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Decades of research have shown working memory (WM) relies on sustained prefrontal
cortical activity and visual extrastriate activity, particularly in the alpha (8 to 12 Hz)
frequency range. This alpha activity tracks the spatial location of WM items, even
when spatial position is task-irrelevant and no stimulus is currently being presented.
Traditional analyses of putative oscillations using bandpass filters, however, conflate
oscillations with nonoscillatory aperiodic activity. Here, we reanalyzed seven human
electroencephalography visual WM datasets to test the hypothesis that aperiodic
activity, which is thought to reflect the relative contributions of excitatory and
inhibitory drive-plays a distinct role in visual WM from true alpha oscillations. To do
this, we developed a time-resolved spectral parameterization approach to disentangle
oscillations from aperiodic activity during WM encoding and maintenance. Across all
seven tasks, totaling 112 participants, we captured the representation of spatial location
from total alpha power using inverted encoding models (IEMs), replicating traditional
analyses. We then trained separate IEMs to estimate the strength of spatial location
representation from aperiodic-adjusted alpha (reflecting just the oscillatory component)
and aperiodic activity and find that IEM performance improves for aperiodic-adjusted
alpha compared to total alpha power that blends the two signals. We also identify
a distinct role for aperiodic activity, where IEM performance trained on aperiodic
activity is highest during stimulus presentation, but not during the WM maintenance
period. Our results emphasize the importance of controlling for aperiodic activity when
studying neural oscillations while uncovering a functional role for aperiodic activity in
encoding visual WM information.

alpha oscillations | working memory | aperiodic activity

Working memory (WM) refers to our ability to hold and manipulate information in
mind for a short time, usually just a few seconds. Although WM is core to many
cognitive functions and is disrupted in numerous psychiatric and neurological disorders,
the underlying neurocomputational principles of WM remain elusive. While sustained
single-neuron activity in the prefrontal cortex (PFC) is considered a hallmark of WM,
it relies on population coding distributed across many regions (1). Population neural
activity in the PFC represents a broad array of task variables such as stimulus—stimulus
association (2) and sustained representations of WM content in the pattern of activity of
voxels distributed within parietal and sensory cortices (3-7).

Another way of assessing population codes is via extracellular field recordings that
measure synaptic and transmembrane currents in a neural population (8). Oscillations
are a common feature of these signals, and play key roles in neural communication and
computation (9). Changes in oscillatory power have been documented in the delay period
of WM tasks at multiple scales: from invasive local field potentials (LFPs) to noninvasive
electroencephalography (EEG) and magnetoencephalography (MEG). Visual cortical
alpha (8 to 12 Hz) oscillations have been implicated in WM, with both alpha power
increases (10-12) and decreases (11, 13-15) during WM tasks. These seemingly
paradoxical results have been resolved by differential alpha dynamics, with increased alpha
power reflecting disengagement of task-irrelevant sensory representations, and decreased
alpha power reflecting engagement of task-relevant sensory representations (11, 16, 17).
Like its role in spatial attention, alpha power is reduced contralateral to locations held in
spatial WM (18-20), with both healthy aging and unilateral PFC lesions altering visual
cortical delay period alpha (21, 22). Alpha band activity also encodes the precise spatial
location of WM stimuli (23, 24), even when spatial location is task-irrelevant (25).

While there is substantial evidence for changes in narrowband alpha power in visual
attention and WM, oscillations occur in conjunction with nonoscillatory aperiodic
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activity. Aperiodic activity has historically been dismissed as
neural noise, though given the physiological nature of the LFP
(and thus, by extension, EEG), more recent work has shown
that aperiodic activity likely reflects asynchronous cortical drive
that is coarsely related to the relative excitatory/inhibitory drive
(26, 27), and is dynamically related to cognitive and behavioral
state (28-30). Critically, changes in aperiodic activity are distinct
from event-related potentials (31), suggesting that event-related
fluctuations in aperiodic activity are not merely a byproduct of
phase-locked responses but instead reflect broadband shifts in
neural excitability. Using traditional spectral analyses, such as
narrowband filtering in a predefined alpha band, dynamic and
task-related changes in this aperiodic activity can appear to be
changes in oscillatory activity, even if no oscillation is present
(32, 33). This raises the question as to whether the preponderance
of evidence of alpha dynamics during WM reflects true alpha
oscillations, or is actually capturing rapid fluctuations in aperiodic
dynamics that manifest as power changes in the alpha frequency
range, or reflects dynamic changes in both.

Here, we reanalyze seven previously published EEG experi-
ments, totaling 112 participants, that have previously demon-
strated alpha band encoding of visual WM information during a
WM delay period under various task conditions. By using a time-
resolved extension of spectral parameterization, we dissociate
the effects of event-related alpha oscillations from aperiodic
dynamics in the encoding and maintenance of WM information
with subsecond resolution. Even when controlling for aperiodic
dynamics, we find that alpha power represents the correct spatial
location of visual items sustained across the WM delay period
across all seven tasks. Importantly, this representation actually
improves after controlling for aperiodic activity. This reinforces
the idea that alpha oscillations—not just alpha power—represent
spatial location in visual WM. We also identify a distinct
role of aperiodic activity in the transient encoding of spatial
information across all seven tasks, that, unlike alpha oscillations,
does not sustain during the delay period but is only evident after
stimulus presentation. These results highlight the importance of
considering aperiodic activity in our analyses. They strengthen
the evidence for the role of alpha oscillations in visual WM while
hinting at a distinct role of aperiodic activity, potentially for the
encoding of visual information.

Materials and Methods

Participants. The EEG data analyzed in this paper were collected from
participants at the University of Oregon (n = 56) and the University of Chicago
(n = 56). These data are from three publicly available datasets (25, 34), and the
published reports contain the complete details on participants, data collection
procedures, experimental design, and data preprocessing. But we summarize
them briefly, here.

Experimental Design. The three publicly available datasets (24, 25, 34)
encompass data from seven different tasks/experiments (Table 1), during all
of which participants attended to and remembered positions of memory items
around fixation, across a delay period. As shown in Fig. 1, the tasks proceeded
in three stages: stimulus, delay, and response. During stimulus presentation,
participants were presented with one or two simple stimuli (circles, squares,
gratings, or triangles) equidistant from fixation (4° visual angle). Stimuli were
presented for durations ranging from 100 ms to 1,000 ms. Following stimulus
offset, there was afixed, blank delay period containing only afixation pointwhere
durations ranged from 1,000 to 1,750 ms depending on the dataset. Finally,
during the response period, participants were presented with a response screen
that contained eitheraring presented around fixation (continuous recall tasks) or
asingle probe stimulus (change detection task). All of the tasks were continuous
recall tasks except for Task 3, which was a change detection task in which the
participants had 250 ms to determine whether the probe stimulus had changed
from stimulus presentation.

Importantly, all tasks required that participants attend to locations around
fixation either explicitly or implicitly, regardless of the response required. In
the University of Oregon sample, participants were instructed to remember the
spatial position(Tasks 1to3,n = 44)orcolor(Task4,n = 12)ofacircle stimulus
presented around fixation throughout the blank delay period. In the University
of Chicago sample, participants were presented with two stimuli (a square and
a triangle in Task 5, two colored gratings in Task 6, and two colored circles in
Task 7) and cued in advance to attend and remember only one of the stimuli
based on its shape (Task 5) or color (Tasks 6 and 7). In Task 7, some of the trials
featured only one colored circle and no distractor. After a brief delay, participants
were required to report the color (Task 5), orientation (Task 6), or spatial position
(Task 7) of the cued stimulus. Notably, all tasks required that participants attend
spatial positions around fixation and encouraged participants to maintain those
spatial representations through a blank delay.

EEG Recordings. EEG recordings done at the University of Oregon (Tasks 1 to
4) recorded activity from 20 electrodes, namely International 10/20 sites F3, FZ,
F4,713,C3,CZ, C4,T4,P3,PZ,P4,75,T6,01,and 02, along with five nonstandard
sites: OL midway between T5 and 01, OR midway between Té and 02, PO3
midway between P3 and OL, PO4 midway between P4 and OR, and POz midway
between PO3 and PO4. EEG recordings done at the University of Chicago (Tasks
5 to 7) recorded activity from 26 common electrodes, namely 02, Oz, 01, P8,
P4, Pz, P3, P7, CP6, CP2, CP1, CP5, T8, C4, Cz, C3,T7, F110, FC6, FC2, FC1, FC5,
FT9, F8, F4, Fz, F3, F7, FP2, and FP1. For Tasks 5 and 6, EEG activity was also
recorded at PO7, PO4, PO3, and PO8, while EEG activity was recorded at T7 and
T8 for Task 7. Data from all seven tasks were rereferenced offline to the algebraic
average of the left and right mastoids and bandpass-filtered from 0.01 to 80 Hz.
University of Oregon data was digitized at 250 Hz using LabVIEW 6.1, while
University of Chicago data was digitized at 500 Hz using BrainVision Recorder
(Brain Products, Munich, Germany). Finally, trials from all seven tasks were
visually inspected for artifacts using EEG, EQG, and eye tracking data, such that
trials were discarded if they were contaminated by blocking, blinks, detectable
eye movements, excessive muscle noise, or skin potentials.

Spectral Decomposition and Time-Resolved Parameterization. Repeat-
ing the procedure from the original papers (24, 25, 34), alpha total power was
computed for each trial using a narrowband alpha filter and Hilbert transform
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Table 1. Task parameters across seven WM tasks and two research sites

Task  Stimulus (ms) Delay (ms) Response(ms)  Task-relevant feature Type Site n Dataset
1 250 1,750 Until response Location Recall Oregon 15 (24)
2 1,000 1,000 Until response Location Recall Oregon 15 (24)

3 250 1,750 250 Location Change detection Oregon 14 (24)
4 100 1,200 Until response Color Recall Oregon 12 (25)

5 100 1,150 Until response Color Recall Chicago 18 (25)
6 100 1,150 Until response Orientation Recall Chicago 14 (25)
7 250 1,000 Until response Location Recall Chicago 24 (34)

Stimulus presentation and delay timings, response type, recording site, and which feature was relevant for the WM task were variable across the tasks.
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Fig. 1. Example task for each WM task. In each task, a stimulus was presented (Front), the participant was asked to remember a feature of the stimulus across
a WM delay (Middle), and then reported the remembered feature value during a response period (Back).

approach. The data were filtered in the alpha band (8 to 12 Hz), and then the
Hilbert transform was applied on the filtered data to get the analytic signal.
The instantaneous alpha power was the magnitude of this analytic signal.
This measure of instantaneous alpha power does not account for confounding
contributions of aperiodic activity, and, as such, is hereafter referred to as total
alpha power to disambiguate it from our subsequent analyses that separate
putative oscillations from aperiodic activity.

To estimate an aperiodic-adjusted instantaneous measure of alpha power,
we first computed sliding-window power spectra for each trial using multitapers
in MNE-Python (35) with time windows of 15 (Fig. 2B). This procedure resulted
in power estimates for 128 frequencies, from 2 to 50 Hz, from which the
“instantaneous” spectral parameters could be estimated. It is important to
emphasize that "instantaneous" analytics amplitude using the traditional filter-
Hilbert approach has similar temporal uncertainty as our sliding-window short-
time Fourier-multitaper approach (36). Spectral decomposition of these time-
frequency representations was then done using the spectral parameterization
method (version 1.1.0) (Fig. 2C) (32). Settings for the algorithm were set as
follows: peak width limits: (2, 8); max number of peaks: 4; minimum peak
height: 0; peak threshold: 2.0; and aperiodic mode: "fixed.” Power spectra were
parameterized across the frequency range 2 to 50 Hz. We extracted the aperiodic
exponent from these model fits, providing an estimate of the “instantaneous”
aperiodic exponentfor each time pointin each trial (Fig. 2D, orange line). Finally,
we estimated the instantaneous aperiodic-adjusted alpha power by subtracting
the aperiodic activity from the power spectra for each time point and calculated
the area under the curve (AUC) on a linear scale in the alpha range (8 to 12 Hz)
(Fig. 2C). This provided a continuous estimate of alpha oscillatory power (not
total alpha power) for each time point in each trial (Fig. 2D, dark purple line).
These sliding-window estimates of the aperiodic exponent and alpha oscillatory
power were then used with the alpha total power in subsequent analyses.

To increase the signal-to-noise of these sliding-window estimates, the data
were averaged across trials into three separate blocks. Trials were randomly
assigned to one of the three blocks, but the same number of trials from each
location bin were included in each block and the blocks were independent (i.e.,
no trial was included in multiple blocks). The values were then averaged across
each block, such that the final matrix of parameter values was / location bins * b
blocks x m channels x s time points.

Fitting Inverted Encoding Models. Similar to the procedure from the original
papers (24, 25, 34), we fit inverted encoding models (IEMs) to reconstruct
location-selective channel tuning functions (CTFs) from the topographic
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distribution of each parameter (alpha and aperiodic) across electrodes. This
was done separately for alpha total power values from the Hilbert transform
and the aperiodic exponent and alpha oscillatory power values from spectral
parameterization. Weassumed thatthe parametervalueateach electrode reflects
the weighted sum of eight spatially tuned channels (i.e., neuronal populations),
each tuned for a different angular location (24, 37). Each spatial channel's
response across angular locations was modeled as a half sinusoid raised to the
seventh power, given by

R = sin(0.56)’, (1]

where @ is angular location (ranging from 0° to 359°), and R is the response
of the spatial channel in arbitrary units. This response profile was circularly
shifted for each channel such that the peak response of each spatial channel
was centered over one of the eight location bins (i.e., 0°, 45°, 90°, etc.). The
predicted channel responses for each location bin were derived from these basis
functions (calculated using the angular location at the center of each bin).

First, encoding models were fit separately to the alpha total power, aperiodic
exponent, and alpha oscillatory power values for each time point (Fig. 3 A-D).
Data from the first two blocks were used for training, while the third was held-out
for testing (described below). Let Byrin (m electrodes x ny,in observations)
be the parameter value at each electrode for each measurement in the training
set (Fig. 3C), with Cyrain (k channels x ny,i, observations) being the predicted
response of each spatial channel (determined by the basis functions) for each
measurement (Fig. 3B), and W (m electrodes x k channels) being a weight
matrix that characterizes a linear mapping from “channel space” to “electrode
space.” The relationship between Byain, Cirain, and W can be described by a
general linear model of the form:

Btrain = WCtrain- (2]
The weight matrix was fit to the training data using least-squares estimation:
W = ByrainCirain’ (CtrainCtrain’ )~ 3]
train “train train “train .
Second, the weights were then inverted and used to transform the test data
Btest (m electrodes x niest observations) into estimated channel response Ciest

(k channels x ny4in observations, Fig. 3F):

Crest = (WTW)_1 W Best. (4]

https://doi.org/10.1073/pnas.2506418122
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Fig. 2. Estimation of time-resolved aperiodic and aperiodic-adjusted oscillatory parameters for individual trials. (A) Voltage traces from one trial for two
occipital channels (O1, 02), one parietal channel (Pz), and one frontal channel (Fz). The gray bounding box highlights the one-second temporal window that
serves as input for multitaper decomposition to estimate the spectral properties for the time point 0.5 s after stimulus presentation. (B) Multitaper spectrogram
for one occipital channel (O1) for the same trial as shown in (A). The vertical gray dashed line denotes the time point 0.5 s after stimulus presentation. (C)
Power spectrum for the time window and channel denoted in (B), which is used to estimate the “instantaneous” spectral parameters. Alpha total power (hashed
window) is the full area under the curve (AUC) within the alpha band (8 to 12 Hz, light purple), while alpha oscillatory power is the alpha total power minus
the power attributed to the aperiodic exponent (dark purple). (D) Time-resolved estimates of alpha total power, alpha oscillatory power, and the aperiodic
exponent for the same trial as shown in (4) for channel O1. (E) Spatial distribution of alpha total power, alpha oscillatory power, and aperiodic exponent for

same time point and trial shown in (A).

Each estimated channel response function was circularly shifted to a common
center by aligning the estimated channel responses to the channel tuned for the
stimulus bin to yield CTFs (Fig. 3H). This procedure of fitting an encoding model
on the training data By,j, and inverting that encoding model to estimate
the channel responses for the test data Biest was repeated for each time
point and with each block serving as the test block, such that we performed
a "leave-one-out” cross-validation. The resulting CTFs were averaged across
the three testing blocks. Finally, the procedure was repeated for 100 block
assignments for each participant to minimize the influence of idiosyncrasies
in estimates of parameter values specific to certain assignments of trials to
blocks.

Statistical Analyses. CTFs were circularly shifted to the correct spatial location
and reflected about that spatial location, such that points equidistant from the
correct spatial location are treated identically. To estimate the representation
strength of the correct spatial location, the slope of the linear regression for
these transformed CTFs was calculated, hereafter referred to as the CTF slope
(Fig. 31). We z-scored the CTF slopes for each participant based on the baseline
period, such that CTF slope values above 1.96 indicate P < 0.05. We computed
one-sample t tests to evaluate whether CTF slopes in the encoding and delay
periods differed significantly from the baseline (which would have a z-scored
CTF slope of 0 by design). Comparisons between parameters (e.g., alpha total
power and alpha oscillatory power) were made using paired t tests across
participants. We accounted for multiple comparisons using the Benjamini-
Hochberg procedure (38).

40f 9 https://doi.org/10.1073/pnas.2506418122

Results

Time Courses of Spatial Location Representation Are Con-
sistent Across Seven Different Working Memory Tasks. We
reconstructed the time courses of spatial location representation
by alpha total power, alpha oscillatory power, and the aperiodic
exponent for each of the seven WM tasks in the composite dataset
(Fig. 4). Time courses of spatial location representation by the
aperiodic offset are very similar to those of the aperiodic exponent
(81 Appendix, Fig. S1), which is expected given their strong
correlation (8] Appendix, Fig. S2, blue). Importantly, these tasks
had different stimulus durations, task-relevant features, and were
collected across two different sites. Yet, the time courses of spatial
location representation by these features were consistent across
tasks, with the spatial location representation by alpha total power
and alpha oscillatory power peaking during the delay period and
the spatial location representation by aperiodic activity peaking
during the encoding period. Alpha total power, alpha oscillatory
power, and the aperiodic exponent are all very weakly correlated
throughout the trial across all tasks (SI Appendix, Fig. S2),

bolstering the notion that these are largely independent processes.

Alpha Power Represents the Correct Spatial Location During
the Delay Period. We performed one-sample 7 tests on the
z-scored CTF slopes across participants for each task. The
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Fig. 3. Procedure for fitting inverted encoding models to estimate strength of representation for correct spatial location. (A) Training stimulus presented
at 45°. (B) Predicted spatial channel response for neural populations encoding each of the eight location bins for the stimulus presented at 45°. The spatial
channel response is modeled using Eq. 1. This corresponds to one row of Cyain- (C) Average EEG activity for each sensor for one example training block. The
topomap shown is the average, aperiodic-adjusted alpha oscillatory power at 0.5 s for each sensor for one participant. Each row in By represents alpha
oscillatory power at 0.5 s across each sensor for each trial. (D) The estimated channel weights fit from the predicted channel responses and alpha oscillatory
power using Eq. 3. The weights corresponding to the training stimulus shown at 45° are highlighted for each sensor. (E) Test stimulus presented at 225°. (F)
Inverted channel weights as shown in Eq. 4. The weights corresponding to the test stimulus shown at 225° are highlighted for each sensor. (G) Average EEG
activity for each sensor for one example test block. The topomap shown is the average alpha oscillatory power at 0.5 s for each sensor for one participant.
Each row in Btest represents alpha oscillatory power at 0.5 s across each sensor for each trial. (H) Estimated spatial channel response for neural populations
encoding each of the eight location bins for a stimulus presented at 225°, as calculated by Eq. 4. (/) Channel tuning function (CTF) slope, calculated after the
spatial estimated channel response shown in (H) is circularly shifted to the correct spatial location and reflected about that spatial location. The dotted line
shows the slope of the linear regression of this CTF for stimuli presented at 225° for this test block.

representation of the correct spatial location during the delay
period by alpha total power and by alpha oscillatory was

Alpha oscillatory power represented the correct spatial location
significantly more strongly during the delay, compared to the

significant across all seven tasks (Fig. 5 A and B, respectively). The
representation of the correct spatial location during the encoding
period by alpha total power was also significant for four of the
seven tasks, while that by alpha oscillatory power was significant
for five of the seven tasks.

To determine whether the strength of representation was
significantly different between the encoding and delay periods,
we also performed paired 7 tests between the z-scored CTF
slopes during the encoding and delay periods. Alpha total
power represented the correct spatial location significantly more
strongly during the delay, compared to the encoding period, in
four of seven tasks, while the encoding period representation
was stronger compared to the delay in one task (Fig. 54).

PNAS 2025 Vol. 122 No. 30 e2506418122

encoding period, in four tasks; in the other three tasks, the
difference between the encoding and delay period was not
significant (Fig. 5B).

Aperiodic Exponent Represents the Correct Spatial Location
During the Encoding Period. The representation of the correct
spatial location during the encoding period by aperiodic exponent
was significant across all seven tasks (Fig. 5C). The aperiodic
exponent showed significant representation of the correct spatial
location during the delay period in five of the seven tasks.
Finally, the representation of the correct spatial location by
the aperiodic exponent was significantly stronger during the
encoding, compared to the delay period, in six of the seven tasks.

https://doi.org/10.1073/pnas.2506418122 5 of 9
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Alpha Oscillatory Power Better Represents the Correct Spatial
Location During the Delay Period than Alpha Total Power.
Alpha oscillatory power represented the correct spatial location
better than alpha total power during the delay in 85 out of 112
participants (Fig. 5D). To test whether the representation of the
correct spatial location by alpha oscillatory power was signifi-
cantly stronger than that by alpha total power, we computed
paired 7 tests between each participant’s alpha oscillatory power
and alpha total power CTF slopes within each task, correcting
for multiple comparisons across tasks. The representation of the
correct spatial location was significantly stronger in six of the
seven tasks (Fig. 5D, legend), suggesting that alpha oscillatory
power better captures spatial location information than alpha
total power.
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Discussion

In this paper, we applied time-resolved spectral parameterization
to estimate continuous aperiodic-adjusted alpha power (i.e.,
alpha oscillatory power) and aperiodic activity across a com-
posite dataset comprising 112 participants and seven different
WM tasks. We first replicated previous findings of significant
representation of the correct spatial location by alpha total power
during the delay period. After adjusting for contributions of
aperiodic activity to these alpha power estimates, we showed
significant improvements in the strength of spatial location
representation. Finally, we uncovered a role for aperiodic activity
within the context of working memory-the aperiodic exponent
encodes spatial location during stimulus presentation. Together,
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Fig. 5. Comparison of representation strength time courses by periodic and aperiodic parameters. (A) Representation strength during encoding and delay
periods for each participant by alpha total power, (B) alpha oscillatory power, and (C) aperiodic exponent. Significance above each cluster reflects the deviation
from baseline for each time period, while the significance between clusters reflects the paired difference between the encoding and delay time periods across
participants. (D) Comparison of representation strength by alpha oscillatory power and alpha total power during the delay period for each participant. Values
above the diagonal indicate stronger representation of the correct spatial location by alpha oscillatory power than alpha total power. The significance of the
paired t test for each participant's representation strength of the correct spatial location by alpha oscillatory power versus that by alpha total power across

each task is shown in the legend.

these results suggest alpha oscillations and aperiodic activity play
distinct roles in the encoding and retention of spatial location
during working memory.

Implications. The fact that alpha oscillatory power represents
the correct spatial location significantly more strongly than alpha
total power in six of the seven tasks shows that traditional analysis
approaches that conflate oscillations with aperiodic activity are
impairing our ability to understand the functional role of neural
oscillations while also hiding the potentially distinct functional
role of aperiodic activity. Our results show that alpha oscillatory
power more closely reflects the processes involved in the retention
of spatial location in visual WM. These results highlight the
importance of removing aperiodic contributions to measures of
oscillatory activity, even if aperiodic activity is not the focus of
investigation. Apart from its role in WM, differences in alpha
total power have been observed in the context of many cognitive
functions and cognitive disorders (39-42). In these studies,
researchers most commonly use measures of alpha power that
do not account for aperiodic activity. Our results across these
seven WM tasks demonstrate that using an aperiodic-adjusted
measure of alpha power may provide a more sensitive measure
of alpha oscillatory activity. Moreover, there may be interesting
differences in aperiodic activity that coincide with those already
observed in alpha total power.

PNAS 2025 Vol. 122 No. 30 e2506418122

Aperiodic activity has been shown to capture information
about its underlying physiological generators, such as the
relative balance of excitation and inhibition (27). Moreover,
small, dynamic fluctuations in excitation—inhibition balance are
critical for healthy cognitive functioning, allowing for efficient
information transmission and gating (43), network computation
(44), top—down attentional gain modulation (45-47), and WM
maintenance(48). The model of aperiodic activity developed by
Gao and colleagues (27) suggests that an increase in excitation
necessary for encoding the stimulus would manifest as a decrease
in the aperiodic exponent, leading to a flattening of the power
spectrum. Recent work has shown a flattening of the power
spectrum in intracranial EEG during memory encoding that
is consistent with this hypothesis (49). Our result that the
aperiodic exponent represents the correct spatial location during
the encoding period is consistent with these previous findings
and further validates the notion that the dynamic changes in the
aperiodic exponent reflect increases in excitation necessary for
stimulus encoding. Future studies are necessary to test directly
whether an increase in excitation underlies the representation
of spatial location by aperiodic exponent during encoding. Such
studies would validate both the computational model of aperiodic
activity as reflective of relative balance in excitation and inhibition
and the role of excitation—inhibition interactions in encoding

stimulus for WM.

https://doi.org/10.1073/pnas.2506418122
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Our results demonstrate that the aperiodic exponent repre-
sents spatial location during the encoding period, while alpha
oscillatory activity represents spatial location during the delay
period. Previous work has demonstrated that E-I interactions are
essential for the formation of neural oscillations (50, 51), which
suggests that oscillations and aperiodic activity interact.

Limitations. While alpha oscillatory activity more strongly rep-
resents spatial location than alpha total power in all but one
of the seven WM tasks tested here, it is more computationally
costly to do sliding-window spectral parameterization than to
use traditional methods like a filter-Hilbert approach. That
said, there are a couple of ways to reduce this computation
time moving forward. First, the signal could be downsampled
prior to applying sliding-window spectral parameterization. In
this paper, we wanted to match the instantaneous alpha total
power estimation from the filter-Hilbert approach as closely
as possible to ensure a fair comparison. So, we performed
no downsampling. Because there is substantial overlap in the
windows used to compute spectral features from time point to
time point, such time resolution is unnecessary. The computation
time would be reduced by the decimation factor chosen, greatly
reducing computation time. Future studies could also investigate
combining independent sliding-window estimations of alpha
total power (through a filter-Hilbert approach) and of the
aperiodic exponent. Importantly, while both the filter-Hilbert
and sliding-window spectral parameterization approaches yield
amplitude estimates at each sample, their effective temporal
resolution is constrained-by the filter bandwidth in the former
and the window length in the latter. Here, we used an 8 to
12 Hz bandpass filter and 1-s sliding windows, corresponding to
effective temporal resolutions of approximately 250 ms and £500
ms, respectively. Tuning these hyperparameters to optimize
temporal or spectral resolution may be beneficial in future work.

In addition to the computational costs, there are fundamental
questions surrounding how to identify oscillations. Although
we took a spectral parameterization approach, there are several
emerging methods for separating oscillations from aperiodic
activity in both the time (52, 53) and frequency domains (54).
Furthermore, there are more fundamental questions about how
sensitive our methods are for even identifying oscillations in
the first place (55), though there are methods for enhancing
the oscillation signal-to-noise (56, 57). Finally, this analysis was
constrained to looking at alpha power, though there are likely
significant effects of alpha phase in working memory (21, 58, 59),
and potentially even with regard to the subtle differences in the
alpha waveform (60, 61).

In terms of the kinds of tasks analyzed, this composite dataset
worked well to investigate whether adjusting for aperiodic activity
in estimating instantaneous alpha power substantially improved
reconstruction of spatial location information in WM across an
expansive number of WM tasks and participants. This investiga-
tion revealed an interesting contribution of aperiodic activity in
representing spatial location during encoding, but the tasks were
not designed to explicitly test for aperiodic activity and its role in
encoding. Various modifications to the experimental task would
allow for a more thorough examination of aperiodic activity’s
role in WM encoding. First, using multiple stimuli and a precue
that identifies which stimulus is the target (i.e., should then be
attended to) and which stimulus is the distractor (i.e., should not
be attended to) would allow researchers to disambiguate whether
aperiodic activity tracks attention-agnostic, stimulus-driven ac-
tivity, or attentive perception. Second, stimulus presentation was
250 ms or less in six of the seven tasks we analyzed; longer

8 of 9 https://doi.org/10.1073/pnas.2506418122

encoding periods would improve time-frequency analyses and
ensure more of the time-frequency decomposition is computed
with windows that are exclusively from the encoding period.
Recent work by Tsubomi and colleagues demonstrated WM
content is spontaneously removed after it becomes obsolete,
suggesting WM is goal-directed and sensitive to task timing
(62). Manipulation of the length of the encoding period would
allow for a similar test of sensitivity to task timing for the
aperiodic exponent. Third, a WM task with serial presentation
(e.g., Sternberg task) would allow researchers to evaluate whether
each memory item is successively encoded by aperiodic activity
since the corresponding neural activity will be separated in time.
This would complement previous work that has suggested that
sequential and simultaneous presentations rely on similar WM
processes. For example, Woodman and colleagues showed that
sequential and simultaneous presentation resulted in similar WM
accuracy across different set sizes (63), while Zhao and Vogel
showed that performance is highly correlated in sequential and
simultaneous WM tasks across individuals (64). Finally, similar
to work done by Waschke and colleagues (30), researchers could
experimentally manipulate the stimuli to bias aperiodic activity
in the visual cortex and examine how such biasing affects WM
encoding. Such an experiment would also enable explicit testing
of the interaction between stimulus encoding by aperiodic activity
and WM maintenance by alpha oscillatory activity.

Conclusion. These results support the idea that alpha oscillations
are associated with the maintenance of spatial location informa-
tion in WM, highlighting that it really is the oscillations’” power
that is most relevant, not the total power. We developed spectral
methods for sliding-window estimation of alpha oscillatory power
and aperiodic activity. These time-resolved methods enabled
us to disambiguate distinct roles for alpha oscillations and
aperiodic activity in WM that had previously been mixed in
the alpha total power signal. Specifically, aperiodic activity
encodes spatial location during stimulus presentation, while the
power of alpha oscillations maintain spatial location information
throughout the WM delay. By leveraging sliding-window spectral
parameterization, new experiments designed to test explicitly
for the role of aperiodic activity in encoding could provide
further mechanistic insights into how these distinct neural
components contribute to WM encoding and maintenance.
While the poor spatial resolution of scalp EEG may be masking
differences in cortical processing of aperiodic and oscillatory
activity, one implication of our results is that incoming visual
sensory information drives cortical excitation in a topographic
manner, but that this asynchronous, aperiodic drive is then
translated into an oscillatory code for maintenance. Whether such
an interaction between oscillations and periodic activity underlie
encoding and maintenance of information in visual WM remains
an open question.
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used for this work (24, 25, 34).
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