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ABSTRACT

At its core, this dissertation aims to formalize and explain—through a statistical lens—the

empirical success of popular ensemble-based algorithms in the data assimilation literature.

A key component of this effort is the derivation of non-asymptotic, dimension-free bounds

for the estimation of covariance operators. To achieve this, we leverage existing techniques

from high-dimensional probability while also developing new theoretical tools to analyze

the behavior of a certain class of covariance estimators under structural assumptions. This

dissertation rigorously establishes fundamental guarantees for these estimators, shedding

light on the mechanisms that drive their effectiveness and providing a deeper understanding

of their practical success.
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CHAPTER 1

INTRODUCTION

This thesis advances two research areas: (1) the statistical analysis of ensemble-based algo-

rithms and (2) the estimation of covariance operators with sparse structure. This section

aims to provide motivation for the thesis by introducing the concept of an ensemble Kalman

update and the challenges inherent in its statistical analysis. We then emphasize the sig-

nificance of structured covariance operator estimation as a crucial element in understanding

ensemble-based algorithms. Finally, we offer a high-level overview of key technical tools from

empirical process theory that are utilized throughout the thesis.

1.1 Ensemble Kalman Algorithms

Many algorithms for inverse problems and data assimilation rely on ensemble Kalman up-

dates to blend prior predictions with observed data. As a motivating example, consider the

inverse problem of recovering 𝑢 ∈ R𝑑 from data 𝑦 ∈ R𝑘, corrupted by noise 𝜂, where

𝑦 = 𝒢(𝑢) + 𝜂, (1.1)

𝒢 : R𝑑 → R𝑘 is the forward model, and 𝜂 ∼ P𝜂 = 𝒩 (0,Γ) is the observation error with

positive-definite covariance matrix Γ. An ensemble Kalman update takes as input a prior

ensemble {𝑢𝑛}𝑁𝑛=1 and observed data 𝑦, and returns as output an updated ensemble {𝜐𝑛}𝑁𝑛=1

that blends together the information in the prior ensemble and in the newly observed data.

1.1.1 Single-Step Ensemble Kalman Update

Throughout this work, we explore different notions of recovery, but as an illustrative exam-

ple in this introduction, we focus on a specific type, which we call posterior-approximation.

1



Specifically, when the forward model is linear, 𝒢(𝑢) = 𝐴𝑢, with ill-conditioned 𝐴 or 𝑑 ≫ 𝑘,

naive inversion amplifies small observation errors into large reconstruction errors. Regular-

ization stabilizes the solution, and a Bayesian approach achieves this by placing a Gaussian

prior 𝑢 ∼ 𝒩 (𝑚,𝐶), where 𝐶 acts as a probabilistic regularizer. The posterior P𝑢|𝑦 is Gaus-

sian, 𝒩 (𝜇,Σ), with

𝜇 = 𝑚+ 𝐶𝐴⊤(𝐴𝐶𝐴⊤ + Γ)−1(𝑦 − 𝐴𝑚), (1.2)

Σ = 𝐶 − 𝐶𝐴⊤(𝐴𝐶𝐴⊤ + Γ)−1𝐴𝐶. (1.3)

These require storing 𝑑× 𝑑 matrices, making computation infeasible for large 𝑑. Instead, an

ensemble Kalman update transforms a prior ensemble {𝑢𝑛}𝑁𝑛=1 into an updated ensemble

{𝜐𝑛}𝑁𝑛=1, whose sample mean and covariance approximate those of P𝑢|𝑦. We refer to such

methods as posterior-approximation algorithms. Numerous such algorithms exist in the

literature, with the Perturbed Observations (PO) and Square-root Filter (SR) updates being

among the most popular. For example, the PO update transforms each particle of the prior

ensemble according to

𝜐𝑛 = 𝑢𝑛 + ̂︀𝐶𝐴⊤(𝐴 ̂︀𝐶𝐴⊤ + Γ)−1(︀𝑦 − 𝐴𝑢𝑛 − 𝜂𝑛
)︀
, 1 ≤ 𝑛 ≤ 𝑁,

where ̂︀𝐶 denotes the empirical covariance matrix of the prior ensemble and {𝜂𝑛}𝑁𝑛=1 are

i.i.d. copies of the noise variable 𝜂. The PO update is therefore a (perturbed) Monte-

Carlo estimate of the true posterior update. One then obtains estimates of the posterior

parameters (𝜇,Σ) by using the sample mean and covariance of the updated ensemble, denoted

(𝜇̂PO, ̂︀ΣPO). In the SR update, we instead obtain the estimators (𝜇̂SR, ̂︀ΣSR).

The primary motivation for ensemble Kalman methods is their ability to perform well

even with a small ensemble size𝑁 , which is critical in applications where generating each par-

ticle is computationally expensive. Most theoretical studies have focused on large-ensemble
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asymptotics, examining the limit as 𝑁 → ∞. While these mean-field results are mathe-

matically insightful and have led to practical advancements, they do not fully explain the

observed success of ensemble Kalman methods when used with small ensemble sizes. More-

over, asymptotic analyses cannot differentiate between different algorithms. For example, in

the limit 𝑁 → ∞, the SR and PO updates are equivalent, even though they exhibit markedly

different behaviors in practice. Finally, in many practical scenarios, the state dimension 𝑑

is extremely large—often much larger than 𝑁 or even infinite—making it essential for any

theoretical framework to account for the challenges introduced by high-dimensional state

spaces.

In this thesis, we propose a novel analysis of the error of ensemble Kalman updates under

a variety of instantiations. Concretely, we provide high-probability and in-expectation upper

bounds of the form ‖𝜇̂−𝜇‖2 ≤ 𝜀𝜇 whenever𝑁 ≳ 𝑁0 and similarly for the covariance deviation

in operator norm. Here, 𝑁0 is a quantity that depends on the problem specific parameters

and error level 𝜀𝜇, but need not depend on the intrinsic dimension 𝑑. We therefore refer to

our bounds as being dimension free. The non-asymptotic nature of our results also allow us

to distinguish between PO and SR updates.

1.1.2 Multi-Step Ensemble Kalman Update

Ensemble Kalman updates are often employed to solve filtering problems which arise in

the data assimilation literature. Here, the goal is to estimate a time-evolving state from

partial and noisy observations. To make things concrete, we consider here the following

linear version of the hidden Markov model governing the relationship between the state and
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observation processes:

(Initialization) 𝑢(0) ∼ 𝒩 (𝜇(0),Σ(0)), (1.4)

(Dynamics) 𝑢(𝑗) = 𝐴𝑢(𝑗−1) + 𝜉(𝑗), 𝜉(𝑗)
i.i.d.∼ 𝒩 (0,Ξ), 𝑗 = 1, 2, . . . (1.5)

(Observation) 𝑦(𝑗) = 𝐻𝑢(𝑗) + 𝜂(𝑗), 𝜂(𝑗)
i.i.d.∼ 𝒩 (0,Γ), 𝑗 = 1, 2, . . . (1.6)

with 𝑢(0) independent of the i.i.d. sequences {𝜉(𝑗)} and {𝜂(𝑗)}. For a given time index

𝑗 ∈ N, the filtering goal is to compute the filtering distribution 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗)

)︀
, where 𝑌 (𝑗) :=

{𝑦(1), . . . , 𝑦(𝑗)}. The filtering distribution provides a probabilistic summary of the state 𝑢(𝑗)

conditional on observations up to time 𝑗. Given access to the filtering distribution at the

preceding time-step 𝑗−1, 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗)

)︀
may be obtained by the following two-step procedure:

(Forecast) 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗−1))︀ = ∫︁ 𝒩 (𝑢(𝑗);𝐴𝑢(𝑗−1),Ξ)𝑝

(︀
𝑢(𝑗−1)|𝑌 (𝑗−1))︀ 𝑑𝑢(𝑗−1), (1.7)

(Analysis) 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗))︀ ∝ 𝒩 (𝑦(𝑗);𝐻𝑢(𝑗),Γ)𝑝

(︀
𝑢(𝑗)|𝑌 (𝑗−1))︀. (1.8)

The forecast distribution 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗−1)

)︀
represents our knowledge of the state at time 𝑗 given

past observations and is computed using the dynamics model. In the analysis step, the new

observation 𝑦𝑗 is assimilated via Bayes’ formula, with the prior given by the forecast distri-

bution and the likelihood determined by the observation model. When the state dimension

𝑑 is large or the dynamics are nonlinear, making exact computation infeasible, the Ensemble

Kalman Filter (EnKF) is commonly used.

At 𝑗 = 0, an initial ensemble of 𝑁 particles is drawn from 𝒩 (𝜇(0),Σ(0)). The ensemble is

then iteratively updated: in the forecast step, it is propagated through the system dynamics,

producing the forecast ensemble; in the analysis step, each ensemble member is updated using

a single-step ensemble Kalman update, yielding the analysis ensemble. Thus, the algorithm

can be seen as a multi-step ensemble Kalman update, where each step builds on the previous
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ensemble output.

A key theoretical challenge is the dependence structure of the ensemble. While the initial

particles are independent, dependence arises at the first analysis step (𝑗 = 1) and becomes

increasingly complex due to the recursive nature of the algorithm. Each updated particle 𝜐𝑛

depends nonlinearly on ̂︀𝐶, which itself is a function of all prior ensemble members {𝑢𝑛}𝑁𝑛=1.

This intricate dependence makes non-asymptotic analysis particularly difficult.

In this thesis, we propose a novel algorithm called the Resampled Ensemble Kalman

Filter REnKF, which employs a simple resampling step at each filtering cycle to break the

correlations between ensemble members. The algorithm is amenable to theoretical analysis

in the linear Gaussian setting, and shows good performance in practice, comparable to

the EnKF, even in non-linear settings, making it a promising approach for a wide range of

applications.

1.2 Covariance Operator Estimation

The study of covariance operator estimation is motivated by the fact that operational al-

gorithms for numerical weather prediction (for example, the EnKF) rely on an ensemble of

forecasts to estimate a background prior covariance. In these applications and many oth-

ers, the data used to specify the prior covariance represent finely discretized functions. As

data resolution continues to improve, we wish to understand the fundamental dimension-

free, discretization-independent quantities that determine the difficulty of estimating the

prior covariance. Relatedly, operator learning, i.e. the task of recovering an operator from

pairs of inputs and outputs or from trajectory data, has also received increased attention

motivated by recent machine learning techniques to solve partial differential equations. In

this line of work, we have investigated a class of 𝐿𝑞-sparse operators where the kernel need

not concentrate around its diagonal, and an even more flexible family of weighted 𝐿𝑞-sparse

operators that further allow for extreme heterogeneity of the underlying process across the
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domain. We further identify a sufficient interpretable condition which we term the small-

lengthscale setting in which many of the most widely used covariance operators can provably

be shown to belong to these structured classes. In this regime, we further show that the

sample complexity is determined by the correlation lengthscale of the operator.

1.2.1 Unstructured Case

In the high-dimensional setting where 𝑑≫ 𝑁 , estimating the covrariance operator has been

thoroughly studied Vershynin [2010], [Wainwright, 2019, Chapter 6]. Given i.i.d. observa-

tions 𝑢, 𝑢1, . . . , 𝑢𝑁 drawn from a 𝑑-dimensional centered Gaussian with covariance operator

(matrix) Σ := E[𝑢𝑢⊤], a natural estimator for Σ is the sample average Σ̂ := 1
𝑁

∑︀𝑁
𝑛=1 𝑢𝑛𝑢

⊤
𝑛 .

The goal is to control the operator-norm deviation ‖Σ̂ − Σ‖. For simplicity, we focus on

the Gaussian case in this chapter, although many results extend easily to the sub-Gaussian

setting. Classical results imply that for a universal constant 𝑐 > 0 and any 𝑡 ≥ 1, then with

probability at least 1− 𝑒−𝑡, then

‖̂︀Σ− Σ‖ ≤ 𝑐‖Σ‖

(︃√︂
𝑑

𝑁
∨ 𝑑

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

This directly implies that, with probability exceeding 1 − 𝑒−𝑑, it suffices to take 𝑁 ≥ 𝑑

samples to achieve a small estimation error. However, since the ensemble size 𝑁 is often

much smaller than 𝑑, this result fails to explain the empirical success of ensemble Kalman

algorithms. While the bound is sharp in certain cases (e.g., when Σ = 𝐼𝑑), it is overly pes-

simistic in practical settings where ensemble Kalman updates operate. A key breakthrough

in Koltchinskii and Lounici [2017] established a dimension-free alternative: there exists a

universal constant 𝑐 > 0 such that for any 𝑡 ≥ 1, with probability at least 1− 𝑒−𝑡,

‖̂︀Σ− Σ‖ ≍ 𝑐‖Σ‖

(︃√︂
𝑟(Σ)

𝑁
∨ 𝑟(Σ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
,
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where 𝑟(Σ) := Tr(Σ)/‖Σ‖ is the effective dimension of Σ. The effective dimension remains

small whenever the covariance spectrum decays rapidly. Notably, this result extends to

infinite-dimensional settings where the random vectors 𝑢, 𝑢1, . . . , 𝑢𝑁 reside in a Hilbert space

𝐻. In the finite-dimensional case 𝐻 = R𝑑, we have 𝑟(Σ) ≤ 𝑑, implying that accurate

estimation is possible even when the ensemble size is significantly smaller than the state

dimension, provided the covariance operator has low effective dimension. In this thesis, we

demonstrate how such bounds can be used to control the error of ensemble Kalman updates.

1.2.2 Structured Case

In much of the literature on ensemble Kalman updates (e.g. Tong and Morzfeld [2023],

Bergemann and Reich [2010a], Petrie [2008]), a modified version of the sample covariance

estimator known as the localized covariance estimator and denoted ̂︀Σ𝜌, where 𝜌 represents the

localization radius is utilized. This approach is particularly relevant when the state vector

components correspond to spatial locations: the sample covariance is first computed and

then adjusted elementwise to down-weight terms associated with distant state coordinates.

In much of the literature, this modification is heuristically motivated as a way to “remove

spurious correlations”, though the optimal choice of its hyper-parameters remains unclear. In

this thesis, we identify Localization as a form of regularized covariance estimation, aligning

with the foundational works Wu and Pourahmadi [2003], Bickel and Levina [2008a,b] and

extensively explored in high-dimensional statistics (see Pourahmadi [2013] for a textbook

discussion). More concretely, when the true covariance matrix Σ exhibits an inherent sparse

structure –meaning many of its elements are exactly or nearly zero– a thresholding-based

estimator provides a preferable alternative. These estimators determine whether each entry

of the sample covariance falls below a carefully selected threshold 𝜌, treating such entries as

spurious and either setting them to zero or shrinking them accordingly.

For such estimators that take advantage of sparsity in the target, it can be shown that
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there exists a universal positive constant 𝑐 such that, with probability at least 1 − 𝑒−𝑡, an

appropriately chosen radius 𝜌 ensures:

‖̂︀Σ𝜌 − Σ‖ ≤ 𝑐‖Σ‖max

(︃√︂
log 𝑑

𝑁
∨ log 𝑑

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

This bound demonstrates that accurate covariance estimation necessitates an ensemble size

that scales with the logarithm of the dimension, representing a significant improvement over

scenarios without structural assumptions. This leads to the following key questions in our

study of ensemble Kalman updates:

1. How should sparsity be defined for an infinite dimensional covariance operator?

2. Is there an analogous concept of effective dimension for infinite-dimensional covariance

operators with additional sparse structure?

3. Can sparse covariance matrix estimation bounds be extended to an infinite-dimensional

setting?

In this thesis, we affirmatively address all three questions. Concretely, we investigate the

setting in which 𝑢 is an infinite-dimensional random field with covariance model that satisfies

a novel notion of approximate sparsity. We show that the statistical error of thresholded

estimators can be bounded in terms of two dimension-free quantities: the expected supremum

of the field and the sparsity level.

1.2.3 Small Lengthscale Analysis

One of the major contributions of this work is to showcase the benefit of thresholding estima-

tors in the challenging regime where the correlation lengthscale of the field is small relative

to the size of the physical domain. Mathematically, given a process with covariance function

𝑘 = 𝑘𝜆 where 𝜆 > 0 is the correlation lengthscale, we study the regime in which 𝜆 → 0. In
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this setting, our theory characterizes the aforementioned dimension free quantities in terms

of 𝜆. While a vast literature in nonparametric statistics and approximation theory highlights

the key role of smoothness in determining optimal convergence rates for many nonparametric

estimation tasks, our non-asymptotic theory emphasizes that the lengthscale rather than the

smoothness of the covariance function drives the difficulty of the estimation problem and the

advantage of thresholded estimators. Fields with small correlation lengthscale are ubiquitous

in applications. For instance, they arise naturally in climate science and numerical weather

forecasting, where global forecasts need to account for the effect of local processes with a

small correlation lengthscale, such as cloud formation or propagation of gravitational waves.

1.2.4 Empirical Process Theory

The dimension-free bounds in this work are primarily enabled by techniques from empirical

process theory applied to the covariance estimation problem. Specifically, let 𝑢, 𝑢1, . . . , 𝑢𝑁
i.i.d.∼

P be a sequence of random variables on a probability space (Ω,P). The quadratic empirical

process associated with a function class ℱ on (Ω,P) is given by

𝑓 ↦→ 1

𝑁

𝑁∑︁
𝑛=1

𝑓2(𝑢𝑛)− E𝑓2(𝑢), 𝑓 ∈ ℱ .

It can be shown that the variational form of ‖Σ̂ − Σ‖ corresponds to the supremum of

a quadratic empirical process over a suitably chosen function class ℱ . This observation

underpins the proof of the fundamental bound in Koltchinskii and Lounici [2017], which

relies on the following inequality from Klartag and Mendelson [2005]:

E sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓2(𝑢𝑛)− E𝑓2(𝑢)

⃒⃒⃒⃒
⃒⃒ ≤ 𝑐

(︃
sup
𝑓∈ℱ

‖𝑓‖𝜓1
𝛾2(ℱ ;𝜓2)√

𝑁
∨
𝛾22(ℱ ;𝜓2)

𝑁

)︃
,
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which holds whenever ℱ is a symmetric function class satisfying E𝑓(𝑢) = 0. The bound

is expressed in terms of the 𝜓1-Orlicz norm of the function class and Talagrand’s generic

chaining functional. Precise control over these quantities gives rise to the concept of an

effective dimension in the deviation bound for the sample covariance operator. In this work,

we extend these techniques to develop a new notion of effective dimension specifically suited

for a newly introduced class of structured covariance operators.

1.2.5 Outline and Main Contributions

We now provide an outline of the upcoming chapters and summarize their key contributions.

1.2.6 Chapter 2 - Non-Asymptotic Analysis of Ensemble Kalman Updates:

Effective Dimension and Localization

In Chapter 2, we establish non-asymptotic error bounds in terms of suitable notions of effec-

tive dimension of the prior covariance model that account for spectrum decay (which may

represent smoothness of a prior random field) and approximate sparsity (which may repre-

sent spatial decay of correlations). Our work complements mean-field analyses of ensemble

Kalman updates and identifies scenarios where mean-field behavior holds with moderate 𝑁 .

In addition to demystifying the practical success of ensemble Kalman methods with a small

ensemble size, our non-asymptotic perspective allows us to tell apart, on accuracy grounds,

implementations of ensemble Kalman updates that use perturbed observations and square

root filtering. These implementations become equivalent in the large 𝑁 limit, and therefore

their differences in accuracy cannot be captured by asymptotic results. Furthermore, our

non-asymptotic perspective provides new understanding on the importance of localization,

a procedure widely used by practitioners that involves tapering or “localizing” empirical co-

variance estimates to avoid spurious correlations. A key contribution of our framework is

to obtain dimension-free bounds. Removing the dependence on the state dimension 𝑑 is
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particularly important since in many applications 𝑑 represents the discretization of some

infinite dimensional field. Our bounds therefore capture the intrinsic geometric complexity

of the problem as opposed to being a function of the discretization level. This chapter is

adapted from the following publication:

O. Al-Ghattas and D. Sanz-Alonso, Non-asymptotic analysis of ensemble Kalman updates:

effective dimension and localization, Information and Inference: A Journal of the IMA,

vol. 13, no. 1, pp. iaad043, 2024.

1.2.7 Chapter 3 - Ensemble Kalman Filters with Resampling

In Chapter 3 we study multi-step settings that are complicated by perturbed observations and

stochastic dynamics, which are commonly used in the Ensemble Kalman Filtering (EnKF)

literature. The EnKF is particularly difficult to analyse theoretically due to the presence of

correlations between ensemble members, since the Kalman gain used to update each parti-

cle depends on the entire ensemble. In this work, we investigate a simple modification of

EnKF that incorporates a resampling step to break these correlations. The new algorithm is

amenable to a theoretical analysis that extends and improves upon those available for filters

without resampling, while also maintaining a similar empirical performance. We consider

a simple parametric resampling scheme: at the beginning of each filtering step, members

of the ensemble are independently sampled from a Gaussian distribution whose mean and

covariance match those of the ensemble at the previous time-step. Thereafter, the filtering

step can be carried out using any of the numerous existing EnKF variants. For the resulting

algorithm, which we term REnKF, we establish theoretical guarantees that extend and im-

prove upon those available for filters without resampling. Our theoretical guarantees hold

in the linear-Gaussian setting in which we provide a detailed error analysis of the ensemble

mean and covariance as estimators of the mean and covariance of the filtering distributions,

given by the Kalman filter. Our theory covers both stochastic and deterministic dynamical
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systems; in addition, it covers both stochastic implementations based on perturbed obser-

vations and deterministic implementations based on square-root filters. Importantly, our

error-bounds are non-asymptotic and dimension-free: they hold for any given ensemble size

and are written in terms of the effective-dimension of the covariance of the initial distri-

bution, and of the dynamics and observation models. This chapter is adapted from the

following publication:

O. Al-Ghattas, J. Bao, and D. Sanz-Alonso, Ensemble Kalman filters with resampling,

SIAM/ASA Journal on Uncertainty Quantification, vol. 12, no. 2, pp. 411–441, 2024.

1.2.8 Chapter 4 - Covariance Operator Estimation: Sparsity, Lengthscale,

and Ensemble Kalman Filters

In Chapter 4, we first lift the theory of covariance estimation from finite to infinite dimension.

In the finite-dimensional setting, a rich body of work shows that, exploiting various forms

of sparsity, it is possible to consistently estimate the covariance matrix of a vector 𝑢 ∈ R𝑑𝑢

with 𝑁 ∼ log(𝑑𝑢) samples as opposed to the non-sparse setting in which 𝑁 ∼ 𝑑𝑢 samples

are needed. In this work we investigate the setting in which 𝑢 is an infinite-dimensional

random field with an approximately sparse covariance model. Specifically, we generalize no-

tions of approximate sparsity often employed in the finite-dimensional covariance estimation

literature. We show that the statistical error of thresholded estimators can be bounded in

terms of two dimension-free quantities: the expected supremum of the field and the sparsity

level. The second contribution is to showcase the benefit of thresholding in the challenging

regime where the correlation lengthscale of the field is small relative to the size of the phys-

ical domain. While a vast literature in nonparametric statistics and approximation theory

highlights the key role of smoothness in determining optimal convergence rates for many

nonparametric estimation tasks, our non-asymptotic theory emphasizes that the lengthscale

rather than the smoothness of the covariance function drives the difficulty of the estimation
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problem and the advantage of thresholded estimators. Fields with small correlation length-

scale are ubiquitous in applications. For instance, they arise naturally in climate science

and numerical weather forecasting, where global forecasts need to account for the effect of

local processes with a small correlation lengthscale, such as cloud formation or propagation

of gravitational waves. The third contribution of this paper is to demonstrate the advan-

tage of using thresholded covariance estimators within ensemble Kalman filters, generalizing

the theory in Al-Ghattas and Sanz-Alonso [2024b] to the infinite dimensional setting. Our

theory explains when and why localized EnKFs are expected to out-perform non-localized

filters. This chapter is adapted from the following publication:

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Covariance operator estimation:

sparsity, lengthscale, and ensemble Kalman filters, Bernoulli, 31(3), 2377-2402, 2025

1.2.9 Chapter 5 - Covariance Operator Estimation via Adaptive

Thresholding

In Chapter 5, consider estimating the covariance operator of a highly nonstationary process

with marginal variance that is permitted to vary widely in the domain. These operators

satisfy a weighted 𝐿𝑞-sparsity condition. For covariance operators in this class, we establish

a bound on the operator norm error of the adaptive threshold estimator in terms of two

dimension-free quantities: the sparsity level and the expected supremum of the normalized

field. In contrast to Al-Ghattas et al. [2023], our theory allows for covariance models with

unbounded marginal variance functions. We then compare our adaptive threshold estimator

with other estimators of interest, namely the universal threshold estimator in Al-Ghattas

et al. [2023] and the sample covariance estimator. For universal thresholding, we prove a

lower bound that is larger than our upper bound for adaptive thresholding. We generalize

the small lengthscale setting of Al-Ghattas et al. [2023] to one in which both the length-

scale and a parameter controlling the range of the marginal variance function is allowed to
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be arbitrarily small, and further prove an exponential improvement in sample complexity

of the adaptive threshold estimator compared to the sample covariance. A key technical

contribution of this work is the analysis of the product sub-exponential classes that arise in

estimating the variance components of the process, which in turn are needed to adaptively

set the threshold radius. The analysis demonstrates how to derive non-asymptotic and di-

mension free bounds for a large family of product empirical processes and are potentially

of independent interest. The results are adapted from the following paper which received a

minor revision at Stochastic Processes and their Applications:

O. Al-Ghattas and D. Sanz-Alonso, Covariance Operator Estimation via Adaptive Thresh-

olding, arXiv preprint arXiv:2405.18562, 2024.

1.2.10 Additional Work

The following recent pre-prints carried out during my PhD are not included in this thesis:

• In Al-Ghattas et al. [2024b], we derive the information-theoretic limits of covariance

operator estimation in the structured setting through the use of a minimax framework.

In addition to the 𝐿𝑞-sparsity first considered in Al-Ghattas et al. [2023], we also con-

sider banded integral operators with kernels that decay rapidly off-the-diagonal. For

both classes, we establish minimax optimal lower bounds using a novel and general

framework that lifts the theory from high-dimensional matrix estimation to the oper-

ator setting. In so doing, we identify the dimension-free quantities that determine the

sample complexity. Additionally, we show that tapering and thresholding estimators

achieve the minimax optimal rate in the two respective classes.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Optimal estimation of

structured covariance operators, arXiv preprint arXiv:2408.02109, 2024.
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• In Al-Ghattas et al. [2025], we establish sharp dimension-free concentration inequalities

and expectation bounds for the deviation of the sum of simple random tensors from

its expectation. As part of our analysis, we use generic chaining techniques to obtain

a sharp high-probability upper bound on the suprema of multiproduct empirical pro-

cesses. In so doing, we generalize classical results for quadratic and product empirical

processes to higher-order settings.

O. Al-Ghattas, J. Chen, and D. Sanz-Alonso, Sharp Concentration of Simple Random

Tensors, arXiv preprint arXiv:2502.16916, 2025.
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CHAPTER 2

NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN

UPDATES: EFFECTIVE DIMENSION AND LOCALIZATION

This chapter is adapted from the publication listed below and is used with permission of the

publisher.

O. Al-Ghattas and D. Sanz-Alonso, Non-asymptotic analysis of ensemble Kalman updates:

effective dimension and localization, Information and Inference: A Journal of the IMA,

vol. 13, no. 1, pp. iaad043, 2024.

2.1 Introduction

The aim of this chapter is to develop a non-asymptotic analysis of ensemble Kalman up-

dates that rigorously explains why, and under what circumstances, a small ensemble size

may suffice. To that end, we establish non-asymptotic error bounds in terms of suitable

notions of effective dimension of the prior covariance model that account for spectrum decay

(which may represent smoothness of a prior random field) and approximate sparsity (which

may represent spatial decay of correlations). Our work complements mean-field analyses

of ensemble Kalman updates and identifies scenarios where mean-field behavior holds with

moderate 𝑁 .

In addition to demystifying the practical success of ensemble Kalman methods with a

small ensemble size, our non-asymptotic perspective allows us to tell apart, on accuracy

grounds, implementations of ensemble Kalman updates that use perturbed observations and

square root filtering. These implementations become equivalent in the large 𝑁 limit, and

therefore their differences in accuracy cannot be captured by asymptotic results. Further-

more, our non-asymptotic perspective provides new understanding on the importance of

localization, a procedure widely used by practitioners that involves tapering or “localizing”
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empirical covariance estimates to avoid spurious correlations.

Rather than providing a complete, definite analysis of any particular ensemble Kalman

method, our goal is to bring to bear a new set of tools from high-dimensional probability and

statistics to the study of these algorithms. In particular, our work builds on and contributes

to the theory of high-dimensional covariance estimation, which we believe is fundamental

to the understanding of ensemble Kalman methods. To make the presentation accessible

to a wide audience, we assume no background knowledge on covariance estimation or on

ensemble Kalman methods.

2.1.1 Problem Description

Consider the inverse problem of recovering 𝑢 ∈ R𝑑 from data 𝑦 ∈ R𝑘, corrupted by noise 𝜂,

where

𝑦 = 𝒢(𝑢) + 𝜂, (2.1)

𝒢 : R𝑑 → R𝑘 is the forward model, and 𝜂 ∼ P𝜂 = 𝒩 (0,Γ) is the observation error with

positive-definite covariance matrix Γ. An ensemble Kalman update takes as input a prior

ensemble {𝑢𝑛}𝑁𝑛=1 and observed data 𝑦, and returns as output an updated ensemble {𝜐𝑛}𝑁𝑛=1

that blends together the information in the prior ensemble and in the data. Two main types

of problems will be investigated: posterior approximation and sequential optimization. In

the former, ensemble Kalman updates are used to approximate a posterior distribution in

a Bayesian linear setting; in the latter, they are used within optimization algorithms for

nonlinear inverse problems.

Posterior Approximation

If the forward model is linear, i.e. 𝒢(𝑢) = 𝐴𝑢 for some matrix 𝐴 ∈ R𝑘×𝑑, and 𝐴 is ill-

conditioned or 𝑑≫ 𝑘, naive inversion of the data by means of the (generalized) inverse of 𝐴
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results in an amplification of small observation error 𝜂 into large error in the reconstruction of

𝑢. In such situations, regularization is needed to stabilize the solution. To this end, one may

adopt a Bayesian approach and place a Gaussian prior on the unknown 𝑢 ∼ P𝑢 = 𝒩 (𝑚,𝐶)

with positive-definite 𝐶; the prior distribution then acts as a probabilistic regularizer. The

Bayesian solution to the inverse problem (2.1) is a full characterization of the posterior

distribution P𝑢|𝑦, that is, the distribution of 𝑢 given 𝑦. A standard calculation shows that

P𝑢|𝑦 = 𝒩 (𝜇,Σ), with

𝜇 = 𝑚+ 𝐶𝐴⊤(𝐴𝐶𝐴⊤ + Γ)−1(𝑦 − 𝐴𝑚),

Σ = 𝐶 − 𝐶𝐴⊤(𝐴𝐶𝐴⊤ + Γ)−1𝐴𝐶,

(2.2)

which require storage of 𝑑× 𝑑 matrices and consequently are difficult to compute explicitly

when the state dimension 𝑑 is large. A posterior-approximation ensemble Kalman update

transforms a prior ensemble {𝑢𝑛}𝑁𝑛=1 drawn from P𝑢 into an updated ensemble {𝜐𝑛}𝑁𝑛=1

whose sample mean and sample covariance approximate the mean and covariance of P𝑢|𝑦.

Ensemble Kalman updates enjoy a low computational and memory cost when the ensemble

size 𝑁 is smaller than the state dimension 𝑑. In Section 2.2 we establish non-asymptotic

error bounds that ensure that if 𝑁 is larger than a suitably defined effective dimension,

then the sample mean and sample covariance of the updated ensemble approximate well

the true posterior mean and covariance in (2.2). We refer to methods that are capable of

approximating well the posterior P𝑢|𝑦 in a linear-Gaussian setting as posterior-approximation

algorithms.

Sequential Optimization

When faced with a general nonlinear model 𝒢, exact characterization of the posterior can

be challenging. One may then opt for an optimization framework and solve the inverse

problem (2.1) by minimizing a user-chosen objective function. Starting from a prior ensemble
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{𝑢𝑛}𝑁𝑛=1 drawn from a measure P𝑢 that encodes prior beliefs about 𝑢, an ensemble Kalman

update returns an updated ensemble {𝜐𝑛}𝑁𝑛=1 whose sample mean approximates the desired

minimizer. The process can be iterated by taking the updated ensemble to be the prior

ensemble of a new ensemble Kalman update. Under suitable conditions on 𝒢, and after a

sufficient number of such updates, all particles in the ensemble collapse into the minimizer of

the objective. Ensemble Kalman optimization algorithms are derivative-free methods, and

are therefore particularly useful when derivatives of the model 𝒢 are unavailable or expensive

to compute. As for posterior-approximation algorithms, implementing each update has low

computational and memory cost when the ensemble size 𝑁 is small. In Section 2.3 we will

establish non-asymptotic error bounds that ensure that if 𝑁 is larger than a suitably defined

effective dimension, then each particle update 𝑢𝑛 ↦→ 𝜐𝑛, 1 ≤ 𝑛 ≤ 𝑁, approximates well

an idealized mean-field update computed with an infinite number of particles; this suggests

that the evolution of particles along an ensemble-based sequential optimizer is close to an

idealized mean-field evolution. We refer to methods that solve the inverse problem (2.1) by

minimization of an objective function as sequential-optimization algorithms.

2.1.2 Summary of Contributions and Outline

• Section 2.2 is concerned with posterior-approximation algorithms. The main results,

Theorems 2.2.3 and 2.2.5, give non-asymptotic bounds on the estimation of the pos-

terior mean and covariance in terms of a standard notion of effective dimension that

accounts for spectrum decay in the prior covariance model. Our analysis explains the

statistical advantage of square root updates over perturbed observation ones. We also

discuss the deterioration of our bounds in small noise limits where the prior and the

posterior become mutually singular.

• Section 2.3 is concerned with sequential-optimization algorithms. The main results,

Theorems 2.3.5 and 2.3.7, give non-asymptotic bounds on the approximation of mean-
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field particle updates using ensemble Kalman updates with and without localization.

Our analysis explains the advantage of localized updates if the prior covariance satisfies

a soft-sparsity condition. For the study of localized updates, we show in Theorems 2.3.1

and 2.3.3 new dimension-free covariance estimation bounds in terms of a new notion of

effective dimension that simultaneously accounts for spectrum decay and approximate

sparsity in the prior covariance model.

• Section 2.4 concludes with a summary of our work and several research directions that

stem from our non-asymptotic analysis of ensemble Kalman updates. We also discuss

the potential and limitations of localization in posterior-approximation algorithms.

• The proofs of all our results are deferred to three appendices.

2.1.3 Related Work

Ensemble Kalman methods —overviewed in Evensen [2009], Katzfuss et al. [2016], Houtekamer

and Zhang [2016], Roth et al. [2017], Chada et al. [2021], Sanz-Alonso et al. [2023a]— first

appeared as filtering algorithms in the data assimilation literature Evensen [1995], Evensen

and Leeuwen [1996], Burgers et al. [1998], Houtekamer and Derome [1995], Houtekamer and

Mitchell [1998]. The goal of data assimilation is to estimate a time-evolving state as new

observations become available Reich and Cotter [2015], Asch et al. [2016], Law et al. [2015],

Majda and Harlim [2012], Leeuwen et al. [2015], Särkkä [2013], Sanz-Alonso et al. [2023a].

Ensemble Kalman filters (EnKFs) solve an inverse problem of the form (2.1) every time a

new observation is acquired. In that filtering context, (2.1) encodes the relationship between

the state 𝑢 and observation 𝑦 at a given time 𝑡, and the prior on 𝑢 is specified by propagating

a probabilistic estimate of the state at time 𝑡−1 through the dynamical system that governs

the state evolution. To approximate this prior, EnKFs propagate an ensemble of 𝑁 particles

through the dynamics, and subsequently update this prior forecast ensemble into an updated
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analysis ensemble that assimilates the new observation. Thus, an ensemble Kalman update

is performed every time a new observation is acquired. The goal is that the sample mean

and sample covariance of the updated ensemble approximate well the mean and covariance

of the filtering distribution, that is, the conditional distribution of the state at time 𝑡 given

all observations up to time 𝑡. While only giving provably accurate posterior approxima-

tion in linear settings Ernst et al. [2015], EnKFs are among the most popular methods for

high-dimensional nonlinear filtering, in particular in numerical weather forecasting. In such

applications the state dimension can be very large, but the effective dimension of the filter

update is often much lower due to smoothness of the state and decay of correlations in space.

Moreover, in practice the analysis step can be constrained to the subspace determined by

the expanding directions of the dynamics Trevisan and Uboldi [2004].

The papers Gu and Oliver [2007], Li and Reynolds [2007], Reynolds et al. [2006] intro-

duced ensemble Kalman methods for inverse problems in petroleum engineering and the

geophysical sciences. Application-agnostic ensemble Kalman methods for inverse problems

were developed in Iglesias et al. [2013], Iglesias [2016], inspired by classical regularization

schemes Hanke [1997]. Since then, a wide range of sequential-optimization algorithms for

inverse problems have been proposed that differ in the objective function they seek to mini-

mize and in how ensemble Kalman updates are implemented. We refer to Subsection 2.2.1

for further background and to Chada et al. [2021] for a review.

Ensemble Kalman methods for inverse problems and data assimilation have been studied

extensively from a large 𝑁 asymptotic point of view, see e.g. Li and Xiu [2008], Le Gland

et al. [2009], Mandel et al. [2011], Kwiatkowski and Mandel [2015], Ernst et al. [2015],

Del Moral and Tugaut [2018], Herty and Visconti [2019], Law et al. [2016b], Garbuno-Inigo

et al. [2020], Bishop and Del Moral [2023], Chen et al. [2022], Ding and Li [2021]. A com-

plementary line of work Harlim and Majda [2010], Gottwald and Majda [2013], Kelly et al.

[2015], Tong et al. [2015, 2016] has focused on challenges faced by ensemble Kalman methods,
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including loss of stability and catastrophic filter divergence. Two overarching themes that

underlie large 𝑁 asymptotic analyses are to ensure consistency and to derive equations for

the mean-field evolution of the ensemble. Related to this second theme, several works (e.g.

Schillings and Stuart [2017], Blömker et al. [2018], Blömker et al. [2019], Guth et al. [2020],

Chada et al. [2021], Tong and Morzfeld [2023]) set the analysis in a continuous time limit ;

the idea is to view Kalman updates as occurring over an artificial discrete-time variable, and

then take the time between updates to be infinitesimally small to formally derive differen-

tial equations for the evolution of the ensemble or its density. Large 𝑁 asymptotics and

continuous time limits have resulted in new theoretical insights and practical advancements.

However, an important caveat of these results is that they cannot tell apart implementations

of ensemble Kalman methods that become equivalent in large 𝑁 or continuous time asymp-

totic regimes. Moreover, several papers (e.g. Bergemann and Reich [2010a,b], Kelly and

Stuart [2014], Schillings and Stuart [2017], Majda and Tong [2018]) have noted that large

𝑁 asymptotic analyses fail to explain empirical results that report good performance with a

moderately sized ensemble in problems with high state dimension; for instance, 𝑑 ∼ 109 and

𝑁 ∼ 102 in operational numerical weather prediction. Finally, the note Nüsken and Reich

[2019] shows subtle but important differences in the evolution of interacting particle systems

with finite ensemble size when compared to their mean-field counterparts Garbuno-Inigo

et al. [2020].

In this chapter we adopt a non-asymptotic viewpoint to establish sufficient conditions

on the ensemble size for posterior-approximation and sequential-optimization algorithms.

Empirical evidence in Ott et al. [2004] suggests that there is a sample size 𝑁* above which

ensemble Kalman methods are effective. The seminal work Furrer and Bengtsson [2007]

conducts insightful explicit calculations that motivate our more general theory. Following

the analysis of ensemble Kalman methods in Furrer and Bengtsson [2007] and the study of

importance sampling and particle filters in Agapiou et al. [2017], Sanz-Alonso [2018], Sanz-
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Alonso and Wang [2021], Bickel et al. [1994], Snyder et al. [2016], Bengtsson et al. [2008],

Snyder [2011], Chorin and Morzfeld [2013], Snyder et al. [2015], we focus on analyzing a

single ensemble Kalman update rather than on investigating the propagation of error across

multiple updates. While in practice ensemble Kalman methods for posterior approximation

in data assimilation and for sequential optimization in inverse problems often perform many

updates, focusing on a single update enables us to clearly demonstrate the tight connec-

tion between the sample complexity of ensemble updates and the effective dimension of the

prior; additionally, for some posterior-approximation algorithms our theory generalizes in a

straightforward way to multi-step implementations, as we shall demonstrate in Section 2.2.

More importantly, the focus on a single update allows us to tell apart, on accuracy grounds,

perturbed observations and square root implementations of ensemble Kalman updates, as

well as implementations with and without localization. Similar considerations motivate the

study of sufficient sample size for importance sampling in Morzfeld et al. [2017], Snyder

et al. [2016], Agapiou et al. [2017], Chatterjee and Diaconis [2018], Sanz-Alonso [2018],

Sanz-Alonso and Wang [2021], where the focus on a single update facilitates establishing

clear comparisons between standard and optimal proposals, and identifying meaningful no-

tions of dimension to characterize necessary and sufficient conditions on the required sample

size. Our work builds on and develops tools from high-dimensional probability and statis-

tics Wainwright [2019], Vershynin [2018], Bickel and Levina [2008a], Levina and Vershynin

[2012], Chen et al. [2012], Cai and Yuan [2012], Cai and Zhou [2012a]. In particular, we bring

to bear thresholded Bickel and Levina [2008a], Cai and Yuan [2012] and masked covariance

estimators Levina and Vershynin [2012], Chen et al. [2012] to the understanding of localiza-

tion in ensemble Kalman methods. In so doing, we establish new dimension-free covariance

and cross-covariance estimation bounds under approximate sparsity —see Theorems 2.3.1

and 2.3.3.
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2.1.4 Notation

Given two positive sequences {𝑎𝑛} and {𝑏𝑛}, the relation 𝑎𝑛 ≲ 𝑏𝑛 denotes that 𝑎𝑛 ≤ 𝑐𝑏𝑛

for some constant 𝑐 > 0. If the constant 𝑐 depends on some quantity 𝜏 , then we write

𝑎 ≲𝜏 𝑏. If both 𝑎𝑛 ≲ 𝑏𝑛 and 𝑏𝑛 ≲ 𝑎𝑛 hold simultaneously, then we write 𝑎𝑛 ≍ 𝑏𝑛.

Throughout, we denote positive universal constants by 𝑐, 𝑐1, 𝑐2, 𝑐3, 𝑐4, and the value of a

universal constant may differ from line to line. For a vector 𝑣 ∈ R𝑁 , ‖𝑣‖𝑝𝑝 =
∑︀𝑁
𝑛=1 |𝑣𝑛|𝑝.

For a matrix 𝐴 ∈ R𝑛×𝑚, the operator norm is given by ‖𝐴‖ = sup‖𝑣‖2=1 ‖𝐴𝑣‖2. 𝒮𝑑+ denotes

the set of 𝑑× 𝑑 symmetric positive-semidefinite matrices, and 𝒮𝑑++ denotes the set of 𝑑× 𝑑

symmetric positive-definite matrices. 𝐴† denotes the pseudo-inverse of 𝐴. 1𝑁 denotes the

𝑁 -dimensional vector vector of ones, 0𝑑 denotes the 𝑑-dimensional vector of zeroes, and

𝑂𝑑×𝑘 is the 𝑑 × 𝑘 matrix of zeroes. 1𝐵 denotes the indicator of the set 𝐵. ≡ denotes a

definition. ∘ denotes the matrix Hadamard or Schur (elementwise) product. Given a non-

decreasing, non-zero convex function 𝜓 : [0,∞] → [0,∞] with 𝜓(0) = 0, the Orlicz norm of

a real random variable 𝑋 is ‖𝑋‖𝜓 = inf{𝑡 > 0 : E[𝜓(𝑡−1|𝑋|)] ≤ 1}. In particular, for the

choice 𝜓𝑝(𝑥) ≡ 𝑒𝑥
𝑝 − 1 for 𝑝 ≥ 1, real random variables that satisfy ‖𝑋‖𝜓2 <∞ are referred

to as sub-Gaussian. A random vector 𝑋 is sub-Gaussian if ‖𝑣⊤𝑋‖𝜓2 < ∞ for any 𝑣 such

that ‖𝑣‖2 = 1. For a differentiable function 𝑔 : R𝑑 → R𝑘, 𝐷𝑔 ∈ R𝑑×𝑘 denotes the Jacobian

of 𝑔.

All the methods we study have the same starting point of a prior ensemble

𝑢1, . . . , 𝑢𝑁
i.i.d.∼ 𝒩 (𝑚,𝐶),

and observed data 𝑦 generated according to (2.1), which are to be used in generating an

updated ensemble {𝜐𝑛}𝑁𝑛=1. We denote the prior sample means by

̂︀𝑚 ≡ 1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛, 𝒢 ≡ 1

𝑁

𝑁∑︁
𝑛=1

𝒢(𝑢𝑛),
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and the prior sample covariances by

̂︀𝐶 ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝑢𝑛 − ̂︀𝑚)⊤, ̂︀𝐶 𝑝𝑝 ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝒢(𝑢𝑛)− 𝒢)(𝒢(𝑢𝑛)− 𝒢)⊤,

̂︀𝐶 𝑢𝑝 ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝒢(𝑢𝑛)− 𝒢)⊤.

(2.3)

The population versions will be denoted by

𝐶 𝑝𝑝 ≡ E
[︁(︀
𝒢(𝑢𝑛)− E[𝒢(𝑢𝑛)]

)︀(︀
𝒢(𝑢𝑛)− E[𝒢(𝑢𝑛)]

)︀⊤]︁
,

𝐶 𝑢𝑝 ≡ E
[︁(︀
𝑢𝑛 −𝑚

)︀(︀
𝒢(𝑢𝑛)− E[𝒢(𝑢𝑛)]

)︀⊤]︁
.

2.2 Ensemble Kalman Updates: Posterior Approximation

Algorithms

In posterior-approximation algorithms we consider the inverse problem (2.1) with a linear

forward model, i.e.

𝑦 = 𝐴𝑢+ 𝜂, 𝜂 ∼ 𝒩 (0,Γ). (2.4)

In order to establish comparisons between different posterior-approximation algorithms, as

well as to streamline our analysis, we follow the exposition in Kwiatkowski and Mandel [2015]

and introduce three operators that are central to the theory: the Kalman gain operator K ,

the mean-update operator M , and the covariance-update operator C , defined respectively
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by

K : 𝒮𝑑+ → R𝑑×𝑘, K (𝐶;𝐴,Γ) = K (𝐶) = 𝐶𝐴⊤(𝐴𝐶𝐴⊤ + Γ)−1, (2.5)

M : R𝑑 × 𝒮𝑑+ → R𝑑, M (𝑚,𝐶;𝐴, 𝑦,Γ) = M (𝑚,𝐶) = 𝑚+ K (𝐶;𝐴,Γ)(𝑦 − 𝐴𝑚), (2.6)

C : 𝒮𝑑+ → 𝒮𝑑+, C (𝐶;𝐴,Γ) = C (𝐶) =
(︀
𝐼 − K (𝐶;𝐴,Γ)𝐴

)︀
𝐶. (2.7)

The pointwise continuity and boundedness of all three operators was established in Kwiatkowski

and Mandel [2015], and we summarize these results in Lemmas 2.5.4, 2.5.5, and 2.5.6. We

note that the Kalman update (2.2) can be rewritten succinctly as

𝜇 = M (𝑚,𝐶),

Σ = C (𝐶).

(2.8)

2.2.1 Ensemble Algorithms for Posterior Approximation

We study two main classes of posterior-approximation algorithms based on Perturbed Ob-

servation (PO) and Square Root (SR) ensemble Kalman updates. In both implementations,

the updated ensemble has sample mean ̂︀𝜇 and sample covariance ̂︀Σ that are, by design,

consistent estimators of the posterior mean 𝜇 and covariance Σ in (2.8). Although PO

and SR updates are asymptotically equivalent, differences between the two algorithms do

exist in finite ensembles, and this difference is captured in our non-asymptotic analysis in

Subsection 2.2.3.
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Perturbed Observation Update

The PO update, introduced in Evensen [1995], transforms each particle of the prior ensemble

according to

𝜐𝑛 = 𝑢𝑛 + K ( ̂︀𝐶)(︀𝑦 − 𝐴𝑢𝑛 − 𝜂𝑛
)︀

= M (𝑢𝑛, ̂︀𝐶)− K ( ̂︀𝐶)𝜂𝑛, 𝜂𝑛
i.i.d.∼ 𝒩 (0,Γ), 1 ≤ 𝑛 ≤ 𝑁.

The form of the update is similar to the Kalman mean update (2.8) albeit with the 𝑛-th

ensemble member being assigned a perturbed observation 𝑦−𝜂𝑛. Consequently, denoting the

sample mean of the perturbations by 𝜂 ≡ 𝑁−1∑︀𝑁
𝑛=1 𝜂𝑛, the updated ensemble has sample

mean

̂︀𝜇 ≡ 1

𝑁

𝑁∑︁
𝑛=1

𝜐𝑛 = M (̂︀𝑚, ̂︀𝐶)− K ( ̂︀𝐶)𝜂,
and sample covariance

̂︀Σ ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(︀
𝜐𝑛 − ̂︀𝜇)︀(︀𝜐𝑛 − ̂︀𝜇)︀⊤

=
(︀
𝐼 − K ( ̂︀𝐶)𝐴)︀ ̂︀𝐶(︀𝐼 − K ( ̂︀𝐶)𝐴)︀⊤ + K ( ̂︀𝐶)̂︀ΓK ⊤( ̂︀𝐶)

−
(︀
𝐼 − K ( ̂︀𝐶)𝐴)︀ ̂︀𝐶 𝑢𝜂K ⊤( ̂︀𝐶)− K ( ̂︀𝐶)( ̂︀𝐶 𝑢𝜂)⊤

(︀
𝐼 − 𝐴⊤K ⊤( ̂︀𝐶))︀,

(2.9)

where

̂︀Γ ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝜂𝑛 − 𝜂𝑁 )(𝜂𝑛 − 𝜂)⊤, and ̂︀𝐶 𝑢𝜂 ≡ 1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝜂𝑛 − 𝜂)⊤.

To facilitate comparison with the Kalman update in (2.8), we rewrite the PO update as
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follows:

̂︀𝜇 = M (̂︀𝑚, ̂︀𝐶)− K ( ̂︀𝐶)𝜂,
̂︀Σ = C ( ̂︀𝐶) + ̂︀𝑂, (2.10)

where the offset term ̂︀𝑂, obtained as the difference between (2.9) and C ( ̂︀𝐶), is given by

̂︀𝑂 = K ( ̂︀𝐶)(̂︀Γ− Γ)K ⊤( ̂︀𝐶)− (︀𝐼 − K ( ̂︀𝐶)𝐴)︀ ̂︀𝐶 𝑢𝜂K ⊤( ̂︀𝐶)− K ( ̂︀𝐶)( ̂︀𝐶 𝑢𝜂)⊤
(︀
𝐼 − 𝐴⊤K ⊤( ̂︀𝐶))︀.

(2.11)

The offset term ̂︀𝑂 was introduced in [Furrer and Bengtsson, 2007, Proposition 4]. The

addition of perturbations serves the purpose of correcting the sample covariance, in the

sense that without perturbations the sample covariance is an inconsistent estimator of Σ. To

see the consistency of the PO covariance estimator ̂︀Σ in (2.10), note that by Lemma 2.5.6

the map C is continuous, and so the continuous mapping theorem together with the fact

that ̂︀𝐶 is consistent for 𝐶 imply that C ( ̂︀𝐶) 𝑝−→ C (𝐶) = Σ. Further, the offset ̂︀𝑂 converges

in probability to zero, which can be shown using that ̂︀Γ 𝑝−→ Γ, ̂︀𝐶 𝑢𝜂 𝑝−→ 𝑂𝑑×𝑘, and the

continuity of K established in Lemma 2.5.4.

Square Root Update

The PO update relies crucially on the added perturbations to maintain consistency and, as

noted for example in Evensen [2004], Tippett et al. [2003], Bishop et al. [2001], is asymp-

totically equivalent to the exact posterior update (2.2). However, for a finite ensemble of

size 𝑁 , the addition of random perturbations introduces an extra source of error into the

ensemble Kalman update. The SR update, introduced in Evensen [2004] and surveyed in

Tippett et al. [2003], Lange and Stannat [2021], is a deterministic alternative to the PO

update. It updates the prior ensemble in a manner that ensures that ̂︀Σ ≡ C ( ̂︀𝐶). This is
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achieved by first identifying a map 𝑔 : R𝑑×𝑁 → R𝑑×𝑁 such that ̂︀Π = 𝑔( ̂︀𝑃 ), where

̂︀𝐶 = ̂︀𝑃 ̂︀𝑃⊤, and C ( ̂︀𝐶) = ̂︀Π̂︀Π⊤,

with both factorizations guaranteed to exist since ̂︀𝐶,C ( ̂︀𝐶) ∈ 𝒮𝑑+. Consistency of ̂︀Σ can then

be ensured by choosing 𝑔 to satisfy 𝑔( ̂︀𝑃 )𝑔( ̂︀𝑃 )⊤ ≡ C ( ̂︀𝐶), with this being referred to as the

consistency condition in Lange and Stannat [2021]. There are infinitely many such 𝑔, each of

which lead to a variant of the SR update. Here we describe two of the most popular variants in

the literature as outlined in Tippett et al. [2003]: the Ensemble Transform Kalman update

Bishop et al. [2001] and the Ensemble Adjustment Kalman update Anderson [2001] with

respective transformations 𝑔𝑇 ( ̂︀𝑃 ) = ̂︀𝑃𝑇 and 𝑔𝐴( ̂︀𝑃 ) = 𝐵 ̂︀𝑃 , for matrices 𝑇 and 𝐵. Both 𝑔𝑇

and 𝑔𝐴 are therefore linear maps, with 𝑔𝑇 post-multiplying ̂︀𝑃 , which implies a transformation

on the 𝑁 -dimensional space spanned by the ensemble, and 𝑔𝐴 pre-multiplying ̂︀𝑃 , so that

the transformation is applied to the 𝑑-dimensional state-space instead. In both approaches

we identify the relevant matrix by first writing

̂︀Π̂︀Π⊤ = C ( ̂︀𝐶) = ̂︀𝑃 (𝐼 − 𝑉 𝐷−1𝑉 ⊤) ̂︀𝑃⊤,

where 𝑉 = (𝐴 ̂︀𝑃 )⊤ and 𝐷 = 𝑉 ⊤𝑉 + Γ.

1. Ensemble Transform Kalman Update: taking ̂︀Π = ̂︀𝑃𝐹𝑈 for any 𝐹 satisfying 𝐹𝐹⊤ =

𝐼 − 𝑉 𝐷−1𝑉 ⊤ and arbitrary orthogonal 𝑈 satisfies the consistency condition. One

approach for finding such a matrix 𝐹 is by rewriting

𝐼 − 𝑉 𝐷−1𝑉 ⊤ = (𝐼 + ̂︀𝑃⊤𝐴⊤Γ−1𝐴 ̂︀𝑃 )−1 = 𝐸(𝐼 + Λ)−1/2(𝐼 + Λ)−1/2𝐸⊤ = 𝐹𝐹⊤,

where the first equality follows by the Sherman-Morrison formula, and 𝐸Λ𝐸⊤ is the

eigenvalue decomposition of ̂︀𝑃⊤𝐴⊤Γ−1𝐴 ̂︀𝑃 . In summary, we have 𝑔𝑇 ( ̂︀𝑃 ) = ̂︀𝑃𝐸(𝐼 +
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Λ)−1/2𝑈 .

2. Ensemble Adjustment Kalman Update: Introducing 𝑀 = 𝑉 Γ−1/2, we can write

̂︀𝑃 (𝐼 − 𝑉 𝐷−1𝑉 ⊤) ̂︀𝑃⊤ = ̂︀𝑃 (𝐼 +𝑀𝑀⊤)−1 ̂︀𝑃⊤.

Noting that ̂︀𝑃 has full column rank, we may then define 𝐵 = ̂︀𝑃 (𝐼+𝑀𝑀⊤)−1/2( ̂︀𝑃⊤)†,

and so

𝑔𝐴( ̂︀𝑃 ) = 𝐵 ̂︀𝑃 = ̂︀𝑃 (𝐼 +𝑀𝑀⊤)−1/2( ̂︀𝑃⊤)† ̂︀𝑃 = ̂︀𝑃 (𝐼 +𝑀𝑀⊤)−1/2.

Once a choice of 𝑔 has been made, and an estimate ̂︀Σ has been computed, the updated

ensemble has first two moments given by

̂︀𝜇 = M (̂︀𝑚, ̂︀𝐶),
̂︀Σ = C ( ̂︀𝐶). (2.12)

Frequently, only ̂︀𝜇, ̂︀Σ are of concern to the practitioner, but it is still possible to back-out

the individual members of the updated ensemble as they may be of interest. It is clear that

one choice for ̂︀𝑃 is

̂︀𝑃 =
1√

𝑁 − 1

[︂
𝑢1 − ̂︀𝑚, · · · , 𝑢𝑁 − ̂︀𝑚]︂ ,

in which case it holds that ̂︀𝑃1𝑁 = 0𝑑, and so

𝜐𝑛 =
√
𝑁 − 1[̂︀Π]𝑛 + M (̂︀𝑚, ̂︀𝐶), 1 ≤ 𝑛 ≤ 𝑁, (2.13)

where [̂︀Π]𝑛 denotes the 𝑛-th column of ̂︀Π.

In Subsection 2.2.3 we establish error bounds for the approximation of the posterior mean
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and covariance (𝜇,Σ) in (2.2) by (̂︀𝜇, ̂︀Σ) as estimated using the PO and SR updates in (2.10)

and (2.12). It is clear from (2.12) that as long as the choice of 𝑔 is valid, in the sense that

the resulting ̂︀Σ is consistent, then the specific choice of 𝑔 is irrelevant to the accuracy of a

single SR update. We therefore make no assumptions in our subsequent analysis of the SR

algorithm beyond that of 𝑔 satisfying the consistency condition. Note that, when compared

to the SR update in (2.12), the PO update in (2.10) contains additional stochastic terms that

will, as our bounds indicate, hinder the estimation of (𝜇,Σ). As noted in the literature, for

example in Tippett et al. [2003], the PO update increases the probability of underestimating

the analysis error covariance. While our presentation and analysis of PO and SR updates is

carried out in the linear-Gaussian setting, both updates are frequently utilized in nonlinear

and non-Gaussian settings, with empirical evidence suggesting that the PO updates can

outperform SR updates Lawson and Hansen [2004], Leeuwenburgh et al. [2005]. In fact, the

consistency argument outlined above is only valid in the linear case 𝒢(𝑢) = 𝐴𝑢, and the

statistical advantage of SR implementations in linear settings may not translate into the

nonlinear case.

2.2.2 Dimension-Free Covariance Estimation

We define the effective dimension Wainwright [2019] of a matrix 𝑄 ∈ 𝒮𝑑+ by

𝑟2(𝑄) ≡
Tr(𝑄)
‖𝑄‖

. (2.14)

The effective dimension quantifies the number of directions where 𝑄 has significant spectral

content Tropp [2015]. The monographs Tropp [2015], Vershynin [2018] refer to 𝑟2(𝑄) as the

intrinsic dimension, while Koltchinskii and Lounici [2017] uses the term effective rank. This

terminology is motivated by the observation that 1 ≤ 𝑟2(𝑄) ≤ rank(𝑄) ≤ 𝑑 and that 𝑟2(𝑄) is

insensitive to changes in the scale of 𝑄, see Tropp [2015]. In situations where the eigenvalues
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of 𝑄 decay rapidly, 𝑟2(𝑄) is a better measure of dimension than the state dimension 𝑑.

The following result [Koltchinskii and Lounici, 2017, Theorem 9] gives a non-asymptotic

sufficient sample size requirement for accurate covariance estimation in terms of the effective

dimension of the covariance matrix. We recall that the sample covariance estimator ̂︀𝐶 is

defined in (2.3).

Proposition 2.2.1 (Covariance Estimation with Sample Covariance —Unstructured Case).

Let 𝑢1, . . . , 𝑢𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑢1] = 𝑚 and

var[𝑢1] = 𝐶. Then, for all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖ ̂︀𝐶 − 𝐶‖ ≲ ‖𝐶‖

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

Remark 2.2.2 (Effective Dimension and Smoothness). Proposition 2.2.1 motivates defining

𝑟2(𝐶) ≡ Tr(𝐶)/ ‖𝐶‖ to be the effective dimension of a 𝑑-dimensional sub-Gaussian random

vector 𝑢 with var[𝑢] = 𝐶. As in the definition for matrices, 𝑟2(𝐶) quantifies the number

of directions where the distribution of 𝑢 has significant spread. Proposition 2.2.1 and our

results in Subsection 2.2.3 may be extended to sub-Gaussian random variables defined in

an infinite-dimensional separable Hilbert space, say ℋ = 𝐿2(0, 1). It is then illustrative to

note that any Gaussian measure 𝒩 (𝑚,𝐶) in ℋ satisfies that Tr(𝐶) < ∞; in other words,

all Gaussian measures have finite effective dimension. In this context, 𝑟2(𝐶) is related to

the rate of decay of the eigenvalues of 𝐶, and hence to the almost sure Sobolev regularity of

functions 𝑢 drawn from the Gaussian measure 𝒩 (𝑚,𝐶) on ℋ = 𝐿2(0, 1), see e.g. Bogachev

[1998], Stuart [2010]. In computational inverse problems and data assimilation, 𝑢 is often a

𝑑-dimensional vector that represents a fine discretization of a Gaussian random field; then,

𝑟2(𝐶) quantifies the smoothness of the undiscretized field.
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2.2.3 Main Results: Posterior Approximation with Finite Ensemble

In this subsection we state finite ensemble approximation results for the posterior mean and

covariance with PO and SR ensemble updates. To highlight some key insights, including

the dependence of the bounds on the effective dimension of 𝐶 and the differences between

PO and SR updates, we opt to present expectation bounds in Theorems 2.2.3 and 2.2.5 that

are less notationally cumbersome than the stronger exponential tail bounds in Theorems

2.5.8 and 2.5.9 in Appendix 2.5.3. Throughout this section, the data 𝑦 is treated as a fixed

quantity.

Theorem 2.2.3 (Posterior Mean Approximation with Finite Ensemble —Expectation Bound).

Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12), respectively,

leading to an estimate ̂︀𝜇 of the posterior mean 𝜇 defined in (2.2). Set 𝜙 = 1 for the PO

update and 𝜙 = 0 for the SR update. Then, for any 𝑝 ≥ 1,

[︀
E‖̂︀𝜇− 𝜇‖𝑝2

]︀1/𝑝 ≲𝑝 𝑐1
(︃√︂

𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3/2
)︃

+ 𝜙𝑐2

(︃√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(𝐶)

𝑁

√︂
𝑟2(Γ)

𝑁

)︃
,

(2.15)

where 𝑐1 = 𝑐1(‖𝐶‖, ‖𝐴‖, ‖Γ−1‖, ‖𝑦 − 𝐴𝑚‖2) and 𝑐2 = 𝑐2(‖𝐶‖, ‖𝐴‖, ‖Γ−1‖).

Importantly, the bound (2.15) does not depend on the dimension 𝑑 of the state-space, and

the only dependence on 𝐶 is through its operator norm and the effective dimension 𝑟2(𝐶).

The term multiplied by 𝜙 in the PO update accounts for the additional error incurred by

the presence of the offset term (2.11) in the PO update (2.10). The following remark dis-

cusses another important consequence of Theorem 2.2.3: the stable performance of ensemble

Kalman updates in small noise regimes when compared with other sampling algorithms.

Remark 2.2.4 (Dependence of Constants on Model Parameters). The proof of Theorem 2.2.3

in Appendix 2.5 provides an explicit definition of 𝑐1 and 𝑐2 up to constants, i.e. it describes
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how these quantities rely on their arguments, and Theorem 2.5.8 establishes a high probabil-

ity bound on ‖̂︀𝜇− 𝜇‖2. In particular, it is important to note that the constants 𝑐1 and 𝑐2 in

Theorem 2.2.3 deteriorate in the small noise limit where the observation noise goes to zero,

and 𝑐2 deteriorates with 𝑟2(Γ). In the small noise limit, the posterior and prior distribution

become mutually singular, and it is hence expected for ensemble updates to be unstable. To

illustrate this intuition in a concrete setting, assume that Γ = 𝛾𝐼 for a positive constant 𝛾,

and, for simplicity, that 𝑁 ≥ 𝑟2(𝐶) as well as ‖𝐶‖ = ‖𝐴‖ = ‖𝑦 − 𝐴𝑚‖2 = 1. Then, the

expression for 𝑐1 established in Theorem 2.2.3 implies that for the SR update, for any error

𝜀 > 0 and 𝑝 ≥ 1 ,

𝑁 ≳
𝑟2(𝐶)

𝜀2𝛾4
=⇒ E

[︀
‖̂︀𝜇− 𝜇‖𝑝2

]︀1/𝑝 ≲𝑝 𝜀.
Similarly, the expressions for 𝑐1 and 𝑐2 imply that for the PO update,

𝑁 ≳
𝑟2(𝐶)

𝜀2𝛾4
∨ 𝑘

𝜀2𝛾
=⇒ E

[︀
‖̂︀𝜇− 𝜇‖𝑝2

]︀1/𝑝 ≲𝑝 𝜀,
where we recall that 𝑘 denotes the dimension of the data 𝑦. The papers Agapiou et al. [2017],

Sanz-Alonso and Wang [2021] show the need to increase the sample size along small noise

limits in importance sampling when target and proposal are given, respectively, by posterior

and prior. While our bounds here only give sufficient rather than necessary conditions on

the ensemble size, it is noteworthy that, for fixed 𝑘, the scaling of 𝑁 as 𝛾 → 0 shown here

is independent of 𝑘. In contrast, necessary sample size conditions for importance sampling

show a polynomial dependence on 𝑘, see Sanz-Alonso and Wang [2021].

Theorem 2.2.5 (Posterior Covariance Approximation with Finite Ensemble —Expectation

Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12),

respectively, leading to an estimate ̂︀Σ of the posterior covariance Σ defined in (2.2). Set
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𝜙 = 1 for the PO update and 𝜙 = 0 for the SR update. Then, for any 𝑝 ≥ 1,

[︀
E‖̂︀Σ− Σ‖𝑝

]︀1/𝑝 ≲𝑝 𝑐1
(︃√︂

𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂2
)︃

+ 𝜙E ,

where

E = 𝑐2

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3

∨

(︃√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(Γ)

𝑁

)︃(︃
1 ∨

(︂
𝑟2(𝐶)

𝑁

)︂2
)︃)︃

,

where 𝑐1 = 𝑐1(‖𝐶‖, ‖𝐴‖, ‖Γ−1‖) and 𝑐2 = 𝑐2(‖𝐶‖, ‖𝐴‖, ‖Γ−1‖, ‖Γ‖).

As in Theorem 2.2.3, the bound in Theorem 2.2.5 does not depend on the dimension 𝑑

of the state-space, and the dependence on 𝐶 is through the operator norm and the effective

dimension 𝑟2(𝐶).

Remark 2.2.6 (Dependence of Constants on Model Parameters). The proof of Theorem 2.2.5

in Appendix 2.5 provides an explicit definition of 𝑐1 and 𝑐2 up to constants and Theorem 2.5.9

establishes a high probability bound on ‖̂︀Σ−Σ‖. As discussed in Remark 2.2.4, these bounds

may be used to establish sufficient ensemble size requirements in small noise limits and other

singular limits of practical importance.

Remark 2.2.7 (Comparison to the Literature). The results in this section complement many

of the existing analyses of ensemble Kalman updates in the literature. In one direction, our

Theorems 2.2.3 and 2.2.5 can be viewed in the context of [Furrer and Bengtsson, 2007,

Section 3.4], which claims that for finite ensembles the square root filter is always more

efficient than the perturbed observation filter, since the latter introduces additional variability

through noisy perturbations of the data. Our results quantify this additional variability both

in probability and in expectation. In Majda and Tong [2018], the authors put forward a non-

asymptotic analysis of a multi-step EnKF augmented by a spectral projection step in which the

Kalman gain matrix is projected onto the linear span of its leading eigenvalues exceeding a
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threshold level. They refer to the dimension 𝑑𝑠𝑢𝑏𝑠 of this subspace as the effective dimension

and provide guarantees on the performance of the algorithm so long as the ensemble size

scales with 𝑑𝑠𝑢𝑏𝑠. In contrast, our one-step analysis does not require any augmentation of

standard implementations (see e.g. Furrer and Bengtsson [2007]) of the ensemble update.

They also employ (forecast) covariance inflation, which is a de-biasing technique standard in

the literature, see for example [Furrer and Bengtsson, 2007, Section 5], which our results do

not require. In another direction, our results can be directly compared to [Kwiatkowski and

Mandel, 2015, Theorem 6.1], which states that for iteration 𝑡 of the square root EnKF and

for any 𝑝 ≥ 1

[︁
E‖𝜇̂(𝑡) − 𝜇(𝑡)‖𝑝2

]︁1/𝑝
≤ 𝑐(𝑝, 𝑡)√

𝑁
and

[︁
E‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝

]︁1/𝑝
≤ 𝑐(𝑝, 𝑡)√

𝑁
, (2.16)

where 𝜇̂(𝑡) and ̂︀Σ(𝑡) are the sample mean and covariance of the updated (analysis) ensem-

ble at iteration 𝑡, and 𝜇(𝑡) and Σ(𝑡) are the corresponding Kalman Filter posterior mean

and covariance, respectively. The term 𝑐(𝑝, 𝑡) that arises in both of their bounds denotes a

constant that depends only on 𝑝, the iteration index 𝑡, and the norms of the non-random

inputs of the algorithm, but do not depend on dimension or ensemble size. Importantly, they

do not distinguish between settings with different effective dimensions as our bounds do. In

Appendix 2.5.4, we provide an explicit outline of the multi-step algorithm considered in their

paper along with definitions of all quantities described here. As previously noted, our bounds

cover the perturbed observation setting whereas (2.16) is specific to the square root setting. In

Appendix 2.5.4 we also establish (see Corollary 2.5.12) a simple extension of Theorems 2.2.3

and 2.2.5 to the multi-step square root setting, which shows that for any 𝑝 ≥ 1, iteration 𝑡,
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and assuming for simplicity that 𝑁 ≳ 𝑟2(Σ
(0)), then

[︁
E‖𝜇̂(𝑡) − 𝜇(𝑡)‖𝑝2

]︁1/𝑝
≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖, ‖𝑦(𝑙) − 𝐴(𝑙)𝑚(𝑙)‖2}𝑡𝑙=1, ‖Γ

−1‖),

[︁
E‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝

]︁1/𝑝
≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡𝑙=1, ‖Γ

−1‖).

(2.17)

Our bounds therefore refine those in Kwiatkowski and Mandel [2015] as they explicitly cap-

ture the dependence on the state dimension through the effective dimension of the initial

distribution, 𝑟2(Σ(0)). It follows then that in the case of the square root EnKF, it suffices

to use an ensemble on the order of the effective dimension of Σ(0) multiplied by constants

depending on the operator norms of the forward model matrices {‖𝐴(𝑙)‖}𝑡𝑙=1, analysis covari-

ance matrices {‖Σ(𝑙)‖}𝑡𝑙=1, inverse of the noise covariance, ‖Γ−1‖ and ℓ2-norm of the model

errors {‖𝑦(𝑙) − 𝐴(𝑙)𝑚(𝑙)‖2}𝑡𝑙=1. We note that extensions to the multi-step setting for other

variants of the EnKF that do not use SR updates may not follow as easily. In this direction,

the recent work Al-Ghattas et al. [2024a] studies a multi-step EnKF with PO updates which

incorporates an additional resampling step.

2.3 Ensemble Kalman Updates: Sequential Optimization

Algorithms

In the optimization approach, the solution to the inverse problem (2.1) is found by minimizing

an objective function. As discussed in Chada et al. [2021], an entire suite of ensemble

algorithms have been derived that differ in the choice of objective function and optimization

scheme. In this subsection we introduce the Ensemble Kalman Inversion (EKI) algorithm

Iglesias et al. [2013] and a new localized implementation of EKI, which we call localized

EKI (LEKI) following Tong and Morzfeld [2023]. Both EKI and LEKI use an ensemble
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approximation of a Levenberg-Marquardt (LM) optimization scheme to minimize a data-

misfit objective

J(𝑢) =
1

2
‖Γ−1/2(︀𝑦 − 𝒢(𝑢)

)︀
‖22, (2.18)

which promotes fitting the data 𝑦. Before deriving EKI the in Subsection 2.3.1 and LEKI

in Subsection 2.3.1, we give some background that will help us interpret both methods as

ensemble-based implementations of classical gradient-based LM schemes. The finite ensemble

approximation of an idealized mean-field EKI update using EKI and LEKI updates will be

studied in Subsection 2.3.3.

Recall that classical iterative optimization algorithms choose an initialization 𝑢(0) and

set

𝑢(𝑡+1) = 𝑢(𝑡) + 𝑤(𝑡), 𝑡 = 0, 1, . . . , (2.19)

until a pre-specified convergence criterion is met. Here, 𝑤(𝑡) is some favorable direction de-

termined by the optimization algorithm at iteration 𝑡, given the current estimate 𝑢(𝑡). In the

case that the inverse problem is ill-posed, directly minimizing (2.18) leads to a solution that

over-fits the data. Then, implicit regularization can be achieved through the optimization

scheme used to obtain the update 𝑤(𝑡). Under the assumption that 𝑟(𝑢) ≡ 𝑦−𝒢(𝑢) is differ-

entiable, the Levenberg-Marquardt (LM) algorithm chooses 𝑤(𝑡) by solving the constrained

minimization problem

min
𝑤

Jlin𝑡 (𝑤) subject to ‖𝐶−1/2𝑤‖22 ≤ 𝛿𝑙,
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where

Jlin𝑡 (𝑤) ≡ 1

2
‖𝐷𝑟(𝑢(𝑡))𝑤 + 𝑟(𝑢(𝑡))‖22,

and 𝐷𝑟 denotes the Jacobian of 𝑟. The LM algorithm belongs to the class of trust region

optimization methods, and it chooses each increment to minimize a linearized objective, Jlin𝑡 ,

but with the added constraint that the minimizer belongs to the ball {‖𝐶−1/2𝑤‖2 ≤ 𝛿𝑙}, in

which we trust that the objective may be replaced by its linearization. Equivalently, 𝑤(𝑡)

can be viewed as the unconstrained minimizer of a regularized objective,

min
𝑤

JU𝑡 (𝑤), JU𝑡 (𝑤) ≡ Jlin𝑡 (𝑤) +
1

2𝛼𝑡
‖𝐶−1/2𝑤‖22, (2.20)

where 𝛼𝑡 > 0 acts as a Lagrange multiplier.

We are interested in ensemble sequential-optimization algorithms, which instead of up-

dating a single estimate 𝑢(𝑡) —as in (2.19)— propagate an ensemble of estimates. Ensemble-

based optimization schemes often rely on statistical linearization to avoid the computation of

derivatives. Underpinning this idea Ungarala [2012], Chada et al. [2021], Kim et al. [2023] is

the argument that if 𝒢(𝑢) = 𝐴𝑢 were linear, then ̂︀𝐶 𝑢𝑝 = ̂︀𝐶𝐴⊤, leading to the approximation

in the general nonlinear case

𝐷𝒢(𝑢𝑛) ≈ ( ̂︀𝐶 𝑢𝑝)⊤ ̂︀𝐶† ≡ 𝐺. (2.21)

This approximation motivates the derivative-free label often attached to ensemble-based

algorithms Kovachki and Stuart [2019], and we note that they may be employed whenever

computing 𝐷𝒢(𝑢) is expensive or when 𝒢 is not differentiable. For the remainder, our

analysis focuses on a single step of EKI and LEKI, and so we drop the iteration index 𝑡 from

our notation; we will use instead our previous terminology of prior ensemble and updated
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ensemble. Finally, similar to our presentation of posterior-approximation algorithms, our

exposition is simplified by introducing the nonlinear gain-update operator P,

P : R𝑑×𝑘 × 𝒮𝑘+ → R𝑑×𝑘, P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝; Γ) = P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝) = 𝐶 𝑢𝑝(𝐶 𝑝𝑝 + Γ)−1,

(2.22)

which is shown to be both pointwise continuous and bounded in Lemma 2.5.7.

2.3.1 Ensemble Algorithms for Sequential Optimization

Ensemble Kalman Inversion Update

In the EKI, each particle in the prior ensemble is updated according to the LM algorithm,

so that

𝜐𝑛 = 𝑢𝑛 + 𝑤𝑛, 1 ≤ 𝑛 ≤ 𝑁,

where 𝑤𝑛 is the minimizer of a linearized and regularized data-misfit objective

Jlin𝑛 (𝑤) =
1

2
‖Γ−1/2(︀𝑦 − 𝜂𝑛 − 𝒢(𝑢𝑛)−𝐺𝑤

)︀
‖22 +

1

2𝛼
‖ ̂︀𝐶−1/2𝑤‖22, 𝜂𝑛 ∼ 𝒩 (0,Γ). (2.23)

Following Iglesias et al. [2013], we henceforth set 𝛼 = 1, but note that our main results

can be readily extended to any 𝛼 > 0. Note that each ensemble member solves the opti-

mization (2.23) with a perturbed observation 𝑦 − 𝜂𝑛, similar in spirit to the PO update of

Subsection 2.2.1. The minimizer of (2.23) (with 𝛼 = 1) is given by

𝑤𝑛 = ̂︀𝐶𝐺⊤(𝐺 ̂︀𝐶𝐺⊤ + Γ)−1(︀𝑦 − 𝜂𝑛 − 𝒢(𝑢𝑛)
)︀
.
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Substituting ̂︀𝐶𝐺⊤ = ̂︀𝐶 𝑢𝑝, and approximating

𝐺 ̂︀𝐶𝐺⊤ = 𝐺 ̂︀𝐶 𝑢𝑝 = ( ̂︀𝐶 𝑢𝑝)⊤ ̂︀𝐶† ̂︀𝐶 𝑢𝑝 ≈ ̂︀𝐶 𝑝𝑝

leads to the EKI update

𝜐𝑛 = 𝑢𝑛 + P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝)
(︀
𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛

)︀
, 1 ≤ 𝑛 ≤ 𝑁. (2.24)

In the linear forward-model setting, P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝) = K ( ̂︀𝐶), and (2.24) takes on a form

identical to the PO update in (2.10). We further define the mean-field EKI update

𝜐*𝑛 = 𝑢𝑛 + P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)
(︀
𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛

)︀
, 1 ≤ 𝑛 ≤ 𝑁, (2.25)

which is the update that would be performed if one had access to the population quantities

𝐶𝑢𝑝 and 𝐶𝑝𝑝 or, equivalently, to an infinite ensemble. We will analyze the approximation

of the update (2.24) to the mean-field update (2.25) in Subsection 2.3.3. The study of

mean-field ensemble Kalman methods of the form (2.25) was proposed in Herty and Visconti

[2019] and is overviewed in Calvello et al. [2022]. While mean-field algorithms are not useful

for practical implementation, they facilitate a transparent mathematical analysis that can

provide understanding on the performance of practical ensemble approximations. Desirable

properties of mean-field algorithms include convergence to the desired target in a continuous-

time limit Carrillo and Vaes [2021], a gradient flow structure Garbuno-Inigo et al. [2020],

or the ability to approximate derivative-based optimization algorithms Chada et al. [2021].

The transfer of theoretical insights from mean-field algorithms to particle-based algorithms

tacitly presupposes, however, that the ensemble is large enough for ensemble-based updates

to approximate well idealized mean-field updates. In this direction, Ding and Li [2021]

establishes a 𝒪(𝑁−1/2) rate for an approximation of a mean-field evolution equation in
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terms of the ensemble size 𝑁 . Our first main result of this section, Theorem 2.3.5, will show

that the mean-field update (2.25) can be well approximated with the EKI update (2.24) with

a number of particles of the order of the effective dimension of the problem, which is defined

as for posterior-approximation algorithms.

Localized Ensemble Kalman Inversion Update

In practice, ensemble-based algorithms are often implemented with 𝑁 ≪ 𝑑, that is, with

an ensemble that is much smaller than the state dimension. In this setting, the update

is augmented with an additional localization procedure applied to ̂︀𝐶 in the case of linear

forward model, and to both ̂︀𝐶 𝑝𝑝 and ̂︀𝐶 𝑢𝑝 in the case of a nonlinear forward model. In

either case, localization is seen as an approach to deal both with the extreme rank defi-

ciency and the sampling error that arise from using an ensemble that is significantly smaller

than the dimension of the state and/or the dimension of the observation, see for example

Houtekamer and Mitchell [2001], Houtekamer and Zhang [2016], Farchi and Bocquet [2019].

Localization is also useful when the state 𝑢, or the transformed state 𝒢(𝑢), has elements

ℰ(𝑖) and ℰ(𝑗) that represent the values of a variable of interest at physical locations that are

a known distance d(𝑖, 𝑗) apart: correlations may decay quickly with the physical distance

of the variables and localization may help to remove spurious correlations in the sample

covariance estimator. In ensemble Kalman methods, localization has most commonly been

carried out via the Schur (elementwise) product of the estimator and a positive-semidefinite

matrix M of equal dimension. In the vast majority of cases, the elements of M are taken

to be M𝑖𝑗 = 𝜅(d(𝑖, 𝑗)/𝑏), where 𝜅 is a locally supported correlation function —usually the

Gaspari Cohn 5th-order compact piecewise polynomial Gaspari and Cohn [1999]— and 𝑏 > 0

is a length-scale parameter chosen by the practitioner. Since 𝜅 tapers off to zero as its argu-

ment becomes larger, i.e. when the underlying variables are further apart, the Schur-product

operation zeroes out the corresponding elements of the estimator, and the rate at which this
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tapering occurs is controlled by the size of the length-scale. The localized EKI (LEKI), re-

cently studied in Tong and Morzfeld [2023], replaces both ̂︀𝐶 𝑝𝑝 and ̂︀𝐶 𝑢𝑝 with their localized

counterparts, M1 ∘ ̂︀𝐶 𝑝𝑝 and M2 ∘ ̂︀𝐶 𝑢𝑝, where M1 and M2 are localization matrices of appro-

priate dimension. Two important issues have, in our opinion, hindered the rigorous study

of localized ensemble algorithms, and we highlight these next before moving on to introduce

our localization framework.

1. Optimality: The justification outlined above for localization in the ensemble Kalman

literature has been largely heuristic, and relying on these arguments alone one cannot

hope to define a localization procedure that is demonstrably optimal. Notably, the

widespread usage of the Gaspari-Cohn correlation function is not rooted in any sense

of optimality. Generally, focusing solely on a band of entries near the diagonal is a sub-

optimal approach to covariance estimation, as noted in the high-dimensional covariance

estimation literature, see for example Chen et al. [2012], Levina and Vershynin [2012],

Bickel and Levina [2008b]. Moreover, even in cases where focusing on elements near the

diagonal is justified, for example by assuming that the underlying target is a banded

matrix, the bandwidth 𝑏 > 0 must be chosen carefully as a function of the ensemble size,

problem dimension, and dependence structure Bickel and Levina [2008a]. This type of

analysis has, to the best of our knowledge, not been carried out for the Gaspari-Cohn

localization scheme. An important message in the covariance estimation literature is

that localization —regardless of how it is employed— can only be optimal if the target

of estimation itself is sparse, and such sparsity assumptions must be made explicit in

order to facilitate a rigorous mathematical analysis of the procedure. The difficulty

of optimal localization in ensemble updates has also been highlighted in Furrer and

Bengtsson [2007], where the authors derive an optimal localization matrix M under

the unrealistic assumption that 𝐶 is a diagonal matrix.

2. Schur-Product Approximations: In the literature on ensemble Kalman methods, a
43



consensus has not been reached on how best to apply localization in practice. The issue

here can be sufficiently described by deferring to the linear forward-model setting, i.e.

𝒢(𝑢) = 𝐴𝑢, in which the Kalman gain is a central quantity. As mentioned for example

in Houtekamer and Mitchell [2001], in a localized update, the Kalman gain operator

should in theory be applied to M ∘ ̂︀𝐶, i.e. one should study the quantity

K (M ∘ ̂︀𝐶) = (M ∘ ̂︀𝐶)𝐴⊤(︀𝐴(M ∘ ̂︀𝐶)𝐴⊤ + Γ
)︀−1

,

although their experimental results are based on the more computationally convenient

approximation

K (M ∘ ̂︀𝐶) ≈ (︀M ∘ ( ̂︀𝐶𝐴⊤)
)︀(︀
M ∘ (𝐴 ̂︀𝐶𝐴⊤) + Γ

)︀−1
, (2.26)

which, as they mention, is a reasonable approximation in the case that 𝐴 is diagonal.

Subsequently, much of the literature on localization in ensemble Kalman updates has

adopted this or similar approximations, as discussed in greater depth in [Petrie, 2008,

Section 3.3]. In general, however, approximations made on the Schur product are

difficult to justify without strong assumptions on the forward model 𝒢.

With these issues in mind, we opt to study an alternative, data-driven approach to

localization often employed in the high-dimensional covariance estimation literature Bickel

and Levina [2008a], Cai and Zhou [2012a,b], where it is referred to as thresholding. We

ground our analysis in the assumption that the target of estimation belongs to the following

soft sparsity matrix class:

U𝑑1,𝑑2(𝑞, 𝑅𝑞) ≡
{︂
𝐵 ∈ R𝑑1×𝑑2 : max

𝑖≤𝑑1

𝑑2∑︁
𝑗=1

|𝐵𝑖𝑗 |𝑞 ≤ 𝑅𝑞

}︂
, (2.27)

where 𝑞 ∈ [0, 1) and 𝑅𝑞 > 0, and write U𝑑(𝑞, 𝑅𝑞) in the case 𝑑1 = 𝑑2 = 𝑑. In the special case
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𝑞 = 0, matrices in U𝑑1,𝑑2(0, 𝑅0) possess rows that have no more than 𝑅0 non-zero entries —a

special case of which are banded matrices— which is the classical hard-sparsity constraint. In

contrast, for 𝑞 ∈ (0, 1), the class U𝑑1,𝑑2(𝑞, 𝑅𝑞) contains matrices with rows belonging to the

ℓ𝑞 ball of radius 𝑅𝑞𝑞. This includes matrices with rows that contain possibly many non-zero

entries so long as their magnitudes decay sufficiently rapidly, and so is often referred to as a

soft-sparsity constraint. Importantly, the class U𝑑(𝑞, 𝑅𝑞) is sufficiently rich to capture the

motivating intuition that correlations decay with physical distance in a rigorous manner that

avoids the optimality issues mentioned above. Structured covariance matrices, such as those

belonging to U𝑑1,𝑑2(𝑞, 𝑅𝑞) are optimally estimated using localized versions of their sample

covariances. To this end, we study the localized matrix estimator 𝐵𝜌𝑁 ≡ ℒ𝜌𝑁 (𝐵), where

ℒ𝜌𝑁 (𝑢) = 𝑢1{|𝑢|≥𝜌𝑁} is a localization operator with localization radius 𝜌𝑁 , and which is

applied elementwise to its argument 𝐵. In Section 2.3 we detail how the localization radius

𝜌𝑁 can be chosen optimally in terms of the parameters of the inverse problem (2.1) and the

ensemble size 𝑁 .

Throughout our analysis, we refrain from using approximations such as the one outlined

in (2.26); that is, our analysis of localization replaces all non-localized quantities in the

original update (2.24) with their localized counterparts. We introduce the LEKI update:

𝜐
𝜌
𝑛 = 𝑢𝑛 + P( ̂︀𝐶 𝑢𝑝

𝜌𝑁,1 ,
̂︀𝐶 𝑝𝑝
𝜌𝑁,2)

(︀
𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛

)︀
, 1 ≤ 𝑛 ≤ 𝑁, (2.28)

where 𝜌𝑁,1 and 𝜌𝑁,2 are two, potentially different localization radii. As in the non-localized

case, in Subsection 2.3.3 we provide finite sample bounds on the deviation of the LEKI update

from the mean-field update of (2.25), and describe in detail how the additional structure

imposed on 𝐶 𝑢𝑝 and 𝐶 𝑝𝑝 leads to improved bounds relative to the non-localized setting.

Our second main result of this section, Theorem 2.3.7 will be based on new covariance

estimation bounds that may be of independent interest, and on a suitable notion of effective

dimension that we introduce in Subsection 2.3.2. Our theory explains the improved sample
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complexity that can be achieved by simultaneously exploiting spectral decay and sparsity of

the covariance model.

An important issue that warrants discussion is that of positive-semidefiniteness of the

estimator ̂︀𝐵𝜌𝑁 when the target 𝐵 is a square covariance matrix. In the case of the Schur-

product estimator, any localization matrix M derived from a valid correlation function 𝜅

is guaranteed to be positive-semidefinite by definition Gaspari and Cohn [1999], and so by

the Schur-product Theorem [Horn and Johnson, 2012, Theorem 7.5.3] the estimator M ∘ ̂︀𝐵
is positive-semidefinite as well. In contrast, the localization operator ℒ𝜌𝑁 thresholds the

sample covariance ̂︀𝐵 elementwise and does not in general preserve positive-semidefiniteness.

As discussed in El Karoui [2008], Cai and Zhou [2012b], ̂︀𝐵𝜌𝑁 is positive-semidefinite with

high probability, but in practice one may opt to use an augmented estimator that guarantees

positive-semidefiniteness. We describe this estimator here for completeness: let ̂︀𝐵𝜌𝑁 =∑︀𝑑
𝑗=1 𝜆̂𝑗𝑣𝑗𝑣

⊤
𝑗 be the eigen-decomposition of ̂︀𝐵𝜌𝑁 , so that 𝜆𝑗 , 𝑣𝑗 are the 𝑗-th eigenvalue and

eigenvector of ̂︀𝐵𝜌𝑁 . Consider then the positive-part estimator ̂︀𝐵+
𝜌𝑁 ≡

∑︀𝑑
𝑗=1(0 ∨ 𝜆̂𝑗)𝑣𝑗𝑣

⊤
𝑗 .

Clearly then, ̂︀𝐵+
𝜌𝑁 is positive-semidefinite, and furthermore it achieves the same rate as ̂︀𝐵𝜌𝑁

since

‖ ̂︀𝐵+
𝜌𝑁 −𝐵‖ ≤ ‖ ̂︀𝐵+

𝜌𝑁 − ̂︀𝐵𝜌𝑁 ‖+ ‖ ̂︀𝐵𝜌𝑁 −𝐵‖ ≤ max
𝑗:𝜆̂𝑗<0

|𝜆̂𝑗 − 𝜆𝑗 |+ ‖ ̂︀𝐵𝜌𝑁 −𝐵‖ ≤ 2‖ ̂︀𝐵𝜌𝑁 −𝐵‖,

where 𝜆𝑗 is the 𝑗-th eigenvalue of 𝐵. In light of this fact, we abuse notation slightly and

assume that 𝐵𝜌𝑁 is positive-semidefinite throughout this work.

2.3.2 Dimension-Free Covariance Estimation Under Soft Sparsity

For the covariance estimation problem under (approximate) sparsity, there are estimators

that significantly improve upon the sample covariance. In particular, [Wainwright, 2019,

Chapter 6.5] notes that for sub-Gaussian data the operator-norm covariance estimation error
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depends logarithmically on the state dimension 𝑑 for localized estimators, while the error

depends linearly on 𝑑 for the sample covariance. If no sparse structure is assumed, the

effective dimension 𝑟2 defined in (2.14) characterizes the error of the sample covariance

estimator, as described in Proposition 2.2.1. We introduce an analogous notion of effective

dimension that is more suitable than 𝑟2 in the sparse covariance estimation problem, termed

the max-log effective dimension and which, for 𝑄 ∈ 𝒮𝑑+, is given by

𝑟∞(𝑄) ≡
max𝑗≤𝑑𝑄(𝑗) log(𝑗 + 1)

𝑄(1)
,

where 𝑄(1) ≥ 𝑄(2) ≥ . . . ≥ 𝑄(𝑑) is the decreasing rearrangement of the diagonal entries of 𝑄.

To the best of our knowledge, this notion of dimension has not been previously considered

in the literature, and, as will be shown, refines the rate of covariance estimation under

sparsity by incorporating intrinsic properties of the underlying matrix, albeit differently to

(2.14). In particular, 𝑟∞(𝑄) is small whenever 𝑄 exhibits a decay of the ordered elements

𝑄(1), 𝑄(2), . . . that is faster than log(𝑗 + 1). We use the subscript ∞ to highlight that the

quantity 𝑟∞ is related to the dimension-free sub-Gaussian maxima result of Lemma 2.6.6.

Similarly, we use the subscript 2 to draw the connection between 𝑟2 and the sub-Gaussian 2-

norm concentration of Theorem 2.5.1. Importantly, bounds based on 𝑟∞ will be dimension-

free, in the sense that they exhibit no dependence on the state dimension 𝑑. The next

result is our analog of Proposition 2.2.1 for estimation under sparsity using the localized

sample covariance estimator. Recall that 𝐶(1) denotes the largest element on the diagonal

of 𝐶, ̂︀𝐶𝜌𝑁 ≡ ℒ𝜌𝑁 ( ̂︀𝐶 ) denotes the localized sample covariance matrix, and U𝑑(𝑞, 𝑅𝑞) is the

sparse matrix class defined in (2.27). All proofs in this subsection have been deferred to

Appendix 2.6.1.

Theorem 2.3.1 (Covariance Estimation with Localization —Soft Sparsity Assumption).

Let 𝑢1, . . . , 𝑢𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑢1] = 𝑚 and

var[𝑢1] = 𝐶. Further, assume that 𝐶 ∈ U𝑑(𝑞, 𝑅𝑞) for some 𝑞 ∈ [0, 1) and 𝑅𝑞 > 0. For any
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𝑡 ≥ 1, set

𝜌𝑁 ≍ 𝐶(1)

(︃√︂
𝑟∞(𝐶)

𝑁
∨ 𝑡𝑟∞(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃

and let ̂︀𝐶𝜌𝑁 ≡ ℒ𝜌𝑁 ( ̂︀𝐶𝜌𝑁 ) be the localized sample covariance estimator. There exists a

constant 𝑐 > 0 such that, with probability at least 1− 𝑐𝑒−𝑡,

‖ ̂︀𝐶𝜌𝑁 − 𝐶‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁 .

Remark 2.3.2 (Max-Log Effective Dimension). The proof of Theorem 2.3.1 can be found in

Section 2.6.1 and, up to the choice of 𝜌𝑁 , follows an identical approach to the standard proof

for localized covariance estimators in the literature, for example [Wainwright, 2019, Theo-

rem 6.27]. The result depends crucially on the order of the maximum elementwise distance

between the sample and true covariance matrices, ‖ ̂︀𝐶 − 𝐶‖max, which is where our analysis

differs from the exiting literature. Our proof utilizes techniques in Koltchinskii and Lounici

[2017] combined with the dimension-free sub-Gaussian maxima bound of Lemma 2.6.6 to

obtain a bound in terms of 𝑟∞. In the worst case, for example when 𝐶 = 𝑐𝐼𝑑 for some

constant 𝑐 > 0 so that the ordered diagonal elements of 𝐶 exhibit no decay, we recover

exactly the standard logarithmic dependence on the state dimension. In particular, when

𝑁 ≥ 𝑟∞(𝐶)(= log 𝑑), Theorem 2.3.1 matches the result for recovering 𝐶 in operator norm

in the sub-Gaussian setting over the class U𝑑(𝑞, 𝑅𝑞), as shown in [Bickel and Levina, 2008a,

Theorem 1]. If the ordered variances exhibit sufficiently fast decay, our upper bound is signifi-

cantly better. (Recall that in many applications 𝑑 ∼ 109 and 𝑁 ∼ 102, and so the logarithmic

dependence on 𝑑 may play a significant role in determining a sufficient ensemble size.) Im-

portantly, many of the results in the structured covariance estimation literature rely similarly

on the maximum elementwise norm, and so our results can be utilized to achieve refined

bounds on the estimation error of the localized estimator under structural assumptions on 𝐶
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that differ from the soft-sparsity assumption considered in this work.

A result analogous to Theorem 2.3.1 holds for cross-covariance estimation under sparsity.

For a formal statement we refer to Theorem 2.6.11 whose proof is based on a deep generic

chaining bound for product empirical processes [Mendelson, 2016, Theorem 1.12]. Here we

present a cross-covariance estimation result that is specific to the LEKI setting in that it

relies on a smoothness assumption on the forward model.

Theorem 2.3.3 (Cross-Covariance Estimation with Localization —Soft Sparsity Assump-

tion). Let 𝑢1, . . . , 𝑢𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑢1] = 𝑚

and var[𝑢1] = 𝐶. Let 𝒢 : R𝑑 → R𝑘 be a Lipschitz continuous forward model and assume that

𝐶 𝑢𝑝 ∈ 𝒰𝑑,𝑘(𝑞1, 𝑅𝑞1) and 𝐶 𝑝𝑢 ∈ 𝒰𝑘,𝑑(𝑞2, 𝑅𝑞2) where 𝑞1, 𝑞2 ∈ [0, 1) and 𝑅𝑞1 , 𝑅𝑞2 are positive

constants. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ (𝐶(1) ∨ 𝐶
𝑝𝑝
(1)

)

(︃(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︁√︀
𝑟∞(𝐶) ∨

√︀
𝑟∞(𝐶 𝑝𝑝)

)︁
∨
√︂
𝑟∞(𝐶)

𝑁

√︂
𝑟∞(𝐶 𝑝𝑝)

𝑁

)︃
,

and let ̂︀𝐶 𝑢𝑝
𝜌𝑁 ≡ ℒ𝜌𝑁 ( ̂︀𝐶 𝑢𝑝) be the localized sample cross-covariance estimator. There exist

positive universal constants 𝑐1, 𝑐2 such that, with probability at least 1− 𝑐1𝑒
−𝑐2𝑡,

‖ ̂︀𝐶 𝑢𝑝
𝜌𝑁 − 𝐶 𝑢𝑝‖ ≲ 𝑅𝑞1𝜌

1−𝑞1
𝑁 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁 .

Remark 2.3.4 (Sparsity of the Cross-Covariance). To the best of our knowledge, estima-

tion of the cross-covariance matrix under structural assumptions has not been a point of

focus in the literature. Indeed, one may implicitly estimate the cross-covariance by applying

Theorem 2.3.1 to the full covariance matrix

⎡⎢⎣ 𝐶 𝐶 𝑢𝑝

𝐶 𝑝𝑢 𝐶 𝑝𝑝

⎤⎥⎦
49



of the sub-Gaussian vector [𝑢⊤,𝒢(𝑢)⊤]⊤, and extracting a bound on ‖𝐶 𝑢𝑝
𝜌𝑁 − 𝐶 𝑢𝑝‖. This

approach however requires one to place sparsity assumptions on the full covariance matrix,

making the result potentially less useful in practice. That is, one may wish to make structural

assumptions on 𝐶 𝑢𝑝 and 𝐶 𝑝𝑝 without imposing any restrictions on 𝐶, which our result allows

for.

2.3.3 Main Results: Approximation of Mean-Field Particle Updates with

Finite Ensemble Size

In this subsection we state finite ensemble approximation results for EKI and LEKI updates.

The main results, Theorems 2.3.5 and 2.3.7, showcase the dependence on the effective di-

mension of 𝐶 and 𝐶𝑝𝑝 for EKI and on the max-log dimension of these matrices for LEKI.

For both algorithms, we study the update of a generic particle 𝑢𝑛 and the analysis is carried

out conditional on both 𝑢𝑛 and the noise perturbation 𝜂𝑛.

Theorem 2.3.5 (Approximation of Mean-Field EKI with EKI —Operator-Norm Bound).

Let 𝑦 be generated according to (2.1) with Lipschitz forward model 𝒢 : R𝑑 → R𝑘. Let 𝜐𝑛 and

𝜐*𝑛 be the EKI and mean-field EKI updates defined in (2.24) and (2.25) respectively. Then,

for any 𝑡 ≥ 1, there exists universal positive constants 𝑐1, 𝑐2 such that, with probability at

least 1− 𝑐1𝑒
−𝑐2𝑡,

‖𝜐𝑛 − 𝜐*𝑛‖2 ≤ 𝑐1

(︃
𝑐2
𝑁

∨
√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(𝐶 𝑝𝑝)

𝑁
∨ 𝑟2(𝐶

𝑝𝑝)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
,

where 𝑐1 = 𝑐1(‖𝑦 − 𝒢(𝑢𝑛) − 𝜂𝑛‖2, ‖Γ−1‖, ‖𝐶‖, ‖𝐶 𝑢𝑝‖, ‖𝐶 𝑝𝑝‖) and for 𝑢 ∼ 𝒩 (𝑚,𝐶), 𝑐2 =

𝑐2(‖𝑢𝑛‖2, ‖𝑚‖2, ‖𝒢(𝑢𝑛)‖2, ‖E[𝒢(𝑢)]‖2).

Remark 2.3.6 (Dependence of Constants on Model Parameters). The proof of Theorem

2.3.5 in Appendix 2.6.2 gives an explicit expression for the dependence of 𝑐 on its arguments.
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These bounds may be used to establish the sufficient ensemble size to ensure that the EKI

update approximates well the mean-field EKI update in the unstructured covariance setting.

Theorem 2.3.7 (Approximation of Mean-Field EKI with LEKI —Operator-Norm Bound).

Let 𝑦 be generated according to (2.1) with Lipschitz forward model 𝒢 : R𝑑 → R𝑘. Assume

that 𝐶 𝑢𝑝 ∈ U𝑑,𝑘(𝑞1, 𝑅𝑞1), 𝐶
𝑝𝑢 ∈ U𝑘,𝑑(𝑞2, 𝑅𝑞2) and 𝐶 𝑝𝑝 ∈ U𝑘(𝑞3, 𝑅𝑞3) for 𝑞1, 𝑞2, 𝑞3 ∈ [0, 1),

and positive constants 𝑅𝑞1 , 𝑅𝑞2 , 𝑅𝑞3. Let 𝜐𝜌𝑛 and 𝜐*𝑛 be the LEKI and mean-field EKI updates

outlined in (2.28) and (2.25) respectively. For any 𝑡 ≥ 1, set

𝜌𝑁,1 = 𝜌𝑁,2

≍ 𝑐1
𝑁

+ (𝐶(1) ∨ 𝐶
𝑝𝑝
(1)

)

(︃(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︁√︀
𝑟∞(𝐶) ∨

√︀
𝑟∞(𝐶 𝑝𝑝)

)︁
∨
√︂
𝑟∞(𝐶)

𝑁

√︂
𝑟∞(𝐶 𝑝𝑝)

𝑁

)︃
,

and

𝜌𝑁,3 ≍ 𝑐2
𝑁

+ 𝐶
𝑝𝑝
(1)

(︃√︂
𝑟∞(𝐶 𝑝𝑝)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(𝐶 𝑝𝑝)

𝑁

)︃
,

where 𝑐1 = 𝑐1(‖𝑢𝑛‖∞, ‖𝑚‖∞, ‖𝒢(𝑢𝑛)‖∞, ‖E[𝒢(𝑢)]‖∞) and 𝑐2 = 𝑐2(‖𝒢(𝑢𝑛)‖∞, ‖E[𝒢(𝑢)]‖∞),

with 𝑢 ∼ 𝒩 (𝑚,𝐶). There exist positive universal constants 𝑐3, 𝑐4 such that, with probability

at least 1− 𝑐3𝑒
−𝑐4𝑡,

‖𝜐𝜌𝑛 − 𝜐*𝑛‖2 ≤ 𝑐5(𝑅𝑞1𝜌
1−𝑞1
𝑁,1 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁,2 ∨𝑅𝑞3𝜌

1−𝑞3
𝑁,3 ),

where 𝑐5 = 𝑐5(‖𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛‖2, ‖Γ−1‖, ‖𝐶 𝑢𝑝‖).

Remark 2.3.8 (Dependence of Constants on Model Parameters). The proof of Theorem

2.3.7 in Appendix 2.6.2 gives an explicit expression for the dependence of 𝑐 on its arguments.

As discussed in Remark 2.3.6, these bounds may be used to establish the sufficient ensemble

size to ensure that the LEKI update approximates well the mean-field EKI update in the

structured covariance setting.
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Remark 2.3.9 (On the Soft-Sparsity Assumptions). Importantly, Theorem 2.3.7 makes

no assumptions on the covariance matrix 𝐶, and so can be used even in cases where 𝐶 is

dense, but the covariances 𝐶 𝑢𝑝, 𝐶 𝑝𝑢, and 𝐶 𝑝𝑝 can be reasonably assumed to be sparse.

In the case that sparsity assumptions on 𝐶 are appropriate, then an interesting question

is: what (explicit) assumptions on 𝒢 ensure sparsity of 𝐶 𝑢𝑝, 𝐶 𝑝𝑢, and 𝐶 𝑝𝑝? We provide

here two simple arguments that may provide some insight. Throughout, 𝑐1, 𝑐2, 𝑐2, 𝑐4, 𝑐5 are

arbitrary positive constants independent of both state and observation dimensions 𝑑 and 𝑘,

and 𝑞 ∈ [0, 1).

1. Suppose 𝐶 ∈ U𝑑(𝑞, 𝑐1) and E[𝐷𝒢]⊤ ∈ U𝑑,𝑘(𝑞, 𝑐2). Then there exists 𝑐3 such that

𝐶 𝑢𝑝 ∈ U𝑑,𝑘(𝑞, 𝑐3). We provide a formal statement of this result in Lemma 2.6.14.

Similarly, if E[𝐷𝒢] ∈ U𝑘,𝑑(𝑞, 𝑐4), then there exists 𝑐5 such that 𝐶 𝑝𝑢 ∈ U𝑘,𝑑(𝑞, 𝑐5).

The assumptions on the expected Jacobian E[𝐷𝒢] can be understood as the requirements

that, in expectation:

(a) Any coordinate function 𝒢𝑗 of 𝒢 depends on its input 𝑢 only through a subset of

𝑢 whose size does not grow with 𝑘 nor 𝑑.

(b) Any state coordinate 𝑢𝑗 of 𝑢 is acted on only by a subset of the coordinate-functions

of 𝒢 whose size does not grow with 𝑘 nor 𝑑.

For example, a Jacobian that is banded in expectation would satisfy these two properties.

2. Suppose 𝐶 ∈ U𝑑(𝑞, 𝑐1). Then there exists 𝑐2 such that 𝐶 𝑝𝑝 ∈ U𝑘(𝑞, 𝑐2) whenever

𝒢(𝑢) = 𝐴𝑢 is a linear map with 𝐴 ∈ U𝑘,𝑑(𝑞, 𝑐3) and 𝐴⊤ ∈ U𝑑,𝑘(𝑞, 𝑐4), i.e. whenever

𝐴 has both rows and columns that are sparse. This condition holds, for example, for

banded 𝐴. We provide a formal statement of this result in Lemma 2.6.16.

The two arguments above indicate that if 𝒢 acts on local subsets of 𝑢, which holds for instance

for convolution or moving average operators, then one can expect the sparsity of 𝐶 to carry

on to 𝐶 𝑢𝑝, 𝐶 𝑝𝑢, and 𝐶 𝑝𝑝.
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Remark 2.3.10 (Comparison to the Literature). Although the focus of this subsection is

the LEKI, it is useful to compare our Theorems 2.3.5 and 2.3.7 to existing results for the

performance of ensemble based algorithms with localization. In this regard, our results are

closest to those of Tong [2018], which shows that an ensemble that scales with the loga-

rithm of the state dimension times a localization radius suffices for good performance of the

localized EnKF (LEnKF). They study performance over multiple time steps and linear dy-

namics under a stability assumption which enforces control over the model matrices as well

as a sparse (𝑞 = 0) structure of the underlying true covariance matrices. They consider do-

main localization whereas we study covariance localization. In contrast to our results, Tong

[2018] employs covariance localization and utilizes a Schur-product localization scheme in

which elements whose indices are beyond a certain bandwidth are set to zero, whereas we

study localization via thresholding (recall our discussion comparing these two approaches in

Subsection 2.3.1). Consequently, our required localization radius is in terms of the max-log

effective dimension whereas theirs is in terms of the bandwidth of the underlying covariance

matrix. Our results are dimension-free in that they do not rely on the state dimension 𝑑,

and so as noted in Remark 2.3.2, our bounds can have significantly better than logarithmic

dependence on dimension. Our setting also differs from Tong [2018] in that our dynam-

ics are allowed to be nonlinear, and our prior ensemble can be sub-Gaussian as opposed to

Gaussian. Related to this point is that the analysis in Tong [2018] does not account for noise

introduced from adding perturbations to the ensemble update, which is justified by a law of

large numbers argument; however in the non-asymptotic and nonlinear settings, it is likely

that one must account for this noise especially when considering the covariance between the

current ensemble and the perturbation noise at a given iteration of the algorithm. We view

it as an important avenue to extend the results of this subsection to a multi-step analysis,

and a particularly important question is whether dimension-free control of the LEnKF can be

rigorously shown utilizing a combination of our results and those of Tong [2018]. The LEKI
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has also been recently studied in Tong and Morzfeld [2023] under a nonlinear, multi-step

setting. The authors study convergence of the iterates to a global minimizer and the rate of

collapse of the ensemble. They argue that localization is a remedy for the “subspace property”

of the EKI, which refers to the fact that ensembles at any given iteration live in the linear

subspace spanned by the initial ensemble, which cannot capture the true state if 𝑁 < 𝑑. Their

analysis differs from ours in that they study the continuous-time setting whereas we analyze

discrete time updates as implemented in practice. Further, while they discuss that the size of

the ensemble may be much smaller than the state dimension, as well as illustrate this with

simulations, they do not provide an explicit characterization of the sufficient ensemble size.

Our results also show that the LEKI is close to the mean field version of the problem, which

is not considered in their set-up. An interesting open question is whether the results of this

section can be used in conjunction with results in Tong and Morzfeld [2023] to provide a

sufficient ensemble size for LEKI over multiple iterations.

2.4 Conclusions, Discussion, and Future Directions

This chapter has introduced a non-asymptotic approach to the study of ensemble Kalman

methods. Our theory explains why these algorithms may be accurate provided that the en-

semble size is larger than a suitable notion of effective dimension, which may be dramatically

smaller than the state dimension due to spectrum decay and/or approximate sparsity. Our

non-asymptotic results in Section 2.2 tell apart PO and SR updates for posterior approxima-

tion, and our results in Section 2.3 demonstrate the potential advantage of using localization

in sequential-optimization algorithms.

As discussed in Subsection 2.3.1, localization is also often used in posterior-approximation
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algorithms. For instance, one may define a localized PO update by

̂︀𝜇 = M (̂︀𝑚, ̂︀𝐶𝜌𝑁 )− K ( ̂︀𝐶𝜌𝑁 )𝜂,̂︀Σ = C ( ̂︀𝐶𝜌𝑁 ) + ̂︀𝑂𝜌𝑁 , (2.29)

where ̂︀𝑂𝜌𝑁 is defined replacing ̂︀𝐶 with ̂︀𝐶𝜌𝑁 in (2.11). Similarly, one may define a localized

SR update by

̂︀𝜇 = M (̂︀𝑚, ̂︀𝐶𝜌𝑁 ),̂︀Σ = C ( ̂︀𝐶𝜌𝑁 ). (2.30)

It is then natural to ask if localized PO and SR updates can yield better approximation of

the posterior mean and covariance than those without localization in Theorems 2.2.3 and

2.2.5. The answer for the posterior mean seems to be negative.

To see why, consider for intuition that we are given a random sample 𝑋1, . . . , 𝑋𝑁 from

a normal distribution with mean 𝜇𝑋 and covariance Σ𝑋 with the objective to estimate

𝜇𝑋 . Standard results, see e.g. [L. E. Lehmann, and G. Casella, 2006, Example 1.14], show

that the sample mean 𝑋 is minimax optimal for ℓ2-loss regardless of whether or not Σ𝑋

is known. In other words, the minimax rate of estimating 𝜇𝑋 can be achieved without

making use of information regarding Σ𝑋 . It follows then that placing assumptions on Σ𝑋

can lead to impressive improvements in the covariance estimation problem (as shown in

Section 2.3) but cannot be expected to affect the mean estimation problem. Similarly,

in our inverse problem setting, sparsity assumptions on the prior covariance 𝐶 cannot be

expected to translate into a better bound on ‖̂︀𝜇−𝜇‖2: this quantity is a function of both the

covariance deviation ‖ ̂︀𝐶𝜌𝑁−𝐶‖ and the prior mean deviation ‖̂︀𝑚−𝑚‖2 and since the latter is

unaffected it dominates the overall bound, yielding an error bound of the same order as that

in Theorem 2.2.3. As discussed in Remark 2.2.7, a potential avenue for future investigation is

to utilize techniques introduced in this manuscript to study alternative localization schemes
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in the posterior approximation setting, such as domain localization considered in Tong [2018].

In short, covariance localization as defined in (2.30) does not lead to improved bounds for

the posterior-approximation problem.

Similar issues to those arising in the estimation of the posterior mean affect the analysis

of the localized offset ̂︀𝑂𝜌𝑁 , and we therefore do not expect improvement on the bound in

Theorem 2.2.5 for covariance estimation with the localized PO update. We note, however,

that for localized SR it is possible to derive an analog to the high probability version of

Theorem 2.2.5 (see Theorem 2.5.9) with an improved error bound, which we present in

Theorem 2.7.2.

Our discussion here should not be taken to imply that localization in posterior-approximation

algorithms is not useful; it is plausible that localization in one step of the algorithm can lead

to improved bounds in later steps, and we leave this multi-step analysis of localized pos-

terior approximation ensemble updates as an important line for future work. A related

phenomenon is known to occur in sequential Monte Carlo, where a proposal density that

may be optimal for one step of the filter may not be optimal over multiple steps Agapiou

et al. [2017]. Another interesting direction for future study is the non-asymptotic analy-

sis of ensemble Kalman methods for likelihood approximations in state-space models Chen

et al. [2022]. Finally, we envision that the non-asymptotic approach set forth here may

be adopted to design and analyze new multi-step methods for posterior-approximation and

sequential-optimization in inverse problems and data assimilation.

Proofs

We provide proofs of all theorems in the main body. We will use the following result ex-

tensively and summarise it here for brevity. Given events 𝐸1, . . . , 𝐸𝐽 that each occur with

probability at least 1 − 𝑐𝑒−𝑡, where 𝑡 ≥ 1 and 𝑐 > 0 is a universal constant that may be
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different for each event, then

P

⎛⎝ 𝐽⋂︁
𝑗=1

𝐸𝑗

⎞⎠ = 1− P

⎛⎝ 𝐽⋃︁
𝑗=1

𝐸̄𝑗

⎞⎠ ≥ 1−
𝐽∑︁
𝑗=1

P(𝐸̄𝑗) ≥ 1− 𝑐𝑒−𝑡.

2.5 Proofs: Section 2.2

This appendix contains the proofs of all the theorems in Section 2.2. Background results on

covariance estimation are reviewed in Subsection 2.5.1 and the continuity and boundedness

of the Kalman gain, mean-update, covariance-update, and nonlinear gain-update operators

are summarized in Subsection 2.5.2. These preliminary results are used in Subsection 2.5.3

to establish our main theorems.

2.5.1 Preliminaries: Concentration and Covariance Estimation

Theorem 2.5.1 (Sub-Gaussian Norm Concentration, [Vershynin, 2018, Exercise 6.3.5]). Let

𝑋 be a 𝑑-dimensional sub-Gaussian random vector with E[𝑋] = 𝜇𝑋 , var[𝑋] = Σ𝑋 . Then,

for any 𝑡 ≥ 1, with probability at least 1− 𝑐𝑒−𝑡 it holds that

‖𝑋 − 𝜇𝑋‖2 ≲
√︁

Tr(Σ𝑋) +

√︁
𝑡‖Σ𝑋‖ ≲

√︁
‖Σ𝑋‖(𝑟2(Σ𝑋) ∨ 𝑡) .

Proof of Proposition 2.2.1. For 𝑛 = 1, . . . , 𝑁 , let 𝑢𝑛 = 𝑍𝑛 + 𝑚, where 𝑍𝑛 is a centered

sub-Gaussian random vector with var[𝑍𝑛] = 𝐶. Then we may write

̂︀𝐶 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑍𝑛 − 𝑍)(𝑍𝑛 − 𝑍)⊤ ≍ 1

𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝑍
⊤
𝑛 − 𝑍𝑍⊤ ≡ ̂︀𝐶0 − 𝑍𝑍⊤.

Therefore,

‖ ̂︀𝐶 − 𝐶‖ ≤ ‖ ̂︀𝐶0 − 𝐶‖+ ‖𝑍𝑍⊤‖ = ‖ ̂︀𝐶0 − 𝐶‖+ ‖𝑍‖22.
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Let 𝐸1 denote the event on which

‖ ̂︀𝐶0 − 𝐶‖ ≲ ‖𝐶‖

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
,

and 𝐸2 the event on which

‖𝑍‖22 ≲ ‖𝐶‖
(︂
𝑟2(𝐶)

𝑁
∨ 𝑡

𝑁

)︂
.

Then by Theorem 9 of Koltchinskii and Lounici [2017], P(𝐸1) ≥ 1 − 𝑒−𝑡, and by Theo-

rem 2.5.1, P(𝐸2) ≥ 1 − 𝑒−𝑡. Therefore, the result holds on 𝐸1 ∩ 𝐸2, which has probability

at least 1− 𝑐𝑒−𝑡.

Lemma 2.5.2 (Sample Covariance Operator Norm Bound). Let 𝑢1, . . . , 𝑢𝑁 and ̂︀𝐶 be as in

Proposition 2.2.1. Then, for any 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖ ̂︀𝐶‖ ≲ ‖𝐶‖
(︂
1 ∨ 𝑟2(𝐶)

𝑁
∨ 𝑡

𝑁

)︂
.

Proof. By the triangle inequality ‖ ̂︀𝐶‖ ≤ ‖ ̂︀𝐶 − 𝐶‖ + ‖𝐶‖. The result follows by Proposi-

tion 2.2.1 noting that, for any 𝑥 ≥ 0, 1 ∨
√
𝑥 ∨ 𝑥 = 1 ∨ 𝑥.

Lemma 2.5.3 (Cross-Covariance Estimation —Unstructured Case). Let 𝑢1, . . . , 𝑢𝑁 be 𝑑-

dimensional i.i.d. sub-Gaussian random vectors with E[𝑢1] = 𝑚 and var[𝑢1] = 𝐶. Let

𝜂1, . . . , 𝜂𝑁 be 𝑘-dimensional i.i.d. sub-Gaussian random vectors with E[𝜂1] = 0 and var[𝜂1] =

Γ, and assume that the two sequences are independent. Consider the estimator

̂︀𝐶 𝑢𝜂 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝜂𝑛 − 𝜂)⊤

of the cross-covariance 𝐶𝑢𝜂 ≡ E
[︀
(𝑢1 −𝑚)𝜂⊤1

]︀
. Then there exists a constant 𝑐 such that, for
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all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖ ̂︀𝐶 𝑢𝜂 − 𝐶 𝑢𝜂‖ ≲ (‖𝐶‖ ∨ ‖Γ‖)

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(Γ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

Proof. First, we note that

̂︀𝐶 𝑢𝜂 ≍ 𝑁 − 1

𝑁

⎛⎝ 1

𝑁

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝜂𝑛 − 𝜂)⊤

⎞⎠ ≡ 𝑁 − 1

𝑁
̃︀𝐶 𝑢𝜂,

and so it suffices to prove the claim for the biased sample covariance estimator, which we

denote by ̃︀𝐶 𝑢𝜂. Letting 𝑍𝑛 = 𝑢𝑛 −𝑚, it follows that

‖ ̃︀𝐶𝑢𝜂‖ =

⃦⃦⃦⃦
⃦⃦ 1

𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝜂
⊤
𝑛 − 𝑍𝜂⊤

⃦⃦⃦⃦
⃦⃦ ≤

⃦⃦⃦⃦
⃦⃦ 1

𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝜂
⊤
𝑛

⃦⃦⃦⃦
⃦⃦+ ‖𝑍𝜂⊤‖. (2.31)

For the second term in the right-hand side of (2.31), let 𝐸1 denote the event on which

‖𝑍‖2 ≲

√︃
‖𝐶‖

(︂
𝑟2(𝐶)

𝑁
∨ 𝑡

𝑁

)︂
,

and 𝐸2 the event on which

‖𝜂‖2 ≲

√︃
‖Γ‖

(︂
𝑟2(Γ)

𝑁
∨ 𝑡

𝑁

)︂
,

each of which have probability at least 1 − 𝑒−𝑡 by Theorem 2.5.1. Therefore, the event

𝐸1 ∩ 𝐸2 occurs with probability at least 1− 𝑐𝑒−𝑡, and on which it follows that

‖𝑍𝜂⊤‖ = ‖𝑍‖2‖𝜂‖2 ≲ (‖𝐶‖ ∨ ‖Γ‖)
(︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(Γ)

𝑁
∨ 𝑡

𝑁

)︂
,

where the inequality follows since
√
𝑎𝑏 ≲ 𝑎 ∨ 𝑏 for 𝑎, 𝑏 ≥ 0. To control the first term in the
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right-hand side of (2.31), we define the vector

𝑊𝑛 =

⎡⎢⎣𝑍𝑛
𝜂𝑛

⎤⎥⎦ ∈ R𝑑+𝑘, 1 ≤ 𝑛 ≤ 𝑁,

and note that 𝑊1, . . . ,𝑊𝑁 is an i.i.d. sub-Gaussian sequence with E[𝑊1] = [𝑚⊤, 0⊤𝑘 ]
⊤ and

variance 𝐶𝑊 = diag(𝐶,Γ). Let 𝐸3 denote the event on which

⃦⃦⃦⃦
⃦⃦ 1

𝑁

𝑁∑︁
𝑛=1

𝑊𝑛𝑊
⊤
𝑛 − 𝐶𝑊

⃦⃦⃦⃦
⃦⃦ ≲ ‖𝐶𝑊 ‖

⎛⎝√︃𝑟2(𝐶𝑊 )

𝑁
∨ 𝑟2(𝐶

𝑊 )

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠
≲ (‖𝐶‖ ∨ ‖Γ‖)

(︃(︃√︃
Tr(𝐶)
𝑁‖𝐶‖

+

√︃
Tr(Γ)
𝑁‖Γ‖

)︃
∨ Tr(𝐶) + Tr(Γ)
𝑁(‖𝐶‖ ∨ ‖Γ‖)

∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃

≲ (‖𝐶‖ ∨ ‖Γ‖)

(︃(︃√︂
𝑟2(𝐶)

𝑁
+

√︂
𝑟2(Γ)

𝑁

)︃
∨
(︂
𝑟2(𝐶)

𝑁
+
𝑟2(Γ)

𝑁

)︂
∨

(︃√︂
𝑡

𝑁
∨ 𝑡

𝑁

)︃)︃

≲ (‖𝐶‖ ∨ ‖Γ‖)

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(Γ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

By Proposition 2.2.1, it holds for any 𝑡 ≥ 1 that P(𝐸3) ≥ 1− 𝑒−𝑡. Note that we can express

𝒫 ≡ 1

𝑁

𝑁∑︁
𝑛=1

𝑊𝑛𝑊
⊤
𝑛 −

⎡⎢⎣𝐶 𝑂

𝑂 Γ

⎤⎥⎦ =

⎡⎢⎣𝑁−1∑︀𝑁
𝑛=1 𝑍𝑛𝑍

⊤
𝑛 − 𝐶 𝑁−1∑︀𝑁

𝑛=1 𝑍𝑛𝜂
⊤
𝑛

𝑁−1∑︀𝑁
𝑛=1 𝜂𝑛𝑍

⊤
𝑛 𝑁−1∑︀𝑁

𝑛=1 𝜂𝑛𝜂
⊤
𝑛 − Γ

⎤⎥⎦ ,
and that ⃦⃦⃦⃦

⃦⃦ 1

𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝜂
⊤
𝑛

⃦⃦⃦⃦
⃦⃦ = ‖𝐸11𝒫𝐸12‖ ≤ ‖𝐸11‖‖𝒫‖‖𝐸12‖ = ‖𝒫‖,

where 𝐸11, 𝐸12 are block selection matrices that pick the relevant sub-block matrix of 𝒫 .
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Therefore, it holds on 𝐸3 that

⃦⃦⃦⃦
⃦⃦ 1

𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝜂
⊤
𝑛

⃦⃦⃦⃦
⃦⃦ ≲ (‖𝐶‖ ∨ ‖Γ‖)

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(Γ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

The final result follows by noting that the intersection 𝐸1 ∩𝐸2 ∩𝐸3 has probability at least

1− 𝑐𝑒−𝑡.

2.5.2 Continuity and Boundedness of Update Operators

The next three lemmas, shown in Kwiatkowski and Mandel [2015], ensure the continuity and

boundedness of the Kalman gain, mean-update, and covariance-update operators introduced

in Section 2.2. We include them here for completeness. Lemma 2.5.7 below establishes similar

properties for the nonlinear gain-update operator introduced in Section 2.3.

Lemma 2.5.4 (Continuity and Boundedness of Kalman Gain Operator [Kwiatkowski and

Mandel, 2015, Lemma 4.1 & Corollary 4.2]). Let K be the Kalman gain operator defined in

(2.5). Let 𝑃,𝑄 ∈ 𝒮𝑑+, Γ ∈ 𝒮𝑘++, and 𝐴 ∈ R𝑘×𝑑. The following hold:

‖K (𝑄)− K (𝑃 )‖ ≤ ‖𝑄− 𝑃‖‖𝐴‖‖Γ−1‖
(︁
1 + min (‖𝑃‖, ‖𝑄‖) ‖𝐴‖2‖Γ−1‖

)︁
,

‖K (𝑄)‖ ≤ ‖𝑄‖‖𝐴‖‖Γ−1‖,

‖𝐼 − K (𝑄)𝐴‖ ≤ 1 + ‖𝑄‖‖𝐴‖2‖Γ−1‖.

Lemma 2.5.5 (Continuity and Boundedness of Mean-Update Operator [Kwiatkowski and

Mandel, 2015, Corollary 4.3 & Lemma 4.7]). Let M be the mean-update operator defined in
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(2.6). Let 𝑃,𝑄 ∈ 𝒮𝑑+, Γ ∈ 𝒮𝑘++, 𝐴 ∈ R𝑘×𝑑, 𝑦 ∈ R𝑘, and 𝑚,𝑚′ ∈ R𝑑. The following hold:

‖M (𝑚,𝑄)‖ ≤ ‖𝑚‖+ ‖𝑄‖‖𝐴‖‖Γ−1‖ ‖𝑦 − 𝐴𝑚‖2 ,⃦⃦
M (𝑚,𝑄)− M (𝑚′, 𝑃 )

⃦⃦
≤
⃦⃦
𝑚−𝑚′⃦⃦ (︀1 + ‖𝐴‖2‖Γ−1‖‖𝑄‖

)︀
+ ‖𝑄− 𝑃‖‖𝐴‖‖Γ−1‖

(︀
1 + ‖𝐴‖2‖Γ−1‖‖𝑃‖

)︀ ⃦⃦
𝑦 − 𝐴𝑚′⃦⃦

2 .

Lemma 2.5.6 (Continuity and Boundedness of Covariance-Update Operator [Kwiatkowski

and Mandel, 2015, Lemma 4.4 & Lemma 4.6]). Let C be the covariance-update operator

defined in (2.7). Let 𝑃,𝑄 ∈ 𝒮𝑑+, Γ ∈ 𝒮𝑘++, 𝐴 ∈ R𝑘×𝑑, 𝑦 ∈ R𝑘, and 𝑚,𝑚′ ∈ R𝑑. The

following hold:

‖C (𝑄)− C (𝑃 )‖ ≤ ‖𝑄− 𝑃‖
(︁
1 + ‖𝐴‖2‖Γ−1‖(‖𝑄‖+ ‖𝑃‖) + ‖𝐴‖4‖Γ−1‖2‖𝑄‖‖𝑃‖

)︁
,

0 ≼ C (𝑄) ≼ 𝑄,

‖C (𝑄)‖ ≤ ‖𝑄‖.

Lemma 2.5.7 (Continuity and Boundedness of Nonlinear Gain-Update Operator). Let P

be the nonlinear gain-update operator defined in (2.22). Let 𝑃, ̃︀𝑃 ∈ R𝑑×𝑘, 𝑄, ̃︀𝑄 ∈ 𝒮𝑘+, and

Γ ∈ 𝒮𝑘++. The following hold:

‖P(𝑃,𝑄)− P( ̃︀𝑃 , ̃︀𝑄)‖ ≤ ‖Γ−1‖‖𝑃 − ̃︀𝑃‖+ ‖Γ−1‖2‖𝑃‖‖𝑄− ̃︀𝑄‖,
‖P(𝑃,𝑄)‖ ≤ ‖Γ−1‖‖𝑃‖+ ‖Γ−1‖2‖𝑄‖.

Proof. The proof follows in similar style to Lemma 4.1 in Kwiatkowski and Mandel [2015].

We note that

‖𝑃 (𝑄+ Γ)−1 − ̃︀𝑃 ( ̃︀𝑄+ Γ)−1‖ ≤ ‖𝑃 (𝑄+ Γ)−1 − 𝑃 ( ̃︀𝑄+ Γ)−1‖+ ‖𝑃 ( ̃︀𝑄+ Γ)−1 − ̃︀𝑃 ( ̃︀𝑄+ Γ)−1‖

≤ ‖𝑃‖‖(𝑄+ Γ)−1 − ( ̃︀𝑄+ Γ)−1‖+ ‖ ̃︀𝑃 − 𝑃‖‖(𝑄+ Γ)−1‖.
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Since Γ ≻ 0 and 𝑄 ⪰ 0, it holds that 𝑄 + Γ ⪰ Γ and so (𝑄 + Γ)−1 ≼ Γ−1, which in turn

implies ‖(𝑄+ Γ)−1‖ ≤ ‖Γ−1‖. Further,

‖(𝑄+ Γ)−1 − ( ̃︀𝑄+ Γ)−1‖ = ‖Γ−1/2[(Γ−1/2𝑄Γ−1/2 + 𝐼)−1 − (Γ−1/2 ̃︀𝑄Γ−1/2 + 𝐼)−1]Γ−1/2‖

≤ ‖Γ−1‖‖(Γ−1/2𝑄Γ−1/2 + 𝐼)−1 − (Γ−1/2 ̃︀𝑄Γ−1/2 + 𝐼)−1‖

≤ ‖Γ−1‖‖Γ−1/2𝑄Γ−1/2 − Γ−1/2 ̃︀𝑄Γ−1/2‖

≤ ‖Γ−1‖2‖𝑄− ̃︀𝑄‖,
where the second to last equality follows by the fact that ‖(𝐼+𝐴)−1−(𝐼+𝐵)−1‖ ≤ ‖𝐵−𝐴‖

for 𝐴,𝐵 ∈ 𝒮𝑘+. To prove the pointwise boundedness of P, take ̃︀𝑃 to be the 𝑑 × 𝑘 matrix

of zeroes, and ̃︀𝑄 to be the 𝑘 × 𝑘 matrix of zeroes, and plug these values into the continuity

bound.

2.5.3 Proof of Main Results in Section 2.2

Theorem 2.5.8 (Posterior Mean Approximation with Finite Ensemble —High Probability

Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12),

respectively, leading to an estimate ̂︀𝜇 of the posterior mean 𝜇 defined in (2.2). Set 𝜙 = 1 for

the PO update and 𝜙 = 0 for the SR update. Then there exists a constant 𝑐 such that, for

all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖̂︀𝜇− 𝜇‖2 ≲ (‖𝐶‖1/2 ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝑦 − 𝐴𝑚‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3/2

∨
(︂
𝑡

𝑁

)︂3/2

∨ 𝑟2(𝐶)

𝑁

√︂
𝑡

𝑁
∨
√︂
𝑟2(𝐶)

𝑁

𝑡

𝑁

)︃
+ 𝜙E ,
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where

E = ‖𝐴‖‖Γ−1‖‖Γ‖1/2‖𝐶‖

×

(︃√︂
𝑟2(Γ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑟2(𝐶)

𝑁

√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(𝐶)

𝑁

√︂
𝑡

𝑁
∨ 𝑡

𝑁

√︂
𝑟2(Γ)

𝑁
∨
(︂
𝑡

𝑁

)︂3/2
)︃
.

Proof. It follows from Lemma 2.5.5 that

‖̂︀𝜇− 𝜇‖2 = ‖M (̂︀𝑚, ̂︀𝐶)− 𝜙K ( ̂︀𝐶)𝜂 − M (𝑚,𝐶)‖2

≤ ‖M (̂︀𝑚, ̂︀𝐶)− M (𝑚,𝐶)‖2 + 𝜙‖K ( ̂︀𝐶)𝜂‖2
≤ ‖̂︀𝑚−𝑚‖2

(︁
1 + ‖𝐴‖2‖Γ−1‖‖ ̂︀𝐶‖)︁ (2.32)

+ ‖ ̂︀𝐶 − 𝐶‖‖𝐴‖‖Γ−1‖
(︁
1 + ‖𝐴‖2‖Γ−1‖‖𝐶‖

)︁
‖𝑦 − 𝐴𝑚‖2 (2.33)

+ 𝜙‖K ( ̂︀𝐶)‖ ‖𝜂‖2 . (2.34)

We now control each of the terms in equations (2.32), (2.33), and (2.34) separately. For

(2.32), we note that ̂︀𝑚−𝑚 ∼ 𝒩 (0, 𝐶/𝑁). Let 𝐸1 be the set on which

‖̂︀𝑚−𝑚‖2 ≲

√︃
‖𝐶‖

(︂
𝑟2(𝐶)

𝑁
∨ 𝑡

𝑁

)︂
,

let 𝐸2 be the set on which

‖ ̂︀𝐶 − 𝐶‖ ≲ ‖𝐶‖

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃

and

‖ ̂︀𝐶‖ ≲ ‖𝐶‖
(︂
1 ∨ 𝑟2(𝐶)

𝑁
∨ 𝑡

𝑁

)︂
,

64



and let 𝐸3 be the set on which

‖𝜂‖2 ≲

√︃
‖Γ‖

(︂
𝑟2(Γ)

𝑁
∨ 𝑡

𝑁

)︂
.

By Theorem 2.5.1, Proposition 2.2.1, and Lemma 2.5.2, the set 𝐸 = 𝐸1 ∩ 𝐸2 ∩ 𝐸3 has

probability at least 1− 𝑐𝑒−𝑡, and it holds on this set that (2.32) is bounded above by

(‖𝐶‖1/2 ∨ ‖𝐶‖3/2)(1 ∨ ‖𝐴‖2‖Γ−1‖)
(︂√︂

𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3/2

∨
(︂
𝑡

𝑁

)︂3/2

∨

𝑟2(𝐶)

𝑁

√︂
𝑡

𝑁
∨
√︂
𝑟2(𝐶)

𝑁

𝑡

𝑁

)︂
. (2.35)

Further, on the set 𝐸 we can bound (2.33) above by

(‖𝐶‖ ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖3)
(︁
‖Γ−1‖ ∨ ‖Γ−1‖2

)︁
‖𝑦 − 𝐴𝑚‖

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

(2.36)

Finally, for (2.34), it follows from Lemma 2.5.4,

‖K ( ̂︀𝐶)‖ ‖𝜂‖ ≤ ‖𝐴‖‖Γ−1‖‖ ̂︀𝐶‖ ‖𝜂‖
and so on the set 𝐸, we can show that (2.34) is bounded above by ℰ . Putting the bounds

(2.35), (2.36) together we see that on 𝐸, it holds that

‖̂︀𝜇− 𝜇‖2 ≲ (‖𝐶‖1/2 ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝑦 − 𝐴𝑚‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3/2

∨
(︂
𝑡

𝑁

)︂3/2

∨ 𝑟2(𝐶)

𝑁

√︂
𝑡

𝑁
∨
√︂
𝑟2(𝐶)

𝑁

𝑡

𝑁

)︃

+ 𝜙ℰ .
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Proof of Theorem 2.2.3. Recall that from Theorem 2.5.8, for all 𝑡 ≥ 1 with probability at

least 1− 𝑐𝑒−𝑡,

‖̂︀𝜇− 𝜇‖2 ≲ (‖𝐶‖1/2 ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝑦 − 𝐴𝑚‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3/2

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂3/2

∨ 𝑟2(𝐶)

𝑁

√︂
𝑡

𝑁
∨
√︂
𝑟2(𝐶)

𝑁

𝑡

𝑁

)︃
+ 𝜙E .

For notational brevity, let

𝒲 ≡ (‖𝐶‖1/2 ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝑦 − 𝐴𝑚‖2),

and let 𝐵 ≡ 𝒲
(︂√︁

𝑟2(𝐶)
𝑁 ∨

(︁
𝑟2(𝐶)
𝑁

)︁3/2)︂
. Then, for 𝜙 = 0 and 𝑝 ≥ 1,

E
[︀
‖̂︀𝜇− 𝜇‖𝑝2

]︀
= 𝑝

∫︁ ∞

0
𝑥𝑝−1P(‖̂︀𝜇− 𝜇‖2 > 𝑥)𝑑𝑥

≤ 𝑝

∫︁ 𝐵

0
𝑥𝑝−1𝑑𝑥+ 𝑝

∫︁ ∞

𝐵
𝑥𝑝−1P(‖̂︀𝜇− 𝜇‖2 > 𝑥)𝑑𝑥

≲ 𝐵𝑝 + 𝑝

∫︁ ∞

0
𝑥𝑝−1 exp

(︃
−min

(︃
𝑁𝑥2

𝒲2
,
𝑁𝑥2/3

𝒲2/3
,

𝑁3𝑥2

𝒲2𝑟22(𝐶)
,

𝑁3/2𝑥

𝒲
√︀
𝑟2(𝐶)

)︃)︃
𝑑𝑥

= 𝐵𝑝 + 𝑝max

{︂
1

2
Γ
(︁𝑝
2

)︁(︂ 𝒲√
𝑁

)︂𝑝
,
1

2
Γ

(︂
3𝑝

2

)︂(︂
𝒲
𝑁3/2

)︂𝑝
,

1

2
Γ
(︁𝑝
2

)︁(︂𝒲𝑟2(𝐶)

𝑁3/2

)︂𝑝
,Γ(𝑝)

(︃
𝒲
√︀
𝑟2(𝐶)

𝑁3/2

)︃𝑝}︂
,

where the final equality follows by direct integration. It follows then that

[︀
E‖̂︀𝜇− 𝜇‖𝑝2

]︀1/𝑝 ≲ 𝐵 + 𝑐(𝑝)𝒲 max

(︃
1√
𝑁
,

1

𝑁3/2
,
𝑟2(𝐶)

𝑁3/2
,

√︀
𝑟2(𝐶)

𝑁3/2

)︃
≲ 𝑐(𝑝)𝐵,

where the final inequality holds since 𝑟2(𝐶) ≥ 1. The result for the 𝜙 = 1 case is identical
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and thus omitted. The constants in the statement of the result are then:

𝑐1 = (‖𝐶‖1/2 ∨ ‖𝐶‖2)(‖𝐴‖ ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝑦 − 𝐴𝑚‖2),

𝑐2 = ‖𝐴‖‖Γ−1‖‖Γ‖1/2‖𝐶‖.

Theorem 2.5.9 (Posterior Covariance Approximation with Finite Ensemble —High Prob-

ability Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and

(2.12), respectively, leading to an estimate ̂︀Σ of the posterior covariance Σ defined in (2.2).

Set 𝜙 = 1 for the PO update and 𝜙 = 0 for the SR update. For any 𝑡 ≥ 1, it holds with

probability at least 1− 𝑐𝑒−𝑡 that

‖̂︀Σ− Σ‖ ≲ (‖𝐶‖ ∨ ‖𝐶‖3)(‖𝐴‖2 ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂2

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂2
)︃

+ 𝜙E ,

where

E = (‖𝐴‖ ∨ ‖𝐴‖3)(‖Γ−1‖ ∨ ‖Γ−1‖2)(‖𝐶‖ ∨ ‖Γ‖)(‖𝐶‖ ∨ ‖𝐶‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂3

∨

(︃√︂
𝑟2(Γ)

𝑁
∨ 𝑟2(Γ)

𝑁

)︃(︃
1 ∨

(︂
𝑟2(𝐶)

𝑁

)︂2

∨
(︂
𝑡

𝑁

)︂2
)︃)︃

.

Proof. From Proposition 4 of Furrer and Bengtsson [2007], for the PO-ensemble Kalman

update we may write

̂︀Σ = C ( ̂︀𝐶) + ̂︀𝑂,
while for the SR-ensemble Kalman update we have ̂︀Σ = C ( ̂︀𝐶). We deal initially with the

C ( ̂︀𝐶) term that is common to both expressions, and then proceed to show how the operator

norm of the additional ̂︀𝑂 term can be controlled. From Lemma 2.5.6, the continuity of C
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immediately implies that

‖C ( ̂︀𝐶)− C (𝐶)‖ ≤ ‖ ̂︀𝐶 − 𝐶‖
(︁
1 + ‖𝐴‖2‖Γ−1‖

(︀
‖ ̂︀𝐶‖+ ‖𝐶‖

)︀
+ ‖𝐴‖4‖Γ−1‖2‖ ̂︀𝐶‖‖𝐶‖)︁

=
[︁
‖𝐴‖2‖Γ−1‖+ ‖𝐴‖4‖Γ−1‖2‖𝐶‖

]︁
‖ ̂︀𝐶 − 𝐶‖‖ ̂︀𝐶‖

+
[︁
1 + ‖𝐴‖2‖Γ−1‖‖𝐶‖

]︁
‖ ̂︀𝐶 − 𝐶‖.

For any 𝑁 ∈ N and 𝑎 > 0, let R𝑁 (𝑎) ≡
√︁

𝑎
𝑁 ∨ 𝑎

𝑁 . Let 𝐸1 be the set on which both

‖ ̂︀𝐶 − 𝐶‖ ≲ ‖𝐶‖ (R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡)) , and ‖ ̂︀𝐶‖ ≲ ‖𝐶‖ (1 ∨ R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡)) .

Let 𝐸2 be the set on which

‖Γ̂− Γ‖ ≲ ‖Γ‖ (R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡)) ,

and 𝐸3 the set on which

‖ ̂︀𝐶 𝑢𝜂 − 𝐶 𝑢𝜂‖ ≲ (‖𝐶‖ ∨ ‖Γ‖) (R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡)) .

Then, by Proposition 2.2.1 applied separately to 𝐸1 and 𝐸2, and Lemma 2.5.3 applied

to 𝐸3, the intersection 𝐸 = 𝐸1 ∩ 𝐸2 ∩ 𝐸3 has probability at least 1 − 𝑐𝑒−𝑡. It follows that
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on 𝐸:

‖ ̂︀𝐶 − 𝐶‖‖ ̂︀𝐶‖ ≲ ‖𝐶‖2 (R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡)) (1 ∨ R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡))

≲ ‖𝐶‖2
(︁
R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡) ∨ R2

𝑁,2(𝐶) ∨ R2
𝑁,2(𝑡)

)︁
, (2.37)

‖Γ̂− Γ‖‖ ̂︀𝐶‖2 ≲ ‖𝐶‖2‖Γ‖ (R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡))
(︁
1 ∨ R2

𝑁,2(𝐶) ∨ R2
𝑁,2(𝑡)

)︁
, (2.38)

‖ ̂︀𝐶 𝑢𝜂 − 𝐶 𝑢𝜂‖‖ ̂︀𝐶‖ ≲ ‖𝐶‖(‖𝐶‖ ∨ ‖Γ‖) (2.39)

× (1 ∨ R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡)) (R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡)) ,

(2.40)

‖ ̂︀𝐶 𝑢𝜂 − 𝐶 𝑢𝜂‖‖ ̂︀𝐶‖2 ≲ ‖𝐶‖2(‖𝐶‖ ∨ ‖Γ‖) (2.41)

×
(︁
1 ∨ R2

𝑁,2(𝐶) ∨ R2
𝑁,2(𝑡)

)︁
(R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡)) .

(2.42)

Using (2.37), it follows that on 𝐸,

‖̂︀Σ− Σ‖ ≲ (‖𝐶‖ ∨ ‖𝐶‖3)(‖𝐴‖2 ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)

×
(︁
R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑡) ∨ R2

𝑁,2(𝐶) ∨ R2
𝑁,2(𝑡)

)︁
= (‖𝐶‖ ∨ ‖𝐶‖3)(‖𝐴‖2 ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂2

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂2
)︃

Next, for the PO-ensemble Kalman update, it follows by the triangle inequality that

‖ ̂︀𝑂‖ ≤ ‖K ( ̂︀𝐶)(̂︀Γ− Γ)K ⊤( ̂︀𝐶)‖ (2.43)

+ ‖(𝐼 − K ( ̂︀𝐶)𝐴) ̂︀𝐶 𝑢𝜂K ⊤( ̂︀𝐶)‖ (2.44)

+ ‖K ( ̂︀𝐶)( ̂︀𝐶 𝑢𝜂)⊤(𝐼 − 𝐴⊤K ⊤( ̂︀𝐶))‖, (2.45)

and so we may proceed by bounding each of the three terms (2.43), (2.44), and (2.45)
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separately. For (2.43), invoking first the bound on K from Lemma 2.5.4 as well as the

inequality in (2.38), it holds on 𝐸 that

‖K ( ̂︀𝐶)(̂︀Γ− Γ)K ⊤( ̂︀𝐶)‖ ≤ ‖K ( ̂︀𝐶)‖2‖̂︀Γ− Γ‖

≤ ‖𝐴‖2‖Γ−1‖2‖ ̂︀𝐶‖2‖̂︀Γ− Γ‖

≲ ‖𝐴‖2‖Γ−1‖2‖𝐶‖2‖Γ‖ (R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡))
(︁
1 ∨ R2

𝑁,2(𝐶) ∨ R2
𝑁,2(𝑡)

)︁

Both (2.44) and (2.45) are equal in operator norm, and so we consider only (2.44). We

use Lemma 2.5.4 and Lemma 2.5.2, along with the inequalities (2.40) and (2.42) to show

that on 𝐸,

‖(𝐼 − K ( ̂︀𝐶)𝐴) ̂︀𝐶 𝑢𝜂K ⊤( ̂︀𝐶)‖ ≤ ‖K ( ̂︀𝐶)‖‖𝐼 − K ( ̂︀𝐶)𝐴‖‖ ̂︀𝐶 𝑢𝜂‖

≤ ‖K ( ̂︀𝐶)‖(︁1 + ‖K ( ̂︀𝐶)‖‖𝐴‖)︁ ‖ ̂︀𝐶 𝑢𝜂‖

≤ ‖𝐴‖‖Γ−1‖‖ ̂︀𝐶‖(︁1 + ‖𝐴‖2‖Γ−1‖‖ ̂︀𝐶‖)︁ ‖ ̂︀𝐶 𝑢𝜂‖

≲ (‖𝐴‖ ∨ ‖𝐴‖3)(‖Γ−1‖ ∨ ‖Γ−1‖2)[‖ ̂︀𝐶‖+ ‖ ̂︀𝐶‖2]‖ ̂︀𝐶 𝑢𝜂‖

≲ (‖𝐴‖ ∨ ‖𝐴‖3)(‖Γ−1‖ ∨ ‖Γ−1‖2)(‖𝐶‖ ∨ ‖Γ‖)(‖𝐶‖ ∨ ‖𝐶‖2)

×
(︁
1 ∨ R𝑁 (𝑟2(𝐶)) ∨ R2

𝑁,2(𝐶) ∨ R𝑁 (𝑡) ∨ R2
𝑁,2(𝑡)

)︁
× (R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡)) .

Some algebra shows that

(︁
1 ∨ R𝑁 (𝑟2(𝐶)) ∨ R2

𝑁,2(𝐶) ∨ R𝑁 (𝑡) ∨ R2
𝑁,2(𝑡)

)︁
(R𝑁 (𝑟2(𝐶)) ∨ R𝑁 (𝑟2(Γ)) ∨ R𝑁 (𝑡))

=

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂3

∨ R𝑁 (𝑟2(Γ))

(︃
1 ∨

(︂
𝑟2(𝐶)

𝑁

)︂2

∨
(︂
𝑡

𝑁

)︂2
)︃)︃

,
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and so

‖ ̂︀𝑂‖ ≲ (‖𝐴‖ ∨ ‖𝐴‖3)(‖Γ−1‖ ∨ ‖Γ−1‖2)(‖𝐶‖ ∨ ‖Γ‖)(‖𝐶‖ ∨ ‖𝐶‖2)

×

(︃√︂
𝑟2(𝐶)

𝑁
∨
(︂
𝑟2(𝐶)

𝑁

)︂3

∨
√︂

𝑡

𝑁
∨
(︂
𝑡

𝑁

)︂3

∨ R𝑁 (𝑟2(Γ))

(︃
1 ∨

(︂
𝑟2(𝐶)

𝑁

)︂2

∨
(︂
𝑡

𝑁

)︂2
)︃)︃

.

Proof of Theorem 2.2.5. The proof follows similarly to that of Theorem 2.2.3 and is therefore

omitted. The constants in the statement of the result are:

𝑐1 = (‖𝐶‖ ∨ ‖𝐶‖3)(‖𝐴‖2 ∨ ‖𝐴‖4)(‖Γ−1‖ ∨ ‖Γ−1‖2),

𝑐2 = (‖𝐴‖ ∨ ‖𝐴‖3)(‖Γ−1‖ ∨ ‖Γ−1‖2)(‖𝐶‖ ∨ ‖Γ‖)(‖𝐶‖ ∨ ‖𝐶‖2).

2.5.4 Multi-Step Analysis of the Square Root Ensemble Kalman Filter

Here we provide a description of the multi-step EnKF algorithm discussed in Remark 2.2.7.

As described there, we focus on the square root EnKF studied in Kwiatkowski and Mandel

[2015]. Given an initial ensemble {𝜐(0)𝑛 }𝑁𝑛=1, the algorithm iterates the steps of the square

root ensemble update (2.12) with new observations 𝑦(𝑡) and with possibly varying model

matrices 𝐴(𝑡). We assume that the noise distribution does not change over time, though

this assumption can easily be relaxed at the expense of more cumbersome notation. We

summarize both the Kalman filter and the square root EnKF in Table 2.1. In this filtering

set-up, 𝑀 (𝑡) ∈ R𝑑×𝑑 is the dynamics map and 𝐴(𝑡) ∈ R𝑘×𝑑 is the observation map at time

𝑡 ≥ 1. As detailed in Sanz-Alonso et al. [2023a], such a filtering set-up leads to a sequence

of inverse problems of the form (2.4), where the forward model is given by the observation

map, and the prior forecast distribution blends the dynamics map with previous probabilistic

estimates. Throughout this subsection, we write ‖̂︀𝜇 − 𝜇(𝑡)‖𝑝 ≡
[︁
E‖𝜇̂(𝑡) − 𝜇(𝑡)‖𝑝2

]︁1/𝑝
and

‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝 ≡
[︁
E‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝

]︁1/𝑝
.

We will use two auxiliary lemmas to prove the main result of this subsection, Corol-

71



Kalman filter Square root EnKF

Input {𝑦(𝑡), 𝐴(𝑡),𝑀 (𝑡)}𝑇𝑡=1, Γ, 𝜇(0),Σ(0) {𝑦(𝑡), 𝐴(𝑡),𝑀 (𝑡)}𝑇𝑡=1, Γ, {𝜐(0)𝑛 }𝑁𝑛=1
i.i.d.∼ 𝒩 (𝜇(0),Σ(0))

Forecast

𝑢
(𝑡)
𝑛 =𝑀 (𝑡)𝜐

(𝑡−1)
𝑛 , 𝑛 = 1, . . . , 𝑁

𝑚(𝑡) =𝑀 (𝑡)𝜇(𝑡−1) ̂︀𝑚(𝑡) = 1
𝑁

∑︀𝑁
𝑛=1 𝑢

(𝑡)
𝑛

𝐶(𝑡) =𝑀 (𝑡)Σ(𝑡−1)(𝑀 (𝑡))⊤ ̂︀𝐶(𝑡) = 1
𝑁−1

∑︀𝑁
𝑛=1(𝑢

(𝑡)
𝑛 − ̂︀𝑚(𝑡))(𝑢

(𝑡)
𝑛 − ̂︀𝑚(𝑡))⊤

Analysis

𝜐
(𝑡)
𝑛 = M (𝑢

(𝑡)
𝑛 , ̂︀𝐶(𝑡);𝐴(𝑡), 𝑦(𝑡),Γ), 𝑛 = 1, . . . , 𝑁

𝜇(𝑡) = M (𝑚(𝑡), 𝐶(𝑡);𝐴(𝑡), 𝑦(𝑡),Γ) ̂︀𝜇(𝑡) = 1
𝑁

∑︀𝑁
𝑛=1 𝜐

(𝑡)
𝑛

Σ(𝑡) = C (𝐶(𝑡);𝐴(𝑡),Γ) ̂︀Σ(𝑡) = 1
𝑁−1

∑︀𝑁
𝑛=1(𝜐

(𝑡)
𝑛 − ̂︀𝜇(𝑡))(𝜐(𝑡)𝑛 − ̂︀𝜇(𝑡))⊤

Output {𝜇(𝑡),Σ(𝑡)}𝑇𝑡=1 {̂︀𝜇(𝑡), ̂︀Σ(𝑡)}𝑇𝑡=1

Table 2.1: Comparison of the Kalman filter and square root EnKF considered in Kwiatkowski
and Mandel [2015]. The forecast and analysis steps are to be repeated for 𝑡 = 1, . . . , 𝑇
iterations.

lary 2.5.12 below.

Lemma 2.5.10 (Continuity and Boundedness of Covariance-Update Operator in 𝐿𝑝 [Kwiatkowski

and Mandel, 2015, Corollary 4.8]). Let C be the covariance-update operator defined in (2.7).

Let 𝑄 ∈ 𝒮𝑑+ be a random matrix and 𝑃 ∈ 𝒮𝑑+ be a deterministic matrix, Γ ∈ 𝒮𝑘++, 𝐴 ∈ R𝑘×𝑑,

𝑦 ∈ R𝑘, and 𝑚,𝑚′ ∈ R𝑑. Then, for any 1 ≤ 𝑝 <∞, the following holds:

‖C (𝑄)− C (𝑃 )‖𝑝 ≤ ‖𝑄− 𝑃‖𝑝(1 + ‖𝐴‖2‖Γ−1‖‖𝑃‖)

+ (‖𝐴‖2‖Γ−1‖+ ‖𝐴‖4‖Γ−1‖2‖𝑃‖)‖𝑄‖2𝑝‖𝑄− 𝑃‖2𝑝.

Lemma 2.5.11 (Continuity and Boundedness of Mean-Update Operator in 𝐿𝑝 [Kwiatkowski

and Mandel, 2015, Corollary 4.10]). Let M be the mean-update operator defined in (2.6).

Let 𝑃,𝑄 ∈ 𝒮𝑑+, Γ ∈ 𝒮𝑘++, 𝐴 ∈ R𝑘×𝑑, 𝑦 ∈ R𝑘, and 𝑚,𝑚′ ∈ R𝑑. Assume that 𝑄 and 𝑚 are
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random, and that 𝑃 and 𝑚′ are deterministic. The following holds:

⃦⃦
M (𝑚,𝑄)− M (𝑚′, 𝑃 )

⃦⃦
𝑝 ≤

⃦⃦
𝑚−𝑚′⃦⃦

𝑝 + ‖𝐴‖2‖Γ−1‖‖𝑄‖2𝑝
⃦⃦
𝑚−𝑚′⃦⃦

2𝑝

+ ‖𝑄− 𝑃‖𝑝‖𝐴‖‖Γ−1‖
(︀
1 + ‖𝐴‖2‖Γ−1‖‖𝑃‖

)︀ ⃦⃦
𝑦 − 𝐴𝑚′⃦⃦

2 .

The next result shows how our one-step bounds in Theorems 2.2.3 and 2.2.5 can be

extended to provide non-asymptotic bounds on the performance of the multi-step square

root EnKF. The proof follows a similar argument to the proof of [Kwiatkowski and Mandel,

2015, Theorem 6.1].

Corollary 2.5.12. Consider the square root EnKF defined in Table 2.1. Suppose that 𝑁 ≳

𝑟2(Σ
(0)). Then, for any 𝑡 ≥ 1 and 𝑝 ≥ 1,

‖̂︀𝜇(𝑡) − 𝜇(𝑡)‖𝑝 ≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖, ‖𝑦(𝑙) − 𝐴(𝑙)𝑚(𝑙)‖}𝑡𝑙=1, ‖Γ

−1‖),

‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝 ≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡𝑙=1, ‖Γ

−1‖).

Proof. The proof follows by strong induction on the predicate in the statement of the the-

orem. To that end, the base case (𝑡 = 1) holds by Theorems 2.2.3 and 2.2.5, which state

that, for any 𝑝 ≥ 1,

‖̂︀𝜇(1) − 𝜇(1)‖𝑝 ≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐(‖𝑀 (1)‖, ‖𝐴(1)‖, ‖Σ(0)‖, ‖𝑦(1) − 𝐴(1)𝑚(1)‖, ‖Γ−1‖),

‖̂︀Σ(1) − Σ(1)‖𝑝 ≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐(‖𝑀 (1)‖, ‖𝐴(1)‖, ‖Σ(0)‖, ‖Γ−1‖).

Suppose now that the claim holds for 𝑙 = 2, . . . , 𝑡 − 1. Then, for 𝑙 = 𝑡, we have by
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Lemma 2.5.10

‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝 = ‖C ( ̂︀𝐶(𝑡))− C (𝐶(𝑡))‖𝑝

≤ ‖ ̂︀𝐶(𝑡) − 𝐶(𝑡)‖𝑝(1 + ‖𝐴(𝑡)‖2‖Γ−1‖‖𝐶(𝑡)‖)

+ (‖𝐴(𝑡)‖2‖Γ−1‖+ ‖𝐴(𝑡)‖4‖Γ−1‖2‖𝐶(𝑡)‖)‖ ̂︀𝐶(𝑡)‖2𝑝‖ ̂︀𝐶(𝑡) − 𝐶(𝑡)‖2𝑝. (2.46)

By the definition of ̂︀𝐶(𝑡), 𝐶(𝑡) together with the inductive hypothesis, it follows that, for

p ∈ {𝑝, 2𝑝},

‖ ̂︀𝐶(𝑡) − 𝐶(𝑡)‖p = ‖𝑀 (𝑡)(̂︀Σ(𝑡−1) − Σ(𝑡−1))(𝑀 (𝑡))⊤‖p

≤ ‖𝑀 (𝑡)‖2‖̂︀Σ(𝑡−1) − Σ(𝑡−1)‖p

≲𝑝 ‖𝑀 (𝑡)‖2
√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡−1

𝑙=1, ‖Γ
−1‖)

=

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡𝑙=1, ‖Γ

−1‖).

Further, we have

‖ ̂︀𝐶(𝑡)‖2𝑝 ≤ ‖ ̂︀𝐶(𝑡) − 𝐶(𝑡)‖2𝑝 + ‖𝐶(𝑡)‖

≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡𝑙=1, ‖Γ

−1‖) + ‖𝑀 (𝑡)‖2‖Σ(𝑡−1)‖.

Plugging these two results into (2.46) gives

‖̂︀Σ(𝑡) − Σ(𝑡)‖𝑝 ≲𝑝

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖}𝑡𝑙=1, ‖Γ

−1‖).
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Similarly, by Lemma 2.5.11 we have

‖̂︀𝜇(𝑡) − 𝜇(𝑡)‖𝑝 = ‖M (̂︀𝑚(𝑡), ̂︀𝐶(𝑡))− M (𝑚(𝑡), 𝐶(𝑡))‖𝑝

≤ ‖̂︀𝑚(𝑡) −𝑚(𝑡)‖𝑝 + ‖𝐴(𝑡)‖2‖Γ−1‖‖ ̂︀𝐶(𝑡)‖2𝑝‖̂︀𝑚(𝑡) −𝑚(𝑡)‖2𝑝

+ ‖ ̂︀𝐶(𝑡) − 𝐶(𝑡)‖𝑝‖𝐴(𝑡)‖‖Γ−1‖
(︀
1 + ‖𝐴(𝑡)‖2‖Γ−1‖‖𝐶(𝑡)‖

)︀
‖𝑦(𝑡) − 𝐴(𝑡)𝑚(𝑡)‖2.

(2.47)

By the definition of ̂︀𝑚(𝑡),𝑚(𝑡) together with the inductive hypothesis, we have, for p ∈

{𝑝, 2𝑝},

‖̂︀𝑚(𝑡) −𝑚(𝑡)‖p = ‖𝑀 (𝑡)(̂︀𝜇(𝑡−1) − 𝜇(𝑡−1))‖p

≤ ‖𝑀 (𝑡)‖‖̂︀𝜇(𝑡−1) − 𝜇(𝑡−1)‖p

≲𝑝 ‖𝑀 (𝑡)‖

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖, ‖𝑦(𝑙) − 𝐴(𝑙)𝑚(𝑙)‖}𝑡−1

𝑙=1, ‖Γ
−1‖)

=

√︃
𝑟2(Σ

(0))

𝑁
× 𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖, ‖𝑦(𝑙) − 𝐴(𝑙)𝑚(𝑙)‖}𝑡𝑙=1, ‖Γ

−1‖).

Plugging this bound and the one for ‖ ̂︀𝐶(𝑡)‖2𝑝 derived previously in the proof into (2.47)

yields

‖̂︀𝜇(𝑡)−𝜇(𝑡)‖𝑝 ≲𝑝
√︃
𝑟2(Σ

(0))

𝑁
×𝑐({‖𝑀 (𝑙)‖, ‖𝐴(𝑙)‖, ‖Σ(𝑙−1)‖, ‖𝑦(𝑙)−𝐴(𝑙)𝑚(𝑙)‖}𝑡𝑙=1, ‖Γ

−1‖).

2.6 Proofs: Section 2.3

This appendix contains the proofs of all the theorems in Section 2.3. Results on covariance

estimation are in Subsection 2.6.1 and our main results on ensemble Kalman updates are in

Subsection 2.6.2.
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2.6.1 Covariance Estimation

Here we establish Theorems 2.3.1 and 2.3.3. We first collect some required technical results

in Subsection 2.6.1. Next we study covariance and cross-covariance estimation under soft

sparsity in Subsections 2.6.1 and 2.6.1, respectively.

Background and Preliminaries

Definition 2.6.1 ([Talagrand, 2014, Definition 2.2.17]). Given a set 𝑇 , an admissible se-

quence of partitions of 𝑇 is an increasing sequence (∆𝑛) of partitions of 𝑇 such that card(∆0) =

1 and card(∆𝑛) ≤ 22
𝑛

for 𝑛 ≥ 1.

The notion of an admissible sequence of partitions allows us to define the following notion

of complexity of a set 𝑇 , often referred to as generic complexity.

Definition 2.6.2 ([Talagrand, 2014, Definition 2.2.19]). Let (𝑇, d) be a possibly infinite

metric space, and define

𝛾2(𝑇, d) = inf sup
𝑡∈𝑇

∑︁
𝑛≥0

2𝑛/2Diam
(︀
∆𝑛(𝑡)

)︀
,

where ∆𝑛(𝑡) denotes the unique element of the partition to which 𝑡 belongs, and the infimum

is taken over all admissible sequences of partitions.

The following theorem is known as the Majorizing Measure Theorem and provides upper

and lower bounds for centered Gaussian processes in terms of the generic complexity.

Theorem 2.6.3 ([Talagrand, 2014, Theorem 2.4.1]). Let 𝑋𝑡, 𝑡 ∈ 𝑇 be a centered Gaussian

process which induces a metric d𝑋 : 𝑇 × 𝑇 → [0,∞] defined by

d2𝑋(𝑠, 𝑡) = E
[︁
(𝑋𝑠 −𝑋𝑡)

2
]︁
.
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Then there exists an absolute constant 𝐿 > 0 such that

1

𝐿
𝛾2(𝑇, d𝑋) ≤ E

[︂
sup
𝑡∈𝑇

𝑋𝑡

]︂
≤ 𝐿𝛾2(𝑇, d𝑋).

We will be primarily interested in the case that 𝑇 = ℱ is some function class on the

probability space (𝒳 ,𝒜,P), and with d being the metric induced either by ‖ · ‖𝐿2
or ‖ · ‖𝜓2 .

We denote these spaces by (ℱ , 𝐿2) and (ℱ , 𝜓2) respectively throughout this section. The

next result is an exponential generic chaining bound, which was introduced in [Dirksen, 2015,

Corollary 5.7] and described in [Koltchinskii and Lounici, 2017, Theorem 8]. We present it

as it was described in the latter reference.

Theorem 2.6.4 ([Koltchinskii and Lounici, 2017, Theorem 8]). Let (𝒳 ,𝒜,P) be a probability

space and consider the random sample 𝑋,𝑋1, . . . , 𝑋𝑁
i.i.d.∼ P. Let ℱ be a class of measurable

functions on (𝒳 ,𝒜). There exists a universal constant 𝑐 > 0 such that, for all 𝑡 ≥ 1, it holds

with probability at least 1− 𝑒−𝑡 that

sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓2(𝑋𝑛)− E[𝑓2(𝑋)]

⃒⃒⃒⃒
⃒⃒

≤ 𝑐

(︃
sup
𝑓∈ℱ

‖𝑓‖𝜓2
𝛾2(ℱ , 𝜓2)√

𝑁
∨
𝛾22(ℱ , 𝜓2)

𝑁
∨ sup
𝑓∈ℱ

‖𝑓‖2𝜓2

√︂
𝑡

𝑁
∨ sup
𝑓∈ℱ

‖𝑓‖2𝜓2
𝑡

𝑁

)︃
.

Lemma 2.6.5 (Expectation Bound from Probability Bound, [Talagrand, 2014, Lemma

2.2.3]). Let 𝑌 ≥ 0 be a random variable satisfying

P(𝑌 ≥ 𝑟) ≤ 𝑎 exp

(︂
−𝑟

2

𝑏2

)︂
, 𝑟 ≥ 0,

for certain numbers 𝑎 ≥ 2 and 𝑏 > 0. Then there is a universal constant 𝑐 such that

E[𝑌 ] ≤ 𝑐𝑏
√︀

log 𝑎.
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Finally, we recall the following dimension-free bound for the maxima of sub-Gaussian

random variables.

Lemma 2.6.6 (Dimension-Free Sub-Gaussian Maxima, [Van Handel, 2017, Lemma 2.4]).

Let 𝑋1, . . . 𝑋𝑁 be not necessarily independent sub-Gaussian random variables with

P(𝑋𝑛 > 𝑥) ≤ 𝑐𝑒−𝑥
2/𝑐𝜎2𝑛 , for all 𝑥 ≥ 0, 1 ≤ 𝑛 ≤ 𝑁,

where 𝜎𝑛 ≥ 0 is given, or alternatively ‖𝑋𝑛‖𝜓2 ≲ 𝜎𝑛. Then, for any 𝑡 ≥ 1, it holds with

probability at least 1− 𝑐𝑒−𝑐𝑡 that

max
𝑛≤𝑁

𝑋𝑛 ≲
√
𝑡max
𝑛≤𝑁

𝜎(𝑛)
√︀
log(𝑛+ 1),

where 𝜎(1) ≥ 𝜎(2) ≥ . . . 𝜎(𝑁) is the decreasing rearrangement of 𝜎1, . . . , 𝜎𝑁 . Further

E

[︂
max
𝑛≤𝑁

𝑋𝑛

]︂
≲ max
𝑛≤𝑁

𝜎(𝑛)
√︀

log(𝑛+ 1).

Proof. The proof of the upper bound is based on the proof of Proposition 2.4.16 in Talagrand

[2014]. By permutation invariance, we can assume without loss of generality that 𝜎1 ≥ 𝜎2 ≥

· · · ≥ 𝜎𝑁 . Then

P

(︃
max
𝑛≤𝑁

𝑋𝑛

𝜎𝑛
√︀

log(𝑛+ 1)
≥

√
𝑡

)︃
≤

𝑁∑︁
𝑛=1

P
(︁
𝑋𝑛 ≥ 𝜎𝑛

√︀
𝑡 log(𝑛+ 1)

)︁

≲
𝑁∑︁
𝑛=1

exp

(︂
− 𝑡
𝑐
log(𝑛+ 1)

)︂
.
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For 𝑡 ≥ 2𝑐, the final expression in the above display is finite, and we may write

𝑁∑︁
𝑛=1

exp

(︂
− 𝑡
𝑐
log(𝑛+ 1)

)︂
=
𝑁+1∑︁
𝑛=2

exp

(︂
− 𝑡
𝑐
log(𝑛)

)︂
≤ exp

(︂
− 𝑡
𝑐
log(2)

)︂
+

∫︁ ∞

2
𝑥−𝑡/𝑐𝑑𝑥 ≤ 𝑐𝑒−𝑡/𝑐.

Therefore, for any 𝑡 ≥ 2𝑐, it holds with probability at least 1− 𝑐𝑒−𝑡/𝑐 that

max
𝑛≤𝑁

𝑋𝑛 ≲
√
𝑡max
𝑛≤𝑁

𝜎(𝑛)
√︀
log(𝑛+ 1).

This implies that, for any 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−(𝑡∨2𝑐)/𝑐 that

max
𝑛≤𝑁

𝑋𝑛 ≲ (
√
𝑡 ∨

√
2𝑐) max

𝑛≤𝑁
𝜎(𝑛)

√︀
log(𝑛+ 1) ≲

√
𝑡max
𝑛≤𝑁

𝜎(𝑛)
√︀

log(𝑛+ 1).

Since 1 − 𝑐𝑒−(𝑡∨2𝑐)/𝑐 ≥ 1 − 𝑐𝑒−𝑡/𝑐 it holds that, for any 𝑡 ≥ 1, with probability at least

1− 𝑐𝑒−𝑡/𝑐

max
𝑛≤𝑁

𝑋𝑛 ≲
√
𝑡max
𝑛≤𝑁

𝜎(𝑛)
√︀
log(𝑛+ 1).

It follows by Lemma 2.6.5 that

E

[︃
max
𝑛≤𝑁

𝑋𝑛

𝜎𝑛
√︀
log(𝑛+ 1)

]︃
≤ 𝑐,

which in turn implies

E

[︂
max
𝑛≤𝑁

𝑋𝑛

]︂
≲ max
𝑛≤𝑁

𝜎𝑛
√︀

log(𝑛+ 1) = max
𝑛≤𝑁

𝜎(𝑛)
√︀

log(𝑛+ 1).
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Covariance Estimation under Soft Sparsity

This subsection contains the proof of Theorem 2.3.1. We follow the approach in [Koltchinskii

and Lounici, 2017, Theorem 4], but we restrict our attention to finite dimensional spaces.

Our proof will rely on the following max-norm covariance estimation bound, which may be

of independent interest.

Theorem 2.6.7 (Covariance Estimation with Sample Covariance —Max-Norm Bound).

Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑋1] = 𝜇𝑋 and

var(𝑋1) = Σ𝑋 . Let ̂︀Σ𝑋 = (𝑁 − 1)−1∑︀𝑁
𝑛=1(𝑋𝑛 − 𝜇𝑋)(𝑋𝑛 − 𝜇𝑋)⊤. Then there exists a

constant 𝑐 such that, for all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖̂︀Σ𝑋 − Σ𝑋‖max ≤ 𝑐Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠ ,

where

𝑟∞(Σ𝑋) ≡
max𝑗 Σ

𝑋
(𝑗)

log(𝑗 + 1)

Σ𝑋
(1)

.

Proof. The proof of this result is based on the proof of the upper bound of Theorem 4 of

Koltchinskii and Lounici [2017], in conjunction with Theorem 2.6.4. We deal with the case

𝜇𝑋 = 0 first. To this end, let 𝑍1, . . . , 𝑍𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vec-

tors with zero mean and var[𝑍1] = Σ𝑋 . We denote the distribution of 𝑍1 by P, and note that

‖·‖𝜓1 , ‖·‖𝜓2 , and ‖·‖𝐿2
are defined implicitly with respect to P. Let ̂︀Σ0 = 𝑁−1∑︀𝑁

𝑛=1 𝑍𝑛𝑍
⊤
𝑛 .

We rewrite the expectation of interest as a squared empirical process term over an appropri-

ate class of functions. For 𝑗 ≥ 1 we denote the 𝑗-th canonical vector (the vector with 1 in
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the 𝑗-th index and zero otherwise) by 𝑒𝑗 . Then, we note that

‖̂︀Σ0 − Σ𝑋‖max = sup
𝑖,𝑗

⟨
𝑒𝑖, (̂︀Σ0 − Σ𝑋)𝑒𝑗

⟩
= sup

𝑖,𝑗

[︂⟨
𝑒𝑖 + 𝑒𝑗

2
, (̂︀Σ0 − Σ𝑋)

𝑒𝑖 + 𝑒𝑗
2

⟩
−
⟨
𝑒𝑖 − 𝑒𝑗

2
, (̂︀Σ0 − Σ𝑋)

𝑒𝑖 − 𝑒𝑗
2

⟩]︂
≤ 2 sup

𝑢∈𝒰

⃒⃒⃒⟨
(̂︀Σ0 − Σ𝑋)𝑢, 𝑢

⟩⃒⃒⃒
,

where 𝒰 =
{︀
𝑢 ∈ R𝑑 : 𝑢 = ±1

2(𝑒𝑖 ± 𝑒𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑑
}︀
. Define the set of functions

ℱ𝑈 =
{︀
⟨·, 𝑢⟩ : 𝑢 ∈ 𝒰

}︀
, and note that, for any 𝑓 ∈ ℱ𝒰 , −𝑓 ∈ ℱ𝒰 and E[𝑓(𝑍1)] = 0. It

then follows by Theorem 2.6.4 that for the same universal constant 𝑐 in the statement of the

theorem,

2 sup
𝑢∈𝒰

⃒⃒⃒⟨
(̂︀Σ0 − Σ𝑋)𝑢, 𝑢

⟩⃒⃒⃒
= 2 sup

𝑢∈𝒰

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

⟨𝑍𝑛, 𝑢⟩2 −
⟨
𝑢,Σ𝑋𝑢

⟩⃒⃒⃒⃒⃒⃒
= 2 sup

𝑓∈ℱ𝒰

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓2(𝑍𝑛)− E[𝑓2(𝑍1)]

⃒⃒⃒⃒
⃒⃒

≤ 2𝑐

(︃
sup
𝑓∈ℱ𝒰

‖𝑓‖𝜓2
𝛾2(ℱ𝒰 ;𝜓2)√

𝑁
∨
𝛾22(ℱ𝒰 ;𝜓2)

𝑁
∨ sup
𝑓∈ℱ𝒰

‖𝑓‖2𝜓2

√︂
𝑡

𝑁
∨ sup
𝑓∈ℱ𝒰

‖𝑓‖2𝜓2
𝑡

𝑁

)︃
.

Using the equivalence of the 𝜓2 and 𝐿2 norms for linear functionals, we have

sup
𝑓∈ℱ𝒰

‖𝑓‖𝜓2 ≲ sup
𝑓∈ℱ𝒰

‖𝑓‖𝐿2
= max

𝑢∈𝒰

√︁
E
[︀
⟨𝑍1, 𝑢⟩2

]︀
= max

𝑢∈𝒰

√︁
⟨𝑢,Σ𝑋𝑢⟩

=
1

2
max
𝑖,𝑗

√︁⟨︀
𝑒𝑖 ± 𝑒𝑗 ,Σ𝑋(𝑒𝑖 ± 𝑒𝑗)

⟩︀
=

1

2
max
𝑖,𝑗

√︁
⟨𝑒𝑖,Σ𝑋𝑒𝑖⟩+ ⟨𝑒𝑗 ,Σ𝑋𝑒𝑗⟩ ± 2⟨𝑒𝑖,Σ𝑋𝑒𝑗⟩

=
1

2
max
𝑖,𝑗

√︁
Σ𝑋𝑖𝑖 + Σ𝑋𝑗𝑗 ± 2Σ𝑋𝑖𝑗 ≤

√︁
Σ𝑋
(1)
.

To control the generic complexity 𝛾2(ℱ𝑈 , 𝜓2), let 𝑌 ∼ 𝒩 (0,Σ𝑋) be a 𝑑-dimensional
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Gaussian vector, with induced metric

d𝑌 (𝑢, 𝑣) =
√︁

E
[︀
(⟨𝑌, 𝑢⟩ − ⟨𝑌, 𝑣⟩)2

]︀
= ‖⟨·, 𝑢⟩ − ⟨·, 𝑣⟩‖𝐿2

, 𝑢, 𝑣 ∈ 𝒰 .

Using again the equivalence of the 𝜓2 and 𝐿2 norms for linear functionals, we have that

𝛾2(ℱ𝒰 ;𝜓2) ≲ 𝛾2(ℱ𝒰 ;𝐿2) = 𝛾2(𝒰 ; d𝑌 ).

It follows then by Theorem 2.6.3 that

𝛾2(𝒰 ; d𝑌 ) ≲ E

[︂
sup
𝑢∈𝒰

⟨𝑌, 𝑢⟩
]︂

= E

[︂
max
𝑖,𝑗

⟨
𝑌,±1

2
(𝑒𝑖 ± 𝑒𝑗)

⟩]︂
≤ E

[︂
max
𝑗

⃒⃒⃒⟨︀
𝑌, 𝑒𝑗

⟩︀⃒⃒⃒]︂
≲ max

𝑗

√︁
Σ𝑋
(𝑗)

log(𝑗 + 1),

where the final inequality follows by Lemma 2.6.6. We have shown that with probability at

least 1− 𝑒−𝑡

‖̂︀Σ0 − Σ𝑋‖max ≲

⎛⎜⎝
⎯⎸⎸⎷

Σ𝑋
(1)

max
𝑗

Σ𝑋
(𝑗)

log(𝑗 + 1)

𝑁
∨max

𝑗

Σ𝑋
(𝑗)

log(𝑗 + 1)

𝑁
∨ Σ𝑋(1)

√︂
𝑡

𝑁
∨ Σ𝑋(1)

𝑡

𝑁

⎞⎟⎠
= Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨ 𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠ . (2.48)

In the un-centered case, taking 𝑋𝑛 = 𝑍𝑛+𝜇
𝑋 , we have ̂︀Σ𝑋 = ̂︀Σ0−𝑍𝑍⊤ and it follows that

‖̂︀Σ𝑋 − Σ𝑋‖max ≤ ‖̂︀Σ0 − Σ𝑋‖max + ‖𝑍𝑍⊤‖max.

82



By Lemma 2.6.6, with probability at least 1− 𝑐𝑒−𝑡

‖𝑍𝑍⊤‖max ≤ ‖𝑍‖2max ≤ 𝑡

𝑁
max
𝑗≤𝑑

Σ𝑋(𝑗) log(𝑗 + 1) = 𝑡Σ𝑋(1)
𝑟∞(Σ𝑋)

𝑁
. (2.49)

Denote the set on which (2.48) occurs by 𝐸1, and the set on which (2.49) occurs by 𝐸2.

Then the intersection 𝐸 = 𝐸1 ∩𝐸2 has probability at least 1− 𝑐𝑒−𝑡, and it holds on 𝐸 that

‖̂︀Σ𝑋 − Σ𝑋‖max ≲ Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨ 𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠
= Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠ .

Lemma 2.6.8. Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with

E[𝑋1] = 𝜇𝑋 and var[𝑋1] = Σ𝑋 . Let ̂︀Σ𝑋 = (𝑁 − 1)−1∑︀𝑁
𝑛=1(𝑋𝑛 − 𝜇𝑋)(𝑋𝑛 − 𝜇𝑋)⊤. Then,

for any 𝑝 ≥ 1,

[︁
E‖̂︀Σ𝑋 − Σ𝑋‖𝑝max

]︁1/𝑝
≲𝑝 Σ

𝑋
(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨ 𝑟∞(Σ𝑋)

𝑁

⎞⎠ .

Proof. To ease notation, let 𝐵 ≡ Σ𝑋
(1)

(︂√︁
𝑟∞(Σ𝑋)

𝑁 ∨ 𝑟∞(Σ𝑋)
𝑁

)︂
, then using that for positive
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𝑊 , E[𝑊 𝑝] = 𝑝
∫︀∞
0 𝑤𝑝−1P(𝑊 > 𝑤) 𝑑𝑤 gives

[︁
E‖̂︀Σ− Σ‖𝑝max

]︁1/𝑝
= 𝑝

∫︁ ∞

0
𝑥𝑝−1P(‖̂︀Σ𝑋 − Σ𝑋‖max > 𝑥) 𝑑𝑥

≤ 𝑝

∫︁ 𝐵

0
𝑥𝑝−1𝑑𝑥+

∫︁ ∞

𝐵
𝑥𝑝−1P(‖̂︀Σ𝑋 − Σ𝑋‖max > 𝑥) 𝑑𝑥

≲ 𝐵𝑝 + 𝑝

∫︁ ∞

0
𝑥𝑝−1 exp

⎛⎝−min

⎛⎝ 𝑁𝑥2

(Σ𝑋
(1)

)2
,
𝑁𝑥

Σ𝑋
(1)

,
𝑁𝑥

𝑟∞(Σ𝑋)Σ𝑋
(1)

⎞⎠⎞⎠ 𝑑𝑥

= 𝐵𝑝 + 𝑝max

⎛⎜⎝Γ(𝑝/2)

2

⎛⎝(Σ𝑋
(1)

)2

𝑁

⎞⎠𝑝/2 ,Γ(𝑝)
⎛⎝Σ𝑋

(1)

𝑁

⎞⎠𝑝 ,Γ(𝑝)
⎛⎝𝑟∞(Σ𝑋)Σ𝑋

(1)

𝑁

⎞⎠𝑝
⎞⎟⎠ ,

where the last line follows by direct integration. We therefore have

[︁
E‖̂︀Σ𝑋 − Σ𝑋‖𝑝max

]︁1/𝑝
≲ 𝐵 + 𝑐(𝑝)max

⎛⎝Σ𝑋
(1)√
𝑁
,
Σ𝑋
(1)

𝑁
,
𝑟∞(Σ𝑋)Σ𝑋

(1)

𝑁

⎞⎠
≤ 𝑐(𝑝)Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨ 𝑟∞(Σ𝑋)

𝑁

⎞⎠ ,

where the final inequality holds due to the fact that 𝑟∞(Σ𝑋) ≳ 1.

Theorem 2.6.9 (Covariance Estimation with Localized Sample Covariance —Operator-Norm

Bound). Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑋1] =

𝜇𝑋 and var[𝑋1] = Σ𝑋 . Further, assume that Σ𝑋 ∈ U𝑑(𝑞, 𝑅𝑞) for some 𝑞 ∈ [0, 1) and

𝑅𝑞 > 0. Let ̂︀Σ𝑋 = (𝑁 − 1)−1∑︀𝑁
𝑛=1(𝑋𝑛 −𝑋)(𝑋𝑛 −𝑋)⊤ and, for any 𝑡 ≥ 1, set

𝜌𝑁 ≍ Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠
and let ̂︀Σ𝑋𝜌𝑁 be the localized sample covariance estimator. There exists a constant 𝑐 > 0 such
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that, with probability at least 1− 𝑐𝑒−𝑡, it holds that

‖̂︀Σ𝑋𝜌𝑁 − Σ𝑋‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁 .

Proof. The localized sample covariance matrix has elements

[̂︀Σ𝑋𝜌𝑁 ]𝑖𝑗 = ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

By Theorem 2.6.7, it holds with probability at least 1− 𝑐𝑒−𝑡 that

‖̂︀Σ𝑋 − Σ𝑋‖max ≲ 𝜌𝑁 .

The remainder of the analysis is carried out conditional on this event, following the approach

taken in [Wainwright, 2019, Theorem 6.27]. Define the set of indices of the 𝑖-th row of Σ𝑋

that exceed 𝜌𝑁/2 by

ℐ𝑖(𝜌𝑁/2) ≡
(︁
𝑗 ∈ (1, . . . , 𝑑) :

⃒⃒⃒
Σ𝑋𝑖𝑗

⃒⃒⃒
≥ 𝜌𝑁/2

)︁
, 𝑖 = 1, . . . , 𝑑.

We then have

‖Σ𝑋 − ̂︀Σ𝑋𝜌𝑁 ‖ ≤ ‖Σ𝑋 − ̂︀Σ𝑋𝜌𝑁 ‖∞
= max
𝑖=1,...,𝑑

𝑑∑︁
𝑗=1

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒

= max
𝑖=1,...,𝑑

⎛⎝ ∑︁
𝑗∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒
+

∑︁
𝑗 /∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒⎞⎠ ,
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where ̂︀Σ𝑋𝑖𝑗 is element (𝑖, 𝑗) of ̂︀Σ𝑋 . For 𝑗 ∈ ℐ𝑖(𝜌𝑁/2), it holds that |Σ𝑋𝑖𝑗 | ≥ 𝜌𝑁/2 so that

∑︁
𝑗∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒
≤

∑︁
𝑗∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗 ⃒⃒⃒+ ⃒⃒⃒⃒̂︀Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒

≤
∑︁

𝑗∈ℐ𝑖(𝜌𝑁/2)
‖Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗 ‖max +

⃒⃒⃒⃒̂︀Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁
⃒⃒⃒⃒

≤
∑︁

𝑗∈ℐ𝑖(𝜌𝑁/2)

(︁𝜌𝑁
2

+ 𝜌𝑁

)︁
= |ℐ𝑖(𝜌𝑁/2)|

3𝜌𝑁
2
,

where we have used the fact that

⃒⃒⃒⃒̂︀Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁
⃒⃒⃒⃒
= 0× 1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁 + ̂︀Σ𝑋𝑖𝑗 × 1|̂︀Σ𝑋𝑖𝑗 |≤𝜌𝑁 ≤ 𝜌𝑁 .

Further, since

𝑅𝑞 ≥
𝑑∑︁
𝑗=1

|Σ𝑋𝑖𝑗 |
𝑞 ≥ |ℐ𝑖(𝜌𝑁/2)|

(︁𝜌𝑁
2

)︁𝑞
,

it follows that |ℐ𝑖(𝜌𝑁/2)| ≤ 2𝑞𝜌
−𝑞
𝑁 𝑅𝑞, and so

∑︁
𝑗∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒
≤ |ℐ𝑖(𝜌𝑁/2)|

3𝜌𝑁
2

≤ 3

2
2−𝑞𝜌1−𝑞𝑁 𝑅𝑞.

For 𝑗 /∈ ℐ𝑖(𝜌𝑁 ), then |Σ𝑋𝑖𝑗 | ≤ 𝜌𝑁/2 and so

|̂︀Σ𝑋𝑖𝑗 | ≤ |̂︀Σ𝑋𝑖𝑗 − Σ𝑋𝑖𝑗 |+ |Σ𝑋𝑖𝑗 | ≤ ‖̂︀Σ𝑋 − Σ𝑋‖max + |Σ𝑋𝑖𝑗 | ≤
𝜌𝑁
2

+
𝜌𝑁
2

= 𝜌𝑁 .

This implies that ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁 = 0, and therefore for 𝑞 ∈ [0, 1), since |Σ𝑋𝑖𝑗 |/(𝜌𝑁/2) ≤ 1, it
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holds that

∑︁
𝑗 /∈ℐ𝑖(𝜌𝑁/2)

⃒⃒⃒⃒
Σ𝑋𝑖𝑗 − ̂︀Σ𝑋𝑖𝑗1|̂︀Σ𝑋𝑖𝑗 |≥𝜌𝑁

⃒⃒⃒⃒
≤

∑︁
𝑗 /∈ℐ𝑖(𝜌𝑁/2)

|Σ𝑋𝑖𝑗 | =
𝜌𝑁
2

∑︁
𝑗 /∈ℐ𝑖(𝜌𝑁/2)

|Σ𝑋𝑖𝑗 |
𝜌𝑁
2

≤ 𝜌𝑁
2

∑︁
𝑗 /∈ℐ𝑖(𝜌𝑁/2)

(︃
|Σ𝑋𝑖𝑗 |
𝜌𝑁/2

)︃𝑞
≤ 𝜌

1−𝑞
𝑁 𝑅𝑞.

Combining these two results gives

‖Σ𝑋 − ̂︀Σ𝑋𝜌𝑁 ‖ ≤ 4𝜌
1−𝑞
𝑁 𝑅𝑞.

Proof of Theorem 2.3.1. The result follows immediately by Theorem 2.6.9.

Cross-Covariance Estimation under Soft Sparsity

This subsection contains the proof of Theorem 2.3.3. The presentation is parallel to that in

Subsection 2.6.1. We will use a max-norm cross-covariance estimation bound, analogous to

Theorem 2.6.7. The proof relies on a high probability bound for product function classes

that was shown in [Mendelson, 2016, Theorem 1.13]. We present here a simplified version of

that more general statement that suffices for our purposes.

Theorem 2.6.10. Let (𝒳 ,𝒜,P) be a probability space and consider the random sample

𝑋,𝑋1, . . . , 𝑋𝑁
i.i.d.∼ P. Let ℱ ,𝒢 be two classes of measurable functions on (𝒳 ,𝒜) such that

0 ∈ ℱ and 0 ∈ 𝒢. There exist positive universal constants 𝑐1, 𝑐2, 𝑐3 such that, for all 𝑡 ≥ 1,

it holds with probability at least 1− 𝑐1𝑒
−𝑐2𝑡 that

sup
𝑓∈ℱ ,𝑔∈𝒢

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋𝑛)𝑔(𝑋𝑛)− E
[︀
𝑓(𝑋)𝑔(𝑋)

]︀⃒⃒⃒⃒⃒⃒
≤ 𝑐3

[︃(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︃
sup
𝑓∈ℱ

‖𝑓‖𝜓2𝛾2(𝒢, 𝜓2) ∨ sup
𝑔∈𝒢

‖𝑔‖𝜓2𝛾2(ℱ , 𝜓2)

)︃
∨ 𝛾2(ℱ , 𝜓2)𝛾2(𝒢, 𝜓2)

𝑁

]︃
.
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Proof. For notational brevity, throughout this proof we write 𝛾2(ℱ) instead of 𝛾2(ℱ , 𝜓2)

and d𝜓2(ℱ) instead of sup𝑓∈ℱ‖𝑓‖ and similarly for the class 𝒢. The result follows by an

application of [Mendelson, 2016, Theorem 1.13] and the ensuing remark, which deals with the

case ℱ = 𝒢, but is easily extended to the general case considered here. Together they imply

that, for any 𝑢 ≥ 1, it holds with probability at least 1− 2 exp

(︂
−𝑐𝑢2

(︂
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧ 𝛾22(𝒢)
d2𝜓2

(𝒢)

)︂)︂
that for any 𝑓 ∈ ℱ , 𝑔 ∈ 𝒢

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋𝑛)𝑔(𝑋𝑛)− E
[︀
𝑓(𝑋)𝑔(𝑋)

]︀⃒⃒⃒⃒⃒⃒ ≲ 𝑢2

𝑁
𝛾2(ℱ)𝛾2(𝒢) +

𝑢√
𝑁

(︀
𝛾2(ℱ)d𝜓2(𝒢) + 𝛾2(𝒢)d𝜓2(ℱ)

)︀
.

(2.50)

We seek to rewrite (2.50) so that all problem specific terms appear only in the upper bound.

To this end, let

𝑡 ≡ 𝑢2

(︃
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧
𝛾22(𝒢)
d2𝜓2

(𝒢)

)︃
=⇒ 𝑢 =

√
𝑡

(︂
d𝜓2(ℱ)

𝛾2(ℱ)
∨
d𝜓2(𝒢)
𝛾2(𝒢)

)︂

and note that since 𝑢 ≥ 1, it must hold that 𝑡 ≥
(︂
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧ 𝛾22(𝒢)
d2𝜓2

(𝒢)

)︂
. Therefore, for any

𝑡 ≥
(︂
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧ 𝛾22(𝒢)
d2𝜓2

(𝒢)

)︂
, we have that with probability at least 1−2𝑒−𝑐𝑡, the right-hand side

of (2.50) becomes

𝑡

𝑁

(︃
d2𝜓2

(ℱ)

𝛾22(ℱ)
∨
d2𝜓2

(𝒢)
𝛾22(𝒢)

)︃
𝛾2(ℱ)𝛾2(𝒢) +

√
𝑡√
𝑁

(︂
d𝜓2(ℱ)

𝛾2(ℱ)
∨
d𝜓2(𝒢)
𝛾2(𝒢)

)︂(︀
𝛾2(ℱ)d𝜓2(𝒢) + 𝛾2(𝒢)d𝜓2(ℱ)

)︀
.

The above implies that, for any 𝑡 ≥ 1, it holds with probability at least

1− 2 exp

(︃
−𝑐

(︃
𝑡 ∨

(︃
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧
𝛾22(𝒢)
d2𝜓2

(𝒢)

)︃)︃)︃
≥ 1− 2𝑒−𝑐𝑡,
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that

1

𝑁

(︃
𝑡 ∨

(︃
𝛾22(ℱ)

d2𝜓2
(ℱ)

∧
𝛾22(𝒢)
d2𝜓2

(𝒢)

)︃)︃(︃
d2𝜓2

(ℱ)

𝛾22(ℱ)
∨
d2𝜓2

(𝒢)
𝛾22(𝒢)

)︃
𝛾2(ℱ)𝛾2(𝒢) (2.51)

+
1√
𝑁

(︃
√
𝑡 ∨

(︃
𝛾2(ℱ)

d𝜓2(ℱ)
∧ 𝛾2(𝒢)
d𝜓2(𝒢)

)︃)︃(︂
d𝜓2(ℱ)

𝛾2(ℱ)
∨
d𝜓2(𝒢)
𝛾2(𝒢)

)︂(︀
𝛾2(ℱ)d𝜓2(𝒢) + 𝛾2(𝒢)d𝜓2(ℱ)

)︀
.

(2.52)

Straightforward calculations then show that the first of the two terms, (2.51), is bounded

above by

𝑡

𝑁

d2𝜓2
(ℱ)𝛾2(𝒢)
𝛾2(ℱ)

∨ 𝑡

𝑁

d2𝜓2
(𝒢)𝛾2(ℱ)

𝛾2(𝒢)
∨ 𝛾2(ℱ)𝛾2(𝒢)

𝑁
,

and (2.52) is similarly bounded above by

√︂
𝑡

𝑁

d2𝜓2
(ℱ)𝛾2(𝒢)
𝛾2(ℱ)

∨
√︂

𝑡

𝑁

d2𝜓2
(𝒢)𝛾2(ℱ)

𝛾2(𝒢)
∨
d𝜓2(𝒢)𝛾2(ℱ)

√
𝑁

∨
d𝜓2(ℱ)𝛾2(𝒢)√

𝑁
.

Note then that since 0 ∈ ℱ ,

d𝜓2(ℱ) = sup
𝑓∈ℱ

‖𝑓‖𝜓2 ≤ sup
𝑓1,𝑓2∈ℱ

‖𝑓1 − 𝑓2‖𝜓2 = diam𝜓2(ℱ) ≤ 𝛾2(ℱ),

where the final equality holds since 𝛾2(ℱ) = inf sup𝑓∈ℱ
∑︀∞
𝑛=0 2

𝑛/2diam𝜓2(∆𝑛(𝑓)), and

for 𝑛 = 0, ∆0 = ℱ . Similarly, d𝜓2(𝒢) ≤ 𝛾2(𝒢), and so
d2𝜓2

(ℱ)𝛾2(𝒢)
𝛾2(ℱ)

≤ 𝑑𝜓2(ℱ)𝛾2(𝒢) and
d2𝜓2

(𝒢)𝛾2(ℱ)

𝛾2(𝒢)
≤ 𝑑𝜓2(𝒢)𝛾2(ℱ) which along with the fact that 𝑡 ≥ 1 completes the proof.

Theorem 2.6.11 (Cross-Covariance Estimation —Max-Norm Bound). Let 𝑋1, . . . , 𝑋𝑁 be

𝑑-dimensional i.i.d. sub-Gaussian random vectors with E[𝑋1] = 𝜇𝑋 and var[𝑋1] = Σ𝑋 .

Let 𝑌1, . . . , 𝑌𝑁 be 𝑘-dimensional i.i.d. sub-Gaussian random vectors with E[𝑌1] = 𝜇𝑌 and

var[𝑌1] = Σ𝑌 . Define Σ𝑋𝑌 = E
[︀
(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 )⊤

]︀
and consider the cross-covariance
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estimator

̂︀Σ𝑋𝑌 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑋𝑛 −𝑋)(𝑌𝑛 − 𝑌 )⊤.

Then there exist positive universal constants 𝑐1, 𝑐2 such that, for all 𝑡 ≥ 1, it holds with

probability at least 1− 𝑐1𝑒
−𝑐2𝑡 that

‖̂︀Σ𝑋𝑌 − Σ𝑋𝑌 ‖max

≲ (Σ𝑋(1) ∨ Σ𝑌(1))

⎛⎝(︃ 𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
𝑟∞(Σ𝑋) ∨

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
𝑟∞(Σ𝑋)

𝑁

√︃
𝑟∞(Σ𝑌 )

𝑁

⎞⎠ .

Proof. Assume first that 𝜇𝑋 = 𝜇𝑌 = 0. Let 𝑍1, . . . , 𝑍𝑁 be 𝑑-dimensional i.i.d. sub-

Gaussian random vectors with zero mean and var[𝑍1] = Σ𝑋 , and similarly let 𝑉1, . . . , 𝑉𝑁

be 𝑘-dimensional i.i.d. sub-Gaussian random vectors with zero mean and var[𝑉1] = Σ𝑌 .

Further, let 𝑊𝑛 ≡ [𝑍⊤
𝑛 , 𝑉

⊤
𝑛 ]⊤ for 𝑛 = 1, . . . , 𝑁 . We denote the distribution of 𝑊1 by P and

note that ‖·‖𝜓2 and ‖·‖𝐿2
are defined implicitly with respect to P throughout this proof.

Define ̂︀Σ0 = 𝑁−1∑︀𝑁
𝑛=1 𝑍𝑛𝑉

⊤
𝑛 . Define the dilation operator: ℋ : R𝑑×𝑘 → R(𝑑+𝑘)×(𝑑+𝑘) by

ℋ(𝐴) =

⎡⎢⎣ 𝑂 𝐴

𝐴⊤ 𝑂

⎤⎥⎦ ,
see for example [Tropp, 2015, Section 2.1.16], and note that ‖𝐴‖max = ‖ℋ(𝐴)‖max. Let ℬ𝑚

be the space of standard basis vectors in 𝑚 dimensions, i.e. any 𝑏 ∈ ℬ𝑚 is an 𝑚-dimensional

vector with 1 in a single coordinate and 0 otherwise. Then, for 𝑒𝑖, 𝑒𝑗 ∈ ℬ𝑑+𝑘, we have
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‖̂︀Σ0 − Σ𝑋𝑌 ‖max = ‖ℋ(̂︀Σ0)−ℋ(Σ𝑋𝑌 )‖max = max
1≤𝑖,𝑗≤𝑑+𝑘

⟨
(ℋ(̂︀Σ0)−ℋ(Σ𝑋𝑌 ))𝑒𝑖, 𝑒𝑗

⟩
≤ 2 sup

𝑢∈𝒰

⃒⃒⃒⟨
(ℋ(̂︀Σ0)−ℋ(Σ𝑋𝑌 ))𝑢, 𝑢

⟩⃒⃒⃒
,

where

𝒰 ≡
{︂
𝑢 ∈ R𝑑+𝑘 : 𝑢 = ±1

2
(𝑒𝑖 ± 𝑒𝑗) and 𝑒𝑖, 𝑒𝑗 ∈ ℬ𝑑+𝑘

}︂
.

Writing 𝑢 = [𝑢⊤1 , 𝑢
⊤
2 ]

⊤ where 𝑢1 ∈ R𝑑 and 𝑢2 ∈ R𝑘, we have

⟨
ℋ(̂︀Σ0)𝑢, 𝑢

⟩
=

2

𝑁

𝑁∑︁
𝑛=1

⟨𝑢1, 𝑍𝑛⟩ ⟨𝑢2, 𝑉𝑛⟩ =
2

𝑁

𝑁∑︁
𝑛=1

𝑓𝑢(𝑊𝑛),

where 𝑓𝑢(𝑊𝑛) ≡ ⟨A1𝑊𝑛, 𝑢1⟩ ⟨A2𝑊𝑛, 𝑢2⟩ and where A1 ≡ [𝐼𝑑, 𝑂𝑑×𝑘] ∈ R𝑑×(𝑑+𝑘) and A2 ≡

[𝑂𝑘×𝑑, 𝐼𝑘] ∈ R𝑘×(𝑑+𝑘) are the relevant selection matrices so that A1𝑊𝑛 = 𝑍𝑛 and A2𝑊𝑛 =

𝑉𝑛. We define the class of functions

ℱ𝒰 ≡
{︂
𝑓𝑢(·) = ⟨A1·, 𝑢1⟩ ⟨A2·, 𝑢2⟩ : 𝑢 = [𝑢⊤1 , 𝑢

⊤
2 ]

⊤ ∈ 𝒰
}︂
.

It is clear then that ℱ𝒰 ⊂ ℱ1 · ℱ2, where

𝒰1 ≡
{︂
𝑢1 ∈ R𝑑 : 𝑢1 = ±1

2
(𝑒𝑖 ± 𝑒𝑗) and 𝑒𝑖, 𝑒𝑗 ∈ ℬ𝑑

}︂
, ℱ1 ≡ {𝑓(·) = ⟨A1·, 𝑢1⟩ : 𝑢1 ∈ 𝒰1},

𝒰2 ≡
{︂
𝑢2 ∈ R𝑘 : 𝑢2 = ±1

2
(𝑒𝑖 ± 𝑒𝑗) and 𝑒𝑖, 𝑒𝑗 ∈ ℬ𝑘

}︂
, ℱ2 ≡ {𝑓(·) = ⟨A2·, 𝑢2⟩ : 𝑢2 ∈ 𝒰2},

and ℱ1 · ℱ2 ≡
{︀
𝑓(·) = 𝑓1(·)𝑓2(·) : 𝑓1 ∈ ℱ1, 𝑓2 ∈ ℱ2

}︀
. We can then apply the product em-

pirical process concentration bound of Theorem 2.6.10, which implies that, with probability
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1− 𝑐1𝑒
−𝑐2𝑡,

sup
𝑢∈𝒰

⃒⃒⃒⟨
(ℋ(̂︀Σ0)−ℋ(Σ𝑋𝑌 ))𝑢, 𝑢

⟩⃒⃒⃒
= sup
𝑓𝑢∈ℱ𝒰

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓𝑢(𝑊𝑛)− E
[︀
𝑓𝑢(𝑊𝑛)

]︀⃒⃒⃒⃒⃒⃒
≲

(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︀
d𝜓2(ℱ1)𝛾2(ℱ2) ∨ d𝜓2(ℱ2)𝛾2(ℱ1)

)︀
∨ 𝛾2(ℱ1)𝛾2(ℱ2)

𝑁
, (2.53)

where we use the notational shorthand 𝛾2(ℱ1) = 𝛾2(ℱ1, 𝜓2) and d𝜓2(ℱ1) = sup𝑓∈ℱ1
‖𝑓‖𝜓2 ,

and similarly for ℱ2. Following a similar approach to the one taken in the proof of Theo-

rem 2.6.7, it follows by the equivalence of 𝜓2 and 𝐿2 norms for linear functionals that

𝑑𝜓2(ℱ1) = sup
𝑓1∈ℱ1

‖𝑓1‖𝜓2 ≲ sup
𝑓1∈ℱ1

‖𝑓1‖𝐿2
= max
𝑢1∈𝒰1

√︁
⟨𝑢1,Σ𝑋𝑢1⟩ ≤

√︁
Σ𝑋
(1)
,

and similarly that 𝑑𝜓2(ℱ2) ≤
√︁

Σ𝑌
(1)

. Further,

𝛾2(ℱ1) = 𝛾2(ℱ1, 𝜓2) ≲ 𝛾2(ℱ1, 𝐿2) = 𝛾2(𝒰1, d𝑋),

where

d𝑋(𝑢, 𝑣) =
√︁

E
[︀
(⟨𝑔𝑋 , 𝑢⟩ − ⟨𝑔𝑋 , 𝑣⟩)2

]︀
, 𝑔𝑋 ∼ 𝒩 (0,Σ𝑋).

By Theorem 2.6.3 and Lemma 2.6.6,

𝛾2(𝒰1, d𝑋) ≲ E

[︃
sup
𝑢1∈𝒰1

⟨𝑔𝑋 , 𝑢1⟩

]︃
= E

[︂
max
𝑖,𝑗≤𝑑

⟨
𝑔𝑋 ,±

1

2
(𝑒𝑖 ± 𝑒𝑗)

⟩]︂
≤ E

[︂
max
𝑖≤𝑑

⟨𝑔𝑋 , 𝑒𝑖⟩
]︂
≲ max

𝑖≤𝑑

√︁
Σ𝑋
(𝑖)

log(𝑖+ 1).
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Similarly, 𝛾2(ℱ2) ≲ max𝑗≤𝑘
√︁

Σ𝑌
(𝑗)

log(𝑗 + 1). In summary, we have that

‖̂︀Σ0 − Σ𝑋𝑌 ‖max ≲

(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
Σ𝑋
(1)

max
𝑗≤𝑘

√︁
Σ𝑌
(𝑗)

log(𝑗 + 1) ∨
√︁

Σ𝑌
(1)

max
𝑖≤𝑑

√︁
Σ𝑋
(𝑖)

log(𝑖+ 1)

)︂

∨
max𝑖≤𝑑

√︁
Σ𝑋
(𝑖)

log(𝑖+ 1)max𝑗≤𝑘
√︁

Σ𝑌
(𝑗)

log(𝑗 + 1)

𝑁

≲

(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂
Σ𝑋(1)

√︁
𝑟∞(Σ𝑋) ∨ Σ𝑌(1)

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
Σ𝑋
(1)
𝑟∞(Σ𝑋)

𝑁

√︃
Σ𝑌
(1)
𝑟∞(Σ𝑌 )

𝑁

≲ (Σ𝑋(1) ∨ Σ𝑌(1))

⎛⎝(︃ 𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
𝑟∞(Σ𝑋) ∨

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
𝑟∞(Σ𝑋)

𝑁

√︃
𝑟∞(Σ𝑌 )

𝑁

⎞⎠ .

In the un-centered case, take 𝑋𝑛 = 𝑍𝑛 + 𝜇𝑋 and 𝑌𝑛 = 𝑉𝑛 + 𝜇𝑌 for 𝑛 = 1, . . . , 𝑁 , then̂︀Σ𝑋𝑌 = ̂︀Σ0 −𝑋𝑌 ⊤, and so

‖̂︀Σ𝑋𝑌 − Σ𝑋𝑌 ‖max ≤ ‖̂︀Σ0 − Σ𝑋𝑌 ‖max + ‖𝑋𝑌 ⊤‖max.

The first term is controlled by appealing to the result in the centered case. For the second

term, we note that by Lemma 2.6.6

‖𝑋𝑌 ⊤‖max ≤ ‖𝑋‖max‖𝑌 ‖max ≲
1

𝑁
max
𝑖≤𝑑

√︁
Σ𝑋
(𝑖)

log(𝑖+ 1)max
𝑗≤𝑘

√︁
Σ𝑌
(𝑗)

log(𝑗 + 1)

≤

√︃
Σ𝑋
(1)
𝑟∞(Σ𝑋)

𝑁

√︃
Σ𝑌
(1)
𝑟∞(Σ𝑌 )

𝑁
.

Theorem 2.6.12 (Cross-Covariance Estimation with Localized Sample Cross-Covariance

—Operator-Norm bound). Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional i.i.d. sub-Gaussian random

vectors with E[𝑋1] = 𝜇𝑋 and var[𝑋1] = Σ𝑋 . Let 𝑌1, . . . , 𝑌𝑁 be 𝑘-dimensional i.i.d. sub-

Gaussian random vectors with E[𝑌1] = 𝜇𝑌 and var[𝑌1] = Σ𝑌 . Define Σ𝑋𝑌 = E
[︀
(𝑋 −
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𝜇𝑋)(𝑌 − 𝜇𝑌 )⊤
]︀

and consider the estimator

̂︀Σ𝑋𝑌 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑋𝑛 −𝑋)(𝑌𝑛 − 𝑌 )⊤.

Assume that Σ𝑋𝑌 ∈ 𝒰𝑑,𝑘(𝑞1, 𝑅𝑞1) and Σ𝑌 𝑋 ∈ 𝒰𝑘,𝑑(𝑞2, 𝑅𝑞2) where 𝑞1, 𝑞2 ∈ [0, 1) and

𝑅𝑞1 , 𝑅𝑞2 are positive constants. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ (Σ𝑋(1) ∨ Σ𝑌(1))

⎛⎝(︃ 𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
𝑟∞(Σ𝑋) ∨

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
𝑟∞(Σ𝑋)

𝑁

√︃
𝑟∞(Σ𝑌 )

𝑁

⎞⎠ ,

and let ̂︀Σ𝑋𝑌𝜌𝑁 be the localized sample cross-covariance estimator. There exist positive universal

constants 𝑐1, 𝑐2 such that, with probability at least 1− 𝑐1𝑒
−𝑐2𝑡,

‖̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 ‖ ≲ 𝑅𝑞1𝜌
1−𝑞1
𝑁 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁 .

Proof of Theorem 2.6.12. Let 𝐸 denote the event on which ‖̂︀Σ𝑋𝑌 − Σ𝑋𝑌 ‖max = ‖̂︀Σ𝑌 𝑋 −

Σ𝑌 𝑋‖max ≲ 𝜌𝑁 . By Theorem 2.6.11, 𝐸 holds with probability at least 1 − 𝑐1𝑒
−𝑐2𝑡. Con-

ditional on 𝐸, and following an analysis identical to the one in the proof of Theorem 2.6.9

with ̂︀Σ𝑋𝑌 (̂︀Σ𝑌 𝑋) and Σ𝑋𝑌 (Σ𝑌 𝑋) in place of ̂︀Σ𝑋 and Σ𝑋 respectively, it follows that

‖̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 ‖∞ ≲ 𝑅𝑞1𝜌
1−𝑞1
𝑁 ,

and

‖̂︀Σ𝑌 𝑋𝜌𝑁 − Σ𝑌 𝑋‖∞ ≲ 𝑅𝑞2𝜌
1−𝑞2
𝑁 .
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The result then follows by noting that

‖̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 ‖ = ‖ℋ(̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 )‖ ≤ ‖ℋ(̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 )‖∞

= ‖̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 ‖∞ ∨ ‖̂︀Σ𝑌 𝑋𝜌𝑁 − Σ𝑌 𝑋‖∞ ≲ 𝑅𝑞1𝜌
1−𝑞1
𝑁 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁 ,

where ℋ is the dilation operator defined in the proof of Theorem 2.6.11.

Proof of Theorem 2.3.3. The proof follows immediately from Theorem 2.6.12: since 𝑢1, . . . , 𝑢𝑁

are i.i.d. Gaussian they are sub-Gaussian. Moreover, since 𝒢 is Lipschitz, by [Vershynin,

2018, Theorem 5.2.2], ‖𝒢(𝑢1)−E[𝒢(𝑢1)]‖𝜓2 ≤ ‖𝒢‖Lip‖𝐶‖1/2 <∞, and so 𝒢(𝑢1), . . . ,𝒢(𝑢𝑁 )

are i.i.d. sub-Gaussian random vectors.

Lemma 2.6.13 (Stein’s Lemma Stein [1972]). Let 𝑢 ∼ 𝒩 (𝑚,𝐶) be a 𝑑-dimensional Gaus-

sian vector. Let ℎ : R𝑑 → R such that 𝜕𝑗ℎ ≡ 𝜕ℎ(𝑢)/𝜕𝑢𝑗 exists almost everywhere and

E[|𝜕𝑗ℎ(𝑢)|] <∞, 𝑗 = 1, . . . , 𝑑. Then

Cov
(︀
𝑢𝑗 , ℎ(𝑢)

)︀
=

𝑑∑︁
𝑙=1

𝐶𝑗𝑙E[𝜕𝑙ℎ(𝑢)].

Lemma 2.6.14 (Soft-Sparsity of Cross-Covariance —Nonlinear Forward Map). Let 𝑢 be a 𝑑-

dimensional Gaussian random vector with E[𝑢] = 𝑚 and var[𝑢] = 𝐶 ∈ U𝑑(𝑞, 𝑐). Consider the

function 𝒢 : R𝑑 → R𝑘 with coordinate functions 𝒢1, . . . ,𝒢𝑘. Assume that for each 𝑖 = 1, . . . , 𝑑

and 𝑗 = 1, . . . , 𝑘, 𝒢𝑗 : R𝑑 → R for 𝑗 = 1, . . . , 𝑘, such that 𝜕𝑖𝒢𝑗 ≡ 𝜕𝒢𝑗(𝑢)/𝜕𝑢𝑖 exists almost

everywhere, and E[|𝜕𝑖𝒢𝑗 |] < ∞. Let 𝐷𝒢 ∈ R𝑘×𝑑 denote the Jacobian of 𝒢, and assume that

E
[︀
(𝐷𝒢)⊤

]︀
∈ U𝑑,𝑘(𝑞, 𝑎) for some 𝑞 ∈ [0, 1) and 𝑎 > 0. Then,

𝐶 𝑢𝑝 ∈ U𝑑,𝑘

(︀
𝑞, 𝑎𝑐‖E[𝐷𝒢]‖1−𝑞max‖𝐶‖1−𝑞max

)︀
.
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Proof. By Stein’s Lemma (Lemma 2.6.13), the 𝑖-th row sum of 𝐶 𝑢𝑝 is given by

𝑘∑︁
𝑗=1

𝐶
𝑢𝑝
𝑖𝑗 =

𝑘∑︁
𝑗=1

𝑑∑︁
𝑙=1

𝐶𝑖𝑙E
[︀
𝜕𝑙𝒢𝑗(𝑢)

]︀
=

𝑑∑︁
𝑙=1

𝐶𝑖𝑙

𝑘∑︁
𝑗=1

E
[︀
𝜕𝑙𝒢𝑗(𝑢)

]︀
= ‖E[𝐷𝒢]‖max

𝑑∑︁
𝑙=1

𝐶𝑖𝑙

𝑘∑︁
𝑗=1

E[𝜕𝑙𝒢𝑗(𝑢)]
‖E[𝐷𝒢]‖max

≤ ‖E[𝐷𝒢]‖1−𝑞max

𝑑∑︁
𝑙=1

𝐶𝑖𝑙

𝑘∑︁
𝑗=1

E[𝜕𝑙𝒢𝑗(𝑢)]𝑞

≤ 𝑎‖E[𝐷𝒢]‖1−𝑞max

𝑑∑︁
𝑙=1

𝐶𝑖𝑙

≤ 𝑎𝑐‖E[𝐷𝒢]‖1−𝑞max‖𝐶‖1−𝑞max,

where the first inequality holds since 𝑞 ∈ [0, 1) and E[𝜕𝑙𝒢𝑗(𝑢)] ≤ ‖E[𝐷𝒢]‖max.

Lemma 2.6.15 (Product of Two Soft-Sparse Matrices). Fix 𝑞 ∈ [0, 1) and let 𝑆 ∈ U𝑑(𝑞, 𝑠)

and assume 𝑆⊤ = 𝑆. Let 𝐵 ∈ U𝑘,𝑑(𝑞, 𝑏). Then 𝐵𝑆 ∈ U𝑘,𝑑(𝑞, 𝑏𝑠‖𝐵‖1−𝑞max‖𝑆‖1−𝑞max).

Proof. The (𝑖, 𝑗)-th element of 𝐵𝑆 is given by [𝐵𝑆]𝑖𝑗 =
∑︀𝑑
𝑙=1𝐵𝑖𝑙𝑆𝑙𝑗 , and so the sum of the

𝑖-th row of 𝐵𝑆 satisfies

𝑑∑︁
𝑗=1

[𝐵𝑆]𝑖𝑗 =
𝑑∑︁
𝑗=1

𝑑∑︁
𝑙=1

𝐵𝑖𝑙𝑆𝑙𝑗 =
𝑑∑︁
𝑙=1

𝐵𝑖𝑙

𝑑∑︁
𝑗=1

𝑆𝑙𝑗 = ‖𝐵‖max‖𝑆‖max

𝑑∑︁
𝑙=1

𝐵𝑖𝑙
‖𝐵‖max

𝑑∑︁
𝑗=1

𝑆𝑙𝑗
‖𝑆‖max

≤ ‖𝐵‖max‖𝑆‖max

𝑑∑︁
𝑙=1

(︂
𝐵𝑖𝑙

‖𝐵‖max

)︂𝑞 𝑑∑︁
𝑗=1

(︂
𝑆𝑙𝑗

‖𝑆‖max

)︂𝑞
≤ ‖𝐵‖1−𝑞max‖𝑆‖1−𝑞max𝑏𝑠,

where the first inequality holds since 𝑞 ∈ [0, 1), and the second follows by the symmetry of

𝑆.

Lemma 2.6.16 (Product of Three Soft-Sparse Matrices). Fix 𝑞 ∈ [0, 1) and let 𝑆 ∈ U𝑑(𝑞, 𝑠)

with 𝑆⊤ = 𝑆. Let 𝐵 ∈ U𝑘,𝑑(𝑞, 𝑏1) and 𝐵⊤ ∈ U𝑑,𝑘(𝑞, 𝑏2), that is, 𝐵 is both row and column

sparse. Then 𝐵𝑆𝐵⊤ ∈ U𝑘,𝑑(𝑞, 𝑏1𝑏2𝑠‖𝐵‖2(1−𝑞)max ‖𝑆‖1−𝑞max).
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Proof. The (𝑖, 𝑗)-th element of 𝐵𝑆𝐵⊤ is given by

[𝐵𝑆𝐵⊤]𝑖𝑗 =
𝑑∑︁

𝑚=1

[𝐵𝑆]𝑖𝑚𝐵
⊤
𝑚𝑗 =

𝑑∑︁
𝑚=1

[𝐵𝑆]𝑖𝑚𝐵𝑗𝑚 =
𝑑∑︁

𝑚=1

⎛⎝ 𝑑∑︁
𝑙=1

𝐵𝑖𝑙𝑆𝑙𝑚

⎞⎠𝐵𝑗𝑚.

Therefore, the sum of the 𝑖-th row of 𝐵𝑆𝐵⊤ satisfies

𝑘∑︁
𝑗=1

[𝐵𝑆𝐵⊤]𝑖𝑗 =
𝑘∑︁
𝑗=1

𝑑∑︁
𝑚=1

𝑑∑︁
𝑙=1

𝐵𝑖𝑙𝑆𝑙𝑚𝐵𝑗𝑚 =
𝑑∑︁

𝑚=1

𝑑∑︁
𝑙=1

𝐵𝑖𝑙𝑆𝑙𝑚

𝑘∑︁
𝑗=1

𝐵𝑗𝑚

≤ ‖𝐵‖1−𝑞max𝑏2

𝑑∑︁
𝑚=1

𝑑∑︁
𝑙=1

𝐵𝑖𝑙𝑆𝑙𝑚 ≤ 𝑏1𝑏2𝑠‖𝐵‖2(1−𝑞)max ‖𝑆‖1−𝑞max,

where the final inequality follows by Lemma 2.6.15.

Lemma 2.6.17 (Sample Covariance Deviation). Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional i.i.d.

sub-Gaussian random vectors with E[𝑋1] = 𝜇𝑋 and var[𝑋1] = Σ𝑋 . Let ̂︀Σ𝑋𝑁 = (𝑁 −

1)−1∑︀𝑁
𝑛=1(𝑋𝑛 − 𝜇𝑋)(𝑋𝑛 − 𝜇𝑋)⊤. Then

̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1 ≍ 1

𝑁
𝑋𝑁𝑋

⊤
𝑁 − 1

𝑁
̂︀Σ0
𝑁−1 −

1

𝑁2
𝑋𝑁𝑋

⊤
𝑁 −

(︃(︂
𝑁 − 1

𝑁

)︂2

− 1

)︃
𝑋𝑁−1𝑋

⊤
𝑁−1

−
(︂
𝑁 − 1

𝑁2

)︂(︁
𝑋𝑁𝑋

⊤
𝑁−1 +𝑋𝑁−1𝑋

⊤
𝑁

)︁
,

where ̂︀Σ0
𝑁 = 𝑁−1∑︀𝑁

𝑛=1𝑋𝑛𝑋
⊤
𝑛 .

Proof. We work with the biased sample covariance estimator 1
𝑁

∑︀𝑛
𝑛=1(𝑋𝑛 − 𝑋𝑁 )(𝑋𝑛 −

𝑋𝑁 )⊤, which is equivalent to the unbiased covariance estimator up to constants. Note then

that

̂︀Σ𝑋𝑁 ≍ 1

𝑁

𝑁∑︁
𝑛=1

(𝑋𝑛 −𝑋𝑁 )(𝑋𝑛 −𝑋𝑁 )⊤ =
1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛𝑋
⊤
𝑛 −𝑋𝑁𝑋

⊤
𝑁 = ̂︀Σ0

𝑁 −𝑋𝑁𝑋
⊤
𝑁 .
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We now seek to control the difference ̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1. To that end, note that

𝑋𝑁𝑋
⊤
𝑁 =

(︂
1

𝑁
𝑋𝑁 +

𝑁 − 1

𝑁
𝑋𝑁−1

)︂(︂
1

𝑁
𝑋𝑁 +

𝑁 − 1

𝑁
𝑋𝑁−1

)︂⊤

=
1

𝑁2
𝑋𝑁𝑋

⊤
𝑁 +

(︂
𝑁 − 1

𝑁

)︂2

𝑋𝑁−1𝑋
⊤
𝑁−1 +

(︂
𝑁 − 1

𝑁2

)︂(︁
𝑋𝑁𝑋

⊤
𝑁−1 +𝑋𝑁−1𝑋

⊤
𝑁

)︁
,

and so

𝑋𝑁𝑋
⊤
𝑁 −𝑋𝑁−1𝑋

⊤
𝑁−1 =

1

𝑁2
𝑋𝑁𝑋

⊤
𝑁 +

(︃(︂
𝑁 − 1

𝑁

)︂2

− 1

)︃
𝑋𝑁−1𝑋

⊤
𝑁−1

+

(︂
𝑁 − 1

𝑁2

)︂(︁
𝑋𝑁𝑋

⊤
𝑁−1 +𝑋𝑁−1𝑋

⊤
𝑁

)︁
. (2.54)

Therefore,

̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1 ≍

⎛⎝ 1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛𝑋
⊤
𝑛 −𝑋𝑁𝑋

⊤
𝑁

⎞⎠−

⎛⎝ 1

𝑁 − 1

𝑁−1∑︁
𝑛=1

𝑋𝑛𝑋
⊤
𝑛 −𝑋𝑁−1𝑋

⊤
𝑁−1

⎞⎠
=

1

𝑁
𝑋𝑁𝑋

⊤
𝑁 +

⎛⎝(︂ 1

𝑁
− 1

𝑁 − 1

)︂𝑁−1∑︁
𝑛=1

𝑋𝑛𝑋
⊤
𝑛

⎞⎠+
(︁
𝑋𝑁−1𝑋

⊤
𝑁−1 −𝑋𝑁𝑋

⊤
𝑁

)︁

=
1

𝑁
𝑋𝑁𝑋

⊤
𝑁 − 1

𝑁
̂︀Σ0
𝑁−1 −

1

𝑁2
𝑋𝑁𝑋

⊤
𝑁 −

(︃(︂
𝑁 − 1

𝑁

)︂2

− 1

)︃
𝑋𝑁−1𝑋

⊤
𝑁−1

−
(︂
𝑁 − 1

𝑁2

)︂(︁
𝑋𝑁𝑋

⊤
𝑁−1 +𝑋𝑁−1𝑋

⊤
𝑁

)︁
, (2.55)

where the last equality follows by (2.54).

Lemma 2.6.18 (Sample Cross-Covariance Deviation). Let 𝑋1, . . . , 𝑋𝑁 be 𝑑-dimensional

i.i.d. sub-Gaussian random vectors with E[𝑋1] = 𝜇𝑋 and var[𝑋1] = Σ𝑋 . Let 𝑌1, . . . , 𝑌𝑁 be

𝑘-dimensional i.i.d. sub-Gaussian random vectors with E[𝑌1] = 𝜇𝑌 and var[𝑌1] = Σ𝑌 . Let
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̂︀Σ𝑋𝑌𝑁 = (𝑁 − 1)−1∑︀𝑁
𝑛=1(𝑋𝑛 − 𝜇𝑋)(𝑌𝑛 − 𝜇𝑌 )⊤. Then

̂︀Σ𝑋𝑌𝑁 − ̂︀Σ𝑋𝑌𝑁−1 ≍ 1

𝑁
𝑋𝑁𝑌

⊤
𝑁 − 1

𝑁
̂︀Σ0,𝑋𝑌
𝑁−1 − 1

𝑁2
𝑋𝑁𝑌

⊤
𝑁 −

(︃(︂
𝑁 − 1

𝑁

)︂2

− 1

)︃
𝑋𝑁−1𝑌

⊤
𝑁−1

−
(︂
𝑁 − 1

𝑁2

)︂(︁
𝑋𝑁𝑌

⊤
𝑁−1 +𝑋𝑁−1𝑌

⊤
𝑁

)︁
,

where ̂︀Σ0,𝑋𝑌
𝑁−1 = 𝑁−1∑︀𝑁

𝑛=1𝑋𝑛𝑌𝑛.

Proof. The result follows using the same approach utilized in the proof of Lemma 2.6.17 and

is omitted for brevity.

Lemma 2.6.19 (Covariance Estimation with Known Particle — Operator-Norm Bound).

Consider the set-up in Lemma 2.6.17 and assume additionally that 𝑋𝑛 is known for some

𝑛 ∈ {1, . . . , 𝑁}. Then with probability at least 1− 𝑐𝑒−𝑡

‖̂︀Σ𝑋𝑁 − Σ𝑋‖ ≲
𝑐(‖𝑋𝑛‖2, ‖𝜇𝑋‖2)

𝑁
+ ‖Σ𝑋‖

⎛⎝√︃𝑟2(Σ𝑋)

𝑁
∨ 𝑟2(Σ

𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠ .

Proof. By symmetry, we can assume without loss of generality that 𝑛 = 𝑁 . Let 𝐸1 denote

the event on which ‖𝑋𝑁−1 − 𝜇𝑋‖2 ≲
√︁
‖Σ𝑋‖𝑟2(Σ

𝑋)∨𝑡
𝑁−1 ≍

√︁
‖Σ𝑋‖𝑟2(Σ

𝑋)∨𝑡
𝑁 . Then by
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Theorem 2.5.1, P(𝐸1) ≥ 1− 𝑒−𝑡 and on 𝐸1 it holds that

‖̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1‖ ≲
1

𝑁
‖𝑋𝑁𝑋⊤

𝑁‖+ 1

𝑁
‖̂︀Σ0

𝑁−1‖+

(︃(︂
𝑁 − 1

𝑁

)︂2

− 1

)︃
‖𝑋𝑁−1𝑋

⊤
𝑁−1‖

+
𝑁 − 1

𝑁2

(︁
‖𝑋𝑁𝑋⊤

𝑁−1‖+ ‖𝑋𝑁−1𝑋
⊤
𝑁‖
)︁

≲
1

𝑁
‖𝑋𝑁‖22 +

1

𝑁
‖̂︀Σ0

𝑁−1‖+
1

𝑁
‖𝑋𝑁−1‖22 +

1

𝑁
‖𝑋𝑁‖2‖𝑋𝑁−1‖2

≤ 1

𝑁
‖𝑋𝑁‖22 +

1

𝑁
‖̂︀Σ0

𝑁−1 − Σ𝑋‖+ 1

𝑁
‖Σ𝑋‖+ 1

𝑁
‖𝑋𝑁−1 − 𝜇𝑋‖22 +

1

𝑁
‖𝜇𝑋‖22

+
1

𝑁
‖𝑋𝑁‖2‖𝑋𝑁−1 − 𝜇𝑋‖2 +

1

𝑁
‖𝑋𝑁‖2‖𝜇𝑋‖2

≲
1

𝑁
‖𝑋𝑁‖22 +

1

𝑁
‖̂︀Σ0

𝑁−1 − Σ𝑋‖+ 1

𝑁
‖Σ𝑋‖+ ‖Σ𝑋‖𝑟2(Σ

𝑋) ∨ 𝑡
𝑁2

+
1

𝑁
‖𝜇𝑋‖22

+ ‖𝑋𝑁‖2
√︁
‖Σ𝑋‖

√︀
𝑟2(Σ𝑋) ∨ 𝑡
𝑁3/2

+
1

𝑁
‖𝑋𝑁‖2‖𝜇𝑋‖2, (2.56)

where the first line follows by Lemma 2.6.17. Let 𝐸2 denote the event on which

‖̂︀Σ𝑋𝑁−1 − Σ𝑋‖ ≲ ‖Σ𝑋‖

⎛⎝√︃𝑟2(Σ𝑋)

𝑁 − 1
∨ 𝑟2(Σ

𝑋)

𝑁 − 1
∨
√︂

𝑡

𝑁 − 1
∨ 𝑡

𝑁 − 1

⎞⎠
≍ ‖Σ𝑋‖

⎛⎝√︃𝑟2(Σ𝑋)

𝑁
∨ 𝑟2(Σ

𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠ .
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Then by Proposition 2.2.1, P(𝐸2) ≥ 1− 𝑐𝑒−𝑡. It holds on 𝐸1 ∩ 𝐸2 that

‖̂︀Σ𝑋𝑁 − Σ𝑋‖ ≤ ‖̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1‖+ ‖̂︀Σ𝑋𝑁−1 − Σ𝑋‖

≲
1

𝑁
‖𝑋𝑁‖22 +

1

𝑁
‖̂︀Σ0

𝑁−1 − Σ𝑋‖+ 1

𝑁
‖Σ𝑋‖+ ‖Σ𝑋‖𝑟2(Σ

𝑋) ∨ 𝑡
𝑁2

+
1

𝑁
‖𝜇𝑋‖22

+ ‖𝑋𝑁‖2
√︁
‖Σ𝑋‖

√︀
𝑟2(Σ𝑋) ∨ 𝑡
𝑁3/2

+
1

𝑁
‖𝑋𝑁‖2‖𝜇𝑋‖2

+ ‖Σ𝑋‖

⎛⎝√︃𝑟2(Σ𝑋)

𝑁
∨ 𝑟2(Σ

𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠
≲
𝑐(‖𝑋𝑁‖2, ‖𝜇𝑋‖2)

𝑁
+ ‖Σ𝑋‖

⎛⎝√︃𝑟2(Σ𝑋)

𝑁
∨ 𝑟2(Σ

𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠ ,

where the first inequality holds by (2.56). The result follows by noting that P(𝐸1 ∩ 𝐸2) ≥

1− 𝑐𝑒−𝑡.

Lemma 2.6.20 (Covariance Estimation with Known Particle — Maximum-Norm Bound).

Consider the set-up in Lemma 2.6.17 and assume additionally that 𝑋𝑛 is known for some

𝑛 ∈ {1, . . . , 𝑁}. Then with probability at least 1− 𝑐𝑒−𝑡

‖̂︀Σ𝑋𝑁 − Σ𝑋‖max ≲
𝑐(‖𝑋𝑛‖∞, ‖𝜇𝑋‖∞)

𝑁
+ Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠ .

Proof. As in the proof of Lemma 2.6.19, we may assume that 𝑛 = 𝑁 . Let 𝐸1 denote the

event on which ‖𝑋𝑁−1−𝜇𝑋‖∞ ≲

√︂
𝑡Σ𝑋

(1)
𝑟∞(Σ𝑋)
𝑁−1 ≍

√︂
𝑡Σ𝑋

(1)
𝑟∞(Σ𝑋)

𝑁 . Then by Lemma 2.6.6,

P(𝐸1) ≥ 1 − 𝑐𝑒−𝑐𝑡 and on 𝐸1, using similar calculations to those used to derive (2.56), it

holds that

‖̂︀Σ𝑋𝑁 − ̂︀Σ𝑋𝑁−1‖max ≲
1

𝑁
‖𝑋𝑁‖2∞ +

1

𝑁
‖̂︀Σ0

𝑁−1 − Σ𝑋‖max +
1

𝑁
‖Σ𝑋‖max + 𝑡Σ𝑋(1)

𝑟∞(Σ𝑋)

𝑁2

+
1

𝑁
‖𝜇𝑋‖2∞ + ‖𝑋𝑁‖∞

√︁
𝑡Σ𝑋

(1)

√︀
𝑟∞(Σ𝑋)

𝑁3/2
+

1

𝑁
‖𝑋𝑁‖∞‖𝜇𝑋‖∞. (2.57)
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Let 𝐸2 be the event on which

‖̂︀Σ𝑋𝑁−1 − Σ𝑋‖max ≲ Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠ .

By Theorem 2.6.7, P(𝐸2) ≥ 1− 𝑐𝑒−𝑡. Finally, note that the desired result holds on 𝐸1 ∩𝐸2

and that P(𝐸1 ∩ 𝐸2) ≥ 1− 𝑐𝑒−𝑡, which completes the proof.

Lemma 2.6.21 (Cross-Covariance Estimation with Known Particle — Maximum-Norm

Bound). Consider the set-up in Lemma 2.6.18 and assume additionally that (𝑋𝑛, 𝑌𝑛) is

known for some 𝑛 ∈ {1, . . . , 𝑁}. Then with probability at least 1− 𝑐𝑒−𝑡

‖̂︀Σ𝑋𝑌𝑁 − Σ𝑋𝑌 ‖max ≲
𝑐(‖𝑋𝑛‖∞, ‖𝜇𝑋‖∞, ‖𝑌𝑛‖∞, ‖𝜇𝑌 ‖∞)

𝑁

+ (Σ𝑋(1) ∨ Σ𝑌(1))

⎛⎝(︃ 𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
𝑟∞(Σ𝑋) ∨

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
𝑟∞(Σ𝑋)

𝑁

√︃
𝑟∞(Σ𝑌 )

𝑁

⎞⎠ .

Proof. The result follows using the same approach utilized in the proof of Lemma 2.6.17

and utilizing the statements of Lemma 2.6.18 and Theorem 2.6.11. We omit the details for

brevity.

Lemma 2.6.22 (Covariance Estimation with Localized Sample Covariance and with Known

Particle —Operator-Norm Bound). Consider the set-up in Theorem 2.6.9 and assume addi-

tionally that 𝑋𝑛 is known for some 𝑛 ∈ {1, . . . , 𝑁}. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ 𝑐(‖𝑋𝑛‖∞, ‖𝜇𝑋‖∞)

𝑁
+ Σ𝑋(1)

⎛⎝√︃𝑟∞(Σ𝑋)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(Σ𝑋)

𝑁

⎞⎠
and let ̂︀Σ𝑋𝜌𝑁 be the localized sample covariance estimator. There exists a constant 𝑐 > 0 such

102



that, with probability at least 1− 𝑐𝑒−𝑡, it holds that

‖̂︀Σ𝑋𝜌𝑁 − Σ𝑋‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁 .

Proof. The proof follows in identical fashion to that of Theorem 2.6.9, except that we now

use the max-norm bound established in Lemma 2.6.20 in place of Theorem 2.6.7.

Lemma 2.6.23 (Cross-Covariance Estimation with Localized Sample Covariance and with

Known Particle —Operator-Norm Bound). Consider the set-up in Theorem 2.6.12 and as-

sume additionally that (𝑋𝑛, 𝑌𝑛) is known for some 𝑛 ∈ {1, . . . , 𝑁}. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ 𝑐(‖𝑋𝑛‖∞, ‖𝜇𝑋‖∞, ‖𝑌𝑛‖∞, ‖𝜇𝑌 ‖∞)

𝑁

+ (Σ𝑋(1) ∨ Σ𝑌(1))

⎛⎝(︃ 𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︂√︁
𝑟∞(Σ𝑋) ∨

√︁
𝑟∞(Σ𝑌 )

)︂
∨

√︃
𝑟∞(Σ𝑋)

𝑁

√︃
𝑟∞(Σ𝑌 )

𝑁

⎞⎠ .

There exists positive universal constants 𝑐1, 𝑐2 such that, with probability at least 1−𝑐1𝑒−𝑐2𝑡,

‖̂︀Σ𝑋𝑌𝜌𝑁 − Σ𝑋𝑌 ‖ ≲ 𝑅𝑞1𝜌
1−𝑞1
𝑁 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁 .

Proof. The proof follows in identical fashion to that of Theorem 2.6.9, except that we now

use the max-norm bound established in Lemma 2.6.21 in place of Theorem 2.6.7.

2.6.2 Proof of Main Results in Section 2.3

Proof of Theorem 2.3.5. First, we may write

‖𝜐𝑛 − 𝜐*𝑛‖2 =
⃦⃦⃦(︀
𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛

)︀(︀
P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝)− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)

)︀⃦⃦⃦
2

≤ ‖𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛‖2‖P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝)− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)‖2. (2.58)
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For the second term in (2.58), it follows by Lemma 2.5.7 that

‖P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝)− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝))‖2 ≤ ‖Γ−1‖‖ ̂︀𝐶 𝑢𝑝 − 𝐶 𝑢𝑝‖+ ‖Γ−1‖2‖𝐶 𝑢𝑝‖‖ ̂︀𝐶 𝑝𝑝 − 𝐶 𝑝𝑝‖.

In order to control the two deviation terms, we write 𝑊𝑖 ≡ [𝑢⊤𝑖 ,𝒢
⊤(𝑢𝑖)]⊤ for 1 ≤ 𝑖 ≤ 𝑁 .

Further, let

̂︀𝐶𝑊 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑊𝑖 −𝑊𝑁 )(𝑊𝑖 −𝑊𝑁 )⊤, 𝐶𝑊 =

⎡⎢⎣ 𝐶 𝐶 𝑢𝑝

𝐶 𝑝𝑢 𝐶 𝑝𝑝

⎤⎥⎦ .

with 𝑊𝑁 = [̂︀𝑚⊤,𝒢⊤
]⊤ and 𝒢 the sample mean of {𝒢(𝑢𝑛)}𝑁𝑛=1. Since 𝑢 ∼ 𝒩 (𝑚,𝐶) and

𝒢 is Lipschitz, by Gaussian concentration [Vershynin, 2018, Theorem 5.2.2] it holds that

‖𝒢(𝑢) − E[𝒢(𝑢)]‖𝜓2 ≤ ‖𝒢‖Lip‖𝐶‖1/2 and we can apply Lemma 2.6.19. Letting 𝐸1 be the

event on which

‖ ̂︀𝐶 𝑢𝑝 − 𝐶 𝑢𝑝‖ ∨ ‖ ̂︀𝐶 𝑝𝑝 − 𝐶 𝑝𝑝‖ ≤ ‖ ̂︀𝐶𝑊 − 𝐶𝑊 ‖

≲
𝑐(‖𝑊𝑛‖, ‖E[𝑊𝑛]‖)

𝑁
+ ‖𝐶𝑊 ‖

(︂√︃
𝑟2(𝐶𝑊 )

𝑁
∨ 𝑟2(𝐶

𝑊 )

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︂
,

then Lemma 2.6.19 ensures that P(𝐸1) ≥ 1 − 𝑐1𝑒
−𝑐2𝑡. It follows that on the event 𝐸1, we

also have

‖P( ̂︀𝐶 𝑢𝑝, ̂︀𝐶 𝑝𝑝)− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝))‖2 ≲ ‖Γ−1‖(1 ∨ ‖𝐶 𝑢𝑝‖)‖𝐶𝑊 ‖

×

⎛⎝√︃𝑟2(𝐶𝑊 )

𝑁
∨ 𝑟2(𝐶

𝑊 )

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠ .
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The expression can be simplified by noting that since 𝐶𝑊 ⪰ 0, ‖𝐶𝑊 ‖ ≤ ‖𝐶‖+ ‖𝐶 𝑝𝑝‖ and

further since Tr(𝐶𝑊 ) = Tr(𝐶) + Tr(𝐶 𝑝𝑝)

‖𝐶𝑊 ‖

⎛⎝√︃𝑟2(𝐶𝑊 )

𝑁
∨ 𝑟2(𝐶

𝑊 )

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

⎞⎠
≲ (‖𝐶‖ ∨ ‖𝐶 𝑝𝑝‖)

(︃√︃
Tr(𝐶) + Tr(𝐶 𝑝𝑝)

𝑁(‖𝐶‖ ∨ ‖𝐶 𝑝𝑝‖)
∨ Tr(𝐶) + Tr(𝐶 𝑝𝑝)

𝑁(‖𝐶‖ ∨ ‖𝐶 𝑝𝑝‖)
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃

≲ (‖𝐶‖ ∨ ‖𝐶 𝑝𝑝‖)

(︃√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(𝐶 𝑝𝑝)

𝑁
∨ 𝑟2(𝐶

𝑝𝑝)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
,

where the last inequality follows by similar reasoning to that used in the proof of Lemma 2.5.3.

Proof of Theorem 2.3.7. As in the proof of Theorem 2.3.5, we have that

‖𝜐𝜌𝑛 − 𝜐*𝑛‖2 ≤ ‖𝑦 − 𝒢(𝑢𝑛)− 𝜂𝑛‖2‖P( ̂︀𝐶 𝑢𝑝
𝜌𝑁 ,

̂︀𝐶 𝑝𝑝
𝜌𝑁 )− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)‖2.

Further, by Lemma 2.5.7,

‖P( ̂︀𝐶 𝑢𝑝
𝜌𝑁 ,

̂︀𝐶 𝑝𝑝
𝜌𝑁 )− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)‖2 ≤ (‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝐶 𝑢𝑝‖)

× (‖ ̂︀𝐶 𝑢𝑝
𝜌𝑁 − 𝐶 𝑢𝑝‖+ ‖ ̂︀𝐶 𝑝𝑝

𝜌𝑁 − 𝐶 𝑝𝑝‖).

Let 𝐸1 denote the event on which

‖ ̂︀𝐶 𝑢𝑝
𝜌𝑁 − 𝐶 𝑢𝑝‖ ≲ 𝑅𝑞1𝜌

1−𝑞1
𝑁,1 ∨𝑅𝑞2𝜌

1−𝑞2
𝑁,2 .

By Lemma 2.6.23 , 𝐸1 has probability at least 1− 𝑐1𝑒
−𝑐2𝑡. Let 𝐸2 be the event on which

‖ ̂︀𝐶 𝑝𝑝
𝜌𝑁 − 𝐶 𝑝𝑝‖ ≲ 𝑅𝑞3𝜌

1−𝑞3
𝑁,3 .
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By Lemma 2.6.22, 𝐸2 has probability at least 1 − 𝑐1𝑒
−𝑐2𝑡. Therefore, 𝐸 = 𝐸1 ∩ 𝐸2 has

probability at least 1− 𝑐1𝑒
−𝑐2𝑡, and on 𝐸 it holds that

‖P( ̂︀𝐶 𝑢𝑝
𝜌𝑁 ,

̂︀𝐶 𝑝𝑝
𝜌𝑁 )− P(𝐶 𝑢𝑝, 𝐶 𝑝𝑝)‖2

≲ (‖Γ−1‖ ∨ ‖Γ−1‖2)(1 ∨ ‖𝐶 𝑢𝑝‖)(𝑅𝑞1𝜌
1−𝑞1
𝑁,1 +𝑅𝑞2𝜌

1−𝑞2
𝑁,2 +𝑅𝑞3𝜌

1−𝑞3
𝑁,3 ).

2.7 Proofs: Section 4

This appendix contains the proofs of the auxiliary results discussed in Section 2.4.

Lemma 2.7.1 (Kalman Gain Deviation with Localization). Let 𝑢1, . . . , 𝑢𝑁 be 𝑑-dimensional

i.i.d. sub-Gaussian random vectors with E[𝑢1] = 𝑚 and E
[︀
(𝑢1−𝑚)(𝑢1−𝑚)⊤

]︀
= 𝐶. Assume

further that 𝐶 ∈ U𝑑(𝑞, 𝑅𝑞) for some 𝑞 ∈ [0, 1) and 𝑅𝑞 > 0. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ 𝐶(1)

(︃√︂
𝑟∞(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(𝐶)

𝑁

)︃

and let ̂︀𝐶𝜌𝑁 be the localized sample covariance estimator. There exists a positive universal

constant 𝑐 such that, with probability at least 1− 𝑐𝑒−𝑡,

‖K ( ̂︀𝐶𝜌𝑁 )− K ( ̂︀𝐶)‖ ≲ ‖𝐴‖‖Γ−1‖𝑅𝑞(1 + ‖𝐴‖2‖Γ−1‖‖𝐶‖)𝜌1−𝑞𝑁 .

Proof. By Lemma 2.5.4 and Theorem 2.3.1, it follows immediately that

‖K ( ̂︀𝐶𝜌𝑁 )− K ( ̂︀𝐶)‖ ≤ ‖𝐴‖‖Γ−1‖‖ ̂︀𝐶𝜌𝑁 − 𝐶‖(1 + ‖𝐴‖2‖Γ−1‖‖𝐶‖)

≲ ‖𝐴‖‖Γ−1‖𝑅𝑞𝜌1−𝑞𝑁 (1 + ‖𝐴‖2‖Γ−1‖‖𝐶‖).

Theorem 2.7.2 (Square Root Ensemble Kalman Covariance Deviation with Localization).

Consider the localized SR ensemble Kalman update given by (2.30), leading to an estimate
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̂︀Σ of the posterior covariance Σ defined in (2.2). Assume that 𝐶 ∈ U𝑑(𝑞, 𝑅𝑞) for 𝑞 ∈ [0, 1)

and 𝑅𝑞 > 0. For any 𝑡 ≥ 1, set

𝜌𝑁 ≍ 𝐶(1)

(︃√︂
𝑟∞(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
∨ 𝑡𝑟∞(𝐶)

𝑁

)︃
.

There exists a positive universal constant 𝑐 such that, with probability at least 1− 𝑐𝑒−𝑡,

‖̂︀Σ− Σ‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁

(︁
1 + ‖𝐴‖2‖Γ−1‖

(︁
2‖𝐶‖+𝑅𝑞𝜌

1−𝑞
𝑁

)︁
+ ‖𝐴‖4‖Γ−1‖2‖𝐶‖(‖𝐶‖+𝑅𝑞𝜌

1−𝑞
𝑁 )

)︁
.

Proof. For the localized SR update we have ̂︀Σ = C ( ̂︀𝐶𝜌𝑁 ). From Lemma 2.5.6, the continuity

of C implies that

‖C ( ̂︀𝐶𝜌𝑁 )− C (𝐶)‖ ≤ ‖ ̂︀𝐶𝜌𝑁 − 𝐶‖
(︁
1 + ‖𝐴‖2‖Γ−1‖

(︀
‖ ̂︀𝐶𝜌𝑁 ‖+ ‖𝐶‖

)︀
+ ‖𝐴‖4‖Γ−1‖2‖ ̂︀𝐶𝜌𝑁 ‖‖𝐶‖)︁.

Let 𝐸 denote the event on which

‖ ̂︀𝐶𝜌𝑁 − 𝐶‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁 .

By Theorem 2.6.12, 𝐸 has probability at least 1− 𝑐𝑒−𝑡. It also holds on 𝐸 that

‖ ̂︀𝐶𝜌𝑁 ‖ ≤ ‖𝐶‖+ ‖ ̂︀𝐶𝜌𝑁 − 𝐶‖ ≲ ‖𝐶‖+𝑅𝑞𝜌
1−𝑞
𝑁 .

Therefore, it holds on 𝐸 that

‖̂︀Σ− Σ‖ ≲ 𝑅𝑞𝜌
1−𝑞
𝑁

(︁
1 + ‖𝐴‖2‖Γ−1‖

(︁
2‖𝐶‖+𝑅𝑞𝜌

1−𝑞
𝑁

)︁
+ ‖𝐴‖4‖Γ−1‖2‖𝐶‖(‖𝐶‖+𝑅𝑞𝜌

1−𝑞
𝑁 )

)︁
.
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CHAPTER 3

ENSEMBLE KALMAN FILTERS WITH RESAMPLING

This chapter is adapted from the publication listed below and is used with permission of the

publisher.

O. Al-Ghattas, J. Bao, and D. Sanz-Alonso, Ensemble Kalman filters with resampling,

SIAM/ASA Journal on Uncertainty Quantification, vol. 12, no. 2, pp. 411–441, 2024.

3.1 Introduction

The filtering problem of estimating a time-evolving state from partial and noisy observations

arises in numerous applications, including numerical weather prediction, automatic control,

robotics, signal processing, machine learning, and finance Särkkä and Svensson [2023], Crisan

and Rozovskii [2011], Reich and Cotter [2015], Asch et al. [2016], Law et al. [2015], Majda

and Harlim [2012], Sanz-Alonso et al. [2023b]. When the state is high dimensional and

the dynamics governing its evolution are complex, the method of choice is often the en-

semble Kalman filter (EnKF) Evensen [1995], Evensen and Leeuwen [1996], Evensen [2009],

Houtekamer and Zhang [2016], Evensen et al. [2022]. In this filtering algorithm, a Kalman

gain matrix defined via the first two moments of an ensemble of particles determines the rela-

tive importance given to the dynamics and the observations in estimating the state. The size

of the ensemble controls both the accuracy and the computational cost of the algorithm. Op-

erational implementations of EnKF give accurate state estimation with a moderate ensemble

size, significantly smaller than the state dimension Houtekamer and Zhang [2016]. However,

non-asymptotic theory that explains the successful performance of EnKF with moderate en-

semble size is still not fully developed. An important impediment to such a theory is the

presence of correlations between particles, since the Kalman gain used to update each par-

ticle depends on the entire ensemble. This chapter investigates a modification of EnKF that
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incorporates a resampling step to break these correlations. The new algorithm is amenable

to a theoretical analysis that extends and improves upon those available for filters without

resampling, while also maintaining a similar empirical performance.

3.1.1 Resampling in Filtering Algorithms

Resampling techniques are routinely employed to enhance particle filtering algorithms which

assimilate observations by weighting particles according to their likelihood Del Moral [2004],

Doucet et al. [2009]. For particle filters, resampling converts weighted particles into un-

weighted ones to alleviate weight degeneracy and achieve variance reduction at later times

[Chopin and Papaspiliopoulos, 2020, Chapter 9]. In contrast, EnKF assimilates observations

by using unweighted particles and relying on a Gaussian ansatz and Kalman-type formulae.

EnKF avoids weight degeneracy by design, but remains vulnerable to filter divergence and

ensemble collapse Harlim and Majda [2010], Kelly et al. [2015]; several works have proposed

using resampling to remedy these issues.

An early discussion of resampling for EnKF can be found in Anderson and Anderson

[1999], which replaces the standard Gaussian ansatz with a more flexible sum of Gaussian

kernels. The paper Zhang and Oliver [2010] introduced bootstrap methods for identifying

and alleviating the impact of spurious correlations, thereby enhancing the robustness of

the Kalman gain. The work Lawson and Hansen [2004] proposed a resampling scheme to

improve the performance of deterministic filters in nonlinear settings. This method involves

periodically resampling the ensemble based on a “bootstrapping” approach as suggested by

Anderson and Anderson [1999], which is fundamentally based on a kernel density technique

taken from the particle filtering literature. Closest to our work is the paper Myrseth et al.

[2013], which demonstrates that resampling the Kalman gain in the conditioning step of EnKF

can help prevent the ensemble from collapsing over time, consequently enhancing ensemble

stability and reliability. The numerical experiments in Myrseth et al. [2013] suggest that
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relative to the non-resampled setting, EnKF algorithms that employ resampling give more

reliable prediction intervals with a slight trade-off in the accuracy of their point predictions.

Ensemble Kalman methods are also used for offline parameter estimation and, relatedly,

as numerical solvers for inverse problems, see e.g. Gu and Oliver [2007], Aanonsen et al.

[2009], Li and Reynolds [2007], Iglesias et al. [2013], Chada et al. [2021]. While not the

focus of this chapter, we point out that resampling techniques have also been investigated

in this context. For instance, Wu et al. [2022] removes particles that significantly deviate

from the posterior distribution via a resampling procedure, thus improving the performance

of standard implementations. A similar idea is also considered in Wu et al. [2019], which

proposes adding an extra resampling step in each iterative cycle. This method improves

the convergence of the iterative EnKF by perturbing the shrinking ensemble covariances to

prevent early stopping while preserving the consistent Kalman update direction of standard

implementations.

3.1.2 Our Contributions

Whereas previous work investigates resampling from a methodological viewpoint Anderson

and Anderson [1999], Zhang and Oliver [2010], Lawson and Hansen [2004], Myrseth et al.

[2013], the primary objective of this chapter is to demonstrate that resampling strategies pro-

vide a promising approach to the design of ensemble Kalman algorithms with non-asymptotic

theoretical guarantees. We consider a simple parametric resampling scheme: at the begin-

ning of each filtering step, members of the ensemble are independently sampled from a

Gaussian distribution whose mean and covariance match those of the ensemble at the pre-

vious time-step. Thereafter, the filtering step can be carried out using any of the numerous

existing EnKF variants Evensen [2009], Tippett et al. [2003]. For the resulting algorithm,

which we term REnKF, we establish theoretical guarantees that extend and improve upon

those available for filters without resampling.
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Our theoretical guarantees hold in the linear-Gaussian setting in which we provide a

detailed error analysis of the ensemble mean and covariance as estimators of the mean and

covariance of the filtering distributions, given by the Kalman filter Kalman [1960]. Our

theory covers both stochastic and deterministic dynamical systems; in addition, it covers

both stochastic implementations based on perturbed observations Evensen [2003] and deter-

ministic implementations based on square-root filters Tippett et al. [2003], Anderson [2001],

Bishop et al. [2001]. Importantly, our error-bounds are non-asymptotic and dimension-free:

they hold for any given ensemble size and are written in terms of the effective-dimension

of the covariance of the initial distribution, and of the dynamics and observation models.

The non-asymptotic and dimension-free analysis of ensemble Kalman updates has recently

been considered in Al-Ghattas and Sanz-Alonso [2024b], which demonstrated rigorously the

success of ensemble Kalman updates whenever the ensemble size scaled with the effective

dimension of the state as opposed to its ambient dimension. Given that ensemble Kalman

algorithms are often employed in problems where the state dimension is very large, our

results also contribute to the theoretical understanding of why ensemble methods are able

to perform well even when the ensemble size is taken to be much smaller than the state

dimension. This chapter extends the results in Al-Ghattas and Sanz-Alonso [2024b] by pro-

viding new bounds over multiple assimilation cycles. Our work may also be compared to

Majda and Tong [2018], which puts forward a non-asymptotic and dimension-free analysis of

a multi-step EnKF that utilizes a different modification than the one used to define REnKF.

Specifically, Majda and Tong [2018] employs an additional projection step that determines

the effective dimension of the method.

Other multi-step analyses were limited to square-root filters with deterministic dynamics

Kwiatkowski and Mandel [2015], Al-Ghattas and Sanz-Alonso [2024b] and to asymptotic

analysis of stochastic implementations Kwiatkowski and Mandel [2015], which, while ensuring

consistency of the filters, do not explain their practical success when deployed with a small
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ensemble size. The key reason why existing non-asymptotic analyses Al-Ghattas and Sanz-

Alonso [2024b] do not extend to stochastic implementations and dynamics is that these

additional sources of randomness further complicate the correlations between particles, which

we break via resampling.

We numerically illustrate the theory in a linear setting and also demonstrate the successful

performance of REnKF on the Lorenz 96 equations Lorenz [1996], a simplified model for

atmospheric dynamics widely used to test filtering algorithms Majda and Wang [2006], Majda

and Harlim [2012], Law et al. [2016a], Sanz-Alonso and Stuart [2015]. In our experiments,

REnKF performs similarly to standard, non-resampled EnKF in fully and partially-observed

settings. Moreover, the results are robust to the noise level in the dynamics and in the

observations. Python code to reproduce all numerical experiments is publicly available at

https://github.com/Jiajun-Bao/EnKF-with-Resampling.

3.1.3 Outline

The rest of the chapter is organized as follows. Section 3.2 formalizes the problem setting

and provides necessary background on EnKF. Section 3.3 introduces and analyzes the new

REnKF algorithm. The main result, Theorem 3.3.2, gives non-asymptotic and dimension-

free error bounds. We report numerical results that confirm and complement the theory in

Section 3.4. Proofs are collected in Section 3.5. We close in Section 3.6 with a discussion of

our results and directions for future research.

3.1.4 Notation

For a vector 𝑢 =
(︀
𝑢(1), . . . , 𝑢(𝑑)

)︀⊤ and 𝑞 ≥ 1, |𝑢|𝑞 = (
∑︀𝑑
𝑖=1 |𝑢(𝑖)|𝑞)1/𝑞 and |𝑢| = |𝑢|2. For a

random variable 𝑋 and 𝑞 ≥ 1, we write ‖𝑋‖𝑞 = (E|𝑋|𝑞)1/𝑞 and ‖𝑋‖ = ‖𝑋‖2. 𝑋 ∼ 𝒩 (𝑚,𝐶)

denotes that 𝑋 is a Gaussian random vector with mean 𝑚 and covariance 𝐶, and we denote

its density at a point 𝑥 by 𝒩 (𝑥;𝑚,𝐶). 𝒮𝑑+ denotes the set of 𝑑 × 𝑑 symmetric positive-
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semidefinite matrices, and 𝒮𝑑++ denotes the set of 𝑑×𝑑 symmetric positive-definite matrices.

For two 𝑑× 𝑑 matrices 𝐴,𝐵, 𝐴 ≻ 𝐵 implies 𝐴−𝐵 ∈ 𝒮𝑑++ and 𝐴 ⪰ 𝐵 implies 𝐴−𝐵 ∈ 𝒮𝑑+,

and similarly for ≺,⪯. For a 𝑛 ×𝑚 matrix 𝐴 = (𝐴𝑖𝑗)
𝑛,𝑚
𝑖=1,𝑗=1, the operator norm is given

by |𝐴| = sup‖𝑣‖2=1 |𝐴𝑣|2. 1{𝑆} denotes the indicator of the set 𝑆. The identity matrix will

be denoted by 𝐼, and on occasion its dimension will be made explicit with a subscript. The

𝑛×𝑚 zero matrix will be denoted by 𝑂𝑛×𝑚.

3.2 Problem Setting and Ensemble Kalman Filters

We consider a 𝑑-dimensional unobserved state process {𝑢(𝑗)}𝑗≥0 and a 𝑘-dimensional obser-

vation process {𝑦(𝑗)}𝑗≥1 whose relationship over discrete time 𝑗 is governed by the following

hidden Markov model:

(Initialization) 𝑢(0) ∼ 𝒩 (𝜇(0),Σ(0)), (3.1)

(Dynamics) 𝑢(𝑗) = Ψ(𝑢(𝑗−1)) + 𝜉(𝑗), 𝜉(𝑗)
i.i.d.∼ 𝒩 (0,Ξ), 𝑗 = 1, 2, . . . (3.2)

(Observation) 𝑦(𝑗) = 𝐻𝑢(𝑗) + 𝜂(𝑗), 𝜂(𝑗)
i.i.d.∼ 𝒩 (0,Γ), 𝑗 = 1, 2, . . . (3.3)

We assume that the initial distribution 𝒩 (𝜇(0),Σ(0)), where 𝜇(0) ∈ R𝑑, Σ(0) ∈ 𝒮𝑑++, the

model dynamics map Ψ : R𝑑 → R𝑑, the observation matrix 𝐻 ∈ R𝑘×𝑑, and the dynamics

and observation noise covariance matrices Ξ ∈ 𝒮𝑑+,Γ ∈ 𝒮𝑘++ are known; otherwise, they

may be estimated from the observations, see e.g. Evensen et al. [2022], Chen et al. [2022,

2023]. We further assume that the random variables 𝑢(0), {𝜉(𝑗)}𝑗≥1, and {𝜂(𝑗)}𝑗≥1 are

mutually independent. All methods and theory presented in this chapter extend immediately

to dynamics and/or observation models that are not time homogeneous at the expense of

a more cumbersome notation. Additionally, nonlinear observations can be dealt with by

augmenting the state, see e.g. Anderson [2001].

For a given time index 𝑗 ∈ N, the filtering goal is to compute the filtering distribution
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𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗)

)︀
, where 𝑌 (𝑗) := {𝑦(1), . . . , 𝑦(𝑗)}. The filtering distribution provides a probabilis-

tic summary of the state 𝑢(𝑗) conditional on observations up to time 𝑗. Given access to the

filtering distribution at the preceding time-step 𝑗 − 1, 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗)

)︀
may be obtained by the

following two-step procedure:

(Forecast) 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗−1))︀ = ∫︁ 𝒩 (𝑢(𝑗); Ψ(𝑢(𝑗−1)),Ξ)𝑝

(︀
𝑢(𝑗−1)|𝑌 (𝑗−1))︀ 𝑑𝑢(𝑗−1), (3.4)

(Analysis) 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗))︀ ∝ 𝒩 (𝑦(𝑗);𝐻𝑢(𝑗),Γ)𝑝

(︀
𝑢(𝑗)|𝑌 (𝑗−1))︀. (3.5)

The forecast distribution 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗−1)

)︀
represents our knowledge of the state at time 𝑗 given

observations up to time 𝑗−1, and its computation in (3.4) utilizes the dynamics model (3.2).

In the analysis step (3.5), the new observation 𝑦𝑗 is assimilated through an application of

Bayes formula with prior given by the forecast distribution and likelihood determined by the

observation model (3.3). Closed-form expressions for the filtering and forecast distributions

are only available for a small class of hidden Markov models Papaspiliopoulos and Ruggiero

[2014]. For problems outside this class, many algorithms have been developed to approximate

the filtering distributions, or, if this is too costly, to find point estimates of the state Särkkä

and Svensson [2023], Sanz-Alonso et al. [2023b].

This chapter is concerned with EnKF algorithms that belong to the larger family of

Kalman methods. These methods invoke a Gaussian ansatz for the forecast distribution,

so that Bayes formula in the analysis step can be readily applied using the conjugacy of

the Gaussian forecast distribution and the Gaussian likelihood model (3.3). The distinctive

feature of EnKF is that the Gaussian approximation is defined using the first two moments of

an ensemble of particles. Then, in the analysis step each individual particle is updated with

a Kalman gain matrix which incorporates the forecast covariance. Several stochastic and

deterministic implementations for the analysis step have been proposed in the literature, see

e.g. Houtekamer and Zhang [2016], Tippett et al. [2003], Evensen [2009]. In Algorithm 1, an
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example of a stochastic implementation of EnKF —commonly referred to as the Perturbed

Observation EnKF— is provided for reference, and will be our focus for this work. At time

𝑗 = 0, an initial ensemble of 𝑁 particles are independently drawn from the initial distribution

in (3.1). These ensemble members are then sequentially passed through forecast and analysis

steps: In the forecast step, the ensemble is propagated through the system dynamics yielding

the 𝑗-th forecast ensemble. In the analysis step, the new observation 𝑦(𝑗) is assimilated by

updating each ensemble member according to a Kalman-type formula, yielding the 𝑗-th

analysis ensemble. Although the initial ensemble members are mutually independent, the

dependence structure of the ensemble is highly non-trivial beginning at the analysis step at

time 𝑗 = 1. Indeed, note that the Kalman Gain 𝐾(1) is a nonlinear transformation of the

entire forecast ensemble, and this matrix is used to update each of the ensemble members

when constructing the analysis ensemble. The recursive nature of the algorithm further

complicates the dependence structure of the ensemble, rendering a non-asymptotic analysis

highly challenging.

The stochastic variant of EnKF in Algorithm 1 is arguably the most popular in applica-

tions Evensen [1995], Van Leeuwen [2020]. Unfortunately, as noted in Furrer and Bengtsson

[2007], Al-Ghattas and Sanz-Alonso [2024b] and further discussed in Section 3.3, it is harder

to analyze from a non-asymptotic viewpoint than deterministic variants of the EnKF.

The output ̂︀𝜇(𝑗) of EnKF gives a point estimate of the state 𝑢(𝑗) at time 𝑗. For such a state-

estimation task, EnKF is very effective Law and Stuart [2012]. Additionally, the output ̂︀Σ(𝑗)

may be used to construct confidence intervals. However, as often noted in the literature Ernst

et al. [2015], Law and Stuart [2012] and further discussed in Section 3.4, caution should be

exercised when using ensemble Kalman algorithms for such uncertainty quantification tasks.

EnKF performance for state estimation and uncertainty quantification tasks can be assessed

by the error in approximating the mean and covariance of the filtering distributions; the

theory in Subsection 3.3.2 adopts such performance metrics. If the moments of the filtering
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Algorithm 1 Ensemble Kalman Filter (EnKF)

1: Input: Ψ, 𝐻,Ξ,Γ, 𝜇(0),Σ(0), 𝑁. Sequentially acquired data {𝑦(𝑗)}𝑗≥1.

2: Initialization: 𝑢(0)𝑛
i.i.d.∼ 𝒩 (𝜇(0),Σ(0)), 1 ≤ 𝑛 ≤ 𝑁.

3: For 𝑗 = 1, 2, . . . do the following forecast and analysis steps:
4: Forecast:

̂︀𝑢(𝑗)𝑛 = Ψ(𝑢
(𝑗−1)
𝑛 ) + 𝜉

(𝑗)
𝑛 , 𝜉

(𝑗)
𝑛

i.i.d.∼ 𝒩 (0,Ξ), 1 ≤ 𝑛 ≤ 𝑁,

̂︀𝑚(𝑗) =
1

𝑁

𝑁∑︁
𝑛=1

̂︀𝑢(𝑗)𝑛 , ̂︀𝐶(𝑗) =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(︀̂︀𝑢(𝑗)𝑛 − ̂︀𝑚𝑗
)︀(︀̂︀𝑢(𝑗)𝑛 − ̂︀𝑚𝑗

)︀⊤
.

(3.6)

5: Analysis:

𝐾(𝑗) = ̂︀𝐶(𝑗)𝐻⊤(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1,

𝑦
(𝑗)
𝑛 = 𝑦(𝑗) + 𝜂

(𝑗)
𝑛 , 𝜂

(𝑗)
𝑛

i.i.d.∼ 𝒩 (0,Γ), 1 ≤ 𝑛 ≤ 𝑁,

𝑢
(𝑗)
𝑛 = (𝐼 −𝐾(𝑗)𝐻)̂︀𝑢(𝑗)𝑛 +𝐾(𝑗)𝑦

(𝑗)
𝑛 , 1 ≤ 𝑛 ≤ 𝑁,

̂︀𝜇(𝑗) = 1

𝑁

𝑁∑︁
𝑛=1

𝑢
(𝑗)
𝑛 , ̂︀Σ(𝑗) =

1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢
(𝑗)
𝑛 − ̂︀𝜇(𝑗))(𝑢(𝑗)𝑛 − ̂︀𝜇(𝑗))⊤.

(3.7)

6: Output: Analysis mean ̂︀𝜇(𝑗) and covariance ̂︀Σ(𝑗) for 𝑗 = 1, 2, . . .

distributions are not available, performance metrics such as root mean squared error and

coverage of confidence intervals can be employed Law and Stuart [2012], and we do so in the

numerical experiments in Section 3.4.

3.3 Ensemble Kalman Filters with Resampling

In this section, we first introduce and motivate our main algorithm, EnKF with resampling

(REnKF). We then present the non-asymptotic theoretical analysis of REnKF in a linear

model dynamics setting.

3.3.1 Main Algorithm

The idea underlying REnKF, which is outlined in Algorithm 2, is to employ a resampling

step at each filtering cycle to break the correlations between ensemble members described
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in Section 3.2. We consider here a particularly simple parametric resampling scheme in

which at the beginning of each filtering cycle, ensembles are independently sampled from

a Gaussian distribution whose mean and covariance match those of the analysis ensemble

at the previous time step. Although the resampling mechanism can be made to be more

sophisticated —for example, one may consider nonparametric resampling schemes in which

the empirical distribution of the ensemble is used instead— we note that such complications

may be difficult to justify given the simplicity, theoretical guarantees (Subsection 3.3.2), as

well as the computational scalability and empirical performance (Section 3.4) of the proposed

resampling strategy. Other than the resampling step, the forecast and analysis steps of

REnKF agree with those of EnKF, and consequently any of the stochastic or deterministic

implementations of EnKF can be adopted. Our focus here is on the stochastic implementation

of EnKF in Algorithm 1. As discussed in the next subsection —see Remarks 3.3.1 and 3.3.3—

non-asymptotic theory for deterministic implementations can be obtained as a by-product

of the theory that we develop.

Algorithm 2 Ensemble Kalman Filter with Resampling (REnKF)

1: Input: Ψ, 𝐻,Ξ,Γ, 𝜇(0),Σ(0), 𝑁. Sequentially acquired data {𝑦(𝑗)}𝑗≥1.

2: Initialization: Set ̂︀𝜇(0) = 𝜇(0) and ̂︀Σ(0) = Σ(0).
3: For 𝑗 = 1, 2, . . . do the following resampling, forecast, and analysis steps:
4: Resampling:

𝑢
(𝑗−1)
𝑛

i.i.d.∼ 𝒩 (̂︀𝜇(𝑗−1), ̂︀Σ(𝑗−1)), 1 ≤ 𝑛 ≤ 𝑁. (3.8)

5: Forecast: Do (3.6).
6: Analysis: Do (3.7).
7: Output: Analysis mean ̂︀𝜇(𝑗) and covariance ̂︀Σ(𝑗) for 𝑗 = 1, 2, . . .

Notice from Algorithm 2 that correlations between particles could alternately be broken

by resampling between the forecast and analysis steps. While such an approach would be

amenable to a non-asymptotic analysis akin to the one we develop, we empirically found that

resampling after the forecast step significantly deteriorates the performance of the filter in
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nonlinear settings. A heuristic explanation is that resampling tacitly introduces a Gaussian

approximation, and the filtering distribution is better approximated by a Gaussian than the

forecast distribution when the dynamics are nonlinear and the observations are Gaussian.

3.3.2 Non-asymptotic Error Bounds

Here we present theoretical guarantees for REnKF in a linear dynamics setting. We introduce

the setting and necessary background in Subsection 3.3.2. Then, the main result is stated

and discussed in Subsection 3.3.2.

Setting and Preliminaries

We consider REnKF in the following linear version of the hidden Markov model governing

the relationship between the state and observation processes:

(Initialization) 𝑢(0) ∼ 𝒩 (𝜇(0),Σ(0)), (3.9)

(Dynamics) 𝑢(𝑗) = 𝐴𝑢(𝑗−1) + 𝜉(𝑗), 𝜉(𝑗)
i.i.d.∼ 𝒩 (0,Ξ), 𝑗 = 1, 2, . . . (3.10)

(Observation) 𝑦(𝑗) = 𝐻𝑢(𝑗) + 𝜂(𝑗), 𝜂(𝑗)
i.i.d.∼ 𝒩 (0,Γ), 𝑗 = 1, 2, . . . (3.11)

with 𝑢(0) independent of the i.i.d. sequences {𝜉(𝑗)} and {𝜂(𝑗)}. Thus, we assume that the

dynamics map Ψ in (3.2) is linear and represented by a given matrix 𝐴 ∈ R𝑑×𝑑. In this

case, it is well known that the forecast distributions 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗−1)

)︀
= 𝒩 (𝑢(𝑗);𝑚(𝑗), 𝐶(𝑗−1))

and the filtering distributions 𝑝
(︀
𝑢(𝑗)|𝑌 (𝑗)

)︀
= 𝒩 (𝑢(𝑗);𝜇(𝑗),Σ(𝑗)) are both Gaussian, and the

means and covariances of these distributions are given by the Kalman filter Sanz-Alonso

et al. [2023b]. We aim to derive non-asymptotic bounds between the output ̂︀𝜇(𝑗) and ̂︀Σ(𝑗)

of REnKF and the output 𝜇(𝑗) and Σ(𝑗) of the Kalman filter.

We follow the exposition in Kwiatkowski and Mandel [2015] and introduce three operators

that are central to the theory: the Kalman gain operator K , the mean-update operator M ,
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Kalman Filter REnKF

Forecast Mean 𝑚(𝑗) = 𝐴𝜇(𝑗−1) ̂︀𝑚(𝑗) = 𝐴𝑢̄(𝑗−1) + 𝜉(𝑗)

Forecast Cov. 𝐶(𝑗) = 𝐴Σ(𝑗−1)𝐴⊤ + Ξ ̂︀𝐶(𝑗) = 𝐴𝑆(𝑗−1)𝐴⊤ + Ξ̂(𝑗) + 𝐴 ̂︀𝐶(𝑗)
𝑢𝜉 +

̂︀𝐶(𝑗)
𝜉𝑢𝐴

⊤

Analysis Mean 𝜇(𝑗) = M (𝑚(𝑗), 𝐶(𝑗); 𝑦(𝑗)) ̂︀𝜇(𝑗) = M (̂︀𝑚(𝑗), ̂︀𝐶(𝑗); 𝑦(𝑗)) + K ( ̂︀𝐶(𝑗))𝜂(𝑗)

Analysis Cov. Σ(𝑗) = C (𝐶(𝑗)) ̂︀Σ(𝑗) = C ( ̂︀𝐶(𝑗)) + 𝑂̂(𝑗)

Table 3.1: Kalman filter and REnKF updates in terms of the operators (3.12), (3.13), and
(3.14).

and the covariance-update operator C , defined respectively by

K : 𝒮𝑑+ → R𝑑×𝑘, K (𝐶) = 𝐶𝐻⊤(𝐻𝐶𝐻⊤ + Γ)−1, (3.12)

M : R𝑑 × 𝒮𝑑+ → R𝑑, M (𝑚,𝐶; 𝑦) = 𝑚+ K (𝐶)(𝑦 −𝐻𝑚), (3.13)

C : 𝒮𝑑+ → 𝒮𝑑+, C (𝐶) =
(︀
𝐼 − K (𝐶)𝐻

)︀
𝐶. (3.14)

With this notation, the mean and covariance updates from time 𝑗− 1 to time 𝑗 given by the

Kalman filter are summarized in Table 3.1. The table also shows the corresponding updates

for REnKF, where 𝑢̄(𝑗−1), 𝜉(𝑗) and 𝜂(𝑗) respectively denote the sample means of {𝑢(𝑗−1)
𝑛 }𝑁𝑛=1,

{𝜉(𝑗)𝑛 }𝑁𝑛=1, and {𝜂(𝑗)𝑛 }𝑁𝑛=1; 𝑆
(𝑗−1) denotes the empirical covariance of {𝑢(𝑗−1)

𝑛 }𝑁𝑛=1; and̂︀𝐶(𝑗)
𝑢𝜉 = ( ̂︀𝐶(𝑗)

𝜉𝑢 )
⊤ denotes the empirical cross-covariance of {𝑢(𝑗−1)

𝑛 }𝑁𝑛=1 and {𝜉(𝑗)𝑛 }𝑁𝑛=1. Fi-

nally, following Furrer and Bengtsson [2007], Al-Ghattas and Sanz-Alonso [2024b], we refer

to

̂︀𝑂(𝑗) := K ( ̂︀𝐶(𝑗))(̂︀Γ(𝑗) − Γ)K ⊤( ̂︀𝐶(𝑗))

+
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀ ̂︀𝐶(𝑗)
𝑢𝜂K

⊤( ̂︀𝐶(𝑗)) + K ( ̂︀𝐶(𝑗))( ̂︀𝐶(𝑗)
𝑢𝜂 )

⊤(︀𝐼 −𝐻⊤K ⊤( ̂︀𝐶(𝑗))
)︀
.

as the offset, where ̂︀Γ(𝑗) denotes the empirical covariance of {𝜂(𝑗)𝑛 }𝑁𝑛=1, and ̂︀𝐶(𝑗)
𝑢𝜂 denotes the

empirical cross-covariance of {𝑢(𝑗−1)
𝑛 }𝑁𝑛=1 and {𝜂(𝑗)𝑛 }𝑁𝑛=1.
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Remark 3.3.1 (Deterministic Implementations). As noted earlier, our presentation and

analysis will focus on the stochastic (perturbed observation) implementation of EnKF de-

scribed in Algorithm 1, and which is used within REnKF, see Algorithm 2. We claim that

this approach is sufficient to cover both deterministic and stochastic updates. Indeed, Al-

Ghattas and Sanz-Alonso [2024b] shows that deterministic and stochastic updates at time 𝑗

can be succinctly written as

̂︀𝜇(𝑗) = M (̂︀𝑚(𝑗), ̂︀𝐶(𝑗)) + 𝜙K ( ̂︀𝐶(𝑗))𝜂(𝑗),

̂︀Σ(𝑗) = C ( ̂︀𝐶(𝑗)) + 𝜙 ̂︀𝑂(𝑗),

(3.15)

where 𝜙 = 1 for the stochastic update and 𝜙 = 0 for the deterministic update. Therefore,

relative to the deterministic update, theory for the stochastic update is additionally compli-

cated by the need to consider the term K ( ̂︀𝐶(𝑗))𝜂(𝑗) in the mean update and the offset term̂︀𝑂(𝑗) in the covariance update. Accordingly, we are able to provide a result for the resampled

version of the deterministic (square-root) EnKF as a by-product of our more general theory,

and we refer to Remark 3.3.3 for further discussion.

Main Result

We define the effective dimension Tropp [2015] of a matrix 𝑄 ∈ 𝒮𝑑+ by

𝑟2(𝑄) :=
Tr(𝑄)
|𝑄|

, (3.16)

where Tr(𝑄) and |𝑄| denote the trace and operator norm of 𝑄. The effective dimension

quantifies the number of directions where 𝑄 has significant spectral content and may be

significantly smaller than the ambient dimension 𝑑 when the eigenvalues of 𝑄 decay quickly.

As such, it is a more refined measure of complexity in high-dimensional problems with

underlying low-dimensional structure. The monographs Tropp [2015], Vershynin [2018] refer
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to 𝑟2(𝑄) as the intrinsic dimension, while Koltchinskii and Lounici [2017] uses the term

effective rank. This terminology is motivated by the observation that 1 ≤ 𝑟2(𝑄) ≤ rank(𝑄) ≤

𝑑 and that 𝑟2(𝑄) is insensitive to changes in the scale of 𝑄, see Tropp [2015]. We now state

our main result, Theorem 3.3.2, which provides non-asymptotic bounds on the deviation of

REnKF from the Kalman filter for any time 𝑗.

Theorem 3.3.2. Consider REnKF, Algorithm 2, with linear dynamics Ψ(·) = 𝐴·. Suppose

that 𝑁 ≥ 𝑟2(Σ
(0)) ∨ 𝑟2(Γ) ∨ 𝑟2(Ξ). For any 𝑗 = 1, 2, . . . , and 𝑞 ≥ 1

‖|̂︀𝜇(𝑗) − 𝜇(𝑗)|‖𝑞 ≤ 𝑐1

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠ , (3.17)

‖|̂︀Σ(𝑗) − Σ(𝑗)|‖𝑞 ≤ 𝑐2

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠ , (3.18)

where 𝜇(𝑗) and Σ(𝑗) are the mean and covariance of the filtering distributions, and 𝑐1, 𝑐2 are

potentially different universal constants depending on

|Σ(0)|, |𝐴|, |𝐻|, |Γ−1|, |Γ|, |Ξ|, 𝑞, 𝑗,

and 𝑐1 additionally depends on {|𝑦(ℓ) −𝐻𝑚(ℓ)|}ℓ≤𝑗.

With the exception of [Majda and Tong, 2018, Theorem 3.4], which relies on covariance

inflation and an additional projection step, Theorem 3.3.2 seems to be the first result in the

literature that provides non-asymptotic guarantees on the performance of a stochastic EnKF

over multiple assimilation cycles. We note that the assumption𝑁 ≥ 𝑟2(Σ
(0))∨𝑟2(Γ)∨𝑟2(Ξ) is

merely for convenience and can be removed at the expense of a more cumbersome statement

of the result. Importantly, the bounds (3.17) and (3.18) are non-asymptotic, in that they

hold for a fixed ensemble size 𝑁 . Further, the bounds are dimension-free as they do not

exhibit any dependence on the state-space dimension 𝑑, implying that the ensemble need
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not scale with 𝑑 in order for the algorithm to perform well, as has been observed empirically

in the literature and confirmed in our numerical results in Section 3.4. Finally, similar to

previous accuracy analyses for square-root ensemble Kalman filters Mandel et al. [2011], Al-

Ghattas and Sanz-Alonso [2024b], variational data assimilation algorithms Sanz-Alonso and

Stuart [2015], Law et al. [2016a], and particle filters [Sanz-Alonso et al., 2023b, Chapters 11

and 12], our proof relies on induction over the discrete time index 𝑗 and does not account

for potential dissipation of errors due to filter ergodicity. As a result, the constants 𝑐1 and

𝑐2 grow with 𝑗 and our bounds (3.17) and (3.18) do not hold uniformly in time without, for

instance, stability requirements on 𝐴.

Remark 3.3.3 (Resampled Square-Root Filter). While the result in Theorem 3.3.2 is specific

to the stochastic REnKF in Algorithm 2, using the observation made in Remark 3.3.1 it is

possible to show that for a deterministic variant, namely the square-root REnKF, and under

the same assumptions on the ensemble size made in Theorem 3.3.2, we have that

‖|̂︀𝜇(𝑗) − 𝜇(𝑗)|‖𝑞 ≤ 𝑐1

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠ ,

‖|̂︀Σ(𝑗) − Σ(𝑗)|‖𝑞 ≤ 𝑐2

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠ ,

(3.19)

where 𝑐1, 𝑐2 are potentially different universal constants depending on |Σ(0)|, |𝐴|, |𝐻|, |Γ−1|,

|Ξ|, 𝑞, 𝑗, and 𝑐1 additionally depends on {|𝑦(ℓ) − 𝐻𝑚(ℓ)|}ℓ≤𝑗. In contrast to (3.17) and

(3.18), the bounds in (3.19) do not depend on the effective dimension of the noise covari-

ance, 𝑟2(Γ), nor do the associated constants depend on |Γ|. The statistical price to pay for

utilizing stochastic rather than deterministic updates is captured by these terms. We further

note that [Al-Ghattas and Sanz-Alonso, 2024b, Corollary A.12], gives a non-asymptotic and

multi-step analysis of a simplified version of the square-root filter (without resampling) with

deterministic dynamics (that is, Ξ = 𝑂𝑑×𝑑). In such a setting, [Al-Ghattas and Sanz-Alonso,
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2024b, Corollary A.12] implies the following bounds

‖|̂︀𝜇(𝑗) − 𝜇(𝑗)|‖𝑞 ≤ 𝑐3

√︃
𝑟2(Σ

(0))

𝑁
, ‖|̂︀Σ(𝑗) − Σ(𝑗)|‖𝑞 ≤ 𝑐4

√︃
𝑟2(Σ

(0))

𝑁
,

where 𝑐3, 𝑐4 are potentially different universal constants depending on |Σ(0)|, |𝐴|, |𝐻|, |Γ−1|,

𝑞, 𝑗, and 𝑐3 additionally depends on {|𝑦(ℓ) −𝐻𝑚(ℓ)|}ℓ≤𝑗. Theorem 3.3.2 should further be

compared to [Kwiatkowski and Mandel, 2015, Theorem 6.1], which is also limited to the case

Ξ = 𝑂𝑑×𝑑 and shows that ‖|̂︀𝜇(𝑗) − 𝜇(𝑗)|‖𝑞 ≤ 𝑐′3𝑁
−1/2 and ‖|̂︀Σ(𝑗) − Σ(𝑗)|‖𝑞 ≤ 𝑐′4𝑁

−1/2,

where 𝑐′3, 𝑐
′
4 are universal constants with the same dependencies as 𝑐3 and 𝑐4. Importantly,

the bounds in [Kwiatkowski and Mandel, 2015, Theorem 6.1] do not capture the dependence of

the algorithm on the prior covariance and also cannot be easily extended to handle stochastic

dynamics Ξ ≻ 0 as accomplished in Theorem 3.3.2.

3.4 Numerical Results

In this section, we investigate the empirical performance of REnKF (Algorithm 2) and provide

detailed comparisons to the stochastic EnKF (Algorithm 1). In Subsection 3.4.1, we consider

a linear dynamics map, Ψ(·) = 𝐴·, with the primary goal of demonstrating the bounds

of Theorem 3.3.2 in simulated settings. In Subsection 3.4.2, we study a nonlinear setting

where Ψ represents the ∆𝑡-flow of the Lorenz 96 system, and ∆𝑡 is the (constant) time-

span between observations. The aim of this subsection is to show that REnKF achieves

comparable performance to EnKF even in challenging nonlinear regimes, further motivating

the study of resampling in the context of ensemble algorithms. In both Subsections 3.4.1 and

3.4.2, we examine the performance of REnKF and EnKF under varying noise levels, ensemble

sizes, and state dimensions. Additionally, in Subsection 3.4.2, we consider cases in which

we have access to either fully observed or partially observed dynamics. These scenarios

offer a comprehensive perspective on the adaptability of REnKF to varying observational
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conditions, thereby highlighting its potential for wide applicability in real-world situations

where data are often limited or incomplete. For all experiments, we generate a ground-

truth state process {𝑢(𝑗)}𝐽𝑗=0 for a time-window of length 𝐽 = 200 using the initialization

(3.1) and dynamics model (3.2). For each set of system parameters we examine, a unique

set of observations {𝑦(𝑗)}𝐽𝑗=1 is generated from the ground-truth state process utilizing the

observation model (3.3). Python code to reproduce all numerical experiments is publicly

available at https://github.com/Jiajun-Bao/EnKF-with-Resampling.

3.4.1 Linear Dynamics

In this subsection, we numerically investigate the performance of REnKF for the linear-

Gaussian hidden Markov model (3.9)-(3.11) analyzed in Subsection 3.3.2. We will consider a

variety of choices for the initial distribution, the dynamics noise covariance, and the observa-

tion noise covariance. Throughout, we take identity dynamics 𝐴 = 𝐼𝑑 and full observations

𝐻 = 𝐼𝑑. To compare the performance of EnKF and REnKF, we will consider the following

metrics:

(Mean Error) ELinear =
1

𝐽

𝐽∑︁
𝑗=1

|̂︀𝜇(𝑗) − 𝜇(𝑗)|2, (3.20)

(CI Width) W =
1

𝐽

𝐽∑︁
𝑗=1

1

𝑑

𝑑∑︁
𝑖=1

2× 1.96

√︁̂︀Σ(𝑗)
𝑖𝑖 , (3.21)

(CI Coverage) V =
1

𝐽

𝐽∑︁
𝑗=1

1

𝑑

𝑑∑︁
𝑖=1

1
{︀
𝑢(𝑗)(𝑖) ∈ (̂︀𝜇(𝑗)(𝑖)± 1.96

√︁̂︀Σ(𝑗)
𝑖𝑖 )
}︀
. (3.22)

The mean error (3.20) quantifies the approximation of the EnKF/REnKF analysis mean to

the mean 𝜇(𝑗) of the Kalman filter. Our theory for REnKF provides non-asymptotic bounds

for this error, and our numerical results will show that this error is similar to that of EnKF

in a variety of settings. The confidence interval (CI) width and coverage in (3.21)-(3.22)
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Figure 3.1: State estimation and uncertainty quantification for coordinate 𝑢(1) in the linear
setting with ensemble size 𝑁 = 10 and small noise 𝛼 = 10−4. Note that the Kaman Filter
(KF) is optimal in the linear setting.

assess the ability of the filter to provide reliable uncertainty quantification: a short interval

with high coverage would be preferable, but an overconfident short width interval with low

coverage can lead to a misleading and potentially dangerous assessment of uncertainty. We

illustrate these three metrics in Figure 3.1, which corresponds to a setup outlined in Table

3.2. This setup will be further explored in Subsection 3.4.1. As depicted in the plot, the

indicator in (3.22) corresponds to whether the solid blue line (representing the true states)

fall within the shaded confidence intervals. We point out that the ability of ensemble Kalman

methods to provide reliable uncertainty quantification, especially in nonlinear settings, has

often been questioned Ernst et al. [2015], Law and Stuart [2012]. Our results will show

that the CIs obtained with REnKF have similar width and coverage as those obtained by

EnKF, but that coverage for both algorithms is not reliable when the ensemble size is small

(Subsections 3.4.1 and 3.4.2) or the dynamics are highly nonlinear (Subsection 3.4.2).

Since the outputs {̂︀𝜇(𝑗), ̂︀Σ(𝑗)}𝐽𝑗=1 of EnKF and REnKF are random, for each experiment

we run both algorithms 𝑀 times and we report the average value of the metrics (3.20),

(3.21), and (3.22) as well as the value of 𝑀 . More details can be found in Appendix 3.7.1.
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Effects of Noise Level and Ensemble Size

We perform two distinct analyses to assess the impact of different variables on the perfor-

mance of EnKF and REnKF. The first, which we term the noise-level analysis, investigates

the relationship between mean error, ELinear, and the noise level, 𝛼. The second analysis, re-

ferred to as the ensemble-size analysis, explores how the mean error varies with the ensemble

size, 𝑁 . Both analyses are carried out using a fixed state dimension 𝑑 = 20.

In the noise-level analysis, 𝛼 is varied over a grid of 15 evenly spaced values between 10−16

and 1, allowing us to investigate a range of scenarios beginning with those with virtually no

noise to those with substantial noise. In order to isolate the influence of 𝛼, we maintain the

initial distribution with a fixed zero mean and covariance Σ(0) = 10−8 × 𝐼20, as well as a

fixed ensemble size of 𝑁 = 20. In the ensemble-size analysis, 𝑁 is varied between 10 and

100, in increments of 10. To isolate the effects of 𝑁 , we fix 𝛼 = 10−1 and maintain the initial

distribution to have a fixed zero mean and covariance Σ(0) = 1.1𝛼 × 𝐼20. The covariance is

adjusted to represent a higher initial uncertainty level compared to the noise-level analysis.

The factor 1.1 was introduced to ensure that the initial states possess a slightly different

level of uncertainty relative to the noise in the dynamics and observations. Both analyses

are averaged over 𝑀 = 10 runs of the algorithms. The results of both analyses are depicted

in Figure 3.2. In addition to ELinear, in Table 3.2 we consider the effect of varying 𝛼 and 𝑁

on CI widths, W, and CI coverage, V. Here, we categorize the levels of noise as being either

small, moderate, or large, which correspond to 𝛼 values of 10−4, 10−2, or 10−1 respectively,

as described under Case A in Table 3.3. Further, we repeat the experiments with ensembles

of size 𝑁 = 10 and 𝑁 = 40. For the experimental settings summarized in Table 3.2, the

state dimension and initial distribution are taken as in the ensemble-size analysis described

earlier. These metrics are calculated based on averages over 𝑀 = 100 runs of the algorithms.

The results in Figure 3.2 and in Table 3.2 confirm that across a wide variety of linear

experimental settings, REnKF exhibits similar performance to EnKF as measured by the mean
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Figure 3.2: Effects of 𝛼 and 𝑁 in the linear setting with 𝑑 = 20.

error, CI width, and CI coverage.

Effects of State Dimension and Spectrum Decay

We now study the sensitivity of EnKF and REnKF to changes in the state dimension, 𝑑.

Recall that our main result, Theorem 3.3.2, implies that REnKF performs well whenever the

ensemble size scales with the largest of the effective dimensions of the noise covariances: Σ(0),

Γ, and Ξ. This motivates our study of covariance matrices with structure summarized in

Case A and Case B of Table 3.3. In Case A, the effective dimension of the covariance matrix

is proportional to the state dimension, 𝑑, and so the theory suggests that REnKF will do well

only if the ensemble size also scales with 𝑑. In Case 𝐵, we consider covariance matrices that

are diagonal, with 𝑖-th diagonal element proportional to 𝑖−𝛽 where 𝛽 > 0 is a rate parameter

controlling the speed of decay. Table 3.4 demonstrates that two matrices of this form that

are equal in dimension may differ drastically in their effective dimension for different choices

of 𝛽. Here, then, the theory suggests that REnKF will do well so long as the ensemble

size scales with the effective dimension, which may be much smaller than 𝑑. To test our

theory, we run REnKF under both cases A and B in Table 3.3 where 𝑑 is varied over the set
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Ensemble Metric Small Noise Moderate Noise Large Noise
𝛼 = 10−4 𝛼 = 10−2 𝛼 = 10−1

𝑁 = 10

EnKF Mean Error 0.0608 0.6133 1.9931
REnKF Mean Error 0.0616 0.6199 2.0310
EnKF CI Width 0.0194 0.1940 0.6134
REnKF CI Width 0.0188 0.1875 0.5930

EnKF CI Coverage (%) 39.57 38.90 38.35
REnKF CI Coverage (%) 37.83 37.14 36.58

𝑁 = 40

EnKF Mean Error 0.0193 0.1930 0.6243
REnKF Mean Error 0.0209 0.2091 0.6739
EnKF CI Width 0.0278 0.2780 0.8790
REnKF CI Width 0.0274 0.2739 0.8663

EnKF CI Coverage (%) 69.94 69.26 68.90
REnKF CI Coverage (%) 68.65 67.76 67.43

Table 3.2: Performance metrics in the linear setting with 𝑑 = 20.

Noise Case A Case B (𝑖 = 1, . . . , 𝑑) Case C

Dynamics (Ξ) Ξ𝐴 = 𝛼× 𝐼𝑑 Ξ𝐵𝑖𝑖 = 𝛼× 𝑖−𝛽 Ξ𝐶 = 𝛼× 𝐼𝑑

Observation (Γ) Γ𝐴 = 𝛼× 𝐼𝑑 Γ𝐵𝑖𝑖 = 𝛼× 𝑖−𝛽 Γ𝐶 = 𝛼× 𝐼2𝑑
3

Prior (Σ(0)) (Σ(0))𝐴 = 1.1× Ξ𝐴 (Σ(0))𝐵𝑖𝑖 = 1.1× Ξ𝐵𝑖𝑖 (Σ(0))𝐶 = 1.1× Ξ𝐶

Table 3.3: Covariance matrix settings explored numerically in Subsections 3.4.1 and 3.4.2.

{21, 22, . . . , 28} and where the ensemble size is fixed at 𝑁 = 10 throughout. For both cases

we fix 𝛼 = 10−4 and for case B we consider 𝛽 ∈ {0.1, 1, 1.5}. Figure 3.3 presents the results of

averaging ELinear over 𝑀 = 10 runs of the algorithm in each of the experimental set-ups. We

see that for all choices of 𝛽, EnKF and REnKF exhibit near-identical performance. For Case

A, the performance deteriorates as 𝑑 increases and this behavior is identical across all three

displays. For Case 𝐵, when 𝛽 = 0.1 (first display) so that the effective dimension increases

significantly with dimension as described in the first row of Table 3.4, the performance

State dimension (𝑑) 2 4 8 16 32 64 128 256

𝛽 = 0.1 1.93 3.70 7.02 13.25 24.89 46.64 87.25 163.05
𝛽 = 1.0 1.50 2.08 2.72 3.38 4.06 4.74 5.43 6.12
𝛽 = 1.5 1.35 1.67 1.93 2.12 2.26 2.36 2.44 2.49

Table 3.4: Effective dimension of initialization and noise covariances used in Figure 3.3.
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deteriorates significantly as 𝑑 increases. As 𝛽 is increased to 1 in the second display, so

that the effective dimension grows slowly with 𝑑, performance deteriorates at a much slower

rate. This is further pronounced in the final display with 𝛽 = 1.5. These numerical results

demonstrate the key role played by the effective dimension in determining the performance

of EnKF and REnKF, and are in agreement with Theorem 3.3.2 for REnKF.

Figure 3.3: Effect of spectrum decay in the linear setting.

3.4.2 Lorenz 96 Dynamics

In this subsection, we extend our numerical investigation of REnKF to the nonlinear setting

by taking Ψ in (3.2) to be the ∆𝑡-flow of the Lorenz 96 equations. Here ∆𝑡 represents the

time-span between observations, which is assumed to be constant. Assuming the following

cyclic boundary conditions 𝑢(−1) = 𝑢(𝑑− 1), 𝑢(0) = 𝑢(𝑑), and 𝑢(𝑑+ 1) = 𝑢(1) with 𝑑 ≥ 4,

the system is governed by:

𝑑𝑢(𝑖)

𝑑𝑡
=
(︁
𝑢(𝑖+ 1)− 𝑢(𝑖− 2)

)︁
𝑢(𝑖− 1)− 𝑢(𝑖) + 𝐹, 𝑖 = 1, . . . , 𝑑. (3.23)

In our experiments, we set ∆𝑡 = 0.01, 𝐹 = 8, and the state dimension 𝑑 is subject to

variation. The choice 𝐹 = 8 leads to strongly chaotic turbulence, which hinders predictability

in the absence of observations Majda and Harlim [2012]. For the observation process (3.3),

we consider both full observations in which 𝐻 = 𝐼𝑑, and partial observations in which
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only two out of every three state components are observed. The latter setting results in a

modified𝐻 ∈ R
2𝑑
3 ×𝑑 which corresponds to 𝐼𝑑 with every third row removed. This observation

set-up is motivated by Sanz-Alonso and Stuart [2015], Law et al. [2015], which prove that

observing two-out-of-three coordinates of the Lorenz 96 system suffices in order to tame the

unpredictability of the system and achieve long-time filter accuracy in a small noise regime.

As in Subsection 3.4.1, we examine various choices of initial distribution, dynamics noise

covariance, and observation noise covariance. To compare EnKF and REnKF, we make use

of the same CI width (3.21) and CI coverage (3.22) metrics as in Subsection 3.4.1. However,

since in the nonlinear setting the mean of the filtering distribution is not available in closed

form, we replace the metric ELinear with

EL96 =
1

𝐽

𝐽∑︁
𝑗=1

|̂︀𝜇(𝑗) − 𝑢(𝑗)|2, (3.24)

which quantifies the accuracy of the filter as an estimator of the ground-truth state process

{𝑢(𝑗)}𝐽𝑗=1. As before, the metrics we report are averaged over 𝑀 runs of the algorithms.

Full Observation Partial Observation

Ensemble Metric Small Noise Moderate Noise Large Noise Small Noise Moderate Noise Large Noise
𝛼 = 10−4 𝛼 = 10−2 𝛼 = 10−1 𝛼 = 10−4 𝛼 = 10−2 𝛼 = 10−1

𝑁 = 21

EnKF Mean Error 0.1011 0.9573 3.0231 0.4064 3.3882 10.5921
REnKF Mean Error 0.1016 0.9616 3.0335 0.4071 3.3565 10.6379
EnKF CI Width 0.0208 0.2083 0.6586 0.0266 0.2660 0.8412
REnKF CI Width 0.0205 0.2047 0.6475 0.0258 0.2584 0.8167

EnKF CI Coverage (%) 50.24 51.55 51.61 39.62 43.25 43.26
REnKF CI Coverage (%) 49.07 50.34 50.44 38.25 42.04 41.87

𝑁 = 84

EnKF Mean Error 0.0582 0.5682 1.7971 0.2919 2.4181 7.6282
REnKF Mean Error 0.0590 0.5760 1.8218 0.2977 2.5004 7.9011
EnKF CI Width 0.0281 0.2813 0.8895 0.0438 0.4383 1.3861
REnKF CI Width 0.0279 0.2785 0.8806 0.0412 0.4120 1.3033

EnKF CI Coverage (%) 87.96 88.61 88.61 71.47 75.31 75.30
REnKF CI Coverage (%) 86.80 87.52 87.52 69.25 72.54 72.61

Table 3.5: Performance metrics for the Lorenz 96 model with 𝑑 = 42.

In Table 3.5, we compare the performance of REnKF and EnKF. In the case of full obser-

vations, the covariance configuration is outlined in Case A of Table 3.3, and in the case of

partial observations it is outlined in Case C of Table 3.3. We repeat the experiments with en-
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sembles of size 𝑁 = 21 and 𝑁 = 84, and the metrics are computed over 𝑀 = 100 runs of the

algorithms. In Figure 3.4, we present a single representative simulation of the first component

𝑢(1) —which is observed— and the third component 𝑢(3) —which is unobserved— corre-

sponding to a particular choice of parameters in Table 3.5. Additional experiments in the

accompanying Github repository show that, as the noise level 𝛼 increases, state estimation

remains effective for observed variables but deteriorates for unobserved ones. This behavior

explains the larger error for moderate and large noise levels in the partial observation set-up

in Table 3.5.

Figure 3.4: State estimation of coordinates 𝑢(1) (observed) and 𝑢(3) (unobserved) in a
partially observed Lorenz 96 system with ensemble size 𝑁 = 21 and small noise 𝛼 = 10−4.
REnKF accurately recovers observed and unobserved coordinates of the state.

In Figure 3.5, we further analyze the effects of varying 𝛼 (column 1), 𝑁 (column 2),

and 𝑑 (column 3) on EL96 in both the full observation (row 1) and partial observation (row

2) settings. More precisely, in the first column of Figure 3.5, 𝛼 is varied over a grid of 15
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Figure 3.5: Effects of 𝛼, 𝑁, and 𝑑 in the Lorenz 96 example.

evenly spaced values between 10−16 and 1 while holding fixed 𝑁 = 20 and 𝑑 = 42. In both

full and partial observation settings, we take the initial distribution to have zero mean and

covariance Σ(0) = 10−8 × 𝐼42. In the second column of Figure 3.5, the ensemble size 𝑁

ranges from 10 to 100, increasing in steps of 10, while fixing 𝛼 = 10−4 and 𝑑 = 42. In both

full and partial observation settings, we take the initial distribution to have zero mean and

covariance Σ(0) = 1.1𝛼 × 𝐼42. In the third column of Figure 3.5, the dimension 𝑑 is varied

over the values in {6, 18, 30, 42, 54, 66, 78, 90, 102} which are all multiples of 3 to facilitate

convenient calculations in the partially observed setting. We fix 𝑁 = 20 and 𝛼 = 10−4 and

in both full and partial observation settings, we take the initial distribution to have zero

mean and covariance Σ(0) = 1.1𝛼× 𝐼𝑑, respectively.

Our findings, as illustrated in Table 3.5 and Figure 3.5, demonstrate that REnKF achieves

performance comparable to that of EnKF, even in challenging nonlinear regimes. Notably,

for both algorithms we observe a slightly inferior performance with partial observations com-
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pared to full observations under identical conditions. Moreover, a consistent trend is noticed

in the dependency of EL96 on the noise level, state dimension, and ensemble size. Notice,

however, that the performance of REnKF deteriorates further in non-Gaussian settings with

partial observations, large 𝑁, and large noise. Such worsened performance may be partly ex-

plained by the additional Gaussian assumption tacitly imposed in the resampling step, which

further destroys the non-Gaussian structure of the problem for nonlinear forward models.

Table 3.5 further demonstrates that REnKF is as effective as EnKF in the task of uncertainty

quantification. Nevertheless, both EnKF and REnKF encounter difficulties in delivering re-

liable uncertainty quantification, especially in scenarios with partial observation and small

ensemble size.

3.5 Proof of Theorem 3.3.2

The result will be established by strong induction on the mean bound (3.17) and the covari-

ance bound (3.18) along with induction on two additional bounds: for any 𝑗 = 1, 2, . . . and

𝑞 ≥ 1

‖|Tr(̂︀Σ(𝑗−1))|‖𝑞 ≤ 𝑐3𝑟2(Σ
(0)), (3.25)

‖| ̂︀𝐶(𝑗) − 𝐶(𝑗)|‖𝑞 ≤ 𝑐4

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠ , (3.26)

where 𝑐3 and 𝑐4 are again potentially different universal constants that depend on the same

parameters as 𝑐2 in the statement of Theorem 3.3.2. We will refer to (3.25) as the covariance

trace bound and to (3.26) as the forecast covariance bound. In this section, we require the

following additional notation: given two positive sequences {𝑎𝑛} and {𝑏𝑛}, the relation

𝑎𝑛 ≲ 𝑏𝑛 denotes that 𝑎𝑛 ≤ 𝑐𝑏𝑛 for some constant 𝑐 > 0. If the constant 𝑐 depends on some

quantity 𝜏 , then we write 𝑎 ≲𝜏 𝑏. Throughout, we denote positive universal constants by

𝑐, 𝑐1, 𝑐2, 𝑐3, 𝑐4, and the value of a universal constant may differ from line to line. In some
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cases, the explicit dependence of a universal constant on the parameter 𝜏 is indicated by

writing 𝑐(𝜏).

This section is organized as follows. Subsection 3.5.1 contains preliminary results. We

then prove the base case 𝑗 = 1 in Subsection 3.5.2. Finally, in Subsection 3.5.3 we show that

the bounds (3.17), (3.18), (3.25), and (3.26) hold for 𝑗 assuming they hold for all ℓ ≤ 𝑗− 1.

3.5.1 Preliminary Results

Lemma 3.5.1 (Operator Norm of Covariance). For any 𝑗 ≥ 0, let Σ(𝑗) be the analysis

covariance at iteration 𝑗. Then,

|Σ(𝑗)| ≤ |𝐴|2𝑗 |Σ(0)|+ |Ξ|
𝑗−1∑︁
ℓ=0

|𝐴|2ℓ ≤ 𝑐(|𝐴|, |Ξ|, |Σ(0)|, 𝑗).

Proof. By Lemma 3.7.6, |C (𝐶)| ≤ |𝐶|, and so

|Σ(𝑗)| = |C (𝐶(𝑗))| ≤ |𝐶(𝑗)| = |𝐴Σ(𝑗−1)𝐴⊤ + Ξ| ≤ |𝐴|2|Σ(𝑗−1)|+ |Ξ|

≤ |𝐴|4|Σ(𝑗−2)|+ |𝐴|2|Ξ|+ |Ξ| ≤ · · · ≤ |𝐴|2𝑗 |Σ(0)|+ |Ξ|
𝑗−1∑︁
ℓ=0

|𝐴|2ℓ.

Lemma 3.5.2 (Trace of Offset). For any 𝑗 ≥ 1, we have that

Tr( ̂︀𝑂(𝑗)) ≤ |𝐻|2|Γ̂(𝑗) − Γ||Γ−1|2| ̂︀𝐶(𝑗)|Tr( ̂︀𝐶(𝑗))

+ 2(1 + | ̂︀𝐶(𝑗)||𝐻|2|Γ−1|)|Γ−1|| ̂︀𝐶(𝑗)
𝑢𝜂 ||𝐻|Tr( ̂︀𝐶(𝑗)).

134



Proof. Write ̂︀𝑂(𝑗) =
∑︀3
ℓ=1

̂︀𝑂(𝑗)
ℓ with

̂︀𝑂(𝑗)
1 := K ( ̂︀𝐶(𝑗))(̂︀Γ(𝑗) − Γ)K ⊤( ̂︀𝐶(𝑗)),

̂︀𝑂(𝑗)
2 :=

(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀ ̂︀𝐶(𝑗)
𝑢𝜂K

⊤( ̂︀𝐶(𝑗)),

̂︀𝑂(𝑗)
3 := K ( ̂︀𝐶(𝑗))( ̂︀𝐶(𝑗)

𝑢𝜂 )
⊤(︀𝐼 −𝐻⊤K ⊤( ̂︀𝐶(𝑗))

)︀
.

By linearity of the trace, Tr( ̂︀𝑂(𝑗)) =
∑︀3
ℓ=1 Tr( ̂︀𝑂(𝑗)

ℓ ). Note first that by Lemma 3.7.6 applied

four times

Tr(𝑂̂(𝑗)
1 ) ≤ |Γ̂(𝑗) − Γ|Tr(K ⊤( ̂︀𝐶(𝑗))K ( ̂︀𝐶(𝑗)))

= |Γ̂(𝑗) − Γ|Tr((𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1𝐻( ̂︀𝐶(𝑗))⊤ ̂︀𝐶(𝑗)𝐻⊤(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1)

≤ |Γ̂(𝑗) − Γ||(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1|2Tr(( ̂︀𝐶(𝑗))⊤ ̂︀𝐶(𝑗)𝐻⊤𝐻)

≤ |𝐻|2|Γ̂(𝑗) − Γ||(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1|2| ̂︀𝐶(𝑗)|Tr( ̂︀𝐶(𝑗))

≤ |𝐻|2|Γ̂(𝑗) − Γ||Γ−1|2| ̂︀𝐶(𝑗)|Tr( ̂︀𝐶(𝑗)),

where the final inequality holds since 𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ ⪰ Γ implies that Γ−1 ⪰ (𝐻 ̂︀𝐶(𝑗)𝐻⊤ +

Γ)−1. Invoking once more Lemma 3.7.6 repeatedly, we get that

Tr(𝑂̂(𝑗)
2 ) = Tr

(︀(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀ ̂︀𝐶(𝑗)
𝑢𝜂K

⊤( ̂︀𝐶(𝑗))
)︀

≤ |
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀
|Tr
(︀ ̂︀𝐶(𝑗)

𝑢𝜂K
⊤( ̂︀𝐶(𝑗))

)︀
≤ |
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀
||(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1|Tr(𝐻 ̂︀𝐶(𝑗) ̂︀𝐶(𝑗)

𝑢𝜂 )

≤ |
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀
||(𝐻 ̂︀𝐶(𝑗)𝐻⊤ + Γ)−1|| ̂︀𝐶(𝑗)

𝑢𝜂 ||𝐻|Tr( ̂︀𝐶(𝑗))

≤ (1 + | ̂︀𝐶(𝑗)||𝐻|2|Γ−1|)|Γ−1|| ̂︀𝐶(𝑗)
𝑢𝜂 ||𝐻|Tr( ̂︀𝐶(𝑗)),
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where the last inequality holds since, by Lemma 3.7.1,

|
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀
| ≤ 1 + |K ( ̂︀𝐶(𝑗))||𝐻| ≤ 1 + | ̂︀𝐶(𝑗)||𝐻|2|Γ−1|.

Finally, note that since 𝑂̂(𝑗)
3 = (𝑂̂

(𝑗)
2 )⊤, the analysis of 𝑂̂(𝑗)

3 follows in similar fashion.

3.5.2 Base Case

In the next four subsections we establish the covariance trace bound (3.25), the forecast

covariance bound (3.26), the mean bound (3.17), and the covariance bound (3.18) in the

base case 𝑗 = 1.

Covariance Trace Bound

Since ̂︀Σ(0) = Σ(0), we directly obtain that

‖|Tr(̂︀Σ(0))|‖𝑞 = Tr(Σ(0)) = |Σ(0)|𝑟2(Σ(0)).
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Forecast Covariance Bound

Let q ∈ {𝑞, 2𝑞, 4𝑞}. It follows by the triangle inequality, Theorem 3.7.5, and Lemma 3.7.7

that

‖| ̂︀𝐶(1) − 𝐶(1)|‖q ≤ |𝐴|2‖|𝑆(0) − Σ(0)|‖q + ‖|Ξ̂(1) − Ξ|‖q + 2|𝐴|‖| ̂︀𝐶(1)
𝑢𝜉 |‖q

≲𝑞 |𝐴|2|Σ(0)|

√︃
𝑟2(Σ

(0))

𝑁
+ |Ξ|

√︂
𝑟2(Ξ)

𝑁

+ 2|𝐴|(|Σ(0)| ∨ |Ξ|)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠
≤ 𝑐(|𝐴|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠ . (3.27)

Mean Bound

By Lemma 3.7.2,

‖|̂︀𝜇(1) − 𝜇(1)|‖𝑞 = ‖|M (̂︀𝑚(1), ̂︀𝐶(1); 𝑦(1))− M (𝑚(1), 𝐶(1); 𝑦(1))|‖𝑞 + ‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞

≤
⃦⃦⃦
|̂︀𝑚(1) −𝑚(1)|

⃦⃦⃦
𝑞
+ |𝐻|2|Γ−1|‖| ̂︀𝐶(1)|‖2𝑞‖|̂︀𝑚(1) −𝑚(1)|‖2𝑞

+ ‖| ̂︀𝐶(1) − 𝐶(1)|‖𝑞|𝐻||Γ−1|
(︀
1 + |𝐻|2|Γ−1||𝐶(1)|

)︀
|𝑦(1) −𝐻𝑚(1)|

+ ‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞.

The mean bound (3.17) with 𝑗 = 1 is then a direct consequence of the bounds that we now

establish on ‖|̂︀𝑚(1) −𝑚(1)|‖q for q ∈ {𝑞, 2𝑞} and on ‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞.
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Controlling ‖|̂︀𝑚(1) − 𝑚(1)|‖q for q ∈ {𝑞, 2𝑞} It follows by the triangle inequality and

Lemma 3.7.9 applied twice that

‖|̂︀𝑚(1) −𝑚(1)|‖q ≤ |𝐴|‖|𝑢̄(0) − 𝜇(0)|‖q + ‖|𝜉(1)|‖q ≲𝑞 |𝐴||Σ(0)|

√︃
𝑟2(Σ

(0))

𝑁
+ |Ξ|

√︂
𝑟2(Ξ)

𝑁

≤ 𝑐(|𝐴|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠ .

Controlling ‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞 By Cauchy-Schwarz

‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞 ≤ ‖|K ( ̂︀𝐶(1))|‖2𝑞‖|𝜂(1)|‖2𝑞.

We bound each term in turn. By Lemma 3.7.9, ‖|𝜂(1)|‖2𝑞 ≲𝑞
√︀

Tr(Γ)/𝑁 =
√︀

|Γ|𝑟2(Γ)/𝑁,

and by Lemma 3.7.1 and the forecast covariance bound (3.27),

‖|K ( ̂︀𝐶(1))|‖2𝑞 ≤ |𝐻||Γ−1|‖| ̂︀𝐶(1)|‖2𝑞 ≤ |𝐻||Γ−1|
(︁
‖| ̂︀𝐶(1) − 𝐶(1)|‖2𝑞 + |𝐶(1)|

)︁
≲ |𝐻||Γ−1||𝐶(1)|𝑐(|𝐴|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝1 ∨

√︃
𝑟2(Σ

(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠ .

Therefore,

‖|K ( ̂︀𝐶(1))𝜂(1)|‖𝑞 ≤ 𝑐(|𝐻|, |Σ(0)|, |Ξ|, |𝐻|, |Γ−1|, |Γ|, 𝑞)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠ .
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Covariance Bound

From Lemma 3.7.3 and the forecast covariance bound derived in Subsection 3.5.2, we have

‖|̂︀Σ(1) − Σ(1)|‖𝑞 ≤ ‖|C ( ̂︀𝐶(1))− C (𝐶(1))|‖𝑞 + ‖|𝑂̂|‖𝑞

≤ ‖| ̂︀𝐶(1) − 𝐶(1)|‖𝑞(1 + |𝐻|2|Γ−1||𝐶(1)|)

+ (|𝐻|2|Γ−1|+ |𝐻|4|Γ−1|2|𝐶(1)|)‖| ̂︀𝐶(1)|‖2𝑞‖| ̂︀𝐶(1) − 𝐶(1)|‖2𝑞 + ‖|𝑂̂(1)|‖𝑞

≤ 𝑐(|𝐴|, |𝐻|, |Γ−1|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁

⎞⎠+ ‖|𝑂̂(1)|‖𝑞.

To derive the covariance bound (3.18), we need to control the offset term ‖| ̂︀𝑂(1)|‖𝑞. First,

using the triangle inequality we write

‖| ̂︀𝑂(1)|‖𝑞 ≤ ‖|K ( ̂︀𝐶(1))(̂︀Γ(1) − Γ)K ⊤( ̂︀𝐶(1))|‖𝑞 + ‖|
(︀
𝐼 − K ( ̂︀𝐶(1))𝐻

)︀ ̂︀𝐶(1)
𝑢𝜂K ⊤( ̂︀𝐶(1))|‖𝑞

+ ‖|K ( ̂︀𝐶(1))( ̂︀𝐶(1)
𝑢𝜂 )

⊤(︀𝐼 −𝐻⊤K ⊤( ̂︀𝐶(1))
)︀
|‖𝑞

=: ‖|𝑂̂(1)
1 |‖𝑞 + ‖|𝑂̂(1)

2 |‖𝑞 + ‖|𝑂̂(1)
3 |‖𝑞.

We next bound each term in turn.

Controlling ‖|𝑂̂(1)
1 |‖𝑞 By Lemma 3.7.1, Theorem 3.7.5, and the forecast covariance bound

(3.27), it holds that

‖|K ( ̂︀𝐶(1))(̂︀Γ(1) − Γ)K ⊤( ̂︀𝐶(1))|‖𝑞 ≤ ‖|K ( ̂︀𝐶(1))|‖24𝑞‖|̂︀Γ(1) − Γ|‖2𝑞

≤ |𝐻|2|Γ−1|2‖| ̂︀𝐶(1)|‖24𝑞‖|̂︀Γ(1) − Γ|‖2𝑞

≲𝑞 |𝐻|2|Γ−1|2|Γ|
√︂
𝑟2(Γ)

𝑁

⎛⎝1 ∨

√︃
𝑟2(Σ

(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠2

≤ 𝑐(|𝐻|, |Γ|, |Γ−1|, |Ξ|, |Σ(0)|, 𝑞)
√︂
𝑟2(Γ)

𝑁
,
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where the last inequality uses the fact that 𝑁 ≥ 𝑟2(Σ
(0)) ∨ 𝑟2(Ξ) ∨ 𝑟2(Γ).

Controlling ‖|𝑂̂(1)
2 |‖𝑞 By Lemma 3.7.1, Lemma 3.7.7, and the forecast covariance bound

(3.27), we get

‖|
(︀
𝐼 − K ( ̂︀𝐶(1))𝐻

)︀ ̂︀𝐶(1)
𝑢𝜂K ⊤( ̂︀𝐶(1))|‖𝑞 ≤ ‖|K ( ̂︀𝐶(1))||𝐼 − K ( ̂︀𝐶(1))𝐻|| ̂︀𝐶(1)

𝑢𝜂 |‖𝑞

≤ ‖|K ( ̂︀𝐶(1))|(1 + |K ( ̂︀𝐶(1))||𝐻|)| ̂︀𝐶(1)
𝑢𝜂 |‖𝑞

≤ ‖| ̂︀𝐶(1)
𝑢𝜂 |‖2𝑞

(︁
|𝐻||Γ−1|‖| ̂︀𝐶(1)|‖2𝑞 + |𝐻|3|Γ−1|2‖| ̂︀𝐶(1)|2‖2𝑞

)︁
≤ 𝑐(|𝐴|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝1 ∨

√︃
𝑟2(Σ

(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠
×
(︁
|𝐻|3|Γ−1|+ |𝐻|7|Γ−1|2

)︁
(|Σ(0)| ∨ |Γ|)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠
≤ 𝑐(|𝐴|, |𝐻|, |Γ−1|, |Γ|, |Σ(0)|, |Ξ|, 𝑞)

⎛⎝√︃𝑟2(Σ
(0))

𝑁
∨
√︂
𝑟2(Ξ)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠ .

Controlling ‖|𝑂̂(1)
3 |‖𝑞 Note that ‖|𝑂̂(1)

3 |‖𝑞 = ‖|𝑂̂(1)
2 |‖𝑞.

3.5.3 Induction Step

In this subsection, to reduce notation we write Ω =

√︁
𝑟2(Σ(0))

𝑁 ∨
√︁

𝑟2(Ξ)
𝑁 ∨

√︁
𝑟2(Γ)
𝑁 . Through-

out, we work under the inductive hypothesis that, for all ℓ ≤ 𝑗 − 1, it holds that

‖|Tr(̂︀Σ(ℓ−1))|‖𝑞 ≤ 𝑐1𝑟2(Σ
(0)), ‖| ̂︀𝐶(ℓ) − 𝐶(ℓ)|‖q ≤ 𝑐2Ω,

‖|̂︀𝜇(ℓ) − 𝜇(ℓ)|‖𝑞 ≤ 𝑐3Ω, ‖|̂︀Σ(ℓ) − Σ(ℓ)|‖𝑞 ≤ 𝑐4Ω,

(3.28)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are constants depending on |Σ(0)|, |𝐴|, |𝐻|, |Γ−1|, |Γ|, |Ξ|, 𝑞 and 𝑗, and

𝑐3 additionally depends on {|𝑦(𝑖) −𝐻𝑚(𝑖)|}𝑖≤ℓ−1. For the remainder of the proof, 𝑐 and 𝑐′

denote constants that depend on |Σ(0)|, |𝐴|, |𝐻|, |Γ−1|, |Γ|, |Ξ|, 𝑞 and 𝑗, and 𝑐′ additionally

140



depends on {|𝑦(𝑖)−𝐻𝑚(𝑖)|}𝑖≤ℓ−1 and are potentially different from line to line. In the next

four subsections we show that, under the inductive hypothesis, the four bounds in (3.28) also

hold for ℓ = 𝑗. Throughout, we use without further notice that |Σ(ℓ)| ≲ 𝑐(|𝐴|, |Ξ|, |Σ(0)|, ℓ),

which was proved in Lemma 3.5.1.

Covariance Trace Bound

By Lemma 3.7.3, Tr(C ( ̂︀𝐶(𝑗−1))) ≤ Tr( ̂︀𝐶(𝑗−1)) follows from the fact that C ( ̂︀𝐶(𝑗−1)) ⪯̂︀𝐶(𝑗−1), and so

‖Tr(̂︀Σ(𝑗−1))‖𝑞 ≤ ‖Tr(C ( ̂︀𝐶(𝑗−1)))‖𝑞 + ‖Tr(𝑂̂(𝑗−1))‖𝑞 ≤ ‖Tr( ̂︀𝐶(𝑗−1))‖𝑞 + ‖Tr(𝑂̂(𝑗−1))‖𝑞,

We will show that both of the terms on the right-hand side are bounded above by a constant

times 𝑟2(Σ(0)).

Controlling ‖Tr( ̂︀𝐶(𝑗−1))‖𝑞 Noting first that

E
[︁ ̂︀𝐶(𝑗−1)

⃒⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)
]︁
= E

[︁
𝐴𝑆(𝑗−2)𝐴⊤ + Ξ̂(𝑗−1) + 𝐴 ̂︀𝐶(𝑗−1)

𝑢𝜉 + ̂︀𝐶(𝑗−1)
𝜉𝑢 𝐴⊤

⃒⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)
]︁

= E
[︁
𝐴𝑆(𝑗−2)𝐴⊤

⃒⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)
]︁
= 𝐴̂︀Σ(𝑗−2)𝐴⊤,

and by Lemma 3.7.6, it holds almost surely that

Tr
(︀
𝐴̂︀Σ(𝑗−2)𝐴⊤)︀ ≤ |𝐴|2Tr(̂︀Σ(𝑗−2)) = |𝐴|2|̂︀Σ(𝑗−2)|𝑟2(̂︀Σ(𝑗−2)).
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Then, by iterated expectations and Lemma 3.7.8, we have

E
[︁
Tr( ̂︀𝐶(𝑗−1))

]︁𝑞
= E

[︁
E
[︁(︁

Tr( ̂︀𝐶(𝑗−1))
)︁𝑞 ⃒⃒⃒ ̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)

]︁]︁
≲𝑞 E

[︁
E
[︁(︁

Tr
(︁ ̂︀𝐶(𝑗−1) − E

[︀ ̂︀𝐶(𝑗−1)
⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)]︀)︁)︁𝑞 ⃒⃒⃒ ̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)

]︁]︁
+ E

[︁(︁
Tr
(︁

E
[︀ ̂︀𝐶(𝑗−1)

⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)]︀)︁)︁𝑞]︁
≲ E

[︃(︃
Tr
(︀
E
[︀ ̂︀𝐶(𝑗−1)

⃒⃒̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)
]︀)︀

√
𝑁

)︃𝑞]︃
+ E

[︁(︁
Tr
(︁

E
[︁ ̂︀𝐶(𝑗−1)|̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)

]︁)︁)︁𝑞]︁
≤ |𝐴|2𝑞

𝑁𝑞/2
E
[︁(︁

Tr(̂︀Σ(𝑗−2))
)︁𝑞]︁

+ |𝐴|2𝑞E
[︁(︁

Tr(̂︀Σ(𝑗−2))
)︁𝑞]︁

≲
|𝐴|2𝑞

𝑁𝑞/2
𝑐𝑟2(Σ

(0))𝑞 + |𝐴|2𝑞𝑐𝑟2(Σ(0))𝑞 ≤ 𝑐𝑟2(Σ
(0))𝑞,

where the second to last inequality holds by the inductive hypothesis (3.28).

Controlling ‖𝑂̂(𝑗−1)‖𝑞 By definition, we have

̂︀𝑂(𝑗−1) = K ( ̂︀𝐶(𝑗−1))(̂︀Γ(𝑗−1) − Γ)K ⊤( ̂︀𝐶(𝑗−1)) +
(︀
𝐼 − K ( ̂︀𝐶(𝑗−1))𝐻

)︀ ̂︀𝐶(𝑗−1)
𝑢𝜂 K ⊤( ̂︀𝐶(𝑗−1))

+ K ( ̂︀𝐶(𝑗−1))( ̂︀𝐶(𝑗−1)
𝑢𝜂 )⊤

(︀
𝐼 −𝐻⊤K ⊤( ̂︀𝐶(𝑗−1))

)︀
=: 𝑂̂

(𝑗−1)
1 + 𝑂̂

(𝑗−1)
2 + 𝑂̂

(𝑗−1)
3 .

Therefore, ‖Tr(𝑂̂(𝑗−1))‖𝑞 ≤ ‖Tr(𝑂̂(𝑗−1)
1 )‖𝑞 + ‖Tr(𝑂̂(𝑗−1)

2 )‖𝑞 + ‖Tr(𝑂̂(𝑗−1)
3 )‖𝑞.

Controlling ‖Tr(𝑂̂(𝑗−1)
1 )‖𝑞 By Lemma 3.5.2,

Tr(𝑂̂(𝑗−1)
1 ) ≤ |𝐻|2|Γ̂(𝑗−1) − Γ||Γ−1|2| ̂︀𝐶(𝑗−1)|Tr( ̂︀𝐶(𝑗−1)),
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and so

‖Tr(𝑂̂(𝑗−1)
1 )‖𝑞 ≤ |𝐻|2|Γ−1|2‖|Γ̂(𝑗−1) − Γ|| ̂︀𝐶(𝑗−1)|Tr( ̂︀𝐶(𝑗−1))‖𝑞

≤ |𝐻|2|Γ−1|2‖|Γ̂(𝑗−1) − Γ|‖2𝑞‖| ̂︀𝐶(𝑗−1)|‖‖4𝑞‖Tr( ̂︀𝐶(𝑗−1))‖4𝑞.

By Theorem 3.7.5, ‖|Γ̂(𝑗−1) − Γ|‖2𝑞 ≲𝑞 |Γ|
√︁

𝑟2(Γ)
𝑁 , and by the inductive hypothesis (3.28)

and the fact that |𝐶(𝑗−1)| ≤ |𝐴|2|Σ(𝑗−2)|+ |Ξ|, we have

‖| ̂︀𝐶(𝑗−1)|‖4𝑞 ≤ |𝐶(𝑗−1)|+ ‖| ̂︀𝐶(𝑗−1) − 𝐶(𝑗−1)|‖4𝑞 ≤ 𝑐 (1 ∨ Ω) .

We have also previously shown that ‖Tr( ̂︀𝐶(𝑗−1))‖4𝑞 ≲ 𝑟2(Σ
(0)). Noting that (1 ∨ Ω) 𝑟2(Σ

(0)) ≲

𝑟2(Σ
(0)), we get that ‖Tr(𝑂̂(𝑗−1)

1 )‖𝑞 ≤ 𝑐𝑟2(Σ
(0)).

Controlling ‖|Tr(𝑂̂(𝑗−1)
2 )|‖𝑞 By Lemma 3.5.2,

Tr(𝑂̂(𝑗−1)
2 ) ≤ (1 + | ̂︀𝐶(𝑗−1)||𝐻|2|Γ−1|)|Γ−1||𝐻|| ̂︀𝐶(𝑗−1)

𝑢𝜂 |Tr( ̂︀𝐶(𝑗−1)).

Therefore,

‖|Tr(𝑂̂(𝑗−1)
2 )|‖𝑞 ≤ (1 + ‖| ̂︀𝐶(𝑗−1)|‖2𝑞|𝐻|2|Γ−1|)|Γ−1||𝐻|‖| ̂︀𝐶(𝑗−1)

𝑢𝜂 |‖4𝑞‖Tr( ̂︀𝐶(𝑗−1))‖4𝑞.
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By iterated expectation, Lemma 3.7.7, and Lemma 3.7.8 we have, for q ∈ {𝑞, 2𝑞, 4𝑞},

‖| ̂︀𝐶(𝑗−1)
𝑢𝜂 |‖q = E

[︁
E
[︁
| ̂︀𝐶(𝑗−1)

𝑢𝜂 |q|̂︀𝜇(𝑗−2), ̂︀Σ(𝑗−2)
]︁]︁1/q

≲𝑞

⃦⃦⃦⃦
⃦⃦(|̂︀Σ(𝑗−2)| ∨ |Γ|)

⎛⎝√︃𝑟2(̂︀Σ(𝑗−2))

𝑁
∨
√︂
𝑟2(Γ)

𝑁

⎞⎠⃦⃦⃦⃦⃦⃦
q

≤ (‖|̂︀Σ(𝑗−2)|‖2q ∨ |Γ|)

⎛⎜⎝
⃦⃦⃦⃦
⃦⃦
√︃
𝑟2(̂︀Σ(𝑗−2))

𝑁

⃦⃦⃦⃦
⃦⃦
2q

∨
√︂
𝑟2(Γ)

𝑁

⎞⎟⎠ . (3.29)

By the triangle inequality and the inductive hypothesis (3.28), it follows that

‖|̂︀Σ(𝑗−2)|‖2q ≤ ‖|̂︀Σ(𝑗−2) − Σ(𝑗−2)|‖2q + |Σ(𝑗−2)| ≤ 𝑐 (1 ∨ Ω) ,

and also that

⃦⃦⃦⃦
⃦⃦
√︃
𝑟2(̂︀Σ(𝑗−2))

𝑁

⃦⃦⃦⃦
⃦⃦
2q

2q

= E

[︃(︃
𝑟2(̂︀Σ(𝑗−2))

𝑁

)︃q]︃
≲ E

[︃(︃
Tr(̂︀Σ(𝑗−2))

𝑁

)︃q]︃
≤ 𝑐𝑁−q𝑟2(Σ

(0))q.

Using identical arguments to those used to control ‖|Tr(𝑂̂(𝑗−1)
1 )|‖𝑞, we have that

‖Tr(𝑂̂(𝑗−1)
2 )‖𝑞 ≤ 𝑐𝑟2(Σ

(0)).

Controlling ‖Tr(𝑂̂(𝑗−1)
3 )‖𝑞 Note that ‖Tr(𝑂̂(𝑗−1)

2 )‖𝑞 = ‖Tr(𝑂̂(𝑗−1)
2 )‖𝑞.

Forecast Covariance Bound

Let q ∈ {𝑞, 2𝑞, 4𝑞}. By the triangle inequality, the inductive hypothesis (3.28), and Theo-

rem 3.7.5, we have
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‖| ̂︀𝐶(𝑗)−𝐶(𝑗)|‖q ≤ |𝐴|2‖|𝑆(𝑗−1) − Σ(𝑗−1)|‖q + ‖|Ξ̂(𝑗) − Ξ|‖q + 2|𝐴|‖| ̂︀𝐶(𝑗)
𝑢𝜉 |‖q

≤ |𝐴|2
(︁
‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖q + ‖|̂︀Σ(𝑗−1) − Σ(𝑗−1)|‖q

)︁
+ ‖|Ξ̂(𝑗) − Ξ|‖q + 2|𝐴|‖| ̂︀𝐶(𝑗)

𝑢𝜉 |‖q

≤ 𝑐|𝐴|2
(︁
‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖q + Ω

)︁
+ |Ξ|

(︃
1 ∨

√︂
𝑟2(Ξ)

𝑁

)︃
+ 2|𝐴|‖| ̂︀𝐶(𝑗)

𝑢𝜉 |‖q.

The forecast covariance bound (3.26) is then a direct consequence of the bounds that we

now establish on ‖| ̂︀𝐶(𝑗)
𝑢𝜉 |‖q and ‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖q.

Controlling ‖| ̂︀𝐶(𝑗)
𝑢𝜉 |‖q By an identical analysis to the one used in bounding ‖| ̂︀𝐶(𝑗)

𝑢𝜂 |‖q in

(3.29), we have that

‖| ̂︀𝐶(𝑗)
𝑢𝜉 |‖q ≲ 𝑐Ω. (3.30)

Controlling ‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖q By iterated expectations and Theorem 3.7.5, we have

‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖qq = E
[︁
|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|q

]︁
= E

[︂
E

[︂
|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|q

⃒⃒⃒⃒̂︀𝜇(𝑗−1), ̂︀Σ(𝑗−1)
]︂]︂

≲𝑞 E

⎡⎣|̂︀Σ(𝑗−1)|q
(︃
𝑟2(̂︀Σ(𝑗−1))

𝑁

)︃q/2
⎤⎦ = E

⎡⎣|̂︀Σ(𝑗−1)|q/2
(︃

Tr(̂︀Σ(𝑗−1))

𝑁

)︃q/2
⎤⎦

≤
√︁

E|̂︀Σ(𝑗−1)|q

⎯⎸⎸⎷E

[︃
Tr(̂︀Σ(𝑗−1))

𝑁

]︃q
.

By the covariance trace bound proved in Subsection 3.5.3 and the inductive hypothesis

(3.28), we then have that ‖|𝑆(𝑗−1) − ̂︀Σ(𝑗−1)|‖q ≲ 𝑐Ω.
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Mean Bound

By Lemma 3.7.2, we have

‖|̂︀𝜇(𝑗) − 𝜇(𝑗)|‖𝑞 = ‖|M (̂︀𝑚(𝑗), ̂︀𝐶(𝑗); 𝑦(𝑗))− M (𝑚(𝑗), 𝐶(𝑗); 𝑦(𝑗))|‖𝑞 + ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞

≤
⃦⃦⃦
|̂︀𝑚(𝑗) −𝑚(𝑗)|

⃦⃦⃦
𝑞
+ |𝐻|2|Γ−1|‖| ̂︀𝐶(𝑗)|‖2𝑞‖|̂︀𝑚(𝑗) −𝑚(𝑗)|‖2𝑞

+ ‖| ̂︀𝐶(𝑗) − 𝐶(𝑗)|‖𝑞|𝐻||Γ−1|
(︀
1 + |𝐻|2|Γ−1||𝐶(𝑗)|

)︀
|𝑦(𝑗) −𝐻𝑚(𝑗)|

+ ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞.

The induction step for the mean bound (3.17) is then a direct consequence of the bounds

that we now establish on ‖|̂︀𝑚(𝑗) −𝑚(𝑗)|‖q for q ∈ {𝑞, 2𝑞} and on ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞.

Controlling ‖|̂︀𝑚(𝑗)−𝑚(𝑗)|‖q for q ∈ {𝑞, 2𝑞} It follows by the triangle inequality and the

inductive hypothesis (3.28) that

‖|̂︀𝑚(𝑗) −𝑚(𝑗)|‖q ≤ |𝐴|‖|𝑢̄(𝑗−1) − 𝜇(𝑗−1)|‖q + ‖|𝜉(𝑗)|‖q

≤ |𝐴|
(︁
‖|𝑢̄(𝑗−1) − ̂︀𝜇(𝑗−1)|‖q + ‖|̂︀𝜇(𝑗−1) − 𝜇(𝑗−1)|‖q

)︁
+ ‖|𝜉(𝑗)|‖q

≤ 𝑐′|𝐴|
(︁
‖|𝑢̄(𝑗−1) − ̂︀𝜇(𝑗−1)|‖q + Ω

)︁
+ 𝑐(𝑞)|Ξ|

√︂
𝑟2(Ξ)

𝑁
.

By iterated expectations, Lemma 3.7.9, and the covariance trace bound proved in Sub-

section 3.5.3, it follows that

‖|𝑢̄(𝑗−1) − ̂︀𝜇(𝑗−1)|‖qq = E
[︀
|𝑢̄(𝑗−1) − ̂︀𝜇(𝑗−1)|q

]︀
= E

[︁
E
[︁
|𝑢̄(𝑗−1) − ̂︀𝜇(𝑗−1)|q

⃒⃒⃒ ̂︀𝜇(𝑗−1), ̂︀Σ(𝑗−1)
]︁]︁

≲𝑞 E

⎡⎣(︃Tr(̂︀Σ(𝑗−1))

𝑁

)︃q/2
⎤⎦ ≤ 𝑐

(︃
𝑟2(Σ

(0))

𝑁

)︃q/2

,

and so ‖|̂︀𝑚(𝑗) −𝑚(𝑗)|‖q ≲ 𝑐′Ω.
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Controlling ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞 Note first that ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞 ≤ ‖|K ( ̂︀𝐶(𝑗))|‖2𝑞‖|𝜂(𝑗)|‖2𝑞.

We then have by Lemma 3.7.9, ‖|𝜂(𝑗)|‖2𝑞 ≲𝑞
√︁

Tr(Γ)
𝑁 =

√︁
|Γ|𝑟2(Γ)𝑁 , and by Lemma 3.7.1 and

the forecast covariance bound established in Subsection 3.5.3, we have

‖|K ( ̂︀𝐶(𝑗))|‖2𝑞 ≤ |𝐻||Γ−1|‖| ̂︀𝐶(𝑗)|‖2𝑞 ≤ |𝐻||Γ−1|
(︁
‖| ̂︀𝐶(𝑗) − 𝐶(𝑗)|‖2𝑞 + |𝐶(𝑗)|

)︁
≤ |𝐻||Γ−1|𝑐 (1 ∨ Ω) .

Therefore, ‖|K ( ̂︀𝐶(𝑗))𝜂(𝑗)|‖𝑞 ≤ 𝑐Ω.

Covariance Bound

By Lemma 3.7.3, we have

‖|̂︀Σ(𝑗) − Σ(𝑗)|‖𝑞 ≤ ‖|C ( ̂︀𝐶(𝑗))− C (𝐶(𝑗))|‖𝑞 + ‖|𝑂̂(𝑗)|‖𝑞

≤ ‖| ̂︀𝐶(𝑗) − 𝐶(𝑗)|‖𝑞(1 + |𝐴|2|Γ−1||𝐶(𝑗)|)

+ (|𝐴|2|Γ−1|+ |𝐴|4|Γ−1|2|𝐶(𝑗)|)‖| ̂︀𝐶(𝑗)|‖2𝑞‖| ̂︀𝐶(𝑗) − 𝐶(𝑗)|‖2𝑞 + ‖|𝑂̂(𝑗)|‖𝑞.

The induction step for the forecast covariance has been proved in Subsection 3.5.3, and so in

order to show the induction step for the covariance bound we only need to control the offset

term. First, using the triangle inequality, we write

‖| ̂︀𝑂(𝑗)|‖𝑞 ≤ ‖|K ( ̂︀𝐶(𝑗))(̂︀Γ(𝑗) − Γ)K ⊤( ̂︀𝐶(𝑗))|‖𝑞 + ‖|
(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀ ̂︀𝐶(𝑗)
𝑢𝜂K

⊤( ̂︀𝐶(𝑗))|‖𝑞

+ ‖|K ( ̂︀𝐶(𝑗))( ̂︀𝐶(𝑗)
𝑢𝜂 )

⊤(︀𝐼 −𝐻⊤K ⊤( ̂︀𝐶(𝑗))
)︀
|‖𝑞 = ‖𝑂̂(𝑗)

1 ‖𝑞 + ‖𝑂̂(𝑗)
2 ‖𝑞 + ‖𝑂̂(𝑗)

3 ‖𝑞.

We next bound each term in turn.
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Controlling ‖𝑂̂(𝑗)
1 ‖𝑞 By Lemma 3.7.1, the forecast covariance bound established in Sub-

section 3.5.3, and Theorem 3.7.5, it holds that

‖𝑂̂(𝑗)
1 ‖𝑞 = ‖|K ( ̂︀𝐶(𝑗))(̂︀Γ(𝑗) − Γ)K ⊤( ̂︀𝐶(𝑗))|‖𝑞

≤ ‖|K ( ̂︀𝐶(𝑗))|‖24𝑞‖|̂︀Γ(𝑗) − Γ|‖2𝑞 ≤ |𝐻|2|Γ−1|2‖| ̂︀𝐶(𝑗)|‖24𝑞‖|̂︀Γ(𝑗) − Γ|‖2𝑞

≤ 𝑐 (1 ∨ Ω)2
√︂
𝑟2(Γ)

𝑁
≤ 𝑐

√︂
𝑟2(Γ)

𝑁
,

where the last inequality uses that by assumption 𝑁 ≥ 𝑟2(Σ
(0)) ∨ 𝑟2(Ξ) ∨ 𝑟2(Γ).

Controlling ‖𝑂̂(𝑗)
2 ‖𝑞 By Lemma 3.7.1, inequality (3.30), and the forecast covariance bound

established in Subsection 3.5.3, we get

‖𝑂̂(𝑗)
2 ‖𝑞 = ‖|

(︀
𝐼 − K ( ̂︀𝐶(𝑗))𝐻

)︀ ̂︀𝐶(𝑗)
𝑢𝜂K

⊤( ̂︀𝐶(𝑗))|‖𝑞 ≤ ‖|K ( ̂︀𝐶(𝑗))||𝐼 − K ( ̂︀𝐶(𝑗))𝐻|| ̂︀𝐶(𝑗)
𝑢𝜂 |‖𝑞

≤ ‖|K ( ̂︀𝐶(𝑗))|(1 + |K ( ̂︀𝐶(𝑗))||𝐻|)| ̂︀𝐶(𝑗)
𝑢𝜂 |‖𝑞

≤ ‖| ̂︀𝐶(𝑗)
𝑢𝜂 |‖2𝑞

(︁
|𝐻||Γ−1|‖| ̂︀𝐶(𝑗)|‖2𝑞 + |𝐻|3|Γ−1|2‖| ̂︀𝐶(𝑗)|2‖2𝑞

)︁
≤ 𝑐Ω.

Controlling ‖𝑂̂(𝑗)
3 ‖𝑞 Note that ‖𝑂̂(𝑗)

3 ‖𝑞 = ‖𝑂̂(𝑗)
2 ‖𝑞.

3.6 Conclusions

This chapter has investigated REnKF, a modification of EnKF with improved theoretical

guarantees. Theorem 3.3.2 gives non-asymptotic error bounds for a stochastic EnKF over

multiple assimilation cycles. Numerical experiments demonstrate that the benefits of intro-

ducing resampling for theory purposes do not come at the price of a deterioration in state

estimation or uncertainty quantification tasks.

Resampling techniques for ensemble Kalman algorithms deserve further research. From

a theory viewpoint, resampling offers a promising path to develop long-time filter accuracy
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theory, blending our inductive analysis with existing results that ensure long-time stability of

the filtering distributions Sanz-Alonso and Stuart [2015]. From a methodological viewpoint,

other resampling schemes can be considered Naesseth et al. [2018]. Finally, while our nu-

merical investigation has focused on settings where the standard EnKF algorithm is effective,

an important open problem is to identify dynamical systems and/or observation models for

which resampling may offer an empirical advantage.

3.7 Additional Results

3.7.1 Metrics for Numerical Results

In this appendix, we give a more extensive description of the Monte Carlo procedure utilized

to calculate the metrics referred to in Section 3.4. We summarize the approach in Algo-

rithm 0. We require the following additional notation: We write diag(𝐴) = (𝐴11, 𝐴22, . . . , 𝐴𝑑𝑑)
⊤.

For a function 𝑔 : R → R, 𝑔(𝑢) =
(︀
𝑔(𝑢(1)), . . . , 𝑔(𝑢(𝑑))

)︀⊤ is the element-wise application of

𝑔 to 𝑢.

3.7.2 Technical Results

Additional Notation

Given a non-decreasing, non-zero convex function 𝜓 : [0,∞] → [0,∞] with 𝜓(0) = 0, the

Orlicz norm of a real random variable 𝑋 is ‖𝑋‖𝜓 = inf{𝑡 > 0 : E[𝜓(𝑡−1|𝑋|)] ≤ 1}. In

particular, for the choice 𝜓𝑝(𝑥) = 𝑒𝑥
𝑝 − 1 for 𝑝 ≥ 1, real random variables that satisfy

‖𝑋‖𝜓2 < ∞ are referred to as sub-Gaussian, and those that satisfy ‖𝑋‖𝜓1 < ∞ are sub-

Exponential. The random vector 𝑌 is sub-Gaussian (sub-Exponential) if ‖𝑣⊤𝑌 ‖𝜓2 < ∞

(‖𝑣⊤𝑌 ‖𝜓1 <∞) for any vector 𝑣 satisfying |𝑣|2 = 1.
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Algorithm 3 Metrics Calculation for Numerical Results

1: Fixed Quantities: Ground-truth state {𝑢(𝑗)}𝐽𝑗=0, observations {𝑦(𝑗)}𝐽𝑗=1, and Kalman

filter means {𝜇(𝑗)}𝐽𝑗=1.

2: Monte Carlo Trials: For 𝑚 = 1, 2, . . . ,𝑀 run algorithm A ∈ {EnKF(1),REnKF(2)}
and obtain {̂︀𝜇(𝑗),A𝑚 , ̂︀Σ(𝑗),A

𝑚 }𝐽,𝑀𝑗,𝑚 .
3: Mean Error:

EA𝑚,Linear =
1

𝐽

𝐽∑︁
𝑗=1

|̂︀𝜇(𝑗),A𝑚 − 𝜇(𝑗)|2, EA𝑚,L96 =
1

𝐽

𝐽∑︁
𝑗=1

|̂︀𝜇(𝑗),A𝑚 − 𝑢(𝑗)|2. (3.31)

Confidence Interval: Let 𝜎̂(𝑗),A𝑚 =

√︁
diag(̂︀Σ(𝑗),A

𝑚 ), then compute

I
(𝑗),A
𝑚 = ̂︀𝜇(𝑗),A𝑚 ± 1.96× 𝜎̂

(𝑗),A
𝑚 , (Interval)

WA
𝑚 =

2× 1.96

𝑑𝐽

𝐽∑︁
𝑗=1

|𝜎̂(𝑗),A𝑚 |1, (Average Width)

VA
𝑚 =

1

𝑑𝐽

𝐽∑︁
𝑗=1

𝑑∑︁
𝑖=1

1{𝑢(𝑗)(𝑖) ∈ I
(𝑗),A
𝑚 (𝑖)}. (Average Coverage)

(3.32)

4: Output:

EALinear =
1

𝑀

𝑀∑︁
𝑚=1

EA𝑚,Linear, EAL96 =
1

𝑀

𝑀∑︁
𝑚=1

EA𝑚,L96,

WA =
1

𝑀

𝑀∑︁
𝑚=1

WA
𝑚, VA =

1

𝑀

𝑀∑︁
𝑚=1

VA
𝑚.

(3.33)
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Background Results

Lemma 3.7.1 (Properties of the Kalman Gain Operator [Kwiatkowski and Mandel, 2015,

Lemma 4.1 & Corollary 4.2]). Let K be the Kalman gain operator defined in (3.12). Let

𝑃,𝑄 ∈ 𝒮𝑑+, Γ ∈ 𝒮𝑘++, and 𝐻 ∈ R𝑘×𝑑. The following hold:

|K (𝑄)− K (𝑃 )| ≤ |𝑄− 𝑃 ||𝐻||Γ−1|
(︁
1 + min (|𝑃 |, |𝑄|) |𝐻|2|Γ−1|

)︁
,

|K (𝑄)| ≤ |𝑄||𝐻||Γ−1|,

|𝐼 − K (𝑄)𝐻| ≤ 1 + |𝑄||𝐻|2|Γ−1|.

Lemma 3.7.2 (Properties of the Mean-Update Operator [Kwiatkowski and Mandel, 2015,

Lemma 4.10]). Let M be the mean-update operator defined in (3.13). Let 𝑚 ∈ R𝑑 be a

random vector and 𝑄 be a random matrix such that 𝑄 ∈ 𝒮𝑑+ almost surely. Let 𝑃 ∈ 𝒮𝑑+,

Γ ∈ 𝒮𝑘++, 𝐻 ∈ R𝑘×𝑑, 𝑦 ∈ R𝑘, and 𝑚′ ∈ R𝑑 be deterministic. Then, for any 1 ≤ 𝑞 < ∞ and

𝑦 ∈ R𝑘 it holds that

‖|M (𝑚,𝑄; 𝑦)− M (𝑚′, 𝑃 ; 𝑦)|‖𝑞 ≤
⃦⃦
|𝑚−𝑚′|

⃦⃦
𝑞 + |𝐻|2|Γ−1|‖|𝑄|‖2𝑞

⃦⃦
|𝑚−𝑚′|

⃦⃦
2𝑞

+ ‖|𝑄− 𝑃 |‖𝑞|𝐻||Γ−1|
(︀
1 + |𝐻|2|Γ−1||𝑃 |

)︀
|𝑦 −𝐻𝑚′|.

Lemma 3.7.3 (Properties of the Covariance-Update Operator [Kwiatkowski and Mandel,

2015, Lemmas 4.6 & 4.8]). Let C be the covariance-update operator defined in (3.14). Let

𝑃,𝑄,𝑚,𝑚′, 𝑦,𝐻 and Γ all be defined as in Lemma 3.7.2. Then, for any 1 ≤ 𝑞 <∞, it holds

that

0 ⪯ C (𝑄) ⪯ 𝑄, |C (𝑄)| ≤ |𝑄|,

‖|C (𝑄)− C (𝑃 )|‖𝑞 ≤ ‖|𝑄− 𝑃 |‖𝑞(1 + |𝐻|2|Γ−1||𝑃 |)

+ (|𝐻|2|Γ−1|+ |𝐻|4|Γ−1|2|𝑃 |)‖|𝑄|‖2𝑞‖|𝑄− 𝑃 |‖2𝑞.

Theorem 3.7.4 (Gaussian Norm Concentration, [Vershynin, 2018, Exercise 6.3.5]). Let
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𝑋 ∈ R𝑑 be a Gaussian random vector with E[𝑋] = 𝜇𝑋 , var[𝑋] = Σ𝑋 . Then, for any 𝑡 ≥ 1,

with probability at least 1− 𝑐𝑒−𝑡 it holds that

|𝑋 − 𝜇𝑋 |2 ≲
√︁

Tr(Σ𝑋) +

√︁
𝑡|Σ𝑋 | ≲

√︁
|Σ𝑋 |(𝑟2(Σ𝑋) ∨ 𝑡) .

Theorem 3.7.5 (Covariance Bound, [Koltchinskii and Lounici, 2017, Corollary 2]). Let

𝑋1, . . . , 𝑋𝑛 be i.i.d. copies of a 𝑑-dimensional Gaussian vector 𝑋 with E[𝑋] = 0 and

var[𝑋] = Σ. Let ̂︀Σ = 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖𝑋

⊤
𝑖 be the sample covariance estimator. For any 𝑞 ≥ 1, it

holds that

‖|̂︀Σ− Σ|‖𝑞 ≲𝑞 |Σ|

(︃√︂
𝑟2(Σ)

𝑛
∨ 𝑟2(Σ)

𝑛

)︃
.

Lemma 3.7.6. Let 𝐴,𝐵 ∈ 𝒮𝑑+. It holds that

Tr(𝐴𝐵) ≤ |𝐴|Tr(𝐵).

Lemma 3.7.7 (Cross-Covariance Estimation —Unstructured Case). Let 𝑢1, . . . , 𝑢𝑁 ∈ R𝑑

be i.i.d. Gaussian random vectors with E[𝑢1] = 𝑚 and var[𝑢1] = 𝐶. Let 𝜂1, . . . , 𝜂𝑁 ∈ R𝑘

be i.i.d. Gaussian random vectors with E[𝜂1] = 0 and var[𝜂1] = Γ, and assume that the two

sequences are independent. Let

̂︀𝐶𝑢𝜂 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(𝑢𝑛 − ̂︀𝑚)(𝜂𝑛 − 𝜂)⊤,

and assume that 𝑁 ≥ 𝑟2(𝐶) ∨ 𝑟2(Γ). Then,

‖| ̂︀𝐶𝑢𝜂|‖𝑞 ≲𝑞 (|𝐶| ∨ |Γ|)

(︃√︂
𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(Γ)

𝑁

)︃
.

Proof. By [Al-Ghattas and Sanz-Alonso, 2024b, Lemma A.3], there exists a constant 𝑐 such
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that, for all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐𝑒−𝑡 that

| ̂︀𝐶𝑢𝜂| ≲ (|𝐶| ∨ |Γ|)

(︃√︂
𝑟2(𝐶)

𝑁
∨
√︂
𝑟2(Γ)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁

)︃
.

Integrating the tail bound then yields the result.

Lemma 3.7.8. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. copies of a 𝑑-dimensional Gaussian vector 𝑋 with

E[𝑋] = 0 and var[𝑋] = Σ. Let ̂︀Σ = 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖𝑋

⊤
𝑖 be the sample covariance estimator.

Then, for any 𝛿 ≥ 1, it holds with probability at least 1− 2𝑒−𝛿 that

|Tr(̂︀Σ)− Tr(Σ)| ≤ 𝑐Tr(Σ)

(︃√︂
𝛿

𝑛
∨ 𝛿

𝑛

)︃
.

Further, for any 𝑞 ≥ 1,

‖|Tr(̂︀Σ)− Tr(Σ)|‖𝑞 ≲𝑞
Tr(Σ)√

𝑛
.

Proof. Let 𝑍𝑖𝑗 = Σ
−1/2
𝑗𝑗 𝑋𝑖𝑗 and note that, for any 𝑡 > 0,

P(|Tr(̂︀Σ)− Tr(Σ)| > 𝑡) = P(|Tr(̂︀Σ− Σ)| > 𝑡) = P

⎛⎝⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑖=1

⎛⎝ 𝑑∑︁
𝑗=1

(𝑋2
𝑖𝑗 − E𝑋2

𝑖𝑗)

⎞⎠⃒⃒⃒⃒⃒⃒ > 𝑛𝑡

⎞⎠
= P

⎛⎝⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑖=1

⎛⎝ 𝑑∑︁
𝑗=1

Σ𝑗𝑗(𝑍
2
𝑖𝑗 − E𝑍2

𝑖𝑗)

⎞⎠⃒⃒⃒⃒⃒⃒ > 𝑛𝑡

⎞⎠ .

Note that the random variables
∑︀𝑑
𝑗=1Σ𝑗𝑗(𝑍

2
𝑖𝑗 − E𝑍2

𝑖𝑗) for 𝑖 = 1, . . . , 𝑛 are independent,
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mean-zero and sub-exponential with 𝜓1 norm at most 𝐶Tr(Σ), since

⃦⃦⃦⃦
⃦⃦ 𝑑∑︁
𝑗=1

Σ𝑗𝑗(𝑍
2
𝑖𝑗 − E𝑍2

𝑖𝑗)

⃦⃦⃦⃦
⃦⃦
𝜓1

≤
𝑑∑︁
𝑗=1

Σ𝑗𝑗

⃦⃦⃦
𝑍2
𝑖𝑗 − E𝑍2

𝑖𝑗

⃦⃦⃦
𝜓1

≤ 𝐶

𝑑∑︁
𝑗=1

Σ𝑗𝑗

⃦⃦⃦
𝑍2
𝑖𝑗

⃦⃦⃦
𝜓1

= 𝐶
𝑑∑︁
𝑗=1

Σ𝑗𝑗
⃦⃦
𝑍𝑖𝑗
⃦⃦2
𝜓2

≤ 𝐶
𝑑∑︁
𝑗=1

Σ𝑗𝑗 = 𝐶Tr(Σ).

The second inequality holds due to the Centering Lemma, [Vershynin, 2018, Lemma 2.6.8].

Therefore, by Bernstein’s inequality we have

P

⎛⎝⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑖=1

⎛⎝ 𝑑∑︁
𝑗=1

Σ𝑗𝑗(𝑍
2
𝑖𝑗 − E𝑍2

𝑖𝑗)

⎞⎠⃒⃒⃒⃒⃒⃒ > 𝑛𝑡

⎞⎠ ≤ 2 exp

(︂
−𝑐min

(︂
𝑛𝑡2

(Tr(Σ))2
,

𝑛𝑡

Tr(Σ)

)︂)︂
.

For the expectation bound, we note that

‖|Tr(̂︀Σ)− Tr(Σ)|‖𝑞𝑞 =
∫︁ ∞

0
P(|Tr(̂︀Σ)− Tr(Σ)|𝑞 > 𝑡) 𝑑𝑡

≤ 𝜁𝑞 + 𝑞

∫︁ ∞

𝐶
𝑡𝑞−1P(|Tr(̂︀Σ)− Tr(Σ)| > 𝑡) 𝑑𝑡

≤ 𝜁𝑞 + 2𝑞

∫︁ ∞

0
𝑡𝑞−1 exp

(︂
−𝑐min

(︂
𝑛𝑡2

(Tr(Σ))2
,

𝑛𝑡

Tr(Σ)

)︂)︂
𝑑𝑡

= 𝜁𝑞 + 2𝑞𝑐max

(︂
Γ(𝑞/2)(Tr(Σ))𝑞

𝑛𝑞/2
,
Γ(𝑞)(Tr(Σ))𝑞

𝑛𝑞

)︂
.

Taking 𝜁 = Tr(Σ)/𝑛, it then follows that

‖|Tr(̂︀Σ)− Tr(Σ)|‖𝑞 ≲ 𝜁 + 𝑐Tr(Σ)max

(︂
1√
𝑛
,
1

𝑛

)︂
≲

Tr(Σ)√
𝑛
.

Lemma 3.7.9. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. copies of a 𝑑-dimensional Gaussian vector 𝑋 with
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E[𝑋] = 𝜇 and var[𝑋] = Σ. Let 𝑋 = 1
𝑁

∑︀𝑁
𝑛=1𝑋𝑛. Then, for any 𝑞 ≥ 1,

‖|𝑋̄ − 𝜇|‖𝑞 ≲𝑞

√︂
Tr(Σ)
𝑁

.

Proof. Let 𝑐2 := 𝑐1
√︀

Tr(Σ)/𝑁 where 𝑐1 is a sufficiently large positive constant, then

E
[︀
|𝑋̄ − 𝜇|𝑞

]︀
=

∫︁ ∞

0
P(|𝑋̄ − 𝜇|𝑞 > 𝑦) 𝑑𝑦 ≤ 𝑐

𝑞
2 +

∫︁ ∞

𝑐2

P(|𝑋̄ − 𝜇|𝑞 > 𝑦) 𝑑𝑦

= 𝑐
𝑞
2 +

∫︁ ∞

𝑐2

𝑞𝑦𝑞−1P(|𝑋̄ − 𝜇| > 𝑦) 𝑑𝑦

= 𝑐
𝑞
2 +

∫︁ ∞

𝑐2−𝑐Tr(Σ/𝑁)
𝑞

(︃
𝑐

√︂
Tr(Σ)
𝑁

+ 𝑡

)︃𝑞−1

P

(︃
|𝑋̄ − 𝜇| > 𝑐

√︂
Tr(Σ)
𝑁

+ 𝑡

)︃
𝑑𝑡

where the last equality holds by a change of variable. By Theorem 3.7.4 it follows that

P(|𝑋 − 𝜇| ≥ 𝑐
√︀

Tr(Σ) + 𝑡) ≤ exp(−𝑐𝑡2/|Σ|), and so the expression in the above display is

bounded above by

𝑐
𝑞
2 +

∫︁ ∞

𝑐2−𝑐Tr(Σ/𝑁)
𝑞

(︃
𝑐

√︂
Tr(Σ)
𝑁

+ 𝑡

)︃𝑞−1

exp

(︂
−𝑐2𝑛𝑡

2

|Σ|

)︂
𝑑𝑡

≲ 𝑐
𝑞
2 +

∫︁ ∞

0
𝑞

(︃(︂
𝑐Tr(Σ)
𝑁

)︂(𝑞−1)/2

+ 𝑡𝑞−1

)︃
exp

(︂
−𝑐2𝑛𝑡

2

|Σ|

)︂
𝑑𝑡

= 𝑐
𝑞
2 + 𝑞

(︃
1

2
Γ(𝑞/2)

(︂
|Σ|
𝑁

)︂𝑞/2
+

1

2

(︂
𝑐Tr(Σ)
𝑁

)︂(𝑞−1)/2
√︂
𝜋|Σ|
𝑁

)︃

≲ 𝑐
𝑞
2 + 𝑞

(︃
1

2
Γ(𝑞/2)

(︂
|Σ|
𝑁

)︂𝑞/2
+

1

2

(︂
𝑐Tr(Σ)
𝑁

)︂𝑞/2)︃

≲

(︂
Tr(Σ)
𝑁

)︂𝑞/2
.

Therefore,

‖|𝑋̄ − 𝜇|‖ ≲𝑞 𝑐2 +

√︂
|Σ|
𝑁

+ 𝑐

√︂
Tr(Σ)
𝑁

≲

√︂
Tr(Σ)
𝑁

,
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where the last inequality holds since Tr(Σ) ≥ |Σ| and the choice of 𝑐2.
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CHAPTER 4

COVARIANCE OPERATOR ESTIMATION: SPARSITY,

LENGTHSCALE, AND ENSEMBLE KALMAN FILTERS

This chapter is adapted from the publication listed below and is used with permission of the

publisher.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Covariance operator estimation:

sparsity, lengthscale, and ensemble Kalman filters, Bernoulli, 31(3), 2377-2402, 2025

4.1 Introduction

This chapter studies thresholded estimation of the covariance operator of a Gaussian random

field. Under a sparsity assumption on the covariance model, we bound the estimation error

in terms of the sparsity level and the expected supremum of the field. Using this bound,

we then analyze covariance operator estimation in the interesting regime where the corre-

lation lengthscale is small, and show that the thresholded covariance estimator achieves an

exponential improvement in sample complexity compared with the standard sample covari-

ance estimator. As an application of the theory, we demonstrate the advantage of using

thresholded covariance estimators within ensemble Kalman filters.

The first contribution of this chapter is to lift the theory of covariance estimation from

finite to infinite dimension. In the finite-dimensional setting, a rich body of work Wu and

Pourahmadi [2003], Bickel and Levina [2008b], El Karoui [2008], Cai and Yuan [2012], Cai

and Zhou [2012a,b], Chen et al. [2012], Wainwright [2019], Al-Ghattas and Sanz-Alonso

[2024b] shows that, exploiting various forms of sparsity, it is possible to consistently esti-

mate the covariance matrix of a vector 𝑢 ∈ R𝑑𝑢 with 𝑁 ∼ log(𝑑𝑢) samples. The sparsity of

the covariance matrix —along with the use of thresholded, tapered, or banded estimators

that exploit this structure— facilitates an exponential improvement in sample complexity
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relative to the unstructured case, where 𝑁 ∼ 𝑑𝑢 samples are needed Bai and Yin [2008],

Gordon [1985], Vershynin [2010]. In this work we investigate the setting in which 𝑢 is an

infinite-dimensional random field with an approximately sparse covariance model. Specifi-

cally, we generalize notions of approximate sparsity often employed in the finite-dimensional

covariance estimation literature Bickel and Levina [2008a], Cai and Zhou [2012b]. We show

that the statistical error of thresholded estimators can be bounded in terms of the expected

supremum of the field and the sparsity level, the latter of which quantifies the rate of spa-

tial decay of correlations of the random field. Our analysis not only lifts existing theory

from finite to infinite dimension, but also provides non-asymptotic moment bounds not yet

available in finite dimension.

The second contribution of this chapter is to showcase the benefit of thresholding in

the challenging regime where the correlation lengthscale of the field is small relative to the

size of the physical domain. While a vast literature in nonparametric statistics Ghosal and

van der Vaart [2017] and approximation theory Wendland [2004] highlights the key role

of smoothness in determining optimal convergence rates for many nonparametric estimation

tasks, our non-asymptotic theory emphasizes that the lengthscale rather than the smoothness

of the covariance function drives the difficulty of the estimation problem and the advantage

of thresholded estimators.

Fields with small correlation lengthscale are ubiquitous in applications. For instance, they

arise naturally in climate science and numerical weather forecasting, where global forecasts

need to account for the effect of local processes with a small correlation lengthscale, such as

cloud formation or propagation of gravitational waves. We show that thresholded estimators

achieve an exponential improvement in sample complexity: For a field with lengthscale 𝜆

in 𝑑-dimensional physical space, the standard sample covariance requires 𝑁 ∼ 𝜆−𝑑 samples,

while thresholded estimators only require 𝑁 ∼ log(𝜆−𝑑). Therefore, our theory suggests

that the parameter 𝜆−𝑑 plays the same role in infinite dimension as 𝑑𝑢 in the classical finite-
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dimensional setting. To analyze thresholded estimators in the small lengthscale regime, we

use our general non-asymptotic moment bounds and the sharp scaling of sparsity level and

expected supremum with lengthscale.

The third contribution of this chapter is to demonstrate the advantage of using thresh-

olded covariance estimators within ensemble Kalman filters Evensen [2009]. Our interest in

covariance operator estimation was motivated by the widespread use of localization tech-

niques within ensemble Kalman methods in inverse problems and data assimilation, see e.g.

Houtekamer and Mitchell [2001], Houtekamer and Zhang [2016], Farchi and Bocquet [2019],

Tong and Morzfeld [2023], Chen et al. [2022]. Many inverse problems in medical imaging and

the geophysical sciences are most naturally formulated in function space Stuart [2010], Bui-

Thanh et al. [2013], Bigoni et al. [2020]; likewise, data assimilation is primarily concerned

with sequential estimation of spatial fields, e.g. temperature or precipitation Kalnay [2003],

Carrassi et al. [2018]. Theoretical insight for these applications calls for sparse covariance

estimation theory in function space, which has not been the focus in the literature. Perhaps

partly for this reason, the empirical success of localization techniques in ensemble Kalman

methods is poorly understood, with few exceptions that study localization in finite dimen-

sion Tong [2018], Al-Ghattas and Sanz-Alonso [2024b]. The work Sanz-Alonso and Waniorek

[2024] studies the behavior of ensemble Kalman methods under mesh discretization, but it

does not consider localization. In this chapter, we use our novel non-asymptotic covariance

estimation theory to obtain a sufficient sample size to approximate an idealized mean-field

ensemble Kalman filter using a localized ensemble Kalman update. In finite dimension,

Al-Ghattas and Sanz-Alonso [2024b] studies the ensemble approximation of mean-field algo-

rithms for inverse problems and Al-Ghattas et al. [2024a] conducts a multi-step analysis of

ensemble Kalman filters without localization.

The chapter is organized as follows. We first state and discuss our three main theorems

in the following section. Then, the next three sections contain the proof of these theorems,
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along with further auxiliary results of independent interest. We close with conclusions,

discussion, and future directions.

Notation Given two positive sequences {𝑎𝑛} and {𝑏𝑛}, the relation 𝑎𝑛 ≲ 𝑏𝑛 denotes

that 𝑎𝑛 ≤ 𝑐𝑏𝑛 for some constant 𝑐 > 0. If the constant 𝑐 depends on some quantity 𝜏 , then

we write 𝑎 ≲𝜏 𝑏. If both 𝑎𝑛 ≲ 𝑏𝑛 and 𝑏𝑛 ≲ 𝑎𝑛 hold simultaneously, then we write 𝑎𝑛 ≍ 𝑏𝑛.

For a finite-dimensional vector 𝑎, |𝑎| denotes its Euclidean norm. For an operator 𝒜, ‖𝒜‖

denotes its operator norm, 𝒜* its adjoint, and Tr(𝒜) its trace.

4.2 Main Results

This section states and discusses the main results of the chapter. In Subsection 4.2.1 we ana-

lyze the thresholded sample covariance estimator in a general setting, and establish moment

bounds in Theorem 4.2.2. In Subsection 4.2.2 we consider a small lengthscale regime, and

show in Theorem 4.2.8 that the thresholded estimator significantly improves upon the stan-

dard sample covariance estimator. Finally, in Subsection 4.2.3 we apply our new covariance

estimation theory to demonstrate the advantage of using thresholded covariance estimators

within ensemble Kalman filters.

4.2.1 Thresholded Estimation of Covariance Operators

Let 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑁 be i.i.d. centered almost surely continuous Gaussian random functions

on 𝐷 = [0, 1]𝑑 taking values in R with covariance function (kernel) 𝑘 : 𝐷 × 𝐷 → R and

covariance operator 𝒞 : 𝐿2(𝐷) → 𝐿2(𝐷), so that, for 𝑥, 𝑥′ ∈ 𝐷 and 𝜓 ∈ 𝐿2(𝐷),

𝑘(𝑥, 𝑥′) := E
[︁
𝑢(𝑥)𝑢(𝑥′)

]︁
, (𝒞𝜓)(·) :=

∫︁
𝐷
𝑘(·, 𝑥′)𝜓(𝑥′) 𝑑𝑥′.
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The sample covariance function ̂︀𝑘(𝑥, 𝑥′) and sample covariance operator ̂︀𝒞 are defined anal-

ogously by

̂︀𝑘(𝑥, 𝑥′) := 1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥)𝑢𝑛(𝑥
′), (̂︀𝒞 𝜓)(·) := ∫︁

𝐷

̂︀𝑘(·, 𝑥′)𝜓(𝑥′) 𝑑𝑥′.
We introduce the thresholded sample covariance estimators with thresholding parameter 𝜌𝑁

̂︀𝑘𝜌𝑁 (𝑥, 𝑥′) := ̂︀𝑘(𝑥, 𝑥′)1{|̂︀𝑘(𝑥,𝑥′)|≥𝜌𝑁}(𝑥, 𝑥
′), (̂︀𝒞𝜌𝑁 𝜓)(·) := ∫︁

𝐷

̂︀𝑘𝜌𝑁 (·, 𝑥′)𝜓(𝑥′) 𝑑𝑥′,
where 1𝐴 denotes the indicator function of the set 𝐴. Our first main result, Theorem 4.2.2

below, relies on the following general assumption:

Assumption 4.2.1. 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑁 are i.i.d. centered almost surely continuous Gaussian

random functions on 𝐷 = [0, 1]𝑑 taking values in R with covariance function 𝑘. Moreover,

the following holds:

(i) sup𝑥∈𝐷 E
[︀
𝑢(𝑥)2

]︀
= 1.

(ii) For some 𝑞 ∈ (0, 1) and 𝑅𝑞 > 0, sup𝑥∈𝐷
(︀∫︀
𝐷 |𝑘(𝑥, 𝑥′)|𝑞 𝑑𝑥′

)︀1
𝑞 ≤ 𝑅𝑞.

We assume fully observed functional data and defer extensions to partially observed

data James et al. [2000], James and Sugar [2003], Yao et al. [2005a,b], Qiao et al. [2020],

Fang et al. [2023] to future work. Assumption 4.2.1 (i) normalizes the fields to have unit

maximum marginal variance over 𝐷. Assumption 4.2.1 (ii) generalizes standard notions of

sparsity in finite dimension to our infinite-dimensional setting —refer e.g. to Bickel and

Levina [2008a], Cai and Zhou [2012b], Wainwright [2019], which study estimation of a co-

variance matrix Σ = (𝜎𝑖𝑗) ∈ R𝑑𝑢×𝑑𝑢 under the row-wise approximate sparsity assumption

that max𝑖
∑︀𝑑𝑢
𝑗=1 |𝜎𝑖𝑗 |

𝑞 ≤ ̃︀𝑅𝑞𝑞.
Our first main result establishes moment bounds on the deviation of the thresholded

covariance estimator from its target in terms of the approximate sparsity level 𝑅𝑞 and the
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expected supremum of the field, the latter of which determines the scaling of 𝜌𝑁 . We prove

Theorem 4.2.2 and several auxiliary results of independent interest in Section 4.3.

Theorem 4.2.2. Suppose that Assumption 4.2.1 holds. Let 1 ≤ 𝑐0 ≤
√
𝑁 and set

𝜌𝑁 := 𝑐0

[︂
1

𝑁
∨ 1√

𝑁
E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁
∨ 1

𝑁

(︁
E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁)︁2]︂

, (4.1)

̂︀𝜌𝑁 := 𝑐0

⎡⎣ 1

𝑁
∨ 1√

𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
∨ 1

𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁2⎤⎦ . (4.2)

Then, for any 𝑝 ≥ 1,

[︀
E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖𝑝

]︀1
𝑝 ≲𝑝 𝑅

𝑞
𝑞𝜌

1−𝑞
𝑁 + 𝜌𝑁𝑒

− 𝑐
𝑝𝑁
(︀
𝜌𝑁∧ 𝜌2𝑁

)︀
, (4.3)

where 𝑐 is a universal constant.

An appealing feature of Theorem 4.2.2 is that it holds for any sample size 𝑁 ≥ 1. The

following immediate corollary provides a simplified statement which holds for sufficiently

large sample size.

Corollary 4.2.3. Suppose that Assumption 4.2.1 holds and that
√
𝑁 ≥ E

[︁
sup𝑥∈𝐷 𝑢(𝑥)

]︁
≥

1√
𝑁
. Set

𝜌𝑁 :=
1√
𝑁

E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁
, ̂︀𝜌𝑁 :=

1√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
.

Then, for any 𝑝 ≥ 1,

[︀
E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖𝑝

]︀1
𝑝 ≲𝑝 𝑅

𝑞
𝑞𝜌

1−𝑞
𝑁 + 𝜌𝑁𝑒

− 𝑐
𝑝𝑁𝜌

2
𝑁 ,

where 𝑐 is a universal constant.
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To the best of our knowledge, Theorem 4.2.2 and Corollary 4.2.3 are the first results

in the literature to consider covariance operator estimation under the natural sparsity As-

sumption 4.2.1 (ii). As will be discussed next, the first of the two terms in the right-hand

side of (4.3) is reminiscent of existing results for covariance matrix estimation. The second

term in (4.3) depends only on the expected supremum of the field, and, as we will show in

Subsection 4.2.2, it is negligible in the small lengthscale regime.

For covariance matrix estimation under ℓ𝑞-sparsity, [Wainwright, 2019, Theorem 6.27]

proves that if the sample covariance matrix satisfies |̂︀Σ𝑖𝑗 − Σ𝑖𝑗 | ≲ ̃︀𝜌𝑁 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝑢,

then the error of an estimator with thresholding parameter ̃︀𝜌𝑁 can be bounded by ̃︀𝑅𝑞𝑞̃︀𝜌1−𝑞𝑁 ,

where ̃︀𝑅𝑞 is a quantity analogous to our 𝑅𝑞 that controls the row-wise ℓ𝑞-sparsity of Σ. This

explains the choice of thresholding parameter

̃︀𝜌𝑁 ≍ 1√
𝑁

√︀
log 𝑑𝑢 ≍ 1√

𝑁
E

[︂
max

1≤𝑖≤𝑑𝑢
𝑢𝑖

]︂

in finite dimension, which ensures an entry-wise control on the sample covariance matrix with

high probability. Analogously, our infinite-dimensional theory relies on sup-norm bounds for

the sample covariance function ̂︀𝑘(𝑥, 𝑥′); we obtain these bounds in Subsection 4.3.1 using

tools from empirical process theory. For instance, Proposition 4.3.3 shows that with our

choice of thresholding parameter 𝜌𝑁 , we have sup𝑥∈𝐷 |̂︀𝑘(𝑥, 𝑥′) − 𝑘(𝑥, 𝑥′)| ≲ 𝜌𝑁 with high

probability. Therefore, Theorem 4.2.2 and Corollary 4.2.3 reveal that the expected supremum

is the key dimension-free quantity that determines the choice of thresholding parameter and

the error of estimation in both finite and infinite-dimensional settings. Since in practice the

expected supremum of the field (and hence 𝜌𝑁 ) is unknown, we replace it with ̂︀𝜌𝑁 to define

a computable thresholded estimator ̂︀𝒞̂︀𝜌𝑁 . The concentration of ̂︀𝜌𝑁 around 𝜌𝑁 is established

in Lemma 4.3.4.

Remark 4.2.4. In contrast to existing results in the finite-dimensional setting (see e.g.

Bickel and Levina [2008a], Cai and Zhou [2012b], Wainwright [2019]) that provide in-probability
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bounds or moment bounds of order up to 𝑝 = 2, Theorem 4.2.2 provides moment bounds for

all 𝑝 ≥ 1. For example, [Wainwright, 2019, Theorem 6.27] shows a high-probability statement

where ̃︀𝜌𝑁 necessarily depends on the desired confidence level. Consequently, [Wainwright,

2019, Theorem 6.27] cannot be used to derive moment bounds of arbitrary order. In contrast,

Theorem 4.2.2 shows that the tuning parameter of the covariance operator estimator need not

be tied to the confidence level. The proof technique therefore contributes to the literature on

confidence parameter independent estimators; see e.g. Bellec et al. [2018] for an analogous

finding that, contrary to standard practice Bickel et al. [2009], the Lasso tuning parameter

need not depend on the confidence level.

Remark 4.2.5. The proof of the small lengthscale results in Subsections 4.2.2 and 4.2.3

utilizes Theorem 4.2.2 with a careful choice of thresholding parameter prefactor 𝑐0. However,

the exponential improvement in sample complexity established in Theorems 4.2.8 and 4.2.10

holds for any fixed value 𝑐0 ≳ 1. As noted in [Bickel and Levina, 2008a, Section 3] and

[Cai and Liu, 2011, Section 4], establishing an optimal choice of prefactor 𝑐0 is challenging

even in the simpler setting of covariance matrix estimation, where 𝑐0 is often taken as a

fixed constant or chosen empirically through cross-validation Bickel and Levina [2008a], Cai

and Liu [2011], Cai and Yuan [2012]. We will numerically showcase in Subsection 4.2.2 the

exponential improvement of a thresholded estimator with the choice 𝑐0 = 5.

Remark 4.2.6. As in the finite-dimensional setting Cai and Zhou [2012b], El Karoui [2008],

our thresholded estimator ̂︀𝒞̂︀𝜌𝑁 is positive semi-definite with high probability, but it is not

guaranteed to be positive semi-definite. Fortunately, a simple modification ensures posi-

tive semi-definiteness while maintaining the same order of estimation error achieved by the

original estimator. Notice that ̂︀𝒞̂︀𝜌𝑁 is a self-adjoint and Hilbert-Schmidt operator since∫︀
𝐷×𝐷

⃒⃒̂︀𝑘𝜌𝑁 (𝑥, 𝑥′)⃒⃒2𝑑𝑥𝑑𝑥′ < ∞, see [Hunter and Nachtergaele, 2001, Example 9.23]. There-

fore, there is an orthonormal basis {𝜙𝑖}∞𝑖=1 of 𝐿2(𝐷) consisting of eigenfunctions of ̂︀𝒞̂︀𝜌𝑁 such

that ̂︀𝑘𝜌𝑁 (𝑥, 𝑥′) =∑︀∞
𝑖=1
̂︀𝜆𝑖𝜙𝑖(𝑥)𝜙𝑖(𝑥′), where ̂︀𝜆𝑖 is the 𝑖-th eigenvalue of ̂︀𝒞̂︀𝜌𝑁 . Let ̂︀𝜆+𝑖 = ̂︀𝜆𝑖∨0
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be the positive part of ̂︀𝜆𝑖 and define

̂︀𝑘+𝜌𝑁 (𝑥, 𝑥′) := ∞∑︁
𝑖=1

̂︀𝜆+𝑖 𝜙𝑖(𝑥)𝜙𝑖(𝑥′), (̂︀𝒞+𝜌𝑁 𝜓)(·) := ∫︁
𝐷

̂︀𝑘+𝜌𝑁 (·, 𝑥′)𝜓(𝑥′) 𝑑𝑥′.
Then, ̂︀𝒞+𝜌𝑁 is positive semi-definite and further

‖̂︀𝒞+𝜌𝑁 − 𝒞‖ ≤ ‖̂︀𝒞+𝜌𝑁 − ̂︀𝒞𝜌𝑁 ‖+ ‖̂︀𝒞𝜌𝑁 − 𝒞‖ ≤ max
𝑖:̂︀𝜆𝑖≤0

|̂︀𝜆𝑖|+ ‖̂︀𝒞𝜌𝑁 − 𝒞‖

≤ max
𝑖:̂︀𝜆𝑖≤0

|̂︀𝜆𝑖 − 𝜆𝑖|+ ‖̂︀𝒞𝜌𝑁 − 𝒞‖ ≤ 2‖̂︀𝒞𝜌𝑁 − 𝒞‖,

where 𝜆𝑖 is the 𝑖-th eigenvalue of 𝒞. Thus, ̂︀𝒞+𝜌𝑁 is positive semi-definite and attains the

same estimation error as the original thresholded estimator ̂︀𝒞𝜌𝑁 . In light of this fact, we will

henceforth assume that ̂︀𝒞𝜌𝑁 is positive semi-definite wherever needed.

4.2.2 Small Lengthscale Regime

Our second main result, Theorem 4.2.8, shows that in the small lengthscale regime thresh-

olded estimators enjoy an exponential improvement in sample complexity relative to the

sample covariance estimator. To formalize this regime, we introduce the following additional

assumption:

Assumption 4.2.7. The following holds:

(i) 𝑘 depends on a correlation lengthscale parameter 𝜆 > 0, so that 𝑘(𝑥, 𝑥′) = K(|𝑥−𝑥′|/𝜆)

for an isotropic base kernel k : R𝑑 × R𝑑 → R with k(𝑥, 𝑥′) = K(|𝑥− 𝑥′|).

(ii) The base kernel k is positive, so that k(𝑥, 𝑥′) = K(|𝑥 − 𝑥′|) > 0. Further, K(𝑟) is

differentiable, strictly decreasing on [0,∞), and satisfies lim𝑟→∞ K(𝑟) = 0.

Assumption 4.2.7 makes explicit the dependence of the kernel on the correlation length-

scale parameter 𝜆. While restrictive, the requirement of isotropy is often invoked in appli-
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cations Williams and Rasmussen [2006], Stein [2012]. As discussed later, the nonparametric

Assumption 4.2.7 is satisfied by important parametric covariance functions, such as squared

exponential and Matérn models. The small lengthscale regime holds whenever Assump-

tion 4.2.7 is satisfied and 𝜆 is sufficiently small. In the scientific applications that motivate

our work, the dimension of the physical space is small (𝑑 = 1, 2, 3). Hence, we will treat 𝑑

as a constant in our analysis of the small lenghtscale regime. Theorem 4.2.8 compares the

errors of sample and thresholded covariance estimators. The proof can be found in Section

4.4.

Theorem 4.2.8. Suppose that Assumptions 4.2.1 and 4.2.7 hold. Let 𝑐0 ≳ 1 be an absolute

constant and set

̂︀𝜌𝑁 :=
𝑐0√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
.

There is a universal constant 𝜆0 > 0 such that for 𝜆 < 𝜆0 and 𝑁 ≳ log(𝜆−𝑑), the sample

covariance estimator and the thresholded covariance estimator satisfy

E‖̂︀𝒞 − 𝒞‖
‖𝒞‖

≍

√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁
, (4.4)

E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖
‖𝒞‖

≤ 𝑐(𝑞)

(︂
log(𝜆−𝑑)

𝑁

)︂1−𝑞
2

, (4.5)

where 𝑐(𝑞) is a constant that depends only on 𝑞.

Remark 4.2.9. The term 𝑐(𝑞) in (4.5) admits a form

𝑐(𝑞) ≍
∫︀∞
0 K(𝑟)𝑞𝑟𝑑−1𝑑𝑟∫︀∞
0 K(𝑟)𝑟𝑑−1𝑑𝑟

.

As an explicit example, for the squared exponential kernel defined in (4.7), we have KSE(𝑟) =

𝑒−𝑟
2/2 and a straightforward calculation shows that 𝑐(𝑞) ≍ 𝑞−𝑑/2.

Theorem 4.2.8 shows that, for sufficiently small 𝜆, we need 𝑁 ≳ 𝜆−𝑑 samples to control
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the relative error of the sample covariance estimator, while 𝑁 ≳ log(𝜆−𝑑) samples suffice to

control the relative error of the thresholded estimator. The error bound in (4.5) is reminiscent

of the convergence rate 𝑠0
(︀ log 𝑑𝑢

𝑁

)︀(1−𝑞)/2 of thresholded estimators for ℓ𝑞-sparse matrices Σ ∈

R𝑑𝑢×𝑑𝑢 with sparsity level 𝑠0 Bickel and Levina [2008a], Cai and Zhou [2012b]. Therefore,

Theorem 4.2.8 indicates that, in our infinite-dimensional setting, the parameter 𝜆−𝑑 plays

an analogous role to 𝑑𝑢 and 𝑐(𝑞) plays an analogous role to 𝑠0. However, we remark that

the estimation error in Theorem 4.2.8 is relative error, whereas in the finite-dimensional

covariance matrix estimation literature Bickel and Levina [2008a], Cai and Zhou [2012b], Cai

and Liu [2011], the estimation error is often absolute error. While in the finite-dimensional

setting the sparsity parameter 𝑠0 may increase with 𝑑𝑢, the constant 𝑐(𝑞) in our bound (4.5)

is independent of the lengthscale parameter 𝜆. Moreover, inspired by the minimax optimality

of thresholded estimators for ℓ𝑞-sparse covariance matrix estimation Cai and Zhou [2012b],

we conjecture that the convergence rate (4.5) is also minimax optimal, and we intend to

investigate this question in future work.

The bound (4.4) for the sample covariance estimator relies on the seminal work Koltchin-

skii and Lounici [2017], which shows that, for any sample size 𝑁,

E‖̂︀𝒞 − 𝒞‖
‖𝒞‖

≍
√︂
𝑟(𝒞)
𝑁

∨ 𝑟(𝒞)
𝑁

, 𝑟(𝒞) := Tr(𝒞)
‖𝒞‖

. (4.6)

Consequently, (4.4) follows by a sharp characterization of the operator norm and the trace of

𝒞 in terms of 𝜆. In contrast, the bound (4.5) for the thresholded estimator relies on our new

Theorem 4.2.2, and requires an analogous characterization of the thresholding parameter 𝜌𝑁

and approximate sparsity level 𝑅𝑞 in terms of 𝜆.

In the remainder of this subsection, we illustrate Theorem 4.2.8 with a simple numerical

experiment where we consider the estimation of covariance operators for squared exponential

(SE) and Matérn (Ma) models in dimensions 𝑑 = 1 and 𝑑 = 2 at small lengthscales. We

emphasize that our theory is developed under mild nonparametric assumptions on the co-
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variance kernel as outlined in Assumption 4.2.7; however, for simplicity here we focus on two

important parametric models. For 𝑥, 𝑥′ ∈ 𝐷, define the corresponding covariance functions

𝑘SE𝜆 (𝑥, 𝑥′) := exp

(︂
−|𝑥− 𝑥′|2

2𝜆2

)︂
, (4.7)

𝑘Ma
𝜆 (𝑥, 𝑥′) :=

21−𝜈

Γ(𝜈)

(︃√
2𝜈

𝜆
|𝑥− 𝑥′|

)︃𝜈
𝐾𝜈

(︃√
2𝜈

𝜆
|𝑥− 𝑥′|

)︃
, (4.8)

where Γ denotes the Gamma function and 𝐾𝜈 denotes the modified Bessel function of the

second kind. In both cases, the parameter 𝜆 is interpreted as the correlation lengthscale

of the field and Assumption 4.2.7 is satisfied. Moreover, Assumption 4.2.1 is satisfied by

the squared exponential model, and it is satisfied by the Matérn model provided that the

smoothness parameter 𝜈 satisfies 𝜈 > (𝑑−1
2 ∨ 1

2). We refer to [Sanz-Alonso and Yang, 2022b,

Lemma 4.2] for the almost sure continuity of random samples and to [Nobile and Tesei, 2015,

Appendix 3, Lemma 11] for the Hölder continuity of the Matérn covariance function KMa(𝑟).

For the Matérn model, we take the smoothness parameter to be 𝜈 = 3/2 in our experiments.

We will report results in physical dimension 𝑑 = 1 and 𝑑 = 2. To respectively resolve small

lengthscales up to order 𝜆 ≍ 10−3 and 𝜆 ≍ 10−2, we discretize the domain 𝐷 = [0, 1] with

a mesh of 𝐿 = 1250 uniformly spaced points and the domain 𝐷 = [0, 1]2 with 𝐿 = 10, 000

points. In the 𝑑 = 1 case we consider a total of 30 lengthscales arranged uniformly in log-

space and ranging from 10−3 to 10−0.1, and in the 𝑑 = 2 case we consider a total of 10

lengthscales arranged in log-space and ranging from 10−2.3 to 10−0.1. For each lengthscale

𝜆, with corresponding covariance operator 𝒞, the discretized covariance operators are given

by the 𝐿× 𝐿 covariance matrices

𝒞𝑖𝑗 := 𝑘(𝑥𝑖, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝐿,

and we sample 𝑁 = 5 log(𝜆−1) realizations of a Gaussian process on the mesh, denoted

𝑢1, . . . , 𝑢𝑁 ∼ 𝒩 (0, 𝒞). We then compute the empirical and thresholded sample covariance
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matrices

̂︀𝒞𝑖𝑗 := 1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥𝑖)𝑢𝑛(𝑥𝑗), ̂︀𝒞 𝑖𝑗̂︀𝜌𝑁 := ̂︀𝒞𝑖𝑗1{|̂︀𝒞𝑖𝑗 |≥̂︀𝜌𝑁}, 1 ≤ 𝑖, 𝑗 ≤ 𝐿,

scaling the thresholding level ̂︀𝜌𝑁 as described in Theorem 4.2.2.
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Figure 4.1: Plots of the average relative errors and 95% confidence intervals achieved by
the sample (𝜀, dashed blue) and thresholded (𝜀̂︀𝜌𝑁 , solid red) covariance estimators based on
sample size (𝑁 , dotted green) for the squared exponential kernel (left) and Matérn kernel
(right) in 𝑑 = 1 over 100 trials.

To quantify the performance of each of the estimators, we compute their relative errors

𝜀 :=
‖̂︀𝒞 − 𝒞‖
‖𝒞‖

, 𝜀̂︀𝜌𝑁 :=
‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖

‖𝒞‖
.

The experiment is repeated a total of 100 times for each lengthscale in the case 𝑑 = 1

and 30 times for each lengthscale in the case 𝑑 = 2. In Figure 4.1, we plot average relative

errors as well as 95% confidence intervals over the 100 trials for both squared exponential and

Matérn models in 𝑑 = 1, along with the sample size for each lengthscale setting. In Figure 4.2,

we present the 𝑑 = 2 analog of Figure 4.1. Our theoretical results are clearly illustrated:

taking only 𝑁 = 5 log(𝜆−𝑑) samples, the relative error in the thresholded estimator remains

constant as the lengthscale decreases, whereas the relative error in the sample covariance

operator diverges. Notice that Figures 4.1 and 4.2 also show that thresholding can increase

the relative error for fields with large correlation lengthscale.
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Figure 4.2: Plots of the average relative errors and 95% confidence intervals achieved by
the sample (𝜀, dashed blue) and thresholded (𝜀̂︀𝜌𝑁 , solid red) covariance estimators based on
sample size (𝑁 , dotted green) for the squared exponential kernel (left) and Matérn kernel
(right) in 𝑑 = 2 over 30 trials.

4.2.3 Application in Ensemble Kalman Filters

Nonlinear filtering is concerned with online estimation of the state of a dynamical system from

partial and noisy observations. Filtering algorithms blend the dynamics and observations by

sequentially solving inverse problems of the form

𝑦 = 𝒜𝑢+ 𝜂, (4.9)

where 𝑦 ∈ R𝑑𝑦 denotes the observation, 𝑢 ∈ 𝐿2(𝐷) denotes the state, 𝒜 : 𝐿2(𝐷) → R𝑑𝑦 is a

linear observation operator, and 𝜂 ∼ 𝒩 (0,Γ) is the observation error with positive definite

covariance matrix Γ. In Bayesian filtering Sanz-Alonso et al. [2023a], the model dynamics

define a prior or forecast distribution on the state, which is combined with the data likelihood

implied by the observation model (4.9) to obtain a posterior or analysis distribution. In

most applications, the update from forecast to analysis distribution must be implemented

through an approximate filtering algorithm. For instance, in operational numerical weather

forecasting where the state may represent a temperature field along the surface of the Earth,

discretizations of size 109 are routinely used to capture small lengthscales on the order of

kilometers. In this setting, computing exactly the Kalman formulas that define the forecast-
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to-analysis update would be unfeasible.

Ensemble Kalman filters (EnKFs) are a rich family of algorithms scalable to highly com-

plex data assimilation tasks Evensen [2009], including operational numerical weather fore-

casting Houtekamer and Zhang [2016]. The key idea behind these methods is to represent

forecast and analysis distributions using an ensemble of 𝑁 particles, so that the computa-

tional cost is controlled by the number of particles, which is typically small, rather than by

the level of discretization. For instance, in operational weather forecasting 𝑁 ∼ 102 ≪ 109;

we refer to Tippett et al. [2003] for a summary of the computational and memory costs of

different EnKFs in terms of the discretization level and the number of particles. Taking as

input a forecast ensemble {𝑢𝑛}𝑁𝑛=1
i.i.d.∼ 𝒩 (0, 𝒞) and observed data 𝑦 generated according to

(4.9), EnKFs produce an analysis ensemble {𝜐𝑛}𝑁𝑛=1. Each analysis particle 𝜐𝑛 is obtained

by nudging a forecast particle 𝑢𝑛 towards the observed data 𝑦. The amount of nudging is

controlled by a Kalman gain operator to be estimated using the first two moments of the

forecast ensemble. Vanilla implementations of EnKFs rely on the sample covariance, see e.g.

[Sanz-Alonso et al., 2023a, Algorithm 10.2]. However, some form of covariance localization

is required for EnKFs to scale to operational settings Houtekamer and Mitchell [2001]. While

the use of localization within EnKFs is standard, few works have demonstrated its statistical

benefit Tong [2018], Al-Ghattas and Sanz-Alonso [2024b], and none in the functional setting

that is most relevant in applications. In this subsection we show that thresholded covariance

operator estimators within the EnKF analysis step can dramatically reduce the ensemble

size required to approximate an idealized, non-implementable, mean-field EnKF that uses

the population moments of the forecast distribution. Consequently, we identify an ensemble

size which suffices for each EnKF particle to be updated similarly as in the limit of infinite

number of particles. We refer to Herty and Visconti [2019], Calvello et al. [2022] for recent

works that study the behavior of EnKFs in the mean-field limit.
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Define the mean-field EnKF analysis update by

𝜐⋆𝑛 := 𝑢𝑛 + K (𝒞)
(︀
𝑦 −𝒜𝑢𝑛 − 𝜂𝑛

)︀
, 1 ≤ 𝑛 ≤ 𝑁, (4.10)

where {𝜂𝑛}𝑁𝑛=1
i.i.d.∼ 𝒩 (0,Γ) and

K (𝒞) := 𝒞𝒜*(𝒜𝒞𝒜* + Γ)−1 (4.11)

denotes the Kalman gain. Practical algorithms do not have access to the forecast distribution,

and rely instead on the forecast ensemble to estimate both 𝒞 and K . We will investigate

two popular analysis steps, given by

𝜐𝑛 := 𝑢𝑛 + K (̂︀𝒞)(︀𝑦 −𝒜𝑢𝑛 − 𝜂𝑛
)︀
, 1 ≤ 𝑛 ≤ 𝑁, (4.12)

𝜐
𝜌
𝑛 := 𝑢𝑛 + K (̂︀𝒞𝜌𝑁 )(︀𝑦 −𝒜𝑢𝑛 − 𝜂𝑛

)︀
, 1 ≤ 𝑛 ≤ 𝑁. (4.13)

The analysis step in (4.12) is known as the perturbed observation or stochastic EnKF Burgers

et al. [1998]. For simplicity of exposition, we will assume here that when updating 𝑢𝑛, this

particle is not included in the sample covariance ̂︀𝒞 used to define the Kalman gain. This

slight modification of the sample covariance will facilitate a cleaner statement and proof of

our main result, Theorem 4.2.10, without altering the qualitative behavior of the algorithm.

The analysis step in (4.13) is based on a thresholded covariance operator estimator. Again,

we assume that the thresholded estimator ̂︀𝒞𝜌𝑁 is defined without using the particle 𝑢𝑛. The

following result is a direct consequence of our theory on covariance operator estimation in

the small lengthscale regime. The proof can be found in Section 4.5.

Theorem 4.2.10 (Approximation of Mean-Field EnKF). Suppose that Assumptions 4.2.1

and 4.2.7 hold. Let 𝑦 be generated according to (4.9) with bounded observation operator

𝒜 : 𝐿2(𝐷) → R𝑑𝑦 . Let 𝜐⋆𝑛 be the mean-field EnKF update in (4.10), and let 𝜐𝑛 and 𝜐 𝜌𝑛 be the
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EnKF and localized EnKF updates in (4.12) and (4.13). Let 𝑐0 ≳ 1 be an absolute constant

and set

𝜌𝑁 ≍ 𝑐0√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
.

Then, there is a universal constant 𝜆0 > 0 such that for 𝜆 < 𝜆0 and 𝑁 ≳ log(𝜆−𝑑),

E [|𝜐𝑛 − 𝜐⋆𝑛| | 𝑢𝑛, 𝜂𝑛] ≲ 𝑐

(︂√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁

)︂
,

E
[︀
|𝜐 𝜌𝑛 − 𝜐⋆𝑛| | 𝑢𝑛, 𝜂𝑛

]︀
≲ 𝑐

[︃
𝑐(𝑞)

(︂
log(𝜆−𝑑)

𝑁

)︂1−𝑞
2

]︃
,

where 𝑐 = ‖𝒜‖‖Γ−1‖‖𝒞‖|𝑦 −𝒜𝑢𝑛 − 𝜂𝑛|.

4.3 Thresholded Estimation of Covariance Operators

This section studies thresholded estimation of covariance operators in the general setting

of Assumption 4.2.1. In Subsection 4.3.1 we show uniform error bounds on the sample

covariance function estimator ̂︀𝑘(𝑥, 𝑥′). These results are used in Subsection 4.3.2 to prove

our first main result, Theorem 4.2.2.

4.3.1 Covariance Function Estimation

In this subsection we establish uniform error bounds on the sample covariance function

estimator. These bounds will play a central role in our analysis of thresholded estimation of

covariance operators developed in the next subsection. We first establish a high-probability

bound, which is uniform over both arguments of the covariance function.

Proposition 4.3.1. Under Assumption 4.2.1, there exist positive absolute constants 𝑐1, 𝑐2

173



such that, for all 𝑡 ≥ 1, it holds with probability at least 1− 𝑐1𝑒
−𝑐2𝑡 that

sup
𝑥,𝑥′∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
≲

[︃(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃
E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁]︃

∨ (E [sup𝑥∈𝐷 𝑢(𝑥)])
2

𝑁
.

Proof. We will apply the product empirical process bound in [Mendelson, 2016, Theorem

1.13]. To that end, define the evaluation functional at 𝑥 ∈ 𝐷 by

ℓ𝑥 : 𝑢 ↦−→ ℓ𝑥(𝑢) = 𝑢(𝑥)

and write

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥)𝑢𝑛(𝑥
′)− E

[︀
𝑢(𝑥)𝑢(𝑥′)

]︀⃒⃒⃒⃒⃒⃒ =
⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ𝑥(𝑢𝑛)ℓ𝑥′(𝑢𝑛)− E [ℓ𝑥(𝑢)ℓ𝑥′(𝑢)]

⃒⃒⃒⃒
⃒⃒ ,

so that

sup
𝑥,𝑥′∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
= sup
𝑓,𝑔∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓(𝑢𝑛)𝑔(𝑢𝑛)− E [𝑓(𝑢)𝑔(𝑢)]

⃒⃒⃒⃒
⃒⃒ ,

where ℱ := {ℓ𝑥}𝑥∈𝐷 denotes the family of evaluation functionals. Note that {ℓ𝑥}𝑥∈𝐷 are

continuous linear functionals on 𝐶(𝐷), the space of continuous functions on 𝐷 endowed with

its usual topology. We can then apply [Mendelson, 2016, Theorem 1.13] (see also [Al-Ghattas

and Sanz-Alonso, 2024b, Theorem B.11]) which implies that, with probability 1− 𝑐1𝑒
−𝑐2𝑡,

sup
𝑥,𝑥′∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
≲

[︃(︃
𝑡

𝑁
∨
√︂

𝑡

𝑁

)︃(︃
sup
𝑓∈ℱ

‖𝑓‖𝜓2𝛾2 (ℱ , 𝜓2)

)︃]︃
∨
𝛾22 (ℱ , 𝜓2)

𝑁
,

(4.14)

where here and henceforth 𝛾2 denotes Talagrand’s generic complexity [Talagrand, 2022,

Definition 2.7.3] and 𝜓2 denotes the Orlicz norm with Orlicz function 𝜓(𝑥) = 𝑒𝑥
2 − 1, see
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e.g. [Vershynin, 2018, Definition 2.5.6]. Since 𝑢 is Gaussian, the 𝜓2-norm of linear functionals

is equivalent to the 𝐿2-norm. Hence,

sup
𝑓∈ℱ

‖𝑓‖𝜓2 ≲ sup
𝑓∈ℱ

‖𝑓‖𝐿2 = sup
𝑓∈ℱ

√︁
E
[︀
𝑓2(𝑢)

]︀
= sup
𝑥∈𝐷

√︁
E
[︀
𝑢2(𝑥)

]︀
= sup
𝑥∈𝐷

√︀
𝑘(𝑥, 𝑥) = 1,

(4.15)

where we used Assumption 4.2.1 (i) in the last step. Next, to control the complexity

𝛾2 (ℱ , 𝜓2) , let

d(𝑥, 𝑥′) :=
√︁

E
[︀
(𝑢(𝑥)− 𝑢(𝑥′))2

]︀
= ‖ℓ𝑥(·)− ℓ𝑥′(·)‖𝐿2(𝑃 ), 𝑥, 𝑥′ ∈ 𝐷,

where 𝑃 is the distribution of the random function 𝑢. Then,

𝛾2(ℱ , 𝜓2)
(i)
≲ 𝛾2(ℱ , 𝐿2) = 𝛾2(𝐷, d)

(ii)
≍ E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
, (4.16)

where (i) follows by the equivalence of 𝜓2 and 𝐿2 norms for linear functionals and (ii) follows

by Talagrand’s majorizing-measure theorem [Talagrand, 2022, Theorem 2.10.1]. Combining

the inequalities (4.14), (4.15), and (4.16) gives the desired result.

Corollary 4.3.2. Under Assumption 4.2.1, it holds that, for any 𝑝 ≥ 1,

(︃
E

[︃
sup

𝑥,𝑥′∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒𝑝]︃)︃1

𝑝

≲𝑝
E [sup𝑥∈𝐷 𝑢(𝑥)]√

𝑁
∨ (E [sup𝑥∈𝐷 𝑢(𝑥)])

2

𝑁
.

Proof. The result follows by integrating the tail bound in Proposition 4.3.1.

In contrast to Proposition 4.3.1, the following result provides uniform control over the

error when holding fixed one of the two covariance function inputs. For this easier estimation

task, we obtain an improved exponential tail bound that we will use in the proof of Theorem

4.2.2.
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Proposition 4.3.3. Suppose that Assumption 4.2.1 holds. Let 1 ≤ 𝑐0 ≤ 𝑁 and set

𝜌𝑁 := 𝑐0

[︂
1

𝑁
∨ 1√

𝑁
E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁
∨ 1

𝑁

(︁
E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁)︁2]︂

.

Then, for every 𝑥′ ∈ 𝐷, it holds with probability at least 1− 4𝑒−𝑐1𝑁(𝜌𝑁∧ 𝜌2𝑁 ) that

sup
𝑥∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
≲ 𝜌𝑁 .

Proof. We will apply the multiplier empirical process bound in [Mendelson, 2016, Theorem

4.4]. To that end, we write

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥)𝑢𝑛(𝑥
′)− E

[︀
𝑢(𝑥)𝑢(𝑥′)

]︀⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ𝑥(𝑢𝑛)ℓ𝑥′(𝑢𝑛)− E [ℓ𝑥(𝑢)ℓ𝑥′(𝑢)]

⃒⃒⃒⃒
⃒⃒ ,

so that for the class ℱ := {ℓ𝑥}𝑥∈𝐷 of evaluation functionals and for a fixed 𝑔 ∈ ℱ , we have

sup
𝑥∈𝐷

⃒⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒⃒
= sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓(𝑢𝑛)𝑔(𝑢𝑛)− E [𝑓(𝑢)𝑔(𝑢)]

⃒⃒⃒⃒
⃒⃒

=
1

𝑁
sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑛=1

(︀
𝑓(𝑢𝑛)𝜉𝑛 − E [𝑓(𝑢)𝜉]

)︀⃒⃒⃒⃒⃒⃒ ,
where 𝜉𝑛 := 𝑔(𝑢𝑛). Note that 𝜉1, . . . , 𝜉𝑁 are i.i.d. copies of 𝜉 ∼ 𝒩

(︀
0, 𝑘(𝑥′, 𝑥′)

)︀
, where 𝑥′ ∈ 𝐷

is the point indexed by 𝑔. By [Mendelson, 2016, Theorem 4.4] we have that for any 𝑠, 𝑡 ≥ 1,

it holds with probability at least 1− 2𝑒−𝑐1𝑠
2(E[sup𝑥∈𝐷 𝑢(𝑥)])

2 − 2𝑒−𝑐1𝑁𝑡
2

that

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≲
𝑠𝑡‖𝜉‖𝜓2 E[sup𝑥∈𝐷 𝑢(𝑥)]√

𝑁
≤ 𝑠𝑡E[sup𝑥∈𝐷 𝑢(𝑥)]√

𝑁
, (4.17)
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where the last inequality follows by the fact that ‖𝜉‖𝜓2 ≤
√︀
𝑘(𝑥′, 𝑥′) ≤ sup𝑥∈𝐷

√︀
𝑘(𝑥, 𝑥) = 1.

We consider three cases:

Case 1: If E[sup𝑥∈𝐷 𝑢(𝑥)] <
1√
𝑁

, then 𝜌𝑁 = 𝑐0
𝑁 < 1. We take

𝑠 =
𝑐0√

𝑁 E[sup𝑥∈𝐷 𝑢(𝑥)]
> 1, 𝑡 = 1,

and then (4.17) implies that it holds with probability at least 1 − 2𝑒−𝑐1𝑐
2
0/𝑁 − 2𝑒−𝑐1𝑁

(i)
≥

1− 4𝑒−𝑐1𝑐
2
0/𝑁 = 1− 4𝑒−𝑐1𝑁𝜌

2
𝑁 that

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≲ 𝑠𝑡E[sup𝑥∈𝐷 𝑢(𝑥)]√
𝑁

=
𝑐0
𝑁

= 𝜌𝑁 ,

where (i) follows since 𝑐0 < 𝑁 by assumption.

Case 2: If 1√
𝑁

≤ E[sup𝑥∈𝐷 𝑢(𝑥)] ≤
√
𝑁 , then 𝜌𝑁 = 𝑐0√

𝑁
E[sup𝑥∈𝐷 𝑢(𝑥)]. In this case, if

𝜌𝑁 = 𝑐0√
𝑁

E[sup𝑥∈𝐷 𝑢(𝑥)] > 1, we take

𝑠 =

√︃
𝑐0
√
𝑁

E[sup𝑥∈𝐷 𝑢(𝑥)]
≥ 1, 𝑡 =

√︂
𝑐0√
𝑁

E[ sup
𝑥∈𝐷

𝑢(𝑥)] > 1,

and then (4.17) implies that it holds with probability at least 1− 4𝑒−𝑐1𝑐0
√
𝑁E[sup𝑥∈𝐷 𝑢(𝑥)] =

1− 4𝑒−𝑐1𝑁𝜌𝑁 that

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≲ 𝑠𝑡E[sup𝑥∈𝐷 𝑢(𝑥)]√
𝑁

=
𝑐0√
𝑁

E[ sup
𝑥∈𝐷

𝑢(𝑥)] = 𝜌𝑁 .

If 𝜌𝑁 = 𝑐0√
𝑁

E[sup𝑥∈𝐷 𝑢(𝑥)] ≤ 1, then we take 𝑠 = 𝑐0 ≥ 1 and 𝑡 = 1, and (4.17) implies that,

with probability at least

1− 2𝑒−𝑐1𝑐
2
0(E[sup𝑥∈𝐷 𝑢(𝑥)])

2
− 2𝑒−𝑐1𝑁 ≥ 1− 4𝑒−𝑐1𝑐

2
0(E[sup𝑥∈𝐷 𝑢(𝑥)])

2
= 1− 4𝑒−𝑐1𝑁𝜌

2
𝑁 ,
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it holds that

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≲ 𝑠𝑡E[sup𝑥∈𝐷 𝑢(𝑥)]√
𝑁

=
𝑐0√
𝑁

E[ sup
𝑥∈𝐷

𝑢(𝑥)] = 𝜌𝑁 .

Case 3: If E[sup𝑥∈𝐷 𝑢(𝑥)] >
√
𝑁 , then 𝜌𝑁 = 𝑐0

𝑁 (E[sup𝑥∈𝐷 𝑢(𝑥)])
2 > 1. We take

𝑠 =
√
𝑐0 ≥ 1, 𝑡 =

√
𝑐0

E[sup𝑥∈𝐷 𝑢(𝑥)]√
𝑁

> 1,

and (4.17) implies that it holds with probability at least 1 − 4𝑒−𝑐1𝑐0(E[sup𝑥∈𝐷 𝑢(𝑥)])
2
= 1 −

4𝑒−𝑐1𝑁𝜌𝑁 that

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≲ 𝑠𝑡E[sup𝑥∈𝐷 𝑢(𝑥)]√
𝑁

=
𝑐0
𝑁
(E[ sup

𝑥∈𝐷
𝑢(𝑥)])2 = 𝜌𝑁 .

Combining the three cases above gives the desired result.

4.3.2 Proof of Theorem 4.2.2

Before proving Theorem 4.2.2, the next result establishes moment and concentration bounds

for the estimator ̂︀𝜌𝑁 of the thresholding parameter 𝜌𝑁 .

Lemma 4.3.4. Under the setting of Theorem 4.2.2, it holds that

(A) For any 𝑝 ≥ 1, E
[︀ ̂︀𝜌 𝑝𝑁 ]︀ ≲𝑝 𝜌𝑝𝑁 .

(B) For any 𝑡 ∈ (0, 1),

P [ ̂︀𝜌𝑁 < 𝑡𝜌𝑁 ] ≤ 2 𝑒−
1
2 (1−

√
𝑡)2𝑁(E[sup𝑥∈𝐷 𝑢(𝑥)])

2
1
{︀

E[ sup
𝑥∈𝐷

𝑢(𝑥)] ≥ 1/
√
𝑁
}︀

(4.18)

≤ 2 𝑒−
1
2 (1−

√
𝑡)2𝑁(𝜌𝑁∧ 𝜌2𝑁 ). (4.19)

The proof of Lemma 4.3.4 can be found in Appendix A in the Supplementary Material
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Al-Ghattas et al. [2024c].

Proof of Theorem 4.2.2. As shown in Lemma B.1 in the Supplementary Material Al-Ghattas

et al. [2024c], the operator norm can be upper bounded as

‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖ ≤ sup
𝑥∈𝐷

∫︁
𝐷

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′.

Let Ω𝑥 :=
{︀
𝑥′ ∈ 𝐷 : |𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀ and let Ω𝑐𝑥 be its complement. Then, we have

E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖𝑝 ≤ E

[︂(︂
sup
𝑥∈𝐷

∫︁
𝐷

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′
)︂𝑝]︂

≤ 2𝑝−1E

[︂(︂
sup
𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′
)︂𝑝]︂

+ 2𝑝−1E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′
)︂𝑝]︃

≲𝑝 E

[︂(︂
sup
𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′
)︂𝑝]︂

+ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| < ̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝

]︃

+ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀1{︀|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| < 4|𝑘(𝑥, 𝑥′)|

}︀
𝑑𝑥′
)︂𝑝]︃

+ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀1{︀|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 4|𝑘(𝑥, 𝑥′)|

}︀
𝑑𝑥′
)︂𝑝]︃

=: 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4,

(4.20)

where in the second inequality we used that |𝑎+𝑏|𝑝 ≤ 2𝑝−1(|𝑎|𝑝+ |𝑏|𝑝), which follows directly

from the convexity of 𝑓(𝑥) = |𝑥|𝑝 for 𝑝 ≥ 1. We next bound the four terms {𝐼𝑖}4𝑖=1. To ease

notation, we define

‖̂︀𝑘 − 𝑘‖max := sup
𝑥,𝑥′∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|.
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For 𝐼1, using that

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
≤
⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− ̂︀𝑘(𝑥, 𝑥′)⃒⃒+ ⃒⃒̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)

⃒⃒
≤ ̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max,

we have

𝐼1 = E

[︂(︂
sup
𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒̂︀𝑘̂︀𝜌𝑁 (𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)
⃒⃒
𝑑𝑥′
)︂𝑝]︂

≤ E

[︂(︁
sup
𝑥∈𝐷

Vol(Ω𝑥)
)︁𝑝 (︁̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max

)︁𝑝]︂
,

where Vol(Ω𝑥) denotes the Lebesgue measure of Ω𝑥. Notice that

𝑅
𝑞
𝑞 ≥ sup

𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑞𝑑𝑥′ ≥ sup

𝑥∈𝐷

∫︁
Ω𝑥

|𝑘(𝑥, 𝑥′)|𝑞𝑑𝑥′ ≥ sup
𝑥∈𝐷

∫︁
Ω𝑥
̂︀𝜌 𝑞𝑁𝑑𝑥′ = ̂︀𝜌 𝑞𝑁 sup

𝑥∈𝐷
Vol(Ω𝑥).

Combining this bound with the trivial bound sup𝑥Vol(Ω𝑥) ≤ Vol(𝐷) = 1 gives

sup
𝑥∈𝐷

Vol(Ω𝑥) ≤ 𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1.

Therefore, by Cauchy-Schwarz, we have that

𝐼1 ≤ E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀𝑝
(̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max)

𝑝
]︁

≤
√︂

E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀2𝑝]︁ E
[︁(︀̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max

)︀2𝑝]︁
. (4.21)

Using Lemma 4.3.4 and Corollary 4.3.2 yields that

E
[︁(︀̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max

)︀2𝑝]︁ ≲𝑝 E
[︀(︀̂︀𝜌𝑁)︀2𝑝]︀+ E

[︁
‖̂︀𝑘 − 𝑘‖2𝑝max

]︁
≲𝑝 𝜌

2𝑝
𝑁 . (4.22)
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On the other hand,

E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀2𝑝]︁
= 𝑅

2𝑝𝑞
𝑞 E

[︁̂︀𝜌−2𝑝𝑞
𝑁 ∧𝑅−2𝑝𝑞

𝑞

]︁
= 𝑅

2𝑝𝑞
𝑞

∫︁ ∞

0
P
[︁(︀̂︀𝜌−2𝑝𝑞

𝑁 ∧𝑅−2𝑝𝑞
𝑞

)︀
> 𝑡
]︁
𝑑𝑡

= 𝑅
2𝑝𝑞
𝑞

∫︁ 𝑅−2𝑝𝑞
𝑞

0
P
[︁̂︀𝜌−2𝑝𝑞
𝑁 > 𝑡

]︁
𝑑𝑡 = 2𝑝𝑞𝑅

2𝑝𝑞
𝑞

∫︁ ∞

𝑅𝑞
P [ ̂︀𝜌𝑁 < 𝑡] 𝑡−2𝑝𝑞−1𝑑𝑡.

If 𝑅𝑞 > 𝜌𝑁 , then

E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀2𝑝]︁ ≤ 2𝑝𝑞𝑅
2𝑝𝑞
𝑞

∫︁ ∞

𝜌𝑁

𝑡−2𝑝𝑞−1𝑑𝑡 = 𝑅
2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 . (4.23)

If 𝑅𝑞 < 𝜌𝑁 , then

E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀2𝑝]︁
= 2𝑝𝑞𝑅

2𝑝𝑞
𝑞

(︃∫︁ ∞

𝜌𝑁

+

∫︁ 𝜌𝑁

𝑅𝑞

)︃
P [̂︀𝜌𝑁 < 𝑡] 𝑡−2𝑝𝑞−1𝑑𝑡

≤ 2𝑝𝑞𝑅
2𝑝𝑞
𝑞

∫︁ ∞

𝜌𝑁

𝑡−2𝑝𝑞−1𝑑𝑡+ 2𝑝𝑞𝑅
2𝑝𝑞
𝑞

∫︁ 𝜌𝑁

𝑅𝑞
P [̂︀𝜌𝑁 < 𝑡] 𝑡−2𝑝𝑞−1𝑑𝑡

= 𝑅
2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 + 2𝑝𝑞𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁

∫︁ 1

𝑅𝑞𝜌
−1
𝑁

P [̂︀𝜌𝑁 < 𝑡𝜌𝑁 ] 𝑡−2𝑝𝑞−1𝑑𝑡

(i)
≤ 𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 + 2𝑝𝑞𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁

∫︁ 1

𝑅𝑞𝜌
−1
𝑁

2 exp
(︁
− 1

2
(1−

√
𝑡)2𝑁(𝜌𝑁 ∧ 𝜌2𝑁 )

)︁
𝑡−2𝑝𝑞−1𝑑𝑡

(ii)
= 𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁

[︃
1 + 8𝑝𝑞

∫︁ √︁𝑁(𝜌𝑁∧ 𝜌2𝑁 )(1−
√︁
𝑅𝑞𝜌

−1
𝑁 )

0

(︀
𝑁(𝜌𝑁 ∧ 𝜌2𝑁 )

)︀2𝑝𝑞
exp(−1

2𝑡
2)(︀√︁

𝑁(𝜌𝑁 ∧ 𝜌2𝑁 )− 𝑡
)︀4𝑝𝑞+1

𝑑𝑡

]︃
(iii)
≲ 𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 +𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 · 8𝑝𝑞

(︂
2𝑅

−2𝑝𝑞
𝑞 𝜌

2𝑝𝑞
𝑁

4𝑝𝑞
𝑒
−1

8𝑁(𝜌𝑁∧ 𝜌2𝑁 )
(︀
1−
√︁
𝑅𝑞𝜌

−1
𝑁

)︀2
+

24𝑝𝑞

4𝑝𝑞

)︂
≲𝑝 𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 + 𝑒

−1
8𝑁(𝜌𝑁∧ 𝜌2𝑁 )

(︀
1−
√︁
𝑅𝑞𝜌

−1
𝑁

)︀2 (iv)
≲ 𝑝 𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 + 𝑒−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ), (4.24)

where (i) follows from Lemma 4.3.4, (ii) follows by a change of variable, and (iii) follows

by applying Lemma C.1 in the Supplementary Material Al-Ghattas et al. [2024c] with 𝛼 =√︁
𝑁(𝜌𝑁 ∧ 𝜌2𝑁 ) and 𝛽 =

√︁
𝑁(𝜌𝑁 ∧ 𝜌2𝑁 )

√︁
𝑅𝑞𝜌

−1
𝑁 . To prove (iv), notice that if 𝑅𝑞 ≤ 1

4𝜌𝑁 ,
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then
⃒⃒
1−

√︁
𝑅𝑞𝜌

−1
𝑁

⃒⃒
> 1

2 and (iv) holds; if 1
4𝜌𝑁 < 𝑅𝑞 < 𝜌𝑁 , then

𝑒
−1

8𝑁(𝜌𝑁∧ 𝜌2𝑁 )
(︀
1−
√︁
𝑅𝑞𝜌

−1
𝑁

)︀2
≤ 1 < 16𝑝𝑅

2𝑝
𝑞 𝜌

−2𝑝
𝑁 ≤ 16𝑝𝑅

2𝑝𝑞
𝑞 𝜌

−2𝑝𝑞
𝑁 .

Combining the inequalities (4.21), (4.22), (4.23), and (4.24) gives that

𝐼1 ≤
√︂

E
[︁(︀
𝑅
𝑞
𝑞̂︀𝜌−𝑞𝑁 ∧ 1

)︀2𝑝]︁ E
[︁(︀̂︀𝜌𝑁 + ‖̂︀𝑘 − 𝑘‖max

)︀2𝑝]︁ ≲𝑝 𝑅𝑝𝑞𝑞 𝜌𝑝(1−𝑞)𝑁 + 𝜌
𝑝
𝑁𝑒

−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ).

For 𝐼2 and 𝐼3,

𝐼2 + 𝐼3 = E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

⃒⃒
𝑘(𝑥, 𝑥′)

⃒⃒
1
{︀
|̂︀𝑘(𝑥, 𝑥′)| < ̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝

]︃

+ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀1{︀|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| < 4|𝑘(𝑥, 𝑥′)|

}︀
𝑑𝑥′
)︂𝑝]︃

≲ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

⃒⃒
𝑘(𝑥, 𝑥′)

⃒⃒
𝑑𝑥′
)︂𝑝]︃

= E

[︃(︂̂︀𝜌𝑁 sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

(︂
|𝑘(𝑥, 𝑥′)|̂︀𝜌𝑁

)︂
𝑑𝑥′
)︂𝑝]︃

(i)
≤ E

[︃(︂̂︀𝜌𝑁 sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

(︂
|𝑘(𝑥, 𝑥′)|̂︀𝜌𝑁

)︂𝑞
𝑑𝑥′
)︂𝑝]︃

≤ E
[︁
𝑅
𝑝𝑞
𝑞 ̂︀𝜌 𝑝(1−𝑞)𝑁

]︁ (ii)
≲ 𝑝 𝑅

𝑝𝑞
𝑞 𝜌

𝑝(1−𝑞)
𝑁 ,

where (i) follows since 𝑞 ∈ (0, 1) and |𝑘(𝑥, 𝑥′)| < ̂︀𝜌𝑁 for 𝑥′ ∈ Ω𝑐𝑥. To prove (ii), we notice

that if 𝑝(1−𝑞) ≤ 1, then using Jensen’s inequality and Lemma 4.3.4 yields that E[ ̂︀𝜌 𝑝(1−𝑞)𝑁 ] ≤

(E[ ̂︀𝜌𝑁 ])𝑝(1−𝑞) ≲𝑝 𝜌
𝑝(1−𝑞)
𝑁 . If 𝑝(1− 𝑞) > 1, Lemma 4.3.4 implies that E[ ̂︀𝜌 𝑝(1−𝑞)𝑁 ] ≲𝑝 𝜌

𝑝(1−𝑞)
𝑁 .
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For 𝐼4,

𝐼4 = E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀1{︀|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 4|𝑘(𝑥, 𝑥′)|

}︀
𝑑𝑥′
)︂𝑝]︃

(i)
≤ E

[︃(︂
sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
|̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁}︀1{︀|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝

]︃

≤ E

[︂(︂
sup
𝑥∈𝐷

∫︁
𝐷

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝]︂

= E

[︂(︂∫︁
𝐷

sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)|1
{︀
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝]︂

≤ E

[︂(︂
‖̂︀𝑘 − 𝑘‖max

∫︁
𝐷
1
{︀
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′)︂𝑝]︂

≤
(︁

E
[︀
‖̂︀𝑘 − 𝑘‖2𝑝max

]︀)︁1/2(︂
E

[︂(︁∫︁
𝐷
1
{︀
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′)︁2𝑝]︂)︂1/2

(ii)
≤
(︁

E
[︀
‖̂︀𝑘 − 𝑘‖2𝑝max

]︀)︁1/2(︂
E
[︁ ∫︁

𝐷
1
{︀
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁}︀ 𝑑𝑥′]︁)︂1/2

=
(︁

E
[︀
‖̂︀𝑘 − 𝑘‖2𝑝max

]︀)︁1/2(︂∫︁
𝐷

P

[︂
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁]︂ 𝑑𝑥′)︂1/2

,

where (i) follows since |̂︀𝑘(𝑥, 𝑥′) − 𝑘(𝑥, 𝑥′)| ≥ 4|𝑘(𝑥, 𝑥′)| implies that |̂︀𝑘(𝑥, 𝑥′)| ≥ 3|𝑘(𝑥, 𝑥′)|,

and therefore if |̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 4|𝑘(𝑥, 𝑥′)| and |̂︀𝑘(𝑥, 𝑥′)| ≥ ̂︀𝜌𝑁 , then it holds that

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ |̂︀𝑘(𝑥, 𝑥′)| − |𝑘(𝑥, 𝑥′)| ≥ 2

3
|̂︀𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁 .

To prove (ii), note that 𝑝 ≥ 1 and
∫︀
𝐷 1

{︁
sup𝑥∈𝐷 |̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3̂︀𝜌𝑁}︁ 𝑑𝑥′ ≤ 1. Next,

notice that

P

[︂
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁]︂ = P

[︂
2

3
( 𝜌𝑁 − ̂︀𝜌𝑁 ) + sup

𝑥∈𝐷
|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
𝜌𝑁

]︂
≤ P

[︂
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 1

3
𝜌𝑁

]︂
+ P

[︁
𝜌𝑁 − ̂︀𝜌𝑁 ≥ 1

2
𝜌𝑁

]︁
.
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Lemma 4.3.4 then implies that

P
[︁
𝜌𝑁 − ̂︀𝜌𝑁 ≥ 1

2
𝜌𝑁

]︁
= P

[︁̂︀𝜌𝑁 ≤ 1

2
𝜌𝑁

]︁
≲ 𝑒−𝑐1𝑁(𝜌𝑁∧ 𝜌2𝑁 ),

and Proposition 4.3.3 gives that

P

[︂
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 1

3
𝜌𝑁

]︂
≲ 𝑒−𝑐2𝑁(𝜌𝑁∧ 𝜌2𝑁 ).

Moreover, Corollary 4.3.2 yields that
(︁

E
[︀
‖̂︀𝑘 − 𝑘‖2𝑝max

]︀)︁1/2
≲𝑝 𝜌

𝑝
𝑁 . Therefore,

𝐼4 ≤
(︁

E
[︀
‖̂︀𝑘 − 𝑘‖2𝑝max

]︀)︁1/2(︂∫︁
𝐷

P

[︂
sup
𝑥∈𝐷

|̂︀𝑘(𝑥, 𝑥′)− 𝑘(𝑥, 𝑥′)| ≥ 2

3
̂︀𝜌𝑁]︂ 𝑑𝑥′)︂1/2

≲𝑝 𝜌
𝑝
𝑁𝑒

−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ).

Combining (4.20) with the estimates of 𝐼1, 𝐼2, 𝐼3, and 𝐼4 gives that

E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖𝑝 ≲𝑝 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 ≲𝑝 𝑅
𝑝𝑞
𝑞 𝜌

𝑝(1−𝑞)
𝑁 + 𝜌

𝑝
𝑁𝑒

−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ),

and hence [︀
E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖𝑝

]︀1
𝑝 ≲𝑝 𝑅

𝑞
𝑞𝜌

1−𝑞
𝑁 + 𝜌𝑁𝑒

− 𝑐
𝑝𝑁(𝜌𝑁∧ 𝜌2𝑁 )

.

4.4 Small Lengthscale Regime

This section studies thresholded estimation of covariance operators under the small length-

scale regime formalized in Assumption 4.2.7. We first present three lemmas which establish

the sharp scaling of the 𝐿𝑞-sparsity level, the operator norm of the covariance operator, and

the suprema of Gaussian fields in the small lengthscale regime. Combining these lemmas and

Theorem 4.2.2, we then prove Theorem 4.2.8. Throughout this section, we use the notation

“(ℬ), 𝜆 → 0” to indicate that there is a universal constant 𝜆0 > 0 such that if 𝜆 < 𝜆0, the

conclusion (ℬ) holds.
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The following result establishes the scaling of the 𝐿𝑞-sparsity level in the small lengthscale

regime.

Lemma 4.4.1. Under Assumption 4.2.7, it holds that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑞𝑑𝑥′ ≍ 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑞𝑟𝑑−1𝑑𝑟, 𝜆→ 0,

where 𝐴(𝑑) denotes the surface area of the unit sphere in R𝑑.

Proof. We have that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑞𝑑𝑥′ ≥

∫︁
𝐷×𝐷

𝑘(𝑥, 𝑥′)𝑞𝑑𝑥𝑑𝑥′ =
∫︁
[0,1]𝑑×[0,1]𝑑

K(|𝑥− 𝑥′|/𝜆)𝑞 𝑑𝑥𝑑𝑥′

= 𝜆2𝑑
∫︁
[0,𝜆−1]𝑑×[0,𝜆−1]𝑑

K(|𝑥− 𝑥′|)𝑞 𝑑𝑥𝑑𝑥′ (i)= 𝜆2𝑑
∫︁
[−𝜆−1,𝜆−1]𝑑

K(|𝑤|)𝑞
𝑑∏︁
𝑗=1

(𝜆−1 − |𝑤𝑗 |) 𝑑𝑤

= 𝜆𝑑
∫︁
[−𝜆−1,𝜆−1]𝑑

K(|𝑤|)𝑞
𝑑∏︁
𝑗=1

(1− 𝜆|𝑤𝑗 |) 𝑑𝑤
(ii)
≍ 𝜆𝑑

∫︁
R𝑑

K(|𝑤|)𝑞 𝑑𝑤

(iii)
= 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑞𝑟𝑑−1 𝑑𝑟, 𝜆→ 0, (4.25)

where (i) follows by a change of variables 𝑤 = 𝑥−𝑥′, 𝑧 = 𝑥+𝑥′ and integrating 𝑧, (ii) follows

by dominated convergence as 𝜆 → 0, and (iii) follows from the polar coordinate transform

in R𝑑. On the other hand,

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑞𝑑𝑥′ ≤ sup

𝑥∈𝐷

∫︁
R𝑑

K(|𝑥− 𝑥′|/𝜆)𝑞𝑑𝑥′

=

∫︁
R𝑑

K(|𝑥′|/𝜆)𝑞 𝑑𝑥′ = 𝜆𝑑
∫︁

R𝑑
K(|𝑥′|)𝑞 𝑑𝑥′ = 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑞𝑟𝑑−1 𝑑𝑟,

which concludes the proof.

Next, we establish the scaling of the operator norm of the covariance operator.
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Lemma 4.4.2. Under Assumption 4.2.7, it holds that

‖𝒞‖ ≍ 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑟𝑑−1𝑑𝑟, 𝜆→ 0,

where 𝐴(𝑑) denotes the surface area of the unit sphere in R𝑑.

Proof. First, the operator norm can be upper bounded by

‖𝒞‖ ≤ sup
𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′ ≍ 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑟𝑑−1𝑑𝑟, 𝜆→ 0,

where the last step follows by Lemma 4.4.1.

For the lower bound, taking the test function 𝜓(𝑥) ≡ 1 yields that, as 𝜆→ 0,

‖𝒞‖ = sup
‖𝜓‖𝐿2=1

(︁∫︁
𝐷

(︁∫︁
𝐷
𝑘(𝑥, 𝑥′)𝜓(𝑥′)𝑑𝑥′

)︁2
𝑑𝑥
)︁1/2

≥
(︁∫︁

𝐷

(︁∫︁
𝐷
𝑘(𝑥, 𝑥′)𝑑𝑥′

)︁2
𝑑𝑥
)︁1/2

(i)
≥ 1√︀

Vol(𝐷)

∫︁
𝐷×𝐷

𝑘(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
(ii)
=

∫︁
𝐷×𝐷

𝑘(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′
(iii)
≍ 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑟𝑑−1 𝑑𝑟,

where (i) follows by Cauchy-Schwarz inequality, (ii) follows since Vol(𝐷) = 1 for 𝐷 = [0, 1]𝑑,

and (iii) follows from (4.25) with 𝑞 = 1. This completes the proof.

Finally, we establish the scaling of the suprema of Gaussian fields in the small lengthscale

regime.

Lemma 4.4.3. Under Assumption 4.2.7, it holds that

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≍

√︃
K(0)𝑑 log

(︁√𝑑
𝑠𝜆

)︁
, 𝜆→ 0,

where 𝑠 > 0 is the unique solution of K(𝑠) = 1
2K(0), which is independent of 𝜆.

Proof. By Fernique’s theorem Fernique et al. [1975] and the discussion in [Van Handel, 2014,

186



Theorem 6.19], for the stationary Gaussian random field 𝑢, it holds that

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≍
∫︁ ∞

0

√︀
logℳ(𝐷, d, 𝜀) 𝑑𝜀, (4.26)

where ℳ(𝐷, d, 𝜀) denotes the smallest cardinality of an 𝜀-net of 𝐷 in the canonical metric

d given by

d(𝑥, 𝑥′) :=
√︁

E[(𝑢(𝑥)− 𝑢(𝑥′))2] =
√︁

2K(0)− 2K(𝜆−1|𝑥− 𝑥′|) <
√︀
2K(0), 𝑥, 𝑥′ ∈ 𝐷.

Since under Assumption 4.2.7 the field is isotropic, it is necessarily stationary. Consequently,

Fernique’s bound implies that ℳ(𝐷, d, 𝜀) = 1 for 𝜀 ≥
√︀
2K(0), and hence we can assume

without loss of generality that 𝜀 <
√︀
2K(0) in the rest of the proof. Next, notice that

d(𝑥, 𝑥′) =
√︁

2K(0)− 2K(𝜆−1|𝑥− 𝑥′|) ≤ 𝜀 ⇐⇒ |𝑥− 𝑥′| ≤ 𝜆K−1(K(0)− 𝜀2/2),

where K−1 is the inverse function of K. By the standard volume argument [Vershynin, 2018,

Proposition 4.2.12],

ℳ(𝐷, d, 𝜀) = ℳ
(︀
𝐷, | · |, 𝜆K−1(K(0)− 𝜀2/2)

)︀
≥
(︂

1

𝜆K−1(K(0)− 𝜀2/2)

)︂𝑑 Vol(𝐷)

Vol(𝐵𝑑2)
≥ 1

𝑐1

(︂
1

𝜆K−1(K(0)− 𝜀2/2)

)︂𝑑(︂ 𝑑

2𝜋𝑒

)︂𝑑/2
,

where we used that Vol(𝐷) = 1 and that, for the Euclidean unit ball 𝐵𝑑2 , it holds that

Vol(𝐵𝑑2) ≤ 𝑐1(2𝜋𝑒/𝑑)
𝑑/2 for some absolute constant 𝑐1 > 1. On the other hand, using the

fact that 𝐷 = [0, 1]𝑑 ⊂
√
𝑑𝐵𝑑2 , as well as ℳ(𝐵𝑑2 , | · |, 𝜀) ≤ (3/𝜀)𝑑 for 𝜀 ≤ 1 [Vershynin, 2018,
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Corollary 4.2.13],

ℳ(𝐷, d, 𝜀) = ℳ
(︀
𝐷, | · |, 𝜆K−1(K(0)− 𝜀2/2)

)︀
≤ ℳ

(︀
𝐵𝑑2 , | · |, 𝑑

−1/2𝜆K−1(K(0)− 𝜀2/2)
)︀
≤

[︃(︂
3

𝜆K−1(K(0)− 𝜀2/2)

)︂𝑑
𝑑 𝑑/2

]︃
∨ 1, 𝜀 <

√︀
2K(0).

Therefore, (4.26) and the bounds we just established on the covering number ℳ(𝐷, d, 𝜀)

imply that

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≍
∫︁ √

2K(0)

0

⎯⎸⎸⎷log

(︃
1

𝑐1

(︂
1

𝜆K−1(K(0)− 𝜀2/2)

)︂𝑑(︂ 𝑑

2𝜋𝑒

)︂𝑑/2)︃
∨ 0 𝑑𝜀

≍
√
𝑑

∫︁ √
2K(0)

0

⎯⎸⎸⎷log

(︃
𝑐
√
𝑑

𝜆K−1(K(0)− 𝜀2/2)

)︃
∨ 0 𝑑𝜀.

By a change of variable 𝑡 :=
√︂
log
(︁

𝑐
√
𝑑

𝜆K−1(K(0)−𝜀2/2)

)︁
, then 𝜀 =

√︂
2
(︁
K(0)− K(𝑐𝜆−1

√
𝑑𝑒−𝑡2)

)︁
and

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≍

√
𝑑

∫︁ ∞

0
−𝑡 𝑑

𝑑𝑡

(︂√︁
K(0)− K(𝑐𝜆−1

√
𝑑𝑒−𝑡2)

)︂
𝑑𝑡

=
√
𝑑

(︂
−𝑡
√︁
K(0)− K(𝑐𝜆−1

√
𝑑𝑒−𝑡2)

⃒⃒⃒∞
0

+

∫︁ ∞

0

√︁
K(0)− K(𝑐𝜆−1

√
𝑑𝑒−𝑡2) 𝑑𝑡

)︂
=

√
𝑑

∫︁ ∞

0

√︁
K(0)− K(𝑐𝜆−1

√
𝑑𝑒−𝑡2) 𝑑𝑡

=
√
𝑑

[︃∫︁
𝑡<

√︁
log
(︀
𝑐
√
𝑑

𝑠𝜆

)︀+∫︁
𝑡>

√︁
log
(︀
𝑐
√
𝑑

𝑠𝜆

)︀]︃√︁K(0)− K(𝑐𝜆−1
√
𝑑𝑒−𝑡2) 𝑑𝑡 =: 𝐼1 + 𝐼2,

where in the second to last equality we used that K(0)− K(𝑐𝜆−1
√
𝑑𝑒−𝑡

2
) ≍ 𝑐𝜆−1

√
𝑑𝑒−𝑡

2
as

𝑡 → ∞ since K(𝑟) is assumed to be differentiable at 𝑟 = 0. Further, we let 𝑠 > 0 be the

unique solution of K(𝑠) = 1
2K(0), which is independent of 𝜆. For the first term 𝐼1, we have

√︂
K(0)𝑑

2

√︃
log
(︁𝑐√𝑑
𝑠𝜆

)︁
≤ 𝐼1 ≤

√︀
K(0)𝑑

√︃
log
(︁𝑐√𝑑
𝑠𝜆

)︁
.
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Therefore, for any 𝜆 < 𝑐
√
𝑑/𝑠, 𝐼1 ≍

√︂
K(0)𝑑 log

(︁√
𝑑

𝑠𝜆

)︁
. To bound the second term 𝐼2, we

notice that there is some constant 𝑀 > 0 such that K(0)− K(𝑟) ≤ 𝑀 𝑟 for 𝑟 ∈ [0, 𝑠], where

𝑀 is independent of 𝜆. Therefore,

𝐼2 =
√
𝑑

∫︁
𝑡>

√︁
log
(︀
𝑐
√
𝑑

𝑠𝜆

)︀√︁K(0)− K(𝑐𝜆−1
√
𝑑𝑒−𝑡2) 𝑑𝑡 ≤

√
𝑑

∫︁
𝑡>

√︁
log
(︀
𝑐
√
𝑑

𝑠𝜆

)︀√︁𝑀𝑐𝜆−1
√
𝑑𝑒−𝑡2 𝑑𝑡

≲ 𝑑3/4𝜆−1/2
∫︁
𝑡>

√︁
log
(︀
𝑐
√
𝑑

𝑠𝜆

)︀ 𝑒−1
2 𝑡

2
𝑑𝑡 ≲

√
𝑑

(︃
log
(︁𝑐√𝑑
𝑠𝜆

)︁)︃−1/2

→ 0, 𝜆→ 0,

where we used the tail bound of the Gaussian distribution
∫︀∞
𝑥 𝑒−

1
2 𝑡

2
𝑑𝑡 ≤ 1

𝑥𝑒
−1

2𝑥
2

for 𝑥 > 0.

Since 𝐼2 ≥ 0, we therefore have that 𝐼2 ≲
√
𝑑
(︁
log
(︀𝑐√𝑑
𝑠𝜆

)︀)︁−1/2
→ 0 as 𝜆→ 0. Consequently,

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≍ 𝐼1 + 𝐼2 ≍

√︃
K(0)𝑑 log

(︁√𝑑
𝑠𝜆

)︁
, 𝜆→ 0.

Remark 4.4.4. Lemma 4.4.3 admits a clear heuristic interpretation. Consider a uniform

mesh 𝒫 of the unit cube 𝐷 = [0, 1]𝑑 comprising (1/𝜆)𝑑 points that are distance 𝜆 apart. For a

random field 𝑢(𝑥) with lengthscale 𝜆, the values 𝑢(𝑥𝑖) and 𝑢(𝑥𝑗) at mesh points 𝑥𝑖 ̸= 𝑥𝑗 ∈ 𝒫

are roughly uncorrelated. Thus, {𝑢(𝑥𝑖)}𝜆
−𝑑
𝑖=1 are roughly i.i.d. univariate Gaussian random

variables, and, for small 𝜆, we may approximate

E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂
≈ E

[︃
sup
𝑥𝑖∈𝒫

𝑢(𝑥𝑖)

]︃
≈
√︁
log(𝜆−𝑑).

This heuristic derivation matches the scaling of the expected supremum with 𝜆 in Lemma

4.4.3.

Proof of Theorem 4.2.8. In this proof we treat 𝑑 as a constant. Notice that under Assump-

tion 4.2.1 and Assumption 4.2.7, it holds that Tr(𝒞) =
∫︀
𝐷 𝑘(𝑥, 𝑥) 𝑑𝑥 = K(0)Vol(𝐷) = 1.

For the thresholded estimator, we apply Theorem 4.2.2 with an appropriate choice of the
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constant 𝑐0 ∈ [1,
√
𝑁 ]. By Lemma 4.4.3, E[sup𝑥∈𝐷 𝑢(𝑥)] ≍

√︁
log(𝜆−𝑑) as 𝜆→ 0. We assume

that 𝑁 ≥ 𝑐20 (E[sup𝑥∈𝐷 𝑢(𝑥)])
2 ≍ log(𝜆−𝑑), so that the thresholding parameter satisfies

𝜌𝑁 =
𝑐0√
𝑁

E
[︁
sup
𝑥∈𝐷

𝑢(𝑥)
]︁
≤ 1.

It follows that

𝜌𝑁𝑒
−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ) = 𝜌𝑁𝑒

−𝑐𝑁𝜌2𝑁 = 𝜌𝑁𝑒
−𝑐𝑐20(E[sup𝑥∈𝐷 𝑢(𝑥)])2

= 𝜌𝑁𝑒
−𝑐𝑐′𝑐20𝑑 log(1/𝜆) = 𝜌𝑁𝜆

𝑐𝑐′𝑐20𝑑 ≤ 𝜌
1−𝑞
𝑁 𝜆𝑐𝑐

′𝑐20𝑑,

(4.27)

where 𝑐′ is an absolute constant. On the other hand, using Lemma 4.4.1 we have that

𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 ≍ 𝜌

1−𝑞
𝑁 𝜆𝑑𝐴(𝑑)

∫︁ ∞

0
K(𝑟)𝑞𝑟𝑑−1𝑑𝑟. (4.28)

Comparing (4.27) with (4.28), we see that if 𝑐0 is chosen so that 𝑐𝑐′𝑐20 > 1, then the upper

bound 𝑅𝑞𝑞𝜌
1−𝑞
𝑁 +𝜌𝑁𝑒

−𝑐𝑁(𝜌𝑁∧ 𝜌2𝑁 ) in Theorem 4.2.2 is dominated by 𝑅𝑞𝑞𝜌
1−𝑞
𝑁 as 𝜆→ 0. Thus,

for sufficiently small 𝜆,

E‖̂︀𝒞̂︀𝜌𝑁 − 𝒞‖ ≲ 𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 ≤ ‖𝒞‖ 𝑐(𝑞)

(︂
log(𝜆−𝑑)

𝑁

)︂1−𝑞
2

,

where 𝑐(𝑞) is a constant that only depends on 𝑞.

4.5 Application in Ensemble Kalman Filters

Proof of Theorem 4.2.10. First, we write

|𝜐𝑛 − 𝜐⋆𝑛| = |(K (̂︀𝒞)− K (𝒞))(𝑦 −𝒜𝑢𝑛 − 𝜂𝑛)| ≤ ‖K (̂︀𝒞)− K (𝒞)‖|𝑦 −𝒜𝑢𝑛 − 𝜂𝑛|. (4.29)
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For the first term in (4.29), it follows by the continuity of the Kalman gain operator

[Kwiatkowski and Mandel, 2015, Lemma 4.1] that

‖K (̂︀𝒞)− K (𝒞)‖ ≤ ‖̂︀𝒞 − 𝒞‖‖𝒜‖‖Γ−1‖
(︁
1 + ‖𝒞‖‖𝒜‖2‖Γ−1‖

)︁
. (4.30)

Combining the inequalities (4.29) and (4.30) with Theorem 4.2.8 gives that

E [|𝜐𝑛 − 𝜐⋆𝑛| | 𝑢𝑛, 𝜂𝑛] ≲ ‖𝒜‖‖Γ−1‖|𝑦 −𝒜𝑢𝑛 − 𝜂𝑛|E‖̂︀𝒞 − 𝒞‖ ≲ 𝑐

(︂√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁

)︂
,

where 𝑐 = ‖𝒜‖‖Γ−1‖‖𝒞‖|𝑦 − 𝒜𝑢𝑛 − 𝜂𝑛|. Applying the same argument to the perturbed

observation EnKF update with localization, 𝜐 𝜌𝑛 , Theorem 4.2.8 gives that

E
[︀
|𝜐 𝜌𝑛 − 𝜐⋆𝑛| | 𝑢𝑛, 𝜂𝑛

]︀
≲ 𝑐

[︂
𝑐(𝑞)

(︂
log(𝜆−𝑑)

𝑁

)︂1−𝑞
2
]︂
,

where 𝑐 = ‖𝒜‖‖Γ−1‖‖𝒞‖|𝑦 −𝒜𝑢𝑛 − 𝜂𝑛| and 𝑐(𝑞) is a constant that depends only on 𝑞.

4.6 Conclusions, Discussion, and Future Directions

This chapter has studied thresholded estimation of sparse covariance operators, lifting the

theory of sparse covariance matrix estimation from finite to infinite dimension. We have

established non-asymptotic bounds on the estimation error in terms of the sparsity level of

the covariance and the expected supremum of the field. In the challenging regime where

the correlation lengthscale is small, we have shown that estimation via thresholding achieves

an exponential improvement in sample complexity over the standard sample covariance es-

timator. As an application of the theory, we have demonstrated the advantage of using

thresholded covariance estimators within ensemble Kalman filters. While our focus has been

on studying the statistical benefit of estimation via thresholding, sparsifying the covariance

estimator can also lead to significant computational speed-up in downstream tasks Furrer
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et al. [2006], Chen and Stein [2023], Chen and Anitescu [2023].

As mentioned in the discussion of Theorem 4.2.8, a natural question is whether the

convergence rate of our thresholded estimator is minimax optimal. For ℓ𝑞-sparse covariance

matrix estimation, Cai and Zhou [2012b] established the minimax optimality of thresholded

estimators. Inspired by the correspondence between our error bound (4.5) and their optimal

rate, we conjecture that our thresholded estimator is also minimax optimal in the infinite-

dimensional setting.

Another interesting future direction is to relax the assumption of stationarity in our

analysis of the small lengthscale regime. In finite dimension, Cai and Liu [2011] proposed

adaptive thresholding estimators for sparse covariance matrix estimation that account for

variability across individual entries and designed a data-driven choice of the prefactor 𝑐0

through cross-validation. Other interesting extensions include covariance operator estima-

tion for heavy-tailed distributions Abdalla and Zhivotovskiy [2024] and robust covariance

operator estimation Goes et al. [2020], Diakonikolas and Kane [2023]. Finally, connections

with the thriving topics of infinite-dimensional regression Mollenhauer et al. [2022] and op-

erator learning de Hoop et al. [2023], Jin et al. [2022] will be explored in future work.

4.7 Proof of Lemma 3.4

This section contains the proof of Lemma 3.4. We will use the following auxiliary result,

which can be found in [Talagrand, 2022, Lemma 2.10.6].

Lemma 4.7.1. Under Assumption 2.1 (i), it holds with probability at least 1− 2𝑒−𝑡 that

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)− E

[︂
sup
𝑥∈𝐷

𝑢(𝑥)

]︂⃒⃒⃒⃒⃒⃒ ≤
√︂

2𝑡

𝑁
.

Proof. By Gaussian concentration, sup𝑥∈𝐷 𝑢(𝑥) is sup𝑥∈𝐷 Var [𝑢(𝑥)]-sub-Gaussian. Since

under Assumption 2.1 (i), sup𝑥∈𝐷 Var [𝑢(𝑥)] = 1, a Chernoff bound argument gives the
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result.

Proof of Lemma 3.4. We first prove (A). Without loss of generality, we assume 𝑐0 = 1 in the

definition of ̂︀𝜌𝑁 and 𝜌𝑁 in Theorem 2.2. Let 𝑡 > 0 and define ℰ𝑡 to be the event on which⃒⃒⃒
1
𝑁

∑︀𝑁
𝑛=1 sup𝑥∈𝐷 𝑢𝑛(𝑥)− E [sup𝑥∈𝐷 𝑢(𝑥)]

⃒⃒⃒
≤ 𝑡. It holds on ℰ𝑡 that

̂︀𝜌𝑁 ≤ 1

𝑁
∨ E[sup𝑥∈𝐷 𝑢(𝑥)] + 𝑡√

𝑁
∨ (E[sup𝑥∈𝐷 𝑢(𝑥)] + 𝑡)2

𝑁

≤ 1

𝑁
∨ 2E[sup𝑥∈𝐷 𝑢(𝑥)]√

𝑁
∨ 2𝑡√

𝑁
∨ 4(E[sup𝑥∈𝐷 𝑢(𝑥)])

2

𝑁
∨ 4𝑡2

𝑁

≤ 4𝜌𝑁 ∨ 2𝑡√
𝑁

∨ 4𝑡2

𝑁
,

and P
[︁̂︀𝜌𝑁 ≤ 4𝜌𝑁 ∨ 2𝑡√

𝑁
∨ 4𝑡2

𝑁

]︁
≥ P

[︀
ℰ𝑡
]︀
≥ 1 − 2𝑒−𝑁𝑡

2/2 by Lemma 4.7.1. It follows then

that

E
[︀ ̂︀𝜌 𝑝𝑁 ]︀ = 𝑝

∫︁ ∞

0
𝑡𝑝−1 P

[︀ ̂︀𝜌𝑁 ≥ 𝑡
]︀
𝑑𝑡 = 𝑝

∫︁ 4 𝜌𝑁

0
𝑡𝑝−1 P

[︀ ̂︀𝜌𝑁 ≥ 𝑡
]︀
𝑑𝑡+ 𝑝

∫︁ ∞

4 𝜌𝑁

𝑡𝑝−1 P
[︀ ̂︀𝜌𝑁 ≥ 𝑡

]︀
𝑑𝑡

≤ (4𝜌𝑁 )𝑝 + 2𝑝

∫︁ ∞

4 𝜌𝑁

𝑡𝑝−1 𝑒−
𝑁
2 min{𝑁𝑡24 ,𝑁𝑡4 }𝑑𝑡 ≲𝑝 𝜌

𝑝
𝑁 +

1

𝑁𝑝 ≲𝑝 𝜌
𝑝
𝑁 .

We next show (B). To prove (3.5), we can assume 𝑐0 = 1 without loss of generality.

Notice that

P[̂︀𝜌𝑁 < 𝑡𝜌𝑁 ]

= P

⎡⎣(︁ 1

𝑁
< 𝑡𝜌𝑁

)︁⋂︁(︁ 1√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
< 𝑡𝜌𝑁

)︁⋂︁(︁ 1

𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁2

< 𝑡𝜌𝑁

)︁⎤⎦
= 1− P

⎡⎣(︁ 1

𝑁
≥ 𝑡𝜌𝑁

)︁⋃︁(︁ 1√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
≥ 𝑡𝜌𝑁

)︁⋃︁(︁ 1

𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁2

≥ 𝑡𝜌𝑁

)︁⎤⎦ .
We consider three cases.

Case 1: If E[sup𝑥∈𝐷 𝑢(𝑥)] <
1√
𝑁

, then 𝜌𝑁 = 1
𝑁 and P[̂︀𝜌𝑁 < 𝑡𝜌𝑁 ] ≤ 1− P

[︁
1
𝑁 ≥ 𝑡𝜌𝑁

]︁
=
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0.

Case 2: If 1√
𝑁

≤ E[sup𝑥∈𝐷 𝑢(𝑥)] ≤
√
𝑁 , then 𝜌𝑁 = 1√

𝑁
E[sup𝑥∈𝐷 𝑢(𝑥)] and

P[̂︀𝜌𝑁 < 𝑡𝜌𝑁 ] ≤ 1− P

⎡⎣ 1√
𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁
≥ 𝑡𝜌𝑁

⎤⎦
= 1− P

⎡⎣ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥) ≥ 𝑡E[ sup
𝑥∈𝐷

𝑢(𝑥)]

⎤⎦
≤ P

⎡⎣⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)− E[ sup
𝑥∈𝐷

𝑢(𝑥)]
⃒⃒⃒
≥ (1− 𝑡)E[ sup

𝑥∈𝐷
𝑢(𝑥)]

⎤⎦
≤ 2 exp

(︁
− 1

2
(1− 𝑡)2𝑁(E[ sup

𝑥∈𝐷
𝑢(𝑥)])2

)︁
,

where the last step follows by Lemma 4.7.1.

Case 3: If E[sup𝑥∈𝐷 𝑢(𝑥)] >
√
𝑁 , then 𝜌𝑁 = 1

𝑁 (E[sup𝑥∈𝐷 𝑢(𝑥)])
2 and

P[̂︀𝜌𝑁 < 𝑡𝜌𝑁 ] ≤ 1− P

⎡⎣ 1

𝑁

(︁ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
)︁2

≥ 𝑡𝜌𝑁

⎤⎦
= 1− P

⎡⎣⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)
⃒⃒⃒
≥

√
𝑡E[ sup

𝑥∈𝐷
𝑢(𝑥)]

⎤⎦
≤ P

⎡⎣⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)− E[ sup
𝑥∈𝐷

𝑢(𝑥)]
⃒⃒⃒
≥ (1−

√
𝑡)E[ sup

𝑥∈𝐷
𝑢(𝑥)]

⎤⎦
≤ 2 exp

(︁
− 1

2
(1−

√
𝑡)2𝑁(E[ sup

𝑥∈𝐷
𝑢(𝑥)])2

)︁
.

Combining the three cases above and noticing that (1 −
√
𝑡)2 ≤ (1 − 𝑡)2 for 𝑡 ∈ (0, 1)

yields the first inequality in (3.5). To prove (3.6), recall that 1 ≤ 𝑐0 ≤
√
𝑁 in the definition

of 𝜌𝑁 . If E[sup𝑥∈𝐷 𝑢(𝑥)] < 1/
√
𝑁 , then (3.6) is trivial. If 1√

𝑁
≤ E[sup𝑥∈𝐷 𝑢(𝑥)] ≤

√
𝑁 ,
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then 𝜌𝑁 = 𝑐0√
𝑁

E[sup𝑥∈𝐷 𝑢(𝑥)] and 𝑁(E[sup𝑥∈𝐷 𝑢(𝑥)])
2 =

𝑁2𝜌2𝑁
𝑐20

≥ 𝑁𝜌2𝑁 , so that

2 𝑒−
1
2 (1−

√
𝑡)2𝑁(E[sup𝑥∈𝐷 𝑢(𝑥)])

2
1
{︀

E[ sup
𝑥∈𝐷

𝑢(𝑥)] ≥ 1/
√
𝑁
}︀
≤ 2 𝑒−

1
2 (1−

√
𝑡)2𝑁𝜌2𝑁 .

If E[sup𝑥∈𝐷 𝑢(𝑥)] >
√
𝑁 , then 𝜌𝑁 = 𝑐0

𝑁 (E[sup𝑥∈𝐷 𝑢(𝑥)])
2 and 𝑁(E[sup𝑥∈𝐷 𝑢(𝑥)])

2 =

𝑁2𝜌𝑁
𝑐0

≥ 𝑁3/2𝜌𝑁 ≥ 𝑁𝜌𝑁 , so that

2 𝑒−
1
2 (1−

√
𝑡)2𝑁(E[sup𝑥∈𝐷 𝑢(𝑥)])

2
1
{︀

E[ sup
𝑥∈𝐷

𝑢(𝑥)] ≥ 1/
√
𝑁
}︀
≤ 2 𝑒−

1
2 (1−

√
𝑡)2𝑁𝜌𝑁 .

4.8 Additional Results

4.8.1 Bound on Operator Norm

Lemma 4.8.1. Let 𝐷 ⊂ R𝑑. For an integral operator 𝐾 on 𝐿2(𝐷),

(𝐾𝜓)(𝑥) :=

∫︁
𝐷
𝑘(𝑥, 𝑥′)𝜓(𝑥′)𝑑𝑥′, 𝜓 ∈ 𝐿2(𝐷),

it holds that

‖𝐾‖2 ≤
(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂(︂
sup
𝑥′

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
.

Further, if 𝑘(𝑥, 𝑥′) = 𝑘(𝑥′, 𝑥), then

‖𝐾‖ ≤ sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′.
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Proof. For any 𝜓 ∈ 𝐿2(𝐷) with ‖𝜓‖𝐿2(𝐷) = 1,

‖𝐾𝜓‖2
𝐿2(𝐷)

=

∫︁
𝐷

(︁∫︁
𝐷
𝑘(𝑥, 𝑥′)𝜓(𝑥′)𝑑𝑥′

)︁2
𝑑𝑥

≤
∫︁
𝐷

(︁∫︁
𝐷
|𝑘(𝑥, 𝑥′)| · |𝜓(𝑥′)|𝑑𝑥′

)︁2
𝑑𝑥

=

∫︁
𝐷

(︁∫︁
𝐷

√︀
|𝑘(𝑥, 𝑥′)| ·

√︀
|𝑘(𝑥, 𝑥′)||𝜓(𝑥′)|𝑑𝑥′

)︁2
𝑑𝑥

(i)
≤
∫︁
𝐷

(︂∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂(︂∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝜓(𝑥′)2𝑑𝑥′

)︂
𝑑𝑥

≤
(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
∫︁
𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝜓(𝑥′)2𝑑𝑥′𝑑𝑥

≤
(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
∫︁
𝐷

(︂∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
𝜓(𝑥′)2𝑑𝑥′

≤
(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
(︂
sup
𝑥′

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
·
(︂∫︁

𝐷
𝜓(𝑥′)2𝑑𝑥′

)︂
=

(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
(︂
sup
𝑥′

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
,

where (i) follows by Cauchy-Schwarz inequality. Therefore,

‖𝐾‖2 = sup
‖𝜓‖𝐿2(𝐷)=1

‖𝐾𝜓‖2
𝐿2(𝐷)

≤
(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
(︂
sup
𝑥′

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
.

Further, if 𝑘(𝑥, 𝑥′) = 𝑘(𝑥′, 𝑥), then

‖𝐾‖ ≤

√︃(︂
sup
𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′

)︂
·
(︂
sup
𝑥′

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥

)︂
= sup

𝑥

∫︁
𝐷
|𝑘(𝑥, 𝑥′)|𝑑𝑥′,

which completes the proof.
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4.8.2 Auxiliary Technical Result

Lemma 4.8.2. For any 𝛼 > 𝛽 > 0 and 𝑞 > 0, it holds that

∫︁ 𝛼−𝛽

0
𝑒−

1
2 𝑡

2
(𝛼− 𝑡)−𝑞−1 𝑑𝑡 ≤ 2𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
8 +

1

𝑞

(︁𝛼
2

)︁−𝑞
.

Proof. Integrating by parts gives that

∫︁ 𝛼−𝛽

0
𝑒−

1
2 𝑡

2
(𝛼− 𝑡)−𝑞−1𝑑𝑡 =

𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
2 − 𝛼−𝑞

𝑞
+

∫︁ 𝛼−𝛽

0
𝑒−

1
2 𝑡

2
𝑡
(𝛼− 𝑡)−𝑞

𝑞
𝑑𝑡

=
𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
2 − 𝛼−𝑞

𝑞
+

(︃∫︁ 𝛼−𝛽
2

0
+

∫︁ 𝛼−𝛽

𝛼−𝛽
2

)︃
𝑒−

1
2 𝑡

2
𝑡
(𝛼− 𝑡)−𝑞

𝑞
𝑑𝑡.

First,

∫︁ 𝛼−𝛽
2

0
𝑒−

1
2 𝑡

2
𝑡
(𝛼− 𝑡)−𝑞

𝑞
𝑑𝑡 ≤ 1

𝑞

(︁
𝛼− 𝛼− 𝛽

2

)︁−𝑞 ∫︁ 𝛼−𝛽
2

0
𝑒−

1
2 𝑡

2
𝑡 𝑑𝑡 ≤ 1

𝑞

(︁𝛼 + 𝛽

2

)︁−𝑞
≤ 1

𝑞

(︁𝛼
2

)︁−𝑞
.

Second,

∫︁ 𝛼−𝛽

𝛼−𝛽
2

𝑒−
1
2 𝑡

2
𝑡
(𝛼− 𝑡)−𝑞

𝑞
𝑑𝑡 ≤ 1

𝑞
(𝛼− (𝛼− 𝛽))−𝑞

∫︁ 𝛼−𝛽

𝛼−𝛽
2

𝑒−
1
2 𝑡

2
𝑡 𝑑𝑡 ≤ 𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
8 .

Thus,

∫︁ 𝛼−𝛽

0
𝑒−

1
2 𝑡

2
(𝛼− 𝑡)−𝑞−1𝑑𝑡 ≤ 𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
2 − 𝛼−𝑞

𝑞
+
𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
8 +

1

𝑞

(︁𝛼
2

)︁−𝑞
≤ 2𝛽−𝑞

𝑞
𝑒−

(𝛼−𝛽)2
8 +

1

𝑞

(︁𝛼
2

)︁−𝑞
.
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CHAPTER 5

COVARIANCE OPERATOR ESTIMATION VIA ADAPTIVE

THRESHOLDING

This chapter is adapted from the manuscript, which received a minor revision at Stochastic

Processes and their Applications, listed below.

O. Al-Ghattas and D. Sanz-Alonso, Covariance Operator Estimation via Adaptive Thresh-

olding, arXiv preprint arXiv:2405.18562, 2024.

5.1 Introduction

This paper investigates sparse covariance operator estimation in an infinite-dimensional func-

tion space setting. Covariance estimation is a fundamental task that arises in numerous sci-

entific applications and data-driven algorithms Anderson [1958], Fan et al. [2008], Hardoon

et al. [2004], Tharwat et al. [2017], Al-Ghattas and Sanz-Alonso [2024c], Al-Ghattas et al.

[2024a]. The sample covariance is arguably the most natural estimator, and its error in

both finite and infinite dimension can be controlled by a notion of effective dimension that

accounts for spectrum decay Koltchinskii and Lounici [2017], Lounici [2014]. However, a rich

literature has identified sparsity assumptions under which other estimators drastically out-

perform the sample covariance in finite high-dimensional settings Bickel and Levina [2008a,b],

El Karoui [2008], Cai and Zhou [2012b], Cai et al. [2016], Wainwright [2019]. This work

contributes to the largely unexplored subject of sparse covariance operator estimation in

infinite dimension. Through rigorous theory and complementary numerical simulations, we

demonstrate the benefit of adaptively thresholding the sample covariance. In doing so, this

paper contributes to the emerging literature on operator estimation and learning Kovachki

et al. [2024], de Hoop et al. [2023], Mollenhauer et al. [2022], emphasizing the importance of

exploiting structural assumptions in the design and analysis of estimators.
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In this work, we investigate approximate sparsity structure that arises in the nonsta-

tionary regime where the marginal variance varies widely in the domain and the correlation

lengthscale is small relative to the size of the domain. Covariance estimation for such non-

stationary processes is crucial, for instance, in numerical weather forecasting, where local

and highly nonstationary phenomena such as cloud formation can significantly impact mid

and long-range global forecasts. To study the sparse highly nonstationary regime where the

marginal variance varies widely in the domain and the correlation lengthscale is small, we

consider a novel class of covariance operators that satisfy a weighted 𝐿𝑞-sparsity condition.

For covariance operators in this class, we establish a bound on the operator norm error of

the adaptive threshold estimator in terms of two dimension-free quantities: the sparsity level

and the expected supremum of a normalized field. Unlike existing theory that considered

unweighted 𝐿𝑞-sparsity (see Section 5.1.1 for a review) our theory allows for covariance mod-

els with unbounded marginal variance functions. We then compare our adaptive threshold

estimator with other estimators of interest, namely the universal threshold and sample co-

variance estimators. For universal thresholding, we prove a lower bound that is larger than

our upper bound for adaptive thresholding. In addition, we numerically investigate adaptive

thresholding for highly nonstationary covariance models defined through a scalar parame-

ter that controls both the correlation lengthscale and the range of the marginal variance

function. In the challenging case where the lengthscale is small and the range of marginal

variances is large, we show an exponential improvement in sample complexity of the adaptive

threshold estimator compared to the sample covariance. Our numerical simulations clearly

demonstrate that universal threshold and sample covariance estimators fail in this regime.

By focusing on the infinite-dimensional setting, our theory reveals the key dimension-

free quantities that control the estimation error, and further explains how the correlation

lengthscale and the marginal variance function affect the estimation problem. While our

infinite-dimensional analysis helps uncover such a connection between interpretable model
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assumptions and complexity of the estimation task, it poses new challenges that require

novel technical tools. In this work, we leverage recent results from empirical process theory

Mendelson [2016] to control the error in the estimation of the variance component used to

adaptively choose the thresholding radius. Our infinite-dimensional perspective agrees with

recent work in operator learning that advocates for the development of theory in infinite

dimension, as opposed to the traditional approach in functional data analysis, where it is

common to study estimators constructed by first discretizing the data Ramsay and Ramsey

[2002], Zhang and Wang [2016]. We will discuss the differences between the two approaches

and compare our theory with the existing infinite-dimensional covariance estimation litera-

ture Al-Ghattas et al. [2023], Fang et al. [2023]. More broadly, infinite-dimensional analyses

that delay introducing discretization have led to numerous theoretical insights and computa-

tional advances in mathematical statistics Giné and Nickl [2021], Bayesian inverse problems

Stuart [2010], Markov chain Monte Carlo Cotter et al. [2013], importance sampling and par-

ticle filters Agapiou et al. [2017], ensemble Kalman algorithms Sanz-Alonso and Waniorek

[2024], graph-based learning García Trillos and Sanz-Alonso [2018a], stochastic gradient de-

scent Latz [2021], and numerical analysis and control Zuazua [2005], among many others.

5.1.1 Related Work

For later reference and discussion, here we summarize unweighted and weighted approximate

sparsity assumptions in the finite-dimensional thresholded covariance estimation literature,

as well as the main sparsity assumptions that have been considered in the infinite-dimensional

setting.

Finite Dimension

Thresholding estimators in the finite high-dimensional setting were introduced in the sem-

inal work Bickel and Levina [2008a] and further studied in Rothman et al. [2009], Cai and
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Zhou [2012b], Cai et al. [2016], Cai and Liu [2011]. Given 𝑑𝑋 -dimensional i.i.d. sam-

ples 𝑋1, . . . , 𝑋𝑁 from a centered sub-Gaussian distribution with covariance Σ, the authors

demonstrated that thresholding the sample covariance matrix, i.e. ̂︀ΣU
𝜌𝑁 = (̂︀Σ𝑖𝑗1{|̂︀Σ𝑖𝑗 | ≥

𝜌𝑁}) — where the superscript 𝑈 denotes universal — performed well over the class of co-

variance matrices with bounded marginal variances and satisfying an ℓ𝑞-sparsity condition

whenever the thresholding parameter 𝜌𝑁 is chosen appropriately. Specifically, whenever Σ

belongs to the class 𝒰𝑞(𝑅𝑞,𝑀) for 𝑞 ∈ [0, 1), 𝑅𝑞 > 0 and 𝑀 > 0 where

𝒰𝑞 := 𝒰𝑞(𝑅𝑞,𝑀) =

⎧⎨⎩Σ ∈ R𝑑𝑋×𝑑𝑋 : Σ ≻ 0, max
𝑖≤𝑑𝑋

Σ𝑖𝑖 ≤𝑀, max
𝑖≤𝑑𝑋

𝑑𝑋∑︁
𝑗=1

|Σ𝑖𝑗 |𝑞 ≤ 𝑅
𝑞
𝑞

⎫⎬⎭ , (5.1)

then the operator norm error of universal thresholding estimators is bounded above (up to

universal constants) by 𝑅𝑞𝑞(𝑀 log 𝑑𝑋/𝑁)(1−𝑞)/2. The bounded marginal variance assumption

is crucial to this theory as it was shown that 𝜌𝑁 must scale with 𝑀 in order for the high

probability guarantees on ̂︀ΣU
𝜌𝑁 to hold. In Cai and Liu [2011], the authors argued that such

a bounded variance assumption effectively converted a heteroscedastic problem of covariance

estimation into a worst-case homoscedastic one in which Σ𝑖𝑖 = 𝑀 for all 𝑖 for the purposes

of choosing a universal thresholding radius. This is problematic whenever (i) no natural

upper bound on the marginal variances is known and (ii) the marginal variances vary over a

large range. They instead considered the adaptively thresholded covariance estimator ̂︀Σ𝐴𝜌𝑁 =

(̂︀Σ𝑖𝑗1{|̂︀Σ𝑖𝑗 | ≥ 𝜌𝑁𝑉
1/2
𝑖𝑗 }), where 𝑉𝑖𝑗 is the sample version of the variance component 𝑉𝑖𝑗 :=

var(𝑋𝑖𝑋𝑗). This was shown to be optimal over the larger weighted ℓ𝑞-sparsity covariance

matrix class

𝒰*
𝑞 := 𝒰*

𝑞 (𝑅𝑞) =

⎧⎨⎩Σ ∈ R𝑑𝑋×𝑑𝑋 : Σ ≻ 0, max
𝑖≤𝑑𝑋

𝑑𝑋∑︁
𝑗=1

(Σ𝑖𝑖Σ𝑗𝑗)
1−𝑞
2 |Σ𝑖𝑗 |𝑞 ≤ 𝑅

𝑞
𝑞

⎫⎬⎭ , (5.2)
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with operator norm error bounded above (up to universal constants) by𝑅𝑞𝑞(log 𝑑𝑋/𝑁)(1−𝑞)/2.

It was further shown that universal thresholding was sub-optimal over the same class. Min-

imax lower bounds proving the optimality of universal thresholding were studied in Cai and

Zhou [2012b]. Distributional assumptions were significantly relaxed by allowing for depen-

dence in Chen et al. [2013], which analyzed thresholding in the high-dimensional time series

setting.

Infinite Dimension

In the infinite-dimensional setting, the covariance (operator) estimation problem under

sparsity-type constraints has received far less attention. In Al-Ghattas et al. [2023], the

authors consider i.i.d. draws of an infinite-dimensional Gaussian process defined over 𝐷 =

[0, 1]𝑑 with covariance operator 𝐶 and corresponding covariance function 𝑘 : 𝐷 × 𝐷 → R,

denoted 𝑢1, . . . , 𝑢𝑁
i.i.d.∼ GP(0, 𝐶). They generalize Bickel and Levina [2008b] to infinite

dimensions by considering Gaussian processes that are almost surely continuous with covari-

ance operators 𝐶 ∈ 𝒦𝑞, where

𝒦𝑞 := 𝒦𝑞(𝑅𝑞,𝑀) =

{︂
𝐶 ≻ 0 : sup

𝑥∈𝐷
𝑘(𝑥, 𝑥) ≤𝑀, sup

𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑦)|𝑞𝑑𝑦 ≤ 𝑅

𝑞
𝑞

}︂
. (5.3)

This class naturally captures approximate sparsity of the covariance, which may arise, for ex-

ample, from decay of correlations of the Gaussian process at different locations in the domain.

It was then shown that for a universally thresholded covariance operator estimator, i.e. with

covariance function 𝑘(𝑥, 𝑦)1{|𝑘(𝑥, 𝑦)| ≥ 𝜌𝑁}, the operator norm error was bounded above by

𝑅
𝑞
𝑞((E[sup𝑥∈𝐷 𝑢(𝑥)])

2/𝑁)(1−𝑞)/2, which is a dimension-free quantity. Further, the authors

demonstrate that if the covariance function is stationary and depends on a lengthscale pa-

rameter 𝜆, then universally thresholded estimators enjoy an exponential improvement over

the standard sample covariance estimator in the small 𝜆 asymptotic. Notice that here and
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throughout this paper, 𝑑 represents the dimension of the physical domain 𝐷 = [0, 1]𝑑 and

should not be confused with the dimension of the data points {𝑢𝑛}𝑁𝑛=1, which here represent

infinite-dimensional functions.

Motivated by applications in functional data analysis, Fang et al. [2023] considers covari-

ance estimation for a multi-valued process u : 𝐷 → R𝑝 given independent data

u𝑛(·) =
(︀
𝑢𝑛1(·), 𝑢𝑛2(·), . . . , 𝑢𝑛𝑝(·)

)︀⊤
, 𝑛 = 1, . . . , 𝑁.

The covariance function now takes the form

K : 𝐷 ×𝐷 → R𝑝×𝑝, K(𝑥, 𝑦) = Cov
(︀
u𝑛(𝑥),u𝑛(𝑦)

)︀
= [𝑘𝑖𝑗(𝑥, 𝑦)]

𝑝
𝑖,𝑗=1,

where 𝑘𝑖𝑗 : 𝐷×𝐷 → R is a component covariance function. Then, Fang et al. [2023] studies

the setting in which the number of component is much larger than the sample size, i.e.

𝑝≫ 𝑁 , and under the assumption that the true covariance function belongs to the class

𝒢𝑞(𝑅𝑞, 𝜀) =
{︂
K ⪰ 0 : max

𝑖≤𝑝

𝑝∑︁
𝑗=1

(‖𝑘𝑖𝑖‖∞‖𝑘𝑗𝑗‖∞)
1−𝑞
2 ‖𝑘𝑖𝑗‖

𝑞
HS ≤ 𝑅

𝑞
𝑞,max

𝑖≤𝑝
‖𝑘−1
𝑖𝑖 ‖∞‖𝑘𝑖𝑖‖∞ ≤ 1

𝜀

}︂
.

(5.4)

Here, we denote by ‖𝑘‖2HS =
∫︀∫︀

𝑘2(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 the Hilbert-Schmidt norm, and we denote

‖𝑘‖∞ = sup𝑥,𝑦∈𝐷 |𝑘(𝑥, 𝑦)|. This class generalizes the class 𝒰*
𝑞 and the authors obtain anal-

ogous upper bounds to those of Cai and Liu [2011] for the error of estimation under a

functional version of the matrix ℓ1-norm. We provide further comparisons to this line of

work in Remark 5.2.2. Another popular approach in the functional data analysis literature

is the partial observations framework, see Yao et al. [2005a], Zhang and Wang [2016] and

[Fang et al., 2023, Section 4]. In this setting, observations are comprised of noisy evalua-

tions of the infinite dimensional response function at a set of grid-points located randomly
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in the domain 𝐷. At a high level, much of this literature involves the study of nonpara-

metric estimators (e.g. local polynomials) to recover estimates of the functions underlying

the partial observations. These estimates are then used as inputs to the sample covariance

estimator. Under general smoothness assumptions, which are necessary to control the bias

of the nonparametric estimator, it can be shown that covariance estimators that use these

estimated functions are asymptotically equivalent to covariance estimators that use fully

observed functional data. We discuss this approach further in Remark 5.2.5.

5.1.2 Outline

Section 5.2 contains the main results of this paper: Theorem 5.2.3 shows an operator norm

bound for adaptive threshold estimators, Theorem 5.2.6 states a lower bound for universal

thresholding, and Theorem 5.2.10 compares the sample covariance and adaptive threshold

estimators. In addition, Section 5.2 also includes numerical simulations in physical dimension

𝑑 = 1; similar results in dimension 𝑑 = 2 are deferred to an appendix. The proof of Theorem

5.2.3 can be found in Section 5.3, and uses a recent result on empirical process theory

discussed in Section 5.4. Sections 5.5 and 5.6 contain the proofs of Theorems 5.2.6 and

5.2.10, respectively. The paper closes in Section 5.7 with concluding remarks and suggestions

for future work.

Notation Given two positive sequences {𝑎𝑛} and {𝑏𝑛}, the relation 𝑎𝑛 ≲ 𝑏𝑛 denotes that

𝑎𝑛 ≤ 𝑐𝑏𝑛 for some constant 𝑐 > 0. If both 𝑎𝑛 ≲ 𝑏𝑛 and 𝑏𝑛 ≲ 𝑎𝑛 hold simultaneously, we

write 𝑎𝑛 ≍ 𝑏𝑛. For an operator ℒ, we denote its operator norm by ‖ℒ‖ and its trace by

Tr(ℒ). For a matrix Σ ∈ R𝑝×𝑝 (resp. operator 𝐶 : 𝐿2(𝐷) → 𝐿2(𝐷)) we write Σ ≻ 0 (resp.

𝐶 ≻ 0) to denote that Σ (resp. 𝐶) is positive definite.
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5.2 Main Results

This section introduces our framework, assumptions, and main results. In Section 5.2.1, we

discuss the data generating mechanism under consideration, and we define the various esti-

mators that will be studied. In Section 5.2.2, we establish our main result, a high probability

operator norm error bound for the adaptive threshold estimator. In Section 5.2.3, we provide

both theoretical and empirical comparisons of adaptive threshold, universal threshold, and

sample covariance estimators.

5.2.1 Setting and Estimators

Let 𝐷 ⊂ R𝑑 and let 𝑢1, . . . , 𝑢𝑁 be i.i.d. copies of a centered square-integrable random

field 𝑢 : 𝐷 → R. We are interested in estimating the covariance operator 𝐶 from the data

{𝑢𝑛}𝑁𝑛=1. Recall that the covariance function (kernel) 𝑘 : 𝐷×𝐷 → R and covariance operator

𝐶 : 𝐿2(𝐷) → 𝐿2(𝐷) are defined by the requirement that, for any 𝑥, 𝑦 ∈ 𝐷 and 𝜓 ∈ 𝐿2(𝐷),

𝑘(𝑥, 𝑦) := E[𝑢(𝑥)𝑢(𝑦)], (𝐶𝜓)(·) :=
∫︁
𝐷
𝑘(·, 𝑦)𝜓(𝑦) 𝑑𝑦.

That is, 𝐶 is the integral operator with kernel 𝑘. We will focus on (sub-)Gaussian data.

Recall that a square-integrable process 𝑢 is called (sub-)Gaussian if, for any fixed 𝑤 ∈ 𝐿2(𝐷),

the random variable ⟨𝑢,𝑤⟩𝐿2(𝐷) is (sub-)Gaussian. We further recall that the process 𝑢 is

called pre-Gaussian if there exists a centered Gaussian process, 𝑣, with the same covariance

operator as that of 𝑢. Following [Ledoux and Talagrand, 2013, page 261], we refer to 𝑣 as

the Gaussian process associated to 𝑢.

For simplicity, we take 𝐷 := [0, 1]𝑑 to be the 𝑑-dimensional unit hypercube. In the ap-

plications that motivate this work, the ambient dimension 𝑑 is typically 1, 2, or 3, and so

we treat 𝑑 as a constant throughout. We are interested in applications where the covari-

ance function 𝑘 exhibits approximate sparsity (which may arise, for instance, due to spatial
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decay of correlations), and where the marginal variance function 𝜎2(𝑥) := 𝑘(𝑥, 𝑥) has mul-

tiple scales in the domain 𝐷. In this setting, the sample covariance function 𝑘 and sample

covariance operator ̂︀𝐶 defined by

𝑘(𝑥, 𝑦) :=
1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥)𝑢𝑛(𝑦), ( ̂︀𝐶𝜓)(·) := ∫︁
𝐷
𝑘(·, 𝑦)𝜓(𝑦) 𝑑𝑦

perform poorly. To improve performance in regard to exploiting approximate sparsity, one

can instead consider the universal threshold estimator defined by

𝑘U𝜌𝑁 (𝑥, 𝑦) := 𝑘(𝑥, 𝑦)1
{︁
|𝑘(𝑥, 𝑦)| ≥ 𝜌𝑁

}︁
, ( ̂︀𝐶U

𝜌𝑁𝜓)(·) :=
∫︁
𝐷
𝑘U𝜌𝑁 (·, 𝑦)𝜓(𝑦) 𝑑𝑦,

where 𝜌𝑁 is a tunable thresholding parameter. However, this approach is not well suited if

the marginal variance function takes a wide range of values on 𝐷, where it becomes essential

to consider a spatially varying thresholding parameter. To that end, we define the variance

component 𝜃 : 𝐷 ×𝐷 → R≥0 by

𝜃(𝑥, 𝑦) := var
(︀
𝑢(𝑥)𝑢(𝑦)

)︀
,

To estimate the variance component, we consider the standard sample-based estimator given

by

𝜃S(𝑥, 𝑦) :=
1

𝑁

𝑁∑︁
𝑛=1

𝑢2𝑛(𝑥)𝑢
2
𝑛(𝑦)− 𝑘2(𝑥, 𝑦).

In the Gaussian setting, we additionally consider the Wick’s-based estimator given by

𝜃W(𝑥, 𝑦) := 𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦) + 𝑘2(𝑥, 𝑦),

which is motivated by the following derivation invoking Wick’s theorem (also commonly
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referred to as Isserlis’ theorem)

𝜃(𝑥, 𝑦) = E
[︀
𝑢2(𝑥)𝑢2(𝑦)

]︀
−
(︀
E
[︀
𝑢(𝑥)𝑢(𝑦)

]︀)︀2
= E

[︀
𝑢2(𝑥)

]︀
E
[︀
𝑢2(𝑦)

]︀
+ 2
(︀
E
[︀
𝑢(𝑥)𝑢(𝑦)

]︀)︀2 − (︀E[︀𝑢(𝑥)𝑢(𝑦)]︀)︀2
= 𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦) + 𝑘2(𝑥, 𝑦).

Given an estimator 𝜃 of 𝜃, we then define the adaptive threshold estimator

𝑘A𝜌𝑁 := 𝑘(𝑥, 𝑦)1

⎧⎨⎩
⃒⃒⃒⃒
⃒⃒ 𝑘(𝑥, 𝑦)√︁

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒⃒ ≥ 𝜌𝑁

⎫⎬⎭ , ( ̂︀𝐶A
𝜌𝑁𝜓)(·) :=

∫︁
𝐷
𝑘A𝜌𝑁 (·, 𝑦)𝜓(𝑦) 𝑑𝑦,

where we set A = S when 𝜃 = 𝜃S and A = W when 𝜃 = 𝜃W. We refer to this as adaptive

thresholding (of the sample covariance) since the event in the indicator can be equivalently

written as {|𝑘(𝑥, 𝑦)| ≥ 𝜌𝑁𝜃
1/2(𝑥, 𝑦)}, and so the level of thresholding varies with the location

(𝑥, 𝑦) ∈ 𝐷 × 𝐷. The goal of this paper is to demonstrate through rigorous theory and

numerical examples the improved performance of the adaptive threshold estimator relative

to the universal threshold and sample covariance estimators.

5.2.2 Error Bound for Adaptive-threshold Estimator

Our theory is developed under the following assumption:

Assumption 5.2.1. Let 𝑢, 𝑢1, . . . , 𝑢𝑁 be i.i.d. centered sub-Gaussian and pre-Gaussian ran-

dom functions on 𝐷 = [0, 1]𝑑 that are Lebesgue almost-everywhere continuous with probability

one. It holds that:

(i) 𝐶 ∈ 𝒦*
𝑞 where

𝒦*
𝑞 := 𝒦*

𝑞(𝑅𝑞) =

{︂
𝐶 ≻ 0, sup

𝑥∈𝐷

∫︁
𝐷

(︀
𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

)︀1−𝑞
2 |𝑘(𝑥, 𝑦)|𝑞 𝑑𝑦 ≤ 𝑅

𝑞
𝑞

}︂
.
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(ii) There exists a universal constant 𝜈 > 0 such that, for any 𝑥, 𝑦 ∈ 𝐷,

𝜃(𝑥, 𝑦) ≥ 𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦).

(iii) For a sufficiently small constant 𝑐, the sample size satisfies

√
𝑁 ≥ 1

𝑐
E

[︃
sup
𝑥∈𝐷

𝑢(𝑥)√︀
𝑘(𝑥, 𝑥)

]︃
.

In contrast to the setting considered in Al-Ghattas et al. [2023], Assumption 5.2.1 allows

for sub-Gaussian data and admits covariance functions for which sup𝑥∈𝐷 𝑘(𝑥, 𝑥) → ∞. Fur-

thermore, here we only require Lebesgue almost-everywhere continuity of the data, whereas

Al-Ghattas et al. [2023] requires continuous data. Assumption 5.2.1 (i) specifies that the

covariance function 𝑘 satisfies a weighted 𝐿𝑞-sparsity condition that generalizes the class of

row-sparse matrices 𝒰*
𝑞 (𝑅𝑞) studied in Cai and Liu [2011] to our infinite-dimensional setting.

Assumption 5.2.1 (ii) ensures that consistent estimation of the variance component is

possible, and is analogous to requirements in finite dimension [Cai and Liu, 2011, Condition

C1]. Assumption 5.2.1 (iii) is imposed for purely cosmetic reasons and can be removed at

the expense of a more cumbersome statement of the results and proofs that would need to

account for the case in which the sample size is chosen to be insufficiently large. The sample

size requirement can also be compared to [Fang et al., 2023, Condition 4], which requires that

the pair (𝑁, 𝑝) satisfies log 𝑝/𝑁1/4 → 0 as 𝑁, 𝑝 → ∞, where 𝑝 is the number of component

random functions as described in Section 5.1.1. In contrast, our assumption is nonasymptotic

and stated only in terms of the dimension-free quantity E[sup𝑥∈𝐷 𝑢(𝑥)/
√︀
𝑘(𝑥, 𝑥)] as our proof

techniques differ from theirs.

Remark 5.2.2 (Comparison to Global-type Sparse Class of Fang et al. [2023]). As noted

in Section 5.1.1, Fang et al. [2023] recently studied a notion of sparse covariance functions
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𝒢𝑞(𝑅𝑞, 𝜀) different to the one considered here. In particular, the class 𝒢𝑞(𝑅𝑞, 𝜀) specifies a

global notion of sparsity, in the sense that it imposes conditions on the relationship between

the various coordinate covariance functions that make-up K. In contrast, the class 𝒦*
𝑞 is local,

in that it imposes a sparse structure on the covariance function of a real-valued process. For

example, in the single component case 𝑝 = 1, covariance functions 𝑘11 belonging to 𝒢𝑞(𝑅𝑞, 𝜀)

must satisfy ‖𝑘11‖
1−𝑞
∞ ‖𝑘11‖

𝑞
HS ≤ 𝑅

𝑞
𝑞 and ‖𝑘−1

11 ‖∞‖𝑘11‖∞ ≤ 1/𝜀. This is equivalent to

requiring that the covariance function 𝑘11 is bounded in Hilbert-Schmidt norm, and that 𝑘11

and its inverse are bounded in supremum norm. Importantly, in contrast to the class 𝒦*
𝑞

studied here, their assumption does not capture any decay of correlations of the process at

two different points in the domain, nor does it permit sup𝑥∈𝐷 𝑘11(𝑥, 𝑥) → ∞.

We are now ready to state our main result, which establishes operator norm bounds for

adaptive threshold estimators.

Theorem 5.2.3. Under Assumption 5.2.1, let 𝑣 be the Gaussian process associated to 𝑢,

and for a universal constant 𝑐0 > 0, let

𝜌𝑁 =
𝑐0√
𝑁

E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂
.

Then, there exists a universal constant 𝑐1 > 0 such that, with probability at least 1−𝑐1𝑒−𝑁𝜌
2
𝑁 ,

‖ ̂︀𝐶S
𝜌𝑁 − 𝐶‖ ≲ 𝑅

𝑞
𝑞𝜌

1−𝑞
𝑁 .

Moreover, if 𝑢 is a Gaussian process, then for

𝜌𝑁 =
𝑐0√
𝑁

⎛⎝ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑢𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

⎞⎠ ,
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there exists a universal constant 𝑐1 > 0 such that, with probability at least 1− 𝑐1𝑒
−𝑁𝜌2𝑁 ,

‖ ̂︀𝐶A
𝜌𝑁

− 𝐶‖ ≲ 𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 ,

where A ∈ {S,W}.

Remark 5.2.4. For adaptive covariance matrix estimation under weighted ℓ𝑞-sparsity de-

scribed in Section 5.1.1, [Cai and Liu, 2011, Theorem 1] showed that if the (normalized)

sample covariance matrix satisfies max1≤𝑖,𝑗≤𝑑𝑋 |̂︀Σ𝑖𝑗 − Σ𝑖𝑗 |/𝑉
1/2
𝑖𝑗 ≲ 𝜌𝑁 , then the opera-

tor norm error of the adaptive thresholding covariance matrix estimator can be bounded by

𝑅̃
𝑞
𝑞𝜌

1−𝑞
𝑁 , where 𝑅̃𝑞𝑞 controls the row-wise weighted ℓ𝑞-sparsity of Σ. The choice of thresholding

parameter can be understood by appealing to the analogy that covariance matrix estimation

may be interpreted as a heteroscedastic Gaussian sequence model (see [Cai and Liu, 2011,

Section 2]), so that roughly speaking, for large 𝑁,

1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛𝑖𝑋𝑛𝑗 ≈ Σ𝑖𝑗 +

√︂
𝑉𝑖𝑗
𝑁
𝑍𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝑋 ,

with {𝑍𝑖𝑗} i.i.d. standard normal. This explains the choice of the thresholding parameter in

the finite-dimensional setting (after normalizing the data by 𝑉𝑖𝑗), since

𝜌𝑁 ≍
√︂

log 𝑑𝑋
𝑁

≍
E
[︀
max𝑖,𝑗≤𝑑𝑋 𝑍𝑖𝑗

]︀
√
𝑁

,

provides element-wise control on the sample covariance. In the infinite-dimensional setting

considered here, we require instead high probability sup-norm concentration bounds for the

sample covariance function 𝑘(𝑥, 𝑦) and the estimated variance component function 𝜃(𝑥, 𝑦).

These bounds are obtained in Section 5.3 utilizing tools adapted from recent advances in

the study of multi-product empirical processes Al-Ghattas et al. [2025] via generic chaining.

These techniques are discussed in Section 5.4.2. Our results show that the correct thresholding
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radius 𝜌𝑁 must scale with the expected supremum of the normalized associated Gaussian

process, as this is precisely the dimension-free quantity needed to control the sample quantities

uniformly over the domain 𝐷. Since 𝜌𝑁 is a population level quantity, we establish in

Lemma 5.3.6 that it may be replaced by its empirical counterpart 𝜌𝑁 in the Gaussian setting,

yielding a computable estimator ̂︀𝐶A
𝜌𝑁
. This is possible since the associated Gaussian process

agrees with the observed process, i.e. 𝑢 = 𝑣 (see also Remark 5.4.6 for a technical discussion

of this point). In the sub-Gaussian setting, Theorem 5.2.3 shows that an adaptive threshold

estimator with an appropriate choice of thresholding radius 𝜌𝑁 achieves the same estimation

error as in the Gaussian case. In practice, we advocate choosing the thresholding radius 𝜌𝑁

by cross-validation in non-Gaussian settings.

Our theory for Gaussian data holds for both the sample-based and the Wick’s-based esti-

mators of the variance component. The Wick’s-based estimator might be preferred in practice

as it only requires estimating the second moment of the process, whereas the sample-based

estimator requires estimating both the second and fourth moments, which is more computa-

tionally intensive. From a theoretical perspective, the Wick’s-based estimator is also easier

to analyze using results for quadratic empirical processes (see e.g. Mendelson [2016, 2010]),

whereas the sample estimator relies on bounds for higher order multi-product empirical pro-

cesses as described in Section 5.4.2. We further remark that in contrast to finite-dimensional

results in which the high probability guarantee improves as 𝑑𝑋 increases, the probability in

Theorem 5.2.3 approaches 1 as the expected supremum of the normalized process grows. It is

straightforward but tedious to derive high probability bounds that are more general in that they

depend additionally on a confidence parameter 𝑡 ≥ 1. We provide such bounds for the pre-

requisite Lemmas 5.3.2 and 5.3.3. In Section 5.2.3, we study an explicit family of processes

for which the expected supremum can be expressed in terms of parameters of the covariance

kernel. Finally, we note that the pre-factor 𝑐0 is unspecified. In the existing literature (e.g.

Cai and Liu [2011], Bickel and Levina [2008b], Al-Ghattas et al. [2023]) it is common to
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choose 𝑐0 manually or in a data-driven way, such as via cross-validation. For our purposes,

we fix 𝑐0 = 5 in our simulated experiments in Section 5.2.3.

Remark 5.2.5 (Comparison to the Partially Observed Framework). In this work, we assume

access to the (infinite dimensional) Gaussian random functions 𝑢1, . . . , 𝑢𝑁 . While in practice

we cannot work with such infinite-dimensional functional data, the theory is nonetheless

illuminating for finite dimensional discretizations, as demonstrated by our empirical study in

Section 5.2.3. An alternative approach, described in Section 5.1.1, is the partial observations

framework. While this approach is often considered more practical as real-world data is

always discrete, we argue that the partial observations approach inadvertently masks the

underlying structure of the problem, as the bounds in that literature necessarily rely on the

smoothness exponents (e.g. the exponent of the Hölder condition when the underlying true

functions are assumed to be Hölder smooth), and not on the expected supremum of the process,

as in our theory. This dependence is an artifact of the smoothness assumption, as opposed to

being a quantity that fundamentally characterizes the behavior of the underlying process. In

effect, the discretization step is taken far too early in the partial observations framework to

uncover the dependence on the expected supremum. We comment that our approach is more

in line with the operator learning literature Kovachki et al. [2024], de Hoop et al. [2023],

Mueller and Siltanen [2012] and adheres to the philosophy put forward in Dashti and Stuart

[2017b], which states “...it is advantageous to design algorithms which, in principle, make

sense in infinite dimensions; it is these methods which will perform well under refinement of

finite dimensional approximations.”

5.2.3 Comparison to Other Estimators

In this section, we extend our analysis of the adaptive covariance operator estimator by

comparing to other candidate estimators, namely the universal thresholding and sample

covariance estimators. In Section 5.2.3, we first demonstrate that universal thresholding is
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inferior to adaptive thresholding over the class 𝒦*
𝑞(𝑅𝑞). Next, in Section 5.2.3 we restrict

attention to a class of highly nonstationary processes and show that adaptive thresholding

significantly improves over the sample covariance estimator. Finally, in Section 5.2.3 we

compare all three estimators on simulated experiments.

Inferiority of Universal Thresholding

In this section, we show rigorously that universal thresholding over the class 𝒦*
𝑞 can perform

arbitrarily poorly relative to adaptive thresholding. The result extends [Cai and Liu, 2011,

Theorem 4], which demonstrates in the finite-dimensional setting that universal thresholding

behaves poorly over the class 𝒰*
𝑞 . The result relies on a reduction of the infinite-dimensional

problem to a finite-dimensional one, to which the existing aforementioned theory can be

applied.

Theorem 5.2.6. Suppose that 𝑅𝑞𝑞 ≥ 8 and 𝜌𝑁 is defined as in Theorem 5.2.3. Then, there

exists a covariance operator 𝐶0 ∈ 𝒦*
𝑞(𝑅𝑞) such that, for sufficiently large 𝑁,

inf
𝛾𝑁≥0

E
{𝑢𝑛}𝑁𝑛=1

i.i.d.∼ GP(0,𝐶0)
‖ ̂︀𝐶U

𝛾𝑁 − 𝐶0‖ ≳ (𝑅
𝑞
𝑞)
2−𝑞𝜌1−𝑞𝑁 ,

where ̂︀𝐶U
𝛾𝑁 is the universal thresholding estimator with threshold 𝛾𝑁 .

Remark 5.2.7. Since 𝑞 ∈ (0, 1), the lower bound for universal thresholding in Theorem 5.2.6

is larger than the upper bound for adaptive thresholding in Theorem 5.2.3, and this discrep-

ancy grows as 𝑅𝑞 increases. Therefore, Theorem 5.2.6 implies that over the class 𝒦*
𝑞 , univer-

sal thresholding estimators can perform significantly worse than their adaptive counterparts,

regardless of how the universal threshold parameter 𝛾𝑁 is chosen. This agrees with intuition,

since if the scale of the marginal variance of the process varies significantly over the domain

𝐷, universal thresholding will intuitively need to scale with the largest of these scales, and

as a result the thresholding radius will be too large for all but a small portion of the domain.
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See also Remark 5.2.12.

Nonstationary Weighted Covariance Models

In this section, we further demonstrate the utility of adaptive thresholding by applying

Theorem 5.2.3 to an explicit class of highly nonstationary covariance models. To that end,

we restrict attention to a subset of 𝒦*
𝑞 of operators with covariance functions of the form

𝑘(𝑥, 𝑦) = 𝜎(𝑥)𝜎(𝑦)𝑘(𝑥, 𝑦), (5.5)

where 𝑘 is chosen to be an isotropic base covariance function and 𝜎 will represent a marginal

variance function. It follows by standard facts on the construction of covariance functions

(see e.g. Genton [2001]) that (5.5) defines a valid covariance function. This class is partic-

ularly interesting as it can be thought of as a weighted version of many standard isotropic

covariance functions used in practice, such as the squared exponential 𝑘SE and Matérn 𝑘Ma

classes, defined respectively in (5.8). Further, it permits us to express the theoretical quan-

tities of Theorem 5.2.3 in terms of interpretable parameters of the covariance function, as

we now describe rigorously.

Throughout this section, we assume that the data 𝑢1, . . . , 𝑢𝑁 are Gaussian and that the

base function 𝑘 satisfies the following:

Assumption 5.2.8. 𝑘 in (5.5) is a covariance function satisfying:

(i) 𝑘 is isotropic and positive, so that for 𝑟 = ‖𝑥 − 𝑦‖, 𝑘(𝑥, 𝑦) = 𝑘(𝑟) > 0. Further, 𝑘(𝑟)

is differentiable, strictly decreasing on [0,∞), and satisfies lim𝑟→∞ 𝑘(𝑟) = 0.

(ii) 𝑘 = 𝑘𝜆 depends on a correlation lengthscale parameter 𝜆 > 0 such that 𝑘𝜆(𝜙𝑟) =

𝑘𝜆𝜙−1(𝑟) for any 𝜙 > 0, and 𝑘𝜆(0) = 𝑘(0) is independent of 𝜆.

The class described in Assumption 5.2.8 contains many popular examples of covariance

functions, such as the squared exponential (Gaussian) and the Matérn models Williams and
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Rasmussen [2006]. Importantly though, functions of the form (5.5) are significantly more

general since they are nonstationary (and therefore non-isotropic). This nonstationarity is

introduced by the marginal variance functions 𝜎, which are termed as such since 𝑘(𝑥, 𝑥) =

𝜎2(𝑥). The theoretical study of the small lengthscale regime was initiated in Al-Ghattas et al.

[2023] in which the authors considered kernels satisfying Assumption 5.2.8, or equivalently

𝜎(𝑥) ≡ 1. Our analysis here extends their results to the challenging non-isotropic and

nonstationary setting. For concreteness, we focus on a specific class of marginal variance

functions detailed in the following assumption, where we let 𝜎 depend on the parameter 𝜆

in Assumption 5.2.8.

Assumption 5.2.9. The marginal variance function in (5.5) is taken to be either 𝜎𝜆(𝑥;𝛼) ≡

1 or 𝜎𝜆(𝑥;𝛼) = exp
(︀
𝜆−𝛼‖𝑥‖2

)︀
for 𝛼 ∈ (0, 1/2).

Functions of the form (5.5) and which additionally satisfy Assumptions 5.2.8 and 5.2.9 are

denoted by 𝑘𝜆(𝑥, 𝑦). For small 𝜆, the case 𝜎𝜆(𝑥;𝛼) = exp
(︀
𝜆−𝛼‖𝑥‖2

)︀
results in a particularly

challenging estimation problem due to the extreme nonstationarity induced by the wide range

of the exponential function across the domain. The case 𝜎𝜆(𝑥;𝛼) ≡ 1 allows us to include

unweighted covariance functions, thus strictly generalizing the theory in [Al-Ghattas et al.,

2023, Section 2.2]. Our main interest in the exponential marginal variance function is further

motivated by the following fact regarding the exponential dot-product covariance function,

𝑘𝜆(𝑥, 𝑦) = exp(𝑥⊤𝑦/𝜆2), which is interesting as it may be viewed as the simplest example of

a nonstationary covariance function. Note that we can write

exp

(︃
𝑥⊤𝑦
𝜆2

)︃
= exp

(︂
‖𝑥‖2

2𝜆2

)︂
exp

(︂
‖𝑦‖2

2𝜆2

)︂
exp

(︂
−‖𝑥− 𝑦‖2

2𝜆2

)︂
= exp

(︂
‖𝑥‖2

2𝜆2

)︂
exp

(︂
‖𝑦‖2

2𝜆2

)︂
𝑘SE
𝜆 (𝑥, 𝑦).

Figure 5.1 shows random draws when 𝑘 is chosen to be the squared exponential (SE) covari-

ance function, with varying choices of 𝜆 and 𝛼. It is immediately clear that for smaller 𝜆,
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Figure 5.1: Draws from a centered Gaussian process on 𝐷 = [0, 1] with weighted SE covari-
ance function of the form (5.5) with SE base kernel defined in (5.8). In the first plot, 𝜎 = 1
(unweighted), and in the second and third plots, 𝜎 is chosen according to Assumption 5.2.9
and with 𝛼 = 0.1, 0.2 respectively. The scale parameter 𝜆 is varied over 0.001 (blue), 0.01
(red) and 0.1 (black)

the processes become more local, whereas the role of 𝛼 is to change the scale of the process

across the domain, with this change being more pronounced for larger 𝛼. Analogous plots in

the 𝑑 = 2 case are presented in Figure 5.6 in the appendix.

Theorem 5.2.10 (Sample Covariance vs. Adaptive Thresholding). Let ̂︀𝐶 and ̂︀𝐶A
𝜌𝑁

denote

the sample covariance and adaptively thresholded estimator respectively. Then, there exists

a universal constant 𝜆0 > 0 such that, for all 𝜆 < 𝜆0, it holds with probability at least 1−𝜆𝑑
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that

‖ ̂︀𝐶 − 𝐶‖
‖𝐶‖

≍

√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁
, (5.6)

‖ ̂︀𝐶A
𝜌𝑁

− 𝐶‖
‖𝐶‖

≲ 𝑐(𝑞)

(︃
log(𝜆−𝑑)

𝑁

)︃(1−𝑞)/2

, (5.7)

where A ∈ {S,W} and 𝑐(𝑞) is a constant depending only on 𝑞.

Remark 5.2.11. An explicit expression for the constant 𝑐(𝑞) appearing in Theorem 5.2.10

is provided in the proof of the result. We remark that when 𝑘 := 𝑘SE, straightforward calcula-

tions yield that 𝑐(𝑞) ≍ 𝑞−3𝑑/2. We note once more that throughout this work, the dimension

𝑑 of the physical domain 𝐷 = [0, 1]𝑑 is treated as a constant.

Theorem 5.2.10 — motivated by Al-Ghattas et al. [2023], Koltchinskii and Lounici [2017]

— considers the relative as opposed to the absolute errors commonly used in the sparse esti-

mation literature Bickel and Levina [2008b], Cai and Liu [2011], Fang et al. [2023]. The bound

demonstrates that when 𝜆 is sufficiently small, the adaptive thresholding estimator exhibits

an exponential improvement in sample complexity over the sample covariance estimator. We

remark that the bound is identical to [Al-Ghattas et al., 2023, Theorem 2.8] which considers

the less general class of unweighted covariance functions, i.e. with 𝜎𝜆 := 1 in (5.5). The

sample covariance bound (5.6) follows by an application of [Koltchinskii and Lounici, 2017,

Theorem 9], which shows that with high probability ‖ ̂︀𝐶 −𝐶‖ ≲ ‖𝐶‖(
√︀
𝑟(𝐶)/𝑁 ∨ 𝑟(𝐶)/𝑁),

where 𝑟(𝐶) = Tr(𝐶)/‖𝐶‖ is the effective (intrinsic) dimension of 𝐶. To apply this result,

it is therefore necessary to derive sharp characterizations for both Tr(𝐶) and ‖𝐶‖ in terms

of the covariance function parameters 𝛼, 𝜆, which we provide in Lemmas 5.6.1 and 5.6.4.

The adaptive covariance bound (5.7) follows by an application of our main result, Theo-

rem 5.2.3, and therefore requires a sharp characterization of 𝑅𝑞 and 𝜌𝑁 in terms of the same

parameters, provided in Lemma 5.6.3.
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Remark 5.2.12 (Universal Thresholding). Theorem 5.2.10 shows that for sufficiently small

𝜆, adaptive thresholding with an appropriately chosen thresholding parameter will significantly

outperform the sample covariance estimator. It is also instructive to consider the universal

thresholding estimator in which the same threshold radius 𝜌U𝑁 is used at all points (𝑥, 𝑦) when

estimating 𝑘(𝑥, 𝑦). This estimator was studied in Al-Ghattas et al. [2023] under the assump-

tion that the covariance operator belonged to the class 𝒦𝑞, with 𝑀 := sup𝑥∈𝐷 𝑘(𝑥, 𝑥) = 1.

Removing the bounded marginal variance assumption, a careful analysis of their theory sug-

gests that the universal threshold radius should be chosen to scale with sup𝑥∈𝐷 𝑘(𝑥, 𝑥). This is

analogous to the finite 𝑑𝑋 -dimensional covariance matrix estimation theory (see e.g. Bickel

and Levina [2008b], Cai and Liu [2011]) in which the (universal) thresholding parameter

must be chosen to scale with max𝑖≤𝑑𝑋 |Σ𝑖𝑖|. For processes with marginal variances that

dramatically differ across the domain however, and as noted in Remark 5.2.7, such a scal-

ing causes the estimator to fail as it will necessarily set the estimator to zero for a large

proportion of the domain. Specifically in the setting of Assumption 5.2.9, we have that

sup𝑥∈𝐷 𝑘𝜆(𝑥, 𝑥) = 𝑒2𝑑/𝜆
𝛼

and inf𝑥∈𝐷 𝑘𝜆(𝑥, 𝑥) = 1. Therefore, as 𝜆 decreases, the ratio of

largest to smallest marginal variances of the process diverges, and the universal threshold-

ing estimator is zero for larger portions of the domain. This behavior is also borne out in

our simulation results (see Figure 5.3) in which a grid of universal threshold parameters is

considered and all fail dramatically relative to the adaptive estimator.

Simulation Results

In this section, we study the behavior of the sample covariance, universal thresholding, and

adaptive thresholding estimators. The results provide numerical evidence for our Theo-

rem 5.2.10, and also for the discussion around universal estimators in Remark 5.2.12. Our

experiments are carried out in physical dimension 𝑑 = 1 (we also provide results for the case

𝑑 = 2 in 5.9.1). Although our theory works for any base kernel 𝑘 satisfying Assumption 5.2.8,
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we focus here on the squared exponential (SE) and Matérn (Ma) classes for simplicity, defined

respectively by

𝑘SE
𝜆 (𝑥, 𝑦) = exp

(︂
−‖𝑥− 𝑦‖2

2𝜆2

)︂
,

𝑘Ma
𝜆 (𝑥, 𝑦) =

21−𝜈

Γ(𝜈)

(︃√
2𝜈

𝜆
‖𝑥− 𝑦‖

)︃𝜈
𝐾𝜈

(︃√
2𝜈

𝜆
‖𝑥− 𝑦‖

)︃
, 𝜈 >

𝑑− 1

2
∨ 1

2
,

(5.8)

where Γ denotes the Gamma function and 𝐾𝜈 is the modified Bessel function of the second

kind. Both covariance functions can be shown to satisfy the assumptions in this work,

see [Al-Ghattas et al., 2023, Section 2.2]. Our samples are generated by discretizing the

domain 𝐷 = [0, 1] with a uniform mesh of 𝐿 = 1000 points. We consider a total of 30

choices of 𝜆 arranged uniformly in log-space and ranging from 10−2.5 to 10−0.1. For each

𝜆, with corresponding covariance operator 𝐶, the discretized operators are given by the

𝐿 × 𝐿 covariance matrix 𝐶𝑖𝑗 =
(︀
𝑘(𝑥𝑖, 𝑥𝑗)

)︀
1≤𝑖,𝑗≤𝐿. We sample 𝑁 = 5 log(𝜆−𝑑) realizations

of a Gaussian process on the mesh, denoted 𝑢1, . . . , 𝑢𝑁 ∼ 𝑁(0, 𝐶). We then compute the

empirical and (adaptively) thresholded sample covariance matrices

̂︀𝐶𝑖𝑗 = 1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥𝑖)𝑢𝑛(𝑥𝑗), ̂︀𝐶𝐴,𝑖𝑗𝜌𝑁
= ̂︀𝐶𝑖𝑗1{︀| ̂︀𝐶𝑖𝑗 | ≥ 𝜌𝑁 (𝜃𝑖𝑗)1/2

}︀
, 1 ≤ 𝑖, 𝑗 ≤ 𝐿,

where 𝜌𝑁 is defined as in Theorem 5.2.3, and 𝜃𝑖𝑗 are the estimated variance components

defined by either

(𝜃S)
𝑖𝑗 =

1

𝑁

𝑁∑︁
𝑛=1

(︁
𝑢𝑛(𝑥𝑖)𝑢𝑛(𝑥𝑗)− ̂︀𝐶𝑖𝑗)︁2 , 1 ≤ 𝑖, 𝑗 ≤ 𝐿,

or

(𝜃W)𝑖𝑗 = ̂︀𝐶𝑖𝑖 ̂︀𝐶𝑗𝑗 + ( ̂︀𝐶𝑖𝑗)2, 1 ≤ 𝑖, 𝑗 ≤ 𝐿.

219



To quantify performance, we consider the relative error of each of the estimators, i.e.

𝜀 = ‖ ̂︀𝐶 − 𝐶‖/‖𝐶‖ for the sample covariance, with analogous definitions for the other esti-

mators considered. We repeat the experiment a total of 100 times for each lengthscale, and

provide plots of the average relative errors as well as a 95% confidence intervals over the

trials. In Figure 5.2, we consider in the first row the (unweighted) squared exponential and

Matérn functions (with 𝜎𝜆 := 1), in the second and third rows we choose 𝜎𝜆 according to

Assumption 5.2.9 with 𝛼 = 0.1 and 𝛼 = 0.2 respectively. In the unweighted case, we also

consider the universally thresholded estimator where the threshold is taken to be 𝜌𝑁 , which

is the correct choice by [Al-Ghattas et al., 2023, Theorem 2.2]. Note that in this case, since

𝑘(𝑥, 𝑥) = 1 for all 𝑥 ∈ 𝐷, all marginal variances are of the same scale, and so the universal

and adaptive estimators have the same rate of convergence. While all thresholding estima-

tors exhibit good performance as their relative errors are below 1, it is clear that adaptive

thresholding out-performs universal thresholding for the choice of pre-factor 5.

Note that all thresholding estimators significantly outperform the sample covariance es-

timator for small 𝜆. For the second and third rows, the adaptive estimator continues to

significantly outperform the sample covariance and is unaffected by the differences in scale

introduced by 𝜎𝜆. We observe that the sample-based and Wick’s-based adaptive estimators

perform similarly, with the Wick’s-based estimator exhibiting slightly better performance

in all experiments. The results clearly demonstrate our Theorem 5.2.10, since taking only

𝑁 = 5 log(𝜆−1) samples, the relative error of the adaptive estimator remains constant as 𝜆

decreases.

Next, in Figure 5.3 we study further the behavior of universal thresholding in the weighted

setting with 𝛼 = 0.1. As discussed in Remark 5.2.12, the existing theory suggests to take

the threshold radius to scale with sup𝑥∈𝐷
√︀
𝑘𝜆(𝑥, 𝑥) = 𝑒𝑑/𝜆

𝛼
, which becomes extremely

large for small 𝜆, and causes the universal threshold estimator to behave effectively like the

zero estimator. This choice is reflected by the error 𝜀U𝜌𝑁 , which has relative error equal to
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Figure 5.2: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (𝜀, dashed blue), universal thresholding (𝜀U𝜌𝑁 , red), sample-based adaptive thresh-
olding (𝜀S𝜌𝑁 , black) and Wick’s adaptive thresholding (𝜀W𝜌𝑁 , purple) covariance estimators
based on a sample size (𝑁 , dotted green) for the (weighted) squared exponential (left) and
(weighted) Matérn (right) covariance functions in 𝑑 = 1 over 30 Monte-Carlo trials and
30 scale parameters 𝜆 ranging from 10−2.5 to 10−0.1. The first row corresponds to the
unweighted covariance functions and is the only case in which the universal thresholding
estimator is considered; the second and third rows correspond to the weighted variants with
𝛼 = 0.1, 0.2 respectively.
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Figure 5.3: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (𝜀, dashed blue), universal thresholding (𝜀U𝜌𝑁 , red), universal thresholding with data-
driven radius (𝜀U𝜌𝑁,grid , pink) and sample-based adaptive thresholding (𝜀S𝜌𝑁 , black) covariance
estimators based on a sample size (𝑁 , dotted green) for the (weighted) squared exponential
(left) and (weighted) Matérn (right) covariance functions with 𝛼 = 0.1 in 𝑑 = 1 over 30
Monte-Carlo trials and 30 scale parameters 𝜆 ranging from 10−2.5 to 10−0.1.

1 for small lengthscales. To further test the universal estimator, for each lengthscale we

consider a grid of 10 thresholding radii ranging from 0 (corresponding to just using the

sample covariance, with relative error 𝜀) to the one suggested by the theory (corresponding

to the theoretically suggested universal estimator, with relative error 𝜀U𝜌𝑁 ). The performance

of these 10 estimators is represented in pink. It is clear from these results that regardless of

the choice of thresholding radius, the universal estimator performs significantly worse than

the adaptive estimator.

The examples considered thus far possess a form of ordered sparsity in that the decay

of the covariance function depends monotonically on the physical distance between its two

arguments. Although this structure arises in many applications, it is not necessary for the

success of thresholding-based estimators. In Figure 5.4, we consider the performance of all

estimators when the base kernel exhibits an unordered sparsity pattern. First, we study the
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Figure 5.4: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (𝜀, dashed blue), universal thresholding (𝜀U𝜌𝑁 , red), sample-based adaptive thresh-
olding (𝜀S𝜌𝑁 , black) and Wick’s adaptive thresholding (𝜀W𝜌𝑁 , purple) covariance estimators
based on a sample size (𝑁 , dotted green) for the periodic kernel (left) and shuffled kernel
(right) in 𝑑 = 1 over 30 Monte-Carlo trials and 30 scale parameters 𝜆 ranging from 10−2.2

to 10−0.1.

periodic covariance function 𝑘period given by

𝑘
period
𝜆 (𝑥, 𝑦) = exp

(︂
−2 sin2(𝜋‖𝑥− 𝑦‖/𝜂)

𝜆2

)︂
,

where 𝜂 > 0 is the periodicity parameter. Intuitively, the periodic covariance function is

composed of ⌊1/𝜂⌋ bumps spaced uniformly over the domain, each behaving locally like

𝑘SE
𝜆 . Consequently, this kernel is not monotonically decreasing, but it becomes sparser with

smaller 𝜆. As another example, we consider the squared-exponential kernel applied to a

random permutation of the underlying discretized grid. Shuffling the data breaks the spatial

ordering while maintaining the same level of sparsity. For both periodic kernel and shuffled

data examples, we choose 𝜎𝜆 according to Assumption 5.2.9 with 𝛼 = 0.1 and consider 30

scale parameters 𝜆 ranging from 10−2.2 to 10−0.1. The results demonstrate that adaptive

thresholding is superior to both universal thresholding and sample covariance estimators.
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Although Theorem 5.2.10 holds for Gaussian data, we investigate numerically here the be-

havior of all estimators on sub-Gaussian data in the small lengthscale regime. Given two inde-

pendent centered Gaussian processes 𝑣(1), 𝑣(2), with covariance functions 𝑘1 = 𝑘2 both satis-

fying Assumption 5.2.8, we define 𝑢(1) := |𝑣(1)|−E|𝑣(1)| and 𝑢(2) := (|𝑣(1)|−E|𝑣(1)|) sin(𝑣(2)).

These transformations ensure the resulting processes are sub-Gaussian (technical details are

deferred to 5.9.2). The true covariance matrices are given respectively by

𝐶
𝑖𝑗
1 =

2𝜎𝜆(𝑥𝑖)𝜎𝜆(𝑥𝑗)

𝜋

(︂√︁
1− 𝑘2𝜆(𝑥𝑖, 𝑥𝑗) + 𝑘𝜆(𝑥𝑖, 𝑥𝑗) sin

−1(𝑘𝜆(𝑥𝑖, 𝑥𝑗))

)︂
,

𝐶
𝑖𝑗
2 = 𝐶

𝑖𝑗
1 × 𝑒−

1
2 (𝜎

2
𝜆(𝑥𝑖)+𝜎

2
𝜆(𝑥𝑗)) sinh(𝜎𝜆(𝑥𝑖)𝜎𝜆(𝑥𝑗)𝑘𝜆(𝑥𝑖, 𝑥𝑗)), 1 ≤ 𝑖, 𝑗 ≤ 𝐿.

As in Figure 5.3, we consider a grid of 10 threshold radii for each estimator, and for each

lengthscale we choose the threshold that gives the smallest average relative error to generate

the series in the figure. Throughout we choose 𝜎𝜆 according to Assumption 5.2.9 with

𝛼 = 0.1, and 𝑘 = 𝑘Ma. Similar results hold in the case 𝑘 = 𝑘SE. The results are presented

in Figure 5.5, with both adaptive estimators significantly beating out the sample covariance

and universal threshold estimators. The empirical results suggest that the theoretical bound

in Theorem 5.2.10 potentially continues to hold beyond the Gaussian setting. We leave a

theoretical investigation of this extension to future work.

Remark 5.2.13. In all of our numerical experiments, the Wick’s-based estimator exhibits

strong performance at the level of and even superior to that of the sample-based estimator.

While our theory suggests that the two estimators have the same rate of convergence, it

does not preclude differences owing to the choice of pre-factor 𝑐0 in the choice of sample

size. The results therefore indicate that the Wick’s-based estimator is more robust to smaller

choices of this pre-factor. In the Gaussian setting, this is expected. Recall that Wick’s

theorem states that for a centered multivariate Gaussian vector 𝑋 := (𝑋1, . . . , 𝑋𝑀 ), then

E[𝑋1𝑋2 · · ·𝑋𝑀 ] =
∑︀
𝜋∈Π2

𝑀

∏︀
{𝑖,𝑗}∈𝜋 Cov(𝑋𝑖, 𝑋𝑗), where Π2

𝑀 is the set of all partitions of
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{1, . . . ,𝑀} of length 2. Therefore, in contrast to the sample-based estimator, the Wick’s-

based estimator avoids having to compute empirical higher order moments which plausibly

leads to a more stable estimator for any given sample size. The situation in the sub-Gaussian

setting depicted in Figure 5.5 is somewhat more surprising, given that the Wick’s-based

estimator is only theoretically justified for Gaussian data. While a rigorous explanation of

this phenomena is well beyond the scope of this work, we offer here some intuition as to why

the Wick’s-based estimator might be competitive even for sub-Gaussian data. A generalization

of Wick’s theorem to non-Gaussian data given in Leonov and Shiryaev [1959] states that,

whenever the joint moment exists, E[𝑋1𝑋2 · · ·𝑋𝑀 ] =
∑︀
𝜋∈Π𝑀

∏︀
𝑎∈𝜋 𝜅((𝑋𝑚)𝑚∈𝑎), where

Π𝑀 is the set of all partitions of {1, . . . ,𝑀}, and 𝜅((𝑋𝑚)𝑚∈𝑎) is the joint cumulant of

the subset (𝑋𝑚)𝑚∈𝑎. Therefore, one must estimate all higher-order cumulants as opposed

to the Gaussian case in which second-order cumulants suffice. Recall that the cumulants

are the coefficients in the Taylor series expansion of the cumulant (log-moment) generating

function of 𝑋, 𝜓(𝛾) := log E𝑒⟨𝛾,𝑋⟩, which for sub-Gaussian 𝑋 is bounded above by 𝑐‖𝛾‖22 for

a positive universal constant 𝑐. In order for this to be true, terms of cubic and higher-order

cannot be too large. Consequently, higher-order cumulants (third-order and above) cannot

be too large. With this in mind, the Wick-based estimator can be interpreted as a type of

penalized estimator that effectively treats these small higher-order cumulants as negligible by

approximating them with zero.

Notice that in Figures 5.2, 5.3, 5.4 and 5.5 thresholding seems to increase the relative

error for large 𝜆. We note, however, that our theory holds only in the small 𝜆 regime, and

consequently the behavior for large 𝜆 is not captured. We also note that the increase in error

may be solely due to the very small sample size used for large values of 𝜆.
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Figure 5.5: Plots of the average relative errors and 95% confidence intervals achieved by
the sample (𝜀, dashed blue), universal thresholding with data-driven radius (𝜀U𝜌𝑁,grid , pink),
sample-based adaptive thresholding with data-driven radius (𝜀S𝜌𝑁,grid , black) and Wick’s-
based adaptive thresholding with data-driven radius (𝜀W𝜌𝑁,grid , purple) covariance estimators

based on a sample size (𝑁 , dotted green) for the sub-Gaussian processes 𝑢(1) (left) and 𝑢(2)
(right). For each data-driven estimator and for each 𝜆, 𝜌𝑁 is chosen as the error minimizing
radius from a set of radii ranging from zero to the choice suggested by the theory in the
Gaussian setting. The results are carried out in 𝑑 = 1 over 30 Monte-Carlo trials and 30
scale parameters 𝜆 ranging from 10−2.2 to 10−0.1.
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5.3 Error Analysis for Adaptive-threshold Estimator

In this section, we prove our first main result, Theorem 5.2.3. The proof structure is similar

to that for the study of adaptive covariance matrix estimation in Cai and Yuan [2012],

but our proof techniques differ in a number of important ways. Chiefly, our results are

nonasymptotic and dimension free, owing to our use of recent theory on suprema of product

empirical processes put forward in Mendelson [2016] and described in detail in Section 5.4.

This new approach allows us to prove Lemmas 5.3.2 and 5.3.3, which provide dimension-

free control of the sample covariance and sample variance component. Building on these

dimension-free bounds, we show five technical results, Lemmas 5.3.1, 5.3.4, 5.3.5, 5.3.6, and

5.3.7 that are the key building blocks of the proof of the main result. Throughout, we denote

the normalized versions of 𝑢, 𝑢1, . . . , 𝑢𝑁 by

𝑢̃(·) := 𝑢(·)√︀
𝑘(·, ·)

, 𝑢̃𝑛(·) :=
𝑢𝑛(·)√︀
𝑘(·, ·)

, 1 ≤ 𝑛 ≤ 𝑁. (5.9)

We further denote the Gaussian processes associated to 𝑢, 𝑢̃ by 𝑣, 𝑣 respectively.

Lemma 5.3.1. Under Assumption 5.2.1, it holds with probability at least 1−2𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

that

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

,

where 𝜃 ∈ {𝜃S, 𝜃W} in the Gaussian setting, and 𝜃 = 𝜃S otherwise.
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Proof. We consider first 𝜃S. Assumption 5.2.1 (ii) implies that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝜃S(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒𝑘2(𝑥, 𝑦)− 𝑘2(𝑥, 𝑦) + 1

𝑁

∑︀𝑁
𝑛=1 𝑢

2
𝑛(𝑥)𝑢

2
𝑛(𝑦)− E[𝑢2(𝑥)𝑢2(𝑦)]

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒
𝑘2(𝑥, 𝑦)− 𝑘2(𝑥, 𝑦)

⃒⃒⃒
𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

+

⃒⃒⃒
1
𝑁

∑︀𝑁
𝑛=1 𝑢

2
𝑛(𝑥)𝑢

2
𝑛(𝑦)− E[𝑢2(𝑥)𝑢2(𝑦)]

⃒⃒⃒
𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

=: 𝐼S1 + 𝐼S2 .

Controlling 𝐼S1 : Note that for constants 𝑎, 𝑏, we have

𝑎2 − 𝑏2 = (𝑎− 𝑏)(𝑎+ 𝑏) = (𝑎− 𝑏)(𝑎− 𝑏+ 2𝑏) = (𝑎− 𝑏)2 + 2𝑏(𝑎− 𝑏).

Therefore,

𝐼S1 =

⃒⃒⃒
𝑘2(𝑥, 𝑦)− 𝑘2(𝑥, 𝑦)

⃒⃒⃒
𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

≤ 1

𝜈

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒
2

+ 2|𝑘(𝑥, 𝑦)|

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒

≤ 1

𝜈

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒
2

+
2

𝜈

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒ ,

where we have used that |𝑘(𝑥, 𝑦)| ≤
√︀
𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦) by Cauchy-Schwarz. On the event Ω(1)

𝑡

defined in Lemma 5.3.2 it holds that, for all 𝑥, 𝑦 ∈ 𝐷,

𝐼S1 ≲
1

𝜈

(︃√︂
𝑡

𝑁
∨ 𝑡2

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

4

𝑁

)︃
.

Controlling 𝐼S2 : On the event Ω(2)
𝑡 defined in Lemma 5.3.3 it holds that, for all 𝑥, 𝑦 ∈ 𝐷,

𝐼S2 ≲
1

𝜈

(︃√︂
𝑡

𝑁
∨ 𝑡

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

2

𝑁

)︃
.
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Therefore, by Assumption 5.2.1 (iii) and choosing 𝑡 = (E[sup𝑥∈𝐷 𝑣(𝑥)])
2, we have

𝐼S1 + 𝐼S2 ≲
1

𝜈

(︃√︂
𝑡

𝑁
∨ 𝑡2

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

4

𝑁

)︃
≲

1

𝜈

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

.

The proof is completed by noting that the event 𝐴𝑡 := Ω
(1)
𝑡 ∩ Ω

(2)
𝑡 has probability at least

1− 2𝑒−𝑡 by Lemmas 5.3.2 and 5.3.3.

Next, for 𝜃W, Assumption 5.2.1 (ii) implies that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝜃W(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ |𝑘2(𝑥, 𝑦)− 𝑘2(𝑥, 𝑦)|

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)
+

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)− 𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ =: 𝐼W1 + 𝐼W2 .

Controlling 𝐼W1 : Since 𝐼W1 = 𝐼S1 , it follows that 𝐼W1 ≲
E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

with probability at

least 1− 𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2
.

Controlling 𝐼W2 : Writing

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)− 𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦) = (𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥))(𝑘(𝑦, 𝑦)− 𝑘(𝑦, 𝑦))

+ (𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥))𝑘(𝑦, 𝑦) + (𝑘(𝑦, 𝑦)− 𝑘(𝑦, 𝑦))𝑘(𝑥, 𝑥),

and by Assumption 5.2.1, we have that, for any 𝑥, 𝑦 ∈ 𝐷,

𝐼W2 ≤

⃒⃒⃒⃒
⃒(𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥))(𝑘(𝑦, 𝑦)− 𝑘(𝑦, 𝑦))

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒𝑘(𝑦, 𝑦)(𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥))

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑥)(𝑘(𝑦, 𝑦)− 𝑘(𝑦, 𝑦))

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒

≤ 1

𝜈
sup
𝑥∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥)

𝑘(𝑥, 𝑥)

⃒⃒⃒⃒
⃒
2

+
2

𝜈
sup
𝑥∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥)

𝑘(𝑥, 𝑥)

⃒⃒⃒⃒
⃒ =:

1

𝜈
𝐼221 +

2

𝜈
𝐼W21 .
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Define the event 𝐴 :=
{︁
𝐼W21 ≲

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

}︁
, and note that on 𝐴,

𝐼W2 ≲
1

𝜈

(︂
E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁

)︂2

+
2

𝜈

(︂
E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁

)︂
≲

E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

.

By Lemma 5.3.2 and Assumption 5.2.1 (iii), we have that P(𝐴) ≥ 1−𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2
.

Lemma 5.3.2. For any 𝑡 ≥ 1, define Ω
(1)
𝑡 to be the event on which

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒ ≲

√︂
𝑡

𝑁
∨ 𝑡

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

2

𝑁
.

Then, it holds that P(Ω(1)
𝑡 ) ≥ 1− 𝑒−𝑡.

Proof. The result follows by invoking Lemma 5.4.4 after noting that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒ 1𝑁

𝑛∑︁
𝑛=1

𝑢𝑛(𝑥)√︀
E[𝑢2𝑛(𝑥)]

𝑢𝑛(𝑦)√︀
E[𝑢2𝑛(𝑦)]

− E

[︃
𝑢(𝑥)√︀

E[𝑢2(𝑥)]

𝑢(𝑦)√︀
E[𝑢2(𝑦)]

]︃⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃𝑛(𝑥)𝑢̃𝑛(𝑦)− E[𝑢̃(𝑥)𝑢̃(𝑦)]

⃒⃒⃒⃒
⃒⃒ .

Lemma 5.3.3. For any 𝑡 ≥ 1, define Ω
(2)
𝑡 to be the event on which

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒ 1𝑁
∑︀𝑁
𝑛=1 𝑢

2
𝑛(𝑥)𝑢

2
𝑛(𝑦)− E[𝑢2(𝑥)𝑢2(𝑦)]

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒

≲

√︂
𝑡

𝑁
∨ 𝑡2

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

4

𝑁
.

Then, it holds that P(Ω(2)
𝑡 ) ≥ 1− 𝑒−𝑡.
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Proof. The result follows by invoking Lemma 5.4.5 after noting that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒ 1𝑁
∑︀𝑁
𝑛=1 𝑢

2
𝑛(𝑥)𝑢

2
𝑛(𝑦)− E[𝑢2(𝑥)𝑢2(𝑦)]

𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃2𝑛(𝑥)𝑢̃
2
𝑛(𝑦)− E[𝑢̃2(𝑥)𝑢̃2(𝑦)]

⃒⃒⃒⃒
⃒⃒ .

Lemma 5.3.4. Under Assumption 5.2.1, it holds with probability at least 1−2𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

that

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)− 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

,

where 𝜃 ∈ {𝜃S, 𝜃W} in the Gaussian setting, and 𝜃 = 𝜃S otherwise.

Proof. Define the event

𝐴 :=

{︃
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

}︃
.

It holds that P(𝐴) ≥ 1 − 2𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

by Lemma 5.3.1. Further note that the

universal constant in Assumption 5.2.1 (iii) can be taken sufficiently small to ensure that

231



E[sup𝑥∈𝐷 𝑣(𝑥)]
𝜈
√
𝑁

≤ 1
2 . Then on 𝐴, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)− 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)− 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦) + 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦) + 𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒ 𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦) + 𝜃1/2(𝑥, 𝑦)𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦) + 𝜃1/2(𝑥, 𝑦)𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

≤ 2

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

,

where the second to last inequality follows since on 𝐴 we have

|𝜃(𝑥, 𝑦)| ≤ |𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)|+ |𝜃(𝑥, 𝑦)| ≤ 1

2
|𝜃(𝑥, 𝑦)|+ |𝜃(𝑥, 𝑦)| =⇒ |𝜃(𝑥, 𝑦)| ≤ 2|𝜃(𝑥, 𝑦)|.

Lemma 5.3.5. Under Assumption 5.2.1, it holds with probability at least 1−3𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

that

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

,

where 𝜃 ∈ {𝜃S, 𝜃W} in the Gaussian setting, and 𝜃 = 𝜃S otherwise.
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Proof. Note that

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒
(︃⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)− 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒+ 1

)︃

≤

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)√︀

𝜈𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

⃒⃒⃒⃒
⃒
(︃⃒⃒⃒⃒
⃒𝜃1/2(𝑥, 𝑦)− 𝜃1/2(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒+ 1

)︃

= 𝐼1 × 𝐼2.

Controlling 𝐼1 : It holds on the event Ω
(1)
(E[sup𝑥∈𝐷 𝑣(𝑥)])2

defined in Lemma 5.3.2 that, for

all 𝑥, 𝑦 ∈ 𝐷,

𝐼1 ≲
1√
𝜈

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

,

and P(Ω(1)
(E[sup𝑥∈𝐷 𝑣(𝑥)])2

) ≥ 1− 𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2
.

Controlling 𝐼2: Let 𝐵 be the event on which the bound in Lemma 5.3.4 holds. Then,

P(𝐵) ≥ 1− 2𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2
, and on 𝐵

𝐼2 ≲
E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

+ 1.

Then, on the event 𝐸 = Ω
(1)
(E[sup𝑥∈𝐷 𝑣(𝑥)])2

∩𝐵, we have

𝐼1 × 𝐼2 ≲
1

𝜈3/2
(E[sup𝑥∈𝐷 𝑣(𝑥)])

2

𝑁
∨ 1√

𝜈

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

=
1√
𝜈

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

.

Lemma 5.3.6. Let 𝑣, 𝑣1, . . . , 𝑣𝑁 denote the Gaussian processes associated to 𝑢, 𝑢1, . . . , 𝑢𝑁 ,
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which satisfy Assumption 5.2.1. Define

𝜌𝑁 =
1

𝜈
√
𝑁

E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂
, 𝜌𝑁 =

1

𝜈
√
𝑁

⎛⎝ 1

𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

⎞⎠ .

Then, it holds with probability at least 1− 4𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

that |𝜌𝑁 − 𝜌𝑁 | ≲ 𝜌𝑁 .

Proof.

𝜈
√
𝑁 |𝜌𝑁 − 𝜌𝑁 | =

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂⃒⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

(︃
𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− 𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
+

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

)︃
− E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂⃒⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

(︃
𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− 𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

)︃⃒⃒⃒⃒
⃒⃒+
⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂⃒⃒⃒⃒⃒⃒
= 𝐼1 + 𝐼2.

Controlling 𝐼1: We write

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− 𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
=

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

𝑘1/2(𝑥, 𝑥)− 𝑘1/2(𝑥, 𝑥)

𝑘1/2(𝑥, 𝑥)
.

Define the event

𝐴 :=

{︃
sup
𝑥∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑥)− 𝑘(𝑥, 𝑥)

𝑘(𝑥, 𝑥)

⃒⃒⃒⃒
⃒ ≤ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

}︃
.

By Lemma 5.3.2 and Assumption 5.2.1 (iii), we have that P(𝐴) ≥ 1−2𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2
. Fur-

ther note that the universal constant in Assumption 5.2.1 (iii) can be taken sufficiently small

to ensure that E[sup𝑥∈𝐷 𝑣(𝑥)]
𝜈
√
𝑁

≤ 1
2 . By a similar argument to the one used in Lemma 5.3.4,
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conditional on 𝐴 and for any 𝑥 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝑘1/2(𝑥, 𝑥)− 𝑘1/2(𝑥, 𝑥)

𝑘1/2(𝑥, 𝑥)

⃒⃒⃒⃒
⃒ ≲ E[sup𝑥∈𝐷 𝑣(𝑥)]

𝜈
√
𝑁

≤ 1

2
.

Therefore, on 𝐴 it holds that

𝐼1 =

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

(︃
𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− 𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

)︃⃒⃒⃒⃒
⃒⃒

≤ 1

2

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)

⃒⃒⃒⃒
⃒⃒

≲

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

sup
𝑥∈𝐷

𝑣𝑛(𝑥)

𝑘1/2(𝑥, 𝑥)
− E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂⃒⃒⃒⃒⃒⃒+ E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

𝑘1/2(𝑥, 𝑥)

]︂

= 𝐼2 + 𝜈
√
𝑁𝜌𝑁 .

Controlling 𝐼2: By [Talagrand, 2022, Lemma 2.4.7], sup𝑥∈𝐷 𝑣𝑛(𝑥) is sup𝑥∈𝐷 var
(︀
𝑣𝑛(𝑥)

)︀
-

sub-Gaussian. Since var
(︀
𝑣𝑛(𝑥)

)︀
= 1, it follows by sub-Gaussian concentration that with

probability at least 1 − 2𝑒−𝑡, 𝐼2 ≤
√︀

2𝑡/𝑁. Choosing 𝑡 = (E[sup𝑥∈𝐷 𝑣(𝑥)])
2/2, we have

𝐼2 ≤ E[sup𝑥∈𝐷 𝑣(𝑥)]/
√
𝑁 . Putting the bounds together, we have shown that

|𝜌𝑁 − 𝜌𝑁 | ≤ 1

𝜈
√
𝑁
(𝐼1 + 𝐼2) ≲

1

𝜈
√
𝑁

E[sup𝑥∈𝐷 𝑣(𝑥)]√
𝑁

+ 𝜌𝑁 ≲ 𝜌𝑁 .

Lemma 5.3.7. Under the setting of Lemma 5.3.6, it holds with probability at least 1 −

7𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])
2

that

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ 𝜌𝑁

2
,

where 𝜃 ∈ {𝜃S, 𝜃W} in the Gaussian setting, and 𝜃 = 𝜃S otherwise.
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Proof. Let 𝐸 be the event on which the bound in the statement of the theorem holds. Then

P(𝐸𝑐) = P

(︃
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒+ 1

2
(𝜌𝑁 − 𝜌𝑛) ≥

1

2
𝜌𝑁

)︃

≤ P

(︃
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≥ 1

4
𝜌𝑁

)︃
+ P

(︂
𝜌𝑁 − 𝜌𝑛 ≥ 1

4
𝜌𝑁

)︂
≤ 7𝑒−(E[sup𝑥∈𝐷 𝑣(𝑥)])

2
,

where the last line follows by Lemmas 5.3.5 and 5.3.6.

Proof of Theorem 5.2.3. We consider first the Gaussian case. Let 𝜃 ∈ {𝜃S, 𝜃W}. Define the

three events:

𝐸1 :=

{︃
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ 𝜌𝑁

2

}︃
,

𝐸2 :=

{︃
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒𝜃(𝑥, 𝑦)− 𝜃(𝑥, 𝑦)

𝜃(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≲ 1

2

}︃
,

𝐸3 := {|𝜌𝑁 − 𝜌𝑁 | ≲ 𝜌𝑁} ,

and 𝐸 = 𝐸1 ∩ 𝐸2 ∩ 𝐸3. The final result holds on 𝐸 as will be shown below, and so

the proof is completed by noting that from Lemmas 5.3.5, 5.3.6 and 5.3.7, P(𝐸) ≥ 1 −

𝑐1𝑒
−(E[sup𝑥∈𝐷 𝑢̃(𝑥)])

2
. Further note that on the event 𝐸2, for any 𝑥, 𝑦 we have the following

relation:

1

2
|𝜃(𝑥, 𝑦)| ≤ |𝜃(𝑥, 𝑦)| ≤ 2|𝜃(𝑥, 𝑦)|. (5.10)

Now, defining the set

Ω𝑥 :=

{︃
𝑦 ∈ 𝐷 :

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≥ 𝜌𝑁

2

}︃
,

236



we have

‖ ̂︀𝐶𝜌𝑁 − 𝐶‖ ≤ sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)|𝑑𝑦

= sup
𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒⃒⃒
⃒𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|𝑑𝑦 + sup

𝑥∈𝐷

∫︁
Ω𝑐𝑥

⃒⃒⃒⃒
⃒𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|𝑑𝑦

= sup
𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒⃒⃒
⃒𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|𝑑𝑦 + sup

𝑥∈𝐷

∫︁
Ω𝑥

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|𝑑𝑦

+ sup
𝑥∈𝐷

∫︁
Ω𝑐𝑥

⃒⃒⃒⃒
⃒𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|𝑑𝑦 =: 𝐼1 + 𝐼2 + 𝐼3.

Controlling 𝐼1: For any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒𝑘𝜌𝑁 (𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ = 0× 1

{︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≥ 𝜌𝑁

}︃
+

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒× 1

{︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ < 𝜌𝑁

}︃

≤ 𝜌𝑁 .

Therefore,

𝐼1 ≤ 𝜌𝑁 sup
𝑥∈𝐷

∫︁
Ω𝑥

|𝜃1/2(𝑥, 𝑦)|𝑑𝑦.

By Assumption 5.2.1, we have that

𝑅
𝑞
𝑞 ≥ sup

𝑥∈𝐷

∫︁
𝐷
(𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦))(1−𝑞)/2 |𝑘(𝑥, 𝑦)|𝑞𝑑𝑦

≥ sup
𝑥∈𝐷

∫︁
Ω𝑥

(𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦))(1−𝑞)/2 |𝑘(𝑥, 𝑦)|𝑞𝑑𝑦

≳ sup
𝑥∈𝐷

∫︁
Ω𝑥

(𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦))(1−𝑞)/2 𝜌𝑞𝑁 |𝜃𝑞/2(𝑥, 𝑦)|𝑑𝑦

≳ sup
𝑥∈𝐷

∫︁
Ω𝑥

(𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦))(1−𝑞)/2 𝜌𝑞𝑁 |𝜃𝑞/2(𝑥, 𝑦)|𝑑𝑦,

where the third inequality follows by definition of Ω𝑥, and the final inequality holds by (5.10).

237



Further, we have

𝜃(𝑥, 𝑦) = var
(︀
𝑢(𝑥)𝑢(𝑦)

)︀
≤
√︁

E[𝑢4(𝑥)]E[𝑢4(𝑦)] ≲ E[𝑢2(𝑥)]E[𝑢2(𝑦)] = 𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦),

where the first inequality follows by Cauchy-Schwarz, and the second inequality follows by

the 𝐿4-𝐿2 equivalence property of sub-Gaussian random variables. Therefore, it follows that

𝑅
𝑞
𝑞 ≳ 𝜌

𝑞
𝑁 sup
𝑥∈𝐷

∫︁
Ω𝑥

|𝜃1/2(𝑥, 𝑦)|𝑑𝑦 ≥ 𝜌
𝑞
𝑁

𝐼1
𝜌𝑁

.

We have therefore shown that 𝐼1 ≲ 𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 , and by definition of 𝐸3, it follows immediately

that 𝐼1 ≲ 𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 .

Controlling 𝐼2: On 𝐸, we have

𝐼2 ≲ 𝜌𝑁 sup
𝑥∈𝐷

∫︁
Ω𝑥

|𝜃1/2(𝑥, 𝑦)|𝑑𝑦 ≲ 𝑅
𝑞
𝑞𝜌

1−𝑞
𝑁 ,

which can be bounded with an identical argument to the one used to bound 𝐼1.

Controlling 𝐼3: On 𝐸 ∩ Ω𝑐𝑥, we have

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒𝑘(𝑥, 𝑦)− 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ 𝜌𝑁

2
+
𝜌𝑁
2

= 𝜌𝑁 .
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Therefore, 𝑘𝜌𝑁 (𝑥, 𝑦) = 𝑘(𝑥, 𝑦)1

{︂⃒⃒⃒⃒
𝑘(𝑥,𝑦)

𝜃1/2(𝑥,𝑦)

⃒⃒⃒⃒
≥ 𝜌𝑁

}︂
= 0. Now, for any 𝑞 ∈ [0, 1),

𝐼3 ≤ sup
𝑥∈𝐷

∫︁
𝐷

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|1

{︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ 𝜌𝑁

2

}︃
𝑑𝑦

≤ sup
𝑥∈𝐷

∫︁
𝐷

⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ |𝜃1/2(𝑥, 𝑦)|1

{︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ 𝜌𝑁

}︃
𝑑𝑦

≤ 𝜌𝑁 sup
𝑥∈𝐷

∫︁
𝐷

(︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ /𝜌𝑁

)︃𝑞
|𝜃1/2(𝑥, 𝑦)|1

{︃⃒⃒⃒⃒
⃒ 𝑘(𝑥, 𝑦)

𝜃1/2(𝑥, 𝑦)

⃒⃒⃒⃒
⃒ ≤ 𝜌𝑁

}︃
𝑑𝑦

≲ 𝜌
1−𝑞
𝑁 sup

𝑥∈𝐷

∫︁
𝐷
|𝑘(𝑥, 𝑦)|𝑞 𝜃(𝑥, 𝑦)(1−𝑞)/2𝑑𝑦.

The second inequality holds since on 𝐸3, 𝜌𝑁 ≲ 2𝜌𝑁 . The third inequality holds since the

quantity being taken to the 𝑞-th power is smaller than 1 and 𝑞 ∈ [0, 1). Combining (5.10) with

Assumption 5.2.1 (ii) gives that 𝜃(𝑥, 𝑦)(1−𝑞)/2 ≤ 𝜃(𝑥, 𝑦)(1−𝑞)/2 ≤
(︀
𝑘(𝑥, 𝑥)𝑘(𝑦, 𝑦)

)︀(1−𝑞)/2 and

so 𝐼3 ≲ 𝜌
1−𝑞
𝑁 𝑅

𝑞
𝑞. This completes the proof of the result in the Gaussian case. The proof in

the sub-Gaussian setting follows identically except that the events 𝐸1, 𝐸2 are defined with

respect to 𝜃S only, and 𝜌𝑁 is used in place of 𝜌𝑁 .

5.4 Product Empirical Processes

This section contains the proofs of Lemmas 5.4.4 and 5.4.5, which were used to establish

Lemmas 5.3.2 and 5.3.3. The proofs rely on the recent work Al-Ghattas et al. [2025], which

provides sharp bounds for suprema of multi-product empirical processes. We begin in Section

5.4.1 by introducing technical definitions as well as the main result regarding multi-product

empirical processes from Al-Ghattas et al. [2023]. We then prove in Section 5.4.2 our main

results of this section, Lemmas 5.4.4 and 5.4.5. Our proofs have been inspired by the tech-

niques introduced in Koltchinskii and Lounici [2017] as well as Al-Ghattas and Sanz-Alonso

[2024c] and Al-Ghattas et al. [2023]. These works deal with product empirical processes in

which the product is taken over two sub-Gaussian classes. In contrast, the results here per-
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tain to product empirical processes over a special category of sub-Exponential classes that

arise in the nonasymptotic analysis of the variance component 𝜃(𝑥, 𝑦).

5.4.1 Background

Let 𝑋,𝑋1, . . . , 𝑋𝑁
i.i.d.∼ P be a sequence of random variables on a probability space (Ω,P).

The empirical process indexed by a class ℱ of functions on (Ω,P) is given by

𝑓 ↦→ 1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋𝑛)− E𝑓(𝑋), 𝑓 ∈ ℱ .

For 𝑠 ≥ 2, the order-𝑠 multi-product empirical process indexed by ℱ is given by

𝑓 ↦→ 1

𝑁

𝑁∑︁
𝑛=1

𝑓𝑠(𝑋𝑛)− E𝑓𝑠(𝑋), 𝑓 ∈ ℱ .

For any function 𝑓 on (Ω,P) and 𝛼 ≥ 1, the Orlicz 𝜓𝛼-norm of 𝑓 is defined as

‖𝑓‖𝜓𝛼(P) = inf
{︁
𝑐 > 0 : E𝑋∼P

[︀
exp(|𝑓(𝑋)/𝑐|𝛼)

]︀
≤ 2
}︁
= sup
𝑞≥1

‖𝑓‖𝐿𝑞(P)
𝑞1/𝛼

.

The base measure will be clear from the context, and so we write ‖𝑓‖𝜓𝛼(P) = ‖𝑓‖𝜓𝛼 and

similarly for the 𝐿𝑞-norms. The corresponding Orlicz space 𝐿𝜓𝛼 contains functions with

finite Orlicz 𝜓𝛼-norm. A class of functions 𝒢 is 𝐿-sub-Gaussian if, for every 𝑓, ℎ ∈ 𝒢 ∪ {0},

‖𝑓 − ℎ‖𝜓2 ≤ 𝐿‖𝑓 − ℎ‖𝐿2
.

For a sub-Gaussian class G it holds that, for every 𝑓, ℎ ∈ 𝒢 ∪ {0} and 𝑞 ≥ 1,

‖𝑓 − ℎ‖𝐿𝑞 ≤ 𝑐
√
𝑞‖𝑓 − ℎ‖𝜓2 ≤ 𝑐𝐿

√
𝑞‖𝑓 − ℎ‖𝐿2

.
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A class of functions ℰ is 𝐿-sub-Exponential if, for every 𝑓, ℎ ∈ ℰ ∪ {0},

‖𝑓 − ℎ‖𝜓1 ≤ 𝐿‖𝑓 − ℎ‖𝐿2
.

For a sub-Exponential class ℰ it holds that, for every 𝑓, ℎ ∈ ℰ ∪ {0} and 𝑞 ≥ 1,

‖𝑓 − ℎ‖𝐿𝑞 ≤ 𝑐𝑞‖𝑓 − ℎ‖𝜓1 ≤ 𝑐𝐿𝑞‖𝑓 − ℎ‖𝐿2
.

Our results depend on Talagrand’s 𝛾-functional, whose definition we now recall.

Definition 5.4.1 (Talagrand’s 𝛾 functional, Talagrand [2022]). Let (ℱ , d) be a metric space.

An admissible sequence of ℱ is a collection of subsets ℱ𝑠 ⊂ ℱ whose cardinality satisfies

|ℱ𝑠| ≤ 22
𝑠

for 𝑠 ≥ 1, and |ℱ0| = 1. Set

𝛾2(ℱ , d) = inf sup
𝑓∈ℱ

∑︁
𝑠≥0

2𝑠/2d(𝑓,ℱ𝑠),

where the infimum is taken over all admissible sequences, and d(𝑓,ℱ𝑠) = inf𝑔∈ℱ𝑠 d(𝑓, 𝑔). We

write 𝛾2(ℱ , 𝜓2) when the distance on ℱ is induced by the 𝜓2-norm.

We now introduce a technical result that will be used in the subsequent proofs.

Lemma 5.4.2. Let 𝒢,ℋ be arbitrary subsets of a normed space endowed with the norm ‖ · ‖.

Define ℱ = 𝒢 +ℋ, which inherits this norm. Then

𝛾2(ℱ , d) ≤ 2(sup
𝑔∈𝒢

‖𝑔‖+ sup
ℎ∈ℋ

‖ℎ‖) +
√
2(𝛾2(𝒢, d) + 𝛾2(ℋ, d)),

where d(𝑎, 𝑏) = ‖𝑎− 𝑏‖. Moreover, if 𝒢 and ℋ both either contain 0 or are symmetric,

𝛾2(ℱ , d) ≲ 𝛾2(𝒢, d) + 𝛾2(ℋ, d).
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Proof. Let (𝒢𝑠)𝑠, (ℋ𝑠)𝑠 be admissible sequences for 𝒢 and ℋ respectively. We can construct

an admissible sequence for ℱ as follows. Let ℱ0 be an arbitrary element of ℱ , and for 𝑠 ≥ 1,

set ℱ𝑠 = 𝒢𝑠−1 + ℋ𝑠−1 = {𝑔 + ℎ : 𝑔 ∈ 𝒢𝑠−1, ℎ ∈ ℋ𝑠−1}. This ensures admissibility since

|ℱ𝑠| ≤ |𝒢𝑠−1||ℋ𝑠−1| ≤ 22
𝑠−1

22
𝑠−1

= 22
𝑠
. Note then that

𝛾2(ℱ , d) ≤ sup
𝑓∈ℱ

d(𝑓,ℱ0) + sup
𝑓∈ℱ

∑︁
𝑠≥1

2𝑠/2d(𝑓,ℱ𝑠)

= sup
𝑓∈ℱ

d(𝑓,ℱ0) + sup
𝑔∈𝒢,ℎ∈ℋ

∑︁
𝑠≥1

2𝑠/2d(𝑔 + ℎ,𝒢𝑠−1 +ℋ𝑠−1)

≤ sup
𝑓∈ℱ

d(𝑓,ℱ0) + sup
𝑔∈𝒢

∑︁
𝑠≥1

2𝑠/2d(𝑔,𝒢𝑠−1) + sup
ℎ∈ℋ

∑︁
𝑠≥1

2𝑠/2d(ℎ,ℋ𝑠−1)

= sup
𝑓∈ℱ

d(𝑓,ℱ0) +
√
2 sup
𝑔∈𝒢

∑︁
𝑠≥0

2𝑠/2d(𝑔,𝒢𝑠) +
√
2 sup
ℎ∈ℋ

∑︁
𝑠≥0

2𝑠/2d(ℎ,ℋ𝑠).

Noting that

sup
𝑓∈ℱ

d(𝑓,ℱ0) ≤ diam(ℱ) ≤ diam(𝒢) + diam(ℋ) ≤ 2(sup
𝑔∈𝒢

‖𝑔‖+ sup
ℎ∈ℋ

‖ℎ‖),

and taking the infimum with respect to (𝒢𝑠)𝑠 and (ℋ𝑠)𝑠 on both sides yields the first result.

In the case that 𝒢 and ℋ both either contain 0 or are symmetric, we have that sup𝑔∈𝒢 ‖𝑔‖ ≲

𝛾2(𝒢, d) by [Al-Ghattas et al., 2025, Lemma 4.6], and similarly for ℋ.

The next result provides optimal high probability bounds on order-𝑠 multi-product em-

pirical processes.

Theorem 5.4.3 ([Al-Ghattas et al., 2025, Theorem 2.2]). Assume that 0 ∈ ℱ or that ℱ is

symmetric (i.e., 𝑓 ∈ ℱ =⇒ −𝑓 ∈ ℱ). For any 𝑠 ≥ 2 and 𝑡 ≥ 1, it holds with probability at

least 1− 𝑒−𝑡 that, for any 𝑓 ∈ ℱ ,

⃒⃒⃒⃒
⃒ 1𝑁

𝑛∑︁
𝑛=1

𝑓𝑠(𝑋𝑛)− E𝑓𝑠(𝑋)

⃒⃒⃒⃒
⃒ ≲𝑠 𝛾2(ℱ , 𝜓2)𝑑

𝑠−1
𝜓2

(ℱ)
√
𝑁

∨
𝛾𝑠2(ℱ , 𝜓2)

𝑁
∨ 𝑑𝑠𝜓2(ℱ)

(︃√︂
𝑡

𝑁
∨ 𝑡𝑠/2

𝑁

)︃
,
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where ≲𝑠 indicates that the inequality holds up to a universal positive constant depending

only on 𝑠, and 𝑑𝜓2(ℱ) = sup𝑓∈ℱ ‖𝑓‖𝜓2 .

5.4.2 Product Sub-Gaussian and Sub-Exponential Classes

The goal of this section is to apply Theorem 5.4.3 to the problem of bounding product

empirical processes indexed by a function class ℱ , given by

𝑓, 𝑔 ↦→ 1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑋𝑛)𝑔(𝑋𝑛)− E[𝑓(𝑋)𝑔(𝑋)], 𝑓, 𝑔 ∈ ℱ .

Bounding the suprema of such processes arises in two important ways in this work. First,

in establishing uniform bounds on the deviation of the sample covariance function 𝑘 from

its expectation, in which case the indexing class ℱ is sub-Gaussian and we refer to it as a

product sub-Gaussian process. Second, in establishing uniform bounds on the deviation of

the sample variance component 𝜃 from its expectation, in which case ℱ is sub-Exponential

and we refer to it as a sub-Exponential product process.

We now present our two main results of this section. The first bounds the suprema of the

product process indexed by two sub-Gaussian classes, and the second bounds the suprema

of the product process indexed by two sub-Exponential classes.

We recall here that 𝑢, 𝑢1, . . . , 𝑢𝑁 are i.i.d. centered sub-Gaussian and pre-Gaussian

random functions on 𝐷 = [0, 1]𝑑 taking values on the real line and with covariance function 𝑘.

We assume that these functions are Lebesgue almost-everywhere continuous with probability

one. Denote by 𝑢̃, 𝑢̃1, . . . , 𝑢̃𝑁 their normalized versions as defined in (5.9). Further, recall

that a pre-Gaussian process 𝑢 is one for which there exists a centered Gaussian process, 𝑣,

that has the same covariance structure as 𝑢. Following [Ledoux and Talagrand, 2013, page

261], we refer to 𝑣 as the Gaussian process associated to 𝑢.
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Lemma 5.4.4. It holds with probability at least 1− 𝑒−𝑡 that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃𝑛(𝑥)𝑢̃𝑛(𝑦)− E[𝑢̃(𝑥)𝑢̃(𝑦)]

⃒⃒⃒⃒
⃒⃒ ≲

√︂
𝑡

𝑁
∨ 𝑡

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

2

𝑁
,

where 𝑣 is the Gaussian process associated with 𝑢̃.

Proof. For 𝑥 ∈ 𝐷, let ℓ𝑥 : 𝑣 ↦→ ℓ𝑥(𝑣) = 𝑣(𝑥) be the evaluation functional at 𝑥 ∈ 𝐷. We then

have

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃𝑛(𝑥)𝑢̃𝑛(𝑦)− E[𝑢̃(𝑥)𝑢̃(𝑦)]

⃒⃒⃒⃒
⃒⃒ = sup

𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ𝑥(𝑢̃𝑛)ℓ𝑦(𝑢̃𝑛)− E[ℓ𝑥(𝑢̃)ℓ𝑦(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

≤ sup
𝑥∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ2𝑥(𝑢̃𝑛)− E[ℓ2𝑥(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

+
1

2
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

(ℓ𝑥 − ℓ𝑦)
2(𝑢̃𝑛)− E[(ℓ𝑥 − ℓ𝑦)

2(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

≲ sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓2(𝑢̃𝑛)− E𝑓2(𝑢̃)

⃒⃒⃒⃒
⃒⃒ ,

where the first inequality follows by the fact that for two constants 𝑎, 𝑏, 𝑎𝑏 = 1
2(𝑎

2 + 𝑏2 −

(𝑎− 𝑏)2), and the second inequality follows for ℱ := {𝑐1ℓ𝑥− 𝑐2ℓ𝑦 : 𝑥, 𝑦 ∈ 𝐷, 𝑐1, 𝑐2 ∈ {0, 1}}.

Note that 0 ∈ ℱ since we can take 𝑐1 = 𝑐2 = 0. We then have

𝑑𝜓2(ℱ) = sup
𝑓∈ℱ

‖𝑓‖𝜓2 ≤ sup
𝑥∈𝐷

‖ℓ𝑥(𝑢̃𝑛)‖𝜓2 ∨ sup
𝑥,𝑦∈𝐷

‖(ℓ𝑥 − ℓ𝑦)(𝑢̃𝑛)‖𝜓2 ≲ 1.

Define 𝒢 := {𝑐ℓ𝑥 : 𝑥 ∈ 𝐷, 𝑐 ∈ {0, 1}}, and note that ℱ ⊂ 𝒢 − 𝒢, from which we have

𝛾2(ℱ , 𝜓2) ≤ 𝛾2(𝒢 − 𝒢, 𝜓2) ≲ 𝛾2(𝒢, 𝜓2) ≲ 𝛾2(𝒢, 𝐿2),

where the second inequality holds by Lemma 5.4.2 and the third inequality holds by the
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equivalence of 𝐿2 and 𝜓2 norms for linear functionals. Next, let 𝑣 be the Gaussian process

associated to 𝑢̃ and define

d𝑣(𝑥, 𝑦) :=

√︂
E
[︁(︀
𝑣(𝑥)− 𝑣(𝑦)

)︀2]︁
= ‖ℓ𝑥(·)− ℓ𝑦(·)‖𝐿2

, 𝑥, 𝑦 ∈ 𝐷.

Then,

𝛾2(𝒢, 𝐿2) ≲ 𝛾2({ℓ𝑥 : 𝑥 ∈ 𝐷}, 𝐿2) = 𝛾2(𝐷, d𝑣) ≍ E

[︂
sup
𝑥∈𝐷

𝑣(𝑥)

]︂
,

where the first inequality holds by the fact that for any constant 𝑐 ∈ R, function class ℱ and

metric d, 𝛾2(𝑐ℱ , d) ≤ |𝑐|𝛾2(ℱ , d), and the second inequality holds by the definition of d𝑣,

(see also [Koltchinskii and Lounici, 2017, Theorem 4], [Al-Ghattas et al., 2023, Proposition

3.1]). The final result therefore follows by invoking Theorem 5.4.3 with 𝑠 = 2.

Lemma 5.4.5. It holds with probability at least 1− 𝑒−𝑡 that, for any 𝑥, 𝑦 ∈ 𝐷,

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃2𝑛(𝑥)𝑢̃
2
𝑛(𝑦)− E[𝑢̃2(𝑥)𝑢̃2(𝑦)]

⃒⃒⃒⃒
⃒⃒ ≲

√︂
𝑡

𝑁
∨ 𝑡2

𝑁
∨ E[sup𝑥∈𝐷 𝑣(𝑥)]√

𝑁
∨ (E[sup𝑥∈𝐷 𝑣(𝑥)])

4

𝑁
,

where 𝑣 is the Gaussian process associated with 𝑢̃.

Proof. For 𝑥 ∈ 𝐷, let ℓ𝑥 : 𝑣 ↦→ ℓ𝑥(𝑣) = 𝑣(𝑥) be the evaluation functional at 𝑥 ∈ 𝐷. We then
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have

sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑢̃2𝑛(𝑥)𝑢̃
2
𝑛(𝑦)− E[𝑢̃2(𝑥)𝑢̃2(𝑦)]

⃒⃒⃒⃒
⃒⃒ = sup

𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ2𝑥(𝑢̃𝑛)ℓ
2
𝑦(𝑢̃𝑛)− E[ℓ2𝑥(𝑢̃)ℓ

2
𝑦(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

≤ 1

3
sup
𝑥∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

ℓ4𝑥(𝑢̃𝑛)− E[ℓ4𝑥(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

+
1

12
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

(ℓ𝑥 − ℓ𝑦)
4(𝑢̃𝑛)− E[(ℓ𝑥 − ℓ𝑦)

4(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

+
1

12
sup
𝑥,𝑦∈𝐷

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

(ℓ𝑥 + ℓ𝑦)
4(𝑢̃𝑛)− E[(ℓ𝑥 + ℓ𝑦)

4(𝑢̃)]

⃒⃒⃒⃒
⃒⃒

≲ sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑓4(𝑢̃𝑛)− E𝑓4(𝑢̃)

⃒⃒⃒⃒
⃒⃒ ,

where the first inequality follows by the fact that for two constants 𝑎, 𝑏, 𝑎2𝑏2 = 1
12((𝑎 +

𝑏)4 + (𝑎− 𝑏)4 − 2𝑎4 − 2𝑏4), and the second inequality follows for ℱ := {𝑐1ℓ𝑥 − 𝑐2ℓ𝑦 : 𝑥, 𝑦 ∈

𝐷, 𝑐1, 𝑐2 ∈ {−1, 0, 1}}. Note that 0 ∈ ℱ since we can take 𝑐1 = 𝑐2 = 0. We then have

𝑑𝜓2(ℱ) = sup
𝑓∈ℱ

‖𝑓‖𝜓2 ≤ sup
𝑥∈𝐷

‖ℓ𝑥(𝑢̃𝑛)‖𝜓2 ∨ sup
𝑥,𝑦∈𝐷

‖(ℓ𝑥 − ℓ𝑦)(𝑢̃𝑛)‖𝜓2 ≲ 1.

Note that for 𝒢 = {𝑐ℓ𝑥 : 𝑥 ∈ 𝐷, 𝑐 ∈ {−1, 0, 1}}, we have ℱ ⊂ 𝒢 − 𝒢. Using once more the

fact that for any constant 𝑐 ∈ R, function class ℱ and metric d, 𝛾2(𝑐ℱ , d) ≤ |𝑐|𝛾2(ℱ , d), we

have that 𝛾2(𝒢) ≲ 𝛾2({ℓ𝑥 : 𝑥 ∈ 𝐷}). By an identical argument to the one used in the proof

of Lemma 5.4.4, we have 𝛾2(ℱ , 𝜓2) ≲ E[sup𝑥∈𝐷 𝑢̃(𝑥)]. The final result therefore follows by

invoking Theorem 5.4.3 with 𝑠 = 4.

Remark 5.4.6. Our results are expressed in terms of the supremum of the Gaussian process

𝑣 associated with the observed process 𝑢 rather than directly in terms of the supremum of 𝑢.

A key step in proving Lemmas 5.4.4 and 5.4.5 is bounding Talagrand’s 𝛾-functional, which

arises from Theorem 5.4.3. In general, the task of controlling the 𝛾-functional efficiently is
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extremely difficult. One remarkable exception is Talagrand’s majorizing measures theorem,

which relates 𝛾2(ℱ , d) to the expected supremum of a Gaussian process. We leverage the pre-

Gaussianity of 𝑢 to establish equivalence between 𝛾2 functionals defined with respect to 𝐿2(P)

(where P is the law of 𝑢) and the natural metric d𝑣 of 𝑣. Applying Talagrand’s theorem, we

obtain an upper bound in terms of E[sup𝑥∈𝐷 𝑣(𝑥)]. Extending this approach to instead bound

E[sup𝑥∈𝐷 𝑢̃(𝑥)] from below in terms of 𝛾2 or finding an alternative approach that allows a

bound in terms of 𝑢 requires further investigation which we leave to future work.

5.5 Lower Bound for Universal Thresholding

This section contains the proof of Theorem 5.2.6. The idea is to first reduce the covariance

operator estimation problem to a finite-dimensional covariance matrix estimation problem,

then apply Theorem 4 in Cai and Liu [2011] which proves a lower bound for universal

thresholding in the finite-dimensional covariance matrix estimation problem. The reduction

is based on the recent technique developed in [Al-Ghattas et al., 2024b, Proposition 2.6].

Proof of Theorem 5.2.6. For 𝑚 ∈ N to be chosen later, let {𝐼𝑖}𝑚𝑖=1 be a uniform partition

of 𝐷 with vol(𝐼𝑖) = 𝑚−1. For any positive definite matrix 𝐻 = (ℎ𝑖𝑗) ∈ R𝑚×𝑚, define the

covariance operator 𝐶𝐻 with corresponding covariance function

𝑘𝐻(𝑥, 𝑦) =
𝑚∑︁

𝑖,𝑗=1

ℎ𝑖𝑗1𝑖(𝑥)1𝑗(𝑦),

where 1𝑖(𝑥) := 1{𝑥 ∈ 𝐼𝑖}. Then, 𝐶𝐻 is a positive definite operator since, for any 𝜓 ∈ 𝐿2(𝐷),

∫︁
𝐷×𝐷

𝑘𝐻(𝑥, 𝑦)𝜓(𝑥)𝜓(𝑦)𝑑𝑥𝑑𝑦 =
⟨︀
𝐻𝜓,𝜓

⟩︀
> 0,

where 𝜓 = (𝜓1, . . . , 𝜓𝑚)⊤ and 𝜓𝑖 =
∫︀
𝐼𝑖
𝜓(𝑥)𝑑𝑥. Note further that for 𝑢𝑛 ∼ GP(0, 𝐶𝐻), 𝑢𝑛 is

almost surely a piecewise constant function that can be written as 𝑢𝑛(𝑥) =
∑︀𝑚
𝑖=1 𝑧

(𝑖)
𝑛 1𝑖(𝑥),
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for (𝑧
(1)
𝑛 , . . . , 𝑧

(𝑚)
𝑛 ) ∼ 𝑁(0, 𝐻). Consider next the sparse covariance matrix class 𝒰*

𝑞 (𝑚,𝑅𝑞)

studied in Cai and Liu [2011] and defined in (5.2). For any 𝐻 ∈ 𝒰*
𝑞 (𝑚,𝑚

1/𝑞𝑅𝑞) it holds

that 𝐶𝐻 ∈ 𝒦*
𝑞(𝑅𝑞).

sup
𝑥∈𝐷

∫︁
𝐷
(𝑘𝐻(𝑥, 𝑥)𝑘𝐻(𝑦, 𝑦))(1−𝑞)/2|𝑘𝐻(𝑥, 𝑦)|𝑞𝑑𝑦

= sup
𝑥∈𝐷

∫︁
𝐷

𝑚∑︁
𝑖,𝑗=1

(ℎ𝑖𝑖ℎ𝑗𝑗)
(1−𝑞)/2|ℎ𝑖𝑗 |𝑞1𝑖(𝑥)1𝑗(𝑦)𝑑𝑦

= max
𝑖≤𝑚

∫︁
𝐷

𝑚∑︁
𝑗=1

(ℎ𝑖𝑖ℎ𝑗𝑗)
(1−𝑞)/2|ℎ𝑖𝑗 |𝑞1𝑗(𝑦)𝑑𝑦

= max
𝑖≤𝑚

𝑚∑︁
𝑗=1

(ℎ𝑖𝑖ℎ𝑗𝑗)
(1−𝑞)/2|ℎ𝑖𝑗 |𝑞

∫︁
𝐷
1𝑗(𝑦)𝑑𝑦

=
1

𝑚
max
𝑖≤𝑚

𝑚∑︁
𝑗=1

(ℎ𝑖𝑖ℎ𝑗𝑗)
(1−𝑞)/2|ℎ𝑖𝑗 |𝑞 ≤ 𝑅

𝑞
𝑞.

Further, for 𝐻 ∈ 𝒰*
𝑞 (𝑚,𝑅𝑞), we have that 𝑚𝐻 ∈ 𝒰*

𝑞 (𝑚,𝑚
1/𝑞𝑅𝑞). Now, we will choosẽ︀𝐻0 = (̃︀ℎ0,𝑖𝑗) ∈ 𝒰*

𝑞 (𝑚,𝑅𝑞) to be the covariance matrix constructed in the proof of [Cai and

Liu, 2011, Theorem 4]. Namely, let 𝑠1 = ⌈(𝑅𝑞𝑞 − 1)1−𝑞(log𝑚/𝑁)−𝑞/2⌉+ 1, and set

̃︀ℎ0,𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1 ≤ 𝑖 = 𝑗 ≤ 𝑠1,

𝑅
𝑞
𝑞 if 𝑠1 + 1 ≤ 𝑖 = 𝑗 ≤ 𝑚,

4−1𝑅
𝑞
𝑞
√︀

log𝑚/𝑁 if 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑠1,

0 otherwise.

Then, 𝐻0 := 𝑚 ̃︀𝐻0 ∈ 𝒰*
𝑞 (𝑚,𝑚

1/𝑞𝑅𝑞) and 𝐶0 := 𝐶𝐻0
∈ 𝒦*

𝑞(𝑅𝑞). Next, let ̂︀𝐶U
𝛾𝑁 have covari-

ance function 𝑡𝛾𝑁 (𝑥, 𝑦) = 𝑘(𝑥, 𝑦)1{|𝑘(𝑥, 𝑦)| ≥ 𝛾𝑁}, i.e. ̂︀𝐶U
𝛾𝑁 is the (universal) thresholding
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covariance estimator with threshold 𝛾𝑁 . By definition of the operator norm,

‖ ̂︀𝐶U
𝛾𝑁 − 𝐶𝐻0

‖ = sup
‖𝑓‖𝐿2(𝐷)=‖𝑔‖𝐿2(𝐷)=1

∫︁
𝑓(𝑥)

(︂∫︁
(𝑡𝛾𝑁 (𝑥, 𝑦)− 𝑘𝐻0

(𝑥, 𝑦))𝑔(𝑦)𝑑𝑦

)︂
𝑑𝑥

≥ sup
𝑎,𝑏∈𝒮𝑚−1

∫︁
𝑓𝑎(𝑥)

(︂∫︁
(𝑡𝛾𝑁 (𝑥, 𝑦)− 𝑘𝐻0

(𝑥, 𝑦))𝑓𝑏(𝑦)𝑑𝑦

)︂
𝑑𝑥

= sup
𝑎,𝑏∈𝒮𝑚−1

𝑚
𝑚∑︁

𝑖,𝑗=1

𝑎𝑖𝑏𝑗

∫︁∫︁
𝐷×𝐷

1𝑖(𝑥)1𝑗(𝑦)(𝑡𝛾𝑁 (𝑥, 𝑦)− 𝑘𝐻0
(𝑥, 𝑦))𝑑𝑦𝑑𝑥

= sup
𝑎,𝑏∈𝒮𝑚−1

𝑚

𝑚∑︁
𝑖,𝑗=1

𝑎𝑖𝑏𝑗

(︃∫︁∫︁
𝐼𝑖×𝐼𝑗

𝑡𝛾𝑁 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 −𝑚−2ℎ0,𝑖𝑗

)︃

= 𝑚 sup
𝑎,𝑏∈𝒮𝑚−1

⟨
𝑎,
(︁
𝑇𝑚,𝛾𝑁 −𝑚−2𝐻0

)︁
𝑏
⟩

= ‖𝑚𝑇𝑚,𝛾𝑁 −𝑚−1𝐻0‖ = ‖𝑚𝑇𝑚,𝛾𝑁 − ̃︀𝐻0‖,

where 𝑓𝑎(𝑥) :=
√
𝑚
∑︀𝑚
𝑖=1 𝑎𝑖1𝑖(𝑥) and the lower bound holds since 𝑎 is a unit vector and

therefore ‖𝑓𝑎‖𝐿2(𝐷) = 1. 𝑓𝑏 is defined analogously. Note further that we have defined the

𝑚×𝑚 matrix 𝑇𝑚,𝛾𝑁 with (𝑖, 𝑗)-th element

∫︁∫︁
𝐼𝑖×𝐼𝑗

𝑡𝛾𝑁 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫︁∫︁
𝐼𝑖×𝐼𝑗

1

𝑁

𝑁∑︁
𝑛=1

𝑢𝑛(𝑥)𝑢𝑛(𝑦)1{|𝑘(𝑥, 𝑦) ≥ 𝛾𝑁 |}𝑑𝑥𝑑𝑦,

where 𝑢1, . . . , 𝑢𝑛
i.i.d.∼ GP(0, 𝐶𝐻0

). Define 𝑣𝑛 = 𝑚−1/2𝑢𝑛 for 𝑛 = 1, . . . , 𝑁 , and so 𝑣1, . . . , 𝑣𝑛
i.i.d.∼

GP(0, 𝐶 ̃︀𝐻0
). Then, we have

inf
𝛾𝑁≥0

E
{𝑢𝑛}𝑁𝑛=1

i.i.d.∼ GP(0,𝐶𝐻0
)
‖ ̂︀𝐶U

𝛾𝑁 − 𝐶𝐻0
‖ ≥ inf

𝛾𝑁≥0
E
{𝑢𝑛}𝑁𝑛=1

i.i.d.∼ GP(0,𝐶𝐻0
)
‖𝑚𝑇𝑚,𝛾𝑁 − ̃︀𝐻0‖

= inf
𝛾𝑁≥0

E
{𝑣𝑛}𝑁𝑛=1

i.i.d.∼ GP(0,𝐶 ̃︀𝐻0
)
‖̃︀𝑇𝑚,𝛾𝑁 − ̃︀𝐻0‖,

where ̃︀𝑇𝑚,𝛾𝑁 := 𝑚𝑇𝑚,𝛾𝑁 . Since the samples 𝑢𝑛 are piecewise constant functions, we have
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for any block 𝐼𝑖 × 𝐼𝑗 for which the indicator is equal to 1 that

(̃︀𝑇𝑚,𝛾𝑁 )𝑖𝑗 = 𝑚2
∫︁∫︁

𝐼𝑖×𝐼𝑗

1

𝑁

𝑁∑︁
𝑛=1

𝑣𝑛(𝑥)𝑣𝑛(𝑦)1{|𝑘(𝑥, 𝑦)| ≥ 𝛾𝑁}𝑑𝑥𝑑𝑦

= 𝑚2
∫︁∫︁

𝐼𝑖×𝐼𝑗

1

𝑁

𝑁∑︁
𝑛=1

𝑣𝑛(𝑥)𝑣𝑛(𝑦)𝑑𝑥𝑑𝑦

= 𝑚2
∫︁∫︁

𝐼𝑖×𝐼𝑗

1

𝑁

𝑁∑︁
𝑛=1

𝑤
(𝑖)
𝑛 𝑤

(𝑗)
𝑛 𝑑𝑥𝑑𝑦 =

1

𝑁

𝑁∑︁
𝑛=1

𝑤
(𝑖)
𝑛 𝑤

(𝑗)
𝑛 ,

for 𝑤1, . . . , 𝑤𝑁
i.i.d.∼ 𝑁(0, ̃︀𝐻0) with 𝑤𝑛 =

(︀
𝑤
(1)
𝑛 , . . . , 𝑤

(𝑚)
𝑛
)︀

for 1 ≤ 𝑛 ≤ 𝑁 . Therefore, 𝑇𝑚,𝛾𝑁

is a universally thresholded sample covariance matrix estimator. (Note that the scaling inside

the indicator is not an issue, as the infimum is over all positive 𝛾𝑁 .) It follows immediately

by [Cai and Liu, 2011, Theorem 4] that if 𝑚 is chosen to satisfy 𝑁5𝑞 ≤ 𝑚 ≤ 𝑒𝑜(𝑁
1/3) and

8 ≤ 𝑅
𝑞
𝑞 ≤ min

{︁
𝑚1/4, 4

√︁
𝑁

log𝑚

}︁
, then, for sufficiently large 𝑁,

inf
𝛾𝑁≥0

E
{𝑣𝑛}𝑁𝑛=1

i.i.d.∼ GP(0,𝐶𝐻̃0
)
‖̃︀𝑇𝑚,𝛾𝑁 − ̃︀𝐻0‖ ≳ (𝑅

𝑞
𝑞)
2−𝑞

(︂
log𝑚

𝑁

)︂(1−𝑞)/2
.

Note then that for 𝑢 ∼ GP(0, 𝐶𝐻0
), we have that 𝑢(𝑥) =

∑︀𝑚
𝑖=1 𝑧

(𝑖)1𝑖(𝑥), for 𝑧 =
(︀
𝑧(1), . . . , 𝑧(𝑚)

)︀
∼

𝑁(0, 𝐻0). Further, the normalized process 𝑢̃(𝑥) is of the form 𝑢̃(𝑥) = 𝑢(𝑥)/
√︁
𝑘𝐻0

(𝑥, 𝑥) =∑︀𝑚
𝑖=1 𝑔

(𝑖)1𝑖(𝑥), for 𝑔 =
(︀
𝑔(1), . . . , 𝑔(𝑚)

)︀
∼ 𝑁(0, 𝐷0) where 𝐷0 has elements

𝑑0,𝑖𝑗 = 𝑚̃︀ℎ0,𝑖𝑗/√︁var(𝑧(𝑖)𝑧(𝑗)). By [Van Handel, 2017, Lemma 2.3],

E

[︂
sup
𝑥∈𝐷

𝑢̃(𝑥)

]︂
= E

[︂
max
𝑖≤𝑚

𝑔(𝑖)
]︂
≲ max

𝑖≤𝑚

√︁
𝑑0,𝑖𝑖 log(𝑖+ 1).

Moreover, for 1 ≤ 𝑖 ≤ 𝑚, using that E[(𝑧(𝑖))𝜁 ] = (𝜁 − 1)!!(var(𝑧(𝑖)))𝜁/2 for any non-negative

even integer 𝜁, we have

var
(︀
(𝑧(𝑖))2

)︀
= E

[︁
(𝑧(𝑖))4

]︁
−
(︁

E
[︁
(𝑧(𝑖))2

]︁)︁2
= 3𝑚2̃︀ℎ20,𝑖𝑖 −𝑚2̃︀ℎ20,𝑖𝑖 = 𝑚2̃︀ℎ20,𝑖𝑖.
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Therefore,

𝑑0,𝑖𝑖 =
𝑚̃︀ℎ0,𝑖𝑖√︁

var((𝑧(𝑖))2)
=

1√
2
.

Plugging this in yields E[sup𝑥∈𝐷 𝑢̃(𝑥)] ≲
√
log𝑚 and so the bound becomes

(𝑅
𝑞
𝑞)
2−𝑞

(︂
log𝑚

𝑁

)︂(1−𝑞)/2
≳ (𝑅

𝑞
𝑞)
2−𝑞

(︂
(E[sup𝑥∈𝐷 𝑢̃(𝑥)])

2

𝑁

)︂(1−𝑞)/2
,

as desired.

5.6 Error Analysis for Nonstationary Weighted Covariance Models

Throughout this section, 𝑢 denotes a centered Gaussian process on 𝐷 = [0, 1]𝑑 with covari-

ance function 𝑘𝜆(𝑥, 𝑦) satisfying Assumptions 5.2.8 and 5.2.9. We make repeated use of the

following easily verifiable facts:

1. 𝑘𝜆(𝑟) = 𝑘1(𝜆
−1𝑟).

2. 𝜎𝜆(𝜆𝑥;𝛼) = 𝜎1(𝜆
1−𝛼/2𝑥;𝛼).

3. For any 𝜆 > 0, 𝛼 ∈ (0, 1/2), 1 ≤ 𝜎𝜆(𝑥;𝛼) ≤ exp(𝑑/𝜆𝛼).

In this section, we use the notation “(𝐸), 𝜆→ 0+” to mean that there is a universal constant

𝜆0 > 0 such that if 𝜆 < 𝜆0, then (𝐸) holds. We interchangeably use the term “for sufficiently

small 𝜆.”

Lemma 5.6.1. It holds that

Tr(𝐶) = 2−𝑑/2𝑘(0)𝜆𝛼𝑑/2
(︃∫︁ √

2/𝜆𝛼

0
𝑒𝑡

2
𝑑𝑡

)︃𝑑
.
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Therefore, for sufficiently small 𝜆, it holds that

Tr(𝐶) ≍ 𝑘(0)𝜆𝛼𝑑𝑒2𝑑/𝜆
𝛼
.

Proof. By definition,

Tr(𝐶) =
∫︁
𝐷
𝑘𝜆(𝑥, 𝑥)𝑑𝑥 = 𝑘(0)

∫︁
𝐷
𝜎2𝜆(𝑥)𝑑𝑥 = 𝑘(0)‖𝜎𝜆‖2𝐿2(𝐷).

Then, note that

‖𝜎𝜆‖2𝐿2(𝐷) =

∫︁
𝐷
exp(2𝜆−𝛼‖𝑥‖2)𝑑𝑥 =

∫︁
𝐷
exp(2𝜆−𝛼

𝑑∑︁
𝑗=1

𝑥2𝑗 )𝑑𝑥

=
𝑑∏︁
𝑗=1

∫︁ 1

0
exp(2𝜆−𝛼𝑥2𝑗 )𝑑𝑥 = 2−𝑑/2𝜆𝛼𝑑/2

(︃∫︁ √
2/𝜆𝛼

0
𝑒𝑡

2
𝑑𝑡

)︃𝑑
.

In the last line of the above working, we have used the fact that
∫︀ 1
0 𝑒

𝑐𝑧2𝑑𝑧 = 1√
𝑐

∫︀√𝑐
0 𝑒𝑡

2
𝑑𝑡.

Then, we have

∫︁ √
2/𝜆𝛼

0
𝑒𝑡

2
𝑑𝑡 = 𝑒2/𝜆

𝛼
𝒟(
√︀

2/𝜆𝛼),

where 𝒟(·) is the Dawson function. By [Abramowitz and Stegun, 1968, Section 7.1], it holds

for 𝜆 sufficiently small

𝒟(
√︀

2/𝜆𝛼) =
1

2
√
2
𝜆𝛼/2 +

1

8
√
2
𝜆3𝛼/2 +

3

32
√
2
𝜆5𝛼/2 + · · · ≍ 𝜆𝛼/2.

Therefore, for 𝜆 sufficiently small,

‖𝜎𝜆‖2𝐿2(𝐷) ≍ 2−𝑑/2𝜆𝛼𝑑/2𝑒2𝑑/𝜆
𝛼
𝜆𝛼𝑑/2 = 𝜆𝛼𝑑𝑒2𝑑/𝜆

𝛼
.
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Lemma 5.6.2. It holds that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 ≍ 𝑞−𝑑𝜆𝑑(𝛼+1)𝑒2𝑑𝑞/𝜆

𝛼
∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟, 𝜆→ 0+.

Proof. Starting with the upper bound, we have

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 = sup

𝑥∈𝐷

∫︁
𝐷
𝑒𝑞‖𝑥‖

2/𝜆𝛼𝑒𝑞‖𝑦‖
2/𝜆𝛼|𝑘𝜆(‖𝑥− 𝑦‖)|𝑞𝑑𝑦

≤ sup
𝑥∈𝐷

𝑒𝑞‖𝑥‖
2/𝜆𝛼 sup

𝑥∈𝐷

∫︁
𝐷
𝑒𝑞‖𝑦‖

2/𝜆𝛼|𝑘𝜆(‖𝑥− 𝑦‖)|𝑞𝑑𝑦

= 𝑒𝑑𝑞/𝜆
𝛼
∫︁
𝐷
𝑒𝑞‖𝑦‖

2/𝜆𝛼|𝑘𝜆(‖𝑦‖)|𝑞𝑑𝑦

= 𝑒𝑑𝑞/𝜆
𝛼
∫︁
𝐷
𝑒𝑞‖𝑦‖

2/𝜆𝛼|𝑘1(‖𝜆−1𝑦‖)|𝑞𝑑𝑦

= 𝜆𝑑𝑒𝑑𝑞/𝜆
𝛼
∫︁
[0,𝜆−1]𝑑

𝑒𝑞𝜆
2−𝛼‖𝑦‖2 |𝑘1(‖𝑦‖)|𝑞𝑑𝑦,

where the last line follows by substituting 𝑦 ↦→ 𝜆−1𝑦, and noting that the transformation

has Jacobian 𝜆𝑑. Therefore, treating 𝑦 = (𝑦1, . . . , 𝑦𝑑) as a random vector with 𝑦1, . . . , 𝑦𝑑
i.i.d.∼

unif([0, 𝜆−1])

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 ≤ 𝑒𝑑𝑞/𝜆

𝛼

(︃
𝜆𝑑
∫︁
[0,𝜆−1]𝑑

𝑒𝑞𝜆
2−𝛼‖𝑦‖2|𝑘1(‖𝑦‖)|𝑞𝑑𝑦

)︃

= 𝑒𝑑𝑞/𝜆
𝛼
E𝑦[𝑒

𝑞𝜆2−𝛼‖𝑦‖2|𝑘1(‖𝑦‖)|𝑞]

≤ 𝑒𝑑𝑞/𝜆
𝛼
E𝑦[𝑒

𝑞𝜆2−𝛼‖𝑦‖2 ]E𝑦[|𝑘1(‖𝑦‖)|𝑞]

= 𝑒𝑑𝑞/𝜆
𝛼

(︃
𝜆𝑑
∫︁
[0,𝜆−1]𝑑

𝑒𝑞𝜆
2−𝛼‖𝑦‖2𝑑𝑦

)︃(︃
𝜆𝑑
∫︁
[0,𝜆−1]𝑑

|𝑘1(‖𝑦‖)|𝑞𝑑𝑦

)︃

= 𝜆2𝑑𝑒𝑑𝑞/𝜆
𝛼

(︃∫︁
[0,𝜆−1]𝑑

𝑒𝑞𝜆
2−𝛼‖𝑦‖2𝑑𝑦

)︃(︃∫︁
[0,𝜆−1]𝑑

|𝑘1(‖𝑦‖)|𝑞𝑑𝑦

)︃

=: 𝜆2𝑑𝑒𝑑𝑞/𝜆
𝛼
𝐼1 × 𝐼2,
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where we have used the covariance inequality [Berger and Casella, 2001, Theorem 4.7.9],

which states that for non-decreasing 𝑔 and non-increasing ℎ, E𝑦[𝑔(𝑦)ℎ(𝑦)] ≤ (E𝑦[𝑔(𝑦)])(E𝑦[ℎ(𝑦)]).

For the first integral, using the substitution 𝑣2𝑗 = 𝑞𝜆2−𝛼𝑦2𝑗 yields

𝐼1 =
𝑑∏︁
𝑗=1

∫︁ 𝜆−1

0
𝑒
𝑞𝜆2−𝛼𝑦2𝑗 𝑑𝑦𝑗 =

𝑑∏︁
𝑗=1

1√︀
𝑞𝜆2−𝛼

∫︁ 𝜆−1
√
𝑞𝜆2−𝛼

0
𝑒
𝑣2𝑗 𝑑𝑣𝑗

=

(︃
exp(𝜆−2𝑞𝜆2−𝛼)√︀

𝑞𝜆2−𝛼
𝒟(𝜆−1

√︁
𝑞𝜆2−𝛼)

)︃𝑑
≍

(︃
exp(𝜆−2𝑞𝜆2−𝛼)√︀

𝑞𝜆2−𝛼
1

𝜆−1
√︀
𝑞𝜆2−𝛼

)︃𝑑

=

(︂
exp(𝜆−2𝑞𝜆2−𝛼)
𝜆−1𝑞𝜆2−𝛼

)︂𝑑
=

(︂
exp(𝑞𝜆−𝛼)
𝑞𝜆1−𝛼

)︂𝑑
≍ 𝑒𝑑𝑞/𝜆

𝛼

𝑞𝑑𝜆𝑑(1−𝛼)
,

where 𝒟(𝑥) is the Dawson function, and we have used the fact that 𝒟(𝑥) ≍ 𝑥−1 for 𝑥→ ∞

(see the proof of Lemma 5.6.1). For the second integral, by switching to polar coordinates,

we have

𝐼2 ≤
∫︁

R𝑑
|𝑘1(‖𝑦‖)|𝑞𝑑𝑦 =

∫︁ ∞

0
𝑟𝑑−1

∫︁
𝒮𝑑−1

|𝑘1(𝑟‖𝑢‖)|𝑞𝑑s𝑑−1(𝑢)𝑑𝑟

=

∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞
∫︁
𝒮𝑑−1

𝑑s𝑑−1(𝑢)𝑑𝑟 = 𝐴(𝑑)

∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟,

where we have used the fact that ‖𝑢‖ = 1 for any 𝑢 ∈ 𝒮𝑑−1, and 𝐴(𝑑) denotes the surface

area of the unit sphere in R𝑑. Therefore, we have that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 ≤ 𝜆2𝑑𝑒𝑑𝑞/𝜆

𝛼
𝐼1 × 𝐼2

≤ 𝜆2𝑑𝑒𝑑𝑞/𝜆
𝛼 𝑒𝑑𝑞/𝜆

𝛼

𝑞𝑑𝜆𝑑(1−𝛼)
𝐴(𝑑)

∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟

= 𝑞−𝑑𝜆𝑑(1+𝛼)𝑒2𝑑𝑞/𝜆
𝛼
𝐴(𝑑)

∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟.
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For the lower bound, note that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 ≥

∫︁
𝐷×𝐷

|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑥𝑑𝑦 =

∫︁
[0,1]𝑑×[0,1]𝑑

𝜎
𝑞
𝜆(𝑥)𝜎

𝑞
𝜆(𝑦)|𝑘𝜆(‖𝑥− 𝑦‖)|𝑞𝑑𝑥𝑑𝑦

=

∫︁
[0,1]𝑑×[0,1]𝑑

𝜎
𝑞
𝜆(𝑥)𝜎

𝑞
𝜆(𝑦)|𝑘1(𝜆

−1‖𝑥− 𝑦‖)|𝑞𝑑𝑥𝑑𝑦

= 𝜆2𝑑
∫︁
[0,𝜆−1]𝑑×[0,𝜆−1]𝑑

𝜎
𝑞
𝜆(𝜆𝑥

′)𝜎𝑞𝜆(𝜆𝑦
′)|𝑘1(‖𝑥′ − 𝑦′‖)|𝑞𝑑𝑥′𝑑𝑦′,

where the last line is due to the substitution 𝑥′ = 𝜆−1𝑥 and 𝑦′ = 𝜆−1𝑦. Now, let 𝑤 = 𝑥′− 𝑦′

and 𝑧 = 𝑥′ + 𝑦′ and note that the Jacobian of this transformation is 2−𝑑, and also that

𝑥′ = (𝑧 + 𝑤)/2 and 𝑦′ = (𝑧 − 𝑤)/2. Continuing from the last line of the above display, the

substitution and the fact that 𝜎𝜆(𝜆𝑥′) = 𝜎1(𝜆
1−𝛼/2𝑥′) = exp(𝜆2−𝛼‖𝑥′‖2) give that

=
𝜆2𝑑

2𝑑

∫︁
[−𝜆−1,0]𝑑

(︂∫︁
𝑅1

exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 + 𝑤‖2

)︂
exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 − 𝑤‖2

)︂
𝑑𝑧

)︂
|𝑘1(‖𝑤‖)|𝑞𝑑𝑤

+
𝜆2𝑑

2𝑑

∫︁
[0,𝜆−1]𝑑

(︂∫︁
𝑅2

exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 + 𝑤‖2

)︂
exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 − 𝑤‖2

)︂
𝑑𝑧

)︂
|𝑘1(‖𝑤‖)|𝑞𝑑𝑤,

where we have defined

𝑅1 = {𝑧 : −𝑤𝑗 ≤ 𝑧𝑗 ≤ 2𝜆−1 + 𝑤𝑗 , 1 ≤ 𝑗 ≤ 𝑑},

𝑅2 = {𝑧 : 𝑤𝑗 ≤ 𝑧𝑗 ≤ 2𝜆−1 − 𝑤𝑗 , 1 ≤ 𝑗 ≤ 𝑑}.
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For the integral over 𝑅1,

∫︁
𝑅1

exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 + 𝑤‖2

)︂
exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 − 𝑤‖2

)︂
𝑑𝑧

≥
∫︁
𝑅1

exp

(︂
𝑞𝜆2−𝛼

2
‖𝑧 + 𝑤‖2

)︂
𝑑𝑧

=

∫︁
𝑅3

exp

(︂
𝑞𝜆2−𝛼

2
‖𝑢‖2

)︂
𝑑𝑢

=
𝑑∏︁
𝑗=1

∫︁ 2(𝜆−1+𝑤𝑗)

0
exp

(︂
𝑞𝜆2−𝛼

2
𝑢2𝑗

)︂
𝑑𝑢𝑗 ,

where the inequality holds by the fact that 𝑤 ∈ [−𝜆−1, 0]𝑑, and the second line holds by

making the substitution 𝑢 = 𝑧+𝑤 and defining 𝑅3 = {𝑢 : 0 ≤ 𝑢𝑗 ≤ 2(𝜆−1+𝑤𝑗), 1 ≤ 𝑗 ≤ 𝑑}.

Now, letting 𝑣2𝑗 := 𝑞𝜆2−𝛼
2 𝑢2𝑗 gives

𝑑∏︁
𝑗=1

∫︁ 2(𝜆−1+𝑤𝑗)

0
exp

(︂
𝑞𝜆2−𝛼

2
𝑢2𝑗

)︂
𝑑𝑢𝑗 =

𝑑∏︁
𝑗=1

√︃
2

𝑞𝜆2−𝛼

∫︁ 2(𝜆−1+𝑤𝑗)

√︁
𝑞𝜆2−𝛼

2

0
𝑒
𝑣2𝑗 𝑑𝑣𝑗

=
𝑑∏︁
𝑗=1

√︃
2

𝑞𝜆2−𝛼
exp

(︂
4(𝜆−1 + 𝑤𝑗)

2 𝑞𝜆
2−𝛼

2

)︂
𝒟

(︃
2(𝜆−1 + 𝑤𝑗)

√︂
𝑞𝜆2−𝛼

2

)︃

≍
𝑑∏︁
𝑗=1

√︃
2

𝑞𝜆2−𝛼
exp

(︂
4(𝜆−1 + 𝑤𝑗)

2 𝑞𝜆
2−𝛼

2

)︂
1

(𝜆−1 + 𝑤𝑗)

√︁
𝑞𝜆2−𝛼

2

≍
𝑑∏︁
𝑗=1

exp
(︁
2𝑞(1 + 𝜆𝑤𝑗)

2/𝜆𝛼
)︁ 1

𝑞(𝜆−1 + 𝑤𝑗)𝜆2−𝛼

= 𝑞−𝑑𝜆𝑑(𝛼−1)
𝑑∏︁
𝑗=1

exp
(︁
2𝑞(1 + 𝜆𝑤𝑗)

2/𝜆𝛼
)︁ 1

(1 + 𝜆𝑤𝑗)
,

where we have used the same properties of the Dawson function as in the upper bound.
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Therefore, we have so far shown that

∫︁
𝑅1

exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 + 𝑤‖2

)︂
exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 − 𝑤‖2

)︂
𝑑𝑧

≳ 𝑞−𝑑𝜆𝑑(𝛼−1)
𝑑∏︁
𝑗=1

exp
(︁
2𝑞(1 + 𝜆𝑤𝑗)

2/𝜆𝛼
)︁ 1

(1 + 𝜆𝑤𝑗)
.

For the integral over 𝑅2 a similar argument shows that

∫︁
𝑅2

exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 + 𝑤‖2

)︂
exp

(︂
𝑞𝜆2−𝛼

4
‖𝑧 − 𝑤‖2

)︂
𝑑𝑧

≳ 𝑞−𝑑𝜆𝑑(𝛼−1)
𝑑∏︁
𝑗=1

exp
(︁
2𝑞(1− 𝜆𝑤𝑗)

2/𝜆𝛼
)︁ 1

(1− 𝜆𝑤𝑗)
.

Putting the two bounds together, we have that

sup
𝑥∈𝐷

∫︁
𝐷
|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦

≥ 𝑞−𝑑𝜆2𝑑
∫︁
[−𝜆−1,𝜆−1]𝑑

𝜆𝑑(𝛼−1)
𝑑∏︁
𝑗=1

exp
(︁
2𝑞(1− 𝜆|𝑤𝑗 |)2/𝜆𝛼

)︁ 1

(1− 𝜆|𝑤𝑗 |)
|𝑘1(‖𝑤‖)|𝑞𝑑𝑤

≍ 𝑞−𝑑𝜆𝑑(1+𝛼)
∫︁

R𝑑
𝑒2𝑑𝑞/𝜆

𝛼
|𝑘1(‖𝑤‖)|𝑞𝑑𝑤

= 𝑞−𝑑𝜆𝑑(1+𝛼)𝑒2𝑞𝑑/𝜆
𝛼
𝐴(𝑑)

∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)𝑑𝑟,

where the second line holds by the Dominated Convergence Theorem as 𝜆 → 0+. The final

line follows as in the proof of the upper bound.

Lemma 5.6.3. The kernel 𝑘𝜆 satisfies Assumption 5.2.1 with

𝑅
𝑞
𝑞 ≍ 𝑞−𝑑𝜆𝑑(𝛼+1)𝑒2𝑑𝜆

−𝛼
∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟, 𝜆→ 0+.
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Proof. The result follows by noting that

sup
𝑥∈𝐷

∫︁
𝐷
(𝑘𝜆(𝑥, 𝑥)𝑘𝜆(𝑦, 𝑦))

(1−𝑞)/2|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦 = 𝑘(0) sup
𝑥∈𝐷

∫︁
𝐷
𝜎𝜆(𝑥)𝜎𝜆(𝑦)|𝑘𝜆(𝑥, 𝑦)|𝑞𝑑𝑦,

and using an identical approach to the one in Lemma 5.6.2.

Lemma 5.6.4. It holds that

‖𝐶‖ ≍ 𝜆𝑑(𝛼+1)𝑒2𝑑𝜆
−𝛼
∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)𝑑𝑟, 𝜆→ 0+.

Proof. The proof follows in an identical way to that of [Al-Ghattas et al., 2023, Lemma 4.2],

but invokes our novel characterization in Lemma 5.6.2 instead of [Al-Ghattas et al., 2023,

Lemma 4.1].

Proof of Theorem 5.2.10. For the sample covariance, note that by [Koltchinskii and Lounici,

2017, Theorem 9], for any 𝑡 ≥ 1 it holds with probability at least 1− 𝑒−𝑡 that

‖ ̂︀𝐶 − 𝐶‖
‖𝐶‖

≍
√︂
𝑟2(𝐶)

𝑁
∨ 𝑟2(𝐶)

𝑁
∨
√︂

𝑡

𝑁
∨ 𝑡

𝑁
, 𝑟2(𝐶) :=

Tr(𝐶)
‖𝐶‖

.

By Lemmas 5.6.1 and 5.6.4, we have that for sufficiently small 𝜆,

𝑟2(𝐶) ≍
𝑘1(0)𝜆

𝛼𝑑𝑒2𝑑/𝜆
𝛼

𝜆𝑑(𝛼+1)𝑒2𝑑/𝜆
𝛼 ≍ 𝜆−𝑑.

Therefore, with probability at least 1− 𝑒− log(𝜆−𝑑) = 1− 𝜆𝑑

‖ ̂︀𝐶 − 𝐶‖
‖𝐶‖

≍

√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁
∨

√︃
log(𝜆−𝑑)

𝑁
∨ log(𝜆−𝑑)

𝑁
=

√︃
𝜆−𝑑

𝑁
∨ 𝜆−𝑑

𝑁
.

For the adaptive estimator, note first that the normalized process 𝑢̃(𝑥) = 𝑢(𝑥)/𝑘1/2(𝑥, 𝑥) is

isotropic with covariance function 𝑘𝜆(‖𝑥 − 𝑦‖). Then by [Al-Ghattas et al., 2023, Lemma
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4.3], we have that E[sup𝑥∈𝐷 𝑢̃(𝑥)] ≍
√︁

log(𝜆−𝑑) for sufficiently small 𝜆. By Theorem 5.2.3,

Lemma 5.6.4, and Lemma 5.6.3, we then have with probability at least 1−𝑒− log(𝜆−𝑑) = 1−𝜆𝑑

‖ ̂︀𝐶𝜌𝑁 − 𝐶‖ ≲ 𝑅
𝑞
𝑞

(︃
log(𝜆−𝑑)√

𝑁

)︃1−𝑞

≍ 𝑞−𝑑𝜆𝑑(𝛼+1)𝑒2𝑑𝜆
−𝛼
∫︁ ∞

0
𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟

(︃
log(𝜆−𝑑)√

𝑁

)︃1−𝑞

≍ 𝑞−𝑑‖𝐶‖
∫︀∞
0 𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟∫︀∞
0 𝑟𝑑−1𝑘1(𝑟)𝑑𝑟

(︃
log(𝜆−𝑑)√

𝑁

)︃1−𝑞

, 𝜆→ 0+.

Rearranging yields the result with 𝑐(𝑞) := 𝑞−𝑑
∫︀∞
0 𝑟𝑑−1𝑘1(𝑟)

𝑞𝑑𝑟∫︀∞
0 𝑟𝑑−1𝑘1(𝑟)𝑑𝑟

.

5.7 Conclusions and Future Work

In this paper, we have studied covariance operator estimation under a novel sparsity as-

sumption, developing a new nonasymptotic and dimension-free theory. Our model assump-

tions capture a particularly challenging class of nonstationary covariance models, where the

marginal variance may vary significantly over the spatial domain. Adaptive threshold estima-

tors are then shown to perform well over this class from both a theoretical and experimental

perspective. The theory developed in this work as well as the connections made to both the

(finite) high-dimensional literature and the functional data analysis literature open the door

to many interesting avenues for future work, which we outline in the following:

• Inference for covariance operators : The techniques developed in this work, in particular

the dimension-free bounds for the sample covariance and variance component functions

open the door to lifting the finite high-dimensional inference theory to the infinite

dimensional setting. The review paper Cai [2017] provides a detailed overview of the

covariance inference literature in finite dimensions. Our analysis can likely be used to

extend this theory to the covariance operator setting. To the best of our knowledge,
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the existing literature on inference for covariance operators (see for example Panaretos

et al. [2010], Kashlak et al. [2019]) does not account for potential sparse structure in

the underlying operators, though such structure can naturally be assumed in many

cases of interest.

• Estimating the covariance operator of a multi-valued Gaussian process : As described

in Section 5.1.1, the paper Fang et al. [2023] considers covariance estimation for multi-

valued Gaussian processes under a sparsity assumption on the dependence between

the individual component of the process. In contrast to our approach (see also Re-

mark 5.2.2) their assumption does not impose any sparsity on each component covari-

ance function. It would be interesting therefore to extend our analysis to the multi-

valued functional data analysis setting where each component satisfies a local-type

sparsity constraint, such as belonging to 𝒦*
𝑞 .
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5.9 Additional Results

5.9.1 Additional Numerical Simulations

This appendix shows random draws and results of operator estimation in 𝑑 = 2. The

experimental set-up is identical to the 𝑑 = 1 setting described in Section 5.4.2, however

due to computational constraints in the higher dimensional setting, we use different settings

for the experimental parameters. Specifically, our samples are generated by discretizing the

domain 𝐷 = [0, 1]2 with a uniform mesh of 𝐿 = 10, 000 points. We consider a total of 10
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choices of 𝜆 arranged uniformly in log-space and ranging from 10−2.2 to 10−0.1. As in the

𝑑 = 1 case, the plots indicate that adaptive thresholding is a significant improvement over

both the sample covariance and universal thresholding estimators in both the unweighted

and weighted settings.

5.9.2 Sub-Gaussian Process Calculations

Let 𝑣(1), 𝑣(2) denote independent centered Gaussian processes both with covariance function

𝑘𝑣 of the form (5.5), such that 𝑘𝑣(𝑥, 𝑦) = 𝜎𝜆(𝑥)𝜎𝜆(𝑦)𝑘𝜆(𝑥, 𝑦). Consider the process 𝑢 ob-

tained by transforming 𝑣(1), 𝑣(2) and let 𝑚𝑢, 𝑘𝑢 denote the mean and covariance functions

of 𝑢, respectively. In the following sections, we provide explicit expressions for 𝑚𝑢, 𝑘𝑢 for

various choices of transformation. These results are utilized in the sub-Gaussian portion of

Section 5.2.3.

Sine Function

Let 𝑢 := sin(𝑣(1)). As 𝑣(1) is centered, and sin(·) is an odd function, E[sin(𝑣(1)(𝑥))] = 0 for

any 𝑥 ∈ 𝐷, implying 𝑚𝑢 = 0. Further, since sin(·) is bounded, 𝑢 is a sub-Gaussian process.

Note then that

𝑘𝑢(𝑥, 𝑦) = E[sin(𝑣(1)(𝑥)) sin(𝑣(1)(𝑦))]

=
1

2
E[cos(𝑣(1)(𝑥)− 𝑣(1)(𝑦))]− 1

2
E[cos(𝑣(1)(𝑥) + 𝑣(1)(𝑦))],

where we have made use of the identity sin(𝑎) sin(𝑏) = 1
2(cos(𝑎− 𝑏)− cos(𝑎+ 𝑏)). Recall that

𝑣(1)(𝑥)−𝑣(1)(𝑦) ∼ 𝑁(0, 𝑘𝑣(𝑥, 𝑥)+𝑘𝑣(𝑦, 𝑦)−2𝑘𝑣(𝑥, 𝑦)) and 𝑣(1)(𝑥)+𝑣(1)(𝑦) ∼ 𝑁(0, 𝑘𝑣(𝑥, 𝑥)+
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Figure 5.6: Draws from a centered Gaussian process on 𝐷 = [0, 1]2 with covariance function
SE in the first row, WSE(𝛼 = 0.1) in the second and WSE(𝛼 = 0.2) in the third, with
varying 𝜆 parameter.
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Figure 5.7: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (𝜀, dashed blue), universal thresholding (𝜀U𝜌𝑁 , red), sample-based adaptive thresh-
olding (𝜀S𝜌𝑁 , black) and Wick’s adaptive thresholding (𝜀W𝜌𝑁 , purple) covariance estimators
based on a sample size (𝑁 , dotted green) for the (weighted) squared exponential (left) and
(weighted) Matérn (right) covariance functions in 𝑑 = 2 over 10 Monte-Carlo trials and 10
scale parameters 𝜆 ranging from 10−2 to 10−0.1. The first row corresponds to the unweighted
covariance functions and is the only case in which the universal thresholding estimator is
considered; the second and third rows correspond to the weighted variants with 𝛼 = 0.1, 0.2
respectively.
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𝑘𝑣(𝑦, 𝑦) + 2𝑘𝑣(𝑥, 𝑦)). Further note that for 𝑍 ∼ 𝑁(0, 𝜏2), E[cos(𝑍)] = 𝑒−𝜏
2/2. Therefore,

𝑘𝑢(𝑥, 𝑦) =
1

2
𝑒−

1
2 (𝑘

𝑣(𝑥,𝑥)+𝑘𝑣(𝑦,𝑦)−2𝑘𝑣(𝑥,𝑦))) − 1

2
𝑒−

1
2 (𝑘

𝑣(𝑥,𝑥)+𝑘𝑣(𝑦,𝑦)+2𝑘𝑣(𝑥,𝑦)))

= 𝑒−
1
2 (𝑘

𝑣(𝑥,𝑥)+𝑘𝑣(𝑦,𝑦)) sinh(𝑘𝑣(𝑥, 𝑦))

= 𝑒−
1
2 (𝜎

2
𝜆(𝑥)+𝜎

2
𝜆(𝑦)) sinh(𝜎𝜆(𝑥)𝜎𝜆(𝑦)𝑘

𝑣
𝜆(𝑥, 𝑦)).

Absolute Value Function

Let 𝑢 := |𝑣(1)|. Since | · | is Lipschitz, 𝑢−𝑚𝑢 is a sub-Gaussian process. Direct calculation

yields 𝑚𝑢(𝑥) = E|𝑣(1)(𝑥)| =
√︁

2
𝜋𝑘

𝑣(𝑥, 𝑥) = 𝜎𝜆(𝑥)
√︁

2
𝜋 for any 𝑥 ∈ 𝐷. Recall that for any

𝑥, 𝑦 ∈ 𝐷, (𝑣(1)(𝑥), 𝑣(1)(𝑦)) is a centered bi-variate Gaussian vector with E[𝑣(1)(𝑥)𝑣(1)(𝑦)] =

𝜎𝜆(𝑥)𝜎𝜆(𝑦)𝑘𝜆(𝑥, 𝑦), by [Li and Wei, 2009, Corollary 3.1]

E[|𝑣(1)(𝑥)||𝑣(1)(𝑦)|] = 2𝜎𝜆(𝑥)𝜎𝜆(𝑦)

𝜋

(︂√︁
1− 𝑘2𝜆(𝑥, 𝑦) + 𝑘𝜆(𝑥, 𝑦) sin

−1(𝑘𝜆(𝑥, 𝑦))

)︂
.

Therefore

𝑘𝑢(𝑥, 𝑦) =
2𝜎𝜆(𝑥)𝜎𝜆(𝑦)

𝜋

(︂√︁
1− 𝑘2𝜆(𝑥, 𝑦) + 𝑘𝜆(𝑥, 𝑦) sin

−1(𝑘𝜆(𝑥, 𝑦))− 1

)︂
.

Absolute Value × Sine Function

Let 𝑢 := (|𝑣(1)| − E|𝑣(1)|) sin(𝑣(2)). By 5.9.2 and the fact that sin(𝑣(2)) is bounded, 𝑢 is the

product of a sub-Gaussian process and a bounded process, and so is itself sub-Gaussian.

Next, by independence of 𝑣(1) and 𝑣(2), 𝑚𝑢 = 0. Recall that the product of two independent

stochastic processes with covariance functions 𝑘1, 𝑘2 has covariance function 𝑘1𝑘2. Therefore,
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by the derivations in 5.9.2 and 5.9.2, for any 𝑥, 𝑦 ∈ 𝐷,

𝑘𝑢(𝑥, 𝑦) =
2𝜎𝜆(𝑥)𝜎𝜆(𝑦)

𝜋

(︂√︁
1− 𝑘2𝜆(𝑥, 𝑦) + 𝑘𝜆(𝑥, 𝑦) sin

−1(𝑘𝜆(𝑥, 𝑦))

)︂
× 𝑒−

1
2 (𝜎

2
𝜆(𝑥)+𝜎

2
𝜆(𝑦)) sinh(𝜎𝜆(𝑥)𝜎𝜆(𝑦)𝑘

𝑣
𝜆(𝑥, 𝑦)).

265



REFERENCES

S. I Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, and B. Vallès. The ensemble
Kalman filter in reservoir engineering–a review. Spe Journal, 14(03):393–412, 2009.

H. Abarbanel. Predicting The Future: Completing Models Of Observed Complex Systems.
Springer, 2013.

P. Abdalla and N. Zhivotovskiy. Covariance estimation: Optimal dimension-free guarantees
for adversarial corruption and heavy tails. Journal of the European Mathematical Society,
2024. doi:10.4171/JEMS/1505.

P. Abrahamsen. A review of Gaussian random fields and correlation functions. Norsk Reg-
nesentral/Norwegian Computing Center Oslo, 1997.

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, volume 55. US Government printing office, 1968.

S. Agapiou, S. Larsson, and A. M. Stuart. Posterior contraction rates for the bayesian
approach to linear ill-posed inverse problems. Stochastic Processes and Their Applications,
123(10):3828–3860, 2013.

S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs
sampler for hierarchical inverse problems. SIAM/ASA Journal on Uncertainty Quantifi-
cation, 2(1):511–544, 2014.

S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso, and A. M. Stuart. Importance sampling:
Intrinsic dimension and computational cost. Statistical Science, 32(3):405–431, 2017.

C. Agrell. Gaussian processes with linear operator inequality constraints. Journal of Machine
Learning Research, 20(135):1–36, 2019.

B. Ahn, C. Kim, Y. Hong, and Hyunwoo J. Kim. Invertible monotone operators for normal-
izing flows. Advances in Neural Information Processing Systems, 35:16836–16848, 2022.

O. Al-Ghattas and D. Sanz-Alonso. Covariance Operator Estimation via Adaptive Thresh-
olding. arXiv preprint arXiv:2405.18562, 2024a.

O. Al-Ghattas and D. Sanz-Alonso. Non-asymptotic analysis of ensemble Kalman updates:
effective dimension and localization. Information and Inference: A Journal of the IMA,
13(1):iaad043, 2024b.

O. Al-Ghattas and D. Sanz-Alonso. Non-asymptotic analysis of ensemble Kalman updates:
effective dimension and localization. Information and Inference: A Journal of the IMA,
13(1):iaad043, 2024c.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek. Covariance operator estimation:
sparsity, lengthscale, and ensemble Kalman filters. arXiv preprint arXiv:2310.16933, 2023.

266

https://doi.org/10.4171/JEMS/1505


O. Al-Ghattas, J. Bao, and D. Sanz-Alonso. Ensemble Kalman filters with resampling.
SIAM/ASA Journal on Uncertainty Quantification, 12(2):411–441, 2024a.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek. Optimal estimation of structured
covariance operators. arXiv preprint arXiv:2408.02109, 2024b.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek. Supplement to “Covariance
operator estimation: sparsity, lengthscale, and ensemble Kalman filters”. Bernoulli, 2024c.

O. Al-Ghattas, J. Chen, and D. Sanz-Alonso. Sharp concentration of simple random tensors.
arXiv preprint arXiv:2502.16916, 2025.

D. Alfke, D. Potts, M. Stoll, and T. Volkmer. NFFT meets Krylov methods: Fast matrix-
vector products for the graph Laplacian of fully connected networks. Frontiers in Applied
Mathematics and Statistics, 4:61, 2018.

J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Monthly
Weather Review, 129(12):2884–2903, 2001.

J. L. Anderson and S. L. Anderson. A Monte Carlo implementation of the nonlinear filtering
problem to produce ensemble assimilations and forecasts. Monthly Weather Review, 127
(12):2741–2758, 1999.

T. W. Anderson. An Introduction to Multivariate Statistical Analysis, volume 2. Wiley New
York, 1958.

H. Antil and A. K. Saibaba. Efficient algorithms for Bayesian inverse problems with Whittle–
Matérn priors. SIAM Journal on Scientific Computing, 46(2):S176–S198, 2024.

R. Aoun, M. Banna, and P. Youssef. Matrix Poincaré inequalities and concentration. Ad-
vances in Mathematics, 371:107251, 2020.

S. Arridge, P. Maass, O. Öktem, and C. Schönlieb. Solving inverse problems using data-
driven models. Acta Numerica, 28:1–174, 2019.

M. Asch, M. Bocquet, and M. Nodet. Data Assimilation: Methods, Algorithms, and Appli-
cations, volume 11. SIAM, 2016.

I. Babuska, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of
stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42
(2):800–825, 2004.

Z. D. Bai and Y. Q. Yin. Limit of the smallest eigenvalue of a large dimensional sam-
ple covariance matrix. In Advances In Statistics, pages 108–127. World Scientific, 2008.
doi:https://doi.org/10.1214/aop/1176989118.

R. Baptista, B. Hosseini, N. Kovachki, Y. Marzouk, and A. Sagiv. An approximation the-
ory framework for measure-transport sampling algorithms. Mathematics of Computation,
2024a.

267

https://doi.org/https://doi.org/10.1214/aop/1176989118


R. Baptista, Y. Marzouk, and O. Zahm. On the representation and learning of monotone
triangular transport maps. Foundations of Computational Mathematics, 24(6):2063–2108,
2024b.

J. F Bard. Practical Bilevel Optimization: Algorithms and Applications, volume 30. Springer
Science & Business Media, 2013.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
learning, 56(1-3):209–239, 2004.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold
methods. In COLT, volume 3559, pages 486–500. Springer, 2005.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large
graphs. In International Conference on Computational Learning Theory, pages 624–638.
Springer, 2004.

P. C. Bellec, G. Lecué, and A. B. Tsybakov. Slope meets Lasso: improved or-
acle bounds and optimality. The Annals of Statistics, 46(6B):3603–3642, 2018.
doi:https://doi.org/10.1214/17-AOS1670.

T. Bengtsson, P. J. Bickel, B. Li, et al. Curse-of-dimensionality revisited: Collapse of the
particle filter in very large scale systems. In Probability and statistics: Essays in honor of
David A. Freedman, pages 316–334. Institute of Mathematical Statistics, 2008.

B. Bercu, E. Gassiat, and E. Rio. Concentration inequalities, large and moderate deviations
for self-normalized empirical processes. The Annals of Probability, 30(4):1576–1604, 2002.

K. Bergemann and S. Reich. A localization technique for ensemble Kalman filters. Quarterly
Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied
meteorology and physical oceanography, 136(648):701–707, 2010a.

K. Bergemann and S. Reich. A mollified ensemble Kalman filter. Quarterly Journal of the
Royal Meteorological Society, 136(651):1636–1643, 2010b.

K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimila-
tion. Meteorologische Zeitschrift, 127(5):1417–1440, 2012.

R. L. Berger and G. Casella. Statistical Inference. Duxbury, 2001.

T. Berry and J. Harlim. Variable bandwidth diffusion kernels. Applied and Computational
Harmonic Analysis, 40(1):68–96, 2016.

T. Berry and T. Sauer. Local kernels and the geometric structure of data. Applied and
Computational Harmonic Analysis, 40(3):439–469, 2016.

268

https://doi.org/https://doi.org/10.1214/17-AOS1670


M. Bertalmıo, L-T Cheng, S. Osher, and G. Sapiro. Variational problems and partial differ-
ential equations on implicit surfaces. Journal of Computational Physics, 174(2):759–780,
2001.

A. L. Bertozzi, X. Luo, A. M. Stuart, and K. C. Zygalakis. Uncertainty quantification in
graph-based classification of high dimensional data. SIAM/ASA Journal on Uncertainty
Quantification, 6(2):568–595, 2018.

A. Beskos, A. Jasra, K. Law, R. Tempone, and Y. Zhou. Multilevel Sequential Monte Carlo
Samplers. Stochastic Processes and their Applications, 127(5):1417–1440, 1994.

J. C. Bezdek, R. J. Hathaway, R. E. Howard, C. A. Wilson, and M. P. Windham. Lo-
cal convergence analysis of a grouped variable version of coordinate descent. Journal of
Optimization Theory and Applications, 54(3):471–477, 1987.

P. J. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of
Statistics, 36(6):2577–2604, 2008a.

P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. The Annals
of Statistics, 36(1):199–227, 2008b.

P. J. Bickel, B. Li, and T. Bengtsson. Pushing the limits of contemporary statistics: Contri-
butions in honor of Jayanta K. Ghosh: Sharp failure rates for the bootstrap particle filter
in high dimensions. Institute of Mathematical Statistics, pages 318–329, 1994.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. The Annals of Statistics, 37(4):1705–1732, 2009. doi:https://doi.org/10.1214/08-
AOS620.

D. Bigoni, O. Zahm, A. Spantini, and Y. Marzouk. Greedy inference with layers of lazy
maps. arXiv preprint arXiv:1906.00031, 2019.

D. Bigoni, Y. Chen, N. García Trillos, Y. Marzouk, and D. Sanz-Alonso. Data-driven forward
discretizations for Bayesian inversion. Inverse Problems, 36(10):105008, 2020.

A. N. Bishop and P. Del Moral. On the mathematical theory of ensemble (linear-Gaussian)
Kalman–Bucy filtering. Mathematics of Control, Signals, and Systems, pages 1–69, 2023.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the ensemble
transform Kalman filter. Part I: Theoretical aspects. Monthly Weather Review, 129(3):
420–436, 2001.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

269

https://doi.org/https://doi.org/10.1214/08-AOS620
https://doi.org/https://doi.org/10.1214/08-AOS620


D. Blömker, C. Schillings, and P. Wacker. A strongly convergent numerical scheme from
ensemble Kalman inversion. SIAM Journal on Numerical Analysis, 56(4):2537–2562, 2018.

D. Blömker, C. Schillings, P. Wacker, and S. Weissmann. Well posedness and convergence
analysis of the ensemble Kalman inversion. Inverse Problems, 35(8):085007, 2019.

V. I. Bogachev. Gaussian Measures. American Mathematical Soc., 1998.

V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev. Triangular transformations of
measures. Sbornik: Mathematics, 196(3):309, 2005.

D. Bolin and K. Kirchner. The rational SPDE approach for Gaussian random fields with
general smoothness. Journal of Computational and Graphical Statistics, (just-accepted):
1–27, 2019.

D. Bolin, K. Kirchner, and M. Kovács. Weak convergence of Galerkin approximations for
fractional elliptic stochastic PDEs with spatial white noise. BIT Numerical Mathematics,
58(4):881–906, 2018.

D. Bolin, K. Kirchner, and M. Kovács. Numerical solution of fractional elliptic stochastic
pdes with spatial white noise. IMA Journal of Numerical Analysis, 40(2):1051–1073, 2020.

A. Bonito, J. M. Cascón, K. Mekchay, P. Morin, and R. H. Nochetto. High-order afem for
the laplace–beltrami operator: Convergence rates. Foundations of Computational Mathe-
matics, 16(6):1473–1539, 2016.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, vol-
ume 3. Springer.

J. Bröcker. Existence and uniqueness for four-dimensional variational data assimilation in
discrete time. SIAM Journal on Applied Dynamical Systems, 16(1):361–374, 2013.

S. Brooks, A. Gelman, G. Jones, and X. Meng. Handbook of Markov chain Monte Carlo.
CRC press, 2011.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016.

T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler. A computational framework for
infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application
to global seismic inversion. SIAM Journal on Scientific Computing, 35(6):A2494–A2523,
2013.

D. Burago, S. Ivanov, and Y. Kurylev. A graph discretization of the Laplace–Beltrami
operator. Journal of Spectral Theory, 4(4):675–714, 2015.

270



G. Burgers, P. Jan van Leeuwen, and G. Evensen. Analysis scheme in the ensemble Kalman
filter. Monthly Weather Review, 126(6):1719–1724, 1998.

Q. Cai, J. Kang, and T. Yu. Bayesian network marker selection via the thresholded graph
Laplacian Gaussian prior. Bayesian Analysis, 2018.

T. T. Cai. Global testing and large-scale multiple testing for high-dimensional covariance
structures. Annual Review of Statistics and Its Application, 4:423–446, 2017.

T. T. Cai and W. Liu. Adaptive thresholding for sparse covariance matrix esti-
mation. Journal of the American Statistical Association, 106(494):672–684, 2011.
doi:https://doi.org/10.1198/jasa.2011.tm10560.

T. T. Cai and M. Yuan. Adaptive covariance matrix estimation through block thresholding.
The Annals of Statistics, 40(4):2014–2042, 2012.

T. T. Cai and H. H. Zhou. Minimax estimation of large covariance matrices under ℓ1-norm.
Statistica Sinica, pages 1319–1349, 2012a.

T. T. Cai and H. H. Zhou. Optimal rates of convergence for sparse covariance matrix
estimation. The Annals of Statistics, 40(5):2389–2420, 2012b.

T. T. Cai, Z. Ren, and H. H. Zhou. Estimating structured high-dimensional covariance
and precision matrices: Optimal rates and adaptive estimation. Electronic Journal of
Statistics, 10:1–59, 2016.

E. Calvello, S. Reich, and A. M. Stuart. Ensemble Kalman methods: a mean field perspective.
arXiv preprint arXiv:2209.11371, 2022.

D. Calvetti and E. Somersalo. An Introduction to Bayesian Scientific Computing: Ten
Lectures on Subjective Computing, volume 2. Springer Science & Business Media, 2007.

D. Calvetti and E. Somersalo. Hypermodels in the bayesian imaging framework. Inverse
Problems, 24(3):034013, 2008.

D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, and B. Vantaggi. A hierarchical Krylov–
Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Prob-
lems, 31(12):125005, 2015.

D. Calvetti, F. Pitolli, E. Somersalo, and B. Vantaggi. Bayes meets Krylov: Statistically
inspired preconditioners for CGLS. SIAM Review, 60(2):429–461, 2018.

D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, and B. Vantaggi. Brain activity mapping
from MEG data via a hierarchical Bayesian algorithm with automatic depth weighting.
Brain topography, 32(3):363–393, 2019a.

D. Calvetti, E. Somersalo, and A Strang. Hierachical Bayesian models and sparsity: 𝐿2-
magic. Inverse problems, 35(3):035003, 2019b.

271

https://doi.org/https://doi.org/10.1198/jasa.2011.tm10560


D. Calvetti, M. Pragliola, and E. Somersalo. Sparsity promoting hybrid solvers for hierar-
chical Bayesian inverse problems. SIAM Journal on Scientific Computing, 42(6):A3761–
A3784, 2020a.

D. Calvetti, M. Pragliola, E. Somersalo, and Alexander Strang. Sparse reconstructions
from few noisy data: analysis of hierarchical Bayesian models with generalized gamma
hyperpriors. Inverse Problems, 36(2):025010, 2020b.

F. Camacho and A. Demlow. L2 and pointwise a posteriori error estimates for fem for elliptic
pdes on surfaces. IMA Journal of Numerical Analysis, 35(3):1199–1227, 2015.

Y. Canzani. Analysis on manifolds via the laplacian. Lecture Notes available at: http://www.
math. harvard. edu/canzani/docs/Laplacian. pdf, 2013.

G. Carlier, A. Galichon, and F. Santambrogio. From knothe’s transport to brenier’s map and
a continuation method for optimal transport. SIAM Journal on Mathematical Analysis,
41(6):2554–2576, 2010.

A. Carrassi, M. Bocquet, L. Bertino, and G. G. Data assimilation in the geosciences: An
overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate
Change, 9(5), 2018.

J. A. Carrillo and U. Vaes. Wasserstein stability estimates for covariance-preconditioned
Fokker–Planck equations. Nonlinearity, 34(4):2275, 2021.

C. M. Carvalho, N. G Polson, and J. G. Scott. Handling sparsity via the horseshoe. In
Artificial Intelligence and Statistics, pages 73–80. PMLR, 2009.

N. K. Chada, M. A. Iglesias, L. Roininen, and A. M. Stuart. Parameterizations for ensemble
Kalman inversion. Inverse Problems, 34(5):055009, 2018.

N. K. Chada, Y. Chen, and D. Sanz-Alonso. Iterative ensemble Kalman methods: A unified
perspective with some new variants. Foundations of Data Science, 3(3):331–369, 2021.

M. A. J. Chaplain, M. Ganesh, I. G. Graham, and G. Lolas. Mathematical modelling of
solid tumour growth: applications of pre-pattern formation. In Morphogenesis and Pattern
Formation in Biological Systems, pages 283–293. Springer, 2003.

S. Chatterjee and P. Diaconis. The sample size required in importance sampling. The Annals
of Applied Probability, 28(2):1099–1135, 2018.

J. Chen and M. L. Stein. Linear-cost covariance functions for Gaussian random
fields. Journal of the American Statistical Association, 118(541):147–164, 2023.
doi:https://doi.org/10.1080/01621459.2021.1919122.

R. Y. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an
analysis using matrix concentration inequalities. Information and Inference: A Journal of
the IMA, 1(1):2–20, 2012.

272

https://doi.org/https://doi.org/10.1080/01621459.2021.1919122


X. Chen, M. Xu, and W. B. Wu. Covariance and precision matrix estimation for high-
dimensional time series. The Annals of Statistics, 41(6):2994–3021, 2013.

Y. Chen and M. Anitescu. Scalable physics-based maximum likelihood estimation using
hierarchical matrices. SIAM/ASA Journal on Uncertainty Quantification, 11(2):682–725,
2023. doi:https://doi.org/10.1137/21M1458880.

Y. Chen, D. Sanz-Alonso, and R. Willett. Autodifferentiable ensemble Kalman filters. SIAM
Journal on Mathematics of Data Science, 4(2):801–833, 2022.

Y. Chen, D. Sanz-Alonso, and R. Willett. Reduced-order autodifferentiable ensemble Kalman
filters. Inverse Problems, 39(12):124001, 2023.

N. Chopin and O. Papaspiliopoulos. An Introduction to Sequential Monte Carlo, volume 4.
Springer, 2020.

A. J. Chorin and M. Morzfeld. Conditions for successful data assimilation. Journal of
Geophysical Research: Atmospheres, 118(20):11–522, 2013.

E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart. Calibrate, emulate,
sample. Journal of Computational Physics, 424:109716, 2021.

F. S. Cohen, Z. Fan, and M. A. Patel. Classification of rotated and scaled textured images
using Gaussian Markov random field models. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (2):192–202, 1991.

R. Cohen, A.and Devore and C. Schwab. Analytic regularity and polynomial approximation
of parametric and stochastic elliptic pdes. Analysis and Applications, 9(01):11–47, 2011.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational harmonic analysis,
21(1):5–30, 2006.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition of data:
Diffusion maps. Proceedings of the National Academy of Sciences of the United States of
America, 102(21):7426–7431, 2005.

R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer. Graph laplacian tomography
from unknown random projections. IEEE Transactions on Image Processing, 17(10):1891–
1899, 2008.

S. Cotter, M. Dashti, and A. M. Stuart. Approximation of bayesian inverse problems for
pde’s. SIAM Journal on Numerical Analysis, 48(1):322–345, 2010a.

S. Cotter, M. Dashti, and A. M. Stuart. MCMC methods for functions: modifying old
algorithms to make them faster. SIAM Journal on Numerical Analysis, 48(1):322–345,
2010b.

273

https://doi.org/https://doi.org/10.1137/21M1458880


S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC methods for functions:
Modifying old algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.

K. Crane. Keenan’s 3d model repository. URL http://www.cs.cmu.edu/~kmcrane/Proje
cts/ModelRepository.

D. Crisan and B. Rozovskii. The Oxford Handbook of Nonlinear Filtering. Oxford University
Press, 2011.

D. Crisan, P. Moral, and T. Lyons. Discrete filtering using branching and interacting particle
systems. Université de Toulouse. Laboratoire de Statistique et Probabilités [LSP], 1998.

G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge uni-
versity press, 2014.

P. Damlen, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate and
hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 61(2):331–344, 1999.

M. Dashti and A. M. Stuart. Bayesian approach to inverse problems. Handbook of Uncer-
tainty Quantification, pages 311–428, 2017a.

M. Dashti and A. M. Stuart. The bayesian approach to inverse problems. In Handbook of
uncertainty quantification, pages 311–428. Springer, 2017b.

M. Dashti, K. Law, A. M. Stuart, and J. Voss. Map estimators and their consistency in
Bayesian nonparametric inverse problems. Inverse Problems, 29(9), 2013.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted least
squares minimization for sparse recovery. Communications on Pure and Applied Mathe-
matics: A Journal Issued by the Courant Institute of Mathematical Sciences, 63(1):1–38,
2010.

N. de Freitas, P. Højen-Sørensen, M. I. Jordan, and S. Russell. Variational MCMC. In Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01,
page 120–127, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558608001.

M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. S. Convergence rates for learning
linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification, 11
(2):480–513, 2023. doi:https://doi.org/10.1137/21M144294.

G. P. Dehaene. Computing the quality of the Laplace approximation. Neural Information
Processing Systems, 2017.

P. Del Moral. Feynman-Kac Formulae. Springer, 2004.

274

http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository.
http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository.
https://doi.org/https://doi.org/10.1137/21M144294


P. Del Moral and J. Tugaut. On the stability and the uniform propagation of chaos properties
of ensemble Kalman–Bucy filters. The Annals of Applied Probability, 28(2):790–850, 2018.

J. Demmel. The componentwise distance to the nearest singular matrix. SIAM Journal on
Matrix Analysis and Applications, 13(1):10–19, 1992.

A. Van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

I. Diakonikolas and D. M Kane. Algorithmic high-dimensional robust statistics. Cambridge
University Press, 2023. doi:https://doi.org/10.1017/9781108943161.

Z. Ding and Q. Li. Ensemble Kalman inversion: mean-field limit and convergence analysis.
Statistics and Computing, 31(1):1–21, 2021.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

S. Dirksen. Tail Bounds via Generic Chaining. Electronic Journal of Probability, 20:1–29,
2015.

A. Doucet, A. M. Johansen, et al. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

M. M. Dunlop, M. A. Iglesias, and A. M. Stuart. Hierarchical Bayesian level set inversion.
Statistics and Computing, 27(6):1555–1584, 2017.

M. M. Dunlop, M. A. Girolami, A. M. Stuart, and A. L. Teckentrup. How deep are deep
Gaussian processes? The Journal of Machine Learning Research, 19(1):2100–2145, 2018.

G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta Numerica, 22:
289–396, 2013.

C. Eilks and C. M. Elliott. Numerical simulation of dealloying by surface dissolution via
the evolving surface finite element method. Journal of Computational Physics, 227(23):
9727–9741, 2008.

N. El Karoui. Operator norm consistent estimation of large-dimensional sparse covariance
matrices. The Annals of Statistics, 36(6):2717–2756, 2008.

T. A. El Moselhy and Y. M. Marzouk. Bayesian inference with optimal maps. Journal of
Computational Physics, 231(23):7815–7850, 2012.

C. M. Elliott and B. Stinner. A surface phase field model for two-phase biological membranes.
SIAM Journal on Applied Mathematics, 70(8):2904–2928, 2010.

H. England, M. Hanke, and A. Neubauer. Regularization of inverse problems. Springer
Science and Business Media, 1996.

275

https://doi.org/https://doi.org/10.1017/9781108943161


O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and polynomial
chaos Kalman filters in Bayesian inverse problems. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):823–851, 2015.

L. C. Evans. Partial Differential Equations, volume 19. American Mathematical Soc., 2010.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(c5):10143–10162, 1995.

G. Evensen. The ensemble Kalman filter: Theoretical formulation and practical implemen-
tation. Ocean Dynamics, 53:343–367, 2003.

G. Evensen. Sampling strategies and square root analysis schemes for the EnKF. Ocean
Dynamics, 54(6):539–560, 2004.

G. Evensen. Data Assimilation: the Ensemble Kalman Filter. Springer Science and Business
Media, 2009.

G. Evensen and P. Van Leeuwen. Assimilation of Geosat altimeter data for the Agulhas
current using the ensemble Kalman filter with a quasigeostrophic model. Monthly Weather
Review, 124(1):85–96, 1996.

G. Evensen, F. C. Vossepoel, and P. J. van Leeuwen. Data Assimilation Fundamentals: A
Unified Formulation of the State and Parameter Estimation Problem. Springer Nature,
2022.

J. Fan, Y. Fan, and J. Lv. High dimensional covariance matrix estimation using a factor
model. Journal of Econometrics, 147(1):186–197, 2008.

Q. Fang, S. Guo, and X. Qiao. Adaptive functional thresholding for sparse covariance func-
tion estimation in high dimensions. Journal of the American Statistical Association, (546):
1473–1485, 2023. doi:10.1080/01621459.2023.2200522.

A. Farchi and M. Bocquet. On the efficiency of covariance localisation of the ensemble
Kalman filter using augmented ensembles. Frontiers in Applied Mathematics and Statistics,
page 3, 2019.

X. Fernique. Intégrabilité des vecteurs gaussiens. CR Acad. Sci. Paris Serie A, 270:1698–
1699, 1970.

X. M. Fernique, J. P. Conze, J. Gani, and X Fernique. Regularité des trajectoires des fonctions
aléatoires gaussiennes. Springer, 1975. doi:http://dx.doi.org/10.1007/BFb0080190.

J. Franklin. Well-posed stochastic extensions of ill-posed linear problems. Journal of math-
ematical analysis and applications, 31(3):682–716, 1970.

276

https://doi.org/10.1080/01621459.2023.2200522
https://doi.org/http://dx.doi.org/10.1007/BFb0080190


P. Frauenfelder, C. Schwab, and R. A. Todor. Finite elements for elliptic problems with
stochastic coefficients. Computer methods in applied mechanics and engineering, 194(2-5):
205–228, 2005.

G. A. Fuglstad, F. Lindgren, D. Simpson, and H. Rue. Exploring a new class of non-
stationary spatial Gaussian random fields with varying local anisotropy. Statistica Sinica,
pages 115–133, 2015a.

G.-A. Fuglstad, D. Simpson, F. Lindgren, and H. Rue. Does non-stationary spatial data
always require non-stationary random fields? Spatial Statistics, 14:505–531, 2015b.

R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and posterior covariance
matrices in Kalman filter variants. Journal of Multivariate Analysis, 98(2):227–255, 2007.

R. Furrer, M. G. Genton, and D. Nychka. Covariance tapering for interpolation of large
spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–523, 2006.
doi:http://dx.doi.org/10.1198/106186006X132178.

D. Gamerman and H. Lopes. Markov chain Monte Carlo: stochastic simulation for Bayesian
inference. CRC Press, 2006.

T. Gao, S. Z. Kovalsky, and I. Daubechies. Gaussian process landmarking on manifolds.
SIAM Journal on Mathematics of Data Science, 1(1):208–236, 2019.

A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions:
Gradient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical
Systems, 19(1):412–441, 2020.

N. García Trillos and D. Sanz-Alonso. The Bayesian formulation and well-posedness of
fractional elliptic inverse problems. Inverse Problems, 33(6):065006, 2017.

N. García Trillos and D. Sanz-Alonso. Continuum limits of posteriors in graph Bayesian
inverse problems. SIAM Journal on Mathematical Analysis, 50(4):4020–4040, 2018a.

N García Trillos and D. Sanz-Alonso. The Bayesian update: variational formulations and
gradient flows. Bayesian Analysis, 2018b.

N. García Trillos and D. Slepčev. Continuum limit of total variation on point clouds. Archive
for rational mechanics and analysis, 220(1):193–241, 2016.

N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev. Error estimates for spectral con-
vergence of the graph laplacian on random geometric graphs toward the laplace–beltrami
operator. Foundations of Computational Mathematics, pages 1–61, 2019a.

N. García Trillos, Z. Kaplan, and D. Sanz-Alonso. Variational characterizations of local
entropy and heat regularization in deep learning. Entropy, 21(5):511, 2019b.

277

https://doi.org/http://dx.doi.org/10.1198/106186006X132178


N. García Trillos, Daniel Sanz-Alonso, and Ruiyi Yang. Local regularization of noisy point
clouds: Improved global geometric estimates and data analysis. Journal of Machine Learn-
ing Research, 20(136):1–37, 2019c.

N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev. Error estimates for spectral conver-
gence of the graph Laplacian on random geometric graphs toward the Laplace–Beltrami
operator. Foundations of Computational Mathematics, 20(4):827–887, 2020a.

N. García Trillos, Z. Kaplan, T. Samakhoana, and D. Sanz-Alonso. On the consistency of
graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms.
Journal of Machine Learning Research, 21(28):1–47, 2020b.

G. Gaspari and S. E. Cohn. Construction of correlation functions in two and three dimen-
sions. Quarterly Journal of the Royal Meteorological Society, 125(554):723–757, 1999.

M. G. Genton. Classes of kernels for machine learning: a statistics perspective. Journal of
Machine Learning Research, 2(Dec):299–312, 2001.

C. J. Geoga, M. Anitescu, and M. L. Stein. Scalable Gaussian process computations using
hierarchical matrices. Journal of Computational and Graphical Statistics, pages 1–11,
2019.

S. Ghosal and A. W. van der Vaart. Fundamentals of Nonparametric Bayesian Inference, vol-
ume 44. Cambridge University Press, 2017. doi:http://dx.doi.org/10.1017/9781139029834.

A. Gibbs and F. Su. On choosing and bounding probability metrics. International Statistical
Review, 70(3):419–435, 2002.

F. Gilani and J. Harlim. Approximating solutions of linear elliptic PDE’s on a smooth
manifold using local kernel. Journal of Computational Physics, 2019.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Springer, 2015.

M. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.

E. Giné and V. Koltchinskii. Empirical graph Laplacian approximation of Laplace–Beltrami
operators: Large sample results. In High dimensional probability, pages 238–259. Institute
of Mathematical Statistics, 2006.

E. Giné and R. Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press, 2021.

T. Gneiting, A. E Raftery, A. H. Westveld III, and T. Goldman. Calibrated probabilistic
forecasting using ensemble model output statistics and minimum crps estimation. Monthly
Weather Review, 133(5):1098–1118, 2005.

278

https://doi.org/http://dx.doi.org/10.1017/9781139029834


M. S. Gockenbach. Understanding and implementing the finite element method, volume 97.
Siam, 2006.

J. Goes, G. Lerman, and B. Nadler. Robust sparse covariance estimation by threshold-
ing Tyler’s M-estimator. The Annals of Statistics, 48(1):86–110, 2020. doi:10.1214/18-
AOS1793.

Y. Gordon. Some inequalities for gaussian processes and applications. Israel Journal of
Mathematics, 50:265–289, 1985. doi:http://dx.doi.org/10.1007/BF02759761.

I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data using FO-
CUSS: A re-weighted minimum norm algorithm. IEEE Transactions on signal processing,
45(3):600–616, 1997.

G. A. Gottwald and A. J. Majda. A mechanism for catastrophic filter divergence in data
assimilation for sparse observation networks. Nonlinear Processes in Geophysics, 20(5):
705–712, 2013.

P. J. Green. Iteratively reweighted least squares for maximum likelihood estimation, and
some robust and resistant alternatives. Journal of the Royal Statistical Society: Series B
(Methodological), 46(2):149–170, 1984.

D. V. Griffiths, J. Huang, and G. A. Fenton. Influence of spatial variability on slope reliability
using 2-D random fields. Journal of geotechnical and geoenvironmental engineering, 135
(10):1367–1378, 2009.

Y. Gu and D. S. Oliver. An iterative ensemble Kalman filter for multiphase fluid flow data
assimilation. Spe Journal, 12(04):438–446, 2007.

S. Guo, D. Li, X. Qiao, and Y. Wang. From sparse to dense functional data in high dimen-
sions: Revisiting phase transitions from a non-asymptotic perspective. Journal of Machine
Learning Research, 26(15):1–40, 2025.

P. A. Guth, C. Schillings, and S. Weissmann. Ensemble Kalman filter for neural network
based one-shot inversion. arXiv preprint arXiv:2005.02039, 2020.

M. Hairer. An introduction to stochastic pdes. arXiv preprint arXiv:0907.4178, 2009.

M. Hairer, A. M. Stuart, J. Voss, and P. Wiberg. Analysis of SPDEs arising in path sampling.
Part I: The Gaussian case. Communications in Mathematical Sciences, 3(4):587–603, 2013.

M. Hanke. A regularizing Levenberg-Marquardt scheme, with applications to inverse ground-
water filtration problems. Inverse Problems, 13(1):79–95, 1997.

A. Harbey. Forecasting, structural time series models and the Kalman filter. Cambridge
university press, 1964.

279

https://doi.org/10.1214/18-AOS1793
https://doi.org/10.1214/18-AOS1793
https://doi.org/http://dx.doi.org/10.1007/BF02759761


D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural Computation, 16(12):2639–2664,
2004.

J. Harlim and A. J. Majda. Catastrophic filter divergence in filtering nonlinear dissipative
systems. Communications in Mathematical Sciences, 8(1):27–43, 2010.

J. Harlim, D. Sanz-Alonso, and R. Yang. Kernel methods for Bayesian elliptic inverse
problems on manifolds. SIAM/ASA Journal on Uncertainty Quantification, 8(4):1414–
1445, 2020.

J. Harlim, S. W. Jiang, H. Kim, and D. Sanz-Alonso. Graph-based prior and forward models
for inverse problems on manifolds with boundaries. Inverse Problems, 38(3):035006, 2022.

K. Hayden, E. Olson, and E. Titi. Discrete data assimilation in the Lorenz and 2D Navier–
Stokes equations. Physica D: Nonlinear Phenomena, 240(18):1416–1425, 2011.

M. Hein and J. Y. Audibert. Intrinsic dimensionality estimation of submanifolds in r d.
In Proceedings of the 22nd international conference on Machine learning, pages 289–296.
ACM, 2005.

M. Hein, J.-Y. Audibert, and U. Von Luxburg. From graphs to manifolds–weak and strong
pointwise consistency of graph Laplacians. In International Conference on Computational
Learning Theory, pages 470–485. Springer, 2005.

T. Helin and M. Burger. Maximum a posteriori probability estimates in infinite-dimensional
bayesian inverse problems. Inverse Problems, 31(8), 2015.

M. Herty and G. Visconti. Kinetic methods for inverse problems. Kinetic & Related Models,
12(5):1109, 2019.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The
Journal of Machine Learning Research, 14(1):1303–1347, 2013.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.

P. L. Houtekamer and J. Derome. Methods for ensemble prediction. Monthly Weather
Review, 123(7):2181–2196, 1995.

P. L. Houtekamer and H. L. Mitchell. Data assimilation using an ensemble Kalman filter
technique. Monthly Weather Review, 126(3):796–811, 1998.

P. L. Houtekamer and H. L. Mitchell. A sequential ensemble Kalman filter for atmospheric
data assimilation. Monthly Weather Review, 129(1):123–137, 2001.

P. L. Houtekamer and F. Zhang. Review of the ensemble Kalman filter for atmospheric data
assimilation. Monthly Weather Review, 144(12):4489–4532, 2016.

280



J. K. Hunter and B. Nachtergaele. Applied Analysis. World Scientific Publishing Company,
2001. doi:http://dx.doi.org/10.1142/4319.

M. A. Iglesias. Iterative regularization for ensemble data assimilation in reservoir models.
Computational Geosciences, 19:177–212, 2015.

M. A. Iglesias. A regularizing iterative ensemble Kalman method for PDE-constrained inverse
problems. Inverse Problems, 32(2):025002, 2016.

M. A. Iglesias and C. Dawson. The representer method for state and parameter estimation
in single-phase darcy flow. Computer Methods in Applied Mechanics and Engineering, 196
(45-48):4577–4596, 2007.

M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse
problems. Inverse Problems, 29(4):045001, 2013.

N. J. Irons, M. Scetbon, S. Pal, and Z. Harchaoui. Triangular flows for generative modeling:
Statistical consistency, smoothness classes, and fast rates. In International Conference on
Artificial Intelligence and Statistics, pages 10161–10195. PMLR, 2022.

T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the prop-
agation of uncertainty from data through inference to prediction for large-scale problems,
with application to flow of the Antarctic ice sheet. Journal of Computational Physics, 296:
348–368, 2015.

P. Jaini, K. A. Selby, and Y. Yu. Sum-of-squares polynomial flow. In International Confer-
ence on Machine Learning, pages 3009–3018. PMLR, 2019.

P. Jaini, I. Kobyzev, Y. Yu, and M. Brubaker. Tails of lipschitz triangular flows. In Inter-
national Conference on Machine Learning, pages 4673–4681. PMLR, 2020.

G. M. James and C. A. Sugar. Clustering for sparsely sampled functional
data. Journal of the American Statistical Association, 98(462):397–408, 2003.
doi:http://dx.doi.org/10.1198/016214503000189.

G. M. James, T. J. Hastie, and C. A. Sugar. Principal component models for sparse functional
data. Biometrika, 87(3):587–602, 2000. doi:http://dx.doi.org/10.1093/biomet/87.3.587.

S. W. Jiang and J. Harlim. Ghost point diffusion maps for solving elliptic pdes on manifolds
with classical boundary conditions. Communications on Pure and Applied Mathematics,
76(2):337–405, 2023.

J. Jin, Y. Lu, J. Blanchet, and L. Ying. Minimax optimal kernel operator learning via mul-
tilevel training. In The Eleventh International Conference on Learning Representations,
2022.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37(2):183–233, 1999.

281

https://doi.org/http://dx.doi.org/10.1142/4319
https://doi.org/http://dx.doi.org/10.1198/016214503000189
https://doi.org/http://dx.doi.org/10.1093/biomet/87.3.587


J. Kaipo and E. Somersalo. Statistical and Computational Inverse Problems. Springer
Science & Business Media, 160, 2006.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960.

E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univer-
sity Press, 2003. doi:https://doi.org/10.1017/CBO9780511802270.

A. B. Kashlak, J. A. D. Aston, and R. Nickl. Inference on covariance operators via con-
centration inequalities: k-sample tests, classification, and clustering via Rademacher com-
plexities. Sankhya A, 81:214–243, 2019.

M. Katzfuss, J. R. Stroud, and C. K. Wikle. Understanding the ensemble Kalman filter.
The American Statistician, 70(4):350–357, 2016.

D. Kelly and A. M. Stuart. Well-posedness and accuracy of the ensemble Kalman filter in
discrete and continuous time. Nonlinearity, 27(10), 2014.

D. Kelly and A. M. Stuart. Ergodicity and accuracy of optimal particle filters for bayesian
data assimilation. Chinese Annals of Mathematics, Series B, 40(5):811–842, 2019.

D. Kelly, A. J. Majda, and X. T. Tong. Concrete ensemble Kalman filters with rigorous
catastrophic filter divergence. Proceedings of the National Academy of Sciences, 112(34):
10589–10594, 2015.

U. Khristenko, L. Scarabosio, P. Swierczynski, E. Ullmann, and B. Wohlmuth. Analysis of
boundary effects on PDE-based sampling of Whittle–Matérn Random Fields. SIAM/ASA
Journal on Uncertainty Quantification, 7(3):948–974, 2019.

H. Kim, D. Sanz-Alonso, and A. Strang. Hierarchical ensemble Kalman methods with
sparsity-promoting generalized gamma hyperpriors. Foundations of Data Science, 5(3):
366–388, 2023.

H. Kim, D. Sanz-Alonso, and R. Yang. Optimization on manifolds via graph gaussian
processes. SIAM Journal on Mathematics of Data Science, 6(1):1–25, 2024.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved
variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

B. Klartag and S. Mendelson. Empirical processes and random projections. Journal of
Functional Analysis, 225(1):229–245, 2005.

B. Knapik, A. van der Vaart, and J. van Zanten. Bayesian inverse problems with Gaussian
priors. The Annals of Statistics, 39(5):2626–2657, 2011.

282

https://doi.org/https://doi.org/10.1017/CBO9780511802270


H. Knothe. Contributions to the theory of convex bodies. Michigan Mathematical Journal,
4(1):39–52, 1957.

V. Koltchinskii and K. Lounici. Concentration inequalities and moment bounds for sample
covariance operators. Bernoulli, 23(1):110–133, 2017.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the 19th international conference on machine learning, volume 2002, pages
315–322, 2002.

A. Kontorovich and M. Raginsky. Concentration of measure without independence: a unified
approach via the martingale method. In Convexity and Concentration, pages 183–210.
Springer, 2017.

N. B Kovachki and A. M. Stuart. Ensemble Kalman inversion: a derivative-free technique
for machine learning tasks. Inverse Problems, 35(9):095005, 2019.

N. B. Kovachki, S. Lanthaler, and A. M. Stuart. Operator Learning: Algorithms and Anal-
ysis. arXiv preprint arXiv:2402.15715, 2024.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation
variational inference. The Journal of Machine Learning Research, 18(1):430–474, 2017.

T. Kühn. Covering numbers of Gaussian reproducing kernel Hilbert spaces. Journal of
Complexity, 27(5):489–499, 2011.

E. Kwiatkowski and J. Mandel. Convergence of the square root ensemble Kalman filter in
the large ensemble limit. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1–17,
2015.

L. E. Lehmann, and G. Casella. Theory of Point Estimation. Springer Science & Business
Media, 2006.

A. Lang, J. Potthoff, M. Schlather, and D. Schwab. Continuity of random fields on rieman-
nian manifolds. arXiv preprint arXiv:1607.05859, 2016.

T. Lange and W. Stannat. Mean field limit of Ensemble Square Root filters-discrete and
continuous time. Foundations of Data Science, 3(3):563–588, 2021.

J. Latz. Analysis of stochastic gradient descent in continuous time. Statistics and Computing,
31(4):39, 2021.

K. J. H. Law and A. M. Stuart. Evaluating data assimilation algorithms. Monthly Weather
Review, 140(11):3757–3782, 2012.

K. J. H. Law, A. M. Stuart, and K. Zygalakis. Data Assimilation. Springer, 2015.

283



K. J. H Law, D. Sanz-Alonso, A. Shukla, and A. M. Stuart. Filter accuracy for the Lorenz 96
model: Fixed versus adaptive observation operators. Physica D: Nonlinear Phenomena,
325:1–13, 2016a.

K. J. H. Law, H. Tembine, and R. Tempone. Deterministic mean-field ensemble Kalman
filtering. SIAM Journal on Scientific Computing, 38(3):A1251–A1279, 2016b.

W. G. Lawson and J. A. Hansen. Implications of stochastic and deterministic filters as
ensemble-based data assimilation methods in varying regimes of error growth. Monthly
Weather Review, 132(8):1966–1981, 2004.

F. Le Gland, V. Monbet, and V.-D. Tran. Large sample asymptotics for the ensemble Kalman
filter. PhD thesis, INRIA, 2009.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 2013.

Y. Lee. ℓ𝑝 regularization for ensemble Kalman inversion. SIAM Journal on Scientific Com-
puting, 43(5):A3417–A3437, 2021.

P. Van Leeuwen. Nonlinear data assimilation in geosciences: an extremely efficient particle
filter. Quarterly Journal of the Royal Meteorological Society, 136(653):1991–1999, 2010.

P. Van Leeuwen, Y. Cheng, and S. Reich. Nonlinear Data Assimilation. Springer, 2015.

O. Leeuwenburgh, G. Evensen, and L. Bertino. The impact of ensemble filter definition on
the assimilation of temperature profiles in the tropical Pacific. Quarterly Journal of the
Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology
and physical oceanography, 131(613):3291–3300, 2005.

M. S. Lehtinen, L. Paivarinta, and E. Somersalo. Linear inverse problems for generalised
random variables. Inverse Problems, 5(4):599, 1989a.

M. S. Lehtinen, L. Paivarinta, and E. Somersalo. Linear inverse problems for generalised
random variables. Inverse Problems, 5(4):599, 1989b.

A. J. Lemonte and G. M. Cordeiro. The exponentiated generalized inverse Gaussian distri-
bution. Statistics & Probability Letters, 81(4):506–517, 2011.

V. P. Leonov and A. N. Shiryaev. On a method of calculation of semi-invariants. Theory of
Probability & its applications, 4(3):319–329, 1959.

E. Levina and R. Vershynin. Partial estimation of covariance matrices. Probability Theory
and Related Fields, 153(3-4):405–419, 2012.

C. Li and H. Li. Network-constrained regularization and variable selection for analysis of
genomic data. Bioinformatics, 24(9):1175–1182, 2008.

284



G. Li and A. C. Reynolds. An iterative ensemble Kalman filter for data assimilation. In
SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2007.

J. Li and D. Xiu. On numerical properties of the ensemble Kalman filter for data assimilation.
Computer Methods in Applied Mechanics and Engineering, 197(43-44):3574–3583, 2008.

Wenbo V Li and Ang Wei. Gaussian integrals involving absolute value functions. In High
dimensional probability V: the Luminy volume, volume 5, pages 43–60. Institute of Math-
ematical Statistics, 2009.

Y. Li, B. Mark, G. Raskutti, and R. Willett. Graph-based regularization for regression
problems with highly-correlated designs. In 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 740–742. IEEE, 2018.

Z. Li and Z. Shi. A convergent point integral method for isotropic elliptic equations on a
point cloud. Multiscale Modeling & Simulation, 14(2):874–905, 2016.

Z. Li, Z. Shi, and J. Sun. Point integral method for solving Poisson-type equations on man-
ifolds from point clouds with convergence guarantees. Communications in Computational
Physics, 22(1):228–258, 2017.

C. Lieberman, C. Willcox, and O. Ghattas. Parameter and state model reduction for large-
scale statistical inverse problems. SIAM Journal on Scientific Computing, 32(5):2535–
2542, 2010.

F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498, 2011.

D. V. Lindley and A. F. M. Smith. Bayes estimates for the linear model. Journal of the
Royal Statistical Society. Series B (Methodological), pages 1–41, 1972.

T. Lindvall. Lectures on the Coupling Method. Springer, 2002.

A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M.
Meerschaert, M. Ainsworth, et al. What is the fractional laplacian? a comparative review
with new results. Journal of Computational Physics, 404:109009, 2020.

F. Liu, S. Chakraborty, F. Li, Y. Liu, and A. C. Lozano. Bayesian regularization via graph
Laplacian. Bayesian Analysis, 9(2):449–474, 2014.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Science & Business
Media, 2008.

D. M. Livings, S. L. Dance, and N. K. Nichols. Unbiased ensemble square root filters. Physica
D: Nonlinear Phenomena, 237(8):1021–1028, 2008.

285



R. J Lorentzen, K. M. Flornes, G. Nævdal, et al. History matching channelized reservoirs
using the ensemble Kalman filter. SPE Journal, 17(01):137–151, 2012.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2):
130–141, 1963.

E. N. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1. Reading, 1996.

K. Lounici. High-dimensional covariance matrix estimation with missing observations.
Bernoulli, 20(3):1029–1058, 2014.

L. Maestrini, R. G. Aykroyd, and M. P. Wand. A variational inference framework for inverse
problems. Computational Statistics & Data Analysis, 202:108055, 2025.

A. J. Majda and J. Harlim. Filtering Complex Turbulent Systems. Cambridge University
Press, 2012.

A. J. Majda and X. T. Tong. Performance of ensemble Kalman filters in large dimensions.
Communications on Pure and Applied Mathematics, 71(5):892–937, 2018.

A. J. Majda and X. Wang. Nonlinear Dynamics and Statistical Theories for Basic Geophys-
ical Flows. Cambridge University Press, 2006.

J. Mandel, L. Cobb, and J. D. Beezley. On the convergence of the ensemble Kalman filter.
Applications of Mathematics, 56(6):533–541, 2011.

A. Mandelbaum. Linear estimators and measurable linear transformations on a Hilbert
space. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65(3):385–397,
1984a.

A. Mandelbaum. Linear estimators and measurable linear transformations on a hilbert space.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65(3):385–397, 1984b.

Y. Marzouk and D. Xiu. A stochastic collocation approach to Bayesian inference in inverse
problems. Communications in Computational Physics, 6(4):826–847, 2009.

Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. Sampling via measure transport: an
introduction. Handbook of Uncertainty Quantification, pages 1–41, 2016.

A. Matthews. Scalable Gaussian process inference using variational methods. PhD thesis,
University of Cambridge, 2017.

D. McLaughlin and L. R. Townley. A reassessment of the groundwater inverse problem.
Water Resources Research, 32(5):1131–1161, 1996.

F. Mémoli, G. Sapiro, and P. Thompson. Implicit brain imaging. NeuroImage, 23:S179–S188,
2004.

286



S. Mendelson. Empirical processes with a bounded 𝜓1 diameter. Geometric and Functional
Analysis, 20(4):988–1027, 2010.

S. Mendelson. Upper bounds on product and multiplier empirical processes. Stochastic
Processes and their Applications, 126(12):3652–3680, 2016.

S. Mendelson and N. Zhivotovskiy. Robust covariance estimation under 𝐿4-𝐿2 norm equiv-
alence. 2020.

M. Mercker and A. Marciniak-Czochra. Bud-neck scaffolding as a possible driving force in
escrt-induced membrane budding. Biophysical journal, 108(4):833–843, 2015.

N. Mollenhauer, N. Mücke, and T. J. Sullivan. Learning linear operators: Infinite-
dimensional regression as a well-behaved non-compact inverse problem. arXiv preprint
arXiv:2211.08875, 2022.

K. Monterrubio-Gómez, L. Roininen, S. Wade, T. Damoulas, and M. Girolami. Posterior
inference for sparse hierarchical non-stationary models. Computational Statistics & Data
Analysis, 148:106954, 2020.

M. Morzfeld, D. Hodyss, and C. Snyder. What the collapse of the ensemble Kalman filter
tells us about particle filters. Tellus A: Dynamic Meteorology and Oceanography, 69(1):
1283809, 2017.

J. L. Mueller and S. Siltanen. Linear and nonlinear inverse problems with practical applica-
tions, volume 10. Siam, 2012.

I. Myrseth, J. Sætrom, and H. Omre. Resampling the ensemble Kalman filter. Computers
& Geosciences, 55:44–53, 2013.

C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. Variational sequential Monte Carlo.
In International conference on artificial intelligence and statistics, pages 968–977. PMLR,
2018.

Y. C. Ng, N. Colombo, and R. Silva. Bayesian semi-supervised learning with graph gaussian
processes. In Advances in Neural Information Processing Systems, pages 1683–1694, 2018.

F. Nobile and F. Tesei. A Multi Level Monte Carlo method with control variate for elliptic
PDEs with log-normal coefficients. Stoch. Partial Differ. Equ. Anal. Comput., 3:398–444,
2015. doi:http://dx.doi.org/10.1007/s40072-015-0055-9.

N. Nüsken and S. Reich. Note on interacting Langevin diffusions: Gradient structure and
ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart. arXiv preprint
arXiv:1908.10890, 2019.

J. T. Oden and J. N. Reddy. An Introduction to the Mathematical Theory of Finite Elements.
Courier Corporation, 2012.

287

https://doi.org/http://dx.doi.org/10.1007/s40072-015-0055-9


E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. J.
Patil, and J. A. Yorke. A local ensemble Kalman filter for atmospheric data assimilation.
Tellus A: Dynamic Meteorology and Oceanography, 56(5):415–428, 2004.

A. B. Owen. Statistically efficient thinning of a Markov chain sampler. Journal of Compu-
tational and Graphical Statistics, 26(3):738–744, 2017.

C. J. Paciorek and M. J. Schervish. Spatial modelling using a new class of nonstationary
covariance functions. Environmetrics: The official journal of the International Environ-
metrics Society, 17(5):483–506, 2006.

V. M. Panaretos, D. Kraus, and J. H. Maddocks. Second-order comparison of Gaussian ran-
dom functions and the geometry of DNA minicircles. Journal of the American Statistical
Association, 105(490):670–682, 2010.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Nor-
malizing flows for probabilistic modeling and inference. The Journal of Machine Learning
Research, 22(1):2617–2680, 2021.

O. Papaspiliopoulos and M. Ruggiero. Optimal filtering and the dual process. Bernoulli, 20
(4):1999–2019, 2014.

O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. A general framework for the parametriza-
tion of hierarchical models. Statistical Science, pages 59–73, 2007.

A. Papoulis. Probability and statistics. Prentice-Hall, Inc., 1990.

R. Petrie. Localization in the ensemble Kalman filter. MSc Atmosphere, Ocean and Climate
University of Reading, 2008.

J. Ping, D. Zhang, et al. History matching of channelized reservoirs with vector-based level-
set parameterization. Spe Journal, 19(03):514–529, 2014.

C. Piret. The orthogonal gradients method: A radial basis functions method for solving
partial differential equations on arbitrary surfaces. Journal of Computational Physics, 231
(14):4662–4675, 2012.

M. Pourahmadi. High-dimensional covariance estimation: with high-dimensional data. John
Wiley & Sons, 2013.

X. Qiao, C. Qian, G. M. James, and S. Guo. Doubly functional graphical models in high
dimensions. Biometrika, 107(2):415–431, 2020. doi:10.1093/biomet/asz072.

J. O. Ramsay and J. B. Ramsey. Functional data analysis of the dynamics of the monthly
index of nondurable goods production. Journal of Econometrics, 107(1-2):327–344, 2002.

S. Reich. A dynamical systems framework for intermittent data assimilation. IBIT Numerical
Mathematics, 51(1):235–249, 2017.

288

https://doi.org/10.1093/biomet/asz072


S. Reich and C. Cotter. Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge
University Press, 2015.

S. Remes, M. Heinonen, and S. Kaski. Non-stationary spectral kernels. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, pages 4645–
4654, 2017.

A. C. Reynolds, M. Zafari, and G. Li. Iterative forms of the ensemble Kalman filter. In
ECMOR X-10th European conference on the mathematics of oil recovery, pages cp–23.
European Association of Geoscientists & Engineers, 2006.

H. E. Robbins. An empirical Bayes approach to statistics. In Breakthroughs in Statistics,
pages 388–394. Springer, 1992.

G. O. Roberts and S. K. Sahu. Updating schemes, correlation structure, blocking and
parameterization for the Gibbs sampler. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 59(2):291–317, 1997.

L. Roininen, M. Girolami, S. Lasanen, and M. Markkanen. Hyperpriors for Matérn fields
with applications in Bayesian inversion. Inverse Problems & Imaging, 13(1):1–29, 2019.

M. Rosenblatt. Remarks on a multivariate transformation. The annals of mathematical
statistics, 23(3):470–472, 1952.

M. Roth, G. Hendeby, C. Fritsche, and F. Gustafsson. The ensemble Kalman filter: a signal
processing perspective. EURASIP Journal on Advances in Signal Processing, 2017(1):
1–16, 2017.

A. J. Rothman, E. Levina, and J. Zhu. Generalized thresholding of large covariance matrices.
Journal of the American Statistical Association, 104(485):177–186, 2009.

S. J. Ruuth and B. Merriman. A simple embedding method for solving partial differential
equations on surfaces. Journal of Computational Physics, 227(3):1943–1961, 2008.

P. D. Sampson and P. Guttorp. Nonparametric estimation of nonstationary spatial covariance
structure. Journal of the American Statistical Association, 87(417):108–119, 1992.

X. Sanchez-Vila, A. Guadagnini, and J. Carrera. Representative hydraulic conductivities in
saturated groundwater flow. Reviews of Geophysics, 44(3), 2006.

D. Sanz-Alonso. Importance sampling and necessary sample size: An information theory
approach. SIAM/ASA Journal on Uncertainty Quantification, 6(2):867–879, 2018.

D. Sanz-Alonso and A. M. Stuart. Long-time asymptotics of the filtering distribution for
partially observed chaotic dynamical systems. SIAM/ASA Journal on Uncertainty Quan-
tification, 3(1):1200–1220, 2015.

289



D. Sanz-Alonso and Z. Wang. Bayesian update with importance sampling: Required sample
size. Entropy, 23(1):22, 2021.

D. Sanz-Alonso and N. Waniorek. Analysis of a computational framework for Bayesian
inverse problems: Ensemble Kalman updates and MAP estimators under mesh refinement.
SIAM/ASA Journal on Uncertainty Quantification, 12(1):30–68, 2024.

D. Sanz-Alonso and R. Yang. The SPDE approach to Matérn fields: Graph representations.
Statistical Science, 37(4):519–540, 2022a.

D. Sanz-Alonso and R. Yang. Unlabeled data help in graph-based semi-supervised learning:
a bayesian nonparametrics perspective. Journal of Machine Learning Research, 23(97):
1–28, 2022b.

D. Sanz-Alonso, A. M. Stuart, and A. Taeb. Inverse Problems and Data Assimilation, volume
107. Cambridge University Press, 2023a.

D. Sanz-Alonso, Andrew Stuart, and Armeen Taeb. Inverse Problems and Data Assimilation.
London Mathematical Society Student Texts. Cambridge University Press, 2023b.

S. Särkkä. Linear operators and stochastic partial differential equations in gaussian process
regression. In Artificial Neural Networks and Machine Learning–ICANN 2011: 21st In-
ternational Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011,
Proceedings, Part II 21, pages 151–158. Springer, 2011.

S. Särkkä. Bayesian Filtering and Smoothing, volume 3. Cambridge University Press, 2013.

S. Särkkä and L. Svensson. Bayesian Filtering and Smoothing, volume 17. Cambridge
University Press, 2023.

C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems.
SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

C. Schillings, B. Sprungk, and P. Wacker. On the convergence of the Laplace approximation
and noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse
problems. Numerische Mathematik, 145(4):915–971, 2020.

C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in UQ. Analysis and Applications, 17(01):
19–55, 2019.

Z. Shi and J. Sun. Convergence of the point integral method for poisson equation on point
cloud. arXiv preprint arXiv:1403.2141, 2014.

A. Singer. From graph to manifold Laplacian: The convergence rate. Applied and Compu-
tational Harmonic Analysis, 21(1):128–134, 2006.

290



C. Snyder. Particle filters, the “optimal” proposal and high-dimensional systems. In Pro-
ceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, 2011.

C. Snyder, T. Bengtsson, and M. Morzfeld. Performance bounds for particle filters using the
optimal proposal. Monthly Weather Review, 143(11):4750–4761, 2015.

C. Snyder, T. Bengtsson, P. J. Bickel, and J. L. Anderson. Obstacles to high-dimensional
particle filtering. Monthly Weather Review, 136(12):4629–4640, 2016.

A. Spantini, D. Bigoni, and Y. Marzouk. Inference via low-dimensional couplings. The
Journal of Machine Learning Research, 19(1):2639–2709, 2018.

A. Spantini, R. Baptista, and Y. Marzouk. Coupling techniques for nonlinear ensemble
filtering. SIAM Review, 64(4):921–953, 2022.

C. Stein. A bound for the error in the normal approximation to the distribution of a sum of
dependent random variables. In Proceedings of the sixth Berkeley symposium on mathe-
matical statistics and probability, volume 2: Probability theory, volume 6, pages 583–603.
University of California Press, 1972.

M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Science &
Business Media, 2012.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method. 1973.

A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19:451–559, 2010.

A. M. Stuart and A. Teckentrup. Posterior consistency for Gaussian process approximations
of Bayesian posterior distributions. Mathematics of Computation, 87(310):721–753, 2018.

T. J. Sullivan. Introduction to Uncertainty Quantification, volume 63. Springer, 2015.

M. Talagrand. The Generic Chaining: Upper and Lower Bounds of Stochastic Processes.
Springer, 2005.

M. Talagrand. Upper and Lower Bounds for Stochastic Processes, volume 60. Springer, 2014.

M. Talagrand. Upper and Lower Bounds for Stochastic Processes: Decomposition Theorems,
volume 60. Springer Nature, 2022. doi:https://doi.org/10.1007/978-3-030-82595-9.

A. Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM,
2015a.

A. Tarantola. Towards adjoint-based inversion for rheological parameters in nonlinear viscous
mantle flow. Physics of the Earth and Planetary Interiors, 234:23–34, 2015b.

J. E. Taylor and K. J. Worsley. Detecting sparse signals in random fields, with an application
to brain mapping. Journal of the American Statistical Association, 102(479):913–928,
2007.

291

https://doi.org/https://doi.org/10.1007/978-3-030-82595-9


A. L. Teckentrup. Convergence of Gaussian process regression with estimated hyper-
parameters and applications in Bayesian inverse problems. SIAM/ASA Journal on Un-
certainty Quantification, 8(4):1310–1337, 2020.

A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien. Linear discriminant analysis: A
detailed tutorial. AI Communications, 30(2):169–190, 2017.

E. H. Thiede, D. Giannakis, A. R. Dinner, and J. Weare. Galerkin approximation of dynam-
ical quantities using trajectory data. The Journal of Chemical Physics, 150(24):244111,
2019.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society: Series B (Methodological), 58(1):267–288, 1996.

M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker. Ensemble
square root filters. Monthly Weather Review, 131(7):1485–1490, 2003.

S. Tokdar, S. Kass, and R. Kass. Importance sampling: a review. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(1):54–60, 2010.

X. T. Tong. Performance analysis of local ensemble Kalman filter. Journal of Nonlinear
Science, 28(4):1397–1442, 2018.

X. T. Tong and M. Morzfeld. Localized ensemble Kalman inversion. Inverse Problems, 39
(6):064002, 2023.

X. T. Tong, A. J. Majda, and D. Kelly. Nonlinear stability of the ensemble Kalman filter
with adaptive covariance inflation. Nonlinearity, 29(2):54–60, 2015.

X. T. Tong, A. J Majda, and D. Kelly. Nonlinear stability and ergodicity of ensemble based
Kalman filters. Nonlinearity, 29(2):657, 2016.

F. Tonolini, J. Radford, A. Turpin, D. Faccio, and R. Murray-Smith. Variational inference
for computational imaging inverse problems. Journal of Machine Learning Research, 21
(179):1–46, 2020.

A. Trevisan and F. Uboldi. Assimilation of standard and targeted observations within the
unstable subspace of the observation–analysis–forecast cycle system. Journal of the At-
mospheric Sciences, 61(1):103–113, 2004.

J. A. Tropp. An Introduction to Matrix Concentration Inequalities, volume 8. Now Publish-
ers, Inc., 2015.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-
tion. Journal of optimization theory and applications, 109(3):475–494, 2001.

A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics.
Springer New York, 2008. ISBN 9780387790527. URL https://books.google.com/boo
ks?id=mwB8rUBsbqoC.

292

https://books.google.com/books?id=mwB8rUBsbqoC
https://books.google.com/books?id=mwB8rUBsbqoC


R. Tuo and W. Wang. Kriging prediction with isotropic Matérn correlations: Robustness
and experimental designs. Journal of Machine Learning Research, 21(1):7604–7641, 2020.

S. Ungarala. On the iterated forms of Kalman filters using statistical linearization. Journal
of Process Control, 22(5):935–943, 2012.

S. A. van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge University
Press, 2000.

R. Van Handel. Probability in high dimension. Technical report, Princeton University, 2014.

R. Van Handel. On the spectral norm of Gaussian random matrices. Transactions of the
American Mathematical Society, 369(11):8161–8178, 2017.

P. J. Van Leeuwen. A consistent interpretation of the stochastic version of the Ensemble
Kalman Filter. Quarterly Journal of the Royal Meteorological Society, 146(731):2815–2825,
2020.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science, volume 47. Cambridge University Press, 2018.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint, volume 48.
Cambridge University Press, 2019.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and Variational
Inference. Now Publishers Inc, 2008.

S. Wang and Y. Marzouk. On minimax density estimation via measure transport. arXiv
preprint arXiv:2207.10231, 2022.

X. Wang, C. H. Bishop, and S. J. Julier. Which is better, an ensemble of positive–negative
pairs or a centered spherical simplex ensemble? Monthly Weather Review, 132(7):1590–
1605, 2004.

L. Wasserman. All of Nonparametric Statistics. Springer Science & Business Media, 2006.

A. Wehenkel and G. Louppe. Unconstrained monotonic neural networks. Advances in neural
information processing systems, 32, 2019.

H. Wendland. Scattered Data Approximation, volume 17. Cambridge University Press, 2004.
doi:http://dx.doi.org/10.1017/CBO9780511617539.

293

https://doi.org/http://dx.doi.org/10.1017/CBO9780511617539


A. Wiens, D. Nychka, and W. Kleibe. Modeling spatial data using local likelihood estimation
and a matérn to sar translation. arXiv preprint arXiv:2002.01124, 2020.

C. K. I. Williams and C. E. Rasmussen. Gaussian Processes for Machine Learning, volume 2.
MIT press Cambridge, MA, 2006.

J. Wu, J. X. Wang, and S. C. Shadden. Improving the convergence of the iterative ensemble
Kalman filter by resampling. arXiv preprint arXiv:1910.04247, 2019.

J. Wu, L. Wen, and J. Li. Resampled ensemble Kalman inversion for Bayesian parameter
estimation with sequential data. Discrete & Continuous Dynamical Systems-Series S, 15
(4), 2022.

W. B. Wu and M. Pourahmadi. Nonparametric estimation of large co-
variance matrices of longitudinal data. Biometrika, 90(4):831–844, 2003.
doi:http://dx.doi.org/10.1093/biomet/90.4.831.

J. J. Xu, Z. Li, J. Lowengrub, and H. Zhao. A level-set method for interfacial flows with
surfactant. Journal of Computational Physics, 212(2):590–616, 2006.

F. Yao, H. G. Müller, and J. L. Wang. Functional data analysis for sparse longitu-
dinal data. Journal of the American Statistical Association, 100(470):577–590, 2005a.
doi:http://dx.doi.org/10.1198/016214504000001745.

F. Yao, H. G. Müller, and J. L. Wang. Functional linear regression anal-
ysis for longitudinal data. The Annals of Statistics, 33(6):2873–2903, 2005b.
doi:http://dx.doi.org/10.1214/009053605000000660.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances in neural
information processing systems, pages 1601–1608, 2005.

C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. Advances in variational inference.
IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026, 2018.

X. Zhang and J. Wang. From sparse to dense functional data and beyond. The Annals of
Statistics, pages 2281–2321, 2016.

Y. Zhang and D. S. Oliver. Improving the ensemble estimate of the Kalman gain by bootstrap
sampling. Mathematical Geosciences, 42:327–345, 2010.

S. Zhe, Syed A. Z. Naqvi, Y. Yang, and Y. Qi. Joint network and node selection for pathway-
based genomic data analysis. Bioinformatics, 29(16):1987–1996, 2013.

D. X. Zhou. The covering number in learning theory. Journal of Complexity, 18(3):739–767,
2002.

X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: from Gaussian fields to
Gaussian processes. In School of CS, CMU. Citeseer, 2003.

294

https://doi.org/http://dx.doi.org/10.1093/biomet/90.4.831
https://doi.org/http://dx.doi.org/10.1198/016214504000001745
https://doi.org/http://dx.doi.org/10.1214/009053605000000660


H. Zou, T. Hastie, and R. Tibshirani. On the “degrees of freedom” of the lasso. The Annals
of Statistics, 35(5):2173–2192, 2007.

E. Zuazua. Propagation, observation, and control of waves approximated by finite difference
methods. SIAM Review, 47(2):197–243, 2005.

295


	Abstract
	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	1.1 Ensemble Kalman Algorithms
	1.1.1 Single-Step Ensemble Kalman Update
	1.1.2 Multi-Step Ensemble Kalman Update

	1.2 Covariance Operator Estimation
	1.2.1 Unstructured Case
	1.2.2 Structured Case
	1.2.3 Small Lengthscale Analysis
	1.2.4 Empirical Process Theory
	1.2.5 Outline and Main Contributions
	1.2.6 Chapter 2 - Non-Asymptotic Analysis of Ensemble Kalman Updates: Effective Dimension and Localization
	1.2.7 Chapter 3 - Ensemble Kalman Filters with Resampling
	1.2.8 Chapter 4 - Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble Kalman Filters
	1.2.9 Chapter 5 - Covariance Operator Estimation via Adaptive Thresholding
	1.2.10 Additional Work


	2 Non-Asymptotic Analysis of Ensemble Kalman Updates: Effective Dimension and Localization
	2.1 Introduction
	2.1.1 Problem Description
	2.1.2 Summary of Contributions and Outline
	2.1.3 Related Work
	2.1.4 Notation

	2.2 Ensemble Kalman Updates: Posterior Approximation Algorithms
	2.2.1 Ensemble Algorithms for Posterior Approximation
	2.2.2 Dimension-Free Covariance Estimation
	2.2.3 Main Results: Posterior Approximation with Finite Ensemble

	2.3 Ensemble Kalman Updates: Sequential Optimization Algorithms
	2.3.1 Ensemble Algorithms for Sequential Optimization
	2.3.2 Dimension-Free Covariance Estimation Under Soft Sparsity
	2.3.3 Main Results: Approximation of Mean-Field Particle Updates with Finite Ensemble Size

	2.4 Conclusions, Discussion, and Future Directions
	2.5 Proofs: Section 2.2
	2.5.1 Preliminaries: Concentration and Covariance Estimation
	2.5.2 Continuity and Boundedness of Update Operators
	2.5.3 Proof of Main Results in Section 2.2
	2.5.4 Multi-Step Analysis of the Square Root Ensemble Kalman Filter

	2.6 Proofs: Section 2.3
	2.6.1 Covariance Estimation
	2.6.2 Proof of Main Results in Section 2.3

	2.7 Proofs: Section 4

	3 Ensemble Kalman Filters with Resampling
	3.1 Introduction
	3.1.1 Resampling in Filtering Algorithms
	3.1.2 Our Contributions
	3.1.3 Outline
	3.1.4 Notation

	3.2 Problem Setting and Ensemble Kalman Filters
	3.3 Ensemble Kalman Filters with Resampling
	3.3.1 Main Algorithm
	3.3.2 Non-asymptotic Error Bounds

	3.4 Numerical Results
	3.4.1 Linear Dynamics
	3.4.2 Lorenz 96 Dynamics

	3.5 Proof of Theorem 3.3.2
	3.5.1 Preliminary Results
	3.5.2 Base Case
	3.5.3 Induction Step

	3.6 Conclusions
	3.7 Additional Results
	3.7.1 Metrics for Numerical Results
	3.7.2 Technical Results


	4 Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble Kalman Filters
	4.1 Introduction
	4.2 Main Results
	4.2.1 Thresholded Estimation of Covariance Operators
	4.2.2 Small Lengthscale Regime
	4.2.3 Application in Ensemble Kalman Filters

	4.3 Thresholded Estimation of Covariance Operators
	4.3.1 Covariance Function Estimation
	4.3.2 Proof of Theorem 4.2.2

	4.4 Small Lengthscale Regime
	4.5 Application in Ensemble Kalman Filters
	4.6 Conclusions, Discussion, and Future Directions
	4.7 Proof of Lemma 3.4
	4.8 Additional Results
	4.8.1 Bound on Operator Norm
	4.8.2 Auxiliary Technical Result


	5 Covariance Operator Estimation via Adaptive Thresholding
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Outline

	5.2 Main Results
	5.2.1 Setting and Estimators
	5.2.2 Error Bound for Adaptive-threshold Estimator
	5.2.3 Comparison to Other Estimators

	5.3 Error Analysis for Adaptive-threshold Estimator
	5.4 Product Empirical Processes
	5.4.1 Background
	5.4.2 Product Sub-Gaussian and Sub-Exponential Classes

	5.5 Lower Bound for Universal Thresholding
	5.6 Error Analysis for Nonstationary Weighted Covariance Models
	5.7 Conclusions and Future Work
	5.8 Acknowledgments
	5.9 Additional Results
	5.9.1 Additional Numerical Simulations
	5.9.2 Sub-Gaussian Process Calculations


	References

