L))

Check for
updates

Not-So-Bitter Pill to Swallow: Slipstreaming Memory Safe
Programming via Rust as part of a Database Systems Course

Mohammed Suhail Rehman
Department of Computer Science
University of Chicago
Chicago, USA
suhail@uchicago.edu

Aaron Elmore
Department of Computer Science
University of Chicago
Chicago, USA
aelmore@uchicago.edu

Raul Castro Fernandez
Department of Computer Science
University of Chicago
Chicago, USA
raulcf@uchicago.edu

Provided to Students / External Crate Worked on by Students in Advanced Class Built by Students in Intro Class

Client Query

SELECT * FROM
tablel JOIN table2 ON
tablel.key =
table2.key WHERE
table2.coll < 100;

EH

AST & Qu
: =] Logical ery
SQL Parser Plan il

Physical Quer_y
Plan Execution

Results

Manager

Heap Files

Figure 1: The architecture of CrustyDB, a simple relational database system implemented in Rust.

Abstract

In this paper, we present our experience integrating Rust, a memory-
safe systems programming language, into an introductory database
systems course project. Our findings indicate that while Rust’s
steep learning curve posed initial challenges, it significantly en-
hanced students’ understanding of memory safety and systems
programming concepts. We also discuss the outcomes of the course,
which has now been taught to over 500 students over five separate
offerings. While student feedback has been overwhelmingly posi-
tive, we provide insights for educators considering Rust for similar
systems-oriented elective CS courses.

CCS Concepts

- Social and professional topics — Computer engineering
education.

Keywords
Databases, Rust, Systems Programming, Memory Safety

ACM Reference Format:

Mohammed Suhail Rehman, Aaron Elmore, and Raul Castro Fernandez.
2025. Not-So-Bitter Pill to Swallow: Slipstreaming Memory Safe Program-
ming via Rust as part of a Database Systems Course. In Workshop on
Data Systems Education: Bridging Education Practice (DataEd °25), June
22-27, 2025, Berlin, Germany. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3735091.3737532

This work is licensed under a Creative Commons Attribution 4.0 International License.
DataEd °25, Berlin, Germany

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1918-9/25/06

https://doi.org/10.1145/3735091.3737532

41

1 Introduction

Databases are a popular elective course in many undergraduate
computer science programs, and provide an excellent opportunity to
introduce students to system engineering concepts [1], particularly
in courses that are centered around designing database systems,
rather than using them. This is especially true for undergraduate
CS majors at the University of Chicago, as the average student is
only able to take two or three systems-oriented elective courses,
given the breadth of the undergraduate core curriculum [27]. In
2021, we decided to revamp the existing database systems course
at UChicago to sharpen its focus on systems programming, and,
in particular, teach students about memory safety in the context
of building a complex, multi-threaded, high-performance systems
application. Unsafe memory management is rampant in modern
software, leading to a wide range of security vulnerabilities, often
landing in the top 5 of CWE’s Top 25 Most Dangerous Software
Weaknesses [25].

As we evaluated various implementation choices for the database
system (§ 3.1), we found Rust [14] to be particularly attractive for
systems programming tasks that require high performance and low-
level control over system resources — a near perfect alignment with
the needs of a database system implementation. Rust’s memory
safety guarantees are enforced at compile time, which eliminates
the need for runtime checks and garbage collection, making it
suitable for database systems, among other system software [28].

In this paper, we describe our experience designing and teaching
a database systems course that uses Rust as the primary systems
implementation language. We describe the curriculum design and
course materials (§ 3), and the course project, CrustyDB (§ 4, 5, 6).

https://orcid.org/0000-0002-1765-1753
https://orcid.org/0000-0002-4062-8826
https://orcid.org/0000-0001-7675-6080
https://doi.org/10.1145/3735091.3737532
https://doi.org/10.1145/3735091.3737532
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735091.3737532
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735091.3737532&domain=pdf&date_stamp=2025-07-28

DataEd 25, June 22-27, 2025, Berlin, Germany

We also present the results of student feedback (§ 7) that was con-
ducted at the end of the course offerings to evaluate the effective-
ness of using Rust in a database systems course. Our experience
(§ 8) shows that while students found Rust to be a powerful and
expressive language that is well-suited for systems programming
tasks, they were mixed about using in using Rust in future projects,
in-part due to its steep learning curve.

2 Related Work

Database-related courses represent popular elective options in
many CS programs [9], are taught by doing a deep dive into the
internals of a database system, often by either working with an
existing database such as PostgresSQL [1], or by building a simple
database from scratch [6, 20, 21, 24].

Due to the increasing popularity of Rust as a system program-
ming language, several universities offer mini-courses [10, 17, 29]
or workshops that teach Rust. However, to our knowledge, only
few courses have slip-streamed Rust into an existing systems-based
course. An OS course at UVA [8] in 2014 used Rust as the primary
programming language to teach operating systems concepts, but
has since moved back to Python and C in its latest offering. A similar
experimental course was taught at Stanford [4] that used Rust, but
focused on developing an OS for embedded hardware, but has also
since reverted to C/C++. We also found a similar course at Georgia
Tech used Rust to teach OS concepts as recently as 2020 [12].

We have found that it is far more popular to include Rust in practi-
cal programming language or programming paradigm courses [2, 7]
than to include them within traditional CS system elective courses.
The closest course we found to ours is an advanced database systems
course at CMU [18] allows students to build database components
such as query optimizers and transaction managers in Rust. To
the best of our knowledge, our course is the first to use Rust as
the primary programming language for an introductory database
systems course.

3 Curriculum Design

3.1 Design Goals

The Introduction to Database Systems course at UChicago was first
taught using a custom-built database system called chiDB [24] that
was built in C, and was designed to be a simple, extensible database
system that was format-compatible with SQLite, using a database
machine model. In 2016, the course was restructured to use the
popular SimpleDB [21] educational database system. In 2020, the
authors decided to build a new database system from scratch, as the
limitations of SimpleDB were becoming apparent — the system was
not extensible, and the Java-based implementation lacked low-level
control over system resources such as memory and IO management
and did not allow students to get a deep understanding of systems
engineering concepts.

As we evaluated various implementation choices for the database
system, we transitioned away from Java, and wanted to use a mod-
ern, systems oriented programming language. We considered C++,
Go, and Rust, and ultimately settled on Rust as it (a) provided mem-
ory safety guarantees without garbage collection, (b) had strong
support for concurrency, while not being prescriptive about the
concurrency model, and (c) had modern language features, with

4

Rehman, Elmore and Fernandez, et al.

weeks Topic
Introduction to Database Systems, Relational Model

SQL, Application Development with Databases

Database Design, Storage and File Organization

Indexing
Query Execution
Query Optimization
Transactions and Concurrency Control
Recovery and Parellel Databases
Distributed Databases and non-relational systems

—_

O 00 N QN Uk W

Table 1: Database Topics Covered in our Course

robust types, generics, pattern matching, functional programming
features, and a modern build and dependency management system
baked in.

Thus, with the help of multiple research assistants, we built the
CrustyDB database system from scratch in Rust, and designed the
course project around it. The system was first developed in it’s
entirety, and then parts of the system were extracted into a set
of project milestones that students would implement as part of
the course-long project. The result is a fully functional, extensible,
database system that is designed to be used as a teaching and
research tool for undergraduate and graduate students.

3.2 Course Description and Syllabus

Our course, CMSC 23500: Introduction to Database Systems [15], is
a systems elective course in computer science intended for under-
graduate CS majors, as well as graduate students at the UChicago.
As an advanced systems elective, students are required to complete
a four-course introductory sequence in computer programming,
which includes two introductory to computer systems courses,
based on the popular CS:APP systems course [5]. Two of these
classes are in Python and two are in C. CS majors are required to
complete a set of systems electives, and this course satisfies ass
systems requirement for the CS major.

This course is also cross-listed as a graduate course (CMSC 33550)
and is intended for students pursuing an M.S. or Ph.D. degree in
computer science, and fulfills a systems breadth requirement for
Ph.D. students. This course is a prerequisite for the Advanced Data-
base Systems course (CMSC 23530), for students who wish to take a
deeper dive into topics such as distributed databases, materialized
views, multi-dimensional indexes, cloud-native architectures, data
versioning, and concurrency-control protocols. CMSC 23530 also
uses CrustyDB as the database project testbed for certain assign-
ments, as mentioned in §4.

The UChicago CS department also offers multiple other graduate
database courses for professional CS masters students (MPCS 53001)
as well as computational public policy masters students (CAPP
30235), and are intended mostly to train students on the use and
practice of database systems, as opposed to designing the internals
of a database system.

Our course is designed to introduce students to relational data-
base system concepts and implementation, similar to other database
systems courses that follow the textbook by Silbershatz et.al. [23].
Table 1 lists the material covered in the classroom for the course.

Not-So-Bitter Pill to Swallow: Slipstreaming Memory Safe Programming via Rust as part of a Database Systems Course

Starting from the basics of database systems, we introduce basic
relational database theory, SQL, and explain the architecture of a
database system, from physical storage, query execution, optimiza-
tion, and transaction management. Students are evaluated on their
understanding of these theoretical concepts via a midterm exam
and a final exam, turn a homework related to SQL, and have to
complete the CrustyDB project milestones, as described next.

4 CrustyDB’s Architecture

CrustyDB (Figure 1) is designed to be a relational database en-
gine built from the ground up in Rust. We have focused on a
modular design to allow component re-use for a research system,
CrocodileDB [22], to replace parts and enable contributions from
undergraduates. The system can be broken down into the following
parts:

e CrustyDB Client: A simple command-line interface (CLI)
program that sends SQL queries as well as database meta-
commands (styled after PostgreSQL) to a server process.

e CrustyDB Server: The server process listens for incoming
client connections, and spawns a separate thread process
for each client command. Each client command is routed
through the following components:

(1) Query Parser: The query parser is responsible for parsing
the incoming database meta command and SQL queries,
and converting them into a query plan that can be exe-
cuted by the query executor. CrustyDB uses an external
crate called sqlparser-rs [26] to parse SQL queries and
generate the Abstract Syntax Tree (AST) for the query.

(2) Query Optimizer: The query optimizer is responsible for
taking the query plan generated by the query parser and
generating an optimized query plan that can be executed
by the query executor. CrustyDB currently contains a
prototype rule-based optimizer that can reorder joins and
push down selections, and can be used by students and
research assistants to experiment with query optimization
techniques.

(3) Query Executor: CrustyDB uses a simple iterator-based
query executor that can execute the query plan generated
by the query parser. The iterator model is inspired by
the Volcano/Cascades model [11], and is designed to be
extensible with new query operators. Some of the query
operators such as as the sequential scan operator work
with the storage manager to fetch tuples from disk.
Storage Manager: The managers described above are de-
signed to be pluggable, with different variants that can be
designed and implemented for each. For example, there
are three different Storage Manager implementations cur-
rently in CrustyDB: The Heapstore (which uses heap file
organization using slotted pages), Memstore (purely in-
memory storage manager), and the SledStore (a TreeFile
storage implementation using Rust’s sled [16] library).
(5) Transaction Manager: The transaction manager is re-

sponsible for managing the lifecycle of transactions, and
ensuring that transactions are executed in a manner that
is consistent with the ACID properties. Like the storage

—
N
=

43

DataEd 25, June 22-27, 2025, Berlin, Germany

manager, the transaction manager is designed to be plug-
gable, with different variants that can be designed and
implemented for each. Students that take the Advanced
Database Systems course are tasked with implementing a
simple two-phase locking transaction manager in one of
the project milestones.

Index Manager: Finally, CrustyDB includes a simple in-
dex manager interface that can used to implement different
types of indexes, such as B-trees, hash indexes, or bitmap
indexes. Students that take the Advanced Database Sys-
tems course are tasked with implementing a simple B-tree
index manager in one of the project milestones.

(6)

5 The CrustyDB Assignments

In this section, we now describe the different phases of the CrustyDB
project.

5.1 The Rust Primer

We have found that students new to Rust often struggle with the
language’s unique features, such as its ownership model, borrow
checker, lifetime annotations, and variable mutability, particularly
in multithreaded programming. To help students get up to speed
with Rust, we provide a rust primer (Table 2) that covers the basics
of the language. The primer is designed as an online textbook!
accompanied by a series of exercises that students can complete to
reinforce their understanding of the material. We have also min-
imized the use of advanced memory and ownership features to
simplify milestones.

5.2 CrustyDB I: Page Milestone

The first milestone of the CrustyDB project is to implement a simple
storage manager that implements the heap file organization using
slotted pages. A heap file consists of fixed-size pages, each of which
contains a header that stores metadata about the page, and each
item stored in the page is stored in a slot that contains a pointer to
the item’s location in the page. This milestone is a deep dive into
Rust’s language features, and students need to understand the byte
manipulation and serialization features of Rust to implement the
storage manager.

5.3 CrustyDB II: Heapstore Milestone

In the second milestone of the CrustyDB project, students continue
building the storage manager by implementing a HeapFile interface
that can manage heapfiles on disk, and provide an iterative interface
to scan tuples from the heapfile. Students have to understand the
Rust filesystem API and the Rust I/O model to implement this
milestone.

Graduate students taking this class are tasked with an additional
requirement to implement a buffer pool manager that can man-
age pages in memory, and implement a simple clock-based LRU
approximation eviction policy to manage the buffer pool.

!https://uchi-db.github.io/rust-guide

https://uchi-db.github.io/rust-guide

DataEd 25, June 22-27, 2025, Berlin, Germany

Rehman, Elmore and Fernandez, et al.

Topic Description
Ownership Rust’s ownership model and how it enforces memory safety
Borrowing How Rust’s borrowing system works and how it prevents data races
Lifetimes Understanding lifetimes and how they are used to ensure memory safety
Mutability Rules for mutable and immutable references in Rust
Concurrency | Safe concurrency patterns using Rust’s ownership and borrowing model
Error Handling Using Rust’s ‘Result® and ‘Option‘ types for error handling
Serialization Techniques for serializing and deserializing data in Rust

Table 2: Topics covered in the Rust primer

5.4 CrustyDB III: Operator Milestone

In this milestone, students are introduced to the iterator model of
query execution and are provided with a simple iterator interface
(designed as a Rust trait), and are tasked with implementing the
following query operators:

e Nested-Loop Join: Students implement a simple nested-
loop join operator that joins two input streams on a join
predicate, and outputs the joined tuples.

e Hash Join: Students implement a hash join operator that
creates a hash table from one input stream, and probes the
hash table with the other input stream to output the joined
tuples.

e Groupby-Aggregate: Students implement a groupby and
aggregate operator that groups input tuples by a group key,
and applies an aggregate function to each group.

5.5 CrustyDB IV: Open-Ended

Graduate students taking the course are tasked with an additional
open-ended milestone that allows them to extend CrustyDB with
one additional feature of their choice:

e Additional Query Operators: Students can implement ad-
ditional operators such as the grace hash join [13], or paral-
lelized join operators.

e Basic Indexing Structures: Integrate a hash or tree-based
index into the query execution pipeline and develop a basic
optimizer to choose when to use the index.

e Logging: Implement a simple write-ahead log for updates
to the database.

o Statistics Collection: Implement a simple statistics collec-
tion framework for selectivity estimation and query opti-
mization.

o Disk-Based Indexes: Implement a hash or tree-based index
that can be stored on disk.

¢ Transaction Management: Implement a 2PL transaction
and/or lock manager.

6 Evaluating Student Work

Students in this course are primarily evaluated on their homework,
project milestones, as well as a midterm and final exam.

Each project milestone is evaluated using a combination of au-
tomated tests and TA/instructor code review. The automated tests
are designed to test the correctness of the student’s implemen-
tation, while the code review is designed to evaluate the quality
of the student’s code, including factors such as code readability,

44

code organization, and code style. As part of the automated tests,
a benchmark suite (Rust’s criterion [3] benchmark suite) is run
on the student’s implementation to evaluate the performance of
their code. Each milestone has a set of performance requirements
that the student’s implementation must meet in order to pass the
milestone.

The exams are designed to evaluate the student’s understand-
ing of the theoretical concepts covered in the course, including
relational algebra, SQL, query execution, query optimization, and
transaction management, and is administered on pen-and-paper.

The final grade is calculated as a weighted average of the home-
work and project milestones (62%), 34% between the midterm and
final exam, and 4% for participation in class.

7 Course Outcomes

The Rust-focused redesign of the Introduction to Database Systems
has been offered on five separate occasions, starting in the winter
quarter of 2021, and taught by all three authors in separate sections.
The course has been well-received and continues to be a very pop-
ular elective course among CS majors at UChicago. At the time of
writing, the course as described in this paper has been taught to a
total of 509 students, with 448 enrolled in the undergraduate course
and 61 in the graduate version. In the latest offering at the time of
writing (Spring 2024), the course was taken by 115 students total,
(103 undergraduate, 12 graduate).

7.1 Course Feedback

We elicited two forms of feedback from the students. First, as part of
our institutional course evaluations, we asked students to provide
feedback on the course as a whole, the quality of the lectures,
projects and assignments, the effectiveness of the course materials,
and the quality of the instruction as well as TA support.

Across the board, the course has strong positive feedback from
the students (N=152), with students agreeing or strongly agree-
ing that the course (a) “was excellent” (78%), (b) “challenged them
intellectually” (94%), and, (c) should be recommended to “highly
motivated and well-prepared students” (95%).

Second, for each project milestone, we asked students to provide
feedback on the specific milestone, including the perceived diffi-
culty, an estimated time to completion, as well as the parts of the
milestone they enjoyed and the parts they found challenging. The
results of milestone-specific feedback are summarized in § 7.3.

Not-So-Bitter Pill to Swallow: Slipstreaming Memory Safe Programming via Rust as part of a Database Systems Course

I EFS Y
¥ @ o2)
E2Rg
= £ Not really -
28
g2 e [
4 8 £
T Iy ——
8 5 Extensive I
ac
—2 Some .
8¢
w“
5)
First Homework
§ e n
-)
E523

o
=
-
I
v
%)
&
&
%)
&

Figure 2: Student responses to Rust questions

7.2 Rust-Specific Feedback

In addition to the overall feedback, we included the following open-
ended questions (Rust Questions / RQs) to gauge students’ experi-
ence with Rust, in the latest offering of the course:

e RQ1: When were you first made aware that the course
projects would be implemented in Rust?

e RQ2: What was your prior experience with Rust before
coming into this Class?

e RQ3: Do you see yourself continuing to program in Rust?

e RQ4: Do you find yourself more aware or less aware about
memory safety in Rust after taking this course?

Figure 2 indicates the results for these questions from the student
feedback, (N=35). Since this was the fifth time the redesigned course
was offered, a significant number of students were aware of the
Rust programming requirement, primarily from course feedback of
previous students. The vast majority of the students did not have
any significant prior experience with Rust, with only three students
reported having some experience and only one with significant
experience in Rust. Students were divided on whether they would
continue to program in Rust, with 20 students indicating that it
would be unsure or unlikely, and 15 students indicating that they
liked the language enough that they would consider it for future
projects. Finally, students were overwhelmingly found themselves
more aware of memory safety issues after programming in Rust.

7.3 Feedback from Assignments

We also collected feedback from the students on the Rust primer and
the project milestones. The individual feedback was collected and
analyzed to understand some of the common themes that emerged:

e Rust Primer: Students found the Rust primer to be very
helpful, and many students reported that they would not
have been able to complete the project milestones without it.
Students reported struggling with Rust’s ownership model,
lifetimes and borrowing system. Students also expressed is-
sues with the type system and error handling but appreciated
the compiler’s helpful error messages and the relative lack
of segmentation faults and memory leaks.

45

DataEd 25, June 22-27, 2025, Berlin, Germany

e Project Milestone 1: Students expressed challenges with
byte manipulation and serialization, and in particular man-
aging memory views and pointers in Rust, while minimizing
unnecessary copying.

e Project Milestone 2: A common feedback was difficulty
in understanding the interior mutability model in Rust, as
students were tasked with using reference counting, locks
and mutexes to protect access to storage manager’s data
structures under a multithreaded workload.

e Project Milestone 3: Students generally expressed less diffi-
culty at this point in the course, as they were more comfort-
able with Rust’s quirks. Many appreciated the trait system
in Rust, and liked some of the flexibility of the built-in data
structures such as Rust’s HashMap.

8 Lessons Learned

This course (and CrustyDB) is being continually refined and im-
proved based on student feedback and our own experiences. Some
of the major lessons we learned from teaching this course include:

e Rust’s Learning Curve: Rust’s learning curve is steep,
and students new to Rust often struggle with its ownership
model, borrow checker, lifetime annotations, and variable
mutability. While the Rust primer helped students get up to
speed with Rust, we found that some students still struggled
with the language, particularly in getting their code to com-
pile. Students eventually found their footing, and we found
that the learning curve was not an impediment to learning
core system concepts.

¢ Tooling: Rust’s tooling ecosystem is still maturing, and we
had some trouble setting up automated testing and bench-
marking tools for the students. For example, Rust’s auto-
mated tests (via cargo) were not as mature as Java’s JUnit
or Python’s pytest, even for simple requirements as json
output of test results, and we had to rely on external tools
like nexttest [19] to generate test results. Similarly, we had
trouble setting up a test timeout for the benchmarks, and
had to rely on a custom script to kill the benchmark process
after a certain time.

e Use of Generative AlI: The instructors’ experience with
Rust and generative Al tools such as ChatGPT and Github
Copilot seemed to indicate that these tools were not as help-
ful and effective in writing proper Rust code as they were
with Python and SQL. This is likely due to the complexity of
the language and significantly less code available in Rust for
the models to train on. We warned students ahead of time to
be cautious with these tools as they could lead to incorrect
or unsafe code, or steer users in the wrong direction when
compared to the Rust compiler’s suggestions.

Acknowledgments

This course was made possible by the hard work of the teaching
and research assistants, including Riki Otaki, Jun Hyuk Chang,
Charles Benello, Zhe Heng Eng, Tapan Srivasatava, Rui Liu, Yue
Gong, Reilly McBride, Emma Rosenthal, William Ma, and Daisy
Barbanel.

DataEd 25, June 22-27, 2025, Berlin, Germany

References
[1] Anastassia Ailamaki and Joseph M. Hellerstein. 2003. Exposing Undergraduate

[2

[11

[12

(13

[14

[

]

]

Students to Database System Internals. SIGMOD Rec. 32, 3 (Sept. 2003), 18-20.
doi:10.1145/945721.945725

Jonathan Aldrich. 2022. 17-363/17-663: Programming Language Pragmatics.
Retrieved June 4, 2025 from https://www.cs.cmu.edu/~aldrich/courses/17-363-
fa22/

Jorge Aparicio and Brook Heisler. 2025. Criterion.rs: Statistics-driven Microbench-
marking in Rust. Retrieved June 4, 2025 from https://github.com/bheisler/
criterion.rs/

Sergio Benitez. 2018. Stanford CS140e: An Experimental Course on Operating
Systems. Retrieved June 4, 2025 from https://cs140e.sergio.bz/

Randal E Bryant and David R O’Hallaron. 2015. Computer Systems: A Program-
mer’s Perspective (3 ed.). Pearson, Upper Saddle River, NJ.

CMU Database Group. 2025. The BusTub Relational Database Management
System (Educational). Retrieved June 4, 2025 from https://github.com/cmu-
db/bustub

Will Crichton. 2019. From Theory to Systems: A Grounded Approach to Pro-
gramming Language Education. https://arxiv.org/abs/1904.06750. doi:10.48550/
arXiv.1904.06750 arXiv:1904.06750 [cs.PL]

David Evans. 2014. Using Rust for an Undergraduate OS Course (Blog Post).
https://rust-class.org/pages/using-rust-for-an-undergraduate-os-course.html.
Alan D. Fekete and Uwe Rohm. 2022. Teaching about Data and Databases: Why,
What, How? SIGMOD Rec. 51, 2 (July 2022), 52-60. doi:10.1145/3552490.3552504
Noah Gift and Alfredo Deza. 2025. Coursera / Duke University: Rust Program-
ming Specialization. Retrieved June 4, 2025 from https://www.coursera.org/
specializations/rust-programming

G. Graefe. 1994. Volcano: An Extensible and Parallel Query Evaluation System.
IEEE Trans. on Knowl. and Data Eng. 6, 1 (Feb. 1994), 120-135. doi:10.1109/69.
273032

Taesoo Kim. 2020. Georgia Tech CS-3210: Design-Operating Systems Spring 2020.
Retrieved June 4, 2025 from https://tc.gts3.org/cs3210/2020/spring/info.html
Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. 1983. Relational
Algebra Machine GRACE. In Proceedings of RIMS Symposium on Software Science
and Engineering. Springer-Verlag, Berlin, Heidelberg, 191-214.

Steve Klabnik and Carol Nichols. 2023. The Rust Programming Language: 2nd
edition. No Starch Press, San Francisco, CA.

46

(23]

[24]

[26

[27]

(28]

[29]

Rehman, Elmore and Fernandez, et al.

Aaron J. Elmore Mohammed Suhail Rehman. 2023. CMSC 23500/33550: Intro to
Database Systems. https://classes.cs.uchicago.edu/archive/2023/spring/23500-1/.

Tyler Neely. 2025. Sled - An Embedded Database. https://github.com/spacejam/
sled.

Quan Hao Ng and Daniel Philipov. 2025. UIUC: CS 128 Honors. Retrieved June
4, 2025 from https://honors.cs128.org/

Andy Pavlo. 2024. CMU 15-721 : Advanced Database Systems (Spring 2024).
https://15721.courses.cs.cmu.edu/spring2024/.

Rain. 2025. Cargo-Nextest: A next-generation test runner for Rust. https://nexte.
st/.

Raghu Ramakrishnan and Johannes Gehrke. 2000. Database Management Systems
(2nd ed.). McGraw-Hill, Inc., USA.

Edward Sciore. 2007. SimpleDB: a simple java-based multiuser syst for teaching
database internals. SIGCSE Bull. 39, 1 (March 2007), 561-565. doi:10.1145/1227504.
1227498

Zechao Shang, Xi Liang, Dixin Tang, Cong Ding, Aaron J. Elmore, Sanjay
Krishnan, and Michael J. Franklin. 2020. CrocodileDB: Efficient Database
Execution through Intelligent Deferment. In CIDR. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf

Abraham Silberschatz, Henry Korth, and S Sudarshan. 2019. Database system
concepts (7 ed.). McGraw-Hill, New York, NY.

Borja Sotomayor and Adam Shaw. 2016. Chidb: Building a Simple Relational
Database System from Scratch. In Proceedings of the 47th ACM Technical Sympo-
sium on Computing Science Education (SIGCSE ’16). Association for Computing
Machinery, New York, NY, USA, 407-412. doi:10.1145/2839509.2844638

Alec Summers, Connor Mullaly, and Steve Christey Coley. 2024. CWE Top
25 Most Dangerous Software Weaknesses. Retrieved June 4, 2025 from https:
//cwe.mitre.org/top25/index.html

The Apache Software Foundation. 2025. datafusion-sqlparser-rs: Extensible SQL
Lexer and Parser for Rust. Retrieved June 4, 2025 from https://github.com/
apache/datafusion-sqlparser-rs

The University of Chicago. 2025. The Core Curriculum. https://college.uchicago.
edu/academics/core-curriculum.

The White House Office of the National Cyber Director. 2024. Back To The
Building Blocks: A Path Towards Secure and Measurable Software. Retrieved
June 4, 2025 from https://bidenwhitehouse.archives.gov/wp-content/uploads/
2024/02/Final-ONCD- Technical-Report.pdf

Connor Tsui and Jessica Ruan. 2024. CMU 98-008: Intro to Rust Lang. Retrieved
June 4, 2025 from https://rust-stuco.github.io/old/f24/

https://doi.org/10.1145/945721.945725
https://www.cs.cmu.edu/~aldrich/courses/17-363-fa22/
https://www.cs.cmu.edu/~aldrich/courses/17-363-fa22/
https://github.com/bheisler/criterion.rs/
https://github.com/bheisler/criterion.rs/
https://cs140e.sergio.bz/
https://github.com/cmu-db/bustub
https://github.com/cmu-db/bustub
https://arxiv.org/abs/1904.06750
https://doi.org/10.48550/arXiv.1904.06750
https://doi.org/10.48550/arXiv.1904.06750
https://arxiv.org/abs/1904.06750
https://rust-class.org/pages/using-rust-for-an-undergraduate-os-course.html
https://doi.org/10.1145/3552490.3552504
https://www.coursera.org/specializations/rust-programming
https://www.coursera.org/specializations/rust-programming
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://tc.gts3.org/cs3210/2020/spring/info.html
https://classes.cs.uchicago.edu/archive/2023/spring/23500-1/
https://github.com/spacejam/sled
https://github.com/spacejam/sled
https://honors.cs128.org/
https://nexte.st/
https://nexte.st/
https://doi.org/10.1145/1227504.1227498
https://doi.org/10.1145/1227504.1227498
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf
https://doi.org/10.1145/2839509.2844638
https://cwe.mitre.org/top25/index.html
https://cwe.mitre.org/top25/index.html
https://github.com/apache/datafusion-sqlparser-rs
https://github.com/apache/datafusion-sqlparser-rs
https://college.uchicago.edu/academics/core-curriculum
https://college.uchicago.edu/academics/core-curriculum
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rust-stuco.github.io/old/f24/

	Abstract
	1 Introduction
	2 Related Work
	3 Curriculum Design
	3.1 Design Goals
	3.2 Course Description and Syllabus

	4 CrustyDB's Architecture
	5 The CrustyDB Assignments
	5.1 The Rust Primer
	5.2 CrustyDB I: Page Milestone
	5.3 CrustyDB II: Heapstore Milestone
	5.4 CrustyDB III: Operator Milestone
	5.5 CrustyDB IV: Open-Ended

	6 Evaluating Student Work
	7 Course Outcomes
	7.1 Course Feedback
	7.2 Rust-Specific Feedback
	7.3 Feedback from Assignments

	8 Lessons Learned
	Acknowledgments
	References

