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We analyze the impact of non-Markovian classical noise on single-qubit randomized benchmarking
experiments, in a manner that explicitly models the realization of each gate via realistic finite-duration
pulses. Our new framework exploits the random nature of each gate sequence to derive expressions for the
full survival probability decay curvewhich are nonperturbative in the noise strength. In the presence of non-
Markovian noise, our approach shows that the decay curve can exhibit a strong dependence on the gate
implementation method, with regimes of both exponential and power law decays. We discuss how these
effects can complicate the interpretation of a randomized benchmarking experiment, but also how to
leverage them to probe non-Markovianity.
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Introduction—Randomized benchmarking (RB) proto-
cols are a powerful tool for characterizing errors in quantum
processors. They rely on the application of random gate
sequences to robustly extract average properties of the noise
without having to perform full quantum process tomogra-
phy. For gate-independent Markovian error models, stan-
dard RB protocols predict an exponential decay of the
survival probability [1–5]. Under standard assumptions,
the measured decay rate can be directly used to extract the
average gate infidelity. Unfortunately, in many relevant
settings the dominant noise is non-Markovian (i.e., corre-
lated in time) [6–8]. While RB protocols could still be useful
in this context, it is not clear what they measure in the
presence of non-Markovian noise. RB protocols have been
used in many situations where the Markovian assumption is
not valid [9,10].
The above concerns have motivated many recent works

studying RB and non-Markovian noise [11]. With such
noise, it has been shown that the decay of the survival
probability can be nonexponential [12–14], can converge
more slowly to its mean [15,16] and can even be used to
learn the noise spectrum [17]. However, typical approaches
make approximations that can miss important physics. In
particular, the assumption of instantaneous gates can miss

the potentially rich interplay between finite-duration gates
and temporally correlated noise.
Here, we address these concerns by modeling single-

qubit RB in a physically motivated manner. We consider a
qubit that is driven by both finite-duration pulses (used to
implement the chosen sequence of random gates) as well
as classical non-Markovian, Gaussian noise [see, e.g.,
Fig. 1(b)]. As wewill show, this approach naturally captures
the effects of noise correlations between adjacent gates
which are present due to the finite-duration gate imple-
mentation. This effect would be hard to capture using other
approaches [see, e.g., Fig. 1(a)]. We develop a novel method
that builds on Refs. [18–20] to understand the average
dynamics of the qubit, averaged both over noise realizations

FIG. 1. (a) Common approach to model RB: each gate ĝi is
applied instantaneously, followed by a noisy map Λi. Errors can
be temporally correlated but accurately describing their depend-
ence on the drives implementing the gates is challenging.
(b) Schematic of our model: noise is modeled as a classical
stochastic process ηðtÞ, gates are implemented via finite-duration
pulses.
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and over gate sequences. By exploiting the randomness of
the control pulses, we are able to obtain expressions for the
full survival probability decay curve that are nonperturba-
tive in the noise strength. We show that the fully averaged
qubit dynamics is described by a time-dependent depola-
rizing channel, with the form of the time-dependent rate
encoding the complex interplay of non-Markovian noise
and the specific finite-time gate implementation.
We find that depending on noise parameters and gate

implementation, non-Markovian noise can yield RB sur-
vival probabilities that decay either exponentially or as a
power law. Perhaps not surprisingly, noise with a short
correlation time (e.g., comparable to the gate time) yields
exponential decay. More surprisingly, the corresponding
decay rate does not correspond to the average gate infidelity
and can vary by a factor of almost 2 by changing the gate
implementation. This raises questions about the interpre-
tation of RB decay curves, even in the seemingly simple
case where one obtains a purely exponential decay. Similar
questions were raised in Ref. [21] due to the gauge freedom
present in the definition of the average gate infidelity. In
contrast, for our problem we show that this difference is
instead linked to the non-Markovian nature of the noise.
While we apply our new technique to single-qubit RB, it
can be generalized to analyze other protocols such as two-
qubit RB and randomized compiling (RC) [22] (see [23]).
Model—We consider a standard single-qubit randomized

benchmarking experiment [1] in which each gate sequence
consists of Lþ 1 gates sampled uniformly from the Clifford
group. The qubit is subject to classical, Gaussian, stationary
noise ηðtÞ [autocorrelation function SðtÞ], which couples
(without loss of generality) to the qubit operator σ̂z. While
our approach applies to any noise spectrum, in the main text
we take as a paradigmatic example noise with an exponen-
tially decaying SðtÞ (i.e., an Ornstein-Uhlenbeck process),
with strength σ and correlation time τc. Using a bar to
denote noise averages:

Sðt − t0Þ≡ ηðtÞηðt0Þ ¼ σ2 expð−jt − t0j=τcÞ: ð1Þ

This form interpolates between Markovian and strongly
non-Markovian limits, and is also directly relevant to many
experiments (see e.g., [28]). More general noise spectra are
considered in Supplemental Material (SM) [23]. Each gate
in the RB sequence is implemented by a pulse of duration tg.
Working in a rotating frame at the qubit frequency, the
Hamiltonian for a single realization of the noise ηðtÞ and a
specific gate sequence β⃗ (an Lþ 1 length vector) is

H̃ηðt; β⃗Þ ¼ Ω⃗ðt; β⃗Þ · ⃗σ̂ þ ηðtÞσ̂z; ð2Þ

where Ω⃗ðt; β⃗Þ encodes the pulse envelope implementing the
sequence and ⃗σ̂ is the Pauli vector. Importantly, because the
noise is non-Markovian, the effect of the noise on the qubit

depends on Ω⃗ðt; β⃗Þ even though the control Hamiltonian is
independent of ηðtÞ. As the goal of this Letter is to
understand the global decay features of the survival prob-
ability, we neglect state preparation and measurement errors
(which ideally do not impact the decay rate). We also
assume that the zeroth gate of the sequence β0 is imple-
mented instantaneously. As shown in SM [23], this has a
negligible influence on our findings, but greatly simplifies
our analysis.
We work in an interaction picture with respect to the

noise-free Hamiltonian Ĥ0ðt; β⃗Þ ¼ Ω⃗ðt; β⃗Þ · ⃗σ̂, where the
dynamics is described by the stochastic Hamiltonian
Ĥηðt; β⃗Þ ¼ ηðtÞσ̂zðt; β⃗Þ with σ̂zðt; β⃗Þ ¼ Û†

0ðt; β⃗Þσ̂zÛ0ðt; β⃗Þ
and Û0ðt; β⃗Þ ¼ T exp

�
−i

R
t
0 dt

0Ĥ0ðt0; β⃗Þ
�
. This is a useful

frame as there is no noise-free dynamics, letting us isolate
the impact of noise. Qubit evolution here is Ǔηðt; β⃗Þρ̂≡
Ûηðt; β⃗Þρ̂Û†

ηðt; β⃗Þ where ρ̂ is the initial qubit density matrix

and Ûηðt; β⃗Þ ¼ T exp
�
−i

R
t
0 dt

0Ĥηðt; β⃗Þ
�
. The quantity of

interest in an RB experiment is the average survival
probability:

P0ðtÞ ¼ htr½ρ̂0ρ̂ηðt; β⃗Þ�iβ⃗; ρ̂ηðt; β⃗Þ≡ Ǔηðt; β⃗Þρ̂0; ð3Þ

where h·iβ⃗ ¼ ð1=24Lþ1ÞPβ⃗½·� is the average over the gate
sequences. We assume that the initial state ρ̂0 is uncorrelated
with the noise. Our task then reduces to computing the noise
and sequenced averaged evolution superoperator:

ǓavgðtÞ ¼ hǓηðt; β⃗Þiβ⃗: ð4Þ

This yields the survival probability via P0ðtÞ ¼
tr½ρ̂0ǓavgðtÞρ̂0�.
The most obvious next step is to compute the average

over the noise in Eq. (4). This is nontrivial: even though ηðtÞ
is Gaussian, the noncommuting structure of Eq. (2) gives
rise to an infinite set of cumulants. In some cases this
hierarchy can be truncated to yield useful descriptions [18],
but this is an approach that is perturbative in the noise
strength and fails for noise with long correlation times. We
instead follow a different route, and first average over the
random variable β⃗ (i.e., over different random gate sequen-
ces) for a fixed noise realization ηðtÞ. This yields an
alternate kind of cumulant expansion, which we truncate
to second order to get a nonperturbative approximation in
the noise strength. As we show in SM [23], this cumulant
approximation is similar to the one introduced in
Refs. [24,25], but is not restricted to noise with limited
temporal correlations. Instead, it is able to capture the
impact of temporal correlations between nonadjacent gates
to any order in the noise strength. It is motivated by the
decoupling properties of random gate sequences [26,29],

PHYSICAL REVIEW LETTERS 135, 070601 (2025)

070601-2



which generate an effective correlation-time of tg for the
dynamics, making higher cumulants vanish on that
timescale.
After averaging over gate sequences within this approxi-

mation, we obtain a propagator ǓηðtÞ that still depends on
the specific noise realization. Afterm full gates are applied,
it is given by

ǓηðmtgÞ ¼ Ǐ þ ΛηðmtgÞ
X
α

Ď½σ̂α�; ð5Þ

ΛηðmtgÞ ¼
1

4
−
1

4
exp

�
−4

Z
mtg

0

dt0Γηðt0Þ
�
; ð6Þ

where Ǐ is the identity superoperator and Ď is the Lindblad
dissipator: Ď½Ô�ρ̂ ¼ Ô ρ̂ Ô† − 1

2
ðÔ†Ô ρ̂þρ̂Ô†ÔÞ. This is a

depolarizing channel whose strength has a nontrivial
dependence on m as determined by the effective stochastic
rate ΓηðtÞ. This in turn is given by (see SM [23]):

Γηðntgþ τÞ¼ 1

3

Z
ntgþτ

ðn−1Þtg
dt0ηðntgþ τÞηðt0Þfðntgþ τ; t0Þ; ð7Þ

fðt1; t2Þ ¼ htr½σ̂zðt1; β⃗Þσ̂zðt2; β⃗Þ�iβ⃗; ð8Þ

where n∈Z and τ∈ ½0; tgÞ are defined by t ¼ τ þ ntg.
Equation (7) is only valid for n > 0; when n ¼ 0, the lower
bound of the integral becomes 0 [30]. The function fðt1; t2Þ
is the average overlap of the evolved noise operator at
different times and is the only quantity that depends on the
gate implementation. Note that for each noise realization,
the sequence-averaged evolution is a time-dependent depo-
larizing channel. Further, the instantaneous rate ΓηðtÞ
depends both on the behavior of the noise during the
“current” gate period, and during the previous gate, as
reflected by the integration bounds of Eq. (8). The noise at
even earlier times does not contribute directly to the
instantaneous stochastic rate (as in this case, the earlier
time and t are separated by one or more complete random
gates and hence a full twirl). However, longer-range
temporal correlations will ultimately contribute once we
perform an average over ηðtÞ.
While Eq. (5) still has to be averaged over the noise ηðtÞ,

this step is greatly simplified: we now just need to average a
single scalar quantity ΛηðtÞ. Since ΛηðtÞ is the exponential
of a squared Gaussian random variable ηðtÞ, its average
reduces to a functional determinant, which can be computed
using various methods (e.g., [31]). In the remainder of this
Letter, we present two approximate methods to gain analytic
insight. The first relies on a weak noise approximation and
is valid for small correlation times. The second, assumes
that the noise is constant on the timescale of tg, which is
valid for long correlation times. While one or the other of
these approximations is needed to get simple analytic
expressions, we show in SM [23] that at least one of them

holds for almost any correlation times, making them jointly
sufficient to describe the decay in nearly all regimes.
Before diving into these approximations, we can com-

pute the noise average exactly in two opposite limits [23]:
Markovian and quasistatic noise. In the first case, SðtÞ ¼
γδðtÞ and, as expected, the survival probability decays
exponentially:

PM
0 ðmtgÞ ¼

1

2
þ 1

2
exp

�
−
4

3
γmtg

�
: ð9Þ

In the second case, SðtÞ ¼ σ2 and the survival probability
decays like a power law:

Pqs
0 ðmtgÞ¼

1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

3
σ2t2g½mFcurrþðm−1ÞFprev�

q ; ð10Þ

where Fprev;curr are the integrals of fðt1; t2Þ corresponding
to the average overlap of the noise operator between times
belonging to the same gate or adjacent gates, respectively:

Fcurr ¼
1

t2g

Z
tg

0

dt1

Z
t1

0

dt2fðt1; t2Þ; ð11Þ

Fprev ¼
1

t2g

Z
2tg

tg

dt1

Z
tg

0

dt2fðt1; t2Þ: ð12Þ

These factors depend on how the gates are implemented,
and will be useful going forward.
Master equation description—To average Eq. (5) over

the noise, the simplest approximation is to perform a weak
noise expansion and derive a time-local master equation
[18]. This can be justified even in the long-time limit
provided that the noise has a small correlation time, such
that σ2τctg ≪ 1.
Making this approximation to second order in the noise,

the equation of motion for the density matrix averaged over

the noise and gate sequences ρ̂avgðtÞ ¼ hρ̂ηðt; β⃗Þiβ⃗ is

∂tρ̂
ð2Þ
avgðtÞ ¼ ΓηðtÞ

X
α∈ fx;y;zg

D½σ̂α�ρ̂avgðtÞ; ð13Þ

where ΓηðtÞ is the noise-averaged decay rate which is tg
periodic after the first full gate. We can then compute the
survival probability:

Pð2Þ
0 ðmtgÞ ¼

1

2
þ 1

2
expð−4ϵ0Þ exp½−4ϵðm − 1Þ�; ð14Þ

ϵ ¼
Z ðjþ1Þtg

jtg

dt0Γηðt0Þ for j > 0; ð15Þ

where Eq. (15) does not depend on j due to the periodicity
of ΓηðtÞ and where ϵ0 ¼

R tg
0 dt0Γηðt0Þ. We see that to second
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order in the noise strength, the survival probability decays
exponentially. While an exponential decay is reminiscent of
Markovian RB, we also see that the corresponding decay
rate depends both on the gate implementation via fðt1; t2Þ
and on the noise correlation function Sðt1 − t2Þ, an effect
that would be absent for truly Markovian noise.
To study the dependence on choice of gate implementa-

tion, we consider three possible strategies for constructing
pulses. The first, ZSX, uses finite duration X pulses
interleaved by instantaneous Z pulses. A given Clifford
gate is implemented as RZðϕþ πÞ ffiffiffiffi

X
p

RZðθ þ πÞ ffiffiffiffi
X

p
RZðλÞ

for appropriate ϕ; θ; λ. This implementation is common in
RB experiments, as all Clifford gates take the same time
(each

ffiffiffiffi
X

p
takes a time tg=2). The second, U3, corresponds

to the application of the constant pulse of duration tg that
applies the shortest rotation that implements the gate on the
Bloch sphere. The third, instant, corresponds to an instan-
taneous application of the gate followed by an idle time tg.
While this is unphysical, we include it as it is often used
when modeling RB experiments, see, e.g., [11–13,15,32].
Figure 2 plots survival probability decay rates ϵ predicted

by Eq. (15) as a function of noise correlation time τc. To
meaningfully compare the impact of varying τc, we also vary
σ with τc so that the variance γ0 ¼

R tg
0 dt1

R t1
0 dt2Sðt1 − t2Þ

of the random phase acquired during a time tg remains fixed.
As shown in SM [23], all the values of τc=tg shown on the x
axis of Fig. 2 are within the regime of validity of Eq. (14) for
values of γ0 ¼ 2.5 × 10−3. We see that ϵ varies by a factor of
almost 2 between the ZSX and U3 gate implementations
when τc ∼ 10tg. This dependence on choice of gate imple-
mentation can be interpreted as arising from the ability of
finite-duration gate pulses to perform a kind of dynamical
decoupling cancellation or enhancement of correlated noise
(as seen with ZSX and U3 implementations, respectively).
As such, the implementation dependence is absent in the

extreme Markovian limit. Note, however, that even for small
but nonzero correlation times (e.g., τc ≈ 0.1tg), the error rate
per gate is higher than in the trueMarkovian limit τc=tg → 0.
We see that even a small departure from the Markovian limit
can have an impact. Finally, the “instant” implementation
is independent of τc as there is no possible dynamical
decoupling between the pulses implementing the gates. The
decay factor is instead set solely by the fixed random
phase γ0.
It is natural to ask whether the RB decay rate ϵ that we

find is related to the average gate fidelity (AGF), defined as
F̄ ¼ R

dψhψ jǓavgðtgÞ½jψihψ j�jψi. This definition is equiv-
alent to the survival probability after one gate P0ðtgÞ,
meaning that F̄ ¼ ½expð−4ϵ0Þ þ 1�=2. Using standard RB
theory for Markovian noise [2], the estimated AGF

extracted from the decay curve ˇ̄F would be determined

from ˇ̄F ¼ ½expð−4ϵÞ þ 1�=2. As shown in Fig. 2, ϵ (plain
lines) and ϵ0 (dotted lines) significantly differ from each
other meaning that the AGF does not accurately predict the
RB decay curve, even if it is exponential. Since F̄ ¼ P0ðtgÞ
is a physical quantity, the difference between ˇ̄F and F̄ is not
due to our choice of gauge for the AGF (as was studied in
Ref. [21]). Instead, it reflects the fact that with non-
Markovian noise, errors at time t will depend on what
happened during earlier gates, something that cannot be
captured by characterizing gates in isolation.
Coarse grained noise approximation—For noise with

longer correlation times, the straightforward perturbative
approach to Eq. (5) is no longer valid, as terms that are
higher order in the noise cannot be neglected. Instead, we
make use of the long correlation time τc ≫ tg and coarse
grain the noise with negligible induced error, i.e., replace
ηðtÞ in Eq. (7) by a set of stochastic random variables

θi=tg ≡ ð1=tgÞ
R ðiþ1Þtg
itg

dt0ηðt0Þ. This replacement reduces

the noise averaging to the evaluation of a finite matrix
determinant. Using this approximation (see SM [23] for
details) we can express the survival probability after the
application of m gates in terms of two m ×m matrices: the
correlation matrix of the coarse-grained noise Σ and a
tridiagonal matrix F which encodes the effect of the finite-
time gate implementation. Letting 1 denote the identity
matrix, we have

P0ðmtgÞ ¼
1

2
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ 8

3
ΣFÞ

q ; ð16Þ

Σi;j ¼ θiθj; ð17Þ

Fi;j ¼ Fcurrδi;j þ
1

2
Fprevðδi;jþ1 þ δi;j−1Þ: ð18Þ

Note that in the simple limit where gates are implemented
instantaneously, Eq. (16) reproduces the expression

FIG. 2. Survival probability decay factors ϵ=ϵ0 from Eq. (15)
for three gate implementations with ϵ0 ¼ 8γ0=3 (the limit
τc=tg → 0 of ϵ). Solid lines show the decay factor that would
be observed in a RB experiment. Dotted lines show the decay
factor ϵ0 predicted by the AGF F̄. The difference arises from noise
correlations between adjacent gates. Inset: survival probability
decay from RB (solid) vs AGF prediction (dotted) with τc ¼
0.5tg and γ0 ¼ 2.5 × 10−3. All shown τc=tg values fall within the
regime of validity of Eq. (14).
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derived in Ref. [12]. We can in fact see Eq. (16) as a
generalization of Ref. [12] as it also lets us understand the
impact different choices of gate implementation. Indeed,
because the matrix F is Toeplitz (except for the first time
step), it can be seen as a scalar renormalizing the strength
of the correlations in Σ. In SM [23], we show that for noise
with long correlation times, an additional coarse-grained
approximation makes this statement rigorous. The renorm-
alization factor is then simply given by F ¼ Fcurr þ Fprev.
In Fig. 3 we used Eqs. (16)–(18) to study the survival

probability for noise with long, but finite correlation times.
We find that as a function of τc, the decay curves interpolate
between exponential [Eq. (9)] and power law [Eq. (10)].
Furthermore as a function of the sequence length m, the
curve initially decays as a power law, before transitioning to
exponential decay with rate Γ∞ for large m [33]. We also
see in the inset that Γ∞ decreases with τc. This is expected
since here τc ≫ tg, the noise can remain correlated among
many gates leading to randomized dynamical decoupling
effects [29]. This is in contrast with changing the gate
implementation, which introduces noise averaging on the
scale of tg and which could either increase or decrease the
decay rate.
We can therefore separate the roles of gate implementa-

tion and noise correlation function. The gate implementa-
tion changes the effective noise strength by introducing
averaging effects on the timescale of tg, while the noise
correlation function affects the functional form of the decay
by allowing averaging effects on the scale of multiple
gate times.
Figure 3 also reveals that for correlation times around

10tg, the survival probability decay appears nearly expo-
nential, making it hard to resolve the correlation time from

the decay curve alone. Nevertheless, an RB experiment
involving different gate implementations could be used as a
flag for non-Markovianity.
Conclusion—Using a generalized cumulant approxima-

tion that goes beyond simple perturbative approaches, we
studied the interplay between finite-duration gates and non-
Markovian classical noise in RB experiments. We find that
the decay remains exponential in the presence of noise with
correlation times on the order of tg, but with a decay rate
that is highly dependent on the physical gate implementa-
tion and that does not correspond to the average gate
infidelity. This complicates the interpretation of RB experi-
ments under non-Markovian noise. Our work enables
further research avenues: our generalized cumulant expan-
sion applies to other protocols involving random gate
sequences (e.g., RC and cycle benchmarking [22,26,34]).
In [23] we demonstrate such calculations for both RC and
two-qubit RB. Our results also suggest an approach for
optimizing gate implementations when non-Markovian
noise dominates (see [23]).
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