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Limits on the computational expressivity
of non-equilibrium biophysical processes

Carlos Floyd 1,2 , Aaron R. Dinner 1,2,3, Arvind Murugan 2,4 &
Suriyanarayanan Vaikuntanathan1,2,3

Many biological decision-making tasks require classifying high-dimensional
chemical states. The biophysical and computational mechanisms that enable
classification remain enigmatic. In this work, using Markov jump processes as
an abstraction of general biochemical networks, we reveal several unantici-
pated and universal limitations on the classification ability of generic bio-
physical processes. These limits arise from a fundamental non-equilibrium
thermodynamic constraint that we have derived. Importantly, we show that
these limitations can be overcome using common biochemical mechanisms
that we term input multiplicity, examples of which include enzymes acting on
multiple targets. Analogous to how increasing depth enhances the expressivity
and classification ability of neural networks, our work demonstrates how
tuning input multiplicity can potentially enable an exponential increase in a
biological system’s ability to classify and process information.

To survive, cells must understand and respond effectively to their
chemical and physical environments. This information-processing task
relies on intricate chemical coding systems1–9. A simple example of a
system that decodes a chemical signal is theGoldbeter-Koshland push-
pull circuit10, which transitions between binary states as the activity of
an enzyme varies (Fig. 1A, B). Phase separation in the cell can similarly
lead to sharp boundaries in the space of molecular concentrations11.
Biochemical modules such as the p53 tumor suppression pathway
enable cells to classify environmental stresses12, and recent advances in
synthetic biology have made it possible to recapitulate and engineer
the classification capabilities of such systems within cells13,14. Finally,
the so-called glycan code can be viewed as a rich encoding of a high-
dimensional cell state into hundreds of different discrete states (clas-
ses): enzyme activities in the Golgi apparatus act as inputs by attaching
varying amounts of different sugar molecules to proteins which then
embed in the plasma membrane and serve as signaling molecules
which encode the cell state (Fig. 1C, D)15–17. These biochemical systems
draw decision boundaries through their input spaces, demarcating
them into regions that map to classes. Training of these systems pre-
sumablyoccurs over evolutionary time to yield sets of kinetic rates and
chemical conditions that allow them to perform their computational

tasks precisely. How these systems, with energetics and kinetics con-
strained by thermodynamic laws, are able to classify potentially high-
dimensional chemical and physical states into one of many discrete
choices is not well understood and remains an important open
question.

Previous works have studied aspects of computation in physical
networks18–20, specific chemical model systems6,21–25, and notably in
competitively interacting molecular networks at equilibrium5,6,9,26–28.
Although such studies have illustrated an analogy between neural
networks and biochemical networks, it is currently not clear what
constraints on the amount of information that can be encoded (i.e., the
expressivity) are introduced through the use of molecular activities as
representations. In addition, to our knowledge, a general investigation
of the classification ability of non-equilibrium biological processes has
not been carried out.

In this work, we use tools developed to describe far-from-
equilibrium systems to investigate this central question. Our results
reveal strong and surprising limits on the ability of non-equilibrium
biological systems—modeled as general non-equilibriumMarkov state
networks—to perform classification tasks. These constraints are
derived from a class of non-equilibrium response limitations recently
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reported by some of us in ref. 29. We show how these constraints can
be systematically lifted using commonly found biochemical mechan-
isms such as enzymes acting onmultiple targets. Analogous to the way
increasing depth andwidth of artificial neural networks increases their
expressivity, tuning input multiplicity may enable an exponential
increase in the ability of a biological process to classify and process
information. We further show that sharp classification transitions are
enabled by input multiplicity along with certain topological condi-
tions, and that the form of computations performed by Markov net-
works is related to those of transformer architectures. These results
offer insights into the mechanisms by which high-dimensional multi-
class classification tasks are performed by cells. Our work establishes
fundamental design principles underlying biological systems that
perform complex computational tasks.

Results
Classification tasks using Markov jump processes
Cells are frequently required to make discrete decisions that require
integrating from many different input signals. Examples include deci-
sions made in processes such as chemotaxis, transcription regulation
in response to heat shock, quorum sensing, and many others1,2. These
decisions are made using networks of biochemical components based
on complex combinations of input signals from the environment. Can
these biochemical networks compute arbitrarily complicated func-
tions of their input signals, or, if not, what ingredients are needed to
allow for more complicated decision making?

To address this question, we work with a general mesoscale
Markov state characterization of biological processes (Fig. 1E). Nodes

in the Markov network are coarse representations of the state of the
system. Edges encode rates of transitions between the states and can
be functions of, for example, temperature, pH, enzyme activities, and
chemical potential gradients. This class of physical models is com-
monly used to represent kinetic schemes of chemical reaction
networks30–37. We model inputs to the system as modulating the rates
along designated edges of the Markov state network. The output is
encoded in the steady-state properties of the network, and we first
consider representing the output specifically by the occupancy of a
few designated output nodes. Our main results rely on non-
equilibrium thermodynamic descriptions of the steady state and its
response to perturbations, andweobtain several general limits on how
effectively the Markov state networks can classify inputs and how
sharp the decision boundaries drawn by this physical system can
be30,38. We describe this effectiveness with the term expressivity,
referring to the notion in machine learning of a model’s ability to
account for and represent complex features in a dataset39.

A Markov jump process can be represented by a graph with Nn

nodes andNe edges and a probability vectorp(t) over this set of nodes.
The rate of jumping from node j to i is denoted Wij = e

Ej�Bij + Fij=2 + Fa=2,
where Ej, Bij = Bji, and the non-equilibrium forces Fij = − Fji are learnable
parameters (Fig. 1E). We add an input Fa to the value of Fij if edge ij has
been assigned as an input edge. We represent the input variables as a
D-dimensional vector F, and we represent the Nn + 2Ne learnable
parameters fEjgNn

j = 1
∪ fBij , Fijgij2E , with E the set of edges, as a vector θ

(see the Methods for physical interpretation of these parameters).
Under the master equation dynamics _pðtÞ=WðF;θÞpðtÞ, we view the
steady state π(F; θ) ≡ limt→∞p(t) as performing a parameterized

Fig. 1 | Classification tasks performedby biochemical networks. AThe push-pull
circuit of enzyme activation. The input here is the activity of activating enzyme,
shown in cyan, which affects the colored transition rates in the corresponding
Markov network. B Schematic graph of the binary (active vs. inactive) classification
task, which computes a soft threshold on the activity of the activating enzyme.
Colored points represent desired outputs, which are approximated by the learned
function shown in black. C Schematized representation of the process of protein
glycosylation in the Golgi apparatus, adapted from the model in ref. 16. Proteins
shown as gray ellipses traverse through many cisternae, and the state of the cell
dictates the set of glycosyltransferase enzymes found in each cisternae and, in turn,
the sugars attached to the proteins. A decorated protein ends up in one of many

distinct glycan forms on the plasma membrane, where it serves as an encoding of
the cell state.D Schematic graph of how protein glycosylation yields many output
states, which cluster based on the set of enzymes in the Golgi cisternae. The colors
of data points represent the output glycan identities at a given point in enzyme
space, and the colored ellipsoids represent decision boundaries that approximately
achieve this desired classification. E Drawing of a random Markov graph with 15
nodes and 25 edges. The output nodes are labeled, and the input forces (with
positive orientation) are drawn labeledwith arrows. In classification tasks using this
network, the solid arrows are always used as inputs, and the dashed arrows are used
whenM = 2. Input edge driving, input multiplicity, and Arrhenius-like para-
meterization of the edge rates are illustrated.
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computation on the inputs F. Specifically, we typically use a one-hot
encoding in which the values πρ at designated output nodes should be
near 1 when inputs Fρ from the corresponding class ρ are presented.
We discuss issues of selecting input edges and output nodes in the
Methods. We later generalize this setup by optimizing the mutual
information between the input and output distributions, without
imposing a one-hot encoding scheme.

Computational expressivity from the matrix-tree theorem
Here we review an analytical formula for π(F; θ) based on the matrix-
tree theorem38,40 and describe how it can be recast into two equivalent
formulations, which we subsequently leverage to highlight its com-
putational expressivity. Specifically, we show how it can be formulated
as a rational polynomialwith learnable scalar coefficients ζ iμðθÞ and as a
linear attention-like function with non-linear learnable feature vectors
ψ(i; θ) and input feature vectors χ(i, F).

We first restate the well-known matrix-tree theorem expression
for the steady-state probability π(F; θ)38,40:

πiðF;θÞ=
P

Tα2T w Tα
i ,F;θ

� �
P

k

P
Tα2T w Tα

k ,F;θ
� � ð1Þ

Here, T represents the set of Nα spanning trees, Tα
i represents the αth

spanning tree whose edges have been directed to point toward node i
as a root so as to connect every other node once to i, and the directed
tree weight wðTα

i Þ represents the product of all rate matrix elements
Wlm corresponding to the directed edges l ← m in Tα

i (Fig. 2A). This
formula thus constructs the steady state for node iby summingover all
possible kinetic pathways into node i and then normalizing with
respect to all nodes.

We define the input multiplicity M as the number of edges
affected per input variable, which we assume to be the same for each
input. To focus on the functional way inwhich the input driving enters
the steady-state probabilities, the driving contributions can be fac-
tored out in the algebraic expressions for the numerator and
denominator of Equation (1). This has been previously been used to
make analytical progress forM =D = 1 in, for example, refs. 29–31. This
equivalent formulation of Eq. (1) suggests that steady states of Markov
jump processes implement a rational polynomial function of expo-
nentiated input variables. Defining ya � eFa=2 >0, we rewrite the
matrix-tree expression for πi for general D and M

πiðF;θÞ=
P

μζ
i
μðθÞyμðFÞP

μ
�ζμðθÞyμðFÞ

: ð2Þ

We use the multi-index μ= fμaga2A, where A is the set of D input
labels and each component μa of the multi-index runs over the values

f�M;�ðM � 1Þ; . . . ;M � 1;Mg, to enumerate the ð2M þ 1ÞD monomials
yμ � Q

a2Ay
μa
a . These monomials y μ(F) in Equation (2) combinatorially

depend on the differentmixtures μ of input driving, representing a net
total μa of signed contributions from the input force Fa, μb such con-
tributions forFb, and so on for each input. The coefficients ζ iμðθÞ, which
are functions of the parameters θ, are the sums of weights over all
directed spanning trees rooted atnode iwhichhave the corresponding
mixture μ of signed input contributions. The monomial coefficients
ζ iμðθÞ thus represent learnable amplitudes of each polynomial basis
function y μ(F). The coefficients in the denominator are defined as
�ζμðθÞ �

PNn
k = 1ζ

k
μðθÞ. Classification will be successful if, for Fρ drawn

from class ρ, the coefficients ζ ρμðθÞ and monomials yμ(Fρ) are large for
the same μ. In the subsequent sections of the paper and in the Sup-
plementary Information we use the formulation in Equation (2) to
show how the classification ability of a non-equilibrium Markov
processes may be systematically modulated.

We show in the Supplementary Information how Equation (1) can
alternatively be written as

πiðF;θÞ=
ψði;θÞ � χði,FÞP
k ψðk;θÞ � χðk,FÞ : ð3Þ

We interpret ψ(i; θ) as a learnable feature vector with elements
ψαði;θÞ= eu

α
i �θ >0 corresponding to the trees Tα

i ; similarly, χ(i, F) is an
input feature vectorwith elements χαði,FÞ= ev

α
i �F >0. The operation � is

a dot product over trees. The structural vectors uα
i 2 RNn + 2Ne encode

the topology, i.e., which elements of θ enter exponentially into the tree
weightswðTα

i Þ and their signs; vα
i 2 RD records similar information for

F. The learnable feature vector ψ(i; θ) is therefore a non-linear
encoding of the parameters θ, while the input feature vector χ(i, F) is a
non-linear encoding of the input force F. The goal of training is to
adjust θ so that when Fρ is drawn from the class assigned to node ρ,
ψ(ρ;θ) has a larger overlap (dot product) with χ(ρ, Fρ) than any other
ψðρ0;θÞ has with χðρ0,FρÞ for ρ0 ≠ρ (Fig. 2B). As we show below, this
functional form illustrates the role of non-equilibrium affinity in
enabling classification. It also sheds light on the potential learning
modalities accessible with Markov state networks.

A fundamental limit on classification expressivity from non-
equilibrium thermodynamics
As a first illustration of how physical constraints can limit expressivity
of such systems, we train the network shown in Fig. 1E to perform a
series of binary classification tasks (Fig. 3A–C). In each case, we assign
node 1 to blue points and node 2 to orange points, and we train the
network, asdescribed in theMethods section, to obtain a set of learned
parameters θ*. We indicate the results by drawing contours at
π1(Fa, Fb; θ*) = 1/2 and π2(Fa, Fb; θ*) = 1/2. In the Supplementary

Fig. 2 | The matrix-tree theorem. A Computing the steady-state occupancy π1 by
summing weights over directed spanning trees. Directed spanning trees are sub-
graphs containing all graph nodes but no cycles, with edges oriented toward a root
node. In each directed spanning tree, the input forcesmake a positive, negative, or

zero contribution to the tree weight. The structural vectors vα1 are shown below
each tree; these quantities enter into Equation (3) below.B Schematic illustration of
the high-dimensional space of feature vectors ψ(i; θ) and χ(i, F). The depicted
arrangement of vectors could solve a binary classification problem.
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Information we show examples of the learned parameters in trained
networks. The network successfully classifies the points in Fig. 3A, B
but not 3C. The failure in Fig. 3C is not a limitation of the training
protocol, and it does not improve asNn is increased. Rather, it emerges
from a fundamental constraint on the response of non-equilibrium
steady states as the forces Fa and Fb are tuned.

Specifically, for any choice of i, j, and k, andwith other parameters
held fixed, the derivative ∂πk/∂Fij has a fixed sign across the entire
range of Fij29; in other words, πk(Fij) is a strictly monotonic function.
Thus, for fixed Fb, π1(Fa, Fb; θ*) must be a monotonic function of Fa
which implies that it can take the value 1/2 at most once along any line
drawn parallel to Fb = 0 (Fig. 3D). By symmetry, the function
π1(Fa, Fb; θ*) must also be a single-valued function of Fb along any line
parallel to Fa = 0. We refer to this limitation on the flexibility of the
decision boundary as the monotonicity constraint, which implies that
the learnable decision boundaries are not invariant to a rotation of the
input space. This corresponds to a specific failure mode of computa-
tions by non-equilibrium biophysical systems modeled as Markov
jump processes.

Improving expressivity by increasing input multiplicity
Biologically, Fa can be interpreted, for example, as depending on the
chemostatted activity of an enzyme (see the Methods). In biochemical
kinetics, it is common for some species to be involved in multiple
reactions simultaneously, making it plausible for Fa to drive multiple
edges31. We find that allowing for input multiplicity improves classifi-
cation expressivity, and one way this happens is by lifting the mono-
tonicity constraint. We assume for simplicity that each of the D input
variables fFaga2A, where A is the set of input labels, affects the same
number M of edges. Setting M > 1 lifts the monotonicity constraint
because the condition for πk(Fij) to be a monotonic function is that all
other edge parameters are held fixed; withM > 1 this is no longer true
since several edge parameters change simultaneously as an input is
varied.

To better understand the gain in the decision boundary’s flex-
ibility allowed by setting M > 1, in the Supplementary Information we
analyze the steady-state representation in the rational polynomial
form of the matrix-tree expression, Eq. (2). Considering the case D = 1
and identifying turning points as roots of ∂πi/∂Fa, we show that the
maximum number R of such roots obeys

R =
0 M = 1

2M � 1 M > 1,

�
ð4Þ

which is a direct measure of the classifier’s expressivity; see Fig. 3E for
an illustration and the Supplementary Information for a numerical
verification up to M = 4. A proof of the scaling 2M − 1 for rational
polynomials with non-negative coefficients can be found in ref. 41.
Thus, onceM > 1,πi is no longer subject to themonotonicity constraint
and behaves like a non-negative rational polynomial of degree up to
2M. Input multiplicity thus allows the non-equilibrium biological
process to be more expressive and draw out decision boundaries that
can classify more complex data structures. Indeed, returning to the
previously failed classification withM = 1 (Fig. 3C), we see that setting
M = 2 allows the samenetwork to now learn a decision boundarywhich
successfully encloses the data assigned to class 1 (Fig. 3F). This implies
that classifying a finite band of input signal levels (like a band-pass
filter) requires settingM > 1 along the corresponding input dimension.
A recent development in synthetic biology has in fact shown in a
specific example that drug binding to receptor molecules via two
distinct binding pathways can be used to design band-pass-like
responses to the drug (Fig. 3G)42.

To quantify the binary classification ability for arbitraryM andD, we
consider a classic measure called the Vapnik-Chervonenkis (VC)
dimension43. This represents the largest numberNVC of points which, for
at least one fixed configuration of the points in the input space, a set of
classifiers can correctly classify for any of the 2NVC assignments of binary
labels to the points. A theorem by Dudley44,45 states that if a classifier

Fig. 3 | Overcoming inflexible decision boundaries by increasing the input
multiplicityhyperparameterM.APlot of the learned classification functionsπ1(F)
and π2(F) shown as colored density plots over the input force space. On top of this,
scatter plots show the dataset, colored by assigned class, which was used to train
the network. Solid lines show the contour π1(F) = 1/2 in blue and π2(F) = 1/2 in
orange; note that these are approximately overlapping. The network shown in
Fig. 1E is used for all classification tasks in this figure. B, C Same as A, but for
different classification tasks. D Schematic illustration of the monotonicity

constraint. E Plots illustrating that increasing M from 1 to 2 allows for non-
monotonic dependence of a steady-state occupation on an input driving force.
F Same as panel C, but for the network in Fig. 1E, which also includes driving along
the dashed arrows (M = 2).G Schematic illustration of a recently designed synthetic
chemical band-pass system using multiple input binding42. A drug binds through a
high-affinity pathway to activate a protein and through a second, low-affinity
pathway to deactivate the protein, leading to a non-monotonic dependence of
activation on the drug.
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h(F) (whose sign determines the predicted binary label) belongs to a
vector spaceH of real scalar-valued functions, then the VC dimension of
the set of all classifiers in H is equal to the dimension of H. Given the
representation of the contour πi(F; θ) = 1/2 in the rational polynomial
formof thematrix-tree expression, Eq. (2), we see that its vector space is
spanned by the (2M+1)D coefficients ζ iμðθÞ � �ζμðθÞ=2. We thus estimate
the VC dimension of this classifier as

NVC ≤ ð2M + 1ÞD: ð5Þ

This should be viewed as an upper bound in two senses. First, for
M = 1, the monotonicity constraint imposes that NVC is strictly less
than (2M+1)D = 3D. Second, even forM > 1 the Nn(2M + 1)D coefficients
ζ iμðθÞ are not all independent degrees of freedom, as we illustrate in
the next section.

These findings suggest that input multiplicity M significantly
increases the complexity (measured by VC dimension) of the classifi-
cation tasks a biochemical circuit canperform, scaling roughly as�MD.
Input multiplicity is a known feature of many biochemical networks:
for example, many transcription factors3 as well as glycosyl-
transferases in the Golgi apparatus15–17 are known to act on several
targets. Other input variables, such as temperature, voltage, or che-
mical potential gradients, may also affect multiple edge rates simul-
taneously. Measured binding affinities between glycan molecules and
their receptors (called lectins) reveal that these interactions are highly
non-specific, corresponding to a high inputmultiplicity46. Additionally,
theoretical work on gene regulation has shown in specific examples
that an equivalent notion of input multiplicity can allow for increased
channel capacity of the regulatory motif47. Our work thus provides a
potentially unifying description of how inputmultiplicity could enable
biological processes to perform more expressive computations.

Storing more classes by increasing input multiplicity
We now generalize the binary classification task and ask how many
different classes can be stored as a function of the hyperparametersM
and D. Classifying many different classes is crucial in biology. For
example, deciphering the glycan code, which specifies one of several
hundred different cell states, or recognizing previously encountered
antigens during an immune response both require choosing among
large numbers of possibilities15,48,49. How these biochemical systems
achieve these complex classification tasks (e.g., through microscopic
sensing events like estimating antigen binding affinities) remains an
important and open question.

For M = 1, a simple geometric argument suggests that up to 2D

classes could in principle be separated. Each class could be placed in
one of the 2D orthants of the input space, and a classifier with mono-
tonicity along each axis could in principle assign a unique response to
each. In Fig. 4A we attempt to distinguish four classes by placing them
in the four quadrants of the (Fa, Fb) plane, but we find, contrary to this
expectation, that no network can separate them all with M = 1.

This failure stems from the constrained functional form of the
steady-state distribution in our Markov network model. Each compo-
nent ζ iμðθÞ entering the matrix-tree solution (Eq. (2)) is a polynomial
function of the 2Ne edge rates fWijgij2E , and there exist equality con-
straints among these functions (Fig. 4B)29. These constraints reduce
the number of independently adjustable degrees of freedom, limiting
the network’s capacity to implement many decision boundaries.

In the Supplementary Information we count constraints to show
that themaximumnumber of degrees of freedom nd.o.f. among the 3Nn

functions fζ iμg
Nn

i= 1
for M = 1, D = 1 is

nd:o:f: =2Nn: ð6Þ

We also show that the maximum number of degrees of freedom
among the 9Nn functions fζ iμðθÞg

Nn

i = 1
for M = 1, D = 2 is

nd:o:f: = minð2Ne, 3NnÞ, ð7Þ

where the minimum reflects the fact that the number of tunable
parameters cannot exceed the number of edge rates.

To classify each input region correctly, the output probabilities
must satisfy a number of inequality conditions. For example, the
probability π2(F) in the top right quadrant of Fig. 4A must be greater
than the probability at all other nodes. For D = 1, the number of such
conditions scales as 2Nn, matching the number of available degrees of
freedom. But for D = 2, the number of conditions grows as 4Nn, while
the number of degrees of freedom caps at 3Nn. Thus, four-class clas-
sification appears to become infeasible for M = 1, D = 2, a result we
verify through detailed analysis in the Supplementary Information.
This reveals a new failure mode: equality constraints among classifier
coefficients can limit expressivity even when enough parameters
appear to be present.

As with binary classification, increasingM improves performance.
ForM = 2, the number of ζ iμ functions increases enough that even after
accounting for equality constraints, the network typically attains the
full 2Ne degrees of freedom. This suffices to separate four classes in

Fig. 4 | Input multiplicity allows overcoming reduced degrees of freedom and
increasesmulti-class capacity. A Plot of the learned classification functions π1(F),
π2(F), π3(F), and π4(F) for the network shown in Fig. 1E, with only the solid arrows
used for inputs (M = 1).B Schematic illustration of how the learnable parametersWij

(the edge rates on the left) are first multiplied within directed spanning trees into
products called directed treeweights, which are then summed together to yield the

polynomial functions ζ iμðθÞ appearing in Equation (2). Although each function ζ iμðθÞ
is uniquely defined, there exist equality constraints owing to the physics of Markov
networks which reduce the effective number of degrees of freedom below the
number needed to solve the four-class classification task in A. C By including
driving along the dashed arrows in Fig. 1E (settingM = 2), there are sufficientlymany
degrees of freedom to solve the four-class classification task.
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two dimensions (Fig. 4C). These results suggest that input multiplicity
may be a key component for the remarkable feats of multi-class clas-
sification used in biological processes like adaptive immunity or
deciphering the glycan code.

Expressivity requires non-equilibrium driving
A hallmark of biophysical processes is that they are sustained far from
thermodynamic equilibrium through continual consumption of che-
mical free energy. We now explain how this feature is a necessary
ingredient for some of the aforementioned computational abilities. In
the absence of any non-equilibriumdriving, either through the learned
parameters Fij or the input variables Fa, the steady-state distribution is
a Boltzmann form πi / e�Ei and does not depend on the Bij para-
meters. Beating this restrictive functional form and achieving non-
trivial classification expressivity thus requires non-equilibriumdriving.
In the Supplementary Information, we use the linear attention-like
form of the matrix-tree expression, Eq. (3), to show how the non-
equilibrium parameters Fij allow for the greatest flexibility in posi-
tioning the learnable feature vectors ψ(i; θ), thereby enabling
expressive computations.

To demonstrate this numerically, we measure how classification
accuracy depends on the amount of allowed non-equilibrium driving.
To do this, we consider an input modality in which input variables Ba
present additive contributions to the Bij parameters along input edges
rather than the Fij parameters along those edges. In this way, the only
non-equilibrium driving in the system comes from the learned Fij
parameters, which we then constrain in magnitude. We train the net-
work in Fig. 1E for the classification task shown in Fig. 3A for several
values of Fmax, which we impose during training as a ceiling on the
absolute value of any learned Fij parameter. In Fig. 5 we plot the clas-
sification accuracy of the trained networks, showing a continuous
increase in performance as a function of Fmax. This implies that under
the linear dynamics of Markov jump processes, it is necessary to break

detailed balance to perform non-trivial computations. We provide
further theoretical support for this claim by analyzing the learnable
vectors ψ(i; θ) in the Supplementary Information.

An additional perspective on non-equilibrium Markov networks
trained for classification can be gained from recent work exploring the
analogies between transformers, which implement softmax-based fil-
ters over key, query, and value vectors, and models of dense Hopfield
networks, in which relaxational dynamics in the landscape of a
softmax-like energy function allows for storage of a far greater number
of associative memories compared with the usual quadratic Hopfield
energy functions50,51. The linear attention-like form of the matrix-tree
expression, Eq. (3), motivates consideration of the corresponding
energy-like function that describes Markov steady states, which we
identify in analogy with ref. 51 as F � �ln

P
kψðk;θÞ * χðk;FÞ, where

ψ(k; θ) and χ(k; F) are the non-linear feature vectors in the attention
function. Plotting this function over the input space (Fa, Fb) in trained
and untrained graphs reveals a landscape characterized by flat, sloping
basins delimited by creases of high curvature. In trained graphs some
of these creases co-localize with the learned decision boundaries,
separating the input space into regions in which different subsets of
trees dominate the contribution to ∇FF . Some of these creases also
represent topological features of the graph which cannot be removed
by training, such as mismatched limits at the corners of the input
domain (e.g., Fa → ∞ followed by Fb → ∞ or vice versa). In the Supple-
mentary Information we expand on this analogy between the steady
states of Markov processes and dense associative memories, but we
leave a full treatment of this connection to future work. We note in
addition that the form of the classification function (Eqs. (2) and (3))
might support comparisons to other existing machine learning archi-
tectures, such as kernel-based classifiers39, besides transformers.

In the Supplementary Information, we show that the trees con-
tributing to the steady state in networks trained for classification are
more localized inweight space than in untrained ones. The activities of
the spanning trees additionally cluster according to the input class, a
pattern partially driven by the input itself and present even in
untrained graphs. Training appears to tighten clustering of activity in
graphs with many spanning trees but loosens it in graphs with fewer,
suggesting that evolved reaction networks may alter the spread of
reactive flow over the set of pathways, subject to constraints from
topology. The generality of this behavior and its dependence on task
structure remain open questions. We note that similar changes in
collective response dimensionality have been observed in trained
elastic networks52 and in associative memory models undergoing a
feature-to-prototype transition53,54.

Higher input multiplicity enhances information processing: the
emergence of one-hot encoding
We have so far considered one-hot encodings of the classification
output, where certain nodes are preselected to exhibit high steady-
state probability when an input from the corresponding class is pre-
sented. This encoding is standard in neural network-based classifier
architectures, but there is no a priori reason for a biophysical system to
adopt this convention. A more general approach would encode the
output across the entire steady-state probability distribution π in a
manner that contained the most information about the distribution of
input driving forces. In this case, it is natural to ask whether usingM > 1
can still improve information processing capacity.

To address this question, we reformulate the training setup to
maximize the mutual information IðI ;F Þ between the random vari-
ables I , representing the steady-state occupancies at the Nn node
indices, andF , the input driving force. Given a fixed graph (Fig. 6A), an
input edge, and a probability distribution pF ðFaÞ for a single input
force, we optimize the mutual information using conjugate gradient
ascent with respect to the edge rates Wij. In the Supplementary
Information we provide explicit formulas for this calculation.

Fig. 5 | Accurate classification requires non-equilibrium driving. This plot cor-
responds to the classification task in Fig. 3A using Ba and Bb as inputs instead of Fa
and Fb. The classification accuracy, defined as the average of πρ(Fρ; θ) over 103

randomly drawn samples of Fρ from classes ρ = 1, 2, is shown as a function of Fmax,
the maximum absolute value of Fij that is allowed on any edge. Five training trials
for each value of Fmax were performed, and the gray area illustrates the standard
deviation of accuracy over these trials. Insets schematically illustrate the feature
vectors in each regime.
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Using a distribution pF ðFaÞ consisting of three Gaussian peaks, we
find that for M = 1, the network cannot fully distinguish among the
three peaks (top row of Fig. 6B), achieving a mutual information value
of I � 0:9 bits. This is roughly the entropy of the discrete distribution
{1/3, 2/3} corresponding to the grouped sets of Gaussian peaks. How-
ever, for M = 2, the trained network exploits the allowed non-
monotonicity of the steady-state response to distinguish all three
peaks (middle row of Fig. 6B), reaching I � 1:5 bits, which is roughly
the 1.58 bits required to differentiate among three equally probable
options. Although the conjugate gradient optimization reaches dif-
ferent stopping points for the different random initial conditions, the
trend that higher mutual information is achievable with M = 2 is clear
(Fig. 6C). Related works on noisy gene regulatory network elements
also show through specific examples that higher information proces-
sing capacity is available when the effective input multiplicity is
increased47,55.

Interestingly, networks trained to optimize mutual information
emergently learn encodings resembling one-hot encodings, in which
separate nodes are assigned to read out each of the Gaussian peaks in
pF ðFaÞ. An exception occurs in the plotted result for for M = 2 in Fig.
6B, where the network assigns two nodes to read out the peak near
Fa = 0. In the Supplementary Information, we provide theoretical
arguments supporting these findings. Specifically, for peaked input
distributions, if each node reads out a single peak then mutual infor-
mation is not lost even ifmultiple nodes correspond to the same peak,
since observing any of these nodes uniquely identifies the peak.
However, if one node reads out multiple peaks, then the correspond-
ing peak cannot be uniquely determined when the node is observed.

Network topology dictates the sharpness of the decision
boundary
The flexibility of the decision boundary may be distinguished from
another important feature relevant for biological discrimination, which
is the boundary’s sharpness. We can quantify this as the norm of the
gradient ∇Fπi(F; θ) evaluated at a location separating the discrimination
regimes. Sharpness and the related measure of steady-state amplifica-
tion are topics which have received much research focus, particularly in
models of cooperative binding, cellular sensing, ultrasensitive covalent
modifications, and kinetic proofreading10,30–33,36,37,56–59. A consensus
among these works is that greater sharpness requires greater

expenditure of chemical free energy; this idea is often expressed in the
form of inequalities reminiscent of the thermodynamic uncertainty
relations60–62. Here, we extend this line of research by explicitly framing
it within the context of a computational classification problem. We
demonstrate systematic methods to sharpen the decision boundary by
increasing the number of input-driven transitions that occur serially
along a reaction pathway (multiple forms of an intermediate molecule),
rather than through parallel reaction pathways (multiple different
intermediate molecules). These serially driven transitions tend to yield
directed spanning trees with greater net input driving. Serially driven
edges occur biologically, for instance, in common models of how
ligands drive cooperative binding reactions and how ATP or GTP drives
multi-step kinetic proofreading3,30. Parallely driven edges occur in some
types of general enzymatic schemes30,58,63, and both kinds of driven
edges occur in commonmodels of the flagellarmotor31. Additionally, we
show that it is important to consider not only the extremes of the trees’
net input driving but also the multiplicity of trees with intermediate net
input driving, as a large number of such intermediate trees can reduce
sharpness.

For simplicity, we study sharpness with D = 1 but note that the
argument extends straightforwardly to D > 1, because to compute the
gradient norm ∇Fπi(F; θ) we merely sum the one-dimensional terms
ð∂πi=∂FaÞ2 for a 2 A. We first consider a classic biological motif, the
Goldbeter-Koshlandpush-pull network (Fig. 7A), inwhich a substrate is
shuffled between a non-phosphorylated (S) and phosphorylated (S*)
form by competing kinase (EA) and phosphatase (EB) enzymes. Our
input is the chemostatted activity of kinase, which we assume mod-
ulates the transition rates EAS← S and EAS← S* by the same affinity F. We
suppress the subscript on F in this one-dimensional problem.

We train this network to classify inputs F ∈ (−5, 0) with high πS

probability and inputs with F ∈ (0, 5) with high πS* probability, with
results shown in Fig. 7B. The learned πS(F; θ) curve has the right qua-
litative features but is not very sharp. To sharpen this transition, we
consider systematically adding driven edges (increasing M) in one of
two ways, either in parallel (Fig. 7B) or in serial (Fig. 7C) with the
original driven edges. Training each of these networks with increasing
numbers n of additional pairs of driven edges (also adding undriven
edges on the bottom for symmetry), we see that adding edges in
parallel fails to sharpen the transition, while adding edges in serial
succeeds.

Fig. 6 | Optimizing mutual information recovers one-hot encodings and
improves with greater input multiplicity. A Drawing of a fully connected graph
withNn =6,withone (D= 1) input force Fa appliedalong the solid arrow forM= 1 and
along both arrows for M = 2. B Top: For M = 1, plots of the components of the
optimizedπ(Fa) colored as in the graphdrawing inA. Insets schematically show the
steady state of the graph for at the corresponding value of Fa. Note that several
components are close to zero for all value of Fa.Middle: Same as top, but withM = 2.
Bottom: Plot of the input distribution p(Fa), composed of three Gaussian peaks,

used in this example. C Trajectories of the mutual information between the input
distribution p(Fa) and the output distribution π(Fa) as it is optimized via updates to
the Wij parameters using the Fletcher-Reeves conjugate gradient algorithm. Ran-
dom initial conditions in the range [0, 1] for the Wij parameters are used for each
trajectory. The dashed lines indicate theoretical upper bounds for the entropies of
the discrete distributions {1/3, 2/3} (green) and {1/3, 1/3, 1/3} (purple). The final
parameters of the trajectories which best optimized the mutual information for
each value of M are used for the plots in panel B.
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To explain this difference, in the Supplementary Information we
use the 1D rational polynomial form of the matrix-tree expression,
Equation (3), to maximize ∂πS/∂F with respect to the learnable coeffi-
cients ζ Sm and �ζm (treated for now as free and independent). Themulti-
index μ used in Equation (2) simplifies here to the single index m. We
show that

maxfζ Smg, f�ζmg

���∂πSðF0;θÞ
∂F

���= MR

8
ð8Þ

where the derivative is evaluated at the location of the decision
boundary F0 andMR =Mmax −Mmin is the range in exponential powers
of eF/2 among all directed spanning trees. This result shows that the
sharpness of the classifier is fundamentally limited by the structure of
the network. A tighter approximation to the bound can be obtained by
replacing MR with MO

R ≤MR, which is the range in exponential powers
among only the directed spanning trees rooted on the output nodes.
We further explain in the Supplementary Information that the directed
spanning trees of the parallelly extended push-pull networks prevent
MO

R from scaling with n, whereas the spanning trees for serially
extended networks allow MO

R � n, which enables increasingly sharp
transitions asmore edges are added. In serially extended networks, the
structure allows this range MO

R to grow with the number of added
edges n, leading to increasingly sharp transitions. In contrast, parallelly
extended networks constrain all output-rooted spanning trees to use
the same number of driven edges, keeping MO

R fixed and preventing
sharper transitions.

Finally, even when the bound in Eq. (8) is large it may not be
achieved in practice (see Supplementary Information for details).
Saturating the bound requires that the coefficients ζ Sm be concentrated
on trees with either the smallest or largest possible net input drive.
However, in networks such as those with a ladder-like architecture,
many spanning trees make intermediate contributions, and equality
constraints among the functions ζ Sm prevent the network from
assigning large weights solely to the extremal trees. As shown in
Fig. 4B, overlapping spanning trees entangle the coefficients and
reduce the effective degrees of freedom. This structural limitation
suggests that sharp decision boundaries may be inherently inacces-
sible in densely interconnected biochemical networks. This finding
resonates with, though is technically distinct from, recent results in
refs. 30,31,33,36,37.

Discussion
We have explored the computational expressivity of classifiers imple-
mented in trained non-equilibrium biochemical networks, which we
model as Markov jumpprocesses. An analytical solution for the steady
states of these systems can be written in several equivalent ways,

highlighting complementary interpretations of the classifier as com-
puting a linear softmax operation using learnable, as computing a
rational polynomial functionwith learnable scalar coefficients (Eq. (2)),
and nonlinear feature vectors (Eq. (3)). The feature vectors and coef-
ficients are themselves complicated functions of the tree weights of
the physical network, and because of this dependency they are sig-
nificantly constrained relative to abstract parametric classifiers having
the same functional form as the matrix-tree expression. We identified
several limitations to expressivity, including monotonic responses
πk(Fij) and a reduction in degrees of freedom of the classifier function.
We further showed that increasing input multiplicity (setting M > 1)
helps mitigate these limitations, by creating additional turning points
of πk(Fij) and allowing the number of degrees of freedom in the graph
to saturate at 2Ne. With even modest input multiplicity, chemical
reaction-based classifiers prove to be capable of solving difficult clas-
sification tasks, demonstrating non-linear information processing
performance reminiscent of neural networks1,2.

Key biological implications follow from the sensitive dependence
of computational expressivity on the input multiplicity hyperpara-
meter M, which we define as the number of edges driven by a single
input variable. Biologically, M > 1 occurs when a single input variable,
such as activity of an enzyme, temperature, or chemical potential
gradient, simultaneously affects more than one chemical transition.
Input multiplicity in a biochemical network may at first glance seem
counterproductive because it decreases the network’s modularity3,
but our results show that it serves to significantly expand a network’s
computational capabilities. In the context of cooperative binding,
there is also a relationship between M and the Hill coefficient, which
determines the sharpness of switch-like input responses31. We hope to
connect our general findings to specific biochemical systems in the
future. For example, systems like the glycan code (Fig. 1E) are known to
involve promiscuous enzymes which attach sugar molecules to
proteins15,17,64 as well as high levels of cross-talk in the receptor-ligand
interactions mediating cellular communication46; our results suggest
that these forms of high input multiplicity may play a crucial role in
enabling efficient molecular information processing65,66.

Generalizing the results of this paper beyond the particular che-
mical dynamics and definition of classification that we have adopted is
an important avenue for future work. Although the (pseudo) first-
order reaction networksmodeled byMarkov jump processes have less
rich dynamics than non-linear chemical kinetics, there are still many
biochemical systems to which the matrix-tree theorem, which under-
lies our results, can be applied30,31. For example, approximations based
on timescale separations can in some cases be used to create an
effective linear system out of non-linear kinetic schemes63. We leave to
future work general analyses based on chemical reaction network
theory, which is feasible in the future using recent theoretical

Fig. 7 | Sharpening decision boundaries for a biochemical motif. A Labeled
illustration of the four-species push-pull network, with driving patterns drawn as
blue and orange arrows. Plots of the trained πS(F; θ) curves for increasing nodes in
the parallel (B) and serial (C) extension. The inset shows the slopes ∂FπS(F = 0) for

the serial and parallel extensions as a function of n. The dashed and dotted lines
show the bound obtained from MO

R for the enumerated trees in serial and parallel
extensions.
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developments4,67–69. In the Supplementary Information, however, we
preliminarily extend the matrix-tree theorem approach to non-linear
reaction schemes to show that expressivity increases as bimolecular
reactions are included. This agrees with our expectation that increas-
ing the reaction order effectively increases the input multiplicityM by
allowing for additional ways for the input to affect the reaction rates.
Such non-linear systems were recently used to, for example, approx-
imate arbitrary dynamics in a recurrent neural network-like
construction70 and to perform classification and regression tasks
through competitive binding interactions6,8,9 and in a reservoir
computing-like setup71. Future work should also better characterize
the topological and structural features of reaction networks which
enable expressive computations, possibly by identifying minimal
motifs which can perform computational sub-routines.

Additionally, we adopted here the common convention used in
machine learning of one-hot encoding to specify classification out-
comes, but biologically, itmay bemore realistic to specify whole profiles
of chemical concentrations as computational outputs. In previous
work29 we showed analytically that the ratio ð∂πk=∂FijÞ=ð∂πk0=∂FijÞ is
independent of Fij for any k and k0, which can be shown to imply that the
monotonicity constraint holds under any linear mapping ~π =Rπ. Thus,
the expressivity limitations identified in thiswork should at least hold for
output profiles that are arbitrary linear transformations of one-hot
encoded outputs. By considering the encoding-agnostic objective of
maximizing the mutual information between the output distribution π
and the input distribution, we have provided preliminary evidence that
the expressive capacity of the system increases with M, independent of
specific encoding schemes.

Finally, an additional aspect of physics that deserves attention in
the future is that chemical dynamics are inherently stochastic, and
fluctuations about the steady-state mean are important, especially
when copy numbers are small. Decision-making under fluctuations
has often been treated using the framework of information
theory59,72–74. A general trend from this line of research is that max-
imizing information flow requires reducing fluctuations, which in
turn requires greater expenditure of chemical free energy. On the
other hand, some forms of chemical computation harness stochas-
ticity to generatively model probability distributions26. Combining
insights from these works with our results on classification expres-
sivity can help paint a full picture of how biochemical systems use
fuzzy logic to make decisions.

Methods
Network inputs
To present an input to the Markov network, we adjust the parameters
along designated input edges (Fig. 1E). In this paper, wemostly present
inputs via additive contributions Fa to the Fij parameters along the
edges assigned to input a, although we also consider presenting
additive contributions Ba to the corresponding Bij parameters. What
the edge inputs Fij and Bij represent physically depends on the specific
model system that one has in mind, but we next elaborate on their
general physical properties.

A contribution to the anti-symmetric term Fij generally exists due
to a broken time-reversal symmetry75, or under coarse-graining,
whereby the degrees of freedom of at least two baths with a potential
gradient between them are not explicitly modeled in the system
dynamics76. A pertinent example is the chemical potential difference
Δμ between ATP and its hydrolysis products. The assumption that the
concentrations of these species are chemostat away from equilibrium
implies that their concentrations do not enter as model variables, and
they instead break detailed balance by appearing as a contribution to
the parameter Fij � Δμ along the coarse-grained transition i ← j, which
hydrolyzes ATP and releases its products. Transitions that couple to
baths of different temperatures, voltage, or osmotic pressure could
also have non-zero Fij parameters. Additionally, reaction networks in

which a chemical potential gradient Fa can be accessed through mul-
tiple pathways will have rates depending on Fa for all such transitions.
For example, both the transitions EAS ← S and EA ← S* in Fig. 7A are
driven by the same Fa depending on enzyme concentration [EA], which
is assumed to be held fixedduring the systemdynamics and controlled
as an input variable.

Contributions toBij represent symmetric changes to the transition
rates between two states. We give two specific biological examples but
note thatmany others are possible. First, we consider a coarse-graining
scheme inwhich the enzymatic reaction E + S⇌ ES⇌ E+ S* is assumed to
be very fast relative to the other dynamics involving S and S*, and in
which the enzyme activity is fixed. It is then possible to show that an
effective reaction S ⇌ S* has the first order rate constants

kS!S* = ½E�
kE + S!ESkES!E + S*

kES!E + S* + kES!E + S
ð9Þ

and

kS*!S = ½E�
kES!E + SkE + S*!ES

kES!E + S* + kES!E + S
: ð10Þ

The ratio kS!S*=kS*!S is independent of [E], but [E] symmetrically
scales both rates, thus appearing as a contribution Bij � ln ½E� in the
Markov networkmodel.We refer to refs. 58,63,77 for additional details
on how enzymatic reactions may be coarse-grained into Markovian
descriptions using the so-called linear framework. Second,we consider
a tension-gated ion channel in which the channel’s dynamics of
opening and closing are fast, and its probability of being open is a
function of membrane tension, which we view as an input variable. We
can take the ion concentrations on either side of the membrane as
among the coarse-grained model variables, and the transition rate
through the channel dependson theprobability of it being open78. This
dependence symmetrically scales both directions of ion flow, so that
the tension effectively modulates the Bij parameter along the
Markovian transition from ions inside the membrane to those outside
the membrane.

Structural compatibility
We find that for a given graph structure, not every classification
problem (i.e., an assignment of input edges, output nodes, and sets
of input data) can be solved. For example, we may assign an input Fa
along edge i ← j and assign node j to be large when Fa > 0; this will be
very difficult to achieve because all of the spanning trees into node j
which involve edge j ← i will have an exponentially small contribution
from the input force, making the input feature vector χ(j, F) in
Equation (3) small; this cannot be helped no matter how we learn the
parameters θ. If we flipped the sign of the input Fa in the assignment,
then the problem may become solvable. We refer to this mismatch
between input force assignment and achievable output node
assignment as structural incompatibility. For a fixed set of hyper-
parameters (i.e., number of nodes, edges, input edges, output nodes,
etc.), some problems will be structurally compatible and some will
not be. This issue is thus separate from more intrinsic properties of
computational expressivity that depend on hyperparameters like M
and D, but it implies that we cannot define classification problems
completely arbitrarily. We leave to future work a dedicated study of
what determines structural compatibility, which may be posed as
determining a feasible region as in constrained optimization79.
Throughout this paper, we bypass this issue to focus on other con-
straints on expressivity, but we note that structural compatibility
represents one limitation on using chemical reaction networks as
classifiers. We also note that optimizing the mutual information does
not involve specifying output nodes by hand and thus helps to
bypass issues of structural compatibility.
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Training
We train Markov networks for classification tasks using an approx-
imation to gradient descent, asdiscussed in refs. 18,80,81. Thismethod
requires a variational quantity Lðp;F,θÞ which is minimized by the
steady-state distribution πðF,θÞ= argminpLðp;F,θÞ. Two considera-
tions lead to equivalent choices of L: one is that L should be the KL
divergence

P
kpk In ðpk=πkÞ, which has been shown to act as a Lyapu-

nov function for the evolution of p(t) and is minimized to zero at
steady state38. The other consideration is based on the observation
that, from Equation (3),πi / e�ΦiðF;θÞ withΦi = � ln

P
Tα2T wðTα

i Þ
� �

is a
Boltzmann-like distributionwhichmust hencemaximize a constrained
entropy functional. We show in the Supplementary Information that
both of these considerations lead to equivalent update rules which
require numerically estimating the vectors ∂θπi during training.

Optimizing the mutual information
To maximize IðI ;F Þ we numerically evaluate the gradient ∇θI using
finite differences, taking as θ the set of edge ratesWij (softly clipped to
be positive) for simplicity. Optimizing with respect to the larger set of
parameters Ei, Bij, and Fij is also possible. We use the gradient∇θI in the
Fletcher-Reeves variant of the non-linear conjugate gradient
algorithm79. We stop the optimization when the difference in I
between iterations falls below 10−4 in magnitude. Initial conditions for
eachWij are drawn randomly from the interval [0, 1].

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No datasets were generated in this study.

Code availability
Mathematica code used to generate the results in the manuscript is
available at https://github.com/csfloyd/NonEqExpressivity.
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