛUVÞb0 ; ðC3Þ

with ΛUV the UV cutoff scale and b0 > 0 the 1-loop
β-function coefficient. However, the contribution from the
scalar that achieves spontaneous breaking of the gauge
group at Λ9 behaves as

e−8π
2ρ2Λ2

9 ; ðC4Þ

and we see that large instantons are exponentially
suppressed [98,99,162]. On the other hand, from
Eq. (C3), we see that the gauge contribution becomes
more important for larger ρ since the gauge coupling

increases. In fact, the balance between the two contribu-
tions shows that the dominant contribution comes from
ρ2 ≈ b0=16π2Λ2

9, i.e., roughly ρ ∼ 1=Λ9, as can be stud-
ied systematically in the formalism of “constrained
instantons” [162].
The correlator wewant to calculate can be computed by a

path integral

Z
DADϕiDψ iHQd̄e−Sgauge−

R
Lint ; ðC5Þ

integrating over the gauge field A in the sectorR
FF̃=ð32π2Þ ¼ 1 and also any charged scalars ϕ or

fermions ψ . For a detailed accounting of such integrals,
we refer to, for example, Refs. [99,163–166], and we give
solely an overview here. There are a number of effects that
appear in this path integration, starting with the evaluation
of bosonic modes.

(i) Instanton background action—The semiclassical
gauge field background contributes to the action as

S ¼
Z

1

4g2
F2

¼
Z

1

8g2
ðF � F̃Þ2 ∓

Z
1

4g2
FF̃; ðC6Þ

having made use of F2 ¼ F̃2 and completing the
square. Now, we see that in a nontrivial topological
sector with

R
FF̃=ð32π2Þ ¼ k, k∈Z, the action has

a minimum at S1−inst ¼ 8π2jkj=g2 for (anti)self-dual
field configurations F ¼ �F̃. Thus, the effects of the
nontrivial saddles are suppressed by expð−2π=αÞ,
with α≡ g2=4π.

In a general basis where the UV theory also
contains a θ term, L ⊃ ½ðiθÞ=ð32π2Þ�FF̃, this phase
enters the correlation functions in the instanton
background by simply evaluating this boundary
term on the background solution. This process
provides the θ angle in Eq. (C1) in exactly the right
combination to preserve θ̄ ¼ 0.

(ii) Gauge field zero modes—The classical 1-instanton
background, using the ’t Hooft symbols ηaμν and
written in the “singular gauge,”

AμðxÞ ¼
2ρ2

ðx − x0Þ2
ηaμνðx − x0ÞνJa
ðx − x0Þ2 þ ρ2

; ðC7Þ

possesses four translational zero modes correspond-
ing to x0, and 4N − 5 orientational zero modes
corresponding to the SUð2Þ ⊂ SUðNÞ subgroup
generators Ja. The final modulus is the size ρ, which
is quantum mechanically nontrivial because the
coupling evolves with scale. These zero modes are
dealt with by the method of collective coordinates,
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and the proper normalization of these integrals leads
to factors of 2−2Nð2π=αðρÞÞ2N . The integration over
gauge rotations yields a further factor proportional
to 1=ðN − 1Þ!ðN − 2Þ! [167].

(iii) Charged field nonzero modes—At the level of
quadratic fluctuations about the instanton back-
ground, the matter field energy levels are skewed
slightly away from their vacuum values. Note that ’t
Hooft showed that the determinants take the same
form regardless of the statistics of the field, and the
result depends solely on the degrees of freedom in
different representations of the subgroup in which
the instanton resides. In total, there is a factor
exp ½−ð−1ÞF P aðtÞnðtÞ�, where aðtÞ is a certain
polynomial ’t Hooft derived that depends on the
“isospin” t of a given representation [taking the
values að0Þ ¼ 0, að1

2
Þ ¼ 0.146, að1Þ ¼ 0.443, and

að3
2
Þ ¼ 0.853], nðtÞ counts the number of such

representations, and fermions contribute inversely
because of Grassmann statistics. The adjoint gauge
field contributes nð1Þ ¼ 1 and nð1

2
Þ ¼ 2ðN − 2Þ,

while the SM fundamental matter counts as
ð−1ÞFnð1

2
Þ ¼ −4.

Then, after having integrated over all the bosonic modes
except for the scaling modulus (and also the nonzero
fermionic modes), the instanton density in an SUðNÞ gauge
theory takes the form

DðρÞ ¼ 4

π2
2−2Ne−

P
ð−1ÞFaðtÞnðtÞ

ðN − 1Þ!ðN − 2Þ!
�

2π

αðρÞ
�

2N
exp

�
−

2π

αðρÞ
�
;

ðC8Þ

where ρ is the size parameter of the instanton solution.
Charged fermion zero modes.—Now, for charged fer-

mions, there is a qualitatively new sort of effect. In an
instanton background, charged fermions will have zero
modes that are exactly counted by the Dirac index
appearing in the coefficient of chiral anomalies. The path
integral includes integrals over these zero modes, which,
for our content of solely fundamental fermions, implies one
zero-mode integral per field,

Z
Dψ i ⊃

Z YNf

i¼1

dξð0Þi ; ðC9Þ

where ξð0Þi is the Grassmann coefficient of the zero-mode
eigenspinor of the ith field. For a Grassmann variable ξ,
integration works as

R
dξ ¼ 0 and

R
dξξ ¼ 1, so the

presence of these Grassmann zero-mode integrals implies
that correlation functions in the instanton background all
vanish unless they include fermion fields to be integrated
against those zero modes. Thus, with just the SM fields, the

1-instanton path integral immediately generates a ’t Hooft
vertex that contributes to correlation functions like

hQd̄Qūi: ðC10Þ

Instead, to reach the Yukawa operator of interest, we need
an insertion of a Lagrangian operator, meaning that the
nonvanishing contribution appears in the path integral as

Z
DðfieldsÞHðx1ÞQðx2Þd̄ðx3Þ

×

�Z
d4yiy⋆t H̃†ðyÞQ†ðyÞū†ðyÞ

�
e−

R
L; ðC11Þ

corresponding to the vertex insertion depicted in Fig. 2.
Despite what may look like loops of fermionic lines in the
figure, there is no undetermined loop momentum there to
integrate over—rather, we integrate against the zero-mode
wave function that is provided by the ’t Hooft vertex, which
does not result in any loop suppression.
Past the SMmatter and the SUð9Þ gauge field, the charged

scalar fields we introduce to effect symmetry breaking
modify the ’t Hooft vertex by contributing to the instanton
density. In Sec. III B, the breaking SUð9Þ → SUð3Þ2=Z3

was achieved by the vev of a three-index symmetric tensor
ΦfABCg, which decomposes under an SUð2Þ subgroup to
contributenð3

2
Þ ¼ 1,nð1Þ ¼ 7,nð1

2
Þ ¼ 28, andnð0Þ ¼ 84. In

Sec. III C, our toy model of flavor breaking utilized Ns ¼ 2

scalar adjoints ΣA
1;2, which contribute the same way as the

vector, and a single scalar fundamental, which contributes
oppositely to one of the quarks.
Then, we end up with a bottom Yukawa interaction, after

the extra fermion modes have been taken care of, which we
can write in the form of an integral over the instanton scale
with an infrared cutoff Λ−1

9 ,

L ⊃ y⋆t eiθ
Z

Λ−1
9

0

dρ
ρ
DðρÞHQd̄: ðC12Þ

This interaction is sensitive to both the beta function at
scales around Λ9 and the spectrum of charged matter.
Finally, to evaluate this scale integral, we must account

for the nontrivial evolution of the gauge coupling as a
function of the scale. We factor out the prefactor coming
from the integration of quadratic fluctuations of charged
fields, which does not depend on the scale. At one loop,
the α evolution is 2π=αðρÞ ¼ 2π=αðΛ9Þ − β9 logðρΛ9Þ,
leading to an integral over the size modulus, which
eventually looks like

Z
dρ
ρ
ðρΛ9Þβ9

�
2π

αðΛ9Þ
− β9 logðρΛ9Þ

�
2N
: ðC13Þ

The prefactor in the instanton density Eq. (C8) is extremely
small for large N, so it is unclear if large yb can be
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generated. However, the integral can be quite large, which
is evident for large α as the integral approaches ð2NÞ!=β9;
thus, it can potentially compete with the prefactor. Overall,
for large N, ð2NÞ!=ðN − 1Þ!ðN − 2Þ! ∼ 22N

ffiffiffiffiffiffiffiffiffiffiffi
N5=π

p
, which

indeed compensates for the small constant factors. The
result is found in Fig. 6.
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