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Rapid progress in quantum technology has transformed quantum computing and quantum informa-
tion science from theoretical possibilities into tangible engineering challenges. Breakthroughs in quantum
algorithms, quantum simulations, and quantum error correction are bringing useful quantum computation
closer to fruition. These remarkable achievements have been facilitated by advances in quantum char-
acterization, verification, and validation (QCVV). QCVV methods and protocols enable scientists and
engineers to scrutinize, understand, and enhance the performance of quantum information-processing
devices. In this tutorial, we review the fundamental principles underpinning QCVV, and introduce a
diverse array of QCVV tools used by quantum researchers. We define and explain QCVV’s core models
and concepts—quantum states, measurements, and processes—and illustrate how these building blocks
are leveraged to examine a target system or operation. We survey and introduce protocols ranging from
simple qubit characterization to advanced benchmarking methods. Along the way, we provide illustrated
examples and detailed descriptions of the protocols, highlight the advantages and disadvantages of each,
and discuss their potential scalability to future large-scale quantum computers. This tutorial serves as a
guidebook for researchers unfamiliar with the benchmarking and characterization of quantum computers,
and also as a detailed reference for experienced practitioners.
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I. INTRODUCTION

Quantum computation has grown from a mere theoreti-
cal proposition [1] to a tangible reality, heralding a new era
of science in quantum applications across diverse domains,
with recent breakthroughs in quantum measurement and
control [2–5], fundamental science [6–11], computer sci-
ence [12–16], quantum chemistry [17], materials science
[18], and many others. If quantum computers of sufficient
size and precision can be built, they promise to deliver
computational advantages in a diverse range of applica-
tions [1,19–26]. Much work remains to be done before
these promises become a reality [27], but the progress
of quantum processors over the past three decades sug-
gests that success will eventually be achievable. That
progress—both past, and future—is enabled and facili-
tated by the growing toolbox of quantum characterization,
verification, and validation (QCVV).

QCVV means the characterization and benchmarking of
quantum computers and their constituent components. It
encompasses a large set of methods, protocols, and con-
cepts that have been developed over the past 30 years.
These techniques probe the in situ behavior of qubits,
quantum logic operations, and integrated quantum pro-
cessors. Having done so, they report detailed predictive
models of a device’s behavior (characterization), simple
figures of merit (benchmarking), or hybrids of the two.
The majority of the QCVV literature focuses on gate-based
quantum computers (rather than analog simulators, quan-
tum annealers, or other paradigms), and this tutorial will
too. QCVV of gate-based quantum computers is primar-
ily concerned with characterizing and/or benchmarking
the quantum states, quantum gates, and quantum measure-
ments that are implemented by (multi)qubit devices. It is
possible and useful to distinguish characterization proto-
cols from benchmarking protocols. But, in practice these
two disciplines are complementary and sometimes over-
lap (e.g., randomized benchmarking techniques can be
deployed for either purpose), and they rely and build upon
the same foundational concepts.

Put simply, the goal of QCVV is to learn about as-
built quantum computing devices. This usually means
using data to estimate properties of mathematical mod-
els for those devices, with the goal of predicting (either
qualitatively or quantitatively) their future behavior. We
conceptualize QCVV methods as tools in a large toolbox.
Many of those tools are protocols that can be deployed
by an experimentalist or engineer to obtain specific infor-
mation about the behavior of a quantum computational
device (e.g., a qubit, logic operation, or integrated proces-
sor) [28]. In this tutorial, we introduce the most common
black-box models used to describe and predict the behavior
of quantum computers. Using those models, we introduce
the most commonly encountered failure modes of qubits
and quantum logic gates, explain how they affect quantum

computations, and survey the most common metrics used
to quantify their impact. Then, in the bulk of the tuto-
rial, we survey the most common QCVV methods and
protocols used to learn models for quantum computer per-
formance. In so doing, we discuss the advantages and dis-
advantages of each method, the trade-offs between them,
their scalability, and their relative utility in predicting the
behavior of quantum computations.

A. Uses of QCVV

Most QCVV protocols fall into one of four categories:

(1) physical device characterization,
(2) tomographic characterization,
(3) randomized benchmarks, and
(4) holistic (application-centric) benchmarking.

Qubits and quantum computers are (as of 2025) still mostly
physics experiments. When a qubit or multiqubit device is
fabricated, it cannot be treated or operated as a quantum
computer until its physical properties—e.g., the resonant
frequencies and coherence times of qubits, and the nature
of couplings between them—have been determined, cal-
ibrated, and optimized. This is the domain of physical
device characterization (see Sec. VI).

Once a quantum computational device has been cal-
ibrated, it becomes possible to treat (and model) it as
a quantum computer rather than a physics experiment.
Tomographic characterization is now possible. Tomo-
graphic QCVV protocols (see Sec. VII) aim to measure
and reconstruct (or estimate) the state of one or more
qubits, or the operation (e.g., logic gate or measurement)
acting on them. For example, quantum state tomography
(Sec. VII A) estimates the density matrix describing an
initialization operation, while quantum process tomogra-
phy (Sec. VII B) estimates the superoperator describing
a reversible logic gate. Tomography-based methods are
widely used to characterize individual components, but are
generally not scalable to large quantum systems.

Randomized benchmarks (see Sec. VIII) are intended
to build relatively qualitative assessments of quantum
device performance. Randomized benchmarks probe the
performance of an entire set of quantum logic gates and
summarize it with O(1) numbers, without attempting to
characterize or model each gate in detail. They report
those gates’ average performance over many possible input
states and many possible contexts, thus providing the end
user with some intuition (but few guarantees) about how
well the gate will perform in different circuits. Randomized
benchmarks are often used to probe just one or two qubits,
but some are scalable and can be used to assess the overall
performance of an entire processor. In all cases, they pro-
vide significantly less detailed and predictive information
than tomographic protocols.
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Holistic benchmarks (see Sec. XI) are intended to
measure the performance of a quantum computer on “rele-
vant” tasks. Like scalable randomized benchmarks, holis-
tic benchmarks ignore the underlying details of individual
qubits and gates. Some holistic benchmarks are designed
to capture the performance of a quantum computer in a
single number, while others seek to predict how well a
quantum computer would perform at a range of differ-
ent circuit depths and widths. Most holistic benchmarks
are designed (unlike randomized benchmarks) to mea-
sure the performance of a specific application or class of
algorithms.

All of these methods are useful tools in the QCVV
toolbox. Our goal in this tutorial—in addition to teach-
ing the foundational concepts and methods that underlie
all QCVV protocols—is to enable readers to decide which
QCVV method(s) to use. They are very different tools,
and the best tool for a given job depends on the user’s
goals and needs. Each class of protocols (1) makes different
assumptions, (2) seeks to gain a different amount or kind of
information about the quantum device being probed, (3) is
more or less scalable to large devices, and (4) is more or
less amenable to rigorous certification [29,30]. In this tuto-
rial, we aim to teach readers about these trade-offs, and to
enable scientists and engineers to make informed decisions
about which methods to use in each situation.

B. Structure of this tutorial

This tutorial is organized as follows. We introduce fun-
damental models of quantum devices in Sec. II, survey
common error types in Sec. III, and introduce the most
commonly used error metrics in Sec. IV. Once these fun-
damentals have been introduced, we provide a guide to
designing QCVV experiments in Sec. V. A condensed
description of preliminary qubit characterization is pro-
vided in Sec. VI. Then, we discuss various tomographic
QCVV techniques (mostly used to validate and debug
small subsystems) in Sec. VII.

We then introduce randomized benchmarks and their
theory in Sec. VIII. We conclude this section with a
detailed comparison of different benchmarking protocols.
In Sec. IX, we discuss “partial tomography” methods
that interpolate between randomized benchmarks and full
tomographic characterization. In Sec. X, we survey pro-
tocols that measure the fidelity of entire quantum cir-
cuits. Finally, in Sec. XI, we introduce and survey holistic
benchmarks.

II. MODELS OF IMPERFECT QUANTUM
COMPUTERS

Real-world quantum computers are complex integrated
devices, and the purpose of QCVV experiments is to help
understand and predict their behavior. Mathematical mod-
els that capture the most salient and important features

of a real-world device play an important role in this pro-
cess. They are essential for predicting future behavior
(e.g., what will happen when a novel quantum program is
run on the device), and highly useful for classifying and
understanding the failure modes of quantum computers.

Quantum computers have many subsystems, including
control hardware (lasers, arbitrary waveform generators,
etc.), environmental management (vacuum chambers,
cryostats, shielding, etc.), and more. But at the heart of any
gate-based quantum computer is a quantum data register
(e.g., an array of qubits) that serves as a physical instantia-
tion of quantum logic and quantum algorithms. Ultimately,
the quantum computer’s performance can be characterized
entirely in terms of this register and the accuracy with
which it carries out the quantum logic operations specified
by a user. Characterizing and/or benchmarking a quantum
computer almost always means probing the behavior of
its quantum data register, and other subsystems’ behavior
is only relevant inasmuch as it impacts the quantum data
register.

Thus, the models that underlie characterization and
benchmarking protocols must (at a minimum) describe
the state of quantum data registers, the actions of quan-
tum logic operations, and the results of measurements.
When they function perfectly, relatively simple models
suffice. But real quantum registers experience errors that
cannot be described by the simplest models. Modeling
these errors demands greater accuracy and expressiveness,
which requires more complex models. The most com-
monly used models for qubits and quantum registers fall
into three broad categories:

(a) The closed quantum system model (Sec. II A). A
quantum system that does not interact with its envi-
ronment evolves reversibly, and is called closed.
When modeling a closed system, its quantum state
is represented by a ray or vector in a Hilbert space, a
measurement is represented by a projection-valued
measure (PVM), and an operation on the system
(e.g., its dynamical evolution) is represented by a
unitary operator.

(b) The Markovian open quantum system model
(Sec. II B). Real-world quantum systems experience
irreversible noise when they interact with their envi-
ronments, and are called open. We make the (artifi-
cial but useful) assumption that the environment’s
effects are Markovian. In this framework, an open
quantum system’s state is represented by a density
matrix on its Hilbert space, a terminating measure-
ment is represented by a positive operator-valued
measure (POVM), and an operation is represented
by a completely positive trace-preserving (CPTP)
map.

(c) Non-Markovian open quantum system models.
The category of non-Markovian errors includes
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an enormous number of effects, including time-
correlated noise and coherent coupling to a per-
sistent environment (see Sec. III G for a brief
overview). Accurate modeling of quantum systems
that experience significant non-Markovian errors
typically requires the use of bespoke models that are
out of scope for this tutorial.

Because QCVV is primarily concerned with noise and
errors, this tutorial uses the Markovian open system model
extensively. Representing quantum states as density matri-
ces is straightforward, but the standard models of opera-
tions and measurements can get complicated. To lay the
necessary groundwork for explaining QCVV metrics and
protocols later in this tutorial, we explore three specific
topics in detail:

(a) Representations of quantum operations (Sec. II C).
Quantum operations (e.g., gates) are represented by
CPTP linear superoperators that map density matri-
ces to density matrices. Several useful and distinct
representations of these CPTP maps are used in
QCVV.

(b) Models of quantum measurements (Sec. II D).
Quantum measurements that occur at the end of
quantum circuits are called terminating measure-
ments and can be modeled by POVMs. To model the
internal dynamics of a measurement, or mid-circuit
measurements that are followed by more gates, more
sophisticated models of measurement are needed.
Mid-circuit measurements are represented by quan-
tum instruments, and if a measurement is weak
and perturbs the quantum system minimally, it is
possible to continuously track the trajectory of the
quantum system in time.

(c) Gate set models of quantum computers (Sec. II E).
The entire interface of a gate-based quantum com-
puter can be described by a gate set that combines
models of (i) state preparation, (ii) measurement,
and (iii) reversible logic operations. But gate set
models are more (or less) than the sum of their parts,
because they have gauge symmetries that create
complications for QCVV.

A. The closed quantum system model

A quantum register is called closed if it does not expe-
rience noise or interact with any outside systems (i.e.,
its environment). This is an artificial and oversimplified
paradigm, but it is simple and elegant, and it is the basis
for every introductory quantum mechanics course. Per-
haps more importantly, it is the foundation upon which
the more complicated and flexible “open quantum sys-
tem” model is built. We therefore begin by laying out this
foundational model, emphasizing the structure (mutually

consistent mathematical models for quantum states, mea-
surements, and operations) that will be mirrored in the
theory of open quantum systems.

1. Quantum state vectors and Hilbert spaces

We can represent the state of a closed quantum register
by a state vector ψ in the d-dimensional complex vector
space Cd, for some integer d > 0. This space is denoted
H and called the register’s Hilbert space [31], and d is the
register’s Hilbert-space dimension.

If N quantum systems with Hilbert-space dimensions
d1 . . . dN are considered together as a single register, the
combined system’s state is represented by a vector in the
tensor product space Cd1 ⊗ Cd2 ⊗ . . .⊗ CdN , and so its
Hilbert-space dimension is

∏N
i=1 di. Most quantum regis-

ters are composed of n qubits. A qubit is a quantum system
with d = 2, so an n-qubit register has d = 2n. In real-
world quantum computers, each qubit is encoded into a
physical system (whose Hilbert-space dimension is � 2,
e.g., an atom) by selecting two quantum states, labeling
them “0” and “1,” and carefully confining the physical
system’s quantum state to the two-dimensional subspace
that they span. This is often referred to as a two-level sys-
tem approximation. Quantum registers can also be built
from qudits with Hilbert space dimension d > 2 (e.g., a
qutrit has d = 3, a ququart has d = 4, etc.), but this is less
common.

Following Dirac’s notation, we use kets (e.g., |ψ〉) to
denote state vectors. If we specify any orthonormal basis
{|0〉 , |1〉 , . . . , |d − 1〉} for Cd, then any state |ψ〉 can be
written uniquely as a linear combination of basis vectors,
whose coefficients form a column vector:

|ψ〉 = c0 |0〉 + c1 |1〉 + · · · + cd−1 |d − 1〉 .=

⎛
⎜⎜⎝

c0
c1
...

cd−1

⎞
⎟⎟⎠ .

(1)

We use the .= symbol, following Sakurai (Ref. [32], Eq.
1.73), to indicate “is concretely represented by.”

In Dirac’s notation, the conjugate transpose of |ψ〉 is a
bra 〈ψ |, whose coefficients form a row vector,

〈ψ | = c∗0 〈0| + c∗1 〈1| + · · · + c∗d−1 〈d − 1| ,
.= (c∗0 c∗1 · · · c∗d−1

)
, (2)

and the inner product between two state vectors |ψ〉 and
|φ〉 is denoted 〈ψ |φ〉. The inner product of |ψ〉 with itself
defines its norm, and quantum state vectors are normal-
ized:

〈ψ |ψ〉 =
d−1∑
i=0

c∗i ci = 1. (3)
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2. Quantum measurements and projection-valued
measures

To observe and learn about a quantum system, we per-
form a measurement on it. Many different measurements
can be performed on a given system. Measuring yields a
particular outcome, drawn from a set of d possible out-
comes for that measurement. Which outcome occurs is
(usually) random, and governed by a probability distribu-
tion over the possible outcomes, {p(i) : i = 0 . . . d − 1},
which is determined by the system’s quantum state. The
entire purpose of the quantum state is to describe and deter-
mine the probabilities of various measurement outcomes,
and it is sometimes said that quantum states are linear
functionals on observables.

Each outcome of a measurement on a closed quantum
system is represented by a bra [33] or row vector 〈λ|. If
the measured system is described by state |ψ〉, then the
probability of an outcome labeled “i” represented by 〈λi|
is given by Born’s rule:

p(i|ψ) = | 〈λi|ψ〉 |2 . (4)

A measurement is represented by a set of bras that form an
orthogonal basis, {〈λi|}d−1

i=0 = {〈λ0| , 〈λ1| , . . . , 〈λd−1|}. The
corresponding probabilities, p(i|ψ), are all non-negative
and add up to 1 because |ψ〉 is normalized, and thus define
a valid probability distribution.

It is clear from Eq. (4) that the state vectors |ψ〉 and
eiφ |ψ〉 yield exactly the same probabilities for every mea-
surement. They are, therefore, absolutely indistinguishable
by any means, and are considered to define precisely the
same state. Here, eiφ is called a global phase, and repre-
sents a gauge freedom [34] of this model. However, we
can rewrite Born’s rule in a way that is useful, suggestive,
and eliminates the global phase:

p(i|ψ) = 〈ψ |λi〉〈λi|ψ〉 , (5)

= Tr[|λi〉〈λi| |ψ〉〈ψ |] . (6)

In this expression, both the state and the measurement
outcome are represented as projectors (i.e., projection
operators) rather than vectors. The global phase freedom
vanishes, because |ψ〉〈ψ | is invariant under |ψ〉 → eiφ |ψ〉,
and we have an expression that is linear in both |ψ〉〈ψ |
and |λi〉〈λi|. This linearity is extremely useful, and this
form of Born’s rule motivates the way that both states and
measurements are represented for open (noisy) quantum
systems.

If we represent the outcomes of a measurement by pro-
jectors |λi〉〈λi|, then the measurement itself is represented
by a set of mutually orthogonal projectors

{�0,�1, . . . ,�d−1}
≡ {|λ0〉〈λ0| , |λ1〉〈λ1| , . . . , |λd−1〉〈λd−1|} (7)

that satisfy completeness and mutual orthogonality condi-
tions:

∑
i

�i = I , (8)

�i�j = δij�i , (9)

where δij is the Kronecker delta. This set satisfies the math-
ematical definition of a measure (over the set of possible
measurement outcomes), and is called a projection-valued
measure (PVM) [35].

In this model, measurements are assumed to be repeat-
able. Performing a measurement on a system does not
destroy it—the system still has a state afterward, and can
be measured again—but if the same measurement is per-
formed again, the same outcome will be observed. This
requires and implies that if a quantum system is mea-
sured and the outcome corresponding to 〈λi| (or |λi〉〈λi|)
is observed, then its postmeasurement state must be |λi〉
(or |λi〉〈λi|):

|ψ〉 	→ |ψ ′〉 = |λi〉 . (10)

Observable properties of a system—e.g., the number of
electrons in a quantum dot, or an atom’s angular momen-
tum along a particular axis—are represented in this theory
by Hermitian operators (acting on the system’s Hilbert
space) called observables. Observables can be measured.
Measuring an observable O means performing the PVM
whose elements are the projectors onto O’s eigenvectors,
and indexed by the corresponding eigenvalues of O. So if

O =
∑

i

oi |λi〉〈λi| , (11)

then measuring O on a system in state |ψ〉 yields value oi
with probability p(i) = | 〈ψ |λi〉 |2. The expectation value
of O is thus

〈O〉 =
∑

i

p(i)oi = 〈ψ |O |ψ〉 . (12)

3. Qubit state vectors

A qubit is a physical quantum system whose state vec-
tor |ψ〉 is restricted to a two-dimensional subspace C2 of
its Hilbert space. Its state space is the span of two orthog-
onal computational basis states, denoted |0〉 and |1〉. They
are usually eigenstates of the system’s Hamiltonian, and
may correspond to an atom’s ground and excited states,
a photon’s horizontal and vertical polarization states, an
electron’s spin-up and spin-down states, or many other
possibilities. Regardless of the physical origin, quantum
computation is performed by encoding, manipulating, and
measuring these states and/or superpositions of them.
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The states {|0〉 , |1〉} form a basis for H, so an arbitrary
qubit state can be written as a linear combination of them
with complex coefficients α and β

|ψ〉 = α |0〉 + β |1〉 .=
(
α

β

)
, (13)

where the computational basis states themselves are repre-
sented by unit column vectors,

|0〉 .=
(

1
0

)
, |1〉 .=

(
0
1

)
. (14)

Because states must be normalized, 〈ψ |ψ〉 = |α|2 +
|β|2 = 1.

Qubit states can be represented as linear combinations
of any set of orthonormal basis vectors. Among the most
commonly encountered bases are the eigenvectors of the
ubiquitous Pauli operators. The Pauli operators are repre-
sented in the computational basis by 2 × 2 matrices:

I
.=
(

1 0
0 1

)
, (15)

σx
.=
(

0 1
1 0

)
, (16)

σy
.=
(

0 −i
i 0

)
, (17)

σz
.=
(

1 0
0 −1

)
. (18)

It is common to also use the notation {I , X , Y, Z} to denote
the Pauli operators. The eigenbasis of the σz operator is
the computational basis {|0〉 , |1〉}. The eigenvectors of the
σx operator, denoted {|+〉 , |−〉}, can be written as linear
combinations of |0〉 and |1〉 with real coefficients of equal
magnitude α = β = 1√

2
:

|+〉=|0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

. (19)

Similarly, we can also write |0〉 and |1〉 as linear combina-
tions of |+〉 and |−〉:

|0〉 = |+〉+ |−〉√
2

, |1〉 = |+〉− |−〉√
2

. (20)

Thus, an arbitrary state |ψ〉 can be expressed in the
{|+〉 , |−〉} basis as

|ψ〉 = α |0〉 + β |1〉 , (21)

= α
|+〉+ |−〉√

2
+ β |+〉− |−〉√

2
, (22)

= α + β√
2

|+〉+α − β√
2

|−〉 . (23)

This is the same state as Eq. (13), just written using
different basis states.

Since two vectors that differ only by an overall phase
describe the same quantum state, we can choose α to be
real and, without loss of generality, define α ≡ cos(θ/2)
and β ≡ eiφ sin(θ/2) for some θ ∈ [0,π ] and φ ∈ [0, 2π).
Now, an arbitrary state vector |ψ〉 is written as

|ψ〉 = cos
(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 . (24)

If we compute the expectation values of the three non-
identity Pauli operators {σx, σy , σz} for this state, we find
that

〈σx〉 = sin(θ) cosφ , (25)

〈σy〉 = sin(θ) sinφ , (26)

〈σz〉 = cos(θ) . (27)

This parameterization of the state vector |ψ〉 associates
each qubit state with a unique point on the surface of a unit
sphere in R3, whose coordinates are rψ = 〈σx〉 , 〈σy〉 , 〈σz〉.
This is known as the Bloch sphere, and the angles θ and φ
are spherical coordinates for it [see Fig. 1(a)]. The Bloch
sphere provides an intuitive visual representation of quan-
tum states and the action of quantum operations on those
states, because unitary dynamical evolution (see below)
corresponds to rigid rotations of the Bloch sphere. Mea-
suring a qubit whose state is |ψ〉 in the computational
basis will yield a 1-bit result that is “0” with probability
|α|2 = cos2(θ/2) = (1 + 〈σz〉)/2 and “1” with probability
|β|2 = sin2(θ/2) = (1 − 〈σz〉)/2.

4. Dynamical evolution of quantum states

The most important parts of a quantum computation are
the dynamical operations—e.g., logic gates—performed
on the quantum register after it is initialized (in some state)
and before it is read out (by measuring it). A quantum
operation is a controlled dynamical transformation or evo-
lution of the register’s state. Every dynamical evolution of
a closed system’s state |ψ〉 is represented by some unitary
linear operator U:

U : |ψ〉 	→ |ψ ′〉 = U |ψ〉 . (28)

This transformation preserves the state’s norm, 〈ψ |ψ〉 =
〈ψ ′|ψ ′〉 = 1, and it is reversible because any unitary U has
a unitary inverse U† = U−1.

We can choose to model a quantum register like a com-
puter, with a discrete clock cycle. In this paradigm, time
takes integer values. In each clock cycle, as time advances
from t − 1 to t, the register’s state is transformed by some
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(a) (b) (c)

Bloch Sphere Pure state Mixed state

FIG. 1. Bloch ball representation of qubit states. Single-qubit quantum states, usually represented by state vectors |ψ〉 or density
matrices ρ, can also be usefully represented by three-dimensional real vectors called Bloch vectors r. Collectively, the Bloch vectors
for all qubit states form the Bloch ball. Its surface, the Bloch sphere, contains the Bloch vectors for all pure qubit states. (a) The
computational |0〉 and |1〉 states are represented by Bloch vectors at the north and south poles, respectively. Often, these correspond
to a system’s lowest and second-lowest energy eigenstates. The |+〉 and |−〉 states, uniform superpositions of |0〉 and |1〉 with real
relative phases, are represented by Bloch vectors located along the x axis. The |i+〉 and |i−〉 states, uniform superpositions of |0〉 and
|1〉 with imaginary relative phases, are represented by Bloch vectors located along the y axis. Any pure state can be parameterized as
|ψ〉 = cos

(
θ
2

) |0〉 + eiφ sin
(
θ
2

) |1〉 (blue), where θ and φ are the polar and azimuthal angles (respectively) of its Bloch vector. (b) Every
pure state’s Bloch vector has length |r| = 1. (c) The length of the Bloch vector representing a density matrix ρ is |r| =

√
2Trρ2 − 1,

so Bloch vectors for mixed states have length |r| < 1. In (a)–(c), the blue dot is the projector of the end of the vector onto the surface
of the Bloch sphere.

unitary Ut. If we denote the register’s state at time t by |ψt〉,
then

|ψ1〉 = U1 |ψ0〉 , (29)

|ψ2〉 = U2 |ψ1〉 = U2U1 |ψ0〉 , (30)

and so on. Different gates (or circuit layers of parallel gates
on distinct parts of the register) will be represented by
different unitaries U.

To go deeper and describe a register’s detailed dynam-
ics between clock ticks, we can use a continuous-time
paradigm in which time t is real-valued. The register’s state
obeys a differential equation called the time-dependent
Schrödinger equation,

i�
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 , (31)

where H(t) is a Hermitian operator called the Hamilto-
nian of the register. It is said to generate the register’s
dynamical evolution in time, which is

|ψ(t)〉 = U(t) |ψ(0)〉 (32)

for some time-dependent U(t) that solves Eq. (31). In the
special but useful case where H(t) = H is independent of
time, the solution is

U(t) = e−iHt/� . (33)

For arbitrary time-dependent H(t), closed-form solutions
to the Schrödinger equation do not generally exist, but

many useful approximations and numerical techniques can
be used.

B. The Markovian open quantum system model

We assume that the state of a closed quantum system
is known as precisely as it can be. This maximal knowl-
edge is represented by a vector |ψ〉 in Hilbert space. But to
model open systems, we need an efficient way to describe
states of partial knowledge—e.g., “The system is described
by |ψ1〉 with probability p1, and by |ψ2〉 with probability
p2.” This scenario is not the same as (or consistent with) a
superposition state of the form α |ψ1〉 + β |ψ2〉. Instead, it
means that in fact the system is either described by |ψ1〉 or
it is described by |ψ2〉, but we are not sure which is true.
In such a scenario, we call our description of the system a
mixed state, to distinguish it from scenarios consistent with
a single unique |ψ〉, which we call a pure state.

Mixed states are typically described by an object called a
density matrix. This new mathematical model for quantum
states is richer than the vector state model used to describe
pure states of closed systems. It can represent additional
forms of uncertainty about the system that state vectors
cannot. The theory of open quantum system dynamics is
built upon density matrices, describing their evolution over
time as well as the results of measurements on them.

The density matrix representation of mixed states is
nicely motivated by writing the probability of an event i
represented by �i [Born’s rule, Eq. (6)] as

p(i|ψ) = Tr [�i |ψ〉〈ψ |] . (34)
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It follows that if the system is described by |ψj 〉 with
probability pj , then the probability of event i is

p(i) =
∑

j

pj p
(
i|ψj
)

, (35)

=
∑

j

pj Tr[�i |ψj 〉〈ψj |] , (36)

= Tr
[
�i

(∑
j

pj |ψj 〉〈ψj |
)]

. (37)

So, if we represent a pure state by the projector |ψ〉〈ψ |,
then we can represent the mixed state corresponding to
“|ψj 〉 with probability pj ” by a probability-weighted linear
combination of these projectors,

ρ =
∑

j

pj |ψj 〉〈ψj | , (38)

so that any measurement probability is given by

p(i|ρ) = Tr[�iρ] . (39)

ρ is called a density matrix (a.k.a. density operator). It is
a complete description of the mixed state! If two different
probability distributions over pure states |ψj 〉 have iden-
tical averages ρ =∑j pj |ψj 〉〈ψj |, then those scenarios
predict precisely the same probabilities for every possi-
ble measurement on the system, and are in fact the same
mixed state. Therefore, we always represent mixed states
(of open systems) by density matrices. They enable us to
model ignorance and uncertainty above and beyond the
minimum amount mandated by quantum theory, and to
model how noisy operations on a system create or change
that “classical” uncertainty.

1. Density matrix formalism

A density matrix ρ is a linear operator that represents
the state of a physical quantum system and can be used
to compute probabilities for measurement outcomes via
Eq. (39):

p(i|ρ) = Tr[�iρ] .

If a system can be described by the pure state |ψ〉, then its
density matrix is the projector

ρ = |ψ〉〈ψ | . (40)

Density matrices can describe at least two kinds of uncer-
tain knowledge that state vectors cannot. The first is repre-
sented by a probability distribution over pure states, a.k.a.

an ensemble, in which the system’s state is |ψj 〉 with
probability pj [Eq. (38)]:

ρ =
∑

j

pj |ψj 〉〈ψj | .

The second occurs when a system (S) is entangled with
a second “reference” system (R) so that they are jointly
described by a pure state |�〉S,R that is not equal to any ten-
sor product |ψ〉S ⊗ |φ〉R. In this scenario, if a measurement
is performed on the principal system S, then the probability
of an outcome represented by �i is

p(i|�) = Tr[(�i ⊗ IR) |�〉〈�|] . (41)

By writing IR =∑j |j 〉〈j |R, we can show that this prob-
ability does not depend on all of |�〉, but is determined
entirely by S’s reduced density matrix, ρS. Specifically,

p(i|�) = Tr[�iρS] , (42)

where ρS is defined by a partial trace over R,

ρS = TrR[|�〉〈�|] =
∑

j

(
IS ⊗ 〈j |R

) |�〉〈�| (IS ⊗ |j 〉R
)

.

(43)

So, a density matrix can predict measurement probabilities
(and thus faithfully represent a system’s quantum state)
both when that system is described by a distribution over
pure states, and when it is known to be entangled with
another system. These are both mixed states.

Every density matrix must satisfy two key properties:

(1) normalization: Tr(ρ) = 1, and
(2) positive semidefiniteness: ρ ≥ 0,

which imply three useful facts:

(3) ρ is Hermitian: ρ = ρ†,
(4) Tr(ρ2) ≤ 1, and
(5) ρ = ρ2 if and only if Tr(ρ2) = 1.

Properties (1)–(2) enforce the basic laws of probability:
Property (1) ensures that the outcome probabilities of any
measurement sum to 1, and Property (2) ensures that the
probability of any measurement outcome is non-negative.
Property (3) follows from Property (2), since every posi-
tive semidefinite matrix is also Hermitian. Property (4) is a
statement about ρ’s purity,

γ ≡ Tr(ρ2) . (44)

The maximum possible purity is γ = 1, achieved uniquely
when ρ is a pure state [Eq. (40)]. For any mixed state
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[Eq. (38)], γ < 1, with the minimum possible purity for a
d-dimensional state being γ = 1/d, achieved by the maxi-
mally mixed state ρmix = I/d. Finally, Property (5) follows
from Property (4) for pure states; in other words, ρ is
idempotent if and only if it is pure. Equivalently, if ρ is
a projection operator, then it must represent a pure state.

An arbitrary single-qubit pure state |ψ〉 = α |0〉 + β |1〉
is represented by the density matrix

ρ = |ψ〉〈ψ | .=
(|α|2 αβ∗

α∗β |β|2
)

. (45)

If we write |ψ〉 in spherical coordinates using Eq. (24), we
get

ρ
.=
(

cos2
(
θ
2

)
e−iφ cos

(
θ
2

)
sin
(
θ
2

)

eiφ cos
(
θ
2

)
sin
(
θ
2

)
sin2 ( θ

2

)
)

, (46)

= 1
2

(
1 + cos(θ) e−iφ sin(θ)
eiφ sin(θ) 1 − cos(θ)

)
, (47)

= 1
2
(
I+ sin(θ) cos(φ)σx+ sin(θ) sin(φ)σy+ cos(θ)σz

)
.

(48)

The last expression illustrates a very useful fact: operators
form a vector space. They can be added, subtracted, and
scaled. Any operator can be written as a linear combina-
tion of the elements of an operator basis. The four Pauli
operators form such a basis for operators on qubits, and
so we can expand ρ as a linear combination of them. The
space of operators on a system’s Hilbert space is called its
Hilbert-Schmidt space, and is used extensively in QCVV.
If the system’s Hilbert space is denoted H, then its Hilbert-
Schmidt space is denoted B(H) [36]. The inner product
between two operators A and B in B(H) is defined by

A · B = Tr[A†B] . (49)

Operators thus have multiple algebraic roles. They can act
as transformations (on the Hilbert space H of state vec-
tors), or as vectors [in the Hilbert-Schmidt space B(H) of
operators]. When we want to emphasize an operator’s vec-
tor role, we write it in a double ket or superket, e.g., as |A〉〉
instead of A. To denote the Hilbert-Schmidt inner product
in this notation, we define the superbra 〈〈A| ≡ |A〉〉†, so that

〈〈A |B〉〉 = Tr[A†B] . (50)

The inner product between a density matrix ρ and an
observable P is therefore equal to the expectation value
of P:

ρ · P = 〈〈ρ |P〉〉 = Tr[ρP] = 〈P〉ρ , (51)

taking advantage of Property (3). We can expand ρ in
an orthogonal basis of Hermitian operators {Pj } as ρ =

∑
j cj Pj , where each coefficient is given by

cj = 〈〈ρ |Pj 〉〉
〈〈Pj |Pj 〉〉 = 〈P〉ρ

Tr(P2
j )

. (52)

As a result, Eq. (48) (which expands a pure state ρ in the
Pauli basis) follows from Eqs. (25)–(27) (the expectation
values of the Pauli operators for that state). Therefore, any
single-qubit density matrix ρ can be written as

ρ = 1
2
(I + r · σ ) , (53)

where r = rxx̂ + ry ŷ + rz ẑ and σ = σxx̂ + σy ŷ + σz ẑ.
When ρ = |ψ〉〈ψ | is a pure state, r is a unit vector. This is
the Bloch sphere representation mentioned previously, and
illustrated in Fig. 1(b). The Bloch-sphere representation of
two-level systems is extremely useful for visualizing qubit
states prior to measurement and, as we will see in the next
chapter, for visualizing the impact of errors on qubits.

A mixed state ρ also defines a vector r, but one with
length |r| less than 1. The length of a mixed state’s Bloch
vector is determined by its purity:

|r| =
√

2Tr(ρ2)− 1 . (54)

The r vectors for mixed states define the Bloch ball (the
convex closure of the Bloch sphere) as shown in Fig. 1(c),
with the maximally mixed state ρmix = I/2 at its center
(r = 0).

2. Positive operator-valued measures

In closed-system quantum mechanics, a quantum state
is represented by a state vector and a measurement is rep-
resented by a set of orthogonal projectors (a PVM, as
described in Sec. II A 2). In open quantum systems, we
need to model additional uncertainty. This requires richer
representations not just of states (as density matrices), but
of measurements as well. If S is an open quantum system,
then it is possible to perform indirect measurements on
S by (1) coupling S to another system R [Fig. 2(a)], and
then (2) performing a PVM on S and R jointly [Fig. 2(b)].
This enables and allows a substantially richer class of
measurements called a positive operator-valued measure
(POVM) [37].

A POVM is a set of positive semi-definite operators {Ei}
that satisfies the completeness relation:

∑
i

Ei = I . (55)

Each Ei is called an effect, and represents one possible
outcome “i” of the measurement. When the POVM {Ei}
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(a) (b)

FIG. 2. System-environment representation of quantum opera-
tions. (a) An open quantum system comprises a principal system
of interest whose state is ρ, and a surrounding environment
whose state is ρenv. Any dynamical evolution of the principal
system can be described by some joint evolution of the system
and its environment, described by a unitary transformation U
that may produce correlation or entanglement between system
and environment. After this evolution, the state of the principal
system can be described by a reduced density matrix, defined
as a partial trace over the environment. This density matrix is
a linear function E(ρ) of the initial state ρ. (b) Terminating
measurements of the principal system E(ρ) can be modeled by
performing a PVM on the joint system [E(ρ)⊗ ρ ′env]. The results
of this joint measurement are described by POVMs, whose out-
come is a distribution of classical bits (denoted by the double
line).

is performed on a state ρ, the probability of observing
outcome i is given by

p(i|ρ) = Tr[Eiρ] , (56)

which is the open-system version of Born’s rule.
Any projective measurement (PVM) is also a POVM.

But POVMs are quite a bit more general. The effects in a
POVM do not need to be orthogonal, nor rank-1, nor pro-
jectors. Any set satisfying the conditions above is a valid,
feasible POVM. Importantly, POVMs describe destruc-
tive measurements, and do not specify or define what a
system’s state will be after measurement.

3. Dynamical evolution of density matrices

An open quantum system can interact with its envi-
ronment. This possibility allows new kinds of dynamical
evolution that can create or decrease uncertainty, causing
the open system’s state to become more (or less) mixed. In
contrast, closed-system dynamics are always unitary and
never change the purity of ρ. An open-system dynami-
cal evolution ρ 	→ E(ρ) can be described by a three-step
process, illustrated in Fig. 2(a):

(1) The principal system of interest is described (ini-
tially) by a state ρ. We introduce a second system,
the environment, that is assumed to be initially
uncorrelated with the principal system [38] and
described by its own state ρenv = |e0〉〈e0|.

(2) The system and environment evolve jointly,
according to familiar closed-system theory, by some

unitary U that may induce correlations or entangle-
ment between them.

(3) We focus on the principal system only, neglecting
or “throwing away” the environment by perform-
ing a partial trace over its Hilbert space, to obtain
a reduced density matrix for the principal system
only:

E(ρ) = Trenv[U (ρ ⊗ ρenv)U†] . (57)

The dynamical map ρ 	→ E(ρ) is called a quantum opera-
tion (a.k.a. a quantum channel), and Eq. (57) is known as
the system-environment, or Stinespring, representation of
quantum operations; it is depicted graphically in Table I.
It stems from Stinespring’s dilation theorem [39], which
states that every physically allowed dynamical evolution
of the principal system arises from unitary evolution on
a larger system, and can thus be described by Eq. (57).
In terms of the nonsquare Stinespring operator defined as
A ≡ U(I ⊗ |e0〉), Eq. (57) is simply

E(ρ) = Trenv[AρA†] . (58)

Equation (58) shows clearly that the dynamical map E acts
linearly on density matrices—i.e., if ρ = aρ1 + bρ2, then
E(ρ) = aE(ρ1)+ bE(ρ2).

Such a linear map can represent a real, physically real-
izable quantum operation if—and only if—it satisfies two
conditions:

(1) Complete positivity (CP): Given any positive
semidefinite density matrix ρ ≥ 0, applying E to ρ
must yield a matrix that is also positive semidefi-
nite, even if E only acts on a part (subsystem) of ρ.
So (E ⊗ I)[ρ] ≥ 0 for every ρ ≥ 0. This is a stricter
requirement than simple positivity—E[ρ] ≥ 0 for
every ρ ≥ 0—because a linear map can be positive
yet not completely positive. A canonical example is
the transpose map, E(ρ) = ρT. If such a map could
be experimentally applied to arbitrary states, then
by applying it to a system properly entangled with
another system, a negative probability (for some
measurement outcome) could be produced.

(2) Trace preservation (TP): Tr[E(ρ)] = Tr[ρ] for
all ρ.

Just like Properties (1)–(2) of density matrices, these con-
ditions guarantee the two essential properties of proba-
bility distributions. CP ensures that no event can have
negative probability, while TP ensures that the outcome
probabilities of every measurement add up to 1. Linear
maps satisfying both conditions are called completely pos-
itive trace-preserving (CPTP) maps, and every CPTP map
represents a physically realizable quantum operation.
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TABLE I. Graphical representations of operations. Reference [40] introduces a useful and intuitive “graphical calculus,” closely
related to the visual language of quantum circuits. These graphical representations can be a useful aid to intuition for students learning
the mathematics of open quantum systems. This table shows the graphical representations of the Stinespring, Kraus, transfer matrix,
Chi (process) matrix, and Choi matrix representations of a quantum operation. Although we do not explain here how these diagrams
are interpreted and manipulated, the interested reader is referred to Ref. [40] for a comprehensive discussion of graphical calculus and
its use in quantum computing.

Mathematical Graphical Representation

E(ρ) = Trenv[U (ρ ⊗ ρenv)U†] Stinespring

E(ρ) =∑N
i KiρK†

i Kraus

|E(ρ)〉〉 = �|ρ〉〉 Transfer matrix

E(ρ) =∑jk χjkPj ρPk Chi (process) matrix

C =∑k vec(Kk)vec(Kk)
† Choi matrix

The Stinespring representation of an operation E is
not unique, because many different physical scenarios
(U and ρenv) can produce identical reduced dynamics
for the principal system. As a result, the Stinespring
representation is rarely used in practical calculations,
because more convenient representations exist. As we
will see in this tutorial, quantum operations are very
important in QCVV, and the QCVV literature uses sev-
eral distinct representations of them for specific purposes.
We examine these representations in detail in the next
subsection.

C. Representations of quantum operations

We have already seen one way to represent a quantum
operation E , as a unitary transformation on a larger Hilbert
space [Eq. (57)]. In this section, we will construct several
more, each with their own unique properties and advan-
tages. These mathematical representations can also be
represented graphically, which the interested reader might
find helpful for understanding the math of this section. We
provide several examples of these graphical representa-
tions in Table I, but a formal introduction to this material
is beyond the scope of this tutorial. For a complete intro-
duction to the graphical calculus of open quantum systems,
the reader is referred to Ref. [40].

1. Kraus (operator-sum) representation

We can construct a second representation by rewriting
Eq. (57) in terms of a set of orthonormal basis states {|ei〉}
for the environment’s Hilbert space, as

E(ρ) =
∑

i

〈ei|U (ρ ⊗ |e0〉〈e0|)U† |ei〉 . (59)

If we define Ki ≡ 〈ei|U |e0〉, then Eq. (59) becomes

E(ρ) =
N∑
i

KiρK†
i . (60)

The operators {Ki} are known as Kraus operators, and
Eq. (60) is known as the Kraus or operator-sum repre-
sentation of a quantum operation E ; it is depicted graph-
ically in Table I. The Kraus representation is also not
unique—distinct sets {Ki} and {K ′

i } can produce identical
operations E . However, it is always possible to construct
a Kraus representation with N ≤ d2 Kraus operators Ki
(where d = 2n for n qubits) that are mutually orthogo-
nal—i.e., Tr(K†

i Kj ) = 0 for i �= j . This representation is
almost always unique (see Sec. 8.2.4 of Ref. [41] for an
in-depth analysis).

The Kraus representation of E avoids any explicit ref-
erence to the environment’s state or dynamics, describing
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the evolution of ρ using only operators acting on the princi-
pal system. The Kraus operators do not need to be derived
(as we did above) from properties of the environment. Any
Kraus representation automatically satisfies the CP con-
dition, and a set of Kraus operators {Ki} satisfies the TP
condition (and thus describes a physically allowed quan-
tum operation) if and only if it satisfies a completeness
relation:

N∑
i

K†
i Ki = I . (61)

If the Kraus operators of a single-qubit operation E are pro-
portional to Pauli operators, then we call E a Pauli channel.
This concept can be extended to quantum operations acting
on n > 1 qubits using the n-qubit Pauli operators, which
comprise all 4n tensor products of one-qubit Pauli opera-
tors. If we define P = {I , X , Y, Z}, then the n-qubit Pauli
group Pn is given by

Pn ≡ P
⊗n = {I , X , Y, Z}⊗n . (62)

An n-qubit operation E is a Pauli channel if

E(ρ) =
∑
P∈Pn

pPPρP† (63)

for some probability distribution {pP}. Pauli channels are
useful and intuitive because they describe probabilistic
(a.k.a., stochastic or random) processes. Each Pauli opera-
tor P is a unitary operation that could “happen” to ρ, and if
ρ evolves according to a Pauli channel, then P occurs with
probability pP.

2. Transfer matrix representation

The third common representation of a quantum opera-
tion E is as a linear superoperator or transfer matrix. We
saw above that a quantum operation’s action on a den-
sity matrix must be described by a linear map ρ 	→ E(ρ).
And, as observed previously, density matrices describing a
system’s state can be thought of as vectors in the Hilbert-
Schmidt space of d × d matrices. So, just as |ψ〉 is a vector
in Hilbert space that is transformed by unitary operators U,
ρ can be viewed as a vector |ρ〉〉 in Hilbert-Schmidt space
that is transformed by linear maps E .

We can make this action explicit by taking a d × d
density matrix ρ whose elements in a standard basis are

ρ
.=

⎛
⎜⎜⎝

ρ11 ρ12 · · · ρ1d
ρ21 ρ22 · · · ρ2d

...
...

. . .
...

ρd1 ρd2 · · · ρdd

⎞
⎟⎟⎠ (64)

and vectorizing [42] it into a d2 × 1 column vector [43]

|ρ〉〉 .= (ρ11, ρ21, . . . , ρd1, ρ12, . . . , ρdd)
T . (65)

This particular representation, sometimes called “column
stacking” because the columns of ρ are stacked atop one
another, is one specific way to represent |ρ〉〉 concretely in
a particular operator basis. To get Eq. (65), we use the basis
of matrix units defined (in terms of the Hilbert space basis
used to represent ρ) by {|i〉〈 j | , i, j = 1 . . . d}, because

ρij = Tr[|j 〉〈i| ρ] = 〈〈|i〉〈j ||ρ〉〉 . (66)

But an operator A can be “vectorized” in any operator
basis. One particularly useful choice is the n-qubit Pauli
basis. However, whereas the matrix units are orthonormal
because

〈〈|i〉〈j || |k〉〈l|〉〉 = Tr[|j 〉〈i||k〉〈l|] = δikδjl , (67)

the Paulis are mutually orthogonal but not normalized,
because

〈〈Pi |Pj 〉〉 = δij Tr[I] = dδij . (68)

This can be dealt with either by using normalized Pauli
operators {Pi/

√
d}, or by computing the coefficient of each

Pauli basis operator as 〈〈Pi |A〉〉/d instead of 〈〈Pi |A〉〉.
Using this framework, a quantum operation E is just

a linear transformation that maps any density matrix ρ ∈
B(H) to a new density matrix ρ ′ ∈ B(H) in the same
Hilbert-Schmidt space [44]. Therefore, E can be concretely
represented by a d2 × d2 matrix � that acts on vectorized
states |ρ〉〉 by matrix multiplication:

|ρ〉〉 	→ |E(ρ)〉〉 = �|ρ〉〉 . (69)

A linear map on density matrices, or a matrix that acts
on vectorized density matrices, is called a superoperator.
Every quantum operation can be described by a superop-
erator �. Superoperators representing quantum operations
are often called transfer matrices because �’s action on
vectorized density matrices resembles the action of transfer
operators in dynamical systems or statistical mechanics.
This representation is also sometimes called the Liouville
or associative representation, and is depicted graphically
in Table I.

An operation E’s transfer matrix � can be concretely
constructed by choosing an orthonormal basis {Bi} for the
vector space of d × d matrices, then defining the elements
of � using the Hilbert-Schmidt inner product:

�ij ≡ Tr
[
B†

i E(Bj )
]

. (70)

It is common to construct � in the basis of matrix units,
or the Pauli basis (see Sec. II C 3). We usually work in
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the Pauli basis; transfer matrices and other objects that are
explicitly represented in the basis of matrix units are iden-
tified with the subscript c. If E has Kraus operators {Ki},
then its transfer matrix in the basis of matrix units is

�c =
∑

i

K∗
i ⊗ Ki . (71)

In the transfer matrix representation, the composition of
quantum operations is associative. In other words, if two
operations with transfer matrices �1 and �2 are applied in
succession, then the net effect is to apply the product of the
two matrices, i.e., �2�1:

|ρ ′〉〉 = |E2(E1(ρ))〉〉 = �2 |E1(ρ)〉〉 = �2�1 |ρ〉〉 . (72)

Because of this useful property, the transfer matrix repre-
sentation is widely used to model errors in quantum logic
operations (i.e., gates). When those errors are small, a
variation called the error generator formalism [45]—that
represents transfer matrices by their logarithms—is use-
ful for distinguishing and classifying small errors (see
Appendix A for a brief summary). Error generators can be
used to classify and quantify the rates at which different
types of errors occur in quantum gates [46].

3. Pauli transfer matrix representation

When a transfer matrix is constructed in the Pauli basis,
we call it a Pauli transfer matrix (PTM). This is also
sometimes known as the Pauli-Liouville representation of
quantum operations. We use the symbol � for all transfer
matrix representations, regardless of basis, but in this tuto-
rial � will always indicate a PTM unless another basis is
specified.

The PTM representation of a quantum operation E is a
4n × 4n superoperator � with entries

�ij = 〈〈Pi | E(Pj )〉〉 = 1
d

Tr
[
PiE(Pj )

]
, (73)

where Pi and Pj are elements of the n-qubit Pauli group
Pn. PTMs act on density matrices, which have also been
expanded in the Pauli basis,

ρ =
∑
P∈Pn

ρPP , (74)

where ρP = 〈〈P | ρ〉〉/d are the expansion coefficients. By
vectorizing the expansion coefficients into a single column
vector,

|ρ〉〉 .= (ρI⊗n · · · ρZ⊗n
)T , (75)

the quantum map ρ ′ = E(ρ) can be expressed in vector
form, where the PTM � acts on |ρ〉〉 by direct matrix

multiplication: |ρ ′〉〉 = �|ρ〉〉. For example, for a single
qubit,

|ρ〉〉 .=

⎛
⎜⎝
ρI
ρX
ρY
ρZ

⎞
⎟⎠ , (76)

and the map ρ ′ = E(ρ) is given by

⎛
⎜⎝
ρ ′I
ρ ′X
ρ ′Y
ρZ

⎞
⎟⎠ =

⎛
⎜⎝
�II �IX �IY �IZ
�XI �XX �XY �XZ
�YI �YX �YY �YZ
�ZI �ZX �ZY �ZZ

⎞
⎟⎠

⎛
⎜⎝
ρI
ρX
ρY
ρZ

⎞
⎟⎠ . (77)

The entries of a PTM are all real numbers bounded by
�ij ∈ [−1, 1]. Some important properties of an operation
can be extracted directly from its PTM. We can isolate
four (slightly overlapping) useful blocks within a PTM, as
shown in Fig. 3.

(a) �’s top row reveals whether it is trace preserving.
The operation is TP if and only if �0j = δ0j (i.e.,
if the first row of the PTM is [1, 0, . . . , 0]). Every
deterministic process must be TP, but postselected
operations provide an example of non-TP processes
[47].

(b) The bottom right (d2 − 1)× (d2 − 1) block of the
PTM is called the unital block. An operation is uni-
tal if it preserves the identity [i.e., E(I) = I], and the
PTM for a unital operation is restricted to this block
and the 1 × 1 block defined by �00. Unital pro-
cesses cannot increase purity (or decrease entropy).
Unitary dynamics (Sec. III A) and stochastic Pauli
errors (Sec. III E) are unital.

(c) The leftmost column of � is called the nonuni-
tal block. For any unital operation, �i0 = δi0 (i.e.,
the first column of the PTM is [1, 0, . . . , 0]T). If
it does not take this form, its elements indicate
entropy-decreasing processes like cooling, energy
relaxation, or spontaneous emission (e.g., T1 decay;
see Sec. III C).

(d) The diagonal elements of � quantify how well
polarization is preserved along each Pauli axis (see
Sec. IV C 4), with �PP = 1 if the operation pre-
serves the component of Pauli operator P in ρ.
�PP < 1 indicates loss of polarization or coher-
ence along a Pauli axis. A PTM’s diagonal elements
�PP are sometimes called the survival probabilities,
Pauli fidelities, or (when� is diagonal) Pauli eigen-
values. An operation’s PTM is diagonal if and only
if it is a Pauli channel.

The TP constraint is obvious and easy to enforce in the
PTM representation, by requiring that �0j = δ0j . In con-
trast, the CP constraint is hard to express or evaluate in
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FIG. 3. Pauli transfer matrix. We can identify four useful
blocks within a PTM. The top row is typically fixed as [1, 0, 0, 0]
by trace preservation (TP, red), although postselected operations
can be non-TP. The lower right-hand block (blue) captures uni-
tal processes, such as unitary errors. The column to the left of
the unital block (cyan) indicates nonunital processes, such as
T1 decay, resulting in �PI �= 0 for P ∈ {X , Y, Z}. The diagonal
elements indicate how well polarization (P, orange) along the
various Pauli axes is preserved, and are directly impacted by
stochastic Pauli noise. The spheres at each corner depict example
errors captured by each block (see Fig. 4).

the PTM representation. The easiest way to test whether a
PTM � describes a CP map is to construct its Choi matrix
representation (see Sec. II C 5).

An operation’s PTM can be computed directly from a
transfer matrix represented in a different basis [Eq. (70)] by
applying a unitary change of basis. Suppose, for example,
�c is a transfer matrix written in the basis of matrix units
[Eq. (71)]. We can construct the equivalent PTM � as

� = Uc→P�cU†
c→P , (78)

where

Uc→P ≡ 1√
d

d2−1∑
i=0

|ci〉〉〈〈Pi| , (79)

where {|ci〉〉}d2−1
i=0 is the basis of matrix units. The factor of

1/
√

d normalizes the Pauli basis elements to 1 and makes
Uc→P unitary. The inverse transformation is also possible
with

�c = UP→c�U†
P→c , (80)

where UP→c = U†
c→P.

4. Chi (process) matrix representation

We can construct a fourth representation of E by expand-
ing E’s Kraus operators {Ki} [Eq. (60)] in a fixed operator
basis {Pj }, such as the Pauli basis:

Ki =
∑

j

cij Pj , (81)

where cij are the expansion coefficients. Plugging this
expansion into Eq. (60) yields

E(ρ) =
∑

jk

χjkPj ρPk , (82)

where χjk =
∑

i cij c∗ik. The d2 × d2 matrix of coefficients
χjk is called a χ matrix, and this is known as the χ matrix
representation of an operation E ; it is depicted graphi-
cally in Table I. Historically, an operation’s χ matrix was
called its process matrix. More recently, the term “pro-
cess matrix” has been used more broadly to describe other
matrix representations of E (e.g., the Pauli transfer matrix).
In this tutorial, process matrix will always refer to the χ
matrix, and χ matrices will be constructed in the Pauli
basis unless otherwise specified.

The χ matrix representation is closely related to the
Kraus representation, but has certain advantages. It is easy
to construct mechanically, and it is unique once an opera-
tor basis {Pj } is chosen. A map E is CP if and only if its χ
matrix is positive semidefinite. Constructing E’s χ matrix
and checking whether it is positive semidefinite is the eas-
iest way to check complete positivity. Trace preservation
(TP) is also easy to check in this representation; E is TP if
and only if

∑
j ,k χjkP†

j Pk = I. This condition is equivalent
to Eq. (61). Moreover, it constrains d2 of the d4 parameters
in χ , and so the χ matrix for a CPTP map has d2(d2 − 1)
free parameters.

Equation (82) can be seen as an expansion of E as a lin-
ear combination of non-CPTP linear maps known as Choi
units, denoted X :

E =
∑

jk

χjkXjk , (83)

Xjk(ρ) ≡ Pj ρPk . (84)

Each Choi unit is a superoperator acting on operators.
Choi units are Hermitian (X †

jk = Xjk), and they form an
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orthogonal basis,

Tr[X †
ij Xkl] = d2δikδjl . (85)

This makes it easy to construct the χ matrix for any
operation E , since

χjk = 1
d2 Tr[X †

jkE] = 1
d3

∑
Pm∈Pn

Tr[PmPj E(Pm)Pk] . (86)

For example, the χ matrix coefficients for the identity
operation E(ρ) = ρ are

χjk = 1
d3

∑
Pm∈Pn

Tr[PmPj PmPk] , (87)

= 1
d2 Tr[Pj ]Tr[Pk] , (88)

= δj 0δk0 , (89)

using the identity
∑

P∈Pn
PMP = dTr(M )I.

Any χ matrix for a CP map can be diagonalized by a
unitary change of basis. This diagonal form,

E(ρ) =
∑

j

λj Qj ρQ†
j , (90)

gives the orthogonal Kraus representation of E , with Ki =√
λiQi. It is unique up to degeneracies (λj = λj ′ for some

j �= j ′). Constructing the χ matrix in some basis and diag-
onalizing it is the easiest way to find the orthogonal Kraus
form of a generic operation.

Both the PTM and χ matrix representations of a map E
are unique. So, it is possible to compute the PTM from the
χ matrix as

�ij = 1
d

∑
kl

χklTr
[
PiPkPj Pl

]
, (91)

and the χ matrix from the PTM as

χij = 1
d3

∑
kl

�klTr
[
PlPiPkPj

]
. (92)

5. Choi matrix representation

The final representation of a quantum operation E that
we consider represents E as an unnormalized quantum
state of a larger (two-copy) system. We begin with a maxi-
mally entangled state of two systems, which can be defined

in terms of any orthonormal basis {|i〉}d−1
i=0 as

|�0〉 =
∑

i

|i〉 ⊗ |i〉 , (93)

keeping in mind that this “state” has norm d. Its density
matrix is

|�0〉〈�0| =
∑

i,j

|i〉〈j | ⊗ |i〉〈j | , (94)

which for an n-qubit system can also be written using Pauli
operators as

|�0〉〈�0| = 1
d

∑
P∈Pn

P ⊗ PT . (95)

We now apply I ⊗ E to this state to get

C = (I ⊗ E) [|�0〉〈�0|] , (96)

=
d−1∑
i,j=0

|i〉〈j | ⊗ E(|i〉〈j |) , (97)

= 1
d

∑
P∈Pn

P ⊗ E(P)T . (98)

C is called the Choi matrix [48], or sometimes the dynam-
ical matrix [49], of E . The action of an operation E can be
written in terms of its Choi matrix C as

E(ρ) = Tr1
[
C(ρT ⊗ I)

]
, (99)

where Tr1 denotes the partial trace over the first subsystem.
By substituting this into Eq. (97), it is straightforward to
verify that C faithfully and uniquely represents E .

This one-to-one correspondence between completely
positive operations E and positive semidefinite (bipartite)
states C is known as the Choi-Jamiołkowski isomorphism
(or channel-state duality) [50,51]. It implies several useful
properties:

(1) E is CP ⇐⇒ C ≥ 0,
(2) E is TP ⇐⇒ Tr1[C] = I,
(3) E is Hermitian-preserving (HP) ⇐⇒ C = C†,

where ⇐⇒ denotes if and only if.
An even more fundamental (and perhaps surprising)

statement is that the Choi matrix is proportional to the
transpose of the χ matrix in suitably chosen bases. In other
words, given any basis {|φi〉} for the bipartite Hilbert space
H⊗H, there is a corresponding operator basis {|Pi〉〉}
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for B(H) so that the χ and Choi representations of any
operation E obey

χji = 1
d
〈φi|C|φj 〉 . (100)

We can demonstrate this using the Pauli operator basis,
and the basis of normalized maximally entangled states
(for H⊗H) given by {|φj 〉} =

{
(Pj ⊗ I) |�0〉 /

√
d
}

Pj ∈Pn
.

Using Eqs. (97) and (95), we can write

1
d
〈φi|C|φj 〉 = 1

d
Tr[C(Pj ⊗ I) |φ0〉〈φ0| (Pi ⊗ I)] , (101)

= 1
d4

∑
k,l

Tr[(Pk ⊗ E(Pk)
T)(Pj ⊗ I)(Pl ⊗ PT

l )

× (Pi ⊗ I)] , (102)

= 1
d4

∑
k,l

Tr[PkPj PlPi]Tr[PlE(Pk)] , (103)

= 1
d3

∑
k,l

�lkTr[PlPiPkPj ] , (104)

= χji . (105)

where in the last line we have used the cyclic property of
the trace and Eq. (92). This equivalence is very powerful,
since it implies that C and χ are essentially identical [up to
a transpose, a factor of d, and appropriate choice of bases
for H⊗H and B(H)].

If an operation E has the Kraus representation E(ρ) =∑
k KkρK†

k , then we can construct its Choi representation
(depicted graphically in Table I) beginning with Eq. (97)
as

C =
d−1∑
i,j=0

|i〉〈j | ⊗ E(|i〉〈j |) , (106)

=
∑
i,j,k

|i〉〈j | ⊗ Kk |i〉〈j |K†
k , (107)

=
∑
i,j,k

(
|i〉 ⊗ Kk |i〉

) (
〈j | ⊗ 〈j |K†

k

)
, (108)

=
∑

k

(∑
i

|i〉 ⊗ Kk |i〉
)⎛
⎝∑

j

〈j | ⊗ 〈j |K†
k

⎞
⎠ , (109)

C =
∑

k

vec(Kk)vec(Kk)
† , (110)

where vec is a linear map between d × d matrices (e.g., Kk)
and bipartite states (e.g., |�〉) defined by

vec(|i〉〈j |) = |j 〉 ⊗ |i〉 . (111)

This is an explicit form of the Choi-Jamiołkowski isomor-
phism. It is important to note that this “vectorization” is
distinct from the vectorization introduced in Sec. II C 2.
The vec operation associates a matrix acting on Hilbert
space H with a vector in H⊗H (e.g., |j 〉 ⊗ |i〉), whereas
the vectorization in Sec. II C 2 merely constructs a concrete
representation of that matrix as an element of B(H) (e.g.,
||i〉〈j |〉〉). If the bipartite state in Eq. (111) is represented
concretely, then it is possible to choose a particular basis
for which these two concrete representations coincide. For
example, in the computational basis,

vec
(

a b
c d

)
.=

⎛
⎜⎝

a
c
b
d

⎞
⎟⎠ . (112)

D. Models of quantum measurements

If a quantum system could not be observed, its state
would be meaningless. Observations of quantum systems
are called measurements. Sections II A 2 and II B 2 intro-
duced models for terminating measurements (PVMs and
POVMs) that can be used when the quantum system is
used up during the measurement (e.g., photodetection) or
can be thrown away (e.g., readout that concludes a quan-
tum computation). But if the measured quantum system
persists and might be observed again postmeasurement,
the POVM formalism is not sufficient to predict both the
measurement outcome and the postmeasurement state. In
the context of quantum computing (and thus QCVV), such
measurements are usually called mid-circuit measurement
(MCM)s. In this section, we introduce quantum instru-
ments that model MCMs, and we discuss continuous weak
measurements that model the internal dynamics of the
readout process.

1. Quantum instruments

Quantum measurements typically change quantum
states. This is called measurement back action [52]. More-
over, consecutive quantum measurements can give rise
to geometric phases contingent upon the order of mea-
surements [53]. The POVM formalism, which maps a
quantum state into a classical probability distribution,
ρ 	→ {p(i|ρ)}, is inadequate to describe the measurement-
induced state dynamics. To address this limitation, the
quantum instrument (QI) formalism is introduced, pro-
viding an extended framework that accounts for quan-
tum operations influenced by the measurement outcome
[54,55]. Quantum instruments can model the three-step
quantum measurement procedure [56,57] introduced by
John von Neumann:

(1) Initialize meter state to |m0〉.
(2) Apply interaction between the system and meter.
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(3) Read meter state.

Without loss of generality, the measurement interaction
transforms the system-meter state of ρ ⊗ |m0〉〈m0| into

M(ρ ⊗ |m0〉〈m0|) =
∑

ij

Mij (ρ)⊗ |mj 〉〈mj | , (113)

and then the meter is projected onto one of the orthonormal
eigenstates {|mi〉}. The meter reads mi with a probability
p(i|ρ),

p(i|ρ) = Tr[Mii(ρ)] , (114)

and the projection also “collapses” the principal system
into the a postmeasurement state,

ρi = Mii(ρ)

p(i|ρ) . (115)

A QI models this process by describing the transforma-
tion of a quantum state into a composite quantum-classical
state, represented as ρ 	→ {[ρi, p(i|ρ)]}. A QI I is a CPTP
map that transforms a state ρ as:

ρ 	→ I(ρ) =
∑

i

Mi(ρ)⊗ |mi〉〈mi| . (116)

Each of the conditional quantum operations {Mi} is CP,
and if there is no loss, the overall TP condition is imposed
as follows:

∑
i

Tr[Mi(ρ)] = 1 . (117)

2. Quantum nondemolition measurements

A quantum nondemolition (QND) measurement is a
quantum measurement that extracts information about a
system while disturbing its quantum state as little as pos-
sible. QND measurements still “collapse” quantum states
into a specific eigenspace of the observable that was
measured, but performing repeated QND measurements
will consistently produce identical outcomes, and will not
change the expectation value of the measured observable
[58,59]. The reproducible and minimally perturbing nature
of QND measurements plays a crucial role in achieving
high fidelity readout [60,61] and is integral to quantum
computing protocols including syndrome measurements in
quantum error correction [62], qubit recycling [63], and
algorithms for quantum machine learning [64].

The QND property can be expressed in terms of the
quantum instrument (QI) formalism [Eq. (116)]. Consis-
tency of outcomes across repeated QND measurements

implies that the measurement probabilities satisfy

p(i|ρi) = Tr[Mi(ρi)] = Tr[Mi(Mi(ρi))] = 1 . (118)

Therefore, a QND measurement’s conditional operations
must be projectors:

M2
i = Mi =⇒ Mi(ρ) = πiρπi, (119)

where the πi are mutually orthogonal projectors. If the sys-
tem experiences a Hamiltonian, then the post-measurement
states must remain unchanged under the state evolution
governed by the system Hamiltonian Hs,

e−iHst/�πieiHst/� = πi . (120)

This holds true if and only if, for all i,

[πi, Hs] = 0 . (121)

Interestingly, the condition given by Eq. (120) can be eased
if the system exhibits periodicity, such that e−iHsτ/� = eiφI,
where τ is the measurement interval. Therefore, even when
[πi, Hs] �= 0, it becomes feasible to conduct a QND mea-
surement by measuring the system at intervals of τ . This
approach is known as a stroboscopic QND measurement
[65].

3. Continuous weak measurements

Consider a dispersive interaction [66] between a qubit
and a cavity described by the following approximated
Hamiltonian:

Hdisp = �χσz ⊗ a†a , (122)

where χ is the dispersive shift in frequency of the qubit,
and a† and a are creation and annihilation operators for the
cavity mode. We take the initial qubit state to be |ψ〉 and,
for simplicity, we assume that the cavity initially contains
a coherent meter state |α〉 with no energy loss (more real-
istic models and analyses can be found in Ref. [67]). After
the qubit-meter state |ψ〉|α〉 evolves under the dispersive
Hamiltonian for time t, they become entangled as

e−iHdispt/�|ψ〉|α〉 = �0|ψ〉|e−iαχ tα〉 +�1|ψ〉|eiαχ tα〉 ,
(123)

where �i = |i〉〈i| are the projectors onto the computa-
tional basis states. If the interaction time t is sufficiently
long and the amplitude α is large enough to satisfy

030202-19



AKEL HASHIM et al. PRX QUANTUM 6, 030202 (2025)

|〈eiαχ tα|e−iαχ tα〉|2 = 0, the measurement is QND because
the measurement operators are projectors that commute
with the qubit Hamiltonian, since Hdisp ∝ σz.

In practical measurements, however, the continuous
readout of the meter state introduces uncertainties due
to quantum and classical sources of noise. After a short
interaction time, if |〈eiαχ tα|e−iαχ tα〉|2 �= 0, the meter read-
out of |β〉 becomes uncertain, resulting in a nonprojective
measurement described by M(ρ) = KβρK†

β , where

Kβ = 〈β|e−iαχ tα〉�0 + 〈β|eiαχ tα〉�1 . (124)

Such quantum measurements are commonly referred to as
weak measurements because, while providing some infor-
mation about the system, they do not completely collapse
the system to its eigenstates at once [68]. Nevertheless,
successive weak measurements consistently alter the sys-
tem according to · · ·Kβ2Kβ1ρK†

β1
K†
β2
· · · and guide the

state toward a specific eigenstate. Intriguingly, the state tra-
jectory can be deduced from the measurement outcomes
{βn} through the quantum Bayesian approach [69,70].
From the perspective of characterizing quantum comput-
ers, continuous weak measurements can be employed to
monitor system dynamics [71,72], perform quantum pro-
cess tomography [73], and diagnose gate errors [74]. The
trade-off between information gain, state disturbance, and
the reversibility of weak measurements has been exten-
sively studied in Refs. [75,76].

E. Gate set models of quantum computers

Gate-based quantum computers are devices that imple-
ment quantum circuits, which are sequences of instructions
for applying logic operations to physical qubits. These
instructions generally include a discrete set of quantum
gates, as well as state preparation, and terminating (and
possibly intermediate) measurements. In the preceding
sections, we have described mathematical models of all
of these operations. For many QCVV protocols, it is con-
venient to construct a single mathematical object called a
gate set that contains representations of all of the native
instructions for a quantum device.

Formally, a gate set is the union of three distinct sets.
The first one lists the Nρ possible initial states that can
be natively prepared,

{
ρ(i)
}Nρ

i=1. Often, quantum comput-
ers only provide a single initialization state (e.g., |0〉〈0|),
in which case Nρ = 1. The second set is a list of the com-
puter’s NG native operations or gates, {Gi}NG

i=1. The third
set lists the computer’s NM native measurement outcomes

(POVM effects),
{

E(m)i

}NM,N (m)E

m=1,i=1
, where N (m)

E is the the num-

ber of possible outcomes of the mth measurement. Many
quantum computers offer a single native measurement in
the computational basis of n qubits, in which case NM = 1

and NE = 2n. The entire gate set is thus

G =
{{
ρ(i)
}Nρ

i=1 , {Gi}NG
i=1 ,

{
E(m)i

}NM,N (m)E

m=1,i=1

}
. (125)

A gate set describes a specific, limited set of operations. A
quantum processor may be capable of implementing other
operations that are not listed in a particular gate set. A gate
set G can only be used to describe and predict circuits built
from the operations in G.

In the context of gate sets, the word “gate” indicates
an operation acting on the entire computer. The existing
gate set formalism is not consistent with the alternative
meaning of “gate” to denote an operation acting only on a
subsystem (e.g., one or two qubits) of a quantum computer,
which can be combined in parallel (by tensor product) with
other gates on disjoint subsystems to produce a whole-
computer operation called a circuit layer or cycle. In the
gate set formalism, each layer (configuration of parallel
gates) that can be performed constitutes a distinct “gate.”
Gate sets do not generally assume any connection or cor-
relation between the actions of, for example, an X gate on
qubit 1, an X gate on qubit 2, and parallel X gates on qubits
1 and 2. Treating each layer as an independent operation
makes it possible—by comparing and contrasting differ-
ent parallel combinations of gates—to study the effects of
crosstalk on a device [77,78].

A gate set can be expressed in any representation that
is convenient for the task at hand, but the most common
convention is to use the transfer matrix representation and
Hilbert-Schmidt space notation introduced in Sec. II C 2 to
represent initialization operations as superkets |ρ〉〉, logic
gates G as transfer matrices, and POVM measurements
as lists of effects {〈〈Ei|}. Using these representations, a
general gate set is written as

G =
{{|ρ(i)〉〉}Nρ

i=1 , {Gi}NG
i=1 ,

{
〈〈E(m)i |

}NM,N (m)E

m=1,i=1

}
. (126)

In Sec. II E 1, we discuss how this representation can be
conveniently used to predict quantum circuit outcomes.

A gate set model is a gate set-valued function of some
parameters—i.e., a map from a list of parameters to gate
sets. A fully parameterized gate set model assigns a free
parameter to each matrix element of each operation in a
gate set. For an n-qubit processor, a fully parameterized
gate set model contains 4n − 1 parameters per initial state,
16n − 4n parameters per logic gate, and 8n − 4n parameters
per projective measurement.

Reduced models can be constructed that use fewer
parameters [78–80], motivated by sparse matrix ansätze,
structural properties of the processor’s Hilbert space [45],
or knowledge of its low-level physics. These models have
been proposed as a way to overcome the exponential
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growth of parameters with system size, and their con-
struction is an area of active research. They have fewer
parameters, but generally rely on assumptions, such as
limited or no crosstalk, symmetries, or ad hoc ansätze
like low-rank tensor networks. Physics-informed reduced
models can have the additional advantage of more easily
interpretable parameters, such as the intensity, frequency,
or phase of a control field.

Finding the parameters of a gate set model (whether
fully parameterized or reduced) that fit and describe data
from a particular device is the task of gate set tomography,
discussed in detail in Sec. VII D.

1. Circuits

A gate set is a model of a quantum computer that can
be used to predict the measurement outcome distribution
for arbitrary quantum circuits composed of elements of
the gate set. For a circuit that comprises (i) preparing
native state ρ, (ii) applying the sequence of operations
C = (g1, g2, . . . , gL), and (iii) measuring the POVM {Ei},
the probability of measurement outcome i is given by
Born’s rule as

p(i|ρ, C) = 〈〈Ei|GgLGgL−1 · · ·Gg1 |ρ〉〉 . (127)

This can be written in the more familiar form [see
Eq. (56)],

p(i|ρ, C) = Tr[EiEC(ρ)] , (128)

where EC is the quantum operation defined by the sequence
of gates C.

2. Gauge ambiguity

A gate set model is a complete description of a Marko-
vian quantum processor, but it is actually an over-complete
description. A gate set contains extra gauge degrees of
freedom that have no effect at all on any observable prob-
abilities, and therefore cannot be observed. No experiment
can reveal information about a gauge parameter. A gauge
transformation on a gate set changes the gate set without
changing any observable property.

A gauge transformation can be described by an arbitrary
invertible d2 × d2 matrix M , and transforms the gate set as
follows:

〈〈E(m)i | 	→ 〈〈E(m)i |M−1 , (129)

|ρ〉〉 	→ M |ρ〉〉 , (130)

Gi 	→ MGiM−1 . (131)

This transformation maps the gate set G to a new gate set G ′
with a new set of parameters, but G and G ′ predict identical

outcome probabilities for all possible circuits because

〈〈E|M−1MGgLM−1 · · ·M−1MGg1M−1M |ρ〉〉
= 〈〈E|GgL · · ·Gg1 |ρ〉〉 (132)

for all pairs of state preparations and measurement out-
comes {ρ, E}, and all sequences of gates g1, . . . , gL. Gauge
freedom implies the existence of equivalence classes of
gate set models (a.k.a. gauge orbits) that are physically
indistinguishable. As an example, Appendix E provides a
introduction to gauge ambiguities in Pauli noise learning
(Sec. IX C).

Gauge degrees of freedom within gate set models can
significantly complicate comparisons between two models,
because popular gate-error metrics like diamond norm and
fidelity are gauge-dependent (see Sec. IV). One approach
to mitigate these metrics’ gauge dependence is to employ
gauge fixing. This is most commonly done via “gauge
optimization,” which varies over all possible gauge trans-
formations to find a gauge that minimizes the deviation
between a (noisy) gate set model and an ideal “target”
model. The metric of deviation is somewhat arbitrary,
but weighted Frobenius distance is commonly used for
convenience. The need for gauge-fixing can be avoided
by using strictly gauge-invariant metrics of error. Gauge
transformations do not change the eigenvalues of a gate’s
transfer matrix, so any error metric that depends only on
the transfer matrix’s spectrum is gauge-invariant.

Some work has explored alternative model construc-
tions that circumvent the gauge problem. For example,
Ref. [81] employs a representation of gate sets in terms
of the probabilities of linear inversion gate set tomography
(see Sec. VII D). This parameterization is overcomplete,
and somewhat inconvenient, but completely avoids gauge
freedom because every parameter in the representation is
explicitly gauge-invariant. Other work [46,82] makes use
of “first-order gauge-invariant” (FOGI) parameterizations
that are invariant under small gauge transformations. This
is an active area of research.

III. COMMON ERRORS IN QUANTUM
COMPUTERS

Markovian errors in quantum computing can be broadly
placed into two categories: coherent errors and incoher-
ent noise. Coherent errors describe a reversible (purity-
preserving) process in which an imperfect or unwanted
unitary operator rotates the quantum register to the wrong
state relative to the intended target state. Coherent errors
can manifest from imperfections in gate calibrations, clas-
sical crosstalk signals that unintentionally drive a qubit, or
unwanted coupling between qubits. Incoherent noise, on
the other hand, describes irreversible processes, which are
often referred to as decoherence.
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The design and analysis of quantum devices must
account for various intrinsic noise sources that can lead
to different types of errors within the systems [83–85].
In this section, we introduce the following commonly
encountered errors and noise, and illustrate their impact on
single-qubit states using the Bloch sphere:

(a) Coherent errors (Sec. III A). When a unitary opera-
tion (including the idle) is implemented incorrectly
but reversibly, the quantum register experiences a
unitary (a.k.a. coherent or Hamiltonian) error. In
the case of a single qubit, the qubit’s state will be
rotated to an incorrect point on the Bloch sphere.
Coherent errors preserve purity, and can be caused
by control miscalibration or entangling Hamil-
tonians between neighboring qubits that produce
crosstalk.

(b) Dephasing noise (Sec. III B). Qubits in a superposi-
tion state can experience noise which leads to phase
decoherence over time. For example, fluctuations in
qubit frequency cause the qubit’s Bloch vector to
precess randomly with respect to the rotating frame,
leading to random phase errors. This results in the
dephasing of superposition states, which is visual-
ized as shrinking of the Bloch vector towards the
polar axis of the Bloch sphere.

(c) Amplitude damping (Sec. III C). A qubit in an
excited state will eventually thermalize to its ground
state. This energy relaxation process is dictated by
the underlying physics of the qubit—i.e., whether
it is an atom, superconducting qubit, spin qubit,
etc.—but is often termed “spontaneous emission,”
as this is the physical pathway by which qubits ther-
malize for many systems. Therefore, the amplitude
(or probability) of remaining in the excited state is
damped over time. Amplitude damping is an exam-
ple of a nonunital error, because it does not preserve
the maximally mixed state.

(d) Depolarizing noise (Sec. III D). When incoherent
noise acts isotropically about the Bloch sphere (i.e.,
all states have an equal probability of experienc-
ing bit- and phase-flip errors), a qubit will eventu-
ally undergo decoherence, resulting in the complete
loss of quantum information. This process is called
depolarizing noise, because it results in the depolar-
ization of the Bloch vector toward the center of the
Bloch sphere.

(e) Stochastic Pauli Noise (Sec. III E). Noise in many
systems is biased such that random bit- or phase-
flips about different axes can occur with different
rates. Such noise can be modeled by random (or
stochastic) Pauli errors, whereby each type of Pauli
error (e.g., X , Y, or Z) has a distinct probability of
occurring.

(f) Leakage (Sec. III F). Qubits are defined by two com-
putational basis states (see Sec. II A 3). Leakage
describes any process by which a qubit transitions
out of the computational subspace, either via ran-
dom noise, or some coherent driving process. Leak-
age is often considered a non-Markovian process in
the context of qubit computations because it cannot
be described by a CPTP map on the computational
subspace, and it can produce temporal correlations
across multiple gates or clock cycles.

(g) Non-Markovian and unmodeled errors (Sec. III G).
Sometimes an error in a quantum state, gate, or mea-
surement cannot be captured by any CPTP model.
In such cases, these unmodeled errors are typi-
cally ascribed to some non-Markovian process in
the system. Non-Markovian errors are not the focus
of this tutorial, but understanding their impact on
Markovian error models is important in QCVV.

A. Coherent errors

Single-qubit unitary rotation operators Un̂(θ) rotate a
state vector |ψ〉 by an angle θ about an axis n̂. The
resulting quantum state can be written as

|ψ ′〉 = Un̂(θ) |ψ〉 = e−i θ2 n̂·σ |ψ〉 , (133)

where σ is the vector of Pauli operators. Rotations about
the coordinate axes of the Bloch sphere are particularly
common, and their representations as unitary operators are

Ux̂(θ) = Rx(θ)
.=
(

cos
(
θ
2

) −i sin
(
θ
2

)

−i sin
(
θ
2

)
cos
(
θ
2

)
)

, (134)

Uŷ(θ) = Ry(θ)
.=
(

cos
(
θ
2

) − sin
(
θ
2

)

sin
(
θ
2

)
cos
(
θ
2

)
)

, (135)

Uẑ(θ) = Rz(θ)
.=
(

e−iθ/2 0
0 eiθ/2

)
, (136)

where we have used the fact that

e−i θ2 n̂·σ = cos
(
θ

2

)
− i(n̂ · σ ) sin

(
θ

2

)
, (137)

and where the notation Rn(θ) is commonly used in place
of the notation Un̂(θ).

Unitary (or coherent) errors manifest as unwanted or
imperfect unitary rotations acting on qubits. This can be
modeled as an ideal operator Un̂(θ) followed by an erro-
neous operator Um̂(ε), such that the actual final state is
given by

|ψ ′〉 = Um̂(ε)Un̂(θ) |ψ〉 , (138)

= e−i ε2 m̂·σ e−i θ2 n̂·σ |ψ〉 , (139)
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(a)

Coherent errors

(b)

Pure dephasing

(c)

Longitudinal transitions

(d)

Depolarizing noise

(e)

Stochastic Pauli noise

(f)

Leakage

FIG. 4. Common errors and noise. (a) Coherent errors result in an unintended rotation by an angle ε (blue arrow) relative to the
intended target state (black arrow). The axis of rotation can act in any direction relative to the intended target state, depicted by the
large blue region. (b) Dephasing noise can result from fluctuations in the qubit ω01 transition frequency, such that the qubit Bloch
vector along the equator precesses randomly with respect to the rotating frame of the qubit (light orange arrows), shrinking the Bloch
vector at a rate of �φ (orange). (c) Longitudinal transitions result from spontaneous decay (cyan) at a rate �1↓ or spontaneous excitation
(purple) at a rate �1↑. (d) Depolarizing noise acts isotropically around the Bloch sphere, shrinking the length of the Bloch vector (red)
relative to a pure quantum state on the surface of the Bloch sphere (black). (e) Stochastic Pauli noise acts anisotropically around the
Bloch sphere, shrinking the length of the Bloch vector and resulting in an offset (orange) relative to the intended quantum state (black).
(f) Leakage describes the excitation of a qubit out of the computational basis {|0〉 ,|1〉} into higher energy levels.

where m̂ can be arbitrary relative to n̂. When m̂ = n̂, as
is common for certain calibration errors, the rotation axis
is correct, but the rotation angle is wrong; this is called
an over- or under-rotation error. A coherent error changes
where the state vector is located on the Bloch sphere rel-
ative to the intended target state, but has no effect on the
length of the Bloch vector and therefore maintains the
purity of the state; see Fig. 4(a).

In the Kraus representation, a coherent error by an angle
θ is given by

E(ρ) = Um̂(θ)ρUm̂(θ)
†=e−i θ2 m̂·σρei θ2 m̂·σ , (140)

where K = Um̂(θ) = e−i θ2 m̂·σ is the Kraus operator. Below,
we list various superoperator representations for a coherent
error about the Z axis with Kraus operator K = Rz(θ) [see
Eq. (136)]:

(a) Transfer matrix (basis of matrix units):

�c = Rz(θ)
∗ ⊗ Rz(θ) =

⎛
⎜⎝

1 0 0 0
0 eiθ 0 0
0 0 e−iθ 0
0 0 0 1

⎞
⎟⎠ .

(141)
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(b) PTM:

� =

⎛
⎜⎝

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

⎞
⎟⎠ . (142)

(c) χ matrix (Pauli basis):

χ
.= 1

2

⎛
⎜⎝

1 + cos(θ) 0 0 i sin(θ)
0 0 0 0
0 0 0 0

−i sin(θ) 0 0 1 − cos(θ)

⎞
⎟⎠ .

(143)

(d) Choi matrix (computational basis):

C = vec[Rz(θ)]vec[Rz(θ)]† , (144)

.=

⎛
⎜⎝

1 0 0 e−iθ

0 0 0 0
0 0 0 0

eiθ 0 0 1

⎞
⎟⎠ . (145)

B. Dephasing

Dephasing is the loss of phase coherence in a quantum
state. This manifests as the decay in the absolute value of
the off-diagonal entries of the system’s density matrix. In
many physical qubit implementations, the |0〉 and |1〉 states
are chosen to be energy eigenstates. The relative phase of
these two states will evolve in time at a rate proportional to
their energy difference. In order to perform coherent oper-
ations, external control fields must be resonant (or near
resonant) with this transition, meaning that the oscilla-
tion frequency of the control fields should equal the phase
evolution frequency of the qubit. When noise causes a
complete loss of phase coherence between these two oscil-
lators (the qubit and the control field), the qubit is said to
have dephased. This can happen if either (or both) of the
oscillators suffer from fluctuations in their oscillation fre-
quency, leading to uncertainty in their relative phase [see
Fig. 4(b)]. Qubits can experience frequency uncertainty
due to changes in their energy splittings, such as magnetic
field fluctuations, or coupling to other quantum systems,
such as neighboring qubits, ac Stark shifts from control
amplitude fluctuations, paramagnetic defects in semicon-
ductors, or even the electromagnetic vacuum field. Control
systems can similarly suffer a range of errors that lead
to frequency instability, such as finite laser linewidths,
acoustic noise in fiber optics, or clock jitter in arbitrary
waveform generators.

Irreversible dephasing can arise when the qubit and
clock relative frequency is changing quickly compared
to the characteristic control timescale. In this case, off-
diagonal entries of the density matrix are seen to decay

exponentially with a characteristic timescale T2 (“T two”;
see Sec. VI D 2). T2 is sometimes called the transverse
relaxation time or the intrinsic dephasing time. In the
absence of spontaneous emission effects (discussed in
Sec. III C), the T2 time is the inverse of the pure dephasing
rate, �φ = 1/T2.

If the relative frequency is changing slowly compared
to the control timescale, then frequency errors can build
up coherently for some time, and the decay of quantum
coherence is nonexponential (e.g. Gaussian) rather than
exponential. The characteristic timescale T∗

2 (“T two star”)
is known as the effective transverse relaxation time or
inhomogeneous dephasing time. Because the errors are
correlated in time, dynamical decoupling and refocusing
tools, such as the Hahn echo [86], can be used to extend the
phase coherence time. The coherence decay timescale after
refocusing is typically used as an estimate of the intrin-
sic dephasing time, and is denoted T2E (“T two echo”).
Protocols for characterizing the T∗

2 and T2E times are intro-
duced in Sec. VI D 2. See [87–90] for background on more
advanced dynamical decoupling schemes.

The Kraus representation of dephasing noise is

E(ρ) =
(

1 − p
2

)
ρ + p

2
ZρZ , (146)

with Kraus operators KI =
√

1 − p/2I and KZ = √
p/2Z.

Here, a quantum state ρ under goes a phase-flip with prob-
ability p/2, and is unchanged with probability 1 − p/2.
Below, we list various superoperator representations for
dephasing noise occurring with probability p/2:

(a) Transfer matrix (basis of matrix units):

�c = K∗
I ⊗ KI + K∗

Z ⊗ KZ

=

⎛
⎜⎝

1 0 0 0
0 1 − p 0 0
0 0 1 − p 0
0 0 0 1

⎞
⎟⎠ . (147)

(b) PTM:

� =

⎛
⎜⎝

1 0 0 0
0 1 − p 0 0
0 0 1 − p 0
0 0 0 1

⎞
⎟⎠ . (148)

(c) χ matrix (Pauli basis):

χ
.=

⎛
⎜⎝

1 − p/2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 p/2

⎞
⎟⎠ . (149)
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(d) Choi matrix (computational basis):

C = vec(KI )vec(KI )
†+vec(KZ)vec(KZ)

† , (150)

.=

⎛
⎜⎝

1 0 0 1 − p
0 0 0 0
0 0 0 0

1 − p 0 0 1

⎞
⎟⎠ . (151)

C. Amplitude damping (spontaneous emission)

Many physical qubit species use two nondegenerate
energy eigenstates to store quantum information, with the
|1〉 state often higher in energy than the |0〉 state. Because
of this energy gap, the qubit can experience spontaneous
emission, a process in which an excited system decays
to a lower-energy state by the emission of a photon, or
similar (but non-radiative) energy-loss processes. These
effects lead to a loss of quantum information, and are
typically modeled as an amplitude damping error. Ampli-
tude damping can also model the reverse process, where a
qubit absorbs energy from the environment. Together, the
combination of the emission and decay processes describe
thermalization.

Strong amplitude damping on a qubit maps all points
on (and within) the Bloch sphere to a single pure state,
making amplitude damping the paradigmatic example of
a nonunital process—it does not preserve the maximally
mixed state. Weaker (partial) amplitude, amplitude damp-
ing errors are characterized by their decay rate. If ampli-
tude damping describes a decay from |1〉 to |0〉, we denote
the decay rate �1↓. The rate of the reverse process is
denoted �1↑ (see Fig. 4). The characteristic thermalization
rate, also frequently called the longitudinal relaxation rate,
is their sum:

�1 = 1
T1

= �1↑ + �1↓ . (152)

Here T1, the “T-one time,” is the characteristic thermal-
ization timescale. If the temperature of the environment
is small relative to the qubit energy splitting—i.e., kBT �
�ω01—then the decay rate will be significantly larger than
the absorption rate, �1↓ � �1↑, and T1 � 1/�1↓. Energy
decay will also impact the phase coherence of the qubit,
since a qubit that decays to the ground state loses all infor-
mation about its prior phase. A well-known bound [91] on
the dephasing timescale is

T2 ≤ 2T1 . (153)

In Sec. VI D, we introduce protocols for characterizing
both timescales.

The energy decay rate can be derived from low-level
physics models through the use of Fermi’s golden rule:

�1↓ = 1
�2 | 〈0|Ĉ|1〉 |2Sα(ω01) , (154)

where Ĉ is the coupling operator to an environmental bath
α at the qubit frequency ω01, which is described by the
noise spectral density Sα . Careful engineering of the noise
environment—e.g., by placing qubits in cavities—has been
shown to significantly extend T1 times in superconduct-
ing qubits [18,92–95]. Optical-frequency qubits in atomic
systems have T1 times typically on the order of seconds,
while hyperfine atomic qubits can have radiative T1 times
approaching the age of the universe. This long lifetime
is due to a combination of weak magnetic dipole cou-
pling to the electromagnetic field, and the relatively small
density of states available to photons at low (microwave)
splittings.

The Kraus representation of spontaneous emission
(amplitude damping) is

E(ρ) = K0ρK†
0+K1ρK†

1 , (155)

with Kraus operators

K0 =
√

I − pσ+σ− =
(

1 0
0

√
1 − p

)

and

K1 = √
pσ−=

(
0

√
p

0 0

)
,

where σ+ = |1〉〈0| and σ− = |0〉〈1|. Each Kraus operator
represents an event that can occur, transforming the state.
K1 can only occur if the system is initially in |1〉, and if
it occurs then a quantum of energy is lost to the envi-
ronment, leaving the system in |0〉. Otherwise K0 occurs,
and the amplitude for the system to be in |1〉 gets smaller.
Below, we list various superoperator representations for an
amplitude damping process with decay probability p:

(a) Transfer matrix (basis of matrix units):

�c = K∗
0 ⊗ K0 + K∗

1 ⊗ K1 ,

=

⎛
⎜⎜⎝

1 0 0 p
0

√
1 − p 0 0

0 0
√

1 − p 0
0 0 0 1 − p

⎞
⎟⎟⎠ . (156)

(b) PTM:

� =

⎛
⎜⎜⎝

1 0 0 0
0

√
1 − p 0 0

0 0
√

1 − p 0
p 0 0 1 − p

⎞
⎟⎟⎠ . (157)
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(c) χ matrix (Pauli basis):

χ
.= 1

4

⎛
⎜⎜⎝

(
1 +√

1 − p
)2 0 0 p

0 p −ip 0
0 ip p 0
p 0 0

(
1 −√

1 − p
)2

⎞
⎟⎟⎠ .

(158)

(d) Choi matrix (computational basis):

C = vec(K0)vec(K0)
†+vec(K1)vec(K1)

† , (159)

.=

⎛
⎜⎜⎝

1 0 0
√

1 − p
0 0 0 0
0 0 p 0√

1 − p 0 0 1 − p

⎞
⎟⎟⎠ . (160)

In the PTM representation, we can directly observe that
amplitude damping is a nonunital process, because the first
column is not [1, 0, 0, 0]T.

D. Depolarizing noise

Depolarizing noise describes the process in which a
quantum state ρ is replaced by a completely mixed state
with some probability p ,

E(ρ) = pI/d + (1 − p)ρ

=
(

1 − 3p
4

)
ρ + p

4
(X ρX + YρY + ZρZ) . (161)

Its the Kraus operators are KI =
√

1 − 3p/4I , KX =√
p/4X , KY = √

p/4Y, and KZ = √
p/4Z. Depolarizing

noise acts isotropically on the Bloch sphere, and Pauli X ,
Y, and Z errors have an equal probability of occurring for
all states. Therefore, depolarizing noise scales the length
of the Bloch vector by the depolarizing probability p; see
Fig. 4(d). Note that depolarizing noise is often written in a
more intuitive way,

E(ρ) = (1 − p ′) ρ + p ′

3
(X ρX + YρY + ZρZ) , (162)

where we take p ′ = 3p/4. In this form, we may interpret a
depolarizing noise channel as one in which the qubit expe-
riences an X , Y, and Z error, each with probability p ′/3,
but remains unchanged with probability 1 − p ′. Below, we
list various superoperator representations for depolarizing
noise:

(a) Transfer matrix (basis of matrix units):

�c =
(

1 − 3p
4

)
I ⊗ I

+ p
4
(
X ⊗ X + Y∗ ⊗ Y + Z ⊗ Z

)
,

=

⎛
⎜⎝

1 − p/2 0 0 p/2
0 1 − p 0 0
0 0 1 − p 0

p/2 0 0 1 − p/2

⎞
⎟⎠ .

(163)

(b) PTM:

� =

⎛
⎜⎝

1 0 0 0
0 1 − p 0 0
0 0 1 − p 0
0 0 0 1 − p

⎞
⎟⎠ . (164)

(c) χ matrix (Pauli basis):

χ
.=

⎛
⎜⎝

1 − 3p/4 0 0 0
0 p/4 0 0
0 0 p/4 0
0 0 0 p/4

⎞
⎟⎠ . (165)

(d) Choi matrix (computational basis):

C =
∑

P∈{I ,X ,Y,Z}
vec(KP)vec(KP)

† , (166)

.=

⎛
⎜⎝

1 − p/2 0 0 1 − p
0 p/2 0 0
0 0 p/2 0

1 − p 0 0 1 − p/2

⎞
⎟⎠ . (167)

E. Stochastic Pauli noise

Stochastic Pauli noise generalizes both depolarizing and
dephasing noise, allowing all three of the Pauli X , Y,
and Z errors to have distinct probabilities pX , pY, and pZ ,
respectively. The Kraus representation of stochastic Pauli
noise is

E(ρ) = (1 − pX − pY − pZ)ρ + pX X ρX + pYYρY

+ pZZρZ , (168)

with Kraus operators KI =
√

1 − pX − pY − pZI , KX =√
pX X , KY = √

pYY, and KZ = √
pZZ, subject to pX , pY,

pZ ≥ 0 and pX + pY + pZ ≤ 1. Dephasing noise is the spe-
cial case where pX = pY = 0, and depolarizing noise is the
special case where pX = pY = pZ .

Stochastic Pauli noise is unital [i.e., E(I) = I], and for
a single qubit it shrinks the Bloch vector anisotropically.
This reduces the Bloch vector’s length, but because the
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shrinking is anisotropic it can also change the Bloch vec-
tor’s direction relative to the intended target state in a way
that depends on the relative probabilities of the Pauli errors
and the location of the vector on the Bloch sphere [see

Fig. 4(e)]. The various representations of stochastic Pauli
noise with probabilities pX , pY, and pZ are given by the
following, where p ′ = pX + pY + p ′′

Z and pI = 1 − p ′0:

(a) Transfer matrix (basis of matrix units):

�c = pI I ⊗ I + pX X ⊗ X + pYY∗ ⊗ Y + pZZ ⊗ Z =

⎛
⎜⎝

pI + pZ 0 0 pX + pY
0 pI − pZ pX − pY 0
0 pX − pY pI − pZ 0

pX + pY 0 0 pI + pZ

⎞
⎟⎠ . (169)

(b) PTM:

⎛
⎜⎝

1 0 0 0
0 1 − 2(pY + pZ) 0 0
0 0 1 − 2(pX + pZ) 0
0 0 0 1 − 2(pX + pY)

⎞
⎟⎠ . (170)

(c) χ matrix (Pauli basis):

χ
.=

⎛
⎜⎝

1 − p ′ 0 0 0
0 pX 0 0
0 0 pY 0
0 0 0 pZ

⎞
⎟⎠ . (171)

(d) Choi matrix (computational basis):

C =
∑

P∈{I ,X ,Y,Z}
vec(KP)vec(KP)

† , (172)

.=

⎛
⎜⎝

pI + pZ 0 0 pI − pZ
0 pX + pY pX − pY 0
0 pX − pY pX + pY 0

pI − pZ 0 0 pI + pZ

⎞
⎟⎠ .

(173)

The χ matrix of any Pauli stochastic noise process is diag-
onal in the Pauli basis, and its diagonal elements can be
determined directly from the probability coefficients in the
Kraus representation. A Pauli channel’s PTM is also diag-
onal in the Pauli basis, and so its eigenoperators are the
Pauli operators [i.e., E(P) = λPP for each Pauli P]. The
diagonal elements of the PTM for a stochastic Pauli noise
process are thus called Pauli eigenvalues.

Equation (170) makes apparent an important connection
between the Kraus and PTM representations for stochastic
Pauli noise. Namely, a Pauli error Q in the Kraus rep-
resentation that occurs with probability pQ will attenuate
the Pauli eigenvalue corresponding to any Pauli opera-
tor P that anticommutes with Q (i.e., {P, Q} = 0). This
can be generalized in the following way: for a set of

Pauli-Kraus operators {Q} with
∑

Q pQ = 1, the resulting
Pauli eigenvalues λP = �PP in the PTM representation are
given as

�PP = 1 − 2
∑

Q s.t. {P,Q}=0

pQ . (174)

The connection between Pauli errors in the Kraus repre-
sentation and Pauli eigenvalues in the PTM representation
will be important when we discuss QCVV protocols for
Pauli noise learning (Sec. IX C).

F. Leakage

Leakage refers to any process in which a qubit or quan-
tum register is excited out of its computational basis states
(e.g., {|0〉 , |1〉}) to an orthogonal state. When a qubit is
encoded into the lowest energy levels of a system, the leak-
age states are higher energy levels (e.g., |2〉); see Fig. 4(f).
Leakage can be coherent (preserving phases between the
computational basis and the leakage state[s]), if a qubit is
unintentionally driven at its |1〉 → |2〉 resonant frequency,
or incoherent (no phase coherence is preserved between
the computational space and the leakage state[s]), if the
excitation is due to thermal noise.

Some authors describe leakage as a non-trace-
preserving (TP) process, i.e., as a qubit process that maps
ρ 	→ ρ ′ where Tr(ρ ′) < Tr(ρ) for a qubit state ρ. How-
ever, the probability of observing some outcome will
always be 1, which makes the representation of leakage
as non-TP problematic. In a system that can detect leakage
events (e.g., many superconducting systems; see Fig. 36)
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every experiment will either return |0〉, |1〉, or |2〉. Con-
versely, in systems unable or not designed to detect leakage
(e.g., atomic qubits measured via resonance fluorescence,
where |0〉 is measured by a dark state and |1〉 is measured
by a bright state), leakage events will be misclassified as
either |0〉 or |1〉. However, in both cases, every measure-
ment yields some outcome. An example of a processes
which is truly non-TP is postselection, in which some
outcomes are discarded after measurement.

There is no TP Kraus representation of leakage within
the qubit subspace. But leakage can be modeled rigor-
ously by including additional states, promoting a qubit to
a “qudit” with a d > 2-dimensional Hilbert space. Leak-
age can then be modeled by CPTP maps acting on d ×
d density matrices, by introducing Kraus operators K =√pij |j 〉〈i| that map computational states (e.g., {|0〉 , |1〉}) to
leakage states (e.g., |2〉). Leakage events are often subject
to selection rules between the ith and j th energy level; for
example, while a transition from |1〉 → |2〉 is responsible
for leakage out of the computational basis states, a direct
transition from |0〉 → |2〉 might be quantum mechanically
forbidden, depending on the underlying physics of the
system. Transitions from the leakage states back into the
computational basis states are called seepage [100], and
can also be modeled using qudit Kraus operators.

G. Non-Markovian and unmodeled errors

So far, we have only considered Markovian errors. In
the context of gate-based quantum computing, in partic-
ular for QCVV, an error is Markovian if it can be mod-
eled by a CPTP map (i.e., a transfer matrix or process
matrix). If an operation g on n qubits is modeled by an
n-qubit CPTP map G, then G can describe any Markovian
errors in the implementation of g. But there are commonly
encountered phenomena that G cannot model. For exam-
ple, if the n “active” qubits are accompanied by one or
more “spectator” qubits that G does not describe, then
G cannot account for coupling between active and spec-
tator qubits. If applying g causes a persistent effect that
induces errors during subsequent operations, that also can-
not be captured by a CPTP map G. Errors that violate
the assumption of temporal locality—including coupling
to spectator degrees of freedom—are by definition non-
Markovian (see Sec. VII D 3). Therefore, for n active
qubits, non-Markovian errors are deviations from ideal
behavior that cannot be modeled by a context-independent
n-qubit transfer or process matrix.

Common types of non-Markovian errors in the NISQ
era include fluctuation or drift of qubit parameters (e.g.,
qubit transition frequency) [96] and leakage outside of the
computational basis states [97–102] [see Fig. 4(f)] with a
memory longer than the timescale of the gate, correlated
errors [103,104] or unwanted entanglement with qubits

FIG. 5. Non-Markovian errors in gate-based quantum comput-
ing. For a system of two active qubits (black), all Markovian
errors that occur within the timescale of a given cycle of gates
(blue rectangle) can be modeled by a two-qubit transfer matrix
(PTM at top of the figure; in this schematic, colored cells indi-
cate errors in the target operation). Examples of non-Markovian
errors that cannot be modeled by a two-qubit transfer matrix
include (but are not limited to) drift in qubit properties over
the timescale of multiple layers (e.g., fluctuations in the qubit
frequency ω, with ω′ = ω + δω), leakage to higher energy lev-
els with a memory longer than the duration of a gate (purple),
unwanted entanglement (green) with outside qubits (gray; e.g.,
due to static ZZ coupling), and classical EM crosstalk signals
(red) originating from other qubits outside of the defined system
that arrive within the light cone (light blue) of the system qubits.
(Figure adapted with permission from Ref. [79].)

outside of the defined n-qubit system (e.g., static ZZ cou-
pling in superconducting qubits [105–107]), coupling to
other external fluctuators (e.g., nonequilibrium quasipar-
ticles) [108–110], qubit heating [111], and 1/f noise [112,
113]; see Fig. 5. However, if we were to instead enlarge
our Hilbert space to include higher energy levels and more
(perhaps nonlocal) qubits, then processes like leakage
and unwanted entanglement are no longer non-Markovian.
Therefore, in general, quantum non-Markovianity is highly
dependent upon the definition of one’s system and the
timescales under consideration; i.e., whether observed
dynamics are Markovian or not depends on how big a
model the observer uses to describe them.

030202-28



PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

The study of quantum non-Markovianity is an active
area of research [114–123], and defining quantum non-
Markovian processes is the subject of much debate [124–
128]. However, there are efforts to unify all non-Markovian
processes under a common theoretical framework [129].
In this tutorial, we focus mainly on the characterization
and benchmarking of Markovian errors, and only mention
non-Markovian errors in passing. However, understand-
ing non-Markovian errors is important for many reasons,
including the fact that they are an unavoidable conse-
quence of open quantum systems, in which the system
under study is in contact with an external bath or envi-
ronment with uncontrolled degrees of freedom. Addition-
ally, non-Markovian errors interfere with the characteri-
zation of Markovian errors, which is the central goal of
QCVV. Finally, their impact on quantum error correction is
not well understood, which is important for fault-tolerant
quantum computation.

IV. FIDELITIES AND ERROR METRICS

The purpose of QCVV is to discover and describe what
is happening inside a quantum computer. In almost all
cases, the computer is intended to do a particular thing. We
call this a target. The models or descriptions for the target,
and the thing that actually happened, can be complex and
unwieldy. QCVV results are therefore often summarized
by a single performance metric that compares what actu-
ally happened to what was intended to happen. Many such
metrics exist. In this section, we introduce and explain the
most common ones.

The metrics we consider in this section compare two
mathematical models, one of which (the target) describes
the ideal operation of the quantum computer. So, a met-
ric [130] is generally a function f (x, x), where x describes
actual (i.e., experimental) behavior, and x is the tar-
get. The nature of x and x depend on what aspect of
the quantum computer’s operation is being examined.
In this tutorial (and generally in QCVV), we consider
metrics for five aspects of a quantum computer’s behav-
ior:

(1) Probability distributions (Sec. IV A). Probability
distributions describe the results of running quan-
tum circuits or experiments.

(2) Quantum states (Sec. IV B). Quantum states
describe the configuration of a quantum register
before it is measured.

(3) Quantum processes (Sec. IV C). Quantum processes
describe how an operation or logic gate transforms
states.

(4) Quantum measurements (Sec. IV D). Quantum mea-
surements describe readout operations that extract
classical data from quantum states.

(5) Quantum processors (gate sets) (Sec. IV E). Quan-
tum gate sets describe a complete set of logic
operations on a quantum register.

We discuss multiple distinct metrics that are commonly
used for each kind of quantum object. These distinct met-
rics are not redundant; they quantify different aspects of
an error, and each uniquely solves a particular problem.
Understanding the differences between these metrics, and
when to use each, is essential to reading and communicat-
ing QCVV results.

The metrics used in QCVV emerged organically. Most
were borrowed or adapted from other fields of quantum
information science, where their original purpose was not
to quantify “error,” but to quantify the difficulty of dis-
tinguishing two objects. As a result, their organization is
somewhat haphazard. Some quantify the similarity of two
objects. These are usually called “fidelity,” and take the
value f (x, x) = 1 when x = x. Others quantify the devia-
tion between (or distinguishability of) two objects. These
take the value f (x, x) = 0 when x = x, and some (but not
all!) satisfy the mathematical definition of a metric. If
f (x, x) is a fidelity metric, then generally the correspond-
ing infidelity 1 − f (x, x) can be used as a deviation metric.
Deviation metrics, including infidelities, are often inter-
preted as “error rates,” but we caution that no single “error
rate” coincides with the probability of quantum computer
failures in all contexts (which is why multiple metrics
exist!).

A. Classical probability distributions

QCVV is primarily about modeling the behavior and
performance of quantum states and processes, but they
cannot be observed directly. A quantum state gains tan-
gible reality by being measured. Quantum processes act
on states, which can then be measured to yield data. Thus,
the necessary common denominator in any experiment that
tests a quantum state or process is the probability distribu-
tion of a measurement’s outcome. For this reason, a good
metric for quantum states or quantum processes is almost
always derived from a more elementary metric on prob-
ability distributions. We therefore begin our survey with
metrics that compare two probability distributions. How-
ever, these metrics also appear in QCVV in their own
right, when they are used directly to evaluate the execution
accuracy of a large quantum circuit.

If an experiment has a deterministic (nonrandom) out-
come, and is intended to produce an outcome X , then
it is very easy to test whether the experiment is work-
ing correctly. Perform a single trial, record the outcome
Y, and ask whether Y = X . But the outcomes of quantum
experiments are generally not deterministic. Both the tar-
get outcome and the actual outcome are random variables,
described by probability distributions p and p over some
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sample space. Testing whether such an experiment is work-
ing correctly is trickier. Even in the simplest case, where
the target outcome is deterministic (p is supported on a
single unique outcome X ), we must extend the Boolean
measure of correctness (“it works correctly” or “it does
not”) to a real-valued probability p(X ) ∈ [0, 1] describing
how often the experiment works correctly. For general p
and p, quantifying the experiment’s correctness becomes
nontrivial. The following metrics are frequently used for
this purpose.

1. Total variation distance

The total variation distance (TVD) between p and p is

dTV(p, p) ≡ 1
2

∑
k

|pk − pk| , (175)

= 1
2
‖p − p‖1 . (176)

It has several important operational interpretations (prac-
tical questions to which it is the answer). The best-known
interpretation of TVD involves single-shot discrimination
between distributions. The optimal probability of guess-
ing correctly whether a single sample was drawn from
distribution p or p, with both theories deemed equally
probable, is [1 + dTV(p, p)] /2. Perhaps more importantly,
if N samples are drawn from distribution p, then as N →
∞ the fraction of those samples that must be changed in
order to make them consistent with p is exactly dTV(p, p).
This supports interpreting dTV(p, p) as an error rate—i.e.,
the rate of events produced by sampling from p that are
inconsistent with p.

The TVD between any two distributions is bounded
between 0 (achieved uniquely when they are equal) and
1 (achieved when the distributions have disjoint support).
TVD is a metric in the strict mathematical sense (e.g., it
satisfies the triangle inequality).

2. Classical (Hellinger) fidelity

TVD does not capture everything. For example, con-
sider two different discrimination problems over the set
{0, 1}:

(1) Distinguish p = (1, 0) from p = (0.98, 0.02),
(2) Distinguish q = (0.49, 51) from q = (0.51, 0.49).

Both pairs are separated by the same TVD (0.02), and so
can be distinguished with equal probability (0.51) given a
single sample. But this is barely better than random guess-
ing. Distinguishing either pair with reasonable confidence
requires examining N � 1 samples. Rather than asking
“What’s the probability of guessing correctly given one
sample?”, we should ask “How many samples are required
to guess correctly with high probability (e.g., 90%)?”

Remarkably, the answers for the two pairs are quite dif-
ferent. To distinguish p from p, we guess p if we see any
“1” outcomes whatsoever, and p if we do not. It takes just
80 samples to ensure a 90% probability of guessing cor-
rectly. But to distinguish q from q, we guess q if we see
more “0” outcomes than “1” outcomes, and q otherwise.
The random fluctuations in the number of “0” and “1” out-
comes are much larger in this case, and a whopping 4105
samples—greater than 50× more!—are needed to ensure
a 90% probability of guessing correctly. Thus, the TVD
does not regularize well—i.e., the TVD between p and p
does not accurately predict the TVD between the N -copy
distributions p⊗N and p⊗N .

A metric that does regularize well is the Bhattacharya
coefficient [131] (a.k.a., “statistical overlap” [132]):

BC(p, p) ≡
∑

k

√
pkpk . (177)

In quantum information science, the square of the Bhat-
tacharya coefficient is often called classical fidelity or
Hellinger fidelity:

F(p, p) ≡
(∑

k

√
pkpk

)2

. (178)

Classical fidelity is a measure of similarity: F(p, p) = 1 if
and only if p = p, and F(p, p) = 0 if and only if they have
disjoint support. Unlike the TVD, the fidelity between two
distributions does predict the fidelity between N copies of
the same distributions, because

F(p⊗N , p⊗N ) = F(p, p)N . (179)

Classical fidelity is very closely related to the Hellinger
distance,

H(p, p) ≡
√

1 −
√

F(p, p) , (180)

which is a metric in the strict mathematical sense. The
Hellinger distance is related to the TVD by a bounding
inequality,

H 2(p, p) ≤ dTV(p, p) ≤
√

2H(p, p) . (181)

This kind of inequality can help us understand N -copy dis-
tinguishability. If we rewrite it in terms of the classical
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fidelity, we get

1 −
√

F(p, p) ≤ dTV(p, p) ≤
√

2
√

1 −
√

F(p, p) . (182)

There is a strictly more powerful inequality [133],

1 −
√

F(p, p) ≤ dTV(p, p) ≤
√

1 − F(p, p) , (183)

and if we apply this to the N -copy distributions, we get

1 − F(p, p)N/2 ≤ dTV
(
p⊗N , p⊗N ) ≤

√
1 − F(p, p)N .

(184)

Therefore, the TVD between p⊗N and p⊗N will be close
to 1 if and only if F(p, p)N/2 � 1—which is to say,
when N � 2/(− ln[F(p, p)]). This is the inverse of the
Bhattacharya distance,

dB(p, p) ≡ −1
2

ln[F(p, p)] , (185)

which quantifies the difficulty of distinguishing very sim-
ilar distributions p and p much more accurately than the
TVD. For the specific examples given in the beginning
of the section, 1/dB(p, p) ≈ 99, whereas 1/dB(q, q) ≈
4999—quite close (in both cases) to the exact number of
samples required to distinguish the distributions 90% of
the time.

3. Relative entropy and cross-entropy

In classical information theory, the most important and
commonly used metric of deviation between distributions
p and p is neither TVD nor fidelity. Rather, it is the
Kullback-Leibler (KL) divergence, also known as relative
entropy:

dKL(p||p) ≡
∑

k

pk log
(

pk

pk

)
. (186)

The KL divergence quantifies deviation (not similarity). It
is always non-negative, it is zero if and only if p = p, and
it is not a mathematical metric. Unlike fidelity or TVD, dKL
can be arbitrarily large. Furthermore, it is asymmetric with
respect to its two arguments, and is usually stated as “the
KL divergence from p to p.” Its first argument (here p)
should represent truth or reality, while its second argument
(here p) should represent a theory or model.

The KL divergence is deeply rooted in statistics and
information theory, and has too many operational inter-
pretations to list here. It often quantifies the consequences
of believing that samples are being drawn from p when
they are actually being drawn from p. For example, it
describes the rate at which a gambler or investor will lose

money if they use a suboptimal strategy, the extra band-
width required to send a message using a code adapted for
the wrong distribution of symbols, and the rate at which
a skeptical observer will accumulate evidence against the
theory p when data are actually generated by p.

In all of these usages, the KL divergence appears as the
difference between two quantities known as the entropy
and cross-entropy:

H(p) ≡ −
∑

k

pk log(pk) , (187)

H(p, p) ≡ −
∑

k

pk log(pk) . (188)

The entropy of p (usually known as Shannon entropy in the
information theory literature [134]) quantifies the intrinsic
cost of performing a task on p, while the cross-entropy of
p relative to p quantifies the same cost using a suboptimal
strategy optimized for p.

Each of these quantities has many uses in its own right.
The cross-entropy is particularly useful in QCVV and
machine learning, because it has a rigorous mathemati-
cal meaning and it can be estimated easily in experiments
since it is strictly linear in the true distribution p, and can
thus be written as an expectation value:

H(p, p) = 〈log(p)〉p . (189)

If the entropy of a candidate (model) distribution p is
known, then an easy way to check whether the true p is
equal (or close) to p is to estimate H(p, p) by drawing
some samples, estimating 〈log(p)〉p, and comparing it to
the known H(p).

4. Linear cross-entropy and heavy output probability

As noted above, cross-entropy is a well-motivated met-
ric, with important operational interpretations, that can be
measured directly. However, if p has very small (e.g., zero)
entries, then the variance of the estimate can be very large,
making it slow to converge.

When the precise properties of cross-entropy are not
important, and it is only being used as a proxy for similarity
of p to p, the so-called linear cross-entropy,

Hlin(p, p) ≡ d
d∑

k=1

pkpk − 1 , (190)

where d is the size of the sample space, can be used instead.
It is less sensitive to arbitrary small deviations in the prob-
abilities than the real cross-entropy, but estimates of it
converge with fewer samples.

Heavy output probability is another metric designed for
ease of measurement. Given a d-element probability dis-
tribution p, the “heavy” outcomes are simply the ones
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whose probability is greater than the median—i.e., the
d/2 elements to which p assigns the highest probabilities
[135]. The heavy output probability of a distribution p with
respect to p is simply the total probability assigned by p
to p’s heavy outcomes. Heavy output probability is easily
estimated by simply drawing samples from p and checking
whether they are “heavy” for p.

Linear cross-entropy [136] and heavy output probabil-
ity [137] are used in QCVV to test and verify distributions
over enormously large sample spaces, where sampling the
entire space is infeasible. Both can be estimated fairly
accurately using just a few samples. However, neither has a
particularly compelling interpretation. Moreover, estimat-
ing them does require calculating elements of the refer-
ence distribution p, which can be difficult for distributions
produced by quantum algorithms (the classical hardness
of this task is partly why we are developing quantum
computers in the first place!).

5. Roles of metrics

TVD, fidelity, and relative and cross-entropy are just
a few of the many metrics, divergences, deviations, and
similarity measures used in the literature to quantify sim-
ilarity or distinguishability of distributions. But they are
the ones that appear most frequently in the context of
quantum computing and QCVV. More importantly, they
are the ones from which the most commonly used proper-
ties of quantum objects are derived. These quantities, and
their quantum counterparts discussed below, are distinct,
inequivalent, and generally not interchangeable. When a
QCVV practitioner is choosing how to quantify accuracy,
error, similarity, or deviation, it is important to consider
the specific task at hand. In almost every circumstance, no
more than one of these quantities will faithfully capture the
experimental behavior of interest.

B. Quantum states

The quantum state of a qubit, qudit, or quantum regis-
ter before it gets measured is described by a state vector
|ψ〉 (Sec. II A 1) or a density matrix ρ =∑i pi |ψi〉〈ψi|
(Sec. II B 1). Like probability distributions, quantum states
assign probabilities to events. But for a quantum system,
the sample space of possible events is determined not by
the nature of the system, but by how an observer inter-
acts with (measures) it. How similar or distinguishable two
quantum states are thus depends on how they are mea-
sured. Because it is always easy to find measurements
that fail to distinguish between quantum states, metrics
for comparing two quantum states are typically defined by
maximizing distinguishability, or minimizing similarity,
over all possible measurements.

Metrics on quantum states can be used to compare any
two states ρ and σ , but in QCVV the most common use by
far is to compare a “real” state ρ to an “ideal” target state

ρ, and thus quantify state-preparation error. Since these
metrics optimize over all possible measurements, they gen-
erally define upper bounds on the probability of observing
an error in a specific measurement, protocol, or algorithm
that uses the “real” state.

1. Trace distance

The trace distance between two quantum states ρ and ρ
is a measure of their distinguishability. It varies from 0 (if
and only if ρ = ρ) to 1 (when their supports are orthog-
onal). It is the maximum over all POVM measurements
M = {Em} of the TVD between M ’s outcome distribution
given ρ, and M ’s outcome distribution given ρ. We say
that the two distributions Pr(m|ρ) and Pr(m|ρ) are induced
by the states ρ and ρ. They are given by

Pr(m|ρ) = Tr[Emρ] , (191)

Pr(m|ρ) = Tr[Emρ] , (192)

and so the TVD between them equals

dTV = 1
2

∑
m

∣∣Tr
[
Em(ρ − ρ)]∣∣. (193)

Helstrom [138] proved that this is maximized by a two-
outcome POVM whose effects are the projectors onto the
positive and negative eigenspaces of (ρ − ρ), and that the
trace distance between ρ and ρ is given by the nuclear
norm of (ρ − ρ),

dtr(ρ, ρ) = 1
2
‖ρ − ρ‖1 = 1

2
Tr|ρ − ρ| , (194)

where |ρ − ρ| =
√
(ρ − ρ)2 can be obtained by diagonal-

izing (ρ − ρ) and replacing each of its eigenvalues λi with
its absolute value |λi|.

Trace distance is a metric in the rigorous sense, and
a measure of distinguishability. It inherits essentially all
the properties of the TVD. In particular, like TVD, it
gives the probability of success for single-shot discrimina-
tion between ρ and ρ. If we are given a single quantum
system, prepared either according to ρ or ρ with equal
prior probabilities, then the maximum achievable probabil-
ity of guessing correctly how it was prepared is achieved
by performing Helstrom’s measurement and is equal to
[1 + dtr(ρ, ρ)]/2.

The trace distance is related to the Euclidean distance
between ρ and ρ for the special case of single-qubit states
on the Bloch sphere. To see this, we can write ρ and ρ in
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terms of their respective Bloch vectors r and r,

ρ = 1
2
(I + r · σ ), ρ = 1

2
(I + r · σ ) . (195)

The trace distance between ρ and ρ is

dtr(ρ, ρ) = 1
2

Tr|ρ − ρ| = 1
4

Tr|(r − r) · σ | . (196)

Because the eigenvalues of σ are ±1, the trace of
|(r − r) · σ | = 2|r − r|, and thus

dtr(ρ, ρ) = 1
2
|r − r| . (197)

Therefore, the trace distance between two single-qubit
states is exactly equal to one-half the Euclidean distance
between their Bloch vectors.

2. State fidelity

The fidelity between two quantum states ρ and ρ is a
measure of their similarity. It varies from 1 (if and only
if ρ = ρ) to 0 (when their supports are orthogonal). In
the simple special case where both states are pure, so
ρ = |ψ〉〈ψ | and ρ = |φ〉〈φ|, their fidelity is exactly equal
to the transition probability,

F(|ψ〉〈ψ |, |φ〉〈φ|) = | 〈ψ |φ〉 |2 . (198)

If state |ψ〉 is measured in a basis containing 〈φ|, then F
is the probability of observing 〈φ| and thus collapsing into
|φ〉 (and vice versa). It is important to note that the state
fidelity is sometimes defined in the literature as the square
root of the transition probability (F ′ = √

F = |〈ψ |φ〉|).
We (like most authors) prefer the definition given above
because F is an actual probability, but readers should be
aware of (and alert for) both definitions in the literature
[139].

If one state is pure, but the other is mixed—e.g.,
ρ =∑i pi |ψi〉〈ψi| and ρ = |φ〉〈φ|—then there is still a
well-defined transition probability from ρ → |φ〉〈φ|. Schu-
macher [140] was the first to define the fidelity as

F(ρ, |φ〉〈φ|) = 〈φ| ρ |φ〉 = Tr[ρ |φ〉〈φ|] . (199)

This special case is very common in QCVV, where state
fidelity is commonly used to quantify error when an
experimentalist intended to prepare |φ〉〈φ| but prepared ρ
instead.

Defining the fidelity between two mixed quantum states
ρ and ρ is a bit trickier because there is no obvious “tran-
sition probability” to a mixed state. There are at least two
independent ways to define the fidelity between two mixed
states. Remarkably, they lead to exactly the same result!

Uhlmann [141] and (later) Jozsa [142] sought to general-
ize “transition probability” to mixed states by considering
purifications of ρ and ρ on a larger Hilbert space. If |ψ〉
and |φ〉 are purifications of ρ and ρ (respectively), then the
maximum value (over all possible purifications) of the tran-
sition probability F(|ψ〉〈ψ | , |φ〉〈φ|) = | 〈ψ |φ〉 |2 is equal
to

F(ρ, ρ) =
(

Tr
√√

ρρ
√
ρ

)2

=
(

Tr
√√

ρρ
√
ρ

)2

, (200)

which is now widely accepted as the definition of fidelity
between two mixed quantum states. Fuchs [132] asked
a different question that is a direct analog to Helstrom’s
derivation of trace distance: what is the minimum value,
over all POVM measurements M , of the classical fidelity
between Pr(m|ρ) and Pr(m|ρ)? The answer turns out to be
identical to Josza’s fidelity [Eq. (200)].

3. Infidelity

Although Eq. (200) is celebrated, it is very rarely neces-
sary in QCVV. The primary use of quantum state fidelity
in QCVV is to quantify and report the error in an experi-
mental attempt to prepare a pure target state |φ〉〈φ|. In this
situation, although the experimentally prepared state ρ is
mixed, the target state is pure. The far simpler formula in
Eq. (199) can be used instead.

Quantifying error is usually better done by reporting
infidelity instead of fidelity:

εF ≡ 1 − F . (201)

Like trace distance or other measures of distinguishability,
infidelity ranges from 0 (when ρ = ρ) to 1 (when they have
disjoint support). If a target state ρ = |φ〉〈φ| is prepared
with infidelity 0, then the probability of an error resulting
from that preparation is also zero, making infidelity a good
metric of error.

Many experiments in the literature report fidelity. How-
ever, the only rationale for the awkwardness of report-
ing F = 0.99981 ± 0.00007 instead of εF = (1.9 ± 0.7)×
10−4 are habit and a vague sense that “fidelity” plays a
privileged role in the quantum information literature. This
is largely a historical accident. Fault tolerance thresholds
are always described by error rates, and for most QCVV
purposes “low error” is a more descriptive epithet than
“high fidelity.”

4. Contrasting trace distance and infidelity

Trace distance and infidelity are the most commonly
used metrics of deviation or distinguishability for quan-
tum states. It is worth briefly examining what makes them
different, and why neither can replace the other. Both corre-
spond directly to classical counterparts (TVD and classical
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FIG. 6. Fidelity vs. trace distance. Given an arbitrary state ρ
and an ideal target state |0〉〈0|, the “error” in ρ can be quanti-
fied in different ways. For example, the fidelity (blue) of ρ with
|0〉〈0| is the projection, or overlap, of ρ with |0〉: F = 〈0| ρ |0〉.
On the other hand, the trace distance between ρ and |0〉〈0| is
dtr = 1

2 Tr |ρ − |0〉〈0||, which equals one-half the Euclidean dis-
tance between the two vectors on the Bloch sphere. In the figure
above, D (red) is the Euclidean distance between ρ and |0〉〈0|,
thus D = 2dtr = Tr |ρ − |0〉〈0||. The infidelity (1 − F) and the
trace distance between ρ and |0〉〈0| can be very different, but nei-
ther is fundamentally better at quantifying the “error” in ρ. Each
is appropriate for a particular operational scenario.

fidelity) as shown by Helstrom [138] and Fuchs [132],
respectively. They inherit all the properties (and differ-
ences) of those classical counterparts. So, for example, the
fidelity between ρ and ρ regularizes nicely to ρ⊗N and
ρ⊗N , whereas their trace distance does not.

But there are additional differences that appear only
at the quantum level. The simplest of these have to
do with the behavior of fidelity and trace distance for
nearby pure quantum states. Suppose that |ψ〉 and |φ〉
are “nearby” pure states, meaning that 1 − | 〈ψ |φ〉 |2 =
ε � 1. Since |ψ〉 and |φ〉 span a two-dimensional sub-
space, we can consider a single-qubit system without
any loss of generality (see Fig. 6). Their fidelity is F =
| 〈ψ |φ〉 |2 = 1 − ε, so their infidelity is ε. The trace dis-
tance between them is dtr = 1

2 Tr
∣∣ |ψ〉〈ψ | − |φ〉〈φ| ∣∣, which

we can compute by observing that because |ψ〉〈ψ | − |φ〉〈φ|
has trace 0, its eigenvalues are {+λ,−λ}, and 2λ2 =
Tr[(|ψ〉〈ψ | − |φ〉〈φ|)2] = 2 − 2(1 − ε) = 2ε, so λ = √

ε

and thus dtr = √
ε. So, if the infidelity between two pure

states is small (e.g., ε = 10−4), then the trace distance
between them will be much larger (

√
ε = 10−2). It is rea-

sonable to ask whether this behavior is generic—i.e., is it
generally true that dtr ≈ √

εF? It is not. This behavior is
specific to pure states that differ by a unitary operation.

If instead we compare |ψ〉〈ψ | to a mixed state ρ = (1 −
ε) |ψ〉〈ψ | + ε |ψ〉〈ψ |, where 〈ψ |ψ〉 = 0, then it is very

easy to show that dtr = εF = ε. For these states, the two
metrics coincide.

These two cases illustrate the two extremes of the
Fuchs–van de Graaf inequalities [133], which relate infi-
delity and trace distance for any pair of quantum states:

1 −
√

1 − εF ≤ dtr ≤ √
εF . (202)

These inequalities are an exact quantum analog of the
inequalities given in Eq. (183) for classical probability dis-
tributions. In the quantum case, if one state is pure, then a
tighter and simpler lower bound holds:

εF ≤ dtr ≤ √
εF . (203)

5. Quantum relative entropy

Quantum relative entropy is a measure of distinguisha-
bility between quantum states. Although it is less common
in the QCVV literature, it is important in quantum infor-
mation theory. It generalizes KL divergence to quantum
states, and is given by

S(ρ||ρ) = Tr[ρ log(ρ)] − Tr[ρ log(ρ)] . (204)

Like the metrics discussed above, it is defined by maximiz-
ing the classical KL divergence of Pr(m|ρ) with respect
to Pr(m|ρ) over all POVM measurements M = {Em}. Like
the KL divergence, it is not a metric, it is asymmetric
with respect to its arguments, and it diverges to infinity
whenever there exists a measurement outcome such that
Pr(m|ρ) > 0 but Pr(m|ρ) = 0.

C. Quantum processes

Quantum computing requires that quantum states be
transformed by precise, controlled evolution. Logic gates,
circuit layers (comprising multiple gates in parallel), and
quantum circuits (comprising multiple layers in sequence)
describe particular unitary transformations that are sup-
posed to change a d-dimensional quantum register’s
state as

ρin 	→ ρout = UρinU† (205)

for some d × d unitary matrix U. Real-world attempts to
implement unitary transformations are imperfect, so the
register’s evolution is not generally described by any uni-
tary U, but as discussed in Sec. II, it can often be described
by a quantum process (CPTP map) acting on d × d density
matrices,

ρin 	→ ρout = G[ρin] . (206)

In this tutorial, a “quantum process” [143] means a
CPTP map whose input and output spaces are the same.
Such maps describe the action of gates, layers, reversible
circuits, idle time, and/or imperfect unitaries. In this
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section, we will refer to any such operation as a gate.
We will denote its real (noisy) action by G, and its ideal
“target” action by G. The target action is almost always
unitary, so G

−1
is also a valid operation, and we can write

G = EG (207)

�
E = GG

−1
, (208)

and refer to E as the error process for G. Most metrics for
quantum processes can be used to compare two arbitrary
processes, but in QCVV they are almost always used to
compare a real process G to its ideal target G. If a metric
f(·, ·) is unitarily invariant, then f(G, G) = f(E , I).

Section II introduced several representations of quan-
tum processes. The metrics we discuss here are properties
of the quantum process itself, and their validity does not
depend on what representation is being used. But each
metric is most easily defined (and/or computed) in a par-
ticular representation. We will make extensive use of
two representations (defined in Sec. II, but outlined again
here):

(a) The transfer matrix representation �G of a quan-
tum process G (Sec. II C 2), which is constructed by
choosing an orthonormal basis {Bi} for the vector
space of d × d matrices, and using the Hilbert-
Schmidt inner product to define

(�G)i,j ≡ Tr
(

B†
i G[Bj ]

)
. (209)

(b) The χ matrix (a.k.a. “process matrix”) representa-
tion χG of G (Sec. II C 4) is constructed by choosing
an orthonormal basis {Bi} for the vector space of d ×
d matrices, and then finding a matrix of coefficients
(χG)i,j such that, for any d × d density matrix ρ,

G[ρ] =
∑

i,j

(χG)i,j BiρB†
j . (210)

It is easy to define ad hoc metrics of similarity or devia-
tion between the matrix representations of G and G. But
most have no operational meaning, and are not useful.
The metrics we use in QCVV and quantum computing
are chosen because they have observable meanings. Since
quantum processes are (like quantum states) not directly
observable, meaningful metrics of similarity or devia-
tion between G and G compare probability distributions
induced by G and G. Metrics specify (1) an initial state
ρ, (2) a POVM {Em}, and (3) a classical metric between
distributions to compare

Pr(m|G[ρ]) = Tr(EmG[ρ]) , (211)

Pr(m|G[ρ]) = Tr(EmG[ρ]) . (212)

This can usually be condensed into “Choose an input state
ρ and compute a known quantum state metric between
G[ρ] and G[ρ].”

As a result, metrics for quantum processes mirror met-
rics for quantum states and classical distributions. The
most commonly used ones are direct generalizations of
TVD and classical fidelity, and inherit their properties.
However, quantum processes are a richer set than states
(or distributions), and display some novel behaviors. So
do their metrics. In particular, more metrics are necessary,
because there is more than one sensible way to choose a
fiducial state.

1. Diamond distance

Given two processes G and G, a simple natural question
is “How much error would be induced by substituting G
for G?” There is no unique answer, because “error” is not
precisely defined in this context. A more precise formula-
tion is “If an unknown process is used just once, what is the
maximum probability of guessing whether it was actually
G or G, given equal prior probability?” Another reasonable
formulation is “If we accidentally used G in place of G in
a single spot in a quantum information processing protocol
repeated N times, what is the maximum fraction of the N
outcomes that would need to be changed to cover up the
mistake?”

Both framings lead to the same answer, the diamond
norm distance (or diamond distance) between G and G
[144]. Derived from trace distance and TVD, the diamond
distance d�(G, G) is the maximum trace distance between
G[ρ] and G[ρ], maximized over all possible input states ρ.
But remarkably, the maximum value of

∥∥G[ρ] − G[ρ]
∥∥

1
may not be attained for any local state ρ describing just the
system on which G or G acts. A strictly higher value—and
thus, greater probability of correctly distinguishing G from
G—can be achieved by applying the unknown process to
a system that is entangled with another “reference” system
that is not affected by the process, but can be measured
jointly afterward. This counterintuitive phenomenon, akin
to superdense coding [145], envariance [146], and telepor-
tation [147], is important, because quantum logic gates are
often applied to qubits that are entangled with other qubits.
Restricting the maximization to local states would yield a
metric that does not actually capture the worst case.

The diamond distance is defined as

d�(G, G) ≡ 1
2

∥∥G − G
∥∥
� , (213)

≡ 1
2

max
ρAB

∥∥((GA − GA)⊗ IB
)
[ρAB]

∥∥
1 , (214)

= max
ρAB

dtr
(
(GA ⊗ IB)[ρAB], (GA ⊗ IB)[ρAB]

)
,

(215)
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where A indicates the system on which G and G act, B
indicates a reference system of the same dimension, and
IB is the identity process on the reference system. Defined
this way, d� ∈ [0, 1], with d� = 0 if and only if G = G and
d� = 1 if and only if they can be distinguished perfectly
with a single use. In the literature, diamond distance is
sometimes defined without the factor of 1

2 .
The diamond distance is unitarily invariant, so if G =

EG, and G is unitary then d�(G, G) = d�(E , I). The dia-
mond norm error of an error process E is the diamond
distance between it and the identity,

d�(E) = 1
2
‖E − I‖� = 1

2
max
ρAB

∥∥ ((EA − IA)⊗ IB) [ρAB]
∥∥

1 .

(216)

When the “diamond norm error” of a gate is mentioned in
the literature, it generally means the diamond norm error
of the gate’s error process (which, as noted here, is equal
to the diamond distance between the gate and its target).
In general, the diamond norm error of a gate is not trivial
to measure, but it can be bounded by the average gate infi-
delity or entanglement and process infidelity of a gate (see
Sec. IV C 5), which we introduce in Sec. IV C 3.

The best-known operational interpretation of d� is the
first one given above—it is an achievable upper bound on
the probability of distinguishing G from G in a single-shot
experiment. But the most important role of the diamond
norm in quantum computing is as an error bound for cir-
cuits that use a gate multiple times. Aharonov et al. [148]
showed that the diamond norm is subadditive. This means
that if two quantum circuits (Circuit 1 and Circuit 2) are
identical except that where operations G1 and G2 appear in
Circuit 1, operations G1 and G2 appear instead in Circuit
2, then the diamond norm distance between the processes
implemented by Circuit 1 and Circuit 2 is less than or equal
to d�(G1, G1)+ d�(G2, G2).

This property, not shared by any other commonly used
error metrics, makes diamond distance uniquely useful. It
is often a very pessimistic upper bound on the error prob-
ability of specific circuits, because in many circuits (i) the
initial state and final measurement are not chosen to max-
imize the observed TVD, and (ii) gates are arranged so
that the errors in their implementation either cancel each
other out (e.g., via dynamical decoupling [149,150]) or add
up nonconstructively (e.g., via Pauli frame randomization
[151–153] or randomized compiling [154,155]). But dia-
mond distance provides a guaranteed upper bound on the
accumulation of error in any quantum circuit—which can
be saturated in some circumstances (e.g., error-amplifying
circuits [156])—because the TVD between a circuit’s ideal
and experimental output distributions is bounded above by
the sum of every operation’s diamond norm error [144,
148]. So it is sometimes used, for example, in rigorous
proofs of fault tolerance [148,157].

2. Jamiołkowski trace distance

Another metric, which is closely related to the dia-
mond distance, is the Jamiołkowski trace distance. It is
obtained by replacing the maximization over input states
in Eq. (215) with a maximally entangled state between the
system of interest and a reference of the same size:

dJ−tr(G, G) ≡ 1
2

∥∥(GA ⊗ IB − GA ⊗ IB
)

[|�AB〉〈�AB|]
∥∥

1 .

(217)

The Jamiołkowski trace distance provides a closed-form
lower bound for d�. It is equal to the trace distance between
the χ matrices of G and G, and proportional to the trace
distance between their Choi matrices:

dJ−tr(G, G) = 1
2

∥∥χG − χG

∥∥
1 = 1

2d

∥∥CG − CG

∥∥
1 . (218)

This relationship can be derived from Eq. (217) using
the relationship between the Choi and χ representations
[Eq. (100)] and the definition of the Choi representation
[Eq. (97)].

3. Fidelities

The most commonly encountered performance met-
rics for quantum gates are fidelities. In fact, the word
“fidelity” now transcends its technical context (like “Xerox
machine” or “Kleenex”), and appears in paper titles and
abstracts as a generic synonym for “quality.” Despite this
usage, it is still a precise technical term in quantum infor-
mation science and quantum computing, and we urge
readers to avoid unfortunate usage like “We quantify gate
fidelity using diamond norm distance.”

At least three distinct fidelity metrics appear, and are
used, in the literature. The difference between them is in
the initial state to which G or G is applied. But every
“fidelity” quantifies similarity, is derived from quantum
state fidelity, and inherits its properties in exactly the same
way that diamond distance inherits the properties of trace
distance. For every fidelity F , there is a corresponding infi-
delity r = 1 − F that quantifies discrepancy and can be
used as a metric of error.

a. Average gate fidelity There is a simple reason for the
existence of multiple definitions of fidelity for quantum
processes: quantum processes can only be “observed” by
applying them to a state. The fidelity, distinguishability,
or erroneousness of a process therefore depends on con-
text—i.e., on what state it acts. So, the key ingredient
in any definition of fidelity for quantum processes is the
output-state fidelity for a given input state, defined in terms
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of the state fidelity F(ρ, ρ) [Eq. (200)] as

Fρ(G, G) ≡ F
(
G[ρ], G[ρ]

)
. (219)

To see why ρ matters, consider a flawed idle gate GI that is
supposed to leave states unchanged, but actually dephases
them in the Z basis. If applied to a Z eigenstate (|0〉, |1〉,
or any mixture of them), it acts exactly like its target, so
F|0〉〈0|(GI, GI) = 1. But if applied to an eigenstate of X or
Y, it decoheres them completely, so F|+〉〈+|(GI, GI) = 1/2.

The average gate fidelity (AGF) eliminates this varia-
tion by the simple expedient of averaging Fρ over all pure
states using the unique (normalized) unitarily invariant
Haar measure (see Appendix C 1):

Favg(G, G) ≡
∫

F
(
G[|ψ〉〈ψ |], G[|ψ〉〈ψ |]) dψ . (220)

This definition applies for any G and G, but G is usu-
ally unitary. If G[ρ] = U [ρ] = UρU† for some unitary
operator U, then G[|ψ〉〈ψ |] is pure, and

Favg(G,U) =
∫ (〈ψ |U†G[|ψ〉〈ψ |]U |ψ〉) dψ , (221)

=
∫ (〈〈|ψ〉〈ψ || (U−1G

)||ψ〉〈ψ |〉〉) dψ . (222)

This form of the AGF makes it clear that Favg(G,U) quan-
tifies how well the noisy process G implements the desired
unitary operation U.

From the AGF, we can define the average gate infidelity
(AGI) r(G, G):

r(G, G) = 1 − Favg(G, G) . (223)

It should be noted that while r(G, G) is also commonly
referred to as the average error rate of a gate, some draw a
distinction between the average error rate and average gate
infidelity [158].

Many QCVV benchmarking procedures are constructed
such that U = I. In this case, the average gate fidelity is

Favg(G) =
∫

〈ψ |G[|ψ〉〈ψ |] |ψ〉 dψ . (224)

Here, Favg defines the probability that G produces no
detectable change in a random pure state ρ = |ψ〉〈ψ |.
Note that this is not the same as “the probability that G
leaves ρ = |ψ〉〈ψ | unchanged,” since if G deterministi-
cally rotates |ψ〉 	→ |φ〉 �= |ψ〉, the probability of detecting
the change is only 1 − | 〈ψ |φ〉 |2.

The integral in Eqs. (220)–(224) can be computed
explicitly [159–161] to yield a simple relationship between

AGF and the (arguably more fundamental) entanglement
fidelity [159,162] discussed below,

Favg(G,U) = dFe(G,U)+ 1
d + 1

, (225)

where d is the dimension of the system’s Hilbert space.
AGF and AGI are particularly relevant and useful in
randomized benchmarking (Sec. VIII) and direct fidelity
estimation (Sec. IX B), because these protocols apply
a process or processes to a system initialized in ran-
domly distributed pure—or nearly pure—local (unentan-
gled) states.

b. Entanglement (process) fidelity There is another way
to eliminate the state dependence of output-state fidelity. If
we apply the unknown operation (G or G) to a system that
is maximally entangled with a reference system, so that
their joint state is a maximally entangled state |�〉, then
the fidelity between the resulting states,

Fe(G, G) ≡ F
(
(G ⊗ I)[|�〉〈�|], (G ⊗ I)[|�〉〈�|]) ,

(226)

does not depend on which maximally entangled state was
used. This quantity is known as the entanglement fidelity
between G and G [163,164]. The Choi-Jamiołkowski iso-
morphism implies that the two states on the right-hand side
of Eq. (226) are unitarily equivalent to the χ matrices χG
and χG (and to the trace-normalized Choi matrices CG and
CG), respectively. Therefore, if G = U is unitary, so that
χU is rank-1, then

Fe(G,U) = Tr(χGχU ) = Tr
(
χU−1GχI

)
. (227)

So, the fidelity between G and a unitary target process
G = U equals the fidelity between the error process E =
GG

−1
and the identity process. As discussed in the con-

text of average gate fidelity, we often want to measure the
fidelity of G with the identity operation. In this case, the
entanglement fidelity is sometimes written as

Fe(G) = 〈�| (G ⊗ I)[|�〉〈�|] |�〉 = Tr(χGχI) . (228)

It is sometimes [159] said that Fe(G) quantifies how well
G preserves entanglement, but this is not strictly correct.
E can be entanglement-breaking, yet still have nonzero
entanglement fidelity. Conversely, if G is a Pauli unitary,
then Fe = 0 even though G does not destroy entangle-
ment. Fe is more accurately described as the fidelity of
a process when acting on (maximally) entangled states.
For this reason, entanglement infidelity (1 − Fe) is usually
the most appropriate metric of error for quantum com-
puting, where a gate will often act on qubits that are
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TABLE II. Linear relations between performance metrics. Summary of the linear relationship between the average gate fidelity
Favg, the average gate infidelity r, the entanglement (process) fidelity Fe, the entanglement (process) infidelity eF , and the process
polarization f, where d = 2n for n qubits. (Table adapted from Ref. [166].)

Favg r Fe eF f

Favg = Favg 1 − r
dFe + 1
d + 1

1 − d
d + 1

eF
(d − 1)f + 1

d

r = 1 − Favg r
d

d + 1
(1 − Fe)

d
d + 1

eF
d − 1

d
(1 − f )

Fe = (d + 1)Favg − 1
d

1 − d + 1
d

r Fe 1 − eF
(d2 − 1)f + 1

d2

eF = d + 1
d

(1 − Favg)
d + 1

d
r 1 − Fe eF

d2 − 1
d2 (1 − f )

f = dFavg − 1
d − 1

1 − d
d − 1

r
d2Fe − 1
d2 − 1

1 − d2

d2 − 1
eF f

entangled with other qubits. Conversion between Fe and
Favg is very easy using Eq. (225) (see also Table II). Entan-
glement fidelity is lower (more pessimistic) than average
gate fidelity, because entangled states are generically more
sensitive to error than random local states.

Fe is also commonly referred to as process fidelity.
However, this usage is not entirely reliable—sometimes
“process fidelity” is used to refer to other fidelity-type met-
rics (e.g., average gate fidelity), or as a catch-all for any
fidelity-like metric between quantum operations. Through-
out this tutorial, we only use “process fidelity” to denote
Fe, but generally use (and recommend) the term “entan-
glement fidelity” to minimize ambiguity.

Entanglement (process) fidelity can also be computed in
the Pauli transfer matrix representation (see Sec. II C 3) if
one of the two arguments is unitary:

Fe(G,U) = 1
d2 Tr[�GU−1 ] = 1

d2 Tr[�G�
−1
U ] . (229)

The derivation is simple, starting from Eq. (227):

Fe(G,U) = Tr(χGχU ) (230)

= 1
d2

∑
i,j,k,l

Tr(G[|i〉〈j |]U [|k〉〈l|] ⊗ |i〉〈j | |k〉〈l|) ,

(231)

= 1
d2

∑
i,j

Tr(G[|i〉〈j |]U [|j 〉〈i|]) , (232)

= 1
d2

∑
i,j

Tr(G[|i〉〈j |](U†[|i〉〈j |])†) , (233)

= 1
d2 Tr(�GU−1) = 1

d2 Tr(�G�U−1) . (234)

Equivalently, if we write �G = �E�U , so that E is the
post-gate error process of the noisy operation G, then

Fe(G,U) = Fe(E , I) = 1
d2 Tr[�E ] . (235)

For the remainder of this tutorial, any reference to process
fidelity is a reference to Eqs. (229) or (235).

We often write χ matrices in the Pauli basis. In this
basis, the χ matrix for the identity process has only one
nonzero element, which is χI,I = 1. It is common to enu-
merate the Pauli basis elements from 0 . . . d2 − 1, starting
with I, in which case this is written as χ0,0 = 1. The pro-
cess fidelity between an error process E and the identity is
then given by

Fe(E , I) = (χE)I,I = (χE)0,0 . (236)

The process infidelity of a gate is simply

eF = 1 − Fe . (237)

It is related to average gate infidelity by a simple
dimension-dependent proportionality factor [159,162] (see
Table II):

eF = d + 1
d

r . (238)

If the error process E has an orthogonal Kraus decomposi-
tion in which the first Kraus operator is the identity (K0 ∝
I), then we call the error process stochastic, because we
can model it as a probabilistic mixture of (i) no error (K0)
occurs, or (ii) an error occurs (see, e.g., Secs. III B–III E).
For stochastic error processes, the process infidelity is pre-
cisely the probability that an error occurs. There is then
a simple intuition for the difference between process infi-
delity and AGI: every error is detectable if it occurs on a
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maximally entangled state, but if the error occurs on a ran-
dom pure state, it may go undetected (e.g., if the state is an
eigenstate of the error).

As a result of this, process fidelity behaves well under
composition (i.e., when two gates are combined by ten-
sor product to describe a layer of parallel gates). From
Eq. (228), and the fact that a product of two maximally
entangled states is maximally entangled, it follows that

Fe(E1 ⊗ E2) = Fe(E1)Fe(E2) , (239)

and therefore that

eF(E1 ⊗ E2) = eF(E1)+ eF(E2)+O(ε2) (240)

if both eF(E1) and eF(E2) are O(ε). These relationships do
not hold for the AGI, because of the dimension-dependent
factor. Again, this has a useful intuitive explanation: com-
bining subsystems by tensor product increases the overall
system dimension, which reduces the probability that an
error will go undetected if it occurs on a random pure state.

c. Worst-case (min) fidelity One final fidelity for pro-
cesses, rarely used but deserving mention, is the stabilized
minimum fidelity [165]:

Fstab(G, G)

≡ min
|ψ〉AB

F
(
(GA ⊗ IB)[|ψ〉〈ψ |] , (GA ⊗ IB)[|ψ〉〈ψ |]

)
.

(241)

This is a fidelity-based metric (rather than a TVD-based
one), but is extremized (like diamond distance) rather than
averaged over input states. As with diamond distance,
the minimum could also be taken over local states. But
Gilchrist et al. observe that the resulting metric is not
stable with respect to adding unrelated ancillary systems
[165], and recommend Fstab instead.

Worst-case fidelity is not commonly used in QCVV.
There is, to the best of our knowledge, no good reason
for this. In many contexts, it may be better motivated than
AGF or entanglement (process) fidelity. However, it suffers
from sociological factors. It requires numerical computa-
tion without a nice analytic form (making it less appealing
to theorists) and is strictly lower than any other fidelity
metric (making it less appealing to experimentalists).

4. Process polarization

Equation (238) shows that the process infidelity and the
AGI of an error process are identical up to a constant fac-
tor. A third rescaling of this quantity has a particularly
intuitive use. This is the effective depolarizing parameter
or process polarization of an error channel.

Many benchmarking procedures use gates in a specific
way that “twirls” their error processes (see Sec. VIII A
and Appendix C), effectively replacing each noisy gate
G = EG with G′ = EtwirledG, where

Etwirled =
∫

uEu−1dμ(u) . (242)

In this expression, u applies a unitary transformation,
and dμ(u) is the normalized Haar measure over all uni-
taries acting on the gate’s target Hilbert space. The effect
of twirling is to symmetrize and simplify the error pro-
cess drastically. It replaces E with a partial depolarizing
channel Etwirled of the form

Etwirled = f I + (1 − f )D , (243)

where D is the depolarizing process that acts as D[ρ] =
Tr[ρ]I/d, and 1 − f is the probability of depolariza-
tion. So,

Etwirled[ρ] = fρ + (1 − f )
I

d
(244)

for any normalized density matrix ρ. We call f the pro-
cess polarization of E , because it quantifies the amount of
polarization in ρ that remains after applying G in a context
that twirls its error process.

The process polarization f is closely related to pro-
cess fidelity. Analysis of twirling (see Appendix C) shows
that Etwirled and E have exactly the same χ00, and thus
the same process fidelity. It is straightforward to compute
that χ00 = 1 for the identity process I, and χ00 = 1/d2 for
the depolarizing process D. It follows that Fe(Etwirled) =
f + (1 − f )/d2, and since Fe(Etwirled) = Fe(E),

f(E) = 1 − p = d2Fe(E)− 1
d2 − 1

, (245)

where p is the probability of depolarization. Process polar-
ization can also be computed straightforwardly from the
error channel’s Pauli transfer matrix as

f(E) = Tr[�E ] − 1
d2 − 1

. (246)

These relationships (and others) are summarized in
Table II.

A useful property of process polarization is that the
polarizations of two twirled gates applied in sequence
combine by simple multiplication. If G1 = E1G1 and G2 =
E2G2, and both gates are performed in a context that twirls
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them, then

G′
2G′

1 = E2,twirledE1,twirledG2G1 (247)

and

f(E2,twirledE1,twirled) = f(E2,twirled)f(E1,twirled) . (248)

Note that this simplification does not apply for parallel
composition, because twirling is system-dependent, and
the tensor product of two (locally) twirled error channels
is not (globally) twirled.

5. Contrasting diamond distance and infidelity

As we have seen in this section, there are many differ-
ent ways to quantify the “error rate” of a quantum process.
Both the AGI r [Eq. (223)] and entanglement (process)
infidelity eF [Eq. (237)] have the convenient interpreta-
tion of being average error rates (i.e., the rate at which
an error would be observed, averaged in some way over
possible input states). On the other hand, TVD-derived
error metrics such as the diamond distance d� [Eq. (215)]
are maximizations over all possible POVMs and/or input
states, and thus are sometimes called worst-case error
rates.

While average error rates can be efficiently measured
by Monte Carlo sampling (see, e.g., Sec. VIII), estimat-
ing extremal quantities like diamond distance is harder. For
example, although tomographic reconstruction methods
(see Sec. VII) can be used to estimate the diamond dis-
tance [167] by means of semidefinite programs [168,169],
the cost of tomography grows exponentially with the num-
ber of qubits. However, an error channel’s AGI or process
infidelity provides a bound on its diamond norm error
[158,170,171]:

d + 1
d

r ≤ d� ≤
√

d(d + 1)
√

r , (249)

eF ≤ d� ≤ d
√

eF , (250)

where d is the dimension of the Hilbert space. Tighter
bounds can be obtained if one has knowledge of the uni-
tarity of a gate [171], which we introduce in Sec. VIII H.

To illustrate the types of errors that saturate the bounds
of the diamond norm, we consider two types of single-
qubit errors: (1) a coherent (unitary) error, and (2) a
stochastic error. A single-qubit coherent X error corre-
sponds to a unitary rotation by some angle θ ,

RX (θ) =
(

cos(θ/2) −i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
. (251)

The PTM superoperator of this error is given as

�E =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)

⎞
⎟⎠ . (252)

Considering the difference between the identity operation
and the error,

I −�E =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 − cos(θ) − sin(θ)
0 0 sin(θ) 1 − cos(θ)

⎞
⎟⎠ , (253)

we observe that, for small θ , the magnitude of the diagonal
elements scale as |1 − cos(θ)| ≈ 1

2θ
2, and the magnitude

of the off-diagonal elements scale as |sin(θ)| ≈ θ . Because
the diamond norm is the maximization over all possible
input states and, via the trace distance, also a maximization
over all POVMs, it is sensitive to the largest elements of
I −�E . In the case of the coherent error given above, the
largest elements of I −�E are the off-diagonal elements,
which scale as O(θ), and thus d� ∼ θ . Now, consider
twirling �E into a stochastic Pauli channel (Sec. III E)
or depolarizing channel (Sec. III D) via Pauli or Clifford
twirling, respectively (see Sec. VIII A and Appendix C).
In both cases, the diamond norm of (�E)twirled scales as its
process infidelity. In this example, we observe that the dia-
mond norm is at least d� ∼ eF ≈ θ2 (when �E represents
a stochastic error channel), and at most d� ∼ √

eF ≈ θ

(when �E represents a unitary channel). Thus, it is often
said that the lower bound of the diamond norm is saturated
by a purely stochastic noise channel, and the upper bound
of the diamond norm is saturated by a purely unitary error
channel [79,171,172]. This example is only meant to be
a heuristic—it is not a rigorous derivation of the bounds
of the diamond norm—but it does highlight where the
quadratic difference between the lower and upper bounds
of the diamond norm come from, and how the diamond
norm can differ by orders of magnitude in the presence of
stochastic noise versus coherent errors.

D. Quantum measurements

Quantum measurements, or readout operations, are the
third essential logic operation in a quantum processor. Two
distinct kinds of measurement operation appear in quantum
circuits and quantum computing experiments, terminat-
ing measurements that mark the end of a circuit (after
which the entire processor may be reinitialized, cooled,
and/or recalibrated before another circuit is run), and mid-
circuit measurements (MCMs). Mid-circuit measurements
are harder to implement, because they must (1) not disrupt
other qubits that are not being measured, and (2) leave the
measured qubit(s) in a usable state.
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Terminating measurements have been studied and ana-
lyzed much more thoroughly than mid-circuit measure-
ments in the QCVV community. However, the analysis
of error metrics for both kinds of measurement is surpris-
ingly rare in the literature. The metrics most commonly
used (readout fidelity and QND-ness) are relatively ad hoc
in comparison to the systematic framework that has been
developed for states and processes. We outline the most
commonly used metrics below.

1. Terminating measurements

Terminating measurements are modeled by POVMs (see
Sec. II B 2), and have been an important subject of QCVV
since at least 1999 [173]. However, the literature on error
metrics for POVMs is sparse [174–177].

Quantum computing experimentalists usually seek to
perform orthogonal rank-1 projective measurements. For
each outcome i of the measurement, there is a unique pure
state |i〉 for which p(i|i) = 1. Some of the most common
metrics are specialized for this case. One example is read-
out fidelity, defined as the average probability of observing
outcome i given state |i〉, or

Freadout = 1
d

d−1∑
i=0

p(i|i) = 1
d

d−1∑
i=0

Tr[Ei |i〉〈i|] , (254)

where d is the number of outcomes (and Hilbert-space
dimension), and Ei is the POVM effect associated with
measurement outcome i [see Eq. (56)]. Readout fidelity is
used extensively as folklore (without citation) in the super-
conducting qubit literature [178–181]. It can be defined as
the average of a more fundamental quantity that we denote
effect-wise fidelity:

Fi = p(i|i) = Tr[Ei |i〉〈i|] . (255)

The Fi are useful when they vary substantially over out-
comes i, in which case the worst-case fidelity,

Fmin = min
i

Fi , (256)

is relevant. For example, the excited-state readout fidelity
F1 of many systems is often worse than the ground-state
readout fidelity F0 due to energy relaxation (e.g., T1 decay;
see Sec. III C). However, these effect-wise fidelities can be
equalized through methods that twirl measurement noise
[182,183].

None of these quantities is directly observable, unless
the experimenter has the ability to prepare perfect initial
states |i〉〈i|. In real-world experiments, it is impossible to
unambiguously distinguish errors in state preparation from
errors in measurement. So, these errors are often grouped

together and referred to as state preparation and measure-
ment (SPAM) errors [184]. Directly measured quantities
generally depend (in more or less complicated ways) on

FSPAM(i) = p(i|ρi) = Tr[Eiρi] . (257)

Error metrics for terminating measurements that are not
supposed to be orthogonal rank-1 projective are almost
nonexistent in the literature, to the best of our knowl-
edge. Although general nonprojective POVMs are rarely
implemented on purpose, nonorthogonal rank-1 measure-
ments (e.g., SIC POVMs [185]) and non-rank-1 projective
measurements (e.g., stabilizers [186]) are important use
cases to which Eqs. (254) and (255) do not necessarily
apply. General metrics can be obtained by observing that
a POVM is a kind of CPTP map (a “quantum-classical”
or q-c channel [187]), so every process metric defined pre-
viously (entanglement fidelity, diamond distance, etc.) can
be computed for POVMs. However, none are in common
usage (although [176] discusses many possible fidelities).
For example, the entanglement fidelity between a POVM
{Ei} and the ideal POVM {|i〉〈i|} works out to

Fe ({Ei}, {|i〉〈i|}) =
(∑

i

√
Fi

)2

, (258)

which is not quite the same as the ubiquitous Eq. (254)
(although they agree to leading order in 1 − Fi). TVD-
based metrics, though well-motivated whenever the
intended output distribution is nontrivial, have not seen
widespread use.

2. Mid-circuit measurements

Mid-circuit measurements (MCMs) are modeled by
quantum instruments (see Sec. II D 1), and are critical
for quantum error correction. Their importance to QCVV
has grown rapidly in recent years. However, the litera-
ture on error metrics for MCMs is essentially limited to
Ref. [188], which focuses on the important special case
of uniform stochastic instruments and shows that entan-
glement fidelity and diamond distance (defined by treating
the instrument as a CPTP map) are suitable metrics.

The experimental literature on characterization of
MCMs (e.g., Ref. [177]) primarily reports readout fidelity
as defined in Eq. (254), and another folklore metric called
QND-ness (see Sec. II D 2, and also Refs. [189,190]),
which is defined as the average probability of getting the
same measurement result twice in a row:

Q = 1
d

d−1∑
i=0

p(i, i|i) , (259)

= 1
d

d−1∑
i=0

Tr[|i〉〈i|Mi(|i〉〈i|)]
p(i|i) , (260)
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where the noisy mid-circuit measurement is given by a
set of completely positive (CP) maps {Mi}. Like readout
fidelity, QND-ness is practical, but impossible to measure
exactly without the ability to prepare perfect input states.
As noted in Ref. [189], QND-ness is not a very useful
metric for non-rank-1 measurements, because it only mea-
sures repeatability and has no sensitivity to whether the
mid-circuit measurement disrupts other observables that it
should commute with.

The difference between QND-ness and readout fidelity
can be illustrated by considering qubit measurements that
failed to satisfy the QND requirements as described in
Sec. II D 2. For instance, measurements that inherently
alter a quantum state such as charge detection [191] or res-
onance fluorescence [192,193] may achieve high fidelity,
but leave the system in a state outside the qubit mani-
fold. Alternatively, state errors during measurement can
lead to significant non-QND-ness, but have only minimal
effect on the readout fidelity. For example, T1 decay pro-
cesses during dispersive readout of the excited state of
superconducting qubit can be observed and corrected for
by time-resolved state discrimination (this can be accom-
plished using weak, continuous measurement, outlined in
Sec. II D 3), but the final state of the system may have
decayed to the ground state. In such cases, QND-ness can
often be improved by actively reinitializing the state |i〉〈i|
corresponding to whatever i was read out, or shortening the
measurement time.

E. Quantum processors (gate sets)

So far, we have considered each logic operation inde-
pendently, in isolation. This is consistent with the history
of the field. However, it is internally inconsistent—and,
more importantly, unrealistic. We needed measurements to
define state fidelity, states to define measurement fidelity,
and both of them to define process fidelity. Every logic
operation is only defined (and observable) relative to other
logic operations. This became widely recognized between
2012 and 2016 [194–196]. This relationality creates a
gauge freedom that couples all of a quantum processor’s
logic operations and requires them to be treated as a gate
set, rather than a set of independent operations [197] (see
Sec. II E).

Many modern QCVV protocols (starting with random-
ized benchmarking) explicitly mix together properties of
all the operations in a gate set, to produce a holistic
metric that quantifies the error rate not of any single oper-
ation, but of a processor’s entire gate set. We outline this
below.

1. Average gate-set (in)fidelity

Perhaps the most common error metric for gate sets is
average gate-set infidelity (AGSI) [196]. This is simply the

average, over all gates in a gate set (not including state
preparation or measurement), of the AGI [Eq. (223)].

AGSI was originally believed to correspond accurately
to the error rate observed in randomized benchmarking
(RB) [184], which is broadly agreed to be one useful “error
rate” for a quantum processor. Gauge freedom turns out to
complicate this relationship [196], but if AGSI is evalu-
ated in the gauge that minimizes the gate-to-gate variation
of the individual gates’ error channels, it does in fact
correspond well to the RB error rate [198].

Since 2018, randomized benchmarking protocols have
proliferated (see Sec. VIII for some examples), and they
do not all measure the same “error rate.” Therefore, it
is a good idea to read the defining paper for a particular
RB protocol carefully before interpreting its result! How-
ever, most RB error rates are related, at some level, to
AGSI.

2. Circuit output distributions

The other class of metrics that are commonly used
to evaluate the performance of processors and gate sets
are actually the classical metrics discussed in Sec. IV A,
applied to the outcome distributions of quantum circuits. In
particular, linear cross-entropy [2] and heavy output prob-
ability [137] are widely used to quantify how accurately
a quantum processor has executed a circuit. Other metrics
(e.g., TVD [155,199] or Hellinger fidelity [200]) are also
used, but less commonly.

V. DESIGN AND IMPLEMENTATION OF QCVV
EXPERIMENTS

Quantum computers implement quantum algorithms by
preparing quantum states, applying quantum gates, and
performing quantum measurements. Characterization and
benchmarking experiments each provide insight into the
types and rates of the errors that affect these operations,
but can be broadly distinguished by what they measure.
Characterization experiments are typically designed to fit
the parameters of a statistical model that attempts to cap-
ture some aspect of the data generating process. These
models are often interpretable—their parameters have
physical meaning—and so may be used to identify the
physical source of an error. Benchmarking experiments,
on the other hand, are typically designed to assess perfor-
mance as captured by some empirical measure of success
or accuracy, such as the average success probability of
circuits specified by a particular algorithm. These perfor-
mance metrics do not generally permit reliable attribution
of errors to physical sources, but benchmarking proto-
cols usually scale more efficiently to many-qubit proces-
sors than detailed characterization protocols, and may be
more indicative of application performance. The distinc-
tion between characterization and benchmarking protocols
is often somewhat blurred in practice.
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A QCVV protocol can be thought of as a recipe for
the design and analysis of a characterization or bench-
marking experiment. For the purposes of this tutorial, a
protocol takes as input a register of qubits and a set of
native quantum operations, and outputs a set of (possibly
randomized) quantum circuits. A protocol also specifies a
data analysis procedure for fitting a model to the experi-
mental data (in the case of characterization) or extracting a
performance metric (in the case of benchmarking). Most
protocols leave additional important experiment design
parameters unspecified—e.g., the order in which circuits
should be run, the number of shots to be taken per cir-
cuit, and the frequency of recalibration. In this section, we
outline several principles that can inform these decisions,
and discuss some experimental realities that can con-
strain them. To ensure clarity and reproducibility, papers
that report QCVV results should state clearly the specific
choices made when implementing QCVV protocols. We
divide our discussion in two parts:

(a) Principles of QCVV experiment design (Sec. V A).
QCVV experiments utilize particular families of
quantum circuits to probe the noisy dynamics of
quantum hardware. Many of these circuit families
share a common structure that helps ensure the pro-
tocol is robust and informationally complete. Run-
ning these circuits on real hardware often requires
compilation and scheduling that can impact the
performance and results of the protocol.

(b) Identifying and mitigating out-of-model effects
(Sec. V B). QCVV protocols are typically designed
to be accurate across a wide range of experimental
conditions. However, a quantum computing sys-
tem may suffer errors that were not accounted for,
such as leakage or non-Markovianity, that may
cause biased or nonsensical results. Models can be
extended to include these error types, or the proto-
cols can be designed and run in a way that averages,
mitigates, or quantifies their effects.

A. Principles of QCVV experiment design

1. Quantum circuit families

A QCVV experiment design should enable the effective
and efficient study of the specific errors under test while
remaining (ideally) agnostic to other sources of error that
might be present in the system. The experiment design nec-
essarily includes a family of circuits to run, which is often
specified by the QCVV protocol. QCVV circuit families
may comprise a finite set of specific circuits, as in state
(Sec. VII A) or process tomography (Sec. VII B), or an
ensemble of random circuits to be sampled according to
some prescribed measure, as in randomized benchmarking
(Sec. VIII).

FIG. 7. Typical QCVV circuit structure. Circuits used in
QCVV often comprise a short state preparation gate sequence
Fprep, an N -fold repeated (possibly randomized) gate sequence
G, a measurement preparation circuit Fmeas, and a computational
basis measurement.

The circuits specified by QCVV protocols often share
a common sandwich structure, as illustrated in Fig. 7.
Such circuits typically comprise initialization in the all-
zeros state, a short state-preparation gate sequence Fprep
(sometimes called a preparation fiducial circuit), an N -
fold repeated (possibly randomized) gate sequence G, a
measurement preparation circuit Fmeas (sometimes called
a measurement fiducial circuit), and a concluding compu-
tational basis measurement. This structure facilitates the
estimation of specific errors: the Fprep circuit creates a state
that is sensitive to some aspect of G’s performance, the
N -fold repetition of G amplifies some aspect of its errors,
and Fmeas implements a measurement that is sensitive to
the target errors. Table III illustrates how this structure
manifests in several common QCVV protocols.

In order to serve as effective and efficient probes of error,
circuits defined by a QCVV protocol should possess a few
common properties:

Informational completeness: Taken together, data
from all specified circuits should be sufficient to enable
the estimation of all desired parameters. Informational
completeness occurs when there is sufficient independent
data (circuit outcome statistics) to compute the protocol’s
performance metric or to reconstruct the target model
parameters. If the circuit ensemble is over-complete, and
the QCVV protocol reconstructs a statistical model for the
data, then formal model validation can be used to assess the
quality of the fit [77,156]. Under-complete circuit ensem-
bles generally do not allow for the estimation of all model
parameters without some additional regularization, but can
be useful, for example, when doing sparse model selection,
as in compressed sensing [201,202].

Formally, informational completeness of an experi-
ment design corresponds to the associated Fisher infor-
mation matrix [203,204] being full rank over the vector
space of model parameters (see Sec. II E 2 for a more
nuanced perspective). The Fisher information is a power-
ful tool for analyzing an experiment design and evaluating
its ability to probe the parameters of a statistical model.
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TABLE III. Examples of “sandwich” QCVV circuit structure. Many QCVV circuits possess a sandwich structure, illustrated in
Fig. 7, wherein a state-preparation operation Fprep is applied first, followed by N applications of a short (possibly random) circuit G,
concluding with a measurement preparation circuit Fmeas and terminating measurement of all qubits. Here, we explicitly list the com-
ponents of common QCVV experiments. Unless otherwise specified, randomized gates are generally intended to be drawn uniformly
at random from the Haar distribution over the associated group (see Appendix C 1) each time the randomized gate is applied within
a circuit. Here, Cn is the set of n-qubit Clifford operations, Sn is the set of permutation operations on n elements, and SU(4)⊗�n/2� is
the �n/2�-fold Cartesian product of SU(4), where each factor represents an arbitrary two-qubit operation acting on a pair of qubits.
The InverseClifford operation is the measurement preparation that, conditional on a particular realization of the random Clifford
{Random(Cn)} elements, acts as the inverse operation, ideally returning any state to its initial value at the start of the circuit. The gate
G for Rabi and Ramsey experiments are sometimes implemented discretely, as indicated in the table above, or via continuous driving;
see Sec. VI for more details.

Experiment Fprep G Fmeas

Rabi oscillations (Sec. VI B) . . . Xπ/2 . . .

Ramsey oscillations (Sec. VI C 2) Xπ/2 I Xπ/2
Randomized benchmarking (Sec. VIII B) . . . Random(Cn) InverseClifford
Gate set tomography (Sec. VII D) Fprep G Fmeas
Quantum volume (Sec. XI A 1) . . . Random(Sn) ◦ Random

[
SU(4)⊗�n/2�] . . .

The Cramér-Rao bound states that the absolute precision
of any estimator is bounded by the Fisher information,
so circuits with a large Fisher information are therefore
preferable to those with small Fisher information. Fur-
ther details about the Fisher information are beyond the
scope of this tutorial. The interested reader is encouraged
to consult Ref. [203] for an introduction to the fundamen-
tals of Fisher information and its applications in quantum
information processing.

Amplificational completeness: Informational com-
pleteness guarantees that an experiment will have some
sensitivity to every parameter of interest. Its sensitiv-
ity—i.e., the precision with which parameters can be
estimated—can be increased by increasing the number N
of experimental shots (counts). But in almost all cases,
expected estimation error decreases relatively slowly, as
O(1)/

√
N , with the number of shots. A different (and often

better) way to make experiments more sensitive is to grow
the length (L) of the circuits in the experiment, “amplify-
ing” certain parameters. Many QCVV experiments define
scalable families of circuits parameterized by a nomi-
nal length L. If such an experiment’s sensitivity to all
parameters of interest grows uniformly with L, so that the
expected estimation error decreases as O(1)/L, then we
say the experiment is “amplificationally complete.” Ampli-
ficational completeness is usually evaluated using Fisher
information [204].

Robustness: QCVV protocols are typically designed
to probe particular errors or some measure of performance
(e.g., fidelity; see Sec. IV). But the errors under test are
rarely the only errors present in the system. QCVV proto-
cols are often designed to suppress other phenomena while
amplifying the target errors. Dynamical decoupling [149,
150], Pauli frame randomization [151–153], randomized
compiling [154,155], and group twirling (see Sec. VIII A
and Appendix C) are particularly well-known examples of
such techniques.

Classical simulability: QCVV experiments probe the
noise and errors in quantum processors by comparing
observed circuit outcomes to those expected in a noiseless
system, or those predicted by a noise model. This com-
parison often requires calculating the expected outcome
distribution for a quantum circuit. The classical hardness
of this problem is the entire reason we are building quan-
tum computers! QCVV circuits use a number of techniques
to preserve classical simulability. For comparing to ideal
unitary evolution, these include: restriction to nonuniversal
gate sets (such as Clifford circuits) [205], structured inver-
sion [206], and restriction to small systems. When compar-
ing to statistical noise models, additional constraints on the
model are often enforced to preserve classical simulability,
such as tensor-network ansätze [207] or restriction to low-
weight errors [208–210]. Circuit primitives, such as group
twirling, can further enhance the performance of simplified
error models and improve simulability.

2. Implementation details

The precision with which an experiment can measure
a parameter is controlled by the experiment design (the
quantum circuits to be run), the amount of data (the num-
ber of “shots” per circuit), and the data analysis procedure
(the estimator).

Among the more important experimental constraints is
the time it takes to run a full QCVV experiment. Model-
based characterization of multiqubit systems can be among
the most experimentally taxing applications of near-term
quantum computers. A single run of two-qubit gate set
tomography (see Sec. VII D), for instance, can take several
hours on neutral atom or trapped-ion quantum computers.
During this time, the environmental degrees of freedom
are likely to drift, so that data from circuits run at the
beginning of data collection will reflect a different noise
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environment than those from the end. Periodic gate recal-
ibration can mitigate these effects to some extent, but the
recalibration rate should be consistent with the expected
drift during typical operation.

The experimentalist must also make a number of choices
about the specifics of the data collection procedure that will
impact the precision and reliability of the results. Some of
these choices include the following:

Circuit repetitions (shots): The precision of an esti-
mator grows with the amount of data collected, so more
repetitions are often better than fewer. However, more data
requires more experiment time. The experimentalist must
balance the benefit of greater precision against the cost of
time. Estimation error decreases only as 1/

√
N with the

number of shots N , so more data yield diminishing returns.
Maximum circuit depth: Deeper (longer) circuits

can amplify errors and therefore serve as more precise
probes of gate error—particularly coherent errors—than
short circuits. However, if the circuits are too long, then
decoherence can reduce the visibility of the target errors.
Furthermore, short circuits are useful for ensuring con-
sistency of an estimator, and are often used to improve
convergence of an optimizer in postprocessing. Several
protocols, including robust phase estimation (Sec. VI E)
and gate set tomography (Sec. VII D), use logarithmically
spaced circuit lengths in order to strike an appropriate
balance between stability and precision.

Data-collection order: Drift and/or hardware recali-
bration can lead to time correlations in physical error rates.
If data is taken in batches (all samples of a circuit are taken
in sequence before moving on to the next circuit), different
circuits can experience different noise environments. This
can cause bias in parameter and metric estimation and be
difficult or impossible to identify post hoc. If data collec-
tion is instead rastered (data is taken in many passes, with
each pass taking one shot of each circuit in the experiment
design), drift effects will be smoothed across the dataset,
and data can be analyzed for signs of time-correlated noise.
Not all experimental systems can be configured to take
rastered data, and for these an intermediate collection pro-
cedure may be necessary wherein all data is retaken in
two or three batches. Such data can be used to probe for
low-frequency drift [96].

Circuit compilation rules: Integrated quantum pro-
cessors often feature a compiler that optimizes the schedul-
ing of circuits to maximize the processor’s performance.
When running QCVV protocols, this can sometimes lead
to confusing results. For instance, Ramsey experiments
(Sec. VI C 2) use long idle periods or sequences of repeated
idle gates. Care must be taken that the compiler does not
identify this and remove the “extra” idles, or the expected
Ramsey decay may not be observed. Similarly, it is impos-
sible to probe certain crosstalk errors if, for example, the
compiler forbids multiple two-qubit gates from acting in

parallel. In some cases, programmatic “barriers” in the
low-level quantum assembly code can enforce compila-
tion restrictions. When characterizing and benchmarking
quantum systems, users should take steps to ensure that
the compiler is not altering quantum circuit instructions in
ways detrimental to the QCVV protocol.

In addition to these considerations, experiments must
contend with control system constraints, including the
data-collection rate, recalibration times, memory buffer
sizes, network latency, arbitrary waveform generator
(AWG) upload times, constraints on batching versus ras-
tering, and others. These constraints can prevent a QCVV
protocol from collecting data optimally, and some care
should be taken to consider the impact of these constraints
on the reliability, susceptibility to bias, and potentially
increased variance of derived performance metrics.

B. Identifying and mitigating out-of-model effects

As discussed above, characterization experiments are
typically designed to learn all or some parameters of a
statistical error model describing a quantum device. If
physical errors are present in the experiment that are not
captured by this model, then the model will not fit the
observed data, and estimates of model parameters can be
significantly biased by out-of-model effects. In this section,
we briefly survey techniques that can be used to make
QCVV protocols robust to out-of-model effects, or at least
estimate their impact.

1. Extending models

The simplest approach to mitigating out-of-model
effects is to modify the protocol to turn them into in-model
effects. An example of this is leakage quantification (see
Secs. III F and VIII I 1) using “blind” randomized bench-
marking (RB) [211], a form of character benchmarking
[212] (see Sec. VIII for details on randomized benchmark-
ing and its various variants, such as character RB). Blind
RB modifies the models used by standard RB to explicitly
include a parameter describing the population of leakage
levels that cannot be directly observed. Unobserved leak-
age causes the usual RB decay curve to become a mixture
of two exponential decays rather than a single exponential
decay:

p̄(m) = A + Bf m + Cgm . (261)

Fitting a mixture of exponentials can be difficult, especially
in the presence of noise. Blind RB modifies the experiment
design so that, rather than all circuits compiling to the iden-
tity, half of the circuits are chosen to compile to a bit-flip
operation. In the absence of leakage, the success probabil-
ity of these circuits should decay at the same rate as the
standard identity circuits. However, the bit-flip operation
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does not act on the leakage state, so the success probability
decays differently:

p̄x(d) = A′ − Bf d + Cgd . (262)

By adding and subtracting the decay curves for the two
experiments, we get two new curves that decay as single
exponentials and so are easy to fit. Blind RB estimates both
the error rate per Clifford and the leakage rate per Clifford.

Tomographic protocols (Sec. VII) can also be extended
by explicitly growing the size of the model. Leakage can be
captured, for instance, by modeling a qubit as a qutrit (or,
more generally, a qudit), and performing state, process, or
gate set tomography on the larger model (see Appendix D 2
for some examples of tomography applied to qutrits and
ququarts). This can get expensive, though, and requires
careful thought if the leakage levels are not coherently
addressable. This also makes it hard to construct a tomo-
graphically complete set of states and measurements, and
so it may be impossible to fit a full qudit model. Instead,
reduced models that assume, for example, only incoherent
leakage may be more experimentally tractable.

2. Averaging out-of-model effects

Sometimes QCVV models are known to not capture all
of the errors in a system. For instance, tomographic pro-
tocols often fit a static model to a system that is actually
experiencing drift in some physical parameter. If the effect
of drift is not mitigated by the experiment design, the
tomographic estimate will be biased. For instance, drift
in the measurement error rate can significantly impact the
RB decay curve and subsequent error rate estimates. If
data are taken in order of increasing circuit length, grow-
ing measurement errors can make the decay curve steeper
than it should be, causing the error per gate to be overesti-
mated. On the other hand, if the data is taken with circuits
in decreasing order of length, then growing measurement
errors over the course of the experiment will produce a
shallower curve, and an underestimate of the error per gate.

This bias effect also manifests in tomographic routines.
Bias can be reduced (at the possible cost of increased vari-
ance) by removing the correlation between execution time
and circuit properties. This can be done by selecting a new
circuit from the experiment list for each shot, until all repe-
titions and circuits have been consumed. Another approach
is to raster the data—collecting a single shot from each cir-
cuit in some order, and then repeating until enough shots
have been taken for all of the circuits. If the shots from
each circuit are then averaged, the drift will be distributed
uniformly across the data set. But rastered data can also
be analyzed directly, using methods such as the ones intro-
duced in Ref. [96], to yield time-dependent estimates of
error rates.

3. Mitigating out-of-model effects

While the above methods can be used to average out-of-
model effects, sometimes we just want to eliminate large
classes of noise. Again, one particularly frustrating source
of noise is drift in control parameters. This drift can lead to
errors that change over the course of an experiment. In gen-
eral, there are three main approaches to reducing the effects
of parameter drift: recalibration, dynamical decoupling,
and twirling.

When experiments are impacted by low-frequency noise
(like the ubiquitous 1/f noise in solid state systems), peri-
odic recalibration can dramatically reduce the scale of the
drift problem. This naturally comes at the cost of exper-
imental time, but is often necessary in long experiments
to ensure that data taken over long times is consistent.
Recalibration may involve fine-tuning experimental con-
trol parameters or completely rerunning the calibration
procedure ab initio, feeding back on results from just a few
carefully chosen circuits, or feeding forward data taken
from spectator qubits [213,214]. What method is chosen
will depend on experimental capabilities, the timescale of
the experiment, and the nature of the drifting error rates.

Dynamical decoupling (DD) [149,150]—or dynami-
cally corrected gates more generally—has a long history
of eliminating the impact of unknown coherent sources of
errors. DD evolved from the Hahn echo in nuclear mag-
netic resonance [86], where sequential radio frequency
pulses are used to reverse the effects of inhomogeneities
in the local magnetic field, effectively refocusing the
spins and producing a detectable echo signal. In quan-
tum computing, DD uses sequences of gate operations to
cancel coherent errors or low-frequency dephasing noise
(Sec. III B) whose magnitudes are unknown or drifting.

Twirling is a technique closely related to dynamical
decoupling, where interleaved gate operations are used to
prevent the buildup of coherent errors. Unlike DD, twirling
uses random gates, and often aggregates data taken from
different randomized circuit realizations (a.k.a. “random-
izations”). Thus, twirling can result in a larger experimen-
tal overhead, requiring a different circuit to be measured
per randomization. This can be largely mitigated by per-
forming the twirling directly on the control hardware on a
shot-by-shot basis [215]. Twirling can dramatically reduce
the complexity of an error channel, and is a key component
of randomized benchmarks (Sec. VIII) and methods such
as randomized compiling [154,155]. Twirling is discussed
in detail in Sec. VIII A and Appendix C.

4. Quantifying out-of-model effects

Even if all the techniques above are deployed, there
remain scenarios in which data will display clear evidence
of out-of-model effects. Models will simply not fit the data.
In this circumstance, several statistical tools (e.g., likeli-
hood ratio tests) can be deployed to detect and quantify
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a model’s failure to fit the data [77]. However, statistical
techniques based on hypothesis testing can only determine
the confidence with which a model can be rejected. They
do not generally provide a measure of effect size, i.e., how
much a model’s predictions deviate from actual observa-
tions. For instance, consider a coin that is modeled as
fair (i.e., 50/50), but when flipped a trillion times yields
501 billion heads and 499 billion tails. The χ2 statistic—a
simple statistical model validation tool—is approximately
4 × 106, meaning that the fair coin model can be rejected
with incredibly high confidence (a p-value of practically
zero [216]). But, for most practical purposes, a coin that
is biased by 0.1% can be well-approximated as fair. The
effect size—0.1%—is simply too small to matter for, say,
a football game coin toss.

Quantum tomography experiments often provide a lot of
data, so the best-fit model can often be rejected by a statisti-
cal hypothesis test. This does not necessarily mean that it is
a bad model. It means that it is demonstrably not a perfect
model. There are visible deviations from the model, which
are not just statistical fluctuations, but indicate the exis-
tence of unmodeled effects. Whether the model is “good
enough” should be evaluated not using a statistical confi-
dence measure (which grows with the size of the dataset),
but using some measure of the size of out-of-model effects.

One proposed way to quantify effect size in QCVV is to
compute a wildcard error model [217]. Wildcard models
have been deployed for gate set tomography (GST) exper-
iments, where they relax GST models so that, rather than
predicting a circuit’s outcome probabilities, they predict
a range of outcome probabilities. One kind of wildcard
model does this by adding a bit of extra “wildcard” error
to each gate. Wildcard models state that the total variation
distance [Eq. (175)] between each circuit’s outcome distri-
bution and the standard GST model prediction should be
no larger than the circuit’s wildcard error. The per-gate
wildcard error is then chosen to be minimally sufficient
to make the data statistically consistent with the wildcard
model predictions. The wildcard error can then be com-
pared against the parameters of the GST model. If the
wildcard is small relative to the gate error, then the GST
model captures the most important noise sources, even if
statistical tests indicate high confidence for rejecting the
GST model. See, for example, Refs. [78,79] for how this
is done in practice.

VI. QUBIT AND GATE CHARACTERIZATION

The first steps needed to run a quantum computer are to
characterize basic qubit properties and calibrate quantum
gates. Qubit characterization involves measuring the reso-
nant frequency and coherence times (i.e., how long a qubit
behaves quantum mechanically) of the qubit. These prop-
erties are important for calibrating the quantum gates used
in algorithms. For example, the coherence times of a qubit

place fundamental limits on the fidelity of quantum gates
or measurements performed on that qubit, and additionally
inform the end user of the circuit depth with which one can
perform useful computations with that qubit. Moreover,
many quantum gates require coherently driving qubits on-
resonance; therefore, it is necessary to characterize qubit
frequencies to high accuracy. In this section, we review
standard methods for characterizing basic qubit properties
and discuss how they can be utilized for measuring errors
in quantum gates to high precision:

(1) Frequency-domain spectroscopy (Sec. VI A). The
first step in probing a quantum system is to find
its transition frequencies. To achieve this, one can
irradiate a driving field on the qubit and sweep its
frequency across a broad range. As the drive induces
the qubit’s transitions when it is swept across the
corresponding resonant frequencies, the subsequent
measurement of the qubit then reveals its energy
spectrum.

(2) Rabi oscillations (Sec. VI B). A fundamental test
of qubit control is to perform Rabi oscillations,
whereby a qubit is coherently driven on-resonance
between its ground and excited states. Measurement
of the qubit after a varied drive duration reveals
an oscillation pattern characteristic of a two-level
quantum system.

(3) Time-domain spectroscopy (Sec. VI C). The coher-
ent control of a qubit requires driving it at its reso-
nant frequency. Therefore, accurately finding qubit
frequencies is an important step in the calibration of
quantum gates. We review two methods for char-
acterizing qubit frequencies in the time domain,
including Ramsey spectroscopy, a standard interfer-
ometric experiment that is used throughout atomic,
molecular, optical, and solid state physics.

(4) Qubit coherence (Sec. VI D). The coherence times
of a qubit are characterized by two timescales: (1)
thermalization (or energy relaxation), which quan-
tifies how long a qubit will remain excited before
decaying to the ground state; and (2) phase relax-
ation, which quantifies how long a qubit in a super-
position state will maintain phase coherence. Mea-
suring these two properties can be accomplished
with simple Rabi and Ramsey experiments.

(5) Phase estimation (Sec. VI E). Standard Rabi and
Ramsey experiments are typically performed in a
continuous manner (see, e.g., Fig. 9). However, in
a gate-based setting, one can instead perform dis-
crete Rabi and Ramsey experiments, which are con-
structed out of a set of defined quantum logic gates.
This is the basis for a class of methods known as
phase estimation, which can be used to perform pre-
cision measurements of small errors in the rotation
angles of quantum gates.
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A. Frequency-domain spectroscopy

Measuring the energy spectrum of a qubit is a founda-
tional step in quantum characterization. Coarse measure-
ments of qubit transition frequencies can be performed
using standard laboratory spectroscopy methods, such as
absorption spectroscopy [219]. When driven on-resonant
using an external electromagnetic field (e.g., optical laser,
microwave signal, etc.), the qubit will absorb some energy
from the radiation field and undergo a transition from its
initial state, resulting in a change in the measurement sig-
nal. Otherwise, the signal remains constant up to the noise
level. Therefore, by sweeping the frequency of the external
field and monitoring the reflected or transmitted signal, we
can detect the transition frequency of the qubit. For exam-
ple, Fig. 8 shows the transition spectrum from the |0〉 and
|1〉 states of a superconducting transmon qubit.

If the qubit is continuously driven across a wide range
of frequencies during the measurement, the technique
is broadly referred to as continuous-wave (CW) spec-
troscopy. To mitigate spurious and higher-order effects
from multiphoton processes, the qubit drive may be deac-
tivated during the measurement phase, which is then
termed pulsed spectroscopy. Together, these techniques
are often called frequency-domain spectroscopy. While
the broad linewidths found using frequency-domain spec-
troscopy typically provide sufficient frequency information
to observe the coherent nature of qubits (see Sec. VI B), it
is not generally precise enough to calibrate quantum gates;
instead, one must resort to time-domain techniques, such
as Ramsey spectroscopy, to obtain such information (see
Sec. VI C).

While some platforms can be probed directly, such as
atomic systems, where resonance fluorescence is often
used to measure qubit states, other platforms are measured
using an ancilla system. For example, superconducting
qubits are often measured via dispersive coupling to a

FIG. 8. Frequency-domain spectroscopy. By sweeping the fre-
quency of a microwave tone driving a transmon qubit and
monitoring the readout signal, we can detect the transitions of
the qubit from its initial states, |ψ〉ini = |0〉 (solid blue line) and
|ψ〉ini = |1〉 (dashed green line). The observed dips indicate the
resonant frequencies, which correspond to the |0〉 → |1〉 and
|1〉 → |2〉 transitions. (The data are reproduced with permission
from Ref. [218].)

readout resonator [67], in which the frequency of the read-
out resonator is dependent on the state of the coupled qubit;
thus, by probing the resonant frequency of the readout res-
onator, one can determine what state the qubit was in.
In such cases, it is necessary to first perform frequency-
domain spectroscopy on the ancilla system to characterize
its resonant frequency. Then, to measure the resonant fre-
quency of the qubit, we sweep the frequency of the field
driving the qubit, while also monitoring the frequency
spectrum of the readout resonator. This is referred to as
two-tone spectroscopy, since the qubit and ancilla system
often operate at different frequencies.

B. Rabi oscillations

A two-level system, such as a qubit, can be rotated about
the Bloch sphere [see Fig. 1(a)] using a classical oscillating
field

E = E0
(
εde−i(ωdt+φd) + h.c.

)
, (263)

where E0 is the amplitude of the field, ωd is the driving
frequency, φd is the phase, εd is the complex polarization
vector, and h.c. is the Hermitian conjugate. This field is
coupled to the qubit’s dipole moment

D = d (εsσ++h.c.) , (264)

where d is the dipole matrix element, εs is the qubit’s
polarization vector, and σ+ the qubit raising operator. The
coupling Hamiltonian between the qubit and the field is
then given by Hd = E · D. By aligning the field with the
polarization of the qubit, and by performing the rotat-
ing wave approximation (RWA) to simplify the driving
scheme, we can write the Hamiltonian in the interaction
picture as

HI = �δω

2
σZ + ��

2
(e−iφdσ+ + eiφdσ−) ,

= �δω

2
σZ + ��

2
(cosφdσX + sinφdσY) , (265)

where δω = ωq − ωd is the qubit-drive detuning, and � =
2dE0/� is the Rabi frequency of the driven system, which
is intuitively proportional to the dipole matrix element d
and the amplitude of the field E0.

Due to the finite detuning between the drive and qubit
frequencies, the qubit does not always rotate at the Rabi
frequency. More generally, we can write the interaction
Hamiltonian as

HI = ��′

2
σ · n̂ , (266)
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where �′ = √
δω2 +�2 is the effective Rabi frequency,

and

n̂ ≡ δωuZ +� cosφduX +� sinφduY

�′ (267)

is a unit vector on the Bloch sphere, whose direction
is determined by the ratio between the detuning δω and
the on-resonance frequency �. The Hamiltonian given by
Eq. (266) thus describes the motion of a qubit in the Bloch
sphere, which precesses around an effective axis along n̂ at
a frequency �′.

In Fig. 9, we depict Rabi oscillations around the
Bloch sphere about the x̂ axis, and plot oscillations for
a superconducting qubit from 0–250 ns, in which we

(a)

(b)

FIG. 9. Rabi oscillations. (a) Rabi oscillations are performed
by driving a qubit (represented by a blue arrow on the Bloch
sphere) coherently between the ground state |0〉 and excited state
|1〉. (b) Rabi oscillations of a superconducting qubit. The qubit
is driven on resonance and the probability of finding the qubit in
the excited state |1〉 is measured as a function of time. The offset
from 1.0 of the peaks of the oscillations is due to finite readout
error of the excited state and/or an off-axis rotation, in which case
the oscillations would not reach full contrast between |0〉 and |1〉.

measure the excited state |1〉 population as a function of
time. We find that the qubit coherently oscillates between
the ground |0〉 and excited |1〉 states. The frequency of
oscillation depends on the driving amplitude of the Rabi
pulse, with higher amplitudes leading to faster oscilla-
tions. In general, one can drive a qubit at a frequency
that is near-resonant and still observe oscillations, although
off-resonant drives will not produce full contrast between
|0〉 and |1〉 (see Sec. VI C 1). Therefore, the coarse mea-
surements of frequency given by frequency-domain spec-
troscopy are generally sufficient to probe the coherent
nature of a qubit via Rabi oscillations. Beyond being a
fundamental test of qubit control, Rabi oscillations are
also important for single-qubit gates, which are typically
calibrated using resonant Rabi pulses. This requires the
precise characterization of qubit frequencies, which is the
topic of the following section.

C. Time-domain spectroscopy

Characterizing qubit frequencies is a fundamental com-
ponent of performing high-fidelity qubit operations. Imper-
fect frequency calibrations or off-resonant qubit drives will
result in coherent phase errors. These errors can be mod-
eled with a small modification to an arbitrary single-qubit
density matrix [Eq. (45)],

ρ =
( |α|2 αβ∗eiδωt

α∗βe−iδωt |β|2
)

, (268)

where we have added an explicit phase term exp(±iδωt),
and δω = ωq − ωd is the detuning between the qubit fre-
quency and the drive frequency, which determines the
rotating frame. This phase term accounts for a drive fre-
quency that is off-resonant from the qubit frequency, in
which case the qubit will precess in the rotating frame.
In most cases, single-qubit quantum gates are designed
to drive qubits on resonance; therefore, characterizing
and correcting any off-resonant phase errors is important
for gate calibration. While coarse measurements of qubit
frequencies can be performed using classical frequency-
domain spectroscopy, introduced in Sec. VI A, fine-tuned
measurements of qubit frequencies require quantum-based
protocols. In this section, we outline two fundamental
characterization methods for measuring the detuning in
qubit drive frequencies. The first is based on Rabi oscil-
lations, outlined in the previous section, and the second
introduces an important interferometric method known as
Ramsey spectroscopy. Together, these methods are often
referred to as time-domain spectroscopy, because they
are generally implemented by driving a qubit at a given
frequency for specific duration of time.
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1. Rabi chevron

A basic method for finding the resonant frequency of
a qubit is to Rabi drive the qubit across a range of dif-
ferent frequencies and measure the resulting period of the
Rabi oscillations. As shown in the Rabi oscillation for-
malism, the effective Rabi frequency �′ increases with
larger detuning δω, resulting in shorter oscillation periods.
Moreover, the amplitude of oscillations also decreases with
larger detuning. Therefore, when the Rabi drive is on res-
onance with the qubit, both the amplitude and period of
oscillations will be at peak value. When sweeping over a
large range of detunings around the expected qubit res-
onance and measuring the resulting Rabi oscillations, a
chevronlike pattern is produced, as shown in Fig. 10. Here,
we observe that the Rabi oscillations are largest closest to
the middle of the frequency sweep, and that the period
and amplitude of oscillations slowly dies off at larger
detunings, suggesting that the qubit drive is already near
resonant with the qubit frequency. By finding the detuning
at which peak oscillations occur, one is able to accu-
rately characterize the drive frequency needed to perform
resonant operations on the qubit.

2. Ramsey spectroscopy

Ramsey spectroscopy [220], or Ramsey interferometry,
is a precise method for characterizing qubit frequencies.
In a typical Ramsey experiment, a qubit is prepared in a
superposition state (via a Xπ/2 or Yπ/2 pulse) and allowed
to evolve naturally for some amount of time t, after which

FIG. 10. Rabi chevron. A superconducting qubit is driven
across a range of different frequency detunings, producing a
chevron-shaped interferometry pattern. Each horizontal line in
the above plot is an individual Rabi experiment, with the blue
regions depicting the peaks of the oscillations and the white
regions depicting the troughs. The qubit frequency can be found
by extracting the drive frequency at which the period of oscilla-
tions is the largest; this corresponds to the apex of the chevron
pattern.

the qubit is mapped back to the computational basis via
the same gate used to prepare the state, and subsequently
measured [see Fig. 11(a)]. Within the rotating frame of
the qubit drive, defined by the frequency fd = ωd/2π , any
finite detuning between the qubit frequency and the drive
frequency δω will result in a qubit state that precesses
along the equator of the Bloch sphere. Measuring the qubit
in the computational basis for different times will result in a
sinusoidal oscillation between |0〉 and |1〉, much like mea-
surements of Rabi oscillations. However, in this case the
oscillations are not caused by coherent driving between |0〉
and |1〉, but rather by coherent precession between |+i〉 and
|−i〉 due to a frequency detuning, which is subsequently
mapped back to the computation basis.

In addition to the sinusoidal oscillations caused by any
frequency detuning, a qubit in a superposition state will
also experience stochastic noise along the longitudinal axis
of the qubit due to interactions with the environment, caus-
ing the qubit frequency to fluctuate in time, which results
in a Bloch vector that precesses both forwards and back-
wards in the rotating frame. This process is known as pure
dephasing [see Fig. 4(b) and Sec. III B], which results in
the depolarization of the Bloch vector towards the polar
axis of the Bloch sphere. Pure dephasing will lead to the
exponential decay of the Ramsey oscillations as a function
of time. Thus, measurements of Ramsey spectroscopy are
typically fit to an exponential cosine function, for which
the probability of measuring the qubit in the excited state
is given by

P|1〉(t) = e−�2t cos(ωmt) , (269)

where �2 is the rate at which the qubit loses phase coher-
ence, and ωm is the measured frequency of oscillations.

The dephasing rate �2 places a limit on the duration
of time over which Ramsey oscillations can be observed.
Therefore, if �2 is large and/or δω is small, it may be dif-
ficult to fit the sinusoidal component of Eq. (269) to the
observed data. For this reason, it is common to drive the
qubit at an intentionally large detuning, such that δω =
(ωq − ωd)+�, where � is an additional artificial detun-
ing which has been added to the natural detuning. This
enables one to fit the sinusoidal component to the observed
Ramsey oscillations at short timescales even if the natural
detuning is small.

In Fig. 11(b), we plot the Ramsey oscillations of a super-
conducting qubit for four different artificial detunings,� =
{−2,−1, 1, 2} MHz. We observe that P|1〉 oscillates sinu-
soidally, with only a small exponential component visible
due to the short time span of the measurements (2 µs). By
extracting the measured frequency of oscillation ωm, we
can compute the measured detuning (i.e., the difference
between the measured frequency and the artificial detun-
ing, ωm −�) for each artificial detuning. In Fig. 11(c), we
plot the measured detuning versus the artificial detuning.

030202-50



PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

(b)(a) (c)

FIG. 11. Ramsey spectroscopy. (a) Ramsey oscillations around the Bloch sphere. A qubit prepared in a superposition state with
an Xπ/2 pulse will precess along the equator at a frequency given by δω, where δω = ωq − ωd is the detuning between the qubit
frequency ωq and the frequency of the rotating frame ωd. After some time t, another Xπ/2 gate is performed and the qubit is measured
in the computational basis. (b) Ramsey spectroscopy of a superconducting qubit (Q1) is performed for four different artificial detunings
(� = {−2,−1, 1, 2} MHz). The resulting Ramsey oscillations are plotted and spaced vertically apart for visual clarity. The data are
fit to an exponential cosine function, from which the frequency of oscillations can be extracted. (c) Measured detunings are extracted
from the frequency fits from (b) and plotted as a function of the artificial detunings. The data is then fit to an absolute value function,
with the vertex of the fit representing the actual frequency detuning of the qubit drive. From these data, it was found that the qubit was
detuned 695 kHz from the drive frequency.

By choosing artificial detunings above and below where
we expect the true qubit frequency to reside, we can fit
the measured detuning to an absolute value curve, with
the vertex of the fit representing the detuning between the
qubit frequency and the drive frequency. For the data in
Fig. 11(c), we find that the qubit frequency was detuned
695 kHz below the qubit drive.

D. Qubit coherence

There are two important characteristic timescales that
define the coherence of a qubit. The first timescale—called
T1—describes how long a qubit will remain in an excited
state before it decays to the ground state. The second
characteristic timescale—called T2—describes how long
a qubit can maintain phase coherence in a superposi-
tion state. The characterization of these timescales are
important, as they place fundamental limits on the gate
fidelities achievable for each qubit, as well as fundamen-
tal limits on the time within which one can perform useful
computations on a quantum processor.

In general, different types of qubits can have drastically
different coherence times. For example, while coherence
times of superconducting qubits ranging from ∼100 µs to
1 ms are considered quite long [221], atomic-based sys-
tems such as neutral atoms or trapped ions can exhibit
drastically longer coherence times, ranging from seconds
to even hours [222]. However, gate times can also dif-
fer by orders of magnitude between different platforms,
typically ranging from tens of nanoseconds on supercon-
ducting systems to tens of milliseconds on atomic systems.
Therefore, in the context of gate-based quantum comput-
ing, one should consider the relative number of gates that

can be implemented within the coherence times of qubits
on a quantum processor, as this determines the maximum
circuit depth achievable for the processor.

1. Energy relaxation: T1

A qubit in an excited state will eventually decay to the
ground state due to energy relaxation, such as spontaneous
emission (see Sec. III C). The characteristic timescale for
thermalization—termed T1—is defined by the longitudinal
relaxation rate �1 [Eq. (152)],

T1 ≡ 1
�1

. (270)

T1 is the 1/e decay constant for energy relaxation, whereby
with some probability p(t) = 1 − exp(−t/T1) at time t a
qubit in the excited state will thermalize to the ground
state. For an arbitrary single-qubit state, this process can
be modeled in the density matrix formalism:

ρ =
(

1 + (|α|2 − 1)e−t/T1 αβ∗eiδωt

α∗βe−iδωt |β|2e−t/T1

)
, (271)

where we note that as t −→ ∞, ρ00 = 1 + (|α|2 −
1)e−t/T1 −→ 1 and ρ11 = |β|2e−t/T1 −→ 0.

To measure the T1 time of a qubit, the qubit is prepared
in the |1〉 state using an Xπ pulse and then measured after
waiting some time t. By repeating this process for many
different times, the measured data is fit to an exponen-
tial decay function A exp(−t/T1), from which T1 can be
extracted. In Fig. 12, we plot the T1 characterization curve
for a superconducting transmon qubit, and find that it has
a T1 time of 102.0 (1.5) µs.
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FIG. 12. Qubit T1 characterization. Exponential decay curve
for a superconducting qubit (labeled Q6) prepared in the excited
state and measured after a variable amount of time. The raw data
(blue points) corresponds to the ensemble probabilities of the
qubit being measured in the |1〉 state after each waiting period,
and orange curve is the exponential fit to the data. From this fit,
we can extract a characteristic time of T1 = 102.0(1.5) µs for
this qubit.

2. Phase decoherence: T2

A qubit prepared in an superposition state will
eventually experience phase decoherence due to both
energy relaxation and pure dephasing (see Sec. III B). The
characteristic timescale for phase decoherence—termed
T2—is defined by the transverse relaxation rate �2 (Eq.
(269)),

T2 ≡ 1
�2

=
(
�1

2
+ �φ

)−1

, (272)

where �φ is the rate of pure dephasing. Here, we see that in
the limit of no pure dephasing (i.e., �φ = 0), the timescale
for phase coherence is determined by the timescale for
energy relaxation, with T2 = 2T1. This reflects the fact that
T1 events erase all phase knowledge of the qubit state, lim-
iting the maximum length of time that a qubit can maintain
phase coherence.

T2 is the 1/e decay constant for phase decoherence,
whereby with some probability p(t) = 1 − exp(−t/T2) at
time t a qubit in a superposition state will depolarize
toward the polar axis. Equation (271) can be modified to
include phase decoherence,

ρ =
(

1 + (|α|2 − 1)e−t/T1 αβ∗eiδωte−t/T2

α∗βe−iδωte−t/T2 |β|2e−t/T1

)
, (273)

where we have added e−t/T2 to the off-diagonal terms
to account for phase decoherence as t −→ ∞. In the
long-time limit, all terms converge to zero except ρ00.
Equation (273) is known as the Bloch-Redfield model of
two-level systems [223].

The phase decoherence time T2 can be measured using
Ramsey spectroscopy (Sec. VI C 2). First, the qubit is pre-
pared in a superposition state, then allowed to naturally
dephase along the equator for a variable amount of time,
after which the resulting state is rotated back to the compu-
tational basis and subsequently measured [see Fig. 11(a)].
In a Ramsey experiment, one should observe decaying
oscillations between |0〉 and |1〉. By fitting the data to
a decaying sinusoid [Eq. (269)], T2 can be determined
directly from the exponential fit parameter, T2 = 1/�2. If
both the drive-qubit detuning and the dephasing rate are
small, then it can be difficult to fit the observed data to
Eq. (269). In this case, it is convenient to add an artifi-
cial detuning to the drive (see Fig. 11) such that the data
can be accurately fit to a decaying sinusoid. The dephas-
ing time measured using Ramsey spectroscopy is typically
written as T∗

2 to denote that it is sensitive to inhomogeneous
low-frequency noise (see the discussion in Sec. III B). In
Fig. 13(a), we plot the T∗

2 characterization curve for a
superconducting transmon qubit, and find that it has a T∗

2
time of 140.0 (5.3) µs. We observe that it is less than 2T1
of the same qubit (see Fig. 12), indicating the presence of
pure dephasing.

Ramsey measurements are generally sensitive to low-
frequency noise. Here, low-frequency noise is defined to
be quasistatic over the timescale of an experiment, but
can vary from experiment to experiment. Therefore, it is
possible to “echo” away the effect of the noise using a
Hahn-echo pulse [86]. Hahn-echo experiments are iden-
tical to Ramsey experiments in the state preparation and
measurement, but halfway through the experiment an Xπ
pulse is applied to the qubit. This reverses the effects
of inhomogeneous broadening caused by the quasistatic
noise, effectively refocusing the Bloch vector. By perform-
ing a Hahn-echo experiment for different durations of time,
one can fit the measurements to an exponential function
whose exponential fit parameter determines the T2 time of
the qubit with an echo pulse—denoted T2E . In Fig. 13(b),
we plot the T2E characterization curve for a superconduct-
ing transmon qubit, and find that it has a T2E time of 160.0
(6.1) µs. While this is longer than the T∗

2 time of the qubit,
it does not saturate the T2 = 2T1 limit. This indicates the
presence of not only low-frequency quasistatic noise (since
T2E > T∗

2), but also high-frequency noise, which likely
varies over the timescale of the experiment.

E. Phase estimation

While continuous Rabi, Ramsey, and Hahn-echo exper-
iments are useful for learning basic properties of qubits,
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(b)(a)

FIG. 13. Qubit T2 characterization. (a) Decaying sinusoidal curve for a superconducting qubit (labeled Q6), which has been prepared
in a superposition state using an Xπ/2 pulse, allowed to precess along the equator for some time t, after which it is mapped back to
the computational basis with a final Xπ/2 pulse and subsequently measured. From the fit of the data, we extract a characteristic time of
T∗

2 = 140.0(5.3) µs for this qubit. (b) Hahn-echo experiment for Q6. The sequence is identical to the Ramsey sequence in (a), but an
Xπ pulse is added to the middle of the experiment to echo away the effects of low-frequency noise. From the exponential fit, we extract
a characteristic time of T2E = 160.0(6.1) µs for this qubit.

they do not provide detailed information about the perfor-
mance of quantum gates in a gate-based setting. However,
by performing discrete Rabi and Ramsey experiments
composed of defined quantum logic operations (e.g., Xπ/2
or Yπ/2 gates), one can learn detailed information about
the underlying gates themselves. This is the goal of a set
of characterization methods under the broad term phase
estimation [224].

As an ideal n-qubit quantum gate implements a unitary
in SU(2n), we may think of any such gate as implementing
some manner of rotation of vectors in d = 2n dimensional
Hilbert space. Implementing incorrect rotation angles is a
primary source of coherent error in quantum hardware (see
Sec. III A); accurate characterization of such angles is nec-
essary for the calibration of high-quality gates. The task
of specifically estimating a gate’s rotation angle is called
phase estimation, and it is the task we concern ourselves
with in this subsection.

While there exist multiple protocols for phase estima-
tion, here we review a particular flavor of it called robust
phase estimation (RPE) [225]. RPE may be thought of
in some sense as an interpolation between the aforemen-
tioned Rabi and Ramsey oscillations and the gate set
tomography (GST) protocol, discussed in Sec. VII D. Like
Rabi oscillations, RPE estimates one particular Hamil-
tonian parameter of a gate operation, but like GST, it
uses a set of circuits with logarathmically spaced depths,
allowing it to learn that parameter with Heisenberg-like
accuracy.

Without loss of generality, we may consider the task
of estimating the phase θ from a single-qubit gate U =
e−iθσj /2, with θ ∈ [−π ,π ] and where σj may be taken to
be any Pauli matrix [226]. If we simply apply the gate U
to a uniform superposition of its two eigenstates and then
perform a projective measurement onto that same superpo-
sition, the probability Pc that the system is projected onto
that same superposition is given by

Pc = | 〈+|U |+〉 |2 = 1 + cos θ
2

, (274)

where |+〉 denotes the uniform superposition of the two
eigenstates of U [by analogy with the standard definition
of |+〉 = 1√

2
(|0〉 + |1〉)]. Similarly, if we instead perform

a projective measurement onto the |i+〉 state (where we
have put a relative phase of i between the two eigenstates),
the probability of measuring in the |i+〉 state is

Ps = | 〈i+|U |+〉 |2 = 1 + sin θ
2

. (275)

By repeating both of these experiments many times to
build up approximations of Pc and Ps—which we will
denote as P̂c and P̂s, respectively—we can estimate θ by θ̂ :

θ̂ = arctan 2(2P̂s − 1, 2P̂c − 1) , (276)

where arctan 2 is the arc-tangent function which accounts
for branch cuts by tracking the signs of its two arguments.
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While one can, in principle, estimate θ in this manner, this
approach suffers from two problems. First, unwanted error
terms (e.g., decoherence effects, SPAM errors, etc.) can
pollute P̂c and P̂s, corrupting θ̂ . Second, even if such errors
are not present, the accuracy of the estimate θ̂ is at the stan-
dard quantum limit, i.e., if N repetitions (shots) of each of
the two circuits are taken, then the uncertainty in θ̂ scales
as 1/

√
N . For learning θ to high precision, this approach

becomes very expensive.
RPE solves both of these problems, as we describe in

the rest of this subsection. Instead of only using circuits
with just a single repetition of U, RPE replaces the single
instances of U in Eqs. (274) and (275) with k repetitions
of U, for k ∈ {1, 2, 4, . . . , kmax}, giving an RPE experi-
ment a total of 2(1 + log2 kmax) circuits. Thus, the target
probability distributions that an RPE experiment attempts
to sample from look unsurprisingly similar to Eqs. (274)
and (275). However, as we noted above, Eqs. (274)
and (275) do not take into account other errors, which
could perturb the distributions we wish to sample from
(and estimate). If we denote such additive perturbations
by δk,c and δk,s for the Pk,c and Pk,s distributions, respec-
tively, then we find that the actual probability distributions
an RPE experiment samples from are given by

Pk,c = 1 + cos(kθ)
2

+ δk,c , (277)

Pk,s = 1 + sin(kθ)
2

+ δk,s . (278)

As detailed in Refs. [225,227], built into RPE is
a robustness against such additive errors. As long as

max{i∈{c,s},k} |δk,i| <
√

3
32 ≈ 30.6%, RPE can still success-

fully estimate θ . In fact, if that constraint on the additive
errors is satisfied for all k up to some kmax, then the root
mean square (RMS) error of RPE’s estimate of θ will be
no greater than π/(2 · kmax). Thus, RPE yields an esti-
mate of θ that is Heisenberg-limited in its accuracy (up
to decoherence), allowing θ to be estimated extraordinar-
ily efficiently. For example, it was shown in Ref. [228] that
RPE could be used to learn a single-qubit gate’s phase to
within 4 × 10−4 radians, with only 176 total experimental
samples.

We now turn to discussing how RPE constructs an esti-
mate of θ from its experimental estimates P̂k,c and P̂k,s.
For a given “generation” of circuits corresponding to k
repetitions of U, we can estimate kθ according to

kθ̂ = arctan 2(2P̂c,k − 1, 2P̂k,s − 1) mod 2π . (279)

Because sinusoids exhibit periodicity, we cannot learn θ
from just Eq. (279). In other words, there are multiple
values of θ̂ that satisfy Eq. (279). However, we can use
successive generations of RPE data to learn θ iteratively.

For each successive generation, the angular space in which
θ̂ can fall is cut in half (thus allowing the uncertainty to
shrink by a factor of two with every generation, yielding
Heisenberg-like scaling). To begin, we start with k = 1,
and compute an initial estimate of θ̂1, given by Eq. (276).
For each subsequent generation, we compute

θ̃k = arctan 2(2P̂c,k − 1, 2P̂k,s − 1)/k . (280)

(a)

(b)

FIG. 14. Robust phase estimation. (a) RPE of an Rx(π/2) gate.
The X error (i.e., over or under rotation) and Z error (i.e., axis
angle error) in the gate are plotted above. Both the X and Z
errors are equal to zero (up to uncertainty). (b) RPE of a CZ
gate. Rotation errors on the IZ, ZI , and ZZ Hamiltonian gener-
ators of the gate are plotted above. RPE is able to verify that
the errors on the IZ and ZI terms are zero (up to uncertainty),
but there remains an error on the ZZ entangling term of approxi-
mately 0.06 ± π

512 ≈ 0.06 ± 0.006 radians. The error bars in the
plot represent the π/(2 · kmax) upper bound on the estimates’
RMS error (we omit displaying the full error bar at lower circuit
depths for visual clarity), and the most trusted estimate of the
errors (i.e., “last good depth”) from the RPE consistency checks
are indicated by dashed vertical lines.
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This quantity, θ̃k, is effectively the update to our previous
estimate θ̂k−1. However, in order for the new estimate to
be in the correct branch, we must add (or subtract) 2π/k to
(or from) θ̂k until the resulting quantity falls within θ̂k−1 ±
π/k. This resulting quantity is then taken to be θ̂k.

In Fig. 14(a), we plot the results of an RPE experiment
performed on a single-qubit Rx(π/2) gate implemented on
a superconducting qubit and analyzed using the python
package pyRPE [229]. As discussed in Refs. [225,228],
small modifications can be made to the standard RPE rou-
tine to learn both the error in rotation angle and the axis
misalignment of a gate relative to the target operation [i.e.,
an ideal Rx(π/2) gate]. We plot both of these errors for the
Rx(π/2) gate in Fig. 14(a), where the X error refers to an
over or under rotation, and the Z error refers to a phase (i.e.,
axis) error on the gate. The error bars in the plot represent
the π/(2 · kmax) upper bound on the phase estimates’ RMS
error, and the most trusted estimate of the errors are indi-
cated from the RPE consistency checks. Both the X and Z
errors on the Rx(π/2) are zero, up to uncertainty.

Additionally, RPE may be used to characterize two-
qubit rotation angles, with only minor modifications
required. Ref. [230] demonstrated RPE on a CZ gate that
acts on pair of superconducting qubits. As, up to a global
phase,

CZ = e
−i
2

(
π
2 ZI+π2 IZ−π2 ZZ

)
, (281)

RPE can be used to learn each of the coefficients of the ZI ,
IZ, and ZZ terms in the Hamiltonian which generates the
CZ gate. The results, summarized in Fig. 14(b), show that
while the errors on the IZ and ZI phases are zero (up to
uncertainty), the ZZ entangling phase has an angle error of
approximately 0.06 radians. Because RPE is rather inex-
pensive to perform, the aforementioned experiment cost
fewer than 60 distinct circuits, and its error estimates can
be used to (re)calibrate the gates being characterized using
parameter sweeps or closed-loop optimization [231].

VII. TOMOGRAPHIC RECONSTRUCTION

Tomographic reconstruction methods (a.k.a. “tomog-
raphy”) estimate all aspects of an object by probing it
along several axes and combining the results. In QCVV,
tomography is used to estimate the mathematical object
representing a quantum logic operation—a quantum state,
process, or measurement. Tomography protocols estimate
the entire density matrix, transfer matrix, or POVM. This
requires more experimental data and analytic effort than
just estimating a few properties of the object, but yields
more diagnostic power. A complete tomographic char-
acterization reveals all interesting properties of a logic
operation, enabling debugging of quantum hardware and
predicting the behavior of operations in situ.

FIG. 15. Tomographic reconstruction. The structure of the cir-
cuits required for state, process, and measurement tomography
are shown. Each of these protocols reconstructs an initially
unknown quantum operation (a state ρ, process G, or POVM M )
by combining that operation into simple circuits with a set of
known complementary operations. The known operations form a
reference frame for estimation of the unknown operation’s matrix
elements. If the reference frame is informationally complete, then
all matrix elements of the unknown operation can be learned.
We denote reference frame operations with “primed” symbols (ρ ′
and M ′) to indicate that they are effective (rather than native) state
preparations and measurements, usually implemented by apply-
ing gate operations after or before a native state preparation or
measurement. These techniques are limited by systematic errors
stemming from imperfect a priori knowledge of the ρ ′ and M ′.
Figure and caption reproduced with permission from Ref. [156].

Quantum tomography methods are among the old-
est characterization tools. Quantum state tomography
(Sec. VII A) appears in the literature as early as 1968 [232],
and quantum process tomography (Sec. VII B) dates to
1997 [233]. Traditional methods such as quantum state
and process tomography are still widely used to this
day, but they are unreliable in the presence of imperfect
state preparation and measurement (SPAM) [194]. Self-
consistent tomographic methods like gate set tomography
(Sec. VII D) avoid this problem, and have superseded state
and process tomography in contexts that require reliability.

In this section, we provide overviews of the following
tomographic reconstruction methods:

(a) Quantum state tomography (Sec. VII A). Quan-
tum state tomography is designed to reconstruct an
unknown quantum state ρ (i.e., density matrix) by
performing an informationally complete set of mea-
surements {M ′

j } on many identical copies of ρ (see
Fig. 15).

(b) Quantum process tomography (Sec. VII B). Quan-
tum process tomography is designed to reconstruct
an unknown quantum operation (e.g., a gate G) by
applying many identical implementations of G to
an informationally complete set of distinct states
{ρ ′i} and performing an informationally complete set
of measurements {M ′

j } on many identical copies of
each G[ρ ′i ] (see Fig. 15).
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(c) Quantum measurement tomography (Sec. VII C).
Quantum measurement tomography is designed to
reconstruct an unknown POVM M by applying it to
an informationally complete set of states {ρ ′i} (see
Fig. 15).

(d) Gate set tomography (Sec. VII D). Gate set tomog-
raphy is designed to self-consistently reconstruct an
entire set of quantum operations including at least
one initialization (state), at least one measurement
(POVM), and at least two logic gates (quantum pro-
cesses)—i.e., a gate set—by running a wide range
of circuits composed from those operations (see
Fig. 20).

A. Quantum state tomography

The goal of quantum state tomography (QST) [232] is
to accurately estimate the density matrix ρ representing a
quantum state. This cannot be done using just one copy of
the unknown state ρ, because no single measurement will
reveal ρ, and measuring a system disrupts its unmeasured
properties. State tomography therefore requires many (N )
identically prepared systems. It is usually assumed, for
simplicity, that these systems are identically and inde-
pendently prepared, so that their joint state is ρ⊗N for
some unknown ρ. In real experiments, this assumption is
only an approximation, and state tomography estimates the
average reduced density matrix of the N sample systems.

State tomography is performed by performing an infor-
mationally complete measurement, or set of measure-
ments, on the samples of ρ (see Fig. 15). Informational
completeness is a property of a set of POVM effects {Ei},
and it does not matter whether those effects all come from
a single POVM (i.e., {Ei} is itself an experimentally per-
formable POVM M ′) or a set of distinct measurements
(e.g., {Ei} is the union of the effects of several PVMs
{M ′

1, M ′
2, . . .}). A set of effects is informationally com-

plete if (and only if) they span the vector space B(H) of
operators. Since B(H) for a d-dimensional Hilbert space
H is d2-dimensional, a measurement or set of measure-
ments must contain d2 linearly independent effects to be
informationally complete and enable state tomography.
This is usually achieved by choosing at least d + 1 PVMs
(orthogonal bases), but can in principle be achieved with a
single d2-element POVM. Informationally complete sets
are not all created equal—the accuracy of tomographic
reconstruction is controlled by the condition number of
{Ei}’s Gram matrix, and optimal accuracy is achieved by
a 2-design [185], such as a full set of mutually unbiased
bases [234,235] or a symmetric informationally complete
POVM [185,236].

The basic principle of state tomography is very simple.
By repeating measurements many times, we estimate the
probability p(Ei) of each effect. The simplest estimator
p̂(Ei) is the number of times Ei was observed divided by

the number of times it could have occurred:

p̂(Ei) = ni

Ni
. (282)

By Born’s rule,

p(Ei) = Tr(Eiρ) = 〈〈Ei | ρ〉〉 . (283)

If the set {Ei} spans B(H), then Eq. (283) defines a set
of linear equations that can be solved uniquely for ρ [see
Eq. (295) below]. This is state tomography.

To gain insight into how this is done in practice, con-
sider the simplest case of a single-qubit state described by
a 2 × 2 density matrix (see Sec. II B 1). A single projec-
tive measurement is not sufficient to determine ρ, even if
we repeat it N −→ ∞ times. Measuring, for example, Z
reveals only p(|0〉〈0|) and p(|1〉〈1|), from which we can
deduce 〈Z〉 and 〈I〉 but not 〈X 〉 or 〈Y〉. To estimate ρ, we
also need to learn 〈X 〉 and 〈Y〉, because a single-qubit ρ
is defined by a Bloch vector r ∈ R3 in the Bloch ball [see
Eq. (53) and Fig. 1].

We can obtain informationally complete data by divid-
ing N samples of ρ into three groups, then measuring
X on each sample in the first group, Y on the second
group, and Z on the third group. From the resulting count
data, {〈X 〉 , 〈Y〉 , 〈Z〉} can all be estimated. Then the density
matrix can be reconstructed as

ρ = 1
2
(I + 〈X 〉X + 〈Y〉 Y + 〈Z〉 Z) . (284)

Often, the only native measurement is a Z-basis measure-
ment. In this case, effective measurements of X and Y are
performed by (1) rotating the qubit using a RY(−π/2) or
RX (π/2) operation (respectively), then (2) performing the
native Z-basis measurement.

This informationally complete experiment can be
described (as above) as a union of three distinct PVMs. But
it can equally well be described as a single POVM with
six outcomes, M ′ = { 1

3 |ψi〉〈ψi|
}
, where |ψi〉 ranges over

the six single-qubit Pauli eigenstates (i.e., the ±1 eigen-
states of X , Y, and Z). This POVM can be implemented
by drawing a uniformly random number k from 1 . . . 3 and
performing the kth Pauli PVM (repeating both steps for
each shot). State tomography experiments are sometimes
described this way [237,238], representing a set of PVMs
or POVMs as a single POVM, because it is simpler.

A straightforward extension of this single-qubit tomog-
raphy protocol can be used to perform state tomography
on an n-qubit system. To do single-qubit state tomography,
we measured in three independent bases. For n-qubit state
tomography, we need 3n distinct “measurement configu-
rations” or PVMs. Each measurement configuration corre-
sponds to simultaneously measuring one of the three Paulis
(X , Y, Z) on each of the n qubits. So, for example, state
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tomography on n = 2 qubits uses 9 = 32 distinct configu-
rations each corresponding to measuring one of {X , Y, Z}
on the first qubit and (independently) one of {X , Y, Z} on
the second. Each of the nine measurements has four pos-
sible outcomes, which are represented by rank-1 POVM
effects. For example, the four effects for measuring Z on
both qubits are {|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|}. After
performing this measurement on N samples, it is straight-
forward to estimate each effect’s probability as p̂ij =
nij /N (e.g., p̂00 = n00/N ). Born’s rule says that pij =
Tr(|ij 〉〈ij | ρ) = 〈|ij 〉〈ij |〉. So, we can transform these esti-
mated probabilities into estimates of the expectation values
of three Pauli observables just by writing out those Paulis
as linear combinations of POVM effects,

ZZ = |00〉〈00| − |01〉〈01| − |10〉〈10| + |11〉〈11| , (285)

IZ = |00〉〈00| − |01〉〈01| + |10〉〈10| − |11〉〈11| , (286)

ZI = |00〉〈00| + |01〉〈01| − |10〉〈10| − |11〉〈11| , (287)

and then multiplying both sides by ρ and taking the trace:

〈ZZ〉 � n00

N
− n01

N
− n10

N
+ n11

N
, (288)

〈IZ〉 � n00

N
− n01

N
+ n10

N
− n11

N
, (289)

〈ZI〉 � n00

N
+ n01

N
− n10

N
− n11

N
. (290)

The coefficients in this linear transformation from effect
probabilities to Pauli expectation values correspond to the
2-bit Walsh-Hadamard transform [Eq. (407)], which can
be defined for any n.

The expectation value of every n-qubit Pauli operator
in the 4n-element Pauli group Pn = {I , X , Y, Z}⊗n can be
straightforwardly estimated from at least one of the 3n

measurement configurations defined above. Then, because
the Pauli operators form a complete orthogonal basis for
B(H), ρ can be reconstructed as

ρ = 1
2n

∑
P∈Pn

〈P〉P . (291)

In the example of n = 2 qubits,

ρ = 1
4
(II + 〈IX 〉IX + 〈IY〉IY + 〈IZ〉IZ

+ 〈XI〉XI + 〈XX 〉XX + 〈XY〉XY + 〈XZ〉XZ

+ 〈YI〉YI + 〈YX 〉YX + 〈YY〉YY + 〈YZ〉YZ

+ 〈ZI〉ZI + 〈ZX 〉ZX + 〈ZY〉ZY + 〈ZZ〉ZZ) . (292)

Figure 16 shows an experimental realization of this state
tomography protocol to estimate a two-qubit Bell state.

FIG. 16. Quantum state tomography. The estimated density
matrix of a two-qubit Bell state that was experimentally real-
ized by applying a

√
iSWAP gate to the initial state |10〉, and

then reconstructed using quantum state tomography [218]. The
tomographic estimate indicated that the desired Bell state was
prepared with high fidelity (F ≈ 0.995). Each bar represents a
single element of the 4 × 4 density matrix, with its height indicat-
ing the matrix element’s absolute value and its color indicating
complex phase.

This simple n-qubit tomography protocol illustrates two
valuable points. First, the n-qubit measurements described
above are PVMs—their outcome effects are mutually
orthogonal rank-1 projectors—but they are not measure-
ments of individual Pauli observables. When we perform
Z measurements simultaneously on both qubits, that is
not “a measurement of ZZ.” ZZ is a Pauli operator with
only two eigenvalues (+1 and −1) that each label a
two-dimensional eigenspace. A measurement of ZZ is
described by a rank-2 POVM with two outcomes that
yields exactly 1 bit of information. In contrast, measuring
both qubits in Z yields four outcomes and 2 bits of infor-
mation. This is a simultaneous measurement of multiple
commuting Paulis, a.k.a. a stabilizer [239]. The simul-
taneously measured observables, ZI and IZ, generate a
stabilizer group (a maximal Abelian subgroup of Pn con-
taining 2n commuting Pauli operators). Each of the 2n

Paulis in the stabilizer group can be written as a linear
combination of the 2n rank-1 projectors describing out-
comes of the PVM measurement of the stabilizer. In this
example, the Paulis {II , IZ, ZI , ZZ} are linear combinations
of {|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|}). A good estimate
of the outcome probabilities of a stabilizer measurement
is sufficient to estimate all the expectation values of the
2n Paulis in the stabilizer. Note that some tomography
theory papers do consider direct measurements of Pauli
observables (which have two outcomes and reveal one
expectation value) instead of stabilizers (which have 2n

outcomes and reveal 2n − 1 expectation values).
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Second, the 3n distinct stabilizer measurements are not
mutually independent. Performing nine measurements that
each have four outcomes should reveal 27 = 9(4 − 1)
independent probabilities. But these 27 distinct probabili-
ties are not linearly independent. For example, in one mea-
surement configuration we measure the stabilizer {ZI , IZ},
while in another we measure {ZI , IX }. Each yields three
Pauli expectation values, but they are not linearly inde-
pendent because ZI appears in both stabilizers. In fact,
ZI appears in the stabilizers of three different measure-
ment configurations, whereas ZX only appears in one. As
a result, this tomographic experiment yields more informa-
tion about ZI than ZX , and therefore higher precision in the
estimate of 〈ZI〉 than 〈ZX 〉. In the n-qubit case, a Pauli that
acts as I on k of the n qubits will appear in 3k measurement
configurations. As a result, this tomographic measurement
protocol is both redundant (more measurement configu-
rations than necessary) and heteroskedastic (some Pauli
expectation values are estimated to much lower precision
than others).

These features are unavoidable if each qubit is mea-
sured independently. There is a 1:1 correspondence
between weight-n Paulis and measurement configurations,
so removing even a single one of the 3n measurement
configurations breaks informational completeness (there
is some Pauli P ∈ Pn whose expectation value cannot be
estimated). However, by performing entangling n-qubit
measurements—i.e., POVMs or PVMs whose effects are
not tensor products of n single-qubit projectors—it is pos-
sible to construct a set of just 2n + 1 PVMs that measure
mutually unbiased bases [234]. This set is informationally
complete, minimal, and enables more accurate tomography
than the local measurement described above.

State tomography can be performed on any quantum
system, e.g., d-dimensional systems where d �= 2n. The
basic principle is the same: (1) define a set of measure-
ments whose effects {Ei} span B(H); (2) perform those
measurements on N samples of the unknown ρ; and (3)
estimate ρ by inverting Born’s rule. The main complica-
tions are technical. The Pauli operators cannot be used,
and the available operator bases for d-dimensional qudits
are less convenient (see Appendix B 4). Mutually unbi-
ased bases are not known (or believed) to exist unless
d = Dn, where D is prime. More details can be found in
Appendix D 2 a.

1. Maximum likelihood estimation

The simple description of quantum state tomography in
the previous section glosses over some key (if nonobvious)
points:

(1) What should be done if we have measured more
than d2 distinct observables or POVM effects? In

this case, the equations in Eq. (283) will overcon-
strain ρ and may have no solution.

(2) What should be done if solving Eq. (283) yields an
estimated state ρ̂ that is not positive semidefinite?

Both of these issues arise because finite-sample fluctua-
tions (a.k.a. shot noise) [240] cause ρ̂ to fluctuate randomly
around the true ρ. We have ignored these fluctuations so
far, implicitly assuming that the estimated value of any
observable (e.g., 〈Z〉) is equal to its true value. But this is
not true in practice. As a result, tomography is a statistical
problem. The two issues highlighted above are solved by
reformulating tomography not as a set of linear equations,
but as a statistical inference problem.

The easiest way to address these issues is to treat
Eq. (283),

p(Ei) = Tr[Eiρ] = 〈〈Ei | ρ〉〉 ,

not as an exact linear inversion problem, but as a least-
squares problem. These equations can be written in matrix
form, by arranging the effect probabilities into a column
vector "p = [p(E1), p(E2), . . .]T and stacking the vectorized
effects into a matrix

T =

⎛
⎜⎝
〈〈E1|
〈〈E2|

...

⎞
⎟⎠ (293)

so that

"p = T|ρ〉〉 . (294)

Now, if these equations have a unique solution ρ̂, it is
given by

|ρ̂〉〉 = T−1"p . (295)

This is linear inversion state tomography, in a single
equation.

If we have measured more than d2 observable probabili-
ties, then T will not be square, and therefore not invertible.
But if we admit that the estimated probabilities p̂(Ei) will
fluctuate around the true probabilities, then we can refor-
mulate Eq. (294) as a least squares problem and seek the
|ρ̂〉〉 that minimizes

‖"p − T|ρ〉〉‖2
2 =

∑
i

[
p̂(Ei)− Tr(Eiρ̂)

]2 . (296)

This actually has a closed-form solution, in terms of the
Moore-Penrose pseudoinverse of the matrix T:

|ρ̂〉〉 = T+"p , (297)
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where the pseudoinverse is defined as

T+≡(TTT)−1TT . (298)

The second issue (what if ρ̂ �≥ 0) can also be solved by
reformulating inversion as an ordinary least-squares prob-
lem, by constraining the optimization of Eq. (296) to
positive semidefinite ρ ≥ 0. This is a tractable convex
optimization problem. It can be solved by projecting the
unconstrained linear inversion estimate onto the nearest
positive semidefinite state [241], an algorithm known as
projected least squares (PLS) [242,243].

However, these least-squares tomography estimators
are ad hoc solutions, and not optimal in any sense except
simplicity. They can be seen as approximations to a statisti-
cally well-motivated approach called maximum likelihood
estimation (MLE) [244,245]. MLE is a simple, widely
used method for statistical inference—i.e., the estimation
of unknown parameters from data—in which the esti-
mated values of the unknown parameters are the ones that
maximize the probability of observing the data that were
actually observed. The probability of the observed data,
as a function of the unknown parameters, is called the
likelihood function:

L(θ) = Pr(Dobserved|θ) . (299)

Here, θ is a vector of parameters whose values we would
like to estimate, and Dobserved is the actual data that have
been observed. The likelihood function is a compressed,
efficient representation of the information that Dobserved
provides about the unknown θ . The maximum likelihood
estimate of θ is

θ̂MLE = argmax[L(θ)] . (300)

In quantum state tomography, the statistical model is
Born’s rule [p(Ei) = Tr(Eiρ)], and its parameters are the
matrix elements of ρ. The observed data can be described
very simply by a set of POVM effects {Ei} and the number
of times each effect has been observed, {ni}. The likelihood
function is

L(ρ) = Pr(Dobserved|ρ) , (301)

=
∏

i

Tr(Eiρ)
ni . (302)

The maximum likelihood estimate, ρ̂MLE, is simply the
density matrix ρ that maximizes L(ρ). No general closed-
form solutions exist, but finding ρ̂MLE is a tractable convex
optimization problem because the argmax of L is also the

argmax of the log-likelihood function logL(ρ),

logL(ρ) =
∑

i

ni log(Tr[Eiρ]) , (303)

which is concave downward. A variety of numerical algo-
rithms can be used to find the maximum of logL(ρ),
constrained to the convex subset of Hermitian matrices
that satisfy (1) Tr(ρ) = 1 and (2) ρ ≥ 0. The trace con-
straint is a straightforward linear (holonomic) constraint,
but the positivity constraint is trickier. One way to enforce
it is by using the nonlinear parameterization

ρ = LL†/Tr(LL†) , (304)

which guarantees both ρ ≥ 0 and Tr(ρ) = 1. If L is
restricted to (complex) lower triangular matrices with real
diagonal elements, it is the unique Cholesky factorization
of ρ. However, in this parameterization logL(L) is not
necessarily convex.

In certain circumstances, ρ̂MLE coincides exactly with
the linear inversion estimate ρ̂ from Eq. (295). If the T
matrix from Eq. (295) is invertible (i.e., the tomographic
data is informationally complete, but not overcomplete),
and we ignore the positivity constraint ρ ≥ 0 and extend
the likelihood function to all Hermitian trace-1 ρ for
which L(ρ) ≥ 0 (including matrices that are not positive
semidefinite), then L(ρ) achieves its maximum uniquely
at the linear inversion ρ̂. It follows that if ρ̂ ≥ 0, then it is
the MLE. This can provide significant time savings if/when
ρ̂ ≥ 0, because computing Eq. (295) is often much faster
than finding ρ̂MLE numerically.

If ρ̂ is not positive, then it follows that ρ̂MLE must lie on
the boundary of the set defined by ρ ≥ 0—i.e., it will have
at least one zero eigenvalue [246]. In this case, it is some-
times useful to approximate ρ̂MLE efficiently by observing
that because the linear inversion ρ̂ is the maximum of the
unconstrained likelihood, logL is necessarily quadratic in
a neighborhood of ρ̂. If the Hessian of logL around ρ̂ can
be efficiently computed, then constrained weighted least
squares optimization (instead of generic convex optimiza-
tion) algorithms can be used to find the ρ ≥ 0 that maxi-
mizes the quadratic approximation to logL. This approach
is sometimes (confusingly) described as “maximum like-
lihood estimation” in the literature; in fact, it is only an
approximation to MLE.

2. Bayesian tomography

Other statistical inference approaches can be applied
to tomography. MLE is merely the most common. The
most well-studied alternative is Bayesian estimation [246–
248]. Bayesian statistical inference [249,250] differs from
frequentist approaches like MLE by assuming (or assert-
ing) that ignorance about an unknown parameter—e.g., a
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quantum state—can and should be described by a proba-
bility distribution over it. Therefore, the standard Bayesian
approach to estimating ρ starts by assigning a prior prob-
ability distribution (“prior”) μprior(ρ) to the unknown
parameter. The observed data D are used to perform
Bayesian update on the prior to get a posterior distribution
by applying Bayes’ rule:

μpost(ρ) = Pr(D|ρ)μprior(ρ)

Pr(D)
= L(ρ)μprior(ρ)∫

ρ
L(ρ)μprior(ρ)

, (305)

where L(ρ) = Pr(D|ρ) is the same likelihood function
whose maximum defines the MLE. The most common esti-
mator, the Bayesian mean estimate (BME) [246], is the
mean of the posterior:

ρ̂BME =
∫
ρ

ρμpost(ρ) . (306)

Other estimators are possible. However, despite common
misconception, the posterior mode—i.e., the maximum of
μpost—is not a valid estimator. Because μpost is a contin-
uous measure over a continuous space, not a function, the
posterior probability of any single ρ is precisely zero. For
this reason, the posterior cannot have a maximum at any
ρ, and maximum a posteriori (MAP) estimators do not
exist. (MAP estimators exist if and only if the posterior
distribution is discrete, but this scenario defines quantum
state discrimination [251,252] rather than tomography.)
Attempts to construct MAP estimators (e.g., Ref. [253])
actually yield a variant of hedged maximum likelihood
estimation [254].

Bayesian tomography generally requires more computa-
tion than MLE, because sampling or integrating a posterior
distribution is usually harder than maximizing a convex
likelihood function. They also depend critically on the
choice of prior, which is a double-edged sword—it is
harder to claim “objective” results, but very straightfor-
ward to take optimal advantage of “informative” prior
information about partially known states. Bayesian esti-
mates are often better behaved and more accurate than
frequentist ones [246], and they simplify adaptive tomog-
raphy [255–257] and uncertainty quantification [258,259].
Software implementations of efficient algorithms [248,
257,260] have made Bayesian tomography of states and
other objects (e.g., gate sets [81,261]) more feasible and
accessible.

B. Quantum process tomography

Tomography can also be used to reconstruct (estimate)
the CPTP map that best describes a quantum operation
(e.g., a logic gate). This is called quantum process tomog-
raphy (QPT) [233,262]. A CPTP map is a linear map on
density matrices, a.k.a. a superoperator acting on B(H)

(see Sec. II C). In QPT, a CPTP map to be estimated is gen-
erally represented either as a transfer matrix � that acts on
a vectorized density matrix |ρ〉〉 by matrix multiplication
(see Sec. II C 2),

|ρ〉〉 	→ �|ρ〉〉 , (307)

or as a χ matrix describing

ρ 	→
∑

i,j

χi,j PiρPj , (308)

where {Pi} are a basis (often the Pauli basis) for B(H).
The goal of QPT is to estimate a complete mathematical
description of the transfer matrix � or process matrix χ .
Since � and χ are equivalent (see Sec. II C), analyses of
QPT usually just pick whichever representation is more
convenient for the specific protocol being described. We
will follow the same convention here.

QPT is performed by choosing an informationally com-
plete set of input states {ρ ′j } and an informationally com-
plete set of measurements {M ′

i }. The measurements used
for QPT must satisfy exactly the same criteria as those used
for QST (see Fig. 15), and the input states must collectively
span B(H). Like QST, QPT is very simple in principle.
Suppose that {ρ ′j } form an informationally complete set of
states, so that {|ρ ′j 〉〉} span B(H), and {Ei} (the union of all
the effects of the measurements {M ′

i }) form an information-
ally complete set of effects, so that {〈〈Ei|} also span B(H).
It follows that the set of superoperators {|ρ ′j 〉〉〈〈Ei|} (for
all i, j ) span the entire space of superoperators. Now, we
prepare many copies of every ρ ′j , apply the unknown pro-
cess to all of them, and then divide the (processed) copies
of ρ ′j into groups labeled by i and perform measurement
M ′

i on the ith group. By doing so, we can estimate every
probability

pi,j = Pr(Ei|ρ ′j ) = 〈〈Ei|�|ρ ′j 〉〉 = Tr[�|ρ ′j 〉〉〈〈Ei|] . (309)

This defines a (large!) set of linear equations that can be
solved for � in terms of measurable probabilities pi,j .

QPT on a system described by a d-dimensional Hilbert
space requires at least d2 distinct input states and
enough measurement configurations to perform QST (see
Sec. VII A). If only rank-1 PVMs (orthogonal basis mea-
surements) are used, this requires at least d + 1 distinct
measurement configurations, for a total of d2(d + 1) dis-
tinct state and measurement configurations, to estimate the
d4 − d2 free parameters of the unknown process. For the
special case of n qubits, where d = 2n, this works out to
at least 8n + 4n distinct state and measurement configura-
tions. Achieving this bound requires entangling measure-
ments. If only simultaneous single-qubit measurements are
used, then n-qubit process tomography requires 3n mea-
surement configurations, and thus at least 12n state and
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FIG. 17. Quantum process tomography. Top row: PTMs for experimental iSWAP, CZ, and SWAP gates reconstructed using QPT
[218]. Note that all of the values of a PTM are real and bounded between [−1, 1]. Bottom row: χ (process) matrices for the iSWAP,
CZ, and SWAP gates. The χ matrix is a complex matrix, so each matrix element’s magnitude is represented by the height of the
corresponding column, and its phase is represented by the column’s color. The process fidelities of the gates are 99.32(3)%, 99.72(2)%,
and 98.93(5)%, respectively.

measurement configurations. The experimental complexity
of QPT grows rapidly for n qubits!

In principle, analysis of QPT data is as simple as
“solve Eq. (309) for �.” But, as the discussion of QST in
Sec. VII A illustrates, there are many ways to solve these
equations. All of the complications discussed in the con-
text of QST also appear for QPT, which is very nearly
isomorphic to QST because of the Choi-Jamiołkowski iso-
morphism. Much of the QPT literature consists of taking a
new QST algorithm (e.g., MLE) and adapting it to QPT.
In this tutorial, we do not attempt to explore this liter-
ature in detail. Instead, we explain one simple approach
to linear-inversion QPT in detail. We assume an n-qubit
system, but this analysis generalizes straightforwardly to
qudits (see Appendix D 2 b) using a non-Pauli operator
basis (see Appendix B 4).

Suppose that by performing QPT experiments we have
estimated each of the probabilities in Eq. (309) as

p̂i,j � 〈〈Ei|�|ρ ′j 〉〉. (310)

To solve for �, we begin by arranging these probabilities
into a matrix P so that Pij = p̂i,j . Next, we construct two
matrices by vectorizing the input states and effects in the
Pauli operator basis,

B = (|ρ ′1〉〉, |ρ ′2〉〉, . . . , |ρ ′N 〉〉
)

(311)

and

A =

⎛
⎜⎜⎝

〈〈E1|
〈〈E2|

...
〈〈EN |

⎞
⎟⎟⎠ . (312)

Choosing the Pauli basis makes the final� a Pauli transfer
matrix (PTM; see Sec. II C 3). The elements of the input
(B) and output (A) matrices are then

Bij = 1√
d

Tr[Piρj ] , (313)

Aij = 1√
d

Tr[EiPj ] . (314)

Now, using A, B, and P, we can express Eq. (309) as

P = A�B , (315)

and extract� by inverting the A and B matrices [264,265]:

� = A−1PB−1 . (316)

When the input states and/or effects are overcomplete, a
Moore-Penrose pseudoinverse can be used instead [266].
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FIG. 18. Three-qubit QPT. PTM of a three-qubit iToffoli gate [263]. A three-qubit PTM contains 163 − 43 = 4032 independent
parameters, which can be estimated from a minimum of 43 × 33 = 1728 independent experiments. The process fidelity is estimated to
be 97.1(8)%.

An equivalent approach, which offers complementary
intuitions about QPT, is to use the data to perform quan-
tum state tomography on �|ρ ′j 〉〉 for each input state ρ ′j .
Then, if we write both the input and output states as vec-
tors in the Pauli basis, we can simply solve for the PTM
� using least-squares fitting. Figure 17 shows PTMs and
χ matrices reconstructed this way from experimental QPT
on two-qubit iSWAP, CZ, and SWAP gates implemented on

a superconducting quantum processor. A minimal set of
input states {|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|}⊗2 was used.

Adding a third qubit increases the number of experimen-
tal configurations required from 144 to 1728, illustrating
the rapid growth of QPT’s experimental complexity with
n. Figure 18 shows the PTM for a three-qubit iToffoli gate,
which contains 4032 independent parameters estimated
from 1728 distinct experiments.
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As we noted at the beginning of Sec. VII, both QST and
QPT are vulnerable to SPAM errors, which cause system-
atic bias in the estimate. Therefore, the process fidelities
quoted in Figs. 17 and 18 do not separate gate errors from
SPAM errors. For this reason, experimental tomography of
gates has moved toward tomographic reconstruction meth-
ods that characterize SPAM errors and gate errors simulta-
neously and self-consistently, such as gate set tomography
(Sec. VII D). A variation of QPT that leverages ideas from
gate set tomography to eliminate or correct SPAM bias has
also been proposed [266].

The examples above illustrated linear-inversion QPT.
But, just as density matrices reconstructed using linear-
inversion QST can easily violate the positivity constraint
ρ ≥ 0, superoperators reconstructed using linear-inversion
QPT can violate complete positivity (CP; see discus-
sion in Sec. II C). There are many ways to constrain a
reconstructed PTM or process matrix to be CP, including
MLE [264,267,268] or projection algorithms [269]. CP-
constrained MLE can be done in a variety of ways (e.g., via
semidefinite programs [264]), but the easiest approach to
understand uses the Choi-Jamiołkowski isomorphism. In
this approach, the process is parameterized by its χ matrix,
which is isomorphic to a density matrix on a larger system.
Now, MLE can be performed using algorithms designed
for state tomography (although an additional constraint on
the χ matrix, corresponding to trace preservation, must be
added).

C. Quantum measurement tomography

The goal of quantum measurement tomography (QMT)
is to estimate the parameters of a mathematical model
for a quantum measurement operation. For the most com-
mon case where the measurement is modeled by a POVM
M = {Ei} (see Sec. II B 2), QMT requires applying the
unknown measurement to an informationally complete set
of input states {ρ ′j } (see Fig. 15). So, QMT can be seen
as the complement to QST (Sec. VII A): where unknown
states are estimated by performing a range of known mea-
surements on them, an unknown measurement is estimated
by applying it to a range of known input states.

A POVM describing an m-outcome measurement on a
d-dimensional quantum system comprises m d × d effects
Ei ≥ 0. Estimating such a POVM requires repeatedly
applying it to an informationally complete set of at least
d2 input states whose density matrices span B(H). For
an n-qubit system, 4n linearly independent input states are
required.

The most common QMT procedure is to choose 4n lin-
early independent input states from the 6n tensor products
of single-qubit Pauli eigenstates, prepare N samples of
each, apply the unknown measurement to all the samples,
record the outcome statistics, and estimate the probabilities

p(i|j ) = Pr(Ei|ρ ′j ) = Tr[Eiρ
′
j ] = 〈〈Ei | ρ ′j 〉〉 . (317)

There is no uniquely good way to select a subset of 4n

Pauli eigenstates. Optimal accuracy is achieved when the
input states form a 2-design, but even for a single qubit,
achieving this optimum requires either (1) choosing non-
Pauli eigenstates such as a SIC-POVM [185], or (2) using
all six Pauli eigenstates.

Analysis of QMT data proceeds identically to QST
and QMT. Equation (317) is solved using the same tech-
niques and methods—e.g., linear inversion, least-squares,
or MLE—to find each Ei, and thus the entire unknown
POVM M . Measurement tomography implies slightly dif-
ferent constraints than state or process tomography; each
effect Ei must be positive semidefinite, but the analog of
the trace or TP constraints is that the sum

∑
i Ei must equal

I. This requires technical changes to constrained MLE
algorithms, but no conceptual novelty [270,271].

Tomographic estimation of mid-circuit measurements
requires a different model. POVMs model terminating
measurements, and mid-circuit measurements are modeled
not by POVMs, but by quantum instruments [Eq. (116)].
Tomographic reconstruction of quantum instruments is
a reasonably straightforward fusion of QPT and POVM
tomography, and the interested reader is referred to
Refs. [177,189,190].

Sometimes, it is adequate or desirable to use a sim-
pler model for terminating measurements instead of a full
POVM. A response (or confusion) matrix provides such
a model when the unknown measurement is intended to
measure a canonical basis (e.g., the computational basis).
The response matrix R is a d × d matrix whose elements
Rij = p(Ei|ρj ) are the probabilities of getting outcome
Ei ≈ |i〉〈i| if state ρj ≈ |j 〉〈j | is prepared and measured. For
example, a single-qubit response matrix is given by

R =
(

p(0|0) p(0|1)
p(1|0) p(1|1)

)
. (318)

R can be estimated in the obvious way, by preparing
each basis state as accurately as possible, applying the
measurement, and recording the empirical probabilities of
each outcome, as shown in Fig. 19. Response matrix esti-
mation requires preparing only d input states, whereas
QMT estimation of a POVM requires d2. It provides a
subset of the information in a POVM. For example, it
can be used to compute the readout fidelity defined in
Eq. (254), which is given by Tr(R), but it does not predict
the results of performing the measurement on superposi-
tions of the canonical basis states. Like QST and QPT,
QMT’s experimental complexity grows exponentially with
the number of qubits n, making it effectively infeasible
for more than a few qubits. However, measurements can
be characterized much more efficiently if a valid ansatz
applies.

A common and powerful ansatz is to assume that
crosstalk in multiqubit readout is negligible. If correlated
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FIG. 19. Response matrix. Heralding and measuring the states
of a qudit of dimension D = 4 yields the probabilities p(i|j ) of
measuring state |i〉 after preparing state |j 〉. These constitute the
response matrix R. (The data are reproduced with permission
from Ref. [272].)

readout errors are negligible, then a multiqubit response
matrix R or POVM M can be approximated as the tensor
product of each individual qubit’s R or M [273]. This holds
true for mid-circuit measurements modeled by quantum
instruments as well. Crosstalk-free models of measure-
ments can generally be characterized using a set of input
states whose size scales just linearly with the number
of qubits. But because crosstalk effects are often non-
negligible [177,190,274], crosstalk-free models should be
viewed with caution as a potentially useful approximation.
Full POVM characterization is usually necessary for accu-
rate assessment and modeling. Some forms of crosstalk
(and other errors in measurement) can be effectively elim-
inated by “twirling” readout error into stochastic bit-flip
channels [182,183]. Twirled measurements display less
crosstalk, and are almost always more consistent with the
response matrix model, than native measurements.

D. Gate set tomography

State, process, and measurement tomography are pow-
erful tools for diagnosing errors in a quantum processor.
However, each of these protocols implicitly assumes the
existence of a precalibrated reference frame (see Fig. 15)
of perfect states and/or measurements. Errors in the oper-
ations that define such a reference frame can bias the
tomographic reconstructions, and lead to incorrect models
for the operations under test. Gate set tomography (GST)
[156,275] is a family of calibration-free approaches to
tomography that explicitly acknowledge that all elements
of a quantum computer’s gate set—the native state prepa-
rations, measurements, and logic gates (see Sec. II E)—are
subject to errors. GST protocols are able to reconstruct
self-consistent mathematical representations of a quantum
computer’s native gate set and the errors afflicting it.

Around 2012, groups at IBM [194] and Sandia National
Laboratories [195] independently identified the need for
calibration-free characterizations of quantum operations.

IBM approached this problem using a so-called “overkill”
tomography protocol that utilizes all circuits of depth 3 or
less and fits a gate set model with MLE. Sandia’s “lin-
ear GST” method uses similar circuits to standard QPT
and fits a model with linear inversion. Variants of these
early protocols are still in use to some extent, but since
their introduction the family of GST protocols has evolved
significantly. It now encompasses a rather broad set of
experiment design and data analysis techniques for self-
consistently estimating the parameters of a gate set model
(see Sec. II E). In this tutorial, we limit our discussion to
two essential protocols: linear GST, mentioned above, and
long-sequence GST, which uses long, structured quantum
circuits and iterative MLE. Significant extensions to these
protocols [80,276] have introduced approaches for char-
acterizing larger processors and devices with mid-circuit
measurements [55], and other work [82] introduced an
efficient Kalman filter formalism for GST that replaces
the MLE analysis with a Bayesian estimator capable of
streaming real-time data processing. Experimental imple-
mentations of GST can be found in many papers, including
(but not limited to) Refs. [46,78,79,167,195,277,278].

We use the term “GST” without qualification to indicate
“long-sequence GST.” Reference implementations of lin-
ear and long sequence GST can be found in the pyGSTi
python package [279]. Throughout the rest of this subsec-
tion, we use the term “gate set” to describe both the ensem-
ble of logical instructions available on a given quantum
computer (e.g., “prepare |0〉,” “Hadamard gate on qubit
3,” “measure qubit 1,” etc.), and the mathematical repre-
sentations of those objects (e.g., density matrices, transfer
or process matrices, and POVM elements). In discussing
those mathematical objects, we follow the conventions of
Eq. (319a) for defining a gate set G:

G =
{{|ρ(i)〉〉}Nρ

i=1 , {Gi}NG
i=1 ,

{
〈〈E(m)i |

}NM,N (m)E

m=1,i=1

}
. (127)

Here, Nρ is the number of native state preparations, NG is
the number of native gates, NM is the number of native
measurements, and N (m)

E is the number of outcomes for the
mth native measurement. In most cases, Nρ = NM = 1.

Gate set models often have many parameters, and their
size grows very rapidly with the number of qubits n. Each
operation in the gate set is a matrix whose dimension
grows exponentially with n. Moreover, the total number of
possible n-qubit operations can grow combinatorially. Fit-
ting a model with exponentially many parameters requires
experimental complexity (and time) that also grows expo-
nentially with n. For these reasons, standard GST proto-
cols have so far been applied only to one- and two-qubit
systems.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 20. Linear gate set tomography. Structures of the two
types of circuits required by the LGST algorithm. Upper panel:
each native gate, Gk, is sandwiched between the elements of
informationally complete sets of effective state preparations,
{ρ ′i}, and of effective measurements, {M ′

j }. These are the same
circuits that QPT requires to characterize Gk. (a) Shows these cir-
cuits in their simplest form, with each informationally complete
set displayed as a unit. (b) Depicts the common case when the
set of effective preparations (measurements) is implemented by
following (preceding) a single native state preparation (measure-
ment) operation with a fiducial circuit Ff (Hh). (c) Exemplifies
that the fiducial circuits are composed of native gates Gi and
gives the circuit entirely in terms of native operations. Lower
panel: because LGST does not assume knowledge of ρ ′i and
M ′

j , it requires circuits that sandwich nothing between pairs of
fiducials in order to be self-calibrating. The circuit diagrams
in (d)–(f) parallel those in (a)–(c). LGST also requires the cir-
cuits that perform state (measurement) tomography on ρ (M ),
but these are not explicitly shown. They are similar to (d)–(f)
(replacing ρ ′ with ρ or M ′ with M ), and are actually included as
a subset of these circuits when the gate set contains only a single
native state preparation (measurement) and one of the prepara-
tion (measurement) fiducial circuits is the empty (do-nothing)
circuit. (Figure and caption reproduced with permission from
Ref. [156].)

1. Linear GST

Linear gate set tomography (LGST) is a self-consistent
approach to simultaneous state, process, and measurement
tomography that uses short quantum circuits and recon-
structs a gate set model using linear inversion (see Fig. 20).
Like QPT, it assembles elements of the gate set to construct
informationally complete (see Sec. V A) sets of states and
measurements, which are then used to probe the errors
in elementary logic operations. Most quantum computing
systems can natively prepare only a single initial state (typ-
ically |000 · · ·〉) and perform measurements only in a single

basis (e.g., the computational basis). So, a full, informa-
tionally complete set of states and measurements must be
constructed from these native operations by the application
of short fiducial gate sequences. For instance, measure-
ment in the {|+〉, |−〉} basis can be performed by preceding
a computational basis measurement by a Hadamard opera-
tion. Informationally overcomplete fiducial sets are often
used in the literature, but for simplicity of presentation,
we assume exact informational completeness. See the
Appendix of Ref. [156] for the general case.

Given an informationally complete set of fiducial states{
|ρ ′j 〉〉

}Nρ

j=1
and an informationally complete set of fidu-

cial measurement effects
{〈〈E′

i|
}NE

i=1, the LGST protocol
prescribes a set of circuits whose output distributions pro-
vide sufficient information to estimate the parameters of
a gate set model. To see how the protocol works, it is
convenient to start by collecting all the fiducial states and
measurement effects into matrices A and B defined as

A =

⎛
⎜⎜⎝

〈〈E′
1|〈〈E′
2|

...
〈〈E′

N |

⎞
⎟⎟⎠ (319)

and

B = (|ρ ′1〉〉, |ρ ′2〉〉, . . . , |ρ ′Nρ 〉〉
)

. (320)

Now, the parameters of a gate Gk can be estimated by first
estimating a matrix of probabilities Pk defined componen-
twise as

[Pk]i,j = 〈〈E′
i|Gk |ρ ′j 〉〉 , (321)

or as a matrix equation,

Pk = AGkB . (322)

Measuring Pk is essentially standard QPT, but in the
absence of a precalibrated reference frame, neither A nor
B is known, so we cannot solve Eq. (322) directly for Gk.

Instead, LGST also measures an additional set of cir-
cuits that would correspond to QPT on the null operation.
Their probabilities, which can be estimated from the cir-
cuits’ observed outcome statistics, form a Gram matrix 1̃
whose elements are

[1̃]i,j = 〈〈E′
i|ρ ′j 〉〉 . (323)

The Gram matrix is precisely equal to

1̃ = AB . (324)

Since the fiducial states and measurements are (by assump-
tion) informationally complete, both A and B are square
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invertible matrices, and 1̃−1 = B−1A−1. It follows that
multiplying both sides of Eq. (323) by 1̃−1 yields

1̃−1Pk = B−1GkB , (325)

or, solving for Gk,

Gk = B1̃−1PkB−1 . (326)

This equation defines the process matrices for every gate in
the gate set, in terms of physically measurable quantities 1̃
and Pk, up to an unknown superoperator B. It turns out that
B is not just unknown, it is unknowable—B embodies the
gauge freedom in gate set models. So Eq. (327) defines a
complete estimate of all gates in the gate set up to gauge
freedom.

The native state preparations
{
ρ(i)
}Nρ

i=1 and measure-

ments
{

E(m)j

}NM ,N (m)E

m=1,j=1
can be estimated (in the same gauge)

by constructing the following vectors:

[R(l)]j = 〈〈E′
j |ρ(l)〉〉 , (327)

[Q(m)
l ]j = 〈〈E(m)l |ρ ′j 〉〉 , (328)

using empirically measured circuit outcome probabilities.
We write them as

R(l) = A |ρ(l)〉〉 , (329)

Q(m)T
l = 〈〈E(m)l |B , (330)

and use the Gram matrix identity 1̃ = AB to write all
the elements of a gate set model in terms of measurable
quantities and a gauge transformation B as

Gk = B1̃−1PkB−1 , (331)

|ρ(l)〉〉 = B1̃−1R(l) , (332)

〈〈E(m)l | = Q(m)T
l B−1 . (333)

Any invertible matrix B is a valid choice, and the pre-
dicted outcome probabilities of circuits are entirely inde-
pendent of B. Different choices of B simply define different
gauges (bases) in which the gate set can be written. Thus,
no physical experiment can single out a “proper” gauge.
Inconveniently, most metrics of performance (Sec. IV) are
not gauge-invariant (independent of B). Therefore, it is
customary and necessary to choose a convenient gauge
in which to report the estimated Ĝ. This is discussed in
Sec. II E 2; an easy starting choice is to use the B defined
by the intended fiducial states.

In the above discussion, Pk is a matrix of circuit out-
come probabilities that must be estimated from data. The
maximum likelihood estimator for those probabilities is

(a)

(b)

(c)

FIG. 21. Long-sequence gate set tomography. The structure
of circuits in the standard LSGST experiment design, shown
in increasing detail. (a) Each GST circuit consists of an effec-
tive state preparation ρ ′ followed by a germ circuit g repeated
p times, followed by an effective measurement M ′ = {E′

i}. (b)
Effective preparations are usually implemented by a native state
preparation ρ followed by a preparation fiducial circuit F , and
effective measurements are usually implemented by a measure-
ment fiducial circuit H followed by a native measurement M .
(c) Writing the fiducials and germ in terms of the native gate
operations reveals how the native operations of a gate set com-
pose to form a GST circuit. (Figure and caption reproduced with
permission from Ref. [156].)

simply the observed frequency. If the circuit is run N times,
then finite sample fluctuations will lead to error in the esti-
mate that scales like O(1/

√
N ). Since Gk is linear in Pk

[Eq. (332)], the error bars on the estimate of the Gk transfer
matrix also scale as 1/

√
N . This is the so-called “stan-

dard quantum limit” for parameter estimation [280], and it
results here from the fact that each gate is only used once
per circuit (excluding any potential uses in creating the
fiducials). Long-sequence GST evades the standard quan-
tum limit by using long circuits that amplify errors and
achieve “Heisenberg” scaling in estimation precision.

2. Long-sequence GST

Long-sequence gate set tomography (LSGST) is an
approach to self-consistent tomography of quantum gate
sets that can beat the standard quantum limit [197]. It
achieves this by adding two innovations beyond LGST: (i)
longer quantum circuits that amplify gate errors, and (ii) a
new statistical estimation protocol to analyze long-circuit
data.

LSGST circuits are formed in a similar fashion to LGST
circuits. First, one selects informationally complete sets of
state preparation and measurement fiducials, as in LGST.
Where LGST uses these fiducials to probe each gate Gk in
the gate set, long-sequence GST uses them to probe each
of an amplificationally complete list of “germs.” A germ is
a short sequence of native gates, chosen so as to amplify
certain errors (see below). The circuits run by LSGST
comprise a fiducial state preparation, an p-fold repeated
germ, and a fiducial measurement (see Fig. 21). The “germ
powers” p are typically chosen to make the length of the p-
fold repeated germ as close as possible to (but not greater
than) a logarithmically spaced integer, 1, 2, 4, 8, . . . , pmax.
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These many-fold repeated germs are what enable LSGST
to achieve Heisenberg-limited scaling.

To see how this works, consider repeating a single gate
G many (p) times. The resulting process can be computed
from a spectral decomposition of the gate,

G .= R

⎛
⎜⎝

eφ1

eφ2

. . .

⎞
⎟⎠R−1 , (334)

Gp .= R

⎛
⎜⎝

epφ1

epφ2

. . .

⎞
⎟⎠R−1 , (335)

where diag(eφ1 , eφ2 , . . .) is a diagonal matrix of (generally
complex) eigenvalues and R is the change-of-basis matrix
between the original and diagonalized bases. As we saw
above, probing G with an informationally complete set of
fiducials allows us to estimate its eigenvalues, and thus the
complex phases φi, with uncertainty O(1/

√
N ). Similarly,

probing Gp allows us to estimate the amplified phases pφi
with uncertainty O(1/

√
N ), giving a O(1/p

√
N ) uncer-

tainty in the estimate of φi. This example also helps explain
why GST does not exclusively use the longest sequences:
knowledge of epφ for p � 1 is generally insufficient to
deduce φ, because the logarithm is multivalued. Data from
shorter sequences are necessary to determine the correct
branch.

Repeating G many times amplifies its eigenvalues,
allowing them to be estimated to high precision. But it
does not increase sensitivity to axis errors, so it does not
enable high-precision estimation of the matrix of eigenvec-
tors R. Amplifying the misalignment of the axis between
the gates requires choosing and repeating composite germs
that consist of products of native gates. Each germ defines
a quantum operation, which can be described by a transfer
matrix. Errors in a germ’s component gates propagate to
become errors in the germ. Some of them change the eigen-
values of the germ’s transfer matrix. Those errors—often
linear combinations of errors on different gates—are pre-
cisely the ones that the germ amplifies, and which can be
measured to high precision by repeating that germ. A set
of germs is called amplificationally complete for a gate set
G if knowledge of all the germs’ eigenvalues is sufficient
to reconstruct all of the nongauge, non-SPAM degrees of
freedom in the gate set.

To analyze what errors a given germ amplifies, we
assume that errors act as small perturbations to the tar-
get operation of a gate. In that limit, a perturbation to the
germ’s target operation is amplified by the germ if and only
if it commutes with the target operation. It follows that
each germ amplifies a subspace of perturbations to the gate

set. A complete LSGST experiment design can be con-
structed by searching over possible germs (generally start-
ing with the shortest) until the amplified directions span
the nongauge subspace; see Ref. [156] and the discussion
of Sec. V A.

Fitting LSGST data is typically done using iterative
maximum likelihood or least-squares optimization. This
approach begins by fitting a model to the shortest (p = 1)
sequences, and then using that to seed the optimizer for
the next round, which includes the p = 1 and p = 2 cir-
cuits. This procedure repeats until all circuits have been
added and the optimizer has converged. This approach
helps to avoid the wrong branch issue described above, and
in practice is extremely robust.

LSGST experiments designed this way are very over-
complete. For example, constructing a two-qubit LSGST
experiment for a relatively simple gate set this way
can easily prescribe more than 30 000 circuits! Many of
these circuits provide redundant information, and can be
removed from the experiment design with minimal loss of
estimation accuracy. Reference [204] discusses techniques
for constructing efficient, near-minimal GST experiments.
In practice, these techniques have reduced the experimen-
tal complexity of two-qubit GST by more than an order
of magnitude, making it feasible and competitive with
randomized benchmarking.

3. (In)validation of gate set models

Many useful performance metrics can be extracted from
a high-precision estimate of a gate set model, includ-
ing both gauge-dependent and gauge-independent metrics
discussed in Sec. II E 2. The error generator framework
discussed in Appendix A can be used to identify observed
errors with physical mechanisms. These analyses help
quantify and classify the “in model” errors captured by the
gate set model.

But, in practice, quantum computing systems often
experience “out of model” errors that violate the assump-
tions of the gate set model. Such errors are often termed
non-Markovian because gate set models are designed
to capture arbitrary Markovian errors [197], and thus
(arguably) define what it means for errors to be Markovian,
as discussed in Sec. III G. Examples of non-Markovian
errors include low-frequency drift, leakage, and heating
of auxiliary degrees of freedom (e.g., the trapped-ion
motional mode used in Mølmer-Sørenson gates).

When non-Markovian effects meaningfully impact cir-
cuit outcome statistics, it is very unlikely that any Marko-
vian gate set model will be statistically consistent with
the observations. This is an interesting difference between
GST and QPT; because QPT experiments use the unknown
process just once, and are usually not very overcomplete,
they do not generally distinguish between Markovian and
non-Markovian effects. In contrast, LSGST experiment
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designs use the unknown gate[s] many times (which ampli-
fies non-Markovian effects) and are typically overcom-
plete. This overcompleteness can be leveraged to quantify,
using statistical tests, how well or poorly an estimated gate
set model fits the observed data. Model violation analy-
sis provides insight into the presence, size, and sometimes
nature of non-Markovian errors in GST experiments.

The primary tools for such a “goodness-of-fit” analysis
are the log-likelihood ratio test and Wilks’ theorem [281].
They make extensive use of the log-likelihood ratio statis-
tic λ ≡ 2(logLmax − logL) that compares the likelihood
L of an estimated GST model to the likelihood Lmax of a
much larger maximal (a.k.a. saturated) model that is guar-
anteed to fit the data well. The maximal model commonly
used in GST treats each circuit as a totally independent
experiment, assigning it an independent multinomial out-
come distribution whose parameters are fit directly to that
circuit’s observed frequencies. Wilks’ theorem [281] states
that if the GST model is valid, then this log-likelihood ratio
will be a χ2

k random variable,

2(logLmax − logL) ∼ χ2
k , (336)

where k is the difference between the number of parameters
in the maximal model, Nmax, and the number of nongauge
parameters in the estimate, Nnongauge: k = Nmax − Nnongauge.
A simple way to quantify the significance of the observed
model violation is to compute and report the number
of standard deviations by which the log-likelihood ratio
exceeds its expected value under a χ2

k hypothesis:

Nσ ≡ 2(logLmax − logL)− k

2
√

k
. (337)

If Nσ ≈ 1, then the estimated gate set model fits the data
as well as possible, suggesting that the device’s errors are
mostly Markovian. However, Nσ � 1 indicates convinc-
ing statistical evidence for the presence of non-Markovian
dynamics.

Nσ is a statistical measure of model violation, and
captures the strength of the observed evidence for non-
Markovian dynamics. What it does not do is quantify
how much non-Markovianity is present in any physically
meaningful units. It is not a measure of effect size. For
example, simply doubling the number of shots performed
for each circuit will (on average) double the log-likelihood
ratio statistic and thus Nσ . The log-likelihood ratio statistic
scales linearly with the amount of data available.

It is also useful to have a measure of the effect size of
non-Markovian errors. In principle this could be extracted
from a (much) larger model that is able to capture any
expected non-Markovian effects. But such models do not
yet exist (although methods do exist for low-frequency
noise [96]), and doing so would require designing an
experiment that is sensitive to all of the parameters and

fitting it to data. Wildcard models [217] provide an alterna-
tive. Wildcard models weaken the predictions of statistical
error models just enough that they become consistent with
observed data, and the amount of weakening required to do
so constitutes a measure of model violation effect size. The
parameters of a wildcard model can, with care, be inter-
preted as measuring how much non-Markovian error is
present in the data. The wildcard error can then be com-
pared to various error metrics, such as diamond distance
(see Sec. IV C 1), to determine whether or not the GST
model is trustworthy. A full discussion of wildcard models
is out of scope for this tutorial, but the interested reader is
encouraged to consult Ref. [217]. References [78] and [79]
provide examples of how this type of analysis can be used
in practice.

VIII. RANDOMIZED BENCHMARKS

Randomized benchmarking (RB) protocols are a broad
suite of methods that use varied-depth random circuits to
quantify the rates of errors in a gate set (see Secs. II E
and IV E). RB was initially developed in the mid- to
late-2000s [160,282,283] to circumvent two of main the
limitations of quantum process tomography (QPT; see
Sec. VII B); QPT is corrupted by SPAM errors, and it
is inefficient in the number of qubits (n). There are now
dozens of distinct RB protocols, each with their own pur-
poses, strengths, and limitations. In this section, we review
many of the most widely used RB methods. In the first half
of this section, we discuss the RB protocols that estimate a
single error rate for a set of gates:

(a) Standard RB (Sec. VIII B). This is the de facto stan-
dard RB protocol, which is typically used to bench-
mark gates that implement the one- or two-qubit
Clifford group.

(b) Native gate RB protocols (Sec. VIII C). These are
a family of protocols that can directly benchmark a
system’s native gates, instead of using those gates
to create all the Clifford group elements (as in
standard RB). Protocols within this family include
direct RB, binary RB, mirror RB, and cross-entropy
benchmarking.

(c) RB for general groups (Sec. VIII D). This is a fam-
ily of protocols for benchmarking sets of gates that
form groups that are not unitary 2-designs. The most
prominent such method is character RB.

There are a variety of RB protocols that measure quantities
that are more complex or fine-grained than just a single
error rate for a gate set (e.g., individual gate error rates).
Many of these methods are adaptations of the foundational
RB protocols presented in Secs. VIII B–VIII D. We discuss
the following:
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TABLE IV. Comparison of randomized benchmarks. Here, we summarize the primary randomized benchmarks discussed in this
tutorial (note that this tutorial does not cover every extant RB method). Randomized benchmarks do not all measure the same quantity,
and so the first consideration when selecting an RB method is to consider what it measures (second column). The scalability of
randomized benchmark is also often an important consideration when selecting an RB method, and here we give each method an
informal scalability score (between 0 and 10) that approximately summarizes how scalable it is. The scalability score is subjective,
and we intend it only as very rough guide. For example, mirror RB, binary RB, and cycle benchmarking are all given a score of
8/10 for scaling because their classical computations required are simple and fast for any number of qubits (n), but they require both
implementing an n-qubit layer/cycle of native gates and measuring all n qubits with significantly nonzero fidelity. Key advantages and
disadvantages of each method are also summarized.

Method What it Measures
Scalability

Score Advantage(s) Disadvantage(s)

Clifford RB Average error per Clifford
gate (r)

2 de facto standard protocol Poor scaling; does not
reliably measure error
rate of native gates

Direct RB Weighted-average error per
gate in user-chosen gate
set (r�)

3 Can measure error per
native gate

Scales better than standard
RB but still limited,
especially for
non-Clifford gates

Binary RB Weighted-average error per
gate in user-chosen gate
set (r�)

8 Both reliable and scalable All gates must be Clifford

Mirror RB Weighted-average error per
gate in user-chosen gate
set (r�)

8 Scalable, including for
non-Clifford gates

Small but systematic
underestimate of gate
error

Cross-Entropy Weighted-average error per
gate in user-chosen gate
set (r�)

6 Native gate does not need to
be a Clifford

Need to classically simulate
circuits, so very
expensive beyond n ∼ 20
qubits, and infeasible
beyond n ∼ 60

Benchmarking

Character RB Average error per
group-element gate

Depends on
gate set used

Can benchmark gate sets
that are not and do not
generate unitary
2-designs

Sample inefficient (requires
lots of data) for some
groups

Simultaneous RB Average error per
simultaneous Clifford
gate

9 Captures effects of crosstalk
on qubits

Simple for one-qubit gates
but complex scheduling
for n > 2 qubit gates

Interleaved RB Average error per dressed
native Clifford gate

1 Simple and widely used Unreliable; native gate must
be a Clifford

Cycle Average error per dressed
Clifford cycle/layer

8 Can estimate the error rate
of dressed n-qubit cycle
for large n

Cycle must be Clifford (in
most cases); need to
measure multiple decays

Benchmarking

eXtended RB Average unitarity and
stochastic error per
Clifford gate

1 Able to separate coherent
from incoherent
contributions to the AGSI

Inefficient (does not
amplify coherent errors);
not scalable (uses state
tomography)

Speckle Purity Stochastic error per layer of
native gates

3 Enables distinguishing
coherent and stochastic
contributions to XEB
error rate

Similar disadvantages to
XEBBenchmarking

Iterative RB Coherent error per
interleaved Clifford gate

1 Conceptual simplicity,
amplifies coherent errors

Only works for
over/under-rotation errors

Leakage RB Leakage rate per Clifford
gate

2 Makes RB more reliable in
the presence of leakage,
measures leakage rate(s)

Data may not follow an
exponential due to no
randomization in the
leakage space
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(a) Simultaneous RB (Sec. VIII E). Simultaneous RB is
a simple and widely used technique for measuring
the impact of simultaneous gate operations across
multiple qubits. It can be used to quantify crosstalk
errors between qubits.

(b) Interleaved RB (Sec. VIII F). Interleaved RB is a
technique for estimating the infidelity of individual
gates, but it has important limitations.

(c) Cycle benchmarking (Sec. VIII G). Cycle bench-
marking is a scalable method for estimating the
infidelity of layers of gates.

(d) Purity benchmarking protocols (Sec. VIII H). These
are a family of protocols for estimating how much of
a gate set’s error is due to coherent and incoherent
errors.

(e) RB protocols for non-Markovian errors (Sec. VIII I).
These are a family of protocols for estimating the
rates of various kinds of non-Markovian errors, such
as leakage.

We begin this section with some mathematical back-
ground that is important for understanding and describing
the various randomized benchmarks that we outline above.

A. Mathematical preliminaries

Despite being rather simple to implement, the mathe-
matical theory of RB protocols is surprisingly deep and
elegant. Describing it in full detail is well beyond the scope
of this tutorial. But several of the most important concepts
from this theory are found commonly even in the exper-
imental literature. In this subsection, we introduce those
few mathematical concepts that are most helpful for read-
ing and understanding papers on RB and related bench-
marking protocols. These topics include the following:

(a) twirling over a group,
(b) Schur’s lemma, and
(c) unitary 2-designs.

The pragmatic reader can skip to Sec. VIII B, where the
RB protocol discussions begin.

A number of QCVV techniques, including RB and other
randomized benchmarks, utilize averages over circuits that
contain random gates. Each time the circuit is run, a new
gate is sampled from some ensemble, and the circuit out-
comes are typically averaged together (so they are treated
as though they came from the same circuit). For example,
standard RB (see Sec. VIII B) uses sequences of random
Clifford operations, whereas the randomized compiling
[154,155] used in cycle benchmarking (Sec. VIII G) and
Pauli noise learning techniques (Sec. IX C) inserts (and
typically compiles in) random Pauli gates. At some point
in the analysis of these techniques, one will encounter a
superoperator A (see Sec. II C 2) that is averaged over all

conjugations by elements of a group G:

TG(A) =
∫

dμ(g)gAg−1 , (338)

where dμ is the Haar measure for the group G. If G is a
discrete group, then the Haar measure is just the counting
measure, and the integral is often written as a sum:

TG(A) = 1
|G|

∑
g∈G

gAg−1 . (339)

Equations (339) and (340) define the twirl of the super-
operator A over the group G. In both equations above, g
is the superoperator (e.g., transfer matrix) representation
of a group element g. So, even if we are twirling over a
single-qubit unitary group, we will be using 4 × 4 trans-
fer matrices, rather that the usual 2 × 2 unitary matrices.
See Appendix C for a practical introduction to twirling and
randomization.

We can understand group twirls by taking a brief
diversion into representation theory. Recall that quantum
operations act on density matrices (see Sec. II C). Trans-
fer matrices are a representation of quantum operations
that act on a vector space of vectorized density matri-
ces (see Sec. II C 2). For a set of unitary superoperators
that form a group G, it turns out that we can divide
this vector space into subspaces—irreducible representa-
tion spaces—in such a way that no element of G will
mix distinct subspaces. This means that the entire set of
superoperators in G can be simultaneously block diago-
nalized, with each block corresponding to an irreducible
representation, or irrep. This decomposition into irreps is
important, because Schur’s lemma allows us to express the
outcome of a twirl in terms of this decomposition. If the
irreps are distinct (not related to each other by a similarity
transform), then:

TG(A) =
∑
φ

TrAPφ
TrPφ

Pφ . (340)

where Pφ is a projector onto the irreducible subspace of
irrep φ.

The number and size of the irreps associated with the
superoperator representation will depend on the group
(representation) over which the twirl is being taken. The
superoperator representation of the full unitary group
SU(2n) has just two irreps, a one-dimensional irrep that
acts trivially on the trace of ρ, and a (4n − 1)-dimensional
irrep that mixes all other components. This means that the
twirl of any superoperator A under the full unitary group
will result in an n-qubit depolarizing channel—a diagonal
Pauli transfer matrix (PTM; see Sec. II C 3) with a single
unit eigenvalue and a real number p ∈ [0, 1] repeated along
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FIG. 22. Pauli and Clifford twirling. Twirling a PTM M
with the Pauli group, TP(M ) simply eliminates the off-diagonal
entries. Twirling with the larger Clifford group, TC(M ), also
averages all but one (the top left) of the diagonal entries.

the rest of the diagonal. Importantly, this p is equal to the
process polarization (see Sec. IV C 4) of A, i.e.,

p = f(A) . (341)

Equivalently, A and TSU(2n)(A) have the same process
(a.k.a. entanglement) fidelity to the identity [Eq. (235)].
So, an unknown error channel E’s process fidelity can be
learned by twirling it into a depolarizing channel and then
learning that depolarizing channel’s p , which is easy to do.
This idea is foundational to RB.

The unitary group is an infinite group, and twirling over
it, even approximately, can be experimentally challenging.
So, often we consider twirls over smaller, discrete sub-
groups of the unitaries, such as the Clifford group, the
Pauli group, or one of the dihedral groups. One conse-
quence of twirling over a subgroup of the full unitary group
is that the superoperator representation of a subgroup of
SU(2n) could decompose into significantly more irreps.
The superoperator representation of the Clifford group
actually breaks into the exact same irreps as the unitary
group. Groups whose superoperators have the same irrep
structure as the full unitary group are known as unitary
2-designs (see Appendix C 2), and are extremely impor-
tant in QCVV. The superoperator representation of the
n-qubit Pauli group, however, decomposes into 4n one-
dimensional irreps. Therefore, twirling a matrix M over
the Pauli group will remove the off-diagonal entries of the
matrix but leave the 4n diagonal elements unchanged, as
illustrated in Figs. 22 and 23. Twirling over the Clifford
group will also project away the off-diagonal entries and
will further replace all but one of the diagonal elements
with their mean, as shown in Fig. 22.

B. Standard randomized benchmarking (RB)

There are many different RB protocols, and we cover
many of them in this tutorial. But there is a de facto
standard version of RB [284]—which we call standard
RB—and we begin by explaining this protocol. This pro-
tocol is designed to benchmark any n-qubit gate set Gn
(i.e., a set of n-qubit operations) that has the following two
properties:

(1) Gn is a group (see Appendix B), and
(2) Gn is a unitary 2-design (see Appendix C 2).

The n-qubit Clifford group Cn has these properties, and it
is almost always the gate set that is benchmarked using
standard RB. We refer to standard RB with the Clifford
group as Clifford-group randomized benchmarking (CRB).
Most standard RB experiments are one- or two-qubit CRB.
For three or more qubits, more scalable RB protocols are
typically used (see Sec. VIII C for further discussion). Note
that the random circuits of standard RB (defined below)
can be constructed for any gate set that is a group, but when
that group is not a unitary 2-design, the data from those
circuits will not have the simple form of standard RB, and
a different data analysis procedure and/or different circuits
are required (see Sec. VIII D).

Standard RB measures a mean error rate (i.e., average
gate-set infidelity, or AGSI; see Sec. IV E 1) for the gates
in Gn, and it is designed so that the AGSI is not corrupted
by SPAM errors (as long as the SPAM errors are not too
large). It is given by the following protocol:

(1) Run K � 1 random motion-reversal circuits of L
different circuit depths m ≥ 0 and record each cir-
cuit’s success frequency [285]. The circuit depths
are typically linearly or logarithmically spaced, K
is typically between 20 and 1000, L ≥ 3 in order to
fit an exponential function to the observed data (see
below), and it is considered best practice to have all
m > 1. Each of the K circuits at depth m is sampled
and run as follows:

FIG. 23. Pauli Twirling. The PTMs for the Pauli operators
are diagonal matrices of 1’s and −1’s. Conjugating a PTM M
by a Pauli operator’s PTM just changes the signs of some of
the entries, as illustrated here for a single-qubit M and the four
single-qubit Pauli operators. Averaging over all conjugations by
Pauli operator PTMs, to get the twirled channel TP(M ), preserves
only the diagonal components.
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(a) Uniformly and independently sample m + 1
gates C from Gn, {C1, C2, . . . , Cm+1}, and con-
struct a sequence Cm+1 ◦ Cm ◦ · · · ◦ C2 ◦ C1.
This sampling can be done efficiently (in n)
if Gn is the n-qubit Clifford group [286,287]
(even though the size of Cn grows very quickly
with n).

(b) Compute the inversion gate

Cm+2 = P(Cm+1 ◦ Cm ◦ · · · ◦ C2 ◦ C1)
−1 ,
(342)

where P is an n-qubit Pauli operator. The origi-
nal description of the standard RB protocol does
not include P (i.e., it sets P to the identity).
However, it is now considered best-practice
to sample a uniformly random P [288–290].
Again, computing Cm+2 is efficient if Gn is the
n-qubit Clifford group [286].

(c) Construct a circuit Cm composed of the m + 1
randomly sampled gates and the inversion gate:

Cm = Cm+2 ◦ Cm+1 ◦ Cm ◦ · · · ◦ C2 ◦ C1 .
(343)

In the absence of errors, this circuit will always
return the system to the original state, up to a
final layer of Pauli gates determined by P. Thus,
the ideal outcome is a particular bit string that is
specified by P, which is the circuit’s “success”
outcome.

(d) Compile the circuit Cm into the native gates of
the system being benchmarked, so that it can
be measured experimentally. This compilation
must simply replace each n-qubit Clifford in Cm
with a sequence of those native gates that imple-
ments that particular unitary, i.e., “compilation
barriers” must be placed between each layer in
the circuit [291].

(e) Execute the compiled circuit N ≥ 1 times and
compute its success frequency:

p(Cm) = Nsuccess/N , (344)

where Nsuccess is the number of times the suc-
cess outcome was observed. In experiments,
typically N is between 100 and 1000. For a
fixed value of K × N (which is the total num-
ber of circuit executions in the RB experi-
ment), N = 1 is statistically optimal [292], i.e.,
it results in the lowest uncertainties on the AGSI
estimated by RB. However, due to the time
required to compile circuits and upload wave-
forms in most experimental setups, sufficiently
low uncertainty estimates of the AGSI can typi-
cally be achieved most quickly by setting N �

1. Each circuit execution is the following proce-
dure:

(1) Prepare each of the n qubits in the |0〉〈0|
state.

(2) Apply the circuit Cm.
(3) Measure all n qubits in the computational

basis, and check whether the “success” bit
string was observed.

(2) Compute the average success probability p̄(m) for
each depth m,

p̄(m) = 1
K

∑
Cm

p(Cm) . (345)

Then, fit this data to an exponential decay function:

p̄(m) = Af m + B , (346)

where A, f, and B are fit parameters. If the success
bit string has been randomized (i.e., P is uniformly
random), fix B = 1/2n (which provides a higher-
precision estimate of f for the same amount of
data [288–290]). A is typically called the “SPAM
parameter,” because it includes information about
the size of the SPAM errors [293]. RB data is typ-
ically analyzed with simple curve fitting routines
(e.g., weighted least squares), although there are a
variety of alternative fitting approaches. Note that
meaningful results will only be obtained if p̄(mmin)

is significantly greater than p̄(mmax), where mmin
and mmax are the minimum and maximum depths
used, which requires that the SPAM errors are not
catastrophically large.

(3) RB theory shows that under certain circumstances
(see below) the fit f is an estimate of the mean
process polarization [Eq. (245)] of the gates in Gn,
but it is more common to report (in)fidelities than
polarization. An estimate of the mean of the gates’
infidelities is given by the average gate infidelity
[Eq. (223)],

r = d − 1
d

(1 − f ) , (347)

or the process (i.e., entanglement) infidelity
[Eq. (237)],

eF = d2 − 1
d2 (1 − f ) , (348)

where d = 2n is the dimension of the Hilbert space
for n qubits (see Table II for a summary of the lin-
ear relationships between these different quantities).
r or eF is an estimate of the mean of the infidelities
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(a)

(b)

FIG. 24. One- and two-qubit Clifford-group RB. Exponen-
tial decays for CRB performed on (a) a single qubit (labeled
5) and (b) two qubits (labeled 5 and 6) on a superconducting
quantum processor. The results are plotted in terms of the polar-
ization [Eq. (350)], a rescaling of the success probability. For
both experiments, K = 30 random Clifford circuits were gener-
ated for each circuit depth m at L = 3 different circuit depths.
The SPAM parameters A and exponential fit parameters f are
listed in the legends. At each circuit depth, circular data points
depict the results of individual circuits and violin plots depict
the distribution of results. Insets: the process infidelity for the
(a) single-qubit CRB results [eF = 8.3(2)× 10−4] and (b) two-
qubit CRB results [eF = 1.7(1)× 10−2]. The exponential decay
curve for two-qubit CRB decays much faster than for single-
qubit CRB, demonstrating that the error per Clifford is larger for
two-qubit Cliffords than single-qubit Cliffords, as shown by their
relative process infidelities.

of the gates in Gn, so in the case of CRB this is often
called the error per Clifford (EPC). When compar-
ing RB error rates, it is important to check whether
the convention in Eq. (348) or (349) is being used, as
the process infidelity is stable under tensor products
of parallel gates, while the average gate infidelity is
not (see the discussion in Sec. IV C 3 b).

(a)

(b)

(c)

(d)

FIG. 25. Standard, simultaneous, and interleaved RB. (a) Cir-
cuit structure for standard single-qubit RB. Gates are only
applied to the benchmarked qubit; all other qubits are assumed
to remain in their ground states. (b) Circuit structure for simul-
taneous RB. Here, gates are applied to two or more qubits
simultaneously to benchmark the performance of simultaneous
gate operations, where C(i)m denotes the mth gate applied to the
ith qubit. (c) Circuit structure for standard two-qubit RB. (d)
Circuit structure for interleaved RB. Here, G (purple) is the inter-
leaved gate whose infidelity can be estimated from analyzing
(c),(d) together (see Sec. VIII F). For (a)–(d), Cm+2 (blue) is the
inversion gate for the entire sequence.

Examples of results for one-qubit and two-qubit CRB
experiments are shown in Fig. 24, and the forms of the
circuits used in one- and two-qubit CRB are shown in
Figs. 25(a) and 25(c), respectively. In these figures, we plot
polarization rather than success probability. The polariza-
tion Spol is simply a rescaling of success probability (p),
given by

Spol = p − 1/2n

1 − 1/2n . (349)

Polarization is sometimes more convenient because
Spol = 0 when all n qubits are completely depolarized
[294]. The measured one-qubit and two-qubit EPCs are
eF = 8.3(2)× 10−4 and eF = 1.7(1)× 10−2, respectively.
In most systems, it is expected that the EPC for two-qubit
CRB will be higher than single-qubit CRB, since two-
qubit CRB requires two-qubit entangling gates, which are
typically noisier than single-qubit gates.

To run n-qubit CRB experiments, each n-qubit Clifford
operation must be decomposed into the system’s native
gates (step 1d above). For example, in a widely used com-
pilation [295] of the 24 single-qubit Clifford gates (C1)
into rotations around X and Y, the average number of
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single-qubit native gates per single-qubit Clifford gate is
1.875. CRB estimates the average error rate of the com-
posite n-qubit Clifford gates (the EPC), not the average
error rate of the fundamental gates from which those gates
are composed, and the EPC depends on the compilation
used. However, it is common practice to rescale single-
qubit CRB’s EPC (rC1 ) to a native gate error rate. For
example, for the compilation of Ref. [295], the EPC is typ-
ically related to the error per native single-qubit gate (rSQ)
with the simple heuristic:

rC1 = 1.875rSQ . (350)

An alternate heuristic for estimating the error per native
single-qubit gate is to use the common compilation
strategy of decomposing all U3 gates (i.e., arbitrary single-
qubit rotations parametrized by three Euler angles) into a
sequence consisting of three parametrized virtual Z gates
and two physical native Xπ/2 gates [296]:

U3(φ, θ , λ) = Zφ− π
2

X π
2

Zπ−θX π
2

Zλ− π
2

. (351)

Now, there are always two real gates (i.e., physical pulses)
per single-qubit Clifford [297], and thus the EPC is twice
the error per native gate. One advantage of this approach is
that it is straightforward to generalize to higher dimensions
[298], and has been used to estimate native gate fidelities
in single-qutrit (d = 3) and single-ququart (d = 4) CRB
experiments [272], where 6 and 12 native gates are needed
per single-qutrit and single-ququart Clifford gate, respec-
tively; see Appendix D 3 for an overview of randomized
benchmarks for qudits.

Similarly, for two-qubit CRB and the widely used com-
pilation of Ref. [295], a two-qubit Clifford gate contains
1.5 CNOT or CZ gates and 8.25 single-qubit gates, on aver-
age. For this compilation, two-qubit CRB’s EPC (rC2) is
then often related to rSQ and the two-qubit gate error rate
(CZ) using the simple heuristic

rC2 = 3
2

rCZ + 33
4

rSQ . (352)

These rescalings of the EPC are only heuristics
though—they are known to not reliably estimate the native
gate infidelities, in general. Importantly, the estimated
error per native gate will typically change if different
compilations are used. This is because CRB circuits pre-
vent systematic addition or cancellation of coherent errors
between different n-qubit Clifford gates, but not within the
gate sequences used to create each n-qubit Clifford gate.

We now explain how to interpret RB results, and why
RB works, by concisely summarizing the practical impli-
cations of the theory of standard RB. Standard RB works
because the random gates twirl the errors in the gates, and
because each gate is sampled from a unitary 2-design (such

as the Clifford group) this twirl maps the gates’ (poten-
tially complicated) error maps into depolarization channels
(as outlined in Sec. VIII A). Turning this into a precise
theory for RB is simple in the “gate-independent noise”
idealization, where every gate in Gn is subject to the same
CPTP error map E . In this case, it is possible to show that
standard RB’s average success probability satisfies

p̄(m) = Af(E)m+1 + B . (353)

Here, f (E) is E’s process polarization, and A and B absorb
all SPAM error (and also have contributions from gate
error). Straightforward derivations of this equation can be
found throughout the literature on RB theory (e.g., see the
“zeroth-order model” in Ref. [299]). Therefore, for gate-
independent noise, r [Eq. (348)] or eF [Eq. (349)] is a
rigorous estimate of the average gate infidelity or process
infidelity of each gate’s error map E , respectively.

Understanding RB outside of the unrealistic setting of
gate-independent noise is more complex. The modern the-
ory of RB [196,198,300,301] addresses the more realistic
setting in which each gate has its own distinct error map.
We will not delve into this theory here, but we highlight its
main practical implications:

(a) Standard RB’s average success probability will
decay exponentially as long as the gates experience
only moderately small Markovian errors [196,198,
300,301] and the minimal circuit depth (m) used is
sufficiently large. The theory shows that, under typ-
ical circumstances, m ≥ 1 (corresponding to three
Clifford gates in our depth convention) is suffi-
cient. Therefore, standard RB data that is inconsis-
tent with an exponential decay implies the presence
of non-Markovian errors. For example, 1/f noise
is well-known to cause nonexponential RB decays
[288].

(b) The simplest interpretation of standard RB’s f
parameter is that it is equal to the mean of the gate’s
process polarizations, and therefore r (or eF ) is equal
to the mean of the gates’ infidelities, i.e.,

εuni = 1
|Gn|

∑
G∈Gn

ε(G) , (354)

where ε(G) is the average gate or process infidelity
of G. Unfortunately, although this interpretation
contains the essence of what r measures [302], it is
subtly incorrect (in part because εuni is ill defined,
due to gauge ambiguities [196]). A mathematically
precise understanding of r’s relationship to gate
infidelity is not important for using RB. But it is
practically relevant when checking whether concur-
rent RB and tomography experiments have consis-
tent results. Correctly predicting r from measured
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transfer or process matrices requires either (a) using
modern RB theory’s predictions for how to com-
pute r from transfer or process matrices [196,198,
300,301], or (b) simply simulating RB experiments
using those transfer or process matrices.

C. Native gate RB

Native gate RB is a family of methods that can directly
benchmark a system’s native n-qubit gates (which are
often referred to as “layers” or “cycles,” but here we will
follow RB convention and call them “gates”). The main
native gate RB techniques are as follows:

(a) direct RB (Sec. VIII C 1),
(b) binary RB (Sec. VIII C 2),
(c) mirror RB (Sec. VIII C 3), and
(d) linear cross-entropy benchmarking (Sec. VIII C 4).

Native gate RB protocols address two practical limita-
tions of standard CRB. Firstly, CRB is infeasible beyond a
few qubits even with state-of-the-art gate-error rates. This
is because CRB runs circuits containing uniformly random
elements of the n-qubit Clifford group, and the size of the
circuits needed to create these n-qubit Clifford gates grows
very rapidly with n for typical native gate sets. In partic-
ular, a typical n-qubit Clifford gate requires O(n2/ log n)
two-qubit gates [303–307]. The average success proba-
bility of even the shortest CRB circuits therefore quickly
drops off to almost zero as n increases [308], as demon-
strated in Fig. 27(a). This makes it impossible to estimate
the EPC without impractical amounts of data when n � 1
(and the EPC rapidly converges to 1 as n increases). Sec-
ondly, CRB measures the EPC, but most users of RB
actually want to know the error per native gate. Although
rescaling the EPC to estimate the error per native gate
is common practice (see the discussion in the previous
subsection), it has little theoretical justification [309]. Fur-
thermore, beyond the one- and two-qubit setting, it is not
even typically clear what would constitute a sensible and
useful rescaling of the EPC.

Native gate RB protocols benchmark some user-
specified set of n-qubit gates Gn. In all the protocols
described herein, this gate set is required to generate a
group that is a unitary 2-design, such as the Clifford group.
A one-qubit example of such a gate set is

G1 =
{

X π
2

, Y π
2

}
. (355)

In experimental uses of native gate RB methods to date,
Gn has typically been chosen to be parallel applications of
either (a) a system’s native gates, or (b) one- and two-qubit
gates that can easily be constructed from the native gates
(e.g., all possible layers consisting of parallel applications
of CNOT and single-qubit Clifford gates). Other choices for
Gn are possible, however.

Native gate RB protocols estimate an average error rate
(r�) for the gates in Gn that is weighted by a user-specified
probability distribution � over Gn. This error rate is, in
essence, the �-weighted average infidelity of the gates,
i.e.,

ε� =
∑

G∈Gn

�(G)eF(G) , (356)

where eF(G) is the process infidelity of G [308,310–312]
(although, as with CRB, there are some subtleties relating
r� to ε� because ε� is not gauge-invariant [308,311]). The
distribution� can be chosen to measure the weighted error
rate of most interest, and can even be varied to learn about
which gates have higher error rates [310,311]. For the gate
set example in Eq. (356), an given of such a distribution is

�(X π
2
) = 3/4, �(Y π

2
) = 1/4 . (357)

All native gate RB protocols follow a similar proce-
dure to standard RB. Stated informally, they all have the
following structure:

(1) Run random circuits of various depths m. The exact
structure of the random circuits varies between dif-
ferent methods (see Fig. 26), but in all cases the
circuits consist of

(a) m random layers sampled from a user-specified
distribution�, called�-distributed random cir-
cuits, surrounded by

(b) some additional, method-specific state-
preparation and measurement layers (or subcir-
cuits).

(2) Estimate a success metric for each circuit, the details
of which depend on the protocol [313].

(3) Estimate the average of this success metric at each
depth, fit that average to the exponential decay func-
tion of Eq. (347), and from the fitted value for f
compute an error rate r� using Eq. (348).

Native gate RB protocols work because random cir-
cuits randomize and spread errors (i.e., via “scrambling”)
[308]—which must happen because a random sequence of
elements from Gn converges to a random element gen-
erated from the group Gn, which is a unitary 2-design.
The implication of this is that the process fidelity of �-
distributed random circuits (F�,d) will decay exponentially
with circuit depth at a rate given by ε� under broad condi-
tions [302,308,311]. Each native gate RB protocol differs
in (i) the state preparation and measurement structures used
in its circuits, and (ii) its choice of success metric. These
differences correspond to different ways to measure F�,d,
each of which has its own strengths and weaknesses.
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(a)

(b)

(c)

(d)

(e)

FIG. 26. Clifford-group and native gate RB methods. The
structure of the random circuits and the success metrics used in
(a) Clifford-group RB, (b) direct RB, (c) binary RB, (d) mirror
RB, and (e) cross-entropy benchmarking. The red denotes state-
preparation layers (or subcircuits), orange denotes the bench-
marking sequence, and blue denotes the measurement basis
rotations. CRB circuits consist of m + 1 uniformly random n-
qubit Clifford gates followed by the unique Clifford gate that
inverts those m + 1 gates, and so CRB measures the mean error
rate of these n-qubit Clifford gates, often called the “error per
Clifford” (EPC). The native gate RB protocols (b)–(e) are all
based on circuits containing m layers of gates sampled from some
distribution � over a layer set Gn, and most of them surround
that “�-distributed random circuit” with additional circuits that
implement different state preparations and measurements. The
layer set used in these protocols is typically closely related to the
set of all native layers for a system. These techniques all mea-
sure an error rate r� that quantifies the�-weighted average error
rate of these layers. Each of the native gate RB protocols has its
own strengths, limitations, and regimes of applicability, which
are discussed in the main text.

1. Direct RB

Direct randomized benchmarking (DRB) [308,310] can
benchmark any gate set that generates a group that is a uni-
tary 2-design. It has been primarily used to benchmark gate
sets that generate the n-qubit Clifford group [310,314,315],

and so we focus on that case. The circuits used in DRB (i)
begin with a random subcircuit that creates a uniformly
random stabilizer state, (ii) have a depth m �-distributed
circuit at their center, and (iii) end with a subcircuit that
maps the state that is (ideally) produced by the circuit so
far to a random computational basis state. The structure of
DRB circuits is shown in Fig. 26(b).

Each DRB circuit always outputs a particular bit string
b when run without error, and the probability that this
bit string is observed is DRB’s success metric. The ini-
tial and final subcircuits within a DRB circuit implement a
(state) 2-design twirl on the error in the �-distributed cir-
cuit. This guarantees that the mean success probability of
DRB circuits decays exponentially and DRB’s error rate
(r�) approximately equals the weighted-average error rate
ε� of the benchmarked gates [308,310].

Figure 27(b) demonstrates DRB. This figure shows the
average polarization decay obtained when running n-qubit
DRB experiments on an IBM Q system, for n = 1 to 6.
The key differences between DRB and CRB are illustrated
by comparing Fig. 27(b) to the results of n-qubit CRB
experiments run at the same time on the same system,
shown in Fig. 27(a). First, the CRB polarization decays
more quickly with depth than the DRB polarization does,
i.e., they are measuring different error rates. Importantly,
CRB measures the EPC, whereas DRB measures the error
per layer of native gates. Second, the average polarization
of the shallowest DRB circuits (m = 0) is typically larger
than that of the shallowest CRB circuits (also m = 0). This
is because generating a uniformly random stabilizer state
requires only about 1/3 as many two-qubit gates as gener-
ating a uniformly random Clifford gate [306]. This means
that DRB is feasible on more qubits than CRB. However,
DRB is still not truly scalable, because DRB’s state prepa-
ration and measurement subroutines require O(n2/ log n)
two-qubit gates [303–307]. These large subroutines mean
that the polarization of m = 0 DRB circuits still drops
rapidly with increasing n [see Fig. 26(b)], even though it
does not drop as quickly as CRB.

2. Binary RB

Binary randomized benchmarking (BiRB) [312] is a
native gate RB protocol that is designed to benchmark any
gate set that generates the n-qubit Clifford group. BiRB’s
circuit structure is shown in Fig. 26(c). Unlike most RB
protocols, BiRB’s circuits do not include an inversion gate
or subcircuit at their end—i.e., they are not motion reversal
circuits. BiRB circuits are therefore not definite outcome
circuits, since they do not always return a particular “suc-
cess” bit string if run without error. Instead, BiRB circuits
consist of an �-distribution random circuit with a layer of
single-qubit gates at its start and at its end, and 50% of all
possible n-bit strings are designated as “success” bit strings
and the other 50% as “fail” bit strings.

030202-76



PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

(a) (b) (c) (d)Clifford group RB

Benchmark depth + 1 Benchmark depth + 1 Benchmark depth + 1

Number of qubits

Number of qubits (n)

FIG. 27. Comparing Clifford-group RB, direct RB, and binary RB. The results of running (a) Clifford-group RB, (b) direct RB,
and (c) binary RB on ibm-hanoi. For all protocols, the m = 0 polarization drops as the number of benchmarked qubits increases,
but this effect is smaller for protocols with shorter state preparation and measurement subroutines. (d) The error rates extracted from
each dataset. DRB and BiRB both measure the error rate of layers sampled from a distribution �, and their results are similar. In
contrast, CRB measures the error per n-qubit Clifford (EPC), which is often rescaled to estimate the error rate of native gates, but is
not guaranteed do so accurately. (Figure adapted with permission from Ref. [312].)

The initial layer of single-qubit gates in BiRB circuits
creates a tensor product eigenstate of a uniformly ran-
dom n-qubit Pauli operator P. This simulates sending a
uniformly random Pauli operator P into an �-distributed
circuit—a technique that enables scalable fidelity estima-
tion, and which is also used in direct fidelity estimation
(Sec. IX B), cycle benchmarking (Sec. VIII G), and Pauli
noise learning (Sec. IX C). In the absence of errors, the
�-distributed circuit transforms P into another Pauli oper-
ator P′. The final layer of gates simply transforms P′ into a
Z-type Pauli operator P′′ (a tensor product of Z and I oper-
ators), enabling the measurement of whether P “survived”
the circuit (i.e., was correctly transformed by the circuit)
using only a computational basis measurement. If the read-
out bit string is a +1 eigenstate of P′′ we declare “success,”
and otherwise we declare “fail.” We then (i) compute the
success metric

p = νsuccess − νfail , (358)

where νsuccess and νfail are the frequencies at which suc-
cess and fail bit strings are observed, respectively; (ii) fit
the mean of p versus depth to the standard exponential
decay function of Eq. (347) with B = 0; and (iii) estimate
r� using Eq. (348).

An example of BiRB data is shown in Fig. 27(c). BiRB
is more scalable than DRB (and CRB) and it is also
arguably simpler to implement. This is because BiRB’s
circuits do not start and end with large subcircuits [see
Fig. 26(c)]. The better scaling of BiRB can be seen by
comparing Fig. 27(c) with (a) and (b). This shows that
the polarization of the shallowest BiRB circuits decreases
more slower than that of both DRB and CRB circuits
as a function of the number of qubits. Note, however,
that there is still a gradual decrease in the polarization of

these shallowest circuits due to the increasing SPAM error
with n.

3. Mirror RB

Mirror randomized benchmarking (MRB) [206,311,316,
317] is a native gate RB protocol that is scalable because
it uses random “mirror circuits” [294] (see Secs. IX C 2,
X A, and XI A 2 for more on mirror circuits). MRB can
efficiently benchmark both Clifford and universal gate sets.
The structure of MRB circuits is shown in Fig. 26(d). A
MRB circuit of benchmark depth m consists of (i) a layer
of single-qubit gates each sampled independently from a
2-design, (ii) m/2 gates sampled from �, and (iii) a depth-
(1 + m/2) circuit consisting of each layer in the circuit so
far, but in the reverse order, and each replaced with its
inverse (i.e., a layer-by-layer inversion circuit). Random-
ized compiling is applied to the entire circuit. Randomized
compiling ensures that errors do not coherently add or can-
cel between a layer and its inverse in the second half of the
circuit [206,294,311]. Note that unlike in DRB, BiRB, and
linear cross-entropy benchmarking (Sec. VIII C 4), the m
layers are not all sampled independently from �. Instead,
m/2 layers are sampled independently from �, and then
the next m/2 layers are their inverses. MRB’s use of a
layer-by-layer inverse removes the large state-preparation
and measurement subroutines used in DRB (and CRB)
circuits.

MRB’s state preparation and measurement layer of
single-qubit gates are based on the insight that the infi-
delity of an error channel can be efficiently estimated using
single-qubit 2-design twirling. However, this requires a
more complex success metric than the frequency of observ-
ing the “success” bit string, used in DRB and CRB. In
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FIG. 28. Demonstrating mirror RB and binary RB.
Results from running (a) mirror RB and (b) binary RB on
ibm-kolkata to benchmark a Clifford gate set. (c) The RB
error rate per qubit (approximately r�/n) extracted from each
dataset. The error rate per qubit increases with n, which indicates
the presence of crosstalk. MRB and BiRB are both designed to
measure the error rate of layers sampled from a distribution �,
but MRB is known to typically slightly underestimate this error
rate, which is consistent with the observations here. However,
MRB can efficiently benchmark a universal gate set, whereas no
other RB protocol can. (Figure adapted with permission from
Ref. [312].)

MRB, the success metric is based on the Hamming dis-
tance of the observed bit string from the success bit string.
In particular, MRB’s success metric—called the adjusted
success probability—is

p = 4n

4n − 1

[
n∑

k=0

(
−1

2

)k

hk

]
− 1

4n − 1
, (359)

where hk is the frequency that the circuit outputs a bit string
with Hamming distance k from its target bit string. The
theories in Refs. [160,206,318] show that Eq. (360) is a
reliable estimator of fidelity when using a local 2-design
twirl.

Figure 28 demonstrates the use of MRB to benchmark
a set of layers that generate the Clifford group, and com-
pares MRB to BiRB of the same layer set. The correlations
in MRB circuits enable creating motion reversal circuits
without large “overhead” subroutines, as in DRB circuits,
but they also have an unwanted side effect. MRB theory
[206,311] shows that if the error rates of a �-distributed
layer and its inverse are uncorrelated, then MRB accurately
estimates ε�, but that if these error rates are correlated
then MRB slightly underestimates ε�. In real systems,
these error rates typically are correlated, resulting in MRB

slightly underestimating ε� [206,311]. We observed this
effect in Fig. 28, with BiRB’s error rates slightly larger
the MRB’s error rates. BiRB is, therefore, expected to esti-
mate ε� marginally more accurately than MRB, and BiRB
is just as scalable as MRB. However, MRB can efficiently
benchmark universal gate sets (e.g., see the experiments in
Ref. [311]), where as BiRB (and DRB) cannot.

4. Cross-entropy benchmarking

Cross-entropy benchmarking (XEB) is a collection of
related protocols that run random circuits and quantify
how well they performed by estimating the cross-entropy
between the actual (q) and ideal (p) outcome distributions
[2,136,319–322]. In practice, these techniques typically
use the linear cross-entropy [see also Eq. (190)]:

Hlin(p, q) ≡ 2n
∑

x

pxqx − 1 , (360)

where the sum is over all n-bit strings.
In the context of QCVV, the most important XEB meth-

ods are a family of protocols for measuring the average
error rate (ε�) of n-qubit circuit layers and gates—i.e., they
measure the same quantity as other native gate RB pro-
tocols discussed throughout Sec. VIII C—and this is the
type of protocol we detail below. But, first, we briefly dis-
cuss another meaning for “XEB”—the protocol used for
demonstrating “quantum supremacy” [2,136]. That XEB
procedure is as follows: (i) run the n-qubit scrambling
circuits described in the “quantum supremacy” literature
[2,136], (ii) run experiments to estimate Hlin(q, p), where q
is the actual and p the ideal outcome distributions for each
sampled circuit (note that this estimation is challenging
when p is infeasible to compute with classical simulations
of the circuit), and (iii) use the value of this cross-entropy
to quantify a quantum computer’s performance. For suf-
ficiently deep circuits on sufficiently many qubits, values
of Hlin(p, q) above some threshold δ are believed to be
impossible to achieve in a reasonable amount of time using
any existing classical computer [2–4]. Obtaining such val-
ues for Hlin(p, q) is sometimes referred to as demonstrating
“quantum supremacy,” and this has now been achieved in
multiple experiments [2–4].

We now turn to the XEB protocols that are designed
to estimate the average infidelity of random n-qubit cir-
cuit layers (ε�). These XEB protocols follow the same
structure as all other native gate RB protocols (discussed
throughout this subsection), using (i) plain �-distributed
random circuits [see Fig. 26(e)] as its circuit family and
(ii) a success metric related to the linear cross-entropy. The
success metric is typically

FXEB = Ĥlin(p, q)
Hlin(p, p)

, (361)
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(c)

(d)

FIG. 29. Cross-entropy benchmarking of a two-qubit CZ gate. (a) Linear fits yielding FXEB(m) at each depth m. (b) Exponential
decay fits (solid lines) of measured (dots) FXEB(m) (black) and speckle purity (gray) as a function of depth m. The dressed CZ gate
has a process infidelity of eF = 1.78%, of which 68% can be attributed to stochastic errors based on the decay of the speckle purity.
(c) The speckle pattern is plotted for each bit string across N = 30 random circuits (y axis) and at each depth m (x axis). We see
that the speckled pattern at low depths (characteristic of the Porter-Thomas distribution) is smeared out at longer depths (as the
uniform distribution is approached). (d) Cumulative distribution function (CDF) of distributions of bit string probabilities (colored
lines) at depths m = 2 and m = 64. At low depth, m = 2, the probabilities of the various bit strings closely follow the Porter-Thomas
distribution (dashed black line). At larger depths these distributions begin to converge to the uniform distribution (solid black line)
where the probability of the given bit string is close to 1/d = 0.25 for all of the N = 30 random circuits.

where Ĥlin(p, q) is an estimate of Hlin(p, q). Typically, the
estimate is computed using

Ĥlin(p, q) = 2n

N

∑
x∈X

px − 1 , (362)

where X is the set of bit strings observed when running
the circuit N times. Calculating Eq. (363) requires clas-
sically computing px for each x ∈ X, which is generally
exponentially expensive in the number of qubits. In the
most well-known XEB experiments [2], the mean of FXEB
over multiple random circuits of depth m—given Ĥlin(p, q)
and Hlin(p, p) for each circuit—is estimated by plot-
ting Ĥlin(p, q)− Ĥlin(p, u) versus Hlin(p, p)− Ĥlin(p, u)
for every circuit of the same depth, where u is the uni-
form distribution in d dimensions, and fitting that data
to a line [as shown in the example of Fig. 29(a)]. Note,
however, that alternative success metrics or data analysis
techniques can be used in XEB; for example, the suc-
cess metric defined by Eq. (361) can be used instead of

Eq. (362), or the techniques of filtered RB [301,321] can
be applied to data from XEB circuits.

XEB’s success metric is arguably less intuitive than the
success probability used in most RB protocols, and so
we now explain why FXEB enables estimating the average
error rate of the benchmarked layers. Consider a depth-
m XEB circuit C and the observable OC =∑x px |x〉〈x|,
where p = {px} is C’s ideal outcome distribution. Now,
assume that C’s imperfect implementation can be mod-
elled by an n-qubit depolarizing error channel after each
layer with process polarization f, i.e., the state output by C
is

ρC = f m |ψC〉〈ψC| + (1 − f m)
I

2n , (363)

where m is the circuit’s depth, and |ψC〉〈ψC| is the pure
state that C would ideally create. Then,

Tr[OCρC] = f mTr[OCψC] + (1 − f m)
1
2n Tr[OC] . (364)
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By substituting in OC , we find that

∑
x

pxqx = f m

(∑
x

p2
x − 1

2n

)
+ 1

2n , (365)

where qx = 〈x| ρC |x〉 is the actual probability of observ-
ing x. Rearranging, and substituting in the definition of the
linear cross-entropy, we obtain

f m = Ĥlin(p, q)
Hlin(p, p)

. (366)

So, by estimating the RHS of this equation (for randomly
sampled circuits) versus circuit depth, and fitting its mean
versus m to an exponential FXEB = Af m, we can extract
the polarization f, from which we can calculate r� using
Eq. (348).

The XEB protocol is defined for both Clifford [322]
and non-Clifford [2,136,319–321] circuits. However, we
note that the canonical circuits for XEB are the same cir-
cuits as in the “quantum supremacy” demonstrations, and
XEB with Clifford circuits requires an impractical num-
ber of samples for low-uncertainty estimates of r� (BiRB
is a reliable alternative to XEB with Clifford circuits that
has better statistical properties). XEB reliably estimates
the average (in)fidelity of �-distributed layers under cer-
tain regularity conditions, including that the errors must
be small [323]. As with other RB protocols, XEB is only
a reliable, well-defined procedure if its success metric
(FXEB) decays exponentially. The theory of XEB shows
that FXEB will be an exponential (assuming small Marko-
vian errors), but only for XEB circuits that are deeper than
some minimal depth mmin [301,320–322]. This minimal
depth is related to the scrambling rate of the �-distributed
circuits that are chosen—i.e., how many �-random lay-
ers are needed to approximately transform any error map
into an n-qubit depolarizing channel (note that the above
theory simply assumes that each error map can be rep-
resented by such an n-qubit depolarizing channel). This
minimum depth, therefore, depends on � and the layer
set that � samples from (and therefore also on a device’s
connectivity) [301,320–322].

In addition to benchmarking the average infidelity of
random n-qubit circuit layers, XEB can be structured to
benchmark individual gates, layers of gates, or subcir-
cuits that are fully scrambling. Figure 29 illustrates XEB
performed on a two-qubit CZ gate. The benchmarked lay-
ers are composite layers consisting of (i) a layer of Haar
random single-qubit gates on each qubit, and then (ii) a
two-qubit CZ gate. So, each random layer is a “dressed”
CZ gate. From the results in Fig. 29(b), one can extract
a dressed process fidelity of Fe = 98.2%. It should be
noted, however, that unlike other methods for estimat-
ing individual gate (in)fidelities, such as interleaved RB

(Sec. VIII F) and cycle benchmarking (Sec. VIII G), it is
not as straightforward to separate the infidelity of the Haar
random twirling gates from the infidelity of the interleaved
gate [324]. Thus, by default, XEB always returns an esti-
mate of the infidelity of the dressed gate or layer. However,
one of the utilities of XEB is that it does not require the
interleaved gate or layer to be Clifford (unlike interleaved
RB or cycle benchmarking), and has been used to bench-
mark the fidelity of multiqubit non-Clifford gates, such as
an iToffoli [263], controlled-controlled-Z (CCZ) [218], and
CCCZ gate [272]. As outlined in Appendix D 3 c, XEB can
be extended to benchmarking qudit gates as well.

D. RB of general groups

Standard RB can benchmark any gate set that is both
a group and a unitary 2-design (e.g., the 24 single-qubit
Clifford gates), and modern native gate RB methods can
directly benchmark a gate set that simply generates a group
that is a 2-design (e.g., {Xπ/2, Yπ/2}). However, some inter-
esting gate sets generate (or are) groups that are not unitary
2-designs. For example, the CNOT, Hadamard, and Z gates
generate the “real Clifford group,” which is not a unitary
2-design [325]. Gate sets like this cannot be benchmarked
either indirectly by standard RB or directly by (existing)
native gate RB methods. Here, we discuss RB techniques
that address this problem, and enable RB of gate sets that
are groups but not unitary 2-designs [301,325–329].

The random circuits of standard RB can be constructed
for any gate set that is a group, but when that group is not
a unitary 2-design the average success probability p̄(m) of
these circuits will not generally follow the simple exponen-
tial form p̄(m) = Af m + B, even approximately. Instead,
the theory of twirling over general groups (see Sec. VIII A)
implies that p̄(m) will be a sum over multiple exponen-
tial decays, and those exponential decays can be matrix
exponentials. Specifically,

p̄(m) ≈
k∑
λ=1

Tr(AλM m
λ ) , (367)

where the Mλ matrices contain average gate error infor-
mation (i.e., together they can be used to compute the
mean infidelity of the gates), and the Aλ matrices absorb
all SPAM errors [301]. The exact functional form is
determined by how the superoperator representation of a
gate G decomposes into irreducible representations (see
Sec. VIII A) of G. Each term in Eq. (368) corresponds to
an irreducible representation in the decomposition of the
superoperator representation, and the dimensions of Mλ

and Aλ depend on the multiplicity of the corresponding
irreducible representation. Reliably fitting data to multiex-
ponentials is challenging [301], and it contrasts with the
conceptual and practical simplicity of RB.
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The literature on RB of groups that are not unitary 2-
designs [301,325–330] is about creating (1) techniques for
reliably analyzing data of the form given in Eq. (368)
and/or (2) techniques for adapting the RB circuits and data
analysis so that it is possible to separate out the multiex-
ponential decay of Eq. (368) into individual exponential
decays that can be separately analyzed. There are a vari-
ety of protocols for RB of particular groups that are not
unitary 2-designs, including dihedral RB [327], real RB
[325,326], and filtered RB [301,321]. Perhaps the most
well-known RB protocol for general groups is character
RB [212,301,328], and this is the only such protocol we
discuss further.

1. Character RB

Character RB [212,301,328] is a conceptually elegant
technique for RB of general groups that is also of practical
importance (but which also has some important limita-
tions). Character RB uses techniques from group repre-
sentation theory to robustly isolate individual exponential
decays in the multiexponential of Eq. (368). The gen-
eral and somewhat abstract ideas underpinning character
RB enable many practical RB protocols, including an RB
technique designed for biased-noise qubits [331]. Many
other RB or RB-adjacent protocols, such as simultaneous
RB (Sec. VIII E) and cycle benchmarking (Sec. VIII G),
use the same technique. A character RB experiment is
determined by the following:

(a) a benchmarking group G, which is the set of gates
one aims to benchmark, and

(b) a character group Ĝ ⊆ G, which is used to extract
individual exponential decays robustly.

When run without errors, each character RB circuit imple-
ments a uniformly random element Ĝ of Ĝ. The results of
running different circuits are added together with weights
determined by Ĝ and a character function, which depends
on the structure of Ĝ and the decay the experiment aims to
isolate.

Character RB is not capable of isolating each exponen-
tial decay for every group. If the benchmarking group is
not multiplicity-free (i.e., the superoperator representation
of the group contains multiple copies of one or more irre-
ducible representations) the results of character RB will
still include multiexponential decays [328]. Furthermore,
character RB requires an impractical number of samples
for some groups—a limitation that is addressed by filtered
RB [301,321]. See Ref. [301] for a detailed discussion of
RB of general groups.

E. Simultaneous RB

Simultaneous randomized benchmarking (sRB) is a
widely used method for quantifying crosstalk errors [332].

It is perhaps the simplest of a variety of “advanced” RB
techniques (discussed in Sec. VIII E–VIII G) that build on
or expand standard RB (Sec. VIII B) and/or the native gate
RB protocols (Sec. VIII C). These advanced RB methods
are designed to measure gate set properties beyond the
AGSI that those foundational RB techniques target.

The original sRB protocol consists of running single-
qubit CRB on a qubit while either (i) idling neighboring
qubits [Fig. 25(a)], or (ii) driving those qubits by indepen-
dently running CRB in parallel on those qubits [Fig. 25(b)]
[332]. These two isolated and simultaneous RB experi-
ments result in two decay parameters (fiso and fsim) and
corresponding error rates (riso and rsim). Comparing these
error rates quantifies the change in a qubit’s gate error rate
caused by driving neighboring qubits. Typically, rsim >

riso due to crosstalk errors. The size of these crosstalk
errors is sometimes quantified with the sRB number [332],

rsRB = d − 1
d

(1 − fsim/fiso) ≈ rsim − riso . (368)

Figure 30 shows data from running single-qubit CRB
on two superconducting qubits while idling the other, as
well as data from running CRB in parallel on the two
qubits. We observe significant differences in the exponen-
tial decay rates between the isolated and parallel contexts,
indicating that the single-qubit EPC is higher when gates
are performed in parallel than in isolation. In this sce-
nario—and in other superconducting qubit systems in gen-
eral—the primary contributor to rsRB is likely crosstalk-
induced coherent errors acting on both qubits when they
are operated simultaneously.

Running sRB on all the qubits in an n-qubit system
requires n + 1 different RB experiments. So, it is now com-
mon to run only the simultaneous RB experiment (and to
still refer to this as “sRB”), measuring only rsim for each
qubit. In a many-qubit processor, those error rates (one
for each qubit) quantity the infidelity of each qubit’s gates
when running single-qubit gates in parallel on every qubit.
Dividing this into contributions from local and crosstalk
errors for every qubit requires n more RB experiments, and
is not necessary if the goal is to quantify the performance
of many-qubit circuits. Therefore, these extra experiments
are often skipped.

sRB can also be generalized to quantify crosstalk
induced on or by multiqubit gates by running n ≥ 2 qubit
RB on a set of qubits while either idling all other qubits
or running RB on those other qubits [314,333]. There
are many ways to do this; for example, running single-
qubit RB on all qubits quantifies simultaneous single-qubit
crosstalk, running simultaneous two-qubit RB quantifies
crosstalk between simultaneous two-qubit gates, or mix-
ing single- and two-qubit RB captures crosstalk between
simultaneous single- and two-qubit gates. Each choice
for the parallel context will quantify a different aspect
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(a)

(c)

(b)

FIG. 30. Simultaneous RB. A demonstration of sRB, whereby
RB is run in isolation and in parallel on two superconducting
qubits labeled 5 and 6. (a),(b) Exponential decays for qubits 5
and 6, respectively, when running RB in isolation (blue) and
simultaneously (orange). (c) The process infidelity (i.e., EPC) for
each qubit measured in isolation (eF ,iso, blue) and simultaneously
(eF ,sim, orange). The difference between eF ,iso and eF ,sim can be
used to quantify the crosstalk errors induced by driving the other
qubit.

of device crosstalk. Notably, a version of simultaneous
two-qubit RB is used to define the error per layered
gate (EPLG) [314], which quantifies the error per qubit
when a random layer containing one- and two-qubit gates
is applied to all qubits in a system simultaneously. As
of 2025, IBM reports the EPLG as one of its primary
performance metrics for its cloud-access systems.

Implementing sRB requires addressing a scheduling
problem that becomes worse as n increases [334]. This
is because CRB’s random n-qubit Clifford gates get com-
piled into circuits of native gates of varying lengths (with
typical depth increasing with n). This problem can be
avoided if sRB does not use CRB, but instead uses a native
gate RB protocol (Sec. VIII C), such as DRB, BiRB, or
XEB [314]. Finally, we note that data from sRB experi-
ments can also be used to learn more than just rsRB, with
the aid of a variety of more complex methods [334–336]
that enable estimating, for example, the rates of correlated
errors between different pairs of qubits.

F. Interleaved RB

Interleaved randomized benchmarking (IRB) [184] is
a method for estimating the infidelity of an individual
Clifford gate (extensions to some non-Clifford gates exist
[337,338]). IRB is typically used to estimate the infidelity
of a one- or two-qubit gate, but in principle it can be
applied to n-qubit gates for any n (e.g., a many-qubit layer
of parallel one- and two-qubit gates). IRB for an n-qubit
gate G is a simple extension of n-qubit CRB. It consists
of two independent RB experiments. One experiment is

(a) (b)

FIG. 31. Interleaved RB. IRB of a CZ gate between two super-
conducting qubits. (a) The reference (blue) and interleaved
(orange) CRB decays. In the reference experiment, circuit depth
(m) is the number of uniformly random two-qubit Clifford gates.
In the interleaved experiment, each of the random Clifford gates
is followed by a CZ gate, resulting in longer circuits and typi-
cally a lower average success probability at the same m value.
(b) The estimated process infidelity extracted from the refer-
ence (blue, eF ) and interleaved (orange, eF ,D) experiments. We
estimate the CZ gate’s process infidelity [see Eq. (372)] to be
eF ,CZ = 2.3(6)%. IRB is intended to estimate a gate G’s infidelity
εG, but the IRB error rate can be very different from εG due to sys-
tematic flaws in IRB. Upper and lower bounds [computed from
Eq. (374)] on CZ’s infidelity are shown in black. The error bars
on this region are computed from the statistical uncertainties in
the estimates of eF and eF ,D.

often called the reference RB experiment and it consists of
simply running standard CRB to estimate the CRB decay
parameter (f ) and the corresponding EPC (r). The other
experiment—the interleaved RB experiment—consists of
again implementing CRB, but now each randomly sam-
pled Clifford gate is followed by G [see Fig. 25(d)], i.e., a
depth-m interleaved circuit has the form

Cm,G = Cm+2 ◦ G ◦ Cm+1 · · · ◦ G ◦ C2 ◦ G ◦ C1 , (369)

where C1, C2, . . . , Cm+1 are independent and uniformly
sampled Clifford gates (as in CRB), and Cm+2 is the unique
Clifford gate that inverts the entire preceding sequence.
The interleaved RB experiment also produces an estimated
decay parameter (fD) and corresponding error rate (rD).
Figure 31(a) shows reference and interleaved RB decay
curves for IRB of a CZ gate between two superconducting
qubits. The interleaved curve decays faster than the refer-
ence curve due to the additional gate G inserted at each
circuit depth.

The error rate rD is an estimate of the mean infidelity of
G composed with (i.e., “dressed” by) a uniformly random
Clifford gate, not an estimate of G’s infidelity. The standard
IRB analysis attempts to subtract the contribution of the
uniformly random Clifford gate’s error to rD, by comparing
rD to r. Specifically, IRB’s estimate of the gate G’s average
gate infidelity is defined by

rG = d − 1
d

(
1 − f

fD

)
≈ rD − r . (370)
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Alternatively, IRB’s estimate of the gate G’s process
infidelity is given by

eF ,G = d2 − 1
d2

(
1 − f

fD

)
≈ eF ,D − eF . (371)

Applying Eq. (372) to our CZ gate data in Fig. 31, we
estimate CZ’s process infidelity to be eF ,CZ = 2.3(6)% [see
Fig. 31(b)].

It is important to highlight that IRB is not generally a
reliable method for estimating a gate’s infidelity. This is
primarily because unitary errors in G can coherently add
or cancel with errors in the random Clifford gates Ci, and
this can even cause the interleaved curve to decay more
slowly than the reference curve—resulting in a negative
IRB error rate!—even when G’s errors are large. This
implies that there is a systematic and potentially large dis-
crepancy between rG and G’s true infidelity, εG (we call
these discrepancies systematic as they are not due to shot
noise; i.e., they are not statistical in origin). For the average
gate infidelity, IRB theory shows that rG and εG are related
by the inequalities

εG − E < rG < εG + E , (372)

where

E = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d − 1)
d

[∣∣∣∣f − fD
f

∣∣∣∣+ (1 − f )
]

2(d2 − 1)(1 − f )
d2f

+ 4
√

1 − f
√

d2 − 1
f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(373)

and d = 2n. The upper and lower bounds in Eq. (373)
can span orders of magnitude, and a tighter relationship

between rG and εG can only be guaranteed if more is
known about the errors—e.g., if it is known that coher-
ent errors form a small contribution to infidelity [339]; see
Sec. VIII H 1. In Fig. 31(b), we plot these upper and lower
bounds on the estimated process infidelity for the CZ gate.
When this systematic error is combined with the statisti-
cally uncertainties in our estimates of f and fD, this range
spans over two orders of magnitude, ranging from above
10−1 to below 10−3.

IRB has been widely used, but its large systematic errors
have caused it to become less popular in recent years.
There are now a variety of alternatives to IRB, includ-
ing many RB or RB-like techniques for measuring gate
infidelities (as well as SPAM-error-robust tomographic
techniques like gate set tomography; see Sec. VII D).
Many of these techniques are also more scalable than IRB
(IRB inherits the scaling problems of CRB, discussed in
Sec. VIII C). One such technique is cycle benchmarking,
which we discuss in detail in Sec. VIII G. Other examples
include fitting error models directly to RB data [311,340];
running native gate RB protocols with different sampling
distributions � and using simple linear algebra to estimate
different gates’ infidelities [310,311]; interleaved versions
of character RB (Sec. VIII D 1), which is closely related to
cycle benchmarking; and Pauli noise learning techniques
(see Sec. IX C).

G. Cycle benchmarking

Cycle benchmarking (CB) [341] is a protocol for esti-
mating the process fidelity of an n-qubit gate, a.k.a. a
“layer” or “cycle.” Following CB convention, here we will
use the “cycle” terminology, which is defined to be a set of
gates acting on disjoint sets of qubits all occurring dur-
ing the same moment in time, in analogy with a clock
cycle on classical computers. CB is an alternative to IRB

(a) (b)

FIG. 32. Cycle benchmarking circuits. (a) CB of the all-identity “reference” cycle. BP,q denotes the basis preparation gate on qubit
q for a random eigenstate of the Pauli P, Pi,q denotes the ith twirling operator acting on qubit q, and B†

C(P),q rotates qubit q back to
the initial eigenstate of P at the end of the circuit. Explicit identity gates I have been inserted for visual clarity, but this cycle is either
skipped in compilation, or the identity gates can be implemented as true idles for the duration of a cycle of single-qubit or two-qubit
gates; the choice is up to the experimenter. If the identity gates are skipped in compilation, then this measures the average fidelity of
a cycle of random Pauli gates applied simultaneously to all n qubits. (b) CB of an n-qubit gate cycle G. G can be composed of any
combination of single- and multiqubit gates, as long as Gm = I for a sequence depth of m.
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(a) (b)

FIG. 33. Cycle benchmarking of simultaneous single-qubit Paulis. (a) Pauli decays for each Pauli basis P, with the SPAM parameter
AP and the exponential fit parameter fP listed in the legend for a subset of P. (b) Pauli infidelities eP = 1 − fP for each Pauli P, and
the average process infidelity eF (horizontal blue line). The highlighted region denotes the 95% confidence interval of eF .

that is arguably more useful in practice. CB interleaves
the cycle of interest in between layers of random Pauli
gates (see Fig. 32), instead of the layers of random n-qubit
Clifford gates used in IRB. The Pauli group implements a
weaker twirl than the Clifford group—it converts a gen-
eral error map to a Pauli stochastic channel, rather than a
global depolarizing channel (see Appendix C 4). But Pauli
twirling requires only a single layer of parallel single-qubit
Pauli gates, whereas n-qubit Clifford gates require many
one- and two-qubit gates. This makes CB much more scal-
able than IRB, so CB enables benchmarking many-qubit
cycles containing parallel one- and two-qubit gates.

CB estimates the process fidelity of a cycle of gates, and
we describe CB for the case of an n-qubit cycle containing
only Clifford gates:

(1) For K different n-qubit Pauli operators P, that are
uniformly sampled if n � 1 but can consist of every
possible Pauli operator if n is small:

(a) Use a layer of single-qubit gates to prepare the
qubits in a random tensor-product eigenstate
of P.

(b) Apply a circuit consisting of m applications of
the cycle of interest G interleaved with cycles
of randomly sampled n-qubit Pauli operators
(applied via randomized compiling), for a range
of values m that all satisfy Gm = I.

(c) Measure the Pauli operator P, whose estimated
value we denote by fP,m, which is typically
achieved using a layer of single-qubit gates and
a computational basis measurement.

(d) Fit fP,m to an exponential decay of the form

fP,m = Af m
P , (374)

where A absorbs all SPAM errors. The fit value
for fP is an estimate of

fP =
( j∏

k=1

λGkPG−k

)1/j

, (375)

where j is the smallest integer such that Gj = I

and λP = �PP, where � is G’s error channel’s
PTM and �PP is the diagonal element indexed
by Pauli operator P.

(e) Estimate the process fidelity of the cycle to be

Fe = 1
K

K∑
i=1

fPi . (376)

Individual exponential decays in CB are often referred
to as Pauli decays and are labeled by the Pauli operator P
specifying the basis of the state preparation and measure-
ment. If CB is applied to the idle (i.e., identity) cycle (see
Fig. 33), each Pauli decay curve measures the eigenval-
ues of the PTM of G, but for more general cycles some of
the fP correspond to products of eigenvalues of G’s error
channel (see Appendix E). This complication is encom-
passed by Eq. (376). As a result, Fe is not an accurate
estimate of the process fidelity in general. However, it is
proven in Ref. [341] that Fe is a lower bound on the true
process fidelity of the cycle (in the limit of infinite sam-
ples). The number of Pauli decays required to obtain a
fixed estimation precision is independent of the number of
qubits, and instead only depends on the infidelity of the
cycle, which follows from standard statistical analysis of
RB protocols [290,341]. As a general guide, a minimum
of K = min(20, 4n − 1) Pauli operators should be sam-
pled from Pn for low uncertainty estimates of the process
fidelity [341,342].
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CB measures the process (in)fidelity of a dressed cycle.
Therefore, the error rate measured by CB contains con-
tributions from both errors in the interleaved cycle and
the random Pauli gates. This is the relevant error rate for
cycles that will be used in randomly compiled or Pauli
frame randomized circuits [155]. But, it is also possi-
ble to approximately isolate the process infidelity of the
“bare” interleaved cycle (G), by implementing CB with
(i) the cycle of interest and (ii) a reference cycle contain-
ing no gates [see Fig. 32(a)], and then applying exactly
the same analysis as in IRB [see Eq. (372)]. This has the
same fundamental limitations as IRB (see the discussion
in Sec. VIII F), but in practice the systematic error in this
estimation method is typically significantly smaller than
in IRB. This is because the fidelity of a random Pauli
gate (the randomizing gates in CB) is typically higher than
the fidelity of a random Clifford gate (the randomizing
gates in CRB). For example, Ref. [343] used CB to esti-
mate the fidelity of a CZ gate and [using Eq. (374)] found
lower and upper bounds on its fidelity of 97.52(2)% and
99.764(5)%, respectively, whereas when using IRB these
lower and upper bounds were 91.9(2)% and 99.96(1)%,
respectively.

CB is simplest and most efficient for benchmarking
Clifford cycles, but it can also be used to benchmark non-
Clifford gates. Doing so requires adding correction gates to
the end of CB circuits to return the qubits to a Pauli eigen-
state. This can require many multiqubit gates at the end of
each benchmarking circuit. Therefore, to reliably bench-
mark non-Clifford gates, the native gates required to imple-
ment the correction operations (which usually include the
interleaved gate itself) must have high enough fidelity
that the correction operations do not corrupt the mea-
sured fidelity of the dressed cycle. For example, Ref. [344]
benchmarked non-Clifford CS = √

CZ and CS† gates. CB
was also used to benchmark a three-qubit non-Clifford

iToffoli gate [263], which would not have been feasible
using three-qubit non-Clifford RB.

One utility of CB is that it can benchmark the process
fidelity of an entire cycle of gates containing any combi-
nation of single- and multiqubit gates (similar to methods
like MRB), as long as the cycle composes to the identity
operation at some circuit depth m [345]. Thus, CB can
holistically quantify the impact of crosstalk between gates
in a parallel gate cycle. For example, it can be used to
measure crosstalk experienced by idling spectator qubits
during a two-qubit gate. To demonstrate this, in Fig. 34 we
plot the process infidelity of eight different CZ gates mea-
sured via CB on an eight-qubit superconducting quantum
processor with a ring topology. Additionally, we measure
the process infidelity of cycles containing each of the eight
CZ gates, as well as idle gates on the spectator qubit on
either side of the CZ gate (i.e., the interleaved gate cycle is
G = I ⊗ CZ ⊗ I ). We observe that, in all cases, the cycle
with the idle qubits has a larger process infidelity than
the cycle containing just the CZ gates. This highlights two
important concepts: (i) it should not be assumed that gates
have no impact on idle qubits (and vice versa [346]), and
(ii) when understanding circuit performance, it is most
informative to benchmark the constituent cycles as they
appear in the circuit.

H. Purity benchmarking

Purity benchmarking (PB) [347–349] is a family of RB
techniques for quantifying how coherent a gate set’s errors
are. Purity benchmarks provide complementary informa-
tion to the foundational RB protocols (i.e., the group
and native-gate RB protocols), which intentionally mix
together all kinds of errors into a single error rate. As
discussed in Sec. III, Markovian errors can be broadly cate-
gorized as either coherent (i.e., unitary) or incoherent (i.e.,

FIG. 34. CB of gates vs. cycles. The process infidelities of eight different two-qubit CZ gates measured via CB are plotted in green.
When the two nearest-neighbor idling qubits are benchmarked alongside each CZ gate (gray), the CB performance is worse in all cases.
Notably, the good performance of an isolated CZ gate does not guarantee the good performance of the cycle, which includes idling
spectator qubits. For example, the CZ between qubits 4 and 5 has the lowest individual process infidelity, but has one of the worst
process infidelities when the idles are included.
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stochastic). PB methods can be used to quantify the rel-
ative contributions of coherent and stochastic errors, and
they are based on the purity γ of a quantum state ρ. The
purity of a quantum state is

γ = Tr(ρ2) = 1
d
(
1 + ‖r(ρ)‖2) , (377)

where

ρ = 1
d

[I + r(ρ) · σ ] , (378)

r(ρ) is the generalized d-dimensional Bloch vector, and
||r(ρ)||2 is its Euclidean norm (i.e., average squared
length). Here σ is the vector of Pauli matrices.

In the context of randomized benchmarks, we prepare
quantum states using sequences of random gates, and the
final state ρ ′ = E(ρ) will have a purity γ ≤ 1, which
depends on the nature of the error channel E (e.g., E can be
some mixture of coherent and stochastic errors). One way
to quantify how coherent the error channel E is in terms of
unitarity of E ,

u(E) = 1
d − 1

∫
dψ ‖r [E(|ψ〉〈ψ |)] − r [E(I/d)]‖2 ,

(379)

which is the Euclidean norm of the Bloch vector of the
state E(|ψ〉〈ψ |) (with the identity component subtracted
off), averaged over all pure states. If E is a unitary channel,
then u(E) = 1, and u(E) < 1 if E includes contributions
from stochastic noise. While not all purity benchmarks
utilize the unitarity, Eq. (380) demonstrates that it is possi-
ble to quantify the relative contributions of stochastic and
coherent errors to the AGSI of an RB experiment. In this
subsection, we discuss several different randomized bench-
marks, which attempt to quantify the relative error rates of
coherent and stochastic errors in a gate set. While this goes
beyond the scope of this tutorial, it should be noted that
gate set tomography (Sec. VII D) can also be used to quan-
tify the amount of coherent errors and stochastic noise in a
gate [46].

1. eXtended RB

eXtended randomized benchmarking (XRB) [342,347] is
a PB protocol that is based on CRB. XRB estimates the
average unitarity of a set of n-qubit Clifford gates. XRB
requires only a small modification to the standard CRB
protocol: XRB performs the standard CRB circuits intro-
duced in Sec. VIII B, but instead of performing an invert-
ing operation at the end of the sequence, state tomography
is performed on the resulting state in order to estimate the
length of the Bloch vector. XRB characterizes the unitar-
ity in terms of the decay rate of the average squared Bloch

vector length with sequence depth. For a single qubit, the
average squared Bloch vector length,

γ̃ = ||r(ρ)||2 , (380)

is equivalent to

γ̃ = 〈X 〉2 + 〈Y〉2 + 〈Z〉2 . (381)

This is a shifted and rescaled version of Eq. (378).
XRB consists of (i) running CRB circuits for various

depths m without the inversion gate, (ii) estimating γ̃ for
each circuit, and then (iii) fitting the mean of γ̃ (which we
denote by 〈γ̃ (d)〉) as a function of m, to

〈γ̃ (m)〉 = Aum . (382)

The fit value for u is an estimate of the mean unitarity of
the benchmarked gates. This can then be used to estimate
the stochastic process infidelity eS(E) defined by

eS = 1 −
√
(d2 − 1)u + 1

d2 . (383)

If standard CRB is also performed in addition to XRB, then
the process infidelity eF measured via CRB represents the
total error. Together, one can estimate the coherent process
infidelity eU by eU = eF − eS.

In Fig. 35(a), we plot exponential decays for CRB and
XRB. In Fig. 35(b), we compare the process infidelity
of the gates eF (measured via CRB) with the estimated
stochastic process infidelity eS (measured via XRB); the
difference between the two is the coherent process infi-
delity eU. The stochastic process infidelity is an approxi-
mate measure for determining whether or not a gate set is
coherence limited (i.e., all gate errors are due to incoherent
noise). If eF = eS, then eU = 0 and, thus, the gates have no
coherent errors. However, because infidelity is only sensi-
tive to coherent errors at O(θ2), if an estimate of eS is equal
to eF within error bars, it is possible that coherent errors
still exist—XRB does not amplify coherent errors, so it is
an inefficient method for estimating the size of coherent
errors.

One application of XRB is to quantify the magnitude
of crosstalk errors. In Fig. 35(c), we show the CRB and
XRB process infidelities for single-qubit gates performed
in isolation and simultaneously for two qubits. We see
that the CRB infidelity (eF ) for each qubit is larger for
simultaneous CRB than for isolated CRB, but the XRB
process infidelity (eS) is approximately the same in both
cases. This demonstrates that crosstalk-induced coherent
errors make up a larger fraction of the total error rate under
simultaneous operation.
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(a) (b) (c)

FIG. 35. eXtended RB. (a) Exponential decays for two-qubit CRB (blue) and XRB (orange). All two-qubit Cliffords are decomposed
into native single-qubit gates and a native two-qubit CZ gate. (b) CRB (blue) and XRB (orange) process infidelities for the exponen-
tial decays in (a). The CRB process infidelity eF is the AGSI for two-qubit Cliffords, and the stochastic process infidelity eS is the
approximate coherence limit for two-qubit Clifford gates. The difference between the two eU = eF − eS is the average error rate due to
coherent errors. (c) Isolated vs. simultaneous single-qubit CRB and XRB. The CRB process infidelity is larger for both qubits under
simultaneous operation, whereas the stochastic process infidelities are approximately equal in both cases, indicating the presence of
coherent crosstalk errors between simultaneous single-qubit gates.

2. Speckle purity benchmarking

Speckle purity benchmarking (SPB) [2] is a protocol
for estimating the decay of the purity of states produced
by random circuits versus circuit depth. This method is
based on the observation that, for long enough circuits,
the probability p(x) of observing a particular bit string x
will be a random variable with a Porter-Thomas distribu-
tion. For most circuits, p(x) will be exponentially close to
zero. But for some rare circuits x will appear with signif-
icantly higher probabilities. The observed data will then
demonstrate a “speckle pattern” when presented visually.
However, when depolarizing errors dominate, the speckle
pattern will be smoothed out as the distribution approaches
the uniform distribution [see Figs. 29(c) and 29(d)].

SPB is the following procedure: sample N random
scrambling circuits of depth m, i.e., circuits with proper-
ties similar to those typically used in XEB. Now, choose
some bit string x, and let P be the probability of measuring
bit string x assuming the circuits are run without errors.
Because the circuit is random, P is a random variable. If
the gates are unitary, then for sufficiently deep circuits, P
will be distributed according to the Porter-Thomas (PT)
distribution, whose probability density is:

fPT(p) = (d − 1)(1 − p)d−2 , (384)

with variance

σ 2
PT = d − 1

d2(d + 1)
. (385)

On the other hand, if the gates completely depolarize the
state, then all output strings become equally probable. In
this case, we can again describe the probability as a random

variable, but with a trivial (T ) probability density function:

fT (p) = δ

(
p − 1

2d

)
, (386)

with δ the Dirac delta distribution, and the variance of T
is zero

σ 2
T = 0 . (387)

In real experiments, there are stochastic and coherent
errors, and the stochastic errors push P towards the trivial
distribution with increasing circuit depth, whereas coher-
ent errors preserve the PT distribution. In particular, the
probability P of measuring a given bit string in a depth m
circuit will be approximately given by a mixture of the PT
distribution and the trivial distribution:

fexp(p) ≈ (1 − ε)mfPT(p)+ εmfT (p) , (388)

with ε the rate of stochastic errors per circuit layer (more
precisely, 1 − ε is the process polarization corresponding
to the stochastic portion of the error channels, and so ε
is approximately the rate of stochastic errors except for
very few qubits). SPB theory relates the variance of this
distribution to the variance of the PT distribution as

σ 2
exp = ε2mσ 2

PT . (389)

Therefore, we can estimate the purity decay with cycle
depth by simply observing the rate at which the variance
of the distribution of bit-string probabilities decays. For
example, by comparing the XEB fidelity decay and purity
decay for the data in Fig. 29(b), we can investigate the
relative size of coherent and incoherent errors in the sys-
tem. Using SPB, we estimate that roughly 68% of the
dressed CZ’s error can be attributed to stochastic errors;
the remaining are attributed to coherent errors.

030202-87



AKEL HASHIM et al. PRX QUANTUM 6, 030202 (2025)

3. Iterative RB

Iterative RB protocols are RB-like methods for amplify-
ing gate errors so that it is possible to separate coherent
errors from stochastic noise. These methods depend on
the fact that constructively interfering coherent errors will
grow quadratically with circuit depth. To see this, consider
the simple example of applying many Rx(2π) rotations to
a qubit initially in the ground state, but each time the qubit
over-rotates by a small angle θ . The resulting state of the
qubit after M rotations is

|ψ〉 =
M∏

e−iθσx |0〉 = cos (Mθ) |0〉 − i sin (Mθ) |1〉 .
(390)

The fidelity of this state with respect to |0〉 is F =
| 〈0|ψ〉 |2 = cos2 (Mθ) ≈ 1 − (Mθ)2, thus the infidelity
is ε = 1 − F ≈ (Mθ)2. Therefore, the infidelity scales
quadratically in both the over-rotation angle θ and the
number of rotations M . In contrast, stochastic errors typ-
ically only grow linearly with circuit depth: if we take p to
be the probability of a stochastic error per gate, then 1 − p
is the probability of no error per gate, and (1 − p)M is the
probability of no error after M gates. For a circuit with M
total gates, ε = 1 − (1 − p)M ≈ Mp is the probability of
an error after M gates. Thus, stochastic errors accumulate
linearly with circuit depth in the small error limit.

Iterative RB [350] interleaves M repetitions of a tar-
get quantum gate within a standard CRB sequence (see
Sec. VIII F), with M varied. Because the coherent errors
in the gate will grow quadratically in M , one can fit the
fidelity decay of the sequence to both quadratic and lin-
ear functions, with the quadratic component capturing the
coherent contributions to the gate error, and the linear
component capturing the incoherent contributions to the
gate error. This method can be adapted to a variety of
randomized benchmarks [351–353].

I. RB with non-Markovian errors

All of the RB protocols discussed so far in this section
are primarily based on theory that assumes Markovian
errors. Those RB protocols are therefore not guaran-
teed to work correctly in the presence of non-Markovian
errors. In general, standard RB data is not guaranteed
to follow a simple exponential decay in the presence of
non-Markovian errors [196,198,309]. For example, 1/f
noise is well-known to cause nonexponential RB decays
[288]. Furthermore, the RB protocols discussed so far are
not designed to learn anything about the rates of non-
Markovian errors (although they will incorporate the rates
of some kinds of non-Markovian errors into the measured
RB error rates). There are, however, a variety of adap-
tations to RB protocols that enable learning about one
or more kinds of non-Markovianity using RB. Examples

include time-resolved RB [96] and loss RB [354], which
measure drifting gate error rates versus time and qubit
loss rates, respectively. Here, we discuss only the most-
widely used RB protocols for non-Markovian errors: those
designed for quantifying leakage.

1. Leakage RB

RB protocols that measure leakage rates are rela-
tively simple to implement and are widely used. Leakage
describes an error in which a qubit is excited out of
the computational basis state to higher energy levels [see
Fig. 4(f)]. This is a common source of error in systems
whose energy spacings are not sufficiently well separated
to isolate the |0〉 −→ |1〉 transition from transitions to
higher energy levels. Leakage cannot be captured by most
RB protocols, and it can corrupt their results. However,
many RB protocols can be modified to account for leak-
age [98,100,355]. There are a variety of ways to quantify
leakage using RB methods, but the conceptually simplest
methods consist of running standard RB experiments (or
native gate RB experiments) while monitoring the |2〉 state
population (or higher states). This method is often termed
leakage randomized benchmarking (LRB), and we focus
our discussion on this simple technique.

LRB is the following simple adaptation to standard
single-qubit CRB:

(1) Run standard CRB circuits and, at the end of each
circuit, measure whether the final state of the qubit
is |0〉, |1〉, or |2〉.

(2) Fit the average |2〉 state population versus circuit
depth to a simple exponential growth function, to
estimate the leakage rate per Clifford gate (rl).

To perform LRB, it is therefore necessary to be able to
readout the |2〉 state (although note that LRB is robust to
errors in this readout). Figure 36 illustrates simultaneous
LRB on two transmon qubits, and how it can be used to
identify qubits with high leakage rates.

IX. PARTIAL TOMOGRAPHY AND FIDELITY
ESTIMATION

QCVV methods can be categorized by (i) the
amount (and type) of information they provide, and
(ii) the cost—in both experimental and computational
resources—to run them. Gaining more information typ-
ically requires more resources, and so QCVV methods
can often be placed on a sliding scale from (1) highly
informative but costly, to (2) highly efficient but provid-
ing little information [29]. Tomography of quantum states,
processes, measurements, or gate sets (see Sec. VII) is
at one extreme of this continuum: these methods provide
comprehensive information about the models and rates of
all possible kinds of (Markovian) errors, but they require
resources that are exponential in system size. This limits
the application of these methods to the few-qubit setting.
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(a) (b) (c)

FIG. 36. Leakage RB. There are a variety of RB protocols that can quantify rates of leakage errors. This figure demonstrates one such
method, which we call leakage RB (LRB), on transmon qubits. This method uses qutrit readout to discriminate between leaked and
computational basis states. (a) Example of readout and classification boundaries for classifying |0〉, |1〉, or |2〉 for a superconducting
qubit. (b) LRB data for two qubits (labeled Q5 and Q6) under simultaneous operation, showing the probability of observing the 2
outcome as a function of the RB circuit’s depth. This data is fit to an exponential to estimate the leakage rate (rl). Q6 has a much larger
leakage rate (rl = 3.4%) and steady-state |2〉 state population than Q5 (rl = 0.27%). Leakage can be due to either coherent excitation
to higher energy levels or thermal noise, but the frequency spectrum of the two qubits shown in (c) indicates that the |0〉 → |1〉 (i.e.,
“GE”) transition frequency of Q5 is close to the |1〉 → |2〉 (i.e., “EF”) transition frequency of Q6. Therefore, the leakage on Q6 is most
likely due to crosstalk from Q5 when performing simultaneous single-qubit gates.

In contrast, most randomized benchmarks (see Sec. VIII)
are extremely efficient to run but they provide only one
(or a handful) of numbers summarizing a gate set’s per-
formance (e.g., the average fidelity of a gate set). It is,
however, both possible and often useful to obtain more
information about a system (e.g., a gate set) than provided
by randomized benchmarks, without resorting to exponen-
tially expensive tomography. In this section, we discuss
techniques that sit in the middle of this cost versus infor-
mation sliding scale, which generally fit into one (or both)
of two categories: (1) “partial tomography” methods, and
(2) “fidelity estimation” methods.

There are many more resource-efficient characteriza-
tion and benchmarking techniques than can be cov-
ered here. Therefore, we list some important (and par-
tially overlapping) categories of partial tomography and
fidelity estimation, covering only some of them in detail
below:

(a) Targeted tomography. An n-qubit state, gate, or gate
set contains exponentially many (in n) independent
parameters, so it is infeasible to learn all of them
for n � 1. However, it is possible to learn a sub-
set of those parameters, or some function of those
parameters. There are a variety of partial tomogra-
phy techniques that target specific parameters in a
state, process, or gate set [356–363]. For example,
there are techniques for learning one or more of a
transfer matrix’s eigenvalues, e.g., spectral tomog-
raphy [362] and phase estimation (see Sec. VI E).
One way to reduce the cost of process tomography
is to instead learn its action as a classical, probabilis-
tic gate. We discuss this method, sometimes called
“truth table tomography,” in Sec. IX A.

(b) Randomized measurement methods. A variety of
partial tomography methods are built on the idea
of measuring a quantum state or process in a
small number of randomly chosen bases [364].
Methods of this sort include shadow tomography
[210,365,366], direct fidelity estimation [367,368],
and cycle benchmarking (which we covered in
Sec. VIII G). We discuss direct fidelity estimation in
Sec. IX B.

(c) Pauli noise learning. Stochastic Pauli channels (see
Sec. III E) are a practically relevant class of error
channels that contain only 4n parameters, rather than
the 16n parameters of a general error map. There are
a variety of techniques that (i) use twirling or ran-
domized compiling [154,155] to enforce a stochastic
Pauli noise model, and (ii) learn the parameters
of those Pauli channels. Many of these methods
have close connections to randomized benchmarks
(Sec. VIII), and some of them can efficiently learn
sparse Pauli channels that contain only a polynomial
number of unknown parameters. We discuss some
of these methods in Sec. IX C.

(d) Ansatz tomography. A range of tomographic meth-
ods exist that reconstruct states, processes, or gate
sets more efficiently than the “brute force” meth-
ods discussed in Sec. VII by assuming or privileging
some simplifying structure. Some of these meth-
ods assume a structure—e.g., that the state is pure
or local, or that the process is unitary or Pauli
stochastic—and will give an incorrect estimate if the
assumption is violated. Better methods use a hierar-
chical ansatz—e.g., that the density matrix or pro-
cess matrix has low rank—and perform efficiently
when the ansatz is satisfied, yet also recognize
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and characterize (less efficiently) objects that do
not satisfy the ansatz. Examples include methods
for tomography of pure states and unitaries [369,
370], states satisfying strong symmetries [356,357,
371,372], low-rank states and processes (including
compressed sensing approaches) [80,201,202,373],
matrix product and tensor network states [374–376],
and techniques that assume a gate’s errors can be
described by few-parameter (i.e., sparse) Pauli chan-
nels [377] or Lindbladians [378,379]. Methods also
exist that use heuristics to improve efficiency, such
as some machine learning approaches to tomogra-
phy [380–384]. With the exception of some efficient
Pauli-noise learning methods covered in Sec. IX C,
we do not discuss these techniques further.

A. Truth table tomography

Truth table tomography [385,386] is perhaps the con-
ceptually simplest form of partial tomography of an n-
qubit process �. It consists of preparing the n qubits in
each of the 2n different computational basis states, apply-
ing�, and then measuring in the computational basis. This
directly estimates the 4n different probabilities given by

py|x(�) = Tr[|y〉〈y|�(|x〉〈x|)] , (391)

where x, y ∈ {0, 1}n. The matrix of these probabilities
py|x(�) is a 2n × 2n stochastic matrix (each element of the
matrix is a probability, and each row sums to one), which
we denote by S(�). This matrix is similar to the response
(or confusion) matrix constructed when characterizing
readout fidelities [see Eq. (318)].

As in quantum process tomography (QPT, see
Sec. VII B), the measured stochastic matrix S(�) is typ-
ically compared to the stochastic matrix S(U) for the
intended (ideal) superoperator U of a gate. For any gate
that preserves the computational basis (i.e., each computa-
tional basis state is mapped to another computational basis
state), S(U) is a truth table, i.e., it is the matrix for a deter-
ministic (reversible) classical gate. For example, for the
CNOT gate this matrix is

S =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (392)

Note, however, that the stochastic matrix for a general uni-
tary is instead a general (doubly [387]) stochastic matrix,
e.g., for a Hadamard gate

S = 1
2

(
1 1
1 1

)
. (393)

FIG. 37. Truth table tomography. The stochastic matrices for
experimental (top) Toffoli [218] and (bottom) iToffoli gates
[263] measured using truth table tomography on superconducting
qubits. The Toffoli gate flips the first qubit if the second and third
qubits are in the state |10〉. The iToffoli gate flips the middle qubit
if the first and third qubit are in the state |00〉. The correspond-
ing gate fidelities are estimated to be 96.20(6)% and 98.6(1)%,
respectively.

To demonstrate truth table tomography, in Fig. 37 we
plot measured and ideal stochastic matrices for experi-
mental Toffoli [218] and iToffoli [263] gates. Ideal Toffoli
and iToffoli gates preserve the computational basis. The
Toffoli gate leaves the qubits unchanged unless the two
control qubits (in this experiment, the second two qubits)
are in the state |10〉, in which case the other qubit (in this
experiment, the first qubit) is flipped, i.e., |010〉 	→ |110〉
and |110〉 	→ |010〉. The iToffoli gate leaves the qubits
unchanged unless the two control qubits (in this experi-
ment, the first and last qubit) are in the state |00〉, in which
case the other qubit (in this experiment, the middle qubit)
is flipped, i.e., |000〉 	→ |010〉 and |010〉 	→ |000〉.

For any gate that ideally maps computational basis
states to computational basis states, the fidelity between
an experimental and ideal gate’s stochastic matrices, Sexp
and Sideal, respectively, is given by [385,386]

Ftt = 1
2n Tr(STexpSideal) . (394)

030202-90



PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

For the experimental gates of Fig. 37, we find fidelities of
96.20(6)% and 98.6(1)% for the Toffoli and iToffoli gates,
respectively.

Truth table tomography has a variety of limitations. Like
full QPT, it requires a number of circuits that scales expo-
nentially in the number of qubits. Furthermore, like QPT
it is susceptible to SPAM errors. However, unlike QPT, it
is insensitive to phase errors in the gates. Therefore, fideli-
ties measured using truth table tomography will typically
disagree with those gate fidelities estimated using other
techniques, such as interleaved RB (Sec. VIII F) or cycle
benchmarking (Sec. VIII G) [218]. To recover some infor-
mation about the phases of a gate, the input states can be
rotated to the X basis. In combination with the Z-basis
results, this data can be used to lower bound the process
fidelity [388], and this has been used to characterize the
effects of three-qubit Toffoli gates in trapped ions [389]
and neutral atoms [390]. Moreover, the method introduced
in Ref. [388] can be generalized to upper- and lower-bound
the fidelity of high-dimensional operations such as n-qubit
Toffoli gates [391]. However, this is an inefficient approach
to estimating gate fidelity compared to, e.g., direct fidelity
estimation.

B. Direct fidelity estimation

Estimating the fidelity of a state or process requires
computing the overlap between a system’s state and pro-
cess with the desired state and process (see Secs. IV B 2
and IV C 3 b). While, in principle, a full tomographic
reconstruction of the system could be used to accurately
compute its overlap with the desired output, in practice
full tomography becomes intractable beyond a few qubits.
However, this overlap can be estimated by measuring only
along axes of greater overlap with the desired state, while
neglecting axes with little to no overlap. Direct fidelity esti-
mation (DFE) [367,368] is a protocol that uses this idea to
measure state or process fidelities more efficiently than full
tomography [392,393]. While DFE can in theory be used to
compute the fidelity of entire circuits, more scalable meth-
ods have been developed specifically for estimating circuit
fidelities (see Sec. X).

The purpose of DFE is to estimate the state fidelity
[Eq. (198)] between an actual state ρ and a desired pure
state ψ = |ψ〉〈ψ |. This fidelity can be written as

F(ρ,ψ) = Tr[ψρ] =
d2∑

k=1

χψ(k)χρ(k) , (395)

where

χρ(k) = Tr[ρPk]√
d

(396)

is known as the characteristic function of ρ, Pk are the
n-qubit Pauli operators, and d = 2n (for n qubits). The

quantity χρ(k) is the kth expansion coefficient of ρ in
the normalized Pauli basis. While the exact expansion of
Eq. (396) includes d2 terms, F(ρ,ψ) can be estimated
by measuring only a subset of the most significant terms
using importance sampling. To estimate the fidelity up to
an additive error ε and failure probability δ, one can take
the following steps:

(a) Choose a random value k ∈ {1, . . . , d2} with proba-
bility pk = χψ(k)2.

(b) Calculate χρ(k) by measuring the expectation value
of the Pauli operator Pk for the unknown state ρ.
Use this quantity to construct the estimator X =
χρ(k)/χψ(k).

(c) Repeat the steps above l = 1/(ε2δ) times and esti-
mate F(ρ,ψ) by the estimator

F̂(ρ,ψ) = 1
l

l∑
i=1

Xi . (397)

Reference [367] proves that if χρ(k) is measured exactly,
then

Pr[|F̂(ρ,ψ)− F(ρ,ψ)| ≥ ε] ≤ δ . (398)

However, there is always shot noise, i.e., each χρ(k) is not
measured perfectly. Reference [367] shows that ρ’s fidelity
can be estimated using mk copies of ρ for each Pk. While
the exact number of copies varies with k, the average
number of copies grows only linearly in d (as opposed to
quadratically, as for full state tomography). Specifically, if
we have m =∑l

i=1 mi total copies of ρ, then the expected
number of copies required for a given δ and ε is

E(m) ≤ 1 + 1
ε2δ

+ 2d
ε2 log(2/δ) . (399)

Thus, we can generally reduce the cost from d2 −→ d by
using DFE instead of state tomography.

The average number of copies can be significantly
decreased for particular families of states. For example,
let us consider the family of “well-conditioned” states,
which includes all the states ρ such that for every k, either
Tr[ρPk] = 0 or |Tr[ρPk]| ≥ α for α ≤ 1. For states in this
family, we have

m ≤ O
(

log(1/δ)
α2ε2

)
. (400)

For example, for stabilizer states α = 1, so the number of
copies of ρ needed is independent of the system’s size,
and for W states (α = 1/n), the average number of copies
grows only as n2.

DFE is cheaper than tomography, but its cost is still
exponential in the number of qubits (n) for general states.
Furthermore, like state tomography, DFE does not account
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FIG. 38. Direct fidelity estimation. DFE performed on an
N = 4, 6, 8, 10 qubit GHZ state on ibm_sherbrooke. The
running average of the GHZ state fidelity is plotted as a function
of the number of random measurement bases, selected via impor-
tance sampling on the target state. The horizontal dashed lines is
the expected state fidelity calculated from the physical error rates
listed for ibm_sherbrooke at the time of the experiment.

for measurement errors, so DFE’s estimates of state fidelity
will also include errors from measurement. For this reason,
fidelity estimation techniques which account for SPAM
have been developed (see Sec. X A).

To demonstrate how DFE depends on the num-
ber of random bases that are sampled, Fig. 38 shows
results from DFE of an n-qubit Greenberger-Horne-
Zeilinger (GHZ) state (for n = {4, 6, 8, 10}) performed on
ibm_sherbrooke. Rather than measuring 1 shot for
each sampled basis, as described above, the DFE prescrip-
tion from Ref. [364] was followed. 1024 shots from each
of 50 measurement bases randomly drawn via importance
sampling from the ideal target GHZ state were measured.
The running average of the fidelity for each GHZ state
is shown in Fig. 38. The estimated fidelities after 50 ran-
dom measurement bases are in general agreement with the
expected output fidelity based on a product-of-errors calcu-
lation for the physical error rates on ibm_sherbrooke.

C. Pauli noise learning

Stochastic Pauli channels (see Sec. III E) are an impor-
tant class of error channels that are particularly relevant
for quantum error correction [394]. A general Pauli error
map for n qubits only contains 4n − 1 parameters—the
rates of each possible Pauli error—which is fewer than the
O(16n) parameters of a general process matrix. While this
is still exponential in the number of qubits, it can be further
reduced using assumptions about the nature and local-
ity of Pauli errors across an n-qubit device. Furthermore,
while most quantum systems suffer from more complex

error mechanisms than simply Pauli noise, one can exper-
imentally design stochastic channels [395] using methods
such as randomized compiling [154,155] and Pauli frame
randomization [152,153], thus enforcing the same error
model that can be efficiently characterized.

Several methods have been proposed for learning Pauli
channels [335,396]. Pauli channels have diagonal Pauli
transfer matrices (PTMs, see Sec. II C 3), denoted �, and
these methods are designed to estimate the eigenvalues

�PP = 1
d

Tr[PE(P)] . (401)

The eigenvalue λP = �PP captures how much E attenuates
the Pauli operator P. If�PP = 1, then E preserves the Pauli
operator P; if �PP < 1, then P is not preserved by E .

The eigenvalues �PP can be related to the rates of each
possible Pauli error, as we demonstrate using a one-qubit
Pauli channel, which has the form

�=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 − 2(pY + pZ) 0 0

0 0 1 − 2(pX + pZ) 0

0 0 0 1 − 2(pX + pY)

⎞
⎟⎟⎟⎠,

(402)

where pQ is the probability of the Pauli error Q. This exam-
ple shows that a Pauli error Q with probability pQ will
attenuate the eigenvalue of any noncommuting Pauli oper-
ator P by an amount 2pQ. To generalize the relationship
between Pauli eigenvalues and Pauli error rates, we note
that a stochastic Pauli channel’s Kraus map is of the form
E(ρ) =∑Q pQQρQ†, and this has a PTM given by

� = 1
d

∑
P,Q∈Pn

(−1)〈P,Q〉pQ |P〉〉〈〈P| , (403)

where 〈P, Q〉 = 0 if [P, Q] = 0, otherwise 〈P, Q〉 = 1, and
|·〉〉 is the vectorization defined in Sec. II C. A single given
eigenvalue �PP may therefore be computed as

�PP =
∑
Q∈Pn

(−1)〈P,Q〉pQ . (404)

The inverse transformation—computing a Pauli error rate
pQ from Pauli eigenvalues—is

pQ = 1
4n

∑
P∈Pn

(−1)〈P,Q〉�PP . (405)

This transformation is the Walsh-Hadamard transform,
with the following matrix representation:

WP,Q = 1
d

∑
P,Q

(−1)〈P,Q〉 |P〉〉〈〈Q| . (406)
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This Walsh-Hadamard transform can be used to compute a
vector of Pauli eigenvalues λ from a vector of Pauli error
rates p,

λ = Wp , (407)

or, using the inverse transformation, to compute Pauli error
rates from Pauli eigenvalues:

p = W
−1λ . (408)

Thus, the general strategy for learning Pauli channels is to
measure a set of Pauli eigenvalues and then use Eq. (409)
to calculate the associated Pauli error rates. Measuring
Pauli eigenvalues can be achieved using various methods,
including cycle benchmarking (Sec. VIII G), Pauli-twirled

random Clifford circuits (see Sec. IX C 2), shadow tomog-
raphy [397], etc. In what follows, we will describe two
strategies for estimating Pauli eigenvalues.

1. Cycle error reconstruction

In Sec. VIII G, we reviewed cycle benchmarking
(CB), a scalable protocol for measuring error rates for
cycles containing parallel quantum gates. The goal of
CB is to measure the eigenvalues of the PTM of
a cycle. These eigenvalues can be estimated from a
Pauli-twirled PTM; for this reason, CB uses random-
ized compiling. For example, CB performed on a two-
qubit cycle would measure the following diagonal com-
ponents of the PTM (up to any gauge ambiguities, see
Appendix E),

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
f m
IX

f m
IY

f m
IZ

f m
XI

f m
XX

f m
XY

f m
XZ

f m
YI

f m
YX

f m
YY

f m
YZ

f m
ZI

f m
ZX

f m
ZY

f m
ZZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (409)

where f m
P is the process polarization associated with the

preparation and measurement basis of the Pauli P at a
circuit depth of m. Here, fP is distinct from the pro-
cess polarization f defined in Sec. IV C 4, which is the
average process polarization in the unital block of a
PTM. Under Clifford twirling, f = 1/(d2 − 1)

∑
P �=I fP,

but under Pauli twirling each fP is unique (see Sec. VIII A
and Appendix C). In the limit that m = 0, fP is an estimate
of eigenvalue �PP, representing how well P is preserved
by E . It should be noted that fP is often termed the Pauli
fidelity of P in the literature when P is unambiguous [398],
or the orbital fidelity when individual Pauli fidelities can-
not be learned due to gauge ambiguities; however, fP is
not strictly a fidelity because it can be negative, since the
elements of a PTM are bounded by [−1, 1].

Cycle error reconstruction (CER) [396,398] (also called
k-body noise reconstruction (KNR) [343]) is a protocol that
leverages CB for efficiently estimating the eigenvalues of
a cycle’s PTM. CER results are based on targeted CB mea-
surements in which specific Paulis are chosen to estimate
the error rates afflicting subsets of the gates or idle qubits
in the specific cycle of interest. Since the Pauli decays in
CB are dual to the Pauli operators that cause errors, CER
measures the error rate pQ of some fixed Pauli Q, by mea-
suring a set of Pauli decays that commute and anticommute
with Q, and then using this information to reconstruct the
probability pQ via linear inversion using Eq. (409).

For the two-qubit PTM shown in Eq. (410), it is feasi-
ble to measure all 15 operators, and thus reconstruct all
weight-1 and weight-2 Pauli errors afflicting the cycle.
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However, for an arbitrary n-qubit cycle, while some high-
weight errors can be estimated, it becomes exponentially
expensive to measure all 4n − 1 Pauli errors. Instead, the
usual strategy is to only reconstruct lower-weight Pauli
errors, thus limiting the number of Pauli eigenvalues that
must be measured. This strategy assumes that errors are
relatively local to nearby qubits, and that long-range cor-
relations are negligibly small.

In Fig. 39, we plot a heatmap of the dominant Pauli
errors on an eight-qubit superconducting quantum proces-
sor with a ring geometry. These errors are reconstructed
by performing CB on the eight different cycles contain-
ing a single two-qubit CZ gate, as well as the idle qubits
on either side of each CZ (i.e., the interleaved gate cycle
is G = I ⊗ CZ ⊗ I , see Fig. 34). We see that the dominant
Pauli errors on the quantum processor are weight-1 errors
affecting the idle qubits or one of the entangled qubits. In
fact, the largest error on the processor is a local Z error on
qubit 4 during the CZ gate between qubits 3 and 4. The
source of this error is likely to a coherent Z error, not
a stochastic Z error (by design, CER cannot distinguish
between true stochastic Pauli errors and coherent errors
that have been twirled into Pauli channels).

In Fig. 39, we observe that some of the Pauli errors
acting on entangled qubits appear grouped together in
curly brackets. These groupings indicate error types that
cannot be distinguished due to degeneracies, since some
local errors acting on either qubit in the CZ gate will be
transformed by the gate. This has to do with a fundamen-
tal gauge ambiguity in Pauli noise learning [399], and is
explained further in Appendix E. While only one- and
two-body errors [400] were measured in Fig. 39 (i.e., all
k ≥ 2-body errors were neglected), this is justified by the
data, since we observe that two-body terms are largely
suppressed compared to one-body terms. Moreover, the
two-body error rates are the marginalized probabilities of
all k-body errors that act on the corresponding two bod-
ies. Therefore, the fact that two-body errors are negligible
proves that three- or more body errors are also negligible.

2. Averaged circuit eigenvalue sampling

Averaged circuit eigenvalue sampling (ACES) [377,
401,402] is an alternative scalable technique for learning
the Pauli error rates of many layers of gates performed
simultaneously. ACES uses random Clifford circuits per-
formed with randomized compiling to accomplish this,
which allows many gates to be characterized in a single
experiment.

ACES estimates a Pauli channel for each gate in a set
of Clifford gates. ACES can estimate arbitrary n-qubit
Pauli error rates for each gate in principle, but, like CER,
a reduced model is required for scalability. For exam-
ple, a crosstalk-free error model [78,79] can be used, in
which each layer’s error consists of tensor products of

one- and two-qubit Pauli channels for each one- and two-
qubit gate in the layer, respectively. Even for this highly
restricted error model, the parameter space becomes large
very quickly—this model has 15N2Q + 3N1Q parameters,
where N2Q is the number of 2-qubit gates and N1Q is the
number of single-qubit gates in the layer. For example, for
a line of 100 qubits with bidirectional CNOT gates and six
single-qubit Clifford gates per qubit, this amounts to 4770
parameters. It is also possible to incorporate additional
variables for state preparation and measurement error.

ACES uses measurements of Pauli observables of ran-
dom Clifford circuits to learn many combinations of the
eigenvalues of Pauli channels, which can then be used to
estimate the individual eigenvalues themselves. Consider a
circuit C = GdGd−1 · · ·G1, where the Gi are Clifford gates,
and suppose each gate experiences a (gate-dependent) post
gate stochastic Pauli error �Gi

E , i.e., the noisy circuit is

C̃ = �
Gd
E �d · · ·�G1

E �1 , (410)

where �i denotes the PTM for Gi and �G
E denotes the

superoperator of G’s error channel. A Pauli measurement
result is determined by the generalized eigenvalues of the
imperfect gates,

�G
E�[P] = (�G

E
)

GPG−1,GPG−1

[
GPG−1] . (411)

Stated differently, each Clifford operation transforms a
Pauli P into another Pauli P′ (see Appendix B 3), and P′ is
always an eigenvector of the subsequent Pauli channel. By
applying Eq. (412) to a sequence of gates, we see that the
Pauli operators are generalized eigenvectors of any Clif-
ford circuit that experiences only stochastic Pauli noise,
and the circuit’s generalized eigenvalues, denoted λCP, are

�
Gd
E �d · · ·�G1

E �1[P] =
∏

i=1,... ,m

(
�

Gi
E

)
Pi,Pi

[
CPC−1] ,

(412)

= λCP
[
CPC−1] (413)

where Pi denotes the Pauli P evolved through the first i
gates, i.e., Pi = �i · · ·�1[P]. By (1) preparing properly
sampled eigenstates of P (see Sec. IX B), (2) performing
C, and then (3) measuring the final Pauli CPC−1, the gen-
eralized eigenvalues λCP can be determined experimentally.

To use the Pauli measurement results to estimate indi-
vidual gate eigenvalues λG

P (and hence the error model
parameters), we construct a linear system of equations
relating the circuit generalized eigenvalues to the λG

P . Tak-
ing the log of Eq. (413) (and assuming λGi

Pi
> 0 for all i,

which is true as long as the gates have sufficiently low error
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FIG. 39. Cycle error reconstruction. Heatmap of Pauli errors measured via CER for an eight-qubit superconducting quantum pro-
cessor. Each experiment consisted of benchmarking a two-qubit CZ gate (indicated by the graph pattern above each column) plus
nearest-neighbor idling qubits. The x axis labels the ideal gate operation on each subset of qubits in each benchmarked cycle. The y
axis labels the type of Pauli error, with the tensor notation ⊗ between Pauli errors indicating errors acting on product states, while the
lack of tensors indicates errors on entangled qubits; curly brackets indicate gauge ambiguities (see Appendix E). The color of each cell
indicates the marginalized error rate, and the gradient defines the 95% confidence interval. The first row of subplots shows single-body
errors acting on idling qubits; the second row of subplots shows correlated single- and two-body errors between idling qubits; the third
row of subplots shows single-body errors acting on the CZ qubits; and the fourth row of subplots shows correlated single- and two-body
errors between an idling spectator qubit and the CZ gate qubits.
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FIG. 40. Averaged circuit eigenvalue sampling (ACES).
Example mirror circuit that can be used for the ACES proto-
col, consisting of single-qubit Clifford gates plus bidirectional
CX gates. The three qubits are prepared in a +1 eigenstate of
ZIY. Each layer of gates transforms the Pauli operator ZIY into
a different Pauli, and this Pauli describes which of the layer’s
generalized eigenvalues will contribute to the final measure-
ment result. Under noise-free execution, the final state is the
same as the input state, and therefore is a +1 eigenstate of
ZIY. With execution under a stochastic Pauli noise model, the
result of measuring ZIY is attenuated by λCZIY, which is the circuit
eigenvalue.

rates),

ln λC
P =

d∑
j=1

ln
[(
�

Gj
E

)
Pj ,Pj

]
. (414)

Therefore, Pauli measurement results are related to the
generalized eigenvalues of the gates by a system of lin-
ear equations b = Ax, where x encodes the Pauli channel
eigenvalues and b encodes the measurement results. A is
called the design matrix, and each row of A encodes how
the gate eigenvalues relate to the result of a single Pauli
observable measurement. It is determined by the choice
of circuits and Pauli measurements, and can be efficiently
computed since its computation only requires evolving
Pauli operators through Clifford circuits. By running suf-
ficiently many random Clifford circuits and performing
sufficiently many independent Pauli measurements, a full-
rank matrix A can be generated. The Pauli eigenvalues of
the gates can then be estimated by computing x = A+b,
where A+ denotes the pseudoinverse of A.

In principle, ACES can be run with any set of Clifford
circuits, but because most processors are limited to com-
putational basis measurements, a careful choice of circuit
structure allows for more independent Pauli measurements
to be performed with each circuit, rendering more informa-
tion. ACES is often run with a form of mirror circuit (see
Fig. 40), which enables measuring O(n) independent Pauli
observables from each computational basis measurement.
The version of mirror circuits in the original ACES proto-
col (Ref. [377]) places a layer of random gates at the end of
the circuit, so they are not identity circuits (or Pauli oper-
ators). The particular structure used means that any one-
or two-qubit Pauli propagated through the full circuit has
weight at most 6 at the end of the circuit, which means that
each measurement required to learn a crosstalk-free model
with ACES requires at most six qubits.

X. ESTIMATING CIRCUIT FIDELITIES

While all the individual components (states, gates, lay-
ers, and measurements) used in quantum circuits are
becoming more accurate, they remain inherently noisy.
When a few of them are combined to form a quantum cir-
cuit, their noise and errors accumulate. And when more
than a few of them are combined (hundreds, thousands,
or even—eventually—millions), the accumulated noise
becomes significant and can severely alter the outputs. So,
given a quantum circuit of arbitrary size and nature, how
can we determine whether its outputs are close to the ideal
(noiseless) outputs?

Validating the outputs of quantum circuits turns out to
be a puzzling problem. The simplest approach is to resort
to classical simulations: when a quantum circuit is imple-
mented, it is also simulated on a classical computer, and
finally the outputs are compared. This approach is effec-
tive, but only for circuits that are feasible to simulate
classically. Some experiments have already hit the bound-
ary of what can be simulated classically in reasonable time
[2]. A different approach consists of individually charac-
terizing the components used in the circuit of interest (e.g.,
benchmarking of gate layers, or tomography of individ-
ual gates), and then predicting the quality of its outputs
from the characterization data. This approach can be scal-
able, but it is also often unreliable. Quantum circuits are
more than the sum of their components, and the noise
in a circuit may exhibit properties (such as drift, fluctua-
tions, and temporal correlations) that may not be observed
by inspecting individual components. This calls for pro-
tocols that can test the circuit as a whole, rather than its
parts.

In this section, we provide an overview of some of
the scalable methods to characterize the performance of
quantum circuits. In particular, we describe the following
methods:

(a) Mirror circuit fidelity estimation (Sec. X A). Mir-
ror circuit fidelity estimation is a technique for
estimating the process fidelity of any circuit C using
mirror circuits of twice C’s depth.

(b) Circuit output accreditation (Sec. X B). Circuit out-
put accreditation is a technique for lower bounding
the process fidelity of a circuit C by running a set of
“trap” circuits that are the same width and depth as
C, but contain only Clifford gates.

Mirror circuit fidelity estimation and circuit output accredi-
tation are complementary techniques with similar aims and
slightly different properties and strengths (discussed later).
These techniques have two important properties in com-
mon: they are both (i) efficient in the number of qubits,
and (ii) robust to SPAM errors. Both techniques run a
number of circuits that is independent of the number of
qubits, and require minimal classical computations. This
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contrasts with direct fidelity estimation (Sec. IX B), which
could be used to estimate a circuit’s process fidelity, but
is typically not used in practice because it is not robust to
SPAM errors and it is exponentially expensive for general
circuits. Finally, note that a variety of techniques exist for
formal verification of the output of quantum algorithms or
circuits, for example, interactive cryptographic protocols,
which allow a classical user to verify that a computation
was carried out by a quantum device [403–406]. These
methods are beyond the scope of this tutorial.

A. Mirror circuit fidelity estimation

Mirror circuit fidelity estimation (MCFE) [318] is a
technique for efficiently measuring the process (i.e., entan-
glement) fidelity Fe(C) with which a quantum computer
can implement an n-qubit circuit C. MCFE is robust in the
presence of SPAM errors, and it is efficient in the num-
ber of qubits. MCFE consists of running circuits sampled
from three ensembles of “mirror circuits” built from the
circuit of interest C, shown in Fig. 41. The core idea is that
by running circuits with three different structures, one of
which contains C, MCFE is able to approximately isolate
the process fidelity of C from all other operations in those
circuits using some simple algebra. Below we explain how
MCFE works.

MCFE’s first mirror circuit ensemble [M1(C)] consists
of (i) a layer L of random single-qubit gates sampled from
a unitary 2-design (e.g., Haar-random single-qubit gates),
(ii) the circuit C, (iii) a randomly compiled version of the
inverse of C [154,155] (denoted Crev), and (iv) the inverse
of L compiled together with a random n-qubit Pauli gate.
Each such M1(C) circuit embeds C within a larger (mir-
ror) circuit that, if implemented without error, will always
return an easy-to-compute “success” bit string. Therefore,

we can easily assess how well each such circuit was run
simply by looking at the frequency with which this success
bit string is output from each M1(C) circuit—suggesting
that these circuits can be used to understand how well C
can be executed. In particular, because of the randomiza-
tion in the initial and final layer of gates, as well as the
randomized compilation in Crev, it is possible to show that

E(γ [M1(C)]) ≈ f0f (Crev)f (C) . (415)

where f (·) is the process polarization [see Eq. (245)], E(·)
denotes the expectation value over a circuit ensemble,

γ (M ) = 4n

4n − 1

n∑
k=0

(
−1

2

)k

hk(M )− 1
4n − 1

, (416)

where hk(M ) is the frequency with which the output of
mirror circuit M is a Hamming distance of k from its “suc-
cess” bit string, and f0 is a nuisance parameter called the
“effective SPAM polarization,” which encompasses con-
tributions from errors in the SPAM and in the layers of
single-qubit gates [steps (i) and (iv)].

The aim in MCFE is to measure Fe(C) [a rescaling of
f (C), see Table II], but if we only run circuits sampled
from M1(C) to estimate E(γ [M1(C)]), we instead learn
f (C) multiplied by the unknowns f0 and f (Crev). MCFE
solves this problem by running circuits sampled from two
additional ensembles [M2(C) and M3(C)]. M3(C) is essen-
tially a randomized SPAM experiment [steps (i) and (iv)
above] that enables learning f0:

E(γ [M3(C)]) = f0 . (417)

(a)

(b) (c)

Target circuit
Randomly compiled Reversed, randomly

compiled reference circuit
State Measurement

preparation preparationreference circuit

FIG. 41. Mirror circuit fidelity estimation. (a) MCFE estimates the process fidelity Fe(C) with which a quantum computer can
execute some target circuit C (green box), using motion reversal circuits built from C and the four reference (sub)circuits shown here.
(b) The three motion reversal circuits used in MCFE and (c) the simple data analysis that MCFE uses to estimate the C’s process
polarization f (C), which can be rescaled to estimate Fe(C) (see Table II) (Figure adapted with permission from Ref. [318]).
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Finally, M2(C) is a fully randomly compiled version of
M1(C) (see Fig. 41), which enables learning f (Crev):

E(γ [M2(C)]) ≈ f0f (Crev)
2 . (418)

By applying simple algebra to Eqs. (416), (418), and (419),
we see that

f (C) ≈ E(γ [M1(C)])√
E(γ [M2(C)])E(γ [M3(C)])

. (419)

This is the analysis used by MCFE to estimate f (C), which
can then be rescaled to estimate Fe(C) using Eq. (245).

B. Circuit output accreditation

Circuit output accreditation is an efficient strategy for
lower-bounding the process fidelity in a “target” circuit
of interest. It only requires implementing circuits with the
same size and depth as the target circuit. Moreover, it is
robust to SPAM errors, and it is scalable in the number of
qubits and gates in the target circuit.

Different variants of circuit output accreditation have
been proposed [407–409], but they all rely on the idea of
implementing the target circuit alongside a number Nc of
Clifford circuits, called “traps” (see Fig. 42). These traps
have the same width and depth as the target circuit, but
they implement different computations. In particular, the
traps are designed in such a way that, in the absence of
noise, they return a fixed, known output. This allows us,
in the presence of noise, to estimate the probability that a
trap returns an incorrect output. This probability can then
be used to bound the process fidelity of the target circuit.
To describe circuit accreditation in more detail, we focus
on the protocol in Ref. [409], which provides the tightest
bound on the fidelity of the target circuit.

The accreditation protocol takes as input a target cir-
cuit C, alongside two numbers θ ,α ∈ (0, 1), which rep-
resent the desired statistical error on the bound and the

confidence in the bound, respectively. To bound the pro-
cess fidelity Fe(C) of C, output accreditation makes the
following assumptions:

(1) The circuit C (i) takes as input n qubits in the
state |0〉, (ii) implements the sequence of opera-
tions Um+1EmUm. . .U2E1U1, where Uj is a layer of
single-qubit gates and Ej is a layer of two-qubit
(e.g., CZ) gates for every j , and (iii) ends with
Pauli-Z measurements on every qubit.

(2) The errors affecting the various layers in C are com-
pletely positive and trace-preserving
(CPTP).

(3) The errors affecting the layers of one-qubit gates Uj
are gate independent. That is, every layer of one-
qubit gate suffers the same noise.

The first assumption is made without loss of generality,
since most quantum circuits can be recompiled in the
required form. The second and third assumptions are stan-
dard in the literature and allow us to encompass a broad
class of noise and error processes; notably, requiring that
the noise is CPTP does not include errors such as leakage
(see Sec. III F). Crucially, when combined together, these
three assumptions enable us to use randomized compiling
on the target circuit, that is, to transform arbitrary noise
processes into Pauli noise. In the reminder of the subsec-
tion, we thus assume that every layer in C is subject to Pauli
noise.

The trap circuits are generated by creating a copy of the
target circuit, and by replacing every single-qubit gate in
this copy with either I , H , or S = √

Z. These extra gates
are undone by compiling their inverses in the subsequent
single-qubit gate layer. Note that by the third assump-
tion, each trap generated in this way is affected by noise
that is identical to that affecting the target circuit (i.e.,
gate-independent Pauli noise for single-qubit gates), as
it is equal to the target circuit except for the individual
single-qubit gate layers.

FIG. 42. Circuit output accreditation. Circuit output accreditation generates Nc circuits based on the target quantum circuit C. These
circuits (called traps) contain the same two-qubit gates as the target circuit, and after the neighboring layers of one-qubit gates are
compiled into a single layer, every trap has the same width and depth as the target circuit. However, unlike the target circuit, in the
absence of errors every trap returns a fixed, known output. By postprocessing the number of incorrect trap outputs, accreditation
protocols return a lower bound on the process fidelity Fe(C) of the target circuit.
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In the absence of errors, the traps always return a fixed
outcome (0, 0, . . . , 0). However, if an error occurs, the trap
returns an incorrect output with probability larger than
50%. The proof of this statement (which is provided in
detail in Ref. [409]) requires commuting errors all the
way to the end of the circuit, and showing that due to the
effect of the randomly chosen one-qubit gates, they have
at least 50% probability of flipping one or more bits in the
output string. Building on this property of the traps, the
accreditation protocol takes the following steps:

(1) Generate and run a trap circuit. If the trap circuit
returns the bit-string (0, 0, . . . , 0), mark the run as
“successful.” Otherwise, mark it as “unsuccessful.”

(2) Repeat the step above a number Nc = 2 ln(2/(1 −
α))/θ2 and calculate the total number Nuns ∈ [0, Nc]
of unsuccessful runs.

After all the traps have been run, the process fidelity Fe(C)
of the target quantum circuit C is bounded above and below
by Nuns up to an error O(θ):

1 − Nuns

Nc
≥ Fe(C) ≥ 1 − 2

Nuns

Nc
. (420)

Thus, circuit accreditation enables lower and upper bound-
ing the circuit fidelity.

XI. HOLISTIC BENCHMARKS

Holistic benchmarks are methods for quantifying the
overall performance of a quantum computer. These meth-
ods typically summarize important aspects of a quan-
tum computer’s performance in relatively few numbers
or plots, such as the quantum volume [137] or capabil-
ity regions [294]. Most holistic benchmarks quantify the
impact of errors on overall performance, but they typically
do not directly quantify gate (or layer) error rates, unlike
RB protocols (Sec. VIII). Holistic benchmarks, therefore,
complement and contrast with both detailed error char-
acterization tools like tomography (Sec. VII) and RB
protocols (Sec. VIII). In this section, we discuss some of
the most widely used or important holistic benchmarking
methods. We discuss the following areas within holistic
benchmarking:

(a) Volumetric benchmarks (Sec. XI A). Volumetric
benchmarking [410] is a framework that encom-
passes many different benchmarks. We discuss this
framework, and two of its specific benchmarks or
benchmark families: the quantum volume bench-
mark [137] and mirror circuit benchmarks [294].

(b) Application benchmarks (Sec. XI B). Holistic
benchmarks based on applications or algorithms
are now widely used to benchmark and compare
quantum computers. We overview some of these

methods, using examples from two algorithmic
benchmarking suites.

(c) Scalable holistic benchmarks (Sec. XI C). Many
existing holistic benchmarks are not scalable, but
there are now techniques for creating scalable
benchmarks from any set of circuits or algorithms.
We briefly discuss these methods.

A. Volumetric benchmarks

Volumetric benchmarking [410] is a general methodol-
ogy for benchmarking, rather than a specific benchmark. It
generalizes ideas first introduced in the quantum volume
benchmark (Sec. XI A 1). Volumetric benchmarks quan-
tify a quantum computer’s ability to run circuits with low
error. In contrast to randomized benchmarks, volumetric
benchmarks do not directly quantify the error rates of a
quantum computer’s qubits or gates. Instead, they quantify
a quantum computer’s rate of errors when running cir-
cuits of various shapes. A specific volumetric benchmark
is defined by the following.

(1) A circuit family CW,D = {C}, that is indexed by cir-
cuit width (W, i.e., the number of qubits) and circuit
depth (D). Note that “circuit depth” need not refer
to the total number of layers of native gates in a
low-level circuit; instead, for example, it could refer
to the number of n-qubit Clifford gates in the cir-
cuit or the number of repetitions of an algorithmic
subroutine (see discussion in Ref. [410]).

(2) A method for selecting circuits from CW,D for each
circuit shape (W, D) (e.g., a probability distribution
over CW,D for each W and D).

(3) An error metric or measure of success (e.g.,
total variation distance, classical fidelity, etc.; see
Sec. IV) with which to compute how well any
circuit in CW,D was performed on a quantum
computer.

Examples of circuit families for which a volumetric
benchmark can be defined include the quantum volume
circuits (see Fig. 45), randomized mirror circuits (see
Sec. XI A 2), or the circuits from many algorithms.

Applying a volumetric benchmark to a quantum com-
puter consists of the following.

(1) Picking a range of circuit shapes (W, D) at which to
run circuits.

(2) At each chosen (W, D), selecting circuits from CW,D
and running them (the kinds of permissible compi-
lation rules for each circuit depends on the bench-
mark).

(3) From each circuit’s data, estimating how well the
quantum computer ran that circuit using the bench-
mark’s performance metric.
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This procedure generates data consisting of the quantum
computer’s performance on the benchmark’s circuit family
as a function of both width and depth. That data is then typ-
ically displayed on the width × depth plane—sometimes
called a “volumetric benchmarking plot”—as demon-
strated in Fig. 43. Such a plot is a high-level overview of
a quantum computer’s performance on the circuits from
that benchmark’s circuit family. Volumetric plots can also
be used to informally assess the kinds of errors occurring
in the benchmarked system—e.g., crosstalk errors cause
circuit error rates to increase faster with increasing circuit
width than would be predicted by gate error rates measured
using isolated one- and two-qubit RB [294].

The volumetric plot in Fig. 43 is a high-level per-
formance summary, but it still contains a lot of detail.
Therefore, it is sometimes useful to provide more con-
cise and easily understood performance summaries. One
way to do this is with “capability regions” [294]. Capabil-
ity regions use volumetric benchmarking data to compute
regions where a quantum computer can and cannot suc-
cessfully run circuits, using some threshold for “success.”
A capability region constructed from the data of Fig. 43 is
shown in Fig. 44.

1. Quantum volume

The quantum volume (QV) benchmark [137] is a holis-
tic benchmark that inspired volumetric benchmarking. The
QV benchmark runs randomly sampled “square” circuits
with a particular structure, and computes a single num-
ber—the “quantum volume”—summarizing a system’s
performance on those circuits. The QV benchmark explic-
itly permits compilation of its circuits, so it jointly tests
a quantum computing system’s compilers and gates, i.e.,
it is a “full-stack” benchmark [137,317,411]. QV is cur-
rently one of the most widely used metrics for comparing
integrated quantum computing systems, and summarizing
the field’s overall progress (e.g., see Ref. [412]). Note,
however, that as of 2025 IBM (the developers of QV)
are primarily using the error per layered gate (EPLG)
(see Sec. VIII E) to quantify their systems’ overall perfor-
mance.

The QV benchmark is based on the circuits shown in
Fig. 45, referred to as randomized model circuits or simply
quantum volume circuits. The QV circuits are defined for
any shape (W, D), but the QV benchmark uses only circuits
of this type that are “square” (i.e., have equal width and
depth). Each layer in an n-qubit QV circuit comprises n/2
disjoint two-qubit gates, between random pairs of qubits
(where n/2 is rounded down if n is odd, and the single
qubit that is not in any pair idles). Each gate is a uniformly
random two-qubit unitary [i.e., it is drawn from the Haar
measure on SU(4)]. The QV analysis (described below)
uses the concept of the heavy outputs of a probability distri-
bution (see Sec. IV A 4). The heavy outputs are the half of

FIG. 43. Volumetric benchmarking. The results of a volu-
metric benchmark run on ibmq_montreal. This benchmark
consists of running randomized mirror circuits (Sec. XI A 2) of
various shapes. For each circuit width and benchmark depth (see
main text), the concentric squares show the maximum (inner
square), mean (middle square), and minimum (outer square) of
the estimated polarizations Spol [Eq. (350)] for all the circuits of
that shape that were run. Frontiers (green, black, and red lines)
show the circuit shapes at which these three statistics drop below
the threshold value of 1/e. (Figure reprinted with permission
from [340].)

the outputs that are most likely to appear, i.e., those whose
probability is above the median probability. For example,
if the bit strings 00, 01, 10, and 11 have probabilities 0.1,
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FIG. 44. Capability regions. Capability regions [294] are high-
level summaries of a quantum computer’s ability to execute
circuits with low error. This plot is a capability region created
from the volumetric benchmarking data of Fig. 43, and it sum-
marizes the circuit shapes at which all randomized mirror circuits
that were executed in this experiment ran successfully. Here,
“success” means that a circuit’s polarization [Eq. (350)] is above
the threshold of 1/e. A square is green if all circuits ran success-
fully, orange if some succeeded and some failed, and white if
no circuits succeeded. Capability regions will typically depend
on the circuit family used to construct them, e.g., a circuit fam-
ily with a higher two-qubit gate density will typically result in a
smaller green region.

0.2, 0.3, and 0.4, respectively, the heavy outputs are 10
and 11.

The QV benchmark consists of applying the following
“quantum volume test” for increasingly large n:

FIG. 45. Quantum volume circuits. A depth D (here D = 4)
quantum volume circuit on W qubits (here W = 4). Each layer
consists of Haar-random two-qubit unitaries on a random pairing
of the W qubits (denoted here by random two-qubit gates between
neighboring qubits and a random permutation of all the qubits).
The quantum volume benchmark uses only square circuits, i.e.,
D = W. When W is odd, one randomly selected qubit idles during
each layer.

(1) Sample shape (n, n) QV circuits.
(2) For each sampled circuit, compile it into a cir-

cuit that can be run on the specific system being
tested. Approximate compilations are permissible
(trading off fewer gates, and their associated errors,
for intrinsic synthesis error in the circuit), but a
faithful attempt to approximately implement each
circuit’s unitary is required.

(3) Run each compiled circuit many times, and for each
circuit estimate the probability h of a heavy output
(this is estimated by simply computing the observed
frequency of heavy outputs).

(4) Assess whether h̄ > 2/3 with 95% confidence,
where h̄ is h averaged over all sampled circuits of
shape (n, n). If h̄ > 2/3 with 95% confidence, then
the system passes the n-qubit QV test, and otherwise
it fails.

A system’s QV is 2n, where n + 1 is the smallest integer
for which the system fails the QV test. For instance, if a
six-qubit QV test achieves h̄ > 2/3, but a seven-qubit QV
test achieves h̄ < 2/3, the measured QV is 26 = 64.

The QV threshold of h̄ > 2/3 is somewhat arbitrary, but
it can be motivated as follows. In the absence of errors,
deep and wide QV circuits have h ≈ (1 + ln 2)/2 ≈ 0.85.
In the presence of errors that completely depolarize all of
the qubits by the end of a QV circuit—i.e., the qubits are in
the maximally mixed state by the end of the circuit—then
h = 0.5. The threshold value of 2/3 is approximately half
way between these two regimes, which corresponds to
a probability of an error in the compiled QV circuits of
approximately 50%.

The QV benchmark favors quantum computers with
high connectivity and gate set expressivity. For example,
if one n-qubit system has linear connectivity and another
has all-to-all connectivity, but they both have the same
error rates on their one- and two-qubit gates, the all-to-
all connectivity device will (typically) have a significantly
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higher QV. A benchmark that favors higher connectiv-
ity is reasonable, but it is not a universally good choice.
Higher connectivity is likely broadly useful for NISQ algo-
rithms, but is not useful under all circumstances (e.g.,
it is not needed to run quantum error correction using
surface codes). Alternative versions of the QV bench-
mark with lower connectivity in the random circuits are
possible [411].

The QV benchmark is not scalable, because estimating
h requires the simulation of the QV circuits to compute
the heavy outputs, which is exponentially expensive. How-
ever, scalable adaptations of this benchmark have been
proposed in Refs. [317,411].

2. Mirror circuit benchmarks

Mirror circuit benchmarks [294] are a family of volu-
metric benchmarks based on mirror circuits. Mirror circuits
[see Fig. 46(a)] are a form of motion-reversal circuit that
are constructed by (1) following a circuit (C) with its layer-
by-layer inverse (C−1), (2) adding in random Pauli gates
between these two circuits, to prevent systematic error
cancellation or addition between the two halves of the
circuit, and (3) randomizing the state preparation and mea-
surement basis of each qubit. Unlike the QV benchmark,
mirror circuit benchmarks are not full-stack benchmarks
(although mirror circuit benchmarks can be adapted to
full-stack benchmarking [411]). This is because, like RB
circuits, mirror circuits must not be arbitrarily compiled, as
each mirror circuit’s overall operation is simply bit flips on
some of the qubits. Instead, mirror circuit benchmarks are
designed to measure a system’s ability to implement low-
level circuits, complementing metrics that also incorporate
compiler performance, like the QV.

Mirror circuits can be used to construct scalable bench-
marks from any set of circuits (see Sec. XI C). Here,
we discuss two specific mirror circuit benchmarks intro-
duced in Ref. [294]: randomized mirror circuit and peri-
odic mirror circuit benchmarks, shown in Figs. 46(b)
and 46(c), respectively. Randomized mirror circuits are the
same circuits that are used in mirror randomized bench-
marking (MRB) (see Sec. VIII C 3) and averaged circuit
eigenvalue sampling (ACES) (see Sec. IX C 2). Volumet-
ric benchmarking with randomized mirror circuits is a
scalable way to assess performance of a quantum com-
puter on random, unstructured circuits. Like other random
circuits [e.g., RB or cross-entropy benchmarking (XEB)
circuits], these circuits scramble errors. Therefore, two dif-
ferent but equal-shape randomized mirror circuits typically
have fairly similar performance, particularly as both cir-
cuit width and depth increases. In contrast, periodic mirror
circuits are extremely ordered: they consist of repeating
a short n-qubit “germ” circuit (that is randomly sampled
from a distribution over possible short germ circuits).
These circuits are not scrambling, but instead amplify
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FIG. 46. Mirror circuit benchmarks. (a) Mirror circuits are
a family of circuits with a motion reversal structure that are
designed to enable scalable benchmarking. Two kinds of mirror
circuit are (b) randomized mirror circuits and (c) periodic mirror
circuits [294].

particular errors—with the particular errors that are ampli-
fied depending on the germ, as in long-sequence gate set
tomography (see Sec. VII D 2). Therefore, in the pres-
ence of structured errors, such as coherent errors or biased
stochastic Pauli errors, the variance in performance on
periodic circuits will typically be much higher than with
random circuits. Figure 47 shows how the performance
of one system (ibmq_london) differs on random and
periodic mirror circuits, illustrating how these benchmarks
can be used to reveal structured errors.

B. Application benchmarks

Benchmarks based on algorithms and applications can
be used to quantify the performance of quantum com-
puting systems. Many different benchmarks fall under the
category of “application benchmarks,” which encapsulates
both high-level applications, such as solving a MaxCut
problem or finding a ground state, variational algorithms
such as the quantum approximate optimization algorithm
(QAOA), as well as key subroutines, such as the quantum
Fourier transform (QFT) or quantum error correction. The
primary purpose of application benchmarks is to measure
the performance of a full-stack quantum computer for a
specific use case or algorithm. This contrasts with most
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FIG. 47. Periodic and random circuit benchmarks. A volu-
metric plot comparing a quantum computer’s performance on
disordered and highly structured circuits. This plot shows the
polarization of the worst-performing circuit over 40 disordered
and periodic circuits (randomized mirror circuits and periodic
mirror circuits, respectively). Worse performance on periodic cir-
cuits (as seen here) is a signature of structured errors, such as
coherent errors. Plot created using ibmq_london data from
Ref. [294].

characterization and other benchmarking protocols, which
aim to measure specific properties (e.g., qubit coherence or
gate fidelities) of low-level components.

Numerous application-oriented quantum benchmark-
ing suites have been recently developed, including
SupermarQ [413], QASMBench [414], and those devel-
oped by the QED-C [415,416]. These various libraries
are based on similar ideas, cover a range of applica-
tion domains, and can be implemented on various quan-
tum computing architectures (e.g., gate-based quantum
computers, quantum annealers, etc.). In this subsection,

we review several examples of application benchmarks
from the SupermarQ and QED-C suites. However,
because application benchmarking encompasses many
diverse methodologies, the reader is encouraged to review
other works for a broader perspective of the entire field of
application benchmarks [413–418].

In Fig. 48, we show example circuits for three
different benchmarks: SupermarQ’s Vanilla QAOA,
SupermarQ’s Phase Code, and the QED-C suite’s
QFT(1). Both the Vanilla QAOA and Phase Code
benchmarks are examples of proxy applications, which
focus on a specific aspect of a larger, end-to-end appli-
cation. For example, the Vanilla QAOA benchmark
measures how well a quantum computer is able to exe-
cute a single instance of a variational circuit [419], whereas
full execution of the standard QAOA algorithm would
involve iterating over a large number of circuit instances
(and classical optimization). Similarly, the Phase Code
benchmark tests a quantum computer’s ability to exe-
cute circuits containing mid-circuit measurements—which
tests a component used in, e.g., syndrome extraction—but
does not use the results of these measurements to correct
errors in the circuit. The QFT(1) benchmark, which con-
tains both the QFT and its inverse, is an example of a
key subroutine that appears in many quantum algorithms
including Shor’s algorithm [21] and the HHL algorithm
[23]. Application benchmarks should specify the compiler
optimizations that may be applied to the circuits prior to
their execution.

Figure 49 shows the results of running applica-
tion benchmarks from the SupermarQ and QED-C
suites on ibmq_guadalupe, represented as a vol-
umetric plot. Each colored rectangle corresponds to

(a) (b)

(c)

FIG. 48. Example application benchmarks. (a) Three-qubit Vanilla QAOA benchmark from SupermarQ. In general, the γ and
β parameters need to be optimized with respect to a specific objective function (e.g., a Hamiltonian ground state) in a variational
quantum-classical loop. However, this benchmark can be designed to be measured for a single instance of γ and β to minimize errors
due to drift (e.g., in cloud-based systems). (b) Two-qubit Phase Code benchmark from SupermarQ. The phase code utilizes an
ancilla qubit [middle] to detect phase flips on the data qubits [outer] using mid-circuit measurements. The ancilla qubit must be reset
for each cycle of error detection. (c) Three-qubit QFT(1) benchmark from QED-C suite. The secret integer for this benchmark is
x = 2, and the XZi gates are PhasedXZ gates where XZi(a, x, z) = ZzZaX xZ−a.
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an individual benchmark with the color indicating the
score achieved. The benchmark score is a value rang-
ing from 0 (poor performance) to 1 (best performance).
The specific definition of the score function depends
on the benchmark (see, e.g., the benchmark definitions
given in [413] and [415]), and typical examples include
evaluating expectation values or computing the classi-
cal (Hellinger) fidelity [Eq. (178)]. Application bench-
marks are now sometimes used to make high-level com-
parisons between different quantum computing systems
[413–416,420].

One useful aspect of application benchmarks is that their
circuits typically have diverse properties, and so they may
stress the quantum computer in diverse ways. This con-
trasts with benchmarks based on random circuits (e.g.,
RB protocols and the QV), which contain similar circuit
structures. Initial efforts to profile quantum programs have
underscored the distinct differences between applications
originating from domains such as quantum chemistry and

FIG. 49. Volumetric benchmarking with application circuits.
Evaluation of SupermarQ and QED-C benchmarks on a super-
conducting quantum computer (ibmq_quadalupe) for a vari-
ety of different circuit widths and depths. Each point represents
the execution of a single application benchmark, where the color
corresponds to the “score” achieved for that benchmark. Note
that these benchmarks include the circuit compilation process
in their evaluation (i.e., “depth” refers to the circuit depth of
the uncompiled circuit). The exact expression used to obtain the
score varies from benchmark to benchmark and can be found
in the definitions of the benchmark suites [413,415]. Examples
of a benchmark score include the measurement of an expecta-
tion value or classical fidelity. We observe that the performance
falls off with circuit width; this could be because this system
has limited connectivity, necessitating SWAP gates to implement
nonlocal two-qubit gates.

combinatorial optimization [413,414]. Figure 50 shows
how the circuits of four different application benchmarks
have significantly different properties [413]. It does so
by plotting the values for six different features for each
circuit: program connectivity (PC), parallelism (Par), mea-
surement (Mea), liveness (Liv), entanglement-ratio (Ent),
and critical depth (CD). The program connectivity of an
n-qubit circuit is computed as

∑n
i D(qi)/(n2 − n), where

D(qi) is the degree of qubit qi in the program’s connec-
tivity graph. This gives the program connectivity a range
between zero, for programs without entangling gates, to
one for a program with a complete connectivity graph.
The parallelism feature relates the total number of gates
(NG) and circuit depth (D) within the expression (NG −
D)/(nD − D) to capture the amount of parallelism avail-
able within a quantum program. The parallel execution of
gates often exhibit correlated crosstalk which degrades cir-
cuit performance. The measurement feature is given by
Lmcm/D for a circuit with Lmcm layers containing at least
one mid-circuit measurement operation, during which the
idling spectator qubits can dephase. The liveness feature
also considers the idling time of qubits. It is computed as
(
∑

ij Aij )/(nD), where A is a binary (n × D) matrix with
entry Aij = 1 if qubit i is acted on by a gate at time step
j , otherwise the entry is zero. Entanglement-ratio is given
by the fraction of entangling gates divided by the total gate
count, and it can provide insights into program behavior if
the specific hardware running the benchmark has large dif-
ferences in one- and two-qubit gate error rates. Finally, the
critical-depth feature is computed by counting the num-
ber of entangling gates along the program’s critical path
and dividing by the total number of entangling gates in the
circuit.

Each feature is meant to capture some salient aspect of
a quantum program. These features, combined with the
benchmark results in Fig. 49, can be used to correlate
system performance with program profiles (see Fig. 50).
Each square in Fig. 50 corresponds to the coefficient of
determination (R2) for a particular pair of device and pro-
gram feature. In other words, it shows the proportion
of the variation in that device’s performance, across all
of the evaluated application benchmarks, which can be
explained by that particular program feature. Each R2 value
is obtained by performing a linear regression over all of the
device’s scores on the benchmarks (dependent variable)
and the specific values of the particular program feature
for each benchmark (independent variable).

C. Scalable holistic benchmarks

Benchmarking a quantum computer’s performance on
large circuits or applications is an inherently difficult task
because it is not typically feasible to compute what the cor-
rect outcome should be using simulations on a classical
computer. Therefore, many existing holistic benchmarks
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(a) (b)Quantum program profiles

Quantum program profiles Correlation heatmaps

FIG. 50. Profiling application benchmarks. (a) Quantum program profiles. Application benchmarks have many diverse properties
that allow one to probe different properties of a quantum processor. We quantify the program connectivity (PC), parallelism (Par), mea-
surement (Mea), liveness (Liv), entanglement-ratio (Ent), and critical depth (CD) for the 10-qubit Hamiltonian simulation (HamSim)
benchmark, the 5-qubit ZZ-QAOA benchmark, the 4-qubit QFT circuit, and the 5-qubit phase code [413]. (b) Correlation heatmaps.
After running the application benchmarks on a quantum computer, the observed performance can be correlated with the program
features to produce the above heatmap. For example, the performance of the superconducting device, with relatively short coherence
times, shows a high correlation (0.72) with the liveness feature of the benchmark circuits.

either do not scale beyond around 50 qubits (examples
include the QV benchmark and XEB used for demonstra-
tions of “quantum supremacy”) or they only use circuits
from some restricted circuit class that can be efficiently
simulated classically (e.g., Clifford circuits, as in many
RB methods). In the context of application benchmarks,
the applications or circuits used are often designed to cir-
cumvent this “verification” problem, by ensuring that a
quantum computer’s performance on the benchmark can
be quantified without inefficient circuit simulations [413].
Often this is achieved with algorithm-specific methods,
e.g., by creating a benchmark that tests a quantum com-
puter’s ability to solve the one-dimensional transverse
field Ising model [421], or to prepare easy-to-verify states
such as a GHZ state [422], or to measure operators with
a known upper bound (as is done in the Mermin-Bell
benchmark [413]).

A complementary approach to creating scalable holis-
tic benchmarks is to (1) choose a benchmark’s circuits
without addressing the efficiency problem, and then (2)
measuring a quantum computer’s performance on those
circuits indirectly. This can be achieved with any tech-
nique that can efficiently estimate a quantum computer’s
circuit execution fidelity (or some other interesting metric
of circuit performance) for an arbitrary circuit. We dis-
cussed two such techniques—mirror circuit fidelity estima-
tion and circuit output accreditation—in Sec. X. This can
even enable scalable full-stack benchmarks, as discussed
in Ref. [411].
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APPENDIX A: ERROR GENERATORS

In Sec. II C, we introduced various representations for
modeling errors acting on quantum processes. These rep-
resentations, including Kraus operators, transfer matrices,
process matrices, and Choi matrices, are able to capture
arbitrary CPTP gate errors. Unfortunately, it can be dif-
ficult to tease apart an arbitrary CPTP map and relate
components of observed error matrices to known error
sources, such as qubit fluctuations or systematic calibration
errors in gates. A more immediate connection can be made
using error generators. Error generators are designed to
capture and categorize those small Markovian errors in
quantum gates that appear in reasonably well-behaved
quantum computers. In what follows, we denote the ideal
transfer matrix of a gate G to be �G. Now, using the com-
position property of transfer matrices (see Sec. II C 2), we
may write the transfer matrix of the noisy quantum gate
�̃G as

�̃G = �E�G , (A1)

where �E is the transfer matrix (e.g., PTM) that captures
the noise and errors impacting �G [423]. If the error is
small, then the noisy gate is close to the target unitary (i.e.,
�̃G ≈ �G) and ||�E − I|| � 1. By taking the log(�E), we
can learn how much �E deviates from I, or rather how
much �̃G deviates from �G. Thus, we define the error
generator [45] of �E to be

L = log(�E) � �E − I , (A2)

such that we may write Eq. (A1) as

�̃G = eL�G . (A3)

Here, L is the generator of �E in analogy with how
Hamiltonians are the generators of unitary transformations.

In order to ensure that L generates a CPTP map, it must
be expressible as a Lindblad superoperator [424]. Expand-
ing the Lindblad equation in a basis of Pauli operators {Pj }

we have

L(ρ) =
∑

j

εj [Pj , ρ]

+
∑
j ,k

hj ,k

(
Pj ρPkρPj − 1

2

{
P†

j Pk, ρ
})

. (A4)

Here, εj ∈ R characterizes the size of unitary errors, and
hj ,k is positive semidefinite and quantifies the type and rate
of the dissipative dynamics.

While the (H)amiltonian error rates (εj ) that describe
the unitary dynamics in Eq. (A4) are often relatively easy
to understand (e.g., a Pauli-X error on an X gate corre-
sponds to an over or under rotation), the dissipative part
can be more challenging. So, the error generator frame-
work splits those errors into symmetric (or stochastic)
and antisymmetric (or active) components. The (A)ctive
components can be derived from couplings to quantum
degrees of freedom and are responsible for, e.g., nonunital
effects such as amplitude damping. The stochastic com-
ponents are precisely those that might arise from fluctu-
ating Hamiltonian terms. Because stochastic Pauli errors
appear so frequently (e.g., in Pauli frame randomization,
randomized compiling, and models for quantum error cor-
rection), the symmetric sector is further decomposed into
a Pauli (S)tochastic and stochastic (C)orrelation sectors
corresponding to the diagonal and off-diagonal symmetric
terms. Thus, we define the following elementary genera-
tors {H , S, C, A}:

HP(ρ) = −i[P, ρ] , (A5)

SP(ρ) = PρP − ρ , (A6)

CP,Q(ρ) = PρQ + QρP − 1
2
{{P, Q}, ρ} , (A7)

AP,Q(ρ) = i
(

PρQ − QρP + 1
2
{[P, Q], ρ}

)
. (A8)

They form a complete basis for superoperators. An error
generator L is a Lindbladian superoperator that generates
coherent, stochastic, and/or nonunital gate errors. There-
fore, we may write L as a linear combination of elementary
error generators,

L = LH + LS + LC + LA , (A9)

=
∑

P

hPHP +
∑

P

sPSP , (A10)

+
∑

P,Q>P

cP,QCP,Q +
∑

P,Q>P

aP,QAP,Q , (A11)

where the coefficients {h, s, c, a} denote the error rates of
each error process, and where all errors and their corre-
sponding rates are indexed by one (or two) distinct Pauli
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operators P (and Q). Thus, any arbitrary error generator
L can be written as a linear combination of all of the
elementary error generators. This framework enables one
to quantify the rates of different errors afflicting quantum
gates [46].

APPENDIX B: GROUPS AND GATE SETS

1. Groups

A group G is a mathematical set of operational elements
{Gi} that satisfy the following basic properties:

(1) Closure: ∀ Gi, Gj ∈ G, Gi · Gj = Gk ∈ G.
(2) Associativity: (Gi · Gj ) · Gk = Gi · (Gj · Gk).
(3) Identity element: ∃ I ∈ G s.t. I · Gi = Gi · I = Gi,

∀ Gi ∈ G.
(4) Inverse element: ∀ Gi ∈ G, ∃ G−1

i ∈ G s.t. Gi ·
G−1

i = G−1
i · Gi = I.

Below, we introduce some important groups and gate sets
in quantum computing, and highlight the properties that
distinguish each from the others.

2. The Pauli group

The n-qubit Pauli group, denoted Pn, is the set of Pauli
operators formed by the tensor product of all combinations
of single-qubit Paulis for n qubits, multiplied by factors of
±1 or ±i:

Pn = {±1,±i} × {I , X , Y, Z}⊗n , (B1)

where

I = σ0 =
(

1 0
0 1

)
, (B2)

X = σx =
(

0 1
1 0

)
, (B3)

Y = σy =
(

0 −i
i 0

)
, (B4)

Z = σz =
(

1 0
0 −1

)
(B5)

are the single-qubit Pauli operators. The n-qubit Pauli
operators have a number of helpful properties, namely,

(1) they form a projective group under matrix multipli-
cation,

(2) they are unitary and Hermitian,
(3) they are a trace-orthogonal basis for the space of

operators,
(4) they correspond to natural Hamiltonians, and
(5) they form a unitary 1-design in d = 2n-dimensional

Hilbert space (see Sec. C 2).

TABLE V. P1 under H conjugation.

P HPH †

I I
X Z
Y −Y
Z X

3. The Clifford group

The n-qubit Clifford group [425], denoted Cn, is the set
of operations that normalize the n-qubit Pauli group. This
means that any element from the Clifford group C ∈ Cn
maps each Pauli operator to another Pauli operator under
conjugation:

∀ C ∈ Cn : CPC† 	→ P′ ∈ Pn, ∀ P ∈ Pn . (B6)

Typical examples of Clifford gates which are not in the
Pauli group are the Hadamard H , S = √

Z, CNOT, SWAP,
and iSWAP gates. In fact, the subgroup of Clifford gates
{H , S, CNOT} is sufficient to generate the full Clifford group
between any pair of qubits. In Tables V and VI, we show
the action of all single-qubit Pauli operators under conju-
gation by the Hadamard H and S gates, respectively. In
Tables VII and VIII, we show the action of all two-qubit
Pauli operators under conjugation by the CNOT and iSWAP
gates, respectively. In all cases, we find that the resulting
gate is a Pauli, which belongs to Pn.

The single-qubit Clifford group C1 contains 24 single-
qubit gates; these include any integer number of π/2
rotations about any of the six cardinal axes of the Bloch
sphere (±x̂, ±ŷ, and ±ẑ), which includes all single-qubit
Pauli gates (Pn ⊂ Cn). The size of the n-qubit Clifford
group is given by [426]

|Cn| = 2n2+2n
∏

j=1,n

4j − 1 . (B7)

For example, the two-qubit Clifford group contains
11 520 elements, the three-qubit Clifford group contains
92 897 280 elements, the four-qubit Clifford group contains
12 128 668 876 800 elements, etc.

The Clifford group holds a special place in quantum
computing. According to the Gottesman-Knill theorem
[286], quantum circuits containing only Clifford gates and
Pauli basis measurements can be efficiently simulated in

TABLE VI. P1 under S conjugation.

P SPS†

I I
X Y
Y −X
Z Z
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TABLE VII. P2 under CNOT conjugation.

P CNOT(P)CNOT†

I ⊗ I I ⊗ I
I ⊗ X I ⊗ X
I ⊗ Y Z ⊗ Y
I ⊗ Z Z ⊗ Z
X ⊗ I X ⊗ X
X ⊗ X X ⊗ I
X ⊗ Y Y ⊗ Z
X ⊗ Z −Y ⊗ Y
Y ⊗ I Y ⊗ X
Y ⊗ X Y ⊗ I
Y ⊗ Y −X ⊗ Z
Y ⊗ Z X ⊗ Y
Z ⊗ I Z ⊗ I
Z ⊗ X Z ⊗ X
Z ⊗ Y I ⊗ Y
Z ⊗ Z I ⊗ Z

polynomial time on a classical computer. Therefore, Clif-
ford circuits are insufficient to realize the full potential
of quantum computers over classical computers. In fact,
in order to perform universal quantum computation, one
requires a gate set which also contains a non-Clifford gate,
such as the T = √

S gate (sometimes called the “π/8”
gate for historical reasons). Nonetheless, Clifford gates are
ubiquitous in quantum computations and are essential to a
number of important applications. For example, stabilizer
codes in quantum error correction use Clifford gates for
encoding and decoding. Additionally, benchmarking pro-
cedures for measuring average error rates of quantum gate
sets, such as randomized benchmarking (Sec. VIII B), are
constructed entirely of Clifford gates. Importantly, Clif-
ford gates are used in these protocols because they form
a unitary 2-design (and sometimes a unitary 3-design; see
Sec. C 2).

TABLE VIII. P2 under iSWAP conjugation.

P iSWAP(P)iSWAP†

I ⊗ I I ⊗ I
I ⊗ X Y ⊗ Z
I ⊗ Y −X ⊗ Z
I ⊗ Z Z ⊗ I
X ⊗ I Z ⊗ Y
X ⊗ X X ⊗ X
X ⊗ Y Y ⊗ X
X ⊗ Z I ⊗ Y
Y ⊗ I −Z ⊗ X
Y ⊗ X X ⊗ Y
Y ⊗ Y Y ⊗ Y
Y ⊗ Z −I ⊗ X
Z ⊗ I I ⊗ Z
Z ⊗ X Y ⊗ I
Z ⊗ Y −X ⊗ I
Z ⊗ Z Z ⊗ Z

4. Qudit groups and bases

The qubit Pauli group serves as a natural basis for ana-
lyzing qubit systems. However, no set of operators with
the same properties exists for higher dimensional systems.
Nevertheless, we can define two natural generalizations
of the Pauli operators to higher dimensions, the Weyl and
Gell-Mann operators that, taken together, satisfy all of the
properties of the single-qubit Pauli group. In general, the
Weyl operators allow one to more naturally generalize
the machinery of qubit-based benchmarking routines. In
contrast, the Gell-Mann matrices correspond more imme-
diately to the underlying physical operations performed on
a qudit based quantum processor, such as Rabi oscillations
and Z gates in a two-level subspace of the qudit. In what
follows, we refer to D as the dimension of the qudit, and
d = Dn as the dimension of the Hilbert space for n qudits.

a. The Gell-Mann basis

To construct the Gell-Mann operators, we can begin
by embedding the single-qubit Pauli operators into two-
dimensional subspaces of the higher-dimensional qudit
space. Specifically, for a D-dimensional qudit, we can
define these operators as

X jk = |j 〉〈k| + |k〉〈j | , (B8)

Yjk = i |j 〉〈k| − i |k〉〈j | , (B9)

Zjk = |j 〉〈j | − |k〉〈k| , (B10)

where 0 ≤ j ≤ k ≤ D. We note that while the Zjk are Her-
mitian operators, they are not linearly independent and thus
cannot serve as a sufficient basis for qudit tomography. We
can therefore extend the set {X jk, Yjk : 0 ≤ j < k < D} to
a trace-orthogonal basis with the inclusion of additional
diagonal operators:

Wj = −j |j 〉〈j | +
∑

0≤k<j

|k〉〈k| (B11)

for 1 ≤ j < D. The combined set GD = {I , X jk, Yjk :
0 ≤ j < k < D} ∪ {Wj : 1 ≤ j < D} forms the Gell-Mann
basis for qudit dimension D. Like the qubit Pauli matrices,
every element of the Gell-Mann group is both traceless
and Hermitian, and thus serves as a suitable choice for
constructing qudit transfer matrices.

b. The Weyl group

Having constructed the qudit Gell-Mann basis, we now
turn our attention to generalizing the qubit Pauli operators
over the entire qudit space rather than embedding them in
two-level subspaces of the qudit. This is known as the Weyl
group, from which we can generalize qubit-based quantum
algorithms and codes to qudits, as well as generalize the
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Clifford group to higher dimensions. We begin by defining
ZD = {0, 1, . . . , D − 1}, the additive group of the integers
modulo D. Using ZD, we can generalize the qubit X and Z
operators to the qudit space as

X =
∑
j∈ZD

|j ⊕D 1〉〈j | , (B12)

Z =
∑
j∈ZD

exp
(

2π i
D

j
)
|j 〉〈j | , (B13)

where ⊕D denotes addition modulo D. We note here that
both X and Z compose to the identity under D rounds of
self-multiplication, which is the natural generalization of
the qubit X and Z operators squaring to the identity. The
Weyl basis follows as a trace-orthogonal basis over CD×D

defined as WD = {Wxz = X xZz : x, z ∈ ZD}. Often in the
literature, the qudit X operator is referred to as the “shift”
operator as it increments the qudit state modulo D, and
the qudit Z operator as the “clock” operator as it applies
phases corresponding to multiples of the Dth root of unity.
Finally, we can define the n-qudit Weyl group by taking
the n-fold tensor product of all single-qudit Weyl matri-
ces: WD,n = W

⊗n
D . It is worth noting that one can define

multiqudit gates directly from the definitions of the Weyl
matrices, similar to how the Hamiltonians for two-qubit
gates are often defined in terms of n-qubit Paulis.

c. The n-qudit Clifford group

One important caveat about the Weyl basis is that, owing
to the fact that it is not closed under multiplication, it is not
a proper group. However, every element of the closure of
the Weyl basis is related to an element of the Weyl basis up
to an overall phase. We can therefore get rid of this overall
phase by considering solely the adjoint action of the Weyl
operators, and therefore defining a proper group we refer to
as the “extended Weyl group,” EWD = U(1)WD and the
“extended n-qudit Weyl group” as EWD,n = U(1)WD,n,
where U(1) is the 1-dimension unitary group, allowing for
arbitrary phases. Finally, with all this formalism defined,
we can naturally define the n-qudit Clifford group to be the
set of operators that normalize the extended Weyl group,
or stated explicitly, the set CD,n where

CD,n = {U ∈ U(Dn) : UEWD,nU† = EWD,n} . (B14)

APPENDIX C: RANDOMIZATION AND
TWIRLING

The notion of twirling a quantum channel is a central
component of many benchmarking methods based on ran-
domized gate sampling. The basic concept of twirling is
to average a quantum channel E over some unitary group.
This allows one to measure the average performance of a
quantum operation (e.g., a gate) for different combinations

of input and output states, while reducing the resources
needed for measuring the process fidelity of a gate com-
pared to full quantum process tomography. As we will see
in this section, twirling maps a dense CPTP matrix (mod-
eled as a d2 ⊗ d2 superoperator, where d = 2n for n qubits)
into a block diagonal matrix, effectively condensing infor-
mation about the physical process into the eigenvalues of
the matrix. Below, we give a precise definition of twirling,
and discuss the difference between twirling over the Pauli
and Clifford groups.

1. The Haar measure

When twirling a quantum channel E over a unitary group
in d dimensions, U(d), it is necessary to uniformly sample
at random unitaries from U(d). The uniform Haar mea-
sure, denotedμ(U), is mathematical measure that is unique
to each locally compact topological group which assigns
equal weights to all elements of the group. μ(U) defines
an integral over U(d) that is invariant under group transfor-
mations, and is normalized such that the total measure of
the group is

∫
dμ = 1. The uniform Haar measure defines

how different elements of U(d) are weighted over unitary
space, and therefore can be used to integrate functions over
all of U(d).

To better understand the role that the uniform Haar
measure plays in twirling, consider the simple example
of the integral of some function f (r, θ ,φ) in spherical
coordinates over all of R3,

V =
∫∫∫

R3
f (r, θ ,φ)r2 sin(θ)drdθdφ . (C1)

Here, r2 sin(θ)drdθdφ is the Lebesgue measure over R3,
which ensures that the integral is taken uniformly over
all of R3. For the special unitary group in 2 dimensions,
SU(2)—the relevant group for single-qubit gates—the
Haar measure is given as

dμ = sin(θ)dθdφdγ , (C2)

which is nearly identical to the Haar measure for a
sphere, except it contains no radial component and instead
includes an additional phase term γ , which comes from
the U3 parametrization of single-qubit rotations [see
Eq. (352)]. While the exact Haar measure in SU(d) is
needed for integrating over the entire unitary space that
is relevant to qudits, some knowledge of the Haar measure
is sufficient for the task of twirling, which only requires
that we sample enough points uniformly at random that
approximate SU(d).

2. Unitary t-designs

Twirling involves averaging a channel E over a unitary
group U(d). However, any continuous group has an infinite
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number of elements. For example, in the case of SU(2),
there are an infinite number of points on the surface of the
Bloch sphere. Therefore, it is impossible to average E over
all of U(d). Instead, one typically samples unitaries from
some subgroup G ⊂ U(d), which approximates U(d). This
forms the basis of what is called a unitary t-design, which
describes a unitary group that simulates the statistical prop-
erties of uniformly distributed Haar random matrices [427]
up to the t’th moment.

Classically, the notion of spherical t-designs defines a
finite collection of points on the surface of a unit sphere
that provide a “good” approximation to the integral over
the entire unit sphere [428]. Unitary t-designs are the
extension of spherical t-designs to the quantum domain,
for which we desire to reproduce the basic properties of
an entire unitary group U(d). Formally, a unitary t-design
in d dimensions is a set of unitary operators {U1, . . . , UK}
such that the sum over every polynomial Pt,t(Uk) = U⊗t

k ⊗
(U∗

k)
⊗t of degree no larger than t in the matrix elements of

U and their complex conjugates is equal to the integral of
P(t,t)(U) over U(d),

1
K

K∑
k=1

P(t,t)(Uk) =
∫

U(d)
dμ(U)P(t,t)(U) . (C3)

Very heuristically, unitaries in a t-design are evenly spaced
around the d-dimensional unit sphere defining U(d), with
larger values of t defining more densely spaced points. For
example, the d-dimensional Pauli group forms a unitary 1-
design, and the d-dimensional Clifford group (CD,n) forms
a unitary 2-design when the qudit dimension D is prime
[429]. According to Ref. [430], a set of unitaries {Uk}K

k=1
forms a unitary 2-design if and only if

1
K2

K∑
k,k′=1

∣∣∣Tr(U†
k′Uk)

∣∣∣
4
= 2 . (C4)

3. Twirling quantum channels

To understand how one constructs an average quantum
channel by twirling, first consider a quantum channel E
that represents (the error in) some quantum gate or process.
Next, consider a unitary operator Û that belongs to U(d).
Suppose that E is conjugated by Û, mapping E 	→ Û ◦ E ◦
Û† (see Fig. 51). Using this notation, a twirled channel Ē
is given by

Ē =
∫

U(d)
dμ(Û)Û ◦ E ◦ Û† . (C5)

Thus, Ē can be thought of as the expected value of E
conjugated with all possible unitaries Û ∈ U(d). Because
E = E(ρ) is a linear map on a quantum state ρ, Û also acts

FIG. 51. Twirling. Twirling a quantum channel results in the
map E 	→ Û ◦ E ◦ Û†.

on ρ by conjugation:

Û(ρ) = UρU† , Û†(ρ) = U†ρU . (C6)

Therefore, the twirled channel of a density operator Ē(ρ)
can be written

Ē(ρ) =
∫

U(d)
dμ(U)U†E(UρU†)U . (C7)

As discussed in the previous section, it is not practi-
cal to twirl over all of a unitary group U(d). Rather, it
is much more common to twirl a channel over a discrete
set of unitaries that approximates some properties of U(d).
For example, consider the channel E(ρ) = AρB, where
{A, B} are arbitrary linear operators. Next, consider some
group {Uk}K

k=1 consisting of K unitary operators. In the dis-
crete case, the twirled channel Ē(ρ) can be written as the
weighted average over all K operators [282]:

Ē(ρ) = 1
K

K∑
k=1

U†
kAUkρU†

kBUk . (C8)

Note that twirling a channel does not change the average
gate fidelity or process fidelity of the channel. To see this,
we replace E(ρ) in Eq. (220) with the twirled channel Ē(ρ)
in Eq. (C7), and find that

Favg(Ē) =
∫

dψ
∫

dμ(U) 〈ψ |U†E(UρU†)U |ψ〉 ,

(C9)

=
∫

dμ(U)
∫

dψ 〈ψ |U†E(UρU†)U |ψ〉 ,

(C10)

=
∫

dμ(U)Favg(E) , (C11)

= Favg(E) , (C12)

where, in the second to last step we made a change of vari-
ables |ψ ′〉 ≡ U |ψ〉, and in the final step utilized the fact
that

∫
dμ(U) = 1.
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4. Pauli twirling

One can twirl a channel E over any group. However,
it is often convenient to choose a particular group, such
as the Pauli or Clifford group (see Appendix B). Because
we often represent our channels in the Pauli basis (e.g.,
in the PTM representation; see Sec. II C 3), it is edu-
cational to first understand the basics of Pauli twirling,
before considering twirling over any other unitary group.
Pauli twirling an arbitrary channel E can be understood
with the following example (shown in Fig. 53): consider
the PTM of a Rx(π/18) rotation [Fig. 53(d)], which con-
tains off-diagonal terms only in the lower right-hand block
of the PTM. When conjugating Rx(π/18) with a Pauli
from the Pauli group P ∈ {I , X , Y, Z}, the off-diagonal ele-
ments of Rx(π/18) remain unchanged for I ◦ Rx(π/18) ◦ I
and X ◦ Rx(π/18) ◦ X , but have their signs flipped for
Y ◦ Rx(π/18) ◦ Y and Z ◦ Rx(π/18) ◦ Z. More generally,
for any arbitrary channel E , the signs of the off-diagonal
terms remain the same for the elements of E with which
P commutes, and are reversed for the elements of E with
which P anticommutes.

When twirling with respect to the uniform distribution
over the Pauli group, using Eq. (C8) we may write the
twirled channel as

Ē(ρ) = 1
d2

∑
P∈Pn

P†E(PρP†)P . (C13)

However, it is often unnecessary (and inefficient) to twirl
over the entire Pauli group, depending on the size of
the system we are considering. In general, Pauli twirling
is implemented by averaging over N randomly sampled
Paulis,

Ē(ρ) = 1
N

N∑
P∈RPn

P†E(PρP†)P , (C14)

where R denotes that P is chosen at random from the
n-qubit Pauli group Pn each time. In this case, the off-
diagonal terms of E(ρ) change sign with a 50% probability
upon conjugation with a randomly selected Pauli. When
averaging a channel over N Paulis, the magnitudes of the
off-diagonal terms scale as θ/

√
N , reminiscent of a ran-

dom walk, and thus vanish as N −→ ∞ or if by luck
the correct Paulis were sampled that average to zero [see
Fig. 53(h)]. This feature of twirling is often referred to as
“noise tailoring,” as the noise profile of a channel is mod-
ified as the number of averages increases. In fact, in the
limit of N −→ ∞, any arbitrary Markovian error channel
is mapped into a stochastic Pauli channel (see Sec. III E)
by Pauli twirling. As a concrete example, in Fig. 52 we
plot a random CPTP two-qubit PTM and show how the off-
diagonal terms are averaged to zero under Pauli twirling as
N is increased from 10, to 100, to 104 (see Fig. 54). Note

FIG. 52. PTM of a random two-qubit CPTP channel. The color
(transparency) of each cell is determined by the sign (magnitude)
of each entry.

that the diagonal terms in the PTM remain unchanged for
all N . More specifically, Pauli twirling tailors all noise into
Pauli channels, in which the diagonal entries of the PTM
remain unchanged [Eq. (170)].

5. Clifford twirling

The n-qubit Clifford group Cn normalizes the n-qubit
Pauli group. Functionally, this means that Clifford gates
C ∈ Cn map Paulis to Paulis under conjugation: CPC† 	→
P′ ∈ Pn, ∀P ∈ Pn; see Sec. B 3 for several examples.
Twirling over the entire n-qubit Clifford group can be done
discretely for any channel E :

Ē(ρ) = 1
|Cn|

∑
C∈Cn

C†E(CρC†)C . (C15)

Because the Clifford group forms a unitary 2-design, Clif-
ford twirling replicates the properties of twirling over all of
U(d) up to the second moment. In practice, however, one
does not twirl over the entire n-qubit Clifford group due to
the large number of Clifford elements (see Appendix B 3).
Similar to Pauli twirling, sampling N Clifford gates at
random is usually sufficient for suitably large N :

Ē(ρ) = 1
N

N∑
C∈RCn

C†E(CρC†)C , (C16)

where R denotes that each C is selected uniformly at
random from Cn.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 53. Basics of Pauli twirling. (a) PTM for the Pauli-X gate. (b) PTM for the Pauli-Y gate. (c) PTM for the Pauli-Z gate. (d) PTM
for an Rx(π/18) rotation. (e) Rx(π/18) conjugated with X gates; because Rx(π/18) commutes with X , the PTM is left unchanged.
(f) Rx(π/18) conjugated with Y gates; because Rx(π/18) does not commutes with Y, the signs of the off-diagonal terms have been
flipped relative to Rx(π/18). (g) Rx(π/18) conjugated with Z gates; because Rx(10◦) does not commutes with Z, the signs of the
off-diagonal terms have been flipped relative to Rx(π/18). (h) Average of Rx(π/18) twirled with the Pauli-X and and Pauli-Z gates,
resulting in a PTM in which the off-diagonal terms have been exactly averaged to zero. For all plots, the color (transparency) of each
cell is determined by the sign (magnitude) of each entry.

Clifford twirling a quantum channel E has the same
effect as Pauli twirling on the off-diagonal matrix elements
of E . Namely, in the limit of large N , all off-diagonal
elements are averaged to zero. This is demonstrated in
Fig. 54, where we show the impact of Clifford twirling on
the random PTM shown in Fig. 52 for N = 10, 100, 104.
However, we observe that in contrast to Pauli twirling,
Clifford twirling does not preserve the eigenvalues of the
PTM. Rather, Clifford twirling averages all diagonal ele-
ments of the PTM to the same value (except for the first
element), effectively tailoring noise into a global depo-
larizing channel (see Secs. III D and IV C 4). This is due
to the fact that conjugating a Pauli operator by Clifford
gates can map the Pauli into a different Pauli. Thus, in
the limit of large N , Clifford twirling averages the eigen-
values of the PTM. Note that, similar to Pauli twirling,
Clifford twirling does not change the process fidelity of a
PTM.

6. Weyl twirling

The Weyl-Heisenberg group forms a unitary 1-design.
Therefore, it is possible to use Weyl operators to twirl
in higher dimensions, tailoring noise into stochastic Weyl

channels,

E(ρ) =
D2n∑
p̄ ,q̄

Pr(Wp̄ ,q̄)Wp̄ ,q̄ρW†
p̄ ,q̄ , (C17)

where ρ is an n-qudit state, Wp̄ ,q̄ = ⊗n
i=1Wqki ,pki

is a ten-
sor product of single-qudit operators in the D-dimensional
Weyl-Heisenberg group, and Pr(Wp̄ ,q̄) is the probability of
the Weyl error Wp̄ ,q̄ occurring. An important note about
twirling in higher dimensions is that it is just as efficient as
twirling in D = 2, as shown in Fig. 55, where we demon-
strate the numerical results of twirling away off-diagonal
elements (e.g., coherent errors) in qudit transfer matrices
using Weyl twirling for different qudit dimensions. In fact,
this is guaranteed by Hoeffding’s inequality [432], and in
the context of QCVV it means that no additional sampling
is required relative to qubit-based methods to achieve the
same degree of noise tailoring [431].

APPENDIX D: QCVV FOR QUDITS

While the focus of this tutorial has been on character-
izing and benchmarking the performance of qubit-based
quantum computers, in recent years there have been signif-
icant efforts in realizing qudit-based quantum processors
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(a) (b) (c)

(d) (e) (f)

FIG. 54. Pauli twirling vs. Clifford twirling. Twirling of the random CPTP channel in Fig. 52 as a function of the number N of
randomly selected Pauli and Clifford gates. Pauli twirling preserves the eigenvalues along the diagonal of the PTM, whereas Clifford
twirling averages them together into a global depolarizing channel.

on platforms including superconducting circuits [8,433–
435], trapped ions [436,437], and photonic circuits [438,
439]. Building a quantum computer based on qudits can
yield significant advantages, such as improved quantum
error correction [440–443], more efficient quantum algo-
rithms [444], and naturally tailored quantum simulations
[8,445]. To benchmark a qudit-based quantum computer,
it is first incumbent upon us to generalize much of the
machinery that has already been developed for qubits. In
Sec. B 4, we generalized the qubit Pauli and Clifford oper-
ators for qudits. In this section, we introduce qudit transfer
matrices, and then discuss tomographic reconstruction and
randomized benchmarks generalized for qudits.

1. Qudit transfer matrices

Having constructed suitable bases for describing the uni-
tary operations of qudits in Sec. B 4, we can turn our
attention to generalizing transfer matrices for qudits as
well (see Sec. II C for more information). Unsurprisingly,
the requirements for quantum operations describing real,
physical processes do not change for qudits, i.e., they must
be CPTP maps. First, we can expand a qudit density matrix

ρ in terms of the n-qudit Gell-Mann basis GD,n,

ρ =
∑

G∈GD,n

ρGG (D1)

where ρG = 〈〈G|ρ〉〉/Dn are the expansion coefficients,
which can be vectorized into a D2n × 1 column vector.
Now, any map |ρ ′〉〉 = � |ρ〉〉 can be completely described
by a D2n × D2n transfer matrix with elements

�ij = 1
Dn Tr[GiE(Gj )] , (D2)

where E denotes the Kraus map defined by Eq. (63).

2. Qudit tomography

a. Qudit state tomography

Similar to qubits, the tomographic reconstruction of a
qudit density matrix ρ requires an informationally com-
plete set of qudit basis measurements (e.g., Gell-Mann
or Weyl-Heisenberg bases). This requires DDn − 1 inde-
pendent experiments, from which we can reconstruct the
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FIG. 55. Weyl twirling. (a) A hypothetical input circuit, which alternates cycles of one- and multiqudit gates. (b) Randomized
compiling of the circuit in (a). Random Weyl gates (Wp̄j ,q̄j ) and their inverses (W′

p̄j ,q̄j
= W†

p̄j ,q̄j
Hj Wp̄j ,q̄j ) are added before and after

every cycle of multiqudit gates Hj , respectively, to generate logically equivalent circuits. (c) Before executing the circuit, the twirling
gates are recompiled into the existing native one-qudit gates. In this way, the returned circuit has the same depth as the input one.
(d) Numerical study of the fraction of coherent errors under Weyl twirling in randomly generated two-qudit (Weyl) transfer matrices
for D ∈ {2, 3, 5}. All transfer matrices are generated with a coherent fraction of 70%. The numerics demonstrate that twirling has
the same overhead regardless of qudit dimension: suppression of off-diagonal terms in the transfer matrices for all dimensions D is
approximately equal as a function of the number of random of randomizations N . The inset transfer matrices visualize the suppression
of off-diagonal terms as a function of N for D = 3. (Figure reproduced with permission from [431].)

density matrix:

ρ = 1
Dn

∑
G∈G

〈G〉G . (D3)

From these measurements, as described in Sec. VII A,
the density matrix ρ can be estimated using MLE
(see Sec. VII A 1). In practice, the single-qudit opera-
tions necessary to reconstruct an arbitrary qudit density
matrix can be considered as the local projections onto
all the computational states |0〉 , . . . , |D〉, as well as the√

X jk,
√

Yjk projections over all local two-level subspaces
of the qudit. The results of experimentally reconstructed
qudit Bell states (|ψ〉 = 1√

D

∑D−1
i=0 |ii〉) for qudit dimension

D = 2, 3, 4 can be seen in Fig. 56.

b. Qudit process tomography

As with state tomography, quantum process tomogra-
phy (QPT) can also be readily generalized to describe how
a qudit operation maps input qudit states to output qudit
states. Following the procedure described in Sec. VII B, we
can use the set of informationally complete operations out-
lined in Sec. D 2 a for both the state preparations and mea-
surement bases to tomographically reconstruct the qudit
transfer matrix �. For example, Fig. 57 shows the results

of performing QPT on a two-qutrit CZ† gate in the Gell-
Mann basis [433], where UCZ† =∑i,j∈Z3

ω−ij |i, j 〉〈i, j |.
This required 81 different two-qutrit input states pre-
pared using the following set of native gates on each
qutrit: {I ,

√
X 01,

√
Y01, X 01, X 12X 01, Y12

√
X 01,

√
X 12X 01,√

Y12X 01, X 12
√

X 01}. The same set of native gates is then
used to perform state tomography on each input state, and
the qudit transfer matrix � is reconstructed using MLE. In
Fig. 57, the tomographically reconstructed transfer matrix
�exp and the error matrix �†

ideal�exp are displayed in the
qutrit Gell-Mann basis. From these results, the process
fidelity is calculated as Fe = Tr[�†

ideal�exp]/d2 = 93.2%.
We note that the discrepancy between the process fidelity
of the CZ† calculated via QPT and randomized benchmarks
(introduced in the following section) can be attributed to
SPAM errors.

c. Qudit gate set tomography

Finally, we note that gate set tomography (GST) (see
Sec. VII D) can also be generalized for qudits, and
has also been applied to study single-qutrit gates in
Ref. [447], where it demonstrated good agreement between
other SPAM-free characterization methods such as qutrit
randomized benchmarking. Additionally, qudit-based GST
methods can provide insight into non-Markovian errors
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(a) (c)

(b)
(d)

FIG. 56. Qudit state tomography. The real component of
experimentally reconstructed density matrices for a (a) two-
qubit Bell state |ψ〉 = 1√

2
(|00〉 + |11〉), (b) two-qutrit Bell state

|ψ〉 = 1√
3
(|00〉 + |11〉 + |22〉), and (c) two-ququart Bell state

|ψ〉 = 1√
4
(|00〉 + |11〉 + |22〉 + |33〉). (d) The state fidelities for

the raw and purified [446] density matrices. (Figure reproduced
with permission from Ref. [272].)

and fine-grained error budgets for qudit gates, which are
difficult to extract from lighter-weight methods such as
randomized benchmarks.

3. Qudit randomized benchmarks

As with qubit-based randomized benchmarks (see
Sec. VIII), qudit-based randomized benchmarking

techniques employ random circuits to enable the efficient
characterization of quantum gate sets. Broadly speaking,
all of these methods leverage twirling (see Sec. C 6) to
tailor noise into Pauli channels or a global depolarizing
channel, yielding efficient estimates of process fidelities.
In this section, we describe the generalizations required for
performing randomized benchmarking, cycle benchmark-
ing, and cross-entropy benchmarking on a qudit-based
quantum computer.

a. Qudit randomized benchmarking

Having already defined the qudit Weyl-Heisenberg
group and Clifford group in Sec. B 4, it is now possi-
ble to describe qudit randomized benchmarking (RB; see
Sec. VIII for a background on qubit RB). The procedure
for qudit randomized benchmarking follows exactly as in
the qubit case, where now the random Clifford gates are
sampled uniformly from CD,n, with the final gate in any
RB sequence chosen to decompose the entire circuit to the
identity (or up to a random Weyl operator). In general, the
ground state is prepared, and the success probability is fit
to an exponential decay of the qudit Z expectation value,
calculated as

〈Z〉D =
D−1∑
i=0

p(|i〉)ωi , (D4)

where ω is again the Dth root of unity. The average Clifford
gate fidelity is then calculated from fitting the exponen-
tial 〈Z〉D(m) = Af m by measuring different circuit depths
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FIG. 57. Qudit process tomography. The transfer matrix of an experimentally realized two-qutrit CZ† gate [433]. (a) The trans-
fer matrix (�exp) in the qutrit Gell-Mann basis. (b) The error matrix �†

exp�ideal, with corresponding process fidelity of 93.2%.
(Figure reproduced with permission from [433].)
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FIG. 58. Qudit randomized benchmarks. (a) Single-qudit Clifford RB circuits where m different Clifford gates Ci (purple) are selected
from CD, after which the entire circuit is inverted with a single additional Clifford C−1

1:m. (b) The experimental results of qudit RB on
a superconducting qudit for D = {2, 3, 4} [272]. The process infidelity eF is listed in the legend for each dimension D. (c) Circuit
schematic of XEB. A CZ† gate is interleaved between m cycles of random SU(3) gates (green). (d) A dressed CZ† fidelity of 0.933(3)
was measured from the exponential decay of the XEB results [433]. Additionally, the speckle-purity limited fidelity of the dressed
cycle was estimated to be 0.961(3). (e) Circuit schematic of CB. The system is prepared in a Weyl basis state B (blue), after which the
CZ† gate is interleaved between m cycles of random Weyl gates (red). Finally, the system is rotated back to the original Weyl basis with
an additional final cycle of inverting Weyl gates B†. (f) An integrated histogram of CB for both the CZ† gate and a reference cycle from
Ref. [433], with the solid vertical lines giving the process fidelities of 0.936(1) and 0.966(1), respectively. Together, these yield an
estimated gate fidelity of 97.3(1)% for the CZ† gate. Moreover, one can extract an error budget directly from CB, giving purity-limited
fidelities of 0.973(9) and 0.989 (with negligible error) for the dressed CZ† and reference cycles, respectively; together, this gives an
estimated purity limit 0.986(9) for the isolated CZ† gate. (Figures reproduced with permission from [272,433].)

m and converting the process polarization f to an average
gate fidelity or process fidelity (see Table II). We note that
although the qudit Z operator is in general non-Hermitian,
its phase does not change under depolarization. Therefore,
the imaginary component—which is initially zero due to
preparing in the ground state—remains zero throughout.

Initial demonstrations of qudit randomized benchmark-
ing have been performed for D = 3 in Refs. [298,431]
and D = 4 in Refs. [434,448]. In Figs. 58(a) and 58(b),
the circuits and results of performing RB on the same
qudit operating in D = {2, 3, 4} is shown [272], yielding
average Clifford process fidelities of Fe = {0.99872(1),
0.9946(2), and 0.974(2)}. Since there are in general
{2, 6, 12} native gates (excluding software defined vir-
tual Z gates) needed to decompose Clifford gates in
D = {2, 3, 4}, from the Clifford fidelities one can calcu-
late the average native gate process fidelities, yielding
Fe = {0.99936(3), 0.99909(4), 0.9978(2)} for the results
in Fig. 58. We further note that interleaved RB and simul-
taneous RB can also be performed to obtain additional
insight into specific qudit gate performance as well as
effects from undesired crosstalk interactions [298].

b. Qudit cycle benchmarking

Cycle benchmarking (CB) is useful for qudit-based
QCVV, specifically in the context of multiqudit gates,
as performing randomized benchmarking on a multiqudit
gate requires sampling and decomposing multiqudit Clif-
ford gates, often requiring many native multiqudit gates.
In contrast, CB can be performed with significantly fewer
multiqudit gates per circuit and can be scaled to study-
ing larger systems (see Sec. VIII G). For qudit CB, the
eigenstates and twirling gates are chosen from the Weyl-
Heisenberg group. Notably, each W ∈ WD commutes with
its Hermitian conjugate W† = WD−1, which also belongs to
the Weyl-Heisenberg group. This implies that these oper-
ators share the same eigenbasis, such that 〈W†〉 = ¯〈W〉,
which allow us to reduce the number of required measure-
ments needed to characterize the Weyl decays [298].

Qutrit CB was first described and demonstrated in
Ref. [298], and was later used to benchmark two-qutrit
CZ and CZ† gates with interleaved gate fidelities as high
as 95.2(3)% and 97.3(1)%, respectively [433]. The circuits
and integrated histogram results of the CB protocol for a
CZ† gate are shown in Figs. 58(e) and 58(f).
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c. Qudit cross-entropy benchmarking

The cross-entropy benchmarking (XEB) protocol (see
Sec. VIII C 4) can likewise be straightforwardly general-
ized to qudits. In the case of qudit XEB, the local twirling
is now performed via Haar-random SU(d) gates, and the
analysis is performed on the output ditstring (rather than
bitstring) results. Qutrit XEB has been described and per-
formed in Ref. [433], where it was used to benchmark
a two-qutrit CZ† gate. Those results can also be found
in Figs. 58(c) and 58(d), where we also provide a cir-
cuit schematic for XEB sequences. We note here that the
dressed gate fidelities for the CZ† estimated from qutrit CB
and XEB agree to within error bars, which is expected due
to the fact that twirling does not change the average gate
fidelity or process fidelity of a gate (see Sec. C 3).

APPENDIX E: GAUGE AMBIGUITY IN PAULI
NOISE LEARNING

One prominent advantage of cycle benchmarking (CB;
see Sec. VIII G) or cycle error reconstruction (CER; see
Sec. IX C 1) is the intrinsic robustness to SPAM errors,
which is a general feature of randomized-benchmarking-
like protocols. However, when benchmarking cycles con-
taining multiqubit Clifford gates, CER generally cannot
resolve every Pauli fidelity (or Pauli error rate) individu-
ally. Instead, for a certain subset of Pauli operators, only
the geometric mean of Pauli fidelities can be estimated. See
Fig. 39 for an example. This issue of “degeneracy” is not a
drawback of any specific method, but is related to the fun-
damental notion of gauge ambiguity [156] (see Sec. II E 2).
That is, when taking unknown SPAM noise into account,
there exist certain gauge degrees of freedom in the noise
model that cannot be resolved. In this section, we discuss a
theory [399] that fully characterizes the gauge-consistently
learnable information in Pauli noise learning.

We start with four assumptions about the noise: (1) any
single-qubit unitary gate can be implemented perfectly;
(2) a set of multiqubit Clifford gates {G} can be imple-
mented with gate-dependent Pauli noise, i.e., G̃ = G ◦�G,
where G̃ denotes the noisy gate and �G the transfer matrix
capturing the Pauli noise; (3) any state preparation and
POVM measurement can be implemented subject to an
unknown Pauli noise channel; (4) the Pauli fidelities of
all Pauli channels are strictly positive. For the first con-
dition, we can allow single-qubit gate cycles to have
gate-independent noise, which are standard assumptions of
CB and CER, but in that case one can simply absorb the
noise into the multiqubit Clifford gate (known as dressed
cycles [398]). The second and third assumptions can be
guaranteed via randomized compiling [154,155]. The last
one is for regularization and should hold for any reasonable
gate set. Now, we ask the following question: what infor-
mation of {�G} can be learned in a SPAM-robust manner
despite the existence of unknown SPAM noise?

For the task of Pauli channel estimation, this ques-
tion can be answered step-by-step: firstly, any individ-
ual Pauli fidelity, λG

P ≡ Tr[P�G(P)]/2n, can be learned
SPAM-robustly if and only if G preserves the pattern of
P. The pattern of an n-qubit Pauli (with sign ignored) is
defined as an n-bit string whose ith bit is 0 if Pi = I and
1 otherwise (e.g., XZIYI 	→ 11010). Take the CNOT gate as
an example, which maps Paulis into Paulis (see Table VII).
Since

CNOT : ZI 	→ ZI , YY 	→ XZ , XI 	→ XX ,

pattern : 01 	→ 01 , 11 	→ 11 , 10 	→ 11 ,

we have that λZI and λYY are SPAM-robustly learnable,
while λXI is not. We can summarize how the CNOT changes
the pattern of all two-qubit Pauli operators in a pattern
transform graph, with 4 nodes and 16 edges, shown in
Fig. 59. Only those Pauli fidelities which lie on a self-loop
are individually learnable.

Next, a product of Pauli fidelities (λP1 · · · λPM ) is
SPAM-robustly learnable if the corresponding edges form
a cycle in the pattern transform graph. For the example of
a CNOT gate, though λXI and λXX are individually unlearn-
able, their product λXIλXX is learnable. A more rigorous
statement goes as follows: define the log-Pauli fidelities
lGP ≡ log λG

P for all P. The space of linear functions of {lP}
has a natural isomorphism to the edge space of the pattern
transform graph. The result states that the learnable lin-
ear functions form a subspace corresponding to the cycle
space of the graph, a notion from algebraic graph theory
[449]. The number of learnable and unlearnable degrees of
freedom can also be inferred using graph-theoretical tools.
More details are presented in Refs. [399,450].

Here, we briefly sketch the proof of these results. To
see that everything in the cycle space is learnable, one
just needs to construct a proper CB-type experiment. Take
the CNOT as an example: since the CNOT preserves ZI , to
learn λZI we first prepare an eigenstate of ZI , repeat the
CNOT m times (under randomized compiling), and then
measure the expectation value of ZI , from which we can
fit an exponential decay of the form AZIλ

m
ZI , where AZI

is some SPAM-dependent coefficient. Similarly, since the
CNOT preserves the pattern of YY, to learn λYY we per-
form the same protocol; however, now we must interleave
certain single-qubit gates (e.g.,

√
Z ⊗√

X ) following each
application of the CNOT, from which one can obtain AYYλ

m
YY

(similar techniques are mentioned in [378]). Finally, to
learn products like λXIλXX , one can simply repeat the CNOT
2m times and measure in the eigenstate of XX , yielding
AXX (λXIλXX )

m. To see that everything outside the cycle
space is unlearnable, one can show that every cut in the
pattern transform graph induces a gauge transformation.
For example, for a CNOT gate, a cut between 10 and the
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FIG. 59. Learnability of Pauli noise. (Left) Pattern transform graph of CNOT. (Right) Learnable and unlearnable information of the
CNOT gate.

other nodes induces the following gauge transform:

λXI , λYI 	→ κλXI , κλXI ,

λXX , λYX 	→ κ−1λXX , κ−1λYX ,

for a real number κ sufficiently close to 1. The SPAM noise
needs to change correspondingly and is omitted here. One
can show that this is indeed a gauge transformation that
preserve all assumptions of the Pauli noise model. Since
any learnable function must be orthogonal to all gauge
transformations, and the cut space is orthogonal comple-
ment to the cycle space, this implies any learnable function
must be inside the cycle space.

In practice, any noise channel �G should be sufficiently
close to identity, i.e., λP → 1. In this regime, any function
of �G can be approximated to first order by an affine func-
tion of {lGb }b, and the above result can thus be used to infer
the learnability of a general function to first order, includ-
ing the Pauli error rates. Interestingly, it can be shown that
the first-order learnable Pauli error rates are also isomor-
phic to the cycle space (implicit from Ref. [398, Lemma 3]
and rigorously proven in Ref. [451, Appendix D]). In other
words, the cycle space of the pattern transform graph is
invariant under the Walsh-Hadamard transform. As a con-
crete example, in Fig. 59, we list the cycle basis, learnable
fidelities, first-order learnable error rates, and a possible
choice of gauge parameters for the CNOT.

We end this section with some relevant observations:

(a) The unlearnablity is rooted in the gauge ambigu-
ity of SPAM noise. If SPAM noise is very small
compared to the gate noise, one can expect the
ambiguity for gate noise characterization to be neg-
ligible. However, there are experiments suggesting
this might not be the case for state-of-the-art quan-
tum computing platforms [399]. Nevertheless, one
can always try to bound the unlearnable parame-
ters using physicality constraints (e.g., CPTP con-
ditions).

(b) If we treat quantum circuits as a black box,
any observable properties should, by definition, be
learnable functions. Therefore, by properly charac-
terizing all learnable degrees of freedom, one should
in principle be able to perform error mitigation (see,
e.g., Ref. [452]). However, such gauge-consistent
error-mitigation techniques within the Pauli noise
model have yet to be developed. On the other hand,
there exist error-mitigation experiments based on
Pauli noise learning that avoid the learnability issue
by introducing additional assumptions [378,453].
It is an interesting direction to better understand
the relation between noise learnability and quantum
error mitigation.

(c) It is common to make additional locality assump-
tions about the Pauli noise channels, so that the
number of noise parameters becomes manageable.
Reference [450] studies how to reconcile the local-
ity assumptions with the learnable of Pauli noise,
giving a similar graph-algebraic characterization of
learnable and unlearnable degrees of freedom as
described here.

(d) Another practical issue for noise characterization is
whether one can estimate a certain noise parame-
ter to relative precision (using a small number of
experiments). Achieving this usually requires mul-
tiple repetitions of specific gate sequence (known
as “germs” in GST) to amplify the noise parameter.
It has been proven that any product of Pauli fideli-
ties corresponding to a cycle in the pattern transform
graph can be learned to relative precision by repeat-
ing certain sequence of gates [398,450]. In contrast,
an unlearnable function as discussed above cannot
be estimated to arbitrarily small precision, no matter
if it is additive precision or relative precision.
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[51] K. Życzkowski and I. Bengtsson, On duality between
quantum maps and quantum states, Open Syst. Inf. Dyn.
11, 3 (2004).

[52] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert,
K. Geerlings, T. Brecht, K. Sliwa, B. Abdo, L. Frunzio,
S. M. Girvin, et al., Quantum back-action of an indi-
vidual variable-strength measurement, Science 339, 178
(2013).

[53] Y.-W. Cho, Y. Kim, Y.-H. Choi, Y.-S. Kim, S.-W. Han,
S.-Y. Lee, S. Moon, and Y.-H. Kim, Emergence of the
geometric phase from quantum measurement back-action,
Nat. Phys. 15, 665 (2019).

[54] E. B. Davies and J. T. Lewis, An operational approach
to quantum probability, Commun. Math. Phys. 17, 239
(1970).

[55] K. Rudinger, G. J. Ribeill, L. C. Govia, M. Ware, E.
Nielsen, K. Young, T. A. Ohki, R. Blume-Kohout, and
T. Proctor, Characterizing mid-circuit measurements on a
superconducting qubit using gate set tomography, Phys.
Rev. Appl. 17, 014014 (2022).

[56] J. von Neumann, Mathematische Grundlagen der Quan-
tenmechanik (Springer, Berlin, 1932).

[57] W. H. Zurek, Decoherence and the transition from quan-
tum to classical, Phys. Today 44, 36 (1991).

[58] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne,
Quantum nondemolition measurements, Science 209, 547
(1980).

[59] V. B. Braginsky and F. Y. Khalili, Quantum nondemolition
measurements: The route from toys to tools, Rev. Mod.
Phys. 68, 1 (1996).

[60] J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel,
Measurement of the internal state of a single atom without
energy exchange, Nature 475, 210 (2011).

[61] R. Dassonneville, T. Ramos, V. Milchakov, L. Planat, É.
Dumur, F. Foroughi, J. Puertas, S. Leger, K. Bharadwaj,
J. Delaforce, et al., Fast high-fidelity quantum nonde-
molition qubit readout via a nonperturbative cross-Kerr
coupling, Phys. Rev. X 10, 011045 (2020).

[62] Google Quantum AI, Suppressing quantum errors by scal-
ing a surface code logical qubit, Nature 614, 676 (2023).

[63] J.-G. Liu, Y.-H. Zhang, Y. Wan, and L. Wang, Variational
quantum eigensolver with fewer qubits, Phys. Rev. Res. 1,
023025 (2019).

[64] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional
neural networks, Nat. Phys. 15, 1273 (2019).

[65] C. M. Caves, K. S. Thorne, R. W. Drever, V. D. Sand-
berg, and M. Zimmermann, On the measurement of a
weak classical force coupled to a quantum-mechanical
oscillator. I. Issues of principle, Rev. Mod. Phys. 52, 341
(1980).

030202-120

https://doi.org/10.2307/2032342
https://doi.org/10.26421/QIC15.9-10-3
https://arxiv.org/abs/0911.2539
https://doi.org/10.1103/PRXQuantum.3.020335
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRev.121.920
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1023/B:OPSY.0000024753.05661.c2
https://doi.org/10.1126/science.1226897
https://doi.org/10.1038/s41567-019-0482-z
https://doi.org/10.1007/BF01647093
https://doi.org/10.1103/PhysRevApplied.17.014014
https://doi.org/10.1063/1.881293
https://doi.org/10.1126/science.209.4456.547
https://doi.org/10.1103/RevModPhys.68.1
https://doi.org/10.1038/nature10225
https://doi.org/10.1103/PhysRevX.10.011045
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/RevModPhys.52.341


PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

[66] I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio,
R. Schoelkopf, and M. Devoret, Dispersive measurements
of superconducting qubit coherence with a fast latching
readout, Phys. Rev. B 73, 054510 (2006).

[67] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,
Circuit quantum electrodynamics, Rev. Mod. Phys. 93,
025005 (2021).

[68] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt,
and R. J. Schoelkopf, Introduction to quantum noise, mea-
surement, and amplification, Rev. Mod. Phys. 82, 1155
(2010).

[69] A. N. Korotkov, Quantum Bayesian approach to circuit
QED measurement with moderate bandwidth, Phys. Rev.
A 94, 042326 (2016).

[70] K. Murch, S. Weber, C. Macklin, and I. Siddiqi, Observing
single quantum trajectories of a superconducting quantum
bit, Nature 502, 211 (2013).

[71] S. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K.
Murch, and I. Siddiqi, Mapping the optimal route between
two quantum states, Nature 511, 570 (2014).

[72] G. Koolstra, N. Stevenson, S. Barzili, L. Burns, K. Siva,
S. Greenfield, W. Livingston, A. Hashim, R. Naik, J.
Kreikebaum, et al., Monitoring fast superconducting qubit
dynamics using a neural network, Phys. Rev. X 12,
031017 (2022).

[73] Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H.
Kim, and Y.-W. Cho, Direct quantum process tomogra-
phy via measuring sequential weak values of incompatible
observables, Nat. Commun. 9, 192 (2018).

[74] K. Siva, G. Koolstra, J. Steinmetz, W. P. Livingston,
D. Das, L. Chen, J. M. Kreikebaum, N. Stevenson, C.
Jünger, D. I. Santiago, et al., Time-dependent Hamilto-
nian reconstruction using continuous weak measurements,
PRX Quantum 4, 040324 (2023).

[75] C. A. Fuchs and A. Peres, Quantum-state disturbance ver-
sus information gain: Uncertainty relations for quantum
information, Phys. Rev. A 53, 2038 (1996).

[76] S. Hong, Y.-S. Kim, Y.-W. Cho, J. Kim, S.-W. Lee, and
H.-T. Lim, Demonstration of complete information trade-
off in quantum measurement, Phys. Rev. Lett. 128, 050401
(2022).

[77] E. Nielsen, K. Rudinger, T. Proctor, K. Young, and R.
Blume-Kohout, Efficient flexible characterization of quan-
tum processors with nested error models, New J. Phys. 23,
093020 (2021).

[78] K. Rudinger, C. W. Hogle, R. K. Naik, A. Hashim, D.
Lobser, D. I. Santiago, M. D. Grace, E. Nielsen, T. Proc-
tor, S. Seritan, S. M. Clark, R. Blume-Kohout, I. Sid-
diqi, and K. C. Young, Experimental characterization of
crosstalk errors with simultaneous gate set tomography,
PRX Quantum 2, 040338 (2021).

[79] A. Hashim, S. Seritan, T. Proctor, K. Rudinger, N. Goss,
R. Naik, J. M. Kreikebaum, D. Santiago, and I. Sid-
diqi, Benchmarking quantum logic operations relative to
thresholds for fault tolerance, npj Quantum Inf. 9, 109
(2023).

[80] R. Brieger, I. Roth, and M. Kliesch, Compressive gate set
tomography, PRX Quantum 4, 010325 (2023).

[81] O. Di Matteo, J. Gamble, C. Granade, K. Rudinger, and
N. Wiebe, Operational, gauge-free quantum tomography,
Quantum 4, 364 (2020).

[82] J. P. Marceaux and K. Young, in 2023 IEEE Interna-
tional Conference on Quantum Computing and Engineer-
ing (QCE) (IEEE Computer Society, Los Alamitos, CA,
USA, 2023), p. 1401.

[83] J. Guillaud and M. Mirrahimi, Repetition cat qubits
for fault-tolerant quantum computation, Phys. Rev. X 9,
041053 (2019).

[84] A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K.
Tuckett, and S. Puri, Practical quantum error correction
with the XZZX code and Kerr-cat qubits, PRX Quantum
2, 030345 (2021).

[85] L. B. Nguyen, G. Koolstra, Y. Kim, A. Morvan, T. Chis-
tolini, S. Singh, K. N. Nesterov, C. Jünger, L. Chen,
Z. Pedramrazi, B. K. Mitchell, J. M. Kreikebaum, S.
Puri, D. I. Santiago, and I. Siddiqi, Blueprint for a high-
performance fluxonium quantum processor, PRX Quan-
tum 3, 037001 (2022).

[86] E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
[87] H. Y. Carr and E. M. Purcell, Effects of diffusion on free

precession in nuclear magnetic resonance experiments,
Phys. Rev. 94, 630 (1954).

[88] S. Meiboom and D. Gill, Modified spin-echo method for
measuring nuclear relaxation times, Rev. Sci. Instrum. 29,
688 (1958).

[89] A. Maudsley, Modified Carr-Purcell-Meiboom-Gill
sequence for NMR Fourier imaging applications, J. Magn.
Reson. (1969) 69, 488 (1986).

[90] M. A. A. Ahmed, G. A. Alvarez, and D. Suter, Robust-
ness of dynamical decoupling sequences, Phys. Rev. A 87,
042309 (2013).

[91] C. P. Slichter, Principles of Magnetic Resonance, Springer
Series in Solid-State Sciences (Springer, Berlin, Germany,
2010)..

[92] A. J. Kerman, Metastable superconducting qubit, Phys.
Rev. Lett. 104, 027002 (2010).

[93] Y.-H. Lin, L. B. Nguyen, N. Grabon, J. San Miguel, N.
Pankratova, and V. E. Manucharyan, Demonstration of
protection of a superconducting qubit from energy decay,
Phys. Rev. Lett. 120, 150503 (2018).

[94] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik,
N. Leung, L. Ocola, D. A. Czaplewski, B. Baker, J.
Lawrence, J. Koch, and D. I. Schuster, Realization of a
� system with metastable states of a capacitively shunted
fluxonium, Phys. Rev. Lett. 120, 150504 (2018).

[95] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N.
Grabon, and V. E. Manucharyan, High-coherence fluxo-
nium qubit, Phys. Rev. X 9, 041041 (2019).

[96] T. Proctor, M. Revelle, E. Nielsen, K. Rudinger, D. Lob-
ser, P. Maunz, R. Blume-Kohout, and K. Young, Detecting
and tracking drift in quantum information processors, Nat.
Commun. 11, 1 (2020).

[97] J. Ghosh, A. G. Fowler, J. M. Martinis, and M. R. Geller,
Understanding the effects of leakage in superconducting
quantum-error-detection circuits, Phys. Rev. A 88, 062329
(2013).

[98] J. J. Wallman, M. Barnhill, and J. Emerson, Robust char-
acterization of leakage errors, New J. Phys. 18, 043021
(2016).

[99] Z. Chen, J. Kelly, C. Quintana, R. Barends, B. Campbell,
Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Lucero,
et al., Measuring and suppressing quantum state leakage

030202-121

https://doi.org/10.1103/PhysRevB.73.054510
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevA.94.042326
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature13559
https://doi.org/10.1103/PhysRevX.12.031017
https://doi.org/10.1038/s41467-017-02511-2
https://doi.org/10.1103/PRXQuantum.4.040324
https://doi.org/10.1103/PhysRevA.53.2038
https://doi.org/10.1103/PhysRevLett.128.050401
https://doi.org/10.1088/1367-2630/ac20b9
https://doi.org/10.1103/PRXQuantum.2.040338
https://doi.org/10.1038/s41534-023-00764-y
https://doi.org/10.1103/PRXQuantum.4.010325
https://doi.org/10.22331/q-2020-11-17-364
https://doi.org/10.1103/PhysRevX.9.041053
https://doi.org/10.1103/PRXQuantum.2.030345
https://doi.org/10.1103/PRXQuantum.3.037001
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1063/1.1716296
https://doi.org/10.1016/0022-2364(86)90160-5
https://doi.org/10.1103/PhysRevA.87.042309
https://doi.org/10.1007/978-3-662-09441-9
https://doi.org/10.1103/PhysRevLett.104.027002
https://doi.org/10.1103/PhysRevLett.120.150503
https://doi.org/10.1103/PhysRevLett.120.150504
https://doi.org/10.1103/PhysRevX.9.041041
https://doi.org/10.1038/s41467-020-19074-4
https://doi.org/10.1103/PhysRevA.88.062329
https://doi.org/10.1088/1367-2630/18/4/043021


AKEL HASHIM et al. PRX QUANTUM 6, 030202 (2025)

in a superconducting qubit, Phys. Rev. Lett. 116, 020501
(2016).

[100] C. J. Wood and J. M. Gambetta, Quantification and char-
acterization of leakage errors, Phys. Rev. A 97, 032306
(2018).

[101] D. Hayes, D. Stack, B. Bjork, A. Potter, C. Baldwin, and
R. Stutz, Eliminating leakage errors in hyperfine qubits,
Phys. Rev. Lett. 124, 170501 (2020).

[102] A. P. Babu, J. Tuorila, and T. Ala-Nissila, State leak-
age during fast decay and control of a superconducting
transmon qubit, npj Quantum Inf. 7, 1 (2021).

[103] X.-G. Li, J.-H. Wang, Y.-Y. Jiang, G.-M. Xue, X.-X. Cai,
J. Zhou, M. Gong, Z.-F. Liu, S.-Y. Zheng, D.-K. Ma, et al.,
Direct evidence for cosmic-ray-induced correlated errors
in superconducting qubit array, arXiv:2402.04245.

[104] P. M. Harrington, M. Li, M. Hays, W. Van De Pontseele,
D. Mayer, H. D. Pinckney, F. Contipelli, M. Gingras, B.
M. Niedzielski, H. Stickler, et al., Synchronous detection
of cosmic rays and correlated errors in superconducting
qubit arrays, arXiv:2402.03208.

[105] P. Mundada, G. Zhang, T. Hazard, and A. Houck, Suppres-
sion of qubit crosstalk in a tunable coupling superconduct-
ing circuit, Phys. Rev. Appl. 12, 054023 (2019).

[106] P. Zhao, P. Xu, D. Lan, J. Chu, X. Tan, H. Yu, and Y. Yu,
High-contrast zz interaction using superconducting qubits
with opposite-sign anharmonicity, Phys. Rev. Lett. 125,
200503 (2020).

[107] Z. Ni, S. Li, L. Zhang, J. Chu, J. Niu, T. Yan, X. Deng, L.
Hu, J. Li, Y. Zhong, et al., Scalable method for eliminating
residual ZZ interaction between superconducting qubits,
Phys. Rev. Lett. 129, 040502 (2022).

[108] K. Serniak, M. Hays, G. De Lange, S. Diamond, S.
Shankar, L. Burkhart, L. Frunzio, M. Houzet, and M.
Devoret, Hot nonequilibrium quasiparticles in transmon
qubits, Phys. Rev. Lett. 121, 157701 (2018).

[109] S. de Graaf, L. Faoro, L. Ioffe, S. Mahashabde, J. Bur-
nett, T. Lindström, S. Kubatkin, A. Danilov, and A. Y.
Tzalenchuk, Two-level systems in superconducting quan-
tum devices due to trapped quasiparticles, Sci. Adv. 6,
eabc5055 (2020).

[110] M. Berlin-Udi, C. Matthiesen, P. Lloyd, A. Alonso, C.
Noel, C. Orme, C.-E. Kim, V. Lordi, and H. Häffner,
Changes in electric-field noise due to thermal transfor-
mation of a surface ion trap, Phys. Rev. B 106, 035409
(2022).

[111] A. E. Webb, S. C. Webster, S. Collingbourne, D. Bre-
taud, A. M. Lawrence, S. Weidt, F. Mintert, and W. K.
Hensinger, Resilient entangling gates for trapped ions,
Phys. Rev. Lett. 121, 180501 (2018).

[112] G. Burkard, Non-Markovian qubit dynamics in the
presence of 1/f noise, Phys. Rev. B 79, 125317
(2009).

[113] P. Groszkowski, A. Seif, J. Koch, and A. A. Clerk, Sim-
ple master equations for describing driven systems sub-
ject to classical non-Markovian noise, Quantum 7, 972
(2023).

[114] L. Diósi, N. Gisin, and W. T. Strunz, Non-Markovian
quantum state diffusion, Phys. Rev. A 58, 1699 (1998).

[115] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Assess-
ing non-Markovian quantum dynamics, Phys. Rev. Lett.
101, 150402 (2008).

[116] J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suomi-
nen, Non-Markovian quantum jumps, Phys. Rev. Lett.
100, 180402 (2008).

[117] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the
degree of non-Markovian behavior of quantum processes
in open systems, Phys. Rev. Lett. 103, 210401 (2009).

[118] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-
M. Laine, H.-P. Breuer, and J. Piilo, Experimental con-
trol of the transition from Markovian to non-Markovian
dynamics of open quantum systems, Nat. Phys. 7, 931
(2011).

[119] I. De Vega and D. Alonso, Dynamics of non-Markovian
open quantum systems, Rev. Mod. Phys. 89, 015001
(2017).

[120] J. R. Glick and C. Adami, Markovian and non-Markovian
quantum measurements, Found. Phys. 50, 1008 (2020).

[121] K. Head-Marsden, S. Krastanov, D. A. Mazziotti, and
P. Narang, Capturing non-Markovian dynamics on near-
term quantum computers, Phys. Rev. Res. 3, 013182
(2021).

[122] V. Link, W. T. Strunz, and K. Luoma, Non-Markovian
quantum dynamics in a squeezed reservoir, Entropy 24,
352 (2022).

[123] S. Tserkis, K. Head-Marsden, and P. Narang, Information
back-flow in quantum non-Markovian dynamics and its
connection to teleportation, arXiv:2203.00668.

[124] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detec-
tion, Rep. Prog. Phys. 77, 094001 (2014).

[125] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini,
Colloquium: Non-Markovian dynamics in open quantum
systems, Rev. Mod. Phys. 88, 021002 (2016).

[126] L. Li, M. J. Hall, and H. M. Wiseman, Concepts of quan-
tum non-Markovianity: A hierarchy, Phys. Rep. 759, 1
(2018).

[127] C.-F. Li, G.-C. Guo, and J. Piilo, Non-Markovian quantum
dynamics: What does it mean? EPL (Europhys. Lett.) 127,
50001 (2019).

[128] S. Milz and K. Modi, Quantum stochastic processes and
quantum non-Markovian phenomena, PRX Quantum 2,
030201 (2021).

[129] G. A. White, P. Jurcevic, C. D. Hill, and K. Modi, Unify-
ing non-Markovian characterisation with an efficient and
self-consistent framework, arXiv:2312.08454.

[130] Here, we use the term “metric” loosely. For example, we
discuss different types of fidelity in this section, but fidelity
is strictly not a metric in a mathematical sense, as it does
not obey the triangle inequality.

[131] A. Bhattacharyya, On a measure of divergence between
two statistical populations defined by their probability
distribution, Bull. Calcutta Math. Soc. (1943).

[132] C. A. Fuchs, Distinguishability and accessible information
in quantum theory, arXiv:quant-ph/9601020.

[133] C. A. Fuchs and J. Van De Graaf, Cryptographic dis-
tinguishability measures for quantum-mechanical states,
IEEE Trans. Inf. Theory 45, 1216 (1999).

[134] The logarithm that appears in entropic quantities can be
evaluated in any base; using log2 yields bits of entropy,
while ln yields units called nats.

[135] Heavy output probability is not necessarily well-defined
for highly degenerate distributions.

030202-122

https://doi.org/10.1103/PhysRevLett.116.020501
https://doi.org/10.1103/PhysRevA.97.032306
https://doi.org/10.1103/PhysRevLett.124.170501
https://doi.org/10.1038/s41534-020-00357-z
https://arxiv.org/abs/2402.04245
https://arxiv.org/abs/2402.03208
https://doi.org/10.1103/PhysRevApplied.12.054023
https://doi.org/10.1103/PhysRevLett.125.200503
https://doi.org/10.1103/PhysRevLett.129.040502
https://doi.org/10.1103/PhysRevLett.121.157701
https://doi.org/10.1126/sciadv.abc5055
https://doi.org/10.1103/PhysRevB.106.035409
https://doi.org/10.1103/PhysRevLett.121.180501
https://doi.org/10.1103/PhysRevB.79.125317
https://doi.org/10.22331/q-2023-04-06-972
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1038/nphys2085
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1007/s10701-020-00362-4
https://doi.org/10.1103/PhysRevResearch.3.013182
https://doi.org/10.3390/e24030352
https://arxiv.org/abs/2203.00668
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1209/0295-5075/127/50001
https://doi.org/10.1103/PRXQuantum.2.030201
https://arxiv.org/abs/2312.08454
https://arxiv.org/abs/quant-ph/9601020
https://doi.org/10.1109/18.761271


PRACTICAL INTRODUCTION TO BENCHMARKING. . . PRX QUANTUM 6, 030202 (2025)

[136] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H.
Neven, Characterizing quantum supremacy in near-term
devices, Nat. Phys. 14, 595 (2018).

[137] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation,
and J. M. Gambetta, Validating quantum computers using
randomized model circuits, Phys. Rev. A 100, 032328
(2019).

[138] C. W. Helstrom, Quantum detection and estimation theory,
J. Stat. Phys. 1, 231 (1969).

[139] See, for example, the book Quantum Computation and
Quantum Information [41].

[140] B. Schumacher, Quantum coding, Phys. Rev. A 51, 2738
(1995).

[141] A. Uhlmann, The “transition probability” in the state space
of a *-algebra, Rep. Math. Phys. 9, 273 (1976).

[142] R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt.
41, 2315 (1994).

[143] It is worth emphasizing that a quantum process is not
analogous to a classical stochastic process. The classical
analog of a quantum process is a stochastic matrix (see
Sec. IX A), which is related to stochastic processes, but
quite distinct.

[144] A. Y. Kitaev, Quantum computations: Algorithms and
error correction, Uspekhi Matematicheskikh Nauk 52, 53
(1997).

[145] C. H. Bennett and S. J. Wiesner, Communication via one-
and two-particle operators on Einstein-Podolsky-Rosen
states, Phys. Rev. Lett. 69, 2881 (1992).

[146] W. H. Zurek, Environment-assisted invariance, entangle-
ment, and probabilities in quantum physics, Phys. Rev.
Lett. 90, 120404 (2003).

[147] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
Peres, and W. K. Wootters, Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-
Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

[148] D. Aharonov, A. Kitaev, and N. Nisan, in Proceedings of
the Thirtieth Annual ACM Symposium on Theory of Com-
puting (Association for Computing Machinery, New York,
NY, USA, 1998), p. 20.

[149] L. Viola and S. Lloyd, Dynamical suppression of decoher-
ence in two-state quantum systems, Phys. Rev. A 58, 2733
(1998).

[150] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of
open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[151] E. Knill, Fault-tolerant postselected quantum computa-
tion: Threshold analysis, arXiv:quant-ph/0404104.

[152] O. Kern, G. Alber, and D. L. Shepelyansky, Quantum error
correction of coherent errors by randomization, Eur. Phys.
J. D-At. Mol. Opt. Plasma Phys. 32, 153 (2005).

[153] M. Ware, G. Ribeill, D. Riste, C. A. Ryan, B. Johnson,
and M. P. Da Silva, Experimental Pauli-frame randomiza-
tion on a superconducting qubit, Phys. Rev. A 103, 042604
(2021).

[154] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys.
Rev. A 94, 052325 (2016).

[155] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B.
Mitchell, J. M. Kreikebaum, M. Davis, E. Smith, C.
Iancu, K. P. O’Brien, I. Hincks, J. J. Wallman, J. Emer-
son, and I. Siddiqi, Randomized compiling for scalable

quantum computing on a noisy superconducting quantum
processor, Phys. Rev. X 11, 041039 (2021).

[156] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten,
K. Young, and R. Blume-Kohout, Gate set tomography,
Quantum 5, 557 (2021).

[157] P. Aliferis, D. Gottesman, and J. Preskill, Quantum
accuracy threshold for concatenated distance-3 codes,
Quantum Inf. Comput. 6, 97 (2006).

[158] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, Bounding
quantum gate error rate based on reported average fidelity,
New J. Phys. 18, 012002 (2015).

[159] M. A. Nielsen, A simple formula for the average gate
fidelity of a quantum dynamical operation, Phys. Lett. A
303, 249 (2002).

[160] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise
estimation with random unitary operators, J. Opt. B:
Quantum Semiclassical Opt. 7, S347 (2005).

[161] E. Magesan, R. Blume-Kohout, and J. Emerson, Gate
fidelity fluctuations and quantum process invariants, Phys.
Rev. A 84, 012309 (2011).

[162] M. Horodecki, P. Horodecki, and R. Horodecki, General
teleportation channel, singlet fraction, and quasidistilla-
tion, Phys. Rev. A 60, 1888 (1999).

[163] B. Schumacher, Sending entanglement through noisy
quantum channels, Phys. Rev. A 54, 2614 (1996).

[164] M. A. Nielsen, The entanglement fidelity and quantum
error correction, arXiv:quant-ph/9606012.

[165] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance
measures to compare real and ideal quantum processes,
Phys. Rev. A 71, 062310 (2005).

[166] A. Carignan-Dugas, A walk through quantum noise: A
study of error signatures and characterization methods,
Ph.D. thesis, University of Waterloo, 2019.

[167] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger,
J. Mizrahi, K. Fortier, and P. Maunz, Demonstration of
qubit operations below a rigorous fault tolerance thresh-
old with gate set tomography, Nat. Commun. 8, 14485
(2017).

[168] J. Watrous, Semidefinite programs for completely
bounded norms, Theory Comput. 5, 217 (2009).

[169] J. Watrous, Simpler semidefinite programs for completely
bounded norms, arXiv:1207.5726.

[170] J. J. Wallman and S. T. Flammia, Randomized benchmark-
ing with confidence, New J. Phys. 16, 103032 (2014).

[171] J. J. Wallman, Bounding experimental quantum error rates
relative to fault-tolerant thresholds, arXiv:1511.00727.

[172] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia,
Comparing experiments to the fault-tolerance threshold,
Phys. Rev. Lett. 117, 170502 (2016).

[173] A. Luis and L. L. Sánchez-Soto, Complete characteriza-
tion of arbitrary quantum measurement processes, Phys.
Rev. Lett. 83, 3573 (1999).

[174] Z. Ji, Y. Feng, R. Duan, and M. Ying, Identification and
distance measures of measurement apparatus, Phys. Rev.
Lett. 96, 200401 (2006).

[175] E. Magesan and P. Cappellaro, Experimentally efficient
methods for estimating the performance of quantum mea-
surements, Phys. Rev. A 88, 022127 (2013).

[176] J. Dressel, T. A. Brun, and A. N. Korotkov, Implementing
generalized measurements with superconducting qubits,
Phys. Rev. A 90, 032302 (2014).

030202-123

https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1007/BF01007479
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.90.120404
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1145/276698.276708
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevLett.82.2417
https://arxiv.org/abs/quant-ph/0404104
https://doi.org/10.1140/epjd/e2004-00196-9
https://doi.org/10.1103/PhysRevA.103.042604
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevX.11.041039
https://doi.org/10.22331/q-2021-10-05-557
https://doi.org/10.26421/QIC6.2-1
https://doi.org/10.1088/1367-2630/18/1/012002
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.84.012309
https://doi.org/10.1103/PhysRevA.60.1888
https://doi.org/10.1103/PhysRevA.54.2614
https://arxiv.org/abs/quant-ph/9606012
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1038/ncomms14485
https://doi.org/10.4086/toc.2009.v005a011
https://arxiv.org/abs/1207.5726
https://doi.org/10.1088/1367-2630/16/10/103032
https://arxiv.org/abs/1511.00727
https://doi.org/10.1103/PhysRevLett.117.170502
https://doi.org/10.1103/PhysRevLett.83.3573
https://doi.org/10.1103/PhysRevLett.96.200401
https://doi.org/10.1103/PhysRevA.88.022127
https://doi.org/10.1103/PhysRevA.90.032302


AKEL HASHIM et al. PRX QUANTUM 6, 030202 (2025)

[177] J. Z. Blumoff, K. Chou, C. Shen, M. Reagor, C. Axline,
R. Brierley, M. Silveri, C. Wang, B. Vlastakis, S. E. Nigg,
et al., Implementing and characterizing precise multiqubit
measurements, Phys. Rev. X 6, 031041 (2016).

[178] F. Mallet, F. R. Ong, A. Palacios-Laloy, F. Nguyen, P.
Bertet, D. Vion, and D. Esteve, Single-shot qubit read-
out in circuit quantum electrodynamics, Nat. Phys. 5, 791
(2009).

[179] J. Johnson, C. Macklin, D. Slichter, R. Vijay, E. Wein-
garten, J. Clarke, and I. Siddiqi, Heralded state preparation
in a superconducting qubit, Phys. Rev. Lett. 109, 050506
(2012).

[180] J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Wal-
ter, Y. Salathé, S. Gasparinetti, J.-C. Besse, A. Potočnik,
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