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ABSTRACT: Designing organic fluorescent molecules with tailored optical proper-
ties has been a long-standing challenge. Recently, statistical models have opened new
avenues for tackling this problem. Inverse design has attracted considerable attention
in organic materials science; however, most existing approaches focus on arbitrary
design or theoretical properties. Here, we introduce a strategy that enables the direct
optimization of specific experimental properties during the inverse design process.
Our method employs an adaptive β-variational autoencoder (adaptive β-VAE)
combined with a latent vector-based prediction model. By dynamically tuning the
Kullback−Leibler divergence scaling factor (β) and employing a separate training
strategy, we enhance both the robustness of the generator and the diversity of the generated molecules. We demonstrate that latent
vectors from the adaptive β-VAE serve as powerful inputs for downstream prediction models of experimental properties, such as
fluorescence energy and quantum yield. Our optimized search framework for organic fluorescent materials�guided by gradients in
latent space and validated by newly synthesized molecules sampled from optimal regions in the high-dimensional space�shows
strong potential for broader applications in the design of diverse organic materials.
KEYWORDS: molecular modeling, optimization, inverse molecular design, molecules, optical properties, fluorescence

■ INTRODUCTION
The design of small-molecule organic fluorophores has become
a central focus in biological research and material science due
to the advent of fluorescence-based applications.1−4 Despite
this interest, the controlled synthesis of fluorophores remains
challenging because of the intricate relationship between
structure and properties.5−7 Traditional first-principles calcu-
lations offer a partial solution; however, they often fail to
balance computational speed with accuracy and can only work
on limited properties.8−10 Recent advances in machine learning
(ML) have provided alternative pathways for predicting the
optical properties of organic materials (Figure 1A).11−17 For
instance, the ChemFluor data set reported by us served as the
basis for our reported ML model for photophysical property
prediction.11 Similarly, Joung et al. utilized a deep learning
framework to predict a range of optical properties.12

The success of statistical models raises the possibility of
inverse design and the targeted search for optimized
compounds (Figure S4).18−21 The challenge of inverse design
with predictive models for organic materials comes from the
reliance on molecular descriptors, which translate molecular
structures into machine-readable formats.22,23 This translation
is unidirectional, preventing the reconstruction of molecular
architectures from descriptors alone, thus limiting the scope for
reverse engineering. Graph neural networks (GNNs) have
shown promise in both predictive modeling and, more

recently, inverse design. Nonetheless, due to their limited
receptive fields and higher data requirements, fingerprint-based
models remain advantageous for capturing global molecular
features and enabling data-efficient training on experimentally
derived data sets.24,25 Additionally, the discrete nature of these
variables (such as molecular fingerprints) complicates the
computation of gradients during optimization, posing a barrier
to the seamless application of conventional optimization
techniques.26,27 In response to these challenges, various
generator architectures have garnered substantial interest.28−30

Early work by Aspuru-Guzik et al. on a SMILES-based
variational autoencoder (VAE) opened avenues for optimized
compound searches, albeit limited to small molecules.31,32

Moreover, the generator has been explored in ML-assisted
material design as well but concentrates either on arbitrary
design or theoretical properties.33,34

Here, we questioned whether the search for optimized
compounds with specific experimental properties in materials
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Figure 1. Schematic overview of organic material optimization. (A) The schematic for direct design. (B) The schematic for inverse design by
searching for targeted molecules. (C) Overview of the methodology for optimized materials search developed in this study. (D) Diagram for
various molecular representations.

Figure 2. Enhancing molecular diversity and accuracy through adaptive β-VAE. (A) Schematic for the VAE and β-VAE. (B) The change of β value
during the training process in VAE, optimized AE, and adaptive β-VAE. (C) Conceptual illustration of the optimization process under different β
settings. (Left) Error landscape with respect to hyperparameters n and m. The goal of tuning the β value is to guide the model toward the global
optimum (marked in orange). (Middle) Latent space representations under different KL divergence weights: standard VAE (β = 1) encourages
structured diversity but may lead to noisy representations and convergence to a local minimum; AE (β = 0) drives the model toward a global
minimum in terms of reconstruction error but sacrifices diversity and may ignore the true global optimum. Adaptive β-VAE transitions from global
exploration (high β) to localized accuracy (low β), effectively balancing both objectives. Heatmaps represent reconstruction error. Arrows indicate
training trajectories. (D) Evaluation of the reconstruction accuracy of different AE variants across various data sets. (E) Adaptive β-VAE enhances
diversity in molecular generation. The box plot shows the capability of adaptive β-VAE in generating viable molecules from latent vector
interpolations, while only molecules generated by disturbing a randomly selected and consistent subset of vectors are used for the counts.
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science can also be achieved through an integrated generator-
predictor framework (Figure 1B). This approach, however,
presents several challenges that impede large-scale exploration.
Primarily, the combination of generation and prediction tools
has predominantly focused on properties derived from
quantum chemical computations due to the limited scarcity
of experimental data sets.35−37 The limited size of experimental
data sets will compromise the generator’s efficacy. Additionally,
this integration typically necessitates cotraining of the decoder
and predictor.32 Lastly, predicting experimental properties�
such as fluorescence wavelengths, photoluminescence quantum
yield (PLQY) in organic fluorophores, power conversion
efficiencies (PCEs) in organic photovoltaics (OPVs), and
charge carrier mobility in organic field-effect transistors
(OFETs)�proves substantially more difficult than computa-
tional attributes due to the multifaceted influences in real-
world experimental conditions.
To answer these questions, we developed a workflow

leveraging an adaptive β-VAE and a predictor to directly
optimize organic fluorophores on a high dimensional space
fitted from experimental energies (Figure 1C). SELFIES, a
robust and standardizable molecular string representation, was
utilized for reliable encoding in a one-hot format (Figure 1D
and Method S1.1.1). The application of this encoding is to
reduce the model’s dependency on learning syntax alongside
molecular structure, thereby minimizing syntax-related errors
during generation. We train the generator and predictor
separately and thus make the data fusion in the generator
become possible. Dynamic tuning of the scaling factor of the
Kullback−Leibler divergence (KL divergence), β, which
regulated the strength of the regularization, can generate a
more flexible latent space representation and improve the
decoder’s reconstruction ability. Utilizing the latent vectors
from this adaptive β-VAE, we constructed a prediction model
for the photophysical properties, including PLQY and emission
energy within the error of quantum mechanical precision
(∼0.13 eV). Then, we visualize the high-dimensional space to
confirm the possibility of target molecular optimization.
Experimental validation with newly synthesized molecules
sampled from optimal regions of high-dimensional space
successfully confirms the feasibility of our generator and
predictor. Applying our method in a fluorophore skeleton, we
synthesized a new compound with bright blue emission,
showcasing our strategy’s potential for material discovery. Our
workflow proves the feasibility of inverse design achieved
through target optimization and signals a transformative
approach to diverse organic material design.

■ RESULTS AND DISCUSSION

Adaptive β-VAE for Molecular Reconstruction

Traditional autoencoders (AE) focus on compressing and
reconstructing data but lack control over the latent space,
limiting their usefulness for generating diverse molecular
structures. VAE, on the other hand, provides structured latent
spaces that are ideal for molecular generation by introducing a
KL divergence term. However, this structure can sometimes
overconstrain the model, reducing reconstruction efficiency.
To address this, β-VAE was introduced, adding a scaling factor,
β, before the KL divergence term (Figure 2A). Adjusting β
provides more flexibility: lower β values reduce the influence of
KL divergence, allowing for higher reconstruction accuracy,
while higher β values increase the regularization effect,

encouraging diverse generation. β-VAE allows for control
over the balance between reconstruction accuracy and
diversity. However, a fixed β may still be suboptimal, as
different stages of training demand varying levels of
regularization.
To tackle this challenge, we propose a β-VAE variant, named

adaptive β-VAE. Our approach uses a dynamic β that changes
over the course of training: we start with a high β to build a
globally diverse latent space and then gradually decrease β,
allowing the model to emphasize local reconstruction accuracy
(Figure 2B, see Methods S1.1.2 and S1.1.3 for details). This
adaptive strategy enables the model to explore a broader range
of possibilities at early stages and converge to accurate
solutions later, striking a balance between AE’s reconstruction
focus and VAE’s generative flexibility (Figure 2C). This
approach is particularly effective for specific data types, such as
chemical small molecules, where both local detail and global
diversity are essential.
Cotraining prediction and generative models have been

common in molecular generation; however, this approach is
limited by experimental data sets, which are often small in size,
restricting the model’s generative diversity. To overcome this,
we opted for separate training of the generator and predictor,
allowing each model to specialize without data set limitations.
Additionally, we incorporated diverse molecular scaffolds
through data fusion, enriching our data set with compatible
molecules per established protocols (Method S1.1.4). This
strategy broadens latent space sampling and enhances
generative diversity, addressing real-world challenges in
molecular generation.
We first validated our model on the QM9 data set with three

VAE variants (β = 1 VAE; β = 0, optimized AE; and adaptive
β-VAE), achieving a high reconstruction rate (>98%) across all
variants (Figure 2D and Table S1). When our strategy was
applied to a more challenging data set with larger fluorescent
molecules, ChemFluor30 (a subdata set of ChemFluor with
molecules smaller than 30 heavy atoms), the adaptive β-VAE
with data fusion showed a clear performance improvement,
raising reconstruction rates from 59% to 67%, a relative
increase of ∼13% (Figure 2D). Ablation experiment confirmed
the impotence of scheduling strategy for the β value in adaptive
β-VAE (Table S2). This dual strategy not only increase the
reconstruction accuracy but also enhanced the representation
of diverse molecular characteristics.
We then evaluated the enhanced adaptive β-VAE and the

VAE by perturbing a subset of latent vectors to generate
molecules (Figures 2E and S5). The adaptive β-VAE
demonstrated superior performance, generating an average of
8.2 times more total distinct molecules with a broader chemical
feature set, indicative of a more complex chemical space
encapsulated during model training (Figure 2E). This
contrasted with the original VAE, which tends to generate
more similar structures. Moreover, the adaptive β-VAE
facilitated the generation of transitional molecular structures
through interpolation between two selected latent vectors
(Figures 2E and S6). Despite some resulting nonviable
molecules, the majority of these intermediate structures were
coherent and synthesizable, emphasizing the strength of our
strategy in refining the VAE architecture to generate a wide
range of diverse molecules.
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Predictor Based on GBRT with the Latent Vector for
Experimental Optical Properties

With the establishment of the generator, we move to the
prediction model. To adapt our VAE for chemical property
prediction, we train the predictor separately using the latent
space learned from the ChemFluor30 data set, which contains
experimentally measured photophysical properties. This
approach diverges from the conventional joint training
approach, which often restricts chemical diversity.32 Our
investigation prioritizes emission energies�key optical proper-
ties for organic emitters. We adopt the Gradient Boosting
Regression Tree (GBRT), lauded for its predictive precision in
our prior research (Method S1.1.5 and Tables S3 and S4). The
model results in a mean absolute error (MAE) of 0.128 eV for
unseen molecules in different solvents using latent vectors as
the input, surpassing TD-DFT accuracy (∼0.20 eV), and is
sufficient for utilizing in virtual screening (Figure 3A and Table
S5)38−42 A similar MAE of 0.124 eV was obtained from one-
hot SELFIES as input indicating the high fidelity of the latent
vector generated from SELFIES. Furthermore, the model

successfully reproduces the trends of specific molecules in
different solvents (Figures 3B and S7). To externally validate
the model, we test it on a data set of NDI, Rhodamine, and
Coumarin molecules previously used as benchmarks. The
model maintains a strong performance with an MAE of 0.20
eV, comparable to TD-DFT accuracy (Figure S8). Utilizing T-
distributed stochastic neighbor embedding (t-SNE) visual-
izations, we observe the cluster of various structures such as
Rhodamine and BODIPY derivatives (Figure 3C). Meanwhile,
the analogous distributions between latent vectors and
SELFIES prove that they are high-fidelity predictors, while
the distinct from ECFP4 suggests their uniqueness (Figure
S9). Furthermore, based on the predictor, we confirm that the
molecules generated by adaptive β-VAE exhibit a greater
diversity in their predicted emission energies (Figure S10).
Furthermore, we also assessed PLQY predictions within the

latent space. PLQY is one of the most critical factors affecting
the fluorescence intensity of organic fluorescent materials, yet
attempts at its prediction remain limited. Our regressor
achieves reasonable accuracy for unseen molecules across

Figure 3. Latent vector-based predictor for optical properties. (A) The predictor for the emission energy based on GBRT with latent vector (left)
or SELFIES (right) well reproduces the fluorescence in the test set for unseen molecules with different solvents. (B) The fluorescence wavelength
of one typical molecule in the test set in various solvents. (C) t-SNE of latent vectors obtained from adaptive β-VAE. Colors indicate the emission
energies (eV). (D) The regressor for the PLQY based on GBRT with the latent vector as input can reproduce the brightness for unseen molecules.
(E) PLQY for selected molecules in the test set under various solvents. (F) The distribution of PLQY in the data set. 0.25 is set as the threshold for
bright and dark molecules. (G) The prediction performance of PLQY classifier with the latent vector as input.
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various solvents (r = 0.80, Figure 3D), making it suitable for
prescreening fluorophore candidates. To study the prediction
accuracy for real-world problems, we define an accurate PLQY
prediction if the absolute error is less than 30% of the true
value plus 0.1, an empirically chosen threshold that reflects
typical practical tolerance and experimental uncertainty.[ref]
Over 70% of unseen molecules can be accurately predicted,
outperforming TD-DFT-based estimations.43,44 It is also
important to note that TD-DFT cannot easily or broadly
estimate the PLQY. Only a few studies have attempted such
calculations under specific physical assumptions, and these
approaches are limited to a range of molecular systems.

Additionally, our model can also well reproduce solvent effects
(Figure 3E). Considering the distribution of PLQY and real-
world situations, we apply 0.25 as a threshold to classify the
bright and dark molecules (Figure 3F).45−47 Our classifier
discerns between bright and dark materials with an accuracy of
0.81, rendering it suitable for practical predictive applications
(Figure 3G).
Synthesis Validation of the Framework

Based on the demonstrated performance of our generator and
predictor, we have utilized vector group tuning to visualize the
high-dimensional space in a 3D plot, facilitating precise
structural adjustment and exploration (Methods S1.1.6 and

Figure 4. High-dimensional latent space analysis and synthesis validation. (A) Visualization and analysis of the continuous high-dimensional space,
indicating potential for optimization. (B) Correlation between the HOMO−LUMO gap calculated by GFN2-xTB and the predicted emission
energy of molecules with similar backbone sampled from high-dimensional space. (C) External validation of RB-Boost VAE using uncharacterized
synthesized molecules. (D) Comparison of experimental fluorescence spectra with predicted emission energies for uncharacterized molecules,
illustrating prediction accuracy. (E) Editing on the fluorophore skeleton (imidazopyridine) by exploring nearby molecules and controlling synthesis
complexity. (F) The fluorescence spectrum of molecule 7.
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S1.1.7). We applied our approach with molecules shown in the
center of Figure 4A, where the manipulation of latent vectors
yielded diverse molecules with predicted emission energies
ranging from 1.95 to 2.45 eV (Figure 4A for model based on
adaptive β-VAE and Figure S11 for optimized AE). To validate
the reliability of the predicted fluorescence energy in the
generated high-dimensional space, we employed Semiempirical
Tight Binding, GFN2-xTB, a semiempirical quantum mechan-
ical method to estimate the HOMO−LUMO gap of several
molecules with a similar skeleton generated in this high-
dimensional space (Figure S12).48 Molecules with similar
skeletons are selected here for the computational validation
since we want to minimize the structure diversity that increases
the complexity and difference between computational and
experimental properties. The correlation further supports the
validity of our approach (Figure 4B). Although it needs to be
recognized that (1) semiempirical methods are not accurate
and (2) calculated H-L gap only reflects the electronic
structure in the ground state while emission is highly related to
the excited state, we rationalize that molecules with a similar
skeleton should at least have similar trend between H-L gap
and fluorescence wavelength. This localized optimization
highlights our approach’s potential in editing molecular
structures and properties, confirming its utility in precision
design.
To further corroborate our strategy’s efficacy, we synthesized

and analyzed novel molecules. Initially, derivatives of
benzoxazole and imidazopyridine (1−3) were analyzed by
using the optimized AE and adaptive β-VAE. Compounds 1
and 2 were successfully reproduced by both methods.
However, compound 3 underwent a transformation to 5-
methyl-1H-pyrrolo[1,2-a]imidazole 4 with the optimized AE
but was accurately reproduced by the adaptive β-VAE (Figure
4C). Later, to evaluate the performance of the predictor, we
characterized their fluorescence spectra in CH2Cl2 (Figure
4D). Although the absolute error is around 0.20 eV, the model
accurately reflected the emission trend for 1 and 2, which
possess a similar biaryl backbone. Following this initial
validation of the generator and predictor, we investigated the
utility of our strategy in optimized compound searches and
molecular editing. Due to the complexity introduced by the
high-dimensional latent space, we centered our exploration on
the nearby molecules of imidazopyridine derivative 5 (Figure
4E). We choose molecule 6 with an extended π-system, for its
plausible structure and predicted red-shifted emission
compared with 5 (3.05 eV to 2.77 eV). Considering synthetic
feasibility and our laboratory’s compound library, we
synthesized 7 based on the backbone of 6. The photophysical
characterization of 7 revealed its bright blue emission with a
CIE coordinate (0.16, 0.09), indicating its potential as a blue
OLED emitter (Figure 4F).49

■ CONCLUSIONS
In summary, we successfully leveraged the latent vector space
to enable optimized molecule generation with experimentally
relevant properties through a combination of adaptive β-VAE
and a predictor. Specifically, we applied adaptive β-VAE, which
employs a dynamically tuned scaling factor, β, for KL
divergence to regulate the strength of regularization. This
tuning of β enabled a flexible latent space representation,
enhancing both the reconstruction accuracy and molecular
diversity. Unlike traditional workflows, our predictor actively
informed the selection of latent vectors, optimizing the search

for “dream molecules” with tailored properties. We confirmed
the practicality of our method in searching for optimized
compounds by (1) the evaluation of the predictor perform-
ance, (2) visualization of the latent space with predicted
emission energy validated by semiempirical quantum mechan-
ical methods, and (3) experimental validation of synthesized
molecules. Using a fluorophore skeleton as an example, we
designed and synthesized compound 7, which exhibited bright
blue emission, demonstrating the feasibility and potential of
our strategy in materials discovery.
This streamlined workflow not only enables editing of

molecular properties for optimized compounds but also
heralds a new era of material design with promising
applications in the development of OLEDs, OPVs, and
OFETs. Despite its success, the current approach has
limitations, including the reliance on relatively small
experimental data sets and the need for improved predictors
for complex experimental properties. Furthermore, systemati-
cally benchmarking AI-driven reverse design against heuristic-
driven expert strategies would be valuable for understanding
the full potential of these data-driven approaches. Future work
will address these challenges by expanding experimental data
sets, integrating diffusion model with advanced neural network
predictors, and exploring multitask learning frameworks.50−55

These efforts will further enhance the robustness, accuracy, and
versatility of AI-driven molecular design, paving the way for
transformative applications across materials science and
biotechnology.

■ METHODS

Variational Autoencoder
The VAE, developed by Diederik P. Kingma and Max Welling,
reframes statistical inference issues as optimization problems.56 In a
VAE, the input data is sampled from a parametrized distribution, and
the encoder and decoder are trained together to minimize the
reconstruction error between the parametric and true posterior
distributions.
When the model receives input x, the encoder compresses it into

the latent space. The decoder then takes information sampled from
this space to produce an output x as similar as possible to x. However,
rather than encoding an input as a single point in the latent space, the
VAE represents it as a distribution over this space. Thus, the encoder
returns a distribution over the latent space instead of a single point. A
regularization term is added to the loss function over this distribution
to ensure a well-organized latent space conducive to the generative
process.
The VAE’s primary mechanism involves maximizing the evidence

lower bound (ELBO). The ELBO is formulated as follows

E p x z q z x p zELBO log ( ) KL ( ) ( )z xq ( )= [ | ] [ | | ]|

Here, qϕ(z|x) represents the approximate posterior distribution of
the latent space learned by the encoder, pθ(x|z) is the conditional
probability distribution of the data generated by the decoder, p(z) is
the prior distribution of the latent space, and KL denotes the
Kullback−Leibler divergence, measuring the divergence between two
distributions. By maximizing the ELBO, the VAE aims to improve the
quality of data reconstruction while maintaining an effective
organizational structure in the latent space. We use the framework
of VAE, as shown in Figure S1.
Data Sets
Two data sets have been applied in this work to construct a generative
model: (1) QM 9_sub, which contains 25000 small organic molecules
obtained randomly from QM9 data set.57 Molecules in the data set
consist of H, C, O, N, and F and contain up to 9 heavy atoms. As
shown by the distribution in Figure S2A, about 80% of the molecules
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contain 9 atoms. Compounds in this data set is considered small
organic molecules; (2) ChemFluor is composed of more than 4300
experimental solvated organic fluorescent materials (around 3000
distinct compounds) and 11,000 data (λabs, λem, and PLQY).11 Most
of the molecules contain more than 20 atoms (Figure S2b). A subdata
set of ChemFluor named ChemFluor30, which contains 2280
molecules with atomic number less than 31, has been used in this
work. 80% of the data set is randomly selected as used as the training
set. 10% of the data set is used as the validation set and 10% of the
data set is used as the test set. The percentage of the molecules that
successfully reproduced by VAE is used to evaluate the performance
of various models. To comprehensively analyze the rebuild rate of
different decoders and encoders, we evaluate VAE, optimized AE, and
adaptive β-VAE in both QM9_sub and ChemFluor30 data set.
Optimized AE and Adaptive β-VAE
In our research, we present a variant AE, termed optimized AE in our
work, which adapts the traditional ELBO by excluding the KL
divergence. This alteration allows the model to primarily focus on
learning the latent distribution without diverging toward generating
novel molecular structures.
We also developed a variant of the β-VAE, termed adaptive β-VAE,

which adapts the traditional ELBO by modifying the KL divergence.
This alteration allows the model to primarily focus on learning the
latent distribution without diverging toward generating novel
molecular structures. To be more specific, in the basic β-VAE, the
parameter modifies the objective by introducing a β-term to balance
the reconstruction and regularization

p D q PX XZ ZX Z( , ; ) log ( ) ( ( ) ( ))ZXq ( ) KL= [ ]

The choice of a fixed β value is known to influence the learned
representation. A larger β emphasizes disentanglement and a
smoother latent space at the expense of reconstruction fidelity,
while a smaller β prioritizes data fidelity over latent regularization.
Although a single β-value is conceptually simple, it cannot adapt to
the evolving needs of the training process. Early in training,
encouraging a well-structured latent space can prevent representations
from collapsing into narrow regions. Later in training, allowing more
focus on reconstruction can refine the learned distributions and
ensure high-quality decoding.
Therefore, we use an adaptive strategy to modify this process: An

exponential decay schedule is one of the simplest adaptive strategies.
Suppose βstart is the initial β-value, βend is a lower bound, and ρ∈(0,1)
is a decay rate. At epoch t, we define β(t) = max(βend,βstart·ρt). In early
epochs, β(t)≈βstart, which is typically chosen to be ≥1 to ensure a well-
regularized latent space. As the training progresses, β(t) smoothly
decreases, shifting the balance toward more accurate reconstructions.
While exponential decay is effective and simple, other heuristics can

be employed:
Linear decay: β decreased linearly over epochs until reaching βend
Piecewise scheduling: using a high β during the initial Tswitch epoch

and then abruptly lowering it thereafter.

t T t Tif , ift t( )
high switch

( )
low switch= < =

Performance-based adjustment: monitoring KL divergence and
reconstruction loss during training and adjusting β accordingly. For
instance, if the KL term becomes too small, β is temporarily increased;
if reconstruction lags, β is decreased. These alternatives provide
flexibility and can be tailored to specific data sets or training
objectives. In our work, ρ∈(0,1), we select the 0.95, and therefore, the
final loss can be expressed as

x E p x z D q z x p z( , ; ) log ( ) ( ( ) ( ))z xq ( ) KL= [ | ] | ||

Data Fusion
We also have enhanced the diversity and recognition capabilities of
our molecular data set by incorporating a subset of molecules from
the ChemFluor30 data set and expanding it through similarity-based
augmentation using the PubChem database. Furthermore, to enrich

our data set with high-quality chemical structures, we have integrated
data from the Joung et al.12 Following a stringent selection process
that filters molecules based on a maximum atom count criterion of 31
atoms, we combined the data sets. The resultant augmented database
contains a total of 5310 molecules, significantly broadening the
chemical space for the training of our models.4 This methodological
enhancement facilitates the learning of a generalized molecular
representation.
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