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ABSTRACT

Over the past century, people have observed the development of quantum mechanics from

a conceptual mystery to a powerful framework for information processing. However, the

quantum information remains fragile due to the ubiquitous noise. To address the challenge,

device physicists continue to improve pulse-level control schemes for better performance in

physical operations, while information scientists employ resource redundancy to protect the

quantum states from direct damage caused by noise. Bridging these efforts, the hardware-

efficient paradigm exploits the specific hardware structures to suppress the error or reshape

the error pattern, which facilitates the error correction or characterization in the next step.

On the other hand, the Hilbert space is usually intractable due to its size. In this disserta-

tion, I will provide several case studies to achieve hardware-efficiency through the truncation

of Hilbert space. First, we truncate the Hilbert space of a resonator through a destructive

interference, streamlining pulse design for high-fidelity operations. Then, we utilize driven-

dissipative processes to autonomously stabilize subspaces in resonators or atomic systems,

which provides an encoded qubit with a structured error channel. We also design operations

that preserve such error structures, as they are essential for the next-level error correction.

Finally, a collective truncation in a multipartite system or constraints on specific subsets of

states in the Hilbert space can also provide efficiency in state characterization tasks. I will

present several experimentally relevant examples to justify this claim.
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CHAPTER 1

INTRODUCTION

1.1 The world of quantum

Quantum mechanics, a theory initially designed to explain the light-matter interaction at the

microscopic scale, has now become the cornerstone of the whole modern physics. The myste-

rious features allowed by quantum, including the superposition of classically distinguishable

states (a cat both alive and dead, noticed by E. Schrödinger [1]) and the entanglement over

separated parties (“spooky action at a distance”, by A. Einstein [2]), have drawn endless

debates on the philosophical level, while the validity of the theory has been demonstrated

via enormous sophisticated experiments over the past 100 years.

Those unconventional properties from the quantum world also allure people to develop

better strategies that utilize them for practical purposes. More than 40 years ago, R. P. Feyn-

man proposed the idea of simulating the physics of a many-body quantum system with a

computer whose elements follow the quantum mechanical laws [3]. In 1994, P. Shor proposed

a factoring algorithm with polynomial complexity when using a quantum computer [4], which

is believed to be a hard problem in classical computing and therefore plays an important

role in cryptography. The success of Shor’s algorithm undoubtedly demonstrates the power

of quantum computing and inspires generations of people to seek more applications where

quantum can offer advantages. We have observed considerable progress in quantum commu-

nication, quantum simulation, quantum computing, and quantum sensing. The concept of

quantum is gradually accepted by the public, while the advantages of quantum technology

are expected to alter the lives of everyone.

However, the promising applications of quantum cannot be achieved without the ability

to manipulate quantum states in actual physical systems. In the past 30 years, people have

considered a variety of platforms that provide potential opportunities to process quantum
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information, from nuclear magnetic resonance (NMR) [5–7] to the recent state-of-the-art

platforms including trapped ions [8–12], neutral atoms [13–16], superconducting circuit [17–

20], solid-state defects [21–24] and others [25–27]. Each platform has its own pros and cons

due to the differences in the physical structures and mechanisms to control the quantum

states. DiVincenzo has pointed out several criteria that a physical system should meet for

quantum computing [28], which include the scalability of the system, the ability to preserve

quantum coherence and control the quantum states (initialize the states, entangle different

parties, and finally measure them). It is still an important open question to find the most

suitable platforms for quantum computing or other quantum application tasks.

Things are not always perfect when manipulating the quantum states. The central quan-

tum system cannot be isolated from the environment, which will inject noise into the system

and decohere the quantum states. The imprecision of the control pulses may also cause

deviation from the ideal outcomes. To reduce the effects of noise, people who work on the

hardware physics level or the circuit level have their own methods. On the physical level, we

can engineer the shapes or the sequences of the control pulses to perform desired operations

with optimized fidelity, gate time, or the suppression of given types of noise. This field of

study is categorized as robust quantum control. On the circuit level, people try to build the

fault-tolerant (FT) architecture [29] based on quantum error correction (QEC) [30, 31]. The

logical states are encoded in a redundant number of physical qubits. The noise from one

qubit may not directly cause the corruption of logical information but trigger the change of

syndromes, which can be detected from the syndrome measurements and then corrected by

the following recovery operations. Further, when the physical error rate is below a certain

threshold, the FT schemes confirm the ability to get arbitrarily small logical error by using

a reasonable amount of overhead, which can be achieved through code concatenation [32,

33] or simply expanding the code patch [34].

It is widely believed that we are now in the Noisy Intermediate-Scale Quantum (NISQ)
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era, as suggested by J. Preskill in 2018 [35]. Till now, people have built quantum processors

with up to O(103) qubits [16] while the infidelity from an entangling gate as well as the state

preparation and measurement (SPAM) is at the level of 0.1% - 1% [11, 15, 20]. A variety

of experiments have been performed to show the quantum advantages [18, 25]. However,

despite sufficient progress having been made in QEC demonstration [15, 20], there is still a

long way to go toward scalable, fault-tolerant quantum computation. People who work on

the device physics level and the circuit level should work together to make this dream come

true.

1.2 Hardware-efficiency in quantum control and error correction

To preserve the fragile quantum information, the device physicists and the information scien-

tists may have their own specialties in this problem. As a student with a physics background,

please allow me to explain my perspective in a bottom-up approach: I will start with the

pulse-level quantum control that aims for high-fidelity physical operations despite the pres-

ence of noise. Then, I will discuss the opportunities to engineer the structures of qubit errors

based on suitable choices of hardware encoding, which will be easier for upper-level QEC

codes to correct. Finally, quantum control is needed again to preserve the error structure

when executing the gates. All the protocols here are built upon exploiting the physical prop-

erties of specific platforms. As a result, people use the word hardware-efficiency to name

such a paradigm.

1.2.1 Quantum control

The first question in quantum control is always the controllability of the system. Basically,

people want to know what unitary operations can be achieved by manipulating the accessible

degrees of freedom. Though in principle it is a math problem to compute all achievable

generators that will form the allowed dynamical group [36, 37], practically people will use
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the numerical optimal control to find suitable pulses for the desired gates [38–40].

However, the actual Hamiltonian we implement may deviate from the ideal one due to

the control imperfection. We call it coherent noise since the output state will be different

from the desired one by a unitary process. Composite or shaped pulses are designed to solve

this problem, which work well in scenarios including the imprecise amplitude or frequency

in qubit control [41, 42], and the reduction of coherent leakage into outer subspace [43].

Other noise, like the thermal relaxation, comes from the coupling with the environment [44].

We name it incoherent noise since it will decohere the quantum state. There are some

pulse-level techniques like the dynamical-decoupling method [45, 46] to effectively isolate

the central system and reduce the noise from dephasing. However, there may not be a

ubiquitous solution for every problem. Numerical optimization on the pulse sequences is

needed again to get a higher fidelity while taking the noise into account [47]. Meanwhile,

modern optimization schemes based on reinforcement-learning have been developed for the

quantum control tasks [48], which are now widely adopted in different platforms to improve

the performance of the desired quantum process [49, 50].

On the other hand, a heuristic understanding of the hardware physics may help to simplify

the search for high-fidelity control sequences. For example, empirically we can mitigate the

incoherent error by accelerating the gates, if the noise rate is not affected at the same

time. This applies to a resonator that either has self-nonlinearity or is coupled with another

nonlinear device [51, 52]. The operation speed is boosted through cavity displacement while

the effective loss rate is unchanged. Then we can only focus on the dynamics in the displaced

frame while optimizing the sequences of the displacement parameter for desired operations.

In this way, we successfully explore the large photon-number regime to speed up the gate

without dealing with the high-dimensional Hilbert space in numerical optimal control.

In Chapter 2, I will justify the above picture with an engineered truncation in the dis-

placed frame, which is first proposed in a Kerr resonator with both linear and parametric
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drives on it [53]. From the control aspect, the truncation not only provides the universal

controllability within the truncated subspace but also greatly reduces the computational

overhead to find the desired drives. I will also show that, in principle, only linear drives are

sufficient to realize the truncation from a dynamical point of view. This observation further

reduces the hardware complexities, albeit at the expense of higher power demand.

1.2.2 Quantum error correction

Another approach to deal with the physical noise is through error correction, which fun-

damentally relies on the introduction of redundancy. Similar to the standard QEC where

people encode one or few logical qubits into many physical qubits, the hardware-efficient

QEC approach suggests that we can also encode the logical information into a multi-level

physical system, and use the redundant levels in the Hilbert space to detect and correct the

error.

From the device perspective, the first candidate to provide level redundancy is a resonator,

which contains an infinite number of levels with equally spaced energy. Two important code

designs are the cat code [54–61] and the Gottesman-Kitaev-Preskill (GKP) code [50, 62–

65], which are both constructed from the extension of coherent states while exploring the

rotational [66] or translational symmetries of the phase space, respectively. With this, the

cat code can correct finite order of dephasing noise, while GKP outperforms the others in

correcting the photon losses [67].

In this thesis, I will discuss different variants of the cat code. Let me take one more

step on it. The codeword of the cat qubit is encoded by two separated coherent states

|±α⟩. The code subspace can either be autonomously stabilized under an engineered driven-

dissipative process [54], or confined by a large energy gap provided from a Kerr nonlinear

Hamiltonian [57]. Since most physically relevant noise like photon loss or gain only acts

locally on the phase space, it will be difficult for the noise to flip one code state into another.
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Therefore, the bit-flip (X) error in the cat qubit is suppressed by the code construction

directly, which leaves a Pauli bias in the error channel. The biased error structure could

greatly simplify the upper-level QEC construction, since there is only one type of error (Z)

left to correct. A repetition code will be sufficient for this task [59, 61, 68].

However, there is still one caveat in the above argument, which comes from the require-

ment that the Pauli error bias needs to be preserved even after gate operations. Solutions to

this problem are first proposed in two theoretical works based on either dissipative cat [68]

or the Kerr cat [69] framework. In these approaches, a set of bias-preserving (BP) operations

was designed to prevent the generation of bit-flip errors from physical noise during gate exe-

cution. Further, the BP operation set including CX and Toffoli (CCX) gates is proved to be

sufficient for universal computing with the upper-level repetition code [68], which concludes

the full architecture based on the biased error pattern.

On the other hand, people can keep improving the ability of error correction from the

hardware encoding. A photon loss can be corrected with the 4-legged cat [54]. Meanwhile,

a multimode generalization named pair-cat has been proposed to continuously monitor the

photon loss during operations, and there will still be Pauli error bias coming from the uncor-

rectable noise [70]. In Chapter 3, I will discuss how to generalize the BP gate construction

from the cat code to the pair-cat, while keeping the fault-tolerance against a photon loss

error.

There are also Fock-state-based designs to tackle the photon loss [71–73], with the dual-

rail encoding being the simplest construction [74–76]. By encoding the logical qubit into the

single-photon subspace across two different modes, the photon loss event can be detected

through monitoring the population in the ground state. Although the qubit information is

erased in the noisy process, the error-detecting feature helps us to identify which dual-rail

qubit suffers the error [77, 78]. Such an error structure is called the erasure error. The

location information provided by the erasure errors is highly beneficial for the subsequent
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decoding steps in the upper-level QEC code, since a code with distance d can tolerate (d−1)

many erasure errors, twice as many as the random Pauli errors [79]. Meanwhile, the simplicity

in the dual-rail structure also facilitates high-fidelity operations [80], which, together with

the erasure error model, makes it a competitive design in the hardware-efficient QEC code

family.

Within the past ten years, we have also observed the fast development of the neutral atom

platform in the field of quantum information processing. The rich structure of atomic inner

levels also motivates the development of novel hardware-efficient QEC schemes. The noise

model here is also different from the bosonic counterpart, as the dominant error mechanism

here will be the Rydberg decay during the execution of entangling (CZ) gates. These features

first led to the proposal on the BP operations, where two code basis are designed to have a

large separation in magnetic quantum number [81]. Moreover, a metastable encoding makes

it possible to detect the Rydberg decay after the entangling operations, which again converts

the leakage into the erasure type [82]. A further modified scheme tries to combine the two

merits together, where both the location (erasure) and the Pauli type (Z error bias) will

be available to us if the leakage is detected [83]. Such a biased erasure error is extremely

structured and will provide around a 10% threshold in the XZZX surface code simulation, in

contrast to the 1% result using the depolarizing noise model. The threshold can be further

improved if we can find a native biased erasure CX design [83, 84], though its physical

construction is still an open question.

In Chapter 4, I will borrow the concept of cat encoding from bosonic systems to atomic

levels. Here we use two antipodal spin-coherent states (SCS) in the ground hyperfine mani-

fold to encode the qubit, which is the same as that in [85]. In our protocol, the code subspace

can be autonomously stabilized while utilizing the spontaneous emission from the excited

levels. Therefore, our encoding is named the dark spin-cat. We can design single-qubit

operations here by analogy with the bosonic counterpart, while the existing biased-erasure
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CZ protocol based on the Rydberg interaction can also be seamlessly applied to the spin-cat

qubit. We then propose a possible solution to execute the CX gate on the spin-cat with the

biased-erasure error structure, though it could be practically demanding.

From the physical aspect, there are still certain analogies between the bosonic cat and

the dark spin-cat for us to explore. In Chapter 5, I will focus on the single-atom model with

a generalized definition of the dark spin-cat. I will discuss the similarities of the stabilization

mechanisms between the two systems, while using a semiclassical approach to analyze the

bit-flip rate in the generalized spin-cat when it is subjected to the noise. I will explain if the

common tricks for bit-flip suppression in bosonic cat can be transferred onto our spin-cat

model, with a discussion on their limitations.

1.3 Efficient quantum state characterization

Both quantum control and error correction aim to reduce the effect of noise during quantum

information processing. However, the resulting quantum state in the experiment may still

be unknown to us. Sometimes we need to extract certain information from a given state,

like the fidelity estimation task, where we want to see how close it is to the desired one.

Sometimes we might be more ambitious to learn the full information of the state, where we

call this task state tomography.

However, those tasks could be resource-demanding as the system size grows. An M -

qubit quantum system has a D = 2M dimensional Hilbert space, and therefore it requires

(2M+1− 2) number of real parameters to determine a pure quantum state in it. If the state

has experienced some noise and cannot be treated as a pure one, we should use a density

matrix to describe it, and the number of unknown real parameters will become (22M − 1)

in the most generic case. Such an exponentially growing number is the major challenge for

people to perform full state tomography on an unknown state in a large system, since we need

to get the expectation values with the same amount of linear-independent observables for
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informational completeness. There have been demonstrations to fully reconstruct a quantum

state with more than 10 qubits in an experiment [86], but we do not expect the allowed qubit

number will increase too much in the future due to the exponential overhead. There have

been proposals that use adaptive methods [87] or even machine learning techniques [88, 89]

to optimize the choice of measurement basis each time, but none of these have shown the

ability to resolve the exponentially growing overhead.

To achieve efficiency in the full state tomography, one should further exploit the structures

of the unknown state. For example, if we know in prior that the density matrix has a low

rank r ≪ D, then the expectation values over O[rD poly(logD)] different Pauli operators

will be sufficient to fully reconstruct the state [90, 91]. Compared with the previous O(D2)

requirement, such a compressed sensing technique indeed provides a scaling improvement on

the resource overhead. Another direction is to explore the underlying physics of the state.

To stress the local correlations in the physical system, one may use the form of a Matrix

Product State (MPS) to represent a pure state [92–94], or a Matrix Product Operator (MPO)

to represent a density matrix [95, 96]. In these cases, information from the local reduced

density matrix could be sufficient for full state reconstruction, which makes the O[poly(M)]

overhead feasible. However, existing protocols either require a sophisticated post-processing

method without a rigorous convergent proof [93, 96], or need extra assumptions on the states

themselves [95].

In Chapter 6 of this thesis, I will show that a collective truncation over the multi-party

Hilbert space may provide another opportunity to achieve efficient state tomography. For

example, given a limited number of total photons in an M -mode resonator, or an M -qubit

stabilizer state with a bounded-weight random Pauli error, the dimension of the relevant

Hilbert subspace only scales polynomially with the system size M rather than exponentially.

Further, if each matrix element can be estimated with a cost independent of the system size,

then the overall scheme will be provably efficient. In addition to a theoretical justification,
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we also experimentally demonstrate this idea using a multimode resonator [97]. The efficient

tomography is performed in a maximally one-photon subspace across up to 4 different modes.

The fidelity estimation task is somewhat different, since there is only one parameter to

learn. If arbitrary unitary operations are allowed before measurement, then we can always

map the target state to a computational basis state and measure it thereafter to extract

the fidelity. As a result, we need to confine the allowed gates and measurements before

discussing the efficiency in fidelity estimation. For example, early studies showed that the

fidelity with a given stabilizer state can be efficiently characterized using Pauli measurement

only, where the measurement overhead is independent of the system size [98]. For a generic

multi-qubit target state, it is still an open problem to see if we can use a poly(M) overhead

to characterize the fidelity with it, when single-qubit measurements with adaptively chosen

basis are allowed [99].

With the development of both hardware performance and the QEC protocols, now people

gradually switch to manipulate the quantum state from physical to logical level [15, 100–

102]. As the infidelity ϵ of the prepared (logical) state approaches zero, the characterization

overhead should increase accordingly to ensure that the estimation precision remains com-

parable with the vanishing infidelity itself. On the other hand, the native logical operations

on a given QEC code are usually limited, which makes it difficult to directly measure the

overlap with the target state. In the first logical-level magic state distillation (MSD) ex-

periment [102], researchers try to use the logical Pauli tomography to reconstruct the final

state, but the overhead should be O(1/ϵ2) to meet the precision requirement. In Chapter 7,

I will discuss a protocol that successfully reduces the cost to O(1/ϵ) scaling, leveraging a

clever trick that is fundamentally connected with the concept of superresolution in quantum

metrology [103].
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1.4 Structure of the thesis

This thesis contains some of the projects that I was involved in during my time as a Ph.D.

student. The overall aim is to reduce the effects of noise on the gate operations through

quantum control, or engineering the structure of noise through hardware-efficient encoding,

which makes it easy to be corrected by upper-level QEC codes. Both of the schemes uti-

lize a dynamical truncation of the full Hilbert space for either simplification of the pulse

optimization or autonomous stabilization of the encoded subspace. Further, a truncation of

the Hilbert space or only focusing on a subset of states with certain structures enables the

possibility of efficiently characterizing the states via full tomography or fidelity estimation.

I will place two examples in the thesis.

Chapter 2 [104] covers a case study about utilizing a novel blockade effect in a Kerr non-

linear resonator for universal high-fidelity operations in the presence of loss. With the Kerr

nonlinearity, carefully chosen linear (one-photon) and parametric (two-photon) drives can

lead to a destructive interference for the coupling between two nearest Fock states viewed

from a displaced frame, which confines the dynamics within the truncated subspace. Arbi-

trary operations in the blockade subspace can be achieved by controlling the displacement

parameter. The reduced dimension from the blockade simplifies the pulse optimization for

desired operations, while the improved gate speed boosted by displacement helps to mitigate

the effects of the loss on the fidelities. Further, a scheme is proposed to relax for paramet-

ric drives while effectively preserving the blockade structure, at the expense of more power

consumed.

Chapter 3 [105], 4 [106], and 5 are a series of works on the generalization of the bosonic cat

encoding with different platforms. I first start with the pair-cat code, a multimode variant

with the ability to continuously correct a photon loss, and discuss the construction of the

bias-preserving (BP) operations set with performance analysis. Later, I will talk about how

to extend the cat encoding into a long (but finite-dimensional) hyperfine manifold of an atom.
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Utilizing the structure of the dark states, we also achieved the autonomous stabilization for

the encoded dark spin-cat subspace. Further, BP operations are also designed with the

erasure conversion tricks, which are tailored for the noise from the Rydberg decay during

the entangling gates. Finally, I will discuss a more generalized spin-cat encoding fitted in

the dark-state structure, and highlight the beautiful analogy with the bosonic cat in certain

aspects.

Chapter 6 [97] and 7 [107] focus on the characterization of quantum states with certain

structures. First, I will provide an example of a tomographic task for quantum states in a

multimode resonator, whose maximally allowed photon numbers are bounded. The trunca-

tion of the multimode Hilbert space significantly reduces the number of unknown variables to

a polynomial dependence on the mode number. Further, our hardware-efficient Wigner mea-

surement approach enables the cost of estimating individual parameters to be independent

of the total mode number, which concludes the justification of our efficiency claim. Another

example is about the efficient logical fidelity estimation of magic states in the FT regime.

Located at the highly symmetrical points in the Hilbert space under Clifford operations, the

magic states will support a simplified form of noise after Clifford twirling, while the fidelities

stay the same. The simplification makes it possible to estimate the small infidelity ϵ with

only O(1/ϵ) cost to get a precision comparable with ϵ itself, which is in contrast to the

O(1/ϵ2) scaling provided by a straightforward Pauli tomography [102]. I will provide several

circumstances where the O(1/ϵ) cost is achievable, and a numerical simulation to show the

power of our protocol under practical consideration.
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CHAPTER 2

UNIVERSAL CONTROL WITH NOVEL PHOTON BLOCKADE

IN WEAK-KERR NONLINEAR RESONATORS

2.1 Introduction

Bosonic systems, such as photons in optical or microwave resonators, are a promising plat-

form for quantum information processing. In contrast to qubits, the infinite-dimensional

bosonic Hilbert space provides novel ways to encode and robustly process quantum infor-

mation in a hardware-efficient manner [108]. A challenge however is the need for nonlinear

operations [109]. It has been shown that, to achieve universal control in bosonic systems

it is necessary and sufficient to have at least one kind of nonlinear operation in addition to

linear operations, i.e., unitary evolution under a Hamiltonian linear or quadratic in bosonic

raising and lowering operators [110, 111].

In the microwave regime, a typical approach to introduce nonlinearity is to couple the

bosonic system directly to a qubit [52, 112–114]. However, if we want to relax the cooling

requirements, the resonant frequency of the system needs to become higher. Unfortunately,

even in the millimeter wave regime (around 100 GHz), the production of a superconducting

qubit with strong nonlinearity will become challenging, while the performance of the state-

of-the-art demonstrations is still limited [115]. Similarly, in the optical regime, people may

couple a cavity mode with atoms in so-called cavity QED systems. However, due to the

low cooperativity in practice, it is again difficult to deterministically prepare any useful

non-Gaussian state with this setup while achieving a high fidelity [116, 117].

Given this, it would be ideal to exploit intrinsic nonlinearities in optical or microwave

resonators. An extremely common example is a self-Kerr nonlinearity. Examples include

micro-ring resonators or photonic crystals with χ(3) nonlinearities [118, 119] and quantum

LC circuits that contain superconducting materials with high kinetic inductance [120, 121].
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Figure 2.1: Schematic diagram of the photon blockade in the displaced rotating frame with
(a) both 1-photon and 2-photon drives, (b) only 1-photon drive with fast oscillation of the
displaced rotating frame in phase space.

While in principle these nonlinearities are sufficient for universal control, in practice they

are often much weaker than photon loss rates, precluding the ability to achieve high-fidelity

nonlinear operations.

While nonlinearities weaker than loss might seem to be of no use for quantum nonlinear

operations, recent research suggests that this might not be the case [51]. In this work, the

authors propose an intriguing scheme to deterministically prepare a single-photon Fock state

using a Kerr nonlinearity, even in cases where this nonlinearity is significantly smaller than

the loss rates. This scheme relies on a novel photon blockade phenomenon that requires

the displacement of a single bosonic mode together with carefully chosen 1-photon and 2-

photon driving amplitudes. Notably, the speed of the operations in the blockade subspace is

enhanced by the displacement amplitude, which can be large enough to counteract the effects

of loss. A similar idea related to displacement-boosted gates is also presented in Ref. [52].

Here, we generalize this blockade scheme to demonstrate its applications beyond the

preparation of single-photon Fock states. We show that using this scheme, one can perform
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any unitary operation in a blockaded subspace of Fock states with an arbitrarily chosen

dimension. In addition to formal proof in the ideal scenario, we present a gradient-based

optimization algorithm to explicitly find the control pulse sequences to implement a desired

unitary operation in the blockaded subspace. Another control scheme within a qudit trun-

cated from a resonator mode is discussed in [122], but the need for a coupled qubit in the

protocol there simplifies the problem and is beyond the setup that we consider here. Mean-

while, the photon blockade feature viewed in the displaced frame of the Kerr resonators [53]

could help to suppress the bit-flip rate with Kerr-cat encoding [123, 124], which is again an

interesting application derived from this formalism and will also be used in Chapter 5 for

the generalized spin-cat encoding in atomic structures.

In practice, directly implementing the required 2-photon drive can be a challenging task,

as this can require additional weak nonlinearities. For example, in certain platforms one

could pump an auxiliary mode that interacts nonlinearly with the central mode [125]. Here

we show that one can eliminate the need for an explicit 2-photon drive, by instead simply

time-modulating the amplitude of the single-photon drive. This is similar in spirit to the

operation of double-pumped parametric amplifiers [126].

The optimization algorithm and this modulation scheme are then integrated seamlessly to

implement arbitrary operations using only a standard linear, single-photon drive. In practice,

however, a larger driving amplitude may result in much stronger input power or the violation

of the rotating wave approximation (RWA), while the lack of native 2-photon drive will make

those problems more severe. We discuss how these problems limit the achievable fidelities

for both protocols with or without the native 2-photon drives, as well as possible methods

to mitigate the resulting imperfections. We argue that even with these limitations, both

protocols could perform well in experimental platforms where the strength of the single-

photon self-Kerr nonlinearity is comparable to or slightly smaller than the loss rate, which

is still encouraging for people to further develop clever control schemes for weak-nonlinear
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systems and explore future applications.

2.2 System setup

We consider a setup similar to Ref. [51], consisting of a single-mode resonator with self-

Kerr nonlinearity, subject to both 1-photon and 2-photon drives. Within the RWA, the

Hamiltonian of the system can be written as

Ĥ =
χ

2
â†2â2 + ωcâ

†â+ [Λ1(t)e
−iω1(t)tâ† + Λ2(t)e

−iω2(t)tâ†2 + h.c.], (2.1)

where χ indicates the strength of the single-photon Kerr nonlinearity, ωc is the angular

frequency of the resonator, and Λ1(2) and ω1(2) are the amplitude and the frequency of the

1(2)-photon drives, respectively. Here, h.c. denotes the Hermitian conjugate of the terms in

the bracket. As shown in Ref. [51], by choosing ω2 = 2ω1, going to a frame rotating with

ω1(t) and then displaced by α(t), we can obtain a blockaded Hamiltonian of the form

Ĥdr[α(t)] =
χ

2
â†2â2 +∆0â

†â+ [χα(t)â†(n̂− r) + h.c.], (2.2)

where r is an adjustable positive integer determining the dimension of the blockade subspace,

and ∆0 is the detuning term in the displaced rotating frame. To achieve this effective

Hamiltonian for a given α(t), ∆0 and integer r, one needs time-dependent drive amplitudes

and frequencies chosen such that


Λ1(t) = χα(t)[2|α(t)|2 − r]−∆0α(t) + iα̇(t),

Λ2(t) = −χ
2α

2(t),

ω1(t) = ωc −∆0 +
1
t

∫ t
0 2χ|α(t′)|2 dt′.

(2.3)

The key term in Eq. (2.2) is the nonlinear drive, which has no coupling between |r⟩ and

16



|r + 1⟩ levels. Therefore, the dynamics generated by Ĥdr is constrained within the blockade

subspace Hb spanned by {|0⟩ , |1⟩ , . . . , |r⟩}. Also, the amplitude of this nonlinear drive is set

by the time-dependent displacement α(t), which serves as a key control parameter in what

follows. Previously, it was shown that with a static α, one could use Ĥdr to generate the

Fock |1⟩ state on a timescale much shorter than 1/χ [51]. Here, we go much further: we

show that in fact, by using a time-dependent α(t), one can generate any unitary within the

blockade subspace Hb, whose dimension can also be chosen freely.

To account for the effects of photon loss in our system, we use the master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + κD[â]ρ̂, (2.4)

where D[â]ρ̂ = âρ̂â† − 1
2{â†â, ρ̂} is a dissipator that models the photon loss effect and κ

is the rate of this process. Note that when transforming to the same displaced rotating

frame mentioned earlier, the 1-photon driving amplitude Λ1(t) in Eq. (2.3) now requires

the addition of an extra term, namely iκα(t)/2, in order to obtain the same Hamiltonian

Ĥdr[α(t)]. However, the form of the dissipator D[â] and the associated loss rate κ remain

unaltered in this new frame. Consequently, due to the enhancement of the nonlinear blockade

drive by α in Ĥdr, the operations can be performed on a significantly shorter timescale than

1/χ. This, in turn, allows for the mitigation of the impact of photon loss, presenting an

opportunity to achieve high-fidelity gates, even when χ≪ κ.

2.3 Demonstration of universality

We sketch the proof of universal controllability of our system governed by the Hamiltonian

Ĥdr shown in Eq. (2.2) here and refer the reader to Appendix A.1 for more details. We first

focus on the dynamics within the blockade subspace Hb. Let Π̂r :=
∑r
n=0|n⟩⟨n| denote the

projector to this N = r + 1 dimensional subspace. The projection of Ĥdr to the blockade
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subspace is given by

Π̂rĤdrΠ̂r = Ĥd,0 + χRe[α(t)]Ĥc,R + χIm[α(t)]Hc,I , (2.5)

where 
Ĥd,0 =

∑r
n=0

[
χ(n2 − n)/2 + ∆0n

]
|n⟩⟨n|,

Ĥc,R =
∑r−1
n=0(n− r)

√
n+ 1(|n+ 1⟩⟨n|+ h.c.),

Ĥc,I = i
∑r−1
n=0(n− r)

√
n+ 1(|n+ 1⟩⟨n| − h.c.).

(2.6)

In what follows (using the language of quantum control theory, see e.g., [127]) Ĥd,0 serves

as the drift Hamiltonian, while Ĥc,R and Ĥc,I are the control Hamiltonians. The real and

imaginary parts of α(t) are time-dependent functions that can be controlled. Following

Ref. [112], we define universal control of a quantum system as the ability to realize any

unitary operation Ûtar in the U(N) group via a properly chosen control [α(t) in this case]

and evolution time T .

A theorem in Ref. [37] suggests a sufficient condition for the Hamiltonian to make the

system universally controllable. It has two requirements. First, the drift Hamiltonian Ĥd,0

should be diagonal (with eigenvalues denoted as Ek for eigenstates |k⟩) and contain certain

type of nonlinearity, specifically, the nearest energy difference µk := Ek−Ek+1 should satisfy

µ0 ̸= 0 and µ2k ̸= µ20 for k > 0 (or similarly µN−2 ̸= 0 and µ2k ̸= µ2N−2 for k < N − 2).

Second, one of the control parts Ĥc,j should only have couplings between |k⟩ and |k + 1⟩ for

all 0 ≤ k < N − 1. If both these conditions are satisfied, then the generated dynamical Lie

group will be U(N) when Tr[Ĥd] ̸= 0 and SU(N) otherwise.

We can easily verify that those requirements for U(N) group (where N = r + 1 in our

case) generation are satisfied with our Ĥd,0 and Ĥc,R as long as r ̸= −2∆0
χ + 1. This allows

us to fix ∆0 = 0 for r ≥ 2 in the rest of the main text. Moreover, the two control degrees

of freedom Ĥc,R and Ĥc,I provide the possibility to do any gate (up to a global phase) in
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an arbitrarily fast manner, as these two are also sufficient to generate full SU(N) group

(see Appendix A.1). Finally, as r is also adjustable, we can choose any blockade dimension

we want. Therefore, unitary operations defined in any finite dimension are in principle

achievable.

2.4 Optimal control

The generalized blockade phenomena allow one, in principle, to perform an arbitrary unitary

operation in an arbitrarily chosen N -dimensional blockaded subspace in a time much faster

than 1/χ. The question that we now address is how to design a particular control α(t) to

realize a target unitary. In contrast to the conventional setting, where one optimizes the

control in the rotating frame of the drive [128], we consider Ĥdr defined in the instantaneous

displaced rotating frame and optimize α(t), the frame parameter. Consequently, finding an

optimal α(t) directly determines the corresponding physical parameters Λ1(2)(t) and ω1(t)

via Eq. (2.3) required for implementing the desired operations in the laboratory. In other

words, by hard coding the blockade condition in the evolution through Eq. (2.3), we simplify

the optimization task to finding α(t) in the small blockade Hilbert space. In this way, even

though the required drive amplitudes Λ1(2)(t) can be very large, we do not need to consider

large photon number states in the optimization. In this section, we only optimize the controls

for a fixed evolution time T in the absence of loss. We further consider the effects of loss

and a realistic experimental constraint on total input power (see Appendix A.2); as we show,

these additional features lead to there being an optimal choice of gate time T .

Typically, optimal control algorithms such as GRAPE [38, 39] discretize the control

pulse α(t), and maximize a figure of merit such as the fidelity by performing gradient-based

optimization on the control parameters, i.e., the amplitude of the control at discrete time

points. This standard approach would yield a piece-wise constant α(t), something that is

highly problematic for our setup: discontinuous jumps in α(t) would require infinite driving
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power to implement, as the 1-photon driving amplitude has a term proportional to iα̇(t) [see

Eq. (2.3)].

To solve this issue, in contrast to conventional methods, we expand α(t) on a basis of

continuous functions. Since it is desirable to be in a non-displaced frame, i.e. α(0) = α(T ) =

0 in the beginning (t = 0) and at the end (t = T ) of the protocol, we use the following sine-

basis ansatz for the control pulse

α(t) =

kmax∑
k=1

αk sin

(
kπt

T

)
. (2.7)

Here, kmax, the cutoff number for the highest harmonics that we use, is a hyperparam-

eter that is chosen according to the complexity of the task, and αk are complex-valued

optimization variables. In practice, we choose kmax heuristically in the optimization pro-

cedure. If the fidelity achieved from the optimal pulses is lower than our target, we in-

crease kmax for better performance. To implement a target unitary operation in N dimen-

sions, we maximize Fu({αk}) =
∣∣∣Tr[Û†

tarÛ(T )]
∣∣∣2 /N2, where Û(T ) is obtained by solving

d
dt Û(t) = −iĤdr[α(t)]Û(t) for t = T with the initial condition Û(0) = Î. When optimiz-

ing Fu, we implicitly ignore the irrelevant global phase. Note that the dependence of the

objective on {αk} originates from the dependence of Ĥdr on α(t) according to Eq. (2.2).

Moreover, while obtaining Fu involves solving an ordinary differential equation, it is still

differentiable and its gradient with respect to {αk} can be calculated using the chain rule

and the adjoint sensitivity method [129]. Therefore, we can use gradient-based optimization

to find locally optimal {αk}.

To illustrate the universal controllability of our scheme, we consider the problem of

implementing the permutation ÛP or the Fourier transformation ÛFT in a 3-level blockade
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subspace up to a global phase spanned by {|m⟩}2m=0, where

ÛP = |2⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨2|, (2.8a)

ÛFT =
1√
3

∑
m,n

ei
2πmn

3 |m⟩⟨n|. (2.8b)

We use the automatic differentiation toolbox of JAX [130], a numerical computing package,

to perform the gradient-based optimization. We choose the evolution time T = 0.2/χ. We

also fix α(0) = α(T ) = 0 and ∆0 = 0 in Ĥdr and find the pulses α(t) that implements the

two unitary operations of interest. In both cases, the algorithm finds a solution such that∣∣∣Tr[Û†
tarÛ(T )]

∣∣∣2 /N2 > 1− 10−4 (see Fig. 2.2).

2.5 Only 1-photon drive

So far, we have focused on the fundamental questions about controllability by explicitly

constructing the 1- and 2-photon drives to achieve fast universal control for weak-Kerr sys-

tems in the presence of loss. Here, we move away from the ideal scenario and discuss issues

relevant to experimental implementations. One question to address is whether one truly

needs a distinct 2-photon drive. While this can be done in some platforms, e.g., supercon-

ducting qubits with flux-pumping [111], it can be challenging in other platforms. Here, we

present a method that allows our control scheme to be implemented without any explicit

independent 2-photon drive. As we show, this idea is intrinsically connected to squeezing by

double-pumping a Kerr resonator [126].

In the absence of an independent 2-photon drive, Λ2(t) = 0 in Eq. (2.1). Again, we set

∆0 = 0 and choose the 1-photon driving amplitude such that in a frame rotating with ω1(t)

and displaced by α̃(t), we have the same blockade drive. In this frame, the Hamiltonian is

Ĥ ′
dr[α̃(t)] =

χ

2
â†2â2 + [χα̃(t)â†(n̂− r) + h.c.] +

[
χ

2
α̃2(t)â†2 + h.c.

]
, (2.9)
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Figure 2.2: Optimal control for implementing arbitrary unitary operations. (a) The opti-
mized α(t) function that implements permutation (2.8a) in a 3-level blockade subspace with
kmax = 5 harmonics. Total evolution time T = 0.2/χ. (b) The elements of the unitary Û(T )
generated by α(t) that is shown in (a) under the Fock basis, i.e., Ûij = ⟨i| Û(T ) |j⟩. The
height and color of each bar show the absolute value and argument of the corresponding
matrix elements. (c) Optimal α(t) for implementing Fourier transform (2.8b) in the same
blockade subspace with kmax = 8 harmonics and T = 0.2/χ. (d) the matrix elements of
Û(T ) generated by α(t) shown in (c).

where the 1-photon driving amplitude is chosen to have the form

Λ′
1(t) = χα̃(t)[|α̃(t)|2 − r] + i ˙̃α(t) + iκα̃/2. (2.10)

While the nonlinear single-photon drive in Eq. (2.9) has the correct form, the induced two-

photon drive term in the last line violates the desired blockade condition.

A key observation in our strategy to revive the blockade condition is that the desired fully

blockaded Hamiltonian can be written as Ĥdr[α(t)] =
1√
2
{Ĥ ′

dr[e
− iπ

4 α(t)] + Ĥ ′
dr[e

iπ
4 α(t)]}.

Intuitively, by alternating the phase of α̃(t), we can average away and cancel the unwanted

2-photon drive term while retaining the desired nonlinear blockade drive. This observation
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combined with the Trotter formula

e−i
Ĥ1+Ĥ2

2 δT = e−iĤ1δT/4e−iĤ2δT/2e−iĤ1δT/4 +O[(δT )3] (2.11)

suggests that setting Ĥ1(t) = Ĥ ′
dr[e

− iπ
4 α(t)] and Ĥ2(t) = Ĥ ′

dr[e
iπ
4 α(t)] and alternating

the evolution for δT/2 between the two Hamiltonians suppress the errors in violating the

blockade condition to O[(δT )3]1. However, this Trotter scheme requires discretizing α(t) into

intervals of length δT and implementing instantaneous displacements between e±
iπ
4 α, which

in practice introduces additional complexities.

Inspired by the discrete version of the Trotter formula, we design its continuous counter-

part via Magnus expansion (see Appendix A.8)

exp[−i
∫ δT

0
Ĥ(t) dt] = T exp[−i

∫ δT

0
Ĥ(t) dt] +O[(δT )3], (2.12)

where T is the time-ordering operator and Ĥ(t) for t ∈ [0, δT ] is chosen to be symmetric

around δT/2, i.e., Ĥ(t) = Ĥ(δT − t). As a result, we construct a new function α̃(t) that

oscillates rapidly with time. Specifically, Eq. (2.12) gives us a recipe for finding α̃(t) such

that the coarse-grained evolution under Ĥ ′
dr[α̃(t)] over an interval of δT is close to that under

Ĥdr[α(t)]. This translates to having the average of α̃(t) over a δT time interval centered on

time t to satisfy

α̃2(t) = 0, α̃(t) = α(t), (2.13)

where the overline denotes the coarse-graining time average, and α(t) is the optimal choice

of function in Ĥdr defined in Eq. (2.2) that generates the desired target unitary operation.

To satisfy these constraints, we propose using the ansatz α̃(t) = α(t)f(t), where f(t) is a

1. We should also note that suppressing errors beyond the third order using the discrete Trotter scheme
is not possible due to the non-existence of positive decomposition as shown in Ref. [131]. In other words,
higher order suppression requires changing the sign of Ĥ ′

dr, and that is not possible since the sign of the
nonlinearity χ is fixed in a device.
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periodic function with period δT = T
M . Here T is the total evolution time and M is the

number of periods during the evolution. We also denote ωr := 2πM
T for further use. Besides,

to keep the same structure as the Trotter formula in Eq. (2.12), we further require that

f(t) = f(δT − t). (2.14)

Consequently, the constraints for α̃(t) in Eq. (2.13) translate to constraints

f(t) = 1, f2(t) = 0 (2.15)

on f(t) over over each period. This ensures that the overall evolution under H ′
dr[α̃(t)] and

Ĥdr[α(t)] for time T closely resemble each other, that is

T exp

{
−i
∫ T

0
Ĥ ′
dr[α̃(t)] dt

}
≈ T exp

{
−i
∫ T

0
Ĥdr[α(t)] dt

}
. (2.16)

One possible choice of f(t) is the following

fdp(t) = 1 + i
√
2 cos(ωrt). (2.17)

An example of the shape of α̃(t) after implementing this modulation is shown in Fig. 2.3

(and schematic illustration in Fig. 2.1(b) as well). To obtain physical intuition on the

underlying mechanism, we can split fdp(t) into two parts. The constant part plays the

role of Λ1 in Eq. (2.1), and provides the desired nonlinear blockade drive in the displaced

rotating frame. In contrast, the time-dependent term, i
√
2 cos(ωrt), corresponds to the

double-pumping scheme with driving frequencies ω1 ± ωr, as it contributes to Λ′
1(t) via

i ˙̃α(t). This double-pumping will effectively generate the 2-photon driving Λ2 in Eq. (2.1)

from the Kerr interaction, as a result of 4-wave mixing [126].

The approximation in Eq. (2.16) is valid if the number of periods M is large enough such
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Figure 2.3: Schematic comparison between the (a) original optimal pulse α(t) and (b) the
modulated pulse α̃(t) = α(t)fdp(t) [see Eq. (2.17)] needed in the absence of a 2-photon drive.
In this example, we choose M = 80 periods for the modulation.

that (i) the error from Trotter expansion [see Eq. (2.11) and (2.12)] is small, and (ii) within

each period of f(t), the control function α(t) varies slowly so that the time average of α̃(t)

deviates little from α(t). In the infinite M limit, the two sides of Eq. (2.16) are identical.

The induced infidelity due to the inaccuracy of the Trotter approximation is analyzed in

detail in Appendix A.2.

2.6 Discussion

In the previous section, we have demonstrated that in principle a distinct 2-photon drive is

unnecessary for universal control and explicitly provided the modified 1-photon pulse design

for targeted operations. However, our operations may suffer from coherent errors that come

from inaccurate Trotter approximation. This, as well as the incoherent photon loss during

gate execution, serve as two sources for gate infidelity.

If the 1-photon driving amplitude |Λ1| (or the input power Pin) is unlimited, both error
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sources can be sufficiently suppressed. We can increase the amplitude of α(t) so that the gate

time T as well as the photon loss probability is reduced. We can also increase the displaced

frame oscillating frequency ωr to reduce Trotter errors. However, if Pin is limited, we have

to make a trade-off to achieve optimized operation fidelity. In Appendix A.2, we analyze the

effect of these errors in detail for the case of preparing a single photon Fock state and show

that the state preparation infidelity is given by

ϵtot ≃ C(κe + κi)T +
C ′

P 2
inκ

2
eχ

10T 14
, (2.18)

where κe(i) stands for the external (internal) loss rate. Here the first term captures the

effect of loss errors growing with time T , and the second term captures the Trotter errors

that scale inverse-polynomially with T . Therefore, there exists an optimal time and external

loss rate for a given power and internal loss rate that minimizes the total error, which scales

as ϵopttot ∝ κ
4/5
i /(P

2/15
in χ2/3). For example, suppose we have a niobium nitride resonator [120]

with ωc = 2π × 100 GHz, χ = −1 kHz and an improved |χ|/κi = 0.5 in the future. Then,

to prepare |1⟩ state with 90% fidelity, the required Pin is around 30 nW. The corresponding

required α ≈ 15. These numbers suggest that our scheme may work well in the regime where

self-Kerr is comparable to or slightly lower than the loss rate. However, if κi is increased by

a factor of 10, we need an increase of Pin by a factor of 106 to keep the same ϵopttot , which

indicates that our protocol may not be power-friendly in the large κi regime. On the other

hand, if we can implement the 2-photon drive directly and also power-efficiently so that

we only need to consider the power cost for the 1-photon drive, then the error scaling will

be modified as ϵ ∝ κ
5/6
i /(P

1/6
in χ2/3). It will be interesting to look into the power cost for

other control protocols, like using both DC and double-frequency pump currents [132], or

directly modulating a nonharmonic potential itself [133]. We leave the investigation of other

power-saving schemes for universal control as further work.

We also investigate the optimality of the Trotter scheme by comparing it with a direct
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optimization scheme. Specifically, we assume that the two-photon drive is absent from the

beginning, and directly maximize the fidelity by optimizing α(t) using a more expressive

ansatz that utilizes neural networks with periodic activation functions [134]. Our results

indicate that this heuristic approach does not yield a better solution (in terms of fidelity and

required power) compared to the Trotter scheme. We refer the reader to Appendix A.10 for

more details.

Additionally, if our 1-photon drive is too strong, the RWA may not be valid since the

frequency ωc of the resonator is always finite. The counter-rotating (non-RWA) terms like

[Λ∗
1(t)e

iω1(t)tâ†+h.c.] should be considered in Eq. (2.1). In Appendix A.5, we discuss the way

to mitigate the dominant effects from non-RWA terms by adjusting the driving amplitude

Λ1(t) and frequency ω1(t). It is also worth mentioning that there will be no [Λ∗
1(t)e

iω1(t)tâ†+

h.c.] term if on the hardware we can drive both charge and flux simultaneously with properly

chosen amplitudes, which provides another way to mitigate non-RWA effects. However, there

could still be a fundamental limitation on the fidelity as a function of two dimensionless

parameters κi/χ and internal quality factor Qi := ωc/κi. For the task of preparing |1⟩, we

found a rough lower bound for infidelity as ϵ ≳ 3π(κi/χ)
2/3/(16Q

1/3
i ) even if we can directly

implement 2-photon drive or do 1-photon drives on both charge and flux quadratures (see

Appendix A.5.3), which indicates that κi/χ cannot be too small given finite Qi. We leave

the further improvement of this bound as an open question.

2.7 Conclusion

We show that by making a non-trivial extension of the displacement-induced, weak-Kerr

photon blockade of Ref. [51], one can achieve any unitary operation in a blockade subspace

of arbitrary dimension. The speed of the operations can be enhanced by using large displace-

ments to overcome the adverse effects of photon loss. Further, this can be implemented using

only 1-photon drives, provided that the input power is not a limitation and RWA conditions
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are justified. Moreover, from a computational perspective, our work simplifies the task of

optimal control in such systems. It reduces the computational overhead for finding control

sequences that utilize large photon number states by working in a special instantaneously dis-

placed frame. As a result, our work provides a novel and efficient quantum control protocol

for weak nonlinear bosonic systems, which could be helpful for future quantum information

processing tasks on suitable platforms.
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CHAPTER 3

BIAS-PRESERVING OPERATIONS FOR PAIR-CAT CODES

Quantum information is powerful but fragile due to the presence of noise and imperfections.

Quantum error correction can actively correct physical errors and protect the encoded quan-

tum information by introducing redundancy in physical systems. Fault-tolerant design also

ensures that errors during the quantum error correction will not compromise the encoded

quantum information, which enables us to accomplish quantum tasks as accurately as pos-

sible if the error probability of each gate operation on physical qubits is below a certain

threshold [29, 30]. For generic depolarization errors, however, fault-tolerant quantum com-

putation often requires a demanding error threshold and resource overhead, which poses a

major challenge with the current technology.

One promising approach to overcome this challenge is to design quantum error correc-

tion schemes specific for realistic errors in physical devices. For example, when physical

systems have a biased-noise structure – one type of error is stronger than all other types

of errors [135] – we can design efficient quantum error correction schemes to improve er-

ror threshold [136–139] and reduce resource overhead [140]. Hence, seeking a biased-noise

structure and preserving the error bias during operations on the physical qubits are highly

desirable to make these merits come true. In practice, however, it is non-trivial to preserve

the biased-noise structure for all quantum operations. For example, a phase-flip error can be

transformed into a bit-flip error and vice versa after a Hadamard gate. Moreover, phase-flip

error bias cannot be preserved during the execution of a CX gate for physical qubits encoded

in two-level systems [68].

Distinct from two-level physical systems, multi-level systems (such as harmonic oscil-

lators) can encode quantum information with desirable biased-noise structure and bias-

preserving quantum operations. For example, we can use harmonic oscillators with cat

codes, which encode quantum bits of information using a subspace spanned by two sepa-
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rated coherent states | pmα⟩ [54]. With a specific choice of computational basis of the cat

code, the bit-flip error can be exponentially suppressed by the averaged photon number com-

pared with the phase-flip error, which naturally provides the biased-noise structure [68, 69].

The cat qubits can be stabilized in both driven-dissipative systems [54] and Kerr-nonlinear

resonators with 2-photon driving [57]. Both of the stabilization protocols with the biased-

noise structure have been experimentally demonstrated [55, 58, 141]. A set of operations

that includes CX and Toffoli gates for cat qubits with bias-preserving properties has been

proposed in both platforms [68, 69]. Recently, new methods to keep noise bias in Kerr cat

qubits suppressing heating-induced leakage [142] and new approaches to realize fast and

bias-preserving gates in cat code [143, 144] have also been proposed. Further, cat qubits

can be concatenated into repetition code level, on which a universal gate set for quantum

computation can be constructed by using fundamental bias-preserving operations on physi-

cal qubits. Concatenation of cat qubits with different types of surface codes has also been

investigated under practical consideration [59, 145]. In addition, multicomponent cat codes

encoded in a single mode can also be used to protect against photon loss errors [54]. How-

ever, the corresponding quantum error correction strategy for all the protocols we mentioned

above to suppress the effect from photon losses relies on measuring parity (−1)â
†â, which

is hard to implement continuously. As a result, extra overhead might be required for those

measurements in the middle of the circuits and the following feedback control, which can

lead to extra errors and delays.

In our work, we focus on another type of bosonic codes named pair-cat code, which is

an important generalization of cat code into multimode bosonic systems [70]. For pair-cat

code, any photon loss error happening in either mode can be detected by monitoring the

photon number difference between the two modes and we can correct them correspondingly,

which enables us to perform continuous error correction against photon loss errors. Different

from the parity, the photon number difference is much easier to monitor continuously while
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keeping the stabilization on. Moreover, we need fewer averaged photons to get at least the

same protection as in the cat code. With all the merits of the pair-cat code, it is natural to ask

whether pair-cat code has a similar biased-noise structure and whether we can generalize the

methods used to construct bias-preserving operations for cat code [68, 69] into the pair-cat

case while keeping the merit of continuous error correction during operations.

In this work, we successfully construct a set of bias-preserving operations for pair-cat

codes (including CX and Toffoli, sufficient for universal computation in the repetition code

level), which can be compatible with continuous quantum error correction of both bosonic

loss and dephasing errors. This chapter is organized as follows. In Sec. 3.1, we will go over

the basic encoding scheme of the pair-cat code. In Sec. 3.2, we investigate the construction

of the bias-preserving operation set in both driven-dissipative systems and Hamiltonian

systems. We summarize our results in Sec. 3.3. In the Appendix B, we summarize some

useful properties of pair-cat code itself, including its stabilization, error correction strategy,

and optimal error probabilities during the bias-preserving operations we design in the main

text.

3.1 Pair-cat code stabilization

The pair-cat code itself with stabilization in the driven-dissipative systems has been pro-

posed in [70]. Here we first summarize basic properties of the code, and then introduce the

Hamiltonian protection scheme as a direct generalization of the cat code.

We first mention the encoding of the cat code for further comparison. By focusing on

the subspace spanned by two coherent states {|α⟩ , |−α⟩}, we introduce the states |C±α ⟩ with

fixed even or odd photon number parity, where

|C±α ⟩ :=
|α⟩ ± |−α⟩√N±

. (3.1)
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Here N± = 2(1±e−2|α|2) is the normalization factor. By encoding |C±α ⟩ as the eigenstates of

X operator of the cat qubit with eigenvalue ±1, we can see that in the large |α| limit, |±α⟩

states serve as the logical |0⟩ and |1⟩ of the code. Since physical relevant errors, like photon

loss, gain and dephasing noise only act locally in the phase space, which makes it hard to flip

|α⟩ to |−α⟩ and vice versa, the bit-flip error is naturally suppressed with the choice of our

encoding. In fact, it is exponentially suppressed as the increase of average photon number

in the resonator compared with the phase-flip error.

Then, we consider a system with two bosonic modes and denote them as mode â and

b̂. We introduce the pair-coherent state |γ∆⟩ [146], which serves as the basic component in

pair-cat code. It is defined as the projection of the identical coherent state in two modes

|γ, γ⟩ := |γ⟩⊗ |γ⟩ into a subspace with fixed photon number difference between these modes.

Specifically, we have

|γ∆⟩ = P̂∆ |γ, γ⟩√N∆
, (3.2)

where N∆ = e−2|γ|2I∆(2|γ|2) is the normalization factor and I∆(x) is the modified Bessel

function of the first kind. P̂∆ is the projection operator which projects states into a subspace

with fixed photon number difference ∆̂ := n̂b − n̂a = ∆, which means,

P̂∆ :=
+∞∑
n=0

|n, n+∆⟩⟨n, n+∆| (∆ ≥ 0). (3.3)

The ∆ < 0 case can always be defined similarly by performing a SWAP operation between

the two modes. From then on, for simplicity we assume ∆ ≥ 0 by default in the following

discussions if there is no further comment.

Two merits need to be highlighted for the |γ∆⟩ state: first, by analogy with the cat code

design where (â2 − α2) |±α⟩ = 0, here we have

(â2b̂2 − γ4) |γ∆⟩ = (â2b̂2 − γ4) |(iγ)∆⟩ = 0. (3.4)
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Therefore, â2b̂2 − γ4 can dissipatively stabilize the pair-cat code space. We note that the

pair-cat has a unique advantage over the cat code, which is that for any number of photon

loss in either mode, it can only change the pair-coherent state into another subspace with

different ∆. Notice that

âP̂∆ = P̂∆+1â, b̂P̂∆ = P̂∆−1b̂, (3.5)

we have

âk |γ∆⟩ = γk

√
N∆+k

N∆
|γ(∆+k)⟩ , b̂l |γ∆⟩ = γl

√
N∆−l
N∆

|γ(∆−l)⟩ . (3.6)

As a result, this type of error syndrome can be easily monitored by measuring ∆̂, and then

we could design strategies to correct it correspondingly. However, this method does not work

if the system suffers from loss error âb̂ since ∆ does not change after âb̂ acting on the state.

Later, we can see that this will give us an uncorrectable error with our encoding method.

To encode the qubit with the pair-coherent states, we use a generalized “parity” projection

operator Q̂(∆)
± within each ∆-fixed subspace. Before giving the definition of Q̂(∆)

± , we first

introduce the projection operator P̂ a± to â mode with fixed parity as

P̂ a± :=
Î ± (−1)n̂a

2
.

Then Q̂(∆)
± can be defined as

Q̂
(∆)
± := P̂ a±P̂∆ (∆ ≥ 0). (3.7)

As we pointed out that ∆ < 0 case can always be defined by performing a SWAP between

two modes, we should use the parity in b̂ mode to define Q̂(∆<0)
± := P̂ b±P̂∆.
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z

x

|0〉c = |+γ,∆〉+|−γ,∆〉√
2

∼ |γ∆〉

|1〉c = |+γ,∆〉−|−γ,∆〉√
2

∼ (−i)∆|(iγ)∆〉

Figure 3.1: Bloch sphere representation of the pair-cat encoding.

Finally, we define our code states as

|±γ,∆⟩ := Q̂
(∆)
± |γ, γ⟩√N±,∆

=
|γ∆⟩ ± (−i)∆ |(iγ)∆⟩

2
√

N±,∆/N∆

, (3.8)

where N±,∆ = e−2|γ|2 [I∆(2|γ|2) ± J∆(2|γ|2)]/2 is also a normalization factor, and J∆(x)

is the Bessel function of the first kind. We adopt the convention that the above states are

eigenstates of the logical X operator, specifically,

|+⟩c := |+γ,∆⟩ , |−⟩c := |−γ,∆⟩ . (3.9)

Note that here we use a different choice of basis compared with Ref. [70], so that the phase-

flip error is the dominant type of error in our choice of basis in order to be consistent with

the existing literature.

In the large |γ| limit, like the cat code, we also have
∣∣⟨(iγ)∆|γ∆⟩

∣∣2 ∼ O(e−4|γ|2) , which

means these two states are asymptotically orthogonal. As a result,

|±γ,∆⟩ ∼ |γ∆⟩ ± (−i)∆ |(iγ)∆⟩√
2

(|γ| → +∞). (3.10)

Further, the states along Z basis are

|0⟩c ∼ |γ∆⟩ , |1⟩c ∼ (−i)∆ |(iγ)∆⟩ (|γ| → +∞). (3.11)
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On the other hand, in the |γ| → 0 limit, we have


|+γ,∆⟩ ∼ (γ/|γ|)∆ |na = 0, nb = ∆⟩

|−γ,∆⟩ ∼ (γ/|γ|)∆+2 |na = 1, nb = ∆+ 1⟩
(|γ| → 0), (3.12)

which, as indicated later, provides us with one way to prepare code states in a bias-preserving

way by adiabatically turning on control parameters.

As mentioned before, the lowest-order uncorrectable loss error is âb̂. Notice that this

error does not cause the code states to go out of the code subspace. We denote r∆ =√
N−,∆/N+,∆. In the large |γ| limit, r∆ ≃ 1 − 2e−2|γ|2 cos(ϕ) where ϕ = 2|γ|2 − 2∆+1

4 π.

The projection operator on the code space can be denoted as P̂c := |+⟩c⟨+| + |−⟩c⟨−|. In

the large |γ| limit, we have

P̂câb̂P̂c = γ2
r∆ + r−1

∆

2
Ẑc + iγ2

r∆ − r−1
∆

2
Ŷc

∼ γ2Ẑc − 2iγ2e−2|γ|2 cos(ϕ)Ŷc.
(3.13)

We can see that the Z error is the dominant one while the other errors are exponentially

suppressed for large |γ|.

On the other hand, the error induced by the bosonic dephasing term can always be

exponentially suppressed in the large |γ| limit. For example,

P̂câ
†âP̂c ∼ γ2Îc +O(γ2e−2|γ|2)X̂c. (3.14)

Therefore, in our work, we will only focus on the effects induced by photon losses and leave

the bosonic dephasing error aside.

The pair-cat code can be stabilized in a driven-dissipative system with the jump operator
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F̂ = â2b̂2 − γ4. The corresponding dynamical equation of motion is

dρ̂

dt
= κD[F̂ ]ρ̂ = κ(F̂ ρ̂F̂ † − 1

2
{F̂ †F̂ , ρ̂}), (3.15)

where {•, •} denotes the anti-commutator, and κ corresponds to the 4-photon dissipation

rate. Note that both the photon number difference and the parity are preserved during this

evolution because they commute with F̂ . Since F̂ |γ∆⟩ = F̂ |(iγ)∆⟩ = 0, our code space

lies in the decoherence-free subspace of the system. The effective dissipative gap introduced

in Ref. [147] inversely relates to the leakage rate out of the steady state subspace under

perturbations. In our case, it has exactly the same properties as the energy gap in the

Hamiltonian protection scheme that will be introduced later, and as shown in Appendix B.2,

it scales as ∆edg ∼ O(|γ|6).

If we consider the single-photon loss effect of â and b̂ mode during evolution, the right-

hand-side of Eq. (3.15) should be modified with extra terms κ1aD[â]ρ̂ and κ1bD[b̂]ρ̂, where

κ1a and κ1b are the single-photon loss rate of the corresponding two modes. For simplicity

later we assume κ1a is equal to κ1b, and denote κ1 = κ1a = κ1b. Here we will show how the

pair-cat encoding can provide protection against effects from single-photon loss error during

gate execution. The property of autonomous error correction of pair-cat code against photon

losses is also discussed in [70].

In this work, we suggest that the pair-cat code can also be stabilized by the following

Hamiltonian:

Ĥ = −K(â†2b̂†2 − γ∗4)(â2b̂2 − γ4). (3.16)

It is easy to see that both |+γ,∆⟩ and |−γ,∆⟩ are the most-excited states (suppose K > 0)

of this Hamiltonian. Since [∆̂, Ĥ] = [(−1)n̂a , Ĥ] = [∆̂, (−1)n̂a ] = 0, this Hamiltonian can

be divided into different parts that act on different subspaces with fixed photon-number

36



difference between two modes and fixed parity:

Ĥ =
∑
µ,∆

Ĥµ,∆ =
∑
µ,∆

Q̂
(∆)
µ ĤQ̂

(∆)
µ . (3.17)

The energy gap between the code subspace and first-less-excited states is ∼ 8K|γ|6 in the

large |γ| limit when ∆ is a finite number. A more detailed analysis of this Hamiltonian is

performed in Appendix B.2.

We also numerically investigated the possibility of finding lower-order Hamiltonian that

has both γ-dependent protection of the code subspace and preserves the photon number

difference. Unfortunately, there is no lower-order Hamiltonian that fulfills those criteria.

Details can be found in Appendix B.1.

3.2 Construction of bias-preserving gates

The set of bias-preserving operations on cat qubit that does not convert the major errors

into the minor errors has been proposed in Ref. [68, 69]. For single-qubit operations, it

contains code state preparation, measurement in X basis, single qubit X operation, and

rotation along Z axis for arbitrary angle Z(θ) := exp(−iθẐ/2). For multi-qubit gates, CX

and Toffoli gates can also be performed in a bias-preserving manner, which is not possible

for physical qubits in two-level systems. Besides, bias-preserving ZZ(θ) := exp(−iθẐ1Ẑ2/2)

gate is also achievable. We denote S as the set of fundamental bias-preserving operations of

the cat code: S = {P|±⟩c ,MX , X, Z(θ), ZZ(θ),CX,Toffoli}. Further, it can also be shown

that a universal gate set for fault-tolerant quantum computation can be constructed in the

repetition code level by using those bias-preserving operations acting on physical cat qubits.

In this work, we will show that these operations in S can also be constructed with the

pair-cat code in both driven-dissipative protection and Hamiltonian protection schemes, and

reveal the similarities between cat code and pair-cat code structures. The construction
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Table 3.1: A summary of fundamental bias-preserving operations in cat code and pair-cat
code.

Cat code Pair-cat code
Driven-dissipative scheme [68] Hamiltonian scheme [69] Driven-dissipative scheme Hamiltonian scheme

Stabilization F̂cat = â2 − α2 Ĥ = −KF̂ †
catF̂cat F̂pc = â2b̂2 − γ4 Ĥ = −KF̂ †

pcF̂pc
Uncorrectable

loss error â âb̂

P|+⟩c
Start at |0⟩

Evolve to steady state
Start at |0⟩
α(t) : 0 → α

Start at |0,∆⟩
Evolve to steady state

Start at |0,∆⟩
γ(t) : 0 → γ

MX
Need an ancilla: Ĥdisp = −χ|e⟩⟨e|â†â;

turn off the protection
Need two ancilla: Ĥdisp = −χ(|e⟩1⟨e| â†â+ |e⟩2⟨e| b̂†b̂);
may also need ∆̂ measurement; turn off the protection

Z(θ) ĤZ = ϵZ(âe
−iφ + â†eiφ) ĤZ = ϵZ(âb̂e

−iφ + â†b̂†eiφ)
ZZ(θ) ĤZZ = ϵZZ(â1â

†
2 + â

†
1â2) ĤZZ = ϵZZ(â1b̂1â

†
2b̂

†
2 + â

†
1b̂

†
1â2b̂2)

X
α(t) = αeiπ

t
T

together with ĤX,rot = − π
T n̂

γ(t) = γei
π
2

t
T

together with ĤX,rot = − π
2T (n̂a + n̂b)

CX F̂1,2 in Eq. (3.24),
with ĤCX,rot in Eq. (3.25)

Same as Eq. (3.34) with
operators for cat code

F̂1,2 in Eq. (3.26),
with ĤCX,rot in Eq. (3.27);
real-time ∆̂2 monitoring

ĤCX in Eq. (3.34);
real-time ∆̂2 monitoring

Toffoli F̂1,2,3 in Eq. (3.29),
with ĤTof,rot in Eq. (3.30)

Same as Eq. (3.35) with
operators for cat code

F̂1,2,3 in Eq. (3.31),
with ĤTof,rot in Eq. (3.32);
real-time ∆̂3 monitoring

ĤTof in Eq. (3.35);
real-time ∆̂3 monitoring

of logical gate set on the concatenated code level based on fundamental bias-preserving

operations on physical qubits is independent of the specific type of physical qubits we use,

which means the results developed using cat code can be adapted to the pair-cat situation.

The biased error in pair-cat code comes from the large distance between |γ∆⟩ and |(iγ)∆⟩

in the generalized phase space (or “γ-plane”, see [70]) and the locality of the physical errors.

Therefore, to preserve error bias during the gate operation, |γ| should always be kept large.

In terms of the notation, we use subscripts “1”, “2”, and “3” on each operator to specify

which pair-cat qubit it acts on. For the CX gate, we use “1” to denote the control qubit

and “2” for the target qubit; while for the Toffoli gate we use “1” and “2” for the two control

qubits and “3” for the target qubit. For example, ∆̂2 = b̂
†
2b̂2 − â

†
2â2 for the CX gate and

∆̂3 = b̂
†
3b̂3− â

†
3â3 for the Toffoli gate are both photon number difference operators acting on

the target qubits respectively.
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3.2.1 Dissipation engineering scheme

In this part, we will show the way to construct bias-preserving operations in S with driven-

dissipative stabilization. We will see how the continuous syndrome (∆̂) monitoring can help

to reduce errors caused by photon loss. We also derive the scaling properties of the error

probability during gate operations where optimal gate time is chosen in Appendix B.4 and

summarize the results in Table 3.2.

Preparation of |±⟩c states

In cat code protection with jump operator F̂cat = â2 − α2, the preparation of |C+α ⟩ state

can be done by initializing the system at the vacuum state |0⟩, and then just let the system

evolve under the Lindblad equation to reach the steady state, which will be the exact code

state we want [54, 68]. It is because that, the steady states ρ∞ of this evolution is a linear

superposition of {|C+α ⟩⟨C+α |, |C+α ⟩⟨C−α |, |C−α ⟩⟨C+α |, |C−α ⟩⟨C−α |}. And, since the parity is preserved

during the evolution, the only result will be ρ∞ = |C+α ⟩⟨C+α | if the initial state is |0⟩⟨0| [148].

To prepare |C−α ⟩ state, we can either start with Fock |0⟩⟨0| state and let the system evolve,

or perform Ẑc operation after the preparation of |C+α ⟩ state.

Similarly, in pair-cat code case with jump operator F̂pc = â2b̂2 − γ4, the space of steady

states is spanned by {|µγ,∆⟩⟨µ′γ,∆′||µ, µ′ ∈ {+,−}; ∆,∆′ ∈ Z}. Besides, both the parity of

the two modes and the photon number difference are conserved. As a result, if we start with

|0,∆⟩⟨0,∆| state and let the system evolve, eventually it will end up at |+γ,∆⟩⟨+γ,∆| state.

To prepare |−γ,∆⟩ state, similarly we can either start with |1,∆+ 1⟩ state and wait for it

to reach the steady state, or perform Ẑc operation, which we will introduce later, on |+γ,∆⟩

state.

Photon loss errors may happen during the state preparation and the idling time after

that. The probability of a single-photon loss in either mode is p = κ1n̄T provided that

p ≪ 1, where κ1 is the 1-photon loss rate, T is the total time of the process we consider,
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and n̄ is the average photon number during the whole process. However, as indicated before,

only a single-photon loss does not cause a logical error directly. It can be captured by a

∆̂ measurement after the process to determine whether and in which mode the photon loss

happens. Then we can apply a recovery operation to correct the error. However, loss errors

happen in both modes cannot be identified in this way, which can occur with the probability

pZ = p2 ∼ O[(κ1n̄T )
2]. This corresponds to the Z error probability of the pair-cat code

during state preparation and idling process. In the idling part, we have n̄ ∼ O(|γ|2), and if

the time of this part dominates, we can write pZ = p2 ∼ O[(κ1|γ|2T )2].

Measurement in X basis

In order to distinguish |+γ,∆⟩ state from |−γ,∆⟩ state, we can try to check the parity of

either mode of the pair-cat code. This can be done in the same way as the cat code case [68].

We could couple â mode with an ancilla qubit via dispersive coupling Hamiltonian Ĥdisp =

−χ|e⟩⟨e|â†â. The ancilla qubit is initialized at |+⟩q state where |±⟩q = (|g⟩± |e⟩)/
√
2. After

time T = π
χ , the unitary evolution operator will be Û = |g⟩⟨g| ⊗ Î + |e⟩⟨e| ⊗ eiπn̂a , and

the quantum state will evolve from |ψ(0)⟩ = |+⟩q ⊗ (u0 |+γ,∆⟩ + u1 |−γ,∆⟩) to |ψ(T )⟩ =

u0 |+⟩q ⊗ |+γ,∆⟩ + u1 |−⟩q ⊗ |−γ,∆⟩. Finally, we measure the ancilla qubit along X basis.

If we get |+⟩q state, it is equivalent to saying that we get the |+γ,∆⟩ by performing the X

measurement on pair-cat code.

It is worth mentioning that, during the qubit-dependent rotation of the cavity modes, we

have

eiθn̂a |γ∆⟩ = e−i∆θ/2 |(γeiθ/2)∆⟩ , (3.18)

which means the driven-dissipative stabilization should be turned off during this evolution.

However, as indicated in the cat code case [68], turning off the stabilization is not a problem

because the only information we need from the measurement is the parity of the state instead

of the amplitude γ. Moreover, since the dissipator F̂ commutes with the parity, it does not
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provide any protection against parity change. As a result, it does not matter whether the

dissipative stabilization is on or off during the measurement process.

Note that a single photon loss might change the outcome of the parity measurement. To

suppress the loss-induced measurement error to higher order, we can introduce two ancillae

and use them to measure both the parity of â and b̂ mode together. If the outcomes agree

with the ∆ we fixed for the code space, we can trust the outcomes. Otherwise, we need to

perform a measurement of the photon number difference between the two modes immediately

after the parity measurement, to check which mode suffers from the photon loss and use the

parity of another mode to indicate the generalized parity of the pair-cat code state. However,

if both modes suffer from single-photon loss during parity measurement, there is some chance

that the parity outcomes are consistent but wrong, or they are inconsistent but cannot be

resolved since ∆̂ measurement suggests no loss happened. As a result, the error probability

during the measurement process can be suppressed from O(κ1|γ|2/χ) to O[(κ1|γ|2/χ)2] by

using the protocol we mentioned here.

Z(θ) and ZZ(θ) gates

The Z(θ) and ZZ(θ) gates in cat code can be performed by using the following Hamilto-

nian [54]:

ĤZ = ϵZ(âe
−iφ + â†eiφ),

ĤZZ = ϵZZ(â1â
†
2 + â

†
1â2).

(3.19)

By projecting those Hamiltonians into the cat code subspace, we can get the Z and ZZ

operators which will generate the Z(θ) and ZZ(θ) gates. Here θ can be controlled by the

gate time. The validity of this projection can be understood via the quantum Zeno effect,

that the dissipation term keeps monitoring the system to prevent the state from leaking

out of the code subspace. In Appendix B.4 we have a detailed analysis on the gate error
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induced by this leakage and show that the description under quantum Zeno effect will be

more accurate with small ϵZ or ϵZZ and large κ. Since both of the projected Hamiltonians

commute with Z error on either cat qubit, these two operations are naturally bias-preserving.

In the pair-cat situation, we can use these Hamiltonian to achieve the two gates [70]:

ĤZ = ϵZ(âb̂e
−iφ + â†b̂†eiφ),

ĤZZ = ϵZZ(â1b̂1â
†
2b̂

†
2 + â

†
1b̂

†
1â2b̂2).

(3.20)

Again, by projecting into the code space with P̂c = |+⟩c⟨+|+ |−⟩c⟨−| while working in the

large |γ| limit, we have

P̂cĤZ P̂c ∼ 2ϵZ

(
ℜ[γ2e−iφ]Ẑc + 2ℑ[γ2e−iφ]e−2|γ|2 cos(ϕ)Ŷc

)
, (3.21a)

(P̂1cP̂2c)ĤZZ(P̂1cP̂2c) ∼ 2ϵZZ |γ|4(Ẑ1cẐ2c + 4e−4|γ|2 cos2(ϕ)Ŷ1cŶ2c). (3.21b)

Here ϕ = 2|γ|2− 2∆+1
4 π has been introduced before. We can also see that the Ŷc and Ŷ1cŶ2c

terms are exponentially suppressed so that we can use these Hamiltonians to get Z(θ) and

ZZ(θ) gates. Besides, in Eq. (3.21a) we can always choose φ so that γ2e−iφ = |γ|2. The

corresponding gate time to reach θ angle rotation is tZ = θ
4|ϵZ ||γ|2

and tZZ = θ
4|ϵZZ ||γ|4

.

X gate

To realize X gate in cat code in a bias-preserving way, one method is to adiabatically change

α(t) from α to −α and vice versa, while keeping |α(t)| larger all the time to protect the error

bias [68]. After that, |C+α ⟩ state will remain as |C+α ⟩, while |C−α ⟩ changes to − |C−α ⟩, which is

exactly the outcome of X gate acting on code states.

In pair-cat code case, we can also let γ(t) change adiabatically along γ(t) = γei
π
2

t
T from

t = 0 to T . In this way, |γ∆⟩ goes to |(iγ)∆⟩ while |(iγ)∆⟩ goes to |(−γ)∆⟩ = (−1)∆ |γ∆⟩.
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As a result,

|+γ,∆⟩ → i∆ |+γ,∆⟩ , |−γ,∆⟩ → i∆(− |−γ,∆⟩). (3.22)

So, equivalently, this is a ei∆π/2X̂c operation, while the global phase does not matter.

In order to implement this design in physical systems, we need to engineer the jump

operator as F̂ = â2b̂2 − γ4(t). We can also add a Hamiltonian ĤX,rot = − π
2T (n̂a + n̂b). It

can be checked that

exp(−iĤX,rott)(u0 |γ∆⟩+ u1 |(iγ)∆⟩) = u0 |(γei
π
2

t
T )∆⟩+ u1 |(iγei

π
2

t
T )∆⟩ , (3.23)

which means that this state is always annihilated by F̂ = â2b̂2−γ4(t), so that it is protected

by the driven-dissipative stabilization for any time during gate execution. So, with the help

of this Hamiltonian, we could relax the requirement of adiabaticity such that T → +∞ is

not needed.

CX gate

The idea of implementing a CX gate is similar to theX gate: since CX = |0⟩⟨0|⊗Î+|0⟩⟨0|⊗X̂,

we adiabatically rotate the target mode conditioned on the control mode being in the |1⟩

state. Therefore, in the cat code scheme, the jump operators of these two cat qubits are

proposed [68] as

F̂1 = â21 − α2, F̂2 = â22 −
α(â1 + α)

2
+
αe2iπt/T (â1 − α)

2
, (3.24)

where, in the large |α| limit, by fixing control qubit in its code space, we have F̂2 ∼ |α⟩⟨α| ⊗

(â22−α2)+ |−α⟩⟨−α|⊗ [â22−α2(t)] where α(t) = αeiπt/T . So, when |α| is large, if the control

qubit is in |α⟩ state which is encoded as |0⟩c asymptotically, the state of the target qubit

does not change; on the other hand, if the control qubit is in |−α⟩ state, effectively there
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will be an X operation acting on the target qubit.

Again, like theX gate construction, we can add a Hamiltonian to generate the conditioned

rotation of the target qubit to partially compensate for the error from non-adiabaticity:

ĤCX,rot =
π

2T

â1 − α

2α
⊗ (â

†
2â2 − |α|2) + h.c.

∼ −π

T
|−α⟩⟨−α| ⊗ (â

†
2â2 − |α|2).

(3.25)

To achieve the actual CX operation, we need an extra Z1(−π|α|2) gate acting on the

control qubit [59]. In fact, we can choose |α|2 as an even integer, so that this extra action is

not needed.

In the pair-cat code case, we use the following jump operators to stabilize the code states:

F̂1 = â21b̂
2
1 − γ4, F̂2 = â22b̂

2
2 −

γ2(â1b̂1 + γ2)

2
+
γ2e2iπt/T (â1b̂1 − γ2)

2
. (3.26)

And the Hamiltonian we need for partially compensating the non-adiabatic error is

ĤCX,rot =
π

4T

â1b̂1 − γ2

2γ2
⊗ (â

†
2â2 + b̂

†
2b̂2 − 2|γ|2) + h.c. (3.27)

However, the extra phase induced during γ rotation should be taken into consideration, since

our effective gate operator now is Û ∝ |0⟩1c⟨0| ⊗ Î2c + |1⟩1c⟨1| ⊗ e−iπ(|γ|
2−∆/2)X̂2c. We can

always use Z(θ) gate on the control qubit to correct the induced phase, or choose γ such

that (|γ|2 −∆/2) is an even integer.

Different from cat code where a single-photon loss can cause a phase-flip error on the cat

qubit, we seek protocols that for the pair-cat code a single-photon loss during the CX gate

execution does not cause logical errors. If we do nothing more than what is discussed above,

we will not know when a single-photon loss event might happen, which will lead to a Z type

of error on the control qubit if a photon loss occurs on the target qubit. For example, we

assume an â2 error happens at time t0 on the target qubit and see what the code states will
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become finally. We still consider the large |γ| regime where Eq. (3.11) is satisfied, and use

|0∆⟩c and |1∆⟩c to denote the code states defined in specified ∆ subspace. Approximately

we have

|0∆⟩1c |0∆⟩2c → γ |0∆⟩1c |0∆+1⟩2c ,

|0∆⟩1c |1∆⟩2c → (−1)γ |0∆⟩1c |1∆+1⟩2c ,

|1∆⟩1c |0∆⟩2c → i∆+1γ(t0) |1∆⟩1c |1∆+1⟩2c ,

|1∆⟩1c |1∆⟩2c → (−1)i∆+1γ(t0) |1∆⟩1c |0∆+1⟩2c .

(3.28)

Here, we just omit some overall factors that are the same for all the final states in the

expressions above. After the evolution, the final states should go through a recovery channel

by syndrome (∆̂) measurement and error correction. We have a more detailed discussion in

Appendix B.3 on the recovery strategy based on the outcome of the final ∆ we measured.

Briefly, the recovery process will map |0∆+1⟩2c to |0∆⟩2c and map |1∆+1⟩2c to (−1) |1∆⟩2c
for the target qubit.

After the recovery, if the control qubit is in |1∆⟩1c, then in addition to the e−iπ(|γ|
2−∆/2)

phase that will be achieved in the no error case we mentioned above, there will be an extra

exp[−iπ2 (1− t0/T )] phase on the final states, since γ(t) = γ exp(iπ2
t
T ). So, if we do not know

what t0 is, this induced time-dependent phase cannot be corrected.

Indeed, this CX gate is still bias-preserving, since the error induced by single-photon loss

is still Z type of error, which is the dominant one. However, it violates one of the proposed

merits of pair-cat code that the single-photon loss error in either mode will not cause errors

in the code. To solve this issue, one method is to introduce real-time monitoring of photon

number difference ∆̂2 on the target qubit to keep track of the time when the loss error might

happen. It is in principle doable since ∆̂2 commutes with all the generators in the CX gate

design and the code states will not be changed during measurement since they are always

eigenstates of ∆̂2, regardless of whether they suffer from loss errors or not. If we know the
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specific time that the single-photon loss happens, we can apply a Z1(θ) gate on the control

qubit to correct the induced phase. Therefore, the leading uncorrectable error will again be

suppressed to higher order, which comes from both the inaccuracy of the phase correction

due to the finite time interval δτ of two consecutive ∆̂ measurements, and the situation that

both â and b̂ error happen in the same time interval between two ∆̂ measurement. We have

a detailed analysis of those gate errors in Appendix B.4. It is worth mentioning that, in

the limit that the time interval of two ∆̂ measurements can be ignored, due to the large

dissipation gap the optimal CX gate error probability will decrease as γ increases. This is

in contrast to the cat code case, where the optimal error probability of CX is independent

of the size of the cat states.

We finally discuss the issue that the real-time ∆̂ measurement might not be perfect,

which means that the measurement device may misidentify the photon number difference

∆ between â and b̂ modes at the measurement time. In the recovery process, this can

be treated as both â loss and b̂ loss happen in two consecutive δτ intervals, and we will

apply an unnecessary Ẑc operation that will cause a logical failure in the end. To make our

protocol fault-tolerant against this error, one simple way is to introduce multiple auxiliary

systems that are dispersively coupled with â and b̂ modes to independently perform ∆̂

measurements at the same time. Then we can do a majority voting to get one “logical” ∆

value, so that the effect from measurement error can be suppressed to higher order. Similarly,

even if we only have one auxiliary system for ∆̂ monitoring, we can group 3 consecutive

∆̂ measurement results and perform majority voting within those 3 outcomes for a single

“logical” ∆ value. Therefore, a single measurement error can be correctly identified, while

the gate error probability induced by photon losses (as analyzed in Appendix B.4) will keep

its scaling but get slightly increased. It is because the effective time interval for two “logical”

∆ values will be a little larger. For example, â loss and b̂ loss happening within 3δτ time

may be treated as a measurement error and will not be corrected.
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Toffoli gate

Since the Toffoli gate is just the Control-CX gate, we can extend the strategy introduced in

the construction of the CX gate for the Toffoli case. For the cat code, the jump operators

and rotation Hamiltonian have been proposed as [68]

F̂1 = â21 − α2, F̂2 = â22 − α2, (3.29a)

F̂3 = â23 −
1

4
(â1 + α)(â2 + α) +

1

4
(â1 − α)(â2 + α)

+
1

4
(â1 + α)(â2 − α)− 1

4
e2iπ

t
T (â1 − α)(â2 − α),

(3.29b)

with

ĤTof,rot = − π

2T

 â1 − α

2α
⊗ â

†
2 − α∗

2α∗
+ h.c.

⊗ (â
†
3â3 − |α|2). (3.30)

While, in the pair-cat code case, the jump operators can be chosen as

F̂1 = â21b̂
2
1 − γ4, F̂2 = â22b̂

2
2 − γ4, (3.31a)

F̂3 = â23b̂
2
3 −

1

4
(â1b̂1 + γ2)(â2b̂2 + γ2) +

1

4
(â1b̂1 − γ2)(â2b̂2 + γ2)

+
1

4
(â1b̂1 + γ2)(â2b̂2 − γ2)− 1

4
e2iπ

t
T (â1b̂1 − γ2)(â2b̂2 − γ2).

(3.31b)

Besides, the Hamiltonian to compensate the non-adiabatic error is

ĤTof,rot = − π

4T

 â1b̂1 − γ2

2γ2
⊗ â

†
2b̂

†
2 − γ∗2

2γ∗2
+ h.c.

⊗ (â
†
3â3 + b̂

†
3b̂3 − 2|γ|2). (3.32)

Some extra work in the CX gate construction should also be done here. The induced

phase during the rotation of the target qubit can be corrected by applying both Z(θ) and

ZZ(θ) gates on the two control qubits, or just use carefully chosen γ such that this phase

has no effect. Besides, we need real-time monitoring of ∆̂3 on the target qubit to correct the

error induced by single-photon loss on that qubit.
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Table 3.2: The scaling of optimal total Z type of error probability in bias-preserving gates
for cat code and pair-cat code (using perfect real-time ∆̂ monitoring with time interval δτ
on each pair-cat qubit). Here C and C ′ are some constant numbers (see Appendix B.4).

Cat code [59] Pair-cat code

Z(θ) O
(
1
α

√
κ1
κ

)
O
(
κ1
γ2

√
δτ
κ

)
ZZ(θ) O

(
1
α

√
κ1
κ

)
O
(
κ1
γ2

√
δτ
κ

)
X O(κ1α

2T )
T→0−−−→ 0 O(κ21γ

4δτT )
T→0−−−→ 0

CX O
(√

κ1
κ

)
O
(√

κ1
κ

√
κ1δτ
γ2

√
1 + Cκκ1γ8(δτ)2

)
Toffoli O

(√
κ1
κ

)
O
(√

κ1
κ

√
κ1δτ
γ2

√
1 + C ′κκ1γ8(δτ)2

)

3.2.2 Hamiltonian stabilization scheme

We note that in some way Hamiltonian stabilization scheme is similar to the dissipative

stabilization scheme. We have already got a sense of such similarity from the structure of

stabilization Hamiltonian Ĥ = −KF̂ †F̂ where F̂ = â2b̂2 − γ4 is the jump operator we use

in the dissipative stabilization scheme. We can make use of such similarities to construct

bias-preserving operations in the Hamiltonian stabilization scheme.

Preparation of |±⟩c states

To prepare |+⟩c state of the pair-cat code, we can use a similar method as the state prepara-

tion in the Kerr-cat scheme proposed in [69]. Since |±γ,∆⟩ are always the most excited eigen-

states of the Hamiltonian shown in Eq. (3.16), and in |γ| → 0 limit we have |+γ,∆⟩ ∼ |0,∆⟩

and |−γ,∆⟩ ∼ |1,∆+ 1⟩, we can first prepare |0,∆⟩ or |1,∆+ 1⟩ and adiabatically increase

γ(t) from 0 to the final γ we want. Since both ∆̂ and parity are conserved, we will reach the

corresponding |±γ,∆⟩ state finally in the adiabatic limit.
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Measurement in X basis

This can be done in the same way as proposed in the driven-dissipative scheme, since the

protection has to be turned off during the measurement process.

Z(θ) and ZZ(θ) gates

We can still use the same Hamiltonian in Eq. (3.20) to generate Z(θ) and ZZ(θ) accordingly.

It is because that the Hamiltonian in Eq. (3.16) could provide the protection of the code

space because of the O(|γ|6) energy gap, and according to Eq. (3.21), within the code space

ĤZ and ĤZZ serve as the generators of Z(θ) and ZZ(θ) gates.

X, CX and Toffoli gates

The ideas for construction of these three bias-preserving operations are quite similar: they

all require conditioned adiabatically changing of stabilization parameter γ(t) while keeping

|γ(t)| large all the time, and use another Hamiltonian to actively change the code states to

reduce the error from non-adiabaticity due to the finite evolution time.

So, we can use the following Hamiltonian to implement X gate,

ĤX = −KF̂ †F̂ + ĤX,rot, (3.33)

where F̂ = â2b̂2 − γ4(t) with γ(t) = γei
π
2

t
T in the first term provides stabilization of the

code space and the second term ĤX,rot = − π
2T (n̂a + n̂b) can actively change code states

according to γ = γ(t) to compensate the error induced by non-adiabaticity.

For the CX gate, we can use the following ĤCX:

ĤCX = −K(F̂
†
1 F̂1 + F̂

†
2 F̂2) + ĤCX,rot, (3.34)
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where F̂1 and F̂2 is defined in Eq. (3.26) to provide stabilization and Hamiltonian ĤCX,rot

is defined in Eq. (3.27) to provide mitigation of non-adiabatic error.

The Toffoli gate can be constructed with ĤTof:

ĤTof = −K
3∑
j=1

F̂
†
j F̂j + ĤTof,rot, (3.35)

where F̂j is defined in Eq. (3.31) and Hamiltonian ĤTof,rot is defined in Eq. (3.32).

Same as the driven-dissipative case, the real-time ∆̂ monitoring on target qubits and

phase correction on control qubits in both CX and Toffoli gates are also needed here.

3.3 Discussion and conclusion

It is possible to generalize the pair-cat encoding protocol into a multimode multicomponent

case in order to correct more photon loss and gain errors [70]. In general, we could stabilize

a d level qudit in M modes with jump operator F̂ = (âd)⊗M − γdM , and syndromes can be

monitored by measuring all the photon number differences between neighboring modes. In

this way, any amount of photon loss happening in arbitraryM−1 modes can be distinguished,

or if M ≥ 3 then any amount of photon loss or gain happening in M−1
2 modes corresponds

to a unique syndrome. But there will be a logical error on the qudit if all of the modes suffer

from a photon loss together, provided that there is no further encoding on the logical qudit

within the d level subspace.

For the multimode pair-cat qubit case (d = 2), it is straightforward to achieve the bias-

preserving operations from the generalization of the 2-mode pair-cat code, just as the gen-

eralization from the cat code to the 2-mode pair-cat. It will be tricky to talk about bias-

preserving in cat or pair-cat qudits and their future concatenations, since different single-

qudit errors may correspond to different numbers of photon loss or gain which can happen

with different probabilities. But, still the continuous monitoring of the syndrome is essential
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in gate designs, especially in the generalized control-X gates where only a single-photon loss

on the target qudit will induce a time-dependent phase shift on the control qudit. But the

continuous syndrome monitoring is hard for multicomponent cat codes with stabilization.

We will leave the discussion of qudit properties for further research.

Besides, instead of using continuous syndrome monitoring as we mentioned, we can also

try to engineer jump operators â†P̂∆+1 and b̂†P̂∆−1 to achieve the autonomous error cor-

rection against single-photon loss [70]. It can give similar scaling results of the gate error

probability while further reducing the overhead from feedback control. The details of this

proposal are also worth working out in further work.

In summary, we generalize the idea of construction of bias-preserving operations for cat

code into pair-cat code to protect against a single-photon loss in either mode during gate

operations. Continuous syndrome monitoring plays an essential role in the gate design to

suppress errors. The generalization is quite straightforward due to the strong similarity

between the two types of codes. Besides, the Hamiltonian protection of the pair-cat code is

investigated, and the large energy gap between code space and other states has also been

found and numerically verified, which is another interesting feature in the pair-cat code that

is worth exploring in the future.
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CHAPTER 4

DARK SPIN-CAT ENCODING IN ATOMIC STRUCTURES

4.1 Introduction

In the previous chapter, I have discussed the properties of the cat code and one of its

multimode generalizations, pair-cat, with a highlight on their biased noise structures and

the protocols to engineer BP operations. It will be interesting to ask if we can still find a

structured error pattern with suitable choices of encoding in other physical platforms so that

the noise is easy to correct.

In recent years, the neutral atom system has become one of the most promising platforms

for quantum simulation and quantum computing, due to the allowed high-fidelity operations

and the reconfigurability of the atom arrays. One of the major limitations on the entangling

gate fidelities is the decay from the Rydberg levels during gate execution. The fluctuating

magnetic field may also cause dephasing of the quantum states, which further reduces the

achieved fidelity.

To tackle the Rydberg decay problem, several schemes have been proposed by making the

resulting error pattern more structured. One direction is, again, along the introduction of the

Pauli bias. In Ref. [81], the two computational basis states are encoded with far-separated

magnetic quantum numbers. The bit-flip is unlikely to happen due to such a separation.

Another direction is based on the erasure conversion [82]. The location information about

which atoms suffer from the error greatly improves the error correction performance and

provides a higher error threshold. On the hardware level, people tried to encode the states

in a metastable subspace so that a Rydberg decay event could be caught as long as the final

state is not in the encoded manifold. Further proposals on the biased erasure have been made,

which combine both Pauli bias and the erasure conversion as mentioned above [83]. This

will result in a more than 10% error threshold given suitable choices of the error-correcting
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Figure 4.1: Schematic comparison between bosonic cat and dark spin-cat encoding. (a)
Bosonic cat encoding, where the code subspace is spanned by two coherent states |±α⟩. (b)
Dark spin-cat encoding with two antipodal SCSs on the GBS as encoded computational basis
states. (c) Dark spin-cat states in the atomic level structures. Two dark states are in the
even- and odd-parity subspaces of the ground hyperfine (Fg) manifold.

codes.

In this chapter, I will discuss our proposal for the problem based on the framework of the

cat encoding. Consider a hyperfine manifold with a large total angular momentum. This

is usually achieved for isotopes with large nuclear spin I, like 87Sr with I = 9/2. Now, the

phase space of the long hyperfine spin is a sphere, in contrast to a plane as in the bosonic case.

Below, I will call it the generalized Bloch sphere (GBS). In our spin-cat protocol, we encode

the computational basis of a qubit using two spin-coherent states (SCSs) antipodal with each

other on the phase space [see Fig. 4.1(b)]. To dynamically protect the encoded subspace,

we apply linear drives that couple the encoded hyperfine manifold with an excited hyperfine

manifold. In combination with the spontaneous or engineered decay from the excited levels,

the encoded subspace becomes the “dark subspace” if the driving parameters are chosen

properly. This provides an autonomous leakage reduction when the state is affected by the
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noise. Together with the largest separation of the two encoded SCSs on the GBS, the bit-flip

rate is exponentially suppressed with the spin length, and therefore recovers the biased error

structure as the bosonic cat counterpart. If the two SCSs are on the equators of the GBS

while the polarization of the decay is suitably engineered, then the dephasing error can be

further autonomously corrected.

The encoding will be meaningless if we cannot find appropriate protocols for gate exe-

cution. Similar to the bosonic cat [149], arbitrary single-qubit operations can be achieved

by adiabatically manipulating the location of the two SCSs on the GBS determined by the

amplitudes and phases of the linear drives. However, such a protocol in general does not

preserve the Pauli error bias, as it will convert phase-flip errors to bit-flip errors. Alterna-

tively, we again developed a set of BP operations including the CZ and CX entangling gates.

The CZ implementation fits into the biased erasure framework if the erasure conversion is

allowed, while the biased erasure CX is also possible with a further assumption that the

Rydberg decay events can be frequently monitored.

The chapter is structured as follows. Sec. 4.2 describes the system we focus on and the

structures for the dark subspace that we use to encode a qubit. In Sec. 4.3, I will give an in-

depth discussion on the autonomous stabilization of the code space and the resulting biased

noise structure on the memory level. In Sec. 4.4, I will explain our protocols to implement

BP operations including CZ and CX gates, based on the spin-cat encoding.

4.2 Dark spin-cat encoding

4.2.1 System setup

To start with, we need to specify the system of consideration first. It contains laser drives

that couple a ground hyperfine manifold with the total angular momentum Fg and an excited

hyperfine manifold with Fe. Fg and Fe here can be both integers or both half-integers. States
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in those manifolds with different magnetic quantum numbers are labeled by |Fg(e),m⟩ with

m = −Fg(e),−Fg(e) + 1, . . . , Fg(e), respectively. Moreover, the states in the excited levels

may decay into the ground levels through the emission of a photon. The Hamiltonian of the

system in the lab frame can be expressed as

Ĥlab = ωegP̂e + δeF̂e,z + δgF̂g,z +
1

2

∑
q=0,±1

(e−iωqtΩqD̂eg,q + h.c.). (4.1)

Here we denote P̂g(e) =
∑Fg(e)
m=−Fg(e) |Fg(e),m⟩⟨Fg(e),m| is the projector onto the ground

(excited) manifold, and ωeg is the energy difference between the excited and the ground

levels when there is no external field. δg(e) = gF,g(e)µBBz characterizes the energy shift

of each level due to an external magnetic field along z-axis, where gF,g(e) is a constant

factor that depends on the specific choices of the hyperfine manifold and µB is the Bohr

magneton. F̂g(e),ξ is the angular momentum operator for each hyperfine manifold with the

direction ξ = x, y, z. To model the coupling between ground and excited levels via the electric

dipole, we use D̂eg,q = C
Fe,m+q
Fg,m;1,q|Fe,m+ q⟩⟨Fg,m| to indicate the relative coupling strength

between different |Fg,m⟩ ↔ |Fe,m+ q⟩ pairs, where CFe,m+q
Fg,m;1,q = ⟨Fg,m; 1, q|Fe,m+ q⟩ is

the Clebsch-Gordan coefficient as a fact of the Wigner-Eckart theorem [150]. q = 0,±1

here is determined by the polarization of the lasers, while Ωq contains the overall driving

amplitudes and phases, and ωq is the frequency of the drives.

If the frequencies of the lasers with different polarizations satisfy the resonant condition

ωq − ωq′ = δg(q − q′), we can find a rotating frame with

Û(t) = exp{i[ω0P̂e + δg(F̂g,z + F̂e,z)]t}, (4.2)
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so that the resulting Hamiltonian is in a time-independent form

ĤDS = ÛĤlabÛ
† + i

˙̂
UÛ†

= ∆P̂e + δF̂e,z +
1

2

∑
q=0,±1

(ΩqD̂eg,q + h.c.),
(4.3)

where ∆ = ωeg − ω0 and δ = δe − δg. I will use this Hamiltonian for the later discussion.

Then we would like to model how the decay process affects the state of the atom. The

dynamics of the atomic state cannot be treated as a unitary process due to the coupling with

the photon modes in the environment, and therefore, we need a master equation in general

to describe this. If the atom is in vacuum so that the photons can be emitted into any

direction with equal probability, and if the emitted photons couple with the atom through

the electric dipole moment again, we can model the dynamics as

dρ̂

dt
= Lspρ̂ := −i[ĤDS, ρ̂] + Γ

∑
q=0,±1

D[D̂ge,q]ρ̂, (4.4)

where Lsp is the full Lindbladian, D̂ge,q = D̂
†
eg,q is the jump operator indicating that the

decay occurs through the dipole coupling with the environmental modes, and D[D̂ge,q]• =

D̂ge,q • D̂†
ge,q − 1

2{D̂
†
ge,qD̂ge,q, •} is the dissipator correspondingly.

The dissipative process can be modified if the atom is placed in a lossy cavity. Ref. [151]

described a situation where the atom couples with two degenerate eigenmodes of the cav-

ity with both polarizations perpendicular to the cavity axis. With a proper choice of the

quantized axis, the master equation now becomes

dρ̂

dt
= Lengρ̂ = −i[ĤDS, ρ̂] + Γ

∑
q=±1

D[D̂ge,q]ρ̂, (4.5)

where the jump operator D̂ge,q with the q = 0 term is removed from Eq. (4.4). Later I will

show how this modification leads to the autonomous correction of the dephasing error under
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the spin-cat encoding.

4.2.2 Structures of the dark subspace

After specifying the Hamiltonian and the jump operators of the system, I will now discuss

some properties it implies. Let us focus on the Hamiltonian term ĤDS shown in Eq. (4.3) first.

In general, consider a system with de excited levels and dg ground levels. If dg > de, and the

restriction of the Hamiltonian in the ground subspace is zero (i.e., Ĥgg = P̂gĤP̂g = 0 with

P̂g the projector), then the system contains at least (dg−de) number of linearly-independent

eigenstates in the ground subspace with eigenenergy 0. This claim can be easily justified via

the singular value decomposition of the ground-excited coupling term Ĥeg = P̂eĤP̂g [152].

Even if we introduce the decay from the excited levels in the system, those states still form

a steady-state subspace as they are not affected by the decay. Other states outside this

subspace may come into it due to the dissipative process.

This observation motivates us to think whether we can encode a qubit into this “dark”

subspace so that if the population leaves the subspace due to the noise, it may autonomously

come back under dissipation. Therefore, we will choose dg − de = 2 in the system, which

corresponds to Fg − Fe = 1.

Then we will try to solve the dark states, which only depend on the relative amplitudes

and phases of those Ωq. One simple case comes when Ω+1 = Ω−1 = 0 and Ω0 = Ω. As

illustrated in Fig. 4.2(c), it is clear that the two dark states are |Fg,±Fg⟩, which correspond

to the SCSs at the north and the south pole of the GBS. In general, we will use the polar

angle θ and the azimuthal angle ϕ to label each SCS |θ, ϕ⟩g in the Fg-spin, as it can be

achieved by the rotation of an SCS starting at the north pole:

|θ, ϕ⟩g := e−iϕF̂g,ze−iθF̂g,y |Fg, Fg⟩ . (4.6)
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Figure 4.2: Dark state structures with different stabilization drives. (a) Both q = ±1 drives
are applied with Ω−1/Ω+1 = −1. (b) The two dark states in this case are the even and odd
superpositions of the two SCSs positioned antipodally along the x-axis. (c) Only the q = 0
polarized drive is applied. (d) Clearly the two dark states are |Fg,±Fg⟩, which correspond
to the north and the south pole on the GBS.

From the physical aspect, the nonzero Ω0 in the case above corresponds to the π-polarized

light. It is linear-polarized with the electric field oscillating along the z direction. Similarly,

if we only have a linear-polarized light with the electric field along the x direction, then the

two dark states should be the SCSs pointing along the ±x-axis. In this case, Ω+1 = −Ω−1

while Ω0 = 0. Now the Hilbert space can be separated into two subspace: one spanned by

{|Fg, 2k − Fg⟩ , |Fe, 2k − Fe⟩} and {|Fg, 2k − Fg + 1⟩ , |Fe, 2k − Fe + 1⟩} (k ∈ N) without

any Hamiltonian coupling term between them. We can introduce a parity operator

Π̂ := exp{−iπ[(F̂g,z + F̂e,z) + (FgP̂g + FeP̂e)]}, (4.7)

which commutes with the Hamiltonian in the current situation. In this chapter, I will encode
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the code states within the dark subspace described here, with the choice of computational

basis

|0⟩c := e−i
π
2 F̂g,y |Fg, Fg⟩ = |π

2
, 0⟩

g
,

|1⟩c := e−i
π
2 F̂g,y |Fg,−Fg⟩ = e−iπFg |π

2
, π⟩

g
,

(4.8)

which are at the most separated points on the GBS. A superposition of these two basis states,

|±⟩c =
|0⟩c±|1⟩c√

2
, lies in the even (odd) parity subspace indicated by the ±1 eigenvalue of the

Π̂ operator. This is also illustrated in Fig. 4.2(a).

In fact, given an arbitrary choice of those Ωq parameters, the two-dimensional dark sub-

space is always spanned by two SCSs which in general may not be orthogonal to each other.

I will put the demonstration in Appendix C.1. This observation enables us to manipulate the

places of the two SCSs on the GBS through adjusting the relative amplitudes and phases of

Ωq, which will be used for single-qubit gate execution. Moreover, in Chapter 5 I will discuss

more properties of the generalized spin-cat encoding where the code stabilization comes from

this feature. Currently, I will still stick to the case where two dark SCSs are antipodal on

the GBS.

4.3 Autonomous stabilization and biased noise structure

4.3.1 Intuitive picture for the biased noise structure

In the previous section, I have discussed the choice of encoding in our protocol named

“spin-cat” [85], where we encode the computational basis of a qubit using the two largest

separated SCSs on the GBS. Now I will introduce the physical relevant noise in the system

and investigate how the dissipative process helps to shape the structures of the error channel

or even correct them. For simplicity, in this section below I will fix ∆ = δ = 0 in the

Hamiltonian shown in Eq. (4.3), and also choose (Ω+1,Ω0,Ω−1) = ( Ω√
2
, 0,− Ω√

2
) so that
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Eq. (4.8) will be the desired encoding. The Hamiltonian is now written as

ĤDS,x =
Ω

2
√
2
(D̂eg,+1 − D̂eg,−1 + h.c.) (4.9)

I will also denote |Fg,m⟩x := e−i
π
2 F̂g,y |Fg,m⟩ for further use. Therefore, |0⟩c = |Fg, Fg⟩x

and |1⟩c = |Fg,−Fg⟩x.

Similar to the bosonic cat situation, the physical relevant noise like random magnetic

field fluctuation F̂g,ξ (ξ = x, y, z) acts locally on the phase space (GBS), which only couples

states whose magnetic quantum numbers along a certain axis differ by at most 1. This is a

general feature of operators as components of a vector, due to the Wigner-Eckart theorem.

Since our encoded computational basis states are the largest separated on the GBS, in the

Fg ≫ 1 regime, it is unlikely that one basis state could flip into another one under the noisy

process. Rather, it will come to a state close to it on the GBS, and as a result, there will

be a high probability that the population of the state will go back to the original place after

dissipative stabilization. The bit-flip rate will again be suppressed as the system size (here

it is the spin length Fg) increases.

4.3.2 Conserved quantities of the Lindbladian

To justify the intuition described here, we need more careful investigations on the dynamics

provided by the full Lindbladian L as that in Eq. (4.4) or (4.5). Our approach is to solve the

conserved quantities associated with L first, which help us to determine how an arbitrary

state ends up in the steady state subspace after evolving sufficiently long time under L [54].

A conserved quantity Ĵ is an operator that the overlap between Ĵ† and any state evolving

under L will be constant over time, specifically, Tr[Ĵ†eLtρ̂] = Tr[Ĵ†ρ̂] applies for arbitrary ρ̂.

It implies that, a conserved quantity Ĵ of a Lindbladian L with Hamiltonian Ĥ and several
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Figure 4.3: Autonomous stabilization and the biased noise structure. (a) Illustration of the
bit-flip suppression. If the noise acts locally in the phase space (GBS) like only changing
the m quantum number by at most 1, then the fraction of the population to end up at the
other SCS after autonomous stabilization will be exponentially suppressed with spin-length
Fg. (b) The Pauli error rate ṙkk under perturbative κD[F̂g,z] noise. The Fg-dependence is
plotted using Eq. (4.18). (c) The cm coefficients (4.13) in conserved quantities Ĵ00 and Ĵ11,
when Fg = 6. (d) Illustration on the engineered dissipation where only q = ±1 decays are
considered. The parity Π̂ is a strong symmetry now and will be preserved in the dynamics.

jump operators D̂k should satisfy the following equation

L‡(Ĵ) = i[Ĥ, Ĵ ] +
∑
k

(D̂
†
kĴD̂k −

1

2
{D̂†

kD̂k, Ĵ}) = 0. (4.10)

Moreover, the number of linear-independent conserved quantities should be equal to the

number of linear-independent steady operators (ρ̂ such that L(ρ̂) = 0), since they are left or

right eigenmatrices of L with eigenvalue 0 and in general there is a correspondence between

them [148]. In our model, the dark subspace is a 2-dimensional Hilbert space, which gives

us 4 linear-independent steady states. Therefore, we should also find 4 linear-independent
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conserved quantities.

When choosing ĤDS,x in Eq. (4.9) as the Hamiltonian, we can find the exact solutions for

all of the 4 conserved quantities associated with Lsp. Here, I just write down the solutions:



Ĵ00 = |Fg, Fg⟩x⟨Fg, Fg|+
Fg−1∑

m=−Fg+1

cm

(
|Fg,m⟩x⟨Fg,m|+ |Fe,m⟩x⟨Fe,m|

)
,

Ĵ11 = |Fg,−Fg⟩x⟨Fg,−Fg|+
Fg−1∑

m=−Fg+1

c−m
(
|Fg,m⟩x⟨Fg,m|+ |Fe,m⟩x⟨Fe,m|

)
,

Ĵ01 = |Fg, Fg⟩x⟨Fg,−Fg| ,

Ĵ10 = |Fg,−Fg⟩x⟨Fg, Fg| ,
(4.11)

which satisfy Ĵ11 = Î − Ĵ00 (Î is the identity operator) and Ĵ10 = Ĵ
†
01. Also, the convention

⟨p|c Ĵkl |q⟩c = δpkδql is followed. The coefficient cm above satisfies the following recurrence

relation:
cm+1 − cm
cm − cm−1

=
(Fg −m+ 1)(Fg −m)

(Fg +m+ 1)(Fg +m)
, (4.12)

which can be justified by applying L‡
sp(Ĵ00) = 0 constraint in Eq. (4.10). With this, cm can

be solved as

cm =
1 +

∑m−1
m1=−Fg+1

[∏m1
m2=−Fg+1

(Fg−m2+1)(Fg−m2)
(Fg+m2+1)(Fg+m2)

]
2F1
(
−2Fg, 1− 2Fg; 2; 1

) . (4.13)

The denominator here 2F1(a, b; c; z) is a hypergeometric function, and in our case

2F1
(
−2Fg, 1− 2Fg; 2; 1

)
=

(4Fg)!

(2Fg + 1)!(2Fg)!
≃ 16Fg

F
3/2
g

√
8π

(Fg ≫ 1), (4.14)

where the approximation is achieved from Stirling’s formula n! ≃
√
2πn(ne )

n under the large

n limit.
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Then the question comes: how should we understand those conserved quantities? Sup-

pose initially we have a state in |0⟩c = |Fg, Fg⟩x and then it hops into |Fg, Fg − 1⟩x due

to the perturbation from the noise F̂g,z. The conserved quantities suggest that, after

evolving a sufficient long time under Lsp, the population of the resulting state in |1⟩c is

ρc,11 = Tr[Ĵ
†
11 |Fg, Fg − 1⟩x ⟨Fg, Fg − 1|] = c−Fg+1 ≃

√
8πF

3/2
g e−(4 ln 2)Fg , which is sup-

pressed exponentially with Fg. This is similar to the bosonic cat encoding, where the bit-flip

rate is exponentially suppressed with the mean photon number.

On the other hand, the coherence between |0⟩c and |1⟩c can be lost if the state leaves

the encoded subspace due to the noise and then comes back under the stabilization. This is

because Ĵ01 and Ĵ10 have no overlap with any state outside the encoded subspace. Therefore,

the physical noise will be converted into a phase-flip (Z-type) error. In Sec. 4.3.4, I will show

how the coherence is preserved under the engineered dissipation if the physical noise itself is

a dephasing F̂g,z.

4.3.3 Process tomography of the error channel

With the conserved quantities derived above, we can further achieve the effective error rate

on the encoded qubit due to the existence of the physical noise. I will use the language of

quantum channels to explain this.

Consider a system evolving under the full Lindbladian Lsp + κLE , where LE describes

the noise in the system and κ is its strength. The evolution channel with time t is Eevo =

e(Lsp+κLE)t. In the later derivation, we always assume the noise is a perturbative effect,

which means κ is much smaller than any energy scales specified from Lsp. Moreover, there

always exists a recovery channel P∞
sp = limt→+∞ eLspt which maps arbitrary states into

the steady state subspace. Also, the outcomes of this channel can be determined from the
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conserved quantities, where

P∞
sp (ρ̂) =

∑
k,l∈{0,1}

|k⟩c ⟨l| · Tr[Ĵ
†
klρ̂]. (4.15)

The auxiliary recovery channel allows us to consider the process tomography of the composite

channel P∞
sp ◦ Eevo on the encoded subspace

P∞
sp ◦ Eevo(ρ̂c) =

∑
k,l

rklŴkρ̂cŴ
†
l , (4.16)

where Ŵk(l) ∈ {Îc, X̂c, Ŷc, Ẑc} are Pauli operators for the encoded qubit, and rkl is the

element of the process matrix. ρ̂c here is an arbitrary state in the encoded subspace and

therefore Lsp(ρ̂c) = 0.

Given the noise is perturbative, we can further compute the channel above as

P∞
sp ◦ Eevo(ρ̂c) = P∞

sp ◦
[
eLspt + κ

∫ t

0
eLsp(t−s)LEeLsps ds+O(κ2)

]
(ρ̂c)

= ρ̂c + κt · P∞
spLE(ρ̂c) +O(κ2).

(4.17)

We can use this formula to derive the effective error rate given the form of the physical noise.

For example, when LE = D[F̂g,z], we have

ṙXX = ṙY Y = κ
Fg
4
c−Fg+1 ≃ κ

√
π/2F

5/2
g e−(4 ln 2)Fg ,

ṙZZ = κ
Fg
4
(1− c−Fg+1) ≃ κFg/4.

(4.18)

Similarly, when LE = D[F̂g,x], we have

ṙXX = ṙY Y = 0, ṙZZ = κF 2
g . (4.19)

Both of the examples illustrate the exponential bit-flip suppression in the dark spin-cat
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encoding.

It is worth mentioning that, in practice, there could be F -dependence in κ. Here we

consider the noise coming from the random magnetic B⃗ field fluctuation. The external B⃗

field couples with the hyperfine manifold through [153]

ĤB−F = (gJµB J⃗ + gIµN I⃗) · B⃗. (4.20)

Moreover, we have µN ≪ µB , which means usually the contribution from the nuclear term

is ignorable. If the total electronic angular momentum J = 0 (therefore F = I), then despite

there being no F -dependence in κ, the strength of the noise itself could be sufficiently small.

On the other hand, if J itself is nonzero but we have J ≪ I to get a long hyperfine spin,

then ĤB−F is effectively ĤB−F ≃ gFµBF⃗ · B⃗, where

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ . (4.21)

If we work on the manifold F = J + I, then we have gF = JgJ/F . Therefore, given fixed J ,

the isotope with longer I will result in the relevant hyperfine manifold with gF ∼ 1/F . Since

κ ∝ g2F in the incoherent noise model κD[F̂g,ξ], here κ depends on F through κ ∼ 1/F 2 in

this case.

4.3.4 Autonomous dephasing correction with engineered dissipation

Now I will explain how the physical dephasing noise F̂g,z can be autonomously corrected with

the engineered dissipation Leng in Eq. (4.5). The bit-flip suppression can be argued from

the separation of the encoded computational basis on the GBS again, and here I will focus

more on the preservation of the coherence between them. Notice that both the Hamiltonian

ĤDS,x and the jump operators D̂ge,q (q = ±1) in Leng commute with the parity operator

Π̂, which means the parity now is a strong symmetry [154]. If a state is initially in the
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Hilbert subspace with a given parity, then it will still be in this subspace when reaching the

steady state under dissipation. Therefore, consider the state |±⟩c which are eigenstates of Π̂

(with eigenvalue ±1). The dephasing noise F̂g,z maps the states into superpositions between

|Fg, Fg − 1⟩x and |Fg,−Fg + 1⟩x but does not modify their parities. As a result, the state

will still come back into |±⟩c under the autonomous stabilization, which indicates that the

coherence between computational basis is preserved.

A more rigorous justification again requires the derivation of the conserved quantities.

For the Lindbladian Leng, we have not found the exact expression for all 4 conserved quan-

tities yet. However, in the strong driving regime Ω ≫ Γ, every dimensionless quantity can

be written as a Taylor series expansion with Γ/Ω. We can still explicitly write down the

conserved quantities up to the 0-th order (up to O[(Γ/Ω)0]) as follows:



Ĵ ′00 = |Fg, Fg⟩x⟨Fg, Fg|+
Fg−1∑

m=−Fg+1

cm

(
|Fg,m⟩x⟨Fg,m|+ |Fe,m⟩x⟨Fe,m|

)
+O(Γ/Ω),

Ĵ ′11 = Î − Ĵ ′00,

Ĵ ′01 = |Fg, Fg⟩x⟨Fg,−Fg|+
Fg−1∑

m=−Fg+1

cm

(
|Fg,m⟩x⟨Fg,−m|+ |Fe,m⟩x⟨Fe,−m|

)

+O(Γ/Ω),

Ĵ ′10 = Ĵ
′†
01 = Π̂− Ĵ ′01,

(4.22)

where the coefficients cm are same as that in Eq. (4.13).

Similar to the analysis in Sec. 4.3.3, here we can also achieve the effective error rate

when the physical noise is LE = D[F̂g,z], using the process tomography method. With the

conserved quantities in Eq. (4.22), we can get

ṙXX ≃ κ
Fg
2
c−Fg+1 ≃ κ

√
2πF

5/2
g e−(4 ln 2)Fg , ṙY Y = ṙZZ = 0. (4.23)
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In the Fg ≫ 1 regime, this confirms the autonomous error correction against physical de-

phasing noise F̂g,z with the engineered dissipation Leng.

We also notice that a similar idea has also been experimentally demonstrated in ions

recently, where the physical dephasing F̂g,z errors are autonomously corrected using the

spin-cat encoding [155, 156]. Here, people use phonon modes to extract the entropy and

therefore stabilize the code subspace, instead of the photons used in our work.

4.4 Bias-preserving operations with erasure conversion

As we have already seen the biased noise structure for the dark spin-cat encoding on the

memory level, in this section, I will discuss the gate implementation protocols that preserve

such error bias during execution. Similar to the bosonic cat and pair-cat examples shown in

Chapter 3, for single-qubit control, the set of operations includes the state initialization and

measurement in X basis, as well as the X and Z(θ) operations.

For entangling gates like CZ and CX, however, in the neutral atom platform the im-

plementation usually requires the assistance of the Rydberg interaction, which makes the

Rydberg decay a major source of noise. The first proposal for BP CX implementation in

neutral atoms was made in Ref. [81], where an ancilla atom is required to avoid the first-

order bit-flip during the gate. Meanwhile, the erasure conversion scheme in accompany with

metastable encoding is introduced for CZ execution, where the location of the error is deter-

mined through the detection of which atom suffers from the Rydberg decay. Further, a fresh

atom to substitute the one experienced decay can be initialized in a specific state to avoid a

bit-flip in the whole error channel. Such an error is called “biased erasure” and will lead to

a high threshold with a suitable choice of error correcting codes, even without a native BP

CX gate.

One caveat in the biased erasure CZ implementation is the requirement for a high success

probability to catch the decay events; otherwise the threshold may drop quickly [84] as the
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erasure conversion rate goes down. In practice, the Rydberg states may also decay into the

encoded subspace, which cannot be converted into erasure and may create a bit-flip. This

leads to an unfavorable error structure in the system. However, with our spin-cat encoding,

even if the population decays into the encoded hyperfine manifold during CZ execution, the

bit-flip error is still unlikely to happen due to the separation of the encoded basis state in the

magnetic quantum number. Therefore, our CZ design with spin-cat offers a more structured

error pattern than those in previous proposals.

Moreover, we also provide a CX design with the biased erasure error structure, based on

the spin-cat encoding. As I will show below, our protocol requires a long-time occupation

in the Rydberg state and continuous monitoring of the Rydberg decay for the control atom,

which may result in a low gate fidelity and difficulties in the control sequences. However, we

still believe that our proposal provides an affirmative answer to the theoretical achievability

of the biased erasure CX gate in neutral atoms and motivates people to further optimize the

design.

4.4.1 Single-qubit bias-preserving operations

To start with, we first consider the implementation of BP operations on a single qubit. The

X-basis state preparation and measurement will be BP by definition, as the bit-flip (X)

error will trivially act on the prepared states or commute with the measured operator, which

leaves no effect on them. Both X and Z(θ) can be achieved from simple SU(2) rotations on

the GBS [85], and therefore we only need to drive the magnetic dipole (F̂g,ξ). On the other

hand, if such operations are slow in practice due to the weakness of magnetic dipole, we may

also consider the adiabatic control over the stabilization drives Ωq to move the two SCSs on

the GBS. As I will show below, we may either swap their places for an X gate, or let them

enclose an area to pick up a geometric phase for the Z(θ) gate.
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Figure 4.4: Single-qubit bias-preserving operations. (a-d) X-basis state initialization. (a)
The state is first initialized in |Fg, Fg⟩ with the GBS representation in (b). (c) Then we
gradually increase the amplitude of Ω−1 drives, which leads to the trajectories of the SCSs
shown in (d). (e-g) The SCS trajectories for (e) X gate, (f) Z(θ) gate, and (g) coherent state
transfer from |Fg,±Fg⟩x to |Fg,±Fg⟩.

X-basis state preparation and measurement

We first recall how we initialize the |+⟩c state for the bosonic cat. There, we start with a

vacuum state first, and then turn on the dissipative stabilization so that the state will end

up in the steady state subspace spanned by |±α⟩. Meanwhile, since the parity is preserved

during this process, the resulting state should be the even-parity cat |+⟩c ∝ (|α⟩+ |−α⟩).

We can do similar things for the dark spin-cat here. First, we will try to initialize the state

into |Fg,−Fg⟩ by coupling the ground manifold with an excited hyperfine manifold F ′
e = Fg
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using the Ω−1 drive [157]. Under this configuration, clearly |Fg,−Fg⟩ is the only dark state

and also a parity eigenstate as well. After this, we will consider another excited manifold with

Fe = Fg − 1 and turn on the Ω−1 drive. |Fg,−Fg⟩ is still one of the dark states up to now.

Finally, we adiabatically increase the amplitude of Ω+1 drive until Ω+1 = −Ω−1 = Ω√
2
. The

resulting state should be in the dark state subspace spanned by |Fg,±Fg⟩x, while the parity

conservation given the engineered dissipation Leng guarantees that output state should be

|+⟩c if there is no extra noise. Indeed, the parity-breaking decay D̂ge,0 in Lsp may cause

phase-flip error on the prepared state, since there is still population on the excited levels

during evolution due to the non-adiabaticity. However, such an error will belong to the

dephasing (Z) type by default and should be corrected with the next-level QEC codes.

The X-basis measurement can be viewed as the inverse process of the X-basis initial-

ization. With Ω+1 = −Ω−1 in the beginning, the stabilized |±⟩c states are in the even

or odd parity subspace, respectively. We can gradually turn off the Ω+1 drive so that the

population in the even-parity (+1) subspace will come to the |Fg,−Fg⟩ state while that in

the odd-parity (−1) subspace will come to |Fg, 1− Fg⟩. We can further address |Fg, 1− Fg⟩

without affecting |Fg,−Fg⟩ through a π-polarized light (∆m = 0) that couples a hyperfine

manifold with Fe = Fg − 1, and then follow-up controls (like ionization [158]) are allowed to

readout its population.

X gate

The X gate requires a coherent exchange between |Fg, Fg⟩x and |Fg,−Fg⟩x. To prevent the

bit-flip during gate execution, we expect the two computational basis states to stay largest

separated on the GBS. One solution is to implement a Hamiltonian rotation Ĥ ∝ F̂g,z, such

that

e−iϕZ(t)F̂g,z(a0 |0⟩c + a1 |1⟩c) = a0 |π/2, ϕZ(t)⟩g + a1e
−iπFg |π/2, π + ϕZ(t)⟩g , (4.24)
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where ϕZ(t) = πt/T . At time t = T , the state above will become eiπFg(a0 |1⟩c + a1 |0⟩c),

which indicates that we indeed execute an X gate. Meanwhile, the dissipative stabiliza-

tion drives should be adjusted accordingly so that the subspace spanned by the two SCSs

{|π/2, ϕZ(t)⟩g , |π/2, π + ϕZ(t)⟩g} is still the instantaneous dark subspace. To do so, we can

adjust the phase of Ω±1 drives as

Ω+1(t) =
ΩeiϕZ(t)√

2
, Ω−1(t) = −Ωe−iϕZ(t)√

2
, (4.25)

so that the total electric field for stabilization is still linearly polarized with the direction

rotating in the x-y plane.

If the Hamiltonian rotation term is not available or too weak in practice, we may still

achieve the desired operation by adiabatically adjusting the phase of Ω±1 drives as described

above. However, imperfections will come now due to the non-adiabaticity.

Z(α) gate

Like theX gate implementation, a straightforward way to implement Z(α) = e−i
α
2 Ẑc rotation

gate is through a Hamiltonian Ĥ ∝ F̂g,x:

e−iϕX(t)F̂g,x(a0 |0⟩c + a1 |1⟩c) = a0e
−iϕX(t)Fg |0⟩c + a1e

iϕX(t)Fg |1⟩c , (4.26)

where ϕX(t) = α
2Fg

t
T . In this case, the state does not need to leave the encoded subspace,

so there is no need to adjust the stabilization drives.

Alternatively, we can also adiabatically adjust the stabilization drives to implement the

Z(α) gate. In this case, we can gradually move the location of the two dark SCSs on the GBS

while keeping them antipodal. When their trajectories form two loops after returning to the

starting points, the two SCSs will pick up a relative geometric phase. This is equivalent

to the action of the desired Z(α) operation. I will defer the detailed derivation to the

71



Appendix C.2.1.

Coherent state transfer between |Fg,±Fg⟩x and |Fg,±Fg⟩

Before the discussion on the entangling gate, I will also talk about the coherent state

transfer from two SCSs |Fg,±Fg⟩x to another two |Fg,±Fg⟩ and vice versa, while keep-

ing the two SCSs largest separated during evolution. Specifically, we want to realize the

map between the arbitrary superposition a0 |0⟩c+ a1 |1⟩c = a0 |Fg, Fg⟩x+ a1 |Fg,−Fg⟩x and

a0 |Fg, Fg⟩ + a1 |Fg,−Fg⟩. This is not a gate on the encoded subspace; however, in the

presence of a constant Bz field, the operation is needed during the entangling operations.

As we shall see, this is because that we need to address the population in one SCS into the

Rydberg levels during those gates, and it will be much easier to do that in the |Fg,±Fg⟩

basis rather than |Fg,±Fg⟩x due to the frequency selectivity caused by the constant Bz

field. I also want to note that this process can be used for Z-basis initialization and mea-

surement, which is different from the X-basis counterpart that we map between |±⟩c and

{|Fg,−Fg⟩ , |Fg, 1− Fg⟩}.

From the definition |Fg,m⟩x = e−i
π
2 F̂g,y |Fg,m⟩, we can see that the desired operation

can also be achieved with the SU(2) rotation under Hamiltonian Ĥ ∝ F̂g,y:

e−iϕY (t)F̂g,y(a0 |0⟩c + a1 |1⟩c) = a0e
−i[π2+ϕY (t)]F̂g,y |Fg, Fg⟩+ a1e

−i[π2+ϕY (t)]F̂g,y |Fg,−Fg⟩ ,

(4.27)

where ϕY (t) = −π
2
t
T . Regarding the stabilization drives, we need to decrease the amplitude

of Ω±1 while increasing Ω0 accordingly:

Ω+1(t) = −Ω−1(t) =
Ω√
2
cos[ϕY (t)], Ω0(t) = Ω sin[ϕY (t)]. (4.28)

In this way, we realize the map from |Fg,±Fg⟩x to |Fg,±Fg⟩. We can also reverse the control

sequences for the map from |Fg,±Fg⟩ to |Fg,±Fg⟩x.
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Similar to the previous cases, the operation can also be implemented by adiabatically

adjusting these Ωq(t) drives only, without using the Hamiltonian rotation term. In this way,

the non-adiabatic error will come again.

4.4.2 Biased erasure CZ gate

Now I will discuss the BP constructions for the entangling operations, and the first one will

be the CZ gate. Our design is similar to other Rydberg CZ protocols in existing literatures

(see Ref. [159]), where the same pulses are applied to both the control and the target atoms

that only one of the computational state (say, |1⟩c) will couple to the desired Rydberg level

|r⟩c. Due to the Rydberg blockade effect, |01⟩c (|10⟩c) will couple to |0r⟩c (|r0⟩c) with

the amplitude ΩR+1, while |11⟩c will couple to |1r⟩c+|r1⟩c√
2

with the amplitude
√
2ΩR+1. The

difference in the coupling amplitudes enables that, with a careful design of the amplitude

and phase in ΩR+1(t) as well as the Rydberg detuning ∆R, the population from |01⟩c (|10⟩c)

and |11⟩c can simultaneously come back to the encoded subspace, while picking up different

phases eiϕ01 (eiϕ10 = eiϕ01) and eiϕ11 , respectively. If ϕ11 − (ϕ10 + ϕ01) = π, then this

operation will be equivalent to the CZ gate up to local Z rotation.

When coming to the spin-cat encoding, we can use the polarization selectivity from the

driving lasers to couple only one computational state with the Rydberg level. To do so, we

may first coherently transfer the state from |Fg,±Fg⟩x to |Fg,±Fg⟩ in both the control and

target atoms.1 As shown in Fig. 4.5, we can find a Rydberg manifold with total angular

momentum FR = Fg − 1 and use the σ+-polarized light to couple the encoded levels with

it. Clearly, |Fg,−Fg⟩ couples with the Rydberg level while |Fg, Fg⟩ does not. Therefore, we

can perform the CZ entangling operation described above and finally transfer the state back

to the {|0⟩c , |1⟩c} subspace.

This CZ design can also be adapted into the biased erasure framework. For example, if

1. As discussed, this step is unnecessary when there is no constant Bz field, but later the polarization of
the Rydberg drives should be adjusted accordingly.
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|0〉c|1〉c

Metastable |FM ,m〉

Rydberg |FR,m〉
Control:

|g〉

|r′〉 BBR

R
D

|0〉c|1〉c

Target:

Figure 4.5: Biased erasure CZ implementation with metastable spin-cat encoding. We iden-
tify the encoded Fg manifold as the metastable FM levels to achieve the benefit from erasure
conversion. |1⟩c state couples with the Rydberg levels while |0⟩c does not, because of the
selectivity from laser polarization. Even population decays into the FM manifold and there-
fore cannot be converted to erasure, it is still unlikely to be a bit-flip due to the large
m-separation.

the Fg is chosen to be a metastable hyperfine subspace FM , then the decay event into the

ground levels through the radiative decay (RD) or the near Rydberg levels through black-

body radiation (BBR) may also be caught (see Fig. 4.5 and Ref. [82]). If the Rydberg event

is detected in a certain atom, we will know that the population initially comes from |1⟩c
state, and then prepare a fresh atom in |1⟩c state for substitution. In this way, we will know

both the location (erasure) and the Pauli type (Z bias) of the error. If the erasure conversion

rate is sufficiently large, we can achieve an error threshold approaching 10% with XZZX

surface code, even without the aid of the BP CX gate [83].

Moreover, even if the population decays into the encoded hyperfine subspace, the separa-

tion of the magnetic quantum number between |FM ,±FM ⟩ still makes it difficult to produce
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a bit-flip. This is because one decay via dipole coupling will only cause |∆m| ≤ 1, and there-

fore with high probability the population will come back to |FM ,−FM ⟩ under dissipative

stabilization. As a result, in this case, even if the error cannot be converted into erasure,

it is still most likely to be a Z error. The error pattern here will be more structured than

those in the existing protocols, where a bit-flip may happen if the population decays into

the encoded subspace and cannot be detected.

4.4.3 Biased erasure CX gate with decay monitoring

Finally, I would like to discuss a possible implementation for the biased erasure CX gate,

which is based on a metastable encoding again with a further assumption that the Rydberg

decay into the ground levels can be continuously monitored. The basic idea is that, we

want to implement an X gate on the target atom through an effective Hamiltonian rotation

Ĥ ∝ F̂g,z (so that the two encoded SCSs are kept to be largest separated during evolution)

only when the control atom is in |1⟩c. In our scheme, the selectivity to the state of control

atom is achieved from the Rydberg blockade, while the effective Hamiltonian rotation for

the target atom comes from a designed differential AC Stark shift. The detailed protocol is

explained below.

Similar to the CZ design, here we also consider Fg to be a metastable hyperfine manifold

FM , and coherently map the state in the control atom from |FM ,±FM ⟩x to |FM ,±FM ⟩

first in order to address the population from the |0⟩c state to the Rydberg later. We then

do that through a resonant σ−-polarized pulse that couples FM to a Rydberg manifold

FR = FM − 1. With this, the population in |FM , FM ⟩ can be fully transferred into the

Rydberg state while |FM ,−FM ⟩ is untouched due to the polarization selectivity. After that,

we move to the target atom and turn off the stabilization drives. Instead, we implement

both σ+- and σ−-polarized light that couples FM to a Rydberg FR = FM −1 with the same

amplitude ΩRT,+1 = ΩRT,−1 = ΩR, but the frequencies of the two drives (ωRM ± ∆R) are
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|0〉c|1〉c

Metastable |FM ,m〉

Rydberg |FR,m〉

Control:

|g〉

|r′〉
BBR

R
D

V

∆R
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T,+1 ΩR

T,−1

Target:

Figure 4.6: Biased erasure CX implementation with metastable spin-cat encoding and decay
monitoring. On the control side, |0⟩c rather than |1⟩c will be addressed to the Rydberg state
due to the polarization selectivity. The conditionalX gate on the target atom is implemented
through a differential AC Stark shift mediated with the Rydberg coupling. The Rydberg
decay in the control atom to the ground state |g⟩ should be frequently monitored to avoid
the undesired rotation on the target.

detuned from the Rydberg level in a different direction (see Fig. 4.6). If the control atom is

initially in |1⟩c and therefore it is not addressed to the Rydberg later, then we can write the

lab-frame Hamiltonian on the target atom as

ĤT,lab = ωRgP̂R +
1

2

∑
q=±1

[e−i(ωRM+q∆R)tΩRT,qD̂RM,q + h.c.]. (4.29)

Here P̂R is the projector onto the desired Rydberg hyperfine manifold and D̂RM,q is the

dipole coupling between the encoded manifold and the Rydberg manifold with different

polarizations. When ΩR ≪ ∆R, the ΩRT,±1 drives on the target effectively implement the
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Ĥ = µF̂M,z rotation due to the effect of the AC Stark shift, with

µ =
(ΩR)2

4∆R

2FM − 1

FM (2FM + 1)
. (4.30)

On the other hand, if the control atom is initially in |0⟩c so that it is addressed to the

Rydberg level later, then the energy of the Rydberg states used in the target atom will be

shifted away due to the Rydberg blockade. In this case, both ΩRT,±1 drives on the target

atom will be far-off-resonant, and therefore the states in the FM subspace will not rotate

anymore. This concludes the part of the conditional-X operation. Finally, we can turn on

the stabilization drives on the target atom, while on the control side we coherently transfer

the population from the Rydberg to |FM , FM ⟩ and then map |FM ,±FM ⟩ subspace back to

the original encoded subspace spanned by |FM ,±FM ⟩x.

A major source of noise in this protocol should be the Rydberg decay in the control atom.

This is because, first, the time duration of the gate is expected to be long. In order for the

derivation of the AC Stark shift to be valid, we need ΩR ≪ ∆R. Therefore, µ ∝ (ΩR)2

∆R ≪ ΩR.

Moreover, ∆R itself is also limited by the Rydberg blockade strength ∆R ≪ V . These facts

all indicate that the gate time T = π
|µ| will be longer than other characteristic time set by

the inverse of any Hamiltonian parameters, like 1
ΩR . Second, if the control is initially in |0⟩c,

then the full population will stay in the Rydberg level during the whole conditional rotation

time T . This is in contrast to the case in the target atom, where the Rydberg levels are

only virtually populated. These two features both increase the chance of Rydberg decay in

the control atom. Further, if it decays into the ground state, then there will be no Rydberg

blockade as expected and the state in the target atom starts to rotate along the z-axis2. If

we do not know the time that it decays to the ground, we cannot estimate the angle that

2. It is not a problem if the state comes to the nearby Rydberg levels via the black-body radiation,
since in this case the Rydberg blockade still applies on the target atom. This is similar to the χ-matching
condition used for transmon-cavity (cat) BP CX implementation [61], where the speed of cat rotation will
not be affected if transmon decays from |f⟩ to |e⟩.
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state in target atom rotates. It will cause bit-flip error on the target atom, which breaks the

BP argument.

Similar to the BP CX design in the pair-cat example, here the problem may also be solved

with the assumption that we can frequently measure the population on the ground levels

to monitor the undesired decay event. If such decay is detected, we can immediately stop

the Ω
R,T
±1 drives on the target atom in order to avoid the extra unwanted rotation. If such

checks can be frequent enough, the uncertainty for the extra rotation angle will be limited,

and therefore, the bit-flip rate is still bounded. Finally, we can prepare a fresh atom in |0⟩c
state to replace the control atom in which the Rydberg decay is detected. With the same

argument as mentioned in the CZ design, here we also know both the location (erasure)

and the Pauli type (dominantly Z error in the control atom) of the error. A detailed error

analysis based on this proposal is discussed in Appendix C.2.2. However, if the Rydberg

state decays into the encoded metastable manifold and therefore cannot be detected, it may

cause bit-flip error in the target atom. As discussed in the early proposal [82, 83], we expect

the probability of such a decay event to be small due to a possible minor branching ratio of

the related transition.

Indeed, I believe that the current design contains several drawbacks, including the com-

plexity in the control sequence and the limited fidelity caused by the decay in the control

atom. Besides, although there is sufficient progress to realize the repetitive readout in the

neutral atom platform [160], the continuous monitoring of the Rydberg decay into the ground

levels is also believed as a difficult task. I would reiterate that the aim of the proposal is

to show the theoretical feasibility of the biased erasure CX implementation, which has not

been discussed previously.

It also raises the question about the tradeoff between the improved structuredness of the

error pattern and a higher error rate for the operations. In fact, the answer should also

depend on the choice of the upper-level QEC codes, which can be further optimized based

78



on the error structures of the physical qubits to achieve a higher threshold or a reduced qubit

overhead [140]. One example in favor of the bias is discovered in Ref. [145], which is based on

the Kerr-cat qubits encoded in the XZZX surface code. Given the same physical parameters

in the system, the CX operation implemented in the BP manner incurs a moderately higher

infidelity compared with that in a non-BP construction (achieved by a CZ gate conjugated

with single-qubit rotations on the target qubit). However, the achieved logical error rate can

still be lower with the BP CX design, due to a higher error threshold observed in this case.

In general, I still believe it is an interesting open problem, and an overall better performance

should come as the product of the collaborations between both device physicists and the

information theorists, with the improvement from both physical qubits themselves and the

QEC code design tailored to the given error patterns.
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CHAPTER 5

GENERALIZATION OF DARK SPIN-CAT ENCODING WITH

PERFORMANCE ANALYSIS

5.1 Introduction

In the previous chapter, I discussed the dark spin-cat encoding in a large hyperfine manifold

of an atom, where the largest separation of the two encoded computational basis states on

the GBS provides the exponential bit-flip suppression of the spin-cat qubit on the memory

level. The autonomous stabilization of the code subspace and the design of BP operations

with erasure conversion are also explained. Despite operating on different platforms, these

features all illustrate a great similarity between the dark spin-cat and the cat in a bosonic

mode, while during the past decade, the latter has drawn significant attention in the field of

continuous-variable QEC from both the theoretical and experimental aspects.

On the other hand, as mentioned in Appendix C.1, the two dark SCSs are not necessarily

antipodal with each other. In fact, they can be everywhere on the GBS under the same

physical setup, which can be realized by simply adjusting the stabilization drives. Such a

generalization offers more flexibility in the choice of the encoded basis that shares the cat-

like features, and enables people to analyze them within a much broader framework. In this

chapter, I will discuss some physical properties of the generalized spin-cat qubit with a focus

on the bit-flip analysis. Several schemes used on the bosonic cat to suppress the bit-flip

can also be migrated into here after suitable adaptations. I expect those analogies could

not only provide a deeper understanding of the generalized spin-cat model itself but also

build a bridge between the bosonic QEC community and the atomic physics community,

and therefore motivate people to discover more hardware-efficient schemes in the atomic

structure.

The chapter is organized in the following way. In Sec. 5.2, I will specify the general-
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Figure 5.1: Schematic plot on the generalized dark spin-cat configuration. (a) The code
subspace is spanned by two SCSs |θ, 0⟩g and |θ, π⟩g, which may not be antipodal on the
GBS. (b) The ratio between Ω±1 drives to stabilize such a code subspace.

ized spin-cat encoding first and then discuss its analogy with the bosonic cat under the

Holstein–Primakoff (H-P) transformation. The similarities are shown not only in the code

states themselves but also in the physical stabilization mechanisms. After that, I will fo-

cus on the Hamiltonian confinement part first, which, similar to the Kerr-cat Hamiltonian,

also provides a double-well feature. The key difference is that in the long spin model

the phase space becomes a sphere. In Sec. 5.3 I will use a semiclassical approach named

Wentzel–Kramers–Brillouin (WKB) approximation to derive the tunneling rate between the

two wells when the state leaves the encoded subspace due to the external perturbation. To

suppress the tunneling rate, people working on the Kerr-cat try to introduce a detuning

term. When operated at some special points, some excited level pairs between two wells also

become degenerate, and therefore the tunneling may not happen. In Sec. 5.4, I will discuss

how this trick can be adapted into the spin-cat model. Finally, I will also take the dissipative

process into account and perform the full bit-flip analysis on the encoded qubit, which is

shown in Sec. 5.5.
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5.2 Generalized dark spin-cat and its analogy with bosonic cat

5.2.1 Generalized dark spin-cat encoding

Throughout this chapter, we still consider the physical system with a ground hyperfine

manifold Fg and an excited hyperfine manifold Fe = Fg−1, which are coupled with each other

through laser drives. We can then achieve the stabilization Hamiltonian ĤDS in Eq. (4.3)

in the rotating frame when the frequencies of the driving lasers are suitably chosen. In

general, we can find a degenerate subspace of ĤDS within the Fg-manifold, and therefore

the corresponding eigenvalue is zero. This subspace contains at least two dimensions, and as

shown in Appendix C.1, it includes two linear-independent SCSs that may not be orthogonal

to each other. If we further consider the decay from the Fe-manifold to the Fg-manifold,

then this subspace will also be a steady subspace because any state in it has no occupation

on the Fe levels.

The places of the two dark SCSs are determined by the stabilization drives Ωq only. In

general, we can fix them to be |θ, 0⟩g and |θ, π⟩g, whose overlap | ⟨θ, 0|θ, π⟩g |2 = (cos θ)4Fg

decays exponentially with Fg. The subspace spanned by these two SCSs can be stabilized if

we choose

Ω+1 = Ωcos2(θ/2), Ω0 = 0, Ω−1 = −Ω sin2(θ/2). (5.1)

This choice of drives guarantees that ĤDS commutes with the parity operator Π̂ defined in

Eq. (4.7). Therefore, Π̂ is still a conserved quantity under the engineered dissipation Leng

in Eq. (4.5), where only the decay operators D̂ge,±1 that commute with Π̂ are included.

Now we can fix the encoding of the generalized spin-cat qubit. To follow the previous
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convention, we will encode the X-basis states with determined parity, so that

|+⟩c :=
|θ, 0⟩g + e−iπFg |θ, π⟩g√

Ng,+
,

|−⟩c :=
|θ, 0⟩g − e−iπFg |θ, π⟩g√

Ng,−
,

(5.2)

where Ng,± = 2[1 ± (− cos θ)2Fg ] is for normalization. With this choice, the two computa-

tional basis states will approximately be the SCSs in the large Fg regime:

|0⟩c = |θ, 0⟩g +O[(cos θ)2Fg ], |1⟩c = e−iπFg |θ, π⟩g +O[(cos θ)2Fg ]. (5.3)

5.2.2 Holstein-Primakoff transformation

In order to draw a deeper connection with the bosonic cat, here I will introduce the H-P

transformation, a technique that maps a long spin to a bosonic mode. Pictorially, although

the phase space of a spin is a sphere in general, the neighborhood of the north pole will be

flatter when we increase the spin length, and eventually it will become a plane in the infinite

length limit.

Following the description above, the H-P transformation first maps |Fg, Fg⟩, the spin

state at the north pole, to the ground state |0⟩ in the bosonic mode. Further, the spin

operators F̂g,ξ will be transformed into the bosonic operators in the Fg ≫ 1 limit as follows:

F̂g,− →
√
2Fgâ

†, F̂g,+ →
√
2Fgâ, F̂g,z → Fg − â†â, (5.4)

where F̂g,± = F̂g,x ± iF̂g,y. As discussed in Ref. [161], this enables the mapping from an

SCS

|θ, ϕ⟩g = e−iϕFg [cos2(θ/2)]Fg exp[tan(θ/2)eiϕF̂g,−] |Fg, Fg⟩ , (5.5)
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to a coherent state |α⟩ in the bosonic mode, where

|α⟩ = e−|α|2/2eαâ
† |0⟩ ,

= lim
Fg→+∞

(
1 +

|α|2
2Fg

)−Fg
eαâ

† |0⟩ .
(5.6)

The map from Eq. (5.5) to Eq. (5.6) can be shown with the operator transformation in

Eq. (5.4) and the substitution α =
√
2Fg tan(θ/2)e

iϕ. Therefore, to keep α finite when

increasing Fg, we need to make sure θ ≲ O(1/
√
Fg). Moreover, there will be an extra

e−iϕFg phase after mapping to the bosonic coherent state.

Regarding the two SCSs used for encoding, we have the following maps under H-P trans-

formation:

|θ, 0⟩g → |α⟩ , |θ, π⟩g → e−iπFg |−α⟩ [where α =
√

2Fg tan(θ/2)]. (5.7)

This implies that our encoded states |±⟩c in Eq. (5.2) will map to |±⟩c ∝ (|α⟩±e−2iπFg |−α⟩).

The extra phase e−2iπFg here comes as the difference in the choice of the parity convention,

since P̂gΠ̂P̂g = e−iπ(F̂g,z+FgP̂g) → e−2iπFgeiπâ
†â under the H-P transformation.

Indeed, it looks reasonable for the correspondence between the SCS and the bosonic

coherent state. However, more surprising analogies can be discovered when looking into the

stabilization mechanism. To illustrate this, I will put a large detuning term ∆ ≫ Ω,Γ in

ĤDS so that we can adiabatically eliminate the Fe-levels. I will also fix δ = 0 in ĤDS for

simplicity. The master equation now under Leng will be

dρ̂

dt
= −i[∆P̂e, ρ̂]−

i

2
[(Ω+1D̂eg,+1 + Ω−1D̂eg,−1 + h.c.), ρ̂] + Γ

∑
q=±1

D[D̂ge,q]ρ̂, (5.8)

where Ω±1 is given in Eq. (5.1). Then we can use the adiabatic elimination procedure
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explained in Ref. [162] to get the effective dynamics restricted to the Fg-manifold:

dρ̂eff
dt

= −i[Ĥeff , ρ̂eff ] +
∑
q=±1

D[L̂eff,q]ρ̂, (5.9)

where

ĤNH = ∆P̂e −
iΓ

2

∑
q=±1

D̂
†
ge,qD̂ge,q = (∆− iΓ

2
)P̂e −

F 2
g − F̂ 2

e,z

Fg(2Fg + 1)
≃ (∆− iΓ

2
)P̂e,

Ĥeff = −1

8
(Ω∗

+1D̂
†
eg,+1 + Ω∗

−1D̂
†
eg,−1)[Ĥ

−1
NH + (Ĥ−1

NH)
†](Ω+1D̂eg,+1 + Ω−1D̂eg,−1),

L̂eff,q =

√
Γ

2
D̂ge,qĤ

−1
NH(Ω+1D̂eg,+1 + Ω−1D̂eg,−1).

(5.10)

The approximation made in ĤNH comes from the ∆ ≫ Γ assumption and the fact that we

only focus on the levels near the north pole (F̂g(e),z ≃ Fg). With this, we can simply write

Ĥ−1
NH ≃ 1

∆−iΓ/2 P̂e.

Finally, we need to check the H-P transformation of the effective Hamiltonian Ĥeff and

jump operators L̂eff,q, respectively. Each relevant term can be computed as



D̂ge,−1P̂eD̂eg,−1 =
(Fg + F̂g,z − 1)(Fg + F̂g,z)

2Fg(2Fg + 1)
→ 2Fg − 1

2Fg + 1
+O(1/Fg),

D̂ge,−1P̂eD̂eg,+1 =
(F̂g,+)

2

2Fg(2Fg + 1)
→ â2

2Fg + 1
,

D̂ge,+1P̂eD̂eg,−1 = (D̂ge,−1P̂eD̂eg,+1)
† → â†2

2Fg + 1
,

D̂ge,+1P̂eD̂eg,+1 =
(Fg − F̂g,z − 1)(Fg − F̂g,z)

2Fg(2Fg + 1)
→ (â†â− 1)â†â

2Fg(2Fg + 1)
,

(5.11)

where we have used the related Clebsch-Gordon coefficients Cq(m) := C
Fg−1,m+q
Fg,m;1,q during
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Figure 5.2: The correspondence of the stabilization mechanisms between generalized dark
spin-cat and bosonic cat under H-P transformation. (a-c) The illustration of (a) Ĥeff , (b)
L̂eff,−1, and (b) L̂eff,+1 respectively. I use blue color to represent m-preserving terms and
red for transitions that change m by ±2.

the calculation. Explicitly, we have

Cq(m) =



√
(Fg +m− 1)(Fg +m)

2Fg(2Fg + 1)
(q = −1),

−
√

(Fg +m)(Fg −m)

Fg(2Fg + 1)
(q = 0),√

(Fg −m− 1)(Fg −m)

2Fg(2Fg + 1)
(q = +1).

(5.12)

In Eq. (5.11), the first line provides a constant after the H-P transformation; the second and

third lines give the parametric drive or dissipation, while the last line is the Kerr nonlinear
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term. With these, Ĥeff and L̂eff,q will be transformed into



Ĥeff → − Ω2∆

4∆2 + Γ2
cos4(θ/2)

2Fg(2Fg + 1)
[â†2â2 − α2(â†2 + â2) + α4],

L̂eff,−1 → Ω
√
Γ

2∆− iΓ

cos2(θ/2)

2Fg + 1
(â2 − α2),

L̂eff,+1 → Ω
√
Γ

2∆− iΓ

cos2(θ/2)

2Fg(2Fg + 1)
(â†2â2 − α2â†2),

(5.13)

where we again choose α =
√

2Fg tan(θ/2). Surprisingly, Ĥeff ∝ (â†2−α2)(â2−α2) is exactly

the Kerr-cat Hamiltonian that provides an energy gap to confine the cat code subspace, while

L̂eff,−1 ∝ (â2−α2) is the jump operator that dissipatively stabilize the cat. Finally, L̂eff,+1

is one order smaller compared with L̂eff,−1 in the Fg ≫ 1 limit. Since L̂eff,+1 ∝ â†2(â2−α2),

it belongs to a general type of dissipators that also stabilize the cat subspace and preserve

the parity.

Coming back to the generalized spin-cat model, the elegant analogy described above

indicates that both the dissipation and the energy gap protection like that in the bosonic cat

naturally arise in our system by simply applying some laser drives. This is in contrast to the

current bosonic cat experiment, where more sophisticated nonlinear devices are engineered

to stabilize the code. Therefore, I would expect this model to play a more important role in

the field of continuous-variable QEC in the future.

5.3 Semiclassical analysis on the tunneling rate

In this section, I will focus on the properties of the stabilized Hamiltonian ĤDS, especially

in the two situations where the stabilization drives are either on resonance (∆ = 0) or far

off-resonant (∆ ≫ Ω, where Fe-levels can be adiabatically eliminated) separately. However,

as we shall see, in both cases ĤDS still gives a double-well potential in the relevant phase

space regime and both the SCSs |θ, 0⟩g and |θ, π⟩g for encoding are located at the extrema
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of each well, respectively.

When a state in one well leaves the code state, it may tunnel into the other well and

therefore result in a bit-flip. Here I will use the WKB approach to derive the tunneling

rate, which has been used for the same task under the Kerr-cat Hamiltonian [163, 164]. The

technical difficulty in the spin-cat setting mainly comes from the presented spherical phase

space, which indicates that we need to work with a new set of conjugate variables rather

than the conventional position and momentum operators. Luckily, the related problems have

been intensively studied by J.L. van Hemmen et al. in a series of work (see Ref. [165, 166]),

though the final results still seem to contain minor flaws. I will closely follow the derivation

there while adapting the generalized spin-cat model into it. The key steps are briefly listed

in Sec. 5.3.2. Finally, I will discuss the results and the validity of the WKB approximation.

5.3.1 Generic properties of the stabilization Hamiltonian

Let us first explore the generic structures of the eigenstates and eigen-energies of ĤDS. For

simplicity, here I also set δ = 0. Now ĤDS can be divided in three parts:

ĤDS = ∆P̂e + Ĥeg + Ĥge, (5.14)

where Ĥeg = P̂eĤDSP̂g = 1
2

∑
q=±1ΩqD̂eg,q maps Fg-levels to Fe-levels and Ĥge = Ĥ

†
eg.

Consider an eigenstate |ψk⟩ of ĤDS with eigenvalue Ek. |ψk⟩ can also be separated into two

parts: |ψk⟩ = P̂g |ψk⟩+ P̂e |ψk⟩ := |ψgk⟩+ |ψek⟩, which should satisfy


∆ |ψek⟩+ Ĥeg |ψgk⟩ = Ek |ψek⟩ ,

Ĥge |ψek⟩ = Ek |ψgk⟩ .
(5.15)
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With this, we can eliminate |ψek⟩ and achieve

ĤgeĤeg
Ek −∆

|ψgk⟩ = Ek |ψgk⟩ . (5.16)

Therefore, |ψgk⟩ is an eigenstate of Ĥ := ĤgeĤeg, and later we can just focus on Ĥ itself and

its eigenvalues Ek = Ek(Ek −∆). With Ω±1 in Eq. (5.1), we have

Ĥ =
Ω2

4

F 2
g [1 + cos2(θ)]− F̂ 2

g,x − cos2(θ)F̂ 2
g,y − (2Fg − 1) cos(θ)F̂g,z

2Fg(2Fg + 1)

=
Ω2

4

F 2
g − Fg cos

2(θ)− sin2(θ)F̂ 2
g,x + cos2(θ)F̂ 2

g,z − (2Fg − 1) cos(θ)F̂g,z

2Fg(2Fg + 1)
.

(5.17)

When the stabilization drives are on resonance (∆ = 0), both |ψgk⟩±|ψek⟩ are eigenstates of

ĤDS with eigenvalue ±Ek. The corresponding eigenvalue in Ĥ satisfies Ek = E2
k . Meanwhile,

we can verify that ⟨ψgk|ψ
g
k⟩ = ⟨ψek|ψek⟩ = 1

2 .

When ∆ = 0, there is also a connection to the two-photon exchange (TPE) Hamiltonian

ĤTPE that is used to confine the bosonic cat [144]:

ĤTPE = (â2 − α2)σ̂+ + h.c., (5.18)

where σ̂+ = |e⟩⟨g| is an operator on the qubit that is coupled with the cavity. The eigenvalue

of the TPE Hamiltonian ĤTPE will be the square root of the corresponding Kerr-Hamiltonian

ĤK = (â†2 − α∗2)(â2 − α2). The analogy with our spin-cat model can be illustrated by

treating the presence of the state in Fg- or Fe-manifold as a gauge qubit. In this way, the

Ω±1 drives in Ĥeg (or Ĥge) will not only modify the state in the spin degree of freedom, but

also cause the |g⟩ − |e⟩ transition in the gauge qubit.

On the other hand, if the drives are far off-resonant (∆ ≫ Ω), then the adiabatic elimina-

tion treatment in Eq. (5.10) will still apply here. We can find the solutions Ek ∼ O(Ω
2

∆ ) ≪ ∆.

In this limit, Ek will be proportional to the eigenvalues in Ĥ: Ek ≃ −Ek
∆ . As explained in
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Sec. 5.2.2, it can also be understood from the effective Hamiltonian perspective Ĥeff ≃ − 1
∆Ĥ,

which will be more similar to the standard Kerr-cat stabilization.

5.3.2 A brief review of the WKB approach on a spin

Now I will briefly illustrate how to use a semiclassical approach named WKB method to ana-

lyze the eigenstate structures of operator Ĥ and the difference between two near-degenerate

eigenvalues, which will be valid in the Fg ≫ 1 regime. As mentioned before, the generic

WKB approach for a spin system is well studied in existing literature (see Ref. [165]), and

here I will apply it to the specific spin-cat configuration. Since Ĥ is restricted on the Fg-

manifold, in this subsection I will omit the subscript g for simplicity. To keep the convention

with the existing work [165], I will rotate the frame so that the two wells are located at

|π2 ± θ, 0⟩. Equivalently speaking, I will focus on

ĤRN :=
8F (2F + 1)

Ω2
R̂y

(
π

2

)
ĤR̂

†
y

(
π

2

)
= F 2[1 + cos2(θ)]− F̂ 2

z − cos2(θ)F̂ 2
y − (2F − 1) cos(θ)F̂x.

(5.19)

Though neither Ĥ nor ĤRN has a dimension of energy, I will still treat them as “Hamil-

tonian” later, since mathematically the dimension can always be adjusted by multiplying a

dimensional factor.

To apply the WKB method, the first step we need is to identify a conjugate pair of

variables. Unlike the harmonic oscillator where we can simply choose the position and

momentum for that, here for a spin (angular momentum) system the classical mechanics

suggests that we can choose the following pair [165]:

q = fz, p = −ϕ = − arctan(fy/fx), (5.20)

where fξ (ξ = x, y, z) are the components of the classical spin with length
√
F (F + 1). We
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fz

E

⇣k

Figure 5.3: Double-well structure in the Hamiltonian stabilization of the generalized spin-cat
code subspace. (a) The contour plot of the classical Hamiltonian hRN(fz, p) in the phase
space when F = 15. We can find two wells located symmetrically about the fz = 0 line. (b)
Schematic plot of the ĤRN level structure. The double-well envelope is achieved from p = 0
and p = π intercepts in (a).

can write down the classical Hamiltonian corresponding to ĤRN as:

hRN(fz, p) = F 2[1 + cos2(θ)]− f2z − cos2(θ)f2y (fz, p)− (2F − 1) cos(θ)fx(fz, p), (5.21)

where 
fx(fz, p) = b(fz) cos(p),

fy(fz, p) = −b(fz) sin(p),

b(fz) =
√
F (F + 1)− f2z .

(5.22)

The double-well feature in hRN(fz, p) can be clearly observed from the contour plot [see

Fig. 5.3(a)], with the two minima located at (fz = ±fz,min, p = 0) that

fz,min =
√
F (F + 1)− (F − 1/2)2 cos2(θ) ≃ F sin(θ). (5.23)

On the other hand, the classical energy at these two points are Ecl,min = −F sin2(θ) −
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1
4 cos

2(θ), which is in contrast with eigen-energy Emin = 0 of the quantum ground state

|π2 ± θ, 0⟩. Similar to a harmonic oscillator, the difference between Ecl,min and Emin = 0

indicates that there is also a zero-point energy in the quantum ground state here, and I will

denote E′ := E− Ecl,min to adjust the zero points for further use.

Then let us come back to quantum. Given a state |ψ⟩, an eigenstate of one well with

eigenvalue E. We can express its wavefunction with the WKB ansatz:

ψ(fz) := ⟨Fg, fz|ψ⟩ = eiS(fz) = ei[S0(fz)+S1(fz)+O(1/F )], (5.24)

where we try to expand S(fz) as a power series of F so that S0 ∼ O(F ), S1 ∼ O(1), and

the residue terms can be ignored in the large F limit. In order for |ψ⟩ to be an eigenstate

with eigenvalue E, the WKB formalism further suggests that S0 and S1 should satisfy

− f2z − cos2(θ)b2(fz) sin
2
(
dS0
dfz

)
− (2F − 1) cos(θ)b(fz) cos

(
dS0
dfz

)
= E− F 2[1 + cos2(θ)],

(5.25)

and
d

dfz

[
ḟz(fz) · e2iS1(fz)

]
= 0. (5.26)

Here Eq. (5.25) is exactly the Hamilton-Jacobi equation in classical mechanics:

hRN

(
fz, p =

dS0
dfz

)
= E, (5.27)

with the interpretation of S0 as the action. Eq. (5.26) corresponds to the conservation of

the probability current, where from Hamilton’s equation we can get

ḟz =
∂h(fz, p)

∂p
= − cos2(θ)b2(fz) sin(2p) + (2F − 1) cos(θ)b(fz) sin(p). (5.28)
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The fz dependence further comes from the substitution of p = p(fz,E) in the equation

above. After this, the wavefunction ψ(fz) can be expressed as

ψ(fz) ≃
C√

|ḟz(fz)|
eiS0(fz), (5.29)

where C is a normalization constant.

In order to determine S0(fz), now we need to solve the Hamilton-Jacobi equation (5.25)

[or Eq. (5.27) equivalently], which gives

cos(p) = c(fz) :=
(F − 1

2)−
√

(F − 1
2)

2 + sin2(θ)f2z + E− F [F − cos2(θ)]

b(fz) cos(θ)
. (5.30)

Classically, it is required that c(fz) is real and |c(fz)| ≤ 1. The first requirement is always

satisfied when E > F sin2(θ)− 1
4 , and as I will show later, the energy of every excited state

in ĤRN will fulfill this. The second requirement needs more attention. When E is smaller

than the barrier energy Ebar at (fz = 0, p = 0), where

Ebar = F 2[1 + cos2(θ)]− (2F − 1)
√
F (F + 1) cos(θ) ≃ 4F 2 sin4(θ/2), (5.31)

then solving cos(p) = c(fz) = 1 will give us two turning points fz,±:

fz,± =

√
F (F + 1)−

[
(F − 1

2
) cos(θ)∓

√
E′
]2
. (5.32)

The classical trajectory will be confined in fz,− ≤ fz ≤ fz,+ while both −fz,− ≤ fz ≤ fz,−

and fz,+ ≤ fz ≤
√
F (F + 1) are classically forbidden.

In quantum mechanics, however, p can be a complex number in general due to the

tunneling effect. This allows us to get a nontrivial wavefunction in both classically allowed

and classically forbidden regimes. In the former case, p = arccos[c(fz)] is still a real number,
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and according to the WKB method, the wavefunction can be written as

ψ(fz) ≃
2C√
|ḟz(fz)|

cos
[ ∫ fz

fz,−
arccos[c(f)] df − π

4

]
fz ∈ (fz,−, fz,+). (5.33)

In the classically forbidden regime, we have c(fz) > 1. Now p will be a pure imaginary

number. We denote p(fz) = −ipI(fz) to make pI(fz) > 0 when fz ∈ (−fz,−, fz,−). In this

regime, the wavefunction becomes:

ψ(fz) ≃
C√

|ḟz(fz)|
exp

[
−
∫ fz,−

fz
arccosh[c(f)] df

]
fz ∈ (−fz,−, fz,−). (5.34)

The difference between the coefficients in Eq. (5.33) and (5.34) comes from the loss of one

branch in (5.33) when fz passes around the boundary point fz,− through analytic continu-

ation [167]. Meanwhile, now |ḟz| should satisfy

|ḟz(fz)| =
∣∣∣− cos2(θ)b2(fz) sinh[2pI(fz)] + (2F − 1) cos(θ)b(fz) sinh[pI(fz)]

∣∣∣ , (5.35)

which is achieved by the substitution of p = −ipI in Eq. (5.28).

The last thing we need is to determine the overall coefficient C in the wavefunction. Since

most population will be in the classically allowed regime, we can get from Eq. (5.33) that

1 ≃
∫ fz,+

fz,−
|ψ(f)|2 df ≃ 4|C|2

∫ fz,+

fz,−

df

|ḟ |
cos2

[ ∫ f

fz,−
arccos[c(f ′)] df ′ − π

4

]
≃ 4|C|2

2

∫ fz,+

fz,−

df

|ḟ |
= 2|C|2

∫
dt = |C|2Tcl.

(5.36)

Here we have assumed that the cosine term is fast oscillating in the parameter regime and

therefore its square is averaged to be 1/2. Tcl is the period of the corresponding classical
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trajectory, which in practice can be computed via

Tcl = 2

∫ fz,+

fz,−

df

|ḟ |

= 2

∫ fz,+

fz,−

df

− cos2(θ)b2(f) sin[2p(f,E)] + (2F − 1) cos(θ)b(f) sin[p(f,E)]
.

(5.37)

With this, the coefficient C can be determined as C = 1/
√
Tcl.

After achieving the wavefunction of an eigenstate in a single well, we can further derive

the energy difference of two near-degenerate eigenstates in the double-well Hamiltonian ĤRN.

To do so, we first denote ψ↑(fz) as the wavefunction solved in Eq. (5.33) and (5.34), since

the corresponding well is located at the fz > 0 regime. Due to the symmetry consideration,

ψ↓(fz) = ψ↑(−fz) should be an eigenstate of the well at fz < 0 regime. Therefore, if we

view the double-well Hamiltonian as a whole, then the corresponding eigenstates should be

an even or odd superposition between ψ↑/↓(fz):

ψ±(fz) ≃
ψ↑(fz)± ψ↓(fz)√

2
, (5.38)

with the corresponding eigenvalue E±. The energy difference Edif = |E+ −E−| can also be

interpreted as twice of the tunneling rate between ψ↑/↓(fz), the corresponding eigenstates

in each well separately.

To evaluate Edif , here I adopt a trick used in Ref. [165, 167], with details shown in

Appendix D.1.3. We can finally get

Edif ≃ 2|ḟz(fz = 0)| · ψ2↑(0) ≃
2

Tcl
exp

[
− 2

∫ fz,−

0
arccosh[c(f)] df

]
. (5.39)

The result here is different from that in the existing literature by a prefactor [165], and the

correctness of Eq. (5.39) is justified from the numerical study. Due to the F -dependence in

fz,− ∼ O(F ), the formula also reflects the generic exponential suppression of the tunneling
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(a) (b)

Figure 5.4: WKB results on the estimation of tunneling rates, when (a) θ = π/4 and
(b) θ = π/3. The exact Edif numbers are plotted with the dashed lines while the WKB
results (5.39) are shown with star points. Here I use the true Ē =

E++E−
2 in the WKB

formula to justify its correctness. In practice, approximated E numbers can be achieved as
mentioned in Sec. 5.3.3, which should be used to avoid the exact diagonalization.

rate with the spin length F .

5.3.3 Discussion on the results

After deriving the exact tunneling rate formula between two wells using the WKB approxi-

mation, I will now move on to discuss under what circumstances the approximation is valid.

As mentioned, the eigen-energy E of the corresponding states should be lower than the bar-

rier Ebar ≃ 4F 2 sin4(θ/2), which raises the question of how many pairs of eigenstates meet

this requirement.

To investigate the problem, we need to extract the eigen-energies of the low-excited eigen-

states in ĤRN. Recall that, when dealing with the Kerr-cat [168] or pair-cat Hamiltonian

(see Chapter 3 or Appendix B.2), what we do is to go to the displaced frame so that one well

is located at the origin. Here what we can do is to further rotate ĤRN (or Ĥ equivalently)
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such that one well is located at the north pole of the GBS. This will give us

R̂
†
y

(
π

2
− θ

)
ĤRNR̂y

(
π

2
− θ

)
= cos2(θ)(F̂z − F )(F̂z − F + 1)− sin2(θ)(F̂ 2

z − F 2)

+
[sin(2θ)

2
F̂−(F̂z − F ) + h.c.

]
.

(5.40)

The diagonal term with state |Fg, Fg − k⟩ is 2Fk sin2(θ) + k[k cos(2θ) − cos2(θ)], which is

approximately 2Fk sin2(θ) when k ∼ O(1) ≪ F . In the same regime, however, the off-

diagonal term between |Fg, Fg − k⟩ and |Fg, Fg − (k + 1)⟩ only scales as O(
√
F ). Therefore,

now we may use the leading order 2Fk sin2(θ) in the diagonal term to approximate the true

eigen-energies1, which give a rough estimation on the number of excited eigenstate pairs

below the energy barrier as ncrit ∼ F
2 tan2(θ/2). A more detailed derivation requires us to

solve

2Fncrit sin
2(θ) + ncrit[ncrit cos(2θ)− cos2(θ)] = 4F 2 sin4(θ/2), (5.41)

which leads to

ncrit ≃
F tan2(θ/2)

1 +

√
1 +

cos(2θ)
4 cos4(θ/2)

. (5.42)

Another problem comes when we consider the energy difference between a pair of near-

degenerate eigenstates in the physical Hamiltonian ĤDS, if the stabilization drives are on

resonance (∆ = 0). The eigen-energies E± in ĤDS are now proportional to the square root

of the corresponding eigenvalues E± in ĤRN. This allows us to further derive that

Edif := |E+ − E−| =
Ω√

8F (2F + 1)
|
√
E+ −

√
E−| =

Ω√
8F (2F + 1)

Edif

2
√
Ē

=
Ω2

8F (2F + 1)

Edif

2Ē
,

(5.43)

where we have used E± = Ē ± Edif
2 . In fact, the O(Ē−1/2) dependence in Edif is also a

1. This also justifies the claim that the energy E of every excited states in ĤRN satisfies E > F sin2(θ)− 1
4 ,

so that c(fz) in Eq. (5.30) is always real.
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feature in the bosonic cat confinement with the TPE Hamiltonian (5.18) (see Ref. [144]).

5.4 Tunneling rate reduction with occasional degeneracy

5.4.1 Occasional degeneracy with Kerr-cat Hamiltonian

In the previous section, I have used the WKB approach to analyze the tunneling rate between

the two wells. In fact, people working on the Kerr-cat have found one method to suppress

that, which relies on the introduction of a detuning term δaâ
†â. If δa is chosen at some

special points, then we can receive several degenerate level pairs between the two wells

simultaneously [123, 124].

The idea behind it is the novel photon blockade viewed from the displaced frame, which

is essentially the same as that used in Chapter 2. Consider the Hamiltonian ĤK,δ that

ĤK,δ = −K(â†2 − α∗2)(â2 − α2) + δaâ
†â. (5.44)

If viewed from the displaced frame D̂(±α), then the Hamiltonian will become

D̂†(±α)ĤK,δD̂(±α) = −Kâ†2â2 + (δa − 4|α|2K)â†â+ δa|α|2

± [αâ†(δa − 2Kn̂) + h.c.].

(5.45)

The displaced Hamiltonian only couples the nearest Fock states, and the coupling between

|n0⟩ and |n0 + 1⟩ will be zero if we choose δa = 2Kn0. Therefore, the full Hilbert space

can be divided into two parts without coupling in between. For the eigenstates within

the subspace spanned by {|0⟩ , |1⟩ , . . . , |n0⟩}, their corresponding eigenvalues E should be

solved by diagonalizing the Hamiltonian restricted to the blockade subspace. Alternatively,

E should be the zeros of the characteristic polynomial of the matrix:

det(P̂≤n0D̂
†(±α)ĤK,δD̂(±α)P̂≤n0 − E · P̂≤n0) = 0, (5.46)

98



�� · R̂†
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Figure 5.5: Occasional degeneracies with the introduction of Fg-level detuning. (a) Illustra-
tion of the blockade in the rotated frame. We will find Ω−1 = 0 in this frame, which implies
that only the nearest levels in the Fg manifold will be coupled after adiabatic elimination.
F̂g,z after rotation will also couple the nearest levels in a different way (it also shifts the
levels but is not shown here), which means we can adjust δ to cancel certain transitions. (b)
Edif computed with Fg = 10, Ω = 1, ∆ = 5 and θ = π/3. Black dashed lines are references

for δ =
Ω2 cos(θ)

4∆Fg(2Fg+1)
m0 with integer multiple m0. (c) WKB results with resonant drives.

The system is chosen as Fg = 15, Ω = 1, and θ = π/3 while I only look into the positive
energy branch. Dashed lines are exact while dots are achieved with Eq. (5.61) and exact Ē
input. Some mismatch in the middle comes from the singularity in numerical integration.

where P̂≤n0 :=
∑n0
k=0|k⟩⟨k|. Further, if we have two tridiagonal matrices with the same

diagonal terms but their off-diagonal elements are different by a minus sign, then they

will have the same corresponding characteristic polynomial, and therefore the same set of

eigenvalues. As shown in Eq. (5.45), this applies to the blockade Hamiltonians viewed in

the two different displaced frames D̂(±α), which implies that ĤK,δ should contain (n0 + 1)

degenerate energy pairs when δa = 2Kn0.
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5.4.2 Generalized spin-cat with far off-resonant drives

When it comes to the spin-cat, similar features can be observed in the far off-resonant regime

(∆ ≫ Ω), if we have a detuning term on the Fg-manifold. To achieve this, we can choose

the frequencies of each stabilization drive to satisfy ωq − ωq′ = δe(q − q′). Then, from the

lab Hamiltonian Ĥlab in Eq. (4.1), we can get one in a rotating frame

Ĥ ′
DS = ∆P̂e − δF̂g,z +

1

2

∑
q=0,±1

(ΩqD̂eg,q + h.c.), (5.47)

where δ = δe − δg. If we further have ∆ ≫ Ω, δ, then the Fe-levels can be eliminated [162].

The effective Hamiltonian left now is:

Ĥeff,δ = − 1

∆
Ĥ− δF̂g,z

= −Ω2

4∆

− sin2(θ)F̂ 2
g,x + cos2(θ)F̂ 2

g,z − (2Fg − 1) cos(θ)F̂g,z

2Fg(2Fg + 1)
− δF̂g,z

(5.48)

where Ωq is chosen as Eq. (5.1), and some constant terms are omitted.

In analogy with the displaced frame, here we can go to the rotated frame R̂g,y(±θ) =

e∓iθF̂g,y in order to observe the blockade effect. From Fig. 5.5(a), it is straightforward

to see that R̂†
g,y(±θ)ĤR̂g,y(±θ) only couples |Fg,m⟩ with the nearest levels |Fg,m± 1⟩,

due to the absence of the Ω−1 drives viewed from here. Besides, R̂†
g,y(±θ)F̂g,zR̂g,y(±θ) =

cos(θ)F̂g,z ∓ sin(θ)F̂g,x only couples the nearest levels as well. These two features suggest

that, if we want to reproduce the blockade effect, we can adjust δ here to exactly cancel

out the coupling between two nearest levels, like |Fg, Fg −m0⟩ and |Fg, Fg − (m0 + 1)⟩ for
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example. More rigorously, we have

R̂
†
g,y(±θ)Ĥeff,δR̂g,y(±θ) = − Ω2

4∆

cos(2θ)F̂ 2
g,z − (2Fg − 1) cos2(θ)F̂g,z

2Fg(2Fg + 1)
− δ cos(θ)F̂g,z

±
[Ω2 sin(2θ)

8∆

F̂g,−(F̂g,z − Fg)

2Fg(2Fg + 1)
+
δ sin(θ)

2
F̂g,− + h.c.

]
(5.49)

Therefore, we can choose δ = Ω2 cos(θ)
4∆Fg(2Fg+1)

m0 with integer m0 to achieve the desired destruc-

tive interference, and the effective Hamiltonian in the rotated frame becomes block-diagonal

in the two subspaces spanned by {|Fg, Fg −m0⟩ , . . . , |Fg, Fg⟩} and its complementary sub-

space. Then, as the Kerr-cat situation, we can still use the characteristic polynomial argu-

ment to show that Ĥeff,δ contains (m0+1) pairs of degenerate eigen-energies. However, the

allowed m0 need to be bounded by m0 ≤ Fg − 1 to avoid that the achieved eigenstates with

the same eigenvalue from the two blockade Hamiltonian P̂≤m0R̂
†
g,y(±θ)Ĥeff,δR̂g,y(±θ)P̂≤m0

are actually the same state, where now P̂≤m0 =
∑m0
k=0|Fg, Fg − k⟩⟨Fg, Fg − k|.

5.4.3 Generalized spin-cat with resonant drives: A semiclassical analysis

However, if the stabilization drives are close to resonance, then we may not be able to

achieve several degenerate energy pairs simultaneously by simply adjusting the detuning δ

on the Fg-levels. To illustrate this, I will choose ∆ = 0 and then focus on the eigenstate

|ψk⟩ = |ψgk⟩+ |ψek⟩ of Ĥ ′
DS in Eq. (5.47) with eigenvalue Ek. In this way, |ψgk⟩ should satisfy

Ĥ′ |ψgk⟩ = E2
k |ψ

g
k⟩ , where Ĥ′ = Ĥ− EkδF̂g,z. (5.50)

Suppose now we want to reproduce the blockade feature, and for simplicity, let us assume

that the blockade subspace only contains two dimensions. In this case, we should have

Ekδ = − Ω2 cos(θ)
4Fg(2Fg+1)

. Meanwhile, now we can also diagonalize R̂†
g,y(±θ)Ĥ′R̂g,y(±θ) in the
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two dimensional blockade subspace, which gives

E2
k,± =

Ω2

4

(2Fg − 1)[1 + cos2(θ)]±
√

(2Fg − 1)2 sin4(θ) + 4 cos2(θ)

8Fg(2Fg + 1)
. (5.51)

Unfortunately, we cannot get the two pairs of degenerate eigen-energies simultaneously since

they correspond to different detuning δ. For example, if we choose δ = − Ω2 cos(θ)

4Fg(2Fg+1)
√
E2
k,+

,

then although the first-excited levels in each of the two wells get degenerate, the two ground

levels do not and will result in unwanted tunneling in between.

On the other hand, we can still perform the semiclassical analysis when ∆ = 0, and

investigate how the tunneling rate varies with the introduction of the Fg-level detuning term

δF̂g,z. To do so, here I still rotate and rescale Ĥ′ in Eq. (5.50) such that

Ĥ′
RN :=

8F (2F + 1)

Ω2
Ry(

π

2
)Ĥ′R†

y(
π

2
)

= F 2[1 + cos2(θ)]− F̂ 2
z − cos2(θ)F̂ 2

y − [(2F − 1) cos(θ) + γ]F̂x,

(5.52)

where γ =
8F (2F+1)

Ω2 Eδ is a dimensionless parameter. The corresponding classical Hamilto-

nian now becomes

h′RN(fz, p) = F 2[1+ cos2(θ)]− f2z − cos2(θ)f2y (fz, p)− [(2F − 1) cos(θ)+ γ]fx(fz, p). (5.53)

Within a wide range of γ, h′RN(fz, p) still processes the double-well structure. The two

minima may still be located at (fz = ±f ′z,min, p = 0) that

f ′z,min =
√
F (F + 1)− β2/4, (5.54)

where β := (2F − 1) cos(θ) + γ. The corresponding minimum energy is now E′
cl,min =

F 2 cos2(θ)− F − β2

4 .
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When δ < 0, then if we focus on the eigenstates of Ĥ ′
DS with positive energies, we will

have γ < 0. The distance between two minima ±f ′z,min will keep increasing with |γ| until

|γ| reaches (2F − 1) cos(θ). The corresponding tunneling rate will be suppressed accordingly

as the two wells become more separated. On the other hand, if we consider the eigenstates

with energies in the negative branch, then γ will become positive. The tunneling rate will

be increased due to the reduction of the distance between ±f ′z,min.

We have also observed several occasional degenerate points between a specific pair of

excited states in Fig. 5.5(c), when looking into the γ < 0 regime and varying δ. In fact, this

can still be captured by the WKB analysis. The Hamilton-Jacobi equation we need to solve

now becomes

h′RN

(
fz, p =

dS0
dfz

)
= E, (5.55)

which leads to the solution

cos(p) = c(fz) :=

β
2 cos(θ)

−
√
sin2(θ)f2z + Eβ

b(fz) cos(θ)
, (5.56)

where we have denoted Eβ := ( β
2 cos(θ)

)2 +E− F [F − cos2(θ)]. As |β| becomes smaller, Eβ

could be negative in general. In this case, if fz ∈ (−fz,0, fz,0) with fz,0 =

√−Eβ

sin(θ)
, then c(fz)

itself is a complex number, and therefore p will contain both nonzero real and imaginary

parts. On the other hand, solving c(fz) = 1 will give us two classical turning points fz,± as

before:

fz,± =

√
F (F + 1)−

(β
2
∓
√
E′′
)2
, (5.57)

where E′′ = E− E′
cl,min.

Now we can use the WKB method to analyze the wavefunction of an eigenstate in the

upper well, which contains different structures within different fz regimes. Since p is a

complex number in general, I will denote p(fz) = pR(fz) − ipI(fz) for further use. When

fz is in the classically allowed regime fz ∈ (fz,−, fz,+), the wavefunction should have the
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same structure as that in Eq. (5.33). When fz ∈ (fz,0, fz,−), c(fz) is still a real number but

c(fz) > 1. Then, p(fz) becomes pure imaginary, and the wavefunction will be in the same

form as Eq. (5.34), an exponential decay pattern.

When fz ∈ (−fz,0, fz,0), however, c(fz) itself becomes a complex number. We can solve

both pR(fz) and pI(fz) from

cosh(pI) cos(pR) + i sinh(pI) sin(pR) =

β
2 cos(θ)

+ i
√
| sin2(θ)f2z + Eβ |

b(fz) cos(θ)
. (5.58)

The wavefunction ψ(fz) in this regime can be expressed as

ψ(fz) ≃
2C√
|ḟz(fz)|

exp
[
−
∫ fz,−

fz
pI(f) df

]
·cos

[
χ(fz)−

∫ fz,0

fz
pR(f) df

]
fz ∈ (−fz,0, fz,0).

(5.59)

As fz decreases from fz,0, ψ(fz) will start to oscillate with damping. Due to Eq. (5.26), the

phase χ(fz) here can be determined by tracking the change of complex phase in ḟz(fz) when

fz varies from fz,0 + ϵ to 0 (ϵ is a positive infinitesimal number), which gives

χ(fz) = −arg[iḟz(fz)]

2
= −arg{−i · sinh[pI(fz) + ipR(fz)]}

2
. (5.60)

After achieving the wavefunction ψ(fz) in all the relevant regimes, we can use a similar

trick as that in Eq. (D.14) to compute the energy difference between two near-degenerate

levels in Ĥ ′
DS. The only difference is that here Ĥ′

RN itself also depends on the eigen-energy

E of Ĥ ′
DS. With a detailed derivation, we can finally achieve that

Edif ≃
Ω2

8F (2F + 1)

4
Tcl

exp[−2
∫ fz,−
0 pI(f) df ] cos[2

∫ fz,0
0 pR(f) df ]

2Ē + δ ⟨F̂x⟩
. (5.61)

Here ⟨F̂x⟩ is the expectation value of F̂x with the state ψ↑(fz), which can also be estimated
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in a semiclassical manner

⟨F̂x⟩ ≃
∫
fx(fz, p) dt

Tcl
=

1

Tcl/2

∫ fz,+

fz,−

b(f) cos[p(f)]

ḟ(f)
df. (5.62)

The agreement between the WKB estimation and the exact numerical results for Edif is also

compared in Fig. 5.5(c). In the positive energy branch, we can confirm that the occasional

degeneracy is also captured by the semiclassical approach via the cosine term in Eq. (5.61),

which comes from the damped oscillation wavefunction near fz = 0 [see Eq. (5.59)].

5.5 Bit-flip analysis under dissipation

The tunneling rate itself from the Hamiltonian part is not sufficient to determine the bit-flip

rate of the generalized spin-cat qubit. The population that leaves the encoded subspace due

to the external noise cannot be brought back with the Hamiltonian evolution only. Therefore,

we also need to take the dissipative process into account for the full bit-flip analysis. A similar

study for the bosonic Kerr cat was first performed in Ref. [142] and then a more thorough

work [164]. Here I will apply these analysis to our generalized spin-cat model. In this section,

I assume the Ω±1 drives are both on resonance (∆ = 0), and the Fg-level detuning δ = 0

as well for simplicity. The two SCSs |θ, 0⟩g and |θ, π⟩g in the Fg levels still form the dark

subspace under dissipation. Otherwise, when δ ̸= 0, any eigenstate of ĤDS may not be the

dark state due to its participation in Fe levels. We may need colored dissipation to stabilize

a pair of eigenstates in this situation [123, 142]. In the later derivation, I will focus on the

Ω ≫ Γ regime where the Fe-levels cannot be eliminated directly.

Let us start with a review of the level structures in ĤDS (5.14) first. When ∆ = 0,

then as we have discussed in Sec. 5.3.1, the eigen-energies always come with ±Ek pairs

with the corresponding eigenstates |ψgk⟩ ± |ψek⟩ respectively. Therefore, we can separate the

whole spectrum into the positive branch and the negative branch. Below we denote |ψk⟩ as
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Figure 5.6: Bit-flip analysis with both Hamiltonian tunneling and autonomous stabilization.
(a) The simplified 4-level model. (b) Illustration of the bit-flip mechanism. A state at |ψk,R⟩
may finally come to |0⟩c by first jumping to another |ψl,ι′⟩ (|ψ̃l,ι′⟩) and then coming to |0⟩c.
Or it may tunnel to |ψk,L⟩ for the first jump. The negative branch (|ψ̃l,ι′⟩) is omitted in the
plot due to the symmetry. (c) Comparison of bit-flip rate ṙbf achieved from the simplified
model (5.80) and the conserved quantities (5.81). Here I fix θ = π/3 while varying Fg and
Γ/Ω.

eigenstates with positive energy and |ψ̃k⟩ = (Î − 2P̂e) |ψk⟩ as the corresponding one with

negative energy. In each branch, when Ek is below the barrier, we can find states |ψg
k,L(R)

⟩

in each well with a small tunneling rate ζk in between, which has been computed through

the WKB analysis. However, when the energy is above the barrier, we may not be able to

find pairs of close-to-degenerate levels. The wavefunctions will be supported in both of the

wells.

To clarify the notation, we use |ψgk,±⟩ (k ≤ ncrit) to denote the two near-degenerate level

pairs with even/odd parities. Then we denote Ēk =
Ek,++Ek,−

2 as the average of energies,

and ζk =
Ek,+−Ek,−

2 is the tunneling rate. We also denote |ψk,L(R)⟩ =
|ψk,+⟩±|ψk,−⟩√

2
, where

|ψg
k,L(R)

⟩ = P̂g |ψk,L(R)⟩ =
|ψg

k,+⟩±|ψg
k,−⟩√

2
will mostly locate in one of the double wells. The
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two states |ψk,L(R)⟩ with k = 0 are the encoded computational basis states |0⟩c and |1⟩c
[Eq. (5.3)] correspondingly. When k > ncrit, then each eigenstate |ψk⟩ will be treated

individually. The Hamiltonian can now be written in the form that

ĤDS =
∑

k≤ncrit
[Ēk(Îk − ˆ̃Ik) + ζk(X̂k − ˆ̃Xk)] +

∑
k>ncrit

Ek(|ψk⟩⟨ψk| − |ψ̃k⟩⟨ψ̃k|), (5.63)

where

Îk = |ψk,L⟩⟨ψk,L|+ |ψk,R⟩⟨ψk,R|, ˆ̃Ik = |ψ̃k,L⟩⟨ψ̃k,L|+ |ψ̃k,R⟩⟨ψ̃k,R|, (5.64)

and

X̂k = |ψk,L⟩⟨ψk,R|+ |ψk,R⟩⟨ψk,L|, ˆ̃Xk = |ψ̃k,L⟩⟨ψ̃k,R|+ |ψ̃k,R⟩⟨ψ̃k,L|. (5.65)

I also introduce

ˆ̄HDS =
∑

k≤ncrit
Ēk(Îk − ˆ̃Ik) +

∑
k>ncrit

Ek(|ψk⟩⟨ψk| − |ψ̃k⟩⟨ψ̃k|), (5.66)

which will be used later.

Then let us go to the rotating frame under Hamiltonian ˆ̄HDS. When Ω ≫ Γ, then with

the rotating wave approximation (RWA), only the population on each eigenstate and the

coherence between each level pair |ψk,L⟩ , |ψk,R⟩ (and |ψ̃k,L⟩ , |ψ̃k,R⟩) when k ≤ ncrit will

contribute to the dynamics.

To get a taste of the interplay between coherent tunneling and the dissipative process,

we can first consider a simplified 4-level system that contains {|L, 0⟩ , |L, 1⟩ , |R, 0⟩ , |R, 1⟩}.

There will be a coherent coupling between |L, 1⟩ and |R, 1⟩ with rate ζ, and |L(R), 1⟩ can

decay into |L(R), 0⟩ at a rate of Γ. The full dynamics can be described with the following
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master equation:

dρ̂

dt
= −iζ[(|L, 1⟩⟨R, 1|+ |R, 1⟩⟨L, 1|), ρ̂] + ΓD[|L, 0⟩⟨L, 1|]ρ̂+ ΓD[|R, 0⟩⟨R, 1|]ρ̂. (5.67)

Then, if the state is initially in |R, 1⟩, then the final population of the state in |L, 0⟩ will be

pf =

∫ +∞

0
e−Γt sin2(ζt)Γ dt =

1

2

(
1− 1

1 + (2ζ/Γ)2

)
. (5.68)

Similarly, the final population at |R, 0⟩ will be (1−pf ). We can also understand it as, due to

the coherent tunneling between |R, 1⟩ and |L, 1⟩ the chance that the quantum jump starting

at |L, 1⟩ will be pf , and the chance to start at |R, 1⟩ will be (1− pf ) respectively.

On the other hand, tunneling itself is not the only mechanism that leads to the bit-flip

error. The dissipative operator D̂ge,q may also cause a direct quantum jump from states

in one well to states in the other well. Due to the structural similarity between |ψ̃l,ι′⟩ and

|ψl,ι′⟩, we can verify that when l > 0 we have

| ⟨ψ̃l,ι′| D̂ge,q |ψk,ι⟩ |2 = | ⟨ψl,ι′ | D̂ge,q |ψk,ι⟩ |2, (5.69)

where ι(ι′) ∈ {L,R} when k(l) ≤ ncrit and ι(ι′) = ∅ if k(l) > ncrit. This means that the

possibility for a state |ψk,ι⟩ to jump into the corresponding state pair |ψl,ι′⟩, |ψ̃l,ι′⟩ in the

positive and negative branches is equal.

With this, I will use pι
′,ι
lk to denote the proportion that a state |ψk,ι⟩ will hop to |ψl,ι′⟩

and |ψ̃l,ι′⟩ (l > 0) in one round of the jump:

p
ι′,ι
lk =

∑
q | ⟨ψl,ι′| D̂ge,q |ψk,ι⟩ |2 +

∑
q | ⟨ψ̃l,ι′| D̂ge,q |ψk,ι⟩ |2∑

q ⟨ψk,ι| D̂
†
ge,qD̂ge,q |ψk,ι⟩

(k, l > 0). (5.70)

When l = 0, |ψ0,ι′⟩ will be in the Fg-levels only. Therefore |ψ0,ι′⟩ and |ψ̃0,ι′⟩ are in fact the
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same. In this case, we should denote

p
ι′,ι
0k =

∑
q | ⟨ψ0,ι′| D̂ge,q |ψk,ι⟩ |2∑
q ⟨ψk,ι| D̂

†
ge,qD̂ge,q |ψk,ι⟩

. (5.71)

Finally, since |ψ0,L(R)⟩ are both the dark states, we have pι
′,ι
l0 = δl0διι′ . Notice that all of

the proportions should be summed to unity, which indicates the following expression

∑
0≤l≤ncrit

(p
R,ι
lk + p

L,ι
lk ) +

∑
l>ncrit

p
∅,ι
lk = 1. (5.72)

Let us denote sιk as the population that the state |ψk,ι⟩ (or |ψ̃k,ι⟩) will finally end up

in |0⟩c (|ψ0,L⟩). We should consider what contributes to sιk in total, which contains both

the coherent tunneling and a direct jump. Take sRk as an example. Notice that, due to the

tunneling between |ψk,L⟩ and |ψk,R⟩, there will be pf possibility that the first jump happens

from |ψk,L⟩ and (1− pf ) possibility that it happens from |ψk,R⟩. The state may jump into

any possible |ψl,ι′⟩ (or |ψ̃l,ι′⟩) with the probability determined by pι
′,ι
lk . Finally, each |ψl,ι′⟩

(or |ψ̃l,ι′⟩) will end up with a population sι
′
l in the |0⟩c state.

Given the argument above, we can achieve an iterative expression for sRk in the following

form:

sRk =
1

2

[
1 +

1

1 + (2ζk/Γk)
2

]
·
[ ∑
0≤l≤ncrit

(p
R,R
lk sRl + p

L,R
lk sLl ) +

∑
l>ncrit

p
∅,R
lk sl

]

+
1

2

[
1− 1

1 + (2ζk/Γk)
2

]
·
[ ∑
0≤l≤ncrit

(p
R,L
lk sRl + p

L,L
lk sLl ) +

∑
l>ncrit

p
∅,L
lk sl

]
.

(5.73)

Here we have taken the contribution from both the positive branch and the negative branch

into account. Also, Γk =
Γk,L+Γk,R

2 is the averaged total rate for quantum jumps starting at
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|ψk,R⟩ or |ψk,L⟩, where

Γk,ι = Γ
∑
q

⟨ψk,ι| D̂†
ge,qD̂ge,q |ψk,ι⟩ (k > 0). (5.74)

When k = 0, both |ψ0,R⟩ and |ψ0,L⟩ are the degenerate steady states, and there is no

tunneling between them. In this case, we just set ζ0 = 0.

Due to the symmetry between the two wells, we have sRk = 1− sLk . We also believe that

p
R,R
lk = p

L,L
lk and p

R,L
lk = p

L,R
lk for the same reason. Meanwhile, it is straightforward that

sR0 = 0 and sL0 = 1, since sιk is defined as how much the population ends up in |0⟩c (|ψ0,L⟩)

when the state is initially in |ψk,ι⟩, and both |ψ0,L(R)⟩ are steady states.

To further simplify the analysis, we assume sl = 1/2 when l > ncrit. This assumption

comes as the wavefunction |ψgl ⟩ is not solely located in any of the wells. Together with

Eq. (5.72), the expression of sRk in Eq. (5.73) now can be written as

sRk − 1/2 =
1

1 + (2ζk/Γk)
2

∑
0≤l≤ncrit

(p
R,R
lk − p

L,R
lk )(sRl − 1/2). (5.75)

We can also express the above equation in the following compact form

s⃗′ = (DPT) · s⃗′, (5.76)

where s⃗′ is an (ncrit + 1) dimensional vector with each element (sRk − 1/2), D is a diagonal

matrix withDkk = 1
1+(2ζk/Γk)2

, and P satisfies Plk = p
R,R
lk −pL,Rlk . P here can be understood

as the difference between the population transfer matrices that a state stays in one well or

goes to another well after a round of quantum jump.

With this, sRk can be solved by finding the right eigenvector of (DPT) with the eigenvalue

1. It requires us to further examine the structure of the matrix (DPT). Notice that P00 = 1
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and Pl0 = 0 for l > 0. We can write (DPT) as the following form where

DPT =

1 0

0 D>0


1 0

w⃗ PT
>0

 =

 1 0

D>0w⃗ D>0P
T
>0

 . (5.77)

w⃗ here is an ncrit-dimensional vector that wk = P0k. Based on this, s⃗′ can be achieved as

s⃗′ = −1

2

 1

(1−D>0P
T
>0)

−1D>0w⃗

 . (5.78)

Here s⃗′ is normalized as s′0 = −1/2, which corresponds to sR0 = 0. Therefore, the ncrit

dimensional s⃗R with elements sRk (1 ≤ k ≤ ncrit) satisfies

s⃗R =
1

2
[⃗1− (1−D>0P

T
>0)

−1D>0w⃗] =
1

2

1⃗− +∞∑
n=0

(D>0P
T
>0)

nD>0w⃗

 . (5.79)

1⃗ above is the vector where every element is 1. Remember that the D matrix reflects the

coherent tunneling effect while the P matrix is only determined by the quantum jumps.

As a result, (D>0PT
>0)

n here indicates the higher-order process with the interplay between

tunneling and dissipation.

After achieving sRk , we can finally start to derive the bit-flip rate in the presence of noise.

For example, let us consider the incoherent noise κD[F̂g,ξ] again. Here we assume κ ≪ Γ

so that we can treat the noise perturbatively. Suggested by Eq. (4.17), the leading-order

contribution from the noise can be estimated by first acting the noise on the states in the code

subspace and then checking how it comes back to the code subspace through autonomous

stabilization.

To evaluate the bit-flip rate, we can apply the noise on the state |1⟩c and see how the

population ends up on |0⟩c. The (normalized) state will become F̂g,ξ|1⟩c√
⟨1|cF̂

†
g,ξF̂g,ξ|1⟩c

after one
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jump from the noise, which happens in a rate of κ ⟨1|c F̂
†
g,ξF̂g,ξ |1⟩c. Since we have also

assumed Γ ≪ Ω, here it will be sufficient to consider the contribution from population on

each Hamiltonian eigenstate only. Therefore, we can estimate the increasing rate of |0⟩c
population through

ṙbf,app = κ

[
| ⟨0|c F̂g,ξ |1⟩c |2 + 2

∑
0<l≤ncrit

(sRl | ⟨ψl,R| F̂g,ξ |1⟩c |2 + sLl | ⟨ψl,L| F̂g,ξ |1⟩c |2)

+
∑
l>ncrit

| ⟨ψl| F̂g,ξ |1⟩c |2
]
.

(5.80)

I would like to remark that here I implicitly use the fact that F̂g,ξ |1⟩c is only in the Fg-

manifold so that | ⟨ψl,ι| F̂g,ξ |1⟩c |2 = | ⟨ψ̃l,ι| F̂g,ξ |1⟩c |2, as well as the assumption that sl = 1
2

when l > ncrit.

On the other hand, the bit-flip rate in the perturbative regime can also be evaluated

through the conserved quantities of the full Lindbladian. As explained in Sec. 4.3, since

we can find a 2-dimensional dark Hilbert subspace in the system, there should be 4 linear-

independent conserved quantities Ĵkl (k, l ∈ {0, 1}) which in general can be computed numer-

ically. Further, they can be normalized through ⟨p|c Ĵkl |q⟩c = δpkδql. If we again initialize

the quantum state in |1⟩c, then the |0⟩c population increasing rate can also be estimated to

the leading order as

ṙbf,cq = κTr
[
Ĵ
†
00D[F̂g,ξ](|1⟩c⟨1|)

]
. (5.81)

Finally, we can compare the bit-flip rate rbf achieved from the simple model (5.80) and

that from the conserved quantities (5.81). In both situations, we assume that the dissipative

stabilization comes from spontaneous emission so that all 3 polarizations q = 0,±1 in the

jump operators D̂ge,q are allowed. In this case, Γk,ι in Eq. (5.74) will always be Γk,ι =
Γ
2 .

The noise model we use is still κD[F̂g,z]. In order for the approximated formula (5.80)
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to be valid, we assumed κ ≪ Γ ≪ Ω in the numerical study. The tunneling rate ζk is

achieved from exact diagonalization of the Hamiltonian, which is still less costly compared

with diagonalization of the full Lindbladian due to the reduction in the dimension of the

matrices.
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CHAPTER 6

EFFICIENT WIGNER TOMOGRAPHY WITHIN A

TRUNCATED MULTIMODE HILBERT SPACE

6.1 Introduction

Previously, we have discussed several examples of how the Hilbert space truncation helps in

both quantum control and error correction aspects. Starting from this chapter, I will consider

the problems of quantum state characterization. After the evolution of a quantum system or

the execution of a quantum circuit, sometimes we hope to know the full information about

the output state. However, it is usually not easy, as the dimension of the full Hilbert space

grows exponentially with the number of parties. Meanwhile, the resulting state may not

be pure due to the ubiquitous coupling with the environment. For an M -partite quantum

system with d levels in each party, we need (d2M−1) number of real parameters to determine

a generic mixed state. When M is large, the huge number of parameters will prevent us from

any brute-force attempt. Such a challenge could push us to think more about the structures

of the quantum states so that the state characterization tasks may become feasible.

In this chapter, I will present a case study where the efficiency of the state characterization

comes from the truncation of the multi-party Hilbert space. Specifically, we consider the

tomographic task for a quantum state in M resonator modes with bounded maximum total

photon number N . The constraint on the maximum total photon number provides a cutoff

on the dimension of the relevant Hilbert space, which now reduces to
(M+N

N

)
, a polynomial

dependence on the mode number M in the large M limit. Such a state can be prepared using

a multimode photon blockade scheme, and with this, the high-fidelity state preparation for

the N = 1 case (i.e., the |W ⟩ state) has been experimentally demonstrated [169]. Further, we

have observed a hardware-efficient approach so that the overhead to estimate each density

matrix element in the Fock basis with ϵ-precision is independent of M . The reduction of the
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dimension and the efficiency to estimate each element together result in a poly(M) overhead

to reconstruct the full density matrix or estimate the fidelity with a given state up to a

certain precision. We name the whole protocol DEMESST, the abbreviation of the Direct

Extraction of density Matrix Elements from Subspace Sampling Tomography method.

I will continue the discussion with the following structure. In Sec. 6.2, I will explain

the physics of the device we are considering, which contains a multimode cavity dispersively

coupled with a transmon. Our aim is to efficiently reconstruct the full density matrix of the

multimode state with bounded total photons in this cavity. In Sec. 6.3, I will explain our

efficient multimode Wigner tomography scheme with detailed overhead analysis. Later, in

Sec. 6.4, I will talk about the experimental protocol we adopt to demonstrate our theoretical

proposal with bounded total photon number N = 1. Finally, in Sec. 6.5, I will present a

numerical simulation result on the overhead requirement to estimate the fidelity of an M -

mode |W ⟩ state up to a given precision. We also compare it with a traditional method where

the dimension cutoff only applies for each mode individually.

6.2 Device setup

To start with, I want to specify the device in our minds. We consider a multimode resonator

dispersively coupled with a transmon qubit [169, 170]. The Hamiltonian of the transmon-

cavity coupled system can be modeled as

Ĥ =
∑
m

ωa,mâ
†
mâm + (ωq ĉ

†ĉ− EC
2
ĉ†ĉ†ĉĉ)−

∑
m

gm(â
†
m − âm)(ĉ† − ĉ). (6.1)

Here, âm and ĉ represent the cavity modes and the transmon qubit. ωa,m and ωq are their

resonant frequencies respectively. EC , the charging energy of the transmon, characterizes

the energy shift of the transmon levels due to the nonlinearity. Finally, g is the coupling

strength between the transmon and each cavity mode.
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In the dispersive coupling regime where the coupling strength g is much less compared

with qubit-cavity detuning |ωq−ωa,m| (i.e., g ≪ |ωq−ωa,m|), The Hamiltonian of the system

can be simplified as

Ĥ ≃
∑
m

ω̃a,mˆ̃a
†
mˆ̃am +

[
ω̃q|e⟩⟨e|+ (2ω̃q − EC)|f⟩⟨f |

]
+
∑
m

ˆ̃a
†
mˆ̃am(χ

ge
m |e⟩⟨e|+ χ

gf
m |f⟩⟨f |),

(6.2)

where the tilde in the equation above indicates that all the modes are hybridized, and I will

ignore this notation later for simplicity. The Hamiltonian is achieved by diagonalizing the

linear coupling part in Eq. (6.1) and then applying RWA to ignore the off-resonant terms. The

transmon is truncated into 3 levels (up to |f⟩) for further convenience. Finally, the induced

nonlinear terms (like self- and cross-Kerr) among cavity modes due to the hybridization

with transmon are ignored since they are usually smaller than other parameters shown in

Eq. (6.2).

The dispersive shift terms χgem and χgfm in Eq. (6.2) can be understood as the transition

frequencies between levels in the transmon are affected due to the photon occupation in

the cavity modes. For example, the occupation of n photons in the m-th mode shifts the

transmon |g⟩ − |e⟩ transition frequency by n · χgem compared with the case that all cavity

modes are in the vacuum state. On the other hand, the resonant frequencies of the cavity

modes also depend on the transmon state. We will keep using these observations in the

design of the hardware control schemes later.

6.3 Efficient Wigner tomography in a multimode truncated

subspace: theoretical framework

In this section, I will discuss our theoretical proposal for an efficient tomography (DEMESST)

method, which works for the subspace in a multimode system with a bounded total photon
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(a) (b)

Ô~n1,~n0
1

Ô~n2,~n0
2

⇢̂

Tr[⇢̂Ô~n1,~n0
1
]

Tr[⇢̂Ô~n2,~n0
2
]

Figure 6.1: Schematic plot on the DEMESST protocol and its performance. (a) The il-
lustration that DEMESST focuses on a truncated subspace while estimating each relevant
density matrix element individually. (b) Comparison of the resource overhead to reconstruct
|W ⟩ state in N = 1 subspace, with both DEMESST and OLI method. To achieve desired
reconstruction fidelity, the resource required by DEMESST is fitted with poly(M) while that
needed from OLI grows exponentially. Details are discussed in Sec. 6.5.

number. The protocol requires us to measure Wigner functions of the unknown quantum

state at randomly sampled points. Therefore, I will first discuss the properties of the Wigner

function itself and its generalizations that can be measured in practice. Then, I will ex-

plain how to estimate each density matrix element under the Fock basis using the Wigner

measurement. Together with an intermediate vacuum-state projection trick, we can show

that the overhead to estimate each element up to a constant precision will be independent

of the total mode number M . Since the dimension of the relevant subspace only scales with

poly(M), we can finally show that the total cost for the full density matrix reconstruction

is poly(M) as well, which justifies our efficiency claim.

6.3.1 Wigner function and its generalization

Wigner function is one of the most important functions in the field of quantum optics, which

serves as the quasiprobability distribution of the state of interest in the phase space. The
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Wigner function of a single-mode state ρ is defined as [171]

Wρ(α) = 2Tr[ρ̂D̂(α)eiπâ
†âD̂†(α)], (6.3)

where D̂(α) = eαâ
†−α∗â is the displacement operator. Therefore, Wρ(α) is proportional to

the expectation value of the parity operator with the state ρ displaced by amplitude −α.

Similarly, we can define the Wigner function for any operator Ô with finite Frobenius norm

(F-norm for short) ||Ô||F =

√
Tr[Ô†Ô] < +∞ by simply substituting ρ̂ with the operator

Ô in Eq. (6.3).

The Wigner function of an M -mode state ρ can be simply generalized as

Wρ(α⃗) = 2M Tr[ρ̂D̂(α⃗)eiπ
∑M

m=1 â
†
mâmD̂†(α⃗)], (6.4)

where D̂(α⃗) =
∏M
m=1 D̂m(αm) =

∏M
m=1 e

αmâ
†
m−α∗mâm is the displacement operator in the

multimode system. However, for our current device setup (6.2), it is difficult to measure

joint parity eiπ
∑M

m=1 â
†
mâm of relevant modes in a straightforward way. It is because the

dispersive cavity-qubit coupling rate χgem are not equal for different modes, and therefore the

relevant modes may not be able to pick up a π angle rotation simultaneously when the qubit

is in |e⟩ level. To resolve this issue, here we consider a generalized version of the Wigner

function introduced in [172]:

Wρ(α⃗, θ⃗) =
2M Tr[ρ̂D̂(α⃗)ei

∑M
m=1 θmâ

†
mâmD̂†(α⃗)]∏M

m=1[1 + i cot(θm/2)]
, (6.5)

where θm may not be equal to π in each mode. We also denote a normalized one

W̃ρ(α⃗, θ⃗) = Tr[ρ̂D̂(α⃗)ei
∑M

m=1 θmâ
†
mâmD̂†(α⃗)], (6.6)

where W̃ρ(α⃗, θ⃗) can be a complex number now with |W̃ρ(α⃗, θ⃗)| ≤ 1, since ei
∑M

m=1 θmâ
†
mâm is
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no longer Hermitian and the modulus of its eigenvalues will always be 1. We can also verify

that W̃ρ(α⃗, θ⃗) = W̃ ∗
ρ†
(α⃗,−θ⃗). As we will show in Sec. 6.4, the generalized W̃ρ(α⃗, θ⃗) function

is more relevant to what we can measure in experiments. But now, let us keep the theoretical

discussion, and in the next part we will demonstrate that the generalized Wigner function

of quantum states plays a similar role as the normal Wigner function when estimating the

expectation values with the desired observables.

6.3.2 Expectation value estimation with Wigner sampling

In this part, we discuss the Wigner sampling method in detail for estimation of the expec-

tation value with any finite F-norm operator Ô, and then analyze the overhead in order to

reach a certain accuracy.

To begin with, we recall the expression that reflects the relationship between expectation

values and Wigner functions:

Tr[ρ̂Ô] =

∫
d2M α⃗

πM
Wρ(α⃗)WO(α⃗). (6.7)

Therefore, the overlap between two operators can be computed through integrating the

product of their Wigner functions over the phase space. Moreover, a similar expression can

be achieved for the generalized Wigner function as well:

Tr[ρ̂Ô] =

∫
d2M α⃗

πM
Wρ(α⃗,−θ⃗)WO(α⃗, θ⃗) = CM

∫
d2M α⃗ W̃ρ(α⃗,−θ⃗)W̃O(α⃗, θ⃗), (6.8)

where CM =
∏M
m=1[2(1− cos θm)/π] here is a constant factor.

Those equations above have motivated people to develop a Wigner-based approach for

direct fidelity estimation between experimentally prepared state ρ̂ and the desired pure state
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σ̂ [98]. For example, Eq. (6.8) can also be written as

F (ρ̂, σ̂) = Tr[ρ̂σ̂] = CM

∫
d2M α⃗ |W̃σ(α⃗, θ⃗)|2

W̃ρ(α⃗,−θ⃗)
W̃σ(α⃗,−θ⃗)

=

∫
d2M α⃗ pW 2(α⃗)

Re[eiϕ(α⃗)W̃ρ(α⃗,−θ⃗)]
|W̃σ(α⃗,−θ⃗)|

,

(6.9)

where pW 2(α⃗) = CM |W̃σ(α⃗, θ⃗)|2 is a non-negative function and ϕ(α⃗) = arg W̃σ(α⃗, θ⃗) =

− arg W̃σ(α⃗,−θ⃗) is the complex phase of W̃σ(α⃗, θ⃗). Here pW 2(α⃗) can serve as a probability

distribution function since it satisfies
∫
d2M α⃗ pW 2(α⃗) = Tr[σ̂2] = 1. We can use it to

generate a random set of vectors {α⃗(k)}. We then measure Re[eiϕ(α⃗
(k))W̃ρ(α⃗

(k),−θ⃗)] at

those α⃗(k) points and finally calculate the average of Re[eiϕ(α⃗
(k))W̃ρ(α⃗

(k),−θ⃗)]
|W̃σ(α⃗(k),−θ⃗)|

to get prediction

of F (ρ̂, σ̂). Such a sampling method based on pW 2(α⃗) ∝ |W̃σ(α⃗, θ⃗)|2 is named asW 2 method.

In Sec. 6.4, we will explicitly show that Re[eiϕ(α⃗
(k))W̃ρ(α⃗

(k),−θ⃗)] is the expectation value

of a Bernoulli random variable A(k)
j ∈ {1,−1} from each measurement on our device. I will

denote e(α⃗) := Re[eiϕ(α⃗)W̃ρ(α⃗,−θ⃗)] for future convenience. As a result, Ej [A
(k)
j ] = e(α⃗(k)).

In general, we do have the freedom to choose any probability distribution function p(α⃗)

we want to generate sampling points {α⃗(k)}, but we need to adjust the way of post-processing

the data. Since

Tr[ρ̂Ô] = CM

∫
d2M α⃗ p(α⃗)

|W̃O(α⃗, θ⃗)|
p(α⃗)

e(α⃗), (6.10)

now we need to calculate the average of CM
|W̃O(α⃗

(k),θ⃗)|
p(α⃗(k))

A
(k)
j over all sampling points and

measurements per point for an estimation of Tr[ρ̂Ô]. However, an optimal choice of p(α⃗)

may exist given specific settings. For example, if we only measure once per sampling vector
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α⃗(k), the variance of the estimator 1
Nspl

∑
k CM

|W̃O(α⃗
(k),θ⃗)|

p(α⃗(k))
A(k) will be

Var =
C2
M

Nspl

∫
d2M α⃗ p(α⃗)

|W̃O(α⃗, θ⃗)|2
p2(α⃗)

− (Tr[ρ̂Ô])2

Nspl

≥ [CM
∫
d2M α⃗ |W̃O(α⃗, θ⃗)|]2

Nspl
∫
d2M α⃗ p(α⃗)

− (Tr[ρ̂Ô])2

Nspl

=
1

Nspl

[
CM

∫
d2M α⃗ |W̃O(α⃗, θ⃗)|

]2
− (Tr[ρ̂Ô])2

Nspl
.

(6.11)

Here we have used the Cauchy-Schwarz inequality. The minimum variance is only achieved

when p(α⃗) ∝ |W̃O(α⃗, θ⃗)|, which we call |W | sampling method.

We also point out that, for W 2 method where p(α⃗) = CM |W̃O(α⃗, θ⃗)|2, the integral shown

in the first line of Eq. (6.11) will be divergent. Therefore, Ref. [98, 173] have proposed to

choose a cutoff so that we can discard some sampling vectors α⃗(k) that make the denominator

of
A
(k)
j

|W̃O(α⃗
(k),θ⃗)| too small. This cutoff procedure may lead to bias in the estimation of Tr[ρ̂Ô]

and makes the error analysis more complicated. The detailed analysis of the cutoff effect

under the multimode setting is beyond the scope of our current work.

Instead, we focus on the |W | method. The sampling distribution function satisfies

p|W |(α⃗) =
|W̃O(α⃗, θ⃗)|

ZO
, (6.12)

with the normalization factor

ZO =

∫
d2M α⃗ |W̃O(α⃗, θ⃗)|. (6.13)

In the |W | method, we need to average CMZOA
(k)
j over all sampling vectors α⃗(k) and

all Bernoulli outcomes A(k)
j per sampling vector. If we sample Nspl number of α⃗(k) vec-

tors and measure Nms times at each sampling vector, then the variance of the estimator
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CMZO

∑Nspl
k=1

∑Nms
j=1 A

(k)
j

NsplNms
will be

Var =
C2
MZ2

O

Nspl

[ ∫
d2M α⃗ p|W |(α⃗)e

2(α⃗)− (Tr[ρ̂Ô])2

C2
MZ2

O

]
+

C2
MZ2

O

NsplNms

[
1−

∫
d2M α⃗ p|W |(α⃗)e

2(α⃗)
]
.

(6.14)

Since Tr[ρ̂Ô]
CMZO

=
∫
d2M α⃗ p|W |(α⃗)e(α⃗), we know from the Cauchy-Schwarz inequality that

the first line in Eq. (6.14) is no less than zero. Therefore, when fixing the total number of

measurements Ntot = NsplNms, the choice of Nms = 1 will lead to the smallest variance.

From now let us fix Nms = 1, where we perform one measurement per α⃗(k). We can use

Hoeffding’s inequality to get a lower bound for the sampling resource Nspl in order to satisfy

P


∣∣∣∣∣∣∣
CMZO
Nspl

Nspl∑
k=1

A(k) − Tr[ρ̂Ô]

∣∣∣∣∣∣∣ ≥ ϵ1

 ≤ δ1, (6.15)

which gives

Nspl ≥ ⌈2C
2
MZ2

O

ϵ21
ln(2/δ1)⌉. (6.16)

We can see that in general Nspl ∝ (CMZO)
2. In the next step, we will try to analyze

the properties of CMZO for the specific operators of our interest. Especially, we focus on

how it depends on the total mode number M . If we can find out an approach to make it

independent of M , and if we only have poly(M) number of observables to measure, then the

total state reconstruction overhead will still be poly(M).

6.3.3 Density matrix reconstruction

In this part, we discuss our DEMESST scheme for density matrix reconstruction of an

unknown state, which is based on the |W | sampling method to estimate each element of the
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density operator under the Fock basis. Specifically, we consider a system with M modes

and maximum total photon number N among those modes, which restricts the dimension of

the Hilbert space for state reconstruction to be
(M+N

N

)
. We focus on the scaling analysis of

sampling overhead in terms of mode number M , in the limit where M is much larger than

2N . We will show that the sampling overhead of our method scales as poly(M) with bounded

photon number N , which justifies the efficiency claim as the mode number increases.

Matrix element estimation with M -mode Wigner measurement

Let us consider the expectation value of the unknown state ρ̂ with Fock-basis operator Ô

that belongs to one of the following:

Ôn⃗,n⃗ = |n⃗⟩⟨n⃗|,

ÔRn⃗,n⃗′ =
|n⃗⟩⟨n⃗′|+ |n⃗′⟩⟨n⃗|√

2
(n⃗ ̸= n⃗′),

ÔIn⃗,n⃗′ = i
|n⃗⟩⟨n⃗′| − |n⃗′⟩⟨n⃗|√

2
(n⃗ ̸= n⃗′).

(6.17)

Here |n⃗⟩ = ⊗M
m=1 |nm⟩ and |n⃗′⟩ = ⊗M

m=1 |n′m⟩ are multimode Fock basis that satisfy the

bounded total photon condition
∑M
m=1 nm ≤ N and

∑M
m=1 n

′
m ≤ N . The operators Ô are

chosen to be Hermitian Ô = Ô† and normalized as Tr[Ô†Ô] = 1. For a quantum system

with M modes and maximum total photon number N , we have
(M+N

N

)2
number of those

operators, which scales as poly(M).

One essential observation is that, in the situation where M > 2N , for any |n⃗⟩⟨n⃗′| operator

there are at least (M − 2N) modes that support the ground state projector |0⟩⟨0|. We use

the set S(n⃗,n⃗′) = {m|nm = n′m = 0} (we use S for short later) to include the indexes of these

trivial modes. We also use S̄ = {1, 2, . . . ,M}\S to denote the set of nontrivial modes. With
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this, the operator shown in Eq. (6.17) can always be decomposed as

Ô =
( ⊗
m∈S

|0⟩⟨0|m
)
⊗ ÔS̄ , (6.18)

where ÔS̄ is supported on those nontrivial modes with indexes m ∈ S̄. Note that the total

number of elements in S̄ is no greater than 2N , and it is independent of M as well.

Similarly, we can decompose the generalized Wigner function of such an operator Ô as

W̃O(α⃗, θ⃗) =
( ∏
m∈S

W̃|0⟩⟨0|(αm, θm)
)
· W̃OS̄

(α⃗S̄ , θ⃗S̄), (6.19)

where α⃗S̄ , θ⃗S̄ are the restriction of α⃗, θ⃗ in the nontrivial modes m ∈ S̄. Again, W̃OS̄
(α⃗S̄ , θ⃗S̄)

does not depend on M .

Now let us consider the sampling overhead to get a precise estimation of Tr[ρ̂Ô] where

Ô satisfies those properties mentioned above. One method is to sample according to the

M -mode function p(α⃗) = |W̃O(α⃗, θ⃗)|/ZO directly. According to Eq. (6.16), the key quantity

we should focus on is CMZO, which satisfies

CMZO =

[ M∏
m=1

2(1− cos θm)

π

] ∫
d2M α⃗ |W̃O(α⃗, θ⃗)|

=
∏
m∈S

[
2(1− cos θm)

π

∫
d2α⃗ |W̃|0⟩⟨0|(αm, θm)|

]
· CS̄

∫
d2|S̄|α⃗S̄ |W̃OS̄

(α⃗S̄ , θ⃗S̄)|

= 2M−|S̄|CS̄ZOS̄
.

(6.20)

Here CS̄ =
∏
m∈S̄ [2(1 − cos θm)/π]. ÔS̄ is only supported on at most 2N modes, and it is

independent of M when M > 2N . Therefore, the only M -dependence in CMZO comes from

the 2M factor, which is still unfavorable since it grows exponentially as mode number M

increases.
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Matrix element estimation with ground state verification

One way to resolve this issue is to consider ÔS̄ , rather than the full operator Ô itself. We

introduce projection operator P̂S =
⊗

m∈S |0⟩⟨0|m and denote ρ̂S̄ = TrS [ρ̂P̂S ]. Here TrS [•]

means the partial trace over all modes with indexes m ∈ S. It is easy to show that

Tr[ρ̂Ô] = Tr[ρ̂S̄ÔS̄ ], (6.21)

where both ρ̂S̄ and ÔS̄ are both supported on modes in S̄ that contains at most 2N elements.

We can do |W | sampling according to ÔS̄ as follows:

Tr[ρ̂S̄ÔS̄ ] = CS̄ZOS̄

∫
d2|S̄|α⃗S̄ p|W |(α⃗S̄) Re[e

iϕ(α⃗S̄)W̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]. (6.22)

In Sec. 6.4, I will explain how to use the |f⟩ level of the transmon qubit in our device to

effectively restrict the state of interest as ρ̂S̄ . Then we can get Bernoulli outcomes A(k)
j ∈

{1,−1} again through transmon readout in the end, whose expectation values are exactly

Re[e
iϕ(α⃗

(k)

S̄
)
W̃ρS̄ (α⃗

(k)

S̄
,−θ⃗S̄)].

We can also use Hoeffding’s inequality to estimate the sampling overhead. If we only

measure once per sampling vector α⃗(k)
S̄

, we will have

P


∣∣∣∣∣∣∣
CS̄ZOS̄

Nspl

Nspl∑
k=1

A(k) − Tr[ρ̂S̄ÔS̄ ]

∣∣∣∣∣∣∣ ≥ ϵ2

 ≤ δ2, (6.23)

when

Nspl ≥ ⌈
2C2

S̄
Z2
OS̄

ϵ22
ln(2/δ2)⌉. (6.24)

It is worth pointing out again that, with bounded N , CS̄ZOS̄
is independent of mode number
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M when M > 2N . Therefore, Nspl estimated in (6.24) scales as

Nspl ∼ OM
(f(N)

ϵ22
ln(2/δ2)

)
, (6.25)

where OM indicates that we only focus on the scaling over M in the large-M limit, while

f(N) = 2C2
S̄
Z2
OS̄

is some functions that only depend on N and specific choice of operator

in Eq. (6.17). We also introduce fmax(N) to represent the maximum f(N) value among all

those
(M+N

N

)2
operators.

Full state reconstruction overhead

We finally talk about the reconstructed density matrix ρ̂est. By performing the expectation

value estimation of the unknown state ρ with all those
(M+N

N

)2
operators in (6.17), we can

achieve

P (B) ≥ 1−
(
M +N

N

)2

δ2 (6.26)

with a total number of sampling instances

Ntot ∼ OM
[(

M +N

N

)2fmax(N)

ϵ22
ln(2/δ2)

]
, (6.27)

where B requires all the conditions below:

| ⟨n⃗| (ρ̂est − ρ̂) |n⃗⟩ | ≤ ϵ2,

|Re[⟨n⃗| (ρ̂est − ρ̂) |n⃗′⟩]| ≤ ϵ2/
√
2 (n⃗ ̸= n⃗′),

|Im[⟨n⃗| (ρ̂est − ρ̂) |n⃗′⟩]| ≤ ϵ2/
√
2 (n⃗ ̸= n⃗′).

(6.28)

If B is satisfied, we will have

||ρ̂est − ρ̂||F =

√∑
n⃗,n⃗′

| ⟨n⃗| (ρ̂est − ρ̂) |n⃗′⟩ |2 ≤
(
M +N

N

)
ϵ2. (6.29)
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Also, if ρ̂ is a pure state, we will also have

|F (ρ̂est, ρ̂)− 1| = |Tr[(ρ̂est − ρ̂)ρ̂] ≤ ϵ2 ·
∑
n⃗,n⃗′

| ⟨n| ρ̂ |n⃗′⟩ |

≤ ϵ2 ·
√∑
n⃗,n⃗′

| ⟨n| ρ̂ |n⃗′⟩ |2 ·
(
M +N

N

)

= ϵ2 ·
√

Tr[ρ̂2] ·
(
M +N

N

)
=

(
M +N

N

)
ϵ2.

(6.30)

In summary, by choosing ϵ2 = ϵ/
(M+N

N

)
and δ2 = δ/

(M+N
N

)2
, our sampling method will

require the amount of sampling instances

Ntot ∼ OM

(M +N

N

)4fmax(N)

ϵ2
log

(
2

(
M +N

N

)2

/δ

) (6.31)

to achieve

P (||ρ̂est − ρ̂||F ≤ ϵ) ≥ 1− δ, (6.32)

even if we only have one qubit measurement per sampling instance. With the same amount

of sampling, we can also achieve

P (|F (ρ̂est, ρ̂)− 1| ≤ ϵ) ≥ 1− δ, (6.33)

where ρ̂ is a pure state.

6.4 Experimental schemes for demonstration

In this section, we mainly focus on the experimental protocols that allow us to measure the

quantities related to the generalized Wigner function W̃ρ(α⃗, θ⃗). We first discuss about the

method to estimate Re[eiϕ(α⃗)W̃ρ(α⃗,−θ⃗)] for a generic M -mode state ρ̂, and then we talk

about how to use transmon |f⟩ for subsystem tomography to achieve the Wigner values for
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(a)

Transmon ωge
cond ωef (ω2 )ge

εy

WAIT t

εge
m t = ϑm

(ω2 )ge
±εr

|g→ or not |g→

Cavity D̂†(ϖϱ)

(b)

Transmon (ω2 )ge
εy

WAIT t

ωget = ε

(ω2 )ge
→εy

|g→ or |e→

Cavity D̂†(ϑ)

Figure 6.2: Pulse sequences for Wigner measurements. (a) Single-mode Wigner measure-
ment. (b) Multimode generalized Wigner measurement with the |f⟩-level projection trick.
In the actual experiment [97], we reverse the order of cavity displacement and the condi-
tioned transmon |g⟩-|e⟩ π-pulses (which should be replaced by a more complicated frequency
combs) for a better performance in practice.

projected state ρ̂S̄ , which is similar to the idea used in Ref. [174]. For simplicity, in later

derivation we assume the cavity is initialized as a pure state |ψ⟩, but the argument will apply

for a generic density operator ρ̂ which can always be decomposed as ρ̂ =
∑
i ci|ψi⟩⟨ψi| and

understood as an ensemble average from a set of pure states {|ψi⟩⟨ψi|} with probability ci.

First, we consider the generalized Wigner function of an M -mode state. The cavity-

qubit composite system is initialized as |ψ⟩ |g⟩. In the beginning, we give the qubit a short

π/2 pulse and each mode a short linear drive separately such that the qubit part becomes

exp(−iπ4 σ̂y) |g⟩ =
|g⟩+|e⟩√

2
and the cavity part becomes |ψD⟩ = D̂(−α⃗) |ψ⟩. Then, we simply

wait for time t. Due to the cavity-qubit interaction Hamiltonian Ĥint =
∑
m χmâ

†
mâm|e⟩⟨e|,

the cavity modes will be entangled with the qubit as 1√
2
[|ψD⟩ |g⟩+ e−i

∑
m θmâ

†
mâm |ψD⟩ |e⟩]

where θm = χmt. Ideally, we can choose any time t as long as none of the θm is an integer
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multiple of 2π. However, in practice we prefer those waiting time t to make each θm modulo

2π closer to π. Finally, we will give the qubit another π/2 pulse, but the phase of the pulse

will be different from the previous one. Specifically, we consider the qubit rotation along

r⃗ = − sinϕ e⃗x − cosϕ e⃗y. By applying this exp(−iπ4 r⃗ · ˆ⃗σ) operation, finally the cavity-qubit

entangled state |Ψ⟩ will be

|Ψ⟩ = |ψD⟩+ eiϕe−i
∑

m θmâ
†
mâm |ψD⟩

2
|g⟩

+
−e−iϕ |ψD⟩+ e−i

∑
m θmâ

†
mâm |ψD⟩

2
|e⟩ .

(6.34)

Therefore, when we perform the qubit readout, the final probability of achieving |g⟩ is

Pg =
1 + Re{eiϕTr[D̂†(α⃗)|ψ⟩⟨ψ|D̂(α⃗)e−i

∑
m θmâ

†
mâm ]}

2

=
1

2
{1 + Re[eiϕW̃|ψ⟩⟨ψ|(α⃗,−θ⃗)]}.

(6.35)

Therefore, if we record A = 1 if we get |g⟩ in qubit readout and A = −1 otherwise, then

the expectation value of A will be exactly Re[eiϕW̃ρ(α⃗,−θ⃗)]. The derivations above apply

for any ϕ, but as we mentioned before, the choice of ϕ depends on the operator Ô and the

sampling vector α⃗.

We finally explain our protocol to measure the generalized Wigner function for a projected

state ρ̂S̄ , which is defined in Sec. 6.3.3. In our experiment (see Ref. [97]), we make use of the

multimode blockade technique mentioned in Ref. [169] to make sure the maximally populated

total photon number is N = 1. For density matrix reconstruction, the Hilbert space under

consideration is spanned by {|n⃗⟩ |∑M
m=1 nm ≤ 1}. In this case, the projected operator ÔS̄

introduced in Eq. (6.18) is supported on at most 2 modes. Because of the dispersive coupling

between the cavity and the qubit, the resonant frequency of the qubit is dependent on the

state of the cavity. For example, the qubit frequency will become ωq+χm when the cavity is

in the Fock state |1⟩m⊗|⃗0⟩els. Therefore, we first give the qubit several long π pulse between
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|g⟩− |e⟩ transition with frequency ωq+χm for m ∈ S, such that the qubit that coupled with

(Î− P̂S) |ψ⟩ cavity part will transfer from |g⟩ to |e⟩, while the part that coupled with P̂S |ψ⟩

will stay in |g⟩. Then we give the qubit a short π pulse for |e⟩ − |f⟩ transition. After those

steps, the cavity-qubit composite state will become

|Ψ⟩ = P̂S |ψ⟩ |g⟩+ (Î − P̂S) |ψ⟩ |f⟩ . (6.36)

Finally, we can use a similar procedure as we mentioned before when focusing on the Wigner

value measurement of a generic M -mode state ρ̂. However, we only need to drive those

modes with index m ∈ S̄ such that those modes are displaced by D̂(−α⃗S̄). The short π/2

pulses with different phases are still applied between the qubit |g⟩ − |e⟩ transition. The

probability of receiving a |g⟩ outcome in the final qubit readout is

Pg,ϕ =
Tr[ρ̂S̄ ] + Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]

2
, (6.37)

where ρ̂S̄ = TrS [P̂S |ψ⟩⟨ψ|] in current situation.

However, if we still assign A = 1 if we get |g⟩ and A = −1 otherwise, the expectation

value of A will not be the desired quantity we want. To solve this issue, recall that we have

the freedom to choose the phase of the second qubit π/2 pulse. If we choose the second qubit

π/2 rotation to be along −r⃗ instead of r⃗ (or equivalently choose (ϕ + π) instead of ϕ, then

the |g⟩ outcome probability will be

Pg,(ϕ+π) =
Tr[ρ̂S̄ ]− Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]

2
. (6.38)

Therefore, one thing we can do is to generate a random Bernoulli variable s first. There is

50% probability that s = 1 and 50% probability that s = −1. If we get s = 1 we will choose

the second qubit π/2 rotation to be along r⃗, otherwise it will be −r⃗ instead. In both cases,
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we assign A = 1 if the qubit measurement outcome is |g⟩, or we assign A = −1 if it is not

|g⟩. The expectation value of sA will be exactly Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]. Another merit of

this procedure is that it will work even when it is hard to distinguish |e⟩ and |f⟩ levels in

qubit readout, as long as we can distinguish |g⟩ outcomes from others.

In our experiments [97], we did not use the trick of random number s generation, since

it is not necessary to only perform a single-shot measurement per sampling vector α⃗S̄ . We

tried to repeat the experiment 10 times while the rotation of the second qubit π/2 pulse

is along r⃗, and 10 times while the rotation is along −r⃗. Finally, we subtract the averaged

probability of achieving outcome |g⟩ between the two situations to get an estimation for

Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)].

6.5 Numerical simulations on the overhead estimation

In this section, we present simulations of the infidelity and F-norm matrix distance vs. point

number for both the DEMESST tomography method and an optimized linear inversion (OLI)

method, whose details are explained below. Briefly, in the OLI method we neither apply

the assumption on the collective truncation nor implement the ground state verification

trick. In the simulations, we use the two methods to reconstruct an ideal W state |W ⟩ =

1√
M

∑M
m=1 |1m⟩, where |1m⟩ represents the multimode Fock state with a single photon in

the m-th mode. For DEMESST, we simulate up to M = 7 modes, while for OLI we consider

up to M = 5 modes. We vary the number of randomly chosen mode displacement vectors

{α⃗}, and observe the fidelity and the F-norm distance between the reconstructed density

matrices and the ideal one, |W ⟩⟨W |. The results are shown in Fig. 6.3. For each set of

randomly sampled α⃗ vectors, we perform the state reconstruction 96 times while modeling

readout errors to produce the error bars.

We now discuss how to reconstruct the W state in a single run of the simulation. In

DEMESST, we have (M + 1)2 basis operators [defined in Eq. (6.17)] for which we want
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(a)

(b)

(c)

(d)

Figure 6.3: Resource overhead simulation to reconstruct |W ⟩ state with both DEMESST and
OLI methods. (a-b) Simulated reconstruction infidelity with (a) DEMESST and (b) OLI
methods, while varying the total measurement number and the mode number M . The gray
dashed lines are the references of 0.1 infidelity. (c-d) Simulated F-norm distance between
reconstructed density matrix and the ideal one with (c) DEMESST and (d) OLI methods.
In all 4 plots, the dependence on the total measurement number x is fitted with a polynomial
function y = axb, where y is either the infidelity or the F-norm distance. We use the fitted
lines to estimate the resource requirements shown in Fig. 6.1(b).

to estimate expectation values. Following Eq. (6.21), we project (M − 2) modes out of

the sampling problem. Then, we only need to sample 2-mode α⃗S̄ vectors and perform our

generalized Wigner measurements in those remaining 2 modes. For each basis operator, we

randomly sample 48–6144 α⃗S̄ vectors according to the probability density function p(α⃗S̄)

[defined in Eq. (6.12)]. For each α⃗S̄ vector, we simulate a generalized Wigner measurement

with 10 averages. As explained in Sec. 6.4, we sample a Bernoulli variable 10 times with

probability Pg,ϕ to get the outcome A = 1, and another 10 times with probability Pg,(ϕ+π)

to get the outcome A = 1 [see Eq. (6.37) and Eq. (6.38)]. We use these results to estimate
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the expectation value for the basis operator. Repeating for all basis operators gives us the

reconstructed density matrix. Finally, since it is possible for the reconstructed state to be

not physical, we further utilize the algorithm introduced in Ref. [175] to find a maximally

likely choice of density matrix that satisfies physicality constraints. We calculate the fidelity

and F-norm distance of this physical density matrix with respect to the ideal |W ⟩⟨W | state.

The results are shown in Fig 6.3(a) and (c). The Total measurement number is (M +

1)2 basis operators, times the number of sampled α⃗S̄ vectors per basis operator, times 10

measurements per α⃗S̄ vector.

In practice, we have imperfect qubit readout. We model this in the simulation in the

following way: if the Bernoulli outcome is A = 1 (qubit in |g⟩), the readout voltage V

is generated by a normal distribution with mean Vg and variance σ2g . If instead A = −1

(qubit in |e⟩ or |f⟩), V is generated by a normal distribution with mean Ve and variance

σ2e (in our device, |e⟩ and |f⟩ were difficult to distinguish). Then, for each measurement,

instead of recording a Bernoulli outcome A = ±1, we actually record a continuous value
2V−(Vg+Ve)

Vg−Ve that is normalized to get a final unbiased estimation. The readout error increases

the variance in the Wigner measurement and therefore the total sampling overhead. Based

on experimental data, we choose σg
|Vg−Ve| = 0.37 and σe

|Vg−Ve| = 0.35 for our simulations. If

we choose V =
Vg+Ve

2 as the threshold to distinguish |g⟩ or non-|g⟩ outcomes, this can also

be understood as the qubit in |g⟩ having an 8% chance to be misidentified as non-|g⟩, while

the qubit in |e⟩ or |f⟩ having a 9% chance to be misidentified as |g⟩.

Continuing to the OLI simulations, we follow the protocol introduced in Ref. [169] to

reconstruct the state by measuring the real part of generalized M -mode Wigner functions

Re[W̃ρ(α⃗, θ⃗)] = Tr[ρ̂D̂(α⃗) cos(
∑M
m=1 θmâ

†
mâm)D̂†(α⃗)]. We reconstruct the state within the

2M dimensional subspace spanned by {|0⟩ , |1⟩}⊗M through a matrix inversion described

in Ref. [176]. To find a set of displacement vectors α⃗, for each mode (with given θm), we

generate a dataset {α}m which produces minimal condition number [177] in single-mode
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Wigner tomography. We construct 384–393216 α⃗ vectors, where each component αm of the

vector is randomly chosen from its corresponding dataset {α}m. To simulate the Wigner

measurement, we again sample a Bernoulli variable 10 times with probability Pg [defined

in Eq. (6.35)] to get A = 1 for ϕ = 0, and another 10 times with Pg for ϕ = π. We also

model the readout error as described above. Finally, we use linear inversion to obtain the

reconstructed density matrix and apply the algorithm in Ref. [175] to get a physical result.

The OLI results for the fidelity and F-norm distance with respect to the ideal |W ⟩⟨W | state

are shown in Fig 6.3(b) and (d). The total measurement number is defined as the number

of sampled α⃗ vectors times 10 averages per α⃗ vector.

Finally, we use the intersection with 0.1 (90% reconstruction fidelity) in Fig 6.3(a) and

(b) to generate the values plotted in Fig 6.1(b). We can see that the OLI method requires

fewer measurements than DEMESST for 2 modes, but DEMESST has a lower sampling

requirement for more than 3 modes. This effect becomes increasingly apparent for larger

M . Based on the theoretical results from 6.3.3 and the discussion here, DEMESST scales

polynomially with M , while OLI scales exponentially with M . Similarly, in the F-norm

distance plots in Fig 6.3(c) and (d), we again see that the DEMESST method performs

increasingly more efficiently as the mode number increases.

134



CHAPTER 7

EFFICIENT LOGICAL FIDELITY ESTIMATION FOR MAGIC

STATES WITH O(1/ϵ) COST

7.1 Introduction

Other than previous chapters where we all have a specific physical system in mind (either

resonators or atoms), now let us move to the fault-tolerant (FT) regime. As explained in

Chapter 1, to protect the fragile quantum information from the noise, one way is to encode

it into a redundant amount of physical qubits under the quantum error correction (QEC)

formalism. An error that happened during one physical operation may not directly alter the

logical information but create syndromes that can be detected, followed by a recovery map

to correct the error.

However, the protection also makes it difficult to perform logical operations arbitrarily.

For example, universal logical operations cannot be simply achieved via transversal opera-

tions on physical qubits. Based on the choice of the QEC code, some logical operations are

relatively easier to implement than others. The FT logical Clifford operations, which map

Pauli to Pauli via conjugation, can be implemented transversally on the 2D color code, or

through lattice surgery on the 2D surface code. Similarly, FT logical Pauli Z and X measure-

ments are also allowed to be transversal on any Calderbank-Shor-Steane (CSS) code. So, in

the FT regime, people usually assume that noiseless Clifford gates and Pauli measurements

are free to use, and I will keep this assumption throughout this chapter.

Unfortunately, Clifford gates are not sufficient for universal operations. To solve the

problem, one strategy is to prepare a certain type of logical states called magic states, which

introduce non-Clifford operations in the circuit via state injection. A number of high-fidelity

magic state preparation protocols have been proposed, including the recent resource-efficient

proposal named cultivation. The preparation of high-fidelity logical magic states has been
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achieved across a variety of platforms and QEC codes. Further, the fidelity of the magic

states can be consistently improved via magic state distillation (MSD) [178], which has also

been experimentally demonstrated on both physical [179] and recently logical levels [102].

To estimate the performance of the non-Clifford operations in the circuit, one way is

to characterize the logical fidelity of the distilled magic states. However, as the infidelity ϵ

reduces with the hardware development, it usually requires more overhead to characterize

such a small infidelity that the estimation accuracy can be as precise as ϵ itself. One naive

thought will be, if the standard deviation (std) of the estimated fidelity is of the order O(ϵ),

we need N ∼ O(1/ϵ2) copies of magic states if each of the measurement outcomes is indepen-

dent and identically distributed (i.i.d.). It indeed becomes a problem in a recent experiment

demonstrating 5-to-1 MSD with [[7,1,3]] logical qubits, where logical Pauli tomography is

used for fidelity characterization [102].

In this chapter, I will provide an alternative protocol we observed where only N ∼ O(1/ϵ)

magic states are required for ϵ precision. This protocol consumes two copies at the same

time for a Bell measurement. Though seemingly irrelevant, here I would like to point out

the deep connection between our work and the underlying merits of superresolution [103], an

important concept in quantum metrology that improves the precision of estimating the small

distance between two incoherent light sources. Both protocols rely on a modification of the

measurement basis of the conventional choice in order to avoid an uninformative fluctuation

in the measurement outcomes under the no-signal limit. Further, I will discuss the structure

of certain magic states where only one copy is sufficient for fidelity estimation with O(1/ϵ)

cost.

7.2 Efficient logical fidelity estimation for magic |SH⟩ state

To illustrate our protocol, I first start with the |SH⟩ magic state, a state that fits the

5-to-1 distillation scheme [178] for infidelity suppression as recently demonstrated on the
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Figure 7.1: Illustration of the efficient fidelity characterization protocol through Bell mea-
surements. (a) Bloch sphere representation for |SH⟩ magic state, with the coordinate
( 1√

3
, 1√

3
, 1√

3
). (b) The Bell measurement circuit. Here C1 and C2 are randomly chosen

from GSH = {I, (SH), (SH)†} for twirling purpose.

logical level [102]. The corresponding density matrix of the |SH⟩ = cos(θSH/2) |0⟩ +

eiπ/4 sin(θSH/2) |1⟩ state with θSH = arccos(1/
√
3) can be expressed as

|SH⟩⟨SH| = 1

2

(
I +

X + Y + Z√
3

)
, (7.1)

which indicates that |SH⟩ is an eigenstate of the Clifford operator S ·H, since S ·H simply

permutes the Pauli operators as follows:

(SH) ·X · (SH)† = Z, (SH) · Y · (SH)† = X, (SH) · Z · (SH)† = Y. (7.2)

Now we are given a noisy copy of |SH⟩ state and want to know its small infidelity ϵ

(ϵ≪ 1). We first assume that the noisy state is in the depolarization form, with the density

matrix

ρϵSH = (1− ϵ)|SH⟩⟨SH|+ ϵ|SH⊥⟩⟨SH⊥| = 1

2

[
I +

1− 2ϵ√
3

(X + Y + Z)

]
, (7.3)

where |SH⊥⟩ = sin(θSH/2) |0⟩ − eiπ/4 cos(θSH/2) |1⟩ is orthogonal to |SH⟩. To estimate

ϵ, one straightforward approach will be to perform logical Pauli measurements and then
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reconstruct the density matrix based on the outcomes. For ρϵSH state, Pauli measurements

will always lead to a binomial distribution (±1 outcomes) with the probability p±1(ϵ) =

1
2 ± 1−2ϵ

2
√
3

, regardless of which Pauli operator we choose. The expectation value will be

µ = 1−2ϵ√
3

, and therefore we can use the measured one (µ̂) to estimate ϵ by ϵ̂ = 1−
√
3µ̂

2 . It

is easy to calculate the std for the ϵ̂ estimated in this manner, which gives std[ϵ̂] ≃ 1√
2N

(here N is the number of magic state copies). Clearly, to make std[ϵ̂] comparable with ϵ,

it requires N ∼ O(1/ϵ2) costs. In fact, we can calculate the classical Fisher information

associated with such a binomial distribution, which gives

I(ϵ) = 1

p+1(ϵ)

[
dp+1(ϵ)

dϵ

]2
+

1

p−1(ϵ)

[
dp−1(ϵ)

dϵ

]2
=

2

1 + 2ϵ− 2ϵ2
≃ 2. (7.4)

This provides a lower bond for the std of any unbiased estimator of ϵ due to the Cramér-Rao

bound std[ϵ̂] ≥ 1/
√
N · I(ϵ), which results in the same N ∼ O(1/ϵ2) scaling to meet the

precision requirement.

Things become different when we have two copies of ρϵSH . With the assumption that

Clifford operations are free in the FT regime, now we are allowed to perform the Bell mea-

surement over the two copies [see Fig 7.1(b) for the circuit]. Notice that, (ρϵSH)⊗2 can be

expressed as

(ρϵSH)⊗2 = (1− ϵ)2|SH⟩⟨SH|⊗2 + ϵ2|SH⊥⟩⟨SH⊥|

+ ϵ(1− ϵ)
(
|Ψ+
SH⟩⟨Ψ+

SH |+ |Ψ−
SH⟩⟨Ψ−

SH |
)
,

(7.5)

where |Ψ±
SH⟩ = 1√

2

(
|SH⟩ |SH⊥⟩ ± |SH⊥⟩ |SH⟩

)
is symmetric (antisymmetric) under qubit

exchange. Bell measurement, on the other hand, enables us to get the population of the

state inside the antisymmetric subspace, as the probability to achieve (−1,−1) outcome is

pS = ϵ(1 − ϵ). We can estimate ϵ with the proportion of singlet count in all the outcomes

(p̂S) by ϵ̂ = 1−√
1−4p̂S
2 ≃ p̂S , which gives std[ϵ̂] ≃

√
pS
N/2

≃
√

2ϵ/N (one Bell measurement
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needs two copies of magic states). The
√
ϵ scaling in the std leads to a vanishing fluctuation

to decide if the state is singlet or triplet in the noiseless limit, which reduces the magic state

overhead to N ∼ O(1/ϵ) if we want std[ϵ̂] to be comparable with ϵ itself.

There are two important features in our protocol that are worth highlighting. The first is

that the noisy state ρϵSH is in the depolarization form, which only contains one unknown pa-

rameter in the density matrix. This assumption is valid due to the allowed Clifford subgroup

twirling. An arbitrary state can be twirled into this form by randomly applying one of the

operators in the Clifford subgroup GSH = {I, (SH), (SH)†} with equal (1/3) probability.

Meanwhile, this twirling process will not affect the fidelity of the noisy copy with respect to

|SH⟩, since |SH⟩ is an eigenstate of any element in GSH . Second, there exists a stabilizer

state (an eigenstate of n commuting logical Pauli operators, where n is the number of log-

ical qubits) which has no overlap with the noiseless state but O(ϵ) overlap when the state

becomes noisy. Since Clifford operations and Pauli measurements are free in the FT regime,

we can get a binomial distribution where the probability of the nontrivial outcome is equal

to the overlap itself. This gives the O(
√
ϵ) dependence in the std for ϵ estimation. In the

example here, |Ψ−
SH⟩ = 1√

2
(|0⟩ |1⟩−|1⟩ |0⟩) is the desired stabilizer state (eigenstate of −ZZ

and −XX) that has no overlap with |SH⟩⊗2. The probability of the Bell measurement with

(−1,−1) outcome is exactly the overlap with |Ψ−
SH⟩, which finally results in the efficiency

claim for the fidelity estimation protocol we proposed.

7.3 Efficient fidelity estimation for multi-qubit magic states with

Bell measurement

Now we expect to generalize our protocol so that the fidelity of a multi-qubit magic state

can be efficiently estimated. As discussed, two key ingredients in our protocol are Clifford

subgroup twirling and the ability to find a stabilizer state that has O(ϵ) overlap with the

noisy input state. Here, I will elaborate on how these features can be generalized to the
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multi-qubit situations. I will first analyze the generic form of a state twirled by a Clifford

subgroup, specify the types of magic states that our protocol applies for, and then discuss

how to extend the Bell measurement protocol into the multi-qubit cases, which allows us to

efficiently estimate the fidelity of the state with at most O(ϵ2) bias. In the small ϵ limit,

such a bias will be negligible when compared with the expected order O(ϵ) fluctuations in ϵ

estimation.

7.3.1 Clifford subgroup twirling

As has been explained, the Clifford subgroup twirling aims to simplify the noisy form of

the density matrix without affecting the overlap with the ideal state. Therefore, for a tar-

get magic state, we can choose those Clifford operators such that the magic state is their

co-eigenstate. Since every Clifford operator is unitary, the modulus of the corresponding

eigenvalue for each operator will always be 1. It is straightforward to verify that the set of

allowed operators has the structure of a group, specifically, it is a subgroup of the Clifford

group. We define “Clifford subgroup twirling” as randomly picking an element in the Clifford

subgroup with equal probability and applying it to the noisy state. Given an arbitrary state

ρ, the resulting state ρtw after twirling by a Clifford subgroup G is

ρtw =
1

|G|
∑
g∈G

gρg†, (7.6)

where |G| is the the number of elements in G.

We can further use the group representation theory to explore the structure of ρtw. The

full Hilbert space H can be separated into several invariant (irreducible) subspaces Hi (i.e.,

H =
⊕

iHi), such that a state initially in one subspace will not leave it when acted by

any operator in G. Meanwhile, each Hi cannot be further separated. The operations of

the group elements, when restricted in each subspace Hi, form an irreducible representation
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of the group G. We then use (α, s) to label these subspaces, where α indicates different

inequivalent irreducible representations and s labels different subspaces with the equivalent

irreducible representation. We also denote Π(α,s) as the projector onto each irreducible

subspace H(α,s).

Given a twirled state ρtw as in Eq. (7.6), we can show that for any g ∈ G,

gρtw =
1

|G|
∑
h∈G

(gh)ρh† =
1

|G|
∑
h′∈G

h′ρ(g†h′)† = ρtwg, (7.7)

which indicates that Schur’s lemma in the group representation theory applies here []. Schur’s

lemma leads to a great simplification for the structure in ρtw, as


Π(α,s)ρtwΠ(α,s) = λ(α,s)Π(α,s);

Π(α,s)ρtwΠ(α′,s′) = 0 (α ̸= α′).
(7.8)

The restriction of ρtw in each subspace H(α,s) will be proportional to the identity, and the

coherence between two inequivalent irreducible sectors will be zero. Therefore, ρtw can be

expressed as

ρtw =
∑
(α,s)

λ(α,s)Π(α,s) +
∑
α

ρ
(α)
tw,off , (7.9)

where ρ(α)tw,off contains off-diagonal terms between different subspaces with equivalent irre-

ducible representations.

Given a quantum state |ψ⟩, we can find the associated Clifford subgroup Gψ where |ψ⟩

is a co-eigenstate of every element in Gψ. This means that the irreducible subspace H|ψ⟩

containing |ψ⟩ only has dimension 1 (H(0,0) = span{|ψ⟩}). If we cannot find another |ψ′⟩

such that |ψ⟩ and |ψ′⟩ are both eigenstates with the same eigenvalue for every element in

Gψ, then there is no other equivalent irreducible representation of Gψ as its representation

on H(0,0). According to Eq. (7.8), given an arbitrary state ρtw twirled by Gψ, there will not
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be any coherence between |ψ⟩ and any other states orthogonal to it. In the following, we will

only focus on the fidelity estimation with the state |ψ⟩ that meets the above requirement.

Under this condition, an arbitrary state twirled by Gψ will be

ρψ,tw = (1− ϵ)|ψ⟩⟨ψ|+
∑

(α,s),α>0

ϵ(α,s)

dim[H(α,s)]
Π(α,s) +

∑
α>0

ρ
(α)
ψ,tw,off , (7.10)

where the summation in the last two terms covers all (α, s) pairs except (0, 0), which corre-

sponds to the subspace H(0,0) = span{|ψ⟩}. Moreover, the infidelity ϵ satisfies

ϵ =
∑

(α,s),α>0

ϵ(α,s). (7.11)

We should note that not every state satisfies the condition, as it may not be an eigen-

state of any Clifford operator other than the trivial identity. However, for the commonly

used magic state like the |T ⟩ = |0⟩+eiπ/4|1⟩√
2

state, the above mentioned |SH⟩ state and sev-

eral multi-qubit magic states we will show later, we can indeed find a subgroup of Clifford

operators to fulfill the requirement. The magic state will be the only co-eigenstate of all

elements in the subgroup with the given eigenvalues it corresponds to.

7.3.2 Multi-qubit Bell measurement

As previously explained, the state |ψ⟩ that we want to estimate the fidelity with should

satisfy the following condition: starting with an arbitrary noisy state, the resulting state after

twirling by the Clifford subgroup Gψ associated with |ψ⟩ contains no coherence between |ψ⟩

and any other state orthogonal to it. With the diagonalization of ρψ,tw shown in Eq. (7.10),

we have

ρψ,tw = (1− ϵ)|ψ⟩⟨ψ|+
∑
k

ϵk|ψ⊥k ⟩⟨ψ⊥k |, (7.12)
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...

...

ρ C1

H

H

H

ρ C2

Figure 7.2: Circuit for transversal Bell measurements. Here C1 and C2 are n-qubit Clifford
gates used for Clifford subgroup twirling.

where ϵ =
∑
k ϵk is the infidelity of the noisy state and |ψ⊥k ⟩ are some states orthogonal to

|ψ⟩. I will show that, given two identical copies of the noisy ρψ,tw, we can still use the Bell

measurement scheme to efficiently calibrate ϵ with an unknown bias up to O(ϵ2) order.

To illustrate the idea, we consider the population of ρ⊗2
ψ,tw in the antisymmetric subspace

under the exchange of the two n-qubit states. Similar to Eq. (7.5), we can also write ρ⊗2
ψ,tw

as

ρ⊗2
ψ,tw = (1− ϵ)2|ψ⟩⟨ψ|⊗2 +

∑
k

ϵk(1− ϵ)
(
|Ψ+
k ⟩⟨Ψ

+
k |+ |Ψ−

k ⟩⟨Ψ
−
k |
)

+
∑
k

ϵ2k|ψ⊥k ⟩⟨ψ⊥k |+
∑
k<l

ϵkϵl

(
|Ψ+
k,l⟩⟨Ψ

+
k,l|+ |Ψ−

k,l⟩⟨Ψ
−
k,l|
)
,

(7.13)

where 
|Ψ±
k ⟩ =

1√
2

(
|ψ⟩ |ψ⊥k ⟩ ± |ψ⊥k ⟩ |ψ⟩

)
,

|Ψ±
k,l⟩ =

1√
2

(
|ψ⊥k ⟩ |ψ⊥l ⟩ ± |ψ⊥l ⟩ |ψ⊥k ⟩

)
.

(7.14)

Clearly, |Ψ+
k ⟩ and |Ψ+

k,l⟩ are symmetric under exchange while |Ψ−
k ⟩ and |Ψ−

k,l⟩ are antisym-
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metric. The population of ρ⊗2
ψ,tw in the antisymmetric subspace can be computed as

pA =
∑
k

ϵk(1− ϵ) +
∑
k<l

ϵkϵl = ϵ− ϵ2 +
∑
k<l

ϵkϵl = ϵ− ϵ2 +
∑
k ϵ

2
k

2
. (7.15)

Therefore, pA can be bounded as ϵ − ϵ2 ≤ pA < ϵ − ϵ2/2. Even if we use pA itself as an

estimator for ϵ, the bias will be at most ϵ2, which will be negligible when the infidelity ϵ

itself is small.

The next question will be how to measure the population of ρ⊗2
ψ,tw in the antisymmetric

subspace. This can be achieved with transversal Bell measurements on each pair of qubits

(see Fig 7.2) and counting the singlet outcomes. If we get an even (odd) number of singlet

outcomes, then the full state is projected into the symmetric (antisymmetric) subspace. This

can be understood as, since the swap operation between two n-qubit states SWAPn can be

decomposed as SWAPn = SWAP⊗n, the even (odd) count of the singlet outcomes indicates

the full projected state is the eigenstate of the SWAPn operator with eigenvalue +1 (−1).

Therefore, the estimation of the antisymmetric subspace population pA is equivalent to the

estimation of the probability of getting an odd number of singlet outcomes in the transversal

Bell measurements.

The discussions above allow us to summarize our protocols into the following theorem,

with the proof deferred to the Appendix E.

Theorem 7.1. Given a state |ψ⟩ that can be twirled into the form of Eq. (7.10) via the

associated Clifford subgroup, and a constant factor 0 < r < 1. When infidelity ϵ of the noisy

state is smaller than a constant, then by performing the Bell measurement on two copies of

twirled states, it only requires N ∼ O[1ϵ log(1/δ)] total copies such that the probability of the

deviation between ϵ and a specific estimator ϵ̂ satisfies P (|ϵ̂− ϵ| > rϵ) < δ.
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7.4 Efficient protocols with one-copy magic state

7.4.1 Generic formalism

In the previous section, I have discussed our protocol to efficiently characterize the fidelity of

the magic states with the Bell measurement, provided the states can be twirled into the form

of Eq. (7.10) using a Clifford subgroup. This protocol requires manipulating two copies of

the states at the same time. However, when it comes to a multi-qubit magic state, sometimes

a single copy at one time is sufficient for the O(1/ϵ) efficiency claim.

To explain the idea, we can take a look at the twirled noisy state Eq. (7.10) again. For

an irreducible subspace H(α,s), if we can find a stabilizer state |S(α,s)⟩ inside it, then the

small overlap
ϵ(α,s)

dim[H(α,s)]
between the twirled state ρψ,tw and |S(α,s)⟩⟨S(α,s)| can be efficiently

characterized through a Clifford circuit. This is because for every stabilizer state we can use

Clifford operations to convert it into |0⟩⊗n, and then the Pauli Z measurement will be

sufficient to get the overlap. Such an O[ϵ(α,s)] expectation value also implies an O[
√
ϵ(α,s)]

std in the estimation rather than O(1), so that our efficiency argument in previous sections

also applies here. Moreover, if every ϵ(α,s) can be characterized efficiently, then we can

compute the total infidelity ϵ since it is the summation of all the ϵ(α,s). The total sampling

cost also needs to be summed together; however, we may still make the efficiency claim on ϵ

characterization since the overhead to estimate each ϵ(α,s) is efficient. To make it rigorous, we

formulate this intuition into the following theorem, while deferring the proof to Appendix E.

Theorem 7.2. Given a state |ψ⟩ that can be twirled into the form of Eq. (7.10) via the

associated Clifford subgroup, and a constant factor 0 < r < 1. If for every irreducible

subspace H(α,s) (other than H(0,0) = span{|ψ⟩}) we can find a stabilizer state |S(α,s)⟩ in it,

then we can use N ∼ O[1ϵ log(1/δ)] total copies such that the infidelity ϵ can be approximated

by an estimator ϵ̂ with the probability P (|ϵ̂ − ϵ| > rϵ) < δ, and each time only one copy of

noisy state is consumed.
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Although the condition that every H(α,s) contains a stabilizer state looks demanding,

below I will show that both the two-qubit |CZ⟩ and the three-qubit |CCZ⟩ magic states

meet the requirement and therefore support the efficient characterization of their infidelities.

Before diving into those specific examples, I will also discuss another perspective on the

Clifford subgroup twirling, which will be helpful in the calculation of a specific twirled magic

state.

7.4.2 Clifford subgroup twirling: another perspective

In Sec. 7.3.1, we have used Schur’s lemma to investigate the generic structure of a state

twirled by a Clifford subgroup. Now I will try to revisit the Clifford subgroup twirling from

the viewpoint of how Clifford maps Pauli operators to Pauli operators via conjugation (i.e.,

maps a Pauli operator P to CPC† where C is a Clifford operator). As I will show later,

the new perspective provides a simple way to calculate the forms of the twirled states for

specific examples.

I start with the discussion on how the Clifford operations act on the Hermitian Pauli

operators via conjugation. The set of n-qubit Hermitian Pauli operators PHn is constituted by

the tensor product of single-qubit Pauli {I,X, Y, Z}, with an overall prefactor ±1. We notice

that, first, the Hermiticity of those Pauli operators is preserved under the map. Second,

since the Clifford operators are invertible, we cannot map two different Pauli operators to

the same one. As a result, the action of a Clifford operation via conjugation only permutes

the elements in PHn .

A Clifford subgroup G can lead to a partition of PHn into several equivalent classes.

Given P, P ′ ∈ PHn , we define them to be equivalent if and only if there exists g ∈ G such

that P ′ = gPg†. We denote this equivalence relation as P ∼ P ′. Clearly, PHn can be written

as the union of several disjoint equivalent classes Kα (i.e., PHn =
⋃
αKα), where all the

elements in each Kα are equivalent to each other under G. Finally, since each Kα is closed

146



by the action of any g ∈ G via conjugation, such an action simply results in a permutation

of elements in each Kα.

Now we focus on the effects of twirling. For P1, P2 ∈ Kα, there exists h ∈ G such that

P2 = hP1h
†. This leads to

∑
g∈G gP2g

†

|G| =

∑
g∈G(gh)P1(gh)

†

|G| =

∑
g∈G gP1g

†

|G| =
1

|G|
∑
g∈G

g

∑
P∈Kα

P

|Kα|
g† =

∑
P∈Kα

P

|Kα|
,

(7.16)

where |Kα| is the number of elements in |Kα|. The last equal sign comes as the action of g

via conjugation permutes the elements in Kα. Since arbitrary ρ can be expressed as a linear

superposition of Pauli operators, the twirled state ρtw will have the following simplified form

that

ρtw =

∑
g∈G gρg

†

|G| =
∑
α

cα

∑
P∈Kα

P

|Kα|
, (7.17)

which is now a linear combination of (
∑
P∈Kα

P ), the summation of every element in the

same class. I will use this property to investigate the generic form of the twirled states when

estimating the fidelity with magic |CZ⟩ and |CCZ⟩ states below.

7.4.3 Case study: magic |CZ⟩ state

We first focus on the fidelity estimation of the |CZ⟩ logical magic state, which is used by

IBM for demonstrating the break-even fidelity of the prepared magic state encoded in the

[[4,1,2]] error-detecting code [180]. The |CZ⟩ state is defined as

|CZ⟩ = |00⟩+ |01⟩+ |10⟩√
3

, (7.18)

which is an eigenstate of the Clifford operator CZ with eigenvalue 1. We can easily verify

that it is also an eigenstate of both Clifford operators SWAP and X2 ·CX1,2 (I denote qubit

j as the control and k as the target with the notation CXj,k). Those operators generate a
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Clifford subgroup GCZ = ⟨CZ, SWAP, X2 · CX1,2⟩ where the |CZ⟩ state is a co-eigenstate of

every element in GCZ. We can use this subgroup to twirl the noisy state without affecting

its overlap with the pure |CZ⟩.

To investigate the generic form of a state twirled by the group GCZ, as explained previ-

ously, we consider how GCZ leads to a partition of all 2-qubit Hermitian Pauli operators into

different equivalent classes. Here I list them as

KCZ
0,+ = {II}, KCZ

1,+ = {IZ, ZI,−ZZ}, KCZ
2,+ = {IX,XI,XZ,ZX,XX, Y Y };

KCZ
m,− = {−P |P ∈ KCZ

m,+} (m = 0, 1, 2);

KCZ
3 = {±Y I,±IY,±XY,±Y X,±Y Z,±ZY }.

(7.19)

It is easy to check that
∑
P∈KCZ

m,+
P = −∑P∈KCZ

m,−
P for m = 0, 1, 2 and

∑
P∈KCZ

3
P = 0.

According to Eq. (7.17), any 2-qubit state twirled by GCZ can be written as

ρCZ,tw =

∑
g∈GCZ

gρg†

|GCZ|
=

1

4
I +

c1
3

∑
P∈KCZ

1,+

P +
c2
6

∑
P∈KCZ

2,+

P. (7.20)

With the substitution that c1 = 1
4 − ϵ1 and c2 = 1− ϵ1 − 3ϵ2

2 , ρCZ,tw now has the form that

ρCZ,tw = (1− ϵ1 − ϵ2)|CZ⟩⟨CZ|+ ϵ1|11⟩⟨11|+ ϵ2
I − |CZ⟩⟨CZ| − |11⟩⟨11|

2
, (7.21)

which has the desired structure as suggested by Eq. (7.10). The infidelity of the twirled state

is ϵ = ϵ1 + ϵ2.

Finally, both ϵ1 and ϵ2 can be efficiently calibrated by measuring the overlap with certain

stabilizer states. To estimate ϵ1, we measure the overlap with the |11⟩ state. This can be

achieved by performing logical Z measurements on both qubits and counting the (−1,−1)

outcomes. The probability of such an outcome is exactly ϵ1 itself. Similarly, we can perform

the Bell measurement to get the overlap with the singlet state |Ψ−⟩ = 1√
2
(|0⟩ |1⟩ − |1⟩ |0⟩).
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The probability of this outcome will be ϵ2/2. The conditions for Theorem 7.2 are satisfied,

and therefore we can consume one copy of |CZ⟩ magic state each time to efficiently calibrate

its logical fidelity with a total O(1/ϵ) overhead.

7.4.4 Case study: magic |CCZ⟩ state

|CCZ⟩ state is another multi-qubit magic state that is widely considered as the non-Clifford

resource in the FT quantum computing. Defined as

|CCZ⟩ = CCZ |+⟩⊗3 =
1

2
(|0⟩ |0⟩ |+⟩+ |0⟩ |1⟩ |+⟩+ |1⟩ |0⟩ |+⟩+ |1⟩ |1⟩ |−⟩), (7.22)

the |CCZ⟩ state can be converted into two |T ⟩ magic states given another |T ⟩ catalyst [181].

To find the efficient protocols for |CCZ⟩ fidelity estimation, again we first look for the generic

form of a noisy |CCZ⟩ state after Clifford subgroup twirling, and then discuss the choice of

the stabilizer states which lead to the efficiency claim by measuring the overlap with them.

To begin with, we need to find the Clifford operators for which |CCZ⟩ is an eigenstate.

Since |+⟩⊗3 is an eigenstate for both Xi on any qubit and CXj,k on any two qubits, |CCZ⟩

is an eigenstate for both CCZ ·Xi ·CCZ and CCZ ·CXj,k ·CCZ. We can further verify that

these two operators are still Clifford, since


CCZ ·X1 · CCZ = X1 · CZ2,3,

CCZ · CX1,2 · CCZ = CZ1,3 · CX1,2,

(7.23)

and the CCZ operation is permutation-invariant. We will use the Clifford subgroup GCCZ =

⟨CCZ ·Xi · CCZ,CCZ · CXj,k · CCZ⟩ (for i, j, k ∈ {1, 2, 3}) to twirl the noisy state.

Next, we need to find the generic form of a noisy state after GCCZ twirling. To simply

the discussion, I will first present the result from twirling by GXXX = ⟨Xi,CXj,k⟩ (for

i, j, k ∈ {1, 2, 3}) first, with is only different from our desired solution by a CCZ conjugation.
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GXXX leaves a partition of the 3-qubit Hermitian Pauli operators in the following way. First,

III itself forms an equivalent class KXXX0,+ = {III}. Then, since CXj,k ∈ GXXX , all the

tensor product of Pauli X (and identity I) with the overall prefactor +1 are in the same

equivalent class KXXX1,+ = {X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3}. Finally, if a Pauli

operator P contains Yi or Zi on any qubit, then −P and P are in the same equivalent class

due to the action of Xi ∈ GXXX via conjugation. The summation of every element in that

class will be zero. Therefore, as indicated by Eq. (7.17), any 3-qubit state twirled by GXXX
becomes

ρXXX,tw =
1

8
I +

c1
7

∑
P∈KXXX

1,+

P. (7.24)

With the substitution c1 = 7
8 − ϵ, we have

ρXXX,tw = (1− ϵ)|+++⟩⟨+++|+ ϵ
I − |+++⟩⟨+++|

23 − 1
. (7.25)

This is equivalent to say that, for any noisy |CCZ⟩ state twirled by GCCZ, it can be written

as

ρCCZ,tw = (1− ϵ)|CCZ⟩⟨CCZ|+ ϵ
I − |CCZ⟩⟨CCZ|

23 − 1
, (7.26)

where ϵ is the infidelity that we need to estimate.

Finally, we need to find the desired stabilizer states that have no overlap with the noiseless

|CCZ⟩ state. From Eq. (7.22), we can clearly see that |0⟩ |0⟩ |−⟩, |0⟩ |1⟩ |−⟩, |1⟩ |0⟩ |−⟩ and

|1⟩ |1⟩ |+⟩ meet the requirements, which correspond to 4 different outcomes from the Pauli

ZZX measurement. The total probability to get any one of them in the ZZX measurement

is 4ϵ
7 given a noisy ρCCZ,tw state, and, as analyzed before, we can use one copy at each time

to efficiently estimate ϵ with O(1/ϵ) overhead in order to achieve a precision comparable

with ϵ itself.
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7.5 Numerical study with realistic experimental setup

In the sections above, I have mainly focused on the formalism of our efficient fidelity estima-

tion protocols. Now I will discuss how our protocol performs given a realistic experimental

setup. As mentioned, recently QuEra has demonstrated the 5-to-1 MSD protocol by encod-

ing a logical qubit into a [[7,1,3]] color code, where all the logical Clifford operations can

be executed transversally [102]. Moreover, such transversal operations are also feasible on

their hardware platform due to the reconfigurability of the atom arrays. Therefore, what

they did is that they first used a non-FT circuit to prepare 5 copies of logical |SH⟩ magic

states on the [[7,1,3]] code, and then executed the MSD circuit on the logical level, where

only transversal Clifford operations are required. Finally, the logical Pauli tomography was

performed on the successfully distilled magic states, while the data post-selection was also

applied based on the measured syndrome information on all 5 logical qubits in order to get

a higher reported fidelity.

In our simulations, we adopt the same circuit as that in Ref. [102] for both the non-FT

state preparation and the MSD process. However, instead of the logical Pauli tomography,

here for the fidelity estimation we consider the Clifford subgroup GSH twirling on two copies

of successfully distilled magic states followed by a logical Bell measurement between them.

For coding simplicity, in our simulations we require that the two distilled copies need to

be successful at the same time, which reduces the overall success rate in the simulation. In

practice, however, this will be unnecessary since we can always store the successfully distilled

state until the second one comes. Therefore, when counting the consumed distilled states in

the simulation, we still keep the assumption that the states can be stored, in order to show

the overhead that our protocol can offer at best. For comparison purposes, we also simulate

the performance of the fidelity estimation with the logical tomography method. See Fig 7.3

(a) and (b) for the fidelity characterization circuits, respectively.

We consider a full circuit-level noise model in the simulations, which contains a noisy
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Figure 7.3: Numerical simulation on |SH⟩ magic state fidelity characterization overhead.
(a-b) Fidelity characterization circuit on the [[7,1,3]] logical magic |SH⟩ state using (a) Bell
measurement and (b) logical Pauli tomography method. C1(2) are single-qubit Clifford gates
randomly chosen from GSH . I omit to plot the noisy magic state preparation and distillation
circuits used in the simulation since they are the same as [102]. (c) The estimated infidelity
of the logical magic state after distillation. The green and blue dots are simulated with
noiseless characterization (a-b) circuits, and the green dashed line is achieved by fitting the
green dots. (d-e) The standard deviation of the estimator ϵ̂ when varying NSH and p, using
(d) Bell measurement and (e) Pauli tomography method. All colored dashed lines in (d)
are references of

√
2ϵ̂/NSH where ϵ̂ is shown as the green dots in (c). Black dashed lines

in (d-e) are references to 1/
√
2NSH . Up to p = 0.015, we observe the std[ϵ̂] with the Bell

measurement scheme are much below this reference line. While in the Pauli tomography
scheme, all std[ϵ̂] points are located along this line, as it is insensitive to the change of noisy
strength p.

channel associated with every physical state preparation and measurement and every single-

qubit and entangling operation on physical qubits. The overall strength of the noise is

characterized by a single parameter p. Specifically, we have:

• Single-qubit gates are followed by a depolarizing channel with average fidelity 1− p/5.
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• CZ gates are followed by a 2-qubit depolarizing channel with average fidelity 1− p.

• Qubit initialization is followed by a depolarizing channel with average fidelity 1− p/2.

• Each qubit measurement suffers a classical bit-flip with probability p/2.

Here, the convention of the channel fidelity is kept with Ref. [182].

To simulate the noisy circuit that includes magic state inputs, we adopt a two-stage

method described in Ref. [102]. The depolarizing noise channel can be simulated by randomly

inserting Pauli errors in the circuit. We use the Stim package to simulate these processes

and see how the noise affects the final syndrome and logical measurement outcomes, while

the noiseless MSD on the logical level is simulated separately. Finally, we apply the error-

detecting strategy to post-select the results, where the full instance will be discarded if a

nontrivial syndrome on any logical qubit is detected. This is because we expect that the

initially prepared logical magic states contain an order of O(p) logical infidelity, which will

be suppressed into O(p2) after a successful distillation. On the other hand, since the QEC

code we use has a distance d = 3, and every logical Clifford is transversal, we expect the

fidelity characterization part will only add O(p3) extra errors when using the error detection,

which will be negligible compared with the desired O(p2) truth when p is small.

The simulation results are shown in Fig 7.3. We first plot how the estimated magic

state infidelity varies with p, and confirm the O(p2) scaling as the desired outcome from the

MSD. We also compare with the results where the fidelity characterization part of the circuit

is noiseless, where little deviation is observed. After this, the standard deviations on the

fidelity estimators ϵ̂ are plotted with both the Pauli tomography and the Bell measurement

methods. Even when we vary p up to 1.5× 10−2, the Pauli tomography method still keeps

std[ϵ̂] ≃ 1√
2N

, which seems independent with p itself. For the Bell measurement scheme,

we also confirm the std[ϵ̂] ≃
√

2ϵ/N scaling with different p values. As a result, if we set a

target precision std[ϵ̂] = rϵ with a constant factor r, we need the N ∼ O(1/ϵ2) overhead for
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the Pauli tomography method and N ∼ O(1/ϵ) overhead for the Bell measurement method

as expected.
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CHAPTER 8

OUTLOOK

It has been a long journey before we arrive here, where we have seen a variety of approaches

to truncate the Hilbert space of the related quantum systems and their applications from

different aspects. Indeed, it is a tool to simplify the problem at hand, and most people will

more or less use it in their own research. Looking ahead, there are some directions that I

think are worth people looking into, based on my own research experience:

First, an engineered truncation could break the symmetry of the system and improve the

controllability. We have seen sufficient evidence where the cutoff comes from either destruc-

tive interference (Chapter 2) or the large detuning introduced between certain transitions

(examples including resonator modes like Ref. [169] and Chapter 6; as well as the atomic

inner structures, see Ref. [183]). It will be interesting to further look into the dynamics in

this kind of blockaded systems, and see if we can find some common features that will guide

us to find more robust or optimal (time, fidelity, etc) control sequences. On the other hand,

the population leakage to the outer space should also be taken care of when the truncation

itself is not perfect.

The above direction may sound too technical, but the following one should be of more

practical interest. It is the co-design between hardware-level error structures and upper-level

QEC codes. We have discussed different types of error structures, including Pauli bias and

erasures, but there still lacks an overall merit on the tradeoff between the structuredness and

the gate fidelity itself. People should optimize the design of QEC codes and the decoding

strategies to fully exploit the benefits from error structures on the physical qubits, where

neural network optimization could be a powerful tool in this. The logical error rate should be

an important index for comparison, but we should also consider the difficulties in performing

logical operations on the designed codes. On the hardware aspects, it will be interesting if

we can find other kinds of error structures in the physical qubits, but it is hard for me to
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envision what it looks like at the current time.

When talking about the hardware-efficient encoding of qudits, the definitions of Pauli

error weight or code distance in the upper-level QEC code may need modification. It is

because even two Pauli errors have the same type and weight, they may come from the

physical noise with different orders in their probability. Take the three-legged bosonic cat

as an example, where the qutrit computational basis is encoded by three coherent states

with ±2π
3 rotational symmetry. Then, although Z and Z2 errors are both supported on one

qutrit, they may come from physical noise â and â2 accordingly, with a probability O(p) and

O(p2). The concept of the “bias-preserving” should also be adapted in the new framework

to take care of this issue.

Then we may come to the many-body physics, where we should find richer behaviors in

dynamics compared with most of the problems I discussed in this thesis. Together with the

driven-dissipative process, we may still observe a decoherence-free subspace where we may

encode quantum information in it. Further, we should check how the noise possibly affects

the states in the encoded subspace and see if it can be corrected autonomously. Indeed, we

need some luck in the discovery. But magic can happen sometimes. Theoretical guidance

will always be helpful in this case.

A collective truncation may also lead to nontrivial dynamics in the many-body setting.

However, the connectivity requirement could be more demanding than the local interaction.

For example, in Chapter 6, our device does contain a transmon that couples with all the

modes. Another approach to quickly build long-range correlation is through the mid-circuit

measurement (MCM) and feedforward (FF) control. In the past years, we have observed

several works discussing what quantum states can be prepared in constant depth given

this framework [184–186]. I expect to see if some gadgets here can be generalized from

the circuit level to the physical level, similar to the generalization from the standard QEC

protocol (which also requires MCM and FF control to correct errors) to the hardware-efficient
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encoding.

Regarding the state characterization project, I would say that the collective truncation is

somehow a very special case, as it is contained in the framework of MPS/MPO. On the other

hand, the state or gate fidelity characterization on the logical level should be an important

direction to pursue. Though syndrome information is only used for postselection in the

protocol described in Chapter 7, in general there is evidence that such extra information

accumulated during stabilizer measurements could be helpful in error characterization of

the logical states [187]. I expect to see if it can also overcome certain limitations in some

characterization tasks where only encoded information is used [188].

Those are some of the near-term generalizations that I can come up with, based on the

topics I discussed in the thesis. I sincerely hope that you, the reader of this lengthy thesis,

could still find something useful or inspiring in it. May the work spark your thoughts at

some point!
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APPENDIX A

APPENDICES FOR CHAPTER 2

A.1 Detailed universality proof

In this part, we show that the Hamiltonian Ĥdr [see Eq. (2.2)] can generate arbitrary unitary

operations in U(N) within the N = r + 1 dimensional blockade subspace Hb. Since r is an

adjustable parameter, our protocol allows for “universal control” in bosonic systems with

Kerr nonlinearities in the sense that any unitary operator with any chosen dimension is

realizable in the system.

In quantum control theory [127], a Hamiltonian defined in an N dimensional Hilbert

space spanned by {|k⟩}N−1
k=0 contains a drift part Ĥd and several control parts Ĥc,j . It can

be expressed as

Ĥ(t) = Ĥd +
∑
j

vj(t)Ĥc,j . (A.1)

Here, we consider the drift and one of the control parts with the following form

Ĥd =
N−1∑
k=0

Ek|k⟩⟨k|,

Ĥc,1 =
N−2∑
k=0

dk(|k + 1⟩⟨k|+ |k⟩⟨k + 1|).
(A.2)

Here dk ∈ R and dk ̸= 0. The “universal control” [112] is named as the ability to realize any

unitary operation Ûtar in U(N) with properly chosen vj(t) and evolution time T , such that

Ûtar = Û(T ) = T exp

[
−i
∫ T

0
Ĥ(t′) dt′

]
. (A.3)

A Theorem in Ref. [37] suggests a sufficient condition for the choice of Ek and dk to

make the system universally controllable. We first repeat the theorem here and check that
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our Hamiltonian Ĥdr restricted in blockade subspace [Π̂rĤdrΠ̂r, see Eq. (2.5)] satisfies those

criteria.

Theorem A.1 (Ref. [37]). Denote µk = Ek − Ek+1. If µ0 ̸= 0 and µ2k ̸= µ20 for k > 0 (or

similarly if µN−2 ̸= 0 and µ2k ̸= µ2N−2 for k < N − 2), then the dynamical Lie group of the

system Ĥ(t) defined in Eq. (A.1) and (A.2) is at least SU(N). Further, if Tr[Ĥd] ̸= 0, the

dynamical Lie group is U(N).

We notice that Π̂rĤdrΠ̂r contains the drift part Ĥd,0 and two control parts Ĥc,R and Ĥc,I .

It is easy to verify that Ĥc,R meets the requirement for the control part. Then we should

check the nonlinear condition for Ĥd,0. In this case, we have Ek = χ(k2−k)/2+∆0k, which

gives the nearest energy difference µk = −χk − ∆0. To match the condition in Theorem

A.1, we need to make sure µ20 ̸= µ2N−2, which leads to r ̸= −2∆0
χ + 1. Further, since µk is

monotonic in k, we cannot find both k1, k2 (0 < k1, k2 < N − 2) such that µ20 = µ2k1
and

µ2N−2 = µ2k2
. This concludes the proof of the universal controllability of our system, even if

we can fix Im[α(t)] = 0 all the time.

Moreover, the ability to control Im[α(t)] provides us with an additional degree of freedom

to control the system, which in principle makes it possible to perform operations arbitrarily

fast. To demonstrate this, we first show that the nested commutators between iĤc,R and

iĤc,I are sufficient to form a complete basis of the Lie algebra associated with SU(N). The

reason is that [iĤc,R, iĤc,I ] =
∑r
n=0−2[3n2−(4r+1)n+r2]i|n⟩⟨n| is diagonal in Fock basis,

has zero trace, and fulfills the anharmonicity requirement as that for the drift term Ĥd in

Theorem A.1. Further, as proved in Theorem A.1, [iĤc,R, iĤc,I ] and iĤc,R are sufficient

to generate a set of complete basis of Lie algebra su(N). In practice, the overall phase

for unitary operations has no physical meaning, which makes SU(N) group sufficient for

universality. Second, since χRe[α(t)]Ĥc,R+χIm[α(t)]Ĥc,I is sufficient to achieve the desired

unitary, we can simply increase the amplitude of α(t) to do things arbitrarily fast. In the

short time limit, the drift term Ĥd,0 does not contribute to the dynamics and therefore does
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not impose a speed constraint.

A.2 Basic error analysis

In this section, we analyze the errors in implementing a desired operation using our protocol

where only 1-photon drive is allowed. Notice that, even if all the driving parameters are

perfectly implemented, there are errors stemming from photon loss and inaccuracies of the

Trotter design in Eq. (2.16). Reducing the total time of the protocol T helps to mitigate

the photon loss errors, but at the same time increases the required input power, which could

be limited in practice. This limited power also introduces coherent errors in the Trotter

approximation of the unitary operator of interest. Therefore, there is a trade-off between

these two sources of error, which we discuss in detail in the following.

For simplicity, we only consider the error in state preparation tasks characterized by

infidelity

ϵ = 1− ⟨ψtar| ρ̂(T ) |ψtar⟩ , (A.4)

where |ψtar⟩ is a pure state that we are interested in preparing and ρ̂(T ) is the state of the

system at the end of the evolution. Here, ρ̂(T ) is the state obtained after evolving for time

T under the Lindblad equation

dρ̂

dt
= −i[Ĥ ′

dr, ρ̂] + κD[â]ρ̂, (A.5)

where Ĥ ′
dr is introduced in Eq. (2.9).

To study the scaling of error ϵ with relevant physical parameters in the problem, we focus

our attention on the case of single-photon state preparation when the blockade subsystem

has only 2 dimensions and α(t) is constant, as originally proposed in Ref. [51]. Therefore,

in this case we set |ψtar⟩ = |1⟩, and ρ̂(0) = |0⟩⟨0|. To prepare the target state |1⟩, we

choose ∆0 = 0 and α(t) = α, a constant that is assumed to be a real number for simplicity.
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Therefore, the effective Hamiltonian in the blockade subspace is

Ĥ
qb
dr = −χασ̂x. (A.6)

Here σ̂x = |0⟩⟨1| + |1⟩⟨0|. Moreover, in this subspace the photon loss dissipator D[â] in

Eq. (A.5) is now simply modified to D[σ̂−], where σ̂− = |0⟩⟨1|. Note that in the ideal

case, when there is no loss or Trotter error, we can perfectly prepare |1⟩ by evolving |0⟩

under Ĥqb
dr in Eq. (A.6) for time T = π

2χα . For simplicity, here we ignore the part of the

dynamics where α(t) increases from 0 to α in the beginning and decreases to 0 in the end [51],

while only discussing errors with a constant α(t). In fact, using a time-dependent α(t) will

introduce additional imperfection for the Trotter approximation. However, as discussed in

Appendix A.3, given the assumption that α(t) varies slowly over time, these additional errors

are higher-order effects compared with the major Trotter error scaling we focus on later.

To find the scaling properties of ϵ, we treat the photon loss (ϵloss) and Trotter (ϵtt) errors

independently.

First, for the photon loss error, we assume that the Hamiltonian Ĥ
qb
dr in Eq. (A.6) is

perfectly implemented so that the quantum state is confined to the blockade subspace all

the time. If χα ≫ κ, we can treat the dissipative term κD[σ−] perturbatively. So, to

the lowest order, the error from the photon loss process satisfies ϵloss = c1κT , where the

coefficient c1 in general depends on the function α(t). In our case, we find that c1 = 3
8 (see

Appendix A.9).

Next, to estimate the error from the Trotter approximation, we ignore the photon loss

process and assume that the system undergoes unitary evolution with Hamiltonian Ĥ ′
dr

shown in Eq. (2.9). For simplicity, we use the discrete Trotter formula to illustrate analysis,

but the results apply to the proposed continuous version as well (see Appendix A.8). Let

Ûtar = e−i
Ĥ1+Ĥ2

2 δT and Û = e−iĤ1δT/4e−iĤ2δT/2e−iĤ1δT/4. Using the discrete version of
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Trotter formula [189], we have

Û
−1/2
tar Û Û

−1/2
tar = exp{(δT )3Â3 +O[(δT )5]}, (A.7)

where Â3 = i[[Ĥ1, Ĥ2], Ĥ1 + 2Ĥ2]/192 is anti-Hermitian. Further, recall the form of Ĥ ′
dr[α̃].

Since we work in the regime that |α| ≫
√
N (N is the dimension of the blockade subspace),

the dominant contribution to Â3 comes from the (χ2α
2
1,2â

†2+h.c.) terms in the Hamiltonian

Ĥ1 and Ĥ2, and therefore the matrix elements of Â3 that we focus on scale as O[(χα2)3].

Finally, as mentioned before, we need to sequentially apply M = T/δT repetitions of the

Trotter operation Û to approximately achieve our desired unitary ÛMtar, where |ψtar⟩⟨ψtar| =

ÛMtarρ̂(0)Û
†M
tar . Therefore, we find

ϵtt = 1− ⟨ψtar| ÛM ρ̂(0)Û†M |ψtar⟩ = O[(M(χα2δT )3)2]. (A.8)

Recalling the relations T ∝ 1/(χα) and M = T/δT , we finally obtain ϵtt = c2/[M
4(χT )6],

where c2 is again the coefficient that depends on specific form of our pulse design and can be

estimated numerically (see Appendix A.9). Note that in our numerical work f(t) function

is chosen as

f(t) =
iπ

2
e−i2π|s(t)−1/2|, (A.9)

where s(t) = t/δT − ⌊t/δT ⌋. This choice of f(t) also satisfies the requirements shown in

Eq. (2.14) and (2.15), and also |f(t)| is constant over time. In this situation, the reference

displaced frame [characterized by α̃(t)] oscillates back and forth along a semi-circle. In prac-

tice, it can be implemented with 1-photon drives using two interleaved tones with frequencies

(ω1 ± ωr).

Since errors from the loss and Trotter approximation are independent, to the lowest order
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Figure A.1: Numerical results of the infidelity of Fock state |1⟩ preparation with given
input power and corresponding optimal choice of gate time. The choice of Kerr parameter is
χ = 2π×3 kHz. The dynamics is calculated with the assumption that RWA is valid. Different
colors indicate different κi/χ ratios. The dashed lines are references for ϵ ∝ P

−2/15
in scaling.

they can be added directly to find the total infidelity as

ϵtot = ϵloss + ϵtt = c1κT +
c2

M4(χT )6
. (A.10)

If the driving amplitude is unbounded, we can use an arbitrarily short time T with

arbitrary fast oscillating α̃(t) (M → ∞) such that both ϵloss and ϵtt are suppressed to zero.

However, in practice there are possible limitations that prevent us from doing that. Here we

consider a key limitation, namely the input power Pin that can be applied to the system,

and evaluate the optimal ϵtot that we can achieve under this constraint.

First, we assume that χ|α|2 ≪ ωc, which can be checked self-consistently since oth-

erwise RWA will not apply, as discussed in Appendix A.5. This assumption allows us to

163



approximately write down the input power as

Pin ≃ |Λ1|2
κe

ℏωc, (A.11)

where κe is the external loss rate induced by coupling to the driving port. The total loss κ is

composed of κ = κe + κi, where κi is the internal loss rate of the resonator. We notice from

Eq. (2.10) that, Λ1 ∼ O(χα̃3) + i ˙̃α. We then need to estimate the contribution from ˙̃α. In

our design we have ˙̃α ∼ O(αM/T ). Besides, since we are only considering the lowest-order

errors from the Trotter expansion, the Trotter error should be small. Therefore, we should

have χα2δT ≪ 1, or equivalently χα2 ≪ ωr. This implies that M ≫ χα2T , and as a result,

i ˙̃α is the dominating term in Λ1. So, we can write Pin as

Pin ∼ O

(
M2α2

κeT 2

)
:=

c3M
2

κeχ2T 4
, (A.12)

where ℏωc and the proportionality constant originating from f(t) are both absorbed in c3.

Using Eq. (A.12) to eliminate M in Eq. (A.10), we obtain

ϵtot = c1(κe + κi)T +
c2c

2
3

P 2
inκ

2
eχ

10T 14
. (A.13)

As a result, we find that the scaling of T opt, namely the optimal time that minimizes ϵtot,

and the corresponding optimal error ϵopttot is given by

T opt =

(
14c2c

2
3

c1

)1/15

· 1

P
2/15
in χ2/3κ

2/15
e (κe + κi)

1/15
,

ϵ
opt
tot = 15

(
c141 c2c

2
3

1414

)1/15

·

 1

P
2/15
in χ2/3

(κe + κi)
14/15

κ
2/15
e

 .

(A.14)

It is also natural to assume that κi is a fixed property of the device while κe is adjustable
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to further optimize ϵopttot . We can find the optimal ratio of κe/κi = 1
6 that minimizes ϵopttot

while keeping χ, κi and input power Pin fixed and using the optimal T opt. This gives

ϵ
opt
tot =

15(c141 c2c
2
3)

1/15

214/15 · 64/5
·

 κ
4/5
i

P
2/15
in χ2/3

 . (A.15)

We also numerically investigate the infidelity ϵ as prescribed by Eq. (A.4) as a function of

input power. To find the optimal time for the protocol in our numerical simulations, we first

need to determine the constants in Eq. (A.13). More details can be found in Appendix A.9.

We first obtain c2 by varying M and T in the simulations and extracting the corresponding

proportionality constant in Eq. (A.10). We then obtain c3 by using the explicit form of f(t)

in Eq. A.9, which results in c3 ≃ π6

4 ℏωc. Therefore, together with c1 = 3
8 from perturbative

analysis, we can then find T opt for a given power, which subsequently determines the required

M using Eq. (A.12). In this way, both the optimal protocol time T opt and α̃(t) are fully

determined. Here we also use the optimal choice of κe = 1
6κi.

In Fig. A.1, we observe that the numerically obtained infidelities agree well with the

estimated ϵ ∝ P
−2/15
in scaling in a wide range of Pin values.

Finally, in the numerical simulation, we have assumed the validity of RWA so that the

dynamics is irrelevant with ωc after going to the rotating frame. We notice that if the

required α or M (equivalently ωr) is so large that Λ1 is comparable with the frequency of

the resonator ωc, then those off-resonant terms which has been ignored under RWA in the

beginning may lead to non-negligible effects on the dynamics. In Appendix A.5, we use

scaling analysis to briefly discuss those effects and strategies to partially compensate them

by adjusting Λ1(t) and ω1(t), or driving both charge and flux quadratures together rather

than only one of them on hardware.
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A.3 Trotter errors with time-dependent α(t)

In this section, we will also discuss the error scaling properties of our protocol, but specifically

focus on the Trotter error in the case that α(t) designed by the optimal control algorithm

is a slowly varying function that depends on time t. Here, by “slowly varied”, we mean the

time derivative of α(t) scales as α̇(t) ∼ O(α/T ), and in general dnα(t)/ dtn ∼ O(α/Tn). To

be more precise, we will calculate the difference between both sides of Eq. (2.16) in detail,

where on the left-hand side is the evolution we can achieve with only 1-photon drives, and

on the right-hand side is the target unitary operation that we want to achieve. Notice that,

unlike the constant α case in the main text where T ∝ 1/(χα), here we do not have such a

property rigorously. But, it is still reasonable to assume that T roughly scales as O(1/χα)

since the dominant part in Ĥdr is still [χα(t)â†(n̂− r) + h.c.] if α is large. We will keep this

assumption in the following derivation.

First, let us calculate the difference of unitary operation within each time slice t ∈

[kδT, (k + 1)δT ] where k is an integer and 0 ≤ k < M . We denote


Ûk = T exp

{
−i
∫ (k+1)δT

kδT
Ĥ ′
dr[α̃(t)] dt

}
,

Ûtar,k = T exp

{
−i
∫ (k+1)δT

kδT
Ĥdr[α(t)] dt

}
.

(A.16)

Recall that α̃(t) = α(t)f(t), where f(t) is a periodic function with period δT , scales as O(1),

and satisfies Eq. (2.14) and 2.15. Without loss of generality, we can just focus on the k = 0

case and calculate Û0Û
†
tar,0, since ÛkÛ

†
tar,k with any k has a similar structure as the situation
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with k = 0. By analogy with the Magnus expansion, we have

Û0Û
†
tar,0 = exp

(
− i

∫ δT

0
dt [Ĥ ′

dr(t)− Ĥdr(t)]

− 1

2

∫ δT

0
dt2

∫ t2

0
dt1{[Ĥ ′

dr(t2), Ĥ
′
dr(t1)]− [Ĥdr(t2), Ĥdr(t1)]}

+
1

2

∫ δT

0
dt2

∫ δT

0
dt1[Ĥ

′
dr(t2), Ĥdr(t1)] + R̂3

)
.

(A.17)

It is easy to see that R̂3 is anti-Hermitian and R̂3 ∼ O[(χα2δT )3]. As we discussed in the

main text, if α(t) is a constant within t ∈ [0, δT ], the first and the second order terms written

explicitly in Eq. (A.17) are zero. But here we want to talk about the more general case that

α(t) is time-dependent. Even in this situation, we will show that the contributions of the

error from the first two orders are small compared with the third-order term.

We can write α(t) as

α(t) = α(t0) + α̇(t0)(t− t0) +
1

2
α̈(t0)(t− t0)

2 +O[(t− t0)
3], (A.18)

where t0 = δT
2 . Since we assumed that α(t) is a slowly varied function, we have α̇ ∼ O(α/T )

and α̈ ∼ O(α/T 2). As a result, based on the structure of f(t), for the first-order term we

have

∫ δT

0
dt χ[α̃(t)− α(t)] ∼ O

[
χα(δT )3

T 2

]
,

∫ δT

0
dt χα̃2(t) ∼ O

[
χα2(δT )3

T 2

]
.

(A.19)

Since we have assumed that T ∼ O(1/χα), both of the two terms are smaller compared with

O[(χα2δT )3] when α is large.

A similar analysis can be performed for the second-order terms. The dominant part lies
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in [Ĥ ′
dr(t2), Ĥ

′
dr(t1)] since it contains O[(χα2)2] coefficients. We find that

∫ δT

0
dt2

∫ t2

0
dt1 χ

2[α̃2(t2)α̃
∗2(t1)− α̃∗2(t2)α̃2(t1)] ∼ O

(
χ2α4(δT )3

T

)
, (A.20)

which is also a higher order term compared with O[(χα2δT )3]. So, the dominant scaling of

Trotter error does not change even if α(t) is a slowly varied function introduced in Eq. (2.7).

A.4 Errors from inaccurate control

In this part, we will investigate the extra infidelity induced by inaccurate control of Λ1(t).

As shown in Appendix A.2, |Λ1| ∼ O(αM/T ) can be strong enough so that a deviation for

a small portion of it may cause a huge impact. Here we consider the problem that how

the infidelity changes if the actual driving pulse we use is (1 + η)Λ1(t) where η is a small

dimensionless number.

We first briefly derive the contribution of the extra ηΛ1(t) to the dynamics. Notice

that, if we go to the same displaced rotating frame as mentioned in the main text, now the

Hamiltonian should be written as

Ĥη = Ĥ ′
dr[α̃(t)] + [ηΛ1(t)â

† + h.c.], (A.21)

where Ĥ ′
dr[α̃(t)] has been defined in Eq. (2.9) and Λ1(t) = χα̃(t)[|α̃(t)|2−r]+iκα̃(t)/2+i ˙̃α(t)

(as in Eq. (2.10)). We can again perform a frame transformation such that â → â + β(t)

where β(t) satisfies

β̇(t) +
κ

2
β(t) = −iηΛ1(t). (A.22)

Further, due to the specific form of Λ1(t), we can write β(t) = β1(t) + β2(t) where β1(t) =

ηα̃(t) and β2(t) = −iη
∫ t
0 e

−κ(t−t′)/2χα̃(t′)[|α̃(t′)|2 − r] dt′. It is worth mentioning that,

although i ˙̃α dominates in Λ1, its contribution to β is much smaller compared with the
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contribution from the O(χα3) term, provided that α ≫ 1.

Now the Hamiltonian in the new frame should be

Ĥ ′
η =

χ

2
(â† + β∗)2(â+ β)2 + {χα̃(â† + β∗)[(â† + β∗)(â+ β)− r] + h.c.}

+ [
χ

2
α̃2(â† + β∗)2 + h.c.].

(A.23)

Clearly Ĥ ′
η deviates from the ideal Ĥ ′

dr[α̃(t)] as β increases from zero. Besides, in general

β(T ) ̸= 0, which suggests that we need an extra displacement operation D̂[β(T )] to let the

states go back to the non-displaced frame. But in practice, we do not know what the β(T )

is and will not actively apply this operation, which may lead to extra errors.

Finally, we try to numerically consider a specific example, which is the Fock |1⟩ state

preparation with constant α as mentioned in Appendix A.2. We assume that, T and M

are chosen optimally such that for a given target infidelity ϵ0 we have c1κT = 14
15ϵ0 and

c2
M4(χT )6

= 1
15ϵ0. However, during the constant α evolution time, the actual 1-photon

driving amplitude we implement is (1 + η)Λ1(t). From Fig. A.2 we can see how the fidelity

F = 1−ϵ decreases as the increase of inaccuracy η. We notice that for a smaller ϵ0 expected,

we need a larger α. However, larger α will result in larger deviation β. The fidelity will be

more sensitive to η with larger α, and therefore, when ϵ0 is smaller, it decays faster as η

grows.

A.5 Dynamics beyond rotating wave approximation

A.5.1 Overview

In the main text, we did not talk about any property related to the resonator frequency ωc,

since it simply disappears after we go to the rotating frame and perform the rotating wave

approximation (RWA). In practice, however, the validity of RWA will set a limitation on our

current protocol. If we can do either charge or flux drive but not both, then the driving
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Figure A.2: Fidelity changes due to the amplitude deviation with the ideal pulses for the
Fock |1⟩ state preparation task, as explained in Appendix A.4.

amplitude Λ1 cannot be too strong, which further limits the maximum |α| and the oscillation

frequency ωr for α̃(t) that is used to suppress the infidelity. In this section, we will discuss

the effects of those off-resonant terms in the aspect of scaling, and we also provide some

strategies to partially compensate for them.

Before we start to talk about the specific problem, we will briefly explain the analysis

strategy we are going to use. Rather than going to the displaced rotating frame we mentioned

in the main text, which is treated as the 0-th order reference frame here, we try to find another

reference frame with higher order corrections on the original one and compare the difference

between Hamiltonian there and the one (Ĥ ′
dr[α̃(t)]) we desire to engineer. To make sure

the dynamics induced by the difference between the two Hamiltonians are negligible, we

need higher-order corrections on the 1-photon driving amplitude Λ1(t) and frequency ω1(t),

together with several assumptions on the relationship among some relevant parameters (see

Eq. (A.31) for example).

As we shall see, there are two kinds of terms in the difference between the desired and

170



actual Hamiltonian. One kind includes terms that have a fast-oscillating coefficient, which is

usually proportional to eikωct or eikωrt with nonzero integer k; while another kind contains

those terms without fast-oscillating factors, which are called “slowly varied” terms. Besides,

we also call terms with coefficients eikωrt “slowly varied” when they are compared with eikωct

(or we call “slowly varied” compared with ωc for short).

For both cases, the dynamics induced by those terms is negligible if the amplitudes

(absolute value) of their coefficients are too small such that the integration of the amplitudes

over gate time T is far less than 1. For example, terms with slowly varied coefficient c(t) or the

fast oscillating c(t)eiωt can be both ignored if
∫ T
0 |c(t)| dt≪ 1. However, for terms with fast

oscillating coefficients that do not belong to the former situation, we need to consider some

effective Hamiltonian corresponding to those terms. For example, the dynamics generated

by a Hamiltonian like Ĥ = Âeiωt + Â†e−iωt can be approximated by that generated via an

effective Hamiltonian Ĥeff = [Â, Â†]/ω, provided that ω is much larger than some specific

matrix norm of Â. This can be simply demonstrated via the Magnus expansion. In this way,

we will focus on the scaling of the coefficients for those slowly varied effective counterparts

and see if the time integration of those is far less than 1 and therefore negligible as well.

Similarly, remember that in the parameter regime we want to work in, the coherent error

induced by (χ2 α̃
2â†2+h.c.) is negligible. In general, for terms that oscillate in the form of f2(t)

[where f(t) is a periodic function with frequency ωr and satisfies Eq. (2.14) and (2.15)], their

contribution to the dynamics can be ignored even when their amplitudes scale as O(χα2).

We will also make use of this fact later. These discussions provide support for the following

derivations.

Our scaling analysis also relies on some assumptions for the ideal blockade Hamiltonian.

We assume the dimension of the blockade subspace is small, such that in the scaling analysis

the matrix elements of â and â† are of the order O(1) when dynamics is restricted to the

blockade subspace. Also, we assume that the control function α(t) is slowly varied in time,
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which (as mentioned in Appendix A.3) implies that the time derivative of α(t) scales as

α̇(t) ∼ O(α/T ), and similarly dnα(t)/ dtn ∼ O(α/Tn).

A.5.2 Detailed scaling analysis on the dynamics

In general, the Hamiltonian in the lab frame without RWA should be written as

Ĥ =
χ

12
(â† + â)4 + (ωc − χ)â†â+ [Λ1(t)e

−iω1(t)t + Λ∗
1(t)e

iω1(t)t](â† + â). (A.24)

From then on we denote ϕd(t) := ω1(t)t − ωct and as shown in the main text we have

ϕ̇d(t) ∼ O(χα2). If we still go to the displaced rotating frame shown in the main text, the

Hamiltonian will become

ĤNR =
χ

2
(â† + α̃∗)2(â+ α̃)2 − ϕ̇d(t)(â

† + α̃∗)(â+ α̃) + [(Λ1(t)− i ˙̃α− iκα̃/2)â† + h.c.]

+ (Λ∗
1(t)e

2iϕd(t)e2iωctâ† + h.c.)+{[
χ

3
(â† + α̃∗)3(â+ α̃) +

χ

2
(â† + α̃∗)2

]
e2iϕd(t)e2iωct + h.c.

}

+

[
χ

12
(â† + α̃∗)4e4iϕd(t)e4iωct + h.c.

]
.

(A.25)

It can be easily seen that we can recover the Hamiltonian under RWA by throwing away all

the fast oscillating terms related to eiωct. Therefore, as proposed earlier we can choose Λ
[0]
1

and ϕ[0]d to achieve the desired Hamiltonian under RWA by

Λ
[0]
1 = ϕ̇

[0]
d α̃

[0] − χα̃[0](|α̃[0]|2 + r) + i ˙̃α[0] + iκα̃[0]/2,

ϕ̇
[0]
d = 2χ|α̃[0]|2.

(A.26)

where α̃[0] is the α̃ function we designed in the main text.

Now we want to focus on those fast oscillating terms. One way is to go to a slightly
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different displaced frame to absorb some large components. Note that Λ1 ∼ i ˙̃α ∼ αωr ≫

χα3, which means (Λ∗
1(t)e

2iϕd(t)e2iωctâ† + h.c.) has the largest amplitude and we want to

deal with it first. Basically, we want to choose α̃ = α̃[0]+ α̃[1] such that the amplitude of the

linear â† term can be mostly absorbed in α̃[1]. We first introduce α̃[1
′] tentatively such that

i ˙̃α[1
′] + iκα̃[1

′]/2 = [Λ
∗[0]
1 + χα̃∗[0](|α̃[0]|2 + 1)]e2iϕ

[0]
d (t)e2iωct

+
χ

3
(α̃∗[0])3e4iϕ

[0]
d (t)e4iωct +

χ

3
(α̃[0])3e−2iϕ

[0]
d (t)e−2iωct.

(A.27)

For simplicity, we denote the right-hand-side (RHS) of the equation above as g(t).

The solution for α̃[1
′] can be written down explicitly as

α̃[1
′](t) = −i

∫ t

0
e−κ(t−t

′)/2g(t′) dt′. (A.28)

Via the technique of integration by parts, we have the following identity

∫ t

0
h(t′)eiωt

′
dt′ =

k∑
n=0

(
i

ω

)n+1

[h(n)(0)− h(n)(t)eiωt]

+

(
i

ω

)k+1 ∫ t

0
h(k+1)(t′)eiωt

′
dt′,

(A.29)

where h(n)(t) = dn

dtnh(t). In Eq. (A.29) we have implicitly assumed that h(n)(t) is a con-

tinuous function for n ≤ k. Notice that if for any m, 1
ω | ddt lnh(m)(t)| = 1

ω
|h(m+1)(t)|
|h(m)(t)| ≪ 1,

then the summation in the first line of Eq. (A.29) can be convergent quickly and the residual

terms can be ignored. In our situation here when calculating α̃[1
′](t), we need to assume

ωr/ωc ≪ 1 since α̃[0](t) and Λ
[0]
1 (t) contains frequency components related to ωr. In fact, as

mentioned in former sections we always assume that κ ≪ χα ≪ ϕ̇d ∼ χα2 ≪ ωr to guar-

antee high-fidelity operations, which means the assumption of ωr/ωc ≪ 1 implies κ/ωc ≪ 1

and χα2/ωc ≪ 1. Later on, we simply ignore contributions from the factor e−κ(t−t
′)/2 since

we want to work in the regime that κt ≤ κT ≪ 1 to achieve high fidelity. Also, it varies
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slowly over time, so it will not affect any scaling analysis when taking time derivatives of

this.

With the trick mentioned above, we can write α̃[1
′] in the following form:

α̃[1
′] = α̃[1

′,0] + α̃[1
′,1]e2iωct + α̃[1

′,2]e4iωct + α̃[1
′,−1]e−2iωct. (A.30)

We first analyze α̃[1
′,1] since Λ

∗[0]
1 dominates in g(t). For the lowest order term (n = 0)

in Eq. (A.29), notice that Λ
[0]
1 contains i ˙̃α[0] term where α̃[0](t) = α(t)f(t), we have the

leading contribution in α̃[1
′,1] as α̃[1

′,1] ≃ iα∗ḟ∗
2ωc

e2iϕ
[0]
d ∼ O(αωrωc

). It also contains O(χα
3

ωc
)

terms that come from those O(χα3) parts in g(t) and those implicitly in Λ
[0]
1 . Also, since

we assumed α(t) varies slowly that α̇(t) ∼ O(α/T ) ∼ O(χα2), it gives a correction to

the estimation of α̃[1
′,1] with O( α̇fωc ) ∼ O(χα

2

ωc
). Besides, the second order term (n = 1) in

Eq. (A.29) can give a contribution of O(αf̈
ω2c

) ∼ O(
αω2r
ω2c

). Using similar argument, we can show

that α̃[1
′,2] ∼ O(χα

3

ωc
) and α̃[1

′,−1] ∼ O(χα
3

ωc
). The analysis for α̃[1

′,0] is a little different. As

mentioned in the main text, in practice we start with α(0) = 0 while α̇ ∼ O(α/T ) ∼ O(χα2).

Therefore, we have Λ
[0]
1 (0) ∼ O(χα2) so that α̃[1

′,0] ∼ O(χα
2

ωc
). Other terms from g(t) will

only cause higher-order corrections.

Later we want to show how we can partially compensate for the effects of those fast-

oscillating terms, and even with this technique, we still need further assumptions that

χα3

ωc
≪ 1,

αω2r
ω2c

≪ 1, (A.31)

so that the residual effects could be small.

We focus on the change of the Hamiltonian under the new displaced frame with α̃ =

α̃[0]+α̃[1
′]. We want first to check those extra terms (in comparison with Ĥ ′

dr[α̃(t)]) which are

induced by α̃[1
′] and do not contain fast oscillating factor (factor eikωct where |k| ∈ N+). We

try to show the dominant effect from each term in Eq. (A.25), and evaluate their contributions
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under the assumptions of Eq. (A.31).

For the corrections with cubic â or â† terms (including â†3, â†2â and their Hermitian

conjugate), their coefficients will be of O(χα̃[1
′]), whose amplitudes scale at most O(χαωrωc ).

Even without the fast-oscillating factor, the integration of their amplitudes over time will

give us χαT ωrωc ∼ ωr
ωc

≪ 1 (where we have used T ∼ 1
χα), which means the contribution from

those correction terms to the dynamics are small.

For the correction induced by slowly varied (in comparison with ωc) â†â terms, it can

come from either 2χ|α̃|2â†â or (χα̃∗2e2iϕ
[0]
d e2iωct + c.c.)â†â, where c.c. stands for “com-

plex conjugate”. The former will lead extra slowly varied â†â terms with coefficients like

(2χα̃[0]α̃∗[1
′,0] + c.c.) ∼ O( 1T

χα2

ωc
) and 2χ|α̃[1′,1]|2 ∼ O( 1T

αω2r
ω2c

), while the coefficient of the

dominant correction from the later will be (2χα̃∗[0]α̃∗[1
′,1]e2iϕ

[0]
d + c.c.) ∼ O(χα2ωrωc ). We

introduce the ϕ[1]d (t) function and make its time derivative ϕ̇[1]d (t) equal to the summation of

all the slowly varied coefficients of the correction terms, as

ϕ̇
[1]
d (t) = 2χ

{ 2∑
k=−1

|α̃[1′,k]|2 + (α̃[0]α̃∗[1
′,0] + c.c.)

+ {[(α̃∗[0] + α̃∗[1
′,0])α̃∗[1

′,1] + α̃∗[1
′,2]α̃∗[1

′,−1]]e2iϕ
[0]
d + c.c.}

}
.

(A.32)

Apparently we still have ϕ̇[1]d ∼ O(χα2ωrωc ). This term may not be ignored, and later we will

show that we can compensate for that by changing the frequency ω1(t) of the linear drive.

Then we discuss the corrections for slowly varied (in comparison with ωc) â†2 terms which

come from χ
2 (α̃ + α̃∗e2iϕ

[0]
d e2iωct)2â†2. Those corrections are

χ

2
{(2α̃[0] + α̃[1

′,0] + α̃∗[1
′,1]e2iϕ

[0]
d )(α̃[1

′,0] + α̃∗[1
′,1]e2iϕ

[0]
d )

+ 2[α̃∗[1
′,1] + (α̃∗[0] + α̃∗[1

′,0])e2iϕ
[0]
d ](α̃∗[1

′,−1] + α̃∗[1
′,2]e2iϕ

[0]
d )}â†2.

(A.33)

The dominant coefficient of the correction will be χα̃[0]α̃∗[1
′,1]e2iϕ

[0]
d ∼ O(χα

2ωr
ωc

). Although
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the amplitude of this term might be large, we notice that α̃[1
′,1] ≃ iα∗ḟ∗

2ωc
e2iϕ

[0]
d with correc-

tions of the order O(χα
2

ωc
) and O(αω

2
r

ω2c
). As a result, χα̃[0]α̃∗[1

′,1]e2iϕ
[0]
d ≃ −iχα2fḟ2ωc

. We notice

that fḟ
ωc

is a periodic function with period δT = 2π
ωr

. By averaging within each period, we

have fḟ =
∫ δT
0 fḟ dt = 0. So, fḟ is a linear superposition of fast oscillating eikωrt functions

with nonzero integer k. We can now use the effective Hamiltonian argument we brought up

previously. The commutator between this and the 0-th order [χ(α̃[0])2â†2+h.c.] will give an

effective term with amplitude scaled as 1
ωr
(χα

2ωr
ωc

)(χα2) ∼ χα3

ωc
1
T , which is negligible after

integration over time T under our assumptions Eq. (A.31). However, this trick does not

apply to higher order correction terms of α̃∗[1
′,1] like − αf̈

4ω2c
∼ O(

αω2r
ω2c

), since it may lead

to slowly varied corrections (compared with ωr) in χα̃[0]α̃∗[1
′,1]e2iϕ

[0]
d . But with the second

assumption in Eq. (A.31), after integration over time we still have χααω
2
r

ω2c
T ≪ 1, which

means the contribution from the higher order correction of α̃∗[1
′,1] can still be ignored. We

can similarly argue that other terms in Eq. (A.33) can be ignored since the amplitudes of

their coefficients are also too small.

Now we start the procedure of partial compensation. We adjust the 1-photon driving

frequency such that ϕd = ϕ
[0]
d + ϕ

[1]
d . Therefore, we choose a new correction α̃[1] for the

displaced frame which satisfies

i ˙̃α[1] + iκα̃[1]/2 = [Λ
∗[0]
1 + χα̃∗[0](|α̃[0]|2 + 1)]e2i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e2iωct

+
χ

3
(α̃∗[0])3e4i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e4iωct +

χ

3
(α̃[0])3e−2i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e−2iωct.

(A.34)

The only difference between here and Eq. (A.27) is that we use e2ki[ϕ
[0]
d (t)+ϕ

[1]
d (t)] instead of

e2kiϕ
[0]
d (t). We denote

α̃[1] = α̃[1,0] + α̃[1,1]e2iωct + α̃[1,2]e4iωct + α̃[1,−1]e−2iωct. (A.35)
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Then, from Eq. (A.29) we can find that

α̃[1,1] = α̃[1
′,1]e2iϕ

[1]
d (t) +O(

Λ1

ωc

ϕ̇
[1]
d

ωc
) = α̃[1

′,1]e2iϕ
[1]
d (t) +O(

χα3ω2r
ω3c

). (A.36)

Similarly, we can also find that the difference between α̃[1,k] and α̃[1
′,k]e2ikϕ

[1]
d (t) (for k =

−1, 0, 2) are even smaller compared with O(
χα3ω2r
ω3c

) in the scaling aspect. The difference

between α̃[1] and α̃[1
′] can lead to extra non-fast-oscillating (compared with ωc) terms. For

example, the extra coefficient induced in this way for â†â will be at most the same scaling as

[2χα̃∗[0](α̃∗[1,1]e2i(ϕ
[0]
d +ϕ

[1]
d ) − α̃∗[1

′,1]e2iϕ
[0]
d ) + c.c.] ∼ O(

χα3ω2r
Tω3c

), which will be far less that 1

and therefore can be ignored after integration over time. We can use the same way to argue

that the extra effect from the non-fast-oscillating correction of â†2 term can be ignored, due

to the similarity in the structure of α̃[1] and α̃[1
′].

The coefficient of slowly varied correction (in comparison with ωc) for â† term will be

at most O(χα2α̃[1,1]) ∼ O(χα3ωrωc ). To deal with it, we introduce a correction for Λ1 =

Λ
[0]
1 + Λ

[1]
1 , where

Λ
[1]
1 =

− χ[(|α̃[0] + α̃[1,0]|2 + |α̃[1,1]|2 + |α̃[1,2]|2 + |α̃[1,−1]|2)(α̃[0] + α̃[1,0] + α̃∗[1,1]e2iϕd)− |α̃[0]|2α̃[0]]

− χ[α̃[1,1](α̃∗[0] + α̃∗[1,0]) + (α̃[0] + α̃[1,0])α̃∗[1,−1] + α̃[1,2]α̃∗[1,1]](α̃[1,−1] + α̃∗[1,2]e2iϕd)

− χ[α̃∗[1,1](α̃[0] + α̃[1,0]) + (α̃∗[0] + α̃∗[1,0])α̃[1,−1] + α̃∗[1,2]α̃[1,1]][α̃[1,1] + (α̃∗[0] + α̃∗[1,0])e2iϕd ]

− χ[(α̃[0] + α̃[1,0])α̃∗[1,2] + α̃[1,−1]α̃∗[1,1]](α̃[1,2] + α̃∗[1,−1]e2iϕd) + χα̃∗[1,1]e2iϕd

+ [ϕ̇
[0]
d α̃

[1,0] + ϕ̇
[1]
d (α̃[0] + α̃[1,0])]

− χ[α̃∗[1,2](α̃∗[0] + α̃∗[1,0])2 + 2α̃∗[1,2]α̃∗[1,1]α̃∗[1,−1] + (α̃∗[1,1])2(α̃∗[0] + α̃∗[1,0])]e4iϕd

− χ[2α̃[1,−1](α̃[0] + α̃[1,0])α̃[1,2] + α̃[1,−1](α̃[1,1])2 + (α̃[0] + α̃[1,0])2α̃[1,1]]e−2iϕd .

(A.37)
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Here Λ
[1]
1 ∼ O(χα3ωrωc ) is chosen to fully absorb those non-fast-oscillating corrections. It is

still worth to mention that after this change there will be extra Λ
∗[1]
1 e2iϕd(t)e2iωct and some

other fast-oscillating terms with amplitude scaled at most O(χα3ωrωc ) in the new Hamiltonian,

since all others with larger amplitudes have been absorbed due to Eq. (A.34).

Further, we can introduce a correction α̃[2] ∼ O(χα3 ωr
ω2c

) ≪ 1 and repeat all the steps we

did (including ϕ[2]d and Λ
[2]
1 compensation) so that the contribution from α̃[2] are too small

and we can ignore this. After k rounds of all those corrections, terms â† with coefficients

oscillating in the speed of ωc will be at most O[αωr(χα
2

ωc
)k], which will be small compared

with 1
T for k ≥ 3 under the assumptions in Eq. (A.31).

Finally, we talk about the effects from those fast-oscillating terms (under ωc) of â†2, â†â

and â2 in Eq. (A.25), whose coefficients are at most O(χα2). We denote the summation of

them as ĤNR,2(t), which can be written as

ĤNR,2(t) ={[χ
2
[(2|α̃[0]|2 + 1)e2iϕde2iωct + (α̃∗[0])2e4iϕde4iωct] +O(

χα2ωr
ωc

e2ikωct)
]
â†2 + h.c.

}
+
[
[χ(α̃∗[0])2e2iϕde2iωct + c.c.] +O(

χα2ωr
ωc

e2ikωct)
]
â†â.

(A.38)

We denote ÛNR,2(t) := T exp(−i
∫ t
0 ĤNR,2(t

′) dt′), then for any Hamiltonian Ĥ we can

perform a frame transformation to get a new one Ĥ ′ = Û
†
NR,2ĤÛNR,2 + i

˙̂
U
†
NR,2ÛNR,2 =

Û
†
NR,2(Ĥ − ĤNR,2)ÛNR,2. We can choose Ĥ as the Hamiltonian after going to the displaced

rotating frame with all rounds of corrections. To achieve Ĥ ′, we can replace â with â(t) :=

Û
†
NR,2(t)âÛNR,2(t) and â† with â†(t) := Û

†
NR,2(t)â

†ÛNR,2(t) in (Ĥ − ĤNR,2) (also if we

consider loss we need to change D[â] into D[â(t)]). From the definition of â(t) and â†(t), we
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have

dâ(t)

dt
= (−i)[χ(2|α̃[0]|2 + 1)e2iϕde2iωct + χ(α̃∗[0])2e4iϕde4iωct +O(

χα2ωr
ωc

e2ikωct)]â†(t)

− i
[
[χ(α̃∗[0])2e2iϕde2iωct + c.c.] +O(

χα2ωr
ωc

e2ikωct)
]
â(t),

(A.39)

and also ˙̂a†(t) = [ ˙̂a(t)]† is also equal to a linear superposition of â†(t) and â(t). From scaling

analysis we know that (χα2)2

ωc
T ∼ χα3

ωc
≪ 1, which allows us to use Dyson series expansion to

solve Eq. (A.39) and only keep the lower order outcomes. Together with Eq. (A.29), we can

achieve the solution for â(t) and â†(t) approximately with dominant terms in the following:

â(t) ≃
{
1− χ

2ωc
[(α̃∗[0])2e2iϕde2iωct − c.c.]

+
iχ2

ωc

∫ t

0

[
2
(
|α̃[0](t′)|2 + 1

2

)2
+

|α̃[0](t′)|4
4

+O
(α4ωr
ωc

)]
dt′
}
â +{

−
[χ(2|α̃[0]|2 + 1)

2ωc
e2iϕde2iωct +

χ(α̃∗[0])2

4ωc
e4iϕde4iωct

]
+
iχ2

ωc

∫ t

0

[
[α̃[0](t′)]2(2|α̃[0](t′)|2 + 1) +O

(α4ωr
ωc

)]
dt′
}
â†.

(A.40)

We can see that the difference between â(t) and â is linear in â and â† whose coefficients are

at most O(χ
2α4T
ωc

), which are far less than 1. Let us focus on the terms without eikωct factors

first. Notice that the leading-order terms come from the time integration of some polynomials

of α̃[0] and α̃∗[0] with at most fourth order, which is denoted as p(α̃[0], α̃∗[0]) later in general.

Also α̃[0](t) = α(t)f(t) where f(t) is a periodical function that can be written as a Fourier

series with basis eikωrt (k ∈ Z). Due to the time integration in χ2

ωc

∫ t
0 p(α̃

[0], α̃∗[0]) dt′, only

the coefficient of eikωrt with k = 0 scales as O(χ
2α4T
ωc

) ∼ O(χα
3

ωc
), while terms that oscillate

as eikωrt (with nonzero k) only have amplitudes that scale as at most O(χ
2α4

ωrωc
). Therefore, for

the corrections that come from χ
2 (α̃

[0])2([â†(t)]2 − â†2), they contain terms with amplitude

O(χα2 · χα3ωc
) ≪ O(χα2) but oscillate in the form of f2(t), whose effect is ignorable as we
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argued at the beginning of the section. They also contain slowly varied part with coefficients

at most O(χα2·χ2α4ωcωr
) ∼ O(χα

2

ωr
·χα3ωc

· 1T ), which are again ignorable after integration over time

T . We can similarly demonstrate that the corrections coming from χα̃[0]α̃∗[1,1]e2iϕd [â†(t)]2

and other high-order terms are negligible.

Besides, after going to the reference frame with ÛNR,2, the fast-oscillating (under ωc) â†2

or â†â terms left have amplitudes at most O(χ
2α4

ωc
) ∼ χα3

ωc
· 1
T ), which are sufficiently small.

Finally, since we work in a small-dimensional blockade subspace with only several excitations

as assumed, as well as χ
2α4T
ωc

≪ 1, the corrections due to the frame transformation Û†
NR,2(T )

on the final states are negligible. This concludes all the evidence that under assumptions in

Eq. (A.31), the dynamics affected by terms beyond RWA in Eq. (A.25) could be ignorable,

in the aspect of scaling analysis.

A.5.3 Both charge and flux drives

Things will be different if we can drive both charge and flux simultaneously. In this case,

our 1-photon driving term can be implemented as

Re[Λ1(t)e
−iω1(t)t](â+ â†) + Re[iΛ1(t)e

−iω1(t)t] · i(â− â†)

= Λ1(t)e
−iω1(t)tâ† + Λ∗

1(t)e
iω1(t)tâ.

(A.41)

In this way, our leading non-RWA term in Eq. (A.24) is gone. As a result, the improved

hardware controllability can also help to mitigate the non-RWA effects.

A.5.4 Rough lower bound on operation infidelity

We want to point out that the requirement for χα3

ωc
≪ 1 is actually necessary since without

it the ĤNR,2 term will affect the dynamics a lot. Even if we can directly implement 2-photon

drive, or we can do both charge and flux drives, the requirement is still there due to the

difference between the original Kerr term χ(â + â†)4/12 and the simplified one χâ†2â2/2
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after RWA. We can use the χα3

ωc
≪ 1 condition to derive a lower bound on the infidelity of

Fock |1⟩ state preparation using constant α. Since α < (ωc/χ)
1/3, we have

T >
π

2(ωcχ2)1/3
. (A.42)

So, even in the case that power is not a constraint, and we are allowed to design κe as small

as possible, we still have

ϵ > c1κiT >
3π(κi/χ)

16(ωc/χ)1/3
=

3π(κi/χ)
2/3

16Q
1/3
i

, (A.43)

where we have already put c1 = 3
8 in it, and Qi = ωc/κi is the internal quality factor.

We denote ϵmin :=
3π(κi/χ)

2/3

16Q
1/3
i

, which serves as a lower bound of the infidelity that can be

achieved.

A.6 Rough lower bound for input power needed

Here we consider some extreme cases to provide a rough lower bound of the input power

needed for our protocol. We assume that we could directly implement 2-photon drives so that

the infidelity only comes from photon loss that ϵ = c1(κe+κi)T . Besides, we further assume

that the 2-photon drives can be implemented in some power-efficient manner such that we

only need to consider the power consumed by 1-photon drives. However, from Eq. (2.3) we

still have Λ1 ≃ 2χα3, and therefore the input power we need scales as Pin ∝ α6. To prepare

|1⟩ state with constant α, the power-dependent infidelity satisfies the following equation

ϵ = c1
π

2

κe + κi

κ
1/6
e

(
4ℏωc
Pinχ

4

)1/6

. (A.44)

We can choose κe
κi

= 1
5 to further minimize ϵ when κi is fixed, and therefore achieve the
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Table A.1: Performance analysis of our protocol in photonic crystals designed in [119],
which includes the power needed to achieve 90% fidelity of Fock state |1⟩ as well as the
self-consistency check for RWA requirements.

Cavity
design

Nonlinear
materials ωc/(2π) |χ|/(2π) κi/(2π) ϵmin Pin,0.9 (ωr/ωc)0.9 (αω2r/ω

2
c )0.9 (χα3/ωc)0.9

Tip PIC 521 THz 3.5 THz 0.52 GHz χ≫ κi
ITO 255 THz 1.9 GHz 0.26 GHz 1.5× 10−3 1.3× 10−5 W 5.8× 10−5 3.3× 10−9 7.1× 10−6

Bridge GaAs 283 THz 2.7 MHz 0.19 GHz 0.088 4.3× 108 W 0.46 112 1.3
Ge 94.6 THz 9.9 kHz 63 MHz 1.76 ϵmin > 1

error scaling ϵ ∝ κ
5/6
i /(P

1/6
in χ2/3). Equivalently, the rough lower bound of the input power

Pin for a given infidelity ϵ satisfies

Pin =
4(3πc1)

6

55
ℏωc

κ5i
χ4ϵ6

. (A.45)

A.7 Feasibility on actual platforms

In this section, we try to consider parameters from different kinds of experimental platforms

and check if it is feasible to use our protocol to achieve some high-fidelity operations on

those devices. For simplicity, we still consider the Fock |1⟩ state preparation task. We will

check the requirements for RWA and the input power needed in order to achieve a certain

fidelity derived under RWA. It is worth mentioning that, although our RWA requirements

are derived under assumptions that α(t) is slowly varied with α(0) = α(T ) = 0 and f(t) itself

is analytic, in this section we still focus on the method with constant α and f(t) defined in

Eq. (A.9) to calculate relevant parameters. More physical α(t) and f(t) functions will lead

to a change of those ci coefficients instead of the scaling properties, so we can still use those

ideal choices to get a taste of the feasibility of our protocol on different platforms.
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A.7.1 Optical ring resonators

In this part, we talk about the possibility of implementing our protocol on optical ring

resonators with χ(3) nonlinearity. We first estimate the self-Kerr χ value with experimentally

achievable platforms, and then check the RWA requirements by calculating ϵmin, which is a

rough lower bound for infidelity achieved by perturbative analysis together with parts of the

RWA requirements (see Appendix A.5.4).

The self-Kerr parameter χ in optical ring resonators with χ(3) nonlinearity can be calcu-

lated by [190]:

χ = − ℏω2c cn2
2n2AeffL

, (A.46)

where ωc is the frequency of the mode, n and n2 are the refractive index and nonlinear

refractive index correspondingly, and Aeff and L are the effective area and length of the

waveguide. In the system proposed in Ref. [191], the authors there assumed ωccn2
n2AeffL

= 3.7×

1020 W−1s−2 without pointing out which kind of materials they use nor those geometrical

parameters of the resonators. Besides, the authors hope to achieve an internal loss rate κi =

2π×25 MHz, and they mentioned that this assumption is reasonable since the corresponding

intrinsic quality factor Qi ∼ 8 × 106 is achievable with the silicon-nitride platform. This

discussion indicates that they have chosen ωc ≈ 2π × 200 THz. With those parameters, the

corresponding χ = −2π × 3.90 Hz. However, when putting these numbers into Eq. (A.43),

we can find out that ϵmin = 102 ≫ 1, which indicates that our perturbative analysis should

fall and RWA will be significantly violated if we want to use our current protocol to prepare

a Fock |1⟩ state.

A similar result is achieved using parameters from another literature [192]. In their

simulation, the parameters are chosen as γNL := n2ωc
cAeff

= 1 W−1s−2, together with ωc = 2π×

193 THz, n = 1.7, and L = 400 µm. With these numbers, we can find that χ = −2π × 0.79

Hz. The intrinsic Q-factor is chosen as 2× 106, which corresponds to κi = 2π × 96.5 MHz.

This gives ϵmin = 1151, which again indicates that our protocol does not work.
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A.7.2 Photonic crystals

Photonic crystals may perform better to increase Kerr nonlinearities with smart design by

suppression of effective mode volume. Our discussion in this part builds on the work from

Ref. [119], where the authors discussed the χ and κ values that can be possibly achieved

using their novel design of nanocavities with ultra-small mode volumes. It is claimed to be

promising for achieving a “single-photon Kerr nonlinearity” (χ ∼ κ) regime. In that work, χ

is determined by

χ = −3χ(3)ℏω2c
2ϵ0n4

VM
V 2
eff

, (A.47)

where Veff is the effective mode volume, and VM is another parameter related to cavity

design with the unit of volume.

The authors there provided two types of cavity design: tip design and bridge design.

With the tip cavity design there, in simulations people could achieve QVM
V 2
eff

≈ 2×107λ−3 and

quality factor Q ≈ 106. The λ here is the wavelength of the mode. Besides, in that work,

those authors assumed that the cavity radiation loss is much larger than material loss, so

that the same quality factor applies to cavities with the same design but different materials.

Here we simply follow this assumption to derive κi.

For organic materials like J aggregate (PIC), it has |χ(3)|/n4 ∼ 1.1 × 10−15m2/V2 at

λ = 575 nm, which gives χ = −2π × 3.5 THz and κi = 2π × 0.52 GHz. In this case, χ is

several orders of magnitude larger than κi, so there will be no need to use our protocol to

achieve universal control.

Inorganic materials like indium tin oxide (ITO) has |χ(3)|/n4 ∼ 2.12 × 10−17m2/V2 at

λ = 1175 nm. It gives χ = −2π × 1.9 GHz with κi = 2π × 0.26 GHz. The parameters

still lie in the strong Kerr-nonlinearity regime as |χ|/κi > 1, and we only need input power

Pin = 1.3× 10−5 W to achieve 90% fidelity of a single photon state with our protocol.

Similarly, for their bridge cavity design they have QVM
V 2
eff

≈ 5.5 × 107λ−3 and quality

factor Q ≈ 1.5 × 106, which in general requires a small |χ(3)|/n4 to achieve the same Kerr
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nonlinearity. But, as they mentioned, for usual semiconductor materials like gallium arsenide

(GaAs) with |χ(3)|/n4 ∼ 0.97 × 10−20m2/V2 at λ = 1.06 µm, we can get χ = −2π × 2.7

MHz and κi = 2π× 0.19 GHz. In this case, if we want to achieve 90% fidelity at the optimal

point we derived in Appendix A.2 under RWA, in fact we can see that αω2r/ω2c = 112 ≫ 1,

which means the RWA is actually violated. If people can get a better device with κi 10 times

smaller (so that κi = 2π × 19 MHz and κi/χ = 7.0) while other parameters do not change,

it is promising to pass the RWA requirement with ωr/ωc = 1.5×10−3, χα3/ωc = 1.3×10−3

and αω2r/ω
2
c = 1.1 × 10−4 if we want to achieve 90% fidelity. The power needed will be

P = 4.3× 102 W.

For bridge cavity design using Germanium (Ge) as nonlinear materials with |χ(3)|/n4 ∼

0.86 × 10−20m2/V2 at λ = 3.17 µm, we have χ = −2π × 9.9 kHz and κi = 2π × 63 MHz.

However, we find that ϵmin = 1.76 > 1, which rules out the possibility of using our protocol

due to the violation of RWA.

A.8 Derivation of continuous version formulae

In this section, we will use the Magnus expansion method to derive some “continuous version”

formulae including Eq. (2.12) and (A.7).

We first use Magnus expansion to compute Û = T exp[−i
∫ δT
0 Ĥ(t) dt] up to fourth order

explicitly with Ĥ(t) = Ĥ(δT − t). Notice that

Û = exp


4∑

m=1

(−i)mΩ̂m +O[(δT )5]

 , (A.48)
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where

Ω̂1 =

∫ δT

0
Ĥ1 dt1, Ω̂2 =

1

2

∫
d2t [Ĥ1, Ĥ2],

Ω̂3 =
1

6

∫
d3t ([Ĥ1, [Ĥ2, Ĥ3]] + [Ĥ3, [Ĥ2, Ĥ1]]),

Ω̂4 =
1

12

∫
d4t ([[[Ĥ1, Ĥ2], Ĥ3], Ĥ4] + [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]]

+ [Ĥ1, [Ĥ2, [Ĥ3, Ĥ4]]] + [Ĥ2, [Ĥ3, [Ĥ4, Ĥ1]]]).

(A.49)

Here we use abbreviations for Ĥk := Ĥ(tk) and

∫
dkt :=

∫
· · ·
∫

0≤tk≤tk−1≤···≤t1≤δT
dt1 . . . dtk. (A.50)

Making use of the property Ĥ(t) = Ĥ(δT − t), we can further achieve:

Ω̂2 =
1

2

∫
d2t [Ĥ2, Ĥ1] = −Ω̂2 = 0 (A.51)∫

d4t [[[Ĥ1, Ĥ2], Ĥ3], Ĥ4] =

∫
d4t [[[Ĥ4, Ĥ3], Ĥ2], Ĥ1] = −

∫
d4t [Ĥ1, [Ĥ2, [Ĥ3, Ĥ4]]]

(A.52)

Then, from Jacobi identity we have

∫
d4t [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]] =

∫
d4t − [Ĥ4, [Ĥ1, [Ĥ2, Ĥ3]]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

=

∫
d4t − [Ĥ1, [Ĥ4, [Ĥ3, Ĥ2]]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

=

∫
d4t − [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

= −1

2

∫
d4t [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]].

(A.53)
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Similarly, we have

∫
d4t [Ĥ2, [Ĥ3, [Ĥ4, Ĥ1]]] = −1

2

∫
d4t [[Ĥ4, Ĥ1], [Ĥ2, Ĥ3]], (A.54)

which will lead to Ω̂4 = 0.

In summary, we have

Û = exp
{
−iΩ̂1 + iΩ̂3 +O[(δT )5]

}
,

Ûtar = exp

[
−i
∫ δT

0
Ĥ(t) dt

]
= exp(−iΩ̂1).

(A.55)

Since Ω̂3 is in the order of O[(δT )3], it is easy to see that

Û − Ûtar = O[(δT )3], (A.56)

which gives the proof of Eq. (2.12).

Similarly, with the Baker–Campbell–Hausdorff (BCH) formula, we can find that

Û
−1/2
tar Û Û

−1/2
tar = exp{iΩ̂3 +O[(δT )5]}, (A.57)

which gives the proof of the “continuous version” correspondence of Eq. (A.7).

A.9 Estimation of undetermined factors in Eq. (A.13)

In this section, we will show how we estimate the coefficients c1, c2 and c3 in Eq. (A.13)

when focusing on a specific task described in Appendix A.2, which is to prepare Fock state

|1⟩ with constant α and oscillation function f(t) defined in Eq. (A.9).
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A.9.1 Estimation of c1

In the estimation of c1, we can assume that the photon blockade is perfectly achieved with

the ideal Hamiltonian Ĥqb
dr in Eq. (A.6), so we only need to take care of the infidelity induced

by photon loss. We can start with the following Lindblad equation with operators restricted

in the two-level blockade subspace:

dρ̂

dt
= −i[−χασ̂x, ρ̂] + κD[σ̂−]ρ̂. (A.58)

The state is initialized as ρ̂(0) = |0⟩⟨0|. To prepare the |1⟩ state, we require the evolution

to last for T = π
2χα . Since we work in the regime that κ ≪ χα, we will treat the loss as a

perturbation. We first go to the interaction picture, and then denote Û0(t) = eiχαtσ̂x as well

as ρ̂I(t) = Û
†
0(t)ρ̂(t)Û0(t). Therefore, the evolution of ρ̂I(t) satisfies

dρ̂I(t)

dt
= κD[Û

†
0(t)σ̂−Û0(t)]ρ̂I(t). (A.59)

The final state ρ̂I(T ) up to first order in κ is

ρ̂I(T ) = ρ̂I(0) + κ

∫ T

0
D[Û

†
0(t)σ̂−Û0(t)]ρ̂I(0) dt. (A.60)

Recall our definition for infidelity ϵ in Eq. (A.4), we have

ϵ = 1− ⟨1| ρ̂(T ) |1⟩ = 1− ⟨0| ρ̂I(T ) |0⟩

= −κ ⟨0|
[∫ T

0
D[Û

†
0(t)σ̂−Û0(t)]ρ̂I(0) dt

]
|0⟩

=
3

8
κT,

(A.61)

where T = π
2χα . This result directly indicates that c1 = 3

8 in the protocol we considered.
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Figure A.3: Determine c2 = ϵttM
4(χT )6 numerically by varying M and T . The black dashed

line is the reference for c2 = 1.65.

A.9.2 Estimation of c2

Notice that c2 is introduced as a factor in the expression of Trotter error ϵtt = c2/[M
4(χT )6],

so we can numerically estimate it by calculating the infidelity of the state preparation under

Hamiltonian Ĥ ′
dr[α̃(t)] evolution while varying M and T . We show the corresponding plot in

Fig. A.3 where the data points on it are chosen to satisfy ϵtt < 0.2, and find out that in the

small χT (to reduce infidelity coming from photon loss) but large M (to reduce ϵtt) regime

we have c2 ≈ 1.65. Since we mainly care about the scaling behavior in our protocol instead

of exact numbers, we will just use c2 ≈ 1.65 as a rough estimation when it is needed.

A.9.3 Estimation of c3

The derivation of c3 is straightforward, since we just need to put the exact form of α̃(t) =

αf(t) into Eq. (2.9) and then calculate the power. As we mentioned in Appendix A.2 that

i ˙̃α is the dominant term in Λ1, and due to our specific design of f(t) in Eq. (A.9), we have

|Λ1| ≃ | ˙̃α(t)| = |αḟ(t)| = π2Mα

T
=
π3M

2χT 2
, (A.62)
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in which we have used α = π
2χT . Therefore, we can finally achieve

Pin =
|Λ1|2
κe

ℏωc =
π6

4
ℏωc

M2

κeχ2T 4
, (A.63)

which directly gives us that c3 = π6

4 ℏωc.

A.10 Generation of control sequence with neural network

In this part, we will discuss the way to use a neural network to generate control pulses in

order to solve the imperfect blockade situation due to the assumption that we do not have

the direct 2-photon drive in the experiment.

We still first go to the rotating frame and then the displaced frame, without making

a constraint between α(t) and Λ1(t). Besides, we can choose ω1(t) such that there is no

detuning term (â†â) in the new Hamiltonian. Therefore, we will end up with the following

Hamiltonian:

Ĥnew
dr =

χ

2
â†2â2 + {χαnew(t)â†n̂+

χ

2
[αnew(t)]2â†2 + Λnew

1 (t)â† + h.c.}. (A.64)

In this case, both αnew(t) and Λnew
1 (t) are controllable. We note that, although r does

not come into Ĥnew
dr explicitly, we still try to achieve the effective photon blockade during

evolution by optimizing the fidelity of the unitary operations or state preparation tasks

within the subspace spanned by {|0⟩ , . . . , |r⟩} that we want to block, while adding a penalty

function to penalize the average population leakage out of the blockade subspace during

evolution. Specifically, we can choose gu = 1
(r+1)T

∫ T
0 dtTr[Û†(t)(Î − Π̂r)Û(t)Π̂r] as the

penalty function in the unitary operation task, or gst = 1
T

∫ T
0 dt ⟨ψ(t)| (Î− Π̂r) |ψ(t)⟩ for the

state preparation task, where as in the main text Π̂r =
∑r
n=0|n⟩⟨n| is the projection operator

onto the blockade subspace. Here we can understand the dynamics as that, the states that
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Figure A.4: Control pulses optimization with the neural network approach. (a) The outcome
of pulse sequences αnew(t) and Λnew

1 (t) from the neural network with fixed χT = 0.2. (b)
The comparison of maximum power needed and infidelities of state preparation between
pulses from neural network optimization (shown with dots) with fixed total time T and
Trotter-based design (shown with solid lines) with optimized T and M .

initially lie in the blockade subspace will always evolve within it with small leakage, by

keeping track of the evolution with a proper time-dependent displaced frame αnew(t). This

also provides another advantage that we do not have to take a large dimension cutoff, which

is always associated with numerical computation in bosonic systems, since we just have to

focus on the dynamics confined in a small subspace with slight leakage.

To encode the variables αnew(t) and Λnew
1 (t) in the optimization problem, we use si-

nusoidal representation neural network with three layers that takes t as an input and

returns the real and imaginary part of the corresponding control parameter by Φ(t) =

W2 sin(W1 sin(W0t+b0)+b1)+b2, where W0 ∈ R20×1, W1 ∈ R20×20, and W2 ∈ R2×20,

and bi are vectors with a dimension consistent with their corresponding Wi [134]. We

then maximize Ftask(α) − g(α) by finding an appropriate set of Wi and bi that speci-

fies the controls, where Ftask(α) =
∣∣∣Tr[Û†

tarÛ(T )]
∣∣∣2 /(r + 1)2 for unitary operations and

Ftask(α) =
∣∣⟨ψtar|ψ(T )⟩∣∣2 for state preparation tasks. To do this, we first fix the total evo-

lution time χT and perform gradient-based optimization until the convergence criterion is
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satisfied. After finding αnew(t) and Λnew
1 (t) at the end of the optimization, we compute the

infidelity by taking the photon loss (κi + κe)D[â] into account, and also the input power

needed. We fix κi and vary κe to find infidelity as a function of the required power.

Note that, as opposed to the Trotter-based method with the sine-basis ansatz of Eq. (2.7),

we do not impose α(0) = α(T ) = 0 for the neural network ansatz to allow for more flexibility.

These potential non-zero values at the beginning and end of the protocol can be realized by

fast displacements. It is also possible to impose a constraint on these values by adding

another penalty term to the cost function.

To compare this method with the Trotter scheme, we consider the single-photon Fock

|1⟩ state preparation task. Unlike the protocol examined in Appendix A.2, where the total

time T can be optimized analytically based on χ, κi, and the input power allowed, here we

fix T without any optimization attempt, and vary κi to compare the infidelity as a function

of the power for the pulse sequence generated by the neural network with those obtained in

Appendix A.2 based on analytical intuition. We show an example of the outcome in Fig. A.4.

We believe that the inferior performance of the neural network is due to the complexity

of finding highly oscillatory functions (as also seen in the Trotter-based scheme) required

for relaxing the Λ2(t) requirement. Solving ordinary differential equations with highly oscil-

latory functions is computationally costly and increases the optimization time. Therefore,

even though, in principle, a highly expressive neural network is capable of representing the

solutions found using the Trotter scheme, it is difficult to find those (or better) solutions

directly using our optimization techniques. It is interesting to devise more efficient opti-

mization methods using prior information from the success of the Trotter-based scheme. We

leave these questions for future work.
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APPENDIX B

APPENDICES FOR CHAPTER 3

B.1 Lower order Hamiltonian stabilization of pair-cat code

In the main part, we have shown that the Hamiltonian Ĥ = −K(â†2b̂†2−γ∗4)(â2b̂2−γ4) can

stabilize the pair-cat code space. Here we seek for Hamiltonian with a lower maximum order

N that can also provide γ-dependent stabilization of the pair-cat code space. Specifically,

we hope to find the Hamiltonian

Ĥ =
∑

m+n+p+q≤N
fmn,pqâ

†mânb̂†pb̂q, (B.1)

such that both |γ∆0
⟩ and |(iγ)∆0

⟩ are eigenstates of Ĥ with the same eigen-energy. Without

loss of generality, we can specify the eigen-energy as 0. So, we require

Ĥ |γ∆0
⟩ = Ĥ |(iγ)∆0

⟩ = 0. (B.2)

To make use of this requirement, we need to find a set of linearly independent states

such that Ĥ |γ∆0
⟩ and Ĥ |(iγ)∆0

⟩ can be written as a linear superposition of them. We

notice that {P̂∆â†nb̂†m |γ, γ⟩ |n,m ∈ N,∆ ∈ Z} are linearly dependent due to the following

identity:

P̂∆â
†nb̂†m |γ, γ⟩ = P̂∆â

†(n+1)b̂†(m−1) |γ, γ⟩+ ∆+ n−m+ 1

γ
P̂∆â

†nb̂†(m−1) |γ, γ⟩ . (B.3)

With this recursive formula, every P̂∆â†nb̂†m |γ, γ⟩ can be written as a linear superposition

of {P̂∆â†k |γ, γ⟩ |k ≤ n + m}. As a result, we can write Ĥ |γ∆0
⟩ as a linear superposition

of P̂∆â†k |γ, γ⟩ with different k and ∆, and Eq. (B.2) requires all the coefficients are 0.

Similarly, we can write Ĥ |(iγ)∆0
⟩ under {P̂∆â†k |iγ, iγ⟩ |k ∈ N; ∆ ∈ Z} to get another set
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of linear equations on fmn,pq.

Besides, the Hermiticity of Ĥ requires that

fmn,pq = f∗nm,qp. (B.4)

Eq. (B.2) and (B.4) form a set of linear equations of the real and imaginary part of

fmn,pq, and we hope to find all of its solutions with numerical help. In general, the solutions

for fmn,pq should be a function of γ and ∆0. However, even for one specific ∆0 we cannot

find any γ-dependent solution up to N = 6.

Here we call a set of solutions γ-independent if (with a proper overall factor since the

set of linear equations is homogeneous) all of fmn,pq can be written as independent of γ.

For example, when ∆0 = 0 we can easily find that ∆̂ = b̂†b̂ − â†â is one solution since

∆̂ |γ0⟩ = ∆̂ |(iγ)0⟩ = 0, but all the non-zero coefficients of â†mânb̂†pb̂q in ∆̂ is either −1 or

1, which are both independent of γ. So, we call this solution γ-independent. Other solutions

that do not satisfy the γ-independent criteria are regarded as γ-dependent.

If we further restrict Ĥ to commute with all the ∆̂, which means the photon number

difference of two modes is a conserved quantity, then all the non-zero fmn,pq should satisfy

n + p = m + q, which means the maximum order in Ĥ should be an even number. So, our

Hamiltonian Ĥ = −K(â†2b̂†2 − γ∗4)(â2b̂2 − γ4) with N = 8 is the one with lowest order

that could provide both nontrivial γ-dependent protection and photon number difference

conservation properties that we can find out.

B.2 Structure of the stabilization Hamiltonian

In this appendix, we briefly investigate the eigenstates and eigen-energies of the stabilization

Hamiltonian Ĥ = −K(â†2b̂†2 − γ∗4)(â2b̂2 − γ4) defined in Eq. (3.16) in large |γ| limit.

The first strategy is to perform a displacement operation on the two modes. We denote
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D̂(γ, γ) = D̂(γ)⊗ D̂(γ) where D̂(γ) is the displacement operator. So, in the displaced frame

of the two modes, the Hamiltonian is

Ĥdisp,γ = D̂(γ, γ)ĤD̂†(γ, γ) = −8K|γ|6
(
â† + b̂†√

2

)(
â+ b̂√

2

)
+O(|γ|5). (B.5)

We can only keep the first term in Ĥdisp,γ if we just focus on the subspace where in the

displaced frame the matrix elements of â, b̂ are far less than γ.

Besides, we can denote Â = (â + b̂)/
√
2 and B̂ = (â − b̂)/

√
2, which serve as two new

independent modes.

We define |ψ⟩ (with unit norm) as the “asymptotic eigenstate” of an operator Ô(γ) if in

the large |γ| limit |ψ⟩ is parallel with Ô |ψ⟩, or the norm of Ô |ψ⟩ goes to zero in that limit.

In this case, if we denote the states |(n,m)⟩ as

|(n,m)⟩ := Â†nB̂†m
√
n!m!

|0, 0⟩ , (B.6)

they will be the asymptotic eigenstates of Ĥdisp,γ in the large |γ| limit as long as they satisfy

either of the following two conditions. The one is n ≥ 1 and n,m ≪ |γ|2, while the other

one is n = 0 and m = 0, 1. So, in both of the two cases, D̂(γ, γ) |(n,m)⟩ are the asymptotic

eigenstates of Ĥ. The derivation is also valid for states D̂(iγ, iγ) |(n,m)⟩ which are also

asymptotic eigenstates of Ĥ as long as n,m satisfy the criteria we just mentioned.

It can also be shown that |(0,m)⟩ are not asymptotic eigenstates of Ĥdisp,γ when m ≥ 2.

We can calculate the angle between the two states |(0,m)⟩ and Ĥdisp,γ |(0,m)⟩, and find out

that they are not parallel but actually perpendicular to each other under large |γ| limit when

m ≥ 2 because of the lower order corrections in Eq. (B.5).

In fact, this protocol can be generalized by using D̂(γ1, γ2) to find asymptotic eigenstates

where γ21γ
2
2 = γ4. The dominant part of the displaced Hamiltonian can be transformed into

the form of a single oscillator via Gaussian operations. The energy spacing of the new mode
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is 4K|γ1|2|γ2|2(|γ1|2+ |γ2|2), which is no less than 8K|γ|6 due to the constraint between γ1

and γ2.

To safely claim that the Hamiltonian in Eq. (3.16) can provide a protection of code space

with the 8K|γ|6 energy gap, we also perform the exact diagonalization of the Hamiltonian

with numerical help. We first separate Ĥ into different subspaces with fixed parity and

photon number difference. Specifically, we focus on Ĥµ,∆ that mentioned in Eq. (3.17), and

then numerically calculate the energy gap between |µγ,∆⟩ state and the “first-less-excited”

eigenstate of Ĥµ,∆. In Fig. B.1(a), we can see that in the ∆ = 0 case we do have 8K|γ|6

protection of the code space in the large |γ| limit.

In general, it is hard to write down the explicit form of all the asymptotic eigenstates of

Ĥµ,∆, but we can see that the state |ψe1,µ,∆⟩, which can be written as

|ψe1,µ,∆⟩ ≃ Q̂
(∆)
µ (â† + b̂† − 2γ∗) |γ, γ⟩√

2Ne1,µ,∆
, (B.7)

is the asymptotic eigenstate of Ĥµ,∆ with eigen-energy Ee1,µ,∆ ≃ −8K|γ|6. Here Ne1,µ,∆

is a normalization factor.

We can also numerically investigate the difference among Ee1,µ,∆ for different µ and ∆.

Like the cat code case, |Ee1,+,∆ −Ee1,−,∆| is suppressed exponentially with |γ|2 due to the

exponentially suppressed overlap between any two states with large separation in the γ-plane,

which means that the two “first-less-excited” states with the same ∆ and different parity are

approximately degenerate in large |γ| limit. Besides, |Ee1,µ,∆ −Ee1,µ,0| ∼ O(∆2|γ|2) in the

large |γ| limit with finite ∆, which is a small correction compared with the O(|γ|6) gap.

These facts together indicate that we do have the O(|γ|6) energy gap to protect the code

space.

Those scaling results may change when considering another limit with finite γ but focusing

on the subspaces with ∆ as large as possible. However, since typically we prefer to choose
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Figure B.1: Properties of the energy spectrum in the pair-cat stabilization Hamiltonian.
(a) Energy gap |Ee1,µ,0| between code state |µγ,∆⟩ and the “first-less-excited” eigenstate in
µ = + subspace and µ = − subspace. Dashed line corresponds to |Ee1,µ,0|/K = 8|γ|6. (b)
Energy difference between Ee1,µ,∆ and Ee1,µ,0 with different ∆. Dashed lines from bottom
to top correspond to |Ee1,+,∆ − Ee1,+,0|/K = ∆2|γ|2 for ∆ = 1, 2 and 3, respectively.

∆ = 0 as the code space and the evolution is ideally ∆-preserving, it is difficult for our states

to go to the large ∆ regime. So, we do not discuss this regime further but just point out this

issue.

B.3 Quantum error correction strategies of pair-cat code against

photon loss

In this appendix, we will talk about the quantum error correction properties of the pair-

cat code where noise only comes from photon loss. In the first part, we consider the system

evolves under infinite strength of the dissipative stabilization while suffering from photon loss.

We will talk about the recovery strategy and calculate the remaining error after the recovery

process. In the second part, we consider the pair-cat code evolves with no stabilization but

only photon loss, which means we can simulate the dynamics using a lossy bosonic channel
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(LBC). We will compare the results from the two cases. For simplicity, in this appendix we

fix ∆ = 0 for our code space.

B.3.1 Lossy process with dissipative stabilization

In this part, we consider the situation where the dissipative stabilization has been turned on

during the lossy process. Specifically, the evolution channel can be written as

EDevoρ = eLtρ = eκtLD+κ1tLEρ, (B.8)

where LD = D[â2b̂2−γ4] and LE = D[â]+D[b̂]. To simplify the derivation, we will consider

the extreme situation where κ → +∞, such that for any t > 0 we have eκtLDρ = Pρ =

P̂DρP̂D, where P̂D =
∑
µ,∆|µγ,∆⟩⟨µγ,∆| is the projection operator for the subspace stabilized

by the dissipator D[â2b̂2 − γ4]. Then, because of the following identity [193]:

e(A+B)t = eAt +

∫ t

0
ds e(A+B)(t−s)BeAs

= eAt +
N∑
k=1

∫∫
∑

i τi≤t

(
k∏
i=1

dτi)e
A(t−∑i τi)

k∏
i=1

(BeAτi)

+

∫∫
∑

i τi≤t

(
N+1∏
i=1

dτi)e
(A+B)(t−∑i τi)

N+1∏
i=1

(BeAτi),

(B.9)

we have

EDevo = P +
N∑
k=1

(κ1t)
k

k!
(PLEP)k +O[(κ1t)

N+1]. (B.10)

Now let us discuss the recovery process. As mentioned in the main text, we should first

measure ∆̂ of the final states to extract the syndrome and then decide which operation we

should apply. One intuitive way is to assume all the loss errors happen only in one mode,

since other loss errors that lead to the same ∆ correspond to a higher order of κ1, which are
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less likely to happen in the case that κ1γ2t ≪ 1. So, if the final ∆ > 0 we will assume that

loss only happens in mode â, and if ∆ < 0 we assume that loss only happens in mode b̂.

We notice that the code states |µγ,∆⟩ defined in Eq. (3.8) satisfy

âk b̂l |µγ,0⟩ = γk+l

√
Nµ′,k−l
Nµ,0

|µ′γ,k−l⟩ , (B.11)

where

µ′ = µ · (−1)max(k,l). (B.12)

Here we use µ = +1 to indicate even (+) parity and µ = −1 for odd (−) parity. It is also

worth to point out here that for ∆ < 0 case Nµ,∆ := Nµ,|∆|.

As a result, if the final ∆ = k− l is odd, we will assume either k or l is zero and another

is odd, so according to Eq. (B.12) µ′ is different from µ and recover operation should be able

to restore the parity of the states; and if ∆ is even, we assume µ′ does not change from µ. It

is easy to see that âb̂ will result in an uncorrectable error under this strategy, because in this

case the final ∆ = 0 is even and we will assume µ′ = µ. However, according to Eq. (B.12) µ′

is different from µ since k = l = 1, which means our assumption is wrong and it will cause

an error even after the recovery process. Besides, the amplitude γ does not change after

evolution due to the strong stabilization we use.

In summary, the recovery channel RD can be chosen as a set of ∆-dependent unitary

operations R̂∆ =
∑
µ′=±|µ′′γ,0⟩⟨µ′γ,∆| that map |µ′γ,∆⟩ to |µ′′γ,0⟩, where µ′′ = µ′ · (−1)|∆|. So,

we can write

RDρ =
∑
∆

R̂∆ρR̂
†
∆. (B.13)

Finally we can investigate the effect of whole process EDtot = RD ◦ EDevo acting on ρ that

lies in the code space spanned by |±⟩c = |±γ,0⟩. With numerical help, we can calculate

the coefficients of the process tomography under Pauli basis to indicate the error probability
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Figure B.2: Error analysis of a pair-cat memory qubit when varying its size γ. (a) The
coefficients of the process tomography of EDtot with 1−e−κ1t = 2%. (b) Comparison between
|rDjk| and |rLjk| with ϵ = 1− e−κ1t = 2%.

after the recovery channel. Specifically, we have

EDtotρ =
∑

j,k∈{I,X,Y,Z}
rDjkŴjρŴ

†
k , (B.14)

where Ŵj ∈ {Îc, X̂c, Ŷc, Ẑc}. In Fig. B.2(a), from the diagonal term rDjj we can clearly see

the bias structure of the noise and find the local optimal γ value to suppress the bit-flip

error, or the total error itself. For the off-diagonal term of rDjk, numerically we can see that

only rD
IX(XI)

and rD
Y Z(ZY )

are non-zero, and we can also find |rDIX | = |rDY Z |. In the small

γ regime, we have |rDIX | ≪ rDXX , while when γ is large we have |rDIX | ≪ rDZZ .

Here we provide a simple explanation for the origin of those error terms. X̂c term comes

from the slight difference of the photon loss error probability between |+⟩c and |−⟩c as shown

in Eq. (3.14), which decreases exponentially as the increase of |γ|2. Ẑc and Ŷc terms come

from the uncorrectable photon loss âb̂, and according to Eq. (3.13) Z error will increase as

|γ| becomes larger, while the Ŷc term will be suppressed exponentially.
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In the γ → 0 limit, we have |+⟩c = |0, 0⟩ and |−⟩c = |1, 1⟩ under Fock basis. P̂D projects

into the subspace spanned by those Fock states where either â or b̂ mode is populated with

at most one photon. We can keep the terms up to O[(κ1t)2] in EDevo and then derive EDtot. It

is easy to see that rDXX ∼ O(κ1t) while rDZZ , rDY Y and |rD
IX(Y Z)

| scales as O[(κ1t)2], which

indicates that X error is the dominant one in the γ → 0 limit.

B.3.2 Lossy bosonic channels

In this part, we consider another situation where there is no stabilization but only photon

loss during evolution. Therefore, we can treat the evolution process as an LBC, whose effects

on cat code have been discussed in Ref. [194]. We will first introduce what the LBC is, and

then develop the recovery protocol and finally estimate the remaining errors. We consider

that both â mode and b̂ mode suffer independently from an LBC which can be written in

the following form [71]:

ELevoρ =
+∞∑
k,l=0

ÊakÊ
b
l ρÊ

a†
k Ê

b†
l , (B.15)

where Êak := (k!)−1/2ϵ
k/2
a (1 − ϵa)

n̂a/2âk and Êbl can be written in the same way for the

b̂ mode. For simplicity we assume ϵa = ϵb = ϵ. In cavities with photon loss rate κ1 and

evolution time t, we have ϵ = 1− e−κ1t. Then we will fix ∆ = 0 as our code space, and the

recovery strategy is based on the final ∆ we get after the lossy channel. After being applied

by the Kraus operators of LBC, the code state |µγ,∆⟩ will become:

ÊakÊ
b
l |µγ,0⟩ =

(γ
√
ϵ)k+l√
k!l!

e−ϵ|γ|
2

√√√√N γ′

µ′,k−l
N γ
µ,0

|µ′γ′,k−l⟩ , (B.16)

where N γ
µ,∆ is value of the normalization function Nµ,∆ at γ. Besides, we have γ′ = γ

√
1− ϵ

and µ′ is the same as that in Eq. (B.12).

For the recovery process after evolution, we still first measure ∆̂ and then apply the
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∆-dependent unitary operation R̂∆ =
∑
µ′=±|µ′′γ,0⟩⟨µ′γ′,∆| where µ′′ = µ′ · (−1)|∆|, which

is similar to the strategy we mentioned in the strong dissipative stabilization case except

for the fact that without stabilization we have γ′ ̸= γ. Here we can explicitly write down

the matrix representation of ELtot = RL ◦ ELevo under ρ = (ρ++ ρ+− ρ−+ ρ−−)T where ρ is

written under the |±⟩c = |±γ,0⟩ basis. Denote Mk,l = (ϵ|γ|2)k+le−2ϵ|γ|2/(k!l!), we have

ELtot =
+∞∑
k,l=0

Mk,l·

δ0(k, l)
N γ′

µ+,k−l

N γ
+,0

0 0 δ1(k, l)
N γ′

µ−,k−l

N γ
−,0

0 δ0(k, l)

√
N γ′

+,k−lN
γ′
−,k−l

N γ
+,0N

γ
−,0

δ1(k, l)

√
N γ′

+,k−lN
γ′
−,k−l

N γ
+,0N

γ
−,0

0

0 δ1(k, l)

√
N γ′

+,k−lN
γ′
−,k−l

N γ
+,0N

γ
−,0

δ0(k, l)

√
N γ′

+,k−lN
γ′
−,k−l

N γ
+,0N

γ
−,0

0

δ1(k, l)
N γ′

µ+,k−l

N γ
+,0

0 0 δ0(k, l)
N γ′

µ−,k−l

N γ
−,0


.

(B.17)

Here, µ± := (±1) · (−1)max(k,l), and δq(k, l) satisfies

δq(k, l) =


1 if [min(k, l)− q] is even,

0 if [min(k, l)− q] is odd.
(B.18)

We can also find the coefficients of process tomography and denote them as rLjk. With the

explicit form of ELtot in Eq. (B.17), it is easy to check that rLIY = rLIZ = rLXY = rLXZ = 0

and |rLIX | = |rLY Z |. In Fig. B.2(b), we compare the results between rDjk and rLjk under

ϵ = 1 − e−κ1t = 2%. We can see that rZZ is approximately the same between the two

situations. However, since the local minima in rDXX(γ) and rLXX(γ) correspond to slightly

different γ, the rDXX/r
L
XX curves fluctuate near 1. This argument also works for the rY Y
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and rIX cases.

B.4 Perturbative analysis of gate errors

In this appendix, we will discuss the scaling of the Z error probability of the pair-cat code

during gate operations in the dissipative stabilization scheme. This type of error can be

induced by both photon loss and the leakage out of the protected code space in the middle

of the gate execution. Since photon loss errors will not cause leakage out of the stabilized

subspace, we will treat the two effects separately. Our analysis is based on the methods

introduced in [59] where gate errors are investigated for cat code. There, the adiabatic

elimination method [162] has been used in order to achieve effective dynamical equations

in the stabilized subspace. Due to the similarities between cat code and pair-cat code, we

can also use similar strategies to derive the error probability of the gates we construct for

the pair-cat code. Therefore, in the following discussion we will only mention those key

ingredients in the derivation to achieve Z error probability and properties specialized for

pair-cat code, while detailed reasoning for each step of the derivation can be found in [59]

that focuses on the cat code counterpart. We highlight that for the pair-cat code, all the

gate error probabilities can be achieved to scale at least linearly in single-photon loss rate

κ1, which works better compared with the cat code where error probability mainly scales as
√
κ1 [59, 68]. To simplify the notation, we will assume γ to be a positive real number.

B.4.1 Z(θ) gate

The Z(θ) gate can be implemented via the 2-mode squeezing Hamiltonian ĤZ in Eq. (3.20).

The â†b̂† term will cause leakage out of the code space via

â†b̂† |µγ,∆⟩ ≃ γ2 |µ′γ,∆⟩+
√
2γ |ψe1,µ′,∆⟩+O(1), (B.19)
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where µ′ ̸= µ. It means the parity of the two modes is changed. Further, this leakage can

be recovered back to the code space via the stabilization dissipator κD[â2b̂2 − γ4], since

(â2b̂2 − γ4) |ψe1,µ′,∆⟩ ≃ 2
√
2γ3 |µ′γ,∆⟩ . (B.20)

This whole process together will give us a Z error on the pair-cat code. The effective error

rate can be estimated via adiabatic elimination, which will give us 4(ϵZ
√
2γ)2/(8κγ6) =

ϵ2Z/(κγ
4).

Z error probability induced by photon loss is simple to analyze. Only a single-photon

loss in one mode will not cause errors in the pair-cat code since it can be detected by ∆̂

measurement at the end of the gate operation and corrected via a recovery channel. Z error

will be induced if both â and b̂ errors happens. Therefore, the combined error probability is

(κ1γ
2T )2, and the total dephasing error probability during the Z(θ) gate is

pZ =
ϵ2Z
κγ4

T + (κ1γ
2T )2. (B.21)

Recall that ϵZ = θ/(4γ2T ), we can find the optimal time T to minimize pZ scales as T opt =

(θ2/32κκ21γ
12)1/3, and the corresponding poptZ ∼ O

[
(κ1/κ)

2/3/γ4
]
.

On the other hand, this scaling can be changed by using real-time monitoring of ∆̂ as

we introduced in the design of CX gate. Suppose we keep measuring ∆̂ at a time interval of

δτ , then only the case that both â and b̂ errors happen within the δτ interval will cause Z

error, otherwise we will know exactly that the code does suffer from âb̂ loss instead of nothing

happens. In this case, the Z error probability induced by loss is (κ1γ2δτ)2(T/δτ) = κ21γ
4δτT ,

and the optimal poptZ ∼ O(κ1
√
δτ/κ/γ2), which is linear in κ1.
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B.4.2 ZZ(θ) gate

Like the Z(θ) gate, the Hamiltonian ĤZZ in Eq. (3.20) that we use to construct ZZ(θ)

gate will also cause leakage out of the code space, which will induce Z type of errors. For

example, the â1b̂1â
†
2b̂

†
2 term couples the code state of the second qubit with states out of the

code space while changing the parities of both pair-cat qubits at a rate of
√
2ϵZZγ

3, which

is the dominant leakage rate from this term. Besides, â†1b̂
†
1â2b̂2 term has a similar effect but

causes leakage in the first qubit. These two channels, after going back to the code space due

to the dissipative stabilization, will cause a Z1Z2 error on the pair-cat qubits at a rate of

2× 4(
√
2ϵZZγ

3)2/(8κγ6) = 2ϵ2ZZ/κ. So,

pZ1Z2
= 2ϵ2ZZT/κ =

θ2

8κγ8T
. (B.22)

The photon-loss induced dephasing error can be analyzed in the same way as the former

case in the Z(θ) case. If there is no real-time ∆̂ monitoring, then pZ1
= pZ2

= (κ1γ
2T )2,

and the optimal total error probability p = pZ1
+ pZ2

+ pZ1Z2
scales as O

[
(κ1/κ)

2/3/γ4
]
. If

we have this real-time ∆̂ monitoring with time interval δτ , then pZ1
= pZ2

= κ21γ
4δτT and

optimal p scales as O(κ1
√
δτ/κ/γ2).

B.4.3 X gate

The X gate is implemented by changing stabilization parameter γ with respect to time that

γ(t) = γei
π
2

t
T and use an extra Hamiltonian ĤX,rot = − π

2T (n̂a+ n̂b) to compensate the error

induced by non-adiabaticity. If there is no loss happening during this gate execution, the

X gate can be implemented perfectly, and there is no term to cause leakage out of the code

space. So, the only source that can induce dephasing error is from photon loss.

Compared with the idling case where γ stays as a constant, a single-photon loss at time

t0 in either mode will induce an extra global phase ei
π
2
t0
T . Unlike in the CX gate case we
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mentioned in the main text where this induced phase on the target qubit does cause a Z type

rotation of the control qubit, here this is just a global phase on a single qubit that does not

matter at all. As a result, Z error probability induced by photon loss during X gate has no

difference compared with other gates: if there is no real-time ∆̂ monitoring, pZ = (κ1γ
2T )2;

if we have such monitoring, pZ = κ21γ
4δτT . So, to reduce pZ , we should choose T to be as

small as possible.

B.4.4 CX gate

The CX gate can be implemented by changing stabilization parameter γ(t) of the target

qubit conditioned on the states of the control qubit via jump operators F̂1,2 defined in

Eq. (3.26). We also apply another Hamiltonian ĤCX,rot in Eq. (3.27) to reduce the error

induced by non-adiabaticity. However, this extra Hamiltonian cannot fully compensate it,

because other than the desired conditional rotation Ĥ ′ = − π
2T |1⟩1c⟨1|⊗(â

†
2â2+ b̂

†
2b̂2−2|γ|2),

the â†1b̂
†
1(â

†
2â2+ b̂

†
2b̂2−2|γ|2) term can also cause excitation of both control and target qubits.

Other than Eq. (B.19), we also have

(â†â+ b̂†b̂− 2|γ|2) |µγ,∆⟩ ≃
√
2γ |ψe1,µ,∆⟩ , (B.23)

where the parity of the target qubit does not change in this process. But, as discussed before,

the parity of the control qubit will change, which effectively causes a Z operation on it.

We follow the method in Ref. [59] by going to the rotating frame according to Ĥ ′. In

this frame, â2b̂2 will be transformed to

â2b̂2 → |0⟩1c⟨0| ⊗ â2b̂2 + |1⟩1c⟨1| ⊗ â2b̂2e
iπt/T . (B.24)

This will result that, if the both control and target qubit state get excited together as we

mentioned and then decay back to the code space via F̂1 and F̂2, effectively there will be
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a Z1Z1(−2πt
T ) = Z1(π

T−2t
T ) error acting on the control qubit. It is because in the rotating

frame, going back to the code space of the target qubit via F̂2 will cause a Z1(−2πt
T ) operation

on the control qubit. The corresponding effective error rate is π2

64κγ6T 2 . This Z1(θ) error

does not change when going back to the original frame, and after averaging with total time,

the Z1 error probability induced from the non-adiabaticity is π2

128κγ6T
. It is also worth to

mention that in the derivation of the error probability we have ignored the situation that

the â1b̂1 term in F̂2 can also help the control qubit to decay back to the code space, but this

term will not cause the change of the scaling property of the result we achieved, as discussed

in [59].

Then let us discuss the error induced by photon loss. We assume to have real-time ∆̂

monitoring on both control and target qubits. The photon loss on control qubit does not

affect the phase of the target qubit state, so it will just give a Z1 error with probability

κ21γ
4δτT . Things will become different when loss errors happen on the target qubit. As

discussed in the main text, the photon loss on the target qubit will induce a time-dependent

phase shift on the control qubit; therefore we want to use real-time ∆̂ measurement to

monitor when the loss happens and correct it with an extra Z1(θ) gate.

In practice, however, there are two relevant processes to induce Z type of errors because

of photon loss on the target qubit. One comes from that, even only a single-photon loss

happens, due to the finite δτ time of two ∆ measurements, we can only correct the extra

phase for |1⟩1c state of the control qubit up to small deviation ranging within [−δθ
2 ,

δθ
2 ],

where δθ = π
2
δτ
T . This effect on average will give a Z1 error probability as κ1γ

2(δτ)2π2

96T . The

other comes from that both â2 and b̂2 happen to the target qubit within δτ time, which not

only causes a Z2 error on target qubit but also induces an extra eiπt/T phase on |1⟩1c state

of the control qubit. Using the same method we did in Eq. (3.28), we found that this error

has the form of Z1Z1(−πt
T )Z2 = Z1(π

T−t
T )Z2 with error rate κ21γ

4δτ , which on average gives

both Z2 error and Z1Z2 error a probability of κ21γ
4δτT/2.
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In summary, we have

pZ1
= κ21γ

4δτT +
π2

128κγ6T
+
κ1γ

2(δτ)2π2

96T
,

pZ2
= pZ1Z2

=
κ21γ

4δτT

2
.

(B.25)

By choosing the optimal time T to minimize the total error probability p = pZ1
+pZ2

+pZ1Z2
,

we find that p ∼ O
(√

κ1
κ

√
κ1δτ
γ2

√
1 + Cκκ1γ8(δτ)2

)
, where C = 4

3 is a constant number.

Therefore, the total error probability scales between O(κ1) and O(κ3/21 ).

B.4.5 Toffoli gate

The error properties in the Toffoli gate are similar to those in the CX gate, and we can use

the same method to analyze them. For convenience we denote CZ(θ) := exp(−iθ|11⟩⟨11|).

Recall the Hamiltonian defined in Eq. (3.32) which is used to compensate the non-adiabatic

error; it could cause joint excitation of 1, 3 states or 2, 3 states out of their code spaces,

together with a parity change in either qubit 1 or qubit 2 that gets excited. Again, by going to

the rotating frame according to Ĥ ′ = − π
2T |1⟩1c⟨1|⊗|1⟩2c⟨1|⊗(â

†
3â3+ b̂

†
3b̂3−2|γ|2), we realize

that the two control qubit states will gain a phase if they are in |1⟩1c |1⟩2c when the target

qubit state decays back to the code space due to the dissipator F̂3 defined in Eq. (3.31b).

This is similar to the effect caused by Eq. (B.24) in the CX gate, but here we need to focus

on the transformation of â3b̂3 into the rotating frame instead. By using adiabatic elimination

method, the effective error will be either I−Z1
2 Z2CZ1,2(−2πt

T ) or I−Z2
2 Z1CZ1,2(−2πt

T ) with

the same error rate π2/(64κγ6T 2). Going back to the original frame will not cause a change

in the error forms. After averaging over time, we can see the non-adiabaticity will give an

error probability of π2

256κγ6T
for all Z1, Z2, and Z1Z2 types of errors. Similar to the derivation

in the CX case, we also ignore the contribution that the excitations of two control qubits

can decay back via F̂3 since this effect does not change the scaling of the error probability
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we derived.

Then we discuss about Z type of error induced by photon loss. We again assume to have

real-time ∆̂ monitoring of all three pair-cat qubits. The loss happens in either of the two

control qubits will not cause errors in qubits that do not suffer from photon loss, so only

both âi and b̂i (i = 1, 2) happen in the same time interval of ∆̂ measurement will cause a Zi

error. The corresponding error probability is again κ21γ
4δτT .

Similar to the CX gate, the loss errors in the target qubit will also cause two effects.

First, a single-photon loss of either â3 or b̂3 will induce a phase on |1⟩1c |1⟩2c state, and due

to the finite time duration between each ∆̂ measurement, this phase can only be corrected up

to a small deviation ranging between [−δθ
2 ,

δθ
2 ] where δθ = π

2
δτ
T . This effect will on average

give an error probability of κ1γ
2(δτ)2π2

384T for Z1, Z2, and Z1Z2 type of errors. The second

effect comes from both â3 and b̂3 happening in the same ∆̂ measurement interval. It can

induce an effective CZ1,2(πT−tT )Z3 error with error rate κ21γ
4δτ . By averaging over time,

this will give an error probability of 5
8κ

2
1γ

4δτT for Z3 error and 1
8κ

2
1γ

4δτT for Z1Z3, Z2Z3,

and Z1Z2Z3 error.

In summary, the error probability for all types of errors can be listed as

pZ1
= pZ2

= κ21γ
4δτT +

π2

256κγ6T
+
κ1γ

2(δτ)2π2

384T
,

pZ1Z2
=

π2

256κγ6T
+
κ1γ

2(δτ)2π2

384T
,

pZ3
=

5

8
κ21γ

4δτT,

pZ1Z3
= pZ2Z3

= pZ1Z2Z3
=

1

8
κ21γ

4δτT.

(B.26)

To minimize the total error probability p by using optimal choice of T , we can see that

p again scales as p ∼ O
(√

κ1
κ

√
κ1δτ
γ2

√
1 + C ′κκ1γ8(δτ)2

)
where C ′ = 2

3 is another constant

number. We can see that p here shares a similar scaling property to that in the case of the

CX gate.
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APPENDIX C

APPENDICES FOR CHAPTER 4

C.1 Dark states with generic stabilization drives

In this section, I will discuss the structures of dark subspace under generic stabilization drives

Ω±1,0. Since in general the stabilization Hamiltonian ĤDS in Eq. (4.3) can be decomposed

as ĤDS = Ĥee + Ĥeg + Ĥge, and the jump operators D̂ge,q only maps the states in excited

manifold to the ground manifold, then it will be sufficient for a state |DS⟩g in the ground

manifold to be a dark state if

Ĥeg |DS⟩g = 0. (C.1)

From Fig. C.1, it will be easy to see that, when Ω+1 = 0, then |Fg,−Fg⟩ will be a dark

state. Similarly, |Fg, Fg⟩ will be a dark state when Ω−1 = 0. In the following, I will consider

different frame transformations through the rotations, so that in the new frame we can find

either of Ω±1 = 0. With this, we can locate one dark state in the new frame, which will still

be an SCS after going back to the original frame.

Then let us look into how the rotation transformation will affect the coupling Hamiltonian

Ĥeg. First, to simplify the notation, we can write Ĥeg = Ω⃗
2 ·
⃗̂
Deg, where Ω⃗ = (Ω+1 Ω0 Ω−1)

T

and ⃗̂
Deg = (D̂eg,+1 D̂eg,0 D̂eg,−1)

T, We also introduce the rotation operator on the whole

system

R̂ξ(θ) = e−i(F̂g,ξ+F̂e,ξ)θ, where ξ = x, y, z. (C.2)

When acting on the Hamiltonian Ĥeg, the transformation of the operators can be equivalently

expressed as the transformation of the driving vector Ω. Specifically,

R̂ξ(θ)ĤegR̂
†
ξ(θ) =

1

2
Ω⃗ · [R̂ξ(θ) ⃗̂DegR̂†

ξ(θ)] =
1

2
Ω⃗ξ,θ · ⃗̂Deg. (C.3)
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Figure C.1: The dark subspace is always spanned by two SCSs that may not be antipodal
on the GBS. (a) Dark state structures without the Ω−1 drive. Then |Fg, Fg⟩ will be a dark
state, which corresponds to the north pole of the GBS in (b). As proved here, we can always
find two different rotation transformations to make Ω−1 = 0 in the new frame.

Here, we explicitly write down the outcomes from y- or z-rotation as

Ω⃗y,θ =


1+cos(θ)

2 − sin(θ)√
2

1−cos(θ)
2

sin(θ)√
2

cos(θ) − sin(θ)√
2

1−cos(θ)
2

sin(θ)√
2

1+cos(θ)
2



Ω+1

Ω0

Ω−1

 , Ω⃗z,ϕ =


e−iϕ 0 0

0 1 0

0 0 eiϕ



Ω+1

Ω0

Ω−1

 .

(C.4)

Now we consider a frame transformation that makes Ω−1 = 0. To do so, we split the

process into two steps. First, we try to find a frame where Ω′
0 = 0. As indicated from

Eq. (C.1), a global complex phase in Ĥeg does not affect the solution for |DS⟩g. Therefore,

we assume Ω0 is a real number, and denote the complex number Ω±1 as Ω±1 = ΩR±1+ iΩ
I
±1.

To make Ω0 = 0, we first rotate the system with R̂z(ϕa) and then R̂y(θa). We need to find

the (θa, ϕa) pairs to make

sin(θa)√
2

e−iϕaΩ+1 + cos(θa)Ω0 −
sin(θa)√

2
eiϕaΩ−1 = 0. (C.5)

The left-hand-side expression in the equation above is generally a complex number, so we
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can split it as


sin(θa)√

2
Re[e−iϕaΩ+1 − eiϕaΩ−1] + cos(θa)Ω0 = 0,

[−ΩR+1 sin(ϕa) + ΩI+1 cos(ϕa)]− [ΩR−1 sin(ϕa) + ΩI−1 cos(ϕa)] = 0.

(C.6a)

(C.6b)

With this, we can first determine ϕa through Eq. (C.6b), which gives

ϕa = arctan
ΩI+1 − ΩI−1

ΩR+1 + ΩR−1

. (C.7)

Then, θa can also be determined through Eq. (C.6a) accordingly:

θa = arctan
−
√
2Ω0

Re[e−iϕaΩ+1 − eiϕaΩ−1]
. (C.8)

In the new frame with driving vector Ω⃗′, only the components Ω′
±1 could be nonzero.

Let us perform the second transformation by first applying R̂z(−ϕb) and then R̂y(−θb). We

expect Ω′′
−1 = 0 in this frame. Then, the (θb, ϕb) pairs should satisfy

1− cos(θb)

2
e−iϕbΩ′

+1 +
1 + cos(θb)

2
eiϕbΩ′

−1 = 0. (C.9)

Here Ω′
±1 are still complex numbers, and we can denote them as Ω′

±1 = |Ω′
±1|eiβ

′
±1 . We

first choose ϕb to satisfy

ei(β
′
+1−ϕb) = −ei(β′−1+ϕb). (C.10)

It will be sufficient if

ϕb =
β′+1 − β′−1 + π

2
. (C.11)

Finally, θb needs to be determined from

1− cos(θb)

2
|Ω′

+1| −
1 + cos(θb)

2
|Ω′

−1| = 0, (C.12)
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which leaves two different solutions for us:

θb = ± arccos
|Ω′

+1| − |Ω′
−1|

|Ω′
+1|+ |Ω′

−1|
. (C.13)

As a result, we can find two different rotations such that Ω′′
−1 = 0 in the new frame. It

means that there are two different SCSs as the dark states in the original frame.

One extreme case comes when both Ω′
0 and Ω′

−1 (or similarly Ω′
+1 here) become zero

after the first set of transformations under (θa, ϕa). The dark subspace now are spanned by

|Fg, Fg⟩ and |Fg, Fg − 1⟩. In fact, since

|Fg, Fg − 1⟩ = lim
θ→0

|θ, 0⟩g − eiπFg |θ, π⟩g
θ
√

2Fg
, (C.14)

we can still interpret the dark subspace as it is spanned by two SCSs |θ, 0⟩g and |θ, π⟩g, in

the limit that θ → 0.

C.2 Universal gate set on the physical qubit level

C.2.1 Single-qubit holonomic control

In this part, I will discuss how to implement the universal single-qubit gate set through

holonomic control. The gates in the encoded subspace are achieved through the adiabatic

variation of the stabilization drives, which also modifies the place of the two dark SCSs on

the GBS accordingly. The idea here follows a similar design in the bosonic cat counterpart,

which was first proposed in Ref. [149]. We also omit the subscript g here since in the adiabatic

limit we only need to care about the properties of the dark subspace, which lies in the Fg

manifold only.
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Z(α) gate

To implement the Z rotation gate, we can adiabatically move the two SCSs while keeping

them antipodal. The dark state subspace is now spanned by |θ0(t), ϕ0(t)⟩ and |θ1(t), ϕ1(t)⟩,

with θ1 = π−θ0 and ϕ1 = π+ϕ0. Assume we work in the adiabatic limit, then the quantum

state ρ̂(t) will always be in the instantaneous dark subspace with the following generic form:

ρ̂(t) = a00(t)|θ0(t), ϕ0(t)⟩⟨θ0(t), ϕ0(t)|+ a01(t)|θ0(t), ϕ0(t)⟩⟨θ1(t), ϕ1(t)|

+ a10(t)|θ1(t), ϕ1(t)⟩⟨θ0(t), ϕ0(t)|+ a11(t)|θ1(t), ϕ1(t)⟩⟨θ1(t), ϕ1(t)|.
(C.15)

On the other hand, the master equation restricted to the dark subspace will give:

P̂ (t)
dρ̂(t)

dt
P̂ (t) = P̂ (t)L(t)[ρ̂(t)]P̂ (t) = 0, (C.16)

where P̂ (t) = |θ0(t), ϕ0(t)⟩⟨θ0(t), ϕ0(t)| + |θ1(t), ϕ1(t)⟩⟨θ1(t), ϕ1(t)| is the projector to the

stabilized subspace. Notice that

d |θ(t), ϕ(t)⟩
dt

= {−iϕ̇F̂z − iθ̇[cos(ϕ)F̂y − sin(ϕ)F̂x]} |θ(t), ϕ(t)⟩ , (C.17)

we can get the following expression from Eq. (C.16):


ȧ00 = ȧ11 = 0,

ȧ01/a01 = −2iF ϕ̇0 cos(θ0),

a10 = a∗01.

(C.18)

Therefore, the population a00 and a11 for each SCS is unchanged during evolution. Also,

when the path of each SCS forms a loop L on the GBS, then we have

a01,final = a01(0) exp

(
−i
∮
L
dα

)
, (C.19)
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where

∮
L
dα =

∮
L
2F cos(θ0) dϕ0 =

∫∫
−2F

∂ cos(θ0)

∂θ0
dθ0 dϕ0 =

∫∫
2F dΩS = 2FΩS . (C.20)

With this, we successfully demonstrate the implementation of the Z(α) gate with the phase

α = 2FΩS proportional to the solid angle ΩS enclosed by the trajectory loop on the GBS.

X(α) gate

Now we briefly present how to construct a single-qubit X(α) gate by adiabatically changing

the driving parameters Ω±1(t). We start with Ω+1 = −Ω−1 = Ω, such that the code

subspace is spanned by {|Fg, Fg⟩x , |Fg,−Fg⟩x}, i.e. two SCSs pointing along the x-axis

on the GBS. We first adiabatically reduce the amplitude Ω+1 to 0 in order to collide the

two SCSs at the south pole of the generalized Bloch sphere. Then, we separate them along

another longitudinal line by adiabatically increasing Ω+1 to Ωe2iα, and finally changing Ω+1

to Ω without affecting its amplitude. The location change for the two SCSs during the whole

process is illustrated in Fig C.2(a).

Note that, in the absence of the Ω0 drive, one of the dark states lies in the subspace

spanned by {|Fg,−Fg + 2k⟩z} (even parity), while another one is in the subspace spanned by

{|Fg,−Fg + (2k + 1)⟩z} (odd parity). Therefore, during the first step where we adiabatically

turn off Ω+1, the state |+⟩c connects to |Fg,−Fg⟩z, while |−⟩c is connected to |Fg,−Fg + 1⟩z.

Following the convention in Ref. [149], we denote this mapping as Ŝ†0. Due to the rotational

symmetry in the system, the operation for the second step is Ŝα, which is related to Ŝ0 by

a rotation operator Ŝα = R̂z(α)Ŝ0R̂
†
z(α). The third step is simply a rotation R̂

†
z(α). The

whole process leads to an operation R̂
†
z(α)ŜαŜ

†
0 = Ŝ0R̂

†
z(α)Ŝ

†
0 on the dark-state subspace.

Therefore, |+⟩c will pick up a e−iαFg phase while |−⟩c will get a phase of e−iα(Fg−1). As

a result, an arbitrary superposition of the two code states will become the following state
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Figure C.2: Native non-bias-preserving operations for the spin-cat code. (a) The adiabatic
paths for the two SCSs on the GBS to implement the X(α) gate. (b) The code states and
the entangling pulses in the middle of the native implementation for the non-BP CX gate.

after the whole process

c+ |+⟩c + c− |−⟩c −→ e−iαFg
(
c+ |+⟩c + c−eiα |−⟩c

)
, (C.21)

which is exactly the X(α) gate. This operation, together with the Z(α) gate, provides

arbitrary 1-qubit rotation on the dark spin-cat encoding.

The X(α) gate in general does not preserve the Pauli error bias. It will convert part

of the Z error before the gate to the Y error when α is not an integer multiple of π. This

can also be viewed from the trajectories of the two SCSs during the gate execution, as their

collision will lead to the population exchange between computational basis states and convert

phase-flip error to bit-flip. As a result, the CX implementation involving the use of such

X(α) gate does not preserve the Pauli error bias either.
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C.2.2 A native implementation for non-bias-preserving CX gate

With arbitrary 1-qubit rotations and the CZ entangling gate, we can achieve universal op-

erations on the physical encoding level, including the CX operations as CX = YT (
π
2 ) · CZ ·

YT (−π
2 ). However, we can further simplify the CX control sequence in a more native manner

using the collision-and-expansion trick we introduced in the X(α) gate construction. Here

we also assume to use the metastable encoding. As a result, later we will change the notation

from Fg to FM for the encoded hyperfine manifold.

We briefly explain the idea as follows. The first step is again converting the encoding

from Fock states in x basis to Fock in z basis, but for the control and target atom the

protocol is different. For the control atom, the conversion protocol can be the same as

that used for the control atom in bias-preserving CX or CZ construction shown in the

main text, i.e., adiabatically transfer |0(1)⟩c ∝ |FM ,±FM ⟩x to |FM ,∓FM ⟩z while always

keeping them antipodal during the evolution. On the other hand, for the target atom we

can use the collision trick that converts |+⟩c to |FM ,−FM ⟩z and |−⟩c to |FM ,−FM + 1⟩z
by adiabatically turning off the Ω+1 drive.

After the conversion above, we need to perform the entangling operation. Here we con-

sider a Rydberg manifold with FR = FM . Consider using a σ− polarized drive to address

the state in both atoms from the encoded manifold to the Rydberg manifold. Due to the

selectivity that comes from the polarization, |FM ,−FM ⟩z will not couple with the Rydberg

levels, but |FM , FM ⟩z and |FM ,−FM + 1⟩z will. Therefore, one can use the standard CZ

control sequence [159] so that both |FM ,−FM ⟩z,C⊗|FM ,−FM + 1⟩z,T and |FM , FM ⟩z,C⊗

|FM ,−FM ⟩z,T will pick up a phase eiϕ, while |FM , FM ⟩z,C ⊗ |FM ,−FM + 1⟩z,T will get

a phase ei(2ϕ−π). This is equivalent to a CZ operation up to single-qubit phase rotations.

Finally, we need to map the encoded subspaces from the Fock z basis back to the Fock x

basis. We can choose a different trajectory compared with that used in the first step to

account for the required extra 1-qubit gates. For the control atom, we still need to keep
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the two SCSs antipodal, which is similar to the idea used in Z(α) gate construction. On

the other hand, for the target atom, we can follow the 2nd and 3rd steps used in X(α) gate

design. At the end of the protocol, only |1⟩c,C ⊗ |−⟩c,T will get a relative π phase, which

results in a CX gate.

Finally, we would like to point out that this simplified version of CX execution can still

be adapted to the “CZ biased-erasure” framework [83] (despite here CX itself is not BP),

provided that the error from 1-qubit control is negligible and the Rydberg decay during

entangling operations can be detected. If the decay is detected on the control atom, we

prepare a fresh |1⟩c, and if it is on the target atom, we prepare a fresh |−⟩c. In this way, we

again have the knowledge about both the location and the type of the error (for the control

atom, the error is Z type, while for the target it is X type). This noise pattern is equivalent

to the CX = YT (
π
2 ) · CZ · YT (−π

2 ) construction proposed in [83] where the error during CZ

in the middle is biased-erasure such that both the control and target will have Z type of

error after erasure conversion. Z error on the target will be converted to X error after YT (π2 )

rotation, which leads to the same error structure for the CX construction as we proposed

here.
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APPENDIX D

APPENDICES FOR CHAPTER 5

D.1 Miscellaneous derivations in the WKB analysis

D.1.1 Conjugate variables in the classical spin dynamics

In this part, I will try to show that (fz,−ϕ) in Eq. (5.20) is a pair of conjugate variables in

the classical dynamics. To do so, we consider the angular momentum li written as

li = ϵijkxjpk, (D.1)

where the ϵijk is the Levi-Civita symbol, xi ∈ {x, y, z} and pi ∈ {px, py, pz}.

To verify lz and −ϕ = arctan(ly/lx) is indeed a conjugate pair, we should compute the

classical Poisson bracket:

{lz,−ϕ}cl =
∑
i

∂lz
∂xi

∂(−ϕ)
∂pi

− ∂lz
∂pi

∂(−ϕ)
∂xi

= py
∂(−ϕ)
∂px

− px
∂(−ϕ)
∂py

− x
∂(−ϕ)
∂y

+ y
∂(−ϕ)
∂x

.

(D.2)

On the other hand, from the definition of ϕ, we have

∂ϕ

∂px
=

zlx
l2x + l2y

,
∂ϕ

∂py
=

zly

l2x + l2y
,

∂ϕ

∂y
= − pzly

l2x + l2y
,

∂ϕ

∂x
= − pzlx

l2x + l2y
. (D.3)

With this, we can confirm that {lz,−ϕ}cl = 1, and therefore it is a conjugate pair we need.

It can be generalized into any spin dynamics like the (fz,−ϕ) pair we meet here, where f is

the total angular momentum of a hyperfine manifold.
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D.1.2 Derivation of Eq. (5.25) and (5.26)

Now I will use WKB to investigate the wavefunctions ψ(fz) = ⟨F, fz|ψ⟩ [see Eq. (5.24)] of

the eigenstates in ĤRN (5.19). The derivation follows Ref. [165, 166], and I place it here for

completeness.

To begin with, we should check how spin operators act on the wavefunctions ψ(fz).

Notice that

F̂± |F, fz⟩ = b
[√

fz(fz ± 1)
]
|F, fz ± 1⟩ , (D.4)

where b(fz) =
√
F (F + 1)− f2z is already defined in Eq. (5.22). When acting on the wave-

functions, we have


(F̂+ψ)(fz) = b

[√
fz(fz − 1)

]
ψ(fz − 1) = b

[√
fz(fz − 1)

]
e−dfzψ(fz),

(F̂−ψ)(fz) = b
[√

fz(fz + 1)
]
ψ(fz + 1) = b

[√
fz(fz + 1)

]
edfzψ(fz).

(D.5)

On the other hand, if |ψ⟩ is an eigenstate of ĤRN with eigenvalue E, then we should have

(ĤRNψ)(fz) = Eψ(fz), (D.6)

which implies

ψ−1(fz) · (ĤRNψ)(fz) = E. (D.7)

Given the WKB ansatz ψ(fz) = exp[iS(fz)] (5.24), the equations shown above are suffi-

cient to derive formulae like Eq. (5.25) and (5.26). However, here are several tricks that can

be used in the derivations. First, functions b
[√

fz(fz ± 1)
]

can be Taylor expanded as

b
[√

fz(fz ± 1)
]
= b(fz)±

b′(fz)
2

+O(1/F ). (D.8)
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With this, we can compute terms like

ψ−1F̂xψ =
e−iS(fz)

2

{[
b(fz)−

b′(fz)
2

]
eiS(fz−1) +

[
b(fz) +

b′(fz)
2

]
eiS(fz+1)

}
.

= b(fz)e
iS′′(fz)/2 cos[S′(fz)] +

ib′(fz)eiS
′′(fz)/2

2
sin[S′(fz)].

(D.9)

Here we have omitted the O(1/F ) term, while utilizing the Taylor expansion

S(fz ± 1) = S(fz)± S′(fz) +
S′′(fz)

2
+ o(1/F ). (D.10)

To further simplify Eq. (D.9), we can apply the scaling analysis. We can expand S =

S0 + S1 + O(1/F ), where S0 ∼ O(F ) and S1 ∼ O(1). Meanwhile, dfz should scale as

dfz ∼ O(1/F ), which explains why the residual terms in Eq. (D.10) are higher-ordered than

1/F . With this, we can re-write Eq. (D.9) while keeping up to O(1) terms as

ψ−1F̂xψ = b(fz) cos(S
′
0) +

{
ib(fz)

2
[sin(S′0)]

′ +
[ib′(fz)

2
− b(fz)S

′
1

]
sin(S′0)

}

= b(fz) cos(S
′
0) +

i

2
e−2iS1

[
b(fz) sin(S

′
0)e

2iS1
]′
.

(D.11)

The first term in the equation above scales as O(F ) while the second term is in O(1).

Similarly, we can compute ψ−1F̂ 2
yψ while keeping up to O(F ) order:

ψ−1F̂ 2
yψ = b2(fz) sin

2(S′0)−
{
ib2(fz)

2
[sin(2S′0)]

′ + b(fz)
[
ib′(fz)− b(fz)S

′
1

]
sin(2S′0)

}

= b2(fz) sin
2(S′0)−

i

2
e−2iS1

[
b2(fz) sin(2S

′
0)e

2iS1
]′
.

(D.12)

The first term scales as O(F 2), while the second term is in O(F ).

Finally, we should put those expressions into Eq. (D.7) and perform order counting.

Assume E in general scales as O(F 2) as well. Then, O(F 2) terms in Eq. (D.7) will form the
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classical Hamilton-Jacobi equation shown in Eq. (5.25), while the O(F ) terms will form the

probability current conservation formula shown in Eq. (5.26).

D.1.3 Tunneling rate derivation

Derivation of Eq. (5.39)

Now I start to derive the eigen-energy difference of two near-degenerate eigenstates in ĤRN,

using the wavefunctions we derived through the WKB method. I will use a trick developed

in Ref. [165, 167], which requires us to focus on the wavefunctions ψ±(fz) introduced in

Eq. (5.38). Notice that

ĤRNψ±(fz) = E±ψ±(fz), (D.13)

which implies

F∑
fz=0

[
ψ−(fz)ĤRNψ+(fz)− ψ+(fz)ĤRNψ−(fz)

]

= E+

F∑
fz=0

ψ−(fz)ψ+(fz)− E−
F∑

fz=0

ψ+(fz)ψ−(fz).

(D.14)

The summation here only covers the fz ≥ 0 regime. Therefore, the second line in Eq. (D.14)

will be approximately E+−E−
2 , since the overlap between ψ+(fz) and ψ−(fz) in this regime

mainly comes from ψ↑(fz). On the other hand, from Eq. (D.5) we can compute the first line

of Eq. (D.14), which gives

F∑
fz=0

[
ψ−(fz)ĤRNψ+(fz)− ψ+(fz)ĤRNψ−(fz)

]
= b(0)

cos2(θ)

4
[b(

√
2)ψ+(0)ψ−(2) + 2b(0)ψ+(1)ψ−(1)]

− (2F − 1) cos(θ)

2
b(0)ψ+(0)ψ−(1).

(D.15)
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Due to the continuity of the functions, the expression above can be further simplified. With

the explicit expressions of the wavefunction ψ↑(fz) near fz = 0 [see Eq. (5.34)], we have



b(
√
2) ≃ b(0),

ψ−(1) =
√
2ψ↑(0) sinh

[∫ 1

0
pI(f) df

]
≃

√
2ψ↑(0) sinh[pI(0)],

ψ−(2) ≃
√
2ψ↑(0) sinh[2pI(0)],

ψ+(1) ≃
√
2ψ↑(0) cosh[pI(0)].

(D.16)

With these approximations, we can get a simplified expression for Edif , where

Edif = 2 ·
∣∣∣b2(0) cos2(θ) sinh[2pI(0)]− b(0)(2F − 1) cos(θ) sinh[pI(0)]

∣∣∣ · ψ2↑(0)
= 2|ḟz(fz = 0)| · ψ2↑(0) ≃

2

Tcl
exp

[
− 2

∫ fz,−

0
pI(f) df

]
,

(D.17)

which is exactly Eq. (5.39) shown in the main text.

Derivation of Eq. (5.61)

Now I continue to derive Eq. (5.61), where the Hamiltonian Ĥ′
RN (5.52) itself contains the

E-dependence. For two near-degenerate eigen-energies E± of Ĥ ′
DS (5.47) with ∆ = 0, we

have

Ĥ′
RN(E±) = Ĥ′

RN(Ē)∓
8F (2F + 1)

Ω2

E+ − E−
2

δF̂x. (D.18)

It is worth to remind here that, E±, the eigenvalue of Ĥ′
RN(E±), relate to E± through

E± =
8F (2F+1)

Ω2 E2
±.
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Then we can apply this trick similar to Eq. (D.14), which means to consider

F∑
fz=0

[
ψ−(fz)Ĥ′

RN(Ē)ψ+(fz)− ψ+(fz)Ĥ
′
RN(Ē)ψ−(fz)

]

− 8F (2F + 1)

Ω2

E+ − E−
2

δ
F∑

fz=0

[
ψ−(fz)F̂xψ+(fz) + ψ+(fz)F̂xψ−(fz)

]

= (E+ − E−)
F∑

fz=0

ψ+(fz)ψ−(fz).

(D.19)

The third line in Eq. (D.19) will be again E+−E−
2 as I explained before, while the summation

in the second line will give ⟨F̂x⟩, the expectation value of F̂x with state ψ(fz). The first line

also leaves the following expression again:

F∑
fz=0

[
ψ−(fz)Ĥ′

RN(Ē)ψ+(fz)− ψ+(fz)Ĥ
′
RN(Ē)ψ−(fz)

]
= b(0)

cos2(θ)

4
[b(

√
2)ψ+(0)ψ−(2) + 2b(0)ψ+(1)ψ−(1)]−

β(Ē)

2
b(0)ψ+(0)ψ−(1).

(D.20)

However, now we should use the wavefunction ψ(fz) in the form of Eq. (5.59) near fz = 0,

and denote ψ0 shown below for further use, where

ψ0 =
Ceiχ(0)√
|ḟz(0)|

exp
[
−
∫ fz,−

0
pI(f) df

]
exp

[
− i

∫ fz,0

0
pR(f) df

]
. (D.21)

With this, we have



ψ+(0) ≃
√
2ψ0 + c.c.,

ψ−(1) ≃
√
2ψ0 sinh[pI(0) + ipR(0)] + c.c.,

ψ−(2) ≃
√
2ψ0 sinh{2[pI(0) + ipR(0)]}+ c.c.,

ψ+(1) ≃
√
2ψ0 cosh[pI(0) + ipR(0)] + c.c.

(D.22)
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When putting Eq. (D.22) directly into Eq. (D.20), we can find exactly

F∑
fz=0

[
ψ−(fz)Ĥ′

RN(Ē)ψ+(fz)− ψ+(fz)Ĥ
′
RN(Ē)ψ−(fz)

]
≃ −iψ20 ḟz(0) + c.c.

= − 2

Tcl
exp

[
− 2

∫ fz,−

0
pI(f) df

]
cos
[
2

∫ fz,0

0
pR(f) df

]
,

(D.23)

where we have used the definition of χ(fz) (5.60) in the above derivation that


ḟz = −ie−2iχ|ḟz|,

sinh(pI + ipR) = ie−2iχ| sinh(pI + ipR)|,

sinh(pI − ipR) = −e4iχ sinh(pI + ipR).

(D.24)

We can finally achieve Eq. (5.61) by substituting Eq. (D.23) into Eq. (D.19).
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APPENDIX E

APPENDICES FOR CHAPTER 7

E.1 Proof of the theorems

Lemma E.1 (Chernoff bounds [195]). Let X1, . . . , Xn be independent Bernoulli random

variables taking values in {0, 1}, such that P (Xi = 1) = pi. denote X =
∑n
i=1Xi and

µ =
∑n
i=1 pi is the expectation value of X. Then the following Chernoff bounds hold:

P [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
≤ e−

δ2µ
2+δ (δ > 0); (E.1)

P [X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
≤ e−

δ2µ
2 (0 < δ < 1); (E.2)

P (|X − µ| ≥ δµ) ≤ 2e−
δ2µ
3 (0 < δ < 1). (E.3)

Eq. (E.2), (E.3) and the first inequality in Eq. (E.1) are all proved in Ref. [195]. Here

I want to show the second inequality in Eq. (E.1), which is equivalent to show δ − (1 +

δ) log(1 + δ) ≤ − δ2

2+δ , or 2δ
2+δ ≤ log(1 + δ) when δ > 0. Denote f(δ) = log(1 + δ)− 2δ

2+δ . We

can show that f(0) = 0 and f ′(δ) = 1
1+δ −

4
(2+δ)2

= δ2

(1+δ)(2+δ)2
. When δ > 0, we will have

f ′(δ) > 0 and therefore f(δ) ≥ 0 as well, which concludes the proof of the desired inequality.

E.1.1 Proof of the Theorem. 7.1

In each run of the n-qubit Bell measurement experiments, we can assign a random variable

Xi = 1 if we get an odd number of singlet outcomes, while Xi = 0 otherwise. Then

each Xi ∈ {0, 1} will be the i.i.d. Bernoulli random variable with the expectation value

E[Xi] = pA. As discussed in Chapter 7, pA satisfies ϵ− ϵ2 ≤ pA < ϵ− ϵ2/2.

We first consider the number of Bell measurements Nm that can bound the estimation

on pA. Here we denote p̂A =
∑Nm

i=1 Xi
Nm

, and choose r′ = r/2 such that 0 < r′ < 1. From
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Eq. (E.3), we know that the following inequality holds

P (|p̂A − pA| ≥ r′pA) ≤ δ, (E.4)

if

Nm ≥ 3

r′2pA
log(2/δ). (E.5)

Then let us choose an estimator of ϵ by

ϵ̂ =
2

3

(
1−

√
1− 3p̂A

)
. (E.6)

With this choice, we have ϵ̂− 3ϵ̂2/4 = p̂A. I will try to show that, when ϵ is smaller than a

constant, then |p̂A − pA| < r′pA will directly imply |ϵ̂− ϵ| < rϵ.

We first assume that ϵ < 1
3(1+r′) , which will guarantee (1 + r′)pA < (1 + r′)ϵ < 1

3 .

Therefore, when p̂A < (1+ r′)pA, Eq. (E.6) will always give a valid ϵ̂ estimation with ϵ̂ ≤ 2
3 .

Then, I will illustrate that, when ϵ is smaller than a constant, then p̂A < (1 + r′)pA will

imply ϵ̂ < (1 + r)ϵ. Since (1 + r)ϵ < 1+r
3(1+r′) <

2
3 , it is equivalent to show

p̂A = ϵ̂− 3ϵ̂2/4 < (1 + r)ϵ− 3(1 + r)2ϵ2/4. (E.7)

On the other hand, p̂A < (1 + r′)pA < (1 + r′)(ϵ− ϵ2/2). As long as ϵ also satisfies

0 < ϵ <
4(r − r′)

3(1 + r)2 − 2(1 + r′)
=

2r

3r2 + 5r + 1
, (E.8)

then p̂A < (1 + r′)pA will give ϵ̂ < (1 + r)ϵ. Meanwhile, when 0 < r < 1, we always have

2r
3r2+5r+1

< 2
3(2+r)

. With this, Eq. (E.8) will also guarantee ϵ < 1
3(1+r′) .
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Similarly, when r ∈ (0, 1), Eq. (E.8) also implies

0 < ϵ <
2r

3r2 + 5r + 1
<

2r

r(4− 3r) + 1
=

4(r − r′)
4(1− r′)− 3(1− r)2

. (E.9)

Therefore, (1− r′)pA < p̂A gives

(1− r)ϵ− 3(1− r)2ϵ2/4 < (1− r′)(ϵ− ϵ2) < (1− r′)pA < p̂A = ϵ̂− 3ϵ̂2/4. (E.10)

Since both (1−r)ϵ and ϵ̂ are smaller than 2
3 , the inequality above will also imply (1−r)ϵ < ϵ̂.

From the above discussion, we understand that, when Eq. (E.8) holds, then |p̂A − pA| <

r′pA will give |ϵ̂ − ϵ| < rϵ. Equivalently, P (|ϵ̂ − ϵ| ≥ rϵ) ≤ P (|p̂A − pA| ≥ r′pA). On the

other hand, when 0 < ϵ < 1
3 , we have 1

pA
≤ 1

ϵ−ϵ2 <
3
2ϵ . Therefore, when choosing

N = 2Nm ≥ 36

r2ϵ
log(2/δ) >

6

r′2pA
log(2/δ), (E.11)

we will have

P (|ϵ̂− ϵ| ≥ rϵ) ≤ P (|p̂A − pA| ≥ r′pA) ≤ δ. (E.12)

Here we use N = 2Nm since one Bell measurement consumes two copies of the unknown

states. This concludes the proof on the N ∼ O[1ϵ log(1/δ)] overhead scaling.

E.1.2 Proof of the Theorem. 7.2

In order to get a precise estimation on ϵ, here our approach is to estimate each ϵ(α,s) and

then sum them up. Here we denote k as the number of irreducible representations other than

H(0,0), or equivalently there are k different ϵ(α,s) variables to estimate. For the simplicity

of the notation, here we use i to label each (α, s), and denote di = dim[H(α,s)] to be the

dimension of each irreducible representation.

We notice that, when measuring the overlap with each stabilizer state |Si⟩ in Hi, we will
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get a series of i.i.d. Bernoulli variables X(i)
j ∈ {0, 1} with the expectation value Ej [X

(i)
j ] =

ϵi
di

. Therefore, each ϵi can be estimated by ϵ̂i = di

∑Ni
j=1X

(i)
j

Ni
. With this, we can achieve

ϵ̂ =
∑k
i=1 ϵ̂i in the end.

From Eq. (E.1) and (E.2), we will know that if Ni satisfies

Ni >
kdi(2k + r)

r2ϵ
log(2k/δ) ≥

{
2(ϵi/di)

[rϵ/(kdi)]2
+

1

rϵ/(kdi)

}
log(2k/δ) >

2(ϵi/di)

[rϵ/(kdi)]2
log(2k/δ),

(E.13)

then the following two inequalities will both hold:


P

(
ϵ̂i ≥ ϵi +

rϵ

k

)
= P

(
ϵ̂i
di

≥ ϵi
di

+
rϵ

kdi

)
<

δ

2k
, (E.14)

P

(
ϵ̂i ≤ ϵi −

rϵ

k

)
= P

(
ϵ̂i
di

≤ ϵi
di

− rϵ

kdi

)
<

δ

2k
. (E.15)

Here we want to point out that we have used ϵi ≤ ϵ in Eq. (E.13), while Eq. (E.15) will be

trivially correct if ϵi ≤ rϵ/k. As a result, when Ni >
kdi(2k+r)

r2ϵ
log(2k/δ), we have

P

(
|ϵ̂i − ϵi| <

rϵ

k

)
≥ 1− δ

k
. (E.16)

Further, if Eq. (E.13) holds for every Ni, then we will get

P
(
|ϵ̂− ϵ| < rϵ

)
≥ P

(
∀i : |ϵ̂i − ϵi| <

rϵ

k

)
≥ 1− δ. (E.17)

The total cost will be

N =
k∑
i=1

Ni >
k(d− 1)(2k + r)

r2ϵ
log(2k/δ). (E.18)

Here d = 2n = 1 +
∑k
i=1 di is the dimension of the n-qubit Hilbert space. The N ∼

O[1ϵ log(1/δ)] overhead scaling is justified again.
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