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Stochastic noise can be helpful for variational quantum algorithms
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Saddle points constitute a crucial challenge for first-order gradient descent algorithms. In notions of classical
machine learning, they are avoided, for example, by means of stochastic gradient descent methods. In this work,
we provide evidence that the saddle-points problem can be naturally avoided in variational quantum algorithms
by exploiting the presence of stochasticity. We prove convergence guarantees and present practical examples in
numerical simulations and on quantum hardware. We argue that the natural stochasticity of variational algorithms
can be beneficial for avoiding strict saddle points, i.e., those saddle points with at least one negative Hessian
eigenvalue. This insight that some levels of shot noise could help is expected to add a new perspective to notions
of near-term variational quantum algorithms.
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I. INTRODUCTION

Quantum computing has, for many years, been a hugely in-
spiring theoretical idea. Already in the 1980s, it was suggested
that quantum devices could possibly have superior computa-
tional capabilities over computers operating based on classical
laws [1,2]. It is a relatively recent development that devices
have been devised that may indeed have computational ca-
pabilities beyond classical means [3–6]. These devices go
substantially beyond what was possible not long ago. And
still, they are unavoidably noisy and imperfect, likely for
many years to come. The quantum devices that are available
today and presumably will be in the near future are of-
ten conceived as hybrid quantum devices running variational
quantum algorithms [7], where a quantum circuit is addressed
by a substantially larger surrounding classical circuit. This
classical circuit takes measurements from the quantum de-
vice and appropriately varies variational parameters of the
quantum device in an update. Large classes of variational
quantum eigensolvers (VQEs), the quantum approximate
optimisation algorithm (QAOA), and models for quantum-
assisted machine learning are thought to operate along those
lines, based on suitable loss functions to be minimized
[8–14]. In fact, many near-term quantum algorithms in the
era of noisy intermediate-scale quantum (NISQ) computing
[15] belong to the class of variational quantum algorithms.
While this is an exciting development, it puts a lot of burden
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on understanding how reasonable and practical classical con-
trol can be conceived.

Generally, when the optimization space is high dimen-
sional, updates of the variational parameters are done via
gradient evaluations [16–19], while zeroth-order and second-
order methods are, in principle, also applicable, but typically
only up to a limited number of parameters. This makes a lot
of sense, as one may think that going downhill in a variational
quantum algorithm is a good idea. That said, the concomi-
tant classical optimization problems are generally not convex
optimization problems and the variational landscapes are
marred by globally suboptimal local optima and saddle points.
This becomes particularly prominent when the the search
space dimension is high, which often leads to most station-
ary points—points where the gradient vanishes—being saddle
points [20]. This is, however, precisely the overparametrized
regime where one expects variational quantum algorithms
to perform well. In fact, it is known that the problems of
optimizing variational parameters of quantum circuits are
computationally hard in worst-case complexity [21]. While
this is not of too much concern in practical considerations
(since it is often sufficient to find a “good” local minimum
instead of the global minimum) and resembles an analogous
situation in classical machine learning, it does point to the
fact that one should expect a rugged optimization landscape,
featuring different local minima as well as saddle points.
Although, in the infinite-time limit, the first-order algorithm
might eventually avoid saddle points with high probability
[22], it is shown that in the practical timescale, saddle points
matter significantly in the general settings of first-order opti-
mization algorithms [23]. Such saddle points can indeed be
a burden to feasible and practical classical optimization of
variational quantum algorithms.
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FIG. 1. Stochasticity in variational quantum algorithms can help
in avoiding (strict) saddle points.

In this work, we establish the notion that in such situations,
small noise levels can actually be of substantial help (see
Fig. 1). More precisely, we show that some levels of statis-
tical noise (specifically, the kind of noise that naturally arises
from a finite number of measurements to estimate quantum
expectation values) can even be beneficial. We get inspiration
from and build on a powerful mathematical theory in classical
machine learning: there, theorems have been established that
say that “noise” can help gradient-descent optimization not
get stuck at saddle points [24,25]. Building on such ideas, we
show that they can be adapted and developed to be applicable
to the variational quantum algorithms setting. Then we argue
that the “natural” statistical noise of a quantum experiment
can play the role of the artificial noise that is inserted by
hand in classical machine learning algorithms to avoid sad-
dle points. We maintain the precise and rigorous mindset of
Ref. [24], but show that the findings have practical importance
and can be made concrete use of when running variational
quantum algorithms on near-term quantum devices. In previ-
ous studies, it has been anecdotally observed that small levels
of noise can indeed be helpful for improving the optimization
procedure [19,26–30]. What is more, variational algorithms
have been seen as being noise robust in a sense [31]. That said,
while in the past rigorous convergence guarantees have been
formulated for convex loss functions of variational quantum
algorithms (VQAs) [19,30], in this work we focus on the
nonconvex scenario, where saddle points and local minima are
present. Such a systematic and rigorous analysis of the type
we have conducted that explains the origin of the phenomenon
of noise-facilitating optimization has been lacking.

It is important to stress that the noise we refer to in
our theorems is the type of noise that adds stochasticity to
the gradient estimations, such as the use of a finite num-
ber of measurements or the zero-average fluctuations that
are involved in real experiments. Also, instances of global
depolarizing noise are covered as discussed in Appendix 2.
Thus, in this case, noise does not mean the generic quantum
noise that results from the interaction with the environment
characterized by completely positive and trace-preserving
(CPTP) maps, which can be substantially detrimental to the
performance of the algorithm [32,33]. In addition, it has been
shown that noisy CPTP maps in the circuit may significantly
worsen the problem of barren plateaus [34,35], which is one

of the main obstacles to the scalability of variational quantum
algorithms (VQAs).

We perform numerical experiments, and we show ex-
amples where optimizations with gradient descent without
noise get stuck at saddle points, whereas if we add some
noise, we can escape this problem and get to the minimum—
convincingly demonstrating the functioning of the approach.
We verify the latter not only in a numerical simulation, but
also making use of the data of a real IBM quantum machine.

II. PRELIMINARIES

In our work, we will show how a class of saddle points, the
so-called strict saddle points, can be avoided in noisy gradient
descent. In developing our machinery, we build strongly on
the rigorous results laid out in Ref. [24] and uplift them to the
quantum setting at hand. For this, we do method development
in its own right. First, we introduce some useful definitions
and theorems (see Ref. [24] for a more in-depth discussion).

Throughout this work, we consider the problem of mini-
mizing a function L : Rp → R. We indicate its gradient at θ

as ∂L(θ ) and its Hessian matrix at point θ as ∂2L(θ ). We
denote as ‖ · ‖2 the l2 norm of a vector. ‖ · ‖HS and ‖ · ‖∞
denote, respectively, the Hilbert-Schmidt norm and the largest
eigenvalue norm of a matrix. We denote as λmin(·) as the
minimum eigenvalue of a matrix.

Definition 1. L-Lipschitz function. A function g : Rp → Rd

is L-Lipschitz if and only if

‖g(θ ) − g(φ)‖2 � L‖θ − φ‖2, (1)

for every θ and φ.
Definition 2. β-strong smoothness. A differentiable func-

tion L : Rp → R is called β-strongly smooth if and only if its
gradient is a β-Lipschitz function, i.e.,

‖∂L(θ ) − ∂L(φ)‖2 � β‖θ − φ‖2, (2)

for every θ and φ.
Definition 3. Stationary point. If L is differentiable, θ∗ is

defined as a stationary point if

‖∂L(θ∗)‖2 = 0. (3)

Definition 4. ε-approximate stationary point. If L is dif-
ferentiable, θ∗ is defined as an ε-approximate stationary
point if

‖∂L(θ∗)‖2 � ε. (4)

Definition 5. Local minimum, local maximum, and saddle
point. If L is differentiable, a stationary point θ∗ is a

(i) local minimum, if there exists δ > 0 such that L(θ∗) �
L(θ ) for any θ with ‖θ − θ∗‖2 � δ.

(ii) local maximum, if there exists δ > 0 such that L(θ∗) �
L(θ ) for any θ with ‖θ − θ∗‖2 � δ.

(iii) saddle point, otherwise.
Definition 6. ρ-Lipschitz Hessian. A twice differentiable

function L has ρ-Lipschitz Hessian matrix ∂2L if and only if

‖∂2L(θ ) − ∂2L(φ)‖HS � ρ‖θ − φ‖2, (5)

for every θ and φ (where ‖ · ‖HS is the Hilbert-Schmidt norm).
Definition 7. Gradient descent. Given a differentiable func-

tion L, the gradient descent algorithm is defined by the update
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rule

θ t+1
i = θ t

i − η∂iL(θ t ), (6)

where η > 0 is called learning rate.
The convergence time of the gradient descent algorithm is

given by the following theorem [24].
Theorem 1. Gradient descent complexity. Given a β-

strongly smooth function L(·), for any ε > 0, if we set the
learning rate as η = 1/β, then the number of iterations re-
quired by the gradient descent algorithm such that it will visit
an ε-approximate stationary point is

O
(

β[L(θ0) − L�]

ε2

)
,

where θ0 is the initial point and L� is the value of L computed
in the global minimum.

It is important to note that this result does not depend on
the number of free parameters. Also, the stationary point at
which the algorithm will converge is not necessarily a local
minimum, but can also be a saddle point. Note that a generic
saddle point satisfies λmin[∂2L(θs)] � 0, where λmin(·) is the
minimum eigenvalue. Now we define a subclass of saddle
points.

Definition 8. Strict saddle point. θs is a strict saddle point
for a twice differentiable function L if and only if θs is a
stationary point and if the minimum eigenvalue of the Hessian
is λmin[∂2L(θs)] < 0.

Adding the strict condition, we remove the case in which
a saddle point satisfies λmin[∂2L(θs)] = 0. Moreover, note
that a local maximum respects our definition of strict saddle
point. Analogously to Ref. [24], in this work, we focus on
avoiding strict saddle points. Hence, it is useful to introduce
the following definition.

Definition 9. Second-order stationary point. Given a twice
differentiable function L(·), θ∗ is a second-order stationary
point if and only if

∂L(θ∗) = 0 and λmin[∂2L(θ∗)] � 0. (7)

Definition 10. ε-second-order stationary point. For a ρ-
Hessian Lipschitz function L(·), θ∗ is an ε-second-order
stationary point if

‖∂L(θ∗)‖2 � ε and λmin[∂2L(θ∗)] � −√
ρε. (8)

Gradient descent (GD) makes a nonzero step only when
the gradient is nonzero, and thus in the nonconvex setting it
will be stuck at saddle points. A simple variant of GD is the
perturbed gradient descent (PGD) method [24], which adds
randomness to the iterates at each step.

Definition 11. Perturbed gradient descent. Given a differ-
entiable function L : Rp → R, the perturbed gradient descent
algorithm is defined by the update rule,

θ t+1
i = θ t

i − η[∂iL(θ t ) + ζ t ], (9)

where η > 0 is the learning rate and ζ t is a normally dis-
tributed random variable with mean μ = 0 and variance σ 2 =
r2/p with r ∈ R.

In Ref. [24], the authors show that if we pick r = �̃(ε),
PGD will find an ε-second-order stationary point in a number
of iterations that has only a polylogarithmic dependence on

the number of free parameters, i.e., it has the same complexity
of (standard) gradient descent up to polylogarithmic depen-
dence.

Theorem 2. [24]. Let the function L : Rd → R be β-
strongly smooth and such that it has a ρ Lipschitz-Hessian.
Then, for any ε, δ > 0, the PGD algorithm starting at the point
θ0, with parameters η = �̃(1/β ) and r = �̃(ε), will visit an
ε-second-order stationary point at least once in the following
number of iterations, with probability at least 1 − δ,

Õ
(

β[L(θ0) − L�]

ε2

)
,

where Õ and �̃ hide polylogarithmic factors in
p, β, ρ, 1/ε, 1/δ, and �L := L(θ0) − L�. Here, θ0 is the
initial point and L� is the value of L computed in the global
minimum.

This theorem has been proven in Ref. [24] for Gaussian
distributions, but the authors have pointed out that this is not
strictly necessary and that it can be generalized to other types
of probability distributions in which appropriate concentration
inequalities can be applied (for a more in-depth discussion,
see Ref. [24]).

In Ref. [36], it has been shown that although the standard
GD (without perturbations) almost always escapes the saddle
points asymptotically [37], there are (nonpathological) cases
in which the optimization requires exponential time to escape.
This highlights the importance of using gradient descent with
perturbations.

III. STATISTICAL NOISE IN VARIATIONAL
QUANTUM ALGORITHMS

Our analysis focuses on variational quantum algorithms in
which the loss function to be minimized has the following
form:

L(θ ) := 〈0|U †(θ )OU (θ )|0〉, (10)

where O is a Hermitian operator and U (θ ) is a parameterized
unitary of the form

U (θ ) :=
p∏

�=1

W� exp (iθ�X�), (11)

where W� and X� are, respectively, fixed unitaries and Hermi-
tian operators. Theorem 2 above assumes that the loss function
to minimize is β-strongly smooth and has a ρ-Lipschitz
Hessian. To guarantee that these conditions are met for loss
functions of parametrized quantum circuits, we provide the
following theorem.

Theorem 3. Conditions for loss functions of parametrized
quantum circuits. The loss function given in Eq. (10) with θ

being a p-dimensional vector is β-strongly smooth and has a
ρ-Lipschitz Hessian. In particular, we have

β � 22 p‖O‖∞ max
j=1,...,p

‖Xj‖2
∞, (12)

ρ � 23 p
3
2 ‖O‖∞ max

j=1,...,p
‖Xj‖3

∞. (13)

We provide a detailed proof in Appendix 1. It is important
to observe that for typical VQAs, the observable O associated
to the loss function and the components Xi have an operator
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norm that grows, at most, polynomially with the number of
qubits, so β and ρ will also grow, at most, polynomially. This
is because the circuit depth p must be chosen to be, at most,
O[poly(n)] for n qubits, Xl as well as O are usually chosen
to be Pauli strings in which case their operator norms are
1 or, to be linear combinations of O[poly(n)], many Pauli
strings with O[poly(n)] coefficients (as in QAOA), therefore,
by the triangle inequality, their operator norm is bounded by
O[poly(n)]. Sometimes, O is also chosen to be a quantum
state [7], therefore with the operator norm bounded by 1.
Hence, the number of iterations in Theorem 2 does not grow
exponentially in the number of qubits.

The previous results can be easily generalized for the
case of differentiable and bounded loss functions, which are
functions of expectation values, i.e.,

L(θ ) = f (〈0|U †(θ )OU (θ )|0〉). (14)

In fact, we observe that if L and g are Lipschitz functions, then

|L[g(θ )] − L[g(θ ′)]| � LL‖g(θ ) − g(θ ′)‖2

� LLLg‖θ − θ ′‖2. (15)

In addition, if L is a differentiable function with bounded
derivatives on a convex set, then (because of the mean value
theorem) L is Lipschitz on this set. From this follows that if
L is a differentiable function with bounded derivatives of a
quantum expectation value (whose image defines a bounded
R interval), then it is Lipschitz. Moreover, the sum of Lips-
chitz functions is a Lipschitz function. Therefore, functions
of expectation values commonly used in machine learning
tasks, such as the mean-squared error, satisfy the Lipschitz
condition.

Moreover, Theorem 2 assumes that at each step of the
gradient descent, a normally distributed random variable is
added to the gradient, namely, θ t+1

i = θ t
i − η[∂iL(θ t ) + ζ t ].

In VQAs, the partial derivatives are commonly estimated
using a finite number of measurements, such as by the pa-
rameter shift rule [16]. Here, the update rule for the gradient
descent is

θ t+1
i = θ t

i − ηĝi(θ
t ), (16)

where ĝi(θ t ) is an estimator of the partial derivative ∂iL(θ t )
obtained by a finite number of measurements, Nshots, from the
quantum device. Moreover, we define

ζ̂ t
Nshots

:= ∂iL(θ t ) − ĝi(θ
t ). (17)

Note that ζ̂ t
Nshots

is a random variable with zero expectation
value. Therefore, we have

θ t+1
i = θ t

i − η
[
∂iL(θ t ) + ζ̂ t

Nshots

]
. (18)

The “noise” ζ̂ t
Nshots

will play the role of the noise that is added
by hand in the perturbed-gradient descent of the algorithm
given in Definition 11. However, we cannot exactly control the
distribution of such random variable, nor the variance. How-
ever, it is to be expected that in the limit of many measurement
shots, by the central limit theorem, the noise encountered in
practice will be close to the noise considered here, i.e., a
Gaussian distribution.

IV. NUMERICAL AND QUANTUM EXPERIMENTS

In this section, we discuss the results of numerical
and quantum experiments we have performed to show that
stochasticity can help escape saddle points. Our results sug-
gest that statistical noise leads to a nonvanishing probability
of not getting stuck in a saddle point and thereby reaching
a lower value of the loss function. These numerical experi-
ments also complement the rigorous results that are proven
to be valid under very precisely defined conditions, while
the intuition developed here is expected to be more broadly
applicable, so that the rigorous results can be seen as proxies
for a more general mindset. We have also observed this phe-
nomena in a real IBM quantum device. We have done so to
convincingly stress the significance of our results in practice.

Let us first consider the Hamiltonian O = ∑N=4
i=1 Zi. The

loss function we consider is defined as the expectation value
of such a Hamiltonian over the parametrized quantum circuit
qml.StronglyEntanglingLayers implemented in PENNYLANE

[17], where two layers of the circuit are used.
In all our experiments, we first initialize the parameters in

multiple randomly chosen values. Next, we select the initial
points for which the optimization process gets stuck at a
suboptimal loss-function value, thereby focusing on cases in
which saddle points constitute a significant problem for the
(noiseless) optimizer. This selection can be justified by the
fact that the loss function defined by O is trivial to begin with.
The relevant aspect of this experiment is to study situations
in which the optimizer encounters saddle points. As such,
we exclusively investigate these specifically selected initial
points by subsequently initializing the noisy optimizer with
them.

As a proof of principle, we first show the results of an exact
simulation (i.e., the expectation values are not estimated using
a finite number of shots, but are calculated exactly) in which
noise is added manually at each step of the gradient descent.
The probability distribution associated to the noise is chosen
to be a Gaussian distribution with mean μ = 0 and variance
σ 2 = r2. Figure 2 shows the difference between the noiseless
and noisy calculations with the same initial conditions of the
gradient descent, when the noise is from random Gaussian
perturbations that are added manually. Figure 3 shows the
performance of the experiment, defined as 1/(L − Lopt) as a
function of the noise parameter. Here, we can find a critical
value of noise, leading to saddle-point avoidance. Figure 4
specifically addresses quantum noise levels, with simulated
results about purely statistical noise levels (shot noise) and
device noise (simulated by making use of the noise model of
actual quantum hardware IBM QISKIT).

It should be noted that including device noise generally
also means dealing with completely positive trace-preserving
maps that can lead to a different loss function, with new
local minima, new saddle points, and a flatter landscape [34].
However, even in this case, we observe an improvement in
performance using the same initial parameters leading to the
saddle point in the noiseless case. This is perfectly in line with
the intuition developed here, as long as the effective emerging
noise can be seen as a small perturbation of the reference
circuit featuring a given loss landscape that is then in effect
perturbed by stochastic noise.
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FIG. 2. Comparison of the loss evolution with or without noise.
The noise levels are manually added Gaussian distributions, and we
keep the same initial conditions. (a) Four different values of the
standard deviation r. (b) Noiseless case and the noisy case with the
standard deviation of the noise r = 0.1.

Aside from the quantum machine learning example, we
also provide another instance in variational quantum eigen-
solvers (VQEs). Here, we use the Hamiltonian associated to
the hydrogen molecule H2, which is a four-qubit Hamiltonian
obtained by the fermionic one performing a Jordan-Wigner
transformation. We specifically use the same circuit from
h2.xyz, the Hydrogen VQE example in PENNYLANE [18]. Also

FIG. 3. We quantify the performance against the size of the noise
r (classical Gaussian noise) by 1/(L − Lopt ).

FIG. 4. Saddle-point avoidance from quantum noise. We prepare
30 instances starting from the same initial condition. When (a) noise
levels are small, with (b) purely measurement noise, including device
noise, and shot number is 1000, most trajectories cannot jump out of
the saddle points. When (c) noise levels are larger, with (d) purely
measurement noise, including device noise, and shot number is 70,
we have a probability to jump towards the global minimum.

here, given the initial parameters that led to saddle points in
the noiseless case, we find that starting by the same parameters
and adding noise can lead to saddle-point avoidance. Results
are shown in Fig. 5 where we compare the noiseless and noisy
simulation.

To further provide evidence of the functioning of our sug-
gested approach and the rigorous established insights, we put
the findings into contact with the results of a real experi-
ment example in the IBM QISKIT environment. We use the
Hamiltonian O = ∑N=4

i=1 Zi that we used in our first numerical

FIG. 5. Comparison of the loss evolution with or without noise
with Hydrogen VQE. The noise is manually drawn from Gaussian
distributions with the standard deviation 0.2, and we keep the same
initial conditions. We compare the noiseless case, noisy case, and the
exact solution.
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FIG. 6. A real quantum experiment. We use the IBMQ Jakarta
device with 10 000 shots.

simulation with four qubits and two layers. We run the ex-
periment using as the initial condition the one that leads to a
saddle point in the noiseless case. We use the IBMQ Jakarta
device with 10 000 shots. The result in Fig. 6 shows that it is
possible to obtain a lower value of the cost function than that
of the simulation without noise that has been stuck in a saddle
point.

One may also ask at this point what the “sweet spot” of the
appropriate stochastic noise might possibly be. It is known
that for most local quantum circuits being subject to constant
noise levels under general local qubit noise, one can expect
the maximum attainable circuit depth to scale like O[ln(n)]
[38]. Also, it is known that Pauli expectation values between
two different input states are exponentially suppressed in the
circuit depth d [38]. This implies that the logarithm of the
noise levels must be chosen as O[1/poly(d )] to be nondetri-
mental for read-out, but still make sure that one avoids saddle
points in variational optimization. Too high noise levels, in the
form of contractive device noise, will eventually lead to noise-
induced barren plateaus [34] and an eventual disappearance of
any distinguishability of outputs.

To investigate the significance of saddle points in the case
of variational quantum algorithms, we examine the generality
of initial points that could be trapped by saddle points. In
Fig. 7, we have studied 1000 initial variational angles ran-
domly sampled between [0, 2π ) in the same setup of Fig. 3
with four qubits. Under identical gradient-descent conditions,
we have observed that 305 initial points lead to saddle points
rather than local minima in the absence of noise. Conse-
quently, the estimated probability of getting stuck near saddle
points in our study is approximately 30.5%. Classical non-
convex optimization theory demonstrates that saddle points
are not anomalies but rather common features in loss func-
tion landscapes, making stochastic gradient descents crucial
for most traditional machine learning applications. While a
30.5% failure rate in optimization is manageable by simply
repeating the algorithm multiple times to recover the global
minimum with high probability, we anticipate that in quan-
tum machine learning, getting trapped by saddle points will
also be a general occurrence. Moreover, the likelihood of
encountering saddle points is expected to grow significantly in
higher-dimensional parameter spaces [20]. Here is a straight-
forward explanation: Saddle points are determined by the

FIG. 7. More initial points under the same gradient-descent dy-
namics. We have studied the same gradient descent dynamics as in
Fig. 3 with four qubits, where 1000 initial points have been randomly
sampled. We have found that in 305 cases (labeled in red), the
gradient descent gets trapped by saddle points.

signs of Hessian eigenvalues. In models with p parameters,
there are p Hessian eigenvalues. Assuming equal chances of
positive and negative eigenvalues, the probability of obtaining
a positive semidefinite Hessian becomes exponentially small
(2−p). Therefore, as the model size increases, saddle points
become increasingly prevalent.

V. CONCLUSION AND OUTLOOK

In this work, we have proposed small stochastic noise
levels as an instrument to facilitate variational quantum al-
gorithms. This noise can be substantial, but should not be too
large: The way a noise level can strike the balance in over-
coming getting stuck in saddle points and being detrimental
is in some ways reminiscent of the phenomenon of stochastic
resonance in statistical physics [39]. This is a phenomenon in
which suitable small increases in levels of noise can increase
in a metric of the quality of the signal transmission, resonance,
or detection performance, rather than a decrease. Here, also,
fine-tuned noise levels can facilitate resonance behavior and
avoid getting trapped.

It is worth stressing that our results focus specifically on
shot noise, which can help in overcoming saddle points. This
is fundamentally distinct from contractive noise maps, such as
depolarizing noise, which may induce barren plateaus [34] in
variational quantum algorithms and does not help in avoiding
saddle points. It has been shown that shot noise leads to barren
plateaus only in the case of global observables [34], which
is not the setting considered in this work. At the end of the
day, one should expect specifics of the noise map, as for
overly large noise levels of a certain type, the performance
of variational approaches will also worsen [40].

We also emphasize that our analysis is focused on intrinsic
quantum noise in quantum computing (shot noise), not merely
the setting where one adds extra classical Gaussian noise to
the gradient. While we use Gaussian noise to approximate
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the shot noise under certain conditions (when the number
of measurement shots is large), our primary objective is to
show that quantum noise—an unavoidable feature of quantum
systems—can enhance optimization within limited noise level
ranges. We do not claim that noise is universally beneficial
nor advocate for intentionally adding extra classical noise. In-
stead, we emphasize the importance of identifying an optimal
level of inherent quantum noise that balances performance
and practicality. This perspective suggests a more tolerant ap-
proach to quantum noise in gradients, reducing the reliance on
perfectly noiseless quantum systems while mitigating saddle-
point entrapment.

On a higher level, our work invites one to think more
deeply about the use of classical stochasic noise in variational
quantum algorithms as well as ways to prove performance
guarantees about such approaches. For example, Metropolis
sampling–inspired classical algorithms in which a stochastic
process satisfying detailed balance is set up over variational
quantum circuits may assist in avoiding getting stuck in
rugged energy landscapes.

It is also interesting to note that the technical results
obtained here provide further insights into an alternative in-
terpretation of the setting discussed here. Instead of regarding
the noise as stochastic noise that facilitates the optimization
in the proven fashion established here, one may argue that
the noise channels associated with the noise alter the varia-
tional landscapes in the first place [41,42]. For example, such
quantum channels are known to be able to break parameter
symmetries in over-parameterized variational algorithms. It is
plausible to assume that these altered variational landscapes
may be easier to optimize over. It is an interesting observation
in its own right that the technical results obtained here also
have implications to this alternative viewpoint, as the conver-
gence guarantees are independent of the interpretation. It is
the hope that the present work puts the role of stochasticity in
variational quantum computing into a new perspective, and
contributes to a line of thought exploring the use of suit-
able noise and sampling for enhancing quantum computing
schemes.

ACKNOWLEDGMENTS

J.L. is supported in part by the International Business
Machines (IBM) Quantum through the Chicago Quantum
Exchange, and the Pritzker School of Molecular Engineer-
ing at the University of Chicago through AFOSR MURI
(Grant No. FA9550-21-1-0209). J.L. and X.J. are supported
in part by the University of Pittsburgh, School of Comput-
ing and Information, Department of Computer Science, Pitt
Cyber, PQI Community Collaboration Awards and NASA
under Award No. 80NSSC25M7057. F.W., A.A.M., and J.E.
thank the ERC (DebuQC), the BMBF (Hybrid, MuniQC-
Atoms, DAQC, Hybrid++, QuSol), the BMWK (EniQmA,
PlanQK), the MATH+ Cluster of Excellence, the Quantum
Flagship (Millenion, PasQuans2), the Einstein Foundation
(Einstein Unit on Quantum Devices), Berlin Quantum, the
QuantERA (HQCC), the Munich Quantum Valley (K8), the
DFG (CRC 183), and the European Research Council (De-
buQC) for support. L.J. acknowledges support from the ARO
(Grants No. W911NF-18-1-0020 and No. W911NF-18-1-

0212), ARO MURI (Grant No. W911NF-16-1-0349), AFOSR
MURI (Grants No. FA9550-19-1-0399 and No. FA9550-21-
1-0209), DoE Q-NEXT, NSF (Grants No. EFMA-1640959,
No. OMA-1936118, and No. EEC-1941583), NTT Research,
and the Packard Foundation (Grant No. 2013-39273). This
research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a U. S. Department of Energy Office
of Science User Facility supported under Contract No. DE-
AC05-00OR22725.

J.E. and J.L. suggested the exploitation of classical stochas-
tic noise in variational quantum algorithms, and to prove
convergence guarantees for the performance of the resulting
algorithms. J.L., A.A.M., F.W., and J.E. proved the theorems
of convergence. J.L. and F.W. devised and conducted the
numerical simulations. J.L. performed the quantum device
experiments under the guidance of L.J. X.J. attended the dis-
cussions and contributed in the scientific updates of the draft.
All authors discussed the results and wrote the manuscript.

DATA AVAILABILITY

The data and code used for the experiments are available
at [43].

APPENDIX

1. Strong smoothness and Lipschitz-Hessian property

In this Appendix, we provide a proof of Theorem 3 of the
main text. As stated in the main text, we focus our analysis on
ansatz circuits of the form

U (θ ) :=
p∏

�=1

W� exp (iθ�X�), (A1)

where W� and X� are, respectively, fixed unitaries and Hermi-
tian operators. As a reminder, we want to show that the loss
function

L(θ ) = 〈0|U †(θ )OU (θ )|0〉 (A2)

is β-strongly smooth and has a ρ-Lipschitz Hessian, with

β � 22 p‖O‖∞ max
j=1,...,p

‖Xj‖2
∞, (A3)

ρ � 23 p
3
2 ‖O‖∞ max

j=1,...,p
‖Xj‖3

∞. (A4)

To begin, we state three important facts about the Lipschitz
constants of multivariate functions.

Lemma A1. If L : Rp → R is differentiable with bounded
partial derivatives, then

L = √
p max

j

(
sup

θ

∣∣∣∣∂L(θ )

∂θ j

∣∣∣∣
)

(A5)

is the Lipschitz constant for L.
The proof is given in Ref. [44] (Lemma 7).
Lemma A2. If L : Rp → RM is a function with all its M-

component Lipschitz functions with Lipschitz constant Li,

then L has Lipschitz constant L =
√∑M

i=1 L2
i .

The proof is given in Ref. [44] (Lemma 8).
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Equipped with these facts, we can proceed to derive an
upper bound for the Lipschitz constant of functions from Rp

to RM .
Lemma A3. If g : Rp → RM is a differentiable function

with bounded gradient, then its Lipschitz constant L satisfies

L �
√

pM max
i, j

(
sup

θ

∣∣∣∣∂gi(θ )

∂θ j

∣∣∣∣
)

, (A6)

where gi(θ ) the ith component of θ �→ g(θ ).
Proof. Using Lemmas A 1 and A 2, we have

L =
(

M∑
i=1

L2
i

)1/2

�
√

M max
i

(Li )

=
√

pM max
i, j

(
sup

θ

∣∣∣∣∂gi(θ )

∂θ j

∣∣∣∣
)

, (A7)

where Li is the Lipschitz constant of the ith component of L
as defined in Lemma A 2. �

Next, we focus on loss functions of the type in Eq. (A2).
Lemma A4. The loss function as defined in Eq. (A2) (with

θ ∈ Rp) satisfies

max
i1,i2...ik

(
sup

θ

∣∣∣∣ ∂kL(θ )

∂θik · · · ∂θi2∂θi1

∣∣∣∣
)

� 2k‖O‖∞ max
j=1,...,p

‖Xj‖k
∞,

(A8)

where U (θ ) is given by Eq. (A1).
Proof. We introduce the standard multi-index notation. For

this, we have

∂αL(θ ) := ∂kL(θ )

∂θik · · · ∂θi2∂θi1

. (A9)

With this, the multiderivative of the loss reads

∂αL(θ ) = 〈0|∂α[U †(θ )OU (θ )]|0〉

=
∑

β:β�α

(
α

β

)
〈0|[∂βU †(θ )]O[∂α−βU (θ )]|0〉, (A10)

where we have exploited the generalized Leibniz formula,

∂α ( f g) =
∑

β:β�α

(
α

β

)
(∂β f )∂α−βg. (A11)

We have

|∂αL| �
∑

β:β�α

(
α

β

)
|〈0|[∂βU †(θ )]O[∂α−βU (θ )]|0〉|

= 2|α| max
γ :γ�α

|〈0|[∂γU †(θ )]O ∂α−γU (θ )|0〉|

� 2|α| max
γ :γ�α

‖[∂γU †(θ )]O ∂α−γU (θ )‖∞

� 2|α| max
γ :γ�α

‖∂γU †(θ )‖∞‖O‖∞‖∂α−γU (θ )‖∞,

(A12)

where we have used the triangle inequality and the multibino-
mial theorem formula to write∑

β:β�α

(
α

β

)
= 2|α|, (A13)

the fact that

|〈0|A|0〉| � ‖A|0〉‖2 � ‖A‖∞, (A14)

which follows immediately by Cauchy-Schwarz, and the
subadditivity of the ‖ · ‖∞ norm. Using the form of the pa-
rameterized unitary in Eq. (A1), we can also observe that

‖∂γU †(θ )‖∞ =
∥∥∥∥∥ ∂γp

∂θ
γp
p

· · · ∂γ1

∂θ
γ1
1

U †(θ )

∥∥∥∥∥
∞

� ‖X1‖γ1∞ · · · ‖Xp‖γp
∞

�
(

max
j=1,...,p

‖Xj‖∞

)γ1+···+γp

� max
j=1,...,p

‖Xj‖|γ |
∞ , (A15)

where we have used that the subadditivity of the infinity norm
and the fact that the spectral norm of a unitary matrix is given
by the unity. Similarly, we have

‖∂α−γU (θ )‖∞ � max
j=1,...,p

‖Xj‖|α|−|γ |
∞ . (A16)

Therefore, combining the previous two inequalities with
Eq. (A12), we have

|∂αL| � 2|α|‖O‖∞ max
j=1,...,p

‖Xj‖|α|
∞

= 2k‖O‖∞ max
j=1,...,p

‖Xj‖k
∞, (A17)

where we have used |α| = k. �
We are now ready to provide the proof of Theorem 3 of the

main text. Since the loss function is a combination of sine and
cosine functions, its derivatives exist and are bounded, and
from this it follows that the loss function is strongly smooth
and its Hessian is Lipschitz. However, it is worth explicitly
calculating β and ρ and bounding them to verify, for example,
the scaling with the number of qubits.

Proof. We have the β-smooth constant defined by the
smallest β with

‖∂L(θ ) − ∂L(θ ′)‖ � β‖θ − θ ′‖, (A18)

which means we need to consider the Lipschitz constant for
the p-dimensional function ∂L(θ ). Using Lemma A 3, where
g(θ ) = ∂L and M = p, we have

β � p max
i, j

(
sup

θ

∣∣∣∣∂2L(θ )

∂θi∂θ j

∣∣∣∣
)

. (A19)

Applying Lemma A 4, we find

β � 22 p‖O‖∞ max
i

(‖Xi‖∞)2, (A20)

where we have used the matrix spectral (operator) norm.
The ρ-Hessian constant is defined as

‖∂2L(θ ) − ∂2L(θ ′)‖HS � ρ‖θ − θ ′‖2, (A21)

where ∂2L is the Hessian matrix and we have used the Hilbert-
Schmidt matrix norm. Note that the Hilbert-Schmidt norm of
a matrix is the 2-norm of the matrix vectorization vec(·). We
can now apply Lemma A 3, where M = p2 since the Hessian
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is a map from Rp to Rp×p. Defining g(θ ) = vec[∂2L(θ )], we
find

ρ � p
3
2 max

i, j,k

(
sup

θ

∣∣∣∣ ∂3L(θ )

∂θk∂θi∂θ j

∣∣∣∣
)

. (A22)

Thus, applying Lemma A 4, we arrive at

ρ � 23 p
3
2 ‖O‖∞ max

i
(‖Xi‖∞)3. (A23)

�

2. Discussion on more general noise

In this Appendix, we discuss the impact of more general
noise. We assume that we have device noise that is constant
in time, i.e., for each state preparation, effectively, we always
encounter the same CPTP maps acting on the initial state. This
will change the state ρ(θ ) at the end of the circuit to a noisy
instance ρnoisy(θ ) which can be modeled as the applications of
parametrized unitary layers interspersed with suitable CPTP
maps to the initial state ρ0 as

ρnoisy(θ ) = Np ◦ Up ◦ · · · ◦ N1 ◦ U1(ρ0), (A24)

where Ni and Ui are, respectively, noisy CPTP maps and the
parametrized unitary channels. As a result, the loss function
changes to

Lnoisy(θ ) = Tr[Hρnoisy(θ )], (A25)

i.e., we now have to optimize an inherently different loss
function. Still, to estimate the noisy loss function Lnoisy, also
here we will have to deal with statistical noise derived by the
finite number of measurements. In particular, for the case of
global depolarising noise with depolarising noise parameter
q ∈ [0, 1],

Ni(·) = (1 − q)(·) + qTr(·) 1

2n
, (A26)

the cost function will be

Lnoisy(θ ) = (1 − q)pL(θ ) + [1 − (1 − q)p]
Tr(H )

2n
. (A27)

Therefore, in this case, the landscape of the cost function
will be rescaled and shifted, but will preserve features of the
noiseless landscape like the position of saddle points.

Proof. We have

ρnoisy(θ ) = (1 − q)Np ◦ Up ◦ · · · ◦ N2 ◦ U2[U1(ρ0)] + q
1

2n

= (1 − q)2Np ◦ Up ◦ · · · ◦ N3 ◦ U3[U2 ◦ U1(ρ0)]

+ q[(1 − q) + 1]

(
1

2n

)

= (1 − q)pρ(θ ) + q

⎡
⎣ p−1∑

k=0

(1 − q)k

⎤
⎦ 1

2n

= (1 − q)pρ(θ ) + q
1 − (1 − q)p

q

1

2n
.

Plugging such a state into the definition of the noisy cost
function (A25), we have the result. �

FIG. 8. We quantify the performance against the number of shots
of the quantum noise by the probability of saddle-point avoidance for
100 different independent instances with the same initial conditions.

3. Additional numerical results

In this Appendix, we show additional numerical results to
those reported in the main text. In Fig. 8, we show the esti-
mated probability of avoiding the saddle point as a function
of the number of shots, for the loss function given by the ex-
pectation value of the local Pauli Hamiltonian H = ∑N=4

i=1 Zi

over the circuit qml.StronglyEntanglingLayers (see Fig. 9) in
PENNYLANE [17] where two layers have been used.

One could directly extend our results towards the descrip-
tion of situations involving more qubits. Here, we consider
eight qubits and two layers of quantum gates. Now the loss
landscape is richer and we can converge at more integers.
For instance, we find convergence at −3, −4, −5, and −6
for different initial conditions. Figure 10 illustrates saddle-
point avoidance with different noise levels when noise is
selected from Gaussian distributions. Figure 11 illustrates the
performances among different sizes of noise levels and one
can again find a critical value of the noise which leads to
the saddle-point avoidance. In Fig. 12, we depict the perfor-
mances as a function of the noise level obtained for the H2

molecule experiment.
Furthermore, we try to find the relation between the con-

vergence time T and the noise size r ∼ ε. With the same
setup, we plot the dependence between the convergence time
(the time where we approximately get the true minimum)
and the size of the noise in the Gaussian distribution case,
in Fig. 13. We find that the convergence time indeed decays
when we add more noise, and we fit the scaling and find where
T ∼ #/ε0.6, which is consistent with the bound T ∼ #/ε2 in
theory. In Appendix A 4, we provide a heuristic derivation

FIG. 9. A four-qubit example of one strongly entangling layer
as given in qml.StronglyEntanglingLayers in PENNYLANE. The fig-
ure has been adopted from the documentation of PENNYLANE [17].
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FIG. 10. Comparison of the loss evolution with or without noise
with eight qubits. The noise has been drawn manually from Gaussian
distributions, and we keep the same initial conditions. We use four
different values of the noise norms.

on the scaling T ∼ 1/ε2 by dimensional analysis and other
analytic heuristics.

4. Analytic heuristics

In this Appendix, we provide a set of analytic heuristics
about predicting the noisy convergence and the critical noise
with significant improvements in performance. Our derivation
is physical and heuristic, but we expect that they will be
helpful to understand the nature of the noisy dynamics dur-
ing gradient descent in the quantum devices. The developed
results corroborate the idea that a balance between too little
and too much noise will have to be struck.

a. Brownian motion and the Polya’s constant

One of the simplest heuristics about noisy gradient descent
is the theory of Brownian motion. Define p(d ), also known
as Polya’s constant, as the likelihood that a random walk on a
d-dimensional lattice has the capability to return to its starting
point. It has been proven that [45]

p(1) = p(2) = 1 , (A28)

FIG. 11. We quantify the performance against the size of the
noise r (classical Gaussian noise) by 1/(L − Lopt ). We again have
eight qubits.

FIG. 12. In the Hydrogen VQE example, we quantify the perfor-
mance against the size of the noise r (classical Gaussian noise) by
1/(L − Lopt ).

but

p(d � 3) < 1 . (A29)

In fact, d �→ p(d ) has the closed formula [46]

p(d ) = 1 −
{∫ ∞

0

[
I0

(
t

d

)]d

e−t dt

}−1

, (A30)

where d > 3 is the number of training parameters in our case,
and I is the modified Bessel function of the first kind. One
could compute numerical values of the probability p(d ) for
increasing d . From d = 4 to d = 8, it changes monotonically
from 0.19 to 0.07. It is hard to accurately compute the integral
because of damping, but it is clear that it is decaying and will
vanish for large d . In our problem, we could regard the process
of noisy gradient descent as random walks in the space of
variational angles. One could regard the returning probability
roughly as the probability of coming back to the saddle point
from the minimum. Thus, the statement about lattice random
walk gives us intuition that it is less likely to return back when
we have a large number of variational angles.

FIG. 13. The relationship between the convergence time T and
the size of the noise, r ∼ ε. The data are plotted in black, and we fit
the data using #/ε� in red, and get � ≈ 0.6. The setup is the same
as before: We use four qubits and two layers for our first example
Hamiltonian and we use Gaussian noise simulation.
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b. Guessing 1/ε2 by dimensional analysis

One primary progress of the technical result presented in
Ref. [36] is the 1/ε2 dependence on the convergence time
T with the size of the noise ε > 0. Here, we show that one
could guess such a result in the small-η limit (where η is the
learning rate) simply by dimensional analysis. Starting from
the definition of the gradient-descent algorithm,

δθi = θi(t + 1) − θi(t ) = −η
∂L
∂θi

, (A31)

we can instead study the variation of the loss function,

δL = L(t + 1) − L(t ) ≈
∑

i

∂L
∂θi

δθi = −η
∑

i

∂L
∂θi

∂L
∂θi

= −4η
∑

i

∂
√
L

∂θi

∂
√
L

∂θi
L . (A32)

Here, we use the assumption where η is small, such that we
could expand the loss-function change δL by the first-order
Taylor expansion. Now we define

KL := 4
∑

i

∂
√
L

∂θi

∂
√
L

∂θi
, (A33)

and we have

δL = −ηKLL . (A34)

If KL is a constant (and we could assume this is true since we
are doing dimensional analysis), we get

L(t ) = (1 − ηKL)t ≈ e−ηKLt . (A35)

In general, we can assume a time-dependent solution as

L(t ) = [1 − ηKL(t )]t ≈ e−ηKL(t )t . (A36)

Now let us think about how the scaling of convergence time
will be with noise. First, in the η → 0 limit, for small η

the convergence time would get smaller, not larger (since it
is immediately dominated by noise). So it is not possible
that T ∼ 1/η to some powers in η. For this reason, the only
possibility left is

T = O(1) + O(η) + O(η2) · · · , (A37)

in the scaling of η. We will thus focus on the first O(1) term
in the small-η limit. Furthermore, from the form e−ηKLt , we
know that T ∼ 1/KL.

Now let us count the dimension, assuming θi has the
θ -dimension 1 and L has the θ -dimension 0. From the
gradient-descent formula, η has the θ -dimension 2, KL has
the θ -dimension −2, and ε has the θ -dimension 1. The time T
is dimensionless since ηKLT is dimensionless and appears in
the exponent. Thus, since we know that T ∼ 1/KL, there must
be an extra factor balancing the θ -dimension of KL. The only
choice is ε2, and we cannot use η because we are studying
the term with the η-scaling O(1). Thus, we immediately get
T ∼ 1/(KLε2). That is how we get the dependence T ∼ 1/ε2

by dimensional analysis. Note that the estimation only works
in the small-η limit. More generally, we have

T =
∑

m,n>2m

O
(

ηn−2m

Km
Lεn

)
(A38)

if we assume that the expression of T is analytic.

c. Large-width limit

The dependence T ∼ 1/ε2 can also be made plausible us-
ing the quantum neural tangent kernel (QNTK) theory. The
QNTK theory has been established [47–49] in the limit where
we have a large number of trainable angles d and a small
learning rate η, with the quadratic loss function. According
to Ref. [49], we use the loss function

L(θ ) = 1
2 [〈�0|U †(θ )OU (θ )|�0〉 − O0]2 =: 1

2ε2 . (A39)

Here, we make predictions on the eigenvalue of the operator
O towards O0. And we use U (θ ) as the variational ansatz. The
gradient-descent algorithm is

θi(t + 1) − θi(t ) =: δθi = −η
∂L
∂θi

(A40)

when there is no noise. Furthermore, we hereby model the
noise by adding Gaussian random variables in each step of
the update. Those random fluctuations are independently dis-
tributed through �θi ∼ N (0, ε2). Now, in the limit where d is
large, we have an analytic solution of the convergence time,
given by

T ≈
ln

(
ε√

2ε2(0)η−ε2(0)η2K+ε2

)
ln(1 − ηK )

, (A41)

where K := KL/2. In the small-η limit, we have

T ≈ ε2(0)

ε2K
. (A42)

This gives substance to the claim in the dimensional analysis.

d. Critical noise from random walks

Moreover, using the result from Ref. [49], we can also esti-
mate the critical noise εcri, namely, the critical value of phase
transition of the noise size that leads to better performance and
avoids the saddle points.

In particular, here we will be interested in the case where
the saddle-point avoidance is triggered purely by random
walks without any extra potential. The assumption, although it
may not be real in the practical loss-function landscape, might
still provide some useful guidance. According to Ref. [49], we
have

ε2(t ) = (1 − ηK )2t

(
ε2(0) − ε2

η(2 − ηK )

)
+ ε2

η(2 − ηK )
.

(A43)

Here, ε2 is the variance of the residual training error ε after
averaging over the realizations of the noise. Imagine that now
the gradient-descent process is running from the saddle point
to the exact local minimum; we have

1

2
(|εsaddle|2 − |εmin|2) = �L ∼ ε2

2η(2 − ηK )
, (A44)

where �L is the distance of the loss function from the saddle
point to the local minimum (defined also in the main text),
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�L = Lsaddle − Lmininum = 1
2 (|εsaddle|2 − |εmin|2). So we get

an estimate of the critical noise,

ε2
cri ∼ �L[2η(2 − ηK )] ∼ 4η�L . (A45)

Here, on the most right-hand side of the formula, we use the
approximation where η is small enough. This formula might
be more generic beyond QNTK since one could regard it as
an analog of Einstein’s formula of Brownian motion,

x2(t ) = 2Dt, (A46)

with the averaging moving distance square x2, mass diffusiv-
ity D, and time t in the Brownian motion.

One can also show such a scaling in the linear model. Say
that we have a linear loss function

L =
∑

μ

cμθμ + b, (A47)

with constants cμ and b. For simplicity, we assume that the
initialization θ (0) makes L[θ (0)] = L(0) > 0. The gradient-
descent relation is

δθμ = θμ(t + 1) − θμ(t ) = −η
∂L
∂θμ

= −ηcμ. (A48)

One can find the closed-form solution,

θμ(t ) = θμ(0) − ηtcμ. (A49)

It is also possible to identify the change of the loss function
to be

L(t ) =
∑

μ

cμθμ(0) + b − ηt
∑

μ

c2
μ = L(0) − ηt

∑
μ

c2
μ.

(A50)

The convergence time can be estimated as

T = L(0)

η
∑

μ c2
μ

. (A51)

Now, instead, we add a random ξμ(t ) in the gradient-descent
dynamics, which is following the normal distribution ξμ(t ) ∼
N (0, σ 2

μ). Now, the stochastic gradient-descent equation is

δθμ = θμ(t + 1) − θμ(t ) = −η
∂L
∂θμ

+ ξμ = −ηcμ + ξμ,

(A52)

which gives the solution

θμ(t ) = θμ(0) − ηtcμ +
t−1∑
i=0

ξμ(i). (A53)

Thus, we get the loss function

L(t ) =
∑

μ

cμθμ(0) + b − ηt
∑

μ

c2
μ +

t−1∑
μ,i=0

cμξμ(i)

= L(0) − ηt
∑

μ

c2
μ +

t−1∑
μ,i=0

cμξμ(i). (A54)

FIG. 14. The dependence of the critical noise εcri on η�L in the
example of four qubits. Here, we fit the dependence by the linear
relation εcri = cεη�L, where cε = 0.052 140 4.

The critical point σμ = εcri can be identified as

ηt
∑

μ

c2
μ ∼ εcri

√
t

⎛
⎝∑

μ

c2
μ

⎞
⎠

1/2

, (A55)

where the standard deviation of the noise term will compen-
sate the decay. Thus, we get

εcri ∼ η
√

t

⎛
⎝∑

μ

c2
μ

⎞
⎠

1/2

. (A56)

In the limit where the noise levels are small, we can study the
behavior in the late-time limit,

t = T = L(0)

η
∑

μ c2
μ

. (A57)

So we get

εcri ∼
√

ηL(0) ∼
√

η�L, (A58)

which is

ε2
cri ∼ η�L. (A59)

Thus, the linear model result is consistent with the derivation
using QNTK with the quadratic loss.

e. Phenomenological critical noise

In practice, random walks may not be the only source trig-
gering the saddle-point avoidance, leading to the

√
t scaling

in loss functions. Since saddle points have negative Hessian
eigenvalues, those directions will provide driven forces with
linear contributions ∝ t in the loss function. In the linear
model, we can estimate the critical noise as

ηt�L ∼ εcrit, (A60)

which leads to the linear relation

εcri ∼ η�L. (A61)

In Fig. 14, we show the dependence of the critical noise εcri

on η�L in our numerical example with four qubits from Fig. 3
of the main text and its linear fitting. We find that our theory is
justified for a decent range of learning rate. In our numerical
data, in smaller learning rates, the increase of the critical noise
might be smoother, while for larger critical noise, the growth
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is closer to linear scaling. If we fit for the exponent of εcri ∼
(η�L )�cri , we get �cri ≈ 0.8722.

One could also transform critical learning rates towards the
number of shots if the noises are dominated from quantum
measurements. One can assume the scaling

εcri ∼ η√
Ncri

, (A62)

and we can obtain the optimal number of shots,

Ncri = Ncri = cNη2−2�cri�
−2�cri
L . (A63)

One can then take �cri = 1 as a good approximation, assum-
ing that the saddle-point avoidance is dominated by negative
saddle-point eigenvalues. ccri is a constant depending on the
circuit architecture and the loss-function landscapes. This for-

malism could be useful to estimate the optimal number of
shots used in variational quantum algorithms. For instance,
we take �cri = 1 and we get

Ncri = cN�−2
L . (A64)

In the situation of Fig. 3 of the main text, we obtain

ε = cη

η√
N

, (A65)

with cη estimated as cη ≈ 1.197 33 from QISKIT. So we get

Ncri = c2
η

c2
ε

1

�2
L

= 131.8, (A66)

which is the optimal numbers of shots in this experiment with
pure measurement noises. Here, cN = c2

η/c2
ε .
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