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When analyzing the individual positional dynamics of an ensemble of moving objects, the extracted param-
eters that characterize the motion of individual objects, such as the mean-squared instantaneous velocity or the
diffusivity, exhibit a spread that is due to the convolution of three different effects: (i) Motion stochasticity,
caused by the fluctuating environment and enhanced by limited observation time, (ii) measurement errors that
depend on details of the detection technique, and (iii) the intrinsic parameter variance that characterizes actual
differences between individual objects, which is the quantity of ultimate interest. We develop the theoretical
framework to separate these three effects based on the generalized Langevin equation, which constitutes the
most general description of active and passive dynamics, as it derives from the underlying general many-body
Hamiltonian for the studied system without approximations. We apply our methodology to determine intrinsic
cell-to-cell differences of living and actively moving human breast-cancer cells, algae cells, and, as a benchmark,
size differences of passively moving polystyrene beads in water. We find algae and human breast-cancer cells
to exhibit significant individual differences, reflected by the spread of the intrinsic mean squared instantaneous
velocity over two orders of magnitude, which is remarkable in light of the genetic homogeneity of the investi-
gated breast-cancer cells and highlights their phenotypical diversity. Quantification of the intrinsic variance of
single-cell properties is relevant for infection biology, ecology, and medicine, and it opens up new possibilities
to estimate population heterogeneity on the single-organism level in a nondestructive manner. Our framework is

not limited to motility properties but can be readily applied to other experimental time-series data.

DOI: 10.1103/77t1-2qvv

I. INTRODUCTION

Cells of a population typically exhibit largely different
genotypes and phenotypes, which creates optimized fitness
in reaction to external stimuli. Oftentimes, it is important
to know how heterogeneous cells or organisms actually are,
e.g., in order to estimate survival probabilities in reaction
to environmental changes [1-3] or in order to determine the
likelihood of an infection by pathogens [4,5]. The heterogene-
ity of a population of organisms is typically quantified by
hand-picked parameters, for instance the cell size [6], specific
binding coefficients [7,8], positional speed of the organism
[9-11], etc. One experimentally relatively easily obtainable
observable is the position of an organism measured over time,
i.e., its positional trajectory, which requires minimal pertur-
bation of the organism during the measurement and has been
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used to distinguish different classes of organisms from each
other [12]. To quantify and compare trajectories, one usually
assumes a model. The most general equation of motion for
a general observable that can be derived exactly from the
underlying Hamiltonian dynamics is the generalized Langevin
equation (GLE), which was successfully used to model binary
reaction dynamics in water [13], water vibrational IR line
shapes [14], butane dihedral dynamics [15], single-cell mo-
tion [12,16], and protein folding [17,18]. The GLE includes
non-Markovian effects, i.e., the memory of the trajectory of
its past, and it is valid even for nonequilibrium processes,
such as cell motion [12,19,20]. Important limiting cases of the
GLE are the persistent random walk and Brownian diffusion
models as well as active walk models such as the active
Ornstein-Uhlenbeck model [16,21,22], which are explained in
more detail further below. The motion of any organism and
of any microscopic object, be it active or passive, contains
intrinsic stochasticity due to the fluctuating environment [23],
which is fully captured by the description with the GLE.
Every trajectory that is observed over a finite time span in-
evitably leads to some uncertainty in the extracted parameters.
Therefore, every experimental determination of model param-
eters contains a spread that originates from the stochasticity of
the motion, entangled with experimental measurement errors

Published by the American Physical Society


https://orcid.org/0009-0008-5853-3092
https://orcid.org/0000-0003-0149-4519
https://orcid.org/0000-0002-8265-6876
https://orcid.org/0009-0005-9140-3925
https://orcid.org/0000-0003-4988-9560
https://orcid.org/0000-0002-2947-0837
https://orcid.org/0000-0003-0147-0162
https://ror.org/046ak2485
https://ror.org/05591te55
https://ror.org/04dese585
https://ror.org/024mw5h28
https://ror.org/046ak2485
https://ror.org/04dese585
https://crossmark.crossref.org/dialog/?doi=10.1103/77t1-2qvv&domain=pdf&date_stamp=2025-06-17
https://doi.org/10.1103/77t1-2qvv
https://creativecommons.org/licenses/by/4.0/

ANTON KLIMEK et al.

PRX LIFE 3, 023015 (2025)

and with the actual spread due to differences between the
individual moving objects. There are many methods avail-
able to estimate parameters of stochastic processes [16,24]
and to estimate the inevitable variance of such parameters
[25,26]. One standard way to assess parameter uncertainties
for stochastic processes is to simulate the stochastic model
and to compare the simulation outcome with experimental
data [25,27]. However, the field of motility analysis still lacks
methods to disentangle the spread of intrinsic properties be-
tween individual objects from the noise of the environment
and other experimental uncertainties.

In this paper, we introduce an approach to tackle this prob-
lem: By (i) using previously introduced methods for extracting
single-cell GLE parameters from experimental positional tra-
jectories [12,16,28,29], (ii) generating synthetic trajectories
from the GLE over the experimental finite observation times
with Markovian embedding techniques, and (iii) employing a
statistical variance analysis, we estimate the intrinsic spread of
the parameters characterizing the individual moving objects.
As validation of our GLE-based approach, we demonstrate
that the active and passive movements of individual objects
of three very different types, chosen to cover a wide range
of different patterns of motion, are all perfectly described by
the GLE. Specifically, we consider the passive diffusion of
polystyrene beads in water, the active motion of human breast-
cancer cells on a substrate, and the flagella-propelled active
motion of algae cells in two-dimensional confinement. The
polystyrene-bead system constitutes a benchmark with exper-
imentally known bead-to-bead size differences, for which we
confirm that our model estimates the correct intrinsic parame-
ter variance.

In our previous papers, where we introduced the methods
to extract GLE parameters from positional trajectories, we
had observed a significant spread of the extracted single-cell
parameters, but we could not interpret or analyze this spread
since it was not clear whether it is an intrinsic property of
the cells or due to noise [12,16]. Here we show that for the
algae and the human breast-cancer cell systems, the large
variance of the GLE motion parameters over up to two orders
of magnitude is in fact largely intrinsic and not due to noise or
finite trajectory length.

This finding is very unexpected for the cancer cells, as they
derive from a single cell line and thus share a very similar
genetic code. It is less surprising for the algae cells, as they
stem from multiple colonies and presumably are genetically
rather heterogeneous. Our results thus showcase a significant
phenotypic cell variance, manifested in the differences of the
motion of individual cells, that does not reflect genetic diver-
sity. Our framework is applicable to ensembles of time-series
data of varying type and from different systems. it generally
allows us to separate stochastic environmental influences from
intrinsic variations between individual ensemble members.

II. RESULTS
A. Trajectory model

We analyze the trajectories of three different moving ob-
jects: first, the purely passive motion of polystyrene beads in
bulk water with a known size distribution; second, the mo-

tion of human breast-cancer cells of line MDA-MB-231 on a
one-dimensional micro lane [16,30,31]; and finally, the mo-
tion of micro algae cells Chlamydomonas reinhardtii confined
between two glass plates [12,32], which resembles their natu-
ral environment in soil. Exemplary microscopy images of the
three different moving objects considered in the experiments
are shown in Figs. 1(a)-1(c). We choose these three systems
as they cover important limiting scenarios, namely passive
Brownian diffusion (polystyrene beads), active persistent ran-
dom motion (cancer cells), and strongly non-Markovian active
motion (algae cells). Thus, our datasets include Markovian
motion and non-Markovian motion in equilibrium as well as
out of equilibrium. The experiments yield two-dimensional
trajectories x(¢), y(t) for the center position of the polystyrene
beads and the algae cells, examples of which are shown in
Figs. 1(d) and 1(f), respectively, and one-dimensional trajec-
tories x(¢) for the breast-cancer cells, an example of which
is shown in Fig. 1(e). We describe all trajectories by the
one-dimensional GLE [33-35]

(1) = — f Lot — 1))t + Fe(t) (1)

Iy

with an identical equation for y(t) in the case of two-
dimensional motion. For Gaussian motion processes, which
perfectly describe the experiments as explained further below,
the equation of motion is linear and there is no coupling
between the motion in the x and y directions, therefore we
average all two-dimensional trajectory data over the two direc-
tions. In the GLE Eq. (1), X(t) = v(¢) denotes the acceleration
of the position, I',(¢) is the memory kernel that describes how
the acceleration at time ¢ depends on the velocity x(t') = v(¢')
at previous times and therefore accounts for non-Markovian
friction effects, and Fr(¢) is a random force that describes in-
teractions with the surrounding and the interior of the moving
object. The GLE contains no deterministic force term because
the experimental systems are isotropic and homogeneous in
space. We keep the inertial term proportional to the trajec-
tory acceleration X(¢) in order to regularize the differential
equation, which otherwise can become singular for certain
functional forms of the memory kernel [22,36]. In fact, the
GLE in Eq. (1) is the most general equation of motion for
Gaussian unconfined motion processes, and it can be derived
by projection from the underlying many-body Hamiltonian,
even in the presence of nonequilibrium effects, which ob-
viously are present for living organisms [19,20]. We show
further below that all different types of active and passive mo-
tion we consider are perfectly described by the GLE Eq. (1),
which illustrates its universal applicability. An important spe-
cial case of the GLE Eq. (1) is the Markovian limit with
I'(¢) = 26(t)/ty,, which leads to the well-known Langevin
equation and describes persistent motion. In the so-called
overdamped limit, in which case the persistence time t,, goes
to zero, one recovers the even simpler Brownian diffusion
model.

If the motion can be described as a Gaussian process,
which for polystyrene beads, cancer cells, and for algae cells
is suggested by the fact that the single-individual velocity dis-
tributions are Gaussian, as shown in Figs. 2(b), 2(e), and 2(h),
the random force is Gaussian as well [20], with correlations
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FIG. 1. Microscopy image of (a) a fluorescently labeled polystyrene bead with radius » = 0.5 um in a three-dimensional aqueous solution,
(b) a living breast-cancer cell (MDA-MB-231), where the pink area is the fluorescently labeled nucleus of the cell and the horizontal lines
indicate the fibronectin-covered lane on which the cell moves, and (c) a Chlamydomonas reinhardtii algae cell confined between two glass
plates at a separation of about 10 um. In (d)—(f) we show exemplary trajectories of the different moving objects shown in (a)—(c). The trajectory
lengths are (d) L = 23.7s, () L = 64.7 min, and (f) L = 12.4 s, where the insets show enlarged sections of the discrete trajectories.

given by
(Fr(t)Fr(0)) = T'r(1), @)

where ['z(¢) denotes the symmetric random-force kernel. Av-
eraging cell velocities over the cell population can result in
non-Gaussian velocity distributions, even though distributions
are Gaussian on the individual trajectory level [12,16], as we
show in the Supplemental Material (SM) [37]. Therefore, we
check the Gaussianity on the single-trajectory level in Fig. 2.

The GLE Egq. (1) does not contain parameters depending on
time, and therefore it describes a stationary process. Stochas-
tic models with time-dependent parameters are well known
[38]. However, for the polystyrene beads, the cancer cells,
as well as for the algae cells, the velocity distributions do
not change in time, as shown in Figs. 2(c), 2(f), and 2(i),
which suggests that the GLE Eq. (1) can be used to model
the objects’ motion. This is confirmed by the fact that the
GLE model with time-independent parameters describes the
single-cell trajectories very well over the entire trajectory
length, which is shown later.

For an equilibrium system, such as the passively moving
polystyrene beads in water, the fluctuation-dissipation theo-
rem (FDT) predicts for the GLE in Eq. (1) I'r(t) = BT, ([¢]),
where B = (v?) is the mean-squared velocity given by B =
kT /m according to the equipartition theorem, with m the
moving object’s mass and kg7 the thermal energy [33,34].
For living organisms, the FDT and the equipartition theorem
generally do not apply, so I'g(¢) and BI',(]t|) are not neces-
sarily equal, and a system temperature or an effective mass
that characterizes the trajectory cannot be defined [39,40].
However, for nonequilibrium systems with Gaussian statistics,
an effective kernel I'(|¢t|) = ['r(¢)/B = I'y(|¢t|) can be con-
structed, which is unique and exactly reproduces the velocity
autocorrelation function (VACF) of the nonequilibrium GLE
with T'r(¢) # BI',(|t]) [12,20]. The dynamics of a Gaussian
observable are fully determined by its VACF [41], therefore

the effective kernel I'(#) that reproduces the experimental
VACEF describes the entire observable dynamics. In fact, start-
ing from explicitly time-dependent Hamiltonians, it has been
shown recently that for Gaussian observables, a GLE of the
form of Eq. (1) with T'g(¢#) = BT",(J¢]) follows [19,20], in
line with our approach to describe active cell motion by an
effective kernel I'(¢).

The kernel I'(#) can be extracted from experimental tra-
jectories via the VACF and is consistent with different
combinations of I'g(¢) and I',(¢) in the nonequilibrium GLE
Eq. (1) [12,16] (as shown in the SM [37]). While I'(¢)
accurately describes the dynamics of the nonequilibrium tra-
jectories, the underlying nonequilibrium model, defined by
the functions I',(¢) and ['g(¢), cannot be determined without
additional measurements or assumptions [41]. Thus, caution
is required when interpreting the effective model, defined by
I'(¢), in terms of the underlying motion mechanisms. For
instance, the effective kernel I'(¢) does not describe the phys-
ical time-dependent friction acting on the moving object. A
heuristic way of decomposing the effective kernel I'(¢) into
I'y(t) and Tr(z) consists of assuming I',(¢) to be infinitely
short-ranged and proportional to the Stokes friction coefficient
[16], which, however, is not pursued further in this paper.

It turns out that for infinitely short-ranged I',(¢) and for
random force correlations I'g(¢) with a negative exponential
decay, which corresponds to the active Ornstein-Uhlenbeck
model [21], the motion exhibits persistence over times that are
substantially longer than the decay time of the effective mem-
ory I'(¢) [22]. For experimental data where the discretization
time is larger than the decay time of the effective memory
I'(¢), one would then obtain an effective Markovian model
with ['(z) = 26(¢)/t,, and a persistence time t,, that, due to
the nonequilibrium character of the underlying GLE model,
cannot be interpreted in terms of the physical mass and fric-
tion characterizing the moving object. This turns out to be the
case for cancer cells, as we show below.
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FIG. 2. Distributions of trajectory lengths L in units of the experimental discretization time A for (a) polystyrene beads with A = 0.02s,
(d) breast-cancer cells with A = 20s, and (g) algae cells with A = 0.002s. Velocity distributions of individual moving objects rescaled by
subtracting their individual mean velocity vi,q and dividing by their individual standard deviation o;,g for (b) polystyrene beads, (e) breast-
cancer cells, and (h) algae cells, where individual cells are distinguished by color, and population mean values (oj,q) are given in the plots.
The black symbols in (b), (e), and (h) represent the ensemble average over all moving objects, which agrees, except for the cancer cells in (e),
very well with the standard normal distribution shown as a dashed blue line. An alternative fit of the cancer-cell data to a Laplace distribution
is presented in the SM [37]. The average over individually rescaled velocity distributions is identical for three different time windows for
(c) polystyrene beads, (f) breast-cancer cells, and (i) algae cells, which suggests stationarity of the motion.

Since we show below that the GLE is appropriate to model
our experimental trajectory data, we can use it to produce
synthetic trajectories with the same length distribution as the
experimental trajectories and compare them to the experi-
ments. The comparison between synthetic and experimental
data with the same trajectory length distributions, which are
shown in Figs. 2(a), 2(d), and 2(g), is key in determin-
ing the intrinsic variance of parameters characterizing the
individual objects.

B. Trajectory analysis

A suitable characterization of stochastic trajectories em-
ploys the VACF or the mean-squared displacement (MSD),
defined by

Cou (1) = ((0)v()), 3

Cuwisp (1) = ([x(0) — x(1)]*) , “

respectively. Even though the VACF is just the curvature of
the MSD, C,,(t) = %%CMSD(I), these correlation functions
accentuate different aspects of trajectories, which is impor-
tant for experimental data, which always contain noise and
measurement errors. The correlation functions in Eqgs. (3)
and (4) for single trajectories are obtained by time-averaging.
For the passively moving polystyrene beads, the MSD in
Fig. 3(a) demonstrates the purely diffusive nature of the mo-
tion over the observation time range, where the ensemble
average over the time-averaged MSDs of all beads (solid black
line) agrees well with the Brownian prediction Cysp () = 2Dt
for a sphere of radius » = 0.5 um shown as a dashed green
line. For this prediction, we use the Einstein relation between
the friction of a moving object with its environment y at
temperature 7 and the diffusivity D, where the friction of
a sphere with radius r depends on the solution viscosity 7,
according to

ksT  kyT
y  6mnr’

&)
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FIG. 3. Results for the time-averaged MSD, Cysp (?), defined in Eq. (4), the time-averaged VACF, C,, (¢), defined in Eq. (3), and the friction
kernel, I'(¢), extracted from the trajectories for polystyrene beads in (a)—(c), for cancer cells in (d)—(f), and for algae cells in (g)—(i). Different
colors represent results for individual moving objects. The black lines in the first two columns denote the ensemble average over all objects.
In the third column, the black line denotes the friction kernel calculated from the ensemble-averaged VACF. The dashed green line in (a) is
the theoretical prediction for the diffusion of a sphere with radius » = 0.5 um in water using the Einstein relation Eq. (5). The black dashed
lines in the MSD plots indicate the scaling behavior. The thick dotted line in (g) shows the long-time diffusive regime from experimental data

recorded at lower spatial resolution and for longer observation times.

Velocities follow from trajectories using finite differences [see
Methods, Eq. (11)], which depend on the recording time step
A and localization noise. The VACF for the polystyrene beads
in Fig. 3(b) exhibits a single peak at time zero, which reflects
that consecutive displacements are completely uncorrelated,
and it shows that the persistence time 7,, is much smaller
than A. This implies that the friction kernel I'(¢) is a § func-
tion, which perfectly matches the extracted kernel shown in
Fig. 3(c). We explain the extraction scheme of the friction
kernel in detail in the SM [37]. For the actively moving can-
cer cells, the ensemble-averaged MSD over all cells exhibits
superdiffusive behavior oc ¢!® with a slightly decreasing slope
for longer times shown in Fig. 3(d), where the long-time dif-
fusive regime is not well resolved due to larger noise (caused
by less averaging) for long times. The VACFs of the actively
moving cancer cells are decaying on the scale of a few min-
utes, as shown in Fig. 3(e). Similarly to the polystyrene beads,
the friction kernel shown in Fig. 3(f) exhibits a § peak at time
zero, followed by a dip at the first time stepr = A = 20 s and
is then essentially zero. This dip, which is also present for
the algae cell kernels at the first time step# = A = 0.002s in
Fig. 3(i), originates from localization noise (see the SM for
more information [37]), as this noise reduces the correlation
of consecutive velocities v(¢) and v(t + A), which influences

the extracted kernel [12]. For algae cells, the MSD exhibits an
extended ballistic regime up to a few seconds followed by the
long-time diffusive regime, as shown in Fig. 3(g), whereas the
VACEF in Fig. 3(h) shows strong oscillations that correspond
to the flagella beat cycle with a frequency of ~50Hz. The
extracted friction kernel I'(¢) in Fig. 3(i) shows oscillations
as well, but at a slightly different frequency, reflecting the
complex dependence of the friction kernel on the VACF [12].

The extracted friction kernels imply different modes of
motion. For the algae cells in Fig. 3(i), the kernels exhibit a
8 peak at time zero followed by a decaying oscillation, which
was previously modeled by [12]

T(t) = 2a8(t) + be /" (COS(QI) + % sin(szz)> . (©)

The extracted kernels of the cancer cells in Fig. 3(f) suggest
a simple persistent random walk [42] [note that an earlier
study modeled a different cancer cell line by a slightly more
complex model including a negative exponential decay in
the friction kernel I'(¢) [16]]. The persistent random walk is
described by the GLE Eq. (1) with

L(t) = 25(t)/ T, @)
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FIG. 4. Experimental results for the MSD, Cysp(?), VACF, C,,(?), and friction kernel, I'(z), of a single bead (a)—(c), a single cancer
cell (d)—(f), and a single algae cell (g)—(i) (blue symbols), all picked at random from the full ensemble of trajectories. The red lines denote
predictions of the model defined in Eq. (8) fitted to the bead MSD, of the model defined in Eqs. (1) and (7) fitted to the cancer cell VACF, and
of the model defined in Eqs. (1) and (6) fitted to the algae cell VACF. We show corresponding results for individual trajectories that yield the
best fits to the models and the distribution of R?, which measures the goodness of the fit, for all trajectories in the SM [37].

where the transition from the ballistic to the long-time dif-
fusive regime, defining the persistence time t,, occurs for
cancer cells within the experimentally observed timescales;
the mean value 7,, & 2min is of the order of minutes and
thus is much larger than the time step of A = 20s. Therefore,
the observed superdiffusive scaling behavior of the ensemble-
averaged MSD in Fig. 3(d) is caused by the slow transition
from ballistic o< 72 to the long-time diffusive regime o ¢,
which is confirmed by fits of the model to single-cell data
explained below. In contrast to the cancer cells, the persistence
time of the polystyrene beads, estimated from the equipar-
tition theorem as t,, = m/y =~ 0.1 us, is much smaller than
the experimental time resolution A = 0.02 s, so that only the
long-time diffusive behavior is observed. Hence, we model the
polystyrene beads by pure diffusion, in which case the GLE
Eq. (1) simplifies to

i(1) = VDE(1), ®)

where &(t) is uncorrelated white noise with (¢£(z)) = 0 and
(§(0)5 (1)) = 258(2).

In Fig. 4 we show fits of the analytical models to the MSD,
VACEF, and friction kernel data of a single randomly selected
moving object, using for the polystyrene bead Eq. (8), for
the breast-cancer cell Egs. (1) and (7), and for the algae cell
Egs. (1) and (6). The GLE describes the data perfectly, which

confirms the applicability of the GLE to describe the active
or passive motion of single moving objects. Moreover, our
fitting procedure (described in the Methods section) captures
localization noise effects, which manifest, for instance, in a
local minimum of the friction kernel I'(¢) att = A in Fig. 4(i).

C. Reproducing experimental parameter
distributions by simulation

Even though all polystyrene beads are nearly identi-
cal, with the standard deviation of the radius being Ar ~
25nm according to the manufacturer and as confirmed by
our measurement of the bead radii by atomic force mi-
croscopy (explained in the SM), the extracted MSDs, VACFs,
and friction kernels of single beads scatter significantly
around the mean, as seen in Figs. 3(a)-3(c). Hence, the
fitted single-bead parameters show a large spread, shown
in Fig. 5(a), which does not reflect the true parameter
spread that the beads actually exhibit, as we demonstrate
further below.

For living organisms it is often not known how similar
individuals of one population are in terms of their genotype
or phenotype. Naturally, the question arises: How much of
the spread of the parameters extracted from experimental data
originates from differences among individuals, and how much
comes from the motion stochasticity and experimental errors?
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FIG. 5. Distributions of GLE model parameters extracted from the experiments are shown as blue symbols. For polystyrene beads we
show the localization noise width oo, and diffusivity D in (a)—(d), for cancer cells the mean squared velocity B and the persistence time T,
in (e)—(h), and for algae cells the mean squared velocity B and the kernel oscillation amplitude b [see Eq. (6)] in (i)—(1). The green symbols
in (b), (f), and (j) represent the respective median of the distribution of blue symbols, and the red filled triangles represent the parameters
extracted from simulations using the median parameter set as input, the experimental time step for analysis, and the experimental trajectory
length distribution, shown in Figs. 2(a), 2(d), and 2(g), for the simulation lengths. Empty triangles in (c), (g) denote Gaussian distributions
of simulation input parameters with covariance ratios S = 0.56 and 0.83, respectively, which correspond to the estimated covariance ratio S*
shown in Fig. 6(a). In (k) simulation input parameters (green triangles) equal the parameters extracted from the experiment, which corresponds
to § = 1. Simulations using the empty green triangle parameters in (c), (g), and (k) and the respective model suggested by the data Egs. (6),
(7), and (8) and the experimental trajectory lengths lead to the filled red triangles in (d), (h), and (1), which by definition of $* have the same

covariance as the blue symbols.

To proceed, we imagine the scenario that all individuals
are completely identical and are represented by the median of
the extracted parameter distribution. Here, we use the median
instead of the mean, because a least-squares fit of a noisy
exponential function leads to a log-normal distribution of the
fitting parameters with the median being the best representa-
tion of the true parameter value, as explained in the SM [37].
We simulate the same number of experimentally recorded tra-
jectories, N, with the same trajectory length distribution as in
the experiments, shown in Figs. 2(a), 2(d), and 2(g), using the
GLE model with the median parameters estimated from the
experimental trajectories. GLE simulations with the oscillat-
ing kernel Eq. (6) are performed using Markovian embedding
techniques [14]. To reach the continuum limit in simulations,
we employ a time discretization constant /2, which is 20-200
times smaller than the experimental resolution A. We then use

every (A/h)th point of the simulation to obtain a trajectory
with the experimental time resolution A and add the localiza-
tion noise to the trajectories, which is estimated directly by
our fit described in the Methods section. From such simulated
trajectories with identical parameters, we extract the VACF
and perform the same fit that we used to extract the parameters
from the experiment. If the spread of the distribution extracted
from the N simulations with identical GLE parameters is
comparable to the spread of the distribution extracted from
the experiment, then it is likely that all moving objects are
actually completely identical in their motion parameters.

In fact, the spread of the experimentally determined single
breast-cancer cell parameters shown in Fig. 5(e) and of the
single algae cell parameters shown in Fig. 5(i) are much
larger than the spread of the respective parameters extracted
from simulations with identical input parameters, shown in
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Figs. 5(f) and 5(j) by the red triangles. This strongly suggests
that the ensemble of cancer cells as well as the ensemble
of algae cells are not characterized by identical parameters
of motion. In contrast, in Fig. 5(b) the spread of the bead
parameter distribution extracted from the simulations with
identical input parameters is almost as large as the spread
of the parameter distribution extracted from the experiment,
indicating that most of the observed spread originates from
the finite length and the experimental noise, in line with the
small variance of the bead radii determined by our atomic
force microscopy (AFM) measurement.

The simulation results in Figs. 5(f) and 5(j) suggest that
the individual cancer and algae cells are characterized by non-
identical GLE parameters within their respective populations.
To quantitatively estimate the actual parameter distribution
of individual cells, we test whether simulations using input
parameters from a Gaussian distribution with a certain covari-
ance Cov'™ result in an extracted parameter distribution with
a covariance Cov®'™ that agrees with the covariance of the
parameter distribution extracted from the experiment Cov®*P.
For this, we use a permutation test that compares the covari-
ances Cov*™ and Cov®®, as explained in detail in the Methods
section.

In short, we denote the summed ratio of the d-dimensional
input parameter covariance for the simulation, Cov™, and the
covariance of the distribution extracted from the experiment,
Cov®™P, as

d
S=d? Z cng‘P / Cov;,?, 9)
i,J

where the covariance of a distribution of param-
eter vectors Z is defined in the standard way as
Cov;; = ((zi — (zi))(z; — {z;))), with z; the ith component of

the d-dimensional vector 7 and (z;) the mean of z;; d denotes
the number of parameters. We consider input covariances
in the range from S = 0, which corresponds to all moving
objects described by identical input parameters, to S =1,
where we use the parameter distribution extracted from
the experiment as the simulation input parameters. For
intermediate values 0 < § < 1, simulation input distributions
are drawn from Gaussian distributions with covariances
that are uniformly rescaled by S. Exemplary simulation
input parameter distributions are shown as green symbols in
Figs. 5(c), 5(g), and 5(k).

The main result of our method is the value S*, for which
the covariance of the distribution extracted from the experi-
ment Cov®*P agrees, according to a statistical test described
below, with the covariance of the distributions extracted from
simulations Cov*™ with the given input covariance Cov'"P*.
Hence, we call S* the estimated covariance ratio and the cor-
responding input covariance Cov™* the intrinsic parameter
covariance of individual objects. Examples of distributions
that are extracted from simulations with the green input dis-
tributions Cov™™* in Figs. 5(c), 5(g), and 5(k) are shown in
Figs. 5(d), 5(h), and 5(1) (red triangles), which agree with the
respective experimental distribution (blue symbols) according
to our statistical test. In brief, the employed statistical test
compares the covariance of the experimentally determined
parameter covariance Cov®*? to the covariance of a parameter

beads S*
(a)1.00 U B
0.75 ® | accept
N reject |
o 0.50 - I
o . |
0.25 :
0.00 L —
beads cancer algae 0.0 0.5
cancer cells S* algae S
(c) 10@ug T | :-(d)10* T
*
I I *
u | acqept, * reject
1 1
§ 05 n | 1405 *
. —t
reject m | ! *
- | *
0.0 k. L 1 1 0.0 Ex )
0.0 0.5 1.0 0.0 0.5
S S

FIG. 6. (a) Estimated covariance ratio $* of the intrinsic to the
experimentally observed parameters as defined in Eq. (9). Likelihood
p, that the covariance extracted from simulation Cov*™ disagrees
with the experimental covariance Cov®? according to a permutation
test as a function of S (different S originate from different simulation
input covariances Cov™) for (b) beads, (c) cancer cells, (d) algae.
Data below the acceptance threshold of p5 = 0.05 (gray horizontal
line) correspond to accepted S values and are shown in green. The
acceptance region is indicated by dashed vertical lines, the center
defines S* and the width defines the error bars shown in (a).

distribution extracted from a simulation Cov®™ and estimates
how likely the two distributions originate from the same input
covariance. If several values of S are accepted by our statisti-
cal test, meaning that they lead to agreeing covariances Cov*™
and Cov®P according to the test, we choose the midpoint
of the accepted range as S* and use the upper and lower
acceptance bounds to estimate the error of $*, as demonstrated
in Fig. 6 (details are described in the Methods section).

As an example, the diffusion of polystyrene beads in water
is described by the two-dimensional parameter vector com-
prising the diffusivity D and the localization noise width
Olocs 2 = (D, 01oc); the latter defines the uncertainty of the
position data (see Methods). If the covariance of a parame-
ter distribution extracted from the experiment was given by

Cove™® = (,'s  *7) with a median of 7" = (0, 1), simula-

tion input parameters for § = 0.1 would be drawn from a

. o . . i 0.1 005
Gaussian distribution with covariance Cov'™ = (o5 o)

and median 7™ = (0, 1) (here we omit units for clarity). As

mentioned earlier, we use the median for generating simula-
tion input parameters because it is a better representation of
typical parameters than the mean when using least-squares
fits (see the SM [37]). If the parameter distribution covariance
Cov*™ extracted from the simulation with § = 0.1 is the same
as the parameter covariance extracted from the experiment
Cov®P according to our statistical test, we do the same for
S = 0.2. Then we repeat the test, increasing S in steps of 0.1,
up to a final value of S = 1. In the regime of accepted S values,
we use smaller steps to determine S*. For accepted values in
the range S = 0.05-0.15, we would estimate $* = 0.1 £ 0.05

023015-8



INTRINSIC CELL-TO-CELL VARIANCE FROM ...

PRX LIFE 3, 023015 (2025)

for the covariance ratio. The evaluation of S* is graphically
depicted in Figs. 6(b)-6(d).

For the polystyrene beads, we find S* = 0.56 +0.21 as
shown in Fig. 6(a), which translates into an estimate for the
standard deviation of the bead radius Ar = 86 £ 63 nm via
the Einstein law Eq. (5) and using the viscosity of water at
room temperature 77 & 1 mPs. The bead radius standard devia-
tion of Ar ~ 25 nm given by the manufacturer and confirmed
by our AFM measurements is close to the lower bound of
our result. Nevertheless, it should be noted that other experi-
mental factors, such as the bead-surface properties, contribute
to the diffusivity variance between individual beads, thereby
increasing the variance of the hydrodynamic radius Ar, which
explains our relatively large estimate of Ar.

For the cancer cells, the estimated covariance ratio is given
by $* = 0.83 0.17 shown in Fig. 6(a), which indicates a
spread over nearly two orders of magnitude of the intrinsic
squared cell speed B and the intrinsic persistence time T,
as demonstrated by the green triangles in Fig. 5(g), even
though all cells are from the same cell line and supposedly
share the same genetic code. This demonstrates a surprisingly
large phenotype variance among cancer cells of the same cell
line. The distribution extracted from the algae trajectories
represents the true cell-to-cell variance accurately, as seen
by comparing Figs. 5(k) and 5(1), and as reflected by the
large estimated covariance ratio $* = 0.98 4= 0.02 shown in
Fig. 6(a).

In addition to extracting the intrinsic spread of parameters
characterizing the motion of individual objects, our approach
allows us to estimate how long experimental recordings have
to be in order to obtain a certain level of S*. The variance
contribution due to the stochasticity of the motion decreases
inversely proportional to the trajectory length, as explained in
the SM [37,43]. Therefore, if stochasticity of the motion is
the main contribution to the variance, doubling the length of
all trajectories of a given population of moving objects leads
to an increased S}, determined by 1 —S¥ = (1 —5%)/2,
and thus Sy, = S* 4+ (1 — 5*)/2. In the case of polystyrene
beads, for instance, this would mean that for experimental
trajectories twice as long as in the actual experiment, the
estimated covariance ratio would be expected to increase from
§* = 0.53 to roughly Sy, = 0.76 if the spread 1 — §* stems
mainly from stochasticity, i.e., if the influence of other exper-
imental factors on the parameter spread is negligible.

III. DISCUSSION AND CONCLUSIONS

We use the GLE Eq. (1) to describe active cell motion
as well as passive motion of polystyrene beads and extract
all GLE parameters on the single trajectory level. The spread
of the parameter distributions extracted from the experiments
is due to a combination of intrinsic differences among the
individual moving objects, the finite trajectory length, and
noise in the experiment. Our approach determines how much
of the extracted total parameter spread actually originates
from intrinsic differences between individuals of the observed
population and how much stems from the experimental finite
observation time. On top of that, it allows us to estimate
how long experimental trajectories have to be in order to
reach a certain accuracy level of the experimentally extracted

parameter distributions. Our method readily includes experi-
mental factors such as localization noise, discrete time steps,
and different trajectory lengths. We confirm the robustness
of our model by applying it to data of passively moving
polystyrene beads in water and to synthetic data sets with
known origin in the SM [37].

Compared to the polystyrene beads, which are relatively
similar to each other, the cancer cells and algae cells show
significant differences within the studied populations. For the
motion of the breast-cancer cells, the value of S* = 0.83
means that most of the observed spread in the mean squared
velocity B and in the persistence time t, originates from
sizable intrinsic differences on the cell-to-cell level; this is
noteworthy, as these cells carry the same genetic material.
Such phenotypic differences were previously observed [44]
and are connected to different levels of expressed proteins
in the cells [45]. For the algae cells, we conclude from the
value S* = 0.98 that the observed GLE parameter distribution
almost entirely reflects intrinsic cell-to-cell differences, which
is part of the reason why the observed GLE parameters could
previously be directly used to distinguish different swimming
styles of these confined algae cells on the single cell level [12].

In principle, one would expect the localization noise width
o1 Of rigid objects of identical size to have a rather small
variance. The estimated spread of the localization noise width
of the polystyrene beads in Fig. 5(a), however, is of the same
order of magnitude as the mean. This comes partly from
size differences between beads and presumably also from
so-called motion blur, which is an additional localization error
due to the finite illumination time in every microscopy image,
during which the observed object is moving. Motion blur
increases the variance of localization noise widths extracted
from MSDs [46], which in turn increases the estimated vari-
ance of the localization noise width. To separate the effects
of motion blur and other localization noise, one could add the
effect of motion blur to the synthetic trajectories and in the fit
of the correlation function, which is left for future work.

The usage of the GLE Eq. (1) to describe active systems
relies on the Gaussianity of the underlying motion process
[12,20]. In the hypothetical case of non-Gaussian single-cell
velocity distributions, one could use filter approaches to re-
move non-Gaussian components in the data [47] and then
apply the same methodology we describe in this paper. Alter-
natively, for non-Gaussian systems one could use the GLE in
a heuristic manner or use previously introduced models to de-
scribe the organism motion [23,38,48-51]. While we show the
GLE model with time-independent parameters to reproduce
the experimental trajectories of single algae cells perfectly,
we cannot exclude that over much longer, experimentally
inaccessible times, the cells would exhibit time-dependent
motion parameters. Such questions might be addressable in
the future with extended experimental trajectories. Since the
GLE Egq. (1) is valid for general observables, our approach can
be applied to time-series data characterizing any organism or
object of choice—be it active or passive.

In summary, our approach allows us to disentangle the in-
trinsic individual-to-individual parameter variance of moving
objects from noise and stochastic effects. As every distribution
of parameters extracted from experiments inevitably is noisy
due to finite recording time, we anticipate various applications
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of our method in infection biology, ecology, medicine, and
all other fields that rely on the knowledge of the hetero-
geneity of individual moving objects. We mention in the end
that our method is also applicable to time-series data of
general observables and thus is not restricted to positional
trajectories.

IV. METHODS, EXPERIMENTAL DETAILS,
AND CELL PREPARATION

A. Statistical test

To compare two d-dimensional distributions p®*P(Z) and
%™ (Z), which are determined by a finite number of obser-
vations Z;F for p®P and 7™ for p*™, we use a so-called
permutation test [52]. We define the distance measure

d
T =3 (Covl—Covi)’, (10)

N}

which measures the difference between two distributions in
terms of their covariances Cov' and Cov?. We denote the
value of T for the distributions pP(Z) and p*™(?) by Tp.

The statistical test starts by randomly drawing samples
from the joint pool of observations Z; ¥ and 7™, which leads
to the exchanged distributions p_.5 (Z) and p5™ (Z). The ex-
changed distributions exhibit a new value of T called Tyxch.
This process of sampling exchanged distributions from the
joint pool of observations is repeated nexen = 10* times, lead-
ing to 10* values of Tixch. Comparing Tp to Texcen leads to the
probability of rejecting the hypothesis that the two distribu-
tions have the same covariance, given that the hypothesis is
actually true, as p; = Rrej/Rexch, With ng; being the number of
exchanges for which Toxch > T [52]. We use the acceptance
level p} = 0.05, meaning we accept the hypothesis that the
distributions p®P(Z) and p*™(Z) have identical covariances
when p; < pi.

In practice, we extract M = 100 distributions p%™ (Z) from
simulations and compare each to the experimental distribution
using the statistical test described above. This means we sim-
ulate a total of M x N trajectories. We define p, = Mj/M
as the ratio of rejected distributions M,j, where p; > pJ, to
the total number of simulated distributions M. The hypothesis
that the covariance from simulation Cov*™ originates from
the same intrinsic covariance Cov'"P* as the experimental co-
variance Cov®® is accepted as true, if p, < p5, where pj is
another acceptance level. One expects the hypothesis to be
rejected on average pj x M out of M times, if it is true. There-
fore, we set the acceptance level of p, as p5 = p} = 0.05.
Results for p, depending on S are shown in Figs. 6(b)-6(d)
for different moving objects.

B. Fit to discretized data including localization noise

Every experimental recording of trajectories inevitably
includes noise. In the case of cell-center trajectories, the
finite camera pixel size as well as thermal and electronic
fluctuations in the camera sensors are just a few of many
possible origins of localization noise present in the trajecto-
ries. Therefore, our fit to the experimental VACF of individual
trajectories needs to account for finite time discretization and

noise [16]. Here, we explain our fitting procedure. We denote
discrete values of a function f(¢) as f(iA) = f; = f' and the
discretization time step as A. Velocities are computed at half
time steps as
Xitl — Xi
A Y
From the discrete velocities, the VACF defined by Eq. (3) is
computed according to

Uiy

(ST

1 n—i—1
[

va = ﬁ Z vj+%vj+i+%’ (12)

=0
with n being the the number of trajectory steps. To account
for localization noise, we add Gaussian uncorrelated noise of
width o1, at every time step to the trajectory, which leads to

the noisy MSD as [16]

CRoise (1) = Cihe (1) 4 2(1 — 8;0)072 (13)

where Cﬁg‘]’)(z‘) is the theoretical expression for the model
MSD given by Egs. (17), (18), and (20) for the different
models Egs. (6), (7), and (8), and &, is the Kronecker delta
reflecting the uncorrelated nature of the localization noise.
Since the observed trajectories are sampled with a finite time
step A, we discretize the relation

Cutt) = 2 L () (14)
vl )= 52 wMSb
which leads to
Ci(in)
_ GBI+ DAL - 2GRS A) + CREIG — 1A
- 2A2 :
(15)

Finally, fits are performed by minimizing the cost function

n—1
Eeon = Y_[COPGA) — CR )] (16)
i=0

with scipy’s least-squares function in python and using
Eq. (15) to determine the parameters of Cg‘f} (t). As the MSD
and VACEF follow from the GLE Eq. (1) and the friction kernel
in Egs. (6) and (7) or the LE in Eq. (8), the parameters to
be optimized are the kernel parameters, together with the
mean squared velocity B and the localization noise width ojoc.
Resulting fits are shown in Figs. 4(e) and 4(h), where the data
are fitted up to 3.3 min for the cancer cells and up to 0.2 s for
the algae cells in order to disregard the noisy part of the VACF
at longer times. For the polystyrene beads, which perform
purely diffusive motion, we use Eq. (13) to fit the experimental
MSD as the VACF is only nonzero for the first two time
steps. A resulting fit is shown in Fig. 4(a), where the MSD
is fitted up to 0.2 s. The time range over which we perform the
fit corresponds to roughly 3% of the mean trajectory length
for the different moving objects, for which the time-averaged
correlation functions exhibit low errors [43]. For consistency,

we use the same fitting range for the synthetic data.
Before we fit the data on the individual trajectory level, we
estimate the order of magnitude of the mean squared velocity
B by Begt = Cgv for the cancer cells and algae cells. For the
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freely diffusing beads, we estimate the diffusion coefficient D
by the integral over the VACF, which leads to Degy = C? 4

w7
Furthermore, for the cancer cells we estimate the order of
magnitude of the persistence time 7, by 5 = ALFO. We apply

the following boundaries for the optimization of cancer cell
parameters: B is constrained between By /4 and 4Beg, Ty
between 75" /4 and 47, and the localization noise width oo
between 0.01 and 1 um. For the algae cells, B is assumed to
lie between Beg/3 and 3By, the amplitudes a and b are
assumed to lie between 0.01T"y and Iy, the memory time
7 is bound between 0.05 and Ss, the kernel frequency €2
is between 15 and 250 Hz, and the localization noise width
O10c 18 between 0 and 0.05 um. Further, for polystyrene beads
we use bounds of 4Dy and Dy /4 for the diffusivity D,
and the localization noise width oy, is constrained between
0.001 and 0.2 um. Finally, we discard fit results for which
the localization noise width o}, is close to the boundaries
and likely to be an unphysical fit result, when o7, is smaller
than 1.5 times the lower boundary or larger than 0.99 times
the upper boundary. This leads to four discarded trajectories
out of 135 total trajectories for the breast-cancer cells, no
discarded trajectories for the 23 algae cells, and 19 discarded
trajectories out of 144 for the polystyrene beads. For the
diffusion of the polystyrene beads, we additionally discard
diffusion constants above 0.8 um? /s, which is roughly twice
the theoretical value of a sphere with radius r = 0.5 um ac-
cording to the Stokes-Einstein law Eq. (5), which leads to four
additionally discarded trajectories.

C. MSD expressions

The diffusion coefficient defined in Eq. (5) determines the
behavior of the MSD for pure diffusion as

Cwmsp(t) = 2Dt . (17)

In the case of the persistent random walk, the MSD takes the
form

Cmsp(t) = 2BT,(t — (1 — e7'/™Y), (18)

where the diffusion constant is given by D = Bt,, and the
VACEF follows a single exponential decay,

Cyy(t) = Be™/™, (19)

For the oscillating memory kernel Eq. (6), the MSD takes the
form [12]

3 /2
B kit e VUil ]
CMSD(t)Z__L_4( 5 2+E

ARl Tt T (0 — o)

k
X I:w—lz + ko + k3w?:|> ) (20)

1

where the constants w; and k; have been previously
calculated [12].

D. Polystyrene beads

Materials. Fluorescently labeled polystyrene beads (di-
ameter: 1000 nm, excitation wavelength: 505 nm, emission
wavelength: 515nm) were purchased from Thermo Fisher

Scientific (order number: F8776). For single-particle track-
ing experiments, the beads are diluted 1:1000 in deionized
water and sonicated for five minutes at room temperature.
Afterwards, 8 uL of bead-containing solution is injected into
polydimethylsiloxane (PDMS) microwells, which are formed
on glass cover slips as described previously [53].

Imaging. Single-particle tracking of the fluorescently la-
beled polystyrene beads is performed using a Nikon Ti-E
Eclipse fluorescence microscope (Nikon, Diisseldorf, Ger-
many), which is equipped with focus stabilization, a white-
light source (Prior Lumen 200; Prior Scientific, Cambridge,
UK), and an Andor Zyla 4.2 sCMOS camera (Oxford Instru-
ments, Oxford, UK). Fluorescence excitation and emission
are controlled using a GFP filter set (Nikon GFP-1828A; EX
482/18, DM 495, BA 520/28). The beads are imaged using
a 100x Plan-Apo oil immersion objective (numerical aper-
ture: 1.45) and the following setting of the sSCMOS camera:
2 x 2 binning, 10 ms exposure time, acquisition rate of 50.41
frames per second at a field of view of 1024 x 1024 pixel?,
corresponding to 133.12 x 133.12 um?.

Image analysis. Single-particle tracking analysis is per-
formed as previously described [54]. In brief, the beads are
detected by a local maximum of the fluorescence intensity
and only considered for further analysis if the correspond-
ing intensity value exceeds a user-defined threshold, which
is chosen slightly above the level of readout noise of the
sCMOS camera. The center position of each detected bead
is determined by fitting a two-dimensional Gaussian distri-
bution to its intensity distribution. Trajectories are generated
by a nearest-neighbor linking scheme involving a distance
threshold as described previously [55]. Finally, as convec-
tion of the aqueous solution (contained in the PDMS wells)
cannot be ruled out even for these relatively small wells, the
bead trajectories are corrected for the potential occurrence
of convection-based distortions of bead motion. Convection
affects the displacements of all beads in the same way, and
there is no further source of motional correlation for these
randomly moving beads, except for hydrodynamic interac-
tions, which are weak for the high dilution of beads employed
here [56]. The convection is determined (i) by calculating
the displacements of all beads between consecutive frames,
followed (ii) by calculating the average value of all obtained
two-dimensional displacement vectors, and finally (iii) by in-
tegrating all average displacement vector values from the first
to the last frame (whereas the average displacement vector
between the first two frames is set to zero). This running
integral yields an estimate for the convection-based motion
of the aqueous solution, which we subtract from the position
of the beads to correct the trajectories for convection.

E. Breast-cancer cells

Micropatterning. The human breast-cancer cells of
the cell line MDA-MBA-231 in our experiments move
on one-dimensional lanes that are produced by coating
with fibronectin (FN). We transfer fibronectin (FN) (YO
Proteins, Ronninge, Sweden) to an imaging dish featuring a
polymer coverslip bottom (ibidi, Grifelfing, Germany) using
polydimethylsiloxane (PDMS) stamps with a 15-um-wide
lane pattern. The microcontact printing protocol, including
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the fabrication of the PDMS stamps, has been detailed
previously [57].

Cell culture. We culture MDA-MB-231 cells that had
been stably transduced with histone-2B mCherry (gifted
from Timo Betz, University of Gottingen, Germany) in Lei-
bovitz’s CO,-buffered L-15 medium with 2 mM Glutamax
(Thermo Fisher Scientific, Waltham, MA, USA) at 37°C.
The growth medium is supplemented by 10% fetal bovine
serum (Thermo Fisher), and cells are passaged every 2—
3 days using Accutase (Thermo Fisher). For experiments,
we seed about 5000 cells per dish. After incubation for 2—
3 h, cells adhere to the micropatterns and we exchange the
medium.

Microscopy. The microscopy images [see, for instance,
Fig. 1(b)] originate from time-lapse imaging on an inverted
fluorescence microscope (Nikon Eclipse Ti, Nikon, Tokyo,
Japan) outfitted with an XY -motorized stage, Perfect Focus
System (Nikon), and a heating chamber (Okolab, Pozzuoli,
Italy) maintained at 37 °C. We set up an acquisition protocol
to sequentially scan and image fields of view employing the
motorized stage, the Perfect Focus System, a 10 CFI Plan
Fluor DL objective (Nikon), a CMOS camera (PCO edge
4.2, Excelitas PCO, Kelheim, Germany), and the acquisi-
tion software NIS Elements (Nikon). Prior to the time-lapse
measurement, we obtain epifluorescence images of the FN
patterns. Subsequently, we capture phase-contrast images of
the cells and epifluorescence images of their nuclei at 20's
intervals for a total of 48 h.

Image analysis. To obtain trajectories from the microscopy
data of the fluorescently labeled cell nuclei, we employ MAT-
LAB [58] scripts built upon previous work [30] for image
analysis. Here, the geometric center of the fluorescently la-
beled nucleus is used as the cell position. Detection of FN
lanes is accomplished through a Hough transformation of
the fluorescence signal from labeled FN. Tracking of nuclei
positions involves setting a threshold after applying a back-

ground correction and a band-pass filter to fluorescent images
of the nuclei. The position of the nuclei is adjusted to ensure
that the position aligns with the FN lanes such that nuclei
center positions cannot be extracted offside of the FN lane.

F. Algae cells

Wild-type Chlamydomonas reinhardtii cells are recorded
in two-dimensional confinement between two anti-adhesively
coated glass plates with a separation of roughly 10um
by high-speed video microscopy (Olympus IX83/IX73) at
500 frames per second with a 40x phase-contrast objective
(Olympus, 0.65 NA, Plan N, PH2) connected to a metal oxide
semiconductor (CMOS) camera (Phantom Miro C110, Vision
Research, pixel size = 5.6 um). Trajectories of the algae cells
are extracted by binarizing the image sequences with appro-
priate threshold parameters and tracking their centers using
standard MATLAB routines [58]. More experimental details are
given in [12,32]. The Chlamydomonas reinhardtii cells were
previously shown to exhibit two distinct swimming styles
[12]; only data of cells with synchronous flagella motion are
considered in this work. The studied algae cells originate from
multiple isolated colonies and hence are presumably geneti-
cally heterogeneous.

ACKNOWLEDGMENTS

We acknowledge funding by the Deutsche Forschungs-
gemeinschaft (DFG) through Grant No. CRC 1449 “Dy-
namic Hydrogels at Biointerfaces,” Project ID 431232613,
Project A03. D.M. and P.S. acknowledge support from the
DBT/Wellcome Trust India Alliance Fellowship (grant num-
ber 1A/1/16/1/502356) awarded to P.S.

DATA AVAILABILITY

The data that support the findings of this article are openly
available [59].

[1] E. Levien, J. Min, J. Kondev, and A. Amir, Non-genetic vari-
ability in microbial populations: survival strategy or nuisance?
Rep. Prog. Phys. 84, 116601 (2021).

[2] M. M. Conner and G. C. White, Effects of individual hetero-
geneity in estimating the persistence of small populations, Nat.
Res. Model. 12, 109 (1999).

[3] G. A. Fox, B. E. Kendall, J. W. Fitzpatrick, and G. E.
Woolfenden, Consequences of heterogeneity in survival prob-
ability in a population of Florida scrub-jays, J. Anim. Ecol. 75,
921 (2006).

[4] R. Avraham, N. Haseley, D. Brown, C. Penaranda, H. B. Jijon,
J. J. Trombetta, R. Satija, A. K. Shalek, R. J. Xavier, A. Regev
et al., Pathogen cell-to-cell variability drives heterogeneity in
host immune responses, Cell 162, 1309 (2015).

[5] A. E. Fleming-Davies, V. Dukic, V. Andreasen, and G. Dwyer,
Effects of host heterogeneity on pathogen diversity and evolu-
tion, Ecol. Lett. 18, 1252 (2015).

[6] Asadullah, S. Kumar, N. Saxena, M. Sarkar, A. Barai, and
S. Sen, Combined heterogeneity in cell size and deformabil-
ity promotes cancer invasiveness, J. Cell Sci. 134, jcs250225
(2021).

[7]1 W. C. Aird, Endothelial cell heterogeneity, Crit. Care Med. 31,
S221 (2003).

[8] R. Rigler, A. Pramanik, P. Jonasson, G. Kratz, O. Jansson,
P-A. Nygren, S. Stéhl, K. Ekberg, B.-L. Johansson, S. Uhlen
et al., Specific binding of proinsulin c-peptide to human cell
membranes, Proc. Natl. Acad. Sci. USA 96, 13318 (1999).

[9] E. R. Jerison and S. R. Quake, Heterogeneous T cell motility
behaviors emerge from a coupling between speed and turning
in vivo, Elife 9, €53933 (2020).

[10] S. Studenski, S. Perera, K. Patel, C. Rosano, K. Faulkner,
M. Inzitari, J. Brach, J. Chandler, P. Cawthon, E. B. Connor
et al., Gait speed and survival in older adults, Jama 305, 50
(2011).

[11] P. Maiuri, J.-F. Rupprecht, S. Wieser, V. Ruprecht, O. Bénichou,
N. Carpi, M. Coppey, S. De Beco, N. Gov, C.-P. Heisenberg
et al., Actin flows mediate a universal coupling between cell
speed and cell persistence, Cell 161, 374 (2015).

[12] A. Klimek, D. Mondal, S. Block, P. Sharma, and R. R.
Netz,
their non-Markovian motion,
(2024).

Data-driven classification of individual cells by
Biophys. J. 123, 1173

023015-12


https://iopscience.iop.org/article/10.1088/1361-6633/ac2c92
https://doi.org/10.1111/j.1939-7445.1999.tb00005.x
https://doi.org/10.1111/j.1365-2656.2006.01110.x
https://doi.org/10.1016/j.cell.2015.08.027
https://doi.org/10.1111/ele.12506
https://doi.org/10.1242/jcs.250225
https://doi.org/10.1097/01.CCM.0000057847.32590.C1
https://doi.org/10.1073/pnas.96.23.13318
https://doi.org/10.7554/eLife.53933
https://doi.org/10.1001/jama.2010.1923
https://doi.org/10.1016/j.cell.2015.01.056
https://doi.org/10.1016/j.bpj.2024.03.023

INTRINSIC CELL-TO-CELL VARIANCE FROM ...

PRX LIFE 3, 023015 (2025)

[13] F. N. Briinig, J. O. Daldrop, and R. R. Netz, Pair-reaction
dynamics in water: competition of memory, potential shape, and
inertial effects, J. Phys. Chem. B 126, 10295 (2022).

[14] F. N. Briinig, O. Geburtig, A. v. Canal, J. Kappler, and R. R.
Netz, Time-dependent friction effects on vibrational infrared
frequencies and line shapes of liquid water, J. Phys. Chem. B
126, 1579 (2022).

[15] B. A. Dalton, H. Kiefer, and R. R. Netz, The role of
memory-dependent friction and solvent viscosity in isomer-
ization kinetics in viscogenic media, Nat. Commun. 15, 3761
(2024).

[16] B. G. Mitterwallner, C. Schreiber, J. O. Daldrop, J. O. Rédler,
and R. R. Netz, Non-Markovian data-driven modeling of single-
cell motility, Phys. Rev. E 101, 032408 (2020).

[17] C. Ayaz, L. Tepper, F. N. Briinig, J. Kappler, J. O.
Daldrop, and R. R. Netz, Non-Markovian modeling of pro-
tein folding, Proc. Natl. Acad. Sci. USA 118, ¢2023856118
(2021).

[18] B. A. Dalton, C. Ayaz, H. Kiefer, A. Klimek, L. Tepper,
and R. R. Netz, Fast protein folding is governed by
memory-dependent friction, Proc. Natl. Acad. Sci. USA 120,
€2220068120 (2023).

[19] B. J. A. Héry and R. R. Netz, Derivation of a generalized
Langevin equation from a generic time-dependent Hamiltonian,
J. Phys. A 57, 505003 (2024).

[20] R. R. Netz, Derivation of the nonequilibrium generalized
Langevin equation from a time-dependent many-body Hamil-
tonian, Phys. Rev. E 110, 014123 (2024).

[21] D. Martin, J. O’Byrne, M. E. Cates, E. Fodor, C. Nardini,
J. Tailleur, and F. van Wijland, Statistical mechanics of ac-
tive Ornstein-Uhlenbeck particles, Phys. Rev. E 103, 032607
(2021).

[22] B. G. Mitterwallner, L. Lavacchi, and R. R. Netz, Negative
friction memory induces persistent motion, Eur. Phys. J. E 43,
67 (2020).

[23] G. M. Viswanathan, M. G. Da Luz, E. P. Raposo, and H. E.
Stanley, The Physics of Foraging: An Introduction to Random
Searches and Biological Encounters (Cambridge University
Press, Cambridge, 2011).

[24] T. K. Moon, The expectation-maximization algorithm, IEEE
Sign. Proc. Mag. 13, 47 (1996).

[25] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation Mod-
eling and Analysis (McGraw-Hill, New York, 2007), Vol. 3.

[26] R. R. Barton and L. W. Schruben, Resampling methods for
input modeling, in Proceeding of the 2001 Winter Simula-
tion Conference (Cat. No. 01CH37304) (IEEE, Piscataway, NJ,
2001), Vol. 1, pp. 372-378.

[27] A. B. Massada and Y. Carmel, Incorporating output variance in
local sensitivity analysis for stochastic models, Ecol. Modell.
213, 463 (2008).

[28] J. E. Straub, M. Borkovec, and B. J. Berne, Dynamic friction
on intramolecular degrees of freedom, J. Phys. Chem. 91, 4995
(1987).

[29] B. J. Berne, M. E. Tuckerman, J. E. Straub, and A. L. R. Bug,
Friction on rigid and flexible bonds, J. Chem. Phys. 93, 5084
(1990).

[30] C. Schreiber, B. Amiri, J. C. Heyn, J. O. Rédler, and M. Falcke,
On the adhesion—velocity relation and length adaptation of
motile cells on stepped fibronectin lanes, Proc. Natl. Acad. Sci.
USA 118, 2009959118 (2021).

[31] B. Amiri, J. C. Heyn, C. Schreiber, J. O. Rédler, and M. Falcke,
On multistability and constitutive relations of cell motion on
fibronectin lanes, Biophys. J. 122, 753 (2023).

[32] D. Mondal, A. G. Prabhune, S. Ramaswamy, and P. Sharma,
Strong confinement of active microalgae leads to inversion
of vortex flow and enhanced mixing, eLife 10, e67663
(2021).

[33] H. Mori, Transport, collective motion, and Brownian motion,
Prog. Theor. Phys. 33, 423 (1965).

[34] R. Zwanzig, Memory effects in irreversible thermodynamics,
Phys. Rev. 124, 983 (1961).

[35] C. Ayaz, L. Scalfi, B. A. Dalton, and R. R. Netz, Generalized
Langevin equation with a nonlinear potential of mean force and
nonlinear memory friction from a hybrid projection scheme,
Phys. Rev. E 105, 054138 (2022).

[36] T. Indei, J. D. Schieber, A. C. Corddéba, and E. Pilyugina,
Treating inertia in passive microbead rheology, Phys. Rev. E
85, 021504 (2012).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/77t1-2qvv for additional analysis of experimental data,
derivations of formulas, and test of the methods used for deter-
mining the covariance ratio of the intrinsic to the experimentally
observed parameters.

[38] A. V. Chechkin, F. Seno, R. Metzler, and 1. M. Sokolov,
Brownian yet non-Gaussian diffusion: from superstatistics to
subordination of diffusing diffusivities, Phys. Rev. X 7, 021002
(2017).

[39] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh,
Nonequilibrium mechanics of active cytoskeletal networks,
Science 315, 370 (2007).

[40] R. R. Netz, Fluctuation-dissipation relation and stationary dis-
tribution of an exactly solvable many-particle model for active
biomatter far from equilibrium, J. Chem. Phys. 148, 185101
(2018).

[41] R. R. Netz, Multi-point distribution for Gaussian non-
equilibrium non-Markovian observables, arXiv:2310.08886.

[42] D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen, and H.
Flyvbjerg, Cell motility as persistent random motion: theories
from experiments, Biophys. J. 89, 912 (2005).

[43] H. Flyvbjerg and H. G. Petersen, Error estimates on averages of
correlated data, J. Chem. Phys. 91, 461 (1989).

[44] B. Snijder and L. Pelkmans, Origins of regulated cell-
to-cell variability, Nat. Rev. Mol. Cell Biol. 12, 119
(2011).

[45] S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and
P. K. Sorger, Non-genetic origins of cell-to-cell variabil-
ity in trail-induced apoptosis, Nature (London) 459, 428
(2009).

[46] A.J. Berglund, Statistics of camera-based single-particle track-
ing, Phys. Rev. E 82, 011917 (2010).

[47] R. R. Netz, Temporal coarse-graining and elimination of
slow dynamics with the generalized Langevin equation
for time-filtered observables, Phys. Rev. E 111, 054132
(2025).

[48] C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G.
Volpe, and G. Volpe, Active particles in complex and crowded
environments, Rev. Mod. Phys. 88, 045006 (2016).

[49] P. Dieterich, R. Klages, R. Preuss, and A. Schwab, Anomalous
dynamics of cell migration, Proc. Natl. Acad. Sci. USA 105,
459 (2008).

023015-13


https://doi.org/10.1021/acs.jpcb.2c05923
https://doi.org/10.1021/acs.jpcb.1c09481
https://doi.org/10.1038/s41467-024-48016-7
https://doi.org/10.1103/PhysRevE.101.032408
https://doi.org/10.1073/pnas.2023856118
https://doi.org/10.1073/pnas.2220068120
https://doi.org/10.1088/1751-8121/ad91ff
https://doi.org/10.1103/PhysRevE.110.014123
https://doi.org/10.1103/PhysRevE.103.032607
https://doi.org/10.1140/epje/i2020-11992-5
https://doi.org/10.1109/79.543975
https://doi.org/10.1016/j.ecolmodel.2008.01.021
https://doi.org/10.1021/j100303a019
https://doi.org/10.1063/1.458647
https://doi.org/10.1073/pnas.2009959118
https://doi.org/10.1016/j.bpj.2023.02.001
https://doi.org/10.7554/eLife.67663
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1103/PhysRev.124.983
https://doi.org/10.1103/PhysRevE.105.054138
https://doi.org/10.1103/PhysRevE.85.021504
http://link.aps.org/supplemental/10.1103/77t1-2qvv
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1126/science.1134404
https://doi.org/10.1063/1.5020654
https://arxiv.org/abs/2310.08886
https://doi.org/10.1529/biophysj.105.061150
https://doi.org/10.1063/1.457480
https://doi.org/10.1038/nrm3044
https://doi.org/10.1038/nature08012
https://doi.org/10.1103/PhysRevE.82.011917
https://doi.org/10.1103/PhysRevE.111.054132
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1073/pnas.0707603105

ANTON KLIMEK et al.

PRX LIFE 3, 023015 (2025)

[50] R. K. Sadhu, A. Igli¢, and N. S. Gov, A minimal cell model
for lamellipodia-based cellular dynamics and migration, J. Cell
Sci. 136, jcs260744 (2023).

[51] J. Heyn, M. Atienza Juanatey, M. Falcke, and J. Rédler,
Cell-mechanical parameter estimation from 1D cell trajectories
using simulation-based inference, bioRxiv 2024.09.06.611766
(2024).

[52] F. Pesarin and L. Salmaso, The permutation testing approach: a
review, Statistica 70, 481 (2010).

[53] M. Wallert, C. Nie, P. Anilkumar, S. Abbina, S. Bhatia,
K. Ludwig, J. N. Kizhakkedathu, R. Haag, and S. Block,
Mucin-inspired, high molecular weight virus binding inhibitors
show biphasic binding behavior to influenza a viruses, Small
16, 2004635 (2020).

[54] M. Miiller, D. Lauster, H. H. Wildenauer, A. Herrmann,
and S. Block, Mobility-based quantification of multivalent
virus-receptor interactions: new insights into influenza a virus
binding mode, Nano Lett. 19, 1875 (2019).

[55] Y. Kerkhoff and S. Block, Analysis and refinement of 2D
single-particle tracking experiments, Biointerphases 15, 021201
(2020).

[56] Y. von Hansen, A. Mehlich, B. Pelz, M. Rief, and

R. R. Netz, Auto-and cross-power spectral analysis
of dual trap optical tweezer experiments using
Bayesian inference, Rev. Sci. Instrum. 83, 095116

(2012).

[57] C. Schreiber, F. J. Segerer, E. Wagner, A. Roidl, and J. O.
Rédler, Ring-shaped microlanes and chemical barriers as a
platform for probing single-cell migration, Sci. Rep. 6, 26858
(2016).

[58] D. Blair and E. Dufresne, The Matlab particle tracking code
repository, Particle-tracking code available at http://physics.
georgetown.edu/matlab (2008).

[59] A. Klimek, Tools and data for analyzing cell statistics in sim-
ulations, GitHub repository, https://github.com/kanton42/cell
statistics (2025).

023015-14


https://doi.org/10.1242/jcs.260744
https://doi.org/10.1101/2024.09.06.611766
https://doi.org/10.6092/issn.1973-2201/3599
https://doi.org/10.1002/smll.202004635
https://doi.org/10.1021/acs.nanolett.8b04969
https://doi.org/10.1116/1.5140087
https://doi.org/10.1063/1.4753917
https://doi.org/10.1038/srep26858
http://physics.georgetown.edu/matlab
https://github.com/kanton42/cell_statistics

