THE UNIVERSITY OF CHICAGO

HUMAN-AI DECISION MAKING
WITH CASE STUDIES IN RADIOLOGY

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
CHACHA CHEN

CHICAGO, ILLINOIS
AUGUST 2025



Copyright (© 2025 by Chacha Chen



Human-AlI Decision Making
with Case Studies in Radiology
by
Chacha Chen

Abstract

With the explosive progress of machine learning (ML), especially recent foundation models,
these advanced systems are increasingly reshaping our daily workflows across domains.
This makes human-centered Al research critically important, as it aims to build Al models to
better support human tasks and improve decision-making. This thesis focuses on improving
human-AlI collaboration through both behavioral study and building more effective Al
systems. We begin with a theoretical analysis of the interaction between machine learning
models and human decisions, which highlights a key insight: human intuition plays a critical
role in effective human-Al collaboration. Using prostate cancer diagnosis with MRI as a real-
world test bed, we conducted user studies with domain experts to investigate how advanced,
human-level ML models are perceived and used in clinical decision-making. Our findings
show that experts are often hesitant to adopt Al tools, and even when they do, they struggle
to appropriately rely on Al. Importantly, by applying a theoretical framework of human-Al
reliance, we identified actionable strategies that help ensure complementary performance
(human+AI performance exceeds either alone). In parallel, we explored multimodal large
language models for radiology. Starting with an evaluation of out-of-the-box performance
of current LLMs (e.g., GPT-40, Llama) on chest X-ray reporting, we found that, although
impressive in general domains, current LLMs perform poorly on specialized medical tasks.
Our analysis reliably identified visual understanding as the primary performance bottleneck.
Additionally, we proposed a fine-grained tabular based evaluation method with expert
curated high-quality data. This benchmark not only enhances the rigor of current evaluation
but also holds promise for guiding future model development. My work contributes to
broader efforts in adapting foundation models to high-stakes, domain-specific applications.
More broadly, my research contributes to the growing understanding of how Al is evolving
from simple tools to sophisticated collaborators in knowledge work and specialized fields.

Thesis Advisor: Chenhao Tan
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Chapter 1

Introduction

The rapid progress of machine learning, particularly the emergence of large-scale foundation
models, is transforming both everyday life and professional workflows. Frontier foundation
models like GPT-4 and Deepseek-R1 have demonstrated remarkable capabilities in natural
language understanding, image generation, and complex reasoning tasks. As Al systems
grow increasingly capable, they underscore the importance of human-centered Al research,
which aims to study the interaction between humans and Al as well as build models that can
improve human decision-making. The challenge lies in understanding how humans interact
with these advanced models, how Al-generated information is interpreted and acted upon,
and how human and Al strengths can be combined to achieve complementary outcomes.
Developing a deeper understanding of human-AlI collaboration is critical for unlocking the
full potential of these advanced models and safely integrating them into our day-to-day

workflows.

This thesis builds on prior work that introduced a theoretical framework of human
understanding and machine explanations, which provided useful insights into human-Al
collaboration. It formally demonstrates that human task-specific intuition plays a crucial role
in helping humans make effective use of machine-generated explanations, thereby enabling
complementary performance, i.e., human-Al teams outperform both human experts and Al
models working alone. The framework offers a structured approach to understanding how
human interact with AI models and explanations, providing a foundation to future human-Al

study designs.

22



Secondly, we present a case study of human-Al collaboration in prostate cancer di-
agnosis, where the Al model has already achieved superhuman performance. Through
direct collaboration with radiologists, we found that human-Al teams outperformed hu-
man clinicians alone but still underperformed compared to Al due to a lack of trust in the
model recommendations. Interestingly, while performance feedback did not significantly
improve the overall diagnostic accuracy of human-Al teams, it did increase human reliance
on Al, highlighting the complex dynamics between trust and performance in human-Al
collaboration. Using a recent theoretical framework for reliance, we identify a simple
strategy that could improve human-Al complementarity by adjusting reliance patterns. This
study provides empirical evidence of the complexities and negative results that can arise in
human-AlI collaboration, while also pointing to promising future directions for improving

complementary performance.

Furthermore, this thesis also explores the diagnosis and evaluation of multimodal large
language models (LLMs) for radiology. We began by assessing the out-of-the-box perfor-
mance of state-of-the-art models such as GPT-40 and LLaMA 3 on chest X-ray radiology
report generation. While these models demonstrate impressive capabilities in general do-
mains, our results reveal that they still fall short on specialized medical tasks. Through a
detailed error analysis, we identified that visual understanding is the key bottleneck limiting
model performance. Notably, when provided with essential findings, these models can
synthesize coherent and clinically usable radiology reports, reflecting their strong textual
capabilities but limited visual comprehension ability. To address limitations in existing
evaluation practices, we proposed a fine-grained, tabular-based evaluation framework using
expert-curated, high-quality annotations. This benchmark enables a more comprehensive
and clinically validated assessment of model capabilities, and serves as a practical tool for

guiding future improvements in multimodal model development.

More broadly, this research contributes to the growing understanding of how Al is transi-
tioning from simple tools to sophisticated collaborators in knowledge work and specialized
domains. The insights gained from this work are not only applicable to radiology but also

extend to other expert-level tasks.
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The remainder of this thesis is structured as follows: Chapter 2 presents the theoretical
framework for human understanding and machine explanations. Chapter 3 discusses the case
study on Al-assisted prostate cancer diagnosis and human-Al reliance. Chapter 4 introduces

the diagnosis and evalaution of MLLMs for radiology report generation.
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Chapter 2

Prior Work: Theoretical Insights of Human-Al Collabora-

tion

In human-AlI collaboration with machine explanations, fask-specific human intuitions are
essential for improving human understanding and decision-making. While explanations
derived from machine learning models can enhance human understanding of the model’s
decision boundary (i.e., how the model makes predictions), they cannot improve understand-
ing of the task’s decision boundary (i.e., the true relationship between inputs and outputs) or
model errors unless the human possesses task-specific intuitions. This chapter establishes a
theoretical framework showing that without human intuitions about the task, explanations
alone cannot lead to better decision-making or complementary performance (i.e., human-Al
performance exceeding either human or Al alone). Empirical studies confirm that people
rely more on Al predictions when they lack task-specific intuitions, but when explanations
align with human intuitions, agreement with model predictions improves. These findings
highlight that effective human-Al collaboration requires incorporating human task-specific

knowledge to interpret and benefit from machine explanations.

2.1 A Theoretical Framework of Human Understanding and Machine

Explanations

Three Core Concepts for Measuring Human Understanding
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In this section, we identify three key concepts of

interest in human-AlI decision making: task decision

boundary, model decision boundary, and model error.

We present high-level definitions of these concepts

and formalize them later.!

We use a two-dimensional binary classification
problem to illustrate the three concepts of interest
(Fig. 2-1). Task decision boundary, as represented by
the dashed line, defines the mapping from inputs to
ground-truth labels: inputs on the left are positive and
the ones on the right are negative. Model decision

boundary, as represented by the solid line, determines

Task decision boundary f(:)  Model decision boundary g(-) Model error =(-)

Figure 2-1: Illustration of the three
fundamental concepts using a binary
classification problem. Task decision
boundary (dashed line) defines the
ground-truth mapping from inputs
to labels. Model decision boundary
(solid line) defines the model pre-
dictions. Model error (highlighted)
represents where the model’s predic-
tions are incorrect.

model predictions. Consequently, the area between

the two boundaries is where the model makes mistakes. This yellow highlighted background
captures model error, i.e., where the model prediction is incorrect. With a perfect model,
the model decision boundary would be an exact match of the task decision boundary, and

model error never happens. 2

To the best of our knowledge, we are not aware of any existing quantitative behavioral
measure of human understanding that does not belong to one of these three concepts of
interest. Building on a recent survey [59], we identify 30 papers that: 1) use machine
learning models and explanations with the goal of improving human understanding; and 2)
conduct empirical human studies to evaluate human understanding with quantitative metrics.
Although human-subject experiments vary in subtle details, the three concepts allow us to
organize existing work into congruent categories. We provide a reinterpretation of existing

behavioral measures using the three concepts below; a detailed summary is in appendix A.1.

Based on the three concepts above, we introduce a theoretical framework of human

'In this work, we omit subjective measures.

2We present a deterministic example for ease of understanding and one can interpret this work with
deterministic functions in mind. In general, one can also think of model decision boundary, task decision
boundary, and model error probabilistically.

26



understanding in the context of human-Al decision making. We do not discuss machine
explanations yet; instead, we formalize the relationship between task decision boundary,
model decision boundary, and model error, as well as human understanding of them. This
framework enables a rigorous discussion on human understanding as well as the underlying

assumptions/interventions that shape the relationship between those understanding.

Defining Core Functions and Human Understanding of Them

Formally, the three concepts of interest are functions defined w.r.t. a prediction problem and

a machine learning model:

* Task decision boundary is a function f : X — Y that represents the groundtruth

mapping from an input X to the output Y.

* Model decision boundary is another function g : X — Y that represents our ML model
which outputs a prediction Y given an input. g is usually trained to be an approximation of
f. We assume that we are given a model g; the training process of g (and the connection

between f and g) is not crucial for this work.

* Model error represents the model’s error; it is an indicator of whether the model prediction
differs from the groundtruth for an input: z(X, f, ¢) = I[f(X) # g(X)],VX € X. We
use z(X) for short when the omitted arguments f and g are clear from context, which

maps an input X to whether the model makes an error Z.

We call them core functions as they underpin human understanding. We refer to the
outputs of core functions for an instance X, Y, 17, and Z as the three core variables. Note
that the core functions do not involve any people; they exist even in absence of human

understanding.

We use f H gH , and z! to denote the human’s subjective approximations of the core
functions, each of them being a function with the same domain and codomain as its objective
counterpart. These human approximations can be interpreted as mental models, influenced
by the human’s knowledge (both on the prediction problem and the ML model), and can

change over time as the human-Al interaction progresses.
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We can rephrase common cooperative tasks in human-Al decision making in terms of

the core functions and human understanding grouped by stakeholders:

* For decision makers such as doctors, judges, and loan officers, the main goal is to improve

their understanding of task decision boundary (f Hy,

* For decision subjects such as patients, defendants, and loan applicants, the object of
interest can differ even for these three examples. Patients care about the task decision
boundary more, while defendants and loan applicants may care about the model decision
boundary and especially model error, and would like to figure out how they can appeal

model decisions.

* Model developers might be most interested in model error, and the eventual goal is to

change the model decision boundary.

* For algorithm auditors, the main goal is to figure out whether the model decision

boundary and model error conform to laws/regulations.

The distance between core functions and their human approximations can be used as a
measure for human understanding. Since human approximations are theoretical constructs
that only exist in the human brain, we need to perform user studies to measure them. For
example, we can ask a human to guess what the model would have predicted for a given
input X; the human’s answer Y™ characterizes their local understanding of the model
decision boundary. In the rest of the paper, one can interpret “human understanding” with
this particular measurement of human approximations. Perfect human understanding thus

refers to 100% accuracy in such measurement.

In the interest of space, we assume that the approximation functions remain static and
examine a human’s local understanding with our framework in the main paper; in other
words, we assume that the human employs a consistent mental model for all instances and
only reason about Y, ZH, YH  We note that improving human global understanding is
often the actual goal in many applications. Table 2.1 summarizes the notations for core

functions and human understandings.

28



Variable Function Description

X — Input instance

Y f:X =Y  Task decision boundary

% g:X =Y  Model decision boundary

zZ z:X —Z  Model error

YH fH :X —Y Human understanding of the task decision boundary ) ~

yH ¢":X —Y Human understanding of the model decision boundary Core functions  Human approximations

H H. i . . .. .

z Xz Human undemtanding of the iodel error Figure 2-2: Visualizing the relations
— ask-specific human intuitions

E — Machine explanations between core functions, local variables,
Table 2.1: A summary of notations. and human approximations of them.

Causal Graph Framework for Core Functions

To reason about human understanding, we need to understand how core functions relate
to each other, and how interventions may affect human understanding. To do so, we adapt
causal directed acyclic graphs (causal DAGs) to formalize a causal model for the core
functions of human understanding. We start with a simple diagram (Fig. 2-2) without

assumptions about human intuitions.>

Let us first look at core functions on the left in Fig. 2-2. We use a functional view to
represent Y = 2(X): we add a functional node (g in a square) on the edge from X to Y to
indicate that ¢ controls the causal link from X to Y. g is treated as a parent of Y. As X is the
input of ¢ and does not affect g, there is no arrowhead from X to g. Alternatively, one can
use a parametric view and use a node 6 to capture all variables in ¢ and add € as a parent of
17, in addition to X. We use the functional view because it simplifies the visualization, but it
deviates slightly from the standard causal diagrams. X and Y are connected with a dashed
line through f since we do not assume the causal direction between them. Z is the binary
indicator of whether Y and Y are different. According to d-separation [94], Y is independent
of Y given X and g. Z is a collider for Y and Y, so knowing Z and Y entails Y in binary

classification.

Next, in Fig. 2-2 on the right, we introduce fask-specific intuitions, H, that defines
human mental models of the core functions. We emphasize fask-specific to capture intuitions
about the current problem, as opposed to generic intuitions such as that humans can interpret

saliency maps or humans can update their understanding over time. Fig. 2-2(b) shows a base

3Throughout this paper, X in the diagrams refer to a test instance that the model has not been trained on.
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version of how human intuitions relate to human understanding of core variables. For now,
we do not make any assumptions about human intuitions, we simply connect human intuition
with their understanding through f, ¢, zH. As H directly influence f, ¢!, zH, there
is an arrowhead in the links from H to fH, ¢f,zH. Later, we will discuss more realistic

instantiations, e.g., Z when Y is given.

Looking together at Fig. 2-2, d-separation suggests that human approximation of core
variables are independent from core variables given X, without extra assumptions about
human intuitions. Therefore, a key goal of our work is to articulate what assumptions we

make and how they affect the causal diagrams.

A New Operator Next, we analyze human local understanding (Y, YH, ZH on the right
of Fig. 2-2). Without extra assumptions, the causal direction between YH, yH , ZH is unclear,
because their generation process is controlled by the human brain, a black box. We visualize
this ambiguity by connecting nodes with undirected dashed links in Fig. 2-3(a) as the base

diagram.

The base diagram is not useful in its current state; in order to use the diagram to reason
about human understanding, we need realizations of the base diagram where dashed links
are replaced by solid, directional links. No realization is universally correct, and each

realization requires certain assumptions or interventions, which we refer to as conditions.

Condition 1—emulation vs. discovery. To delineate the feasibility of various base
diagram realizations, we introduce two conditions. The first condition is an assumption
about human knowledge, i.e., that the human has perfect knowledge about task decision
boundary; in other words, f H perfectly matches f and YH =Y for all inputs. Problems
where human labels are used as ground truth generally satisfy this condition, e.g., topic
classification, reading comprehension, and object recognition. We follow Lai et al. [61]
and call them emulation task, in the sense that the model is designed to emulate humans;
by contrast, discovery problems are the ones humans do not have perfect knowledge of

task decision boundary (e.g., deceptive review detection recidivism prediction).* It follows

4Emulation and discovery can be seen as two ends of a continuous spectrum. The emulation vs. discovery
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Figure 2-3: Causal diagrams visualizing the relationship between a human’s local under-
standing. With the base diagram at the root, we organize its realizations based on different
conditions in a two-level decision tree. Undirected dashed lines represent ambiguous causal
links. The bidirectional dashed line in subfigure (d) represents the correlation between Y
and Y potentially induced by the prediction model. Shaded nodes and their edges represent
show operations.

that human understanding of task decision boundary is irrelevant in emulation tasks, but

achieving complementary performance is a key goal in discovery tasks.

Condition 2—prediction shown vs. hidden. An alternative condition is an intervention
that presents the model prediction Y to the human. Given this information, a rational human

would gain a perfect understanding of the local model decision boundary and always predict

A A

YH =Y.

The show operator. To describe the effect of applying these conditions, we introduce a
new syntax for manipulating causal diagrams: the show operator. When show is applied to
a core variable, that information becomes available to the human. For example, show(Y)
means that the human can see the model prediction for X. This operation draws an equiva-
lence between the core variable and the human approximated counterpart, assuming that the

human is rational.

We introduce the new show operator as opposed to the standard do operator for two
reasons. First, show operator introduces new variables to the causal diagram instead of
setting the value of an existing variable (e.g., Y and Y in Fig. 2-3 and E in §2.2). Second,
the show operator can change the causal diagram as we reason about human understanding,

including changing edges and variables. Notation-wise, show allows us to specify the

categorization determines the set of causal diagrams that applies to the problem; this decision is at the discretion
of practitioners that design experiments using our framework.
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condition for human approximations; for example, YSIZ

ow(¥) denotes the local understanding

of task decision boundary given predicted label Y.

In Fig. 2-3, applying show operator leads to two changes: it adds a link from a core
variable to the corresponding human approximation, and it removes influences from other
human approximations. For example, under the emulation condition visualized in Fig. 2-3b,
show(Y) adds a link from Y to Y™ and removes all other edges going into Y, effectively

disambiguating the relation between Y and the two other variables.

2.2 Machine Explanations and Human Intuitions

Explanations of machine predictions can provide richer information about the model than
predicted labels and are hypothesized to improve human understanding of core variables.
In this section, we use our framework to discuss the utility and limitations of machine
explanations. We first show that without assumptions about human intuitions, explanations
can improve human understanding of model decision boundary, but not task decision
boundary or model error. As a result, complementary performance in discovery tasks is
impossible. We then discuss possible ways that human intuitions can allow for effective use
of explanations and lay out several directions for improving the effectiveness of explanations.
Our analyses highlight the importance of articulating and measuring human intuitions in

leveraging machine explanations to improve human understanding.

Limitations of Explanations without Human Intuitions

Existing explanations are generated from g (Fig. 2-4(a)). We first introduce explanation
(E) to our causal diagram. Since the common goal of explanation in the existing literature is
to explain the underlying mechanism of the model, E is derived from ¢ and thus we argue that
explanation should have only one parent, ¢, among the core functions. For example, gradient-
based methods use gradients from ¢ to generate explanations [111, 7]. Both LIME [101]
and SHAP [74] use local surrogate models to compute importance scores, and the local

surrogate model is based on g. Counterfactual explanations [79, 117] typically identify

32



examples that lead to a different predicted outcome from g. In all of these explanation

algorithms, there is no connection between E and f or u.

In addition, there should be no connection between E and task-specific intuitions, H.
Conceptually, only task-agnostic human intuitions are incorporated by existing algorithms of
generating explanations. It is well recognized that humans cannot understand all parameters
in a complex model, so promoting sparsity can be seen as incorporating some human
intuition. Similarly, the underlying assumption for transparent models is that humans
can fully comprehend a certain class of models, e.g., decision sets [63] or generalized
linear models [80, 22]. In counterfactual explanations, it is assumed that by contrasting
similar examples, people can recognize the differentiating feature and thus derive feature
importance [55]. However, none of these assumptions about the human intuitions are about

task decision boundary, model error, or human understanding of them.

Now we discuss the effect of explanations on human understanding without assuming

any task-specific human intuitions (i.e., without adding new edges around H).

Explanations can improve human understanding of model decision boundary, but
cannot improve human understanding of task decision boundary or model error. We
start with the cases where predicted labels are not shown. Fig. 2-4(b1) shows the subgraph
related to Y and Y¥ from Fig. 2-2. Without explanations, Y and YH are independent
given X. Fig. 2-4(b2) demonstrates the utility of machine explanations. Because of the
shared parent () with Y, the introduction of E can improve human understanding of model
decision boundary, YH_ Note that our discussion on improvement is concerned with the
upper bound of understanding assuming that humans can rationally process information if
the information is available. This improvement holds regardless of the assumption about

YH (i.e., both in emulation and discovery tasks).

When predicted labels are shown, improving human local understanding of model de-
cision boundary is irrelevant, so we focus on task decision boundary and model error. In
emulation tasks (show(Y)), and once provided with predicted labels (show(Y)), humans

would achieve perfect accuracy at approximating the three core variables. Because this
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(@) (b1)

Figure 2-4: (a) E is generated from g. (bl) Y and Y are independent given X. (b2) The
utility of E: E can improve human understanding of model decision boundary. (c1) E cannot
improve human understanding of task decision boundary and model error without human
intuitions. (c2) Combined with human intuitions, E can improve task decision boundary and
model error. We use orange lines to highlight the links that lead to positive utility of E. We
omit links from X to f H and zH for simplicity.

perfect local understanding also holds in emulation tasks without machine explanations,
explanations have no practical utility in this setting. That is, machine explanations cannot
help humans achieve better approximation than showing predicted labels in local under-
standing. Note that this is only true for local human understanding, explanations can still
potentially improve global understanding, which explains the success of model debugging

in an emulation task, topic classification in Ribeiro et al. [101].

In comparison, Fig. 2-4(c1) shows the diagram for the more interesting case, discovery
tasks. Explanations are often hypothesized to improve human decision making, i.e., bringing
YHcloser to Y. However, if we do not make assumptions about human intuitions, although
E can affect f H it cannot bring any additional utility over showing Y. The reason is that
d-separation indicates that given the prediction ¢ and X, the explanation E is independent of
Y and Z. That is, E cannot provide any extra information about Y (task decision boundary)
and Z (model error) beyond the model. Moreover, the model cannot provide any better
approximation of Y than Y. Alternatively, we can also think of the functional form. If
. tis

we cannot make any assumption about H, ggww is no different from ggww

(EY) (¥)
plausible for a person to follow machine predictions when they have no intuitions about a
task at all. Therefore, complementary performance is impossible without extra assumptions

about human intuitions.

As a concrete example, consider the case of deceptive review detection with an alien
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who does not understand English (i.e., guaranteeing that there is no intuition about this task).
Machine explanation such as feature importance cannot provide meaningful information to

the decision maker, i.e., the alien.

Explanation + Human Intuitions

Next, we discuss how explanations can be integrated with human intuition to achieve an
improved understanding in discovery tasks (recall that Z"and YHare entailed in emulation
tasks when Yis shown). We have seen that E itself does not reveal more information about
Y or Z beyond g. Therefore, an important role of E is in shaping human intuitions. We

present two possible ways.

Activating prior knowledge about model error. E can activate prior human knowledge
that can reveal information about model error (Fig. 2-4(c2)). We examine two sources of
such prior knowledge that is concerned with what information should be used and how.
First, human intuitions can evaluate relevance, i.e., whether the model leverages relevant
information from the input based on the explanations. For example, human intuitions
recognize that “chicago” should not be used for detecting deceptive reviews or that race
should not be used for recidivism prediction, so a model prediction relying on these signals
may be more likely wrong. The manifestation of relevance depends on the explanation’s
form: feature importance directly operates on pre-defined features (e.g., highlighting race
for tabular data or a word in a review), example-based explanations or counterfactual
explanations narrow the focus of attention to a smaller (relevant) area of the input. Note
that the intuition of relevance only applies to the input and does not consider the relation

between the input and output.

Second, human intuitions can evaluate mechanism, i.e., whether the relationship between
the input and the output is valid. Linear relationship is a simple type of such relation: human
intuitions can decide that education is negatively correlated with recidivism, and thus that a
model making positive predictions based on education is wrong. In general, mechanisms

can refer to much more complicated (non-linear) relations between (intermediate) inputs
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and labels.

Fig. 2-4(c2) illustrates such activations in causal diagrams. The link from E to H
highlights the fact that human intuitions when E is shown are different from H without E
because these intuitions about model error would not have been useful without machine
explanation. We refer to H in Fig. 2-4(c2) as Hgpoy(g)- If Hspow(E) 1s correlated with z
(indicated by the dash link), then Z" is no longer independent from Z (e.g., education
should be negatively correlated with recidivism) and can thus improve Y because Z is a
collider for Y and Y, leading to complementary performance. It is important to emphasize
that this potential improvement depends on the quality of Hshow( E) (e.g., whether education
is actually negatively correlated with recidivism). The lack of useful task-specific human

intuitions can explain the limited human-Al performance in deceptive review detection [62].

Expanding human intuitions. Another way that explanations can improve human un-
derstanding is by expanding human intuitions. Consider the example of “Chicago” as an
important indicator for deceptive reviews in Lai et al. [61]. “Chicago” is reliably associated
with deceptive reviews in this dataset are for two reasons: 1) people are less likely to provide
specific details when they write fictional texts (theory I); 2) deceptive reviews in this dataset
are written by crowdworkers on mechanical Turk for hotels in Chicago (fact II). Highlighting
the word for “Chicago” (relevance) and its connection with deceptive reviews (mechanism)
is counterintuitive to most humans because this is not part of common human intuitions.
But if machine explanations can expand human intuitions and help humans derive theory I,
this can lead to improvement of the human understanding of task decision boundary (i.e.,
humans develop new knowledge from machine explanations). Formally, the key change
in the diagram for this scenario is that E influences human intuitions in the next time step

Hiiq.
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2.3 Towards Effective Explanations for Improving Human Understand-

ing

Machine explanations are only effective if we take into account human intuitions. We
encourage the research community to advance our understanding of task-specific human
intuitions, which are necessary for effective human-Al decision making. We propose the

following recommendations.

Articulating and measuring human intuitions. It is important to think about how ma-
chine explanations can be tailored to either leveraging prior human knowledge or expanding

human intuitions, or other ways that human intuitions can work together with explanations.

First, we need to make these assumptions about human intuitions explicit so that the
research community can collectively study them rather than repeating trial-and-error with
the effect of explanations on an end outcome such as task accuracy. We recommend the
research community be precise about the type of tasks, the desired understanding, and the

required human intuitions to achieve success with machine explanations.

Second, to make progress in experimental studies with machine explanations, we need to
develop ways to either control or measure human intuitions. This can be very challenging in
practice. To illustrate a simple case study, we will present an experiment where we control

and measure human intuitions in human-AlI decision making.

Incorporate f and z into explanations. An important premise for explanations working
together with human intuitions is that machine explanations capture the mechanism or the
relevance underlying the model. Indeed, faithfulness receives significant interest from the
ML community for the sake of explaining the mechanisms of a model. However, faithfulness
to ¢ alone is insufficient to improve human understanding of task decision boundary and the

model error.

In order to effectively improve human understanding of f and z, it would be useful to

explicitly incorporate f and z into the generation process of E. For example, a basic way
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to incorporate z is to report the error rate in a development set. In the case of deceptive
review detection, it could be when “Chicago” is used as an important feature, the model is
90% accurate. This allows humans to have access to part of model error and have a more

accurate ZH.
To summarize, we emphasize the following three takeaways:

* Current machine explanations are mainly about the model and its utility for human

understanding of the task decision boundary and the model error is thus limited.

* Human intuitions are a critical component to realize the promise of machine explanations

in improving human understanding and achieving complementary performance.

* We need to articulate our assumptions about human intuitions and measure human intu-

itions, and incorporate human intuitions, f, and z into generating machine explanations.

2.4 Conclusion

In this part of the work, we propose the first theoretical work to formally characterize the
interplay between machine explanations and human understanding. We identify core con-
cepts of human understanding and reveal the utility and limitations of machine explanations.
By focusing on explaining the model, current machine explanations cannot improve human
understanding of task decision boundary and model error in discovery tasks. Our work
highlights the important role of human intuition. First, we recommend the research com-
munity explicitly articulate human intuitions involved in research hypotheses. Hypotheses
such as “explanations improve human decisions” cannot contribute generalizable insights,
because they can hold or fail depending on human intuitions. Second, we identify future
directions for algorithmic development and experimental design. We need to take into
account task-specific human intuitions in algorithms that generate machine explanations and
develop methods to measure human intuitions and characterize the changes resulting from

machine explanations in experimental design.
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Chapter 3

Human-AlI Decision Making for Prostate Cancer MRI Diag-

nosis

3.1 Introduction

Al holds promise for improving human decision making in a wide range of domains [60,
54, 100, 105, 3]. Radiology is a representative example as Al outperforms or shows
comparable performance with experts [41, 122, 103, 99, 104, 56, 93, 78]. Rather than
complete automation, there is growing consensus that AI’s optimal role in the near future will
serve as an assistance tool for human radiologists in clinical decision making [65, 2, 83, 39].
On the one hand, legal and regulatory challenges stand in the way of full automation. On the
other hand, human Al collaboration has the potential to achieve complementary performance,
where human experts can leverage their contextual knowledge and expertise to correct Al

mistakes in ways that could surpass either human or Al performance alone.

However, the actual utility of integrating Al assistance tools in clinical settings remain
poorly understood. In particular, very few studies examine the effectiveness of Al assistance
in real clinical decision-making with domain experts [88, 6]. In this work, we conduct an
in-depth collaboration with radiologists and focus on the case of prostate cancer diagnosis.
Prostate cancer diagnosis with magnetic resonance imaging (MRI) remains one of the
most difficult tasks for radiologists—even experienced ones—and inter-reader variability is
high [28, 25]. Such complexity makes prostate MRI an ideal testbed for studying how Al

assistance may complement human expertise. If Al can help reduce radiologists’ mistakes
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here, it is plausible that similar technology could be effective in other radiology tasks as

well.

We run human studies with domain experts to understand Al tool integration in radiology
workflow, particularly for challenging diagnoses like prostate cancer. Our investigation

focuses on three key questions:

Q1: Can Al-assistance help humans achieve higher diagnostic performance than either

human experts or Al systems alone?
Q2: How does different workflow design influence human reliance on Al?

Q3: What actionable strategies can we recommend to human decision-makers to ensure

complementary performance?

To answer these questions, we conducted human subject experiments with domain
experts, specifically board-certified radiologists (N=8), focusing on prostate cancer diagnosis
with Al assistance. We first trained a state-of-the-art AI model [45] for prostate cancer
detection from MRI scans. The Al model is able to provide both diagnostic predictions
and lesion annotation maps for positive cases as assistance for radiologists. To simulate
real-world clinical practice, we designed and implemented two distinct workflows, see
Fig. 3-1 for an overview of the design of our human studies. Building on existing tools for
teaching prostate cancer diagnosis, we also developed a web-based diagnostic platform that

enables radiologists to review MRI scans and annotate suspicious cancer lesions seamlessly.

In Study 1, radiologists each evaluated 75 cases in a three-step process. For each
case, they first made independent diagnoses, which helped us to establish baseline human
performance. Then, they were shown the Al’s predictions. In the final step, they are asked
to finalize their decisions after reviewing Al predictions. In Study 2, we introduced a novel
element: before starting their evaluations, radiologists first received detailed individual
performance feedback from Study 1, as shown in the screenshot in Fig. 3-2c. This feedback
included various metrics of their own performance, AI’s performance, and their Al-assisted
performance. To ensure engagement with this feedback, participants completed attention

checks about their performance metrics before proceeding with new cases. This design
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allowed us to systematically examine how performance awareness influences radiologists’
interaction with Al assistance. Moreover, for each case diagnosis, Al assistance was provided

directly to radiologists without them making independent diagnosis.

These two distinct workflows represent common scenarios in the deployment of Al
assistance tools in clinical practice and their evolution over time. Study 1 simulates an
approach often regarded as responsible, as it allows radiologists to form independent opinions
before consulting Al predictions. This approach may be particularly relevant during early
deployments, since radiologists may prefer minimal intervention to exercise caution. Over
time, the performance information will become available in a local scenario that retains the
same distribution of doctors and patients as in the earlier integration of Al tools. Through the
design of Study 2, we can investigate how both the timing of Al assistance and awareness of
comparative performance metrics influence diagnostic accuracy and radiologists’ integration

of Al recommendations.

Our findings are consistent with prior studies on human-Al decision making. Human+AlI
outperforms human alone, showcasing the positive utility of Al assistance. However, Hu-
man+Al underperforms Al alone, largely driven by under-reliance. Although performance
feedback and upfront Al assistance nudged radiologists to incorporate Al predictions more
frequently, we did not observe statistically significant improvements in metrics. To better
understand these dynamics and underlying human behaviors, we further analyzed our data
using the theoretical reliance framework proposed by Guo et al. [38]. This analysis revealed
that changes in workflow—specifically, performance feedback and upfront Al assistance, led
to increased reliance on Al. However, this improved reliance does not translate to improved
performance, which means radiologists did not appropriately rely on Al when it was correct.
More importantly, the framework also helped us identify tangible strategies for achieving
human-AI complementarity, where combined decisions outperform either human or Al
alone. One such strategy involves only predicting a positive case when both the human
and Al agree on its presence. These findings are especially promising and distinguish our
work from prior studies, as they highlight actionable directions for designing more effective

human-AlI collaboration workflows in high-stakes decision-making settings. In contrast,
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Figure 3-1: Overview of our experiments with radiologists. In study 1, participant radi-
ologists (N=8) reviewed 75 cases in three steps: initial independent diagnosis, review of
Al predictions, and final diagnosis. In study 2, we introduce performance feedback to
communicate individual radiologist’s performance collected from study 1 before the study.
Then they reviewed 100 cases with direct Al assistance without independent diagnosis.

previous work has often focused on characterizing human behavior patterns without offering

concrete recommendations or actionable guidance for system design.

3.2 Related work

Human-AlI decision making. There is a growing interest in the research community to
augment human decision making with Al assistance [60]. Typically, the tasks of interest are
situated in high-stakes domains such as medicine, law, and finance, where Al-assisted deci-
sions can have significant consequences. However, due to constraints related to resources
and the simplicity of participant recruitment, the majority of empirical studies in this area
are conducted with crowdworkers or laypeople without expertise. For instance, instead
of involving real judges, researchers have explored recidivism prediction as a testbed for

Human-AlI decision making using crowdworkers [13, 62, 36]. Similarly, in the medical
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domain, experiments on disease diagnosis have been conducted with laypeople, such as
students [63]. In finance, studies have utilized crowdworkers for tasks like income predic-
tion [129], loan approval [36], and sales forecasting [30]. In some cases, researchers have
substituted real-world tasks with entirely artificial ones to facilitate experimentation with

crowdworkers, such as alien medicine recommendation [58].

While crowdworkers offer a convenient participant pool, it remains unclear if findings
based on these populations generalize to domain experts in real cases. In our work, we work

directly with domain experts.

Human-AlI decision making with experts in the clinical context. There have been
several studies with healthcare professionals in the clinical context, but experiments focused
on human-Al complementary performance remain limited. While several studies have
shown that Al assistance can improve diagnostic accuracy [110, 107, 46, 106, 76], the
experts behavior in human-Al collaboration are underexamined. Existing research also
reveals complex performance trade-offs: some studies reveal important trade-offs, such
as improved sensitivity at the cost of reduced specificity [51, 90]. Some studies explicitly
demonstrated that the performance of human-Al performance falls short of Al alone [96, 52].
To the best of our knowledge, the only work that achieves complementary performance is
Steiner et al. [110], which demonstrated that algorithm-assisted pathologists outperformed
both the algorithm and pathologists in detecting breast cancer metastasis. However, human

specificity is 100% on that task, suggesting a relatively easy task for domain experts.

In summary, human-AlI decision making with domain experts, especially for comple-
mentary performance, remains underexplored. In light of this gap, our study aims to provide
an in-depth analysis of both human+AI team performance and domain expert behavior in a

difficult, real-world clinical setting.
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3.3 Methods

Dataset

We used public data from the PI-CAI challenge! for training and testing. The dataset
originally contained 1500 cases, which we filtered down to 1411 cases by excluding cases
from the same patients to avoid data leakage. We ensure that all testing cases are biopsy-
confirmed. Our Al model was trained on 1211 cases, including 365 (30.1%) clinically
significant prostate cancer (csPCa) cases. For study 1, the testing set includes 75 cases, of
which 23 (30.6%) are csPCa. Study 2 consists of 100 cases, with 32 (32%) being csPCa.
For each patient case, we used T2-weighted (T2W), diffusion-weighted imaging (DWI), and
apparent diffusion coefficient (ADC) sequences as inputs for both Al and human studies.
50 cases were shared between study 1 and study 2, which allows us to directly compare

performance metrics across both studies on this shared subset.

Labels/annotations. Case labels were obtained from three sources: biopsy-confirmed
results (from systematic, magnetic resonance-guided biopsy, or prostatectomy), human-
expert annotations, and Al-derived annotations [15]. Out of the original 1500 cases, 1001
has biopsy confirmed case-level labels. Out of the 425 positive cases, 220 have human expert
annotations, with the remaining annotated by Al. We prioritized human expert annotations
when available, defaulting to Al annotations otherwise. Ground truth case-level labels are
approximately accurate, with 66.7% (1001/1500) cases having biopsy results. Lesion-level
annotations are less accurate due to the practical challenges of annotating all lesions in the
large dataset. For all of our testing patient cases, case-level labels are derived from biopsy
results. Lesion-level annotations are derived by experts (trained investigators and resident,
supervised by expert radiologists), using all available clinical data. This includes MRI scans,
diagnostic reports (radiology and pathology), and whole-mount prostatectomy specimens or

other biopsy results when available.

1https://pi—cai.grand—challenge.org/DATA/
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Al model & performance

We use the established nnU-Net model [45, 15] as our Al model, trained from scratch with
our own splits. We ensure that all testing examples have pathology groundtruth. Training
examples have a mixture of different types of labels: pathology groundtruth, human expert
labeled csPCa and delineation of the lesion area, and Al-labeled csPCa and lesion area [104].
The Al model achieves an AUROC of 0.910 in the training set, 0.730 and 0.790 respectively
for the study 1 and study 2 testing set. Note that all testing examples have pathology
groundtruth while as training sample have a mixture of pseudo labels. For comprehensive
details on the Al model’s training configurations and performance metrics, please refer to

appendix B.1.

Human-AlI Decision Making Interface

We developed a webapp to conduct the human-study. Participants can log in with their
name and email. They will see a consent page when they log in for the first time. Once
they give the consent, they will enter the study and see our study interface. A screenshot of
the consent page can be found in appendix Fig. B-2. Our human study is approved by the

Institutional Review Board (IRB).

Study interface. Our study interface has three major components: the View Panel on the
left, the Control Panel on the right, and the Annotation Panel as a pop-up in the center of
the screen. The interface is shown in Fig. 3-2a. In the View Panel, we display three image
sequences (T2W, ADC, BWI) from the MRI scans of the current case. In the Control Panel,
participants are informed about the current study (study 1 or 2) and provided with control
buttons to make decisions or proceed to the next steps. Binary case-level Al predictions are
also presented in this panel. Participants make their own predictions by clicking the buttons
(‘Annotate Cancer" for positive cases and “No Cancer” for negative cases) and indicate
their confidence level using a sliding bar. If a participant believes the case is positive, they

click the "Annotate Cancer" button, which triggers a pop-up window (Annotation Panel)
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(a) Patient case review interface.

PROCEED TO THE STUDY

(b) Lesion annotation panel. (c) Performance feedback page.

Figure 3-2: Screenshots of the webapp interface for our human study. (a) Fig. 3-2a presents
a user interface for patient case evaluation. An Al lesion prediction is highlighted with a red
contour in the T2W sequence. On the right, the user’s current prediction is shown as “No
Cancer," and they are at the stage of evaluating the Al prediction to make a final diagnosis.
(b) Fig. 3-2b shows the user interface of the Annotation Panel. The screenshot shows a
current annotation of the user. The user can clear the annotation or add new annotations
on the canvas. (c) Fig. 3-2c illustrates an example performance feedback page presented
to a user before proceeding to Study 2. The page provides a summary of the total number
of cases, including counts of correct and incorrect cases, the number of decision changes
influenced by Al advice, and whether those changes were correct or incorrect. It also
highlights key performance metrics such as accuracy, sensitivity, and specificity, derived
from Study 1. To ensure users review the information carefully, they are required to answer
attention check questions.

displaying enlarged images from the T2W sequence of the current case, allowing participants
to annotate the suspicious lesion areas. Participants can annotate any suspicious lesions
by freely drawing on any image slice, using the sidebar to navigate between slices. The

annotation interface is illustrated in Fig. 3-2b.

Performance feedback. In Study 2, the first page after the login page will be the per-

formance feedback page, as shown in Fig. 3-2c. This page provides detailed individual
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feedback on their performance from Study 1. The feedback includes both case counts and
performance metrics. Specifically, we present the total number of cases completed by the
participant, the number of cases where their prediction disagreed with the AI’s prediction,
and the number of times they changed their decision after viewing the AI’s advice. Among
these decision changes, we further highlight how many were correct and how many were
mistaken after incorporating the AI’s input. For performance metrics, we provide accu-
racy, sensitivity, and specificity. These metrics are shown for the participant’s diagnoses
before and after reviewing Al predictions, as well as for the AI’s performance alone. This
breakdown allows participants to see the impact of the Al on their decision-making and
compare their independent performance with Al. At the bottom of the feedback page, we
ask an attention check question to ensure participants review the information carefully. The
attention question is a single-answer multiple-choice question that asks for the value of one

of the performance metrics displayed on the page.

Exit survey. As the final step in both studies, participants are required to complete an exit
survey. The survey for Study 1 collects demographic information and participants’ opinions
on Al The survey for Study 2 gathers their thoughts on the performance feedback provided
and revisits their opinions on Al. Screenshots of these surveys are included in the appendix

Fig. B-4 and Fig. B-5.

Experimental Design

To evaluate the effectiveness of Al assistance, we conduct two studies with practicing

radiologists (N = 8). An overview of our experimental workflow is shown in Fig. 3-1.

Participant demographics, including experience levels, are detailed in Appendix B.3.
Participants are recruited through interest forms distributed at the annual conference of
RSNA (Radiological Society of North America), one of the largest radiology conferences in
the world. We also use snowball recruiting, where participants refer colleagues and peers in
their network. All participants are practicing radiologists and come from different regions

(US and Europe), and all US-based participants are board-certified.
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Study conditions. Our experiments include three main conditions to evaluate radiologist

performance:

* Human-only (Study 1): Independent diagnosis without Al assistance.

* Human+AI (Study 1): Diagnosis made after independent diagnosis and reviewing Al
predictions.

* Human+AI (Study 2): Diagnosis made with Al predictions shown upfront, with prior

feedback on individual performance metrics at the beginning of the study.

In Study 1, participants complete 75 test cases. After logging in and signing the consent
form, we provide a toy case to familiarize participants with the interface and workflow.
For each of the test cases, participants first make an independent diagnosis (human-only
condition). Then they review the Al prediction and annotations. Participants have a chance to
update and finalize their diagnosis before moving on to the next case (Human+AlI condition

for Study 1).

Between Study 1 and Study 2, we set a minimum memory wash-out period of 30 days
to eliminate any recall effects. The actual period varies because participants complete the

study at their own pace.

In Study 2, participants begin by reviewing a summary of their performance metrics from
the Human+AI condition in Study 1. This feedback includes key metrics and interaction
statistics to encourage reflection on their interaction with Al. To ensure engagement, partici-
pants answer an attention check question about the feedback before proceeding. Study 2
consists of 100 cases, 50 randomly sampled from Study 1 and 50 new cases from a separate
test pool. Different from Study 1, Al predictions and annotations are shown upfront, and
participants either accept the Al diagnosis or make modifications (Human+AlI condition for

Study 2).

Both studies conclude with an exit survey.
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Table 3.1: Performance comparison between Al, Human, and Human+AlI for identifying
csPCa from MRI scans. For each metric, the means, 95% confidence intervals, and number
of instances are reported. The reported values and instance counts represent averages across
eight radiologists. All confidence intervals are derived using bootstrap methods. p-values
are calculated using the bootstrap z-test with a significance threshold of « = 0.05.

Per-patient Analysis

Study 1 Study 2
P (AI>Human)!
Al Human Human+AI P (Human+AI>Human) Al Human+Al P g{?gi]:ﬁ:iu;??n)
P (AI>Human+AlI)
0.730 0.674 0.701 " " 0.790 0.732 “ "
AUROC [0.686,0.772]  [0.627,0.719]  [0.656,0.746] 0.023°/0.033°/0.131 [0.751,0.829]  [0.689,0.776] 0.036%/0.005
69.3% 63.2% 66.2% 76.0% 69.6%
Accuracy [0.647,0.738]  [0.585,0.677]  [0.615,0.708] 0.013*/0.009*/0.103 [0.718,0.800]  [0.650,0.743] 0.026*/0.003*
52/75 47175 50/75 76/100 70/100
82.6% 78.3% 80.4% 87.5% 83.2%
Sensitivity (Recall) [0.757,0.891]  [0.708,0.853]  [0.732,0.874] 0.171/0.207/0.299 [0.815,0.930]  [0.765,0.896] 0.163/0.111
19/23 18/23 18/23 28/32 27/32
63.5% 56.5% 59.9% 70.6% 63.2%
Specificity [0.577,0.690]  [0.507,0.622]  [0.542,0.655] 0.021%/0.009*/0.125 [0.651,0.759]  [0.575,0.691] 0.052/0.006*
33/52 29/52 31/52 48/68 43/68
89.2% 85.9% 88.0% 92.3% 89.3%
NPV [0.847,0.933]  [0.803,0.904] [0.826,0.919] 0.081/0.108/0.220 [0.886,0.958]  [0.842,0.932] 0.159/0.052
33/37 29/34 31/36 48/52 43/48
50.0% 44.7% 47.1% 58.3% 51.9%
PPV (Precision) [0.431,0.569] [0.378,0.509]  [0.403,0.537] 0.014%/0.012*/0.105 [0.514,0.654]  [0.447,0.585] 0.066/0.003*
19/38 18/41 18/39 28/48 27/52
Per-lesion Analysis?
Study 13 Study 2
P (AI>Human) . p
Al Human Human+Al P (Human+AI>Human) Al HumantAl T g‘;{gi’gﬁ:ﬂ;‘;;‘")
P (AI>Human+AlI)
35.4% 25.7% 28.5% 36.9% 33.8%
Accuracy [0.307,0.403]  [0.212,0.297]  [0.240,0.330] 0.001%/0.168/0.019* [0.323,0.417]  [0.292,0.385] 0.005*/0.170
17/48 13/53 15/51 24/65 22/66
73.9% 58.4% 63.4% 72.7% 67.4%
Sensitivity (Recall) .675, 0. .509, 0. .561, 0. .001%/0.176/0.01 .665, 0. .608, 0. .036/0.1
y [0.675,0.800]  [0.509,0.658]  [0.561,0.706] 0.001%/0.176/0.015* [0.665,0.787]  [0.608,0.737] 0.036%/0.121
17/23 13/23 1523 24/33 22/33
40.5% 31.5% 34.4% 42.9% 40.6%
PPV (Precision) [0.353,0.456]  [0.261,0.361]  [0.290,0.394] 0.005%/0.202/0.045* [0.377,0.482]  [0.350,0.456] 0.006%/0.247
17/42 13/43 15/43 24/56 22/55

1p—values compare the performance of different conditions using bootstrap z-test. In Study 1, a
paired test is conducted on 75 cases, where each case is evaluated by both Human Alone and
Human+AL. In Study 2, an unpaired test is performed, comparing the performance on 75 Human
Alone cases and 100 Human+AlI cases.

Note that the lesion-level analysis should be interpreted with caution compared to the per-patient
analysis. Since lesion-level analysis excludes true negatives (TNs), we only calculate metrics that do
not rely on TNs, i.e. accuracy, sensitivity and PPV.

3For study 1 lesion-level human results, one radiologist’s results were excluded because they used
our annotation tool incorrectly.

3.4 Results

3.4.1 Performance of Human vs. AI vs. Human+AI Team

We recruited eight radiologists to participat&dn both studies. In Study 1, each radiologist

independently reviewed 75 prostate MRI cases, resulting in 600 case reviews. Following a



washout period of at least one month, the same radiologists participated in Study 2, where
each reviewed 100 cases (including 50 cases from Study 1) for an additional 800 reviews.
We introduced a modified human-Al collaboration workflow in Study 2. Specifically, we
provided radiologists with individual performance feedback from Study 1 and upfront Al
predictions. Across both studies, we collected 1,400 case reviews under four conditions:
human-only, two variants of human+AlI collaboration (Human+AI (Study 1) and Human+AlI

(Study 2)), and Al-alone.

Because clinical costs of false positives and negatives differ, we used a V-shaped scoring
rule derived from Kleinberg et al. [53] to evaluate performance in our binary decision space.
This scoring rule flexibly weights false-positive and false-negative costs with a tunable
parameter ., allowing us to reflect varying clinical priorities. The parameter y (where
0 <u <1) tunes the severity of false-positive vs false-negative penalties: u = 0.5 collapses
to plain accuracy, u = 0 reproduces specificity, and y = 1 reproduces sensitivity. This
approach enables comprehensive evaluation across clinical scenarios where different error
types carry distinct consequences. Traditional performance measures including accuracy,

AUROC, sensitivity, and specificity are also presented in Appendix Table 3.1.

According to Fig. 3-4, our findings reveal a consistent performance trend across all
scoring rules: human-alone < human+AlI collaboration < Al-alone. Under the u = 0.5
accuracy scoring rule, performance in Human+AI (Study 1) (0.662, [0.624, 0.700]) and
Human+AI (Study 2) (0.696, [0.664, 0.728]) increased over human-alone (0.632, 95% CI:
[0.593, 0.670]), but remained below Al-alone (0.731, [0.708, 0.755]). These 95% confidence
intervals were computed using the t-distribution based on group-level standard errors. The
observed ordering was consistent across all scoring rules. Full numerical results are provided
in Appendix Table B.2. These differences were statistically significant: human-alone < Al
(p < 0.001), Human+AI (Study 1) < AI (p < 0.01), Human+AI (Study 2) < AI (p < 0.1),
and human-alone < Human+AI (Study 2) (p < 0.05), for the majority of the scoring rules.
All reported p-values are derived from one-sided t-tests with unequal variances; degrees of
freedom were calculated using Welch’s approximation and ranged from approximately 1050

to 1650 across all scoring rules and pairwise comparisons, reflecting varying group sizes
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Slice 9 Slice 10 Slice 11 Slice 12

Figure 3-3: An example of lesion-level annotation comparing human experts (red contour),
Al (yellow), and expert annotation from the dataset (green). In this case, the Al successfully
detected a lesion which corresponded to a clinically significant prostate cancer in the dataset;
our human radiologist did not identify this lesion, and instead annotated a lesion in the
transition zone.

and variance differences. Full hypothesis test details, including p-values, and degrees of

freedom, are reported in Appendix B.2, Table B.3, and Table B.4, respectively.

Fig. 3-3 provides an example from Study 2 in which the Al correctly identified a

biopsy-confirmed lesion that was missed by radiologists, even with Al assistance.

Despite some improvement with Al assistance, no human configurations, whether
assisted or not, matched the standalone Al performance. The observed positive trend from
Study 1 to Study 2 suggests that changes in workflow can influence human performance;
however, these gains were limited in magnitude and not statistically significant. These
results indicate a key challenge of human-AlI collaboration: simply providing Al outputs is
not sufficient to realize better clinical decision-making. The consistently lower performance
of human-involved conditions across both workflow designs points to deeper issues, such as
how radiologists interpret, trust, and incorporate Al guidance, that may limit the effectiveness
of assistance. We explore these behavioral and workflow dynamics further in section 3.4.2

and section 3.4.3, where we analyze radiologists’ reliance patterns in greater detail.

3.4.2 Analysis of Human-AlI Complementarity

In this section, we analyze the extent to which we observed human-Al complementarity in
our studies. We interpret empirically-observed complementarity among human-Al teams by
comparing it to the theoretical best-attainable benchmark, defined as the performance of an

idealized, Bayesian rational agent with access to the human and Al predictions.
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Scoring rules
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Figure 3-4: Across all scoring rules, a consistent performance pattern is observed: Human-
alone < Human+AI (Study 1) < Human+AI (Study 2) < Al-alone. The addition of Al
assistance shows improvement over human-alone performance in both studies, yet all human
configurations still underperform the Al alone. Bars indicate the mean score under each
scoring rule based on the observed decisions, and error bars represent 95% confidence
intervals computed using the f-distribution.
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Figure 3-5: Individual radiologists performance compared with the AI model. The model
achieves higher performance than all of the radiologists without Al assistance (blue dots).
However, with Al assistance, some individual radiologists outperformed the Al model (red
and orange dots that are above the curve).

Observations of Empirical Complementarity

Individual human radiologists can occasionally achieve complementary performance.

We evaluate individual radiologists and Al-assisted radiologists against AI model using both
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Figure 3-6: The human-alone score, Al score, human+AlI score, rational benchmark, and mis-
reliant rational benchmark on the common 50-case subset under scoring rules with different
ratios of FPR to FNR. The rational benchmarks (red distributions) achieve no less accuracy
than Al decisions (orange distributions) and human-alone decisions (blue distributions),
indicating potential for human-Al complementarity. The mis-reliant benchmark (gray
distributions) is improved in study 2 than in study 1, indicating that human-Al teams rely
more appropriately on Al decisions in study 2.

receiver operating characteristic (ROC) and precision-recall (PR) curves in the common
cases between Study 1 and Study 2. As shown in Fig. 3-5, and consistent with prior
discussions, the Al curve generally outperforms individual radiologists (represented by
blue dots). Additionally, Al-assisted radiologists in both studies (red and orange dots) are
generally positioned above individual radiologists (blue dots) in both figures, indicating
that Al assistance helps improve radiologists’ performance. We highlight that there are
cases where Al-assisted radiologists outperform the Al curve, as shown by the red and
orange dots above the Al curve. This is a promising finding as it suggests that Al assistance
could potentially augment human performance to achieve complementary performance

(Human+AI > human and Human+AI > Al).

Theoretical Complementarity

Formalization of theoretical best-attainable benchmark. We define the best-attainable

benchmark given the observed human-alone and Al decisions, following Guo et al. [38], as
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the performance of an idealized, Bayesian rational agent who decides between the human-
alone and Al decisions on each decision trial. This agent starts with knowledge of the
prior probability that the human versus the Al decision is correct. Upon observing the
human-alone decision d and Al decision d! on each trial, the rational agent chooses the
one with a higher expected payoff under the evaluation of a given scoring rule S that maps

from a decision and state to a numeric score (S : D X © — R):

dr(dH’ dAI) = argmax EGNﬁ(9|dH,dA1) [S(d, 9)] 3.1)
de{dH dAT}

The rational agent always achieves the best-attainable performance given the information
reflected in the human-alone decisions and Al decisions. We can therefore use the expected
performance of the rational agent over the decision trials given to humans to identify whether
complementarity performance is possible in a task and how much of an improvement it can

yield over the better performing of the agents in isolation.

We apply this method to the common 50-case subset of the experimental data in studies
1 and 2. Our results include two levels of analysis: aggregate analysis, with different scoring
rules (as shown in Fig. 3-6), and individual analysis, with the scoring rule set to accuracy,

u = 0 (as shown in Fig. 3-7).

Human-AlI teams have the potential to achieve complementary performance. The best
attainable performance achieved by the rational agent benchmark (pink distribution) never
under-performs the Al alone (orange distribution) nor humans alone (blue distribution), as
shown in Fig. 3-6b. This confirms that the human-Al teams in our studies have the potential
to achieve complementarity. More specifically, Table B.13 shows the strategies adopted by
the rational agent to achieve complementarity under the scoring rules we used in our studies.

Heuristically, we identify the following strategies to be effective:

* When p € {0.4,0.5,0.6,0.75,1}, the rational agent only report positive decisions
when both the human-alone and Al decisions are positive, otherwise it reports negative

decisions.
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Figure 3-7: Human-alone accuracy, Al accuracy, human+AlI accuracy, rational benchmark,
and mis-reliant rational benchmark on the common 50-case subset for each participant.

Table 3.2: Participants’ reliance on Al and appropriate reliance for them in the common
50-case subset under the evaluation of accuracy (¢ = 0.5).

Participants
Pt P2 P3 P4 P5 P6 P7 P8
Reliance in Study 1  0.07 0.12 0.75 0.19 0.13 0.19 0.21 0.06
Reliance in Study 2 0.36 041 0.50 050 0.56 0.57 0.50 0.50
Appropriate reliance  0.50 0.53 0.75 044 0.63 024 0.71 0.44

* When p = 0.25, the rational agent always follows the Al decisions.

* When p = 0, corresponding to specificity, the rational agent only report negative
decisions when both the human-alone and Al decisions are negative, otherwise it

reports positive decisions.

Different radiologists have varying potential for complementarity, which is not pre-
dictable from their human-alone performance. As shown in Fig. 3-7, the rational
agent’s strategies on every participant achieve no less accuracy than the Al and humans
alone. This suggests that the rational agent simulation can be used to identify strategies
for individual radiologists that help them achieve complementarity. However, the extent
to which superior performance to human or Al alone is possible varies across radiologists.

Moreover, we observe that the radiologist having higher accuracy alone does not necessarily
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lead to more potential for complementarity. For example, as shown by Fig. 3-7a and b, P6
has better human-alone accuracy than P5, but P5 has a higher rational benchmark than P3
and P6. This helps illustrate how the benchmarks for combined human-AlI performance truly
capture the notion of complementation of information; i.e., they are not simply an additive

function of the human-alone and Al-alone performance.

3.4.3 Measuring Human Reliance on Al

We evaluate human reliance on Al within our studies using the rational agent framework.
Following Guo et al. [38], we define the reliance level <y of a decision-maker as the overall
probability that they choose the Al decision, conditional on the decision-maker facing

different recommendations from the human-alone decision and the Al decision, i.e.,

v = Pr[d = dA!|dAl # aH] 32)

This definition targets a conditional probability, because the reliance level cannot be
defined when the human alone makes the same decisions as the Al. As the rational agent
defines the best-attainable performance, their reliance on Al also defines the “approximate
reliance”, i.e.,

’)’opt — Pr[dr(dH,dAI) — dAI|dAI 7& dH] (33)

To decouple the impact of reliance from other confounders, we define the mis-reliant
rational agent, representing a rational agent who maximizes expected performance but is

constrained to have the same reliance as 'yb , with the decision rule as

d"(df, ) = argmax Eg_z g\ gary [S(d, )]
de{dH dAT} (3.4)

s.t. Pr [d’“(dH, dAT) = gAL|gAL £ dﬂ =

where we use d™ (-, -) to denote the decision rule by the mis-reliant rational agent and the

probability Pr is measured under the estimated distribution 7 (dH, d47).
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Figure 3-8: Comparison of Human-Al Decision Alignment and Accuracy. Blue shading
indicates frequency of cases for each scenarios; percentages showing diagnostic accuracy
for scenario. Accuracy is the highest in the follow-Al group for both studies.

The performance of the mis-reliant rational agent quantifies the best-attainable perfor-
mance for a given observed reliance level from radiologists. As defined in Equation (3.4),
the mis-reliant rational agent always chooses to go with Al decisions on the ¥ ratio of
instances that have the biggest advantage of going with Al over human. The difference
between the mis-reliant rational agent and the rational agent arises from the suboptimal

reliance level %, which we define as reliance loss.

Similar to our analysis in Section 3.4.2, we use the common 50-case subset and present
the expected empirical performance of the mis-reliant rational agent. We also analyze the
performance of the mis-reliant rational agent in aggregation level and at the individual
level (Fig. 3-6 and Fig. 3-7 respectively). The choices of scoring rules are the same with

Section 3.4.2.

Upfront AI and prior feedback increase reliance on AI. As shown in Fig. 3-6, the
performance of the mis-reliant rational agent (gray distribution) in Study 2 is higher than
their performance in Study 1. This indicates that the rational agent loses less performance

from being constrained to the reliance level as the participants in study 2 than in study 1.
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This greater willingness to defer to the Al is also shown in Fig. 3-8. The results indicate that
performance feedback and upfront Al assistance leads to higher rate of human-Al agreement
(78.4% “follow AI” vs. 75.5% final human-Al agreement from study 1). Moreover, “follow
ATI” group shows higher accuracy (87.3%) compared with “overrule AI”’ group (35.3%),
as well as sensitivity (92.1% vs. 36.6%), and specificity (72.4% vs. 34.8%). This slightly
higher adoption rate, however, was insufficient to bridge the gap between Human+AlI teams
and Al significantly. We do not notice a significant improvement in human+AI performance
(green distribution in Fig. 3-6). This suggests a sizable gap between realized and best-
attainable team performance. Radiologists still miss opportunities to choose the Al answer

when it would help most.

For complete results with more metrics, refer to Table B.6 in the Appendix.

Changes in reliance loss vary across radiologists, which is not predictable from their
reliance levels. Among 10 radiologists, we observe that 8 of them (P1-2, P4-5, P7-8)
achieve less reliance loss on Al in Study 2 than Study 1, i.e., higher mis-reliant benchmarks.
Only one radiologist (P3) achieves more reliance loss in Study 2 than in Study 1 and one
radiologist’s reliance loss (P6) remains the same. Moreover, we find that change in reliance
loss is not predictable from the change on reliance level. For example, P6 achieves a reliance
level in Study 2 (0.56) that is farther from the appropriate reliance (0.24) than their reliance
level in Study 1 (0.19) (Table 3.2), but their reliance loss remains the same (Fig. 3-7).
This suggests that the evaluation of reliance also depends on the distinguishability of the
human-alone decisions and the Al decisions, as it is not necessarily reflected by the distance

to the appropriate reliance.

3.5 Conclusion

While there is a growing interest in evaluating Al assistance with human decision makers,
only a handful of previous works have attempted to evaluate Al systems directly with

domain experts, and even fewer have achieved complementary performance or investigated
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human behavior. We contribute a comprehensive study with domain experts about how a
clinical Al tools might be integrated in practice with two realistic design of workflows. Our
findings suggest that while human-Al teams consistently outperform humans alone, they
still underperform compared to Al due to under-reliance. More importantly, we look beyond
performance and investigate human behavioral patterns in human-AlI interaction. Even
when domain experts are made aware of their diagnostic performance, the performance
gap relative to Al, and their prior Al-assisted outcomes, they still struggle to effectively
calibrate their trust and reliance on Al tools. As in prior studies, our work finds that
complementary performance—where Human+AlI outperforms both human and Al alone—is
difficult to achieve in practice. Most importantly, we go a step further by uncovering
actionable strategies that can help human decision-makers move closer to this ideal. These
insights highlight a critical opportunity: rather than solely characterizing human behavior,
we can begin to design human-Al systems and workflows that actively support effective
reliance. Our findings lay the groundwork for more impactful, behaviorally-informed
research directions to improve human-Al decision-making in high-stakes domains like

medical diagnosis.
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Chapter 4

Evaluation of Frontier Models in Radiology Report Genera-

tion

4.1 Introduction

Large language models (LLMs) are becoming multimodal, and GPT-4 model series represent
the state-of-the-art. ! Similar to the claimed general-purpose capabilities in LLMs [17, 84],
large multimodal models are supposed to possess advanced skills across a wide range of
domains, including high-stakes scenarios such as medicine [123]. However, in the field
of radiology report generation, where relatively rich datasets are available, there has been
inconclusive and even contradictory evidence regarding the performance of LMMs. Some
studies [72, 123] claimed that GPT-4V performs well to some extent based on case studies
and qualitative analysis. In contrast, Brin et al. [16] found that the model is not yet a
reliable tool for radiological image interpretation on a small private dataset. Wu et al. [121]
observed that GPT-4V can generate structured reports with incorrect content, as evidenced
by case studies and qualitative analysis. Moreover, existing evaluation works tend to work
with either very small size of samples [123] or limited evaluation metrics [66]. Our work
distinguishes itself by providing an in-depth evaluation and analysis on why GPT-4V fails at

this task. 2

1https ://huggingface.co/spaces/WildVision/vision-arena.

2We access GPT-4 vision model series (inlcuding gpt-4-vision-preview and gpt-40) through Azure OpenAl
service to prevent sharing data with third parties. Due to limited space, we mainly show evaluation results of
GPT-40 in the main paper. Throughout the paper, we use GPT-4V to refer to GPT-40, unless otherwise specified.
Full evaluation results of GPT-40, GPT-4-vision-preview, and the open sourced Llama3.2-90B-vision-instruct
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<LABEL>

Positive Conditions:
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Chest X-rays * @ Chest X-rays* @
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pneumothorax. No visible fractures or lytic

FINDINGS: Hyperinflated with diffuse
bilateral opacities. No pleural effusion or
pneumothorax. No visible fractures or lytic
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IMPRESSION: Suspected COPD with
superimposed infection. No acute disease.

<LABEL>
(Cardiomegaly, 0),
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(Lung Opacity, 1),

IMPRESSION: Suspected COPD with
superimposed infection. No acute disease.

Experiment 1: Direct Report Experiment 2 Medical Image Experiment 3: Report Synthesis: Given
Generation: Can GPT-4V directly Reasoning: Can GPT-4V interpret groundtruth conditions, can GPT-4V
generate reports from images? Chest X-rays meaningfully generate reports?

Figure 4-1: Evaluation overview. In Experiment 1, we evaluate the out-of-box capability of
GPT-4V. We further decompose the task into medical image reasoning (Experiment 2) and
report synthesis (Experiment 3).

To do that, we perform three experiments as shown in Fig. 4-1 on three main radiology

report generation benchmarks: MIMIC-CXR, CheXpert Plus, and IU X-Ray. Our evaluation
starts with Experiment 1: direct report generation. Different from previous works [72, 123],
we conduct a thorough evaluation of GPT-4V’s capability to directly generate reports from
chest X-rays, utilizing different prompting strategies and assessing both lexical metrics,
which measure how textually similar a generated report is to a reference report, and clinical
efficacy metrics, which measure how clinically accurate it is. We experiment with various
prompting strategies, including zero-shot, contextual enhancement, chain-of-thought (CoT)
[120], and few-shot in-context learning. Despite our various attempts, the performance of

GPT-4V is consistently low in both metrics.

To further investigate the reason for GPT-4V’s poor performance, we break down report
generation into two steps, medical image reasoning and report synthesis given medical
conditions. For Experiment 2 (medical image reasoning), we first test whether GPT-4V can
identify medical conditions from X-rays. Our findings indicate that GPT-4’s performance
in identifying medical conditions from images is unsatisfactory across different prompts.
Based on limited capability results, we further compare the difference between distributions
of predicted medical condition labels conditioned on different groundtruth image labels.
We find that GPT-4V cannot interpret medical images meaningfully as the distribution of

predicted labels does not vary depend on the groundtruth label.

can be found in Appendix C.3.
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Finally, in Experiment 3 (report synthesis), we explore whether bypassing the image rea-
soning bottleneck by providing groundtruth conditions enables GPT-4V to generate clinically
usable reports. As expected, reports generated by GPT-4V achieve higher clinical efficacy;
however, the limited improvement in lexical metrics suggests that GPT-4V-generated reports
remain dissimilar to human-written reports in style. Most importantly, GPT-4V underper-
forms a finetuned Llama-2 in both lexical metrics and clinical efficacy metrics, calling into
question its utility. We further validate our findings by conducting an additional human
reader study with two radiologist to evaluate the clinical viability of GPT-4V generated

reports.
In summary, our key contributions and conclusions are as follows:

* We perform the first systematic and in-depth evaluation to benchmark GPT-4V in radiology
report generation. Our main conclusion is that GPT-4V cannot generate radiology reports

yet.

* To understand the poor performance, we decompose the task into medical image reasoning
and report synthesis. We find that GPT-4V cannot interpret chest X-ray images mean-
ingfully in the image reasoning step, and further validate this finding through rigorous

hypothesis testing.

* During report synthesis, we address the image reasoning bottleneck by providing groundtruth
conditions. Nonetheless, both experimental results and human evaluations consistently

show that GPT-4V performs worse than a finetuned Llama-2 baseline.

4.2 Experimental Setup

Method. In Experiment 1 (Section 4.3), we evaluate GPT-4V’s ability to directly generate
radiology report given chest X-ray images. We consider five variations of prompts as outlined
in Table 4.1. Prompt 1.1 (Basic generation) is a prompt to test the out-of-the-box capability
of GPT-4V. We implement three additional prompting strategies leveraging insights in
prompt engineering: (1) inspired by [82], we add relevant contextual information (i.e., the

INDICATION) to derive Prompt 1.2 as “Indication enhancement”, and add instructions on
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Experiment 1: Direct Report Generation

Prompt 1.1 Basic generation Direct report generation based on chest X-ray images

Prompt 1.2 +Indication Contextual enhancement by providing the indication section

Prompt 1.3 +Instruction Contextual enhancement by providing instructions on medical conditions
Prompt 1.4 Chain-of-Thought (CoT) Step 1 - medical condition labeling; Step 2 - report synthesis

Prompt 1.5 Few-shot Few-shot: in-context learning given a few examples

Experiment 2: Medical Image Reasoning Capability

Prompt 2.1 Image reasoning Medical condition labeling directly from chest X-ray images

Experiment 3: Report Synthesis Given Medical Conditions

Prompt 3.1 Report synthesis Report generation using provided positive and negative conditions

Table 4.1: An index to prompts used in all of our experiments.

medical condition labels to Prompt 1.3 as “+instruction” enhancement; (2) we use a chain-of-
thought (CoT) strategy in Prompt 1.4, eliciting the model with two steps: medical condition
label prediction based on images followed by report synthesis based on the predicted labels;
(3) We adopt few-shot in-context learning by adding a few example image-report pairs in

Prompt 1.5. We compare these results with the state-of-the-art (SOTA) models.

In addition to evaluation of the end-to-end radiology report generation capability, we
further evaluate on the decomposed tasks: Experiment 2 (Section 4.3): chest X-ray image
reasoning; and Experiment 3 (Section 4.3): synthesizing a radiology report from given
conditions. This decomposition allows us to look into the bottlenecks in the current gen-
eration performance. In Experiment 2, we prompt the model to directly output medical
condition labels from images (Prompt 2.1). In Experiment 3, we bypass image reasoning
to test GPT-4V’s textual synthesis ability and provide groundtruth conditions to evaluate
the model’s report composition capability independently (Prompt 3.1). To contextualize
the performance of GPT-4V, we also report the performance of a finetuned Llama-2-7B on

groundtruth labels and groundtruth impressions following Alpaca [112].

Dataset and pre-processing. We use three chest X-ray datasets: MIMIC-CXR, IU X-
ray and CheXpert Plus. The MIMIC-CXR dataset [49] contains chest X-ray images and
their corresponding free-text radiology reports. The dataset includes 377,110 images from
227,835 studies. Each study has one radiology report and one or more chest X-rays. The TU
X-raydataset [29] (also known as “Open-1") includes 3996 de-identified radiology reports

and 8121 associated images from the Indiana University hospital network. CheXpert Plus

63



dataset [23] is a newly-released and comprehensive radiology data collection, featuring a
total of 223,462 unique pairs of radiology reports and chest X-rays across 187,711 studies
from 64,725 patients. For our evaluation, we use the whole validation set of CheXpert Plus
(200 samples) and randomly sample 300 studies from each of the MIMIC-CXR and IU
X-RAY datasets after removing studies with empty impression or indication sections. This
results in a total of 800 samples. More details about data processing can be checked in

Appendix C.2.

Evaluation metrics. We evaluate the generated reports from two aspects:

* Lexical metrics. Lexical metrics focus on the surface form and the exact word matches
between the generated and reference texts. We adopt common lexical metrics: BLEU [89]

(1-gram and 4-gram), ROUGE-L [68], and METEOR [8].

* Clinical efficacy metrics. We first evaluate on clinical correctness based on labeler
results on generated reports. Following existing works [43, 115, 82], we use the CheXbert
automatic labeler [109] to extract labels for each of 14 Chexpert medical conditions [44].
We compute both positive F1 and negative F1, where each condition has four labels:
present, absent, uncertain, unmentioned. Positive F1 considers only positive
labels against all others, while negative F1 considers negative labels as 1 and all other
labels as 0. We report the macro-averaged F1 on all 14 conditions and on top 5 conditions
(which only reports on the five most common conditions®). We also report RadGraph
F1 [47], which captures the overlap in clinical entities and relations between a generated

report and a reference report.

Additionally, from a pragmatic viewpoint, commenting on negative observations is
essential in radiology reports. Following Nguyen et al. [82], we compute Negative F1 and
Negative F1-5, to evaluate whether the model can accurately identify negative conditions
and include that in the generated reports. All F1 scores are macro-averaged. We also use
the hallucination metric to quantify the proportion of uninferable information. Following

Nguyen et al. [82], we define uninferable information to include previous studies, previous

3Top five conditions are Pneumothorax, Pneumonia, Edema, Pleural Effusion, and Consolidation.
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Lexical metrics Clinical Efficacy Metrics

Experiment
BLEU-1BLEU-4 ROUGEMETEORPosF1 Pos Fl1@5Rad. F1 NegF1* Neg Hall.*|
Fl@5*
MIMIC-CXR

Basic 0.331 0.031 0225 0.282 0.134 0.153 0.163 0.038 0.081 0.587
+Indication 0.333  0.044 0.234  0.290 0.273 0.255 0.182 0.048 0.126 0.547
+Instruction 0.276  0.028 0203  0.264 0.155 0.230 0.154 0.042 0.101 0.359
CoT 0242 0.017 0.186  0.201 0.172 0.272 0.119 0.008 0.020 0.397

Few-shot  0.337  0.055 0.257 0.301 0.170 0.203 0.188 0.035 0.091 0.477
Llama-3.2" 0258  0.026 0249 0.216 0.172 0.300 0.144 0.045 0.117 0.049

SOTA 0.402 0.142 0291 0.333 0473 0.516 0.267 0.077 0.156 0.158
[ref.] Liuetal. Hyland  Liuetal. Hyland Liuetal. Tuetal. Tuetal. Nguyen Nguyen Nguyen
et al. et al. et al. et al. etal.
A(to SOTA) -16.17% -61.27% -11.68% -9.61%  -42.28% -47.29% -29.59% -37.66% -19.23%  20.10%
IU X-RAY
Basic 0.316  0.045 0.238  0.311 0.059 0.045 0.203 0.000 0.000 0.303

+Indication 0.330  0.049 0.242  0.323 0.077 0.098 0.214 0.071 0.051 0.307
+Instruction 0.238  0.030 0.207 0.283 0.081 0.146 0.174 0.000 0.000 0.177
CoT 0.239  0.024 0.194 0.231 0.077 0.161 0.144 0.000 0.000 0.197
Few-Shot  0.279  0.044 0.243  0.250 0.037 0.031 0.187 0.010 0.025 0.211
Llama-3.2 0.248 0.027 0.239  0.231 0.104 0.214 0.158 0.015 0.040 0.011
SOTA 0.499 0.184 0.390 0.208 - - - - - -
[ref.] Liuetal.Liuetal. Liuetal Liuetal.

A(to SOTA) -36.27% -75.82%  -38.72% +49.52% - - - - - -

CHEXPERT PLUS

Basic 0.237  0.015 0.176  0.191 0.228 0.191 0.112 0.013 0.035 0.680
+Instruction 0.191  0.007 0.159  0.172 0.210 0.325 0.101 0.042 0.085 0.377
CoT 0.166  0.011 0.155  0.139 0.234 0.339 0.077 0.000 0.000 0.400

Few-shot ~ 0.171  0.007 0.158  0.149 0.188 0.224 0.094 0.043 0.111 0.370
Llama-3.2 0.166  0.006 0.175  0.147 0.261 0.355 0.092 0.031 0.081 0.058

SOTA - 0.069 0.279 - 0.366 0.495 0.285 - - -
[ref.] Chambon et al. Chambon et al.
A(to SOTA) - -78.26% -36.92% - -36.07% -31.52% -60.70% - - -

* To compare with SOTA numbers, all metrics, except for those marked with * (Neg F1, Neg F1@35, and Hall), are evaluated
on the findings section. * columns are based on the impression section.

CheXpert Plus doesn’t have indication section in reports, thus we skip experiment with +Indication prompt.

! Due to the space limit, we only show the best results of prompt 1.1-1.5 for Llama-3.2-90B-Vision-Instruct. It is noted that
the low hallucination rate is likely because it only outputs medical conditions (mostly wrong but not uninferable).

Full details of the performance of GPT-40, GPT-4-vision-preview, and Llama3.2-90B-Vision-Instruct, including results for
both the findings and impression sections, are provided in the Appendix C.3.

Table 4.2: Direct report generation performance comparison. GPT-4V shows a significant
performance gap compared to SOTA, and the results are consistent across the five prompting
strategies. Open sourced Llama3.2 performs similarly compared with GPT-4V. Examples of
generated reports across different prompts can be found in Appendix C.3.5.

treatment details, recommendations, doctor communications, and image view descriptions.
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4.3 Results

Experiment 1: Can GPT-4V directly generate reports from images?

We first evaluate the out-of-the-box capability of GPT-4V in generating radiology reports
from chest X-ray images using basic generation (Prompt 1.1). Table 4.2 shows the results
compared with existing state-of-the-art (SOTA) models. Overall, GPT-4V significantly
underperforms the state-of-the-art models on both lexical and clinical efficacy metrics,
with the exception of the METEOR score on the IU X-RAY dataset. The relatively better
METEOR performance is due to its comprehensive evaluation criteria, which include
synonymy and paraphrasing, not just exact word matches like BLEU and ROUGE. This
allows METEOR to recognize semantic equivalents, even if the word choice differs. In other
words, the generated report somewhat resembles a radiology report, although it fails at the
exact word-level matching. For clinical efficacy metrics, the gaps to SOTA are consistently
large. This suggests that GPT-4V struggles to accurately identify conditions in its generated

reports from images alone.

Our results are consistent across prompting strategies. Our prompting strategies include
adding contextual information, chain-of-thought reasoning, and few-shot prompting. While
indication enhancement (Prompt 1.2) provides indication section as input in addition to chest
X-rays and improves many metrics for both MIMIC-CXR and IU X-RAY, it remains within
the same range and does not significantly reduce the gap compared to SOTA. Instruction
enhancement (Prompt 1.3) provides medical condition descriptions and makes a moderate
yet still limited difference to SOTA in Positive F1 scores and Hallucination. Following the
same labeling instructions, Chain-of-Thought (Prompt 1.4) similarly increases Positive F1-5
by 11.9% in MIMIC-CXR, 11.6% in IU X-RAY and 14.8% in CheXpert Plus, marking
the most effective advances so far. However, it still faces a substantial gap to SOTA, with
47.29% in MIMIC-CXR and 31.52% in CheXpert Plus. Few-Shot (Prompt 1.5) provides
image-report pairs as context and generally improves lexical metrics, RadGraph F1, and

Hallucination, while clinical correctness, particularly in identifying positive conditions,
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Metric Chain-of-Thought (1st Step) Image Reasoning

Positive F1 0.195 0.161
Positive F1@5 0.298 0.242

Table 4.3: Image reasoning performance of GPT-4V on MIMIC-CXR. The model performs
poorly in identifying medical conditions from chest X-ray images.

remains consistently low across three datasets. This indicates that while few-shot prompting
might help GPT-4V mimic the format of groundtruth reports, it still falls short in generating

accurate reports.

Experiment 2: Can GPT-4V interpret chest X-rays meaningfully?

In this section, we probe GPT-4V’s ability to reason about chest X-ray images alone.
Specifically, we evaluate whether the model can meaningfully interpret chest X-ray images
by measuring how accurately GPT-4V can label medical conditions present (positive F1).
Table 4.3 provides an overview of GPT-4V’s labeling performance under different prompting

strategies.

We can see that GPT-4V cannot accurately specify positive conditions from given chest
X-rays. This can be highlighted by consistently poor Positive F1 scores observed from
various prompting strategies. Furthermore, this inability to accurately interpret images may
directly contribute to GPT-4V’s failure in generating high-quality reports, as supported by
similar Positive F1 score of 0.172 and Positive F1-5 score of 0.272 from the report synthesis
phase of Chain-of-Thought (see Table 4.2), compared to 0.195 (Positive F1) and 0.298

(Positive F1-5) from the initial label generation phase of Chain-of-Thought.

Overall, these results indicate GPT-4V’s limited ability in identifying medical conditions
from chest X-ray images, regardless of whether labels are derived from CoT st step or

direct prompting.
Testing whether GPT-4V generates labels based on given chest X-rays. Considering
the failure of GPT-4V to accurately label medical conditions, we would like to investigate

to what extent can GPT-4V predict meaningful labels given a specific chest X-ray image.
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To test this, we group chest X-rays by their groundtruth conditions and then analyze the
generated label distribution for each group. If the label distributions are similar across
different condition groups, it would suggest that GPT-4V is not meaningfully identifying
labels from the chest X-rays but rather assigning labels randomly without proper image
interpretation. For example, if the model’s generated label probabilities are roughly the
same regardless of whether the groundtruth condition of the given image is Edema or

Cardiomegaly, it indicates a limited capability in medical image reasoning.

Formally, let X;; be a binary random variable that takes the value 1 if GPT-4V labels
the j-th condition as positive for the chest X-ray image associated with the i-th study, and
0 otherwise, wherei = 1,2,...,300and j = 1,2,...,13. We exclude the “No Findings”
condition from this study. We define Y; = Z‘?ﬂ% Xij as the sum of positive mentions for the
j-th condition across all 300 studies, and Y = [Y7, ..., Yi3] as the count vector. Next, we
categorize the study pool into 13 condition groups, where group k consists all studies that
are ground truth positive for the k-th condition based on the associated radiology report.
Note that there might be overlaps between these groups, as a single study can be positive
for multiple conditions. For each group k, GPT-4V’s labeling process given the chest X-ray

image from i-th study can be modeled as:

XZ.(;() ~ Bernoulli(P].(k))

fori € groupkandj=1,...,13
group J “.1)
Y ~ Multinomial(7y; Py)

with P = [PV, .., P®)]

\

where 7y is the number of studies in group k, and P].(k) is the probability that GPT-4V
labels the j-th condition as positive for the chest X-ray images associated with the studies in

group k.

We first use a x2-test to test if GPT-4V follows the same label distribution across
different groups, i.e., testing the null hypothesis (Hp) that P, = Py for any groups k and
k'. Additionally, we use bootstrap confidence interval [27] to test if GPT-4V labels one

certain condition independently of the groundtruth condition group. Specifically, we test the
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Overall Top S Conditions

Statistics
Groundtruth GPT-40 Groundtruth GPT-40
Xz statistic 1770.38 66.05 243.51 5.30
p-value p<le4 1.00 p<le-4 0.994
df. 144 144 16 16

Table 4.4: x>-test for homogeneity of label distribution across different condition groups.
When p-value is smaller than 0.0001, at 0.01% significance level, we can reject the null
hypothesis that different groups follow the same label distribution.

null hypothesis (Hp) that Pj(k) = P; for any condition j and group k. More test details and
robustness check can be found in Appendix C.3.1.

Edema Group Lung Opacity Group Atelectasis Group
04 } 04 0.4

0.2 { 0.2
A | BT T |

[ I i

Cardiomegaly Lung Opacity _ Atelectasis Pleural Effusion  Cardiomegaly  Edema Atelectasis Pleural Effusion  Cardiomegaly  Edema  Lung Opacity Pleural Effusion
Figure 4-2: 95% Bootstrap confidence interval of example 3 conditions for MIMIC-CXR.
When zero falls into the interval, at 95% confidence level, we cannot reject the null hy-
pothesis that GPT-4V labels j-th condition independent of which condition group this study
belongs to.

95% CI
95% CI
95% CI

. Lexical metrics Clinic Efficacy Metrics
Experiment
BLEU-1 BLEU-4 ROUGE METEOR PosFl1 PosF1@5 Rad.F1 NegFl NegFl@5 Hall.|
GPT-40 0.159 0.006 0.142 0.185 0.123 0.152 0.077 0.038 0.081 0.587
GPT-4o (gt) 0.175 0.009 0.187 0.183 0.879 0.972 0.105 0.639 0.956 0.427
GPT-4-vision-preview (gt)  0.176 0.007 0.185 0.179 0.885 0.977 0.103 0.584 0.958 0.431
Finetuned Llama-2 (gt) 0.301 0.094 0.330 0.348 0.923 0.957 0.286 0.703 0.941 0.710

Table 4.5: Performance in report generation with groundtruth conditions. Although GPT-
4V’s performance improves significantly, it still underperforms finetuned Llama-2, especially
in matching the writing style of groundtruth reports.

Table 4.4 presents x>-test results for the homogeneity of label distribution across different
groups. For both the overall and top 5 conditions*, at 0.01% significance level, we can both
reject the null hypothesis for groundtruth reports that different groups follow the same label

distribution, but not for GPT-4V’s generated reports.

4Due to the sparsity of the original study pool, we report results for two different tables: (1) A modified
table with zero elements replaced by 0.001; (2) A reduced table with only five most frequent medical conditions
in the subsample.
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Figure 4-2 illustrates the 95% bootstrap confidence intervals for top 5 conditions’. If
zero falls within the interval, we cannot reject the null hypothesis that GPT-4V labels the
j-th condition independently of the condition group at 95% confidence level. The figure

shows that, in 7 out of 12 cases (58.3%), we cannot reject the null hypothesis.

In summary, the results show that GPT-4V labels conditions independently of the
groundtruth condition, and there is no significant difference in label distributions across

groups in GPT-4V’s generated reports, unlike the groundtruth reports.

Experiment 3: Given groundtruth conditions, can GPT-4V generate reports?

Given that GPT-4V cannot perform image reasoning, we investigate whether GPT-4V can
generate high-quality radiology reports given groundtruth medical conditions. We conduct
an experiment on report synthesis (Prompt 3.1) and use a finetuned Llama-2 model as a

baseline for comparison.

Table 4.5 shows that while using groundtruth conditions significantly enhances GPT-
4V’s clinical accuracy, it still does not perform as well as the finetuned Llama-2, particularly
in matching the content of groundtruth reports. Progress in clinical accuracy is evidenced by
large improvements in F1 scores compared to basic generation (Prompt 1.1). However, there
are only minor changes in lexical metrics and RadGraph F1, which focus on entity relation
matching in groundtruth reports, along with consistently large gaps with finetuned Llama-2,
suggest that groundtruth conditions are insufficient to align GPT-4V’s writing closely with
that of groundtruth reports. The higher scores of the finetuned Llama-2 in lexical metrics

also indicate that finetuning open models is an effective way to leverage existing datasets.

Human Evaluation. To further evaluate the quality of GPT-4V-generated reports beyond
automatic metrics, we collaborate with two experts: one board-certified and one board-
eligible radiologist, to conduct a human evaluation. From our testing set of 300 studies,

we randomly select 50 cases for blind human evaluation. Each radiologist is provided

Due to the sparsity of the original study pool, we limit our analysis to the five most frequent medical
conditions in our subsample.
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Binary Likert Scale (1-5)

Clinically Usable Diagnostic Accuracy Completeness Clarity/Readability

Groundtruth 50/50 (100%) 4.86 4.87 4.92
Finetuned Llama-2 46/50 (92%) 4.16 4.42 4.94
GPT-4-vision-preview 36/50 (72%) 3.63 3.49 3.80

All metrics are evaluated on the impression section and are averaged based on results from two experts.
Table 4.6: Human evaluation of radiology report quality. From the perspective of radiologists,
GPT-4V underperforms relative to the finetuned Llama-2, particularly in fine-grained likert
scale metrics of diagnostic accuracy, completeness, and clartiy/readability.

Groundtruth Model Report Usable Acc. Comp. Clarity
labels
Positive: Groundtruth In comparison with study of ___, thereis v 5 5 4
Enlarged little change in the cardiomediastinal sil-
Cardiomedi- houette and pacer leads. Continued eleva-
astinum, tion of the right hemidiaphragmatic con-
Lung Opacity, tour. Opacification medially above the el-
Atelectasis evated hemidiaphragm most likely repre-
sents atelectatic changes. No definite acute
Negative: focal pneumonia.
Pneumonia
Finetuned 1. No evidence of pneumonia. 2. Sta- 5 5 5
Llama-2 ble postoperative appearance of the chest.

3. Increased retrocardiac opacity likely re-
flects atelectasis.

GPT-4- The chest radiograph demonstrates an en- v’ 3 4 3
vision- larged cardiomediastinum, lung opacity
preview which may be due to various etiologies,

and atelectasis. There is no clear evidence
of pneumonia on the radiograph.

Table 4.7: Comparison of example reports from human annotation.

with anonymized chest X-ray images and randomly ordered IMPRESSION sections from
groundtruth reports, as well as reports generated by Llama-2 and GPT-4V. Both Llama-2
and GPT-4V are prompted with groundtruth medical conditions. The evaluation involves
a detailed review of three reports per study case, assessing each report’s clinical usability
with a binary label as the first step. Then, the radiologist rates each report on two dimen-
sions: clinical efficacy (diagnostic accuracy and completeness) and lexical performance
(clarity/readability). Reports are rated on a Likert scale, where a score of 5 denotes superior

performance and a score of 1 denotes poor performance. We compute and report the average

71



scores for each metric across different report types.

Table 4.6 shows that, from the perspective of radiologists, GPT-4V still underperforms
the finetuned Llama-2. Groundtruth reports are indeed of high quality, rated as clinically
usable in 50 out of 50 cases. However, a significant usability gap is observed between Llama-
2 and GPT-4V, with Llama-2 being deemed clinically usable in 46 out of 50 cases, compared
to 36 out of 50 for GPT-4V. Furthermore, Llama-2 consistently outperforms GPT-4V across

all other Likert scale metrics, especially in completeness and clarity/readability.

Table 4.7 presents three example reports. While groundtruth reports offer detailed
clinical insights and varied descriptors, GPT-4V tends to provide vague statements, only
stating “lung opacity which may be due to various etiologies” without specifying its location,
severity, or offering a differential diagnosis. Llama-2 performs slightly better by offering

some specific diagnoses, yet still lacks detailed descriptions.

In summary, human annotation corroborates with our findings from Experiment 3. Given
groundtruth conditions, GPT-4V generated reports still lack comprehensive coverage of all
relevant clinical findings and do not effectively summarize and organize medical conditions,

compared with human-written reports.

4.4 Conclusion

We perform the first systematic and in-depth evaluation of the GPT-4V series models in
radiology report generation using three chest X-ray benchmarks. We find that GPT-4V
cannot generate radiology reports, even with different prompting strategies. Open-sourced
models like Llama-3.2 vision perform similarly poorly compared to GPT-4V. Both closed-
source and open-source models exhibit a significant gap when compared to specialized SOTA
radiology report generation models. To understand the low performance, we decompose
the task into image reasoning and report synthesis. The results demonstrate that GPT-4V
struggles significantly with interpreting chest X-rays meaningfully, which directly impacts
its ability to generate reports. Furthermore, even when we bypass this problem by providing

groundtruth conditions, GPT-4V still underperforms a finetuned Llama-2 baseline and
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consistently fails to replicate the writing style of groundtruth reports or meet the preferences
of radiologists. Overall, our study highlights substantial concerns regarding the feasibility

of integrating GPT-4V into real radiology workflows.
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Chapter 5

CLEAR: A Clinically-Grounded Tabular Framework for

Radiology Report Evaluation

5.1 Introduction

Evaluation is becoming increasingly challenging in the era of large language models (LLMs).
While models continue to hill-climb on benchmarks rapidly [75, 86, 5, 116, 77], it remains
unclear whether these reported metrics match task-specific needs [34, 98, 12]. In the context
of radiology, the pursuit of generalist foundation models achieves promising progress [9,

127], but do these appealing automated metrics truly capture clinically aligned qualities [92]?

In the existing literature, three main types of metrics have been proposed to assess the
quality of generated radiology reports, as illustrated in Figure 5-1: (i) Lexical metrics mea-
sure surface-level similarity between the generated and ground-truth reports [89, 68, 128].
While straightforward and easy to compute, they struggle to capture nuanced semantics and
domain-specific terminology, leading to poor sensitivity to clinically significant errors. (ii)
Clinical efficacy metrics evaluate the correctness of medical entities and their relationships
[47, 125, 130], typically through structured extraction-based comparisons. Although more
clinically informed than lexical metrics, they lack the resolution to assess fine-grained
attributes such as severity, temporal progression, or treatment recommendations. (iii) LLM-
based metrics [87, 42, 127] represent the latest direction, often leveraging the pipeline of
LLM-as-a-Judge [131] with pre-defined taxonomies such as the six error categories from

ReXVal dataset [126]. While getting closer to expert judgment compared with previous two
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Lexical Metrics Clinical Efficacy Metrics LLM-based Metrics CLEAR (ours)

BLEU ('02), ROUGE-L ('04), CheXbert F1 ('20), RadGraph F1 ('21), FineRadScore ('24), GREEN ('24),

BERTScore ('20) & RaTEScore ('24) CheXprompt (25) Tabular Evaluation (13 conditions X é attributes)
GT Report

Gl Re:PO':t There is a left pleural effusion, new since the prior Based on six error categories (Yu et S = I SRR .

There is evidence of pleural Abnormality al., 2023) T N/A

effusion.

exam, associated with atelectasis of the left lower

Abnormality Anatomy 1. False prediction of finding;
lobe. Recommend urgent thoracentesis. 2. Omission of finding;
& vaandldatle Repc;rt f ¢ " 3. Incorrect location/position of finding; ol y
ﬁﬁ;s:’;‘" Socelc ‘@, Candidate Report 4. Incorrect severity of finding; . 1\771 Mot
P A right pleural effusion is present likely chronic, 5. Mention of the comparison that is v :
R absent from the reference impression; L
. with associated atelectasis in the lower lobe. No 6. Omission of comparison describing a (...omitted...)
%g;nd{gate Reprn 2| . s forreny change from a previous study. Swpert—— = = - PICCIne Confim
& ov inSVC ion
evidence of pleural efiusion- intervention is recommended. -ray
i fine-grained, clinically grounded analysis
an q ekl erEnulEy o eemes cEr s X Lack a structure and does not account +/ Provides g b y g y:
Fail in f.aP‘“"'”g nuanced X ey egntmes anﬂ relations. for hierarchical or multi-dimensional through a structured, interpretable tabular format that
SO, relationships among errors. enables easy comparison between reports.

Figure 5-1: A comparison of existing metrics with CLEAR. Yellow highlights indicate the
main evaluation mechanism for each type of metric. Red underlining marks an erroneous
term in the candidate report, in contrast to the black underlined term in the ground-truth
report, which the designed metric fails to evaluate.

& [input] [Candidate Report] [Output] Multi-Metric (Attribute-Level)
apo Al-Generated Chest X-ray Report

FINDINGS: Small left apical pneumothorax is present.
Bilateral lower lobe opacities and volume loss are

noted. IMPRESSION: L. Findings suggest early

[Input] [Ground-truth Report]
Human-Written Chest X-ray Report

FINDINGS: Right internal jugular central line remains in
place with tip in the distal superior vena cava. No
pneumothorax identified.

IMPRESSION: Persistent low lung volumes with patchy ia and iated bibasilar 2. First Change Severity Descriptive Recommendation
bibasilar opacities and a probable layering left effusion, Small left pneumothorax, of uncertain significance. (Accuracy) Occurrence (Accuracy) (Accuracy)  Location (Similarity)
suggestive of compressive atelectasis. Follow-up chest Repeat chest X-ray in 24 hours to monitor (Accuracy) (Similarity)

radiograph in 24-48 hours.

pneumothorax and opacities.
.......................... — oAV | S
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! |
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1 e " Attribute Opacity on monia | horax Devices
| | Consolidation Pneumonia Consolidat P X — 1
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b
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p X X — — — _
1 First occurrence | Previous Previous First Occurrence | N/AX NAX 1 1 Location 1
1 1 1
|| Change Stable Stable Change N/A X NAX : 1| Recommendation | 0.9 0.9 - - - - |
: Severity N/A N/A Severity N/A N/A T : > *A dash (—) means that this attribute is not applicable for this condition. 1
_________________________ I
|| Descriptive ['bibasilar ['patchy bibasilar Descriptive ['bilateral lower | ['bibasilar :
Location compressive opacities”, Location lobe opacities”, | atelectasis’] : ) )
1 atelectasis’] “layering left “bibasilar 1 [ Negative Condition Unclear Condition
| effusion”] atelectasis”] | X
I Recommendation | [follow-up chest | [*follow-up chest Recommendation | ['repeat chest X- | ['repeat chest X- | Correctly identified by the candidate report
1 radiograph in | radiograph in 24— ray in 24 hours”] | ray in 24 hours’]
| 24-48 hours] | 48 hours'] 1

Figure 5-2: CLEAR Framework. Given a pair of ground-truth and candidate reports,
we first assesses whether the candidate report can accurately identify a set of medical
observations in the label extraction module. For each correctly identified positive condition,
the description extraction module further evaluates the report’s ability to describe the
condition across five attributes: first occurrence, change, severity, descriptive
location, and recommendation. Finally, the scoring module compiles and outputs the
evaluation metrics.

types, these methods may still lack comprehensive structured attribution and condition-level

interpretability.

Therefore, to address the limitations of existing metrics, we introduce CLEAR (Sec-

tion 5.2), the first clinically-grounded attribute-level evaluation framework that leverages
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LLMs to map free-text radiology reports to a structured tabular format. Compared to prior
work, CLEAR transforms the coarse, single-dimensional taxonomy into a fine-grained,
multidimensional structure. Our design not only enables more comprehensive comparisons
between candidate and ground-truth reports, but also provides interpretable outputs to assess
report quality at the level of condition-attribute pairs. Given the strong adaptability of LLMs
across diverse language tasks, they serve as an ideal unified model to operationalize our

proposed framework.

Specifically, CLEAR begins with the Label Extraction Module (Section 5.2), which
evaluates whether the candidate report can precisely identify the presence or absence of
specific medical conditions. To ensure robust performance across model scales, we enhance
this module using high-quality, expert-curated labels. Next, for each correctly identified
positive condition, the Description Extraction Module (Section 5.2) assesses whether
the candidate report can accurately describe the condition. Jointly established with one
research radiologist and reviewed by one clinical radiologist, we define five commonly used
attributes in a radiology report (first occurrence, change, severity, descriptive
location, and recommendation), enabling the first systematic evaluation of these critical
facets. Finally, the Scoring Module (Section 5.2) compiles and outputs metric scores for
each attribute. We carefully design automated measurements based on the output type from
previous modules: accuracy metrics aim at exact matches for single-label outputs while

similarity metrics focus on contextual relevance for multi-phrasing outputs.

Additionally, since no existing datasets [113, 126, 97] are compatible with CLEAR, we
work closely with radiologists to create CLEAR-Bench (Section 5.3), an expert-curated,
attribute-level dataset to assess clinical alignment. CLEAR-Bench consists of 100 studies
randomly sampled from MIMIC-CXR-JPG test and validation sets [49, 48]. Each study
is annotated and reviewed by at least two radiologists across 6 report attributes and 13
CheXpert conditions! [44]. CLEAR-Bench includes two components: (i) Expert ensemble
labels includes ground-truth labels for presence attribute of each condition. These labels

are constructed via majority voting among three radiologists, followed by one round of

1 Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion,
Lung Opacity, Pleural Effusion, Pleural Other, Pneumonia, Pneumothorax, and Support Devices.
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Attribute Value Set NLP Task Metric

Presence S1 € {"Positive", "Unclear”, "Negative"} Cls (Prompt 1)  Accuracy
Temporal Assessment
First Occurrence S, € {"Previous", "Current", "N/A"} QA (Prompt 2) Accuracy
Change S3 € {"Improving", "Stable", "Worsening", "Mixed", "N/A"}QA (Prompt 3)  Accuracy
Description Assessment
Severity S4 € {"Severe", "Moderate", "Mild", "Mixed", "N/A"} QA (Prompt4) Accuracy
Descriptive Loca- Ss = {Entryy, ..., Entry,} IE (Prompt 5)  Similarity
tion (e.g., Entryy, = "left mid lung atelectasis")
Treatment Assessment
Recommendation  S¢ = {Entryy, ..., Entryy,} IE (Prompt 6)  Similarity

(e.g., Entry, = "recommend follow-up at 4 weeks")

* Cls denotes “Classification,” QA denotes “Question Answering,” and IE denotes “Information Extraction.”
Table 5.1: An overview of our expert-curated fine-grained attributes in CLEAR.

consensus discussion. (ii) Expert curated attributes contains the remaining five report
attributes for each condition positively identified in the ensemble labels. These attributes
are first generated by LLLMs, then independently curated by two radiologists, and finalized
through one round of discussion and resolution. Additionally, during the curation process,
we collect expert Likert scores for each model output, contributing to the assessment of how

well proposed automated metrics align with clinical judgment.

Finally, we evaluate each component of CLEAR using the CLEAR-Bench. Our ex-
perimental results (Section 5.4) show that: (i) the Label Extraction Module achieves high
accuracy compared to expert ensemble labels and significantly outperforms existing labelers
across all metrics; (ii) the Description Extraction Module can accurately extract attribute-
level information according to clinical assessment; (iii) our proposed automated metrics

serve as effective proxies for expert scoring.

5.2 CLEAR Framework

We introduce the CLEAR framework, a hierarchical and fine-grained system for evaluating
the clinical accuracy of radiology reports. CLEAR addresses both high-level diagnostic
correctness and the descriptive quality of positive findings. As shown in Figure 5-2, CLEAR
includes three sequential stages: label extraction, description extraction, and structured

scoring.
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Specifically, given a ground-truth and a candidate report pair, CLEAR first identifies
whether the candidate correctly recognizes the presence or absence of specific medical
conditions (Stage 1). It then examines, for each positively identified condition, whether the
ground-truth and candidate reports are aligned across a set of expert-curated descriptive
dimensions (Stage 2). Finally, it aggregates these evaluations into standardized, multi-

dimensional metrics (Stage 3).

Stage 1: Label Extraction

This stage determines the presence or absence of 13 pre-defined medical conditions in the
candidate report, following the CheXpert structure [44]. Since accurately identifying and
describing abnormalities is more clinically significant in radiology reporting, we exclude the
“No Findings” label and focus on the remaining 13 conditions. Each condition is labeled as

positive, unclear, or negative based on report content.

While existing labelers like CheXbert [108] and CheXpert [44] are available, our pilot
analysis (see Table 5.2) showed that their performance was limited. Since label extraction
involves understanding and interpreting clinical narratives to assign structured labels, we
hypothesized that LL.Ms could offer significant improvements over existing approaches. In
particular, LLMs can handle complex linguistic nuances, such as negation, uncertainty, and

context-dependent phrasing, more effectively in free-form radiology reports.

Base model variants and training strategies. We support three model scales: small
(fine-tuned Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct), medium (Llama-3.3-70B-
Instruct and Llama-3.1-70B-Instruct), and large (GPT-40). For medium and large models,
we apply different prompting strategies, including zero-shot (Prompt 1) and five-shot. For
small models, we perform full-parameter fine-tuning using our curated dataset. To avoid
overfitting, we first conduct hyperparameter tuning through 5-fold cross-validation and a
grid search over learning rate, gradient accumulation steps, and number of epochs, followed

by re-training on the full dataset. Full implementation details are provided in Appendix D.3.
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Expert-in-the-loop label curation. High-quality labeled data is essential for training
our label extraction model. To build a gold training dataset, we implemented a multi-
stage annotation refinement with expert in the loop. We began with the test set from
MIMIC-CXR-JPG [48], which includes a single radiologist’s annotations for 13 CheXpert
conditions [44]. Each condition is originally labeled as positive, negative, unmentioned,
or uncertain. In initial discussions with a radiologist, we identified two major issues
with the original annotations: labeling errors (e.g., conditions mentioned in the report but
left unlabeled) and category ambiguity (e.g., vague distinctions between negative and
unmentioned). To address these, we used GPT-40 to pre-screen and re-label the reports,
prompting it with the original MIMIC labeling guidelines. We then flagged cases with
label mismatches between GPT-40 and the original annotations. We then asked an expert
to re-annotate the discrepancy cases. To reduce the radiologist’s workload, reports with
more than five mismatched condition labels are discarded from expert annotation, as such
extensive disagreement often signals deeper interpretive ambiguities or quality issues in the
original reports. While this introduces potential bias, we prioritized curating a high-quality
subset over exhaustively correcting all samples. For the remaining reports, our collaborating
radiologist independently re-annotated only the discrepant conditions, reviewing the original
report text without seeing prior labels. During human annotation process, we observed that
the original labeling schema lacked sufficient granularity to reflect the nuanced certainty
levels expressed in radiology. In discussion with our expert radiologist, we expanded the
label set to:{confidently present, likely present, neutral, likely absent,
confidently absent}. In total, we curated 550 studies, each with high-quality labels for
all 13 conditions. For consistency with prior work and to simplify downstream modeling, we
further merged all labels into three classes {positive, negative, unclear}. A detailed

description of the annotation process and instructions are provided in Appendix D.2.

Stage 2: Description Extraction

Building on the condition labels from Stage 1, this module extracts fine-grained clinical

features that capture essential descriptive information for accurate reporting. The primary
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motivation is to transform the narrative text of radiology reports into a comprehensive,
structured tabular format that distills all clinically significant attributes. In collaboration with
two radiologists, we developed five clinically significant dimensions: first occurrence
(whether the condition is newly observed), change (progression or improvement from
prior studies), severity (the extent or intensity of the condition), descriptive location
(specific anatomical site), and recommendation (suggested follow-up actions). These
expert-developed attributes were specifically designed to reflect the nuanced but essential
information radiologists routinely document when interpreting chest X-rays. By extracting
these attributes, our approach enables a more comprehensive evaluation beyond simple

condition detection.

Implementation details. We use prompt-based methods to extract each of the five at-
tributes from free-text reports. Each attribute can be naturally framed as a standalone
language understanding task. To operationalize this, we design custom prompts tailored
to the nature of each attribute: we use a Question Answering (QA) template to prompt
the model for first occurrence (Prompt 2), change (Prompt 3), and severity (Prompt
4), and an Information Extraction (IE) template for descriptive location (Prompt 5)
and recommendation (Prompt 6). For QA tasks, the model selects the best answer from
multiple-choice options based on its understanding of the report. For IE tasks, it extracts
relevant phrases guided by condition-specific example terminologies. Our prompt templates
and terminology lists are summarized in Appendix D.4, and were reviewed by two radi-
ologists. We use a single model to process all five prompt types, one prompt per query
to extract each attribute from a given report. We evaluate two model scales: a smaller

Llama-3.1-8B-Instruct and a larger GPT-40 from OpenAl.

Stage 3: Scoring and Metrics

In this module, we process outputs from Stage 1 and Stage 2 into numeric metrics for
each attribute. Given the i-th pair of ground-truth and candidate attribute sets, denote the

attributes extracted from the ground-truth report as {S]@ }]6:1 and from the candidate report
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as {§](.i) ]6:1. An overview of the attributes is provided in Table 5.1.

For presence (51, gl) we evaluate the accuracy of identifying Positive and Negative
conditions. We define a target class ¢ € {Positive,Negative}, treating all other labels
as non-target. The corresponding binary F1 score, F1., is computed for each target class,
resulting a positive-F1 and negative-F1. We report these scores at three levels: micro average,

Top-5 condition average?, and across all 13 conditions.

For first occurrence (S, $,), change (S3,53), and severity (S, S4), we assess
the exact match between predictions and ground truth. Considering that these attributes are
framed as multiple-choice questions in the prompt, exact match is a natural and appropriate

rils;)=5]"]

metric. Accuracy is calculated as Acc.; = T] We report accuracy at the micro
1

level, as well as averaged across reports and the 13 conditions.

For descriptive location (Ss,Ss) and recommendation (Sg, Sg), which involve
free-text descriptions, we measure phrase-level similarity against clinically meaningful
expressions. To evaluate alignment, we first use optimal matching—based metrics with
similarity scores such as BLEU-4 [89] and ROUGE-L [68]:

' 1 N A
Score](.l) = ——— Y max Similarity(e, é),

(i) . a(i
|Sf |eeS](.l) ESJ(')

x>

where S](i) = {ex}}_; and SA](-i) = {ék}zlzl. Additionally, to better approximate clinical
judgment from an expert’s perspective, we prompt ol-mini (Prompt 8) to directly compare

each attribute pair and return a similarity score in the range [0, 1].

5.3 CLEAR-Bench: Attribute-Level Expert Alignment Dataset

In this section, we introduce CLEAR-Bench, an expert-curated, attribute-level dataset
in collaboration with five radiologists. Inspired by recent expert evaluation datasets for

chest X-ray reports [113, 126, 97], CLEAR-Bench is specifically designed to assess how

2Top five conditions in MIMIC-CXR-JPG are Pneumothorax, Pneumonia, Edema, Pleural Effusion, and
Consolidation.
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Experiments Pos F1@13 Pos F1@5 Pos F1 (micro) NegF1@13 NegF1@5 Neg F1 (micro)

LARGE MODELS

GPT-40 (base) 0.805 0.929 0.934 0.476 0.648 0.815
GPT-40 (5-shot) 0.795 0.940 0.934 0.510 0.723 0.842
MEDIUM MODELS
Llama-3.1-70B-Instruct (base) 0.782 0.890 0.924 0.630 0.850 0.920
Llama-3.1-70B-Instruct (5-shot) 0.794 0.916 0.924 0.744 0.890 0.958
Llama-3.3-70B-Instruct (base) 0.780 0.894 0.925 0.602 0.876 0.926
Llama-3.3-70B-Instruct (5-shot) 0.781 0.907 0.926 0.695 0.892 0.953
SMALL MODELS
Llama-3.1-8B-Instruct (base) 0.736 0.880 0.910 0.418 0.660 0.714
Llama-3.1-8B-Instruct (550 finetune) 0.729 0.806 0.905 0.482 0.803 0.949
Qwen?2.5-7B-Instruct (base) 0.694 0.834 0.880 0413 0.616 0.736
Qwen2.5-7B-Instruct (550 finetune) 0.727 0.800 0.905 0.511 0.849 0.953
BASELINES
CheXbert [108] 0.695 0.833 0.897 0.498 0.877 0.952
CheXpert [44] 0.674 0.811 0.888 0.522 0.831 0.948
A Improvement over SOTA +15.8% +12.8% +4.1% +42.5% +1.7% +0.06%

Table 5.2: Evaluation of the label extraction module. CLEAR outperforms existing labelers
across all metrics in identifying both positive and negative conditions. Specifically, larger
models perform better at capturing positive conditions, while techniques such as 5-shot
prompting and supervised fine-tuning significantly improve the detection of negative condi-
tions.

well automated evaluators like CLEAR align with radiologist judgments. It consists of
two annotation subsets: expert ensemble labels and expert-curated attributes. We defer full

details of the instruction criteria, interface design, and annotation workflow to Appendix D.2.

Expert ensemble labels. These provide the ground-truth labels for the Presence attribute.
We randomly selected 100 studies from the validation and test sets of MIMIC-CXR-JPG [48],
excluding any training samples and normal studies. Each report was independently annotated
from scratch by three board-certified radiologists. During annotation, the radiologists
categorized each of 13 CheXpert conditions [44] into one of five categories: confidently
absent, likely absent, neutral, likely present, and confidently present, based
on their best interpretation of the report. After the initial round of annotations, we merged
confidently present and likely present into a single category positive, while
likely absent and confidently absent into negative. We then assessed agreement
across annotators. Remaining disagreements were first resolved by majority vote, followed
by a consensus discussion for any unresolved conflicts. The finalized dataset serves as the

ground truth for evaluating model performance in the Label Extraction Module.
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Expert-curated attributes. These cover the remaining five report attributes: first
occurrence, change, severity, descriptive location, and recommendation. We
began by preparing two sets of model-generated attributes, one from Llama-3.1-8B-Instruct
and the other from GPT-40, for each positive condition identified in the expert ensemble
labels. These two sets were merged and then randomly split into two review sets, each
with 50 samples from Llama and 50 from GPT-40. Each set was independently reviewed
by separate radiologists. During curation, each radiologist first rated each attribute as
incorrect, partially correct, or correct. For non-correct attributes, the radiologist

also provided a revised version, which was used to construct the ground-truth attribute set.

5.4 Experiments

Experimental setup. To evaluate the effectiveness and clinical reliability of our proposed
CLEAR framework, we conduct experiments using CLEAR-Bench. For the Label Extraction
Module, we compare CLEAR’s performance against two established baselines: the BERT-
based labeler CheXbert [108] and the rule-based labeler CheXpert [44], using the Expert
Ensemble Labels from CLEAR-Bench. We report F1 scores as introduced in Section 5.2.
For the Description Extraction Module, we evaluate CLEAR using the Expert-Curated
Attributes from CLEAR-Bench. As no prior baselines exist for this task, we report expert

evaluation scores directly, along with automated metrics defined in Section 5.2.

LILM-based labeler achieves substantial gains over existing labelers. We begin with
evaluating the performance of the Label Extraction Module. As shown in Table 5.2, our
text generation-based approach (Prompt 1) significantly outperforms the best BERT-based
labeler [108] and the top rule-based labeler [44] across all accuracy metrics. In identifying
positive conditions, our module achieves a notable improvement in accuracy averaged over
all 13 medical conditions (+15.8%), with smaller increase on the Top 5 conditions (+12.8%)
and the full label pool (+4.1%). This is likely because text generation models can understand
the full sentence and overall report, instead of relying on token-level classification or hard-

coded rules. Furthermore, this contextual understanding generalizes across conditions,
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First Occurrence ‘ Change ‘ Severity ‘ Descriptive Location ‘ Recommendation

Metric GPT-40 Llama 8B|GPT-40 Llama 8B |GPT-d40 Llama 8B |GPT-40 Llama 8B |GPT-d40 Llama 8B

EXPERT EVALUATION SCORES
Experts (condition aver- 0.818 0.685 0.837 0.685 0.809 0.565 0.857 0.761 0.933 0.474
aged)
Experts (report averaged) 0.783 0.680 0.867 0.688 0.771 0.583 0.872 0.763 0.940 0.416
Experts (micro) 0.777 0.662 0.855 0.663 0.777 0.570 0.867 0.757 0.936 0.404

ACCURACY METRICS
Acc. (condition averaged) 0.740 0.688 0.710 0.589 0.682 0.470 - - - -
Acc. (report averaged) 0.755 0.679 0.759 0.596 0.685 0.532 - - - -

Acc. (micro) 0.737 0.665 0.754 0.575 0.671 0.494 - - - -
SIMILARITY METRICS

ol-mini (micro) - - - - - - 0.785 0.739 0.888 0.361
ROUGE-L (micro) - - - - - - 0.686 0.672 0.887 0.268
BLEU-4 (micro) - - - - - - 0.500 0.402 0.885 0.263
Average (experts) 0.793 0.676 0.853 0.679 0.786 0.573 0.865 0.760 0.936 0.431
Average (all) 0.768 0.677 0.797 0.633 0.733 0.536 0.761 0.682 0911 0.364
A(GPT-40 — Llama) +0.091 +0.164 +0.197 +0.079 +0.547

* A dash (-) indicates the metric is not applicable for this attribute.

* Bold values highlight the highest scores per metric. Colored cells distinguish GPT-4o (green) from
Llama 8B (yellow).

* The bottom row shows the difference between GPT-40 and Llama 8B for the "Average (all)" metric.

Table 5.3: Evaluation of the description extraction module. Expert ratings are averaged
across all samples (0 = incorrect, 0.5 = partially correct, 1 = correct). According to
radiologists’ clinical judgment, CLEAR can accurately extract attribute-level information
from free-text reports. Additionally, GPT-40 is consistently preferred over Llama-3.1-8B-
Instruct, though Llama performs reasonably well, especially on descriptive location,
and remains a low-cost, open-source option.

especially for rare conditions (e.g., fracture) where BERT-based models struggle due to data
imbalance, and unseen patterns (e.g., pleural other) where rule-based systems fail to capture
beyond their predefined scope. This advantage is even more evident in negative conditions,
which require interpreting implicit cues (e.g., “lungs are clear”’). Our module achieves a
substantial boost (+42.5%) in average accuracy across all conditions, highlighting once

again its strength in semantic understanding beyond explicit mentions.

Ablation study of model scales and adaptation. For identifying positive clinical findings,
model scale plays a major role, with GPT-40 achieving the highest performance across
all accuracy metrics. In contrast, model adaptation strategies, including both few-shot
prompting and supervised fine-tuning, have relatively limited impact compared to each base
model. This is likely because the base models already encode sufficient clinical knowledge

to accurately identify positive findings, and larger model scales are more strongly related
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with the richness of this knowledge. However, when it comes to negative mentions, model
adaptation strategies stand out, with all metrics improving notably across scales. The reason
is that these strategies effectively incorporate expert-derived “side” information, which is
typically not captured by base models during pre-training, through few-shot examples or
supervised training data. Specifically, among different strategies, supervised fine-tuning
consistently outperforms few-shot prompting, with average gains of 26.8% for small models
from fineuning, 7.9% for medium models from few-shot, and 7.3% for large models from

few-shot.

LLMs, especially GPT-4o, excel at fine-grained attribute extraction. We next probe our
description extraction module to assess how reliably a unified language model can handle
all five fine-grained attributes (see Table 5.3). Overall, GPT-40 shows strong performance
across all five attributes, achieving the highest average score of 0.911 (recommendation
average all) and a minimum of 0.733 (severity). When analyzing by task type, GPT-
4o performs better on IE tasks (location and recommendation), with an average score
of 0.836, particularly for attributes that involve highly formulaic language (e.g., “follow-
up imaging recommended to assess the resolution of opacity” for recommendation). In
contrast, it achieves a relatively lower score of 0.766 on QA tasks (first occurrence,
change, and severity), which typically require deeper clinical contextual understanding.
In comparison, Llama-3.1-8B-Instruct (a small-scale model) shows mixed performance
across attributes. In QA tasks, it captures temporal information reasonably well, scoring
0.677 for first Occurrence average all and 0.633 for change, though its interpretation of
clinical findings is weaker (0.536 for severity). As for IE tasks, hallucinations significantly
affect performance. But with a customized terminology list (see Table D.3), it achieves
0.682 on location, the closest to GPT-40. However, unrelated descriptive phrases (e.g.,

“signs of generalized fluid overload”) significantly lower recommendation score to 0.364.

CLEAR aligns well with expert ratings. Generally, all the implementations of CLEAR
are highly correlated with expert scoring, as shown in Table 5.4. However, automated metrics

are typically slightly lower than expert scores, as observed in Table 5.3. This is because

85



Automated Metric Corr. with Expert Scoring
Accuracy Metrics produced by CLEAR

Acc. (condition averaged) 0.894
Acc. (report averaged) 0.908
Acc. (micro) 0915
Similarity Metrics produced by CLEAR

ol-mini (micro) 0.994
ROUGE-L (micro) 0.977
BLEU-4 (micro) 0.811

Table 5.4: Pearson correlation between CLEAR and expert scores. All of automated metrics
generated by CLEAR show strong alignment with expert evaluations.

similarity metrics based on ROUGE-L and BLEU-4 prioritize exact matches against ground
truth, whereas expert scoring includes a Partially Correct category, allowing some
tolerance for clinically reasonable but not perfectly matched responses. This distinction is
further supported by the exceptionally high correlation of o1-mini scores with expert ratings,
reaching 0.994. Compared to other lexical metrics, ol-mini can more effectively capture

semantic and clinical alignment, making it a closer proxy to expert judgment.

5.5 Related Work

Lexical metrics. Traditional word-overlap metrics such as BLEU [89], ROUGE [68],and
METEOR [8] are commonly used in natural language generation tasks and are therefore also
commonly applied to radiology report generation. However, these metrics fail to capture
subtle semantic nuances, such as negations or synonyms, which are critical in the clinical
domain. Embedding-based metrics like BERTScore [128] improve on semantic matching
but remain inadequate in capturing nuanced semantics and domain-specific medical terms,

thereby missing clinically important errors.

Clinical efficacy metrics. To bridge the gap between surface-level fluency and clini-
cal correctness, domain-specific metrics have been introduced. Label-based metrics such
as CheXpert [44] map reports to 14 predefined clinical labels and measure classifica-

tion accuracy, but their rule-based pipelines propagate annotation noise. CheXbert [108]
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improves semantic understanding over CheXpert by fine-tuning BERT-based classifiers;
however, it still lags behind recent LLMs due to the limited capacity of BERT compared
to newer and more powerful language models. More recent entity-centric methods such
as RadGraph F1 [47], RadGraph2 [50], MEDCON [124] and RaTEScore [130] capture
subject—relation—object triples. Although these approaches effectively identify and compare
medical entities and their relationships, they often lack the granularity to evaluate specific
attributes such as severity, temporal progression, or treatments. To better align automatic
metrics with radiologist judgments, RadCliQ [125] combines BLEU, BERTScore, CheXbert
similarity, and RadGraph F1 into a weighted score learned from 160 radiologist-annotated
report pairs (ReXVal). These annotations are provided at an aggregate level, quantifying the
total number of clinically significant and insignificant errors without distinguishing specific

clinical attributes.

LLM-based metrics. More recently, researchers have been using LLMs to assess radiol-
ogy reports. Several methods, including GREEN and CheXprompt, build on six categories
of the clinical-error taxonomy introduced in RadCliQ. GREEN [87] tallies the number of
errors and matched findings of each type and then aggregates them into a single report-
level score, which limits granularity and makes it difficult to isolate specific mistakes.
CheXprompt [127] uses GPT-4 to quantify clinically significant and insignificant errors in
radiology reports, categorizing them into six predefined types. Similarly, it focuses primarily
on counting these errors without delving into the nuanced contextual attributes of each error
instance. FineRadScore [42] takes a different route: it calculates the minimum line-by-line
edits required to transform a generated report into a reference report. While this encourages
precision, it penalizes semantically equivalent but differently phrased outputs. RadFact [9]
decomposes each report into atomic sentences and uses LLM to determine whether each
generated sentence is entailed by the reference report, which does not differentiate different

types of clinical errors or severity.
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5.6 Conclusion

We present CLEAR, the first clinically grounded, attribute-level evaluation framework
that leverages LLMs to convert free-text radiology reports into a structured tabular format.
CLEAR consists of three components: (1) a label extraction module to assess the accurate
identification of medical conditions; (2) a description extraction module to evaluate the
precision of condition descriptions; and (3) a scoring module to compile multi-metric
evaluation results. We also introduce CLEAR-Bench, an expert-curated alignment dataset
covering 6 report attributes and 13 medical conditions. Our experiments show that CLEAR
can effectively identify clinical conditions, faithfully extract attribute-level information in
line with clinical validation, and provide automated metrics that serve as reliable proxies for

expert scoring.

Limitations

While CLEAR provides a clinically grounded framework and demonstrates strong alignment
with expert clinical assessment, it has several limitations. First, like all existing evaluation
metrics, CLEAR relies solely on ground-truth reports without incorporating image informa-
tion, overlooking the fact that reference reports may not fully capture all relevant findings
present in the image. Future work could explore integrating image-based evaluation to better
reflect clinical completeness. Second, CLEAR is built on the CheXpert label structure,
which is limited in both granularity and anatomical coverage. Extending the framework
to include additional specialties such as breast imaging, cardiology, and gastroenterology
in the future could enhance its generalizability. Lastly, although we prioritize high-quality
annotations, both the training and evaluation datasets remain relatively small due to the

common tradeoff between annotation quality and dataset scale.
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Chapter 6

Conclusion

This thesis begins with a theoretical investigation into the foundations of effective human—Al
collaboration. We propose a formal framework that models how human intuitions interact
with machine explanations. Our analysis demonstrates that task-specific human intuitions are
essential for enabling complementary performance, where combined human—AlI decisions
outperform either alone. This theoretical work provides a principled foundation for designing

effective human-Al collaborative systems.

Building on this foundation, we conducted empirical studies involving expert radiologists
diagnosing prostate cancer from MRI. These studies allowed us to directly observe how Al
tools are used in clinical workflows and how human reliance on Al evolves across different
interface and feedback conditions. While Al assistance improved diagnostic accuracy
compared to unaided human performance, we found that complementary performance
remained elusive due to under-reliance. Using a theoretical reliance framework, we analyzed
behavioral patterns and identified actionable strategies that guarantee a complementary
performance. One such strategy involves deferring to a positive diagnosis only when both
the radiologist and AI model independently agree. Unlike prior work that typically stops
at surface-level performance evaluation, our study takes a step further by offering concrete

recommendations for effective human-Al collaboration.

Finally, we turned our attention to the evaluation of advanced multimodal large language
models (MLLMs) for radiology report generation from chest X-rays. Despite the remarkable

progress in general domains, our diagnostic analysis revealed that current MLLMs struggle
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with clinical image interpretation. To address the limitations of existing evaluation metrics,
we introduced a fine-grained, tabular-based framework grounded in expert-curated annota-
tions. This benchmark enables more comprehensive and clinically meaningful assessment

of generated reports and provides practical guidance for improving model performance.

Looking ahead, this work opens several promising avenues for future research. On the
human side, designing better interfaces and workflows may further improve appropriate
reliance and trust, ultimately enabling complementary performance. On the model side,
advancing toward expert-level capabilities remains a critical challenge. More broadly,
the findings of this thesis contribute to the growing recognition that as Al tools become
increasingly powerful, the key question is no longer just what Al can do, but how we can
most effectively integrate these tools with human expertise in high-stakes decision-making.
Understanding and shaping this human—AlI interaction is essential for building systems that
are not only technically advanced, but also safe, trustworthy, and aligned with real-world

human needs.
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Chapter A

Prior Work Details

A.1 A Summary of Recent Empirical Studies

We surveyed literature of recent empirical studies that include quantifiable metric for

evaluating human understanding with machine explanations. In Table A.1 we present a

summary of recent empirical studies and provide a reinterpretation with the three core

concepts: model decision boundary g, model error z, and task decision boundary f, as we

defined in the main paper.

Paper Model

Prediction Explanations gz f

(1]

[67]

[24]

[26]

[81]

[19]

Generalized additive mod- Shown
els

Decision trees/random Shown
forests

Convolution Neural Net- Hidden
works

Decision trees/random Shown
forests

Logistic regression; Shal- Hidden
low (1- to 2-layer) neural
networks

Wizard of Oz Shown

Global feature importance (shape function of GAMs) v XX
Rule-based explanations (tree-based explanation); Counter- v/ X X
factual explanations (counterfactual examples)

Local feature importance (attention, gradient-based) v XX

Local feature importance (perturbation-based SHAP) XX

Local feature importance (gradient-based, perturbation-based v X X

(LIME))

Model uncertainty (classification confidence (or probability)) X v v
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[95]

(11]

[118]

[129]

[14]
[71]

(73]

[37]
[18]

[102]

(33]

[85]
[119]

[62]

[51]

(35]

Linear regression Shown

RoBERTa; Generalized ad- Shown
ditive models (GAMs)

Logistic regression Shown

Decision trees/random Shown

forests

Logistic regression Shown
Support-vector machines Shown
(SVMs)
Decision trees/random Hidden
forests

Recurrent Neural Networks Shown

Wizard of Oz Mixed

VQA model (hybrid LSTM Hidden
and CNN)

Logistic regression; Deci- Hidden
sion trees/random forests;
Shallow (1- to 2-layer) neu-

ral networks

Other deep learning models Shown
Decision trees/random Hidden
forests

Support-vector machines Shown

(SVMs)

Other deep learning models Shown

Other deep learning models Shown

Presentation of simple models (linear regression); Informa- v v v/
tion about training data (input features or information the

model considers)

Model uncertainty (classification confidence (or probabil- X v v
ity)); Local feature importance (perturbation-based (LIME));

Natural language explanations (expert-generated rationales);
Example-based methods (Nearest neighbor or similar train- v/ v/ X
ing instances); Counterfactual explanations (counterfactual
examples); Global feature importance (permutation-based);

Model uncertainty (classification confidence (or probabil- X v v
ity)); Local feature importance (perturbation-based SHAP);
Information about training data (input features or information

the model considers)

Natural language explanations (model-generated rationales) X v v/
Local feature importance (coefficients) a4
Counterfactual explanations (contrastive or sensitive fea-v' X X
tures)

Model uncertainty (classification confidence (or probability)) X X v
Example-based methods (Nearest neighbor or similar train- v v/ v/
ing instances)

Rule-based explanations (anchors) VXX
Counterfactual explanations (counterfactual examples); Pre- v/ X X
sentation of simple models (decision trees, logistic regression,
one-layer MLP)

Local feature importance (video features) VA4
Model uncertainty (classification confidence (or probabil- X v v
ity)); Local feature importance (perturbation-based SHAP)
Example-based methods (Nearest neighbor or similar train- X v v/
ing instances); Model performance (accuracy)

Model uncertainty (classification confidence (or probabil- X v v
ity)); Local feature importance (gradient-based)

Xvv

extractive evidence
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[32] Generalized additive mod- Shown Model uncertainty (classification confidence (or probabil- X v v
els (GAMs) ity)); Global example-based explanations (prototypes)
[20] Wizard of Oz Shown Model uncertainty (classification confidence (or probability)) X v X
[63] Bayesian decision lists Hidden  Rule-based explanations (decision sets) XX
[61] BERT; Support-vector ma- Shown Local feature importance (attention); Model performance X v v
chines (SVMs) (accuracy); Global example-based explanations (model tuto-
rial)
[4] Convolution Neural Net- Hidden Local feature importance (propagation-based (LRP),v X X
works perturbation-based (LIME))
[21] Recurrent Neural Networks Shown Local feature importance (attention) X vV
[40] Other deep learning models Shown  Local feature importance (perturbation-based (LIME)); Rule- v/ X X

[101]

Support-vector machines Shown
(SVMs) and Inception neu-

ral network

based explanations (anchors); Example-based methods (Near-
est neighbor or similar training instances); Partial decision
boundary (traversing the latent space around a data input)

Local feature importance (perturbation-based (LIME)) XX

Table A.1: A summary of recent empirical studies measuring human understanding with
machine explanations. The papers are sorted by time, starting form the newest. Note:
columns g, z, and f mean model decision boundary, model error, and task decision boundary
respectively. v/(or X) means the study measures (or does not measure) the corresponding
type of human understanding.

Measuring human understanding of model decision boundary via human simulata-
bility. A straightforward way of model decision boundary evaluation is to measure how well
humans can simulate the model predictions, or in other words, the human ability of forward
simulation/prediction [31]. Humans are typically asked to simulate model predictions given
an input and some explanations [24, 26, 81, 95, 118, 71, 73, 18, 102, 33, 85, 63, 4, 40,
31, 69]. For example, given profiles of criminal defendants and machine explanations,

participants are asked to guess what the Al model would predict [118].

Measuring human understanding of model decision boundary via counterfactual
reasoning. Sometimes researchers measure human understanding of the decision boundary
by evaluating participants’ counterfactual reasoning abilities [33, 73]. Counterfactual

reasoning investigates the ability to answer the ‘what if” question. In practice, participants
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are asked to determine the output of a perturbed input applied to the same ML model [33].

Lucic et al. [73] asked participants to manipulate the input to change the model output.

Measuring human understanding of model decision boundary via feature impor-
tance. Additionally, Wang and Yin [118] also tested human understanding of model decision
boundary via feature importance, specifically by (1) asking the participants to select among
a list of features which one was most/least influential on the model’s predictions and (2)
specifying a feature’s marginal effect on predictions. Ribeiro et al. [101] asked participants
to perform feature engineering by identifying features to remove, given the LIME explana-
tions. These can be viewed as a coarse inquiry into properties of the model’s model decision

boundary.

Measuring human understanding of task decision boundary and model error via
human+AlI performance. Similar to the application-grounded evaluation defined in Doshi-
Velez and Kim [31], one of the most well-adopted evaluation measurement of human
understanding is to measure human understanding of the task decision boundary through
human+AI performance [31, 19, 95, 11, 129, 14,71, 37, 18, 85, 119, 62, 51, 35, 32, 61, 21].
In those experiments, participants are shown machine predictions and explanations, then
they are asked to give a final decision based on the information, with the goal of achieving
complementary performance. For example, human decision-makers are asked to predict
whether this defendant would re-offend within two years, given a machine prediction
and explanations [118]. Note that for binary classification problems, measuring human
understanding of the model error is equivalent to measuring human understanding of the

task decision boundary if machine predictions are shown.

Measuring human understanding of model error through human trust. In some other
cases, trust or reliance is introduced as a criterion reflecting the human understanding of
the model error. Explanations are used to guide people to trust an Al model when it is
right and not to trust it when it is wrong. Hence, by analyzing when and how often human
follows machine predictions, trust can reflect the human understanding of the model error

[118, 19, 129]. In other cases, the measure of human understanding of model error can be
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used as an intermediate measurement towards measuring task decision boundary [10, 95,
11, 14,71, 18, 85, 119, 62, 51, 35, 32, 20, 61, 21], where human subjects are asked whether

they agree with machine predictions.

A.2 Characterizing Relationship between Core Functions & Human

Understandings

Fig. 2-3 visualizes the realizations of the base diagram under the two conditions and
organizes them in a two-level decision tree. At the root, we have the base diagram. At the
next level, we have two realizations based on whether condition 1 is satisfied: diagram (b)
for emulation and diagram (c) for discovery. The branches at the leaf level are determined
by condition 2, i.e., whether model prediction Y is shown. Next, we unfold the effect of

these two conditions.

Effect of show(Y) . We observe differences in the diagrams between emulation and
discovery tasks. First, human local understanding of task decision boundary Y*His collapsed
with Y in emulation tasks (Fig. 2-3b), so no edge goes into YH, and YHaffects ZHand YH.
However, in discovery tasks (Fig. 2-3c), since YH =% Y, the edge connections remain the
same, i.e., we are unable to rule out any connections for now. Hence, human understanding of
task decision boundary is usually not of interest in emulation tasks [24, 81]. In comparison,
human understanding of both model decision boundary and task decision boundary is

explored in discovery tasks [11, 32, 118, 91].

Effect of show(Y). We start with emulation tasks, where the relationships are relatively
straightforward because the human understanding of task decision boundary is perfect
(YH = Y). When Y is shown (Fig. 2-3d), human understanding of local predicted label
becomes perfect, i.e., YT = Y. It follows that ZH = I(YH # YH) = I(y #Y) = Z.
This scenario happens in debugging for emulation tasks, where model developers know the

true label, the predicted label, and naturally whether the predicted label is incorrect for the
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given instance. It is clear that the desired understanding is not local, but about global model

decision boundary.

In comparison, when Y is not shown (e.g., an auditor tries to extrapolate the model
prediction), recall YH = Y in emulation tasks, so Y can affect YH and ZH. As shown in

Fig. 2-3e, the connection between Y and ZH remains unclear.

In discovery tasks, when Y is shown (Fig. 2-3f), Y/ = Y. The relationships between
YH and ZH, however, remain unclear and can be potentially shaped by further information
such as machine explanations. When Y is not shown (Fig. 2-3g), we do not receive any new
information in discovery tasks. Therefore, Fig. 2-3g is the same as the base diagram where
all interactions between local understandings are possible, which highlights the fact that no

insights about human understandings can be derived without any assumption or intervention.

Implications. Our framework reveals the underlying mechanism of human local under-
standing with two important conditions: 1) knowing the task decision boundary; and 2)
showing machine predictions Y. Such conditions allow us to rule out connections between
human understanding of core variables. For example, in emulation with prediction shown,

the relationship between all variables is simplified to a deterministic state.

Another implication is that we need to make explicit assumptions in order to make
claims such as human performance improves because human understanding of the model
error is better (i.e., humans place appropriate trust in model predictions). Because there exist
dashed links between variables, for example, in discovery tasks with prediction shown, we
can not tell whether itis YH — ZH or ZH — YH nor can we tell from observational data
without making assumptions. The alternative hypothesis to “appropriate trust — improved
task performance” is that Y directly improves human understanding of the task decision
boundary. In these ambiguous cases, explanations can be seen as shaping which scenario is

more likely, and it is critical to make the assumptions explicit to support causal claims.
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Chapter B

Al Prostate Experiments Details

B.1 Model Impementation Details

Training configurations We use the established nnU-Net implementation! for image seg-
mentation. The framework was configured to handle dataset preprocessing, augmentation,
and training pipeline generation automatically. The training process utilized a batch size of 8
and a learning rate of 0.001, optimized using the AdamW optimizer. Training was performed
over 1000 epochs on one NVIDIA A40 GPU. nnU-Net’s default data augmentation tech-
niques, such as random cropping, flipping, and intensity scaling, were employed to improve
generalization. For lesion-level prediction, we set the threshold to 0.5. The framework’s
automatic hyperparameter tuning ensured optimal performance, and we monitored model
training using AUROC and average precision on the validation set. A detailed performance

is shown in table appendix B.1.

Training (n=1211) Testing (n=200)
AUROC AP Accuracy Fl1 AUROC AP Accuracy Fl

Per-patient 0910 0.737  0.847 0.725 0.799 0.624  0.735  0.644
Per-lesion 0940 0.682 0948 0.664 0.824 0484 0911 0.531

Table B.1: Al model performance.

Thttps://github.com/DIAGNijmegen/picai_baseline
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B.2 Statistical Test Details

Table B.2: Performance across different scoring rules and conditions. Values are reported as
the mean with 95% confidence intervals (CI).

Scoring Rule Human-alone Human+AI (Study 1) Human+AI (Study 2) Al

u = 0.0 specificity  0.587 (0.566, 0.608)  0.593 (0.572, 0.614) 0.606 (0.588,0.624)  0.611 (0.598, 0.625)
u=0.125 0.598 (0.576,0.620)  0.610 (0.588, 0.632) 0.629 (0.610,0.648)  0.641 (0.628, 0.655)
u =025 0.609 (0.583,0.636)  0.627 (0.602, 0.653) 0.651 (0.629,0.673)  0.671 (0.656, 0.687)
u=0.375 0.620 (0.588, 0.652)  0.645 (0.613, 0.676) 0.674 (0.647,0.700)  0.701 (0.682, 0.721)
u = 0.5 accuracy 0.632 (0.593,0.670)  0.662 (0.624, 0.700) 0.696 (0.664, 0.728)  0.731 (0.708, 0.755)
u =0.625 0.610 (0.574,0.646)  0.638 (0.603, 0.674) 0.670 (0.640, 0.700)  0.704 (0.682, 0.725)
u=0.75 0.588 (0.554,0.623)  0.615 (0.581, 0.649) 0.643 (0.615,0.672)  0.676 (0.655, 0.697)
u=0.875 0.567 (0.533,0.600)  0.592 (0.559, 0.625) 0.617 (0.589,0.644)  0.648 (0.627, 0.668)
u = 1.0 sensitivity  0.545 (0.512, 0.578)  0.568 (0.535, 0.601) 0.590 (0.562,0.618)  0.620 (0.599, 0.641)

Table B.3: Statistical comparisons across scoring rules (¢ values) for different contrasts. ¢
test and Benjamini—-Hochberg adjusted p-values.

Scoring Rule HvsAl  H+AI(1)vsAI  H+AI2)vs Al H+AI(l) vs H+AL2)  Hvs H+AI1)  Hvs H+AI(2)
4 = 0.0 specificity  0.0007#%* 0.017* 0.082" 0.178 0.178 0.047*
§=0125 0.0003%++ 0.009%+ 0.074" 0.170 0.170 0.030%
n=025 0.0002%++ 0.006%+ 0.073" 0.145 0.170 0.022*
1=0375 0.0002%++ 0.006%* 0.073" 0.132 0.170 0.019%
# = 0.5 accuracy 0.0002%++ 0.006%* 0.075" 0.125 0.170 0.019%
#=0625 0.0002%++ 0.006%+ 0.085" 0.125 0.170 0.019%
=075 0.0003%++ 0.009%+ 0.121 0.125 0.178 0.022%
4=0875 0.004%% 0.025% 0.170 0.145 0.226 0.046*
4 = 1.0 sensitivity 0.057" 0.125 0.330 0.191 0.330 0.125

Note: H = Human-alone, H+AI(1) = Human+AI (Study 1), H+AI(2) = Human+AI (Study 2).

*p<0.05, #*p<0.01, ***p<0.001, +p<0.1. All tests are one-sided (less than).

Table B.4: Degrees of freedom for corresponding f-tests in Table B.3.

Scoring Rule H vs Al H+AI(1) vs Al H+AI(2) vs AI H+AI(1) vs H+AI(2) H vs H+AI(1) H vs H+AI(2)
u=00 1089.6 1097.1 1641.7 1275.9 1197.9 1270.4
u=0.125 1075.3 1086.2 1632.6 1272.6 1197.8 1264.3
u=025 1063.7 1077.5 1624.0 1270.6 1197.7 1259.8
u=0375 1055.8 1071.8 1617.2 1269.9 1197.6 1257.1
u=05 1051.5 1069.0 1612.4 1270.3 1197.6 1256.2
u=0.625 1050.3 1068.8 1609.1 1271.9 1197.5 1257.0
u=075 1055.4 1074.1 1608.8 1276.1 1197.5 1261.3
u=0.875 1075.2 1091.3 1617.3 1284.4 1197.7 1272.4
u=10 1110.4 1119.2 1636.7 1293.9 1197.9 1288.0

To assess differences in performance across agent configurations, we conducted one-

sided Welch’s t-tests, which accommodate unequal variances and sample sizes. This

approach aligns with our directional hypotheses (e.g., Al-alone outperforms human-alone)

and accounts for inter-group variability.
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B.2.1 Pairwise Comparisons
We performed six pairwise comparisons between agent conditions:

1. Human-alone vs. Al-alone

2. Human+AI (Study 1) vs. Al-alone

3. Human+AI (Study 2) vs. Al-alone

4. Human+AI (Study 1) vs. Human+AI (Study 2)
5. Human-alone vs. Human+AlI (Study 1)

6. Human-alone vs. Human+AlI (Study 2)

All p-values were corrected for multiple testing using the Benjamini—Hochberg proce-

dure to control the false discovery rate.

Numerical performance results are reported in Table B.2, with associated p-values and

degrees of freedom summarized in Table B.3 and Table B.4 respectively.

B.3 Demographics

We recruit 8 practicing radiologists, aged 29 to 52 years (mean: 38.4 years). Respondents
were primarily from the United States (n=4), Turkey (n=3), and Italy (n=1). Most participants
(n=5) reported advanced or expert-level experience with prostate MRI, whilte the others

reported intermediate (n=2). One participant did not answer this question.

B.4 Exit Survey Results

Study 1 Results

In Study 1, participants were highly familiar with the Al tool (mean familiarity: 5/5), though

its accuracy received a lower mean rating of 2.4/5. Usefulness and trust in the system were
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rated moderately, both averaging 3/5. In open-ended feedback, practitioners reported that
the Al tool was most helpful in ambiguous cases and increased confidence in detecting
lesions in challenging locations such as the anterior, apical, and transition zones. Concerns
included oversensitivity in non-cancerous areas and missed lesions, with suggestions for
improvement focusing on providing malignancy probability scores, separate reporting of T2

and DWI/ADC scores, and better performance in transitional zone lesions.

Study 2 Results

In Study 2, the Al tool’s helpfulness was rated moderately (mean: 2.9/5), with accuracy
ratings remaining low to moderate (mean: 2.1/5). Trust in the Al also averaged 2.5/5.
Despite moderate satisfaction, respondents expressed a high likelihood of future Al use
(mean: 3.75/5). In open-ended feedback, the Al was perceived as useful in ambiguous
cases, with one practitioner noting it reinforced decisions to call studies negative. They
also pointed out key challenges such as poor performance in transitional zone lesions,
overreliance on diffusion restriction, and limitations in segmenting prostate versus non-
prostate tissue. Participants’ recommendations for improvement included adopting the PI-
RADS classification system, enhancing segmentation capabilities, and improving detection
of small lesions. Image quality issues were a significant limitation, with practitioners
noting that humans outperform Al in evaluating non-diagnostic images, particularly for

diffusion-weighted imaging.

B.5 Fine-grained analysis

Table B.5 and Table B.6 provide an overview of the subgroup analysis of human-Al agree-
ment and disagreement in Studies 1 and 2, respectively. The results indicate that performance
metrics are significantly better in subgroups where human and Al decisions align compared

to those with disagreement.

For a detailed breakdown, individual-level performance for the different agreement and

disagreement subgroups is presented. In Study 1, the results are available in Table B.7,
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Table B.5: Study 1 fine-grained subgroup performance.

Condition Avg (#) Total Correct TP FP TN FN Acc(%) Sen (%) Spc (%)
Initial=Al, final=Al 52.0 416 304 122 99 182 13 73.1 90.4 64.8
Initial=Al, final Al 0.4 3 0 0 0 0 3 0.0 0.0 N/A
Initial £Al, final=Al 4.6 37 29 10 5 19 3 78.4 76.9 79.2

Initial #Al, finalZAT  18.0 144 64 16 63 48 17 44.4 48.5 43.2

Table B.6: Study 2 fine-grained subgroup performance.

Condition Avg (#) Total Correct TP FP TN FN Acc(%) Sen (%) Spc (%)
Human # Al prediction ~ 21.6 173 61 15 8 46 26 353 36.6 34.8
Human = Al prediction  78.4 627 496 198 114 298 17 79.1 92.1 72.4

Table B.8, Table B.9, and Table B.10, each focusing on specific subcategories of agreement
or disagreement. Similarly, Study 2 individual-level results are provided in Table B.11,

offering finer granularity of the analysis.

B.6 Ensemble on Common-50 Cases

Table B.12 presents a detailed performance comparison among Al, Human, Human-ensemble,
Human+AI, and Human+AI ensemble (Study 1 and Study 2) for the common 50-case subset.
While the results highlight that the Human-ensemble consistently outperforms individual
human performance, the advantage of any ensemble method over Al alone is less significant.

Table B.7: Study 1: Cases where human agreed with Al and decision was kept.
Username Total Cases Correct TP FP TN FN Accuracy

P1 53 40 17 12 23 1 75.5%
P2 46 33 15 13 18 O 71.7%
P3 67 47 19 17 28 3 70.1%
P4 51 37 14 12 23 2 72.5%
P5 51 37 18 12 19 2 72.5%
P6 46 36 9 8 271 2 78.3%
P7 50 35 16 14 19 1 70.0%
P8 52 39 4 11 25 2 75.0%
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Table B.8: Study 1: Cases where human agreed but Al initially but still changed decision
against Al

Username Total Cases Correct TP FP TN FN Accuracy
P6 3 0 0O 0 O 3 0.00%

Table B.9: Study 1: cases where human disagreed with Al but kept original decision.
Username Total Cases Correct TP FP TN FN Accuracy

P1 20 9 2 10 7 1 45.0%
P2 23 10 4 10 6 3 43.5%
P3 2 1 0 1 1 0 50.0%
P4 18 8 2 7 6 3 44.4%
P5 20 9 2 11 7 0 45.0%
P6 22 12 2 5 10 5 54.5%
P7 18 6 2 11 4 1 33.3%
P8 21 9 2 8 7 4 42.9%

Table B.10: Study 1: cases where human disagreed with Al but followed Al advice.
Username Total Cases Correct TP FP TN FN Accuracy

P1 2 1 1 0 0 1 50.0%
P2 6 6 1 0 5 0 100.0%
P3 6 4 0 1 4 1 66.7%
P4 6 5 2 1 3 0 83.3%
P5 4 4 1 0 3 0 100.0%
P6 4 3 2 1 1 0 75.0%
P7 7 5 2 1 3 1 71.4%
P8 2 1 1 1 0 0 50.0%

Table B.11: Finegrained analysis for Study 2: (1) When Human disagrees with Al, human
are prone to errors (accuracy is lower than 50%); (2) Human is better at identifying Al
false positives than identifying false negatives, i.e., humans are better at catching AI’s false
alarms than its missed cases.

Username #Disagreements Correct TP FP TN FN Accuracy

P1 28 11 1 10 10 7 39.3%
P2 27 6 2 19 4 2 22.2%
P3 11 3 3 8 0 0 27.3%
P4 26 11 1 11 10 4 42.3%
P5 18 7 1 9 6 2 38.9%
P6 20 8 2 6 6 40.0%
P7 20 6 2 11 4 3 30.0%
P8 23 9 3 12 6 2 39.1%
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Table B.12: Performance comparison between AIl, Human, Human-ensemble, Human+Al,
and human+AlI ensemble (study 1 and 2) for the common 50-case subset.

Study 1 Study 2
P (Huma ble >Human)
’ bl At A bl bl
Al Human H H I H+AI P (H+AI ensemble>Al) I H+Alens P (H+Al ens Al

0.763 0.675 0.732 0.711 0.778 B 0.708 0.763

AUROC [0.727,0.797]  [0.630,0.719] [0.690,0.771] [0.668,0.752]  [0.741,0.812] 0.004°/0.265 [0.666,0.748]  [0.726,0.798] o112
70.0% 62.5% 68.0% 65.7% 72.0% 64.7% 70.0%

Accuracy [0.657,0.745]  [0.578,0.672] [0.635,0.725] [0.610,0.703]  [0.675,0.762] 0.004%/0.216 [0.600,0.693]  [0.655,0.745] 0.229
35/50 31/50 34/50 33/50 36/50 32/50 35/50
93.8% 81.2% 87.5% 85.9% 93.8% 87.5% 93.8%

Sensitivity (Recall) [0.892,0.976]  [0.741,0.878] [0.814,0.929] [0.797,0.917]  [0.892,0.976] 0.028%/0.495 [0.815,0.929]  [0.892,0.976] 0.050
15/16 13/16 14/16 14/16 15/16 14/16 15/16
58.8% 53.7% 58.8% 56.2% 61.8% 54.0% 58.8%

Specificity [0.530,0.646]  [0.477,0.595] [0.529,0.646] [0.504,0.620]  [0.559,0.675] 0.027%/0.197 [0.482,0.599]  [0.528,0.647] 0.498
20/34 18/34 20/34 19/34 21/34 18/34 20/34
95.2% 87.0% 90.9% 90.8% 95.5% 91.4% 95.2%

NPV [0.918,0.982]  [0.804,0.909] [0.864,0.949] [0.846,0.938]  [0.921,0.983] 0.012*/0.467 [0.854,0.945]  [0.919,0.982] 0.051
20/21 18/21 20/22 19/21 21/22 18/20 20/21
51.7% 45.5% 50.0% 48.2% 53.6% 47.4% 51.7%

PPV (Precision) [0.453,0.581]  [0.389,0.517] [0.435,0.566] [0.416,0.545]  [0.470,0.602] 0.005/0.214 [0.410,0.537]  [0.452,0.582] 0.236
1529 13/29 14/28 14/29 15/28 14/30 15729

B.7 More Screenshots on User Interface Design

We show screenshots of a login page (Fig. B-1), a consent form (Fig. B-2), a toy demon-
stration example page (Fig. B-3), and two exit surveys (Fig. B-4, Fig. B-5) for study 1 and

study 2 respectively.

Al-Assisted Diagnosis for Prostate Cancer Logout

Name:

Enter Your Name

Email:

Enter Your Email

Submit

Figure B-1: Login page.
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Table B.13: Rational agent’s decision rule on the common 50-case subset under the evalua-
tion of different scoring rules.

Human-alone (dF) ~ AI (d47) Eo s (0)an aan) [S(aH,0)] Eg#(0/aH a41) [S(d441,0)] Rational agent (d")

0 0 0.995 0.995 di =0

_ 0 1 0.808 0.192 dd =0

#= 1 0 0.060 0.940 dAl =

1 1 0.282 0.282 dH =1

0 0 0.993 0.993 dl =0

_ oS 0 1 0.713 0.288 df =0

p==0 1 0 0.091 0.909 dAl = 0

1 1 0.423 0.423 dH =1

0 0 0.992 0.992 dHi =0

06 0 1 0.655 0.345 =0

=0 1 0 0.109 0.891 dAl =0

1 1 0.508 0.508 di =1

0 0 0.991 0.991 di =0

_05 0 1 0.617 0.383 i =0

p==0 1 0 0.121 0.879 dAl =

1 1 0.564 0.564 dH =1

0 0 0.892 0.892 al =0

_o4 0 1 0.555 0.445 df =0

p==0 1 0 0.209 0.791 dAl =

1 1 0.608 0.608 di =1

0 0 0.743 0.743 dH =0

_ 05 0 1 0.463 0.538 dAl =1

p==0 1 0 0.341 0.659 dAl =
1 1 0.673 0.673 dH =

0 0 0.495 0.495 dH =0

_0 0 1 0.308 0.692 dAl =1

#= 1 0 0.560 0.440 dH =1

1 1 0.782 0.782 dH =1
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_Online Consent Form for Research Participation

Study Title: Al-assisted Diagnosis in Prostate Cancer
Researcher(s):

Description: \We are researchers at _ doing a research study to evaluate the effectiveness of Al
assistance for doctors to diagnose prostate cancer from MRI images. We invite you to take part in this research study
because of your expertise in the area. Your input and insights will be invaluable to us. We expect that the study takes
approximately 20-30 minutes. Your participation is completely voluntary.

Overview: will go through 75 anonymized patient cases. Each case consists of a sequence of MRI images (T2W ADC
DWI). You will make a diagnosis (CsPCa) on the case and annotate the lesion area (if any) using our provided annotation
tool. Then you will see the Al predictions along with the lesion area (if any). Based on the Al information, you will make a
final prediction on the case and modify the lesion area if necessary.

Risks and Benefits: Your participation in this study does not involve any risk to you beyond that of everyday life. This study
may benefit society by improving the understanding of how Al assistance can improve medical professionals' ability in
prediction tasks.

Confidentiality: Identifiable data (your name and email) will be used to distribute payment to you and will never be shared
outside the research team. Upon the completion of our study, we will delete all identifying information and you will remain
anonymous in our report.

If you decide to withdraw halfway, data collected up until the point of withdrawal may still be included in analysis. You will
still be partially reimbursed based on the time you spent on our study.

De-identified information from this study may be used for future research studies without your additional informed consent.

Contacts & Questions: fou have questions or concerns about the study, you may email questions to _
r questions about your rights as a research subject, please contact the_

Consent: Participation is voluntary. Refusal to participate or withdrawing from the research will involve no penalty or loss of
benefits to which you might otherwise be entitled.

By clicking “Agree" below, you confirm that you have read the consent form, are at least 18 years old, and agree to
participate in the research. You can print or save a copy of this page for your records.

Figure B-2: Consent page.
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Image

ck onto here

Figure B-3: Toy demonstration example page.
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Procedures:
« Step 1 Diagnose: Click on "Annotate
to make y

diagnc
Step 2 Review Al Predictions: Click on
“View Al Predictio
Step 3 Finalize Your Decision: ct
from the options: "Annotate Cancer’
‘No " or "Keep My Prediction.

Annotate Cancer

My prediction:

Your Pres

Current level of certainty:
roll to set your confidence

Please make a prediction to proceed.
Toolbar:

Brightness and
Zoom: zoom in and out of the image.

Il Screen View.




u for participating in our stuc > take a few moments to complete this exit sur
aluable and will help us improve the Al tool & X ts impact on medi

dical field:

Jou rate your level of experience with prostate MRI?
e little to no experience)
mediate (I have moder berience anc interpreted a

/interp

® Neutral familiar
unfamiliar

s predictions

@ Neutral

useful

dictions in your ¢

mments

additional comments or insights you have about using Al in medical di

Figure B-4: Exit survey for study 1.
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Exit Survey

Thank you for participating in our study. Please take a few moments to complete

this exit survey. Your feedback is

d will help u e Al tool and understand its impact on medical diagn

@ Not helpfu

ate the followi

4. Rate the following statement: Your prio our performance in this phase.

.
® Agree
@ Neut

@ Disagree

Alin this

ection 2: Opinions on Al

1. How familiar are

Somewh mewhat
®Notfamiliar atall @ al
unfarniliar familiar

ghtly useful Jite useful tremely useful

5, During the ta rraged, irrtated,
phase?

@ Extreme

ur future clinical practice

® Neutral ® Very likely

decision:

Figure B-5: Exit survey for study 2.
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Chapter C

Radiology Report Generation Evaluation Experiments De-

tails

C.1 Model Impementation Details

OpenAl API: We evaluate three datasets using Microsoft’s Azure OpenAl service with
GPT-4-vision-preview (11/15/2023) and GPT-4o.

Finetuning Llama-2: In the case of the MIMIC dataset, we selectively sample 10% of
the official training data, carefully ensuring there is no overlap with the 300-sample test set.
For the IU X-ray dataset, we utilize the entire training set, which comprises 3,655 studies,
and confirm that these too do not overlap with the test set. The fine-tuning process largely
adheres to the default hyperparameters established by Stanford Alpaca [112]. Our hardware
includes four A100 GPUs, each equipped with 80GiB of memory, and operates on CUDA

version 12.4.

Llama-3.2-90B-Vision-Instruct: Llama-3.2-90B-Vision is the newest flagship open-
source multimodal LLM. We choose it to provide a baseline reference. We access the model
weights through huggingface and Meta. Our hardware for inference includes four A100

GPUs, each equipped with 80GiB of memory, and operates on CUDA version 12.4.
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Code Availability: The source code for our project is publicly accessible on GitHub,
enabling users and fellow researchers to review, utilize, or extend our implementations. You

can find our repository at https://github.com/ChicagoHAI/cxr-eval-gpt-4v.git.

C.2 Data

Datalicenses: MIMIC-CXR license can be found at https://physionet.org/content/
mimic-cxr/view-license/2.0.0/. IU X-RAY images are distributed under the terms
of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

For MIMIC-CXR, we accessed the data by following the required steps on https:
//physionet.org/content/mimic-cxr/2.0.0/. We first registered and applied to be a
credentialed user, and then completed the required training of CITI Data or Specimens Only
Research. We also signed the data use agreement for the project before we get access to the

dataset. We downloaded IU X-RAY dataset from https://openi.nlm.nih.gov/fagq.

Chexpert Plus dataset is available to download online and the license can be found at

https://stanfordaimi.azurewebsites.net/datasets/5158c524-d3ab-4e02-96e9-6ee9efcl110al.
Preprocessing: To prepare the data for the OpenAl API, we first convert the DICOM
images to JPEG format, which is required for compatibility with GPT-4V. Then we use

base64 encoding to transform the binary image data into its corresponding UTF-8 string.

Ethical consideration of data: There is no substantial concerns around the data, since

dataset are de-identified and do not contain harmful or offensive contents.
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C.3 Evaluation Experiment Results

C.3.1 Hypothesis Test

Bootstrap Confidence Interval We use bootstrap confidence interval [27] to test if
GPT-4V labels one certain condition independently of the groundtruth condition group. For
this test, for each condition i and group j, we define test statistic 60;; as Pi(j ) P; and null
hypothesis Hy as 6;; = 0. We construct a 95% confidence interval as [91.(].],321025, él(]%g%]
with 1000 bootstrap samples for each 6;;. Considering the sparsity of original study pool, we

limit our choice of condition i and group j in six most frequent conditions in our subsample.

x> Test  Specifically, we use a x>-test to test if GPT-4V follows the same label distribution
across different groups, i.e., testing the null hypothesis (Hp) that P, = P}, for any groups

k and k’. For the overall pool, we can construct a 13x 13 contingency table with each

()

entry equal to Yi(j ) and then calculate expected count E;*” for each entry. Finally, report

( i i
X = Y Zj T
of two different tables: (1) A modified table that replaces zero elements with 0.001; (2) A

. Considering the sparsity of original study pool, we report results
reduced table with only six most frequent conditions in subsample.

Pearson Correlation Coefficient We approximate P].(k) using Pr(Xl.(;{) = 1) to obtain an
estimator fk of Py for each group k. Furthermore, we illustrate the correlation Corr(fm, f’n)
for all groups m and n in Figure C-3 and Figure C-4. It is noted that the condition "Pleural
Other" doesn’t seem to be highly correlated with other groups. However, considering that
"Pleural Other" only has one positive mention in groundtruth conditions and this can be

treated as an outlier.

Robustness Check We look into overlap issue between any two groups to further verify
our results’ robustness. We find out that it does not compromise the assumptions of the
multinomial distribution or the robustness of Bootstrap CI results, but it could potentially

inflate the Chi-square statistic, leading to incorrect conclusion about "no significance". To
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IU X-RAY MIMIC-CXR

Experiment

IMPRESSION FINDINGS Labels IMPRESSION FINDINGS Labels
1.1 298/300 259/260 - 300/300 183/183 -
1.2 295/300 2597260 - 300/300 183/183 -
1.3 278/300 241/260 - 300/300 183/183 -
14 258/300 223/260 - 300/300 183/183 -
1.5 118/300 101/260 - 83/300 61/183 -
2.1 - - 237/300 - - 300/300
3.1 293/300 253/260 - 297/300 182/183 -

Table C.1: Summary of actual sample size across different experiments.

Condition GT 2.1 2.2

Pos Neg Unc Unmnt Pr(Pos) Pos Other Pr(Pos) Pos Neg Unc Unmnt Pr(Pos)
Edema 35 42 15 208 0.117 46 254 0.153 76 174 0 50 0.253
Consolidation 10 17 5 268 0.033 18 282 0.060 30 234 0 36 0.100
Pneumonia 7 37 24 232 0023 6 294 0.020 14 242 0 44 0.047
Pneumothorax 7 45 3 245  0.023 6 294 0.020 5 272 0 23 0.017
Pleural Effusion 65 30 3 202  0.217 190 110 0.633 212 77 O 11 0.707

Table C.2: Label distribution of top 5 conditions (MIMIC-CXR).

affirm the integrity of our Chi-square test results, we highlight two points: first, comparison
with groundtruth studies in Table 4.4 shows a distinct difference in p-values (small for
groundtruth and large for generated studies), suggesting minimal impact of overlap on
our conclusion that "GPT-4V generates reports following the same label distribution."
Additionally, we also check the overlapped samples between groups and find them to be
relatively small to original group sizes, with an average ratio of 13.1%, as detailed in

Figure C-5.

C.3.2 GPT-40 Evaluation

Overall performance of direct report generation across three datasets is shown in Table C.3,
Table C.4 and Table C.5. Complete image reasoning results can be seen in Table C.9.

Complete Chi square test can be seen in Table C.10.
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Table C.3: Direct report generation performance comparison for IU X-ray findings and
impressions (GPT-40).

Experiment Lexical metrics Clinical Efficacy Metrics

BLEU-1BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall.|

IU X-RAY (FINDINGS)

1.1 0316 0.045 0.238 0.311 0.059 0.045 0.203 0.272 0.397 0.354
1.2 0.330  0.049 0.242 0.323 0.077 0.098 0.214 0.285 0.419 0.269
1.3 0.238  0.030 0.207 0.283 0.081 0.146 0.174 0.298 0.458 0.169
1.4 0.239 0.024 0.194 0.231 0.077 0.161 0.144 0.285 0.440 0.138
1.5 0.279  0.044 0.243 0.250 0.037 0.031 0.187 0.240 0.379 0.097
IU X-RAY (IMPRESSION)

1.1 0.212 0.012 0.194 0.269 0.087 0.105 0.104 0.000 0.000 0.303
1.2 0.248 0.014 0.251 0.341 0.173 0.135 0.153 0.071 0.051 0.307
1.3 0.209 0.012 0.205 0.281 0.111 0.206 0.106 0.000 0.000 0.177
1.4 0.181 0.007 0.143 0.177 0.115 0.255 0.060 0.000 0.000 0.197
1.5 0.138 0.001 0.077 0.124 0.067 0.107 0.034 0.010 0.025 0.211
Table C.4: Performance comparison for MIMIC-CXR findings and impressions (GPT-40).
Experiment Lexical metrics Clinical Efficacy Metrics

BLEU-1BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall.|
MIMIC-CXR (FINDINGS)

1.1 0.331 0.031 0.225 0.282 0.134 0.153 0.163 0.244 0418 0.421
1.2 0.333 0.044 0.234 0.290 0.273 0.255 0.182 0.259 0.431 0.383
1.3 0.276  0.028 0.203 0.264 0.155 0.230 0.154 0.290 0.503 0.298
1.4 0.242 0.017 0.186 0.201 0.172 0.272 0.119 0.249 0.443 0.180
1.5 0.337 0.055 0.257 0.301 0.170 0.203 0.188 0.279 0.481 0.934
MIMIC-CXR (IMPRESSION)
1.1 0.159 0.006 0.142 0.185 0.123 0.152 0.077 0.038 0.081 0.587
1.2 0.203 0.014 0.195 0.238 0.277 0.258 0.124 0.048 0.126 0.547
1.3 0.168 0.009 0.162 0.200 0.156 0.243 0.095 0.042 0.101 0.359
1.4 0.120 0.004 0.112 0.130 0.177 0.288 0.055 0.008 0.020 0.397
1.5 0.155 0.007 0.153 0.186 0.144 0.232 0.073 0.035 0.091 0.477

C.3.3 GPT-4-vision-preview Evaluation

Medical Restriction in Usage of GPT-4V API Since OpenAl itself will restrict the
medical use of GPT-4V, the actual sample size of our expriments will be smaller than 300.

Details can be checked in Table C.1.

Misspecification of Negative Mentions in GPT-4V  Besides, it is noted that the "negative"
category in 2-class labeling actually includes negative, uncertain, and unmentioned mentions.

However, GPT-4V shows very similar Negative F1 scores across different labeling types.
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Table C.5: Performance comparison for ChexPert Plus findings and impressions (GPT-40).

Experiment Lexical metrics Clinical Efficacy Metrics
BLEU-1BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall.|

CHEXPERT PLUS (FINDINGS)

1.1 0.237 0.015 0.176 0.191 0.228 0.191 0.112 0.118 0.174 0.516
1.3 0.191 0.007 0.159 0.172 0.210 0.325 0.101 0.158 0.253 0.371
1.4 0.166 0.011 0.155 0.139 0.234 0.339 0.077 0.160 0.262 0.339
1.5 0.171  0.007 0.158 0.149 0.188 0.224 0.094 0.104 0.135 0411
3.1 0.085 0.003 0.150 0.108 0.483 0.724 0.080 0.148 0.250 0.226
CHEXPERT PLUS (IMPRESSION)
1.1 0.105 0.001 0.106 0.090 0.163 0.198 0.008 0.013 0.035 0.680
1.3 0.109 0.002 0.105 0.095 0.172 0.261 0.008 0.042 0.085 0.377
1.4 0.066 0.000 0.093 0.069 0.192 0.242 0.012 0.000 0.000 0.400
1.5 0.084 0.002 0.131 0.088 0.134 0.161 0.029 0.043 0.111 0.370
3.1 0.106  0.003 0.164 0.116 0.854 0.947 0.022 0.662 0.924 0.480
. Lexical metrics Clinic Efficacy Metrics
Experiment

BLEU-1 BLEU-4 ROUGE METEOR Pos F1 Pos F1@5 Rad. F1 Neg F1 Neg F1@5 Hall.|
MIMIC-CXR (FINDINGS)

1.1 0.299 0.035 0.214 0.279 0.117 0.124 0.135 0.241 0.396 0.563
1.2 0.323  0.042 0227 0.294 0.181 0.194 0.159 0.272 0.464 0.410
1.3 0.265 0.019 0.186 0.262 0.134 0.236 0.109 0.237 0.437 0.607
1.4 0.236  0.008 0.176  0.202 0.151 0.233 0.080 0.151 0.328 0.563
1.5 0.294 0.053 0.223 0.293 0.085 0.036 0.149 0.251 0.462 1.000
MIMIC-CXR (IMPRESSION)
1.1 0.135 0.018 0.119 0.161 0.118 0.160 0.071  0.004 0.001 0.687
1.2 0.176 ~ 0.021  0.163  0.200 0.185 0.200 0.101  0.037 0.096 0.610
1.3 0.141  0.009 0.120 0.174 0.141 0.228 0.068 0.026 0.067 0.593
1.4 0.113  0.002 0.107 0.133 0.150 0.255 0.058 0.023 0.061 0.607
1.5 0.163 0.011 0.160 0.242 0.070 0.072 0.088 0.000 0.000 0.578

Table C.6: Direct report generation performance comparison for MIMIC-CXR findings and
impressions (GPT-4-vision-preview).

This suggests that GPT-4V often incorrectly labels uncertain and unmentioned conditions as
negative, contributing to its poor performance in accurately identifying negative mentions.

More evidence on label distribution is available in Table C.2.

Overall Results of GPT-4V Table C.6 and Table C.7 show all results on both findings
section and impression section. Complete image reasoning results can be seen in Table C.8.
Complete Chi square test can be seen in Table C.11. Table C.12 show the generated results

with groundtruth conditions.
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Lexical metrics Clinic Efficacy Metrics

Experiment
BLEU-1BLEU-4 ROUGE METEOR Pos F1 Pos F1@5 Rad. F1 Neg F1 Neg F1@5 Hall.|
TU X-RAY (FINDINGS)
1.1 0.278 0.038 0.218 0.326 0.030 0.024 0.178 0.284 0.429 0.494
1.2 0.282 0.042 0.216 0.328 0.023 0.010 0.174 0.308 0.475 0.614
1.3 0.237 0.027 0.189  0.281 0.053 0.052 0.140 0.265 0.429 0.523
1.4 0.233  0.016 0.179  0.235 0.072 0.119 0.105 0.226 0.402 0.619
1.5 0.325 0.037 0.247 0.318 0.061 0.080 0.191 0.290 0.455 0.287
IU X-RAY (IMPRESSION)

1.1 0.219 0.019 0.232  0.295 0.036 0.041 0.155 0.000 0.000 0.275
1.2 0.209 0.021 0.215 0.295 0.058 0.060 0.169 0.020 0.052 0.410
1.3 0.202 0.013 0.205 0.287 0.041 0.051 0.142  0.041 0.106 0.435
1.4 0.172  0.009 0.155 0.216 0.052 0.100 0.097  0.000 0.000 0.628
1.5 0.247 0.026 0.243  0.279 0.036 0.047 0.138 0.026 0.067 0.263

Table C.7: Direct report generation performance comparison for IU X-RAY findings and
impressions (GPT-4-vision-preview).

Metric MIMIC-CXR IU X-RAY
Chain-of-Thought (1st Step) Image Reasoning Chain-of-Thought (1st Step) Image Reasoning

Positive F1 0.166 0.146 0.072 0.049

Positive F1@5 0.261 0.208 0.095 0.056

Table C.8: Image reasoning performance of GPT-4-vision-preview on chest X-ray images.

C.3.4 Llama-3.2-90B-Vision Evaluation

Overall performance of direct report generation across three datasets is shown in Table C.13,
Table C.14 and Table C.15. It is noted that low hallucination of Llama-generated reports
is probably due to its straightforward and assertive writing style, exemplified by sentences
such as "The heart is enlarged," "There is a left pleural effusion," and "There is a right lung

opacity."

C.3.5 Examples of Generated Reports

The generated examples by different prompting strategies are shown in table C.16.

C.4 Human Reader Study

Instructions for human study are shown in Figure C-6.
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MIMIC-CXR CheXpert Plus

Metric

Chain-of-Thought (1st Step) Image Reasoning Chain-of-Thought (1st Step) Image Reasoning
Positive F1 0.195 0.161 0.221 0.189
Positive F1@5 0.298 0.242 0.257 0.247

Table C.9: Image reasoning performance of GPT-40 on chest X-ray images.

MIMIC CheXpert Plus
Overall (GT) Overall (Gen) Top 6 (GT) Top 6 (Gen) Overall (GT) Overall (Gen) Top 6 (GT) Top 6 (Gen)
X2 statistic 1770.38 66.05 317.86 8.71 1546.86 53.24 309.31 3.88
p-value p<le-1 1 p<le-1 0.9989 p<le-1 1 p<le-1 1
df. 144 144 25 25 144 144 25 25

Table C.10: x>-test for homogeneity of label distribution across different condition groups
(GPT-40).

. . Overall Top 6 Conditions
Statistics
Groundtruth GPT-4V  Groundtruth GPT-4V
X2 statistic 1770.38 74.25 317.86 6.11
p-value p<le4 1.00 p<le-4 1.00
df. 144 144 25 25

Table C.11: x-test for homogeneity of label distribution across different condition groups
(GPT-4-vision-preview).

. Lexical metrics Clinic Efficacy Metrics

Experiment

BLEU-1 BLEU-4 ROUGE METEOR PosF1 PosF1@5 Rad.F1 NegFl NegFl1@5 Hall.|

MIMIC-CXR
GPT-4V 0.135 0.018 0.119 0.161 0.118 0.160 0.071 0.004 0.001 0.687
GPT-4V (gt) 0.176 0.007 0.185 0.179 0.885 0.977 0.103 0.584 0.958 0.431
LLaMA-2 (gt)  0.301 0.094 0.330 0.348 0.923 0.957 0.286 0.703 0.941 0.710
IU X-RAY

GPT-4V 0.219 0.019 0.232 0.295 0.036 0.041 0.155 0.000 0.000 0.275
GPT-4V (gt) 0.216 0.003 0.229 0.207 0.852 0.919 0.089 0.630 0.868 0.235
LLaMA-2 (gt)  0.454 0.124 0.460 0.441 0.871 0.928 0.297 0.627 0.963 0.110

All metrics are evaluated on the impression section.
Table C.12: Performance in report generation with groundtruth conditions (GPT-4-vision-
preiew).
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Experiment Lexical metrics Clinical Efficacy Metrics
BLEU-1BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall.
MIMIC-CXR (FINDINGS)

1.1 0.258 0.026 0.236 0.216 0.159 0.266 0.123 0.200 0.267 0.607
1.2 0.251 0.020 0.249 0.215 0.123 0.217 0.144 0.214 0.305 0.710
1.3 0.110 0.012 0.114 0.122 0.118 0.221 0.073 0.054 0.111 0.262
1.4 0.015 0.000 0.051 0.032 0.172 0.300 0.010 0.024 0.045 0.197
1.5 0.233  0.023 0.233 0.202 0.144 0.249 0.120 0.197 0.270 0.579
MIMIC-CXR (IMPRESSION)
1.1 0.089 0.001 0.085 0.094 0.121 0.231 0.036 0.000 0.000 0.161
1.2 0.085 0.000 0.076 0.088 0.132 0.186 0.028 0.000 0.000 0.200
1.3 0.089 0.001  0.089 0.100 0.141 0.215 0.046 0.045 0.117 0.049
1.4 0.095 0.001 0.068 0.081 0.194 0.334 0.022 0.000 0.000 0.990
1.5 0.086 0.000 0.081 0.088 0.111 0.216 0.035 0.000 0.000 0.160

Table C.13: Direct report generation performance comparison for MIMIC-CXR findings
and impressions (Llama-3.2-90B-Vision-Instruct).

Experiment Lexical metrics Clinical Efficacy Metrics
BLEU-1 BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall.

IU X-RAY (FINDINGS)

1.1 0.248 0.018 0.231 0.231 0.064 0.075 0.146 0.220 0.255 0.404
1.2 0.244 0.019 0.239 0.216 0.021 0.056 0.156 0.221 0.265 0.342
1.3 0.203 0.027 0.190 0.187 0.068 0.082 0.138 0.170 0.308 0.142
1.4 0.015 0.001 0.053 0.037 0.104 0.214 0.008 0.010 0.012 0.677
1.5 0.231 0.018 0.236 0.221 0.061 0.094 0.158 0.227 0.278 0.579
IU X-RAY (IMPRESSION)
1.1 0.117  0.000 0.063 0.102 0.054 0.087 0.019 0.000 0.000 0.057
1.2 0.117  0.000 0.058 0.094 0.080 0.197 0.015 0.000 0.000 0.043
1.3 0.096  0.000 0.059 0.104 0.058 0.072 0.023 0.012 0.030 0.011
1.4 0.049  0.000 0.054 0.053 0.082 0.186 0.003 0.015 0.040 0.983
1.5 0.114  0.000  0.065 0.100 0.063 0.102 0.018 0.000 0.000 0.037

Table C.14: Direct report generation performance comparison for [lU X-RAY findings and
impressions (Llama-3.2-90B-Vision-Instruct).
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Experiment

Lexical metrics

Clinical Efficacy Metrics

BLEU-1 BLEU-4 ROUGE-L METEOR Pos F1 Pos F1@5 RadGraph Neg F1 Neg F1@5 Hall. Prop.

CHEXPERT PLUS (FINDINGS)

1.1 0.166 0.006 0.175 0.147 0.214 0.290 0.092 0.096 0.153 0.419
1.3 0.079 0.004 0.100 0.088 0.230 0.266 0.069 0.069 0.180 0.339
1.4 0.022 0.003 0.062 0.029 0.247 0.355 0.006 0.042 0.059 0.097
1.5 0.152 0.005 0.173 0.131 0.261 0.285 0.092 0.109 0.170 0.355
CHEXPERT PLUS (IMPRESSION)
1.1 0.073  0.002 0.106 0.072 0.152 0.221 0.013 0.003 0.007 0.173
1.3 0.086 0.002 0.100 0.084 0.174 0.238 0.013 0.031 0.081 0.058
1.4 0.091 0.000 0.087 0.071 0.190 0.281 0.005 0.000 0.000 0.985
1.5 0.067 0.001 0.102 0.069 0.154 0.209 0.012 0.003 0.007 0.157

Table C.15: Performance comparison for Chexpert Plus findings and impressions (Llama-
3.2-90B-Vision-Instruct).
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Figure C-1: 95% Bootstrap confidence interval of top 6 conditions in our sample for GPT-4-
vision-preview.
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Figure C-2: 95% Bootstrap confidence interval of top 5 conditions in our sample for GPT-40.
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Figure C-3: Correlations between distributions of Pr(Pos) for different condition groups
(GPT-4-vision-preview).
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Figure C-4: Correlations between distributions of Pr(Pos) for different condition groups
(GPT-40).
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Figure C-5: Overlap count heatmap within groudtruth condition groups. The overlap
between any two groups is relatively small compared to the original group sizes, which
relate to the counts on the diagonal, ensuring that this overlap does not compromise the
robustness of our results.
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Experiment

Findings Impression

GroundTruth

Single AP view of the chest provided. Interval increase in Worsening collapse of the right lung from
opacification of the right hemithorax with unchanged rightward ____ with unchanged rightward shift of
shift of midline structures. The left lung is clear. Hilar and ~ mediastinal structures.

cardiomediastinal contours are obscured.

Basic

The cardiomediastinal silhouette is severely enlarged. There is 1. Severe cardiomegaly. 2. Opacification of
opacification of the right hemithorax with loss of visualization the right hemithorax consistent with a large
of the right heart border; this may be attributable to a large  pleural effusion and/or consolidation. 3. No
pleural effusion, consolidation, or a combination of both. The pneumothorax or acute bony abnormality
left lung field remains clear with normal aeration, without identified. 4. The presence of a nasogastric
evidence of focal consolidation. The trachea is midline. There tube with an appropriately situated tip.
is no evidence of pneumothorax on the left. The osseous Further investigation with a CT scan may be
structures of the visualized portion of the thorax appear intact. considered to differentiate between effusion
Nasogastric tube is in place with its tip projecting over the and consolidation and to assess for any
gastric bubble. additional intrathoracic pathology. Clinical
correlation is recommended.

+Indication

The cardiac silhouette appears enlarged. There is an opacity in Right upper lobe and right lower lobe
the right upper lobe consistent with lobar collapse and volume collapse with an enlarged cardiac silhouette.
loss as evidenced by crowding of adjacent rib spaces. There are These findings could be consistent with lung
also patchy infiltrates seen in the right lower lobe. The atelectasis secondary to obstruction, possibly
remaining lung fields are clear without evidence of pleural due to an underlying mass or mucous
effusion. The bony thorax and soft tissues appear plugging, and heart failure should be
unremarkable. considered as a differential for cardiomegaly.
Further diagnostic evaluation and correlation
with clinical findings are recommended.

+Instruction

- Enlarged Cardiomediastinum is observed. - Cardiomegaly is - Cardiomegaly with associated enlargement

present. - Evidence of Lung Opacity is seen. - Extensive of the cardiomediastinum. - Significant lung

consolidation is apparent. - There is Pleural Effusion. - opacity indicating consolidation, likely due

Support devices in the form of a central venous catheter are  to an infectious or inflammatory process,

noted. - No definite pneumothorax, pleural lesions, or fractures necessitating further clinical correlation. -

are identified. Pleural effusion is present. - Central venous
catheter in situ. - Absence of pneumothorax
or significant pleural disease.

CoT

The cardiomediastinal silhouette is enlarged due to Cardiomegaly with signs of pulmonary
cardiomegaly. There are findings suggesting the presence of edema and pleural effusion. Supportive
pulmonary edema, as evidenced by the perihilar alveolar devices in situ. No evidence of atelectasis,
opacities bilaterally, which may extend to the periphery. No  pneumothorax, or acute bony injury.
evidence of atelectasis. There is a presence of pleural effusion

and support devices, including endotracheal tube above the

carina and a gastric tube in the stomach. No lung masses or

nodules are identified. No definite pneumothorax or

pneumoperitoneum.

Few-shot

AP supine and lateral decubitus views of the chest demonstrate Extensive right lung consolidation with
extensive consolidation involving the right hemithorax with ~ volume loss, likely representing a severe
associated volume loss. Evidence of air bronchograms within pneumonia process. No clear evidence of
the consolidation suggests an alveolar filling process, such as pleural effusion or pneumothorax on the
pneumonia. There is near-complete opacification of the right available projections. Compensatory
lung, with the trachea deviated towards the right side, indicative hyperinflation of the left lung. Clinical
of volume loss. No visible pneumothorax or significant pleural correlation and possibly further imaging,
effusion is noted on the limited view available. The left lung is such as a CT scan, are recommended for a
hyperinflated, likely compensatory. There is a loss of definition comprehensive assessment.

of the right heart border and diaphragm silhouette in keeping

with the adjacent consolidation. The left hemidiaphragm and

heart borders are normal. Osseous structures appear intact but

are poorly visualized due to overlying opacity.

Table C.16:
study.

Comparison of generated reports across different prompting strategies for one
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Thanks for participating in our human evaluation study! Feel free to reach me at
_if you encounter any issue or any questions in the process.

To begin, please register at https://physionet.org/content/mimic-cxr/2.0.0/ and sign the data
agreement before the study.

You will be provided with a zipped folder containing an Excel sheet

reader_study {YOUR_NAME}.csv, which is the main file you will work on, accompanied by
chest X-ray images. If you are a Windows user, no additional action is required. However, if you
are using a MacBook, please upload the entire folder to OneDrive and open the Excel sheet
from there.

We would like you to complete the rating for 50 patient cases. Each case will include a chest
x-ray image, and three reports generated by different methods. Please note that the reports
we provided are only the impression section.

Please simulate the real clinical workflow, and give your ratings to the following dimensions:

1. First, take a look at the chest x-ray, and provide your decision on whether each of the
reports (impression section) are clinically usable or not, as you would in real practice. (1
means usable and 0 means not usable).

And then, please use likert scale to evaluate each of them in terms of

2. Clinical Efficacy -- Diagnostic Accuracy (Likert 1-5)

This dimension evaluates how accurate the report is in diagnosing the patient's condition
based on the provided chest X-ray image.

3. Clinical Efficacy -- Completeness (Likert 1-5)

This dimension assesses whether the report covers all relevant clinical findings and
provides a comprehensive summary of the patient's condition.

4. Lexical Metrics -- Clarity/Readability (Likert 1-5)

This dimension evaluates the linguistic quality of the report, focusing on how clear,
concise, and easily understandable the text is.
5 is the best score and 1 is the lowest score.

A few notes:
1. Study might contain multiple images. Please click the link_1, link_2, ... to view them.
2. Some reports might have masked measurements (xxx cm), and dates, doctor names.
Those are de-identified information, please do not consider them as errors.
3. If a report has mention of prior study, please ignore that part and provide your rating only
based on the current study’s information.

Additionally, please feel free to leave any free-form notes or comments regarding each case.

Once you have completed the evaluation for all 50 cases, please return only the Excel sheet to

Figure C-6: Human reader study instructions.
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C.5 Prompts

Table C.17: Prompt 1.1 Basic generation: direct report generation based on chest X-ray
images.

System You are a professional chest radiologist that reads chest X-ray image(s).

User Write a report that contains only the FINDINGS and IMPRESSION
sections based on the attached images. Provide only your generated report,
without any additional explanation and special format. Your answer is for
reference only and is not used for actual diagnosis.

Table C.18: Prompt 1.2 Indication enhancement: providing the indication section.

System You are a professional chest radiologist that reads chest X-ray image(s).

User Below is INDICATION related to chest X-ray images.
INDICATION: {}

Write a report that contains only the FINDINGS and IMPRES-
SION sections based on the attached images and INDICATION. Provide
only your generated report, without any additional explanation and
special format. Your answer is for reference only and is not used for
actual diagnosis.
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Table C.19: Prompt 1.3 Instruction enhancement: providing information on medical condi-

tion labels.

System

You are a professional chest radiologist that reads chest X-ray image(s).

User

Below is an observation plan consisting of 14 conditions: “No Finding”,
“Enlarged Cardiomediastinum”, “Cardiomegaly”, “Lung Lesion”, “Lung
Opacity”, “Edema”, “Consolidation”, “Pneumonia”, “Atelectasis”,
“Pneumothorax”, ‘“Pleural Effusion”, ‘“Pleural Other”, ‘Fracture”,

“Support Devices”.

Based on attached images, assign labels for each condition ex-
cept “No Finding”: “17, “0”, “-17, “2”. It is noted that “No Finding” is
either “2” or “1”. These labels have the following interpretation:

1 - The observation was clearly present on the chest X-ray image.

0 - The observation was absent on the chest X-ray image and was
mentioned as negative.

-1 - The observation was unclear if it exists.

2 - The observation was absent but not explicitly mentioned.

Based on labels you choose for each condition, write a report
that contains only the FINDINGS and IMPRESSION sections. Don’t
return any of your assigned labels. Provide only your generated report,
without any additional explanation and special format. Your answer is for
reference only and is not used for actual diagnosis.
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Table C.20: Prompt 1.4 Chain-of-Thought: step 1 - medical condition labeling; step 2 -

report synthesis.

System

You are a professional chest radiologist that reads chest X-ray image(s).

User

Below is an observation plan consisting of 14 conditions: “No Finding”,
“Enlarged Cardiomediastinum”, “Cardiomegaly”, “Lung Lesion”, “Lung
Opacity”, “Edema”, “Consolidation”, “Pneumonia”, “Atelectasis”,
“Pneumothorax”, “Pleural Effusion”, “Pleural Other”, “Fracture”,

“Support Devices”.

Based on attached images, assign labels for each condition ex-
cept “No Finding”: “17, “0”, “-17, “2”. It is noted that “No Finding” is
either “2” or “1”. These labels have the following interpretation:

1 - The observation was clearly present on the chest X-ray image.

0 - The observation was absent on the chest X-ray image and was
mentioned as negative.

-1 - The observation was unclear if it exists.

2 - The observation was absent but not explicitly mentioned.

The first step is to return one list of your assigned labels. For
multiple images, assign the labels based on all images and return only
one list of labels for the given 14 conditions.

The second step is to write a report that contains only the FIND-
INGS and IMPRESSION sections based on labels you choose for each
condition.

Your answer is for reference only and is not used for actual diag-
nosis. Strictly follow the format below to provide your output.

<LABEL>

[

(“No Finding”, “17[*27),

(“Enlarged Cardiomediastinum”, “071“1”*27|*-17),
(“Cardiomegaly”, “0”1“171“271%-17),
(“Lung Lesion”, “0”[*“171“27|-17),
(“Lung Opacity”, “07[“171“271“-17),
(“Edema”, “0”[*“171“271-17),
(“Consolidation”, “071“171“271%-17),
(“Pneumonia”, “0”1“171“271%-17),
(“Atelectasis”, “071“171*27*-17),
(“Pneumothorax”, “071“171“2”|*“-17),
(“Pleural Effusion”, “071“17*27[*-17),
(“Pleural Other”, “071“171“271%-17),
(“Fracture”, “0”“17“2”1-17),
(“Support Devices”, “0”[“1”“2”[*-17)
] 144
</LABEL>

<REPORT>

FINDINGS: <findings>



Table C.21: Prompt 1.5 Few-shot: few-shot in-context learning given a few examples
(MIMIC).

System You are a professional chest radiologist that reads chest X-ray image(s).

User Write a report that contains only the FINDINGS and IMPRESSION
sections based on the attached images. Provide only your generated
report, without any additional explanation and special format. Your
answer is for reference only and is not used for actual diagnosis.

[.JPEG]
FINDINGS: Single portable view of the chest is compared to previous
exam from ___. Enteric tube is seen with tip off the inferior field of

view. Left PICC is seen; however, tip is not clearly delineated. Persistent
bibasilar effusions and a right pigtail catheter projecting over the lower
chest. There is possible right apical pneumothorax. Superiorly, the lungs
are clear of consolidation. Cardiac silhouette is within normal limits.
Osseous and soft tissue structures are unremarkable.

IMPRESSION: No significant interval change with bilateral pleural
effusions with right pigtail catheter in the lower chest. Possible small
right apical pneumothorax.

[.JPEG]

FINDINGS: Frontal and lateral radiographs of the chest show hyper-
inflated lungs with flattened diaphragm, consistent with emphysema.
Asymmetric opacity in the right middle lobe is concerning for pneumonia.
No pleural effusion or pneumothorax is seen. The cardiomediastinal
contours are within normal limits aside from a tortuous aorta.
IMPRESSION: Right middle lobe opacity concerning for pneumonia.

[.JPEG]

FINDINGS: PA and lateral views of the chest provided. Midline
sternotomy wires and mediastinal clips again noted. Suture is again noted
in the right lower lung with adjacent rib resection. There is mild scarring
in the right lower lung as on prior. There is no focal consolidation, large
effusion or pneumothorax. No signs of congestion or edema. The heart
remains moderately enlarged. The mediastinal contour is stable.
IMPRESSION: Postsurgical changes in the right hemithorax. Mild
cardiomegaly unchanged. No edema or pneumonia.

[.JPEG]

FINDINGS: PA and lateral views of the chest provided. Biapical pleural
parenchymal scarring noted. No focal consolidation concerning for
pneumonia. No effusion or pneumothorax. No signs of congestion or
edema. Cardiomediastinal silhouette is stable with an unfolded thoracic
aorta and top-normal heart size. Bony structures are intact.
IMPRESSION: No acute findings. Top-normal heart size.
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Table C.22: Prompt 1.5 Few-shot: few-shot in-context learning given a few examples (IU
X-RAY).

System You are a professional chest radiologist that reads chest X-ray image(s).

User Write a report that contains only the FINDINGS and IMPRESSION
sections based on the attached images. Provide only your generated
report, without any additional explanation and special format. Your
answer is for reference only and is not used for actual diagnosis.

[.PNG]

FINDINGS: 2 images. Heart size upper limits of normal. Mediastinal
contours are maintained. The patient is mildly rotated. There is a small to
moderate sized right apical pneumothorax which measures approximately
2.0 cm. No focal airspace consolidation is seen. Left chest is clear. No
definite displaced bony injury is seen. Results called XXXX. XXXX
XXXX p.m. XXXX, XXXX.

IMPRESSION: Small to moderate right apical pneumothorax.

[.PNG]

FINDINGS: The heart is normal in size and contour. There is focal
airspace disease in the right middle lobe. There is no pneumothorax or
effusion.

IMPRESSION: Focal airspace disease in the right middle lobe. This
is most concerning for pneumonia. Recommend follow up to ensure
resolution.

[.PNG]

FINDINGS: Stable cardiomegaly with vascular prominence without
overt edema. No focal airspace disease. No large pleural effusion or
pneumothorax. The XXXX are intact.

IMPRESSION: Stable cardiomegaly without overt pulmonary edema.

[.PNG]

FINDINGS: Heart is enlarged. There is prominence of the central
pulmonary vasculature. Mild diffuse interstitial opacities bilaterally,
predominantly in the bases, with no focal consolidation, pleural effusion,
or pneumothoraces. XXXX and soft tissues are unremarkable.
IMPRESSION: Cardiomegaly with pulmonary interstitial edema and
XXXX bilateral pleural effusions.

[.PNG]
FINDINGS: The cardiac silhouette and mediastinum size are within
normal limits. There is no pulmonary edema. There is no focal
consolidation. There are no XXXX of a pleural effusion. There is no
evidence of pneumothorax.
IMPRESSION: Normal chest x-XXXX.
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IMPRESSION: Presumed closure device at the level of the lisamentum



Table C.23: Prompt 2.1 Image reasoning: medical condition labeling from chest X-ray
images (2-class).

System

You are a professional chest radiologist that reads chest X-ray image(s).

User

Below is an observation plan consisting of 14 conditions: “No Finding”,
“Enlarged Cardiomediastinum”, “Cardiomegaly”, “Lung Lesion”, “Lung
Opacity”, “Edema”, “Consolidation”, “Pneumonia”, “Atelectasis”,
“Pneumothorax”, ‘“Pleural Effusion”, ‘“Pleural Other”, ‘“Fracture”,

“Support Devices”.

Based on attached images, assign labels for each condition: “17,
“0”. If the observation was clearly present on the chest X-ray image,
assign “1” to the condition. Otherwise, assign “0” to the condition.

For multiple images, assign the labels based on all images and
return only one list of labels for the given 14 conditions. Your answer is
for reference only and is not used for actual diagnosis. Strictly follow the
format below to provide your output.

<LABEL>

[

(“No Finding”, “0”1“1”),
(“Enlarged Cardiomediastinum”, “0”1“1”),
(“Cardiomegaly”, “0”1“1”),
(“Lung Lesion”, “0”1“1™),
(“Lung Opacity”, “071“17),
(“Edema”, “0”1“1”),
(“Consolidation”, “0”1“1”),
(“Pneumonia”, “0”|“1”),
(“Atelectasis”, “071“1”),
(“Pneumothorax”, “0”11”),
(“Pleural Effusion”, “0”|*1”),
(“Pleural Other”, “0”1“1”),
(“Fracture”, “0”1“1”),
(“Support Devices”, “0”*1”)
]

</LABEL>

147



Table C.24: Prompt 2.2 Image reasoning: medical condition labeling from chest X-ray
images (4-class).

User Below is an observation plan consisting of 14 conditions: “No Finding”,
“Enlarged Cardiomediastinum”, “Cardiomegaly”, “Lung Lesion”, “Lung
Opacity”, “Edema”, “Consolidation”, “Pneumonia”, “Atelectasis”,
“Pneumothorax”, ‘“Pleural Effusion”, ‘“Pleural Other”, ‘“Fracture”,

“Support Devices”.

Based on attached images, assign labels for each condition ex-
cept “No Finding”: “17, “0”, “-17, “2”. It is noted that “No Finding” is
either “2” or “1”. These labels have the following interpretation:

1 - The observation was clearly present on the chest X-ray image.

0 - The observation was absent on the chest X-ray image and was
mentioned as negative.

-1 - The observation was unclear if it exists.

2 - The observation was absent but not explicitly mentioned.

For multiple images, assign the labels based on all images and
return only one list of labels for the given 14 conditions. Your answer is
for reference only and is not used for actual diagnosis. Strictly follow the
format below to provide your output.

<LABEL>

[

(“No Finding”, “17[*2”),

(“Enlarged Cardiomediastinum”, “07[“1”*2”[*-17),
(“Cardiomegaly”, “0”1“171“271%-17),
(“Lung Lesion”, “0”“171“27*-17),
(“Lung Opacity”, “0”1“171*27[*-17),
(“Edema”, “0”1“171“2”I-17),
(“Consolidation”, “0”[“17[*“271*-17),
(“Pneumonia”, “0”1“171“271*-17),
(“Atelectasis”, “07[“171“27[*-17),
(“Pneumothorax”, “0”[“171“27[*-17),
(“Pleural Effusion”, “0”[“1”“2”1-17),
(“Pleural Other™, “0”1“1”1*“271%-17),
(“Fracture”, “0”“17“2”1-17),
(“Support Devices”, “07*“17“2”1%-17)
]

</LABEL>
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Table C.25: Prompt 3.1 Report synthesis: report generation using provided positive and
negative conditions.

System You are a professional chest radiologist that reads chest X-ray image(s).
User Below is a given observation plan:
<LABEL>

Positive Conditions: {}
Negative Conditions: {}
</LABEL>

Write a report that contains only the FINDINGS and IMPRES-
SION sections based on given labels rather than images. For positive
conditions, you should clearly mention it in the report. For negative
conditions, you should clearly mention in the report that there is no clear
evidence of this condition. You should not mention any other conditions
not listed above. Your answer is for reference only and is not used for
actual diagnosis. Strictly follow the format below to provide your output.

<REPORT>

FINDINGS: <findings>
IMPRESSION: <impression>
</REPORT>

Table C.26: Prompt of finetuned LLaMA-2 report synthesis given groundtruth labels

System Write a radiology report that includes all given positive labels and negative
labels.
User Input:

Positive labels: {positive_labels}
Negative labels: {negative_labels}

Output: {output}
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Chapter D

CLEAR Evaluation Framework Details

D.1 Open-sourced Artifacts

We will formally release code package for CLEAR on GitHub at the camera-ready stage. The
current version supports both open-source models via the vLLM backend and closed-source

models through the Azure OpenAl API.

Our collected ground-truth dataset, CLEAR-Bench, and related data documentation will

also be made publicly available on Physionet to support future research in this area.

D.2 Data Annotation and Curation

We accessed MIMIC-CXR-JPG data by following the required steps on https://physionet.
org/content/mimic-cxr-jpg/2.1.0/. We first registered and applied to be a creden-
tialed user, and then completed the required training of CITI Data or Specimens Only Re-
search. Data license can be found at https://physionet.org/content/mimic-cxr-jpg/

view-license/2.1.0/.

During each human annotation process, we follow a traditional paradigm: initial pilot
rounds are conducted to gather user feedback, followed by formal, independent large-scale
annotation, data analysis for quality control and final resolution via consensus discussion.

Our annotation platform is built upon an open source data labeling tool, Label Studio [114].
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D.2.1 Label Structure Refinement

MIMIC-CXR-JPG Labeling Criteria

Positive (1.0): The label is positively men-
tioned in the report and present in one or more
associated images.

Example: “A large pleural effusion”

Negative (0.0): The label is negatively men-
tioned in the report and should not be present
in any associated image.

Example: “No pneumothorax.”

Uncertain (-1.0): The label is either: (1) men-
tioned with uncertainty, so presence in the im-
age is unclear; or (2) described ambiguously,
with uncertain existence.

Explicit uncertainty: “The cardiac size cannot
be evaluated.”

Ambiguous language: “The cardiac contours
are stable.”

Unmentioned (Missing): The label is not
mentioned in the report at all.

Figure D-1: 4-type labeling criteria in MIMIC.

During the interaction of pilot training, we closely work with all involved radiologists
and collect a lot of valuable feedback for user experience with designed interfaces and task

instruction.

After summarizing input feedback, we recognize some shared and repeatedly mentioned
issues in the 4-type label structure of MIMIC-CXR-JPG (see Figure D-1): (1) The “un-
mentioned” category has a high degree of overlap with other categories, particularly with
“negative” labels. This is because radiologists often do not explicitly state negative findings
in the report. However, indirect phrases such as “Lungs are clear” can implicitly negate
a wide range of lung-related abnormalities. (2) Additionally, different radiologists have
varying tendencies in labeling conditions. More conservative radiologists may lean toward
assigning “uncertain” rather than “positive” labels, even when the evidence suggests a likely
presence. This inconsistency introduces label noise and ambiguity, particularly when these

labels are used for supervised training or evaluation purposes.

Therefore, we refined the original MIMIC label structure into a “5+1” annotation
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Our Refined Labeling Criteria

Confidently Absent: The condition is clearly
stated as not present in the report.
Example: “No pneumothorax.”

Likely Absent: The report implies the con-
dition is likely absent, but the language is
ambiguous or uncertain.

Example: “Heart size is normal though in-
creased.”

Neutral: The report does not clearly indicate
presence or absence.

Explicit uncertainty: “The cardiac size cannot
be evaluated.”

Ambiguous language: “The cardiac contours
are stable.”

Likely Present: The report suggests the con-
dition may be present, but uses uncertain or
ambiguous language.

Example: “Likely reflecting compressive at-
electasis.”

Confidently Present: The condition is clearly
stated as present in the report.
Example: “A small right pleural effusion.”

Figure D-2: Our refined 5-type labeling criteria during expert annotation.

framework. The “5” refers to an extension of MIMIC'’s original “Positive,” “Negative,” and
“Uncertain” categories into five more nuanced types, as shown in Figure D-2. The “+1”
refers to retaining the “Unmentioned” label as a separate flag. Specifically, radiologists are
asked to select one of the five labels for each condition and additionally indicate whether

this label is explicitly mentioned in the report or not.

After collecting radiologist responses, we map the five types into a final three-type
scheme for downstream use: “Confidently Present” and “Likely Present” are merged into
“Positive,” “Confidently Absent” and “Likely Absent” into ‘“Negative,” and “Neutral” is
renamed as “Unclear.” We then proceed with inter-rater alignment checks for quality control.
Notably, the “mentioned” flag is not incorporated into the final label itself but serves as
a supporting indicator for data managers to differentiate between labeling disagreements
due to quality issues versus differences in individual clinical interpretation. This overall

process enables us to accommodate variability in radiologist judgment while maintaining
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Figure D-3: Interface for Label Annotation.

high annotation quality.

D.2.2 Expert-in-the-loop Dataset Curation

We first exclude 2 cases without any “FINDINGS” or “IMPRESSION” and 30 cases labeled
as “No Finding” in the radiologist annotation dataset from MIMIC-CXR-JPG (containing
687 studies in total). Then, we randomly select 20 cases to serve as a pilot set for initial

review and refinement of the process.

We then prompt GPT-40 to generate condition labels following the same guidelines
used in the original MIMIC documentation for remaining studies excluded 20 pilot cases.
After identifying discrepancies between the model-generated labels and the original dataset

annotations, we isolate the suspected noisy labels for further review.

For each case, we extract only the relevant report sections (FINDINGS and IMPRES-
SION), with no images involved, and present them to a board-certified radiologist. The
radiologist independently re-annotates the report from scratch based on their clinical judg-

ment.

During the curation, we discard 5 cases due to GPT-40 generation failures. To manage
the annotation workload, we limit each review to reports with one to five mismatched

conditions per case.

The full curation process took approximately one month, resulting in 550 finalized

reports, each annotated with 13 condition labels.

Task instruction can be checked in Figure D-5 and interface can be checked in Figure D-
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Figure D-4: Interface for Attribute Curation.

D.2.3 CLEAR-Bench: Expert Ensemble

After excluding "No Finding" cases and those already annotated in the curation stage, we
selected 5 cases for pilot training and randomly sampled 100 reports from the test and

validation sets of MIMIC-CXR-JPG to construct our final evaluation dataset.

Following a brief onboarding process using 5 pilot cases, we collected independent
annotations from three radiologists, each labeling the 100 reports from scratch. After an
initial round of majority voting, 25 reports with 32 individual condition labels in total
remained unresolved. These were finalized through a single round of discussion and

consensus among the experts.

The full expert ensemble workflow was completed over the course of three months,

resulting in 100 fully annotated reports, each with 13 condition labels.

Task instruction can be checked in Figure D-5 and interface can be checked in Figure D-

D.2.4 CLEAR-Bench: Attribute Curation

The blueprint for attribute design was initially inspired by the concept of an “Attribute-Value
Format” proposed by Dr. Langlotz in his practical guide to writing radiology reports [64,
207]. Driven by this concept, we generated a list of commonly used report attributes with

the assistance of GPT-40, and refined it through discussion with our collaborating research
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radiologist, who is also a co-author. Together, we determined which attributes to include,
revise, or remove. During this process, we not only developed a concise yet comprehensive
attribute structure but also collected useful example phrases and sentences for each attribute.
These examples were later incorporated into the prompts used in the Description Extraction
Module (see Appendix D.4). The final version of the prompt set and word list was also

reviewed and approved by a clinical radiologist.

We curated attributes using the same 100 studies described earlier, excluding 2 cases
that lacked any positively identified conditions in expert ensemble labels. Following a round
of pilot training, the formal curation process proceeded as detailed in Section 5.3. After
collecting radiologist responses, we conducted a second round of quality control to finalize

the ground-truth attributes. The full human curation process took approximately one month.

Task instructions are shown in Figure D-6, and the annotation interface is illustrated in

Figure D-4.

D.3 CLEAR: Implementation Details

Base Model GAS LR Epochs

Llama3.1-8B-Instruct 1 7.0 x 107° 4
Qwen2.5-7B-Instruct 1 9.0 x 107° 5

Table D.1: Hyperparameter search results. GAS denotes the number of gradient-
accumulation steps, LR the learning rate, and Epochs the total training epochs.

Supervised finetuning details. All fine-tuned models were obtained through supervised
fine-tuning with LLaMA-Factory [132]. To identify an optimal configuration, we developed
an automated hyperparameter optimization (HPO) framework that combines five-fold cross-
validation with a grid search. Learning rate, number of epoch, and gradient accumulation
steps are three objects to be optimized. For learning rate, searching space is [3.06_6, 3.06_5],
with an interval of 2.0e~®. For epoch, searching space is {2,3,4,5}. For gradient accu-
mulation steps, searching target is {1,2,4}. We conduct extensive experiments to assess

hyperparameters’ influence. A total of 360 models are finetuned for one base model to
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determine the best hyperparameter setting. The best-performing settings, summarized in
Table D.1, are used for all experiments reported in Table 5.2. Hyperparameter optimization
and model training are performed on NVIDIA A100 80G and NVIDIA H100 94G GPUs.
The HPO stage takes 93 h 51 m 20 s on four A100s and 14 h 39 m 36 s on four H100s.

Inference details for local models. We serve the models locally with vLLM (0.8.5.post1)
[57]. Inference runs with a temperature of 1e-5 and a max_tokens of 4,096; all other sampling
parameters remain at their default settings. A single NVDIA A100 80G is sufficient for

inference under this setting.

Model Standard Pric-
ing (per 1M To-
kens)

GPT-40-2024-1120 (Global) Input: $2.50
Cached: $1.25
Output: $10.00

01-mini-2024-09-12 (Global) Input: $1.10
Cached: $0.55
Output: $4.40

Table D.2: Standard API pricing per 1M tokens for GPT-40 and ol-mini models, based
on Azure OpenAl pricing: https://azure.microsoft.com/en-us/pricing/details/
cognitive-services/openai-service/#pricing.

API Details We access OpenAl’s GPT-40 (2024-11-20) and o1-mini (2024-09-12) via

Microsoft’s Azure. Pricing details can be checked in Table D.2.

D.4 Template & Terminology List
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Thank you very much for your support in our human annotation process! To begin with, please register
at https://physionet.org/content/mimic-cxr-jpg/2.1.0/ and sign the data agreement before
the study. Feel free to reach us at {EMAIL} if you encounter any issue or any questions during the
process.

Overview: Task Description

In this task, you will be extracting clinical information from {NUM} radiology reports in total. You will
not be shown the corresponding images, so you are being asked to interpret each report, as written,
for the extent to which the presence of {NUM} conditions is captured. It is important to note that
some reports may have empty FINDINGS or IMPRESSION sections due to limitations in the original
MIMIC-CXR-JPG database. Please follow the labeling instructions as below.

INSTRUCTIONS:

For each case, you will be presented with a single radiology report. Your objective is to choose the
single most appropriate criterion among 5 options (see below) for each of the {NUM} conditions AND
note whether each condition is explicitly mentioned in the report. Please base your decisions solely on
the provided report.

CRITERIA:
{See Figure D-2}

Interface User Guide
{Account Information and Usage Tips}

Figure D-5: Instruction Template for Label Annotation Task

Thank you very much for your support in our human annotation process! To begin with, please register
at https://physionet.org/content/mimic-cxr-jpg/2.1.0/ and sign the data agreement before
the study. Feel free to reach us at {EMAIL} if you encounter any issue or any questions during the
process.

Overview: Task Description

This curation task is to identify fine-grained features—such as location, severity, and treatment—related
to specific medical conditions (e.g., edema, atelectasis, support devices) in radiology reports. You
will review {NUM} text-only reports (no X-ray images) and assess the accuracy of feature annotations
generated by an Al model.

Each report includes 13 predefined medical conditions, but you will only see those that were positively
labeled by human annotators. As a result, the number of conditions shown per report may vary. For
each positive condition, the Al extracts fine-grained details (e.g., location, severity), which you need to
review. Start by marking the model’s answer as correct, partially correct, or incorrect. If it’s incorrect,
enter the corrected version in the provided text box.

[optional] If you’d like to understand how the Al generated its responses, you can review the prompts
we used at {See section D.4}.

Interface User Guide
{Account Information and Usage Tips}

Figure D-6: Instruction Template for Attribute Curation Task
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Prompt 1: Presence

System Instruction:
You are a radiologist reviewing a piece of radiology report to assess the
presence of 13 specific medical conditions.

Conditions to evaluate: Cardiomegaly, Enlarged Cardiomediastinum,
Atelectasis, Consolidation, Edema, Lung Lesion, Lung Opacity, Pneumonia,
Pleural Effusion, Pneumothorax, Pleural Other, Fracture, Support Devices.

Each medical condition in the radiology report must be categorized using one
of the following labels: "positive”, "negative"” or "unclear”. The criteria
for each label are:
"positive”: The condition is indicated as present in the report.
"negative”: The condition is indicated as not present in the report.
"unclear”: The report does not indicate a clear presence or absence of
the condition.

The user will provide you with a piece of radiology report as input. Return
your results in the following JSON format:

<TASK1>{
"Cardiomegaly": "positive”|"negative"|"unclear”,
"Enlarged Cardiomediastinum”: "positive”|"negative”|"unclear”,
"Atelectasis”: "positive”|"negative”|"unclear”,
"Consolidation”: "positive”|"negative"|"unclear”,
"Edema"”: "positive"|"negative"|"unclear"”,
"Lung Lesion”: "positive”|"negative"|"unclear",
"Lung Opacity": "positive”|"negative"”|"unclear”,
"Pneumonia”: "positive"”|"negative"|"unclear”,
"Pleural Effusion”: "positive"”|"negative"|"unclear"”,
"Pneumothorax"”: "positive”|"negative"|"unclear”,
"Pleural Other"”: "positive"|"negative"|"unclear”,
"Fracture"”: "positive”|"negative"”|"unclear",
"Support Devices"”: "positive"|"negative"|"unclear”

} </TASK1>

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 1
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Prompt 2: First Occurrence

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please determine from the given report (i.e., current study) whether
{condition} is being identified for the first time in current study
["current”], or if the report indicates it was already present or noted in a
prior study ["previous"]. If unmentioned, respond with ["N/A"]. Only choose
one of the following: ["current”], ["previous”], or ["N/A"].

Example answer: ["current”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 2

Prompt 3: Change

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please determine from the given report whether {condition} is improving,
stable, or worsening according to the given report. If the status is not
mentioned, respond with ["N/A"]. If the report describes multiple statuses,
respond with ["mixed”]. Only choose one of the following: ["improving"],
["stable”], ["worsening”], ["mixed”] or ["N/A"]

Example answer: ["stable”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 3
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Prompt 4: Severity

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please determine from the given report whether {condition} is mild, moderate,
or severe according to the given report. If the status is not mentioned,

respond with [”N/Aﬂ. If the report describes multiple statuses, respond
with ["mixed”]. Only choose one of the following: ["mild”], ["moderate”],
["severe”], ["mixed”] or ["N/A"]

Example answer: ["mild”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 4
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Prompt 5: Descriptive Location

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please identify the location(s) of {condition} described in the given report.
Extract and return a list of phrases that mention the anatomical location(s)
{location} specifically related to {condition}. For each location, include
any relevant descriptors descriptor and any associated status {status}.
{note} If multiple phrases refer to the same location, merge them into
one single entry using the most complete, informative, and non-redundant
phrasing for that unique area. Format your output as one single list in
the following format: ["entry-1","entry-2",...,"entry-n"]. If nothing is
mentioned, return ["N/A"].

Example answer:
["left lower lobe compressive atelectasis”,”right middle lobe bibasilar atelectasis”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 5: Additional Notes: location/descriptor/status/note are a list of example key
words or phrases for each condition collected from radiologists, such as (e.g., compressive,
segmental, focal, terminal, peripheral, etc.).
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Condition Location Descriptor Status Note

Atelectasis (e.g., left upper, right (e.g., compressive, seg- (e.g., improving,
lower, whole lung, etc.) mental, focal, terminal, worsening, stable,

peripheral, etc.) unchanged, new, etc.)
Cardiomegaly (e.g., mild, moderate, (e.g., improving,
severe, etc.) worsening, stable,

unchanged, new, etc.)
Consolidation (e.g., left upper, right (e.g., segmental, focal, (e.g., improving,
lower, whole lung, etc.) terminal, etc.) worsening, stable,

unchanged, new, etc.)
Edema (e.g., medial (near (e.g., interstitial, alveo- (e.g., improving,
hilum), middle, lateral lar, minimal, mild, mod- worsening, stable,

(peripheral), etc.)

erate, severe, etc.)

unchanged, new, etc.)

Enlarged Cardio- (e.g., mild, moderate, (e.g., improving,

mediastinum severe, etc.) worsening, stable,
unchanged, new, etc.)

Fracture (e.g., ribs, cervicotho- (e.g., simple or closed, (e.g., improving,

racic vertebra, etc.) compound or open, worsening, stable,

incomplete or partial,
complete, etc.)

unchanged, new, etc.)

Lung Lesion

(e.g., central, peripheral,
sub-pleural, entire pleu-
ral space, etc.)

(e.g., density, internal
composition, shape,
margin, etc.)

(e.g., improving,
worsening, stable,
unchanged, new, etc.)

Explicitly refer to a lung lesion
(e.g., nodules, masses, infiltrates,
metastases, etc.) and ignore find-
ings unrelated to lung lesions.

Lung Opacity

(e.g., left upper, right
lower, perihilar, etc.)

(e.g., interstitial, alveo-
lar, diffuse, focal, dense,
ill-defined, faint, etc.)

(e.g., improving,
worsening, stable,
unchanged, new, etc.)

Pleural Effusion

(e.g., left, right, entire
pleural space, etc.)

(e.g., subpulmonic, pos-
terior, loculated, lobular,
small, moderate, large,
etc.)

(e.g., improving,
worsening, stable,
unchanged, new, etc.)

Pneumonia (e.g., left upper, right (e.g., segmental, focal, (e.g., improving,
lower, whole lung, etc.) terminal, etc.) worsening, stable,

unchanged, new, etc.)
Pneumothorax (e.g., left upper, right (e.g., simple, tension, (e.g., improving,
lower, etc.) open, etc.) worsening, stable,

unchanged, new, etc.)

Pleural Other

(e.g., left upper, right
lower, entire pleural
space, etc.)

(e.g., subpulmonic, pos-
terior, loculated, lobular,
diffuse, focal, etc.)

(e.g., improving,
worsening, stable,
unchanged, new, etc.)

Do not include findings that per-
tain solely to Pleural Effusion;
only include findings related to
other pleural abnormalities (e.g.,
thickening, plaques, etc.).

Support Devices

Exclude any mention of device
removal. Only include informa-
tion related to existing or cur-
rently present devices.

Table D.3: Key Words List for Location Prompt (extracted using GPT-40, then discussed
and confirmed by two radiologists)
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Prompt 6: Recommendation

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please identify treatment(s)/follow-up(s) associated with {condition} in
the given report. Extract and return a list of phrases that only describe
specific treatment(s)/follow-up(s) recommended in relation to condition.
Do not include any phrase that merely describes the condition without

any treatment/follow-up. Each treatment/follow-up should be a single
entry. Format your output as a single list in the following format:
["entry-1","entry-2",...,"entry-n"]. If no action is mentioned, return
["N/A"].

Example answer:
["follow-up CT scheduled in 3 months”,”routine annual imaging advised”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 6

Prompt 7: Urgency

System Instruction:

You are a radiologist reviewing a piece of radiology report to extract
features for a specific condition, which was already marked as positive
during the initial read of this same report.

Please determine from the given report whether {condition} requires
immediate, short-term, or long-term treatment/follow-up (e.g., Immediate:
Urgent chest tube placement recommended; Short-term: Recommend follow-up
chest X-ray in 1-2 weeks; Long-term: Routine annual imaging advised). If
unmentioned, answer ["N/A"]. Only choose one of the following: ["immediate"],
["short-term"], ["long-term”], or ['N/A"].

Example answer: ["long-term”]

User Input:
FINDINGS: {findings}
IMPRESSION: {impression}

Prompt 7
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ol-mini Scoring

System Instruction:

You are a radiology report comparison assistant. You will be given two lists
of findings: one is the ground truth (GT), and the other is a candidate
prediction (GEN).

Your task is to compare them and return a similarity score between @ and 1.
1. A score of 1.0 means they are clinically and semantically identical.

2. A score of 0.0 means they are completely different or unrelated.

3. Partial matches should get a score in between.

Do not explain the score. Just output a float between @ and 1.
Example answer: </SCORE>"@.8"</SCORE>

User Input:
GT: {groundtruth}
GEN: {candidate}

ol-mini prompt
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