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Energy transfer between localized emitters in photonic cavities from first principles
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Radiative and nonradiative resonant couplings between defects are ubiquitous phenomena in photonic devices
used in classical and quantum information technology applications. In this work, we present a first-principles
approach to enable quantitative predictions of the energy transfer between defects in photonic cavities, beyond
the dipole-dipole approximation and including the many-body nature of the electronic states. As an example,
we discuss the energy transfer from a dipolelike emitter to an F' center in MgO in a spherical cavity. We show
that the cavity can be used to controllably enhance or suppress specific spin-flip and spin-conserving transitions.
Specifically, we predict that an ~10-100 enhancement in the resonant energy transfer rate can be gained in
the case of the F' center in MgO at ~10 nm distances from a dipolar source, using rather moderate cavity with
quality factor Q ~ 400. We also show that a similar suppression in the transfer rate can be achieved by off-
tuning the cavity resonance relative to the emitter transition energy. The framework presented here is general and
readily applicable to a wide range of devices where localized emitters are embedded in microspheres, core-shell
nanoparticles, and dielectric Mie resonators. Hence, our approach paves the way to predict how to control energy
transfer in quantum memories and in ultrahigh-density optical memories, and in a variety of quantum information

platforms.

DOI: 10.1103/8h8j-b79r

I. INTRODUCTION

Coupling and energy transfer processes between localized
quantum emitters in solids, in particular near-field nonra-
diative resonant energy transfer (NRET) [1-6], are relevant
phenomena for various technological applications, e.g., clas-
sical photonic devices and quantum memories and networks.
Controlling energy transfer processes can provide a way
to entangle distinct quantum emitters suitably integrated in
solid-state nanophotonic devices and further enable entan-
gling “swap” operations for quantum memories and networks
[7-10]. In addition, NRET processes are known to lead to
spectral diffusion and dephasing of optical and spin transitions
resulting in decoherence pathways [8,11,12]. Thus, a quanti-
tative understanding of NRET between localized defects in
solid-state photonics platform is of importance for the realiza-
tion of classical and quantum optical devices.

The description of radiative and nonradiative energy trans-
fer processes at arbitrary length scale has been unified
[4,5,13—15] within the framework of quantum electrodynam-
ics (QED), where energy transfer is treated as transfer of
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virtual photons. In the dipolar limit, the QED framework has
been extended to include the effect of inhomogeneous me-
dia on energy transfer and describe, for example, plasmonic
resonances [16,17]. However, the design of devices involv-
ing realistic materials requires (1) going beyond the dipole
approximation to account for distributed electron states or cur-
rent densities [18], (2) including many-body state transitions,
and (3) accounting for spin and orbital states interacting with
the electric and magnetic fields of the photons.

To this end, we have recently proposed a general frame-
work [6] that couples first-principles electronic structure
theories with quantum electrodynamics to incorporate the
many-body nature and spin degrees of freedom of the states
of the localized emitters in the description of radiative and
nonradiative energy transfer processes, beyond the two-level
system assumption and the dipole approximation. Here, we
extend our framework to include inhomogeneity in the dielec-
tric medium in which the emitters are embedded and provide
a theoretical platform to understand energy transfer processes
from first principles and investigate many photonic device
platforms of interest.

The building unit of photonic devices is an ensemble
of localized quantum emitters controllably coupled among
themselves, and with photonic nanostructures for efficient
photon extraction, propagation, and interference [19,20].
These nanostructures include cavities [19-22], waveguides
[19], and nanoantennas [23-25], with photonic cavities and
nanoantennas being used, e.g., to enhance photon emission
rate and emission directionality from embedded solid-state
emitters. The presence of a photonic cavity also offers a way
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FIG. 1. (a) Ensemble of source (e.g., rare earth ions) and ab-
sorbers (defect traps) in a solid-state photonic cavity used to build
ultrahigh-density optical memories [6]. The NRET from the source
to the trap, mediated by the cavity mode, provides the basic func-
tional write process. (b) Cavity-mediated energy transfer. The virtual
photon participating in the NRET process is localized in the cavity
mode. Here, |GS®) and |[ES®/) represent the ground state and
the excited state of the source (S) and the absorber (A), respectively.
(c) Example of a spherical cavity representing, e.g., a nanoparticle
or a microparticle. (d) Schematic representation of the effect of the
cavity, treated with linear response, on energy transfer. The virtual
photon is expanded in the basis denoted as |1, ), where k represents
the wave number and « contains all other quantum numbers. The
scattering matrix [see Eq. (14)] is denoted as T, o (k) .

to dynamical tuning. For example, in photonic devices the
strength of light-matter coupling between embedded quantum
emitters and photonic modes can be controlled by thermal,
electro-optic, or piezoelectric tuning [26-28] of cavity reso-
nances. Designing modes of photonic nanostructures can also
facilitate entanglement between quantum emitters [29-33],
with the purpose of eventually building quantum networks
and quantum simulation platforms [29,30]. Further, photonic
structures are important in the context of ultrahigh-density
optical memories [6] realized using a large ensemble of
narrow-band deep-level emitters. Recently, we proposed that
ultrahigh-density atomic memories [6] can be realized by opti-
cally addressing each individual emitter in an inhomogeneous
ensemble so as to enable the transfer of excitations to a nearby
trap defect, as shown in Fig. 1(a). For illustrative purposes, the
photonic cavity in Fig. 1(a) is a vertical Fabry-Perot cavity, but
other implementations [13], including photonic crystals, mi-
cropillars, Mie resonators, and microring whispering gallery
resonators, are also viable. In such systems, tuning a narrow-
band cavity to a specific set of quantum emitters can be used
to activate the energy transfer process from the emitters to
nearby defect states, and therefore, the cavity mode can be
used to control the memory write process, as illustrated in
Fig. 1(b). Thus, developing a quantitative predictive model to
address near-field energy transfer in inhomogeneous dielectric
media—specifically nanophotonic cavity structures—is criti-
cally important.

Historically, interacting emitters mediated by a photonic
cavity have been described by a Travis-Cumming model [34],
where the cavity is assumed to be a narrow band comprising
a set of discrete delta-function photon modes. This assump-
tion is adopted in most polaritonic chemistry [35-39] studies,

where one is interested in polaritonic modes of electronic
systems embedded in strongly coupled plasmonic or ultra-
high Q Fabry-Perot cavity with very high relative coupling
strength (coupling energy/transition energy) up to ~0.1. In
this regime, full self-consistency of the photonic mode and
electronic structure is required [40], and the system size is
therefore limited to nanometer scale. Our regime of interest is
instead that of micron-scale photonic devices relevant to quan-
tum information applications, networks, and communication
platforms, where the photonic cavities are weakly coupled and
possess at most a relative coupling strength of ~ 10~#; in this
case, the discrete photonic mode approximation is not accu-
rate. More importantly, discrete photon modes are insufficient
to describe near-field energy transfer phenomena, where the
energy transfer is mediated by a broad spectrum of virtual
photon modes [6,41] whose energy broadening is controlled
by the uncertainty timescale of photons of short-lived nature.

Approaches that account for the broad continuum of
photon modes in photonic nanostructures are predomi-
nantly based on the dipole-dipole approximation, with
the emitters approximated as ideal two-level systems
[31-33,42-46]. Within the electric dipole (ED) approxi-
mation, the coupling matrix element between emitters can
be expressed as M = pg- G(w; Fs, 74)- pa [31], where
ps/a are the point electric dipoles approximating the

transitions at the source (S)/absorber (A) and G rep-
resents the classical electromagnetic Green’s tensor de-
fined by the Maxwell wave equation VxVxGQFHF7,o0)—
K*G(7, ¥, ) = (k3 /€0)I3(F — F'); here, k and ko represent the
wave number of the photon in the dielectric medium and
in vacuum, respectively, and € is the vacuum permittivity.
The change of the dipole oscillator strength for the indi-
vidual emitters is then given by the diagonal component of

G(w; Fs, F4)—i.e., the photon local density of states (LDOS)
projected along a specific direction pg of the source dipole and
is given by prpos(®) = 2 Im (ps - G(Fs, s, w) - ps) [24].
This formulation, however, only applies to pointlike dipole
sources [31] and multipolar modes, when considering the non-
local components of the Green’s function [47], but it cannot
be readily generalized to transitions between many-electron
states that have in general multireference character. Hence, to
allow for the design of devices involving realistic emitters,
with many-body electronic states, the dipole approximation
can no longer be applied, and a more general theoretical
framework is necessary.

Here, we present a framework where we treat the source
and the absorber with first-principles many-body theories; a
continuum of the virtual photon modes is accounted for by
a quantized multipolar basis, and the presence of a cavity
is described using linear response theory. We use the mini-
mal coupling framework [6,44,48] and a Pauli Hamiltonian
to account for the interaction of light with the many-body
electronic states, and we include orbital and spin degrees
of freedom. The framework presented here is generalized to
various geometries by choosing a suitable basis for the vir-
tual photon modes and applicable to varied combinations of
localized emitters representing a source and an absorber. As a
specific example, and to compare with our previous work [6],
we show the effect of a spherical cavity on the energy transfer
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process between an ideal dipole source and an F center in
MgO, acting as an absorber.

The rest of the paper is organized in the following way: In
Sec. II, we present the theoretical framework to account for
the effect of arbitrary photonic structures on the radiative and
nonradiative energy transfer processes between a generalized
source and an absorber at arbitrary length scales. In Sec. III,
we present the example of the optical absorption of the F
center in MgO from electric or magnetic dipole (MD)-like
sources, embedded in a spherical nanoparticle forming a cav-
ity. Finally, in Sec. IV we present our conclusions.

II. METHODS

We build upon our previous work [6] where we presented
a generalized framework to describe the energy transfer in ho-
mogeneous dielectric media within a weak coupling regime,
using a quantized multipolar basis representing the virtual
photon modes participating in the energy transfer process. In
the presence of the cavity, the Hamiltonian is

H = Hg + Hy + Hriela + Hine + Hicay- (D

The expressions of Hg, Hy, and Hpeq are the same as in
Ref. [6] and they are summarized below. The Hamiltonians
Hg and H, represent effective Hamiltonians of the isolated
source and the absorber. Each of them can be defined over
a Hilbert space that is spanned by Slater determinants of N4

electrons occupying a chosen set of active orbitals {|¢ES/A))}.
Both Hamiltonians Hs and H4 may be approximated by Kohn-
Sham Hamiltonians [49-51] or with effective Hamiltonians
using quantum embedding theories and many-body pertur-
bation theories [52-56]. To describe the NRET process, we
consider the ground (GS) and a given excited state (ES)
of the source and absorber, which in general can have a
multireference nature and in second quantization can be repre-
sented as [GSE®/A)) = a8 (ST (S/A)|D(S/A)) and

Z i€ occ l,S/ACj
j€ unocc

ES S/A)T (S/A
Z i oce Ol( ) C( JA)T (-/)lD(S/A)>

|ES(S/A)) — 5554 €5

, respectively,
Jj€ unocc

where |D) is a Slater determmant bu11t from the first filled N
orbitals, i.e., |[DS) = [TY, ¢! 710). Here, ¢ S/ denotes
the annihilation operator of an electron in the smgle particle
orbital |¢IFS/A) ). The field Hamiltonian can be simply ex-
pressed as Hrield = ) ;o szk[a;a ar.e + (1/2)], where az’a
is the creation operator of a photon in the mode k, ¢, k denotes
the wave number of the photon, and « denotes all other de-
grees of freedom specifying a mode. To represent the photon
modes |14 ), we use a complete eigen basis of the Maxwell
equations in a homogeneous dielectric medium. Depending
on the specific problem, this basis can be chosen as plane
waves [5], spherical waves [6], or cylindrical waves [57].
For example, in a homogeneous bulk, the vector spherical
harmonics are a convenient localized basis, as demonstrated
in our earlier work [6], for which « = {L, J,, P}, where L is
the orbital angular momentum, J, the z-projected total angular
momentum with integer values from —L to L, and P is the
parity of the photon mode with values from {—1, 1}.

We use the same interaction Hamiltonian (nonrelativistic
Pauli form) as in Ref. [6]:

D A 4
mt = Z Z|: e2m0 ezmo +€Ao

E=S,A i=1

eh - i|
+g—06;-VxA|. 2)
Zmo

Here, p, represents the momentum operator of the ith electron,
myg is the rest mass of the electron, g is the gyromagnetic
factor, and &; are Pauli matrices. We have neglected the elastic
scattering term A - A as it does not contribute to the second-
order perturbative NRET process, but it can be included if
needed when incorporating higher-order terms. We note here
that—because of the equivalence between the momentum op-
erator (p) and the current density operator (J ) of the electronic
states—the A - p term is equivalent to the A - j term used in
other works [18,58].

Similar to Ref. [6], in this work we adhere to the minimal
coupling picture [44] in the Coulomb gauge—thus enabling
the straightforward use of the electronic orbitals obtained
using first-principles theories. The effect of the dielectric con-
stant of the medium is contained in expressions of the field A
(Appendix A; Ref. [6]) and thus does not explicitly appear in
Eq. (2). We also note that the A - p term is equivalent to the
more commonly used E -7 term in resonant conditions [59]
and in cases where the electron Hamiltonian involves only
local interactions [6]. The latter assumptions are often not sat-
isfied in density functional theory (DFT)-based calculations.
Hence, using the interaction Hamiltonian of Eq. (2) provides
direct compatibility with first-principles electronic structure
calculations.

The difference between the formulation presented here
and in Ref. [6] is the presence of a cavity, described by the
Hamiltonian Hjc,y, which accounts for the inhomogeneity of
the dielectric medium resulting in the scattering between the
states of the eigen basis |14 ) of the homogeneous medium:

Hicay = Z Ry o ()| 1k e} (Lial- 3

k,o,af

The off-diagonal terms (« # «') represent the scattering be-
tween different multipolar modes, whereas the diagonal terms
(¢ = «’) represent an additional dispersion introduced by the
photon scattering. Here, we assume that the scattering is elas-
tic; i.e., nonlinear media are not included in our description,
and thus k remains a good quantum number in Eq. (3).

In the absence of Hjc,y, Within second-order perturbation
theory, the probability amplitude for the energy transfer pro-
cess is [6]

(8),,(4)

c(t) = /dkz Vka vkoc

e—iwst _ e—iwAt e—iwkt _ e—iwAt
X - )

wp — Wgs WA — Wy

where vy = (ESW|H,y|GSW, 11,)/V/Ak and v) =

(GS®), 14 o|Hind[ES®) /s/Ak are the matrix elements
corresponding to photon absorption and emission processes
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in the interaction picture, wg and w4 represent the transition
energies at the source and the absorber, respectively,
and w; is the energy of the photon. In the following,
we show how Eq. (4) is modified in the presence of
a cavity.

A. Linear response of the cavity

In the single-photon limit, the scattering of the photon
modes can be solved by employing Maxwell equations. To do
s0, we initialize a specific multipolar source of an electromag-
netic wave at the location of the source, and we solve for the
scattering into other multipolar modes, resulting in a scatter-
ing matrix T;, o (k), as shown in Fig. 1(d). The matrix T, o (k)
can be obtained either analytically for spherically symmetric
cases (see Appendix A) or using numerical techniques, e.g.,
the finite difference time domain method or the finite element
method for more generic structures. The Green’s function
of the photon can then be represented in the multipolar
basis as

Da,a’ (w) =

2a)k
E B 2 [Sa,a’llk,a’) <1k,a|
w* — (,()k

koo
+ T, o (O ko) el 5)

Note that here the radial function of the multipoles is as-
sumed to be a spherical Hankel function. The scattered wave,
however, is slowly varying at the source and thus can be
represented with a spherical Bessel function, indicated by the
subscript [J].

The linear response of the cavity affects the energy transfer
process in two ways. First, in the presence of the cavity, the
transition corresponding to photon emission from the source
is dressed with the photon mode; in the weak coupling regime,
this leads to the Purcell effect and to a small shift in the
transition energy. Second, the propagation of the photon from
the source to the absorber is affected. Both effects need to be
accounted for to obtain a complete picture of the modification
of the energy transfer process by the photonic cavity. They are
discussed next.

1. Effect of the cavity mode on the source oscillator strength

We start by considering the effect of the vacuum state
(zero photon occupation) in the cavity on the transition at the
source. One can think of the process as emission and imme-
diate reabsorption of the photon, represented by the Dyson
sequence shown in Fig. 2(a). Truncation of this sequence to
only the first term defines the weak coupling limit [45,60],
which is the relevant one for most nanophotonic device plat-
forms [19], as mentioned in the Introduction. In this limit,
self-energy can be evaluated as

~ mn, S, (S) (S)x ) (5)
~ e L ety e 0l | ©
o

where kg corresponds to the wave vector of the source
transition energy. The real part of ¥ represents the Lamb
shift and the imaginary part represents the radiative
decay rate [60]. From Eq. (6), we obtain the radia-
tive decay time = [2h/Im (¥)] = (2ch2/nni)Real

(a) e (b)
)
|ES™) 4 [0)) |[Es@)
Vka
) &
|ES > U(S), 5’1 o V(S)“//\? Da,a’
k.a , ka ﬁ o V(A)
+ + m((s)“%_'_ . ka
() ol ©)
)y Vka g vy
[ES™) V)E:So)t Da,a' “
|ESS) 1 [ES®)  |as@)
|ES®)

FIG. 2. (a) Diagrammatic expansion of the source transition be-
ing dressed by the vacuum cavity mode (see text). Truncating at the
first-order term defines the weak coupling limit [45,60]. (b) Diagram
showing the energy transfer process with the photon propagator
modified by the cavity. Here, |GS®/4) and [ES®/Y) are the ground
state and the excited state of the source (S) and the absorber (A),
respectively, and v(S/A) denote the matrix elements corresponding to
photon emission and absorption processes (see text). D(wr denotes
the photon propagator in the presence of the photonic cavity as shown
in Eq. (5).

oo vlgzz*v]g;/ + Ta,o/ (k)U(S)* 8 ]) and the

(Za Z(x’ ksa vksa’
Lamb shift Re (£) = Imag (mn:/hc) Yy Yo [Saar Viou Vo

+ Ty o (k)v,ﬁf;* v,(csgl ]1).In the absence of the cavity, we have

imn; 2
Ty == Xa: [V

which results in the radiative decay rate time of the
source in a uniform dlelectrlc medium T( ) = =2h/Im(%y) =

2ch? /Tni Yy, |v(s) | . The Purcell enhancement is defined as
the enhancement of the radiative decay rate of the source
transition in the presence of the cavity, compared to the case
where the source is in an infinite bulk material with no cavity.
Thus, from Eqs. (6) and (7) we can obtain a general expression
of the emission rate enhancement:

_ Im(%)
P Im(%)

We note that Eq. (8) is a generalized version of the Purcell
enhancement of an electric dipole emitter that can be ex-
pressed using the classical electromagnetic Green’s function
as F, o« Im (G(wy; Fs, Fs)). Equation (8) is general and holds
for realistic transitions involving many-body electronic states
where the transitions cannot be approximated as an electric
dipole.

The formulation in Eq. (8) captures the effect of arbitrary
transitions between multireference electronic states, as mod-
ified by the electric and magnetic resonances of the medium
that can be present simultaneously. The effect of the electric
dipolar, magnetic dipolar, or any other type of cavity multi-
polar interactions is automatically included in the sum over
all o’s Including all interactions is important; for example,
in dielectric resonators, such as Mie resonators with both
electric and magnetic resonances [25], source and absorber
transitions can be both of an electric and magnetic nature in
the same spectral range. Thus, our framework provides a way
to estimate the effect of generic nanophotonic environments

, (N

®
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on the electronic transitions of realistic spin defects, paving
the way to the design of optical and quantum memory devices.

Next, we use how the photon-mediated energy transfer
process is modified in the presence of the cavity.

2. Energy transfer mediated by the cavity

To include the effect of the linear response of the cavity
onto the transfer of the photon from the source to the absorber
[see Fig. 2(b)], we write the energy transfer probability ampli-
tude as

c(t) ——/deZ[wk "

S) . (A) $) . (A)
X ((Sa @V Vg F Tosar (K)Vi vy [J])

e—ta).yt _ e—ta)At e—iwkt _ e—lwAt
X - )
wp — g WA — W

where we have used the photon propagator from Eq. (5).
The enhancement of the photon LDOS at the location of the
source does need to be accounted for separately since it is
contained in the modified photon Green’s function [61]. The
functions v,iz,) and v,ii) are smooth functions of k. Also, in
the weak coupling regime where the cavity linewidth is much
larger than h/t, T, . (k) can be considered constant over the
uncertainty energy /i/t around the transition energy ks. Thus,
the factor (844 v,ii) v,ﬁf[) + Ty (k)v(s) ,Eé?[ J)) can be taken
out of the k integration resulting in a simpler approximate
form:

1
_ ($) , (A) (8) ,,(A)
c(t) == E E (8o, Vo Voo +T0,,a,(k5)vksavkw[”)
o o

dk e*iwst _ e*iwAt e*iwkt _ e*iwAt
X — .
Wy — wg wp — Ws WA — W

(10)

Further, for large ¢, the last term can be neglected resulting in
a simple contour integral [6] to give

2imn; ) ..(A) (8) (@)
c(t) =—- ZZ[5aa'kaa Vs T ool (ks)Viia Vg [JJ]
o o

sin[Aw(t/2)] _ 2Msin[(Aw/2)t]
x Aw a hAw ’

Y

where Aw = w4 — wy and the matrix element of the energy
transfer process, M, is given by

imn; (8) (@) (8) @)
= ZZ[ aol Vksa Vs o (Ks)Visa ¥ ksat [J]]'
o
(12)

Equation (11) is to be compared to Eq. (4), valid in the
homogeneous case. A key assumption here is that we only
account for energy transfer to the second perturbative order,
as indicated by the diagram shown in Fig. 2(b). This is a
realistic assumption in many systems [62,63] and particularly

relevant to optical memories [Fig. 1(a)], where the objec-
tive is to trap the excitation into a long-lived state at the
absorber. Physically, the trapping is enabled by the Stoke
shift of the absorber’s vertical transition due to the excited-
state relaxation process that prevents re-emission from the
absorber.

B. Spherically symmetric cavity

The formulation provided above is agnostic to the choice of
the basis representing the virtual photon modes. As a specific
example, here we consider a simple case where the source
is located at the center of a spherical cavity [see Fig. 3(a)].
The virtual photon modes are represented as multipolar modes
centered at the center of the sphere. The spherical cavity
can be realized using core-shell structures of microparticles
and nanoparticles, as discussed in Appendix A. The shell
of the nanoparticle provides an effective reflectivity, denoted
as I". The photon modes inside the sphere are expressed as
spherical waves—|1y 4[z]). The subscript Z denotes the type
of Bessel function used to describe the photon and it can be
J to represent standing waves, H1 (Hankel type 1) to rep-
resent radially outward propagating waves, and H2 (Hankel
of type 2) to represent radially inward propagating waves. A
radially outward propagating photon (spherical Bessel H1) is
reflected by the boundary of the cavity into a standing wave
mode (spherical Bessel J). We employ Maxwell equations to
solve for the electromagnetic fields with specific boundary
conditions of continuity of tangential £ and H fields at the
dielectric interfaces (see Appendix A). If the spherical par-
ticle shares the same center with the multipolar basis, the
mode «’s (L, Jz, P) are unaffected by the scattering process
resulting in

Ty, (k) = aq(k)da,ar- (13)
Under the assumption of a spherical cavity, the Purcell en-

hancement expression from Eq. (8) is simplified as

2
o |vlif;'[11| (1 + Re(an(ks)))

) |2
ksa/[J]

F, =

(14)
X lv

The energy transfer matrix element in the spherical cavity
approximation can be written as

Mger = % VO + auksw ] (5)

o

Equations (12) and (15) provide a general framework to de-
scribe energy transfer processes for any arbitrary dielectric
environment, where the response T, . (k) can be computed
from the Maxwell equations. Thus, the above framework can
be used to obtain the coupling and energy transfer between
arbitrary emitters embedded in a nanophotonic device. Note
that the effects of the modifications of the emission rate of
the source by the cavity and the source-to-absorber energy
transfer have been expressed using matrix elements (v,ﬁf; and

v,ﬁA;) of the Pauli Hamiltonian with many-electron states,

1ncluding orbital and spin degrees of freedom. Importantly,
here we account for dipole-allowed and dipole-forbidden
transitions on the same footing, thus enabling the determi-
nation of the effect of a photonic nanostructure on electric
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FIG. 3. Response of a spherical cavity as a function of its size. The structure of the cavity is defined in panel (a). Panel (b) shows
the distribution of the vector potential (A, left panels) and magnetic field (V x A, right panels) inside the sphere for different modes
including electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole. Panels (c)—(f) show the response a, as a function
of photon energy and cavity radius for electric dipole, magnetic dipole, EQ, and MQ modes correspondingtoo = {L =1, J; =0, P = —1},
{L=1,J;=0,P=1},{L=2,J;=0,P=1},and {L =2, J; =0, P = —1}, respectively. The different streaks correspond to modes of
different radial orders. We investigated two values of Rc,, as indicated by the red stars in panels (c) and (d), with Rc,, = 55.2 nm having a
magnetic dipole resonance at 5eV and Rc,, = 88.4 nm having an electric dipolar resonance at 5eV (see text).

dipole-forbidden transitions for arbitrary quantum emitters.
The localized emitter can be, for example, native and im-
planted atomic defects, including rare earth, deep-level color
centers, and distributed defects such as colloidal or epitaxial
quantum dots.

III. RESULTS

In this section, we present results for an exemplary system,
where the absorber is an F center in MgO and the source is an
ideal electric or magnetic dipole.

The oxygen vacancy center in MgO has been extensively
investigated both experimentally and theoretically over sev-
eral decades, utilizing techniques such as optical absorption,
photoluminescence, and electron spin resonance [64—67]. Ex-
perimental studies have identified the optical absorption of
neutral F centers around ~ 5eV, with emissions occurring

at approximately 2.3 and 3eV. The optical absorption is
a result of a transition between a localized midgap s-type
orbital (|s)) and localized p-type orbitals (|py), |py), |p:)
just above the conduction band edge (see Ref. [6] and Ap-
pendix C for details). In the ground-state configuration of
the neutral F center, both spin states of the s orbitals are
filled resulting in a singlet ground state | 'A;, ) = sy, s1)-
The first excited singlet state can be written as | 'T}, ) =
1/\/§(|PT’ sy) + sy, py)) whereas the three triplet ex-
cited states are | *Tiy, m-0) = 1/v2(Ipt. 51) = Is. p1)),
13T, m=1) = sy, pr), and [Ty m——1) = | py.sy). We
calculate the electronic orbitals using Kohn-Sham DFT (de-
tails in Appendix C and Ref. [6]). Note that a more accurate
many-body approach [52-56,67] can be readily implemented
to better approximate the energy levels and the Slater de-
terminants corresponding to the many-electron localized
eigenstates. We then calculate the matrix elements between
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the singlet ground state | 'A;, ) and the singlet excited state
| 1Ty, ) or the triplet excited states | 3T, m.—0)s | *Tiu. m=1)>
and | 3Ty, n.——1) in the following way:

1
("1 | HinIGS, 114) = EW |Hingls1, Lo
+

1
ﬁ(pHHimhi, Tea), (16)
(T m=1 | Hin|GS. 1k o) = (Pt [ Hinlsy, 1k, o). (I7)

<3Tlu,m5:—] |Hint|GS’ 1k,a) = <P¢|Him|ST» 1k,0t >v (18)
1
(T m=0| Hint|GS. 1) = E(PMHindST, o)

1
- E(p”Him“Ls lie). (19)

The radial function in the multipole photon mode used to
obtain v,ﬁ?)a or v,E?)a (71 18 chosen to be either spherical Hankel
of type 1 or spherical Bessel J.

We demonstrate the effect of the cavity mode on the
dipole-allowed and dipole-forbidden NRET processes using
a spherical dielectric enclosed by a reflective surface. Quan-
tum emitters embedded in nanoparticles have long been of
interest due to the possibility of integrating them into a vast
range of nanophotonic devices [68] and due to the interest
in using a bottom-up synthesis approach. For sizes much
smaller than the wavelength of the photon in the medium
(~ A/m;), the optical response is dominated by Rayleigh scat-
tering providing an electric dipolar response. On the other
hand, if the size of the nanoparticle is comparable to the
wavelength, Mie resonances [25,69-73] are allowed and they
can provide both magnetic and electric responses of various
orders, including dipolar, quadrupolar, and octupolar modes.
For example, the magnetic dipole response is caused by the
resonance of the electric displacement current in the dielectric
medium within an enhanced magnetic field at the center of
the nanoparticle. Such resonance is expected to favor orbital-
and spin-forbidden transitions, given their magnetic dipolar
nature. Thus, the interplay between the size of the nanoparticle
governing the Mie resonance mode and the nature of the
many-body transition at the source and the absorber provide
a rich space to investigate design principles for enhancing
specific transitions partaking in the transfer process.

Mie resonances have been observed in dielectric building
blocks of size ~ X /n;, for various sizes and shapes, including
spheroidal, cylindrical, or rectangular, and for various mate-
rial systems, including oxides and semiconductors [69-73].
The quality factor of these resonances is typically limited to
a few hundreds. However, a nanoparticle can be coated with
a high index dielectric or high-conductivity metal layer in a
core-shell structure to enhance the reflection from the surface,
resulting in higher QO modes. Here, we choose a spherical
nanoparticle of radius Rc,y, and we assume a semireflec-
tive coating at the surface, with a reflectivity I' taken as a
parameter, which is determined by the core-shell material
combination, as shown in Appendix A.

For the spherical cavity shown in Fig. 3(a), we use
the boundary conditions corresponding to a dielectric

interface and we solve for the cavity response a,(k)
analytically (see Appendix A). Figure 3(b) shows the
distribution of the vector potential and the magnetic
field inside the nanoparticle for different values of a—
specifically ED (e ={L =1, J;, =0, P=—1}), MD (0 =
{L=1,J; =0, P=1}), electric quadrupole (EQ) (¢ =
{L=2, J;,=0, P=1}), and magnetic quadrupole (MQ)
(¢« ={L=2, J; =0, P=—1}) modes. Of particular inter-
est are the ED and the MD modes since at the center of
the nanoparticle, where the source is located, they exhibit an
antinode of the vector potential |A| and of the magnetic field
|V x A, respectively.

By controlling the size of the nanoparticle, it is possible to
control which specific mode is enhanced by the cavity at a de-
sired transition energy. To illustrate the available design space,
in Figs. 3(c)-3(f) we show the response a, ( k) corresponding
to the ED, MD, EQ, and MQ modes as a function of the cavity
radius. We see that at any specific energy, with increasing
nanoparticle radius, there are multiple peaks in the response
(indicated by the multiple yellow streaks). Figures 3(c) and
3(d) indicate the specific size of the nanoparticle one should
choose to enhance electric dipole and magnetic dipole tran-
sitions. Based on these results, we chose two specific sizes
Rcay = 55.2 and 88.4 nm—as indicated by the red stars—that
are analyzed in detail below. At these two sizes, we have a
magnetic dipole and an electric dipole resonance, respectively,
at 5 eV, the source transition energy—and in the following, we
investigate the nonradiative resonant energy transfer processes
from an electric dipole source/magnetic dipole source to the
oxygen vacancy in MgO as an absorber.

A. Purcell enhancement spectra

In Fig. 4, we show how the cavity mode modifies the oscil-
lator strength of the source—which can be either an electric
dipole (@ = {L =1, J; =0, P = —1}) or a magnetic dipole
(e ={L=1, J; =0, P=1}). The generalized Purcell en-
hancement is computed using Egs. (6) and (8) and using
the spherical cavity response a, (k) calculated analytically as
shown in Appendix B.

Specifically, Figs. 4(a) and 4(b) represent the Purcell en-
hancement caused by the cavity of radius 55.2 nm on an
electric and a magnetic dipole source, respectively, as a func-
tion of the source transition energy. Since at R = 55.2nm
the cavity has a magnetic dipole mode at ~5 eV, we see a
significant Purcell enhancement of a magnetic dipole source.
Correspondingly, there is a significant de-enhancement of the
electric dipolar source, as indicated in Fig. 4(a). This result
points to a potential pathway to selectively enhance dipole-
forbidden transitions compared to dipole-allowed ones, by
tuning a magnetic cavity mode. In Figs. 4(c) and 4(d), we
show the Purcell enhancement spectra for the cavity of radius
88.4 nm for which there is an electric dipole resonance at
~5 eV. In this configuration, we observe an enhancement of
the electric dipole transition due to the cavity mode and a cor-
responding de-enhancement of the magnetic dipole transition.
Such a configuration can be used to further enhance dipole-
allowed transitions and suppress orbital- and spin-forbidden
transitions in quantum emitters.
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FIG. 4. Generalized Purcell enhancement spectra [Eq. (14)] for electric/magnetic dipole source embedded in cavity with electric or
magnetic dipolar modes. (a) ED source with MD mode (Rc,y = 55.2nm), (b) MD source with MD mode, (c) ED source with ED mode

(Rcay = 88.4nm), and (d) MD source with ED mode.

B. Distance dependence of matrix elements

The dependence of M on the source-absorber distance orig-
inates from the modification of the photon propagator due to
the cavity. From Eq. (15), we can see that at a specific «, this
distance dependence is

M(R) o [via (R) + au (k)vi) /,(R)]. (20)
Here, v{") (R) = (ESW|Hin|GSW, It u,(R))//Ak, where
the dependence on R is contained in the photon mode. We
first discuss a simple physical intuitive picture to explain the
various terms that contribute to the distance dependence of M
in the presence of a cavity. We consider the case of a transition
of a single electron from orbital ¢; and spin x; to another
orbital ¢, and spin x,. The interaction Hamiltonian in the
Coulomb gauge and for a single electron can be expressed as
(he/2my)[2Ar.o(R ) - V; + g& - B(R)]. Thus, for a specific a,
the matrix element can be expressed as

M(R) x 2(¢2|[Axa(R) + ag(k)A o1 (R)1- V1) (x21x1)

+ (21[Bra(R) + ay(k)Biatn(R)11) - (X215 1x1)-
21

When the orbitals ¢, and ¢, are of opposite parity, e.g.,
|¢1) =|s) and |¢2) = |p), and spin is conserved, i.e., x; =
X2, the first term in Eq. (21) is the dominant term, re-
sulting in a distance dependence that is approximated by

(PIAra(R) + ag(k)Ay on(R)] - V|s). From the expression
of Ay «(R ), shown in Appendix A, we can see that the dis-
tance dependence is expected to be a sum of the spherical
Hankel function and the spherical Bessel function of type J.
If we further assume that the spatial spread of the orbitals
is much smaller than the variation of the field, we can take
[Aro(R) + ay(k)Ay41(R )] out of the inner product, and in
this regime we recover the distance dependence of M under
the dipole-dipole approximation.

For |s) to | p) spin nonconserving transitions (x; # x2), we
obtain an expression different from that of the dipole approx-
imation, as the first term in Eq. (21) vanishes ({x2|x1) = 0)
and only the second term results in a nonzero matrix ele-
ment ({x2]0x/y|x1) # 0). Further, because the orbital inner
product is taken between an s and a p orbital that are or-
thogonal, the gradient of the B field results in a nonzero
matrix element. Thus, the distance dependence of M for spin
nonconserving absorption transition is dominated by that of
the gradient of the magnetic field. Because the gradient of
the Hankel function at near field is much larger than the
gradient of the slowly varying Bessel J function, the cav-
ity has a much weaker effect on the distance dependence
of M for spin nonconserving transitions, compared to the
spin-conserving case. Thus, the range of the spin-conserving
transitions is improved more significantly than that of the
spin nonconserving transitions in the presence of the photonic
cavity.
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FIG. 5. Matrix elements corresponding to the energy transfer process [Eq. (15)] as a function of the distance between an electric/magnetic
dipole source and the F center in MgO (absorber); the source and the absorber are both embedded in a spherical cavity of radius 88.4 nm (The
electric dipole resonance is at 5eV). Panel (a) shows results for an electric dipole source and a cavity wall with reflectivity I' = 0, 0.9, and
0.99. The I' = 0 case mimics an infinite bulk material and serves as a reference. Panel (b) shows results for a magnetic dipolar source and a
cavity with wall reflectivity I' = 0, 0.9, and 0.99. The Y axis represents M in ueV plotted on a log scale.

Equation (20) also provides us with a path to investigate
the interference effect between the direct photon propaga-

tor [UIE?)O[ (R)] and the cavity-mediated photon propagator

[aa(k)v,g;[ 7 (R)]. If the destructive interference condition is

met, i.e., [v,i?)a R) + aa(k)vli‘?;[ J](R)] = 0 corresponding to
the dominant mode «, a suppression of the overall energy
transfer rate can be achieved. This interference condition pro-
vides a way to prevent the energy transfer at specific distances
from the source by controlling the energy shift between the
cavity mode and the transition energy; it can potentially allow
for the suppression of decoherence and trapping processes as
well as for the improvement of the stability of certain excited
states for memory applications.

For realistic systems, a generic transition between many-
body electron states of multireference character can possess
allowed or forbidden orbital parity and spin-conserving and
nonconserving components simultaneously. Our framework
allows for the description of all possible many-body tran-
sitions and all multipolar modes of the photon and hence
enables the study of energy transfer between arbitrary systems
of defects. For example, we note that for spin nonconserv-
ing transitions the second term in Eq. (21) contributes to
the matrix element and the dependence of M on R origi-
nates from the magnetic field [Byo(R )+ ag(k)Bi ais)(R )]
In many materials containing rare earth ion defects, tran-
sitions between orbitals of the same parity are particularly
interesting, as they provide magnetic dipole transitions, e.g.,
erbium ions implanted in MgO [74,75]. In the following, we
present illustrative examples of using the energy transfer from

a dipolar source to an oxygen vacancy in MgO and other
oxides [6].

C. Energy transfer matrix elements for Vo: MgO absorber

Here, we compute the NRET matrix elements using
Eq. (15) for a configuration of the dipolar source at the center
of the spherical cavity and the vacancy in MgO as an ab-
sorber, placed at a distance R along the X axis. The results
are shown in Figs. 5 and 6. Specifically, we calculate the
energy transfer matrix elements corresponding to the dipole-
allowed singlet-to-singlet absorption and the dipole-forbidden
singlet-to-triplet absorption. We show below that depending
on the choice of the cavity radius and depending on whether
the cavity has a magnetic or an electric mode at the emission
energy of the source dipole, we obtain drastically different
matrix elements.

1. Electric dipole cavity (Rc.y = 88.4 nm)

If the cavity radius is chosen such that the transition energy
coincides with the peak of the electric dipole resonance, as
per Eq. (14), the electric dipole type transition matrix ele-
ment at the source is enhanced while the magnetic dipole
transition matrix element is suppressed. In addition, the elec-
tric dipole mode excited in the cavity results in a modified
photon propagator from the source to the absorber, as shown
in Eq. (15). The dependence M on the source-absorber dis-
tance is shown in Fig. 5, where we plot log,,(|M]) as a
function of the distance between the source dipole and the
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FIG. 6. Matrix elements of the energy transfer process [Eq. (15)] as a function of distance between an electric/magnetic dipole source and
the F center in MgO (absorber); the source and the absorber are both embedded in a spherical cavity of radius 55.2 nm (the magnetic dipole
resonance is at 5eV). Panel (a) shows results for an electric dipole source and a cavity wall with reflectivity I' = 0, 0.9, and 0.99. The I' = 0
case mimics an infinite bulk material and serves as a reference. Panel (b) shows results for a magnetic dipole source and a cavity wall with
reflectivity I' = 0, 0.9, and 0.99. The Y axis represents M in ueV plotted on a log scale.

F center. The solid lines show cases where I' (cavity wall
reflectivity) is zero, mimicking an infinite bulk material. In
this case, we obtain the same response as shown in Ref. [6];
i.e., the electric dipole source [Fig. 5(a)] results in a dominant
spin-conserving singlet-to-singlet transition at the F cen-
ter, while a magnetic dipole source [Fig. 5(b)] leads to a
dominant spin nonconserving singlet-to-triplet transition. The
dashed lines in Fig. 5(a) show the energy transfer matrix
element when the cavity wall reflectivity is chosen as 0.9
and 0.99 (corresponding to Q ~ 20 and Q ~ 400). We
find that the enhancement in the energy transfer matrix el-
ement from an ED source can reach a significant value of
few orders of magnitude and the distance dependence is
changed significantly, relative to the homogeneous case. In
addition to changes in the dipole-allowed transitions, we ob-
serve that in the presence of the electric dipole resonance
spectrally tuned to the electric dipole source, the energy trans-
fer matrix element of the spin nonconserving transition is
significantly modified, in both magnitude and distance de-
pendence. The dashed lines in Fig. 5(b) show the behavior
of NRET from an MD; source in the cavity with an electric
dipole mode. We see that the distance dependence remains
mostly unchanged with respect to the case with no cavity
(solid line), as expected due to a weak influence of the cavity
mode.

2. Magnetic dipole cavity (Rc,y = 55.2nm)

If the cavity radius is chosen to be 55.2nm so that the
magnetic dipole resonance coincides with the transition and
the electric dipole resonance is far detuned, we observe effects

that are opposite to those described above. In this config-
uration, the emission matrix element [v®] for a magnetic
dipole source is enhanced and electric dipole source is dimin-
ished, as described by Eq. (8). Thus, with increased cavity
quality factor, we have an enhancement in energy transfer
from a magnetic dipole source, as shown in Fig. 6(b), while
the energy transfer from an electric dipole source remains
unaffected [Fig. 6(a)]. The enhancement is reflected in both
the singlet-to-singlet and singlet-to-triplet absorption, as indi-
cated by the different colors in Fig. 6(b).

The dependence of M on the source-absorber distance
for the spin nonconserving transitions in Figs. 5 and 6
can be now understood with the help of Egs. (18)—(20).
We see from Eq. (18) that the photon absorption matrix
element for the singlet to my; =1 triplet (blue curve in
Figs. 5 and 6) transition is dominated by spin-flip transi-
tion between the defect s orbital to the defect p orbital
({py |Hin |84, 1k, o)), which, guided by Eq. (21), can also
be written as (pl[Bia(R) + ao(k)Biap)(R)Is) - (I 6] 1).
The spin inner product is nonzero for the X and Y com-
ponents of the Pauli matrices, and thus the gradients of
the By and By fields provide the dominant distance de-
pendence of M corresponding to the singlet to m; = 1
triplet transition at the F center. On the other hand, for
the singlet to my; = 0 triplet (violet curve in Figs. 5 and
6) transition, using Eq. (21), the absorption matrix ele-
ment can be expressed as (p|[By.o(R ) + ag(k)Bi o121 (R)]|s) -
[(4 o] )= (1 |o] 1)]. This matrix element is only nonva-
nishing for the Z component of &. Thus, in this case, the
distance dependence of M is provided predominantly by
the dependance of the gradient of the B, field along the
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Z direction. For both the singlet to m,; = 0 triplet and singlet
to my = 1 triplet, since it is the gradient of magnetic field
that provides the dominant transition, we see that the photonic
cavity does not alter the distance dependence significantly at
short distances (R < 10nm) compared to the dipole-allowed
singlet-to-singlet transition. This is because at near field, the
gradient of the Hankel functions dominates over the gradi-
ent of the slowly varying Bessel J functions that constitute
the cavity mode. Thus, in Fig. 6(b) we see that the radial
dependence of the NRET to the singlet-to-singlet transition
is rather flat, whereas the distance dependence of the NRET
to the singlet-to-triplet transition retains its bulklike ~ 1/R*
behavior up to ~10 nm separation.

The above example demonstrates that all the possible de-
tails of the various transitions, spin allowed and forbidden,
between many-electron states are all combined under a uni-
fied framework, which can be used to evaluate the near-field
resonance energy transfer matrix element M [Eq. (12) for
generic photonic cavities and Eq. (15) for specific to spherical
cavities]. Thus, the framework is immediately applicable to
any localized emitters with an arbitrarily complex electronic
structure.

3. Effect of cavity mode detuning

In both examples discussed above, we assumed the cavity
mode to be spectrally aligned with the transition energy of
5 eV. However, the major advantage of having enhanced
NRET using a cavity comes from the fact that the cavity mode
can be tuned by various means such as electro-optic or thermal
processes. Such processes may provide a microscopic control
on individual pairs of emitters for ultrahigh-density optical
memories. Also, controlling energy transfer by tuning the cav-
ity mode provides a way to control coherent transfer between
emitters and to entangle operations in quantum memories and
networks. To explore these phenomena, we study next the
effect of a cavity mode that is detuned with respect to the
transition energy.

When the energy mismatch between the cavity mode and
the transition is increased, the response a, (k) shows the res-
onance profile with symmetric real part and antisymmetric
imaginary component as indicated in Appendix B. The overall
effect is captured in Fig. 7, where we plot the amplitude
of the separation R and the spectral mismatch between the
cavity mode and the transition energy (fixed at 5eV). The
NRETs corresponding to the singlet-to-singlet absorption and
the singlet-to-triplet absorption with m; = +1, —1, and 0 are
plotted in each panel side by side. Figures 7(a) and 7(b) rep-
resent the reference case where I' = 0 and the cavity mimics
an infinite homogeneous bulk medium. Figures 7(c) and 7(d)
show a cavity with Rcay = 55.2 nm for ED and MD sources,
respectively, and Figs. 7(e) and 7(f) show a cavity with Rcyy =
88.4 nm for ED and MD sources.

In Figs. 7(d) and 7(e), the symmetry of the source dipole
matches the symmetry of the cavity mode resulting in a peak
in the NRET matrix element when the cavity mode is tuned.
As the cavity mode is detuned, we see a decrease in the NRET
matrix element by ~2 orders of magnitude over ~50 meV
detuning for a cavity with I' = 0.99. For the cases where
the cavity mode symmetry is different from that of the source
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FIG. 7. Variation of the matrix element |M| (plotted on a log
scale of M in peV) as a function of the source-to-absorber distance
(R) and energy mismatch (AE) between the source transition and the
cavity mode, for various configurations. The left column [panels (a),
(c), and (e)] shows results for an ED source and the right column
[panels (b), (d), and (f)] for an MD source. The top row [panels (a)
and (b)] corresponds to the reference case of no cavity (I' = 0).
The middle row [panels (c) and (d)] and the bottom row [panels
(e) and (f)] show cases corresponding to cavity radii Rc,y = 55.2nm
and Rc,y = 88.4nm, respectively, both for I' = 0.99. The transition
energy at the source and absorber is fixed at 5 eV, and the cavity mode
is shifted to result in a spectral mismatch. On each panel, each strip
corresponds to a specific transition at the absorber (singlet to singlet
or singlet to triplet with m; = 0, 1, —1). Each strip on the AE axis
represents a =200 meV range, and the black line at the center shows
the case where the cavity is spectrally matched with the transition
energy.

dipole, i.e., panels (c) and (f), we find a response insensitive
to the energy mismatch.

A practically relevant situation occurs when there is
destructive interference between the direct coupling term
[v,({?)a (R)] and the cavity-mediated coupling [a, (k)vlifi[ (B
corresponding to the dominant mode («). When such a con-
dition is achieved, the energy transfer is suppressed, and
we find a minimum in the function [M|. In Fig. 8, we demon-
strate this effect. In panel (a) of Fig. 8, we show for clarity the
same surface plot also shown in Fig. 7(e) corresponding to the
singlet-to-singlet transition. In panel (b) of Fig. 8, we show
the section indicated by the dashed black line in panel (a)
corresponding to R = 12 nm. The dip around AE ~ 170 meV
indicates an order of magnitude suppression in the value
of |M|. The reason behind this suppression is illustrated in
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FIG. 8. (a) Surface plot of log of |[M| [see Eq. (20)] as a
function of the source-absorber distance (R) and energy mismatch
between the cavity and the transition [same as shown in Fig. 7(e)
and repeated here for clarity]. The dashed line corresponds to R =
12nm—also plotted in panel (b). Panel (c) shows the real and
imaginary components, respectively. The dip in [M| around AE ~
170 meV corresponds to the destructive interference between the
direct coupling term [v,((?)a (R)] and the cavity-mediated coupling

[ag (k)v,(:;[ 1 (R)] resulting in the cancellation of the imaginary com-

ponent of M as indicated by the dashed vertical line in panel (c).

panel (c) where we plot the real and imaginary components
of M at R = 12nm as a function of the energy mismatch
AE. We see that, because of the asymmetry in the imag-
inary component of the response a,(k) (see Appendix B),
Im(M) vanishes for a specific AE, resulting in a minimum
in [M].

The above results provide further evidence that with a
tunable cavity it is possible to control NRET processes be-
tween a specific source and a specific absorber. Hence, it
is a demonstration that the cavity mode can be exploited to

enhance the energy transfer rate at ~10nm separation by a
factor of 10-100; further, by tuning the cavity mode a sup-
pression of similar order of magnitude can be achieved. Thus,
using a suitably designed cavity mode enclosing an ensem-
ble of emitters, desired transitions can be activated, enabling
energy transfer in a controllable fashion; they can be deacti-
vated as well—overall providing a long-lasting excited state
and preventing decoherence and trapping processes. Such
processes are relevant to the design of optical and quantum
memory devices.

D. Incoherent transfer regime

We note that the formulation of NRET developed here
[see, e.g., Eq. (11)] describes the coherent coupling regime
where the probability of transfer is represented as Pyrer(f) =
[4|M *sin®(Awt /2)]/F* Aw?. Thus, with enhancement or sup-
pression of the matrix element M by the cavity, the probability
of NRET is o |[M|*. The effect of the cavity is also present in
the incoherent NRET regime, where the emission spectrum of
S and the absorption spectrum of A are incoherently broad-
ened, as indicated by the density functions, ps(w) and p4(w).
In that case, in the large ¢ limit, the probability of NRET at
time # can be evaluated as a statistical sum given by

2w 2
Ber() = = / dops@pa@IM@)P.  (22)

Thus, as long as the cavity mode spectrum overlaps with the
joint spectral density of the source and the absorber [i.e.,
ps(w)pa(w)], the effect of the cavity will be present in the
incoherent NRET regime as well. This provides a broad ap-
plicability of our framework to systems with a high degree of
dephasing such as nanoparticles obtained by solution chem-
istry and embedded quantum emitters, and room temperature
devices.

IV. CONCLUSIONS

Building on our previous work [6] on first-principles
NRET in homogeneous media, we presented a generalized
framework to predict nonradiative resonant energy transfer
processes in a cavity, at arbitrary distances between two realis-
tic solid-state emitters characterized by many-body electronic
states. The effect of the cavity on the emitters is described
with linear response. The assumption made in our work is
that of neglecting the direct exchange of the electrons be-
tween the emitters, assuming they are separated far enough
to prevent direct orbital overlap. Our approach accounts on
the same footing for the two major effects of a general
cavity, without any dipole approximation and without any
two-level system assumption on the source and the absorber:
(1) In the presence of the cavity modes, the transition at the
source is dressed, resulting in a negligible Lamb shift and
an emission rate enhancement (Purcell effect) in the weak
coupling regime. (2) The emitted photons from the source
undergo scattering before reaching the absorber, resulting in
a modification of the photon propagator from the source to
the absorber.

We applied our approach to an exemplary system of ab-
sorption into an F center in MgO from a dipolelike source
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(electric or magnetic) where both the dipole source and the F
center absorber are embedded in a spherical cavity mimicking
a nanoparticle. By choosing this example, we could directly
compare with the results of our earlier work [6] in homoge-
neous media. We investigated two radii of the spherical cavity,
88.4 and 55.2 nm, which result in electric dipole and magnetic
dipole resonances, respectively. We showed that the electric
dipole resonance provides a significant Purcell enhancement
to a source electric dipole and significant suppression of
a magnetic dipole source, and vice versa. We reported for
the first time the comparison between spin-conserving and
spin nonconserving transitions not addressed in earlier works
based on dipole approximation, and we accounted for both
the modification of the source oscillator strength and the pho-
ton propagation. We showed that the dominant term of the
matrix elements associated with orbital-forbidden transitions
originates from the magnetic field and gradient of the vector
potential, whereas that of spin-forbidden transitions originates
from the gradient of the magnetic field. More importantly, our
framework allows for the first time a general description of
source and absorber sites where the transitions are between
many-electron states, with an explicit, simultaneous treatment
of orbital- and spin-forbidden transitions. Using our frame-
work, we provided insights into the ways a cavity may be used
to control (enhance or suppress) spin nonconserving transi-
tions in an NRET process. Our results indicate that cavity
modes can be used to enhance/suppress the NRET processes
between emitters by at least a factor of ~100 even when using
cavities with moderate Q ~ 400. Engineering cavity modes
by altering the cavity on the micron scale provides a way to
control the energy transfer between defects at the ~10 nm
scale.

The framework presented here is readily applicable to
varied platforms of interest that rely on an ensemble of lo-
calized quantum emitters embedded in solid-state devices
over macroscopic separations—including quantum memory,
quantum photonics, and optical memory platforms. Because
there are no assumptions made on the specific type of the
localized emitters, one can investigate optical memories and
quantum memories comprising of, e.g., quantum dots, deep-
level defects, rare earth emitters, and native defects. Because
we use macroscopic QED to describe the photon propagation,
the framework can be applied to coupled emitters over macro-
scopic and device-level micron-scale distances without any
significant increase of computational complexity and without
any sacrifice in computational accuracy of light-matter inter-
action at each site.

Interestingly, in the ultrahigh-density optical memory, a
tunable cavity mode can be exploited to enable energy transfer
from a specific excited rare earth ion to a specific trap de-
fect. The cavity mode can then be detuned to prohibit further
decay or transfer and essentially create long-lived trapped
excitations as memory bits. Further, one may control swap
operations between two localized emitters [9], often used as
communication nodes and memory nodes, which are key to
implementing CNOT and other quantum logic operations.
In addition, the ability to suppress the NRET process using
cavity mode provides a way to suppress decoherence due to
spectral diffusion in ensemble emitters in solid-state devices,
which is essential for good fidelity. Overall, the capability of

o
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FIG. 9. Generic core-shell structure of a spherical cavity and de-
composition of scattering of an outward propagating wave (|1 4(x1)))
in the different dielectric layers. The effective reflectivity into the
nanoparticle core is given by I'.

investigating arbitrary many-body transitions paves the way to
avenues to study distribution of entanglement in ordered and
random arrays of emitters in a cavity for quantum photonic
information processing applications.
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APPENDIX A: SOLVING RESPONSE OF SPHERICALLY
SYMMETRIC CAVITY

In this work, we have assumed a simplified model for
a photonic cavity, a sphere surrounded by a coating of re-
flectivity I' taken as a free parameter. In this section, we
outline how such a simplified cavity structure may represent
realistic systems based on core-shell structures of nanoparti-
cles. Core-shell nanoparticles can comprise multiple layers of
shells consisting of a metal coating or a high index dielectric
material. In general, the response of such structures can be
solved using a transfer matrix approach in a spherical basis,
as outlined below [77]. In Fig. 9, we show a generic core-shell
structure of the spherical nanocavity.

The response can be computed by using Maxwell equa-
tions and using the continuity of the tangential £ and H fields
at the interface. We use the spherical waves as the basis of
the photon mode. The transverse component of the vector

033229-13



SWARNABHA CHATTARAJ AND GIULIA GALLI

PHYSICAL REVIEW RESEARCH 7, 033229 (2025)

magnetic potential can be expressed as

o 1 [k L ] A
AL () = VR T 1gL+1(kr)YL,L+l,J;(r)
norm
L+l ] .
+ YA lgL—l(kr)YL,L—l,L(r) . (A1)

In the Coulomb gauge, the scalar potential is taken as zero and
the vector magnetic potential is purely a transverse field. The
associated electric and magnetic fields are expressed as

E = iwA) (A2)
and
B=V xA. (A3)

We note that k in Eq. (A1) is given as k = n;kyyc, kyac being
the vacuum wave vector and n; = /€ the refractive index, and
thus it is valid in any dielectric medium.

Using the above, next the response is readily calculated by
expressing the scattered wave as a superposition of radially
outward propagating (Hankel type 1) and inward propagating
(Hankel type 1) waves:

e 1wy,
=blT1 bh1
=Dy 1k a@)) + b, 1k aH2))s

= b g an) + 05 i a2)

r <Ry,
Ry <r <Ry,

R; <r <Riy.
(A4)

Here, k; is the wave vector of the photon in the ith shell.
In the outermost shell, the coefficient b, is set to zero. The
boundary conditions are continuity of the tangential E field
(7 x A) and the tangential magnetic field (7 x V x A) at
each dielectric interface, i.e., r = Ry, Ry, ... R, resulting in
2n equations. The solution of this matrix equation provides
a value for I', the effective reflectivity of the nanoparticle
shell. For a single dielectric interface, the magnitude of the
reflectivity is given by the refractive index contrast, i.e., |[I'| =
(Rin — Nout)/ (Min + Noue)- The phase of I' can be obtained by
including the propagation phase factors from the center to the
boundary of the nanoparticles. Thus, for a single dielectric in-
terface, the refractive index contrast limits the value of I", and
dielectric nanoparticles often result in weak photonic modes
with O < 100. Either metal coating or multiple core-shell
structure is needed to boost I" and create a stronger response.

Once I' is obtained using the above, the reflected wave
I" |14,4(#2)) produces a standing wave, as a result of multiple
scattering. This provides us with a way to calculate the cavity
response a, (k) using the equation

r
agk)=T4+T> 403 .= ——.
1-T

(A5)
APPENDIX B: LAMB SHIFT AND PURCELL
ENHANCEMENT IN THE WEAK COUPLING REGIME

In Fig. 10(a), we show the complex spectrum of the cavity
response function for a spherical cavity of radius 88.4 nm
anda =L =1,Jz =0, P = —1 corresponding to a magnetic
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FIG. 10. (a) Spectrum of the response of an ED cavity (radius
R = 88.4 nm) and wall reflectivity I' = 0.9. Panels (b) and (c) show
the Lamb shift and the Purcell enhancement spectra, respectively, for
a unit oscillator strength dipole source.

dipole mode, and I" = 0.9. As expected, the real part exhibits
symmetric behavior and the imaginary part shows an anti-
symmetric behavior around the resonance. From Eq. (6), the
self-energy can be expressed as

irmi

Tt
hc

V& (1 + aq(ks)) at @ =ED mode. (BI)

Thus, the Lamb shift [Re(X)] is proportional to the imag-
inary part of a. This is shown in Fig. 10(b), which shows the
Lamb shift for a dipole source of unit oscillator strength. Note
that the amount of the shift is negligible and, in most cases,
can be ignored. The real part of a, (k) contributes to the imag-
inary component of the self-energy and results in an enhanced
decay, reflected in the Purcell enhancement spectrum shown
in Fig. 10(c).

APPENDIX C: ABSORBER TRANSITIONS AT Vo: MgO

In this work, we used Kohn-Sham density functional theory
and the Quantum Espresso code to obtain the single electron
orbitals involved in the singlet-to-singlet and the singlet-to-
triplet transitions in the F center. We used the SG-15 norm
conserving Vanderbilt pseudopotential [78] and both Perdew
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FIG. 11. (a) Kohn-Sham energy (schematic) of the midgap s
orbital and the above-CBm (conduction band minimum) p orbital
that participate in the optical absorption at the F center and (b) the
section of the Kohn-Sham orbitals from DFT calculations.
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-Burke-Ernzerhof (PBE) [79] and dielectric-dependent hybrid
[80] functional resulting in very close orbitals.

Figures 11(a) and 11(b) show the energy levels and the
orbitals corresponding to the midgap s orbital and the above
conduction band minimum p-type defect orbital that domi-
nantly participate in the optical absorption of the F center.
The eigenstates can be further refined using many-body per-
turbation theories and quantum embedding theories, since
the framework shown here extends to general many-electron
states with ease. However, for simplicity such further refine-
ment in the electronic structure part is not shown in this work.

APPENDIX D: ANGLE-DEPENDENT BEHAVIOR

In Fig. 7, we have shown the dependence of M [Eq. (20)]
on the source-absorber distance corresponding to the specific
situation where the displacement between the dipolar source
and the absorber is along a fixed direction perpendicular to
the dipole moment of the source. In this section, we report
on the dependence of M on the source-dipole orientation. The
impact of the molecular orientation of the source and absorber
on the energy transfer rate has been of interest in plasmonic
systems [81], and it has been shown that sharp enhancement
of energy transfer can be enabled at specific angles. In our
case, since the source is located at the center of the spherical
cavity, the effect of the orientation of the dipole source on the
transfer rate is not significant. This is highlighted in Figs. 12
and 13—corresponding to the cavity with an electric dipole
resonance (Rc,y = 88.4nm) and magnetic dipole resonance
(Rcay = 55.2nm); in both cases, the cavity mode is tuned
to ws (i.e., AE = 0). Panels (a), (b), and (c) in both figures
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FIG. 12. Variation of the matrix element |M| [see Eq. (21), plotted on a log scale of M in ueV] as a function of the source-to-absorber
distance (R) and direction () (shown in inset) corresponding to a cavity with electric dipole resonance (R = 88.4 nm) and cavity resonance
tuned to the transition energy (AE = 0). Panels (a), (b), and (c) show the case for an ED source and I' = 0, 0.9, 0.99, respectively. The red,
blue, and violet surfaces correspond to the singlet to singlet, and singlet to m; = 0 and m, = 1 triplets, respectively. Panels (d), (e), and (f)

show the equivalent for a magnetic dipole source.
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FIG. 13. Variation of the matrix element |M| [see Eq. (21); plotted on a log scale of M in pueV] as a function of the source-to-absorber
distance (R) and direction (6) (shown in inset) corresponding to a cavity with magnetic dipole resonance (R = 55.2 nm) and cavity resonance
tuned to the transition energy (AE = 0). Panels (a), (b), and (c) show the case for an ED source and I' = 0, 0.9, 0.99, respectively. The red,
blue, and violet surfaces correspond to the singlet to singlet, and singlet to m; = 0 and m; = 1 triplets, respectively. Panels (d), (e), and (f)

show the equivalent for a magnetic dipole source.

show the case corresponding to an electric dipole source as
a function of the distance (R) and angle () for I' =0, 0.9,
and 0.99, respectively. Panels (d), (e), and (f) show the same
quantities for a magnetic dipole source. We find a behavior
that is consistent for most angles and that the direction at

which the absorber is from the source does not play a critical
role, consistent with the spherically symmetric configuration
represented in this work, and can potentially be important for
more complex emitter-cavity configurations and nonspherical
cavity geometries.
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