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Living systems display complex behaviors driven by physical forces as well as decision-
making. Hydrodynamic theories hold promise for simplified universal descriptions
of socially generated collective behaviors. However, the construction of such theories
is often divorced from the data they should describe. Here, we develop and apply
a data-driven pipeline that links micromotives to macrobehavior by augmenting
hydrodynamics with individual preferences that guide motion. We illustrate this
pipeline on a case study of residential dynamics in the United States, for which census
and sociological data are available. Guided by Census data, sociological surveys, and
neural network analysis, we systematically assess standard hydrodynamic assumptions
to construct a sociohydrodynamic model. Solving our minimal hydrodynamic model,
calibrated using statistical inference, qualitatively captures key features of residential
dynamics at the level of individual US counties. We highlight that a social memory, akin
to hysteresis in magnets, emerges in the segregation–integration transition even with
memory-less agents. While residential segregation is a multifactorial phenomenon,
this physics analogy suggests a simple mechanistic explanation for the phenomenon
of neighborhood tipping, whereby a small change in a neighborhood’s population
leads to a rapid demographic shift. Beyond residential segregation, our work paves
the way for systematic investigations of decision-guided motility in real space, from
micro-organisms to humans, as well as fitness-mediated motion in more abstract spaces.

hydrodynamics | economics | sociology | active matter | machine learning

Individual social organisms, from bacteria to ants to humans, display complex behaviors
shaped by their interactions with each other and their environment. Groups of such
organisms often form large, coherent patterns across space and time (1–5). This regularity
suggests that aspects of social behavior may be captured using generalized hydrodynamic
theories that account for individual choices. Hydrodynamic theories are mathematical
descriptions of the time evolution of spatially extended systems that involve only a small
number of slowly varying fields (6–9). This approach, originating in fluid mechanics,
has since been applied to living systems in the field of active matter, ranging from
microbial suspensions (10–15) and cellular tissues (16–23) to insect swarms (24, 25)
and human crowds (26–28). In these systems, active mechanical (29, 30) or “social”
forces (31–33) between individuals drive the dynamics of the hydrodynamic variables,
such as density and polarization. However, we lack a principled way to incorporate
cognitive decision-making into hydrodynamic models.

Here, we develop a data-driven pipeline to capture the physical manifestations of
nonmechanical choices within a hydrodynamic theory. We take inspiration from microe-
conomics to codify individual preferences (micromotives) into utility functions (34, 35),
and then we incorporate them into a “sociohydrodynamic” theory that can account for
collective behavior (macrobehavior). We illustrate our approach on the case study of
human residential dynamics, focusing on segregation between non-Hispanic White and
non-Hispanic Black residents in the United States, for which both research (36–45)
and data (46) from the field of sociology are available. Theoretical explorations have
examined the connection between micromotives and macrobehavior (47–54), including
recently proposed hydrodynamic theories (55–57). In addition, recent work suggests
that statistical methods can forecast local trends in segregation observed in US census
data (58–60). Our analysis combines these two perspectives to forecast demographic
distributions using a hydrodynamic theory constructed directly from data.

We demonstrate that, for a period of four decades, both local and global aspects of
the dynamics of US population distributions can be partly described by an intelligible,
analytical model constructed from data. Our model’s segregation–integration transition
is history-dependent, suggesting a possible mechanism for a phenomenon dubbed
“neighborhood tipping,” whereby a small change in a neighborhood’s population leads
to a rapid demographic shift (61–63).
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1. The Sociohydrodynamic Pipeline

Fig. 1 summarizes our sociohydrodynamic pipeline. First, we
identify candidate hydrodynamic variables that evolve slowly
both in time and space (Fig. 1A). To be useful, these vari-
ables must contain enough information to forecast their own
future values—they must be self-predictive. To test this self-
predictability in a model-agnostic way, we turn to machine
learning and train a neural network to forecast the evolution
of the candidate hydrodynamic variables and examine whether
the forecasting is possible. Examining further the trained neural
network allows us to assess whether the dynamics are local,
i.e. whether hydrodynamic variables are only instantaneously
influenced by their immediate surroundings (Fig. 1B). This
locality, when it holds, considerably simplifies the models
we consider next. We then construct an analytical, phe-
nomenological model that relates micromotives to macrobe-
havior using a combination of physics and economic theory
(Fig. 1C ). Finally, we apply this model to predict real data
by first inferring the equation’s coefficients and then check-
ing their numerical solution against experimentally measured
trajectories (Fig. 1D).

In the sections below, we detail how we apply this pipeline
to the case of human residential dynamics. There, we make
precise the variables we use, how we check predictability
and locality, and the specific model we build to describe
the data.

1.1. Identifying Hydrodynamic Variables in Social Behavior.
Before building a hydrodynamic theory, we must first find
suitable hydrodynamic variables. When the collective variables
are not easy to guess, data-driven techniques can be used
to propose candidates (64–66). In our example of residential
dynamics, a reasonable guess for collective variables are the
populations of different groups. Here, we focus on non-
Hispanic White and non-Hispanic Black residents. Data from
the decennial US Census (46) give us access to population
densities of each group a at position r and time t, �a(r, t). From
these densities, we define a proxy for the local housing capacity
h(r) by finding the highest density of people who have lived
at each location within a county over time. In this work, we
take fill fractions as our hydrodynamic variables, defined as the
population densities normalized by the maximum housing avail-
ability in the county—�a(r, t) = �a(r, t)/max(h) (Materials and
Methods).

In order to apply the usual tools of hydrodynamics, we must
check that the collective variables are slowly varying both in space
and time, compared to the space and time scales we are able to
resolve. Qualitatively, we observe that the main features of the
population distributions appear unaffected by spatial smoothing
over the length-scale of single counties. Quantitatively, fill
fractions are correlated over distances four to seven times larger
than the typical census tract ` in the region (Materials and
Methods). In the following analysis, we smooth the fill fractions
using a Gaussian filter with an SD of 3 km (SI Appendix,
Fig. S1).

We also require hydrodynamic variables to vary slowly
in time. We assess the temporal change in populations via
measurements of segregation using the entropy index, which
measures how local demographic distribution differs from the
global composition (67–69) (Materials and Methods). Qualita-
tively, maps of the entropy index appear similar over a span
of 40 y. Quantitatively, its overall magnitude decreases slowly

A

B

C

D

Fig. 1. How to construct a sociohydrodynamic model from data. (A) 1980
Census data of Los Angeles County, California, colored by the difference
in relative population density, �W − �B , where �a = �a/�max (Left). Right
shows the result of smoothing the census data on a regular square lattice
for decennial Census data from 1980, 1990, 2000, 2010, and 2020. (B) We
test the assumptions made in simple hydrodynamic theories using a model-
free, data-driven approach. Namely, we test whether population distributions
are predictive of their own future, and if they evolve locally. The prior is
determined by the accuracy of the neural network predictions, and the latter
is determined by the network’s saliency (see Section 1.2 and Materials and
Methods). (C) Constructing our sociohydrodynamic model based on dynamics
of E� (green), with local movements (orange) that are biased according to
spatial gradients of utility (purple). (D) We verify our sociohydrodynamic
equations by solving them on individual US counties. The coefficients are
learned from Census data for each county, and then simulated with the
initial condition set as the 1980 US Census data. The results in 2020 are then
compared to the 2020 US Census.

between the years of 1980–2020, as measured previously (41)
(Fig. 6 C and D).

Together, these two results indicate that human residential
dynamics may indeed be described by hydrodynamic variables
that evolve slowly over the scale of individual counties and over
a time-scale of decades.
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1.2. Testing Hydrodynamic Assumptions with Neural Net-
works.
1.2.1. Self-predictability. We next test how well the candidate
hydrodynamic variables E� identified in the previous section can
predict their own future states (Fig. 1B). Formally, we check
whether ∂t�a(r, t) depends only on E�(r’, t) (for all r’). Testing
the self-predictability of collective variables requires a reliable
rule for dynamics, which we do not have a priori. To resolve
this, we train a neural network on US Census data to map the
fields �a to the time derivatives of the fields ∂t�a (Materials and
Methods). Our dynamical system

∂t�a(r, t) = f a
[
E�; h

]
(r), [1]

uses a machine-learned dynamical rule Ef for E� that depends on
both E� and the local housing approximation h introduced earlier
(Fig. 2A). We train on 34 US counties, each with at least 106 in-
habitants, and test on the three largest US counties—Los Angeles
CA, Cook IL, and Harris TX, with the addition of Fulton GA
to better represent geographically disparate parts of the United
States. Besides their large populations, all these counties have
simple boundaries (convenient for solving our hydrodynamic
equations later), see SI Appendix for further discussion.

The predicted population dynamics, obtained by integrating
Eq. 1, capture qualitative large-scale features of the population
distributions of US counties. Fig. 2B shows an example of the
predicted White population in Los Angeles County, CA. Similar
results are seen for both White and Black populations in 3
additional counties dispersed throughout the United States (SI
Appendix, Fig. S2). In SI Appendix, we also quantify the pre-
diction accuracy and show that the neural network out-performs
several alternative dynamical rules, including no dynamics, linear
growth, and exponential growth (SI Appendix, Fig. S3).
1.2.2. Locality. Then, we evaluate whether the dynamics are
generated locally (Fig. 1B). Locality allows us to approximate
∂t�a(r, t) as a function of E� and its gradients, f a[ E�] =
f a( E�,∇ E�, ...) evaluated at r. To evaluate locality, we consider
the saliency

Kab (r) =
〈

∂ f a(r)
∂�b(r’)

〉
|r−r’|=r

[2]

of the machine-learned dynamics. In essence, Kab(r) measures
how strongly the predicted dynamics of �a at a point r depends
on the value of the field �b at another point a distance r away
(Fig. 2C ; see Materials and Methods) (64, 70). A Kab(r) that
decays rapidly to zero indicates that f uses information within a
very narrow region to generate its dynamics. Note that correlation
functions would not be sufficient to assess whether the dynamics
is local as they do not directly address the evolution rules of the
system.

Indeed, the trained neural network identifies a local rule
(Fig. 2D).Kab exhibits a similar structure for all predicted regions
and is narrowly peaked at r < 5`, where ` is the typical size of
a census tract within that county (Fig. 2D). Furthermore, the
cross-saliencies (a 6= b) may echo the preferences underlying
residential decision-making. Below, we codify these preferences
in “utility functions.” We find that saliencies extracted from a
neural network trained on agent-based simulations based on the
Schelling model (47) support this claim. Namely, the sign of the
saliencies at r = 0 directly reflect the slope of the utility functions
input to the simulations (SI Appendix, Fig. S4).

A

B

C

D

Fig. 2. Human residential dynamics are predictable and local. (A) Illustration
of neural network training procedure. A convolutional neural network takes
processed US Census data, E� as input, and produces a functional Ef . This
functional is optimized to provide an accurate prediction of 2020 census data
when E�(1980) is evolved by Ef . (B) Example of evolution by neural network for
the White population in Los Angeles County. Starting with the 1980 census
as an initial condition, populations within individual counties are evolved
forward in time using Ef to 2020, and then compared with the 2020 census.
(Scale bar indicates a length of 5 ` = 11.5 km.) (C) Schematic illustration
of saliency Kab as the linear response of the neural network. (D) Saliency
measured radially for four regions, Cook County IL, Fulton County GA, Harris
County TX, and Los Angeles County CA. Mean ± SD are shown by black line
and gray shading, respectively.

Microscopically, nonlocality can both arise from the fact that
agents are influenced by what happens away from them and
from the fact that they can move far away. However, microscopic
sources of nonlocality do not necessarily lead to a nonlocal effec-
tive description. For example, a variant of the Ising model with lo-
cal interactions but infinite-range displacements (71) is described
by a hydrodynamic theory with local motility at a sufficiently
coarse-grained level (SI Appendix, Fig. S5). Indeed, human resi-
dential dynamics feature nonlocal displacements at the individual
level: According to the US Census Bureau, 53% of moves were
within the same county in 2022, down from 64% in 2012 (72).

1.3. Constructing a Hydrodynamic Theory. Using the insights
and elements extracted from data in the initial steps of our
pipeline, we now develop a hydrodynamic model designed to
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capture universal features of residential dynamics found across
US cities.
1.3.1. General theory. Having identified the collective variables
�a(r, t) and verified that they are predictive of their own future,
we write a general equation of motion for these variables

∂t�a(r, t) = −∇ · Ja + Sa [3a]

in which we have separated the dynamics into two parts: the
divergence of a flux Ja that redistributes �a in space and a source
term Sa that changes the total populations. The self-predictability
and locality of the dynamics for E� (Fig. 2) motivates us to write
Ja = Ja( E�) and Sa = Sa( E�).

The source term Sa in Eq. 3a describes how �a changes
locally due to, for example, reproduction or immigration (SI
Appendix, Fig. S6). In addition to human populations, these
processes play a crucial role in contexts such as microbiology and
ecology (73, 74). Growth can be related to a local evolutionary
“fitness function” that describes to what extent the environment
promotes the growth of a certain group (75–78). Although fitness
and utility functions share similarities, they have no reason to be
identical (79).

Assuming isotropy, we write the flux Ja using a gradient
expansion as

Ja( E�) = �ava −
∑
b

(
Dab
∇�b + Γab∇3�b

)
. [3b]

In the above, Dab[ E�] and Γab[ E�] accounts for diffusion of �a

down the gradients of �b and gradients of the Laplacian ∇2�b,
respectively. The diagonals of the latter, Γaa[ E�], parameterize
a surface tension, penalizing spatial gradients in �a (80, 81).
Higher-order terms in the gradients have been neglected. The
first term in Eq. 3b describes advection of �a at a velocity va.
We assume that the velocity is proportional to the gradient of a
utility function �a,

va ∝ ∇�a. [3c]

The proportionality factor will be determined below based
on a microscopic, agent-based model. The utility function
quantifies the preference of an a individual for the location r
at time t, providing a link between motility and socioeconomical
incentives. The gradient reflects the propensity of individuals to
move toward regions they prefer, i.e. up gradients in their utility.
We call this behavior “utility-taxis,” in reference to other guided
navigation strategies such as chemotaxis (82–84) or infotaxis (85).
1.3.2. Utility functions. The question remains—what is �a? Al-
though many socioeconomic and personal factors may con-
tribute (40, 41), here we focus on the impact of neighborhood
demographic preferences in driving residential dynamics. In other
words, we seek a utility function written as

�a(r, t) = �a
(
E�(r, t)

)
. [4]

This is the key feature of sociohydrodynamics: It establishes
a feedback loop between the slowly evolving hydrodynamic
variables and the decision-making processes that lead to motility
in the first place.

To model these utility functions in the case at hand, we turn
to the sociology literature measuring neighborhood demographic
preferences (Fig. 3). Social scientists have found that residential
preferences remained consistent across time over a span of 16 y
between 1976 and 1992 in the Detroit metropolitan area (86),

Fig. 3. Persistent residential preferences from sociological surveys. (Top)
Reproduction of survey results shown in figures 8 & 10 in ref. 86. Survey’s
taken around Detroit, MI (+). Topplot shows proportion of White respondents
“indicating they would be feel comfortable in the neighborhood” with the
proportion of Black residents shown on the x-axis. Bottom shows proportion
of Black residents ranking a neighborhood with the given proportion of
Black residents as either their first or second choice among five options.
Hollow circles show results from surveys taken in 1976, and filled circles
show results from surveys taken in 1992. Dashed (1976) and solid (1992)
lines are linear (Top) and quadratic (Bottom) fits to each set of data. (Bottom)
Reproduction of figures 4 & 7 in ref. 87, which itself accumulates data from
ref. 90. White respondents were asked whether they would move into a
hypothetical neighborhood with the given proportion of Black residents.
Black respondents, similarly to ref. 86, were asked to rank hypothetical
neighborhoods and the results for the proportion of respondents ranking
each neighborhood as their first choice is shown. Surveys were taken in
Detroit, MI (+), Atlanta, GA (�), Los Angeles, CA (4), and Boston, MA (O). Solid
lines are linear (Top) and quadratic (Bottom) fits to each set of data. Precise
wording of survey questions are reproduced from the respective references
in SI Appendix.

and across space over several major US metropolitan areas (87)
(Fig. 3). White residents show a monotonic decrease in their
preference of neighborhoods with increasing proportion of Black
residents. On the other hand, Black residents show a marked
preference for mixed neighborhoods, which remains consistent
between the two surveys. Qualitatively similar results were
obtained in other US-based surveys (52, 86–89) (SI Appendix,
Fig. S7). Thus, we assume that each group a has a distinct, time-
invariant utility function written as a nonlinear function of E�.
1.3.3. Coarse-graining the Schelling model. To further constrain
our equations of motion, we construct and coarse-grain an agent-
based model for residential dynamics, based on the Schelling
model (47–55, 61, 62). The same approach has been indepen-
dently developed in refs. 55 and 56, resulting in hydrodynamic
equations similar to ours. In short, it models agents on a lattice
that randomly move to adjacent sites with a bias toward increasing
their utility (SI Appendix). Within a mean-field approximation,
coarse-graining this agent-based model leads to Eq. 3a with
Sa = 0 and

va( E�) = �0
∇�a( E�) [5a]

Dab( E�) = T a(�a + �ab�0) [5b]

Γab( E�) = Γa�ab�b�0. [5c]

In the above, �0 = 1 −
∑

b �
b is a vacancy fraction that arises

because each lattice site has a maximum carrying capacity (91),
mimicking the availability of housing. The parameters T a and
Γa control the rate of hopping and penalize spatial gradients of
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E�(x), respectively (see SI Appendix for discussion of the origin of
the Γ term, SI Appendix, Fig. S8).

1.4. Applying the Sociohydrodynamic Model. To validate our
model, we solve Eq. 3 and compare against the observed evolution
of human populations in the United States (Fig. 4). To do so,
we use linear regression to infer the coefficients of our model
focusing on the same metropolitan areas as used to train the
neural network in Section 1.2 (SI Appendix, Fig. S9).

In light of the responses to the social surveys in Fig. 3, we
parameterize �a as

�a( E�) =
∑
b,c

�ab�b + �abc�b�c. [6]

This is a Taylor expansion of a nonconstant �a around �a = 0.
Therefore, we fit 5 coefficients for the utility function of each field(
�aW , �aB, �aWW , �aWB, �aBB

)
, as well as the diffusion constant

T a and the surface tension Γa.
The growth term Sa in Eq. 3 is fixed by fitting the total

population change assuming an exponential growth model,

Sa = ra�a. This simple model captures the roughly exponential
growth rates we empirically measure across US counties (SI
Appendix, Fig. S6), although it neglects growth that may occur
from immigration outside of the region. With this growth
rate in hand, we fit the mass-conserving portion of Eq. 3,
−∇ · J a = ∂t�a

− Sa.
We then numerically solve Eq. 3 using the learned coefficients.

We take E�(r, 1980) as our initial condition and evolve in
time until 2020. As shown in Fig. 4A, our simulations capture
several qualitative features of observed population dynamics. For
example, we predict the increase of the Black in the southwest of
Harris county, as well as a decrease in the White population in
the southeastern portion of Los Angeles county (see SI Appendix,
Fig. S2 for results from other counties).

The fitted coefficients are given in Fig. 4 B and C. Across
multiple counties, we observed that the fitted diffusion constant
of the Black population is larger than that of the White
population, T B > TW (Fig. 4B and SI Appendix, Fig. S3).
The coefficients of the utility functions are also consistent across
counties (Fig. 4B). The linear coefficients �ab have opposite signs
for the two groups, signaling that White and Black residents have

A B

C

D

Fig. 4. Sociohydrodynamics predicts real population dynamics. (A) (Top) Sociohydrodynamic predictions for Harris County, TX. The Left column shows fill
fractions, �W and �B the 1980 Census data for White and Black populations (first and third rows, respectively), that serve as initial conditions for the
simulations. The second column shows the 2020 Census data for White and Black populations, in addition to the total change from the 1980 census, (second
and fourth row). The third column shows the neural network’s predictions for 2020 fill fractions starting from 1980. The fourth column shows the result from
solving Eq. 3 with our learned coefficients starting from 1980 and continuing to 2020. (Bottom) Similar to Left, but for Fulton County, GA. (Scale bars indicate
25 km for each county.) See SI Appendix for results on other counties. (B) Learned coefficients resulting from linear regression on US Census data. Dots show
results from fitting on the 38 counties considered. Box and whisker shows the quartiles and maxima and minima of the data, excluding outliers. Red and
Blue symbols show results for Black and White populations, respectively. (C) Utility functions learned by the linear regression, highlighting the presence of
nonreciprocity between the two groups. (D) Mean-square errors of various model predictions of human residential dynamics for the counties used to test our
neural networks—Harris TX (O), Los Angeles CA (�), Cook IL(◦), and Fulton GA (�). All values are normalized to the error measured assuming that there is no
change in the population from 1980 to 2020. The second column shows the results from numerically solving Eq. 3. The third column shows the errors from the
neural network, whose results are shown in Fig. 2. The fourth column shows the results from assuming linear growth, defined as an extrapolation from 1990
to 2020 after a linear spline interpolation between 1980 and 1990. The final column shows the results from assuming only exponential growth.
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incompatible residential preferences. More formally, the utilities
�W and �B are incompatible in the sense that

∂�W

∂�B 6=
∂�B

∂�W . [7]

When this incompatibility condition is met, our equations of
motion are nonequilibrium in the sense that they cannot be de-
rived by optimizing a potential function (50, 92). These signs are
consistent with survey results showing Black residents will move
toward areas of higher White populations, while White residents
will move away from areas of higher Black population (Fig. 3).
However, the nonlinear terms for the utility of White residents
�Wbc additionally indicate a preference for neighborhoods with
low White populations and high Black populations (Fig. 4C ).
Such behavior may originate from gentrification, where wealthy
residents move into lower-income neighborhoods. Future work
could test this hypothesis by supplementing our model with
income or housing cost data.

Fig. 4D compares the sociohydrodynamic model’s perfor-
mance against other time-evolution models, including the neural
networks in Fig. 2. Despite the simplicity of our sociohydro-
dynamic equations compared to f a, they achieve comparable

accuracy to the model-free estimate from the neural networks
(see SI Appendix, Fig. S3 for results from other counties).

2. A Phase Diagram for Social Behavior

Inspired by the above results, we simplify our residential dynamics
equations to a toy model in order to gain a better mathematical
understanding of the possible sociohydrodynamic behaviors. We
consider two groups a = X, Y whose utility functions �a are
linear in the fields �a (�abc = 0; see Fig. 5 A and B).

The flux in Eq. 3b becomes

J a( E�) =
∑
b

(−Dab + �a�0�ab)∇�b + Γab∇3�b.

This results in diffusion of �a either up or down gradients
of �b, depending on the symmetries of the matrix �ab. Based
on known results on the Schelling model (47–51, 61, 62), we
expect to observe segregation (where the two groups concentrate
at different places) and integration (where the two groups occupy
mainly the same place), depending on the utility functions.

For every utility function, we solve Eq. 3 numerically, and
then report the resulting dynamical phase of the system in
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Fig. 5. Phase diagram for toy sociohydrodynamic model. (A) Toy model utility function coefficients (solid circles) compared to the learned coefficients from
Fig. 4 (transparent circles). We consider �abc = 0 for �aa = 1 ∀a, b, c, where a ∈ {X, Y }. We then vary the cross-utilities �ab to create our phase diagram. It will
prove useful to parameterize our phase space in terms of �± = �YX ± �XY . Other coefficients are TX = TY = 0.1 and ΓX = ΓY = 1. (B) Illustration of the linear
utility functions for the two groups shown in the Left and Right subpanels, respectively. Plots show mutual cross-utility coefficient �+ = �XY + �YX = −0.5,
incompatible cross-utility coefficient �− = �YX − �XY = 1. (C) Phase diagram showing different possible steady state dynamics depending on mutual and
incompatible cross-utility coefficients, �±. We see 4 phases: segregation (purple), migration (orange), integration (green), and bistability of two phases (yellow).
The white lines indicate results from a linear stability analysis for the onset of migratory states (details in SI Appendix). (D) Kymographs for steady state dynamics
in the segregated phase, (�+ , �−) = (−0.07,0.02) (Left), migrating phase, (�+ , �−) = (0.02,0.04) (Middle), and integrated phase, (�+ , �−) = (0.09,−0.06)
(Right). Plots on the Top show the state of the system at the final time. Schematics of the resulting diffusion matrix shown on Top of each phase. We set T = 0.1
and the average fill fraction of both types to be 〈�X 〉 = 〈�Y 〉 = 0.25. (E) The emergence of memory, in the form of hysteresis, in our simple model. Keeping
�− = 0, simulations are run starting at �+ = 2 until a steady state is reached, and then �+ is slightly decreased. This process is repeated until �+ = −1.2, and
then the process is reversed. The difference in the entropy index on the backward and forward pass of �+.
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Fig. 5C (see SI Appendix for criteria used in the categorization).
We indeed observe the expected static states of segregation and
integration (purple and green regions). In addition, we observe a
time-dependent steady-state in which both groups continuously
migrate (orange region; see also Fig. 5D), in agreement with the
results of ref. 55. Finally, there are bistable regions (yellow) where
multiple phases are observed depending on the initial state of the
system (SI Appendix, Fig. S10).

The mechanism leading to the migratory states in Fig. 5 C
and D stems from the incompatibility of the utilities �X and
�Y in the sense of Eq. 7. For compatible utilities, meaning
∂�Y /∂�X = ∂�X /∂�Y , one can cast the dynamics as a gradient
descent in a high-dimensional space (SI Appendix and refs. 50
and 92–94), thereby excluding time-dependent steady states like
traveling waves. When the compatibility condition is violated,
the corresponding interactions are nonreciprocal, a common
ingredient to induce time-dependent steady-states (93–104).
More precisely, Fig. 5B shows that the utility of X increases
when �Y decreases, whereas the utility of Y increases when �X

increases. In other words, Y tends to move toward X while
X tends to move away from Y . When this tendency is strong
enough, a time-dependent steady-state can emerge where the
populations X and Y continuously chase or run away from each
other.

To predict the behavior of our simplified model, we perform
a linear stability analysis around an initially spatially uniform
state for E�. We find excellent agreement for the onset of pattern
formation, when the uniform E� becomes unstable. The onset of
the traveling states is not captured by the linear stability analysis
due to the nonlinearities that play a role in their propagation.
We see that no migration occurs when the overlap between
the populations is below a threshold value, even when linear
stability would predict migratory states (SI Appendix, Fig. S11),
in agreement with ref. 55.

The bistable regions in Fig. 5C illustrate that a single set of pref-
erences can support multiple states of segregation. Which state is
selected depends on the history of the system. To demonstrate this
with our measured utility functions, we slowly change preferences
of both groups over time. We implement a cycle in the mutual
cross-utility �+ = �XY +�YX (while fixing �XY −�YX ), starting
and ending with the same value. Fig. 5E shows the segregation
indices measured in the resulting simulations. Some preferences
(x-axis of the plot) result in two different segregation indices,
depending on whether this preference evolved from a segregated
or integrated state. This phenomenon is known as hysteresis:
The state of the system depends on its past (105). This form of
socioeconomic memory emerges at the community level, despite
the fact that the individuals in our model have no memory. As
a result, two communities with an identical set of preferences
can be segregated or integrated depending on their histories, and
abrupt changes can occur at the edge of the bistability region
in phase space. This may shed light on a phenomenon known
as “neighborhood tipping” in sociological research, where a
threshold demographic distribution induces a rapid demographic
shift in a neighborhood (61–63). We note that the region of phase
space exhibiting this hysteresis can qualitatively change if utility
functions are nonlinear (SI Appendix, Fig S12).

3. Conclusion and Outlook

To sum up, we introduced a data-driven pipeline to construct
hydrodynamic descriptions of socially driven residential motility.

We illustrated this framework on the example of segregation
in human residential dynamics. After testing the mathematical
assumptions that enter a hydrodynamic theory, we validated
our model by comparing its predictions to the evolution of
demographic distributions in the US Census. We observed that
our sociohydrodynamic model is sufficient to capture certain
trends of residential dynamics in the United States, even though
our model neglects many important personal, sociological, and
geographical aspects of residential choices. We showed that
segregation can persist even in the absence of external influence
due to an emergent memory in the population of memoryless
agents.

While limiting its accuracy, the simplicity of our model aids
analysis, interpretation, and allows for several extensions. One
could build a fluctuating hydrodynamic theory (106, 107), as
modern models for growth (108) and human mobility (109)
in cities are stochastic and long-ranged. One could increase the
number of hydrodynamic fields, such as by including Hispanic
citizens, the fastest growing demographic group in the United
States. Finally, note that our theory is spatially homogeneous.
Housing prices (57) and ideological indicators (110, 111)
can provide spatial heterogeneity that can impact residential
decisions (41).

More broadly, our work illustrates how to incorporate
individual choices in a hydrodynamic theory to provide a
precise mathematical mapping from micromotives to macrobe-
havior (48). Beyond humans, it could be applied to motile micro-
organisms (112–119) evolving (120–122) or adapting (123–125)
in spatially extended time-varying environments. Further, our
method may also be applied to motion through abstract rather
than physical spaces, such as the chase and escape dynamics in
antigenic space during hosts and pathogens coevolution (126,
127) or cell fate decisions during development (66, 128, 129).

4. Materials and Methods

4.1. US Census Data. Population data is collected from the decennial US
census at the census tract level for decades 1980–2020, aggregated using
the IPUMS database (46). Interpolation from census tracts to a square grid is
performed using areal-weighted interpolation on population densities in units
of #/(10m)2 (130). Smoothing is then done using a Gaussian filter with width
�. GIS file information is provided in SI Appendix.

4.2. Hydrodynamic Variables. We use US Census data at the census tract
level to find population densities of each group a ∈ {W, B} at position r
at time t, denoted as �a(r, t). We approximate the housing availability as
h(r) = max

t

(∑
a �

a(r, t)
)

. Finally, we define the fill fraction as �a(r, t) =

�a(r, t)/h∗, where h∗ = max
r

(h(r)) acts as a carrying capacity. One could

consider fill fractions that are normalized by a spatiotemporal capacity to capture
how the dynamics of housing availability impacts residential dynamics (57). This
is beyond the scope of this work.

4.3. Measuring Segregation. Let i ∈ [1, 2, . . . , N] index local areas (e.g.
census tracts) and m ∈ [1, 2, . . . , M] index demographic groups. We
define pmi to be the proportion of the population in the local area i that is
composed of individuals from groupm, and thereby define the local probability
vector pi =

(
p1
i , p

2
i , . . .

)
. Similarly, we define pm to be the proportion

of the population in the entire region (e.g. a county) that is composed of
individuals from group m, and thereby define the regional probability vector
p =

(
p1, p2, . . .

)
. With these two quantities, we construct a local measure of

segregation at location i, hi, that is shown in Fig. 6C,
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A

B D

C

Fig. 6. Population distributions are slow variables across the United States. (A) Results of smoothing populations in various regions around the United States
using increasing kernel sizes. From Top to Bottom, the regions are Harris County TX and Los Angeles County CA. Colors represent the proportion of local
populations that are non-Hispanic White (blue) and non-Hispanic Black (red). (Scale bars are 25 km.) A Gaussian filter is used to smooth the populations. (B)
Autocorrelation functions for White (blue) and Black (red) populations in six US regions (markers). Each set of data is fit to a decaying exponential (dashed line).
The x-axis, measuring distance, is normalized by the median linear census tract size, ` of each region. Normalizing the correlation length by the ` accounts for
differing densities, as each census tract is created to contain ∼ 103 residents. The typical correlation lengths for White and Black populations in the regions
we analyzed are 〈�W 〉 = 7.3± 2.5 ` and 〈�B〉 = 4.3± 1.0 `. (C) Local segregation, hi (Eq. 8a) for the two regions in A, shown from Census Data in 1980, 2000, and
2020. (D) Entropy index, SH (Eq. 8b) measured as the weighted sum of the local segregation (Materials and Methods). Markers denote the same counties as B,
and the dashed line is a linear fit to all data.

hi =

∑
m
pmi ln

(
pmi
pm

)
−
∑
m
pm ln pm

=
DKL (pi||p)
H (p)

[8a]

whereDKL(pi||p) ≥ 0 is the Kullback–Leibler divergence betweenpi andp, and
H(p) is the Shannon entropy ofp. Taking a weighted sum ofhi gives the entropy
index, SH, a popular choice of measurement for racial segregation (60, 68).
Specifically, weighting hi by the fraction of the total population that lives in local
area i, fi, gives

SH =
∑
i

fihi. [8b]

4.4. Sociohydrodynamic Diffusion Matrix. We provide the full derivation
of our sociohydrodynamic theory starting from an agent-based model in SI
Appendix, including the effects of altruism. Here, we simply report the diffusion
matrix in Eq. 3. Assuming that the utility does not have an explicit spatial
dependence, i.e. �a = �a( E�), we have

Ja(x, t) = −
∑
b

Dab∂x�b + �a�0∂x�a + Γab∂3
x �

b [9]

= −
∑
b

Dab∂x�b + Γab∂3
x �

b [10]

where �0 = 1 −
∑

b �
b is the vacancy fraction and Dab are elements of the

matrix

D( E�) =− T
(

1− �Y �X

�Y 1− �X

)
+ �0

�X
∂�X

∂�X
�X

∂�X

∂�Y

�Y
∂�Y

∂�X
�Y

∂�Y

∂�Y

 [11]

The first term arises due to volume exclusion effects with finite carrying capacity
of the lattice sites in the agent-based model. The second term arises from the
utility functions. Similarly, we find

Γab = �ab�b�0, [12]

where �ab is the Kronecker delta.

4.5. Numerical Methods. Parameter inference is done using linear regression
on US Census data. We first interpolate the US Census data using a 3rd-
order spline to estimate populations between decennial census years. We then
estimate time derivatives and spatial gradients using finite differences. A feature
matrix A is constructed using each term in Eq. 3 as a column, and a target vector
b is created using the time derivatives. The coefficients in Eq. 3 are collected in
a vector x, and we invert the equation Ax = b.

For the simulations shown in Fig. 4, we solve Eq. 3 over county boundaries
using a finite-volume method. We construct a triangular mesh over the county
geometry using GMSH, and use the Python package FiPy (131) to solve Eq. 3.
More details can be found in SI Appendix.

For the simulations shown in Fig. 5, we simulate Eq. 3 in 1 spatial dimension
using a finite difference method, with a 4th order discretization in space and
1st order discretization in time. Unless otherwise stated, we set T = 0.1 and
Γ = 1, and use a time step of Δt = 0.1 and Δx = 0.625.

4.6. Linear Utility Functions. The linear utility functions used in Fig. 5 are
given by

�a( E�) =
∑
b

�ab�b [13a]

� =

(
�XX �XY

�YX �YY

)
[13b]

The matrix elements �ab quantify how the utility of a is affected by the presence
of b. We call �XX and �YY the self-utility coefficients, and �XY and �YX the
cross-utility coefficients. We find it convenient to define �± = �YX ± �XY .
We dub �+ the “mutual” cross-utility coefficient as it measures the degree of
mutual (dis)like between the X and Y . Likewise, we call �− the “incompatible”
cross-utility coefficient as it measures the incompatibility of the two utilities with
each other (Fig. 5).
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4.7. Assessing Locality via Neural Networks. We used a convolutional
neural network to predict the dynamics (∂t�W , ∂t�B) from an initial condition
(�W ,�B). Briefly, it contains two convolutional modules which computes latent
features at the scale of the input data and uses a downsampled representation in
order to aggregate spatial information over short or long distances. The network
predicts the discrete time derivative and forecasts the next time step as

�a(t + Δt) = �a(t) + fa [ E�(t); h]Δt [14]

Here, the population index a ∈ (W, B) and the capacity h is taken as the
maximum occupancy at each coordinate over the observed time range. The
full network details are given in SI Appendix. During training, the network
saw Census data from 1980 to 2020 for all counties except the four shown in
Fig. 4D. In addition, the training set included samples from only the first decade
of Census data (1980–1990) for these four counties. The results in Figs. 2B
and 4D are extrapolations beyond the training regime for the remaining 30 y
(1990–2020) in each test county. We used the trained network to predict
population dynamics over the 40-y window spanned by decennial Census
data.

To assess locality in the predicted dynamics, we computed the output
saliencies for the trained network. Saliency is a measure of how much a model’s
predictions depend on its inputs and is here defined as (70)

Kab(ri, rj) =
∂ fa [ E�(ri)]

∂�b(rj)
[15]

Here a, b are population indices while i, j refer to spatial coordinates within each
county. We compute Kab(ri, rj) from each input–output pair in each county
dataset, for 100 randomly sampled output points ri and all input points rj.

We azimuthally average this into a set of curvesKab(|ra− rb|) which are plotted
in Fig. 2C.

Data, Materials, and Software Availability. Code and data have been
deposited in Zenodo (132).

ACKNOWLEDGMENTS. We thank Michael Benzaquen, Luis Bettencourt, Jordan
Kemp, and Ruben Zakine for fruitful conversations. D.S.S., M.F., and Y.A.
acknowledge support from a MRSEC-funded Kadanoff-Rice fellowship and the
University of Chicago Materials Research Science and Engineering Center, which
is funded by the NSF under award no. DMR-2011854. Y.A. acknowledges support
from the Zuckerman STEM Leadership Program. J.C. acknowledges support from
the Hampton Roads Biomedical Research Consortium as part of the effort asso-
ciated with the Old Dominion University-Thomas Jefferson National Accelerator
Facility Joint Institute on Advanced Computing for Environmental Studies. D.M.
acknowledges support from the Enrico Fermi Institute and the Kadanoff Center
at UChicago. J.C. and M.F. acknowledge support from the NSF under grant
DMR-2118415. M.F. and V.V. acknowledge partial support from the UChicago
Materials Research Science and Engineering Center (NSF DMR-2011864). M.F.
acknowledges support from the Simons Foundation. V.V. acknowledges support
from the Army Research Office under grant W911NF-22-2-0109 and W911NF-
23-1-0212 and the Theory in Biology program of the Chan Zuckerberg Initiative.
This research was supported from the NSF through the Center for Living Systems
(grant no. 2317138). This work was completed in part with resources provided by
the University of Chicago’s Research Computing Center. This work was supported
in part by the Wahab Research Computing cluster at Old Dominion University
(NSF CNS-1828593).

1. T. Reichenbach, M. Mobilia, E. Frey, Mobility promotes and jeopardizes biodiversity in
rock–paper–scissors games. Nature 448, 1046–1049 (2007).

2. I. D. Couzin, Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).
3. N. T. Ouellette, A physics perspective on collective animal behavior. Phys. Biol. 19, 021004

(2022).
4. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517, 71–140 (2012).
5. L. M. A. Bettencourt, The origins of scaling in cities. Science 340, 1438–1441 (2013).
6. L. P. Kadanoff, P. C. Martin, Hydrodynamic equations and correlation functions. Ann. Phys. 24,

419–469 (1963).
7. L. D. Landau, E. M. Lifshitz, Fluid Mechanics: Landau and Lifshitz (Elsevier Science & Technology

Books, 1987), p. 539.
8. P. W. Anderson, More is different. Science 177, 393–396 (1972).
9. W. Van Saarloos, V. Vitelli, Z. Zeravcic, Soft Matter: Concepts, Phenomena and Applications

(Princeton University Press, 2023).
10. A. Sokolov, I. S. Aranson, J. O. Kessler, R. E. Goldstein, Concentration dependence of the collective

dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102 (2007).
11. H. H. Wensink et al., Meso-scale turbulence in living fluids. Proc. Natl. Acad. Sci. U.S.A. 109,

14308–14313 (2012).
12. H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, R. E. Goldstein, Confinement stabilizes a

bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102 (2013).
13. H. Li et al., Data-driven quantitative modeling of bacterial active nematics. Proc. Natl. Acad. Sci.

U.S.A. 116, 777–785 (2018).
14. K. Copenhagen, R. Alert, N. S. Wingreen, J. W. Shaevitz, Topological defects promote layer

formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2020).
15. A. I. Curatolo et al., Cooperative pattern formation in multi-component bacterial systems through

reciprocal motility regulation. Nat. Phys. 16, 1152–1157 (2020).
16. A. F. Mertz et al., Scaling of traction forces with the size of cohesive cell colonies. Phys. Rev. Lett.

108, 198101 (2012).
17. T. B. Saw et al., Topological defects in epithelia govern cell death and extrusion. Nature 544,

212–216 (2017).
18. C. Pérez-González et al., Active wetting of epithelial tissues. Nat. Phys. 15, 79–88 (2018).
19. S. J. Streichan, M. F. Lefebvre, N. Noll, E. F. Wieschaus, B. I. Shraiman, Global morphogenetic flow

is accurately predicted by the spatial distribution of myosin motors. eLife 7, e27454 (2018).
20. R. Alert, C. Blanch-Mercader, J. Casademunt, Active fingering instability in tissue spreading.

Phys. Rev. Lett. 122, 088104 (2019).
21. D. Boocock, N. Hino, N. Ruzickova, T. Hirashima, E. Hannezo, Theory of mechanochemical

patterning and optimal migration in cell monolayers. Nat. Phys. 17, 267–274 (2020).
22. M. S. Yousafzai et al., Cell-matrix elastocapillary interactions drive pressure-based wetting of cell

aggregates. Phys. Rev. X 12, 031027 (2022).
23. J. M. Armengol-Collado, L. N. Carenza, J. Eckert, D. Krommydas, L. Giomi, Epithelia are multiscale

active liquid crystals. Nat. Phys. 19, 1773–1779 (2023).
24. A. Cavagna et al., Natural swarms in 3.99 dimensions. Nat. Phys. 19, 1043–1049 (2023).
25. D. Gorbonos et al., An effective hydrodynamic description of marching locusts. Phys. Biol. 21,

026004 (2024).
26. R. L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003).

27. N. Bain, D. Bartolo, Dynamic response and hydrodynamics of polarized crowds. Science 363,
46–49 (2019).

28. F. Gu, B. Guiselin, N. Bain, I. Zuriguel, D. Bartolo, Emergence of collective oscillations in massive
human crowds. Nature 638, 112–119 (2025).

29. M. C. Marchetti et al., Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189
(2013).

30. M. Vrugt, R. Wittkowski, Metareview: a survey of active matter reviews. Eur. Phys. J. E 48, 12
(2025).

31. D. Helbing, P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286
(1995).

32. M. Ballerini et al., Interaction ruling animal collective behavior depends on topological rather than
metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237 (2008).

33. A. Corbetta, F. Toschi, Physics of human crowds. Ann. Rev. Condens. Matter Phys. 14, 311–333
(2023).

34. J. V. Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University
Press, 2007), p. 776.

35. M. J. Osborne, A. Rubinstein, A Course in Game Theory (MIT Press, Cambridge, MA, 2006).
36. D. R. Williams, C. Collins, Racial residential segregation: A fundamental cause of racial disparities

in health. Public Health Rep. 116, 404–416 (2001).
37. D. Pager, H. Shepherd, The sociology of discrimination: Racial discrimination in employment,

housing, credit, and consumer markets. Ann. Rev. Sociol. 34, 181–209 (2008).
38. S. F. Reardon, A. Owens, 60 years after brown: Trends and consequences of school segregation.

Ann. Rev. Sociol. 40, 199–218 (2014).
39. D. Alexander, J. Currie, Is it who you are or where you live? Residential segregation and racial

gaps in childhood asthma J. Health Econ. 55, 186–200 (2017).
40. C. Z. Charles, The dynamics of racial residential segregation. Ann. Rev. Sociol. 29, 167–207

(2003).
41. J. Hwang, T. W. McDaniel, Racialized reshuffling: Urban change and the persistence of

segregation in the twenty-first century. Ann. Rev. Sociol. 48, 397–419 (2022).
42. W. E. B. Du Bois, The Souls of Black Folk, Penguin Classics (Penguin Books, New York, 2018).
43. D. S. Massey, American apartheid: Segregation and the making of the underclass. Am. J. Sociol.

96, 329–357 (1990).
44. P. A. Jargowsky, Poverty and Place (Russell Sage Foundation, New York, 1998).
45. K. E. Taeuber, A. F. Taeuber, Residential Segregation and Neighborhood Change (Transaction

Publishers, 2008).
46. J. Schroeder et al., IPUMS National Historical Geographic Information (Version 20.0) [dataset].

IPUMS (2025). http://doi.org/10.18128/D050.V20.0. Accessed 24 August 2023.
47. T. C. Schelling, Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971).
48. T. C. Schelling, Micromotives and Macrobehaviour (W. W. Norton, 1980), p. 256.
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