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Quantum error-correction codes protect information from realistic noisy channels and lie at the heart
of quantum computation and communication tasks. Understanding the optimal performance and other
information-theoretic properties, such as the achievable rates, of a given code is crucial, as these factors
determine the fundamental limits imposed by the encoding in conjunction with the noise channel. Here, we
use the transpose channel to analytically obtain the near-optimal performance of any Gottesman-Kitaev-
Preskill (GKP) code under pure loss and pure amplification. We present rigorous connections between
GKP code’s near-optimal performance and its dual lattice geometry and average input energy. With no
energy constraint, we show that when |t/(1 — 7)| is an integer, specific families of GKP codes simulta-
neously achieve the loss and amplification capacity. t is the transmissivity (gain) for loss (amplification).
Our results establish GKP code as the first structured bosonic code family that achieves the capacity of

loss and amplification.

DOI: 10.1103/ghlc-xynl

I. INTRODUCTION

An ultimate question in the theory of communication
[1,2] is to determine the maximum information trans-
mission rate, also known as capacity, of various com-
munication models and channels. Extending the seminal
works of Shannon [3,4] to channels of quantum mechan-
ical nature, quantum Shannon theory has seen significant
developments in recent years [5—8]. As an example of
the capacity quantities, the (one-way) quantum capacity
[9-12] focuses on the communication model where no
classical communications are allowed, and it is defined to
be the supremum of the quantum error-correction (QEC)
[13,14] coding rate with perfect decoding of the trans-
mitted information. Straightforwardly, the achievable rates
of specific codes provide lower bounds to the quantum
capacity. However, computing the rates through the origi-
nal definition is often cumbersome: it is highly nontrivial
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to provide a decent guess on both the encoding and decod-
ing simultaneously. Moreover, since the coding rate is
defined over asymptotically many channel uses, the per-
formance of the encoder-decoder pair would need to be
obtained analytically. Alternatively, it is more common to
calculate achievable rates through the coherent informa-
tion [10,11,15]. The advantage of this method is that it
only requires the conjecture of an input state. Many state-
of-the-art bosonic channels’ capacity lower bounds are
determined through this approach [16—18]. Among them,
it was shown that loss and amplification channel capacities
are exactly known and coincide with the coherent one-shot
information of thermal input states [8,16,17,19]. Never-
theless, a drawback of this method is that it only proves
the existence of an optimal code based on the input states
[10,11,15,20]. The code construction has little structure,
which poses great difficulty in its decoding and practicality.

The Gottesman-Kitaev-Preskill (GKP) code [21] is a
promising bosonic code that has attracted active theo-
retical and experimental effort in superconducting cir-
cuits [22-24], ion traps [25,26], and optical platforms
[27,28]. Its popularity is largely due to the Gaussian nature
of its logical operations [21] and the recent advances
in its decoding [29,30]. Another key motivation is that
while the GKP code was originally designed against dis-
placement noise [21], there has been numerical evidence
[31-33] that demonstrates the superiority of the optimally
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decoded single-mode GKP code under loss compared to
other single-mode bosonic codes. Compared to displace-
ment noise, loss is more experimentally motivated and is
the dominant noise process in various hardware platforms
such as microwave cavities [34] and optical fibers [8].
The outstanding performance of GKP code under loss is
rather surprising. While there have been some qualitative
arguments [31,35], there is not yet a rigorous and quanti-
tative explanation that connects GKP code’s performance
with its parameters, such as its dual lattice and energy.
In addition, the optimal performance of GKP code under
loss is obtained through numerical convex optimization
[31,32], leading to restrictions on the accessible system
size. It is left unknown whether GKP code can maintain
its performance at larger average photon numbers.

The information-theoretic properties of GKP codes are
also remarkable. Since its code construction is based on
translationally invariant lattices [21,36-39], the perfor-
mance of its optimal decoder against displacement noise
is tightly connected to the geometry of its dual lattice.
The achievable rate of the GKP code under Gaussian dis-
placement noise matches the lower bound of the channel’s
quantum capacity [40]. It is tempting to extend the analy-
sis to GKP code under loss. Nevertheless, the analysis of
GKP code’s optimal decoder against loss is cumbersome to
analyze. Taking a step back, past works [31,32] obtained
a nonvanishing achievable rate through the amplification
decoder (AD), whose performance is tractable yet subop-
timal. The achievable rate of the GKP code under such a
decoder is shown to have a nonzero gap compared to the
capacity of the loss channel. It is unclear whether the gap is
due to the nonoptimal decoder, the limitations of the GKP
code, or a combination of both.

In this paper, we obtain the near-optimal performance of
GKP codes under loss and amplification. The key tool we
adopt is the recently obtained formalism of near-optimal
fidelity [41]. The near-optimal fidelity provides an easy-to-
compute metric based on the QEC matrix and is guaranteed
to be close to the optimal decoder performance. With
the near-optimal fidelity, we are able to obtain analyti-
cal expressions for the GKP code’s performance, which
overcomes the system size restrictions of the optimization-
based approaches. The expression reveals the connection
between GKP code’s performance and its dual lattice
geometry. As an example, we numerically compare the
optimal performance of finite-energy square-lattice GKP
code with the performance of multiple existing decoders
and observe a performance gap at order(s) of magni-
tude. At infinite energy, we show that when |7/(1 — 7)]
is an integer, GKP codes based on specific lattice families
achieve the capacity of not only loss but also amplification.
Here, t = n <1 is the transmissivity for loss, and t =
G > 1 is the gain for amplification. The lattice families
can be, e.g., scaled symplectic self-dual lattices or NTRU-
based lattices [36,42]. To the best of our knowledge, our

results establish GKP code as the first structured bosonic
code family that achieves the capacity of loss and amplifi-
cation. Last but not least, our methodology based on the
near-optimal fidelity only requires the conjecture of the
input QEC code. Thus, it opens the door to computing the
achievable rates of other multimode bosonic codes [43] or
qubits codes.

II. BACKGROUND AND NOTATION

A. The Gottesman-Kitaev-Preskill code

The GKP code [21] is a lattice-based bosonic code.
Specifically, the stabilizer group of an infinite-energy GKP
code corresponds to translations along the lattice vectors
of a symplectic integral lattice. There are two key parame-
ters of a GKP code, i.e., the underlying lattice, A, and the
envelope parameter, A. A is also referred to as the effec-
tive squeezing and determines the energy of the code. An
infinite-energy (A = 0) GKP code has codewords |ur)g,
stabilized by

Sw) = T(vV27wv), (1)

for all lattice points v € A. Here, the translation opera-
tor 7(u) := exp —iu’QX, and Q is the symplectic form.
The quadrature operator is defined as X := (§,p)”. Finite-
and infinite-energy GKP codes are connected through the
envelope operator as

2
) a = Nue 5 1o, )

where N, is the normalization constant, and 7 represents
the number operator, 7 := a'a. Here, 4; represents the
annihilation operator. While the above defines single-mode
GKP codes, most of them carry over straightforwardly to
multimode GKP codes.

A lattice is specified by a set of generators

L=|:1. 3)
VzTN

The lattice is defined as the set of points from all linear
combination of the lattice generators,

AL) :={LTa:a e Z*). (4)

For any lattice, A, we can define its symplectic dual
lattice by

At ={uu'Qv e Z, Vv e A). (5)
The commutation relation of the stabilizer group is guaran-

teed by A € A+, a property known as symplectically inte-
gral or weakly self-dual. The logical operators of the GKP
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code correspond exactly to translations along v € A+ ¢ A.
Therefore, when the GKP code is analyzed against random
displacement errors, there is a natural notion of distance
given by the closest lattice point [37,39] in the dual lattice

A%

i = vrgl\rl [v]. (6)
While the focus of this work is on GKP code under more
practical noise channels like loss, the same distance, sur-
prisingly, plays a critical role. In Appendices A—C, we
provide a more detailed introduction into multimode GKP
codes and relevant lattice theories.

In Fig. 1, we provide phase-space visualizations of GKP
codes based on square and hexagonal lattices. The logi-
cal operators, X; and Z;, are labeled in the plots, which
are associated with the dual lattice points. In particular,
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FIG. 1. The Wigner functions of maximally mixed GKP states

based on (a) square and (b) hexagonal lattices. The maximally
mixed states are given by p = (1/d;) ZdL l w) (], where we
set d; = 2 here. The green and blue arrows represent displace-
ments that correspond to logical Z; and X, operators respectively.

it is well known that hexagonal lattice, as the tightest
packing lattice in two dimensions, has longer logical oper-
ators than square lattice, which is closely connected to its
error-correcting capabilities.

B. Quantum capacities and achievable rates

In this work, we focus on the communication model of
transmitting quantum information through quantum chan-
nels without classical communications, also known as
one-way communication [2]. Suppose we are interested
in transmitting information through channel N, we have
the option to perform arbitrary collective encoding, £, of
the information into N copies of the physical systems.
After the encoding, each system passes through an inde-
pendent application of A. At the end, a recovery, R,
restores and decodes the information stored. This proce-
dure is illustrated in Fig. 2. The performance of £ and R
is parameterized by the fidelity F and the encoded logical
dimensions d;. Throughout our work, we adopt the chan-
nel fidelity as the fidelity metric, which is defined for any
channel QO as [44,45]

F(Q) = (P Q®Z, (D) (D] D), (7
where Z4 is the identity channel acting on the ancillary
system. |®) is a maximally entangled state between sys-
tem that undergoes noise and the ancillary system. The
channel fidelity characterizes how well entanglement is
preserved [46] and has tight connections with metrics like
average input-output fidelity [47,48]. Generally speaking,
there exists a trade-off relation between F and d: as the
logical dimension increases, the redundancy in the physi-
cal system decreases, providing less protection against the
loss of information. Conveniently, the achievable rate com-
bines the above and serves as a unified benchmark [49],
defined as

1
RE,R) = A}meﬁ log, d.(E,R), asl—F — 0. (8)

Intuitively, the achievable rate is the maximum num-
ber of logical qubits transmitted per channel used in the
asymptotic limit while the encoded information can still
be perfectly decoded. The (one-way) quantum capacity
follows as

Co :=supR(E,R), 9)
ER

which sets an upper bound on all possible achievable
rates. Thus, by definition, if a code’s rate achieves the
channel’s capacity, the code is one of the optimal codes
under the given channel. However, this definition has not
been very useful in determining the capacities since it
involves optimization over both encodings and recoveries.
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FIG. 2. Coding scheme for one-way quantum information transmission without classical assistance. The input is any state within a
d;-dimensional logical space, which transmits through N copies of the communication channel A. In the end, the recovery decodes
the logical information. In this work, we focus on AV being either pure loss or pure amplification, whose dilated dynamics correspond
to beam splitter and two-mode squeezing, respectively. The encoding is a Gottesman-Kitaev-Preskill code, whose near-optimal per-
formance is tightly connected to the packing properties of its underlying lattice. The shown plot of the 24 cell corresponds to the
Voronoi cells of the D4 lattice, which is the densest lattice packing in four-dimensional space. The transpose channel is applied as the

near-optimal recovery.

As an alternative, a seminal result [10,11,15] on quantum
capacity states that

1
Co= lim max ]vlc(,é,NM), (10)

N—>oo pGD(H{)v)

where H}) is the Hilbert space N®" acts on and /. is the
coherent information, defined as

I (p,N) =S (N (p)) =S(N*(p)), (1D
where N¢ is the complementary channel, and S denotes
the von Neumann entropy. Equation (10) is a direct conse-
quence of the existence of an encoder-decoder pair that can
reliably transmit information at a rate equal to the coher-
ent information. To compute the coherent information, one
only needs to specify an input state, which provides a
convenient approach to lower bound the capacity. Many
bosonic channel capacity lower bounds are obtained in
this manner, such as thermal states for pure loss, pure
amplification, and Gaussian random displacement chan-
nels [16]. While most bosonic channels’ capacities are
not fully determined, the pure loss and pure amplifica-
tion channels are amongst the few with known capacities
[8,16,50], thanks to them being degradable channels [2].
Both channels can be understood through a dilated form
[51] N(p) = Tre(U(p ® |0) (0])U'), where the unitary
corresponds to a beam splitter and two-mode squeezing
for pure loss and amplification, respectively. In practice,
the environment would be a finite temperature bath, which
gives rise to thermal loss or thermal amplification. Nev-
ertheless, the environment temperature is generally small,

and pure loss or amplification serves as a good approxima-
tion to the noise process. Henceforth, we refer to pure loss
(pure amplification) as loss (amplification) for simplicity.
These channels admit Kraus decompositions {N;} as

1/1=n\" .
. i (—) am™?  (Loss),
WER AR (12)

[1(G-1) /2~
ﬁTG @2gt - (Amp),

and their channel capacities can be written as [§]

90)’

where t = n < 1 forlossand r = G > 1 for amplification.

(13)

Cop = max <log2

1 —

C. The near-optimal fidelity

The near-optimal fidelity [41], F°P', benchmarks the
near-optimal performance of a QEC code. Importantly, for
any code and noise channel, it can be achieved through
the transpose channel [41,52—56] (also known as the Petz
recovery), which possess a constructive Kraus form. See
Appendix J for more details on the transpose channel.
Notably, there have recently been rising interests and pro-
posals on the implementations of the transpose channel
[54,57,58].

The near-optimal fidelity provides a narrow two-sided
bound over the optimal fidelity, F°, as

(1-—FP) <1—F®<1—F" (14)

1
2
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Here, optimal fidelity is defined as the optimal per-
formance over any completely positive trace-preserving
recovery channels, which can be obtained through con-
vex optimizations [31,32,44,59,60]. The two-sided bound
is directly inherited from the proven properties of the trans-
pose channel [52]. The key quantity towards computing the
near-optimal fidelity is the QEC matrix, defined as

Mun i = (el N;Nk [ve), (15)

in index notation, where |u;) are the logical codewords
and N, are the Kraus operators of the noise channel of inter-
est. With the QEC matrix, the near-optimal fidelity can be
concisely expressed as [41]

- 1 2
For = — HTrL WHF (16)
L

where the partial trace is taken over the code-space indices,
the matrix norm is the Frobenius norm, and d; is the log-
ical dimension of the code. Therefore, the metric provides
a computationally efficient method to obtain a rigorous
approximation of any code’s optimal performance.

While Eq. (16) is interesting in its own right, it is not
straightforward to obtain analytical expressions from it.
Inspired by the Knill-Laflamme condition [61], one can
divide the QEC matrix into the correctable part, /; ® D and
the residual uncorrectable part, AM := M — I; ® D. Here,
D is taken to be a diagonal matrix, which can be achieved
either through truncation or through choosing the unitary
gauge of the noise channel’s Kraus representation. Quali-
tatively, I, ® D represents the effect of the noise that does
not lead to ambiguity in the logical information. Therefore,
expanding the matrix square root in Eq. (16), the near-
optimal fidelity’s perturbative expression can be written as
[41]

1
é=—If (D)o AM|2, (17)
L

such that
1-FP=¢+0(), (18)

where we define /(D) = 1/(v/Di + +/Dix), and the
Hadamard product (4 © B);; = 4;;Bj;, i.e., element-wise
multiplication. In Eq. (18), the residual error is bounded
under the assumption that the logical dimension, d;, is a
finite constant. It is important to note that this does not
hold if one would like to consider the achievable rate of a
code family in the asymptotic limit. Nevertheless, one can
show that [41] if TtD = 1,

lim FOP' = lim F°P' = 1. (19)

é—0 é—0

This is particularly useful since it implies that to prove a
rate is achievable, it is sufficient to show € vanishes. As

defined in Eq. (15), M only depends on the codewords and
noise Kraus operators. Thus, obtaining achievable rates
through the near-optimal fidelity is relatively accessible
since it only requires the encoder ansatz, and the decoder
implicitly adopts a near-optimal decoder.

Throughout this work, our main focus is on the near-
optimal fidelity. To avoid confusion, we denote all fidelity
measures related to the near-optimal performance with a
tilde. See Ref. [41] for a detailed comparison between the
near-optimal fidelity #°P' and the optimal fidelity F°P',

III. NEAR-OPTIMAL PERFORMANCE OF GKP
CODES

To analytically obtain the near-optimal performance of
the GKP code, the QEC matrix defined in Eq. (15) is
the key ingredient. While it is in general tedious to com-
pute the QEC matrix entries, it is convenient when we
utilize the code structures. In this section, we focus on
single-mode GKP codes with arbitrary lattice shapes for
simplicity, but the results can be generalized to multimode
GKP code. The QEC matrix for finite-energy GKP code
involves three elements, the infinite-energy codewords
l)o (see Appendix C), the envelope operator e*Az’A’, and
the combined Kraus operators &, iNk- The key observation
is that the infinite-energy GKP states correspond to trans-
lationally invariant lattices. Thus, displaced codewords are
simply translated lattices, and their overlaps are straight-
forward to compute. To utilize such an observation, we can
express all relevant operators with their displacement oper-
ator decompositions, i.e., their characteristic functions. For
example, the Kraus operator combinations can be written
as [31]

e & .
N = [ SEe3mer (1]D (@)

A (T,

(20)

where |/) are Fock states with / excitations, and t = n < 1
and T = G > 1 for pure loss and amplification, respec-
tively. The almost identical characteristics functions of
these two noise channels’ Kraus operator combinations are
crucial and enable us to extend our result from one to the
other.

In the following, we focus on single-mode GKP code
under loss to highlight the key takeaways. The full expres-
sions for multimode GKP code under loss or amplification
are derived in Appendix F. For a GKP code with d; logical
dimensions and lattice A undergoing loss with probability
y = 1 — n, its QEC matrix expression can be written as
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[+k
Sy gl

vk = ( )ynA 1

ny,ny€L

[

where & = O(e min),  ¢:=yna/(yna + 1),
and np =1/ (e2A2 — 1). Here, we have defined the sym-
plectic dual lattice to be A+, and |A*| _is defined in
Eq. (6). § exponentially decreases with the input energy
and is the direct consequence of the GKP codewords being
non-orthogonal for finite A. Suppose L' generates A+, the
vector L := (LY (drny + u — v,ny)" enumerates lattice
points over a sublattice of the dual lattice such that

A= ] {Lin.n eZ) (22)

/L*UEZdL

The appearance of the symplectic dual lattice is natu-
ral since we are working with displacement operators,
and the displacements that exactly connect infinite-energy
codewords are the ones that correspond to dual lattice
points.

Physically, n, is tightly connected to GKP code’s aver-
age energy. Suppose P, is the codespace projection, and
the average energy is defined as n := (1 /dL)TrPLﬁ, and it
can be showed that for any GKP code

_ 1
n=m+8%nA. (23)

Since the gap of § is exponentially suppressed with #, it is
already negligible for GKP codes with a few photons. The
commonly cited expression of 77 ~ 1/2A% — 1/2 [21,31]
can be seen as a Taylor expansion of Eq. (23) in the small
A limit.

With a different motivation, Ref. [31] derived the QEC
matrix expression for single-mode square lattice GKP
qubit code. While the general form is similar, their deriva-
tion is restricted to square lattices and assumed A < 1
to simplify the derivations along the way. In contrast, the

TABLE L.

1—
) ~3 P
e V+nA l

A T (}’ZA + 1) .
D (‘,—WZA 1 (Ly — le))

only approximation we made is in the prefactor of (1 + §).
Moreover, our derivation is valid for arbitrary multimode
lattices.

With the QEC matrix expression, we arrive at the near-
optimal performance of the GKP code through the per-
turbative infidelity. The full infidelity expression contains
summations over all dual sublattices given in Eq. (22).
Nevertheless, the leading-order contributions are given by
the closest lattice points of the dual lattice. Only leaving
those leading terms, we arrive at

k>, 1)

(

2

~2n(natg)[at
e T(na+3 min

. m
€ —
2

o Al
x (8 > mzmw —Io(2) — 1>, (24)

Al=0

where m denotes the kissing number (the number of closest
lattice points with distance |Al |mm), I denotes modified

Bessel functions, and z := 7w (na + l)ﬁiAL\fmn. Some
examples of single-mode GKP codes that are of inter-
est include the square and hexagonal lattice GKP codes,
whose relevant parameters are provided in Table 1.

While Eq. (24) and similar approximations closely fol-
low the near-optimal fidelity, it does not establish a rig-
orous bound on it. Therefore, we derive a rigorous upper
bound in the infinite energy limit, i.e., nn — 00

1
lim € < —
n—oo 4 Z
xeA-L¢(0}

— L 2
e (25)

for any multimode GKP code. Here, the summation sums
over all lattice points of the dual lattice except the origin.
The equality sign is taken for single-mode codes. Since
the GKP code’s performance improves with energy, this

Examples of symplectic integral lattices parameters [38,62]. The kissing number is the number of closest lattice points in

the dual lattice. The determinant of the lattice is connected to the GKP code’s logical dimension through det(L) = d;, where L is the

lattice generator matrix.

Lattice type Number of modes, N |AJ- |min Kissing number, m det(L)
Square 1 1 4 1
Hexagonal 1 2/\/3 6 1
Tesseract 2 1/3/2 8 2
D4 2 V2 24 1
D6 3 1 12 2
E8 4 2 240 1
Leech 12 4 196,560 1
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serves as an asymptotic limit. For the detailed derivation,
see Lemma G1 in Appendix G.
As an example, if we consider the leading contributions

from the closest lattice points, the single-mode square lat-
7 1=y

tice GKP code’s performance is given by € e o 7 .

Such scaling can be compared with the performance of

GKP code under amplification decoder (AD), which gives
1—

an infinite-energy error probability of e_ﬁ% [31] for

the square lattice. Our infidelity expression for near-
optimal recovery shows a significant improvement over
that of AD—increasing the exponent by a factor of 4.
This enhancement is not only practically important for
high-performance bosonic QEC, but also crucial for our
later proof that the GKP code achieves quantum channel
capacity.

When the GKP code is considered in the context of dis-
placement noise, the connection between the dual lattice
and the GKP code’s performance is apparent. However, to
the best of our knowledge, this is the first time GKP’s per-
formance under loss (or amplification) has been rigorously
connected to its dual lattice. The dual lattice spacings and
the relevant phase have their origins in the QEC matrix
expression since we decomposed the noise-channel Kraus
operators as displacement operators.

| ceq, .l
10 A T L
Yvy ¢
10-3 A 1 — Fopt
~ Asymptotic limit
‘L 10-4 v Small-big-small, t = co
Conventional decoder
- Amplification decoder
107
lnfh
10! 10? 10°
n
(€) 1o
L
-2 v L)
10 Vovy ......Ooooo
103 €
A 1 — Fopt
M0 Asymptotic limit
! v Small-big-small, t = co
— 10 . .
Conventional decoder
10-0 Amplification decoder
1077
10! 10? 10°
n

In Fig. 3, we explicitly compare the performance of
GKP decoders and lattices under loss and amplification.
In subfigures (a),(b) and (c),(d), the noise channels are
loss channels with loss probability y = 0.1 and amplifi-
cation channels with gain G = 1.1, respectively. In (a),(c),
we focus on the square-lattice GKP code encoding d; = 2
logical dimensions. We present a comparison between the
analytical and perturbative expression given in Eq. (24)
(green lines) and the exact values of the near-optimal infi-
delity, 1 — F°P! (blue triangles). The exact values are com-
puted through Eq. (16). Clearly, the perturbative expres-
sion approximates the exact values very well. Moreover,
the asymptotic limits are shown in orange dashed lines,
which performs surprisingly well: even with 10% loss,
GKP code can still achieve infidelities of order 107°.

Numerically, one can observe that the GKP code’s per-
formance improves monotonically as the average energy
increases [41], which is distinct from other bosonic codes:
there has been the misconception that it is more difficult to
restore the lost information when the number of lost pho-
tons increase. Past results have found an optimal photon
number for most other bosonic codes [31,34,63], and the
GKP code is a first instance that does not have such a lim-
itation. There could exist other unexplored bosonic codes
that have similar features as well, such as the squeezed cat

Square

1 — fopt

Hex.
—o— Tesseract
—e— D4

—o— D6

6x 1072 107! 2 x 107!

(d)

Square
Hex.
—o— Tesseract
—— D4
—e— D6

1 — Fopt

6x 1072 107! 2 x 107!

G-1

The performance of GKP codes under (a),(b) loss and (c),(d) amplification. (a),(c) The infidelities of near-optimal recovery

are compared against that of existing GKP decoders, such as AD [31,32], the conventional decoder [21], and the SBS circuit [29]. In
particular, the SBS circuit is repeated until the system reaches a stabilized state. The GKP codes are based on the square lattice. The
noise channels are set to be (a) y = 10% for loss and (c) G = 1.1 for amplification. (b),(d) The performance of various lattices with
parameters given in Table I is presented. The encoding dimension is fixed to d;, = 2 with n/N = 5 average photon number per mode.
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code [64—66], which is a simplified GKP code with only a
few peaks.

While the near-optimal fidelities reveal the limit of the
GKP code, we examine the performance of a few existing
GKP code recoveries. For example, proposed along with
the GKP code [21], the conventional decoder is designed
against displacement errors and recovers the information
through modular quadrature measurement and adaptive
displacement recovery. As shown in Figs. 3(a) and 3(c),
when it is applied against loss or amplification noise,
its performance does not always improve with increasing
photon numbers. Small-big-small (SBS) [29] is arguably
the state-of-the-art recovery against loss, and it is widely
adopted in superconducting circuit [22,23,67] and ion-trap
experiments [25,26] for the correction and preparation of
GKP states. A round of SBS consists of a short circuit
comprised of conditional displacements and ancilla qubit
rotations. As an optimistic benchmark, we show its sta-
bilized fidelity after multiple rounds of SBS. Last but
not least, AD is the decoder that established the state-
of-the-art rate of the GKP code under pure and thermal
loss [32]. At the cost of injecting additional noise, it con-
verts loss or amplification channels into Gaussian random
displacement channels, whose optimal decoder at infi-
nite energy is known to be the conventional decoder. See
Appendix I for the simulation details and exact definition
of the recoveries.

Overall, the comparisons between recoveries lead to the
conclusion that in experimentally accessible regimes, e.g.,
n~ 10 and y = 10%, GKP code’s performance can be
improved by order(s)-of-magnitude solely through refining
its recovery. The improvement can be even more signif-
icant for smaller y. Recall that the near-optimal fidelity
is achievable by the transpose channel. Thus, one promis-
ing route is to approximate the transpose channel or other
near-optimal recovery channels through techniques such as
optimal control. We provide insights on the form of the
truncated transpose channel in Appendix J and leave the
construction of experimentally feasible circuits for future
work.

In Figs. 3(b) and 3(d), we show the near-optimal infideli-
ties that correspond to various lattices types. The average
photon number per mode is fixed to #/N = 5, and all codes
encode d;, = 2 dimensional logical space. The lattices and
their respective number of modes, N, shortest dual lat-
tice vector sizes, and the kissing numbers are given in
Table I. In particular, it is apparent that as we increase
the number of modes that encode the same amount of
information, we effectively have more redundancy that
we can use to protect the information, which is quan-
tified by the distance of the dual lattice |Al|min. Some
lattices utilize space more effectively than others, which
is related to the well-known sphere-packing problem. For
example, in two- and four-dimensional space, the tightest
packing is achieved by the hexagonal and the D4 lattice

respectively, rendering them to have more potential in
correcting errors.

IV. ACHIEVABLE RATES

In the previous section, we focused on the fidelity of
the recovery, i.e., how well entanglement is preserved.
Another equally important metric is the amount of logical
information transmitted. In fact, the near-optimal fidelity
derived has close connections with the logical dimension,
dr, as shown in Eq. (24). In Figs. 3(b) and 3(d), the com-
parison is made between various lattices transmitting the
same amount of information, d; = 2. However, this is
not necessarily a fair comparison since some use more
resources, e.g., number of modes, than others. In other
words, the series of lattices we examine have a vanishing
rate. In this light, we show a similar performance plot in
Fig. 4(a). The difference is that here we are showing the
upper bound for the infinite-energy performance, as given
in Eq. (25), and the logical dimensions are set to d; = 3"
with N being the number of modes used for each lattice
type. Recall that the quantum capacity of loss channel is
log,((1 — y)/y) number of qubits per mode. This essen-
tially means that at this logical dimension rate, there exists
an asymptotic code family that can transmit information
arbitrarily well as we increase the number of modes if
y <1/ +1)=025.

We emphasize that the main purpose of Fig. 4(a) is to
show qualitative support on the existence of a threshold
for GKP code, i.e., below a certain noise threshold, the
error is arbitarily suppressed with increasing system size.
The (pseudo)thresholds of these lattices are not expected
to be strictly 0.25 for the following reasons. Firstly, while
the threshold is defined in the asymptotic limit and corre-
sponds to certain good lattice families, the lattices shown
are low-dimensional ones and are not guaranteed to be in
the same optimal lattice family. Moreover, the estimated
pseudothreshold could be inaccurate: the plotted metric
is €, which is a perturbative approximation of the near-
optimal fidelity. At finite error, the near-optimal fidelity
can have non-negligible difference in its crossover points
compared to the optimal one. Additionally, the approxima-
tion error, as mentioned below Eq. (18), has a dependence
on the logical dimension in the finite-error regime, leading
to an increased approximation error for high-dimensional
lattices, such as the Leech lattice, especially at around the
threshold.

The achievable rate serves as a single benchmark that
incorporates both the fidelity and the logical dimen-
sion. Other than following the original definition of the
achievable rate, we can lower bound the achievable rates
through coherent information. In particular, with a code
of fidelity F' encoding d;-dimensional logical space, it
can be converted into a Werner state with coherent
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FIG. 4. (a) The infidelities of GKP code are based on a few lattices with varying numbers of modes with a constant encoding rate

such that d; = 3". (b) Coherent information of GKP codes is based on various lattices, which are achievable rates. The coherent
information is computed through the Werner states as given in Eq. (26). (c) Lower bounds on the achievable rates of GKP codes based
on scaled symplectically self-dual lattices with an increasing number of modes, N. The infidelity is upper bounded through Eq. (29).
(d) A comparison of the rates achieved through the amplification decoder, the near-optimal decoder, and the single-mode hexagonal
GKP code concatenated with random stabilizer codes for asymptotic system sizes. All subplots are focusing on infinite-energy GKP

codes.
information [32]

1-F
I (F,dy) =log,dp + Flog, F + (1 — F)log, I
2 _

(26)

whose regularized version, /(F,d;)/N, is an achievable
rate. In Fig. 4(b), the achievable rates based on each base
lattice are shown. For each base lattice, we compute their
achievable rates with varying logical dimensions and plot
the supremum. The logical dimensions are varied through
scaling the base lattices. However, not all logical dimen-
sions can be achieved through this approach. Assuming the
base lattice has a logical dimension of dj, we are only able
to achieve logical dimensions of the form [21,38,40]

dp = 2Vdy, (27)
where A is any positive integer and N is the number of
modes. See Appendix C for more details. Therefore, it
is possible for the envelope of the achievable rates to
be not smooth. Moreover, the rates are computed with
¢ as an approximation of F°P'. As shown in Eq. (18),
such an approximation only holds when the code perfor-
mance is expected to be promising. Recall that the rates

are optimized over all possible logical dimensions, we set
the numerical constraint that we only optimize over logi-
cal dimensions such that € < 1072 to ensure the rates we
compute are reliable.

So far, the shown lattices are specific instances and are
not in the same asymptotic family. We can instead focus
on a lattice family called the self-dual symplectic lattices
[21,37,40,42]. Such lattices have dual lattices identical to
the prime lattices. A direct consequence is that the base
lattice only encodes a one-dimensional space, i.e., dy = 1,
and it can be scaled to encode A" logical dimensions.
A crucial property [40,68] of the self-dual family is that
there exists a self-dual lattice, A, such that

Y= ff(x)dZNx

XeA¢{0}

(28)

for any integrable and rotationally invariant function /. As
a result, for an infinite-energy GKP code that corresponds
to a scaled self-dual lattice, ~/AA, its infidelity is upper
bounded through

S y \"
lim € < 7 A—l ) (29)
n—00 — y
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which vanishes if the dimension per mode A < (1 —y)/
y +46 and § — 0. See Theorem H1 in Appendix H.
Recall the property of the near-optimal infidelity’s per-
turbative form given in Eq. (19), the condition for
a vanishing € corresponds to the condition of perfect
entanglement preservation. Following a similar deriva-
tion for the amplification channel, GKP codes achieve

rates of
T
R = max ( log, T ,0),

where 7 =71 <1 for loss and t = G > 1 for amplifica-
tion. Here, |-| denotes the floor function. In Fig. 4(c),
we show the rates that are achievable through different
dimensions of the self-dual lattice. For a finite number of
modes, such a bound would not give a vanishing error
rate, but we can still obtain a rate through Eq. (26). It is
clear that as we increase the number of modes we use, we
can achieve superior rates with genuine multimode lattices
compared to schemes based on low-dimensional lattices.
For genuine lattices at N — oo, there is a steplike fea-
ture due to the floor function in Eq. (30). Such a feature
appeared in relevant works where a similar construction
was used to achieve the lower bound of the Gaussian ran-
dom displacement channel or finite rate for loss [32,40].
Therefore, the GKP code achieves the channel capacity
for loss or amplification only when (t/|1 — 7]|) € Z. How-
ever, such a steplike feature is an artificial feature because
of the limited choices of logical dimensions through scal-
ing self-dual lattices. It is likely that with some alternative
lattice constructions, the GKP code could always achieve
the channel capacity. Another construction for symplectic
lattices with goodness properties is the NTRU-based lat-
tices [36], but it faces the same restriction on the logical
dimension. There are algorithms that generate these lattice
families with high probabilities [36,42].

In the past, there have been multiple works on the
achievable rates of GKP code. In particular, Ref. [32]
established the state-of-the-art rate against loss channel
before this work. The key to their approach is the ampli-
fication decoder (AD), which converts the (thermal) pure
loss channel into a Gaussian random displacement channel
through an amplification channel. However, the amplifi-
cation channel inevitably introduces noise from the envi-
ronment port of the amplification channel, leading to the
suboptimality of AD. The rates of GKP code under AD are
shown in Fig. 4(d), which has a finite gap of log, e & 1.4
compared to the capacity. Whether the gap was due to
the deficiency in the recovery was left as an open ques-
tion. Our result demonstrates that the GKP encoding with
a (near-)optimal recovery is sufficient to close such a gap.

An alternative method to obtain rates from bosonic
codes is to concatenate them with qudit codes. For
example, on the lower level, we can select infinite-energy

(30)

single-mode hexagonal GKP code. If we perform twirling,
the noise channel can be understood as a generalized Pauli
channel or a depolarizing channel, depending on the spe-
cific twirl we perform. The only constraint is that the
summed error probability should equal 1 — F. To obtain
a lower bound on the rates, we assume the channel is
twirled such that we are dealing with a qudit depolar-
izing channel, i.e., the error probability vector is p =
(F,(1=F)/(d? = 1),...,(1 = F)/(d? — 1)). The achiev-
able rate of concatenating it with random stabilizer codes
is given by the hashing bound (see Appendix A for more
details) and is shown in Fig. 4(d). Note that the hashing
bound is strictly below the achievable rate of the genuine
multimode lattices. As pointed out in Ref. [40], while con-
catenated single-mode GKP lattices can also be understood
as lattices living in 2N dimensions, they do not achieve
as good a packing as the sphere-packing lattices like the
scaled self-dual lattices.

One interesting conclusion from our approach based
on scaled self-dual lattice is that there exists a GKP
code that simultaneously achieves the capacity of loss and
amplification given that

—r=_ G31)

with tailored decoders. This observation is nontrivial and
has its root in the almost identical form of loss and ampli-
fication Kraus operator combinations as given in Eq. (20).
A relevant discussion is presented in Appendix L.

V. DISCUSSION

In this work, we have studied the (near-)optimal per-
formance of the GKP code under loss and amplification
noise. The results are analytical and general such that they
are applicable to multimode GKP codes over arbitrary
input energy and lattice shapes. In particular, at experimen-
tally accessible parameters, we presented a comprehensive
comparison between the performance of existing decoders
and a near-optimal decoder, i.e., the transpose channel.
The GKP encoding is shown to have remarkable opti-
mal performance even at finite sizes, and we highlight
the possibility to further suppress GKP code’s error by
order(s) of magnitude through refining the existing recov-
eries. Through exploiting the similar structures of the loss
and amplification channels, we established the optimal-
ity of infinite-energy GKP code: it achieves the capacity
for both channels simultaneously when |t/(1 — 7)| is an
integer. Here, 7 is the transmissivity (gain) for loss (ampli-
fication). To the best of our knowledge, GKP code is the
first known structured bosonic code family that achieves
the capacity of bosonic channels that has a known capacity,
i.e., pure loss and pure amplification.
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This work applied a key technique called the near-
optimal fidelity, which is based on the transpose chan-
nel, sometimes known as the Petz recovery [52—55]. The
Petz recovery has been known to have many information-
theoretic applications [69—72]. Our work first demon-
strated its power in determining a QEC code’s achievable
rate. It enables us to explore the performance and to deter-
mine the rates for codes with guaranteed near optimality.
Thus, it opens the door to computing the achievable rates
of other multimode bosonic or qubit codes, such as the
quantum spherical codes [43]. In addition, while we have
computed the rates of GKP codes under pure loss (amplifi-
cation), its rates under thermal loss (amplification) remain
unknown. With numerical evidence of GKP code’s perfor-
mance under thermal loss [32], it would be very interesting
to see if GKP code’s rate saturates or even surpasses
the state-of-the-art capacity lower bounds for these noisy
channels.
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APPENDIX A: BASICS ON INFORMATION
THEORY

Consider a quantum channel A/ and an input quantum
state o, the coherent information is given by

I (P N) = SNV (P)) = SN (5)).

where N is the complementary channel, and S denotes
the von Neumann entropy. The (regularized) coherent
information is tightly connected to the quantum channel

(AT)

capacity [10,11,15] via Eq. (10). As a corollary, it has been
established that for any coherent information, there exists a
code that can achieve such a rate, which are lower bounds
of the channel capacity. Consequently, given a state with
a known channel fidelity, one can obtain a lower bound
of the achievable rate by converting it into a Werner state
after local operations and classical communications. For
more details, see Ref. [32] and references therein.

Another tool we have applied is the qudit hashing
bound. Suppose we consider a generalized Pauli channel
as the noise channel in the Weyl operator basis, the hash-
ing bound provides an achievable rate of random stabilizer
codes and can be written as

Dy = (1 — Hg (p))log, dp, (A2)

where d; is the number of levels of the qudits, p is the prob-
ability vector, H, is the entropy with base n, i.e., H,(x) :=
— > ;x;log, x;. log,d; converts the unit from qudit to
qubit. Worth noting, there are also other more general def-
initions of the Hashing bound (see, e.g., Ref. [33] and
references therein) for general channels, but it converges
to the expression above for qudit Pauli channels.

APPENDIX B: BASICS ON LATTICE THEORY

In this section, we focus on the relevant lattice theory
concepts that are helpful for our understanding of the GKP
codes. In GKP codes, we are normally concerned with N
modes. Thus, we explore lattice theory in 2N dimensions.
The lattice can be defined through a set of independent
generators, v; € R?V. These generators form the generator
matrix,

L= (B1)

T
Von

The linear combination of the lattice generators span the
whole lattice, i.e.,
AL) :={LTa:aeZ™). (B2)
In particular, the type of lattices that are relevant to our
discussion of GKP codes is the symplectic integral lattices,
also known as weakly self-dual. Such lattices are defined
to be lattices whose symplectic Gram matrix, defined as
A:=LQLT, (B3)
have only integer entries. The N-mode symplectic form is
defined as @ = Iy ® w and w = (% §). While a generator

matrix uniquely determines the lattice, different generator
matrices could correspond to the same lattice.

030314-11



GUO ZHENG et al.

PRX QUANTUM 6, 030314 (2025)

Lemma B (Canonical basis). For any symplectic inte-
gral lattice, there exists a canonical generator matrix M
such that its symplectic Gram matrix

A :dlag(dl,,dN)(X)a) (B4)

The proof is omitted here for simplicity, but it can be

found in, e.g., Ref. [39] and references therein.

Lemma B2 (Square lattice with a symplectic transforma-
tion). The canonical generator matrix of any symplectic
integral lattice, M, can be connected with a square lattice
through

L= LS, (B5)

where Lgq = Dyq ® I, = diag(+/di, ..
S" = L/ L is a symplectic matrix.

LA/dy) ® L, and

Lemma B2 is straightforward, and S can be easily
verified to be symplectic.

Definition Bl (Symplectic dual lattice). For a lattice, A,
its symplectic dual lattice is given by A+ such that

At = {uli’Qv e Z, Vi e A). (B6)

Similarly, if the symplectic form in Eq. (B6) is absent,
the lattice points form the Euclidean dual lattice.

Definition B2 (Self-dual lattice). A symplectic self-dual
lattice is a lattice, A, whose dual lattice is itself, i.e., A =
A~ and has a canonical symplectic Gram matrix of

A=1IyQ w, (B7)

where Iy isa N x N identity matrix.

Lemma B3 (Existence of good self-dual lattice; [68]).
There exist a 2N-dimensional symplectic self-dual lattice,
A, such that

3 S < f S0 (BS)

xeA¢{0}

for any integrable and rotationally invariant function f.

APPENDIX C: GKP CODE

In this section, we focus on GKP and its properties. Fol-
lowing the conventions, we define the set of position and

momentum operators for N modes as

. P N
X:=(q1.p1,- .-, qn.Pn) - (CI)
There are two equivalent ways of expressing a displace-
ment, being through u € R? and & € CV

T(u) := exp —iu"Qx, (C2)

D(et) := expad’—a*a, (C3)

and they are related by o; = (1/4/2) (uzj —1 + iuz;). Equiv-
alently, we can define a linear map

1 i
C=—\|0 0 1 i ...}, (C4)

such that C: R?® — CV for N modes, and if Cu = «,
we have T (u) = D(oc). For any N-mode GKP, it has 2N
independent stabilizer generators, each corresponding to a
displacement,

S; = T(V27vy). (C5)

A generic element in the stabilizer group can then be
written as

S =T(V27rM"a), (C6)

T
Vi

where M = and corresponds exactly to the gen-

vl

erator of latticezsN as given in Eq. (B1). Moreover, the
stabilizers should commute with each other, leading to
the condition that the symplectic Gram matrix shown in
Eq. (B3) should have only integer entries. Therefore, the
stabilizer group of a GKP code is isomorphic to a symplec-
tic lattice, with each stabilizer corresponding to a lattice
point. The GKP’s logical dimension is determined through
the lattice as

d, = det(L) € Z. (C7)

As a result, if we scale the lattice through L' = oL, the
new lattice should be symplectic integral, i.e., a®> = A € Z.
Then, the new code will have a logical dimension of d; =
a*¥d; = ANd;. Therefore, it is not generally possible to
attain arbitrary logical dimensions through scaling a base
lattice.
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Corollary C1 (Gaussian transformation to a square lat-
tice). Suppose a GKP code’s underlying symplectic inte-
gral lattice, A, has a canonical symplectic Gram matrix
of the form A4 = diag(dy,...,dy) ® w. There exists a
Gaussian transformation, Us, that transforms code into a
GKP code that corresponds to a square lattice, Agq, with
a generator of the form Ly = Dyq ® I, = diag(J/di, ...,

Vdy) ® .

Proof. With a Gaussian unitary, Us, the quadrature
operators transform as

UlzUs = s%, (C8)

where S is a symplectic matrix. Equivalently, one can
show that the GKP stabilizer group with a generator
matrix L is transformed into another GKP code with
L' = LST. Therefore, from Lemma B2, it is straight-
forward to take ST =L7'Ly, leading to L' =Ly =
diag(V/d,, ..., /dy) ® L. [

Therefore, we can understand each GKP code as being
Gaussian transformed from a square lattice GKP code,
where the ith mode encodes d; logical dimensions. For

an infinite energy GKP code, the codewords can then
K1

be denoted as |u), where p = ( :

MUN

) and p; € Zg,. The

codewords follow as

N
)o = U 1wy = UL Q) I’ (C9)
i=1
where the single-mode square lattice codewords are
et =Y IV (dn + ), (C10)

nez

with the codewords defined in the conventional Z basis.
To obtain its finite-energy counterpart, an overall Gaussian
envelope is applied

_AZSN A
)5 = Nye & 2=t |y, (C11)

where 7; is the number operator for the ith mode and N,
is a normalization factor that is in general dependent on
the codeword. We will determine N, as a byproduct in
Lemma F1. The Gaussian envelope can be decomposed in

the displacement operator basis [31]. In a single mode, we
have

o e
A2

—A2j 1 / 2 2tanh
e = d aD(x)e 7,
T (1 - e‘Az) NS (@)

(C12)

which can be straightforwardly extended to multimode
scenarios.

APPENDIX D: NOISE CHANNELS

In this work, we are mainly concerned with channels
such as pure loss, amplification, and thermal loss.

1. Pure loss

For codes encoded in an oscillator, the excitation loss
noise channel, also known as the pure loss channel, has the

form of N(p) = Y iy E;ﬁE,T, where

. y \"? & .
E1=< ) —= (=),

' DI
—) 7 (D1)

and 71 = a'a is the number operator. Here, y is the loss
parameter and is related to the transmissivityasn = 1 — y.
Given the overlap between displaced GKP states, it is ideal
if we can expand the Kraus operators of the loss channel in
terms of displacement. Such an expression was derived in
Ref. [31].

Lemma DI (Displacement representation of the loss
channel [31]). The loss Kraus operators can be expanded
as

A

in &>
EE, = / 7“@—%<1—V>I°42 (1 Dir (D2)

!)Da .
Proof. The Kraus operator combinations

Ltk

(%)
Bl = % (1—y)"2a'*al (1 - y)"? (D3)
I+k
(%)
AT /\T A . /\T l—y
TrDlE/E, = Z (n| D} "

x (1 — )" n).

(1 _ y);l/z &Tk&l
(D4)

Redefining p = n — [, we can expand the displacement
operators in the Fock basis and arrive at
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L5 \/7( q) ke Tl o 1 (""'2>
Y Y

1 A _LJ
= — (I Dor)yy lk)e 27
14
Therefore, the decomposition is given by
,lﬂ|a|2

P 1 ” 27y
EEyr=— | da (Il Doy s k) (D9)

y g

e~ 2=Vl

- / o Ul @) 6 Dy, (D10)
|

2. Amplification channel

For the amplification channel, we have its Kraus opera-
tor form as Ny (p) = Y o) AipA,

[1G-1) ..
A= LG gt
NG

Given the similar forms between the amplification and the
loss channel, we can expect a similar decomposition in the
displacement representation.

(D11)

Lemma D2 (Displacement representation of the amplifi-
cation channel). The amplification Kraus operators can be
expanded as

PPN d? o
Ay =/—“e—%G'“'2 (1|Dee] 1
T

VDo (D12)
Proof. The proof is similar to the proof of Lemma D1
and is omitted for simplicity. |

APPENDIX E: QEC MATRIX AND
NEAR-OPTIMAL FIDELITY

One key concept we use in this work is the near-optimal
fidelity based on the QEC matrix, recently proposed by
Ref. [41]. For completeness, we review the key ideas here.

Definition E1 (QEC matrix). Consider a d;-dimensional
QEC code defined through codewords {|u.)} and a noise

L\
TeD}E] Ey = @Z@ +1 DY Ip +k) (1 —

y 2
1- ket lo |2

=S (- T e

i NEDRCELN

bl (D3)
k
l kZ(P+ ) L;+kk(|a|2) (l_y)p (D6)
(D7)
(D8)

channel admitting a Kraus form of {N;} with Kruas order
L. The QEC matrix is a d; L x d; L matrix, defined as

Myaypony = (el N N jvp) . (ET)
The QEC matrix is proposed first as a tool to check if
the encoding allows for exact recovery of the noise, also
known as the Knill-Laflamme conditions. In fact, the QEC
matrix contains more information than a yes/no answer
to the question of whether a code is an exact code. For
approximate codes, we can discover their optimal fidelity
by optimizing the recovery channel
(RP'oNo&).

FoP = mng(RoNoS):F (E2)

The fidelity metric of choice is the channel fidelity,
defined as

F(Q) = (2| Q@I (I1®) (D] D), (E3)
where |®) is the purified maximally mixed state, Q is an
arbitrary quantum channel, and 7y is the identity chan-
nel acting on the reference ancillary system. With such a
metric, the optimal fidelity can be found through convex
optimization. The near-optimal fidelity is an optimization-
free benchmark that only depends on the QEC matrix, as
defined below.

Lemma EI1 (The near-optimal fidelity; Theorem I,
Ref. [41]). For a d;-dimensional encoding, £, and a noise
channel, V, the near-optimal fidelity is

3 1 2
o= — HTrL WHF (E4)
L

where M is the.r QEC matrix, (Tr; B);;, = ZIL_B[I’L[]’[MIC]
denotes the partial trace over the code space indices, and
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|l - l|r is the Frobenius norm. The near-optimal fidelity
gives a two-sided bound on the optimal fidelity as

1

3 (1—FP) <1—F®<1—FP (E5)

The near-optimal fidelity provides a tight two-sided
bound of the optimal fidelity. The near-optimality of the
near-optimal fidelity is a direct consequence of it being the
performance of the transpose channel (TC) recovery, RT¢,
ie.,

= F(RCoN o £), (E6)

with A/ and £ denoting the noise and encoding channels,
respectively, and o represents channel compositions. The
transpose channel, also known as the Petz recovery in some
circumstances, has been proven to be near optimal, and
possesses a constructive Kraus form,

RIC = PLNIN (P12, (E7)

Here, N; are the Kraus operators of the noise channel, P,
is the logical codespace projector, and the inverse should
be understood as the pseudoinverse. Therefore, the perfor-
mance of any code that is given by its near-optimal fidelity
is not only an existence proof of the recovery, but the
explicit channel that realizes such a performance is also
known. The transpose channel has attracted rising inter-
ests in its practical implementation [54,57,58]. In addition,
one could consider schemes that propose systematic imple-
mentations of general CPTP maps in bosonic and qubit
systems [73,74]. While the main caveat of current works
are their lack of fault tolerance, it is foreseeable that a
truncated form of the recovery could be less demanding to
implement for current hardware. We provide some insights
into the transpose recovery of GKP code in Appendix J and
leave a more comprehensive study for future work.

While the exact expression of the near-optimal fidelity
gives a computationally efficient approach to finding the
near-optimal performance of any QEC codes, it is not very
useful analytically. Therefore, the matrix square root can
be expanded perturbatively.

Lemma E2 (Perturbative form of the near-optimal
fidelity; Corollary 1, Ref. [41]). The noise channel’s
Kraus representation can be chosen such that i Try M =
D, with M being the QEC matrix and D being a diago-
nal matrix. With the residual matrix AM =M — I; D,
the near-optimal infidelity has a perturbative expansion

through

- 1
1 — For = oo AM %

Lo(LIr@oam). @)
L

where [ (D) = WDT;{ and the Hadamard product
(AOB); =A4;By.

Based on Lemma E2, we have the perturbative form of
the near-optimal infidelity as

1
é=—lf D)o AM |3, (E9)
L

such that

1—FP=¢40("). (E10)
Here the residual term is bounded under the assumption
that d; is a finite constant. The perturbative form is quite
useful for obtaining analytical expressions for qubit and
bosonic codes, as shown in Ref. [41]. Lemma E2 pro-
vides one possible definition of D. Nevertheless, under
such a definition, it could be cumbersome to compute
the analytical form of D since it requires diagonalization.
Alternatively, we can relax the definition and instead define
D to be a truncated diagonal matrix. The residual part
is still defined as AM =M — I; ® D. As a result, TrD
does not necessarily equal 1 as before. Qualitatively, to
obtain an analytical expression, we sacrifice some of the
correctable parts by dividing them into the residual matrix.

In Eq. (E10) we assumed d to be finite to bound the
residual term from the approximation. Such an assumption
does not hold when we are concerned with information-
theoretic properties such as achievable rates. Nevertheless,
it has been shown in Ref. [41] that even with increasing
logical dimension, a vanishing first-order approximation
is sufficient to guarantee vanishing near-optimal infidelity,
which is stated formally below.

Lemma E3 (Corollary 3, Ref. [41]). Asé — 0, the near-

optimal fidelity
FoP' s TrD. (E11)

The above tools allow us to develop the key corollary
we will use to obtain the achievable rate.

Corollary EI. For a quantum code encoding a di-
dimensional logical space and passing through N indepen-
dent uses of a channel Q®V, the rate

R ! log, d (E12)
=—lo
N g aL

is achievable if € — 0 and D is chosen such that TrD — 1.
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Proof. This corollary is a direct consequence of Lemma
E3, the two-sided bounds presented in Eq. (E5), and the
definition of achievable rates. ]

APPENDIX F: QEC MATRIX OF GKP

1. Pure loss

We first focus on the example of GKP under pure
loss. The high-level idea is to view multimode GKP
as Gaussian-transformed multimode square lattice GKP,
which has a tensor product structure. Therefore, many
derivations for single-mode square-lattice GKP can be

straightforwardly applied in multimode general lattices.
Therefore, we start with some properties of square-lattice
GKP in a single mode.

a. Single mode

For simplicity, we begin with single-mode GKP and
later generalize to multimode scenarios. Since GKP is
characterized by its underlying lattice, it is relatively sim-
ple to work with displacement operators, which essentially
apply a translation on the GKP Ilattice. In fact, we can
derive the following lemma for the square-lattice GKP
code.

Lemma F1 (Overlap of displaced single-mode square-lattice GKP code; [31], Eq. (D11)). For a single mode square
lattice GKP code encoding d-dimensional logical space, the overlap between finite energy displaced codewords is

given by
N N 7|\/27CL_§ | 1anhA—2
v
(lelD(O() |/L2) w——ZAZ Z elrr(nl+/ )nz 4tanhAT e ‘«/271CL+0¢‘ (Fl)
ny n2€Z
|«/27C'L—a|
ity I 1anh—
= (1 +0< d nA+ )) Z elj‘[(n]'f'/+ )nz 4tanhAT e ‘\/ZTTCL‘H)“ , (F2)
niy anZ

where D, is the displacement operator, L := \/g (dny + u — v,my)7, Cis the linear map defined in Eq. (C4), and np =

1
eZAz—l.

Proof. We can focus first on the infinite energy scenario. Expanding the codewords on the position basis,

o (1] D(@) [v),

nj n2€Z

Y s Vm(dny + )l Do |V (dny + v)), (F3)

= l Z m(n1+/‘+ ny 52 (0{ — \/g(dnl +u—v+ in2)> (F4)

n1 ny €7

\/> Z ST+

ny,ny€Z

52 (a V2 CL) (F5)

where @ = o) + iz and L := \/Lg (dny 4+ u — v, ny)7. Here, we have applied the displacement operator decomposition in

the position basis, ; (q1| Dy 192); = %eialazeiﬁ“2q28(oz1 +

‘12ng ), and the Poisson summation. The finite-energy matrix

elements can be written as an integral of infinite energy-matrix elements,

112 +1y 2
; Nl A
D@ M= o s f ' f dPye P o (u| D(B)D@)D(y) vy, (F6)
NN Iﬂl2+IyI2
s [ @8 [ dye wen ¥ s bk e, D)

030314-16



PERFORMANCE AND ACHIEVABLE RATES. .. PRX QUANTUM 6, 030314 (2025)

|\/ECL—U|

R S R | rrcuraf 5
2\/_(1 _672A2 ny,my €7
_|vama—of? mh
_ (1+0< 2 (na+ )) )AL SRR \m‘”“\, (F9)

ny, anZ

where we make use of the composition rule of the displacement operator. The last equality is obtained by considering
w = v and o = 0 and by the definition of normalization factors, N, we have

N? 2
Al 1) A “e 2A2 Z em("1+ )nzefff(nAJr DL = 1. (F10)

2f(1 nl anZ

Here we have defined ny = 1/ (e2A2 — 1) and used the identity ~/2|CL| = |L|. Physically, n, is the average photon number
of the GKP code, which will become clear in Corollary F1. The leading-order term is when n; ; = 0, and the next leading-
order term (n; = 0,7, = 1) will be exponentially suppressed by the photon number. In the limit of large energy, we
have

N:=2Jm(l - e 287 <1+0(e‘5(”“5))). (F11)

Here, the terms that are dependent on p are absorbed in the second term. |

As a consequence of Lemmas F1 and D1, we arrive at the analytic form of the QEC matrix. While a similar form has
been derived in Eq. (D16) of Ref. [31], the form we provide here is exact, without approximations based on the large
energy regime assumption.

Lemma F2 (QEC matrix of the single-mode square lattice GKP code). For a single-mode square-lattice GKP code
encoding d-dimensional logical space, the QEC matrix of the GKP code under pure loss has the form of

oy () 8}
(F12)

where the average energy np = 1/(e2A2 — 1), the thermal factor ¢t = yna/(yna +1), and L := (1/\/6_1) (dn1+
w—= v’nZ)T-

x 1 t % (lfyl) L2
My i = <1+0<e"("“2)>> v—— 3 ST+ 2 ) <[

ny,np€L

Proof. From the definition of the QEC matrix and invoking Lemmas F1 and D1, we have

My e =a <M|E;Ek V) a (F13)
g 2 V27 CL— az 2
- (1 o (e_d(w;)» T 118 1 Dy Y ot PG | gl
T ny,ny€”Z
(F14)

where for simplicity we denote #, = tanh(A2/2), L := (1/3/d)(dn, + 1 — v,n,)7, and CL := |CL|e". € C. Notice that
the displacement operator can be expanded in the Fock basis in terms of the generalized Laguerre function:

1 D) k) = —'“2\/%2" (1) o (F15)
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for [ > k. When [ < k, it can be computed through ((k| ﬁ(—a) |1))*. Rewriting the integral in polar coordinates, we have

My = (1 +0(e7‘5("“5)>) ];—" 3 e m st HIVITALR (F16)
’ nl,nzeZ

* *(1*Z+V(nA+l))|a‘2 I—k 2 -k > do —2/ynpma+1)|V27 CL| || cos(0—6y) ,—i(I—k)6
X |o|d|a|e 2 2 L, " (la]”)]a| — e vrnatia Le , (F17)
0 0o T

where @ = |a]e? and na := 1/(e?2” — 1). We then apply two mathematical identities [31]

1 T
[,,(z):—/ &% cos(nb) db, (F18)
T Jo
00 A (p_l)n » b?
dxx? e P L (2by/X) L (x) = b* LW —). F19
/0 e P (2L (x) P Sy (F19)

With these simplifications, we reach the final expression

s

Mo = (1 +0 (e—d("mi))) \/F 3 G (g~ (ra+ 3 )R CLE ik ( fynntna + 1) 1)|\/§CL|>H{

o
ny,ny€E”
(F20)
-z + n +l g b3 2 1A+l 1
( ( : y (na 21)))l+lew7cu s 1k (I /_ZnCL|2ynnA—_:_1> (F21)
=2 b yma+ by 4
2 2

% (s ] =3 L
e (1 + 0 (ed(nA+2)>> Z eiﬂ(nl-‘rﬂ;u)nze 2 ()/+i) l
yna +1

nl,n2€Z

D( il (ma)*)

k>.
(F22)

One quantity that we have defined is n, which is considered as the average energy. Indeed, in the large energy regime,
it converges to the often-quoted energy of 1/2A% — % Below, we show more rigorously this is a more precise expression
for the average energy.

Corollary F1 (Average energy of single-mode square-lattice GKP code). For single-mode square-lattice GKP codes,
the average energy in the codeword,

1 4 _a(paal
n:= C—ZTTPLﬁ = nA + 0 (e 2d( A+2)) s (F23)

where np 1= 1/(e2A2 1.

Proof. With the no-jump Kraus operator of the pure loss channel, we have that EgEO = (1 — y)". Therefore,

1 .

i = —TiPri (F24)
d—1
1 d
=7 > EM[HOL[MO] (F25)
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27y+ 1

) ppomemel 5 grepon v
I em ni nze YTun (F26)
_2A2
/L =0 d)/ 2‘/_(1 - ) yna +1 ny,n €L
y=0
= na +0<e d("A+2)), (F27)
where we have adopted the relations given in Eq. (F11). |

It is worth noting that while we only derived the energy for single-mode square lattices, it can be easily generalized to
multimode and general lattices. The modifications would be that 7 = Nn, where N is the number of modes. Moreover,

the error term would be O <en ("AJF )lemm> where |x|.,;, 1s the Euclidean distance of the shortest lattice vector of the

symplectic dual lattice of the corresponding GKP lattice. This fact will become clear soon.

b. Multimode

Many of the calculations can be inherited from the single-mode case.

Lemma F3 (Overlap of displaced GKP states). Suppose an infinite-energy N-mode GKP code corresponds to an under-
lying lattice of A, whose canonical symplectic Gram matrix 4 = diag (d) ® w. The overlap between displaced GKP states
has the form of

|\/277rCL7a|
(1l D) ) ( 1 )N T emdmmen, s o S L P
3 S OV =T :
271 —e ) "
where the Hadamard division is defined as (a @ b); = a;/b; and
e T
L:=5" (Dsql/z ®12> (diniy + 1 —vi,nog,. .. dymy + uy — vy, noy) (F29)

and Dy, := diag (d,, . ..,dy).
Proof. Recall that a GKP state can be Gaussian transformed into a square-lattice GKP through
o = U5y, (F30)

where Us corresponds to the symplectic transform given in Corollary C1. | R)o and |p)! contains the same logical

information, g, but lives on different lattices. The underlying lattice of the Gaussian transformed GKP codewords
|u)f)q is generated by My, = diag (\/d_, R «/dN) ® I,. Since LA/;)?(AJS = Sx, we have lAjgf"(u) (Afg = ?"(Su). We can then
transform as

o (11 D(@) |v) (F31)
=5 (| UsD(@) U} [»)3’ (F32)
=o' (| D(CSC™'ax) v)y) (F33)

I
1=

¥ ul (Descay) vy (F34)

—_
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_ \/TE Z &M (n1+(u+v)®d)52N(CSC— o — V2 Cqu) (F35)
ny,nyezZN
_ Ned Z mn2<n1+(u+v)®d)32N _ ~/2nCS’1qu) (F36)
2| det S| "
_ g I w02 (¢ /arcL), (F37)
nl,nzeZN

where L := Silqu with qu = ( _1/2 ®12> (dll’ll’l + u — Vi,h21,. .- ,dNI’ll’N + Uy — VN,I’lzyN)T and Dsq = dlag

(dy,...,dy). With an abuse of notation, we write (L’\)(Soc)) to represent the displacement component in the ith mode.

In the derivation, we have applied the result for single—modé square-lattice given in Eq. (F5), and that S is a symplectic
matrix with |det.S| = 1. With the infinite energy expression, it can be similarly extended to finite-energy conditions

r _AZYN 4o _A2ZYN
Al D(et) [v) o = NuNyo (i) e A Zi:I"'D(oc)e IND ISR 1v)o (F38)
N, 8R4y A
TV (1 } vAz)zN / 8 / dVye” 3o (I D(B)D@) D) v)g (F39)
T —e
NuN BRHY2 58T+ 8Ty 1ol y* .
= " (1 pnoty Az)zN / dZNﬂ/ dZNyenyem{ﬁTa +ﬂT}' +(¥Ty }0 <IL|D(13 + o+ y) |v>0 (F40)
b4 —e
N 2 2
:NILNV< ( 1 2)2> /dzNﬂ/ dzN}’e_w%ei3lﬂTa*+ﬂTy*+aTy*} (F41)
2732 (1 — e 2
Z etﬂnz(n1+(u+v)®d)82N(ﬂ+a+y CL) (F42)
ny,nyezZN
1 N *M tanh
= NuN, <—_2A2) Z oM M HuAMd) ,  danh A5 - ‘«/271CL+05‘ (F43)
27l —e ) it
_|vamcra]® o
= (1 +0< ”(”A+2>X|mm>) Z oM i+ 2d) , 4tanhATz e ‘JECL+a| , (F44)
ny,nyezVN

where the last equaility follow the same normalization reasoning as the single mode case. Here, the leading-order term is
an exponential function of the lattice’s shortest Euclidean distance, defined formally as

W= Y. L2 (F45)

ny,nyeZV ¢{(0,0)}

where L is a function of n; 5. |

With the key lemma extended to the multimode, we are now equipped to derive the QEC matrix expression for the
multimode.

Lemma F4 (Multimode GKP QEC matrix under loss). For the N mode GKP code, the error overlap matrix

Mg == a (B E[Ex [v) 5 (F46)
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IL|?

4k L
= (1 + 0 (e_”(nA+i)|x|r2mn)> % Z lﬂnz(n]+(u+v)®d) -2 y+ﬁ
yna +

<”>< zatl (rCL))

where £} := ®§V=1E1(f), <l ‘D (‘1)‘ k> = vaa <li )

> (F47)

N
k,~>, ti= yZZil, and the 1-norm [u|| := >0, [ul.

Proof. Extending to multimode, we have that

ETEk_®/d"‘l —3 1=yl <

Notice that there is a tensor-product structure, which makes it easy to work with.

>D(alf ). (F48)

Mg = a (1] ElyEk (V) A (F49)
_ (1 4o o5 (nat1) ) S 1+ () 0d) (F50)
nl,ll2€ZN
d R |x/ECL fal N
Xl_[/ Sl Dy e e Ve (Fs1)

Each element within the product can be evaluated with the same techniques as we presented in Lemma F2. Therefore, it
follows straightforwardly to the final expression. |

The matrix L has been appearing in the key lemmas and it is critical to gain a better understanding of it. Since here we
are decomposing most of the operations with displacements, it is natural to imagine that the inner product among GKP
codewords is connected to its symplectic dual lattice, similar to the analysis done for GKP under random displacement
channels [40]. This is indeed the case.

Lemma F5 (Connection to symplectic dual lattice). Suppose the underlying lattice of the GKP code is A, the lattice is
defined as

_ _ T
L:=S" (Dsql/z ®12> (dlnl,l +ur = Vi, n0, .. dymy + iy — VN,nz,N) (F52)
is a sublattice of the symplectic dual lattice. The union of all A forms the full symplectic dual lattice A, i.e.,
At=fuluelL, Vn,ecZ' ApcZl). (F53)

Proof. The generator matrix of the full lattice can be given as
L= (D" en)s, (F54)
where as the original GKP lattice is generated by L = Ly S~ = (D;é ’® 12) S~T. One can verify that
rol’ = (g en)sTes™ (Do L) =, (F55)

where we have used the fact that the inverse of the symplectic matrix S is also a symplectic matrix. Therefore, the
symplectic product of the vectors on the two lattices

alL'QL™b = a’Qb € Z, (E56)

which is the condition for the symplectic dual lattice. |
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2. Extension to the amplification channel

The extension to the amplification channel is straightforward given the displacement operator expansion of the
amplification Kraus operators.

Lemma F6 (Multimode GKP QEC matrix under amplification). For the N mode GKP code, the error overlap matrix

~(nact} )i} tHl i Iy Hptmod, Ll
M[/Ll],[vk] = (1 +0 (e mm)) (gmA - )N Z emn2 ny+(p+v e | &tin
ny,nyezV
<1

D(\/J(\/_CL)) > (F57)

where all parameters are defined to be the same as Lemma F4 except t := gma/(gma +1),2 = G — 1, ma = np + 1.

The derivation of Lemma F6 is very similar to the derivation of Lemma F4 except for the exact decomposition of
the noise channel. Therefore, the resulting expression substitutes a few loss-related parameters with amplification-related
parameters. As a result, the following derivations for loss can be easily modified to apply to the amplification channel.

APPENDIX G: NEAR-OPTIMAL PERFORMANCE

Following the results of the transpose channel, the near-optimal performance of the GKP code can be obtained through
its QEC matrix alone. Here, we attempt such a calculation.

Lemma G1 (Near-optimal performance of the infinite-energy GKP code). The near-optimal performance of a GKP
code with an underlying symplectic integral lattice, A, can be upper bounded through

—m L I
Yoo (G1)

xeAL¢(0)

€ <

E

where A' is the symplectic dual lattice of A. The logical dimension of the GKP code, d;, is assumed to be finite.

Proof. From the perturbative expansion of the near-optimal fidelity, we have € = (1/d)|f (D) © AM ||129. Recall that
while there are some degrees of freedom in choosing D, it should be diagonal, i.e., 1 = k and . = v. We can tentatively
pick n; = n; = 0 to have L. = 0. With this choice, D has no dependence on g and has the form of a thermal distribution

Diy = My funyln; =0 (G2)
1
_ i
= ¢ G3
(yna+ DV (G3)
TD= ) Dy=1, (G4)
ler‘v

where Z* = {0} U Z* denotes non-negative integers. Here, we take the prefactor of 1 4+ O (e” ("A+ )lxlmm) by unity

since we are dealing with infinite energy, which is valid for finite N and d;. Such an approximation can be done more
rigorously for the asymptotic cases if we focus on specific types of lattices as we do later in Theorem H1. AM is then the
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summation except the lattice points included by D such that

N2 K —z A= g2
(yna+ 1)Vt Z S+ tnod) , ()

A
(1Ml Ikl
ﬁ + ﬁ np,ny EZ;V
<1

i)(m(fa) ) > (G5)

where we define Z'V to be the special set that excludes the term with g = v and n; = n,. The near-optimal infidelity can
be expressed as

(f(D) © AM) i) =

1
é=—If(D)O AM | (G6)
L

=(@yna+ 17" Z Z Z i Ikl )2
rwez) Lkez nyp.my €7V (\/; LV 1)

7 U (L )
<

ALK ‘
(P12 ) =g (m1 . 1.9)) (G7)

v +ag)

1 (D (Ga)

k> <k ‘DT (Gm)‘ 1> (G8)

-5 7 (P L )

= (yna + HN Z Z RUCICEN R ICIENA0) PRt asye) (G9)
uwezl nyomyrez’N
Akl R .
~ (1‘1)((;,,) k><k ‘DT (Gm)’l>, (G10)
Lkez) (\/Ellllll + \/Ellkm)
where we define, for simplicity, ¢ (n2, g, v) = JTn2 m+m+v)od), G, := y”nAAtrll (JECL,,)*, and we use the

subscript of L to indicate its dependence. Focusing on the last term in the product, we have

(yna + D7V Lgﬁ (\/t””htlik\l/li“sz (1 k) <k ‘ bt (Gm)‘ l>
= (yna + D7V Lgﬁ (tuuh;ukul :tk'u"" )zti““"l (11D G| k) (k [T (G 1) (G11)
< (ynA-l—l)’N% 3 t%”‘+k"1<l )D (G,J‘k)(k‘f)* (Gm)‘l> (G12)
ez
_ Zlf[ P lkzotz%“ﬁ < ‘D(Gn)l )(k,- D (Gun); zi>, (G13)

where we have used the inequality x + }C > 2. For each mode, we can observe that with the summation of n, m, each /;, &;
is symmetric and can therefore be written as

5 o el

1;,ki=0

yna+ 1 M(G,,,),-‘l,-)

i> <Ii + Al )DT (Gm);

1i> (G14)
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= 21D G| 1) (1| (G| 1) (G13)
1,=0
_ (PP (t) (3 3 pinganen-o@y,, (2 ( [GaG M) I ( |G1G n| V7 ) . (G16)
Al=0 -
where Al; := k; — ;. The second equality is a result of the Hardy-Hill formula,
S T e O = e 201 (G17)
=T (l+a+ n) " " (xy)e/2(1 — 1) 1—1t

with 7 being the modified Bessel function of the first kind. The infinite-energy assumption comes in to greatly simplify the
expression by eliminating the cross terms. The second term vanishes in the limit of infinite energy since 1, (x) — €*/+/2mx
when x > «. Focusing on the first term, we have

2e ~(Iea*+16nl*) (3+15) Z Al i 86 (Gh) =0 (Ghn)) 1, < |GG ’\/_f>

Ali=0
5~ (16 +1Gl?) (3+ 1) Z A < GG M) (G18)
Al=0 I—t
oGl +lenl*) (3+15) exp2|G’IG_l |t\/; (G19)
_ (|G’| +| G| )( E)+27|G£'G£2|m (G20)
_ o (161416l 216G ) £+ 3 (Gl + G| ~2]GaGin )} +0) (G21)
= 8(G, — Gy, (G22)

where € := 1 — t — 0 at infinite energy. The first equality is taken at 6 (G:l) =0 (G;n) since otherwise the summation of
the complex phases would vanish. In the second equality, we used the mathematical identity of Y (1 — 1/x)“L;(x) —
%e" as x — oo for constant ¢, which is proved in Lemma K1. The final result implies that Gi = G! , which leads to
n = m. Therefore, in the following, the complex phase we have not taken into consideration, ¢ (n; 2, i, v) — ¢ (m;2, i, v)
also vanishes. Combining these with the full expression, we have that

ESE D el (G23)

pvezl nypez’N

4dL > X e P (G24)

pwezy nypezN

D DR ana (G25)

Apezd nypezN

1 I C
=3 Yoo (G20)
xeA-L¢{0}
(G27)
where we applied the multiplicity of Z wivi=l = d; Z A 0, the total logical dimension d; = ]—[f\/:] d;, and the connection
between L and the symplectic dual lattice AL given in Lemma F5. |
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While in the multimode case, one can only obtain an upper bound, in single mode we can obtain the exact expressions
of the near-optimal performance expression. The key difference between single mode and multimode is that instead of
resorting to obtaining an upper bound of the near-optimal infidelity as in Eq. (G12), we have

(ynﬁl)lgzj+ T +J> (1|2

Sl

— 2(yna + 1) Z ﬁ Zﬂ( I+ Al><l+ AZ‘DT (Gm)‘ > (G28)
_ %(ynA +1 Y4 <1 ‘[) (Ga) 1> <l (DT (Gm)‘ 1) (G29)
Iz

[ Al
(IG 2+ Gl )(7 ﬁ) 2 Z/l; eiAl(@(Gn)—G(Gm))[Al (2|G"Gm|\/z) -1 <2|G”G’”|\/—t) (G30)
Ao (V1T +1)? 1-1 1-1t

Therefore, at infinite energy, we know precisely the expression instead of the upper bound as

1 2
. ~_ 1 —n—lxl
lim € = ) E e (G31)

nA—> 00
xeAL¢(0)

At finite energy, we have the full expression as

1 A 00 Z‘Al A
E= — Z Z ol (D01 2.10.0) = (1 2,1.0)) J\Ln >+ Lin|? (2 Z/z— SO0 ) [y ),  (G32)
d. Ao (Wi +1)?

W,VEZLQ Ny 2-M1 2€Z

where & 1= ¢ ("%3) and z = 2(1G, Gt/ (1 — 1)) = mw(np + D)1|L,Ly).

One remark we give is that here we are ignoring the overlap between the codewords, which is exponentially suppressed
by na. For instance, one can check that the finite energy performance in Eq. (G32) at ¥ = 0 is exponentially suppressed
but finite, which is precisely because we ignored the overlap. If we include the overlap, the near-optimal infidelity should
vanish when the noise channel is an identity channel.

To give two concrete examples, we consider the square lattice and the hexagonal lattice. For a square lattice encoding
d-dimensional logical space, the generator is

Ly =+d (é ?) . (G33)

Suppose we only consider the closest lattice points of the symplectic dual lattice, which has a Euclidean distance given
by |x|mln = 1/d. By enumerating all values of n; 5, m; 2, and p, v, we can count the number of points that contribute to the
leading-order term with their relative phase and obtain the performance to be

3 S
1= fort g 7 (1a4d) [ g Yo Ianzsg) — Io(zg) — 1 (G34)
AleZ* (\/; + 1)2
Al=0(mod 2)
i
— e777y atnp — 09, (G35)

with zgq := (w/d)(na + 1)s/yna/(yna + 1). The last term in the finite-energy expression is due to the codeword overlap.
The infinite energy expression can be read from the closest-point distance and has four closest points.
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Similarly, we can compute the expression explicitly for the hexagonal lattice through its generating matrix and the
symplectic transformation required to transform it into the square lattice.

L 2d ( 1 O) (G36)
hex — = 1 V3]
V3\=3 7
1 3 L
Shex == (V2 V2. (G37)
© 31/4 0 ﬁ
As a result, we get the performance as
Al
- _dn (1 t
1= For 3 V() | g > ;{ IniGhex) = L0(hex) — 1 (G38)
. W12
AleZ (
Al=0(mod 2)
3 _2x 1y
— —e V3 7 atnp — 00, (G39)

where zpex 1= (271 /+/3d)(na + 1)3/yna/(yna + 1). Notice that the exponents and the prefactors have changed compared

2

to the square lattice. This is a direct consequence of the closest-point distance increasing to |x|;;, = %(1 /d) and having

six closest points.

APPENDIX H: ACHIEVABLE RATE

The achievable rate defines the maximum rate of
information transmission with vanishing error probabil-
ity. Equivalently, we can obtain the achievable rate by
requiring the entanglement infidelity to vanish at an infinite
system size limit. To obtain the achievable rate of the GKP
code, we pick a self-dual lattice and apply Lemma B3.

Theorem HI (Achievable rate of the GKP code under
pure loss and amplification). The achievable rates of the
GKP code under loss channel with loss rate y and amplifi-
cation channel with gain G are

1 —
Rloss = logz 4 )
14

(HI)

G
Ramp = 10g2 : (H2)

G-1

Proof. 1f we first focus on loss, from Lemma G1 we
already obtained the performance of the infinite-energy
GKP as

1=y 2
E e T M

xeAL¢(0}

€ < (H3)

ENI

Considering a symplectic self-dual lattice A( generated by
Ly. While the symplectic self-dual lattice cannot encode
information since detly; = 1, we can rescale the genera-
tor matrix as L = /AL such that the generated lattice A

encodes A" -dimensional logical information. As a result,
the sympelctic dual lattice scales as A+ = (1/vVA)AF =

(1 /\/X)AO. Given by Lemma B3, there exists a good
symplectic self-dual lattice A such that

-1 1 2

fxp Y e (H4)
xeA-L¢(0)
1 _mloy g2

=3 2 7" (H3)
xeAo#(0)

< [T (H6)
1 y N

= (L) . (H7)
4\ 1—y

Therefore, the near-optimal infidelity vanishes at infinite
system size limit N — oo if and only if L < (1 — y)/y.
By Corollary El, this is sufficient for vanishing opti-
mal channel infidelity. Therefore, this constitutes a lower
bound of the GKP code achievable rate, R > log, A. How-
ever, since it coincides with the channel capacity of the loss
channel, which is the supremum of all achievable rates, the
GKP code exactly achieves the channel capacity,

1 —
Rloss = 10g2 14 .
Y

(HB)
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Moreover, while it can be more rigorously derived, we
infer here the GKP’s performance through an observa-
tion for simplicity. Comparing the multimode QEC matrix
expression given in Lemmas F4 and F6, we remark that

when na, ma — 00, the only difference between the two is
. . . _rloypg2

that the exponential function is modified from e” 2 7 L

to e~ F P

show

. Therefore, with similar derivations, one can

Ramp = log, (H9)

G-1
One factor we neglected is the normalization factor. In
Lemma G1, we derived the upper bound assuming finite
dy to approximate the normalization factor by unity, which
does not hold when we consider asymptotic quantities like
the achievable rates. However, with a given set of lattice-
like the self-dual lattice, we can still show this property
holds rigorously,

2 1 N
N <2ﬁ<1 —ew)) -

(2 —g(my g ) = (np+ )L

nl’z,ml’zeZN
(H10)
< Z e—ﬂ(ﬂM—%)\X\z (H11)
xeAL¢{0}
1 N
<|(x . (H12)
na + %
AT 3

While np — oo, the symplectic lattice that achieves
capacity has a finite A. Therefore, the normalization con-

N
stant Nﬁ = <2ﬁ a- e—2A2)> in this limit and justifies

our choice in deriving Lemma G1 for the symplectc lattice
of interest here. |

APPENDIX I: SIMULATION DETAILS OF GKP
RECOVERY PERFORMANCE

In this section, we give a brief review on recovery pro-
tocols that are compared against in the main text and the
simulation details. To start with, the conventional decoder
is the decoder proposed by the original work [21]. Con-
sider a single-mode square lattice GKP code, the decoder
measures the quadrature operators modular the lattice
spacings and performs a corresponding displacement. It
can be implemented through, e.g., a supply of ancillary
GKP states along with SUM gates [21,75], phase esti-
mations [35], or teleportation-based error correction [76].
However, while such a strategy is optimal for infinite-
energy GKP code under displacement channel, it is far

from optimal when we consider realistic noises since it
does not take into account, for example, the contraction
features of loss.

A closely related decoder is the amplification decoder
(AD) [31,32]. The key idea is that through channel com-
position, we can convert loss (amplification) channel into
Gaussian random displacement noise channel through
amplifying (contracting) the logical states,

NL(”)ONA(G) :NBz(Gz)a (Il)

with nG = 1 and 02 = 1 — . Here, Ny, Nz, and N, rep-
resent pure loss, pure amplification, and Gaussian random
displacements, respectively. After the noise channel is con-
verted into Gaussian noise, it is natural to then append it
with the conventional decoding. Nevertheless, the channel-
conversion process injects additional uncertainty into the
system since it involves the participation of an input ancil-
lary mode in a vacuum, which is eventually traced out.
Therefore, it is also suboptimal. The simulations of both
the conventional decoder and AD are performed through
the Zak basis representation of the GKP code [77], which
is computationally efficient.

The small-big-small (SBS) is another recovery that is
practical and has attracted experimental interest. The core
advantage of it is its components are all experimentally
accessible and are free from measurements, which could
be the bottleneck for both operating speed and quality
for many experimental platforms. More specifically, one
round of SBS recovery circuit that stabilizes the position
quadrature consists of a series of unitary operations on the
oscillator and an ancillary qubit,

CD (8/2) RT (7w /2)CD (—il) R(x/2)CD (8/2),  (I2)

where the conditional displacement is defined as Cch () :=
[0) (0] ® D(et/2) 4+ |1) (1| ® D(—c/2) and R(7r/2) := exp
{—i&xn/4}. The displacement lengths § &~ A%/ and [ =
V2. The ancilla qubit is initialized in |+) and reset
at the end. The SBS circuit is developed through the
trotterization of the nullifier of GKP’s finite-energy stabi-
lizers. Since SBS does not stabilize the finite-energy GKP
codespace with the Gaussian envelope, our simulation first
discovers the stabilized codewords by initializing the oscil-
lator in GKP codewords and applying the SBS circuits till
convergence. Then, the stabilized codewords undergo the
noise channel of interest and are later recovered through
repeated applications of the stabilization circuits. The per-
formance is evaluated through comparing the fidelities
between the states before the noise channel and after the
recovery.
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APPENDIX J: APPROXIMATE
IMPLEMENTATION OF THE NEAR-OPTIMAL
RECOVERY

While our core message is the analytical performance of
the GKP code, there are also implications of practical inter-
est. One of them is the possibility to design more optimal
recoveries inspired by the near-optimal recoveries such as
the transpose channel.

Suppose one focuses on the two leading orders of the
TC Kraus operators, i.e., i = 0, 1 in Eq. (E7), it is straight-
forward to see that it roughly corresponds to a projection
onto the no-error and one-error subspace and a rotation
back to the codespace. One property of GKP code is that
if it only encodes d; = 2 [78], it possesses a twofold rota-
tion symmetry [79] such that both of its codewords live in
the even-parity subspace. Therefore, take the square-lattice
qubit GKP code as an example, one can approximate the
error subspace projection through a parity measurement.
Then, one can apply a unitary Uy, or U;_,; depending
on the parity being measured to be even or odd, respec-
tively. Here, the unitary U;_,; rotates the oscillator from
the ith error subspace back to the logical codespace. The
exact implementation of such a unitary can be discovered
through techniques such as optimal control. While we have
been focused on the explicit implementation of the first
two Kraus operators, it is worth noting that it is in prin-
ciple possible to extend such an analysis to higher orders
or through systematic techniques that implement general
CPTP maps [73]

APPENDIX K: MATHEMATICAL IDENTITIES

Lemma K1 (Summation of the modified Bessel function).
The following identity holds,

lim —Xi - Cnl() 1 (K1)
e - - L=z,
X—>00 X 2

n=0

where /;(x) is modified Bessel function, and ¢ is a constant.

Proof. We first prove that

o0
1
lim e™ ) " 1,(x) = 5 (K2)
n=0

The generating function of the modified Bessel function
reads

o0
5 o0 = it

i=—00

(K3)

where we let t = 1 and make use of I_,(x) = I,(x) fori
7., then we have

& = —Ip(x) +2 (Z I,,(x)) . (K4)
i=0
Because the asymptotic expansion of /y(x) reads
1) |argx] < > (K5)
o () ~ argx| < —,
2mx 8 2
we have
oo
1 e 1
lim e~ I,(x) = = — lim = K6
x—>ooe n2=(; x) 2 x—00 /27Tx€ 2 ( )

Thus we prove Eq. (K2). Compare Egs. (K2) and (K1), we
find that it is sufficient to prove

ILIEOZ (1 - (1 — %) )e_xl,,(x) =0. (K7)
n=0

Since /y(x) > 0 for x > 0, the summation is non-negative.
With Bernoulli’s inequality states (1 — 1/x)” > 1 —cn/x
for x > 1, we have

e Z (1 — (1 — }C) )I,,(x)
i=0

oo

AP PEIAE (K8)
n=0

< e*xg ;an_l @) = L1 (x)) (K9)

< ge-x (11 + 1) =2 1im L) (K10)

< ge—ml(x) + (), (K11)

where we have used the recurrence relation of the modified
Bessel function, 2n/x)1,(x) = I,—1 (x) — I,+1(x). Thus we

have
li i (1= h” =T (x)
< lim %e‘x(Ll(x) + Iy(x) =0, (K12)
X—>00
where we use the asymptotic behavior Eq. (K5) |
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APPENDIX L: QEC MATRIX OF GENERAL
CODES UNDER LOSS AND AMPLIFICATION

The establishment of GKP’s rate is based on the exis-
tence of a self-dual symplectic lattice with good packing
properties. As soon as one such good lattice, A is found,
all the capacity-achieving GKP lattices are obtained by
scaling it by a factor dependent on the noise strength. One
observation is that if we define

1 —
Kioss := 2Ross = —V (Ll)
Y
G
Kamp = 2Ramp — -1 (L2)
then when
Kioss = Kamp (L3 )

the same GKP lattice achieves the capacity of loss and
amplification simultaneously. Note that here while the
encoding is the same, the recovery is tailored to loss or
amplification. Such a result has its roots in similar forms
of loss and amplification. In particular, we have that

E;Ek — ;\/ dzﬂef%Klosslﬂ‘z
T (Kloss + 1)

x (1D (Vi +18*) ) Dy (L4)
A4y = n(K1 —1) / B e 1Kam AP
amp
x (1| D ( /Kamp — 1 ,3*) KDy (L5)

where we simply rewrite the expressions obtained in
Appendix D. The similarities between the Kraus opera-
tor combinations are apparent in the exponential factor.
However, there are other components that are not identi-
cal. Here, we show that when we evaluate the code with
some specific metric, namely || AM ||%, general codes have
the same performance.

Lemma L1 (Equivalence of general codes under loss and
amplification). For any code defined by a set of codewords
|;) with o € [dy], its deviation from the Knill-Laflamme
condition, characterized by || AM||%, is equal if

Kioss = amp- (L6)

Proof. Elements of the QEC matrix are defined
as M[,uﬂ,[vk] = (/,L|E;Ek |U) for loss and M[[L[],[Vk] =
(] A}Ak [v) for amplification. Suppose Kioss = Kamp = K,

we can rewrite the QEC matrix elements as

/ 28 (BDWE 1% 1K),
(L7)

My oy = (] TKED il)

where the plus and minus sign correspond to loss and
amplification, respectively, and |/) and |k) are Fock states.
Here, we define x (8) := e bKIBE (] Dﬁ |v), which can be
seen as the scaled characteristic function of the operator in
between. For AM := M — I; ® (Tr;M), we can define a
modified characteristic function as

Ax(B)

e 2K (4| Dy v) if v
e MR (Gl Dy ) — & X (€1 Dy 18)) ifp =
(L8)

and, for simplicity, the operator OM ={1/7rK £1))

[dBAY(B)D(VK £1p%). Then, we can express
(AM)un iy = (Il Op,y 1k). As a result, we have

a2
amz=3"3" (w("wE,Ek ) (L9)
wv Lk
=D (KO, {101k (L10)
w,y Lk
=YY (kO] 0, k) (L11)
Yk
= Tr0}, ,Ouy (L12)
w,v
1
=52 [ @paxer (L13)
W,V

Note that the final expression of || AM ||12F is independent of
whether the noise channel is loss or amplification. ]

The above lemma does not utilize any structure in the
code itself. However, it also does not directly imply results
on the error rate or achievable rate of the code. Past works
[80,81] have examined the connection between quantum
relative entropy, Bures metric, and the decoding error prob-
ability. While it is possible to show that ||[AM ||12v is a
necessary condition, it is unknown whether it is sufficient.
Given the almost identical structure of loss and amplifica-
tion, we conjecture that if a general code can achieve a rate
of R under pure loss channel, the same code can achieve
the same rate under amplification channel, provided that
Eq. (L3) holds. We note that connections between loss and
amplification channels have been explored in other con-
texts, such as degradability [19]. We leave the exploration
along this direction to future work.
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