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ABSTRACT

At its core, this dissertation aims to formalize and explain—through a statistical lens—the
empirical success of popular ensemble-based algorithms in the data assimilation literature.
A key component of this effort is the derivation of non-asymptotic, dimension-free bounds
for the estimation of covariance operators. To achieve this, we leverage existing techniques
from high-dimensional probability while also developing new theoretical tools to analyze
the behavior of a certain class of covariance estimators under structural assumptions. This
dissertation rigorously establishes fundamental guarantees for these estimators, shedding
light on the mechanisms that drive their effectiveness and providing a deeper understanding

of their practical success.
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CHAPTER 1
INTRODUCTION

This thesis advances two research areas: (1) the statistical analysis of ensemble-based algo-
rithms and (2) the estimation of covariance operators with sparse structure. This section
aims to provide motivation for the thesis by introducing the concept of an ensemble Kalman
update and the challenges inherent in its statistical analysis. We then emphasize the sig-
nificance of structured covariance operator estimation as a crucial element in understanding
ensemble-based algorithms. Finally, we offer a high-level overview of key technical tools from

empirical process theory that are utilized throughout the thesis.

1.1 Ensemble Kalman Algorithms

Many algorithms for inverse problems and data assimilation rely on ensemble Kalman up-
dates to blend prior predictions with observed data. As a motivating example, consider the

inverse problem of recovering u € R? from data Yy € RE, corrupted by noise 7, where
y=G(u)+mn, (1.1)

G : R? - RF is the forward model, and 7 ~ P, = N(0,T") is the observation error with
positive-definite covariance matrix I'. An ensemble Kalman update takes as input a prior
ensemble {Un}nNzl and observed data y, and returns as output an updated ensemble {vn}gzl

that blends together the information in the prior ensemble and in the newly observed data.

1.1.1 Single-Step Ensemble Kalman Update

Throughout this work, we explore different notions of recovery, but as an illustrative exam-

ple in this introduction, we focus on a specific type, which we call posterior-approximation.



Specifically, when the forward model is linear, G(u) = Au, with ill-conditioned A or d > k,
naive inversion amplifies small observation errors into large reconstruction errors. Regular-
ization stabilizes the solution, and a Bayesian approach achieves this by placing a Gaussian
prior u ~ N (m,C), where C' acts as a probabilistic regularizer. The posterior Pu‘y is Gaus-

sian, N (p, X), with

p=m+CAT(ACAT + 1) (y — Am), (1.2)

N=C—-CAT(ACAT + ) 1AC. (1.3)

These require storing d x d matrices, making computation infeasible for large d. Instead, an
ensemble Kalman update transforms a prior ensemble {un}gzl into an updated ensemble
{Un}iy:l, whose sample mean and covariance approximate those of Pu|y. We refer to such
methods as posterior-approximation algorithms. Numerous such algorithms exist in the
literature, with the Perturbed Observations (PO) and Square-root Filter (SR) updates being
among the most popular. For example, the PO update transforms each particle of the prior

ensemble according to
Up = Up + 6AT(A6AT + F)_l(y — Auy, — 77n)> 1<n<N,

where C' denotes the empirical covariance matrix of the prior ensemble and {nn}nN:1 are
i.i.d. copies of the noise variable . The PO update is therefore a (perturbed) Monte-
Carlo estimate of the true posterior update. One then obtains estimates of the posterior
parameters (i, ¥2) by using the sample mean and covariance of the updated ensemble, denoted
(ipo, Spo)- In the SR update, we instead obtain the estimators (fisg, SsR)-

The primary motivation for ensemble Kalman methods is their ability to perform well
even with a small ensemble size IV, which is critical in applications where generating each par-

ticle is computationally expensive. Most theoretical studies have focused on large-ensemble
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asymptotics, examining the limit as N — oco. While these mean-field results are mathe-
matically insightful and have led to practical advancements, they do not fully explain the
observed success of ensemble Kalman methods when used with small ensemble sizes. More-
over, asymptotic analyses cannot differentiate between different algorithms. For example, in
the limit N — oo, the SR and PO updates are equivalent, even though they exhibit markedly
different behaviors in practice. Finally, in many practical scenarios, the state dimension d
is extremely large—often much larger than N or even infinite—making it essential for any
theoretical framework to account for the challenges introduced by high-dimensional state
spaces.

In this thesis, we propose a novel analysis of the error of ensemble Kalman updates under
a variety of instantiations. Concretely, we provide high-probability and in-expectation upper
bounds of the form ||fi—pul|2 < e, whenever N 2 Ny and similarly for the covariance deviation
in operator norm. Here, N is a quantity that depends on the problem specific parameters
and error level €, but need not depend on the intrinsic dimension d. We therefore refer to
our bounds as being dimension free. The non-asymptotic nature of our results also allow us

to distinguish between PO and SR updates.

1.1.2  Multi-Step Ensemble Kalman Update

Ensemble Kalman updates are often employed to solve filtering problems which arise in
the data assimilation literature. Here, the goal is to estimate a time-evolving state from
partial and noisy observations. To make things concrete, we consider here the following

linear version of the hidden Markov model governing the relationship between the state and



observation processes:

(Initialization) u® ~ N(u(o), E(O)), (1.4)
(Dynamics) wl) = A=Y 4 ), ¢() Lid N(0,Z), j=12,... (Lb)
(Observation) y(j) = Hu) + n(j), n(j) iLd. N(,T), j=12,... (1.6)

with u(9) independent of the iid. sequences {¢)} and {n(/)}. For a given time index
J € N, the filtering goal is to compute the filtering distribution p(u(j)|Y(j)), where Y7) :=
{y(l), o ,y(j )}. The filtering distribution provides a probabilistic summary of the state ul)
conditional on observations up to time j. Given access to the filtering distribution at the

preceding time-step j —1, p(u(j ) |Y(j )) may be obtained by the following two-step procedure:

(Forecast)  p(u@|yi=D) / N(); Adi=D, Z)p(ub-Dy U=D) -1, (1.7)

(Analysis) ( |Y ) N(yV @), Hul) F)p(u(j)|Y(j_1)). (1.8)

The forecast distribution p(u(j ) |Y(j *1)) represents our knowledge of the state at time j given
past observations and is computed using the dynamics model. In the analysis step, the new
observation y; is assimilated via Bayes’ formula, with the prior given by the forecast distri-
bution and the likelihood determined by the observation model. When the state dimension
d is large or the dynamics are nonlinear, making exact computation infeasible, the Ensemble
Kalman Filter (EnKF) is commonly used.

At 7 = 0, an initial ensemble of N particles is drawn from N(u(o), 2(0)). The ensemble is
then iteratively updated: in the forecast step, it is propagated through the system dynamics,
producing the forecast ensemble; in the analysis step, each ensemble member is updated using
a single-step ensemble Kalman update, yielding the analysis ensemble. Thus, the algorithm

can be seen as a multi-step ensemble Kalman update, where each step builds on the previous



ensemble output.

A key theoretical challenge is the dependence structure of the ensemble. While the initial
particles are independent, dependence arises at the first analysis step (j = 1) and becomes
increasingly complex due to the recursive nature of the algorithm. Each updated particle vy,
depends nonlinearly on C , which itself is a function of all prior ensemble members {un}flvzl.
This intricate dependence makes non-asymptotic analysis particularly difficult.

In this thesis, we propose a novel algorithm called the Resampled Ensemble Kalman
Filter REnKF, which employs a simple resampling step at each filtering cycle to break the
correlations between ensemble members. The algorithm is amenable to theoretical analysis
in the linear Gaussian setting, and shows good performance in practice, comparable to
the EnKF, even in non-linear settings, making it a promising approach for a wide range of

applications.

1.2 Covariance Operator Estimation

The study of covariance operator estimation is motivated by the fact that operational al-
gorithms for numerical weather prediction (for example, the EnKF) rely on an ensemble of
forecasts to estimate a background prior covariance. In these applications and many oth-
ers, the data used to specify the prior covariance represent finely discretized functions. As
data resolution continues to improve, we wish to understand the fundamental dimension-
free, discretization-independent quantities that determine the difficulty of estimating the
prior covariance. Relatedly, operator learning, i.e. the task of recovering an operator from
pairs of inputs and outputs or from trajectory data, has also received increased attention
motivated by recent machine learning techniques to solve partial differential equations. In
this line of work, we have investigated a class of Li-sparse operators where the kernel need
not concentrate around its diagonal, and an even more flexible family of weighted L9-sparse

operators that further allow for extreme heterogeneity of the underlying process across the
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domain. We further identify a sufficient interpretable condition which we term the small-
lengthscale setting in which many of the most widely used covariance operators can provably
be shown to belong to these structured classes. In this regime, we further show that the

sample complexity is determined by the correlation lengthscale of the operator.

1.2.1 Unstructured Case

In the high-dimensional setting where d > N, estimating the covrariance operator has been
thoroughly studied Vershynin [2010], [Wainwright, 2019, Chapter 6]. Given i.i.d. observa-
tions u, uq,...,u) drawn from a d-dimensional centered Gaussian with covariance operator
(matrix) ¥ := E[uu '], a natural estimator for ¥ is the sample average 3 1= % zgzl Un,) .
The goal is to control the operator-norm deviation |3 — X||. For simplicity, we focus on
the Gaussian case in this chapter, although many results extend easily to the sub-Gaussian

setting. Classical results imply that for a universal constant ¢ > 0 and any ¢ > 1, then with

probability at least 1 — e, then

S d d t ot
— < — — — — 1.
IS =S| <3 (,/Nva,/NvN)

This directly implies that, with probability exceeding 1 — e~ it suffices to take N > d
samples to achieve a small estimation error. However, since the ensemble size N is often
much smaller than d, this result fails to explain the empirical success of ensemble Kalman
algorithms. While the bound is sharp in certain cases (e.g., when 3 = [;), it is overly pes-
simistic in practical settings where ensemble Kalman updates operate. A key breakthrough
in Koltchinskii and Lounici [2017] established a dimension-free alternative: there exists a

universal constant ¢ > 0 such that for any ¢ > 1, with probability at least 1 — e,

DR (WS? Iy Ly %) ,
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where r(X) := Tr(X)/||X] is the effective dimension of . The effective dimension remains
small whenever the covariance spectrum decays rapidly. Notably, this result extends to
infinite-dimensional settings where the random vectors u, uy, ..., u reside in a Hilbert space
H. In the finite-dimensional case H = R%, we have r(X) < d, implying that accurate
estimation is possible even when the ensemble size is significantly smaller than the state
dimension, provided the covariance operator has low effective dimension. In this thesis, we

demonstrate how such bounds can be used to control the error of ensemble Kalman updates.

1.2.2  Structured Case

In much of the literature on ensemble Kalman updates (e.g. Tong and Morzfeld [2023],
Bergemann and Reich [2010a], Petrie [2008]), a modified version of the sample covariance
estimator known as the localized covariance estimator and denoted & p» Where p represents the
localization radius is utilized. This approach is particularly relevant when the state vector
components correspond to spatial locations: the sample covariance is first computed and
then adjusted elementwise to down-weight terms associated with distant state coordinates.
In much of the literature, this modification is heuristically motivated as a way to “remove
spurious correlations”, though the optimal choice of its hyper-parameters remains unclear. In
this thesis, we identify Localization as a form of regularized covariance estimation, aligning
with the foundational works Wu and Pourahmadi [2003], Bickel and Levina [2008a,b] and
extensively explored in high-dimensional statistics (see Pourahmadi [2013] for a textbook
discussion). More concretely, when the true covariance matrix ¥ exhibits an inherent sparse
structure —meaning many of its elements are exactly or nearly zero— a thresholding-based
estimator provides a preferable alternative. These estimators determine whether each entry
of the sample covariance falls below a carefully selected threshold p, treating such entries as
spurious and either setting them to zero or shrinking them accordingly.

For such estimators that take advantage of sparsity in the target, it can be shown that



there exists a universal positive constant ¢ such that, with probability at least 1 — e, an

appropriately chosen radius p ensures:

N [logd logd [t t

This bound demonstrates that accurate covariance estimation necessitates an ensemble size

that scales with the logarithm of the dimension, representing a significant improvement over
scenarios without structural assumptions. This leads to the following key questions in our

study of ensemble Kalman updates:
1. How should sparsity be defined for an infinite dimensional covariance operator?

2. Is there an analogous concept of effective dimension for infinite-dimensional covariance

operators with additional sparse structure?

3. Can sparse covariance matrix estimation bounds be extended to an infinite-dimensional

setting?

In this thesis, we affirmatively address all three questions. Concretely, we investigate the
setting in which w« is an infinite-dimensional random field with covariance model that satisfies
a novel notion of approximate sparsity. We show that the statistical error of thresholded
estimators can be bounded in terms of two dimension-free quantities: the expected supremum

of the field and the sparsity level.

1.2.8  Small Lengthscale Analysis

One of the major contributions of this work is to showcase the benefit of thresholding estima-
tors in the challenging regime where the correlation lengthscale of the field is small relative
to the size of the physical domain. Mathematically, given a process with covariance function
k = k) where A > 0 is the correlation lengthscale, we study the regime in which A — 0. In

8



this setting, our theory characterizes the aforementioned dimension free quantities in terms
of A. While a vast literature in nonparametric statistics and approximation theory highlights
the key role of smoothness in determining optimal convergence rates for many nonparametric
estimation tasks, our non-asymptotic theory emphasizes that the lengthscale rather than the
smoothness of the covariance function drives the difficulty of the estimation problem and the
advantage of thresholded estimators. Fields with small correlation lengthscale are ubiquitous
in applications. For instance, they arise naturally in climate science and numerical weather
forecasting, where global forecasts need to account for the effect of local processes with a

small correlation lengthscale, such as cloud formation or propagation of gravitational waves.

1.2.4  Empirical Process Theory

The dimension-free bounds in this work are primarily enabled by techniques from empirical
process theory applied to the covariance estimation problem. Specifically, let u, uq,...,uy "~
P be a sequence of random variables on a probability space (€2, P). The quadratic empirical

process associated with a function class F on (2, P) is given by
1 N
fros D0 Pun) —Ef(w), fEF
n=1

It can be shown that the variational form of ||¥ — ¥ corresponds to the supremum of
a quadratic empirical process over a suitably chosen function class F. This observation
underpins the proof of the fundamental bound in Koltchinskii and Lounici [2017], which

relies on the following inequality from Klartag and Mendelson [2005]:

N 2
1 2 2 Yo (Fi1pa) 75 (F;19)
N Y fun) —Ef*(u)| <c <J§1615>T||f||w1 Vv > :

JN N



which holds whenever F is a symmetric function class satisfying Ef(u) = 0. The bound
is expressed in terms of the 1-Orlicz norm of the function class and Talagrand’s generic
chaining functional. Precise control over these quantities gives rise to the concept of an
effective dimension in the deviation bound for the sample covariance operator. In this work,
we extend these techniques to develop a new notion of effective dimension specifically suited

for a newly introduced class of structured covariance operators.

1.2.5 Outline and Main Contributions

We now provide an outline of the upcoming chapters and summarize their key contributions.

1.2.6 Chapter 2 - Non-Asymptotic Analysis of Ensemble Kalman Updates:

Effective Dimension and Localization

In Chapter 2, we establish non-asymptotic error bounds in terms of suitable notions of effec-
tive dimension of the prior covariance model that account for spectrum decay (which may
represent smoothness of a prior random field) and approximate sparsity (which may repre-
sent spatial decay of correlations). Our work complements mean-field analyses of ensemble
Kalman updates and identifies scenarios where mean-field behavior holds with moderate .
In addition to demystifying the practical success of ensemble Kalman methods with a small
ensemble size, our non-asymptotic perspective allows us to tell apart, on accuracy grounds,
implementations of ensemble Kalman updates that use perturbed observations and square
root filtering. These implementations become equivalent in the large N limit, and therefore
their differences in accuracy cannot be captured by asymptotic results. Furthermore, our
non-asymptotic perspective provides new understanding on the importance of localization,
a procedure widely used by practitioners that involves tapering or “localizing” empirical co-
variance estimates to avoid spurious correlations. A key contribution of our framework is

to obtain dimension-free bounds. Removing the dependence on the state dimension d is
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particularly important since in many applications d represents the discretization of some
infinite dimensional field. Our bounds therefore capture the intrinsic geometric complexity
of the problem as opposed to being a function of the discretization level. This chapter is
adapted from the following publication:

O. Al-Ghattas and D. Sanz-Alonso, Non-asymptotic analysis of ensemble Kalman updates:
effective dimension and localization, Information and Inference: A Journal of the IMA,

vol. 13, no. 1, pp. iaad043, 2024.

1.2.7 Chapter 3 - Ensemble Kalman Filters with Resampling

In Chapter 3 we study multi-step settings that are complicated by perturbed observations and
stochastic dynamics, which are commonly used in the Ensemble Kalman Filtering (EnKF)
literature. The EnKF is particularly difficult to analyse theoretically due to the presence of
correlations between ensemble members, since the Kalman gain used to update each parti-
cle depends on the entire ensemble. In this work, we investigate a simple modification of
EnKF that incorporates a resampling step to break these correlations. The new algorithm is
amenable to a theoretical analysis that extends and improves upon those available for filters
without resampling, while also maintaining a similar empirical performance. We consider
a simple parametric resampling scheme: at the beginning of each filtering step, members
of the ensemble are independently sampled from a Gaussian distribution whose mean and
covariance match those of the ensemble at the previous time-step. Thereafter, the filtering
step can be carried out using any of the numerous existing EnKF variants. For the resulting
algorithm, which we term REnKF, we establish theoretical guarantees that extend and im-
prove upon those available for filters without resampling. Our theoretical guarantees hold
in the linear-Gaussian setting in which we provide a detailed error analysis of the ensemble
mean and covariance as estimators of the mean and covariance of the filtering distributions,

given by the Kalman filter. Our theory covers both stochastic and deterministic dynamical
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systems; in addition, it covers both stochastic implementations based on perturbed obser-
vations and deterministic implementations based on square-root filters. Importantly, our
error-bounds are non-asymptotic and dimension-free: they hold for any given ensemble size
and are written in terms of the effective-dimension of the covariance of the initial distri-
bution, and of the dynamics and observation models. This chapter is adapted from the
following publication:

O. Al-Ghattas, J. Bao, and D. Sanz-Alonso, Ensemble Kalman filters with resampling,

SIAM/ASA Journal on Uncertainty Quantification, vol. 12, no. 2, pp. 411-441, 2024.

1.2.8 Chapter 4 - Covariance Operator Estimation: Sparsity, Lengthscale,

and Ensemble Kalman Filters

In Chapter 4, we first lift the theory of covariance estimation from finite to infinite dimension.
In the finite-dimensional setting, a rich body of work shows that, exploiting various forms
of sparsity, it is possible to consistently estimate the covariance matrix of a vector u € Ru
with N ~ log(d,,) samples as opposed to the non-sparse setting in which N ~ d,, samples
are needed. In this work we investigate the setting in which v is an infinite-dimensional
random field with an approximately sparse covariance model. Specifically, we generalize no-
tions of approximate sparsity often employed in the finite-dimensional covariance estimation
literature. We show that the statistical error of thresholded estimators can be bounded in
terms of two dimension-free quantities: the expected supremum of the field and the sparsity
level. The second contribution is to showcase the benefit of thresholding in the challenging
regime where the correlation lengthscale of the field is small relative to the size of the phys-
ical domain. While a vast literature in nonparametric statistics and approximation theory
highlights the key role of smoothness in determining optimal convergence rates for many
nonparametric estimation tasks, our non-asymptotic theory emphasizes that the lengthscale

rather than the smoothness of the covariance function drives the difficulty of the estimation
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problem and the advantage of thresholded estimators. Fields with small correlation length-
scale are ubiquitous in applications. For instance, they arise naturally in climate science
and numerical weather forecasting, where global forecasts need to account for the effect of
local processes with a small correlation lengthscale, such as cloud formation or propagation
of gravitational waves. The third contribution of this paper is to demonstrate the advan-
tage of using thresholded covariance estimators within ensemble Kalman filters, generalizing
the theory in Al-Ghattas and Sanz-Alonso [2024b] to the infinite dimensional setting. Our
theory explains when and why localized EnKFs are expected to out-perform non-localized
filters. This chapter is adapted from the following publication:

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Covariance operator estimation:

sparsity, lengthscale, and ensemble Kalman filters, Bernoulli, 31(3), 2377-2402, 2025

1.2.9 Chapter 5 - Covariance Operator Estimation via Adaptive

Thresholding

In Chapter 5, consider estimating the covariance operator of a highly nonstationary process
with marginal variance that is permitted to vary widely in the domain. These operators
satisfy a weighted Lg-sparsity condition. For covariance operators in this class, we establish
a bound on the operator norm error of the adaptive threshold estimator in terms of two
dimension-free quantities: the sparsity level and the expected supremum of the normalized
field. In contrast to Al-Ghattas et al. [2023], our theory allows for covariance models with
unbounded marginal variance functions. We then compare our adaptive threshold estimator
with other estimators of interest, namely the universal threshold estimator in Al-Ghattas
et al. [2023| and the sample covariance estimator. For universal thresholding, we prove a
lower bound that is larger than our upper bound for adaptive thresholding. We generalize
the small lengthscale setting of Al-Ghattas et al. [2023] to one in which both the length-

scale and a parameter controlling the range of the marginal variance function is allowed to
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be arbitrarily small, and further prove an exponential improvement in sample complexity
of the adaptive threshold estimator compared to the sample covariance. A key technical
contribution of this work is the analysis of the product sub-exponential classes that arise in
estimating the variance components of the process, which in turn are needed to adaptively
set the threshold radius. The analysis demonstrates how to derive non-asymptotic and di-
mension free bounds for a large family of product empirical processes and are potentially
of independent interest. The results are adapted from the following paper which received a
minor revision at Stochastic Processes and their Applications:

O. Al-Ghattas and D. Sanz-Alonso, Covariance Operator Estimation via Adaptive Thresh-
olding, arXiwv preprint arXiw:2405.18562, 2024.

1.2.10 Additional Work

The following recent pre-prints carried out during my PhD are not included in this thesis:

e In Al-Ghattas et al. [2024b|, we derive the information-theoretic limits of covariance
operator estimation in the structured setting through the use of a minimax framework.
In addition to the Lg-sparsity first considered in Al-Ghattas et al. [2023|, we also con-
sider banded integral operators with kernels that decay rapidly off-the-diagonal. For
both classes, we establish minimax optimal lower bounds using a novel and general
framework that lifts the theory from high-dimensional matrix estimation to the oper-
ator setting. In so doing, we identify the dimension-free quantities that determine the
sample complexity. Additionally, we show that tapering and thresholding estimators
achieve the minimax optimal rate in the two respective classes.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Optimal estimation of

structured covariance operators, arXiw preprint arXiv:2408.02109, 2024.
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e In Al-Ghattas et al. [2025|, we establish sharp dimension-free concentration inequalities
and expectation bounds for the deviation of the sum of simple random tensors from
its expectation. As part of our analysis, we use generic chaining techniques to obtain
a sharp high-probability upper bound on the suprema of multiproduct empirical pro-
cesses. In so doing, we generalize classical results for quadratic and product empirical
processes to higher-order settings.

O. Al-Ghattas, J. Chen, and D. Sanz-Alonso, Sharp Concentration of Simple Random
Tensors, arXww preprint arXiv:2502.16916, 2025.
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CHAPTER 2
NON-ASYMPTOTIC ANALYSIS OF ENSEMBLE KALMAN
UPDATES: EFFECTIVE DIMENSION AND LOCALIZATION

This chapter is adapted from the publication listed below and is used with permission of the
publisher.

O. Al-Ghattas and D. Sanz-Alonso, Non-asymptotic analysis of ensemble Kalman updates:
effective dimension and localization, Information and Inference: A Journal of the IMA,

vol. 13, no. 1, pp. iaad043, 2024.

2.1 Introduction

The aim of this chapter is to develop a non-asymptotic analysis of ensemble Kalman up-
dates that rigorously explains why, and under what circumstances, a small ensemble size
may suffice. To that end, we establish non-asymptotic error bounds in terms of suitable
notions of effective dimension of the prior covariance model that account for spectrum decay
(which may represent smoothness of a prior random field) and approximate sparsity (which
may represent spatial decay of correlations). Our work complements mean-field analyses
of ensemble Kalman updates and identifies scenarios where mean-field behavior holds with
moderate N.

In addition to demystifying the practical success of ensemble Kalman methods with a
small ensemble size, our non-asymptotic perspective allows us to tell apart, on accuracy
grounds, implementations of ensemble Kalman updates that use perturbed observations and
square root filtering. These implementations become equivalent in the large N limit, and
therefore their differences in accuracy cannot be captured by asymptotic results. Further-
more, our non-asymptotic perspective provides new understanding on the importance of

localization, a procedure widely used by practitioners that involves tapering or “localizing”
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empirical covariance estimates to avoid spurious correlations.

Rather than providing a complete, definite analysis of any particular ensemble Kalman
method, our goal is to bring to bear a new set of tools from high-dimensional probability and
statistics to the study of these algorithms. In particular, our work builds on and contributes
to the theory of high-dimensional covariance estimation, which we believe is fundamental
to the understanding of ensemble Kalman methods. To make the presentation accessible
to a wide audience, we assume no background knowledge on covariance estimation or on

ensemble Kalman methods.

2.1.1 Problem Description

Consider the inverse problem of recovering u € R from data Yy € RF , corrupted by noise 7,

where

y=0(u)+n, (2.1)

G : R? — R” is the forward model, and 7 ~ P, = N(0,T") is the observation error with
positive-definite covariance matrix I'. An ensemble Kalman update takes as input a prior
ensemble {un}gzl and observed data y, and returns as output an updated ensemble {"L)n}fl\;l
that blends together the information in the prior ensemble and in the data. Two main types
of problems will be investigated: posterior approximation and sequential optimization. In
the former, ensemble Kalman updates are used to approximate a posterior distribution in
a Bayesian linear setting; in the latter, they are used within optimization algorithms for

nonlinear inverse problems.

Posterior Approximation

If the forward model is linear, i.e. G(u) = Au for some matrix A € RFX? and A is ill-

conditioned or d > k, naive inversion of the data by means of the (generalized) inverse of A
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results in an amplification of small observation error 7 into large error in the reconstruction of
u. In such situations, regularization is needed to stabilize the solution. To this end, one may
adopt a Bayesian approach and place a Gaussian prior on the unknown u ~ P, = N (m, C)
with positive-definite C'; the prior distribution then acts as a probabilistic regularizer. The
Bayesian solution to the inverse problem (2.1) is a full characterization of the posterior

distribution P that is, the distribution of u given y. A standard calculation shows that

uly

P, =N (1Y), with

uly

p=m+CA (ACAT +1)1(y — Am),
(2.2)
N=C-CA"(ACAT + 1) 1AC,
which require storage of d x d matrices and consequently are difficult to compute explicitly
when the state dimension d is large. A posterior-approximation ensemble Kalman update
transforms a prior ensemble {uTL}TJ;]:1 drawn from P, into an updated ensemble {vn}ﬁle
whose sample mean and sample covariance approximate the mean and covariance of Pu|y.
Ensemble Kalman updates enjoy a low computational and memory cost when the ensemble
size N is smaller than the state dimension d. In Section 2.2 we establish non-asymptotic
error bounds that ensure that if N is larger than a suitably defined effective dimension,
then the sample mean and sample covariance of the updated ensemble approximate well
the true posterior mean and covariance in (2.2). We refer to methods that are capable of
approximating well the posterior Pu|y in a linear-Gaussian setting as posterior-approzimation

algorithms.

Sequential Optimization

When faced with a general nonlinear model G, exact characterization of the posterior can
be challenging. One may then opt for an optimization framework and solve the inverse

problem (2.1) by minimizing a user-chosen objective function. Starting from a prior ensemble
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{un}nj\f:1 drawn from a measure P, that encodes prior beliefs about u, an ensemble Kalman
update returns an updated ensemble {Un}fyzl whose sample mean approximates the desired
minimizer. The process can be iterated by taking the updated ensemble to be the prior
ensemble of a new ensemble Kalman update. Under suitable conditions on G, and after a
sufficient number of such updates, all particles in the ensemble collapse into the minimizer of
the objective. Ensemble Kalman optimization algorithms are derivative-free methods, and
are therefore particularly useful when derivatives of the model G are unavailable or expensive
to compute. As for posterior-approximation algorithms, implementing each update has low
computational and memory cost when the ensemble size NV is small. In Section 2.3 we will
establish non-asymptotic error bounds that ensure that if IV is larger than a suitably defined
effective dimension, then each particle update u, — vy, 1 < n < N, approximates well
an idealized mean-field update computed with an infinite number of particles; this suggests
that the evolution of particles along an ensemble-based sequential optimizer is close to an
idealized mean-field evolution. We refer to methods that solve the inverse problem (2.1) by

minimization of an objective function as sequential-optimization algorithms.

2.1.2  Summary of Contributions and Outline

e Section 2.2 is concerned with posterior-approximation algorithms. The main results,
Theorems 2.2.3 and 2.2.5, give non-asymptotic bounds on the estimation of the pos-
terior mean and covariance in terms of a standard notion of effective dimension that
accounts for spectrum decay in the prior covariance model. Our analysis explains the
statistical advantage of square root updates over perturbed observation ones. We also
discuss the deterioration of our bounds in small noise limits where the prior and the

posterior become mutually singular.

e Section 2.3 is concerned with sequential-optimization algorithms. The main results,

Theorems 2.3.5 and 2.3.7, give non-asymptotic bounds on the approximation of mean-
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field particle updates using ensemble Kalman updates with and without localization.
Our analysis explains the advantage of localized updates if the prior covariance satisfies
a soft-sparsity condition. For the study of localized updates, we show in Theorems 2.3.1
and 2.3.3 new dimension-free covariance estimation bounds in terms of a new notion of
effective dimension that simultaneously accounts for spectrum decay and approximate

sparsity in the prior covariance model.

e Section 2.4 concludes with a summary of our work and several research directions that
stem from our non-asymptotic analysis of ensemble Kalman updates. We also discuss

the potential and limitations of localization in posterior-approximation algorithms.

e The proofs of all our results are deferred to three appendices.

2.1.3 Related Work

Ensemble Kalman methods —overviewed in Evensen [2009], Katzfuss et al. [2016], Houtekamer
and Zhang [2016], Roth et al. [2017], Chada et al. [2021], Sanz-Alonso et al. [2023a]— first
appeared as filtering algorithms in the data assimilation literature Evensen [1995], Evensen
and Leeuwen [1996], Burgers et al. [1998|, Houtekamer and Derome [1995], Houtekamer and
Mitchell [1998]. The goal of data assimilation is to estimate a time-evolving state as new
observations become available Reich and Cotter [2015], Asch et al. [2016], Law et al. [2015],
Majda and Harlim [2012], Leeuwen et al. [2015], Sarkka [2013], Sanz-Alonso et al. [2023a).
Ensemble Kalman filters (EnKFs) solve an inverse problem of the form (2.1) every time a
new observation is acquired. In that filtering context, (2.1) encodes the relationship between
the state u and observation y at a given time ¢, and the prior on w is specified by propagating
a probabilistic estimate of the state at time t — 1 through the dynamical system that governs
the state evolution. To approximate this prior, EnKFs propagate an ensemble of N particles

through the dynamics, and subsequently update this prior forecast ensemble into an updated
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analysis ensemble that assimilates the new observation. Thus, an ensemble Kalman update
is performed every time a new observation is acquired. The goal is that the sample mean
and sample covariance of the updated ensemble approximate well the mean and covariance
of the filtering distribution, that is, the conditional distribution of the state at time ¢ given
all observations up to time ¢t. While only giving provably accurate posterior approxima-
tion in linear settings Ernst et al. [2015], EnKFs are among the most popular methods for
high-dimensional nonlinear filtering, in particular in numerical weather forecasting. In such
applications the state dimension can be very large, but the effective dimension of the filter
update is often much lower due to smoothness of the state and decay of correlations in space.
Moreover, in practice the analysis step can be constrained to the subspace determined by
the expanding directions of the dynamics Trevisan and Uboldi [2004].

The papers Gu and Oliver [2007], Li and Reynolds [2007], Reynolds et al. [2006] intro-
duced ensemble Kalman methods for inverse problems in petroleum engineering and the
geophysical sciences. Application-agnostic ensemble Kalman methods for inverse problems
were developed in Iglesias et al. [2013], Iglesias [2016], inspired by classical regularization
schemes Hanke [1997]. Since then, a wide range of sequential-optimization algorithms for
inverse problems have been proposed that differ in the objective function they seek to mini-
mize and in how ensemble Kalman updates are implemented. We refer to Subsection 2.2.1
for further background and to Chada et al. [2021] for a review.

Ensemble Kalman methods for inverse problems and data assimilation have been studied
extensively from a large N asymptotic point of view, see e.g. Li and Xiu [2008], Le Gland
et al. [2009], Mandel et al. [2011], Kwiatkowski and Mandel [2015], Ernst et al. [2015],
Del Moral and Tugaut [2018|, Herty and Visconti [2019], Law et al. [2016b], Garbuno-Inigo
et al. [2020], Bishop and Del Moral [2023|, Chen et al. [2022], Ding and Li [2021]. A com-
plementary line of work Harlim and Majda [2010], Gottwald and Majda [2013], Kelly et al.

[2015], Tong et al. 2015, 2016] has focused on challenges faced by ensemble Kalman methods,
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including loss of stability and catastrophic filter divergence. Two overarching themes that
underlie large N asymptotic analyses are to ensure consistency and to derive equations for
the mean-field evolution of the ensemble. Related to this second theme, several works (e.g.
Schillings and Stuart [2017], Blomker et al. [2018], Blomker et al. [2019], Guth et al. [2020],
Chada et al. [2021], Tong and Morzfeld [2023]) set the analysis in a continuous time limit;
the idea is to view Kalman updates as occurring over an artificial discrete-time variable, and
then take the time between updates to be infinitesimally small to formally derive differen-
tial equations for the evolution of the ensemble or its density. Large N asymptotics and
continuous time limits have resulted in new theoretical insights and practical advancements.
However, an important caveat of these results is that they cannot tell apart implementations
of ensemble Kalman methods that become equivalent in large N or continuous time asymp-
totic regimes. Moreover, several papers (e.g. Bergemann and Reich [2010a,b|, Kelly and
Stuart [2014], Schillings and Stuart [2017], Majda and Tong [2018|) have noted that large
N asymptotic analyses fail to explain empirical results that report good performance with a
moderately sized ensemble in problems with high state dimension; for instance, d ~ 10? and
N ~ 102 in operational numerical weather prediction. Finally, the note Niisken and Reich
[2019] shows subtle but important differences in the evolution of interacting particle systems
with finite ensemble size when compared to their mean-field counterparts Garbuno-Inigo
et al. [2020].

In this chapter we adopt a non-asymptotic viewpoint to establish sufficient conditions
on the ensemble size for posterior-approximation and sequential-optimization algorithms.
Empirical evidence in Ott et al. [2004] suggests that there is a sample size N* above which
ensemble Kalman methods are effective. The seminal work Furrer and Bengtsson [2007]
conducts insightful explicit calculations that motivate our more general theory. Following
the analysis of ensemble Kalman methods in Furrer and Bengtsson [2007] and the study of

importance sampling and particle filters in Agapiou et al. [2017], Sanz-Alonso [2018], Sanz-

22



Alonso and Wang [2021], Bickel et al. [1994], Snyder et al. [2016], Bengtsson et al. [2008],
Snyder [2011], Chorin and Morzfeld [2013]|, Snyder et al. [2015], we focus on analyzing a
single ensemble Kalman update rather than on investigating the propagation of error across
multiple updates. While in practice ensemble Kalman methods for posterior approximation
in data assimilation and for sequential optimization in inverse problems often perform many
updates, focusing on a single update enables us to clearly demonstrate the tight connec-
tion between the sample complexity of ensemble updates and the effective dimension of the
prior; additionally, for some posterior-approximation algorithms our theory generalizes in a
straightforward way to multi-step implementations, as we shall demonstrate in Section 2.2.
More importantly, the focus on a single update allows us to tell apart, on accuracy grounds,
perturbed observations and square root implementations of ensemble Kalman updates, as
well as implementations with and without localization. Similar considerations motivate the
study of sufficient sample size for importance sampling in Morzfeld et al. [2017], Snyder
et al. [2016], Agapiou et al. [2017], Chatterjee and Diaconis [2018], Sanz-Alonso [2018],
Sanz-Alonso and Wang [2021|, where the focus on a single update facilitates establishing
clear comparisons between standard and optimal proposals, and identifying meaningful no-
tions of dimension to characterize necessary and sufficient conditions on the required sample
size. Our work builds on and develops tools from high-dimensional probability and statis-
tics Wainwright [2019], Vershynin [2018|, Bickel and Levina [2008a], Levina and Vershynin
[2012], Chen et al. [2012], Cai and Yuan [2012], Cai and Zhou [2012a]. In particular, we bring
to bear thresholded Bickel and Levina [2008a], Cai and Yuan [2012| and masked covariance
estimators Levina and Vershynin [2012], Chen et al. [2012] to the understanding of localiza-
tion in ensemble Kalman methods. In so doing, we establish new dimension-free covariance
and cross-covariance estimation bounds under approximate sparsity —see Theorems 2.3.1

and 2.3.3.
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2.1.4 Notation

< b, denotes that a,, < cby,

~J

Given two positive sequences {a,} and {by}, the relation ay,
for some constant ¢ > 0. If the constant ¢ depends on some quantity 7, then we write

a <; b. If both a, < b, and b, <

NT Y Y

an hold simultaneously, then we write a, =< by,.
Throughout, we denote positive universal constants by c, ¢y, c9,c3,cq4, and the value of a
universal constant may differ from line to line. For a vector v € RY, Jv]lb = Zflvzl | P
For a matrix A € R™*" the operator norm is given by || A|| = SUD)||yo=1 [l AV]2- Sﬂir denotes
the set of d x d symmetric positive-semidefinite matrices, and Si 1 denotes the set of d x d
symmetric positive-definite matrices. AT denotes the pseudo-inverse of A. 1, denotes the
N-dimensional vector vector of ones, 0; denotes the d-dimensional vector of zeroes, and
O . is the d x k matrix of zeroes. 1p denotes the indicator of the set B. = denotes a
definition. o denotes the matrix Hadamard or Schur (elementwise) product. Given a non-
decreasing, non-zero convex function 1 : [0, 0o] — [0, 00| with ¥(0) = 0, the Orlicz norm of
a real random variable X is || X|[, = inf{t > 0: E[¢(t~1|X])] < 1}. In particular, for the
choice ¥p(z) = ¢® —1 for p > 1, real random variables that satisfy || X [y < 00 are referred
to as sub-Gaussian. A random vector X is sub-Gaussian if ||v T X [y, < 00 for any v such
that ||v||g = 1. For a differentiable function g : R? - R¥, Dg € R¥¥ denotes the Jacobian
of g.

All the methods we study have the same starting point of a prior ensemble

Uly..-, UN Ll@d' N(m, C),
and observed data y generated according to (2.1), which are to be used in generating an

updated ensemble {Un}nN:1- We denote the prior sample means by

N
g(un)v

n=1

m

1 Y 1
N2t =N
n=1
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and the prior sample covariances by

~ 1 N ~ 1 N _ _
=51 n§:1ﬁ(un —m)(un — )", O = n§::1(g(un) ~ ) (G(un) - 9",
Aup — 1 a ~ A\ T
O™ = 77 2 (i =~ AGu0) =)

The population versions will be denoted by

P = E | (Glun) ~ EIG(un)]) (G(n) ~ EIG(un)]) ']
C"=E [(un —m)(G(un) — E[g(un)])T] :

2.2 Ensemble Kalman Updates: Posterior Approximation

Algorithms

In posterior-approximation algorithms we consider the inverse problem (2.1) with a linear

forward model, i.e.
y = Au+n, n~N(,T). (2.4)

In order to establish comparisons between different posterior-approximation algorithms, as
well as to streamline our analysis, we follow the exposition in Kwiatkowski and Mandel [2015]
and introduce three operators that are central to the theory: the Kalman gain operator J£,

the mean-update operator .#, and the covariance-update operator €, defined respectively
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H 8L SRR (CLAT) = (C)=CAT(ACAT + )71, (2.5)
M RUx ST SR #(m,C; Ay, T) = M (m,C) =m + 2 (C; A,T)(y — Am), (2.6)

¢:81 -84, €C;AT)=%(C)= (I - (C;AT)A)C. (2.7)

The pointwise continuity and boundedness of all three operators was established in Kwiatkowski
and Mandel [2015|, and we summarize these results in Lemmas 2.5.4, 2.5.5, and 2.5.6. We

note that the Kalman update (2.2) can be rewritten succinctly as

M= '/l(m’ 0)7
(2.8)
£ — %(C).

2.2.1 FEnsemble Algorithms for Posterior Approximation

We study two main classes of posterior-approximation algorithms based on Perturbed Ob-
servation (PO) and Square Root (SR) ensemble Kalman updates. In both implementations,
the updated ensemble has sample mean ;i and sample covariance S that are, by design,
consistent estimators of the posterior mean p and covariance ¥ in (2.8). Although PO
and SR updates are asymptotically equivalent, differences between the two algorithms do

exist in finite ensembles, and this difference is captured in our non-asymptotic analysis in

Subsection 2.2.3.
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Perturbed Observation Update

The PO update, introduced in Evensen [1995], transforms each particle of the prior ensemble

according to

Un :un+%(5)(y—Aun _nn)

= M (un,C) — # (O, =ENO,T), 1<n<N.

The form of the update is similar to the Kalman mean update (2.8) albeit with the n-th
ensemble member being assigned a perturbed observation y —n,,. Consequently, denoting the

sample mean of the perturbations by n = N -1 zgzl Nn, the updated ensemble has sample

mean
1 & - 5
n=1
and sample covariance
S T
n=1
o~ ~ o~ ~ 2.9
= ([—%(C)A)C’(I—%(C)A)T+%/(C)F«%/T(C) 2
— (I = A (O)A)C 1T (C) = A (CNC™) (1 - AT T(C)),
where
. 1 X -~ 1 &
P=——=> =m0 -1, and  C"=—= (=) —7)"
n=1 n=1

To facilitate comparison with the Kalman update in (2.8), we rewrite the PO update as
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follows:

(2.10)

where the offset term O, obtained as the difference between (2.9) and €(C), is given by

O=x#(O)T-T)#"(C)— (I —#(C)A) T T(C) — #/(C) TN (1 - AT ().
(2.11)

The offset term O was introduced in [Furrer and Bengtsson, 2007, Proposition 4|. The
addition of perturbations serves the purpose of correcting the sample covariance, in the
sense that without perturbations the sample covariance is an inconsistent estimator of . To
see the consistency of the PO covariance estimator S in (2.10), note that by Lemma 2.5.6
the map ¥ is continuous, and so the continuous mapping theorem together with the fact
that C is consistent for C' imply that %(6) N ¢ (C) = X. Further, the offset O converges
in probability to zero, which can be shown using that r % r, cun L, Ogxk, and the

continuity of J#" established in Lemma 2.5.4.

Square Root Update

The PO update relies crucially on the added perturbations to maintain consistency and, as
noted for example in Evensen [2004], Tippett et al. [2003], Bishop et al. [2001], is asymp-
totically equivalent to the exact posterior update (2.2). However, for a finite ensemble of
size N, the addition of random perturbations introduces an extra source of error into the
ensemble Kalman update. The SR update, introduced in Evensen [2004] and surveyed in
Tippett et al. [2003], Lange and Stannat [2021], is a deterministic alternative to the PO

update. It updates the prior ensemble in a manner that ensures that S = ‘5(5) This is
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achieved by first identifying a map g : RN — R¥*N guch that 11 = g(ﬁ), where
C=PpPPT, and ‘5(6) =TI,

with both factorizations guaranteed to exist since C , %(5) € Sgi_. Consistency of S can then
be ensured by choosing ¢ to satisfy g(ﬁ)g(ﬁ)T = (5(5), with this being referred to as the
consistency condition in Lange and Stannat [2021]. There are infinitely many such g, each of
which lead to a variant of the SR update. Here we describe two of the most popular variants in
the literature as outlined in Tippett et al. [2003]: the Ensemble Transform Kalman update
Bishop et al. [2001] and the Ensemble Adjustment Kalman update Anderson [2001] with
respective transformations gy (P) = PT and g4(P) = BP, for matrices T and B. Both gp
and g 4 are therefore linear maps, with g post-multiplying P , which implies a transformation
on the N-dimensional space spanned by the ensemble, and g4 pre-multiplying ]3, so that
the transformation is applied to the d-dimensional state-space instead. In both approaches

we identify the relevant matrix by first writing
' =¢(C)=PU—-vD 'vHPT,

where V = (AP)" and D=V TV +T.

1. Ensemble Transform Kalman Update: taking Il = PFU for any F satisfying FF' =
I — VD VT and arbitrary orthogonal U satisfies the consistency condition. One

approach for finding such a matrix F' is by rewriting
I-VD W = (I +PTATT APy L= B+ N V20 + N V2ET = FFT,

where the first equality follows by the Sherman-Morrison formula, and EAE " is the

cigenvalue decomposition of PTATT™1AP. In summary, we have gp(P) = PE(I +
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A2y

2. Ensemble Adjustment Kalman Update: Introducing M = Vl"fl/Q, we can write
PI-vD WP =PI +MM")1PT.

Noting that P has full column rank, we may then define B = ]3([+MMT)*1/2(13T)T,

and so
gA(P)=BP =PI+ MM ") V2P P =PI +MMT)"1/2

Once a choice of g has been made, and an estimate 5 has been computed, the updated

ensemble has first two moments given by

M (i, O),

! (2.12)

)

)y

%(C).

Frequently, only 7, S are of concern to the practitioner, but it is still possible to back-out
the individual members of the updated ensemble as they may be of interest. It is clear that

one choice for P is

1
N -1

P=

Up — My uN — M| s
in which case it holds that P1 ~ = 04, and so
vp = VN — 1), + #(m,C), 1<n<N, (2.13)

where [II],, denotes the n-th column of II.

In Subsection 2.2.3 we establish error bounds for the approximation of the posterior mean
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and covariance (u, ) in (2.2) by (1, X) as estimated using the PO and SR updates in (2.10)
and (2.12). It is clear from (2.12) that as long as the choice of ¢ is valid, in the sense that
the resulting S s consistent, then the specific choice of g is irrelevant to the accuracy of a
single SR update. We therefore make no assumptions in our subsequent analysis of the SR
algorithm beyond that of ¢ satisfying the consistency condition. Note that, when compared
to the SR update in (2.12), the PO update in (2.10) contains additional stochastic terms that
will, as our bounds indicate, hinder the estimation of (u,Y). As noted in the literature, for
example in Tippett et al. [2003], the PO update increases the probability of underestimating
the analysis error covariance. While our presentation and analysis of PO and SR updates is
carried out in the linear-Gaussian setting, both updates are frequently utilized in nonlinear
and non-Gaussian settings, with empirical evidence suggesting that the PO updates can
outperform SR updates Lawson and Hansen [2004], Leeuwenburgh et al. [2005]. In fact, the
consistency argument outlined above is only valid in the linear case G(u) = Au, and the
statistical advantage of SR implementations in linear settings may not translate into the

nonlinear case.

2.2.2  Dimension-Free Covariance Estimation

We define the effective dimension Wainwright [2019] of a matrix @ € Sf‘ﬁ by

Tr(Q)

(2.14)

The effective dimension quantifies the number of directions where () has significant spectral
content Tropp [2015]. The monographs Tropp [2015], Vershynin [2018| refer to ro(Q) as the
intrinsic dimension, while Koltchinskii and Lounici [2017] uses the term effective rank. This
terminology is motivated by the observation that 1 < r9(Q) < rank(Q) < d and that r9(Q) is

insensitive to changes in the scale of @), see Tropp [2015]. In situations where the eigenvalues

31



of @ decay rapidly, ro(Q) is a better measure of dimension than the state dimension d.
The following result [Koltchinskii and Lounici, 2017, Theorem 9| gives a non-asymptotic
sufficient sample size requirement for accurate covariance estimation in terms of the effective
dimension of the covariance matrix. We recall that the sample covariance estimator C is

defined in (2.3).

Proposition 2.2.1 (Covariance Estimation with Sample Covariance —Unstructured Case).
Let uy,...,upn be d-dimensional i.i.d. sub-Gaussian random vectors with E[u1] = m and

varfui] = C. Then, for all t > 1, it holds with probability at least 1 — ce™" that

IC-clgicl <\/T \/7 )

Remark 2.2.2 (Effective Dimension and Smoothness). Proposition 2.2.1 motivates defining

ro(C) = Tr(C)/ ||C|| to be the effective dimension of a d-dimensional sub-Gaussian random
vector uw with varfu] = C. As in the definition for matrices, ro(C') quantifies the number
of directions where the distribution of u has significant spread. Proposition 2.2.1 and our
results in Subsection 2.2.3 may be extended to sub-Gaussian random variables defined in
an infinite-dimensional separable Hilbert space, say H = L2(O, 1). It is then illustrative to
note that any Gaussian measure N'(m,C) in H satisfies that Tr(C) < oo; in other words,
all Gaussian measures have finite effective dimension. In this context, ro(C) is related to
the rate of decay of the eigenvalues of C, and hence to the almost sure Sobolev reqularity of
functions u drawn from the Gaussian measure N'(m,C) on H = L*(0,1), see e.g. Bogachev
[1998], Stuart [2010]. In computational inverse problems and data assimilation, u is often a
d-dimensional vector that represents a fine discretization of a Gaussian random field; then,

ro(C) quantifies the smoothness of the undiscretized field.
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2.2.3 Main Results: Posterior Approzimation with Finite Ensemble

In this subsection we state finite ensemble approximation results for the posterior mean and
covariance with PO and SR ensemble updates. To highlight some key insights, including
the dependence of the bounds on the effective dimension of ' and the differences between
PO and SR updates, we opt to present expectation bounds in Theorems 2.2.3 and 2.2.5 that
are less notationally cumbersome than the stronger exponential tail bounds in Theorems
2.5.8 and 2.5.9 in Appendix 2.5.3. Throughout this section, the data y is treated as a fixed

quantity.

Theorem 2.2.3 (Posterior Mean Approximation with Finite Ensemble —Expectation Bound).
Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12), respectively,
leading to an estimate [i of the posterior mean p defined in (2.2). Set ¢ = 1 for the PO

update and ¢ = 0 for the SR update. Then, for any p > 1,

r T 3/2 T T T
[EHﬁ_u”g}l/p <, C1< 2](\]0) v( 2](\70)> >+9002< ZJ(VF) v 2](\[0) zj(vl“))’

(2.15)

where ¢ = c1(|C|, |A[lL [T ly — Amll2) and ca = ea([|C]], | All, [IT 7).

Importantly, the bound (2.15) does not depend on the dimension d of the state-space, and
the only dependence on C' is through its operator norm and the effective dimension ro(C').
The term multiplied by ¢ in the PO update accounts for the additional error incurred by
the presence of the offset term (2.11) in the PO update (2.10). The following remark dis-
cusses another important consequence of Theorem 2.2.3: the stable performance of ensemble

Kalman updates in small noise regimes when compared with other sampling algorithms.

Remark 2.2.4 (Dependence of Constants on Model Parameters). The proof of Theorem 2.2.3

in Appendiz 2.5 provides an explicit definition of ¢; and co up to constants, i.e. it describes
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how these quantities rely on their arguments, and Theorem 2.5.8 establishes a high probabil-
ity bound on ||fi — pl|2. In particular, it is important to note that the constants ¢ and cy in
Theorem 2.2.3 deteriorate in the small noise limit where the observation noise goes to zero,
and co deteriorates with ro(I'). In the small noise limit, the posterior and prior distribution
become mutually singular, and it is hence expected for ensemble updates to be unstable. To
tllustrate this intuition in a concrete setting, assume that I' = ~vI for a positive constant v,
and, for simplicity, that N > ro(C) as well as ||C]| = ||A|| = |ly — Am||o = 1. Then, the
expression for ¢y established in Theorem 2.2.3 implies that for the SR update, for any error

e>0andp>1,

ro(C' k - 1
Oy F el un <,

)

where we recall that k denotes the dimension of the datay. The papers Agapiou et al. [2017],
Sanz-Alonso and Wang [2021] show the need to increase the sample size along small noise
limits in importance sampling when target and proposal are given, respectively, by posterior
and prior. While our bounds here only give sufficient rather than necessary conditions on
the ensemble size, it is noteworthy that, for fived k, the scaling of N as v — 0 shown here
1s independent of k. In contrast, necessary sample size conditions for importance sampling

show a polynomial dependence on k, see Sanz-Alonso and Wang [2021].

Theorem 2.2.5 (Posterior Covariance Approximation with Finite Ensemble —Expectation
Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12),

respectively, leading to an estimate 5 of the posterior covariance Y. defined in (2.2). Set
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@ =1 for the PO update and ¢ = 0 for the SR update. Then, for any p > 1,

2
EIS - 217) 7 <) e ( Q) (”“’)) ) 8,

N N

where

P ( TQJ(VC) y (rgj(vc>>3v ( TQJ(VF) y TQJ(VP)> (W <r2]<v(1))2>) |
where cy = cy([CIL Al IT7H]) and e2 = ex(ICTL 1AL [T, IT)-

As in Theorem 2.2.3, the bound in Theorem 2.2.5 does not depend on the dimension d
of the state-space, and the dependence on C' is through the operator norm and the effective

dimension ro(C').

Remark 2.2.6 (Dependence of Constants on Model Parameters). The proof of Theorem 2.2.5
in Appendiz 2.5 provides an explicit definition of ¢c1 and co up to constants and Theorem 2.5.9
establishes a high probability bound on | — S||. As discussed in Remark 2.2.4, these bounds
may be used to establish sufficient ensemble size requirements in small noise limits and other

singular limits of practical importance.

Remark 2.2.7 (Comparison to the Literature). The results in this section complement many
of the existing analyses of ensemble Kalman updates in the literature. In one direction, our
Theorems 2.2.3 and 2.2.5 can be viewed in the context of [Furrer and Bengtsson, 2007,
Section 8.4/, which claims that for finite ensembles the square root filter is always more
efficient than the perturbed observation filter, since the latter introduces additional variability
through noisy perturbations of the data. Our results quantify this additional variability both
in probability and in expectation. In Majda and Tong [2018], the authors put forward a non-
asymptotic analysis of a multi-step EnKF augmented by a spectral projection step in which the

Kalman gain matrix is projected onto the linear span of its leading eigenvalues exceeding a

35



threshold level. They refer to the dimension dg,ps of this subspace as the effective dimension
and provide guarantees on the performance of the algorithm so long as the ensemble size
scales with dg,ps. In contrast, our one-step analysis does not require any augmentation of
standard implementations (see e.g. Furrer and Bengtsson [2007]) of the ensemble update.
They also employ (forecast) covariance inflation, which is a de-biasing technique standard in
the literature, see for example [Furrer and Bengtsson, 2007, Section 5], which our results do
not require. In another direction, our results can be directly compared to [Kwiatkowski and
Mandel, 2015, Theorem 6.1], which states that for iteration t of the square root EnKF and

foranyp>1

B0 —u 0] " <D g [ggso —sop] <D o)
VN VN
where ﬂ(t) and ) are the sample mean and covariance of the updated (analysis) ensem-
ble at iteration t, and u(t) and U are the corresponding Kalman Filter posterior mean
and covariance, respectively. The term c(p,t) that arises in both of their bounds denotes a
constant that depends only on p, the iteration index t, and the norms of the non-random
inputs of the algorithm, but do not depend on dimension or ensemble size. Importantly, they
do not distinguish between settings with different effective dimensions as our bounds do. In
Appendiz 2.5.4, we provide an explicit outline of the multi-step algorithm considered in their
paper along with definitions of all quantities described here. As previously noted, our bounds
cover the perturbed observation setting whereas (2.16) is specific to the square root setting. In
Appendiz 2.5.4 we also establish (see Corollary 2.5.12) a simple extension of Theorems 2.2.3

and 2.2.5 to the multi-step square root setting, which shows that for any p > 1, iteration t,
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and assuming for simplicity that N 2, TQ(E(O)), then

»(0) B _
V2E s O, AO D) g ® - AOmO a3 e,

A 1
[ = 1 O] 5y 4/ B x el
~ (0)
[EISO - O] 5, 2O oqar®, jaO ) =Dy m .

(2.17)

Our bounds therefore refine those in Kwiatkowski and Mandel [2015] as they explicitly cap-
ture the dependence on the state dimension through the effective dimension of the initial
distribution, 7"2(2(0)). It follows then that in the case of the square root EnKF, it suffices
to use an ensemble on the order of the effective dimension of »(0) multiplied by constants
depending on the operator norms of the forward model matrices {|| AV H}le, analysis covari-
ance matrices {||S(0) H}le, inverse of the noise covariance, ||| and ly-norm of the model
errors {|ly(l) — A(l)m(Z)HQ}?:l. We note that extensions to the multi-step setting for other
variants of the EnKF that do not use SR updates may not follow as easily. In this direction,
the recent work Al-Ghattas et al. [2024a] studies a multi-step EnKF with PO updates which

incorporates an additional resampling step.

2.3 Ensemble Kalman Updates: Sequential Optimization

Algorithms

In the optimization approach, the solution to the inverse problem (2.1) is found by minimizing
an objective function. As discussed in Chada et al. [2021], an entire suite of ensemble
algorithms have been derived that differ in the choice of objective function and optimization
scheme. In this subsection we introduce the Ensemble Kalman Inversion (EKI) algorithm
Iglesias et al. [2013] and a new localized implementation of EKI, which we call localized

EKI (LEKI) following Tong and Morzfeld [2023]. Both EKI and LEKI use an ensemble
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approximation of a Levenberg-Marquardt (LM) optimization scheme to minimize a data-

misfit objective
1,
Jw) = SITH2 (y = Gw) 13, (2.18)

which promotes fitting the data y. Before deriving EKI the in Subsection 2.3.1 and LEKI
in Subsection 2.3.1, we give some background that will help us interpret both methods as
ensemble-based implementations of classical gradient-based LM schemes. The finite ensemble
approximation of an idealized mean-field EKI update using EKI and LEKI updates will be
studied in Subsection 2.3.3.

0)

Recall that classical iterative optimization algorithms choose an initialization u(©) and

set
) = () w(t), t=0,1,..., (2.19)

until a pre-specified convergence criterion is met. Here, w(®) is some favorable direction de-
termined by the optimization algorithm at iteration ¢, given the current estimate u®). In the
case that the inverse problem is ill-posed, directly minimizing (2.18) leads to a solution that
over-fits the data. Then, implicit regularization can be achieved through the optimization
scheme used to obtain the update w(®). Under the assumption that r(u) = y — G(u) is differ-
entiable, the Levenberg-Marquardt (LM) algorithm chooses w® by solving the constrained

minimization problem

min % (w) subject to ||C_1/2w|]% < 0y,
w
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where

1 (w) = Z[|Dr®)w + r(w®)]3,

1
2
and Dr denotes the Jacobian of r. The LM algorithm belongs to the class of trust region
optimization methods, and it chooses each increment to minimize a linearized objective, Jhn,
but with the added constraint that the minimizer belongs to the ball {||C~Y2w||2 < §}, in
which we trust that the objective may be replaced by its linearization. Equivalently, w()

can be viewed as the unconstrained minimizer of a regularized objective,
.U U/ — LoA—1/2, 12
mindp(w), I (w) = I w) + 507wl (2:20)

where a; > 0 acts as a Lagrange multiplier.

We are interested in ensemble sequential-optimization algorithms, which instead of up-
dating a single estimate u(*) —as in (2.19)— propagate an ensemble of estimates. Ensemble-
based optimization schemes often rely on statistical linearization to avoid the computation of
derivatives. Underpinning this idea Ungarala [2012], Chada et al. [2021], Kim et al. [2023] is
the argument that if G(u) = Au were linear, then Cur = GAT, leading to the approximation

in the general nonlinear case
DG (up) ~ (C*YTCT = G (2.21)

This approximation motivates the derivative-free label often attached to ensemble-based
algorithms Kovachki and Stuart [2019], and we note that they may be employed whenever
computing DG(u) is expensive or when G is not differentiable. For the remainder, our
analysis focuses on a single step of EKI and LEKI, and so we drop the iteration index ¢ from

our notation; we will use instead our previous terminology of prior ensemble and updated
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ensemble. Finally, similar to our presentation of posterior-approximation algorithms, our

exposition is simplified by introducing the nonlinear gain-update operator &,

P RPKE s SE L RIXE . p(CUP CPPT) = 2(CUPCPP) = CUWP(CPP 4+ T) 7L
(2.22)

which is shown to be both pointwise continuous and bounded in Lemma 2.5.7.

2.3.1 FEnsemble Algorithms for Sequential Optimization

Ensemble Kalman Inversion Update

In the EKI, each particle in the prior ensemble is updated according to the LM algorithm,

so that

where wy, is the minimizer of a linearized and regularized data-misfit objective
- 1, 1 A
5w) = ST (g = = Glun) = Gu) |3+ IO wll, g ~ N(OT). (2.23)

Following Iglesias et al. [2013], we henceforth set v = 1, but note that our main results
can be readily extended to any a > 0. Note that each ensemble member solves the opti-
mization (2.23) with a perturbed observation y — 7, similar in spirit to the PO update of

Subsection 2.2.1. The minimizer of (2.23) (with v = 1) is given by

wy, = CGT(GQCGT + 1) Yy —np — Gluy)).
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Substituting OGT =Cup , and approximating
GCGT =GO = (C)TCICM ~ C'PP

leads to the EKI update

Un = up + P(CP,CPP)(y — G(up) —1mp),  1<n<N. (2.24)

In the linear forward-model setting, 22(C*,CPP) = Ji/(é), and (2.24) takes on a form

identical to the PO update in (2.10). We further define the mean-field EKI update
v =1un + 2(C",CPP)(y — G(un) — nn), 1<n<N\, (2.25)

which is the update that would be performed if one had access to the population quantities
C"P and CPP or, equivalently, to an infinite ensemble. We will analyze the approximation
of the update (2.24) to the mean-field update (2.25) in Subsection 2.3.3. The study of
mean-field ensemble Kalman methods of the form (2.25) was proposed in Herty and Visconti
[2019] and is overviewed in Calvello et al. [2022]. While mean-field algorithms are not useful
for practical implementation, they facilitate a transparent mathematical analysis that can
provide understanding on the performance of practical ensemble approximations. Desirable
properties of mean-field algorithms include convergence to the desired target in a continuous-
time limit Carrillo and Vaes [2021], a gradient flow structure Garbuno-Inigo et al. [2020],
or the ability to approximate derivative-based optimization algorithms Chada et al. [2021].
The transfer of theoretical insights from mean-field algorithms to particle-based algorithms
tacitly presupposes, however, that the ensemble is large enough for ensemble-based updates
to approximate well idealized mean-field updates. In this direction, Ding and Li [2021]

establishes a O(N —1/ 2) rate for an approximation of a mean-field evolution equation in
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terms of the ensemble size N. Our first main result of this section, Theorem 2.3.5, will show
that the mean-field update (2.25) can be well approximated with the EKI update (2.24) with
a number of particles of the order of the effective dimension of the problem, which is defined

as for posterior-approximation algorithms.

Localized Ensemble Kalman Inversion Update

In practice, ensemble-based algorithms are often implemented with N < d, that is, with
an ensemble that is much smaller than the state dimension. In this setting, the update
is augmented with an additional localization procedure applied to C in the case of linear
forward model, and to both CPP and C'YP in the case of a nonlinear forward model. In
either case, localization is seen as an approach to deal both with the extreme rank defi-
ciency and the sampling error that arise from using an ensemble that is significantly smaller
than the dimension of the state and/or the dimension of the observation, see for example
Houtekamer and Mitchell [2001], Houtekamer and Zhang [2016|, Farchi and Bocquet [2019].
Localization is also useful when the state u, or the transformed state G(u), has elements
E(1) and £(j) that represent the values of a variable of interest at physical locations that are
a known distance d(7, j) apart: correlations may decay quickly with the physical distance
of the variables and localization may help to remove spurious correlations in the sample
covariance estimator. In ensemble Kalman methods, localization has most commonly been
carried out via the Schur (elementwise) product of the estimator and a positive-semidefinite
matrix M of equal dimension. In the vast majority of cases, the elements of M are taken
to be M;; = k(d(i, j)/b), where k is a locally supported correlation function —usually the
Gaspari Cohn 5™-order compact piecewise polynomial Gaspari and Cohn [1999]— and b > 0
is a length-scale parameter chosen by the practitioner. Since x tapers off to zero as its argu-
ment becomes larger, i.e. when the underlying variables are further apart, the Schur-product

operation zeroes out the corresponding elements of the estimator, and the rate at which this
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tapering occurs is controlled by the size of the length-scale. The localized EKI (LEKI), re-
cently studied in Tong and Morzfeld [2023], replaces both CPP and C*P with their localized
counterparts, Mj o CP and Ms o Cup , where M and My are localization matrices of appro-
priate dimension. Two important issues have, in our opinion, hindered the rigorous study
of localized ensemble algorithms, and we highlight these next before moving on to introduce

our localization framework.

1. Optimality: The justification outlined above for localization in the ensemble Kalman
literature has been largely heuristic, and relying on these arguments alone one cannot
hope to define a localization procedure that is demonstrably optimal. Notably, the
widespread usage of the Gaspari-Cohn correlation function is not rooted in any sense
of optimality. Generally, focusing solely on a band of entries near the diagonal is a sub-
optimal approach to covariance estimation, as noted in the high-dimensional covariance
estimation literature, see for example Chen et al. [2012], Levina and Vershynin [2012],
Bickel and Levina [2008b]. Moreover, even in cases where focusing on elements near the
diagonal is justified, for example by assuming that the underlying target is a banded
matrix, the bandwidth b > 0 must be chosen carefully as a function of the ensemble size,
problem dimension, and dependence structure Bickel and Levina [2008a]. This type of
analysis has, to the best of our knowledge, not been carried out for the Gaspari-Cohn
localization scheme. An important message in the covariance estimation literature is
that localization —regardless of how it is employed— can only be optimal if the target
of estimation itself is sparse, and such sparsity assumptions must be made explicit in
order to facilitate a rigorous mathematical analysis of the procedure. The difficulty
of optimal localization in ensemble updates has also been highlighted in Furrer and
Bengtsson [2007], where the authors derive an optimal localization matrix M under

the unrealistic assumption that C' is a diagonal matrix.

2. Schur-Product Approximations: In the literature on ensemble Kalman methods, a
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consensus has not been reached on how best to apply localization in practice. The issue
here can be sufficiently described by deferring to the linear forward-model setting, i.e.
G(u) = Au, in which the Kalman gain is a central quantity. As mentioned for example
in Houtekamer and Mitchell [2001], in a localized update, the Kalman gain operator

should in theory be applied to M o C , i.e. one should study the quantity
A Ay AT Ay AT -1
H MoC)=(Mo(C)A (A(I\/IOC')A —|—F) ,

although their experimental results are based on the more computationally convenient

approximation
H(MoC)~ (Mo(CAT)) (Mo (ACAT) +T) ™, (2.26)

which, as they mention, is a reasonable approximation in the case that A is diagonal.
Subsequently, much of the literature on localization in ensemble Kalman updates has
adopted this or similar approximations, as discussed in greater depth in [Petrie, 2008,
Section 3.3|. In general, however, approximations made on the Schur product are

difficult to justify without strong assumptions on the forward model G.

With these issues in mind, we opt to study an alternative, data-driven approach to
localization often employed in the high-dimensional covariance estimation literature Bickel
and Levina [2008a], Cai and Zhou [2012a,b], where it is referred to as thresholding. We
ground our analysis in the assumption that the target of estimation belongs to the following
soft sparsity matrix class:

da

U, 4y (a4 Rg) = {B e R xdz max Y |By;|7 < Rq}, (2.27)
1<dq “
J=1

where ¢ € [0,1) and Ry > 0, and write %;(q, Ry) in the case d] = dg = d. In the special case
44



q = 0, matrices in %, 4,(0, Ry) possess rows that have no more than Ry non-zero entries —a
special case of which are banded matrices— which is the classical hard-sparsity constraint. In
contrast, for ¢ € (0, 1), the class %, 4,(q, Rq) contains matrices with rows belonging to the
{q ball of radius Rg. This includes matrices with rows that contain possibly many non-zero
entries so long as their magnitudes decay sufficiently rapidly, and so is often referred to as a
soft-sparsity constraint. Importantly, the class %;(q, Rq) is sufficiently rich to capture the
motivating intuition that correlations decay with physical distance in a rigorous manner that
avoids the optimality issues mentioned above. Structured covariance matrices, such as those
belonging to %y, 4,(q, Rq) are optimally estimated using localized versions of their sample
covariances. To this end, we study the localized matrix estimator B,, = L), (B), where
Lyy(u) = ulgiy>pp) 18 @ localization operator with localization radius pp, and which is
applied elementwise to its argument B. In Section 2.3 we detail how the localization radius
pN can be chosen optimally in terms of the parameters of the inverse problem (2.1) and the
ensemble size N.

Throughout our analysis, we refrain from using approximations such as the one outlined
in (2.26); that is, our analysis of localization replaces all non-localized quantities in the

original update (2.24) with their localized counterparts. We introduce the LEKI update:

~

vb =y, + @(@}‘ﬁl, C’gﬁz)(y — G(up) — nn), 1<n<N, (2.28)

where pyy 1 and ppy o are two, potentially different localization radii. As in the non-localized
case, in Subsection 2.3.3 we provide finite sample bounds on the deviation of the LEKI update
from the mean-field update of (2.25), and describe in detail how the additional structure
imposed on C"P and CPP leads to improved bounds relative to the non-localized setting.
Our second main result of this section, Theorem 2.3.7 will be based on new covariance
estimation bounds that may be of independent interest, and on a suitable notion of effective

dimension that we introduce in Subsection 2.3.2. Our theory explains the improved sample
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complexity that can be achieved by simultaneously exploiting spectral decay and sparsity of
the covariance model.

An important issue that warrants discussion is that of positive-semidefiniteness of the
estimator EPN when the target B is a square covariance matrix. In the case of the Schur-
product estimator, any localization matrix M derived from a valid correlation function s
is guaranteed to be positive-semidefinite by definition Gaspari and Cohn [1999], and so by
the Schur-product Theorem [Horn and Johnson, 2012, Theorem 7.5.3| the estimator M o B
is positive-semidefinite as well. In contrast, the localization operator L, thresholds the
sample covariance B elementwise and does not in general preserve positive-semidefiniteness.
As discussed in El Karoui [2008], Cai and Zhou [2012b], Epzv is positive-semidefinite with
high probability, but in practice one may opt to use an augmented estimator that guarantees
positive-semidefiniteness. We describe this estimator here for completeness: let EpN =
Z?Zl vajv;'— be the eigen-decomposition of épz\/? so that A;,v; are the j-th eigenvalue and
eigenvector of EPN‘ Consider then the positive-part estimator E;N = 2?21(0 Y j\j)vjv}—.
Clearly then, E;N is positive-semidefinite, and furthermore it achieves the same rate as Ep N

since

1By — Bl < 1Bjy = Boyll + |1Bpy — Bl < max (A = Ajl + 1By — Bl < 2[|Bpy — Bl
JA;<

where A; is the j-th eigenvalue of B. In light of this fact, we abuse notation slightly and

assume that B), is positive-semidefinite throughout this work.

2.3.2  Dimension-Free Covariance FEstimation Under Soft Sparsity

For the covariance estimation problem under (approximate) sparsity, there are estimators
that significantly improve upon the sample covariance. In particular, [Wainwright, 2019,

Chapter 6.5] notes that for sub-Gaussian data the operator-norm covariance estimation error
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depends logarithmically on the state dimension d for localized estimators, while the error
depends linearly on d for the sample covariance. If no sparse structure is assumed, the
effective dimension 79 defined in (2.14) characterizes the error of the sample covariance
estimator, as described in Proposition 2.2.1. We introduce an analogous notion of effective
dimension that is more suitable than r9 in the sparse covariance estimation problem, termed

the maz-log effective dimension and which, for Q € S%, is given by

_ HlanSd Q(]) log(j + 1)
- Q) |

ool

where Q(l) > Q(Q) > ... 2 Q(d) is the decreasing rearrangement of the diagonal entries of Q).
To the best of our knowledge, this notion of dimension has not been previously considered
in the literature, and, as will be shown, refines the rate of covariance estimation under
sparsity by incorporating intrinsic properties of the underlying matrix, albeit differently to
(2.14). In particular, roo(Q) is small whenever @) exhibits a decay of the ordered elements
Q(l), Q(Q), ... that is faster than log(j + 1). We use the subscript oo to highlight that the
quantity r« is related to the dimension-free sub-Gaussian maxima result of Lemma 2.6.6.
Similarly, we use the subscript 2 to draw the connection between r9 and the sub-Gaussian 2-
norm concentration of Theorem 2.5.1. Importantly, bounds based on r, will be dimension-
free, in the sense that they exhibit no dependence on the state dimension d. The next
result is our analog of Proposition 2.2.1 for estimation under sparsity using the localized
sample covariance estimator. Recall that C(l) denotes the largest element on the diagonal
of C, (/Z\’pN = ﬁpN(é ) denotes the localized sample covariance matrix, and %;(q, Ry) is the
sparse matrix class defined in (2.27). All proofs in this subsection have been deferred to

Appendix 2.6.1.

Theorem 2.3.1 (Covariance Estimation with Localization —Soft Sparsity Assumption).
Let uy,...,uyn be d-dimensional i.i.d. sub-Gaussian random vectors with E[u1] = m and

varlui| = C. Further, assume that C' € %;(q, Rq) for some q € [0,1) and Ry > 0. For any
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t>1, set

'ON“C@)( N YN Y Nvﬁ>

and let GPN = LpN(@,N) be the localized sample covariance estimator. There exists a

constant ¢ > 0 such that, with probability at least 1 — ce™ ¢,

A~ 1_
ICon = CIl S Rapy ™.

Remark 2.3.2 (Max-Log Effective Dimension). The proof of Theorem 2.3.1 can be found in
Section 2.6.1 and, up to the choice of py, follows an identical approach to the standard proof
for localized covariance estimators in the literature, for example [Wainwright, 2019, Theo-
rem 6.27]. The result depends crucially on the order of the maximum elementwise distance
between the sample and true covariance matrices, |C — Cllmax, which is where our analysis
differs from the exiting literature. Qur proof utilizes techniques in Koltchinskii and Lounici
[2017] combined with the dimension-free sub-Gaussian mazima bound of Lemma 2.6.6 to
obtain a bound in terms of roo. In the worst case, for example when C' = clj for some
constant ¢ > 0 so that the ordered diagonal elements of C' exhibit no decay, we recover
exactly the standard logarithmic dependence on the state dimension. In particular, when
N > r00(C)(= logd), Theorem 2.3.1 matches the result for recovering C in operator norm
in the sub-Gaussian setting over the class Uy(q, Ryq), as shown in [Bickel and Levina, 2008a,
Theorem 1]. If the ordered variances exhibit sufficiently fast decay, our upper bound is signifi-
cantly better. (Recall that in many applications d ~ 102 and N ~ 102, and so the logarithmic
dependence on d may play a significant role in determining a sufficient ensemble size.) Im-
portantly, many of the results in the structured covariance estimation literature rely similarly
on the mazimum elementwise norm, and so our results can be utilized to achieve refined

bounds on the estimation error of the localized estimator under structural assumptions on C
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that differ from the soft-sparsity assumption considered in this work.

A result analogous to Theorem 2.3.1 holds for cross-covariance estimation under sparsity.
For a formal statement we refer to Theorem 2.6.11 whose proof is based on a deep generic
chaining bound for product empirical processes [Mendelson, 2016, Theorem 1.12]. Here we
present a cross-covariance estimation result that is specific to the LEKI setting in that it

relies on a smoothness assumption on the forward model.

Theorem 2.3.3 (Cross-Covariance Estimation with Localization —Soft Sparsity Assump-
tion). Let uy,...,un be d-dimensional i.i.d. sub-Gaussian random vectors with E[u1] = m
and varfuy] = C. Let G : R? — R¥ be a Lipschitz continuous forward model and assume that
C" € Uy 1(q1, Rgy) and CPY € Uy, 4(q2, Rgy) where q1,q2 € [0,1) and Ry, Ry, are positive

constants. For anyt > 1, set

o= vy (2 (viery vimrem) v 0, I

and let 6;?5 = L,,N(é UP) be the localized sample cross-covariance estimator. There exist

positive universal constants c1,co such that, with probability at least 1 — cje €2,
-~ 1- 1—
ICox = CPII S Ravpyy ™V Rpppy ™.

Remark 2.3.4 (Sparsity of the Cross-Covariance). To the best of our knowledge, estima-
tion of the cross-covariance matrix under structural assumptions has not been a point of
focus in the literature. Indeed, one may tmplicitly estimate the cross-covariance by applying

Theorem 2.3.1 to the full covariance matrix

c ow
cPu (PP
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of the sub-Gaussian vector [u',G(u)"]", and extracting a bound on |CpE — CUP||. This
approach however requires one to place sparsity assumptions on the full covariance matriz,
making the result potentially less useful in practice. That is, one may wish to make structural

assumptions on C'"P and C'PP without imposing any restrictions on C, which our result allows

for.

2.3.83  Main Results: Approzimation of Mean-Field Particle Updates with

Finite Ensemble Size

In this subsection we state finite ensemble approximation results for EKI and LEKI updates.
The main results, Theorems 2.3.5 and 2.3.7, showcase the dependence on the effective di-
mension of C' and CPP for EKI and on the max-log dimension of these matrices for LEKI.
For both algorithms, we study the update of a generic particle u, and the analysis is carried

out conditional on both u, and the noise perturbation 7.

Theorem 2.3.5 (Approximation of Mean-Field EKI with EKI —Operator-Norm Bound).
Let y be generated according to (2.1) with Lipschitz forward model G : RY — RF. Let vy, and
vy, be the EKI and mean-field EKI updates defined in (2.24) and (2.25) respectively. Then,
for any t > 1, there exists universal positive constants c1,cy such that, with probability at

least 1 — cre €2,

c T C’pp Cpp t t
HUn—Un”2<Cl<2 \/ 2 \/ NVN>,

where ¢ = ¢1([ly — G(un) = malla, [T ICIL IC ], [CPP]) and for u ~ N (m, C), ez =
ea(lnllz, lImla, G ()2, IEIG(w)][12):

Remark 2.3.6 (Dependence of Constants on Model Parameters). The proof of Theorem

2.8.5 1 Appendix 2.6.2 gives an explicit expression for the dependence of ¢ on its arguments.
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These bounds may be used to establish the sufficient ensemble size to ensure that the EKI

update approximates well the mean-field EKI update in the unstructured covariance setting.

Theorem 2.3.7 (Approximation of Mean-Field EKI with LEKI —Operator-Norm Bound).
Let y be generated according to (2.1) with Lipschitz forward model G : RY — RF. Assume
that C"P € Uy (a1, Rey), CP" € U, 4(q2, Ryy) and CPP € U, (g3, Rys) for q1, 42,93 € [0,1),
and positive constants Ry, , Rgy, Rgy. Let vh and vy, be the LEKI and mean-field EKI updates

outlined in (2.28) and (2.25) respectively. For anyt > 1, set

PN,1 = PN2

- % +(Cy v ) ((% v \/%) (\/?"oo(c) v \/roo(Cpp)) vV \/TOO]\(]Q \/Too(]spp)) |

and

DRSS +Cpp (y/ro‘) il \/ v e Opp)>,

where ¢1 = c1([|unloo, [mllco, |G (wn)lloo, IEIG(u)]lloo) and ez = ca([|G (un)lloo; IEIG (w)]lloo),
with uw ~ N (m,C). There exist positive universal constants cs,cy such that, with probability

at least 1 — cge =4t

1-
||Un_Un||2<C5(RQ1PN1 VRQQpNQ VR(BP q3)

9

where c5 = c5(|ly — G(un) — mnll2, [T, |CM2|)).

Remark 2.3.8 (Dependence of Constants on Model Parameters). The proof of Theorem
2.3.7 1 Appendix 2.6.2 gives an explicit expression for the dependence of ¢ on its arguments.
As discussed in Remark 2.5.6, these bounds may be used to establish the sufficient ensemble
size to ensure that the LEKI update approrimates well the mean-field EKI update in the

structured covariance setting.
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Remark 2.3.9 (On the Soft-Sparsity Assumptions). Importantly, Theorem 2.3.7 makes
no assumptions on the covariance matrix C', and so can be used even in cases where C' is
dense, but the covariances C"P, C'PY and CPP can be reasonably assumed to be sparse.
In the case that sparsity assumptions on C' are appropriate, then an interesting question
is: what (explicit) assumptions on G ensure sparsity of C"P, CPY and CPP? We provide
here two simple arguments that may provide some insight. Throughout, c1,ca,co,cy4,c5 are
arbitrary positive constants independent of both state and observation dimensions d and k,

and q € [0,1).

1. Suppose C € %y(q,c1) and E[DG]" € U i(q,c2). Then there exists c3 such that
C" € Uy 1(q,c3). We provide a formal statement of this result in Lemma 2.6.14.
Similarly, if E[DG] € %, 4(q,c4), then there exists c5 such that CPY € . 4(q,cs5).
The assumptions on the expected Jacobian E[DG] can be understood as the requirements

that, in expectation:

(a) Any coordinate function G; of G depends on its input u only through a subset of

u whose size does not grow with k nor d.

(b) Any state coordinate uj of u is acted on only by a subset of the coordinate-functions

of G whose size does not grow with k nor d.
For example, a Jacobian that is banded in expectation would satisfy these two properties.

2. Suppose C € Ui(q,c1). Then there exists co such that CPP € 74.(q,ca) whenever
G(u) = Au is a linear map with A € %, 4(q,c3) and AT € Uq1.(q; c4), i.e. whenever
A has both rows and columns that are sparse. This condition holds, for example, for

banded A. We provide a formal statement of this result in Lemma 2.6.16.

The two arguments above indicate that if G acts on local subsets of u, which holds for instance

for convolution or moving average operators, then one can expect the sparsity of C' to carry

on to C"P, CP" and C'PP,
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Remark 2.3.10 (Comparison to the Literature). Although the focus of this subsection is
the LEKI, it is useful to compare our Theorems 2.3.5 and 2.3.7 to existing results for the
performance of ensemble based algorithms with localization. In this regard, our results are
closest to those of Tong [2018], which shows that an ensemble that scales with the loga-
rithm of the state dimension times a localization radius suffices for good performance of the
localized EnKF (LEnKF). They study performance over multiple time steps and linear dy-
namics under a stability assumption which enforces control over the model matrices as well
as a sparse (q = 0) structure of the underlying true covariance matrices. They consider do-
main localization whereas we study covariance localization. In contrast to our results, Tong
[2018] employs covariance localization and utilizes a Schur-product localization scheme in
which elements whose indices are beyond a certain bandwidth are set to zero, whereas we
study localization via thresholding (recall our discussion comparing these two approaches in
Subsection 2.3.1). Consequently, our required localization radius is in terms of the maz-log
effective dimension whereas theirs is in terms of the bandwidth of the underlying covariance
matriz. Qur results are dimension-free in that they do not rely on the state dimension d,
and so as noted in Remark 2.3.2, our bounds can have significantly better than logarithmic
dependence on dimension. Our setting also differs from Tong [2018] in that our dynam-
ics are allowed to be nonlinear, and our prior ensemble can be sub-Gaussian as opposed to
Gaussian. Related to this point is that the analysis in Tong [2018] does not account for noise
introduced from adding perturbations to the ensemble update, which is justified by a law of
large numbers argument; however in the non-asymptotic and nonlinear settings, it is likely
that one must account for this noise especially when considering the covariance between the
current ensemble and the perturbation noise at a given iteration of the algorithm. We view
it as an important avenue to extend the results of this subsection to a multi-step analysis,
and a particularly important question is whether dimension-free control of the LEnKF can be

rigorously shown utilizing a combination of our results and those of Tong [2018]. The LEKI
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has also been recently studied in Tong and Morzfeld [2023] under a nonlinear, multi-step
setting. The authors study convergence of the iterates to a global minimizer and the rate of
collapse of the ensemble. They argue that localization is a remedy for the “subspace property”
of the EKI, which refers to the fact that ensembles at any given iteration live in the linear
subspace spanned by the initial ensemble, which cannot capture the true state if N < d. Their
analysis differs from ours in that they study the continuous-time setting whereas we analyze
discrete time updates as implemented in practice. Further, while they discuss that the size of
the ensemble may be much smaller than the state dimension, as well as illustrate this with
simulations, they do not provide an explicit characterization of the sufficient ensemble size.
Our results also show that the LEKI is close to the mean field version of the problem, which
is mot considered in their set-up. An interesting open question is whether the results of this
section can be used in conjunction with results in Tong and Morzfeld [2023] to provide a

sufficient ensemble size for LEKI over multiple iterations.

2.4 Conclusions, Discussion, and Future Directions

This chapter has introduced a non-asymptotic approach to the study of ensemble Kalman
methods. Our theory explains why these algorithms may be accurate provided that the en-
semble size is larger than a suitable notion of effective dimension, which may be dramatically
smaller than the state dimension due to spectrum decay and/or approximate sparsity. Our
non-asymptotic results in Section 2.2 tell apart PO and SR updates for posterior approxima-
tion, and our results in Section 2.3 demonstrate the potential advantage of using localization
in sequential-optimization algorithms.

As discussed in Subsection 2.3.1, localization is also often used in posterior-approximation
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algorithms. For instance, one may define a localized PO update by

= (i, Cpy) — H (Cop )i,
PN PN (2.29)

-~

G (Cpy) + Opys

ol
I

where 6PN is defined replacing C with @N in (2.11). Similarly, one may define a localized

SR update by

(2.30)

It is then natural to ask if localized PO and SR updates can yield better approximation of
the posterior mean and covariance than those without localization in Theorems 2.2.3 and
2.2.5. The answer for the posterior mean seems to be negative.

To see why, consider for intuition that we are given a random sample X7q,..., Xy from
a normal distribution with mean ,uX and covariance ©X with the objective to estimate
,uX . Standard results, see e.g. |L. E. Lehmann, and G. Casella, 2006, Example 1.14], show
that the sample mean X is minimax optimal for ¢s-loss regardless of whether or not ©X
is known. In other words, the minimax rate of estimating MX can be achieved without
making use of information regarding »X. It follows then that placing assumptions on »X
can lead to impressive improvements in the covariance estimation problem (as shown in
Section 2.3) but cannot be expected to affect the mean estimation problem. Similarly,
in our inverse problem setting, sparsity assumptions on the prior covariance C' cannot be
expected to translate into a better bound on ||fi — u||2: this quantity is a function of both the
covariance deviation Hép ~—C/| and the prior mean deviation ||in—m||2 and since the latter is
unaffected it dominates the overall bound, yielding an error bound of the same order as that
in Theorem 2.2.3. As discussed in Remark 2.2.7, a potential avenue for future investigation is

to utilize techniques introduced in this manuscript to study alternative localization schemes
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in the posterior approximation setting, such as domain localization considered in Tong [2018].
In short, covariance localization as defined in (2.30) does not lead to improved bounds for
the posterior-approximation problem.

Similar issues to those arising in the estimation of the posterior mean affect the analysis
of the localized offset 6/’1\7’ and we therefore do not expect improvement on the bound in
Theorem 2.2.5 for covariance estimation with the localized PO update. We note, however,
that for localized SR it is possible to derive an analog to the high probability version of
Theorem 2.2.5 (see Theorem 2.5.9) with an improved error bound, which we present in
Theorem 2.7.2.

Our discussion here should not be taken to imply that localization in posterior-approximation
algorithms is not useful; it is plausible that localization in one step of the algorithm can lead
to improved bounds in later steps, and we leave this multi-step analysis of localized pos-
terior approximation ensemble updates as an important line for future work. A related
phenomenon is known to occur in sequential Monte Carlo, where a proposal density that
may be optimal for one step of the filter may not be optimal over multiple steps Agapiou
et al. [2017]. Another interesting direction for future study is the non-asymptotic analy-
sis of ensemble Kalman methods for likelihood approximations in state-space models Chen
et al. [2022]. Finally, we envision that the non-asymptotic approach set forth here may
be adopted to design and analyze new multi-step methods for posterior-approximation and

sequential-optimization in inverse problems and data assimilation.

Proofs

We provide proofs of all theorems in the main body. We will use the following result ex-
tensively and summarise it here for brevity. Given events FE1,..., E;y that each occur with

probability at least 1 — ce~!, where t > 1 and ¢ > 0 is a universal constant that may be
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different for each event, then

PIOE|=1-P|JEj|21-D> PE)>1-c".

2.5 Proofs: Section 2.2

This appendix contains the proofs of all the theorems in Section 2.2. Background results on
covariance estimation are reviewed in Subsection 2.5.1 and the continuity and boundedness
of the Kalman gain, mean-update, covariance-update, and nonlinear gain-update operators
are summarized in Subsection 2.5.2. These preliminary results are used in Subsection 2.5.3

to establish our main theorems.

2.5.1 Preliminaries: Concentration and Covariance Estimation

Theorem 2.5.1 (Sub-Gaussian Norm Concentration, |[Vershynin, 2018, Exercise 6.3.5]). Let
X be a d-dimensional sub-Gaussian random vector with E[X] = pX, var[X] = £X. Then,

for any t > 1, with probability at least 1 — ce™t it holds that

1X = 152 S/ Tr(EX) +\HIEX] S VIEX ra(SX) v ).

Proof of Proposition 2.2.1. For n = 1,..., N, let u, = Z, + m, where Z,, is a centered

sub-Gaussian random vector with var[Z,] = C. Then we may write

N N
n—= n=

Therefore,

IC—C| <|IC®—C|+11Z2Z"|| = ||IC° — C| + || Z]3
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Let E; denote the event on which

IC°~clzlel <\/T \/* )

and F9 the event on which

ra(C) 1

Z|3 < ||lc V).

121 5 et (27 v )

Then by Theorem 9 of Koltchinskii and Lounici [2017], P(E;) > 1 — e~ ¢, and by Theo-
rem 2.5.1, P(Es) > 1 — e~!. Therefore, the result holds on Eq N E9, which has probability

at least 1 — ce L. O

Lemma 2.5.2 (Sample Covariance Operator Norm Bound). Let uy,...,uy and C be as in

Proposition 2.2.1. Then, for any t > 1, it holds with probability at least 1 — ce ™ that

~ 7”2(0) t
< _
Teyel (w v N).

Proof. By the triangle inequality Ha I < Ha — CJ| + ||C]]. The result follows by Proposi-

tion 2.2.1 noting that, for any x > 0, 1V /zrVz =1V x. O
Lemma 2.5.3 (Cross-Covariance Estimation —Unstructured Case). Let uq,...,uy be d-
dimensional i.i.d. sub-Gaussian random vectors with Elu1] = m and varluy] = C. Let
m,-..,nN be k-dimensional i.i.d. sub-Gaussian random vectors with E[ni] = 0 and varln] =

I', and assume that the two sequences are independent. Consider the estimator

of the cross-covariance C*' = E[(ul — m)nﬂ Then there exists a constant ¢ such that, for
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all t > 1, it holds with probability at least 1 — ce™" that

|Cun —cem| < (J|C) v D)) <\/7"27 \/T \/7 >

Proof. First, we note that

N
-~ N—-1/[1 N _ N -1~
C = —~ |~ E (up, —m)(nn —n)T =——0C"

and so it suffices to prove the claim for the biased sample covariance estimator, which we

denote by Ccun, Letting Z,, = uy — m, it follows that
~ 1
1™ = |+ > Zwmy, - Z0'|| < ZZnnn +127" . (2.31)

n=1

For the second term in the right-hand side of (2.31), let Ey denote the event on which

nmus¢waﬁ”v§)

and F9 the event on which

mmswm(%Qw%)

each of which have probability at least 1 — e ™% by Theorem 2.5.1. Therefore, the event

F1 N Ey occurs with probability at least 1 — ce ™, and on which it follows that

r2(C)
N N N

— T —
1Z0 " [l = 1 Z]l2l[nll2 < (VAT (
where the inequality follows since vab < a V' b for a,b > 0. To control the first term in the
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right-hand side of (2.31), we define the vector

In

and note that Wy, ..., Wy is an i.i.d. sub-Gaussian sequence with E[W1] = [m T, OQ]T and

variance OV = diag(C,T'). Let E3 denote the event on which

N
1 ro(CWY  ro(CW t ot
=Y w,w, =l < jiev (N )y T (N )y V¥

n=1

Tr(C) Tr(I) Tr(C) + Tr(T t
=D ((\/Nncn . \/Nnru) Y My ||r|| M )
Sl v i) (W 20 v () ( >>
S delv (\/ 20, 20, [r@), nh), @ y N) |

By Proposition 2.2.1, it holds for any ¢ > 1 that P(E3) > 1 —e~!. Note that we can express

a )

C O NN z.zl - NTISN L Zan!

N 3 1 i
B z:: or| ’

r NS vzl NS ) T

and that
LN
.
¥ > Zamg || = IELPEw| < [EulllPlEw2l = [P,

where E11, E19 are block selection matrices that pick the relevant sub-block matrix of P.
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Therefore, it holds on Eg that

% S (el v i) (F )y /20, =0, [L, )

The final result follows by noting that the intersection £ N E9 N E3 has probability at least
1—ce L. [

2.5.2  Continuity and Boundedness of Update Operators

The next three lemmas, shown in Kwiatkowski and Mandel [2015], ensure the continuity and
boundedness of the Kalman gain, mean-update, and covariance-update operators introduced
in Section 2.2. We include them here for completeness. Lemma 2.5.7 below establishes similar

properties for the nonlinear gain-update operator introduced in Section 2.3.

Lemma 2.5.4 (Continuity and Boundedness of Kalman Gain Operator [Kwiatkowski and
Mandel, 2015, Lemma 4.1 & Corollary 4.2]). Let ¢ be the Kalman gain operator defined in
(2.5). Let P,Q € S84, T € Sk, and A € R**4. The following hold:

15(Q) = (P)| < 1Q — PIANIL™) (1 +min ([|P[], Q1) HAH2HF_1H>,
1 @I < QU AT,

1T =2 (@Al < T+ [QIIAIPITHI.

Lemma 2.5.5 (Continuity and Boundedness of Mean-Update Operator [Kwiatkowski and

Mandel, 2015, Corollary 4.3 & Lemma 4.7]). Let .4 be the mean-update operator defined in
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(2.6). Let P,Q € St T e Sﬁju AeRF¥d y e RF and m,m' € RL. The following hold:

|2 (m, Q) < [[mll + [ QUIIANT | ly — Amlly,
|- (m, Q) — .t (', P)|| < [lm — | (1 + | AP T~ [1QI)

+1Q = PIIANTH(@ + [JAIPIT= 1PN |ly — And][, -

Lemma 2.5.6 (Continuity and Boundedness of Covariance-Update Operator [Kwiatkowski
and Mandel, 2015, Lemma 4.4 & Lemma 4.6]). Let € be the covariance-update operator
defined in (2.7). Let P,Q € S, T € S_ZT_JF, A e Rk>d o e RF and m,m’ € R%. The
following hold:

I€(Q) =€ (P)| <[Q— Pl (1 + IAIPIT QI+ 121D + HAH4IIF*1H2HQHIIPH),

07(Q) xQ,

IE@I < QI

Lemma 2.5.7 (Continuity and Boundedness of Nonlinear Gain-Update Operator). Let &2
be the nonlinear gain-update operator defined in (2.22). Let P,]5 e Rixk Q,@ e Sk, and

I'e S_If_Jr. The following hold:

12(P,Q) = 2(P,Q)| < IT~MIIP = Pl + 1T PIIQ - QlI,

l2@ QN < I~ IIPI+ IRl

Proof. The proof follows in similar style to Lemma 4.1 in Kwiatkowski and Mandel [2015].

We note that

IP@Q+D) =P+ < IPQ+D) ' =PQ+D) Y+ |PQ+T) = PQ+D)

< |PIIQ+T)" =@+ D) M+ 1P = PIIQ+ D).
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Since I' = 0 and @ > 0, it holds that @ + T > I" and so (@ + F)_l < I'~1, which in turn
implies ||(Q + )71 < ||IT~1||. Further,

HQ+T) ' = (@Q+0)7 Y = 0~ V2(@12Qr=12 4 )=t — (0=1/2Qr=1/2 4 1)~ r-1/2
< P22 4 7t — (r7V2Qr—2 £ 7Y
< |0 Hr-2Qr-Y2 — p=12Qr-172)

< It YP1e - Q.

where the second to last equality follows by the fact that ||(I+A4)~!—(I+B)~1|| < ||[B—A|
for A, B € S_]f_. To prove the pointwise boundedness of &, take P to be the d x k matrix
of zeroes, and @ to be the k x k matrix of zeroes, and plug these values into the continuity

bound. O

2.5.8  Proof of Main Results in Section 2.2

Theorem 2.5.8 (Posterior Mean Approximation with Finite Ensemble —High Probability
Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and (2.12),
respectively, leading to an estimate 11 of the posterior mean u defined in (2.2). Set p =1 for
the PO update and ¢ = 0 for the SR update. Then there exists a constant ¢ such that, for

all t > 1, it holds with probability at least 1 — ce™t that

18— wlla £ (ICI2VICIZ WALV LA ATH VAPV [y = Amll2)

(Ve (D) () O [ 1
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where
& = |ANIT 2o
[ro(T) t  ro(C) [roD)  ra(C) [t t [ra(D) £\ 3/2
X( AN ST e SRS ‘(%) )

Proof. 1t follows from Lemma 2.5.5 that

|7 — plla = |4 (7, C) — 9 (C)iy — M (m, C) |2

< ||t (2, C) — tt (m, C)||2 + ]| # (C)i]12

< @ = mlly (1+ 1 APITH 15 (2:32)
+1C = CIIANITY (14 1A IO ) ly — Amls— (233)
+ ] () Il - (2:34)

We now control each of the terms in equations (2.32), (2.33), and (2.34) separately. For
(2.32), we note that m —m ~ N(0,C/N). Let Eq be the set on which

- ro(C) t
—_ < LTl —

let E9 be the set on which

IC—cl <l (\/T \/7 )

and

0| < 1 _
115 1en (1v 22 v &
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and let Eg be the set on which

Il S \/ e (22 v 5 )

By Theorem 2.5.1, Proposition 2.2.1, and Lemma 2.5.2, the set £ = E1 N Ey N E3 has

probability at least 1 — ce™?, and it holds on this set that (2.32) is bounded above by

aerev ey - (2D oy (HOYE (7
702(0)\/%\/ #%) (2.35)

Further, on the set E we can bound (2.33) above by

(e eI aAl AR (T2 m=12) ly - Am (\/T2 O, [L v%).
(

2.36)

Finally, for (2.34), it follows from Lemma 2.5.4,
P e A
[ Al < AT SR

and so on the set £, we can show that (2.34) is bounded above by £. Putting the bounds

(2.35), (2.36) together we see that on E, it holds that

I = wlla S (ICI72 v ICIPYAATV AT AT VTP AV fly = Amll2)

§ ( m](\fc) y %v (TQJ(VC)>3/2V( )3/2 \/7 N)

+ p€. ]
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Proof of Theorem 2.2.3. Recall that from Theorem 2.5.8, for all ¢ > 1 with probability at

least 1 — ce™ L,

17— ull2 S AICIV2VICI) AALV A AT VTPV (ly — Amlls)
r2(C)  (ra(ONY? [ t\3? ) [t ro(C) t
( () V\/;V(N) V2O L\ J2ODL) s

For notational brevity, let

w = ([C]V2 VI UANV AT ATV TV iy — Amll),

3/2
and let B = W( TQJ(VC) V <T2Z(\,C)) / ) Then, for p =0 and p > 1,

o
E[IA - ull] = p /0 PP plls > @)da
B 00
<p / P Ldz 4 p / PIP(IA = plle > 2)de
0 B

o0 Na? Nz2/3  N3z2 N3/2g
< BP + / 2P~ Lexp [ — min , , : dx
"o P W27 W2/37 W2r2(C) W /r9(C)

e (3 5 () ()
() () o (557 )

27 \2 N3/2 N3/2
where the final equality follows by direct integration. It follows then that

11 r(C) r2(C)
VN N3/27 N3/27 N3/2

[EI7 - ull5]" S B + clp)»W max ( > S cp)B,

where the final inequality holds since 7o(C) > 1. The result for the ¢ = 1 case is identical
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and thus omitted. The constants in the statement of the result are then:

er = (ICIV2 VISP ANV AT VTPV ly — Amlla),

ey = AT 2. U

Theorem 2.5.9 (Posterior Covariance Approximation with Finite Ensemble —High Prob-
ability Bound). Consider the PO and SR ensemble Kalman updates given by (2.10) and
(2.12), respectively, leading to an estimate 5 of the posterior covariance ¥ defined in (2.2).
Set ¢ = 1 for the PO update and ¢ = O for the SR update. For any t > 1, it holds with

probability at least 1 — ce™t that

IZ = =1 < e v ISP AR v 1A AT v T =)

x ( 7’2](\[0) v (7’2](\[0))2v %v (%)2> + &,

where
&= (Al v IIAIPH AT v T HB el v rn e v el
ro(C)  (1r2(C)\? t t\3 ro(T) . ro(T) ro(CY\? [ t\?
X( v (2 V\/;V(N) V( 27“7) (”(QT) (%))

Proof. From Proposition 4 of Furrer and Bengtsson [2007], for the PO-ensemble Kalman

update we may write

while for the SR-ensemble Kalman update we have S = ‘5(6) We deal initially with the

% (C') term that is common to both expressions, and then proceed to show how the operator

norm of the additional O term can be controlled. From Lemma 2.5.6, the continuity of &
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immediately implies that

1%(C) =€) < IC = ¢ (1 + IAIPIT M I(ICI + ) + Il e 2Iele)
= (1A= + A= ien] 1€ - cinel

+ [T+ J4PIeten] ie - il
For any N € N and a > 0, let Zn(a) = \/%\/ +7- Let Eq be the set on which both
IC=CI SICI@n(r2(C)) v &N (1), and (IO SICI(1V By (ra(C)) V B (1)) .
Let E9 be the set on which
IT =TIl S T (2N (r2(T) vV Zn (1)),
and FEs3 the set on which
|G — G S (IC) VTN (2 (ra(C) V iy (r2(T)) vV Z (1)) -

Then, by Proposition 2.2.1 applied separately to F1 and Es, and Lemma 2.5.3 applied

to Es, the intersection E = E1 N Ey N E3 has probability at least 1 — ce . It follows that

68



on F:

IC = CIICI S ICI? (R (ra(C)) V iy (£)) (1V By (r2(C)) V R (1))
S ICIP (% (ra(C)) v Ry (8) V #3:5(C) v B o(1)) (2.37)
IF =TI S ICIPITH (2w (ra(T) v 2 (8)) (1V B 2(C) v RBiolt)) s (238)
|E 7 cIE) S e v Il (2:39)

x (LVZN(r2(C) VZN () (ZN(r2(C)) vV Zn(ra(T) V ZN (1)),

(2.40)

|G — 12 £ IC1PAle) v IT) (2.41)
x (1v 73 5(C) v 0 5(0)) (R (r2(C)) v By (r2(T)) v By (1))

(2.42)

Using (2.37), it follows that on FE,

IS =2l S dlef v ISP AR v IAIH AT v T—)2)
X (%N )V BN () V R 5(C) vt@%mz(t))
(

ICIVAICI®)AAN v AT v T )
ro(C)  [1r9(C)\? t t\?
x( 2N \/<2N)\/ NV<N)>

Next, for the PO-ensemble Kalman update, it follows by the triangle inequality that

101l < |l (C)(F - )2 T ()] (2.43)
+ (1 = (@) A ()] (2.44)
+ |l (@)@ (1= AT T, (2.45)

and so we may proceed by bounding each of the three terms (2.43), (2.44), and (2.45)
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separately. For (2.43), invoking first the bound on .# from Lemma 2.5.4 as well as the

inequality in (2.38), it holds on E that

|2 (O)T =T)2 (O] < |#(C)||IT -
< [AIPITHPICIPIT - T

S JAPID Y RICIPIT (22 (ra(T) v 20 (8)) (1Y % 5(C) v 75 (1)

Both (2.44) and (2.45) are equal in operator norm, and so we consider only (2.44). We
use Lemma 2.5.4 and Lemma 2.5.2, along with the inequalities (2.40) and (2.42) to show

that on F,

(1 = 2O A)C 1 () < |2 ()l = 2 (YAl C ™|
< @) (1+ 12 @Al 1C ™)
< A= En (1+ JaiPie=tien) 1e
S (AT AT v T B IE) + 1121 ™)
S QAT IABATH v T B At v T AC) v IC1?)
x (1V Zn(ra(C)) v B o(C) v BN (1) V (1))

X (ZN(r2(C)) Vv Zn(r2(L) V ZN (1)) -
Some algebra shows that

(1V N (12(C)) V # 5(C) V AN () V R 5(1)) (B (ra(C)) V Ry (72(T)) V 2 (1))

— < W](VC) Y, (”](VC))?) vV %v (%)3 V Zn (ra(T)) (1 Vv <T2](VC))2 Vv (%)2» :
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and so
101 < ALV IAIBH AT v T2 el v act v Iie)?)
3 3 2 2
(VP (A0 o 8 v (o (232 (£)))

Proof of Theorem 2.2.5. The proof follows similarly to that of Theorem 2.2.3 and is therefore

omitted. The constants in the statement of the result are:

cr = (ICIVICIP) AN v AN AT v e ),

co = ([AILV IAIPYAT VTR ACT VITIDACH v IC1P)- 0

2.5.4  Multi-Step Analysis of the Square Root Ensemble Kalman Filter

Here we provide a description of the multi-step EnKF algorithm discussed in Remark 2.2.7.
As described there, we focus on the square root EnKF studied in Kwiatkowski and Mandel
[2015]. Given an initial ensemble {U,go) nNzl, the algorithm iterates the steps of the square
root ensemble update (2.12) with new observations y(t) and with possibly varying model
matrices A(). We assume that the noise distribution does not change over time, though
this assumption can easily be relaxed at the expense of more cumbersome notation. We
summarize both the Kalman filter and the square root EnKF in Table 2.1. In this filtering
set-up, M) € R4 is the dynamics map and A®) € RFX? is the observation map at time
t > 1. As detailed in Sanz-Alonso et al. [2023a], such a filtering set-up leads to a sequence
of inverse problems of the form (2.4), where the forward model is given by the observation
map, and the prior forecast distribution blends the dynamics map with previous probabilistic
estimates. Throughout this subsection, we write || — ,u(t)||p = [EH[L(t) - pJ(t)Hg] Hp and
IS0 — 50O, = [E150 - 5O ] 7.

We will use two auxiliary lemmas to prove the main result of this subsection, Corol-
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Kalman filter Square root EnKF

put | {y®, AO MOV 1 40 50 | {0 A0 p OV p 0N R A0 500))

Forecast | m(t) — M(t)u(t—l) mt) = % 27],2]:1 uq(zt)
Ct) = MOt (T 0O = LN @) - m®) W) — m®)T

Analysis | 10 — g (m® c®:; 4O y® 1y | O = LN 0

— N Zun=1"%n
2t = ¢(Cc; 40,1) 50 = 7L N @) - aO) ) - a®)T
Output | {u(®), E(t)}z;l {n® £ I,

Table 2.1: Comparison of the Kalman filter and square root EnKF considered in Kwiatkowski
and Mandel [2015]. The forecast and analysis steps are to be repeated for ¢t = 1,...,T
iterations.

lary 2.5.12 below.

Lemma 2.5.10 (Continuity and Boundedness of Covariance-Update Operator in LP [Kwiatkowski
and Mandel, 2015, Corollary 4.8|). Let € be the covariance-update operator defined in (2.7).
Let Q) € Sﬁlr be a random matriz and P € Si be a deterministic matriz, I' € S_If_Jr, A e Rkxd

Yy € RE, and m,m’ € R4, Then, for any 1 < p < oo, the following holds:

1€(Q) = €(P)llp < 1Q = Pllp(1 + AP~ 1I1PI)

+ (AT + AT P PIDIQN2plQ = Pll2p-

Lemma 2.5.11 (Continuity and Boundedness of Mean-Update Operator in LP [Kwiatkowski
and Mandel, 2015, Corollary 4.10]). Let .4 be the mean-update operator defined in (2.6).

Let P,Q € Sd, I' e S_]‘;Jr, A€ RkXd, Yy € RE and m,m’ € RY. Assume that @ and m are
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random, and that P and m' are deterministic. The following holds:

[ (m, Q) — .t (!, P)||, < [|m — ||, + IAIPIT M I Qll2p [ — m |,

+1Q = Pl AT+ [APIT P [y — And|| -

The next result shows how our one-step bounds in Theorems 2.2.3 and 2.2.5 can be
extended to provide non-asymptotic bounds on the performance of the multi-step square

root EnKF. The proof follows a similar argument to the proof of [Kwiatkowski and Mandel,

2015, Theorem 6.1].

Corollary 2.5.12. Consider the square root EnKF defined in Table 2.1. Suppose that N 2

7“2(2(0)). Then, for anyt>1 and p > 1,

0
129 — 1 ®lp < rﬁ( D s (MO, A, 20D, [y — AOm O, -1,
~ »(0) _ _
15O — 20, <, 1/ ZEZ s oqar® ), a0 ) s ey,

N

Proof. The proof follows by strong induction on the predicate in the statement of the the-
orem. To that end, the base case (¢t = 1) holds by Theorems 2.2.3 and 2.2.5, which state

that, for any p > 1,

ro(2(0)
N

18 — Wl <5 < eI, AL, =0, ™ = AOmDY, 1),

~ »(0) _
150 - sy, <, 7“2<N LoD, AD, = O ), -1,

Suppose now that the claim holds for [ = 2,...,t — 1. Then, for [ = t, we have by
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Lemma 2.5.10

IS8 — =), = |2 CY) -z W),
< |CW — O, (1 + | AD|Z T c®])

+ (IAD P+ 1 AD T2 ICONICD 9 |CH — CBly,.  (2.46)

By the definition of é(t), o together with the inductive hypothesis, it follows that, for

p € {p,2p},

|6 — Oy = MO EY — =Dy @ar) T,

< |MOP2EED — =),

»(0) _ 1 e
< 1002y 22 ), A 2D 3 )

»(0) - -
= %><c({HM(”n,||A<”||,||z<l DIz I

Further, we have

1IC®|gp < |CD — O |9, + |CD|

ro(2(0))

So \| IO A D ) + @),

Plugging these two results into (2.46) gives

- »(0) _ _
IS0 — 50, <5\ 2 s o ®), 140, 15D, ).
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Similarly, by Lemma 2.5.11 we have

17D =y O, = L@, Oy — . (m® cD),,
< [[@® —m® |, + |AD T ICO g lD — m B,
+ (|G — O AD =Y (1 + | AD P e @)y — AB 7RO,

(2.47)

By the definition of ﬁ”a(t),m(t) together with the inductive hypothesis, we have, for p €

{p, 2p},

[ = m® ]y = IO @D = uED),

< MOt = =Dy,

»(0) _ 1
< 10Oy | ZE s qar ) a0 0Dy, [y - AOmO 3] o1y
% (0) _ _
=\ 2 e O AD 2Dy — AQm O ),

N

Plugging this bound and the one for Ha(t)ng derived previously in the proof into (2.47)

yields

R »(0) B _
180Dy < 2D el (1O} 4O, =D, O - AOmO 3y, Jr ). O

2.6 Proofs: Section 2.3

This appendix contains the proofs of all the theorems in Section 2.3. Results on covariance
estimation are in Subsection 2.6.1 and our main results on ensemble Kalman updates are in

Subsection 2.6.2.
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2.6.1 Covariance Estimation

Here we establish Theorems 2.3.1 and 2.3.3. We first collect some required technical results
in Subsection 2.6.1. Next we study covariance and cross-covariance estimation under soft

sparsity in Subsections 2.6.1 and 2.6.1, respectively.

Background and Preliminaries

Definition 2.6.1 (|Talagrand, 2014, Definition 2.2.17]). Given a set T, an admissible se-
quence of partitions of T is an increasing sequence (Ay) of partitions of T such that card(Ag) =

1 and card(Ay,) < 22" forn > 1.

The notion of an admissible sequence of partitions allows us to define the following notion

of complexity of a set T', often referred to as generic complexity.

Definition 2.6.2 ([Talagrand, 2014, Definition 2.2.19|). Let (7,d) be a possibly infinite

metric space, and define

v2(T',d) = inf sup Z 2”/2Diam(An(t)),
teT n>0

where Ap(t) denotes the unique element of the partition to which t belongs, and the infimum

is taken over all admissible sequences of partitions.

The following theorem is known as the Majorizing Measure Theorem and provides upper

and lower bounds for centered Gaussian processes in terms of the generic complexity.

Theorem 2.6.3 (|Talagrand, 2014, Theorem 2.4.1|). Let X¢, t € T be a centered Gaussian

process which induces a metric dy : T x T — [0, 00] defined by
d2(s,t) =E [(XS - Xt)ﬂ .
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Then there exists an absolute constant L > 0 such that

1
—7(T,dx) <E {SUP Xi

7 < Lyo(T,dx).
teT

We will be primarily interested in the case that T = F is some function class on the
probability space (X, A, P), and with d being the metric induced either by || - [|1, or || - [[,-
We denote these spaces by (F, Lg) and (F,19) respectively throughout this section. The
next result is an exponential generic chaining bound, which was introduced in [Dirksen, 2015,
Corollary 5.7| and described in [Koltchinskii and Lounici, 2017, Theorem 8|. We present it

as 1t was described in the latter reference.

Theorem 2.6.4 (|Koltchinskii and Lounici, 2017, Theorem 8|). Let (X, A, P) be a probability
space and consider the random sample X, X1,..., Xy it d P. Let F be a class of measurable
functions on (X, A). There exists a universal constant ¢ > 0 such that, for all t > 1, it holds

with probability at least 1 — e~ ! that

1 N
sup |+ 3 F2(X) — EIF2(X))

feF n=1

72(F, 2) |, 13(F. ) t
<c| sup V V sup V sup
(fefufuw N Y sl Y sl )

Lemma 2.6.5 (Expectation Bound from Probability Bound, |[Talagrand, 2014, Lemma

2.2.3]). Let Y >0 be a random variable satisfying

for certain numbers a > 2 and b > 0. Then there is a universal constant ¢ such that

Y] < ¢by/loga.
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Finally, we recall the following dimension-free bound for the maxima of sub-Gaussian

random variables.
Lemma 2.6.6 (Dimension-Free Sub-Gaussian Maxima, [Van Handel, 2017, Lemma 2.4]).
Let X1,... X be not necessarily independent sub-Gaussian random variables with

P(X, >x) < ce_xQ/Cgle, forallz >0, 1<n<N\,

< op. Then, for any t > 1, it holds with

Y

where on, > 0 is given, or alternatively || Xnl|y,

probability at least 1 — ce= that
Xn SVt 1 1
max Xn S \/_%%U(n) og(n +1),
where 0(1) 2 0(2) = ---O(N) 1s the decreasing rearrangement of o1,...,0x. Further

E Xn| S 1 +1).
L{Ln<a]>\§ n} Trln<a]>\§ o(n)V1og(n +1)

Proof. The proof of the upper bound is based on the proof of Proposition 2.4.16 in Talagrand
[2014]. By permutation invariance, we can assume without loss of generality that o1 > o9 >

- > on. Then

) < 3P (0 2 ool )

Xn
P [ max >t <
n<N opy/log(n + 1) —
N
S Ze <——log n—|—1)>
n=1
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For t > 2¢, the final expression in the above display is finite, and we may write

g: exp (-é log(n + 1>> _ Nf exp (—E 10g(n)>

o0
< exp <_£ log(Q)) +/2 a7 Vedy < ce Ve

Therefore, for any t > 2¢, it holds with probability at least 1 — ce~t/¢ that
Xn SVt 1 1).
TanSaﬁ n S \/_71;n§aj>\§ o(n)Vlog(n +1)
This implies that, for any ¢ > 1, it holds with probability at least 1 — ce~(EV2)/c that

max X, < (VtV V2c) max omyViog(n+1) < \/z_fm<aj}\% o(n)V1og(n +1).

n<N

Since 1 — ce~(tV20)/e > 1 — ce=t/¢ it holds that, for any ¢ > 1, with probability at least

1 —cet/c

Xn SVt 1 1).
max nN\/_%%U(n)v og(n+1)

It follows by Lemma 2.6.5 that

Xn
E [ max <cgc,
[n<N ony/log(n+1)|
which in turn implies
E Xl < 1 1) = 1 1). ]
{glgaf\% n] S max ony/log(n + 1) max o) og(n+1)
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Covariance Estimation under Soft Sparsity

This subsection contains the proof of Theorem 2.3.1. We follow the approach in [Koltchinskii
and Lounici, 2017, Theorem 4], but we restrict our attention to finite dimensional spaces.
Our proof will rely on the following max-norm covariance estimation bound, which may be

of independent interest.

Theorem 2.6.7 (Covariance Estimation with Sample Covariance —Max-Norm Bound).
Let Xq,..., XN be d-dimensional i.i.d. sub-Gaussian random vectors with E[X1] = ,uX and
var(X1) = X, Let X = (N — 1)1 ZnN:1(Xn — 1) (X — )T Then there exists a

constant ¢ such that, for all t > 1, it holds with probability at least 1 — ce ™ that

SX  vX X reo(3%) [t treo(SY)
IS5 = 52X e < ) [ /2 vy o v v TR )

where

max; Eé) log(j +1)

X
)

TOO(EX) =

Proof. The proof of this result is based on the proof of the upper bound of Theorem 4 of
Koltchinskii and Lounici [2017], in conjunction with Theorem 2.6.4. We deal with the case
,uX = ( first. To this end, let Z7,..., Z be d-dimensional i.i.d. sub-Gaussian random vec-
tors with zero mean and var[Z1] = X . We denote the distribution of Z; by P, and note that
{1y s lI-llsys and |||, are defined implicitly with respect to P. Let 20 = N~ ™2 7, 7T
We rewrite the expectation of interest as a squared empirical process term over an appropri-

ate class of functions. For j > 1 we denote the j-th canonical vector (the vector with 1 in
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the j-th index and zero otherwise) by e;. Then, we note that

120 = 5% e = sup (e, (50 = 5%)e;)
2¥)

e +ei o X\ 6 T¢€j € — € 0 X\ 6 — €
= —_— X -x)— ) —( —, (X - ) ——
S@ung 5 )= 5 )=

< 2 sup ‘<(§]0 - ZX)u,u>’ )
ueld

where U = {u c Ry = j:%(ei + ej), 1 <i,5 <d } Define the set of functions

Fu = {{-,u) : v € U}, and note that, for any f € Fy, —f € Fyy and E[f(Z1)] = 0. Tt

then follows by Theorem 2.6.4 that for the same universal constant ¢ in the statement of the

theorem,

2 sup ’<(§JO — EX)u,u>‘ =2su
uel

fefu
72(}%@/}2) V3(Fuii1b2) [t
< 2c sup V V' su p \/ sup

Using the equivalence of the 19 and L9 norms for linear functionals, we have

sup || flly, S sup [|f]lz, = max \/E[(Z1,u)?] = max\/(u, 2¥u)
feFy Y2 feFy 2 uel [ ] uel

1 1
= 5 max \/<ei +e;, XX (e; tej)) = 5 A \/(ei, SXe) + (e, 2Xej) +2(e;, X Xe;)

_ X X X X
_—max\/z + 55 & 23 <\/Z(1).

To control the generic complexity yo(F7,¥s), let Y ~ N (O,EX ) be a d-dimensional
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Gaussian vector, with induced metric

dY(uav) = \/E [(<Ya u) - <Y7 v))z} = ||<7u> - <'7'U>||L2’ u,v €U,

Using again the equivalence of the 19 and L9 norms for linear functionals, we have that

Yo (Fusb2) S vo(Fys Lo) = o (U dy).

It follows then by Theorem 2.6.3 that

2 (U;dy) S E | sup (Y, w}
L uceld

— E |max <Y, i%(ei + ej)>]

L %]

<E max‘(Y,eﬁ”
L J

< X j
< m?x \/E(j) log(j + 1),

where the final inequality follows by Lemma 2.6.6. We have shown that with probability at

least 1 — e~ !

X log(j + 1) X log(j + 1)
S0 X < X () (7) x [t  ¢x 1t
1Y — % |max S 2(1) mjax N v mjax N v 2(1) N Y 2(1) N
WX reo(3%)  roo(EY) t ot
= 2(1) N Y N Y N Y ~ | (2.48)

In the un-centered case, taking X,, = Z,, + MX , we have SX =50_ZZT and it follows that

HiX - ZXHmax < Hio - EXHmax + HZZT”maX-
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By Lemma 2.6.6, with probability at least 1 — ce™?

X TOO(EX).

5 (2.49)

__ _ ¢ ,
122 s < |Z o < 57 masx 2, log(i + 1) = ¢

Denote the set on which (2.48) occurs by FEp, and the set on which (2.49) occurs by FEjs.

Then the intersection E = Eq N Ey has probability at least 1 — ce ™, and it holds on E that

X X X
SX X < X roo(34) | Too(E7) t ot troo(E7)
p> S |max S 2(1) N \% N \% N Vv N \% N

L oX [ 700 (2X) \/7 t troo(ZX)

Lemma 2.6.8. Let Xq,..., Xy be d-dimensional i.i.d. sub-Gaussian random vectors with
E[X1] = p¥ and var[X;] =X, Let X = (N — 1)1 27]2[21()(71 — X)X = )T, Then,

for any p > 1,

= 1/p r (EX) r (ZX)
X - X p < X o0 o0
E[[X )Y ”max} Sp E(1) N \ N

X X
Proof. To ease notation, let B = Eg) ( roo% ) V Toog\? )), then using that for positive
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W, E =p [y  wl™ IP(W > w) dw gives

Lp P plpeX s X
[E”Z E||max} =P 0 2PTP(|2 — X7 || max > ) dx

B 00
Sp/o xp_ldx—i—/B P7IP(IEX — 28 ||jpax > z) da

00 Nz?2 Nz Nz
< BP +p/ :cp_lexp — min , , dx
0 (Zg))2 Eﬁ) ’”OO(EX)Eg)
X 12\ P/2 X \P XyvX \?
rp/2) ( i) ) roo(X7)2)
_pp _b R )
= BY 4+ pmax 5 N ,T(p) N ,I'(p) N )

where the last line follows by direct integration. We therefore have

X X Xy X
1/p 1) 21y reo(X7)XG
EISY — ¥ ] S B+ clp)max | T S
x [ [ree=X) | ree(3Y)
< c(p)Z(l) N \% N )
where the final inequality holds due to the fact that roo(3%) > 1. O

Theorem 2.6.9 (Covariance Estimation with Localized Sample Covariance —Operator-Norm
Bound). Let X1q,..., XN be d-dimensional i.i.d. sub-Gaussian random vectors with E[X1] =
X and var{X1] = £X. Further, assume that ¥X € Uy(q, Ry) for some ¢ € [0,1) and

Ry > 0. Let sX = (N—-1)"1 ZfLﬂXn — X)X, —X)T and, for anyt > 1, set

Too(2X) ot tree(BX)
= X o\ J ARV
PN=2\\ TN VN YNY TN

and let EX be the localized sample covariance estimator. There exists a constant ¢ > 0 such
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that, with probability at least 1 — ce™, it holds that
X X 1-
1255 — =2 S Rapp
Proof. The localized sample covariance matrix has elements
1<4,5<d.

SX . _ex
Zpnli = %i 1|2X|>p

By Theorem 2.6.7, it holds with probability at least 1 — ce™? that
HEX - EX”max S PN

The remainder of the analysis is carried out conditional on this event, following the approach
taken in [Wainwright, 2019, Theorem 6.27]. Define the set of indices of the i-th row of X

that exceed pp/2 by

Ton/2) = (j € (1, d)
We then have

=X =S < 12 = 25 oo

d
— zX »X 1
i g4 IT1EE 1Zpn
j=1
— zX 2X1 ZX 2X1
ilod | 2 US| T 20 ‘ TRl AR
J€Li(pN/2) J¢Zi(pNn/2)

85

Y



where igg is element (7, j) of 5X. For j € Z;(pn/2), it holds that |Zg§| > pn/2 so that

X X X
>, - XlsXsen| S > ‘ 5 - 5 i LSX 2 pn
J€Li(pn/2) J€ZLi(pn/2)
X X $X X
D D R e D IYSX 2 pn
J€ZLi(pn/2)
PN >
< 2N
= Z ( 5 + PN
J€Zi(pN/2)
3PN
= Zilen /2)1 =5~
where we have used the fact that
X X R X R <
TR e ‘ O0X Ligxispy T 205 X Lgx i<y S PN
Further, since
q
Rq>212 17> Tlon/2)1 (5F)"
it follows that |Z;(pn/2)| < qu]_\,qRq, and so
S SE g, | < Ton /2P < Cam0, 1R
IHEX 2o PN 2° PN T
J€Li(pN/2)
For j ¢ Z;(pn), then |E£§| < pn/2 and so
51 < 5 - 281+ 1251 < 18Y = 28 fnax + 125 < ZE+ HL = oy,

2

This implies that E 1|§]X|>
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holds that

=X
X X X, _ PN ‘ [¥]
> = T EGLEX sy | S >, Im=5 Y
J¢Zi(pN/2) J¢Li(pN/2) i¢Ti(pn/2) 2
PN |ZZ)§| ! 1—q
< 7 Z PN/2 < PN RQ'
J¢Zi(pn/2)
Combining these two results gives
X X 1-
=X - SX |l < 4p47R,. =
Proof of Theorem 2.3.1. The result follows immediately by Theorem 2.6.9. O

Cross-Covariance Estimation under Soft Sparsity

This subsection contains the proof of Theorem 2.3.3. The presentation is parallel to that in
Subsection 2.6.1. We will use a max-norm cross-covariance estimation bound, analogous to
Theorem 2.6.7. The proof relies on a high probability bound for product function classes
that was shown in [Mendelson, 2016, Theorem 1.13]. We present here a simplified version of

that more general statement that suffices for our purposes.

Theorem 2.6.10. Let (X, A, P) be a probability space and consider the random sample
X, X1,..., XN irfod P. Let F,G be two classes of measurable functions on (X,.A) such that
0€ F and 0 € G. There exist positive universal constants cy,co,c3 such that, for all t > 1,

it holds with probability at least 1 — c1e~ 2t that

N
1
|y 3T CGla() ~ B0
t t i 2)72(9, ¥
<c3[ 5V N) (;ggnfnwm(g,wg)vzggngnmm,m))v”( 212G 02))
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Proof. For notational brevity, throughout this proof we write vo(F) instead of ~o(F,19)
and dy, (F) instead of sup seF| f|| and similarly for the class G. The result follows by an
application of [Mendelson, 2016, Theorem 1.13] and the ensuing remark, which deals with the

case F = G, but is easily extended to the general case considered here. Together they imply

BE) 3G ))

d2

that, for any u > 1, it holds with probability at least 1 — 2 exp (—cu2 ( =
P2 (%) d¢2 )

that for any f € F,g € G
1 N U
v 7;1 F(Xn)g(Xn) —E[f(X)g9(X)]| S N 2F)2(G) + Wi (72(F)dysy (G) + 72(G)dy, (F)) -

(2.50)

We seek to rewrite (2.50) so that all problem specific terms appear only in the upper bound.

To this end, let

2 2
_ 2 (2 19 - dyo (F)  dyy(9)
- ( (%) " d?@@)) — Vi ( Y2(F) Y 72(G) )

: : BF) , 3G)
and note that since v > 1, it must hold that ¢t > | -2 N -2 . Therefore, for any
de (%) dwz(g)

BF) , BG) : 9 —ct : :
t> | =2 A =2 , we have that with probability at least 1 —2e~", the right-hand side
dl/)g (%) d¢2 )

of (2.50) becomes

2(F) ' 220)

N

Vi <d¢2(f) Y dyy (9)

VN \ 72(F)  7(9)

d2 (F) d2 (¢
t ( B d,9) )(72(]:)%2(9)+72(g)dw2(f))‘

) Y2(F)2(G) +

The above implies that, for any ¢ > 1, it holds with probability at least

7%(-?) 7%<g) —ct
1—2exp (—c (t\/ (diz(F)AdiZ(Q) >1—2e 7
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I BE) 3O\ (EF), 40
N (t\/ (dqz/a(f) A diz(g) (’Y%(JT"> \ f)/%(g) 72(]:)'72(g) (2'51)

1 2(F) 16 Ay (F) | dysy (9)
+\/N <\/f\/ ( : )) <72(f) Y Y2(G) ) (72(F)dy2(9) +92(G)dy, (7)) -

(2.52)

Straightforward calculations then show that the first of the two terms, (2.51), is bounded

above by

45, (F)e(9) ¢ di (G)a(F) v 2F)2(9)
N wF N %@ N

and (2.52) is similarly bounded above by

£ d7, (F)12(9G) £ d7,(G9)12(F)  dy,(G)a(F)  dy,(F)(9)
\@ 72(F) V\fﬁ =0  JN . IN

Note then that since 0 € F,

dyy (F) = ]§1€J§||f||¢2 < sup |f1 = fally, = diamy, (F) < y(F),

17f2€

where the final equality holds since y2(F) = infsuprer > 52 on/ 2diamw2(An( f)), and

- d7, (F)12(9)
for n = 0, Ag = F. Similarly, dy,(G) < 72(G), and so —om S dyy (F)72(G) and
d2_(G)a(F
% < dy,, (G)72(F) which along with the fact that ¢ > 1 completes the proof.  [J

Theorem 2.6.11 (Cross-Covariance Estimation —Max-Norm Bound). Let Xi,..., X be
d-dimensional i.i.d. sub-Gaussian random vectors with E[X1] = pX and var{X] = £X.

Let Y1,..., YN be k-dimensional i.i.d. sub-Gaussian random vectors with E[Y7] = ,uY and

varlYy] = Y. Define XY = E[(X — ) (Y — uY)T] and consider the cross-covariance
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estimator

N
~ 1 —
n=1

Then there exist positive universal constants c1,co such that, for all t > 1, it holds with

probability at least 1 — cje~ 2t that

||§XY_EXY||maX
Too (DX roo (XY
<=8 vl (%\/ %) (\/TOO(EX)\/\/TOO(EY))\/\/ Ev >\/ Ev )

Proof. Assume first that /LX = ,uY = 0. Let Zy,...,ZyN be d-dimensional i.i.d. sub-

Gaussian random vectors with zero mean and var[Z] = X and similarly let V4,...,Vy
be k-dimensional i.i.d. sub-Gaussian random vectors with zero mean and var[Vj] = %Y.
Further, let W, = [Z,],V,]]T for n =1,..., N. We denote the distribution of Wy by P and
note that |-||,, and ||-||z, are defined implicitly with respect to P throughout this proof.

Define $9 = N1 ZnNzl ZnV,|. Define the dilation operator: # : R4*% — R(d+k)x (d+k) 1y

O A
H(A) = :
AT 0O
see for example [Tropp, 2015, Section 2.1.16], and note that [|A||max = ||H(A)||max. Let B™

be the space of standard basis vectors in m dimensions, i.e. any b € B"" is an m-dimensional

vector with 1 in a single coordinate and 0 otherwise. Then, for e;,¢; € Bi+k , we have

90



S0 XY _ S0y XY _ S0y XY\,
I0 = Y o = IHE) = HOEY s = | _max ((HE0) = HEY))er )

<2sup ‘<(”H(§0) . ’H(EXY))u,u>

where
1
U= {u e RHF .y = ii(ei +e;) and ¢;,e; € B‘Hk}.

Writing u = [ulT,uzT]T where u; € R% and us € RF, we have

- 2 & 2 &
(HE ) = < 3 (1, Za) . Va) =+ D fullWo),
n=1 n=1

where fu(Wi) = (4 Wh, u1) (@ Wy, us) and where 2/ = [I7, Ogxi] € R*IHE) and ot =
Orxd, 1i] € RF*(d+k) are the relevant selection matrices so that Wy, = Zy, and bWy, =

V. We define the class of functions
Fig = { 1) = (et un) et =[] 03 )T €,
It is clear then that F;; C Fy - Fa, where

1
U = {U1 eR?:uy = t5(e; £ ej) and ej,¢5 € Bd}, F1={f() = (2, u1) w €U},

1
Uy = {UQ eRM 1 uy = +5(e; £ ej) and ej,¢5 € Bk}, Fo ={f(:) = (S, ug) : ug € Us},

and Fp - Fo = {f() = f1(-)fo(:) : f1 € F1, f2 € fQ}. We can then apply the product em-

pirical process concentration bound of Theorem 2.6.10, which implies that, with probability
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—cot
1 —cre 2t

sup [( (H(E) = HOX M usu)| = sup %ﬁ_fjmwﬂ)—E[Wn)}

S (% M \/%) (dyy (F1)72(F2) V dysy (F2)72(F1)) V W, (2.53)

where we use the notational shorthand vo(F1) = v2(F1,%2) and dy, (F1) = sup e 7, | £l
and similarly for /3. Following a similar approach to the one taken in the proof of Theo-

rem 2.6.7, it follows by the equivalence of 19 and L9 norms for linear functionals that

dyy (F1) = sup [ f1llypy S Sup ||f1||L2 = nax (u1, SXuy) \/ZX

fieF

and similarly that dwz Fa) < /X7, . Further,

v2(F1) = v2(F1,¢2) S v2(F1, Lo) = y2(Ur,dx),

where

)= VE[(oxw) — (ox. o), gx ~N(0,5%).

By Theorem 2.6.3 and Lemma 2.6.6,

yo(U,dx) SE [ sup (gx,u1)
u €U

1
—E 4+ (e; + e
[3}2§<9X’ 2<€z ey)>}

< N < X ' .
<E [I}gg <9X>€z>} S maxy /3 log(i +1)
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Similarly, y2(F2) < max;<y, \/ZE) log(j + 1). In summary, we have that

. / t
S0y &Y <= — Y ] 1) Y $X log(i + 1
I lmax < (N v N) < rjngl}; \/ og(j+1)V (1) rznjéi (i) og(i+1)

max; < 25{) log(i + 1) maxj<k \/E Jlog(j+1)
\%

< (5E) (=5 JT s vy T, [T
<X vl (%v %) <\/roo(zX>v\/roo<zY>>v\/T”%X)\/TOO%Y)

In the un-centered case, take X,, = Z, + ,uX and Y, =V, + ,uY forn =1,..., N, then

SXY =50 _XVT, and so
15 = 25 e < 150 = 25 anax + 1 XY fanae

The first term is controlled by appealing to the result in the centered case. For the second

term, we note that by Lemma 2.6.6

XY e < 1% a7 e S 57 ms /5 flog(i -+ 1) max /2 og(j + 1)

Y rao(2XY) [2Y r (2Y
<\/(l)r<>\/mr<>‘ .
N N

Theorem 2.6.12 (Cross-Covariance Estimation with Localized Sample Cross-Covariance
—Operator-Norm bound). Let Xi,..., Xy be d-dimensional i.i.d. sub-Gaussian random
vectors with E[X1] = pX and var| X1] = SX. Let Yy,...,Yy be k-dimensional i.i.d. sub-

Gaussian random vectors with E[Y1] = p¥ and var[Y;] = Y. Define £XY = E[(X —
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XY — ,uY)T} and consider the estimator

Assume that ©XY ¢ Uq (g1, Rgy) and »YX ¢ Uy a(q2, Rgy) where q1,q2 € [0,1) and

Ry, Rgy are positive constants. For anyt > 1, set

"o X Too Y
px = (T V () <%V %) (\/TOO@X)V\/%(EYOV\/ (]\?)\/ o)

and let ig(NY be the localized sample cross-covariance estimator. There exist positive universal

constants ¢, co such that, with probability at least 1 — cje™ 2,

S 1— 1—
HZgCNY - EXYH S qupN Y RQQPN 2,

Proof of Theorem 2.6.12. Let E denote the event on which [|[SXY — 9&Y .= |2YX -
ZYXHmaX < pn. By Theorem 2.6.11, E holds with probability at least 1 — ¢je~ 2. Con-

ditional on E, and following an analysis identical to the one in the proof of Theorem 2.6.9

with EXY(EYX ) and X Y(EYX ) in place of SX and X respectively, it follows that
XY XY 1-
HEpN - X HOOSRQ1PN q17
and

A~ 1_
HE}K - ZYXHOO S Ry =,

~Y
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The result then follows by noting that

SXY XY SXY _ XY SXY XY
1Eoy =X I =1HEy -2 <HE)y =577 )l

= S 1—-
= |ZXY - =YY o v IEVX — YY) o S Ryipy PV Rgoy 2,

where H is the dilation operator defined in the proof of Theorem 2.6.11. O

Proof of Theorem 2.3.3. The proof follows immediately from Theorem 2.6.12: since uq,...,up
are i.i.d. Gaussian they are sub-Gaussian. Moreover, since G is Lipschitz, by [Vershynin,
2018, Theorem 5.2.2], ||G(u1) — E[Q(ul)]Hw2 < HQHLipHCHl/z < oo, and so G(uy),...,G(upn)

are 1.i.d. sub-Gaussian random vectors. O

Lemma 2.6.13 (Stein’s Lemma Stein [1972]). Let u ~ N(m,C) be a d-dimensional Gaus-
sian vector. Let h : RT — R such that Ojh = Oh(u)/0u;j exists almost everywhere and
E[|0jh(u)]] < oo, j = ,d. Then

C’ov uj, Z GIE[Oih(u

Lemma 2.6.14 (Soft-Sparsity of Cross-Covariance —Nonlinear Forward Map). Let u be a d-
dimensional Gaussian random vector with E[u] = m and var{u] = C' € %4(q,c). Consider the
function G : RY — RF with coordinate functions Gy, ..., Gp. Assume that for eachi=1,...,d
and j =1,... .k, G;: RY 5 R for j=1,....k, such that 0;G; = 0Gj(u)/0u; erists almost
everywhere, and E[|0;G;|] < oo. Let DG € REXd denote the Jacobian of G, and assume that
E[(DG)T] € Uq.(q,a) for some q € [0,1) and a > 0. Then,

c' e %dk:(% GCHE[DQ]HmaXHCHmaX)
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Proof. By Stein’s Lemma (Lemma 2.6.13), the i-th row sum of C'“P is given by
d
l:

k
ZC“p >3 G, ] - 33 El0g, (0]

j=1l=1 1

E[D C; ~ El09,(u
g ||maxz il Z ||E DQ ||max
< |[E[DG]| |maXZCleEalgj

< a[[E[DG] HmaXZCzl

< aCHE[Dg]HmaXHCHmaX,

where the first inequality holds since ¢ € [0,1) and E[0;G;(u)] < |[E[DG]||max- O

Lemma 2.6.15 (Product of Two Soft-Sparse Matrices). Fiz g € [0,1) and let S € %y(q, s)
and assume S' = S. Let B € U ,q(q,b). Then BS € %, d(q,bsHBHmaXHSHmaX)

Proof. The (i, j)-th element of BS is given by [BS];; = Z?:l B;; 5, and so the sum of the

i-th row of BS satisfies

d d d d d d
SBSYy = 323" Basty = - B Y Sty = 1Bl Sl 3 77 > N
j=1 1=1 e

j=1 j=11=1 =1 max =1

d d
B q Sl'
< [1Blmax]S lmax (—” ) > ( ’ ) < |1Bllad 1S makbs,
2 \Blmax) 2 \TSTmax

where the first inequality holds since ¢ € [0,1), and the second follows by the symmetry of
S. O

Lemma 2.6.16 (Product of Three Soft-Sparse Matrices). Fiz g € [0,1) and let S € %y(q, s)
with ST = S. Let B € %, d(g,b1) and B' e %d 1(q,b2), that is, B is both row and column

sparse. Then BSBT € U, 4(¢, bibas| Bloiax VS| had).
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Proof. The (i, j)-th element of BSB' is given by

d d d d
(BSB'Jij = Y _[BSlimBuj = Y [BSlimBjm =Y | D_ BitSim | Bim-
Therefore, the sum of the i-th row of BSB' satisfies
k kK d d d d k
T
2_BSB ij=3_ > > BuSmBim = 3 > BiSim )_ Bjm
j=1 j=1m=11=1 m=1[=1 j=1

d d
1_
< || B||maxb2 Z ZB 1St < brbos|| Bl 2 V1 S|l

where the final inequality follows by Lemma 2.6.15. O

Lemma 2.6.17 (Sample Covariance Deviation). Let Xi,..., Xy be d-dimensional i.i.d.
sub-Gaussian random vectors with E[X1] = pX and var{X7] = XX, Let i% = (N —

1)_1 e (Xn — MX)(Xn - ,UX)T' Then

n=1

oy o 1 14 1 N —1)2 - =
PO 3 NXNXN NEN = NQXNX]T, - ((T) ~ 1) XXy g
N -1 T - T
— (W) (XNXN—I ‘|‘ XN—lXN) 5
where f](])\, = N1 ZnNzl Xn X,

Proof. We work with the biased sample covariance estimator % S (X — XN)(Xn —

X N)T, which is equivalent to the unbiased covariance estimator up to constants. Note then

that
1 N
ax -
)y ANZ:I(XR—XN)(XH ZXn — XNXAL =% - XnXL
n=
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We now seek to control the difference f]g\,( — ifv(_r To that end, note that

o 1 N—1_ 1 N—1_ T
XNX% = (NXN+ TXN_1> (NXN+ TXN_l)

1 - (N-1\%’_ _+ N-—1 — _ -

and so

. 1 N —1)\? - -
XNXN— Xy Xy = mXNXJE + ((T) -~ 1) XyaXh g

N-1 *T . ¥ T
+ ( 2 ) (XN XAy + XnaXy) (2.54)
Therefore,
1 N 1 N-1
X X O T . . xT T _ F dl
D R Y XpX, —XnXy | - YT > XnX, - XyaXy_y
n=1 n=
1 1 N-1
_ NXNX]T,JF (N — m) > XX, |+ <XN XN 1 —XNXN>
n=1
1 1 1 N —-1\?
S R L S () e P
N -1 —
_ ( _ ) (XNX Ry + X1 Xy ) (2.55)
where the last equality follows by (2.54). [
Lemma 2.6.18 (Sample Cross-Covariance Deviation). Let X1,..., Xy be d-dimensional

ii.d. sub-Gaussian random vectors with E[X1] = pX and var[X1] = X, Let Y1,..., Yy be

k-dimensional i.i.d. sub-Gaussian random vectors with E[Y1] = p¥ and varlY1] = Y. Let
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No1\ /o o1 =
_ (W) (XNY Ry + XvoaYy )

where S0 = NTLYN L X, v,

Proof. The result follows using the same approach utilized in the proof of Lemma 2.6.17 and

is omitted for brevity. O

Lemma 2.6.19 (Covariance Estimation with Known Particle — Operator-Norm Bound).
Consider the set-up in Lemma 2.6.17 and assume additionally that X, is known for some

n € {1,...,N}. Then with probability at least 1 — ce™*

S Xnll2, 116755 12) ro(SX)  rg(SX) t ot
X _ X < Ul Xnll2, »X v Vil —V —
=3 Is N =7 N N NN

Proof. By symmetry, we can assume without loss of generality that n = N. Let Ej denote

the event on which | Xy_1 — p¥l2 < \/||EX||T2 \/||Z]X||r2 WVt Then by
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Theorem 2.5.1, P(E1) > 1 — e~! and on Ej it holds that

X o 1 1« N—-1)\? —
X X T 0 T
IEN =Nl S N“XNXNH + N”ZN—ln + ((T) - 1) [ X N1 X n_qll
— (m&wXN4u+nXN*p&wo

1 S0
—||XN||2+—HE 1||+—||XN 1||2+—||XNH2I|XN 1ll2

HZ

2

X X v X X2
—\|XNH2+—HE - X H+NHE H+NHXN—1—M 13 12

Y
N %
— 1
—x Xnoq —puX X X
+N|| NI X N1 — ||2+N|| N2l |2
1 2 1,350 X X X r2EN)ve 1y
—||XNH2+—HE -2+ = ||E [P ||— NHM 15

VT
+ {1 X 2/ 1= V() Vi Xla,

where the first line follows by Lemma 2.6.17. Let Fo denote the event on which

~x (2X) EX
R DA YR v Vs

X
_ X ro(XX) () [t t
1= N Vo v YV N VYW
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Then by Proposition 2.2.1, P(Ey) > 1 — ce~!. It holds on E1 N E5 that

IS8 = =2 < I35 = Snv ol + 135 — 27

1 2 s X X xr2E)ve 1y
—HXN||2+—||EO_ -3+ = HE |+ 1% HN— 13
Vra(Et) v
+ I X nll2/ 1125 N3/2 _||XN||2||/~L |2
SX)  pg(BX) t ot
$X ra( tot
+ (|2 ] A A AR

X
X r(3X)  r(Zt) [t ot
+ 1= N V I Vv N\/N ,

where the first inequality holds by (2.56). The result follows by noting that P(E; N Ep) >

(I XN 12 16 [12)
N

AN

1—ce L. O

Lemma 2.6.20 (Covariance Estimation with Known Particle — Maximum-Norm Bound).
Consider the set-up in Lemma 2.6.17 and assume additionally that X, is known for some

n € {l,...,N}. Then with probability at least 1 — ce™"

X X X
ax _oxy o l¥nlloos le¥llse) | x [ [rooEX) [Tt tre(EX)

Proof. As in the proof of Lemma 2.6.19, we may assume that n = N. Let Fq denote the

- o (2X o (5X
event on which || X y_1 — 1 |Joo < \/tng)rN( T ) \/tZg)r g\f ) Then by Lemma 2.6.6,
P(E1) > 1 —ce  and on Ej, using similar calculations to those used to derive (2.56), it
holds that
SX _9X <1 2 . Liso X L X x Too(5Y)
N s 5 P+ s ) 5
Lyox2 VT X
+ 7 56 + 1 X lloo /15 ];O —||XNHooHM loc- (2.57)
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Let E9 be the event on which

ax X X [ o0 (BX) tt o treo(2X)

By Theorem 2.6.7, P(E5) > 1 — ce~t. Finally, note that the desired result holds on Eq N E»

and that P(E; N Ey) > 1 — ce™t, which completes the proof. ]

Lemma 2.6.21 (Cross-Covariance Estimation with Known Particle — Maximum-Norm
Bound). Consider the set-up in Lemma 2.6.18 and assume additionally that (Xn,Yn) is

known for some n € {1,...,N}. Then with probability at least 1 — ce™"

< <l Xnllso: I8 oo, 1Ynlloo, 11 lloo)
~ N

Too X oo Y
+(Z() VEDY) (%v %) (\/roo(EX)v\/roo(ZY))v\/ g\? )\/ E\? )

Proof. The result follows using the same approach utilized in the proof of Lemma 2.6.17

IE8 = =% | max

and utilizing the statements of Lemma 2.6.18 and Theorem 2.6.11. We omit the details for

brevity. O]

Lemma 2.6.22 (Covariance Estimation with Localized Sample Covariance and with Known
Particle —Operator-Norm Bound). Consider the set-up in Theorem 2.6.9 and assume addi-

tionally that Xy, is known for somen € {1,...,N}. For anyt > 1, set

- (I Xn 0o, ||NX||OO) X TOO(EX) t t tTOO(EX)
PN = N oV o YWE YN TN

and let f]/))(N be the localized sample covariance estimator. There exists a constant ¢ > 0 such
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that, with probability at least 1 — ce™, it holds that
X X 1-
=5y = S Reppy *-
Proof. The proof follows in identical fashion to that of Theorem 2.6.9, except that we now

use the max-norm bound established in Lemma 2.6.20 in place of Theorem 2.6.7. O

Lemma 2.6.23 (Cross-Covariance Estimation with Localized Sample Covariance and with
Known Particle —Operator-Norm Bound). Consider the set-up in Theorem 2.6.12 and as-

sume additionally that (Xy,Yy) is known for somen € {1,...,N}. For anyt > 1, set

(I Xnlloos 1™ llso, (¥ lloos Il llso)
N

00 X Too Y
+ Sy VE) (%v %> (\/TOO@XW\/“O(ZY))V\/ (J\?)\/ v

There exists positive universal constants c1, ca such that, with probability at least 1 — c1e ™2,

C

S 1— 1-
||Z§NY - 2XYH 5 Rq1PN Y, quPN 2,

Proof. The proof follows in identical fashion to that of Theorem 2.6.9, except that we now

use the max-norm bound established in Lemma 2.6.21 in place of Theorem 2.6.7. O]

2.6.2 Proof of Main Results in Section 2.3

Proof of Theorem 2.3.5. First, we may write

lvn = villa = || (v = Gun) = ma) (2(C 2, EPP) = (2, 7)) |

< |ly = G(un) = mall2| 2(C P, CPP) — 2(CP,CPP)|a. (2.58)
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For the second term in (2.58), it follows by Lemma 2.5.7 that
|2 (CWP,CPPy — 2(CP,CPP))||g < [0 [|C¥P — C¥P|| + DL C P ||| CPP — CPP||.

In order to control the two deviation terms, we write W; = [u;-l—,g—l—(ui)]—r for 1 <7 < N.

Further, let

AW 1 & = 7 \T W ¢ ow
V=N W -y W -y, V=
N—lZ,:1 v Cpp

with Wy = [T%T,CT]T and G the sample mean of {Q(un)}évzl. Since u ~ N(m,C) and
G is Lipschitz, by Gaussian concentration [Vershynin, 2018, Theorem 5.2.2] it holds that
1G(u) — E[G(u)]]lyy < ||g||Lip||C'||1/2 and we can apply Lemma 2.6.19. Letting E7 be the

event on which

|IC* —c v — PPl < |ICY - V|

_ cllWall, [EWa]D) HCW”( ra(CW) | ra(C) \/% y i),

~ N N N N

then Lemma 2.6.19 ensures that P(E1) > 1 — ¢ie~ 2. It follows that on the event Fq, we

also have

|2(CP,CPP) — 22(CP,CPP))llp S T HI(L v Il

TQ(CW) T2<CW) t t
% N TN YVWNYW
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The expression can be simplified by noting that since " = 0, |CW]| < ||C|| + ||C'PP|| and

further since Tr(CW) = Tr(C) + Tr(CPP)
ra(CW) ra(C) [t
N v N v N v N

< (ICl v IcPe) (\/Tr(C’) + Tr(C'PP) y Tr(C) + Tr(C'PP) y 1 " )

Ic™ |

N(HCHVIIC”’H) N(lC v ere) = VN - N

PP ro(C) TQ(Cpp Cpp i i
mwwwu( { ¢ tyl),

where the last inequality follows by similar reasoning to that used in the proof of Lemma 2.5.3.

]

Proof of Theorem 2.3.7. As in the proof of Theorem 2.3.5, we have that
Ivh = villz < ly = G(un) = mall2| 2(Cp, CJR) — 2(CMP,CPP)a.

Further, by Lemma 2.5.7,

12(Coy, CFR) = 2(C™.C™) 2 < (I VDM (L v [0 )

PN

x (ICom = C*?|| + |ICFG — CPP|)).
Let E; denote the event on which
ICo = C™P|| S Ryypy iV Reppy 5.
By Lemma 2.6.23 , E has probability at least 1 — cje~ 2. Let Ey be the event on which
ICBX = CPPII £ Rosoy 3
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By Lemma 2.6.22, E5 has probability at least 1 — cje~ 2. Therefore, E = Ej N Ey has

probability at least 1 — c;e~ 2!, and on F it holds that

|2(Coi. CiR) = 2(C™P.C™)|y

-1 12 1-
S AT VITTH PV IO (Ryy oy i + Rappy 4 + Ragpy 4°). O

2.7 Proofs: Section 4

This appendix contains the proofs of the auxiliary results discussed in Section 2.4.

Lemma 2.7.1 (Kalman Gain Deviation with Localization). Let uy,...,uy be d-dimensional
i.i.d. sub-Gaussian random vectors with Elui] = m and E[(ug —m)(uy —m)T} = C. Assume

further that C' € %;(q, Rq) for some q € [0,1) and Ry > 0. For anyt > 1, set

N =N )

and let @,N be the localized sample covariance estimator. There exists a positive universal

constant ¢ such that, with probability at least 1 — ce™,

~ ~ -1 21—1 1—
12 (Cop) = A (Ol S NAIIT | Rg (1 + AT HICD oy
Proof. By Lemma 2.5.4 and Theorem 2.3.1, it follows immediately that

1 (Cop) — (O < AT HICoy — ClICL + AT ICI)

S AN [ Ry 4+ AT I 0

Theorem 2.7.2 (Square Root Ensemble Kalman Covariance Deviation with Localization).

Consider the localized SR ensemble Kalman update given by (2.30), leading to an estimate
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S of the posterior covariance  defined in (2.2). Assume that C € %yl(q, Ry) for g € 10,1)

and Rg > 0. For any t > 1, set

3 roo(C) Lt tres(0)
PN“%(\/ N VNYNY TN )
t

There exists a positive universal constant ¢ such that, with probability at least 1 — ce™",

~ 1— _ 1— _ 1—
I£ =21 S Rapy @ (1+ AP (2UC] + Ry @) + HAIITHRICIICH + Repy )

Proof. For the localized SR update we have 3. = %(Gp ~)- From Lemma 2.5.6, the continuity

of € implies that
1€(Cox) = F(C)I < 1Coy = CUI (1 + IAIPIT M I(ICoy Il + ICT) + IAIITHZIChy NI ).
Let E denote the event on which
1Coy = Cll S Rypy ™.

By Theorem 2.6.12, E has probability at least 1 — ce™t. Tt also holds on E that

IConl IO+ 1Cpy = CIl S ICT + Rapy ™.
Therefore, it holds on E that
I£ =20 S Rapy ® (1+ 1AIRIT Y (2UC] + Bapy ) + IANITIPICIUCH + Bapy ) -

]
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CHAPTER 3
ENSEMBLE KALMAN FILTERS WITH RESAMPLING

This chapter is adapted from the publication listed below and is used with permission of the
publisher.

O. Al-Ghattas, J. Bao, and D. Sanz-Alonso, Ensemble Kalman filters with resampling,
SIAM/ASA Journal on Uncertainty Quantification, vol. 12, no. 2, pp. 411-441, 2024.

3.1 Introduction

The filtering problem of estimating a time-evolving state from partial and noisy observations
arises in numerous applications, including numerical weather prediction, automatic control,
robotics, signal processing, machine learning, and finance Séarkka and Svensson [2023], Crisan
and Rozovskii [2011], Reich and Cotter [2015], Asch et al. [2016], Law et al. [2015], Majda
and Harlim [2012], Sanz-Alonso et al. [2023b]. When the state is high dimensional and
the dynamics governing its evolution are complex, the method of choice is often the en-
semble Kalman filter (EnKF) Evensen [1995|, Evensen and Leeuwen [1996], Evensen {2009,
Houtekamer and Zhang [2016], Evensen et al. [2022]. In this filtering algorithm, a Kalman
gain matrix defined via the first two moments of an ensemble of particles determines the rela-
tive importance given to the dynamics and the observations in estimating the state. The size
of the ensemble controls both the accuracy and the computational cost of the algorithm. Op-
erational implementations of EnKF give accurate state estimation with a moderate ensemble
size, significantly smaller than the state dimension Houtekamer and Zhang [2016]. However,
non-asymptotic theory that explains the successful performance of EnKF with moderate en-
semble size is still not fully developed. An important impediment to such a theory is the
presence of correlations between particles, since the Kalman gain used to update each par-

ticle depends on the entire ensemble. This chapter investigates a modification of EnKF that
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incorporates a resampling step to break these correlations. The new algorithm is amenable
to a theoretical analysis that extends and improves upon those available for filters without

resampling, while also maintaining a similar empirical performance.

3.1.1 Resampling in Filtering Algorithms

Resampling techniques are routinely employed to enhance particle filtering algorithms which
assimilate observations by weighting particles according to their likelihood Del Moral [2004],
Doucet et al. [2009]. For particle filters, resampling converts weighted particles into un-
weighted ones to alleviate weight degeneracy and achieve variance reduction at later times
[Chopin and Papaspiliopoulos, 2020, Chapter 9|. In contrast, EnKF assimilates observations
by using unweighted particles and relying on a Gaussian ansatz and Kalman-type formulae.
EnKF avoids weight degeneracy by design, but remains vulnerable to filter divergence and
ensemble collapse Harlim and Majda [2010], Kelly et al. [2015]; several works have proposed
using resampling to remedy these issues.

An early discussion of resampling for EnKF can be found in Anderson and Anderson
[1999], which replaces the standard Gaussian ansatz with a more flexible sum of Gaussian
kernels. The paper Zhang and Oliver [2010] introduced bootstrap methods for identifying
and alleviating the impact of spurious correlations, thereby enhancing the robustness of
the Kalman gain. The work Lawson and Hansen [2004] proposed a resampling scheme to
improve the performance of deterministic filters in nonlinear settings. This method involves
periodically resampling the ensemble based on a “bootstrapping” approach as suggested by
Anderson and Anderson [1999], which is fundamentally based on a kernel density technique
taken from the particle filtering literature. Closest to our work is the paper Myrseth et al.
[2013], which demonstrates that resampling the Kalman gain in the conditioning step of EnKF
can help prevent the ensemble from collapsing over time, consequently enhancing ensemble

stability and reliability. The numerical experiments in Myrseth et al. [2013] suggest that
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relative to the non-resampled setting, EnKF algorithms that employ resampling give more
reliable prediction intervals with a slight trade-off in the accuracy of their point predictions.

Ensemble Kalman methods are also used for offline parameter estimation and, relatedly,
as numerical solvers for inverse problems, see e.g. Gu and Oliver [2007]|, Aanonsen et al.
[2009], Li and Reynolds [2007], Iglesias et al. [2013], Chada et al. [2021]. While not the
focus of this chapter, we point out that resampling techniques have also been investigated
in this context. For instance, Wu et al. [2022| removes particles that significantly deviate
from the posterior distribution via a resampling procedure, thus improving the performance
of standard implementations. A similar idea is also considered in Wu et al. [2019]|, which
proposes adding an extra resampling step in each iterative cycle. This method improves
the convergence of the iterative EnKF by perturbing the shrinking ensemble covariances to
prevent early stopping while preserving the consistent Kalman update direction of standard

implementations.

3.1.2  Our Contributions

Whereas previous work investigates resampling from a methodological viewpoint Anderson
and Anderson [1999|, Zhang and Oliver [2010], Lawson and Hansen [2004], Myrseth et al.
[2013], the primary objective of this chapter is to demonstrate that resampling strategies pro-
vide a promising approach to the design of ensemble Kalman algorithms with non-asymptotic
theoretical guarantees. We consider a simple parametric resampling scheme: at the begin-
ning of each filtering step, members of the ensemble are independently sampled from a
Gaussian distribution whose mean and covariance match those of the ensemble at the pre-
vious time-step. Thereafter, the filtering step can be carried out using any of the numerous
existing EnKF variants Evensen [2009], Tippett et al. [2003|. For the resulting algorithm,
which we term REnKF, we establish theoretical guarantees that extend and improve upon

those available for filters without resampling.
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Our theoretical guarantees hold in the linear-Gaussian setting in which we provide a
detailed error analysis of the ensemble mean and covariance as estimators of the mean and
covariance of the filtering distributions, given by the Kalman filter Kalman [1960]. Our
theory covers both stochastic and deterministic dynamical systems; in addition, it covers
both stochastic implementations based on perturbed observations Evensen [2003] and deter-
ministic implementations based on square-root filters Tippett et al. [2003], Anderson [2001],
Bishop et al. [2001]. Importantly, our error-bounds are non-asymptotic and dimension-free:
they hold for any given ensemble size and are written in terms of the effective-dimension
of the covariance of the initial distribution, and of the dynamics and observation models.
The non-asymptotic and dimension-free analysis of ensemble Kalman updates has recently
been considered in Al-Ghattas and Sanz-Alonso [2024b]|, which demonstrated rigorously the
success of ensemble Kalman updates whenever the ensemble size scaled with the effective
dimension of the state as opposed to its ambient dimension. Given that ensemble Kalman
algorithms are often employed in problems where the state dimension is very large, our
results also contribute to the theoretical understanding of why ensemble methods are able
to perform well even when the ensemble size is taken to be much smaller than the state
dimension. This chapter extends the results in Al-Ghattas and Sanz-Alonso [2024b| by pro-
viding new bounds over multiple assimilation cycles. Our work may also be compared to
Majda and Tong [2018|, which puts forward a non-asymptotic and dimension-free analysis of
a multi-step EnKF that utilizes a different modification than the one used to define REnKF.
Specifically, Majda and Tong [2018] employs an additional projection step that determines
the effective dimension of the method.

Other multi-step analyses were limited to square-root filters with deterministic dynamics
Kwiatkowski and Mandel [2015], Al-Ghattas and Sanz-Alonso [2024b| and to asymptotic
analysis of stochastic implementations Kwiatkowski and Mandel [2015], which, while ensuring

consistency of the filters, do not explain their practical success when deployed with a small
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ensemble size. The key reason why existing non-asymptotic analyses Al-Ghattas and Sanz-
Alonso [2024b| do not extend to stochastic implementations and dynamics is that these
additional sources of randomness further complicate the correlations between particles, which
we break via resampling.

We numerically illustrate the theory in a linear setting and also demonstrate the successful
performance of REnKF on the Lorenz 96 equations Lorenz [1996], a simplified model for
atmospheric dynamics widely used to test filtering algorithms Majda and Wang [2006], Majda
and Harlim [2012], Law et al. [2016a|, Sanz-Alonso and Stuart [2015]. In our experiments,
REnKF performs similarly to standard, non-resampled EnKF in fully and partially-observed
settings. Moreover, the results are robust to the noise level in the dynamics and in the
observations. Python code to reproduce all numerical experiments is publicly available at

https://github.com/Jiajun-Bao/EnKF-with-Resampling.

3.1.83 Qutline

The rest of the chapter is organized as follows. Section 3.2 formalizes the problem setting
and provides necessary background on EnKF. Section 3.3 introduces and analyzes the new
REnKF algorithm. The main result, Theorem 3.3.2, gives non-asymptotic and dimension-
free error bounds. We report numerical results that confirm and complement the theory in
Section 3.4. Proofs are collected in Section 3.5. We close in Section 3.6 with a discussion of

our results and directions for future research.

3.1.4 Notation

For a vector u = (u(1),... ,u(d))T and ¢ > 1, |ulg = (Z?:l u(i)|)1/9 and |u| = |u|s. For a
random variable X and ¢ > 1, we write || X ||, = (EIX|D)Y and | X| = || X]]2. X ~ N (m,C)
denotes that X is a Gaussian random vector with mean m and covariance C', and we denote

its density at a point z by N (z;m,C). Sﬁ denotes the set of d X d symmetric positive-
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semidefinite matrices, and Sﬁir . denotes the set of d X d symmetric positive-definite matrices.

For two d x d matrices A, B, A > B implies A — B € SSlFJF and A > B implies A — B € 8%,

n,m

and similarly for <, <. For a n x m matrix A = (A;;);; =1

the operator norm is given
by |A] = supjj,|,=1 |[Avl2. 1{S} denotes the indicator of the set S. The identity matrix will
be denoted by I, and on occasion its dimension will be made explicit with a subscript. The

n X m zero matrix will be denoted by Oy xm,.

3.2 Problem Setting and Ensemble Kalman Filters

We consider a d-dimensional unobserved state process {u(j )} j>0 and a k-dimensional obser-
vation process {y(j )} j>1 whose relationship over discrete time j is governed by the following

hidden Markov model:

(Initialization) u® ~ N(,u(o), E(O)), (3.1)
(Dynamics) w9 = \I/(u(j_l)) +e@ ¢0) L N(0,Z), j=12... (32)
(Observation) y) = gul) 4 n(j), n(j) L N(0,T), j=1,2,... (3.3

We assume that the initial distribution /\/'(,u(o), Z(O)), where u(o) e R, »0) ¢ Sjl_+, the

model dynamics map W : R — Rd, the observation matrix H € RF*d

, and the dynamics
and observation noise covariance matrices = € Sd,F € Sﬁ 4 are known; otherwise, they
may be estimated from the observations, see e.g. Evensen et al. [2022], Chen et al. [2022,
2023]. We further assume that the random variables u(?), {§<~7>}j21, and {'f](j)}jzl are
mutually independent. All methods and theory presented in this chapter extend immediately
to dynamics and/or observation models that are not time homogeneous at the expense of
a more cumbersome notation. Additionally, nonlinear observations can be dealt with by

augmenting the state, see e.g. Anderson [2001].

For a given time index j € N, the filtering goal is to compute the filtering distribution
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p(u(j) |Y(j)), where Y/) := {y(l), e ,y(j)}. The filtering distribution provides a probabilis-
tic summary of the state u9) conditional on observations up to time j. Given access to the
filtering distribution at the preceding time-step j — 1, p(u(j )|Y(j )) may be obtained by the

following two-step procedure:

(Forecast)  p(u@|yi-D) / N(u D), 2Dy U-D) gD, (3.4)

(Analysis) p(u Y DY oc M (yD; HuD) T)p(u) |y U=D). (3.5)

The forecast distribution p(u(j ) |Y(j *1)) represents our knowledge of the state at time j given
observations up to time j — 1, and its computation in (3.4) utilizes the dynamics model (3.2).
In the analysis step (3.5), the new observation y; is assimilated through an application of
Bayes formula with prior given by the forecast distribution and likelihood determined by the
observation model (3.3). Closed-form expressions for the filtering and forecast distributions
are only available for a small class of hidden Markov models Papaspiliopoulos and Ruggiero
[2014]. For problems outside this class, many algorithms have been developed to approximate
the filtering distributions, or, if this is too costly, to find point estimates of the state Sarkka
and Svensson [2023], Sanz-Alonso et al. [2023b].

This chapter is concerned with EnKF algorithms that belong to the larger family of
Kalman methods. These methods invoke a Gaussian ansatz for the forecast distribution,
so that Bayes formula in the analysis step can be readily applied using the conjugacy of
the Gaussian forecast distribution and the Gaussian likelihood model (3.3). The distinctive
feature of EnKF is that the Gaussian approximation is defined using the first two moments of
an ensemble of particles. Then, in the analysis step each individual particle is updated with
a Kalman gain matrix which incorporates the forecast covariance. Several stochastic and
deterministic implementations for the analysis step have been proposed in the literature, see

e.g. Houtekamer and Zhang [2016], Tippett et al. [2003|, Evensen [2009]. In Algorithm 1, an
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example of a stochastic implementation of EnKF —commonly referred to as the Perturbed
Observation EnKF— is provided for reference, and will be our focus for this work. At time
7 =0, an initial ensemble of N particles are independently drawn from the initial distribution
in (3.1). These ensemble members are then sequentially passed through forecast and analysis
steps: In the forecast step, the ensemble is propagated through the system dynamics yielding
the j-th forecast ensemble. In the analysis step, the new observation y(j ) is assimilated by
updating each ensemble member according to a Kalman-type formula, yielding the j-th
analysis ensemble. Although the initial ensemble members are mutually independent, the
dependence structure of the ensemble is highly non-trivial beginning at the analysis step at
time 7 = 1. Indeed, note that the Kalman Gain K (1) is a nonlinear transformation of the
entire forecast ensemble, and this matrix is used to update each of the ensemble members
when constructing the analysis ensemble. The recursive nature of the algorithm further
complicates the dependence structure of the ensemble, rendering a non-asymptotic analysis
highly challenging.

The stochastic variant of EnKF in Algorithm 1 is arguably the most popular in applica-
tions Evensen [1995], Van Leeuwen [2020]. Unfortunately, as noted in Furrer and Bengtsson
[2007], Al-Ghattas and Sanz-Alonso [2024b] and further discussed in Section 3.3, it is harder
to analyze from a non-asymptotic viewpoint than deterministic variants of the EnKF.

The output ﬂ(j ) of EnKF gives a point estimate of the state ul7) at time j. For such a state-
estimation task, EnKF is very effective Law and Stuart [2012]. Additionally, the output 50)
may be used to construct confidence intervals. However, as often noted in the literature Ernst
et al. [2015], Law and Stuart [2012] and further discussed in Section 3.4, caution should be
exercised when using ensemble Kalman algorithms for such uncertainty quantification tasks.
EnKF performance for state estimation and uncertainty quantification tasks can be assessed
by the error in approximating the mean and covariance of the filtering distributions; the

theory in Subsection 3.3.2 adopts such performance metrics. If the moments of the filtering
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Algorithm 1 Ensemble Kalman Filter (EnKF)

1: Input: ¥V, H, =, F,,u(o), »(0) N, Sequentially acquired data {y(j)}jZI.
2: Initialization: u%o) iLd. Np©@ 50y 1<n<N.

3: For j =1,2,... do the following forecast and analysis steps:

4: Forecast:

i) = v +ef). &) N, 1<n<n,

) _ L N~-0) A(j) LS o) oyl T (3:6)
m\ :NZU”’ cV :mZ(un —mj)(un —mj) .
n=1 n=1

u) (I K(j)H)U,(J) + K(J)y(J) 1<n<N, (3.7)
Lm0 LS ()

s . s T

,U(]) = anl uy} ) 50) = mn:1<uﬁy - M(]))(unj - ,U(])) :

6: Output: Analysis mean ZZ(j ) and covariance () for 1=1,2,...

distributions are not available, performance metrics such as root mean squared error and
coverage of confidence intervals can be employed Law and Stuart [2012], and we do so in the

numerical experiments in Section 3.4.

3.3 Ensemble Kalman Filters with Resampling

In this section, we first introduce and motivate our main algorithm, EnKF with resampling
(REnKF). We then present the non-asymptotic theoretical analysis of REnKF in a linear

model dynamics setting.

3.83.1 Main Algorithm

The idea underlying REnKF, which is outlined in Algorithm 2. is to employ a resampling
step at each filtering cycle to break the correlations between ensemble members described
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in Section 3.2. We consider here a particularly simple parametric resampling scheme in
which at the beginning of each filtering cycle, ensembles are independently sampled from
a Gaussian distribution whose mean and covariance match those of the analysis ensemble
at the previous time step. Although the resampling mechanism can be made to be more
sophisticated —for example, one may consider nonparametric resampling schemes in which
the empirical distribution of the ensemble is used instead— we note that such complications
may be difficult to justify given the simplicity, theoretical guarantees (Subsection 3.3.2), as
well as the computational scalability and empirical performance (Section 3.4) of the proposed
resampling strategy. Other than the resampling step, the forecast and analysis steps of
REnKF agree with those of EnKF, and consequently any of the stochastic or deterministic
implementations of EnKF can be adopted. Our focus here is on the stochastic implementation
of EnKF in Algorithm 1. As discussed in the next subsection —see Remarks 3.3.1 and 3.3.3—
non-asymptotic theory for deterministic implementations can be obtained as a by-product

of the theory that we develop.

Algorithm 2 Ensemble Kalman Filter with Resampling (REnKF)

1: Input: U, H,Z,T, 40, 50 N. Sequentially acquired data {y(j)}jzl.

2. Initialization: Set 7i(9) = 4(9) and £(0) = £(0),

3: For j =1,2,... do the following resampling, forecast, and analysis steps:
4: Resampling:

1<n<N. (3.8)

)

WD A ARG S6-1)

5. Forecast: Do (3.6).
6: Analysis: Do (3.7).
7: Output: Analysis mean ﬁ(J ) and covariance $(/) for j=12 ...

Notice from Algorithm 2 that correlations between particles could alternately be broken
by resampling between the forecast and analysis steps. While such an approach would be
amenable to a non-asymptotic analysis akin to the one we develop, we empirically found that

resampling after the forecast step significantly deteriorates the performance of the filter in
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nonlinear settings. A heuristic explanation is that resampling tacitly introduces a Gaussian
approximation, and the filtering distribution is better approximated by a Gaussian than the

forecast distribution when the dynamics are nonlinear and the observations are Gaussian.

3.3.2  Non-asymptotic Error Bounds

Here we present theoretical guarantees for REnKF in a linear dynamics setting. We introduce
the setting and necessary background in Subsection 3.3.2. Then, the main result is stated

and discussed in Subsection 3.3.2.

Setting and Preliminaries

We consider REnKF in the following linear version of the hidden Markov model governing

the relationship between the state and observation processes:

(Initialization) 09 ~ N(u(o), E(O)), (3.9)
(Dynamics) u) = AU ¢ @D N m), =12, (3.10)
(Observation) W) = Hul) 440, 40 5 ao,T),  j=12... (311

with u(9) independent of the i.i.d. sequences {¢()} and {n(/)}. Thus, we assume that the
dynamics map ¥ in (3.2) is linear and represented by a given matrix A € RI%d Tn this
case, it is well known that the forecast distributions p(u(j) |Y(j_1)) = N(u(j); m(7), C(j_l))
and the filtering distributions p(u(j)|Y(j)) = N(u(j); e Z(j)) are both Gaussian, and the
means and covariances of these distributions are given by the Kalman filter Sanz-Alonso
et al. [2023b]. We aim to derive non-asymptotic bounds between the output 7i) and £0)
of REnKF and the output ,u(j) and X0 of the Kalman filter.

We follow the exposition in Kwiatkowski and Mandel [2015] and introduce three operators

that are central to the theory: the Kalman gain operator ., the mean-update operator .,
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Kalman Filter REnKF
Forecast Mean m\) = Apli=1) ) = Agli—1) 4 £0)
Forecast Cov. CU) = AxU-DAT y = | 0U) = 450-DgT 4+ 20) 4 Aagg) I 6(5]2AT
Analysis Mean | pu7) = %(m(j),c(j);y(j)) 1) = ,///(m(j),é(j);y(j)) +;g/(@(j))7-7(j)
Analysis Cov. %) =gl S0 =g (V) + ou)

Table 3.1: Kalman filter and REnKF updates in terms of the operators (3.12), (3.13), and
(3.14).

and the covariance-update operator €, defined respectively by

H St SRR pc)y=cH"(HCHT +T)7}, (3.12)
M RIS SRE i (m,Chy) =m+ H(C)(y — Hm), (3.13)
©:81 84, €)= (I-#(C)H)C. (3.14)

With this notation, the mean and covariance updates from time j — 1 to time j given by the

Kalman filter are summarized in Table 3.1. The table also shows the corresponding updates

for REnKF, where ﬂ(j_l), S(ﬁ and ﬁ(j) respectively denote the sample means of {ug_l) sz:l,

{{%j)}flvzl, and {néj)}{,}le; SU=1 denotes the empirical covariance of {u,(:g_l)}gzl; and

6552 = (é(gu))T denotes the empirical cross-covariance of {u%] 71)}7]1\7:1 and {5}{ ) 7]:[:1' Fi-

nally, following Furrer and Bengtsson [2007], Al-Ghattas and Sanz-Alonso [2024b|, we refer

to

O .= o (CONTW — 1) T(CU))

+ (1 = (COYE)EY) T (D) + o (CDNCINT (1 - HT 2T (C)Y).

as the offset, where ') denotes the empirical covariance of {ny(ij )}1]%\[:1, and C (1{73 denotes the

. . . j—1 j
empirical cross-covariance of {ug )}nNzl and {77,(1‘7 ) 27:1.
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Remark 3.3.1 (Deterministic Implementations). As noted earlier, our presentation and
analysis will focus on the stochastic (perturbed observation) implementation of EnKF de-
sceribed in Algorithm 1, and which is used within REnKF, see Algorithm 2. We claim that
this approach is sufficient to cover both deterministic and stochastic updates. Indeed, Al-
Ghattas and Sanz-Alonso [2024b] shows that deterministic and stochastic updates at time j
can be succinctly written as

%) = (w9, 0y + oo (U,
(3.15)

S0 = (W) + 00W),
where ¢ = 1 for the stochastic update and ¢ = 0 for the deterministic update. Therefore,
relative to the deterministic update, theory for the stochastic update is additionally compli-
cated by the need to consider the term Ji/(a(j))ﬁ(j) in the mean update and the offset term
0 in the covariance update. Accordingly, we are able to provide a result for the resampled

version of the deterministic (square-root) EnKF as a by-product of our more general theory,

and we refer to Remark 3.3.3 for further discussion.

Main Result

We define the effective dimension Tropp [2015] of a matrix @ € Sjl_ by

r(Q) == (3.16)

where Tr(()) and |Q)| denote the trace and operator norm of (). The effective dimension
quantifies the number of directions where () has significant spectral content and may be
significantly smaller than the ambient dimension d when the eigenvalues of () decay quickly.
As such, it is a more refined measure of complexity in high-dimensional problems with

underlying low-dimensional structure. The monographs Tropp [2015|, Vershynin [2018]| refer
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to ro(@) as the intrinsic dimension, while Koltchinskii and Lounici [2017]| uses the term
effective rank. This terminology is motivated by the observation that 1 < r9(Q) < rank(Q) <
d and that (@) is insensitive to changes in the scale of @), see Tropp [2015]. We now state
our main result, Theorem 3.3.2, which provides non-asymptotic bounds on the deviation of

RENnKF from the Kalman filter for any time j.

Theorem 3.3.2. Consider REnKF, Algorithm 2, with linear dynamics V(-) = A-. Suppose

that N > ro(SO) v ro(T) V ro(Z). Foranyj=1,2,..., and ¢ > 1

"y : 5:(0) = r

1Y = 1 Pllg < e | iy V oy V sl (3.17)
. . / (0) =

|\|2(J) _ E(J)|||q < ¢y ’"Q(?V ) V; \/”](v“) vV \/”;VF) , (3.18)

where ,u(j ) and 2U) are the mean and covariance of the filtering distributions, and cq,cy are

potentially different universal constants depending on
0 1 -
SO, 1AL ] T 0L E] 0.

and ¢ additionally depends on {|y(¥) — Hm(£)|}g§j.

With the exception of [Majda and Tong, 2018, Theorem 3.4|, which relies on covariance
inflation and an additional projection step, Theorem 3.3.2 seems to be the first result in the
literature that provides non-asymptotic guarantees on the performance of a stochastic EnKF
over multiple assimilation cycles. We note that the assumption N > ro(20)vro(D)Vro(Z) is
merely for convenience and can be removed at the expense of a more cumbersome statement
of the result. Importantly, the bounds (3.17) and (3.18) are non-asymptotic, in that they
hold for a fixed ensemble size N. Further, the bounds are dimension-free as they do not

exhibit any dependence on the state-space dimension d, implying that the ensemble need
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not scale with d in order for the algorithm to perform well, as has been observed empirically
in the literature and confirmed in our numerical results in Section 3.4. Finally, similar to
previous accuracy analyses for square-root ensemble Kalman filters Mandel et al. [2011], Al-
Ghattas and Sanz-Alonso [2024b|, variational data assimilation algorithms Sanz-Alonso and
Stuart [2015], Law et al. [2016a], and particle filters [Sanz-Alonso et al., 2023b, Chapters 11
and 12|, our proof relies on induction over the discrete time index j and does not account
for potential dissipation of errors due to filter ergodicity. As a result, the constants ¢; and
co grow with j and our bounds (3.17) and (3.18) do not hold uniformly in time without, for

instance, stability requirements on A.

Remark 3.3.3 (Resampled Square-Root Filter). While the result in Theorem 3.3.2 is specific
to the stochastic REnKF in Algorithm 2, using the observation made in Remark 3.3.1 it is
possible to show that for a deterministic variant, namely the square-root REnKF, and under

the same assumptions on the ensemble size made in Theorem 3.53.2, we have that

(i : (0) =
139 — Dl < e [ 4 2E2 w23
. : »(0) =
118G — @), < e ”LN)W/% 7

where c1, ¢y are potentially different universal constants depending on |S(0)|, |A|, |H]|, D71,

(3.19)

2|, ¢, j, and ¢ additionally depends on {|y¥) — Hm(€)|}g§j. In contrast to (3.17) and
(3.18), the bounds in (3.19) do not depend on the effective dimension of the noise covari-
ance, ro(T"), nor do the associated constants depend on |U'|. The statistical price to pay for
utilizing stochastic rather than deterministic updates is captured by these terms. We further
note that [Al-Ghattas and Sanz-Alonso, 2024b, Corollary A.12], gives a non-asymptotic and
multi-step analysis of a simplified version of the square-root filter (without resampling) with
deterministic dynamics (that is, = = Ogyq). In such a setting, [Al-Ghattas and Sanz-Alonso,
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2024b, Corollary A.12] implies the following bounds

HAY = uDlllg < e 2(%(0)) I1E9 — 5]y < e 2(%(0))
where c3, ¢y are potentially different universal constants depending on |S(0)|, |A|, |H]|, [T™Y,
q, j, and cg additionally depends on {|y(€) — Hm(é)]}ggj. Theorem 3.3.2 should further be
compared to [Kwiatkowski and Mandel, 2015, Theorem 6.1], which is also limited to the case
= = Ogxq and shows that |||[g\0) — p@)|||, < GN"V2 and |20 — 20|, < N~1/2,
where cé, cﬁl are universal constants with the same dependencies as c3 and cyq. Importantly,
the bounds in [Kwiatkowski and Mandel, 2015, Theorem 6.1] do not capture the dependence of
the algorithm on the prior covariance and also cannot be easily extended to handle stochastic

dynamics = > 0 as accomplished in Theorem 3.3.2.

3.4 Numerical Results

In this section, we investigate the empirical performance of REnKF (Algorithm 2) and provide
detailed comparisons to the stochastic EnKF (Algorithm 1). In Subsection 3.4.1, we consider
a linear dynamics map, VU(-) = A-, with the primary goal of demonstrating the bounds
of Theorem 3.3.2 in simulated settings. In Subsection 3.4.2, we study a nonlinear setting
where W represents the At-flow of the Lorenz 96 system, and At is the (constant) time-
span between observations. The aim of this subsection is to show that REnKF achieves
comparable performance to EnKF even in challenging nonlinear regimes, further motivating
the study of resampling in the context of ensemble algorithms. In both Subsections 3.4.1 and
3.4.2, we examine the performance of REnKF and EnKF under varying noise levels, ensemble
sizes, and state dimensions. Additionally, in Subsection 3.4.2, we consider cases in which
we have access to either fully observed or partially observed dynamics. These scenarios

offer a comprehensive perspective on the adaptability of REnKF to varying observational

123



conditions, thereby highlighting its potential for wide applicability in real-world situations
where data are often limited or incomplete. For all experiments, we generate a ground-
truth state process {ul/ )}}]:0 for a time-window of length J = 200 using the initialization
(3.1) and dynamics model (3.2). For each set of system parameters we examine, a unique
set of observations {y(j )}3-]:1 is generated from the ground-truth state process utilizing the
observation model (3.3). Python code to reproduce all numerical experiments is publicly

available at https://github.com/Jiajun-Bao/EnKF-with-Resampling.

3.4.1 Linear Dynamics

In this subsection, we numerically investigate the performance of REnKF for the linear-
Gaussian hidden Markov model (3.9)-(3.11) analyzed in Subsection 3.3.2. We will consider a
variety of choices for the initial distribution, the dynamics noise covariance, and the observa-
tion noise covariance. Throughout, we take identity dynamics A = I; and full observations

H = I;. To compare the performance of EnKF and REnKF, we will consider the following

metrics:
1N -
(Mean Error) Elienr = i Z |ZZ<3) — ,u(j)|2, (3.20)
=1
1 L1
(CI Width) W= =32 2x 196 sU) (3.21)
=1%i=
1 L1 <G
(CI Coverage) V = i Z p Z 1{u(])(z) e (i) (i) +1.96 EZ(Z]))} (3.22)
=1 %=

The mean error (3.20) quantifies the approximation of the EnKF /REnKF analysis mean to
the mean ,u(j ) of the Kalman filter. Our theory for REnKF provides non-asymptotic bounds
for this error, and our numerical results will show that this error is similar to that of EnKF

in a variety of settings. The confidence interval (CI) width and coverage in (3.21)-(3.22)
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Figure 3.1: State estimation and uncertainty quantification for coordinate w(1) in the linear
setting with ensemble size N = 10 and small noise o = 10~%. Note that the Kaman Filter
(KF) is optimal in the linear setting.

assess the ability of the filter to provide reliable uncertainty quantification: a short interval
with high coverage would be preferable, but an overconfident short width interval with low
coverage can lead to a misleading and potentially dangerous assessment of uncertainty. We
illustrate these three metrics in Figure 3.1, which corresponds to a setup outlined in Table
3.2. This setup will be further explored in Subsection 3.4.1. As depicted in the plot, the
indicator in (3.22) corresponds to whether the solid blue line (representing the true states)
fall within the shaded confidence intervals. We point out that the ability of ensemble Kalman
methods to provide reliable uncertainty quantification, especially in nonlinear settings, has
often been questioned Ernst et al. [2015], Law and Stuart [2012]. Our results will show
that the CIs obtained with REnKF have similar width and coverage as those obtained by
EnKF, but that coverage for both algorithms is not reliable when the ensemble size is small
(Subsections 3.4.1 and 3.4.2) or the dynamics are highly nonlinear (Subsection 3.4.2).
Since the outputs {ﬁ(j), i(j)}jzl of EnKF and REnKF are random, for each experiment
we run both algorithms M times and we report the average value of the metrics (3.20),

(3.21), and (3.22) as well as the value of M. More details can be found in Appendix 3.7.1.
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Effects of Noise Level and Ensemble Size

We perform two distinct analyses to assess the impact of different variables on the perfor-
mance of EnKF and REnKF. The first, which we term the noise-level analysis, investigates
the relationship between mean error, E;,,..., and the noise level, a. The second analysis, re-
ferred to as the ensemble-size analysis, explores how the mean error varies with the ensemble
size, N. Both analyses are carried out using a fixed state dimension d = 20.

In the noise-level analysis, « is varied over a grid of 15 evenly spaced values between 10716
and 1, allowing us to investigate a range of scenarios beginning with those with virtually no
noise to those with substantial noise. In order to isolate the influence of «/, we maintain the
initial distribution with a fixed zero mean and covariance $(0) = 1078 x Iog, as well as a
fixed ensemble size of N = 20. In the ensemble-size analysis, N is varied between 10 and
100, in increments of 10. To isolate the effects of N, we fix & = 10~} and maintain the initial
distribution to have a fixed zero mean and covariance ©(0) = 1.1a x I5g. The covariance is
adjusted to represent a higher initial uncertainty level compared to the noise-level analysis.
The factor 1.1 was introduced to ensure that the initial states possess a slightly different
level of uncertainty relative to the noise in the dynamics and observations. Both analyses
are averaged over M = 10 runs of the algorithms. The results of both analyses are depicted

in Figure 3.2. In addition to E in Table 3.2 we consider the effect of varying o and N

Lincar
on CI widths, W, and CI coverage, V. Here, we categorize the levels of noise as being either
small, moderate, or large, which correspond to « values of 10_4, 1072, or 101 respectively,
as described under Case A in Table 3.3. Further, we repeat the experiments with ensembles
of size N = 10 and N = 40. For the experimental settings summarized in Table 3.2, the
state dimension and initial distribution are taken as in the ensemble-size analysis described
earlier. These metrics are calculated based on averages over M = 100 runs of the algorithms.

The results in Figure 3.2 and in Table 3.2 confirm that across a wide variety of linear

experimental settings, REnKF exhibits similar performance to EnKF as measured by the mean
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Figure 3.2: Effects of & and N in the linear setting with d = 20.

error, CI width, and CI coverage.

Effects of State Dimension and Spectrum Decay

We now study the sensitivity of EnKF and REnKF to changes in the state dimension, d.
Recall that our main result, Theorem 3.3.2, implies that REnKF performs well whenever the
ensemble size scales with the largest of the effective dimensions of the noise covariances: E(O),
I', and =. This motivates our study of covariance matrices with structure summarized in
Case A and Case B of Table 3.3. In Case A, the effective dimension of the covariance matrix
is proportional to the state dimension, d, and so the theory suggests that REnKF will do well
only if the ensemble size also scales with d. In Case B, we consider covariance matrices that
are diagonal, with ¢-th diagonal element proportional to i~P where £ > 0 is a rate parameter
controlling the speed of decay. Table 3.4 demonstrates that two matrices of this form that
are equal in dimension may differ drastically in their effective dimension for different choices
of B. Here, then, the theory suggests that REnKF will do well so long as the ensemble
size scales with the effective dimension, which may be much smaller than d. To test our

theory, we run REnKF under both cases A and B in Table 3.3 where d is varied over the set
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Small Noise

Moderate Noise

Large Noise

Ensemble Metric o= 104 o= 102 o 10-1

EnKF Mean Error 0.0608 0.6133 1.9931

REnKF Mean Error 0.0616 0.6199 2.0310

N =10 EnKF CI Width 0.0194 0.1940 0.6134
REnKF CI Width 0.0188 0.1875 0.5930

EnKF CI Coverage (%) 39.57 38.90 38.35

REnKF CI Coverage (%) 37.83 37.14 36.58

EnKF Mean Error 0.0193 0.1930 0.6243

REnKF Mean Error 0.0209 0.2091 0.6739

N — 40 EnKF CI Width 0.0278 0.2780 0.8790
REnKF CI Width 0.0274 0.2739 0.8663

EnKF CI Coverage (%) 69.94 69.26 68.90

REnKF CI Coverage (%) 68.65 67.76 67.43

Table 3.2: Performance metrics in the linear setting with d = 20.

Noise Case A Case B (i=1,...,d) Case C
Dynamics (Z) EA—axy ELB; —axi P 2C —ax1y
Observation (I") M=o x Iy Fg —axiP IC = o x Iy
3
Prior (£(0) | (24 =11 x=24| OB =11x=8 | (20)¢ =11x=C

Table 3.3: Covariance matrix settings explored numerically in Subsections 3.4.1 and 3.4.2.

{21, 2 ..., 28} and where the ensemble size is fixed at N = 10 throughout. For both cases

we fix &« = 10~% and for case B we consider 3 € {0.1,1,1.5}. Figure 3.3 presents the results of

averaging E; . ... over M = 10 runs of the algorithm in each of the experimental set-ups. We

see that for all choices of 3, EnKF and REnKF exhibit near-identical performance. For Case

A, the performance deteriorates as d increases and this behavior is identical across all three

displays. For Case B, when 8 = 0.1 (first display) so that the effective dimension increases

significantly with dimension as described in the first row of Table 3.4, the performance

State dimension (d) [ 2 | 4 | 8 | 16 | 32 [ 64 | 128 | 256

B8 =0.1 1.93 | 3.70 | 7.02 | 13.25
B8 =1.0 1.50 | 2.08 | 2.72 | 3.38
g =15 1.35 | 1.67 | 1.93 | 2.12

24.89
4.06
2.26

46.64
4.74
2.36

87.25
5.43
2.44

163.05
6.12
2.49

Table 3.4: Effective dimension of initialization and noise covariances used in Figure 3.3.

128



deteriorates significantly as d increases. As [ is increased to 1 in the second display, so
that the effective dimension grows slowly with d, performance deteriorates at a much slower
rate. This is further pronounced in the final display with = 1.5. These numerical results
demonstrate the key role played by the effective dimension in determining the performance

of EnKF and REnKF, and are in agreement with Theorem 3.3.2 for REnKF.

B=0.1 B=1.0 B=1.5
08 N = 105 08 N= 10: / 0.8 N= 10: /
E R4 : : /
_06 : / 0.6 i 0.6 i /
5 : : / :
] ! /
£ 1 / 1 1
—0.4 i / 0.4 | g 0.4 !
w i * 1 //’/ 1
0.2 ' 0.2 i 0.2 i
0055375 16 32 6 18 256°0 3 4 8 16 32 64 138 256°0 3 4 8 16 32 64 128 256
d d
—— ENnKF Case A RENnKF Case A EnKF CaseB -+ RENnKF Case B

Figure 3.3: Effect of spectrum decay in the linear setting.

3.4.2  Lorenz 96 Dynamics

In this subsection, we extend our numerical investigation of REnKF to the nonlinear setting
by taking ¥ in (3.2) to be the At-flow of the Lorenz 96 equations. Here At represents the
time-span between observations, which is assumed to be constant. Assuming the following
cyclic boundary conditions u(—1) = u(d — 1), u(0) = u(d), and u(d + 1) = u(1) with d > 4,
the system is governed by:

du(i)
dt

- (u(z' 1) —u(i— 2)>u(z' 1) —u(@)+F, i=1,....d (3.23)

In our experiments, we set At = 0.01, FF = 8, and the state dimension d is subject to
variation. The choice F' = 8 leads to strongly chaotic turbulence, which hinders predictability
in the absence of observations Majda and Harlim [2012]. For the observation process (3.3),

we consider both full observations in which H = 1;, and partial observations in which
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only two out of every three state components are observed. The latter setting results in a
modified H € R%d *d which corresponds to /; with every third row removed. This observation
set-up is motivated by Sanz-Alonso and Stuart [2015|, Law et al. [2015], which prove that
observing two-out-of-three coordinates of the Lorenz 96 system suffices in order to tame the
unpredictability of the system and achieve long-time filter accuracy in a small noise regime.
As in Subsection 3.4.1, we examine various choices of initial distribution, dynamics noise
covariance, and observation noise covariance. To compare EnKF and REnKF, we make use
of the same CI width (3.21) and CI coverage (3.22) metrics as in Subsection 3.4.1. However,
since in the nonlinear setting the mean of the filtering distribution is not available in closed

form, we replace the metric E; ... with
1 J ‘ .
Eus = 5 2‘1 A —ulPy, (3:24)
J:

which quantifies the accuracy of the filter as an estimator of the ground-truth state process

{u(j )}}']:1' As before, the metrics we report are averaged over M runs of the algorithms.

Full Observation Partial Observation
Ensemble Metric Small Noise | Moderate Noise | Large Noise | Small Noise | Moderate Noise | Large Noise
i a=10"* a=10"2 a=10""1 | a=10"* a=10"2 a=10""!
EnKF Mean Error 0.1011 0.9573 3.0231 0.4064 3.3882 10.5921
REnKF Mean Error 0.1016 0.9616 3.0335 0.4071 3.3565 10.6379
N — 9] EnKF CI Width 0.0208 0.2083 0.6586 0.0266 0.2660 0.8412
REnKF CI Width 0.0205 0.2047 0.6475 0.0258 0.2584 0.8167
EnKF CI Coverage (%) 50.24 51.55 51.61 39.62 43.25 43.26
REnKF CI Coverage (%) 49.07 50.34 50.44 38.25 42.04 41.87
EnKF Mean Error 0.0582 0.5682 1.7971 0.2919 2.4181 7.6282
REnKF Mean Error 0.0590 0.5760 1.8218 0.2977 2.5004 7.9011
N =84 EnKF CI Width 0.0281 0.2813 0.8895 0.0438 0.4383 1.3861
REnKF CI Width 0.0279 0.2785 0.8806 0.0412 0.4120 1.3033
EnKF CI Coverage (%) 87.96 88.61 88.61 7147 75.31 75.30
REnKF CI Coverage (%) 86.80 87.52 87.52 69.25 72.54 72.61

Table 3.5: Performance metrics for the Lorenz 96 model with d = 42.

In Table 3.5, we compare the performance of REnKF and EnKF. In the case of full obser-
vations, the covariance configuration is outlined in Case A of Table 3.3, and in the case of

partial observations it is outlined in Case C of Table 3.3. We repeat the experiments with en-
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sembles of size N = 21 and N = 84, and the metrics are computed over M = 100 runs of the
algorithms. In Figure 3.4, we present a single representative simulation of the first component
u(1) —which is observed— and the third component u(3) —which is unobserved— corre-
sponding to a particular choice of parameters in Table 3.5. Additional experiments in the
accompanying Github repository show that, as the noise level « increases, state estimation
remains effective for observed variables but deteriorates for unobserved ones. This behavior

explains the larger error for moderate and large noise levels in the partial observation set-up

in Table 3.5.

129 True states //'\

104 Observations / \\

-—- EnkF / .

gl —'- REnkF //
— -~
— //
\3* 6 //

—_//
S
4 /,/
//
-
o
o~
0 -
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6_

4
—_— 2_
m
S 0

—— True States
—21 . Observations (missing)
-== EnKF
—41 —.- REnKF

0 25 50 75 100 125 150 175 200
Timestep

Figure 3.4: State estimation of coordinates u(1l) (observed) and u(3) (unobserved) in a
partially observed Lorenz 96 system with ensemble size N = 21 and small noise o = 10-4.
REnKF accurately recovers observed and unobserved coordinates of the state.

In Figure 3.5, we further analyze the effects of varying a (column 1), N (column 2),
and d (column 3) on Eres in both the full observation (row 1) and partial observation (row

2) settings. More precisely, in the first column of Figure 3.5, « is varied over a grid of 15
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Figure 3.5: Effects of o, N, and d in the Lorenz 96 example.

evenly spaced values between 10716 and 1 while holding fixed N = 20 and d = 42. In both
full and partial observation settings, we take the initial distribution to have zero mean and
covariance $(0) = 1078 x I49. In the second column of Figure 3.5, the ensemble size N
ranges from 10 to 100, increasing in steps of 10, while fixing & = 1074 and d = 42. In both
full and partial observation settings, we take the initial distribution to have zero mean and
covariance (0 = 1.1a x I49. In the third column of Figure 3.5, the dimension d is varied
over the values in {6, 18,30, 42,54, 66, 78,90, 102} which are all multiples of 3 to facilitate
convenient calculations in the partially observed setting. We fix N = 20 and o = 10~% and
in both full and partial observation settings, we take the initial distribution to have zero
mean and covariance ¥(0) = 1.1a x 1, respectively.

Our findings, as illustrated in Table 3.5 and Figure 3.5, demonstrate that REnKF achieves
performance comparable to that of EnKF, even in challenging nonlinear regimes. Notably,

for both algorithms we observe a slightly inferior performance with partial observations com-
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pared to full observations under identical conditions. Moreover, a consistent trend is noticed
in the dependency of Erss on the noise level, state dimension, and ensemble size. Notice,
however, that the performance of REnKF deteriorates further in non-Gaussian settings with
partial observations, large N, and large noise. Such worsened performance may be partly ex-
plained by the additional Gaussian assumption tacitly imposed in the resampling step, which
further destroys the non-Gaussian structure of the problem for nonlinear forward models.
Table 3.5 further demonstrates that REnKF is as effective as EnKF in the task of uncertainty
quantification. Nevertheless, both EnKF and REnKF encounter difficulties in delivering re-
liable uncertainty quantification, especially in scenarios with partial observation and small

ensemble size.

3.5 Proof of Theorem 3.3.2

The result will be established by strong induction on the mean bound (3.17) and the covari-
ance bound (3.18) along with induction on two additional bounds: for any j =1,2,... and

g>1

NTE(E ) llg < cara(E (3.25)

- 0 r
N6 — cOll, < ey [ 2E2y \fr2E) D)) (3.26)

where c3 and ¢4 are again potentially different universal constants that depend on the same

parameters as co in the statement of Theorem 3.3.2. We will refer to (3.25) as the covariance
trace bound and to (3.26) as the forecast covariance bound. In this section, we require the
following additional notation: given two positive sequences {a,} and {b,}, the relation
an < by, denotes that ay, < cby, for some constant ¢ > 0. If the constant ¢ depends on some
quantity 7, then we write a <; b. Throughout, we denote positive universal constants by

¢, c1,¢9,c3,c4, and the value of a universal constant may differ from line to line. In some
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cases, the explicit dependence of a universal constant on the parameter 7 is indicated by
writing ¢(7).

This section is organized as follows. Subsection 3.5.1 contains preliminary results. We
then prove the base case j = 1 in Subsection 3.5.2. Finally, in Subsection 3.5.3 we show that
the bounds (3.17), (3.18), (3.25), and (3.26) hold for j assuming they hold for all £ < j — 1.

3.5.1  Preliminary Results

Lemma 3.5.1 (Operator Norm of Covariance). For any j > 0, let »U) be the analysis
covariance at iteration j. Then,
7j—1
=D < APPSO+ 21D 1A < (14 2L IED)L ).
(=0
Proof. By Lemma 3.7.6, |%(C)| < |C], and so
=W =12V <0V = |42V~ AT + 5] < |APIsV7Y] + |5
7j—1

<JAZU2| 4+ |APIE + 2] < - < AP0 4 1213 1412
/=0

Lemma 3.5.2 (Trace of Offset). For any j > 1, we have that

THOY)) < |HPEW) T[T~ PV TH W)

+ 201 + |G| H 2L e\ E W) H| T W),
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Proof. Write OU ZZ 10 ) with

6%7') = o (CONTU) — 1) T (CU),
O = (1 — A (CUNH)CE) 2T (EU)),

OV = (CONCYNT (1= HT A T(CDY),

By linearity of the trace, Tr( 7)) = Zﬂ 1 Tr(Oy 0V )). Note first that by Lemma 3.7.6 applied

four times

T(OV)y < [10) — T|Te( T (CW). (GU)Y)
=00 —Te((HCYHT + ) HEONYTCD T (HCWHT + 1)1
<tV 1 HCVEHET + 1) 12T (CONTCUHT H)
< [HPIPW —T||(HCWHT + 1)~ 2CW|Te(CW))

< |HPMW) — 1|01 2100 T (CW)),

where the final inequality holds since H CUHT +T > T implies that T—1 = (HCV cUHT +

F)_l. Invoking once more Lemma 3.7.6 repeatedly, we get that

Te(OF)) = Te((1 — 7 ( DYy eh) e T ()
< (I = 2 (CYYH)|Te(C un%T((ﬂ )))
< (I = A (COYE)|(HCDHT + 1) Y me(HEDEY))
< |(1 = (@ E)|[(HCDHT + 1)~ C9) HTR(C VD))

< 1+ |CONHP Y EW H T EW)),
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where the last inequality holds since, by Lemma 3.7.1,

(I — 2 (CONH)| <1+ | (COYH| <1+ |CO)||HP DY,

Finally, note that since Oéj ) = (Oé] ))T, the analysis of Oé‘j ) follows in similar fashion.  [J

3.5.2 Base Case

In the next four subsections we establish the covariance trace bound (3.25), the forecast
covariance bound (3.26), the mean bound (3.17), and the covariance bound (3.18) in the

base case j = 1.

Covariance Trace Bound

Since $(0) = E(O), we directly obtain that

ITEEO) g = Te(2@) = 2O}y (2O),
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Forecast Covariance Bound

Let q € {q,2q,4q}. Tt follows by the triangle inequality, Theorem 3.7.5, and Lemma 3.7.7

that
11EW — cWjlq < JAPIIS® — Ofjlq + [1ED — Z)llq +214]11E g
<, JAZSO) 7”2(]2\7(0))“& 7“2](\[5)
+2m<zm>va>(wTﬂ§m)vv@§5)
<c@4Jﬂm,E¢n(wﬁ¥§92v¢E%§)‘ (3.27)
Mean Bound

By Lemma 3.7.2,

1A = 1Ol = Il (@D, EW:y W) — (), Oyl + 12 (E ]l

< [ —m @)+ 1P ED gl —mVly,

+[ICY — W =T (1 + [HPAT W) |y — Bm)]

+ [/ @Dyl

The mean bound (3.17) with j = 1 is then a direct consequence of the bounds that we now

establish on ||| — mM|||4 for q € {g,2¢} and on ||| (CM)7M]||,.
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Controlling [[|m(}) — m(1)|||q for q € {q,2¢} It follows by the triangle inequality and

Lemma 3.7.9 applied twice that

70 —mW[g < 1A — 1Ol + 11ED]llq <q 141120 u/ :
_ )y =
< (|41, 120}, 2], ) (\/TQ(N Ly 22t >) -

Controlling H|j£/(6(1))7'7(1)||]q By Cauchy-Schwarz

112 @Ml < 112 (C)l2g 7™M lll2g-

We bound each term in turn. By Lemma 3.7.9, |||7(* H|2q <¢ VIr(T)/N = /IT|ra(T)

and by Lemma 3.7.1 and the forecast covariance bound (3.27),

114/ CM)llzg < [HIITHINCM log < 1H|IT 1|(IHC !quHC

SIHITHICW (AL IZOL 2] ) ( vy Ry 2 )
Therefore,
N B »(0) = r
Il @)V, < (1.5, 2], A1, [T D). g (\/ vy )) ‘
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Covariance Bound

From Lemma 3.7.3 and the forecast covariance bound derived in Subsection 3.5.2, we have

I1EW — =Wy, < 1€ @) =g )|llg + 1101l
< |CY — WYy + [HPTYIcW))

+([HPIC Y+ [H A P ct |||2q|||0 Dlll2g + 110M]11g

< c(|Al1H], 171,120, 2], 9) (\/ \/T2 )+0 g

To derive the covariance bound (3.18), we need to control the offset term |||6(1)|||q. First,

using the triangle inequality we write

10l < 12/ EDYTD = 1) T ED) |1y + (1 = 2 (EDYE) ) T (@D,
+ (112 EOYCUNT (1= HT T,

A1 A (1 A (1
= 10" llg + 11O 1llg + 11051l
We next bound each term in turn.

Controlling || |OA§1) |l By Lemma 3.7.1, Theorem 3.7.5, and the forecast covariance bound
(3.27), it holds that

12 (CYTW — 1) T(CEW)|llg < 122 (CONIFMTD —T]lo

210—11211A(1)
< [HPTRICOENT = Tljg

2
<o [P0y AT ( 2B @) )>

H|. T[T} »( ra(l
< ¢(|H|, |}, [0, 1], (2O ) N,
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where the last inequality uses the fact that N > ro(3(0) v 1y (2) v o ().

Controlling || |O§1)||]q By Lemma 3.7.1, Lemma 3.7.7, and the forecast covariance bound

(3.27), we get

(1 = 2 @D 2T DY, < N1 CED)1 = 2 ( ED)EIED],
< 12 (C DY (1 + | (O[T g

/\1 _ ~ _ ~
< ICW g (TNl + [HPITTIED 2|y,

»(0) = r

< o] 150 [.g) (1w 2ED 2By D)

31 Tie—112Y (15(0) ra(2(0) \/7“2(5) \/7’2(F)

x (T [HI0 ) (2O v ) | Z= v B v 2
-1 0)] |= [r2(5(0)) \/7‘2(5) \/TQ(F)
SC(’A‘7’H|?’F |7’F|7’Z |7’“|>Q) N \% N v N

. A (1 A (1 A (1
Controlling [||O{"[|, Note that [||O{"[]l, = [|OS]ll,.

3.5.8  Induction Step

(0 =
In this subsection, to reduce notation we write {2 = \/ w Vv \/ sz(\,“) Vv \/ TQJ(\,F). Through-

out, we work under the inductive hypothesis that, for all £ < j — 1, it holds that

NTeEED) g < erg(20), IO = cOq < 92, 528,
3.28
1Y = 1 Dllg < 39, 12 - £Dllg < es2,
where ¢1, co, c3, and ¢4 are constants depending on |Z(0)\, |Al, | H|, ]F_l\, IT'|, |Z|, ¢ and j, and

c3 additionally depends on {|y() — Hm(i)|}i§g_1. For the remainder of the proof, ¢ and ¢/

denote constants that depend on (0], |A|,|H|,|TY|,|T],|Z|,¢ and j, and ¢ additionally
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depends on {|y(¥) — Hm(i)|}i§g_1 and are potentially different from line to line. In the next
four subsections we show that, under the inductive hypothesis, the four bounds in (3.28) also
hold for ¢ = j. Throughout, we use without further notice that [S0] < ¢(|Al,|Z],|2©)], 0),

which was proved in Lemma 3.5.1.

Covariance Trace Bound

By Lemma 3.7.3, Tr(‘ﬁ(a(j_l))) < Tr(é\(j_l)) follows from the fact that %(é(f—ﬂ) =<

6(j_1), and so
ITe(EU D)y < [ITe(@(CU=D)) g + [ Te(OV D) |y < ITe(CU) g + [ Te(OU D),

We will show that both of the terms on the right-hand side are bounded above by a constant

times 79(2(0)).
Controlling ||Tr(a(j_1))||q Noting first that

E [50*1)@@*2), i(j%)} _E [ ASU=2 AT L 26-1) A@Sjg” 4 agl) AT|a0=2), g(ﬂ)]

—E [As(j—Z)AT‘ﬁ(j—Z)’i(j—2)] _ASG-2 4T,
and by Lemma 3.7.6, it holds almost surely that

Tr(ASU24T) < [APTH(SUY) = [APS0-2)|ry(S0-2),
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Then, by iterated expectations and Lemma 3.7.8, we have

where the second to last inequality holds by the inductive hypothesis (3.28).

Controlling ||O(j_1)||q By definition, we have

01 = (CU=D)TU-D 1) T(EUD) 1 (1 — 2 (CUD)m) e e T (D)

F A (CUINEE) T (1= HT A T(EU)
(

Therefore, || Tr(OU=D)[l, < [T(OY )l + [T(OF ™ )g + T2 (OY D)4,

Controlling || Tr(O g )Hq By Lemma 3.5.2,

Tr(OY Yy < |H2PG-Y - p|p=Y 2 EU- D (G,
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and so

1T OVl < [HRIDLRE0-D — 0| 0D T @G-y,

< [HPITTRT0Y = 1) lag ICY D14 Te(CYT=1) 4

By Theorem 3.7.5, |||~ — Llllog Sq T4/ ngiflﬂ)’ and by the inductive hypothesis (3.28)

and the fact that |CU—1| < |A]220U2)| + |2, we have
CU=Dl4g < |CU=V] 4 |CUD — U D]y < c(1v Q).

We have also previously shown that || Tr(CU~1) lag S r9(2(0)). Noting that (1V Q) ro(2(0)) <

~Y

ra(S0), we get that [Tr(OY )|, < ery(2©),
Controlling |||ﬁ(é§j_1))|||q By Lemma 3.5.2,

(05 V) < (1+ (U Yr=tm) 0, Y T i),
Therefore,

O™ N [ly < (1 + 1Tl ogl HPT DO H G 4 Tr( D) 14y
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By iterated expectation, Lemma 3.7.7, and Lemma 3.7.8 we have, for q € {q, 2q, 4q},

Nes? |||q_E[ [CERAIE /q

—2
B2y oy (222 vy
(s (-2
< (1S9 lgg v 1) H\/w v«# NCEY
2q

By the triangle inequality and the inductive hypothesis (3.28), it follows that

IEU=2lloq < I1EV2) = U= |lgq + 202 <c(1vQ),

and also that

[ro(S0=2)) . (S0-2)\1
) B _ r9 B
N = [( N ) ] ~E
2q
o=

Using identical arguments to those used to control |||Tr(Oy )|Hq, we have that

N q
(%) ] < N7 (xO))a,

ITe(OF ™ V)lly < era(=®).
Controlling ||Tr(OY )|, Note that [Tr(OY ||, = [IT:(OY )|l,.

Forecast Covariance Bound

Let q € {q,2q,4q}. By the triangle inequality, the inductive hypothesis (3.28), and Theo-

rem 3.7.5, we have
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1G9~ g < |APIISY™D = 0Dl + 129 - =]l + 20A1NIC g

< 1AP (I1sU=D = SGD) g + 26D = £UD)g) + 12D = g + 20 AINEL g

< clA (JIsU=D — £6-V]g + Q) + |2 (1 v %) +2/A][16Y -

The forecast covariance bound (3.26) is then a direct consequence of the bounds that we

now establish on [[|0%7)][lq and [[|SU~1) — £0-1|,.

Controlling H\éfjguyq By an identical analysis to the one used in bounding H@%H‘q in

(3.29), we have that

|||C Ullg < e (3.30)

Controlling |||SU—Y — i(jfl)mq By iterated expectations and Theorem 3.7.5, we have

D $6- 1)”

al-
S(— q/2 q/2
Sq E |§](j—1)|q M) —E |§(j—1)|q/2 ( )

N
< \/Eyi(j—l)m\ E

By the covariance trace bound proved in Subsection 3.5.3 and the inductive hypothesis

=1 — f;(j—l)wg —E [|5(J’—1) _ f;(j—l)‘q] —E lE DS(J'—I) S

Tr(50-1)]*
==

(3.28), we then have that H|S(j_1) — i(j—l)mq < Q.
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Mean Bound

By Lemma 3.7.2, we have
IAY = 1 Dllg = ([l (@D, CD: 9y — (D), Dy D)llg + 12 (C7
<[R9 —m@1| +1HPIEED 22D~ m Dl
+IC — O g | (14 HPEHICV) ) — Hml)

+ |/ (CUYFD .

The induction step for the mean bound (3.17) is then a direct consequence of the bounds

that we now establish on |||[m(/) — m(j)\Hq for q € {q,2¢} and on ]||,}£/(5(j))7'7(j)]\|q.

Controlling [||m) — m(j)|\|q for q € {¢,2¢q} It follows by the triangle inequality and the

inductive hypothesis (3.28) that

R0 —m@|lg < A=Y = nU=V g + 1E9]]|q

< 14| (11891 = B Dllg + AT = 1= Dlllg) + 119 lq

< a1 (110 30V y + ) + (a2l 2

By iterated expectations, Lemma 3.7.9, and the covariance trace bound proved in Sub-

section 3.5.3, it follows that

[at-b — ﬂ(j—1)|||g —E[[al~) - pl-D99) = {E [W(J—l) — =Dy ‘ﬂ(j—l)’ f](j—l)”

< E {(Tr@@%)q/ 2] < (rz<z<0>>>°'/2,
N N

and so [||ml) —m)|||q < 9.
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Controlling ¢ (C19))70)[||;  Note first that [[[#(C)n)|[lg < ([ (CO)|[lag]| 179 l|2q-

We then have by Lemma 3.7.9, |||7\/ H|2q <q \/Tr \/|F\T2 , and by Lemma 3.7.1 and

the forecast covariance bound established in Subsection 3.5.3, we have

11 (CD)lllag < [HIDHICD ll2q < [HIITY (JICD) = ¢Dlgq + D))

<[H||IHe(1v Q).
Therefore, |||<%/(a(j))7_7(j)|”q < L.

Covariance Bound

By Lemma 3.7.3, we have

1150 — W), < 11€(CWD) —g(CI)]||g + 1094
<|[ICWD — cDI|ly(1 + |APTHCW))

+ (AP + 1A PICUD[[CD g [|]CD) = ¢ll2g + [[|0D]]lg.

The induction step for the forecast covariance has been proved in Subsection 3.5.3, and so in
order to show the induction step for the covariance bound we only need to control the offset

term. First, using the triangle inequality, we write

1OW]|lq < |l (CUNTW — 1) T(CU||g + (I — #(CYU 1 )c&%%W Nl

I @ONEINT (1 = BT TEDY) Iy = 1014 + 110511, + 1051,

We next bound each term in turn.
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Controlling ||O ”q By Lemma 3.7.1, the forecast covariance bound established in Sub-

section 3.5.3, and Theorem 3.7.5, it holds that

10W1, = |2 (YT — 1) T(@D)),

2ir—112111 A7 2 (7
<12 (CNNFNTD = Tfllag < [HPTPICD[FITY) - D[l

(@) [ra(D)
N ~ N’

<c(1vQ)>?
where the last inequality uses that by assumption N > 7“2(2( )) Vra(Z) Vre(l).

Controlling HO Hq By Lemma 3.7.1, inequality (3.30), and the forecast covariance bound

established in Subsection 3.5.3, we get

1091y = 1(1 = 22 EDYE) G o T(ED) g < [11#/(C9Y||T = 2 (COYENCD,
< 1 D)1 + L (O EDNED g

< NET g (LT NED g + [HPT T PIICD P2 ) < e
Controlling ||O ||q Note that ||O ||q = ||O ||q

3.6 Conclusions

This chapter has investigated REnKF, a modification of EnKF with improved theoretical
guarantees. Theorem 3.3.2 gives non-asymptotic error bounds for a stochastic EnKF over
multiple assimilation cycles. Numerical experiments demonstrate that the benefits of intro-
ducing resampling for theory purposes do not come at the price of a deterioration in state
estimation or uncertainty quantification tasks.

Resampling techniques for ensemble Kalman algorithms deserve further research. From

a theory viewpoint, resampling offers a promising path to develop long-time filter accuracy
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theory, blending our inductive analysis with existing results that ensure long-time stability of
the filtering distributions Sanz-Alonso and Stuart [2015]. From a methodological viewpoint,
other resampling schemes can be considered Naesseth et al. [2018]. Finally, while our nu-
merical investigation has focused on settings where the standard EnKF algorithm is effective,
an important open problem is to identify dynamical systems and/or observation models for

which resampling may offer an empirical advantage.

3.7 Additional Results

3.7.1 Metrics for Numerical Results

In this appendix, we give a more extensive description of the Monte Carlo procedure utilized
to calculate the metrics referred to in Section 3.4. We summarize the approach in Algo-
rithm 0. We require the following additional notation: We write diag(A) = (A1, Aga, ..., Agg) "
For a function g : R = R, g(u) = (g(u(1)),... ,g(u(al)))T is the element-wise application of

g to u.

3.7.2 Technical Results

Additional Notation

Given a non-decreasing, non-zero convex function ¢ : [0, 00] — [0, 00] with ¢(0) = 0, the
Orlicz norm of a real random variable X is || X[, = inf{t > 0 : Elp(t~11X])] < 1}. In
particular, for the choice ¥p(z) = e® — 1 for p > 1, real random variables that satisfy
| Xl yp, < oo are referred to as sub-Gaussian, and those that satisfy [|.X||,, < oo are sub-
Exponential. The random vector Y is sub-Gaussian (sub-Exponential) if Hv—rYHw2 < 00

(||?)—|—Y||z/}1 < 00) for any vector v satisfying |v|g = 1.
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Algorithm 3 Metrics Calculation for Numerical Results

1:

Fixed Quantltles Ground-truth state {u{ } _q» Observations {yU }‘.]:1, and Kalman
filter means {u/ }jzl

2: Monte Carlo Trials: For m = 1,2,..., M run algorithm A € {EnKF(1),REnKF(2)}
and obtain {ZZ&Z)’A, i%)’A}j’n]\f.
3: Mean Error:
J . J
m Linear ~ Z ILL(J)IQ’ m L96 = Z /’Lm —u j 2 (331)
Confidence Interval: Let &%)’A = diag(i%)’A), then compute
(DA _ ZU0A 4 96 &ﬁ,{)’A, (Interval)
2 1
A . 96 Z |G, (Average Width)
(3.32)
1 . .
VA = 77 Z Z l{u(j)(z') € I%)’A(i)}. (Average Coverage)
j=1i=1
4: Output:

m=1 (3.33)

M 1 M
Lmear - Z M, Linear? ELAQG = Z E/TAYL,L967
M
Z
m
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Background Results

Lemma 3.7.1 (Properties of the Kalman Gain Operator [Kwiatkowski and Mandel, 2015,
Lemma 4.1 & Corollary 4.2]). Let % be the Kalman gain operator defined in (3.12). Let
P,Qe 8%, TeSh , and H € R**9. The following hold:

H(Q) = #(P)] < |Q — PI[H|IT™Y(1+ min (1P|, |QI) [H[T7),
(@) < [QIH|ITY,

11— (QH| <1+ |Q|H|T .

Lemma 3.7.2 (Properties of the Mean-Update Operator [Kwiatkowski and Mandel, 2015,
Lemma 4.10]). Let .# be the mean-update operator defined in (3.13). Let m € R% be a
random vector and ) be a random matriz such that () € Si almost surely. Let P € S,
I'e Sﬁ"_+, H e Rkxd Yy e Rk, and m’ € R? be deterministic. Then, for any 1 < q¢ < oo and

y € R¥ it holds that

-t (m. Qsy) — A Pig)llg < [l — ||, + [P 11Ql 2 [l — |,

~1 2p—1
+1Q = PlllglHIT™ (1 + [H[FIT||P]) |y — Hm].

Lemma 3.7.3 (Properties of the Covariance-Update Operator [Kwiatkowski and Mandel,
2015, Lemmas 4.6 & 4.8]). Let € be the covariance-update operator defined in (3.14). Let
P.Q,m,m',y, H and T" all be defined as in Lemma 3.7.2. Then, for any 1 < q < oo, it holds

that

02%(Q) 2@, [|2(Q) <A,
1€(@Q) = (Pl < I1Q = Plllg(1 + [HI*IT~| P])

-1 41—1
+ (HPE A+ [HT PP Q2@ = P2

Theorem 3.7.4 (Gaussian Norm Concentration, |Vershynin, 2018, Exercise 6.3.5]). Let
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X € R? be a Gaussian random vector with E[X] = pX | var{X] = ©X. Then, for any t > 1,

with probability at least 1 — ce™t it holds that

X = 1Kl S/ THEX) + \JUEX] S IEX[ra(2X) v ).

Theorem 3.7.5 (Covariance Bound, [Koltchinskii and Lounici, 2017, Corollary 2|). Let
X1,...,Xp be ii.d.  copies of a d-dimensional Gaussian vector X with E[X] = 0 and
var[X] = X. Let S = % 2y XZ-XZ-T be the sample covariance estimator. For any q > 1, it

1=

holds that

IS = Slly g 1 ( 25, 7“2@)) .

n
Lemma 3.7.6. Let A, B € S¢. It holds that
Tr(AB) < |A| Ti(B).

Lemma 3.7.7 (Cross-Covariance Estimation —Unstructured Case). Let uy,...,uy € R4
be i.i.d. Gaussian random vectors with E[u1] = m and varfuy] = C. Let n,...,ny € RF
be i.i.d. Gaussian random vectors with E[n1] = 0 and var[n] =T, and assume that the two

sequences are independent. Let
~ 1 N
Cluny = N_1 Z(“n — @) — )",
n=1
and assume that N > ro(C) V ro(T"). Then,

I1Cunlllg o (1C1 VT (J ECIRY, ”jV”) .

Proof. By |Al-Ghattas and Sanz-Alonso, 2024b, Lemma A.3|, there exists a constant ¢ such
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that, for all ¢ > 1, it holds with probability at least 1 — ce ™" that

|6wusmﬂvwo(¢@%ﬁvvﬁ%2vx@§v%),

Integrating the tail bound then yields the result. O

Lemma 3.7.8. Let Xq,..., X, be i.i.d. copies of a d-dimensional Gaussian vector X with
E[X] = 0 and var[X] = . Let & = % "L X; X" be the sample covariance estimator.

Then, for any 6 > 1, it holds with probability at least 1 — 279 that

~ )
Tr(3) — Tr(X)| < cTr(X -V —].
ITH(E) ~ 17 N_cr()< nvn)
Further, for any q > 1,
& Tr(%)
I1TH(X) = Tr(E)[llq Sq N

Proof. Let Z;; = Zj_jl/2XZ-j and note that, for any ¢ > 0,

n d

P(ITr(Z) — Te(D)] > ) =P(Tr(E-%)[ > 1) =P [ D [ D (X} —EX}) || > nt
i=1 \j=1
d

I

~
I
—_

2 2
7=1

Note that the random variables Z;'izl Ejj(Zin — EZZZJ-) for © = 1,...,n are independent,
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mean-zero and sub-exponential with 11 norm at most C'Tr(X), since

d d
Z% ~EZ}) SZEJ'J'(Z%—EZ% wlﬁcz%"zz
R j=1
d ) d
=0 %2yl <C Z = CTr(2

The second inequality holds due to the Centering Lemma, [Vershynin, 2018, Lemma 2.6.8|.

Therefore, by Bernstein’s inequality we have

P Z Zzﬂ —EZZ) || > nt §2exp(—Cmin<(TZ§))2’TrTz;)))'

1=1 \y=1

For the expectation bound, we note that

ITe(S) — Te() |4 = /0 T P(THE) — Tr(D))7 > 1) de
§<q+q/ 19 1P(Te(S) — Te(S)| > ) dt
C

< [Tt (- cmm( V)
(¢/2)(Tr(X ()(Tr(Z)) )

nQ/Q ’ nd

= (% + 2gcmax <

Taking ¢ = Tr(X)/n, it then follows that

N 1 1 Tr(X
I1THE) ~ Tl ¢+ eTr(ymax (=, 1) 5 20,
O
Lemma 3.7.9. Let Xq,..., X, be i...d. copies of a d-dimensional Gaussian vector X with
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E[X] = p and var{X] = . Let X = % ZnNzl Xn. Then, for any g > 1,

- Tr(%)
X — < .
|H M’Hq ~q N

Proof. Let cg := c14/Tr(X)/N where ¢ is a sufficiently large positive constant, then

(.¢]

— w - -
E[!X—u\q}—/o P(IX—u|q>y)dy§c%+/ P(IX — pl? > y)dy

€2

X0
= ¢ +/ qy?IP(IX — | > y) dy
C:

2
~1
o )\ _ (D)
_q+/ ) p(x - \ ot | dt
“ ¢3—CTr(S/N) ! (C N ) (' H=e N

where the last equality holds by a change of variable. By Theorem 3.7.4 it follows that
P(IX — pt| > ¢/Tr(Z) +t) < exp(—ct?/|%]), and so the expression in the above display is

bounded above by

q—1
00 Tr( 2
cg —I—/ e £ +t exp (—C2nt ) dt
co—cTr(X/N) N |2|

)
%)q/2+%(CT§\S ))(ql)/Q %>
)

q/2 JTr q/2
SGta %F(Q/2) N %(T]\(,E)> )
Tr(x)\ %2
(%)

Therefore,




where the last inequality holds since Tr(3) > |X| and the choice of co.

156



CHAPTER 4
COVARIANCE OPERATOR ESTIMATION: SPARSITY,
LENGTHSCALE, AND ENSEMBLE KALMAN FILTERS

This chapter is adapted from the publication listed below and is used with permission of the
publisher.

O. Al-Ghattas, J. Chen, D. Sanz-Alonso, and N. Waniorek, Covariance operator estimation.:
sparsity, lengthscale, and ensemble Kalman filters, Bernoulli, 31(3), 2377-2402, 2025

4.1 Introduction

This chapter studies thresholded estimation of the covariance operator of a Gaussian random
field. Under a sparsity assumption on the covariance model, we bound the estimation error
in terms of the sparsity level and the expected supremum of the field. Using this bound,
we then analyze covariance operator estimation in the interesting regime where the corre-
lation lengthscale is small, and show that the thresholded covariance estimator achieves an
exponential improvement in sample complexity compared with the standard sample covari-
ance estimator. As an application of the theory, we demonstrate the advantage of using
thresholded covariance estimators within ensemble Kalman filters.

The first contribution of this chapter is to lift the theory of covariance estimation from
finite to infinite dimension. In the finite-dimensional setting, a rich body of work Wu and
Pourahmadi [2003|, Bickel and Levina [2008b], El Karoui [2008], Cai and Yuan [2012], Cai
and Zhou [2012a,b], Chen et al. [2012], Wainwright [2019], Al-Ghattas and Sanz-Alonso
[2024b| shows that, exploiting various forms of sparsity, it is possible to consistently esti-
mate the covariance matrix of a vector u € R% with N ~ log(d,,) samples. The sparsity of
the covariance matrix —along with the use of thresholded, tapered, or banded estimators

that exploit this structure— facilitates an exponential improvement in sample complexity

157



relative to the unstructured case, where N ~ d, samples are needed Bai and Yin [2008],
Gordon [1985], Vershynin [2010]. In this work we investigate the setting in which u is an
infinite-dimensional random field with an approximately sparse covariance model. Specifi-
cally, we generalize notions of approximate sparsity often employed in the finite-dimensional
covariance estimation literature Bickel and Levina [2008a], Cai and Zhou [2012b]. We show
that the statistical error of thresholded estimators can be bounded in terms of the expected
supremum of the field and the sparsity level, the latter of which quantifies the rate of spa-
tial decay of correlations of the random field. Our analysis not only lifts existing theory
from finite to infinite dimension, but also provides non-asymptotic moment bounds not yet
available in finite dimension.

The second contribution of this chapter is to showcase the benefit of thresholding in
the challenging regime where the correlation lengthscale of the field is small relative to the
size of the physical domain. While a vast literature in nonparametric statistics Ghosal and
van der Vaart [2017] and approximation theory Wendland [2004] highlights the key role
of smoothness in determining optimal convergence rates for many nonparametric estimation
tasks, our non-asymptotic theory emphasizes that the lengthscale rather than the smoothness
of the covariance function drives the difficulty of the estimation problem and the advantage
of thresholded estimators.

Fields with small correlation lengthscale are ubiquitous in applications. For instance, they
arise naturally in climate science and numerical weather forecasting, where global forecasts
need to account for the effect of local processes with a small correlation lengthscale, such as
cloud formation or propagation of gravitational waves. We show that thresholded estimators
achieve an exponential improvement in sample complexity: For a field with lengthscale A
in d-dimensional physical space, the standard sample covariance requires N ~ A—d samples,
while thresholded estimators only require N ~ log(A_d). Therefore, our theory suggests

that the parameter A—d plays the same role in infinite dimension as d,, in the classical finite-
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dimensional setting. To analyze thresholded estimators in the small lengthscale regime, we
use our general non-asymptotic moment bounds and the sharp scaling of sparsity level and
expected supremum with lengthscale.

The third contribution of this chapter is to demonstrate the advantage of using thresh-
olded covariance estimators within ensemble Kalman filters Evensen [2009]. Our interest in
covariance operator estimation was motivated by the widespread use of localization tech-
niques within ensemble Kalman methods in inverse problems and data assimilation, see e.g.
Houtekamer and Mitchell [2001], Houtekamer and Zhang [2016], Farchi and Bocquet [2019],
Tong and Morzfeld [2023], Chen et al. [2022]. Many inverse problems in medical imaging and
the geophysical sciences are most naturally formulated in function space Stuart [2010], Bui-
Thanh et al. [2013], Bigoni et al. [2020]; likewise, data assimilation is primarily concerned
with sequential estimation of spatial fields, e.g. temperature or precipitation Kalnay [2003],
Carrassi et al. [2018]. Theoretical insight for these applications calls for sparse covariance
estimation theory in function space, which has not been the focus in the literature. Perhaps
partly for this reason, the empirical success of localization techniques in ensemble Kalman
methods is poorly understood, with few exceptions that study localization in finite dimen-
sion Tong [2018], Al-Ghattas and Sanz-Alonso [2024b]. The work Sanz-Alonso and Waniorek
[2024] studies the behavior of ensemble Kalman methods under mesh discretization, but it
does not consider localization. In this chapter, we use our novel non-asymptotic covariance
estimation theory to obtain a sufficient sample size to approximate an idealized mean-field
ensemble Kalman filter using a localized ensemble Kalman update. In finite dimension,
Al-Ghattas and Sanz-Alonso [2024b| studies the ensemble approximation of mean-field algo-
rithms for inverse problems and Al-Ghattas et al. [2024a] conducts a multi-step analysis of
ensemble Kalman filters without localization.

The chapter is organized as follows. We first state and discuss our three main theorems

in the following section. Then, the next three sections contain the proof of these theorems,
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along with further auxiliary results of independent interest. We close with conclusions,
discussion, and future directions.

< b, denotes

~

Notation Given two positive sequences {ay,} and {b,}, the relation a
that a, < cby, for some constant ¢ > 0. If the constant ¢ depends on some quantity 7, then
we write a <7 b. If both a,, < by, and by, < ay, hold simultaneously, then we write ay, =< by,.
For a finite-dimensional vector a, |a| denotes its FEuclidean norm. For an operator A, || All

denotes its operator norm, A* its adjoint, and Tr(.A) its trace.

4.2 Main Results

This section states and discusses the main results of the chapter. In Subsection 4.2.1 we ana-
lyze the thresholded sample covariance estimator in a general setting, and establish moment
bounds in Theorem 4.2.2. In Subsection 4.2.2 we consider a small lengthscale regime, and
show in Theorem 4.2.8 that the thresholded estimator significantly improves upon the stan-
dard sample covariance estimator. Finally, in Subsection 4.2.3 we apply our new covariance
estimation theory to demonstrate the advantage of using thresholded covariance estimators

within ensemble Kalman filters.

4.2.1 Thresholded Estimation of Covariance Operators

Let w,u,u9,...,u)n be i.7.d. centered almost surely continuous Gaussian random functions
on D = [0,1]¢ taking values in R with covariance function (kernel) k& : D x D — R and

covariance operator C : LQ(D) — LZ(D), so that, for z,2’ € D and ¢ € LZ(D),

k(x,2') := E[u(x)u(x/)}, (CY)(+) == /D k(- 2")y(2)) do’.
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The sample covariance function k(z,z’) and sample covariance operator C are defined anal-

ogously by

We introduce the thresholded sample covariance estimators with thresholding parameter pyr

EpN(a:,x/) = Rx?x,)1{|E(m,x’)|2pN}(x’I/)’ (é\pN V)() = /D%pN(’axl)zﬁ(I/) da’,

where 14 denotes the indicator function of the set A. Our first main result, Theorem 4.2.2

below, relies on the following general assumption:

Assumption 4.2.1. u,ui,u9,...,un are i.i.d. centered almost surely continuous Gaussian
random functions on D = [0, 1]d taking values in R with covariance function k. Moreover,

the following holds:
(1) supgep E[u(x)ﬂ =1.
1
(ii) For some q € (0,1) and Ry > 0, sup,cp (fD k(z,2")|4 dx/) 7 < Ry.

We assume fully observed functional data and defer extensions to partially observed
data James et al. [2000], James and Sugar [2003], Yao et al. [2005a,b], Qiao et al. [2020],
Fang et al. [2023| to future work. Assumption 4.2.1 (i) normalizes the fields to have unit
maximum marginal variance over D. Assumption 4.2.1 (ii) generalizes standard notions of
sparsity in finite dimension to our infinite-dimensional setting —refer e.g. to Bickel and
Levina [2008a|, Cai and Zhou [2012b], Wainwright [2019], which study estimation of a co-
variance matrix > = (aij) € R%w*du ypder the row-wise approximate sparsity assumption
that max; Z;li1 o1 < }N%g

Our first main result establishes moment bounds on the deviation of the thresholded

covariance estimator from its target in terms of the approximate sparsity level 7y and the
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expected supremum of the field, the latter of which determines the scaling of ppr. We prove

Theorem 4.2.2 and several auxiliary results of independent interest in Section 4.3.

Theorem 4.2.2. Suppose that Assumption 4.2.1 holds. Let 1 < ¢y < /N and set

1 1 1 2
PN = € —\/—E[sup u(a:)} \/—<E[sup u(m)]) ] , (4.1)
N N ltzeD N\ Laep
[ N N
~ 1 1 1 1/1 2
PN =¢ | =V —= (— sup u (:r;)) v —(— sup u (x)) (4.2)
N NN nzlxeD ! NAN nz ep
Then, for any p > 1,
2 Py <. pil=a —<N(pnA k)
[ElCsy —CIP]» <p Rgpy * + pye : (4.3)

where ¢ 1s a universal constant.

An appealing feature of Theorem 4.2.2 is that it holds for any sample size N > 1. The

following immediate corollary provides a simplified statement which holds for sufficiently

large sample size.

Corollary 4.2.3. Suppose that Assumption 4.2.1 holds and that VN > E[supxeD u(a:)} >

1
iR Set
—E sup u(s)
pN = —=E| sup u(z)|,
\/N xeD
Then, for any p > 1,
~ 1
[EHCﬁN _CHp}p

where ¢ 1s a universal constant.

1- —<N
Sp Rgp]v 4 pyer

162



To the best of our knowledge, Theorem 4.2.2 and Corollary 4.2.3 are the first results
in the literature to consider covariance operator estimation under the natural sparsity As-
sumption 4.2.1 (ii). As will be discussed next, the first of the two terms in the right-hand
side of (4.3) is reminiscent of existing results for covariance matrix estimation. The second
term in (4.3) depends only on the expected supremum of the field, and, as we will show in
Subsection 4.2.2, it is negligible in the small lengthscale regime.

For covariance matrix estimation under /g4-sparsity, [Wainwright, 2019, Theorem 6.27]
proves that if the sample covariance matrix satisfies @U =%l S oy forall 1 < i, j < dy,
then the error of an estimator with thresholding parameter ppn can be bounded by }N%gﬁ]lv_q,

where ﬁiq is a quantity analogous to our Ry that controls the row-wise {4-sparsity of ¥. This

explains the choice of thresholding parameter

1 1
on < ——+/logdy, < —E | max wu;
PN =NV S N [1§i§>c(lu ’]

in finite dimension, which ensures an entry-wise control on the sample covariance matrix with
high probability. Analogously, our infinite-dimensional theory relies on sup-norm bounds for
the sample covariance function E(:c,x' ); we obtain these bounds in Subsection 4.3.1 using
tools from empirical process theory. For instance, Proposition 4.3.3 shows that with our
choice of thresholding parameter pp, we have sup,cp ‘E(I,J}/) — k(x,2")| < py with high
probability. Therefore, Theorem 4.2.2 and Corollary 4.2.3 reveal that the expected supremum
is the key dimension-free quantity that determines the choice of thresholding parameter and
the error of estimation in both finite and infinite-dimensional settings. Since in practice the
expected supremum of the field (and hence ppr) is unknown, we replace it with pp to define
a computable thresholded estimator CAﬁN. The concentration of py around ppy is established

in Lemma 4.3.4.

Remark 4.2.4. In contrast to existing results in the finite-dimensional setting (see e.g.

Bickel and Levina [2008a], Cai and Zhou [2012b], Wainwright [2019]) that provide in-probability
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bounds or moment bounds of order up to p = 2, Theorem 4.2.2 provides moment bounds for
allp > 1. For example, [Wainwright, 2019, Theorem 6.27] shows a high-probability statement
where py necessarily depends on the desired confidence level. Consequently, [Wainwright,
2019, Theorem 6.27] cannot be used to derive moment bounds of arbitrary order. In contrast,
Theorem 4.2.2 shows that the tuning parameter of the covariance operator estimator need not
be tied to the confidence level. The proof technique therefore contributes to the literature on
confidence parameter independent estimators; see e.g. Bellec et al. [2018] for an analogous
finding that, contrary to standard practice Bickel et al. [2009], the Lasso tuning parameter

need not depend on the confidence level.

Remark 4.2.5. The proof of the small lengthscale results in Subsections 4.2.2 and 4.2.3
utilizes Theorem 4.2.2 with a careful choice of thresholding parameter prefactor cy. However,
the exponential improvement in sample complexity established in Theorems 4.2.8 and 4.2.10
holds for any fized value ¢y = 1. As noted in [Bickel and Levina, 2008a, Section 3] and
[Cai and Liu, 2011, Section 4], establishing an optimal choice of prefactor cy is challenging
even in the simpler setting of covariance matrixz estimation, where cq s often taken as a
fized constant or chosen empirically through cross-validation Bickel and Levina [2008a], Cai

and Liu [2011], Cai and Yuan [2012]. We will numerically showcase in Subsection 4.2.2 the

exponential improvement of a thresholded estimator with the choice cy = 5.

Remark 4.2.6. As in the finite-dimensional setting Cai and Zhou [2012b], El Karoui [2008],
our thresholded estimator é\ﬁN is positive semi-definite with high probability, but it is not
guaranteed to be positive semi-definite. Fortunately, a simple modification ensures posi-
tive semi-definiteness while maintaining the same order of estimation error achieved by the
original estimator. Notice that 5171\7 1s a self-adjoint and Hilbert-Schmidt operator since
Ip«D |/k\pN(:E,x’)}2d$dx’ < 00, see [Hunter and Nachtergaele, 2001, Ezample 9.23]. There-
fore, there is an orthonormal basis {p;}° of L2(D) consisting of eigenfunctions ofCAﬁN such

that EPN (z,2") =32 Xigoi(x)goi(x'), where /):Z is the i-th eigenvalue ofé\ﬁN. Let /):;L = /):i\/O
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be the positive part of :\\Z and define

)= S Mai@eia),  Chv)) /D R () d
=1

Then, 5;’1\, s positive semi-definite and further

ICoy —Cll < MICox = Con Il + [ICox —CII < max [Ail +1ICoy = Cll
UAS

< max [N = Al + |Gy =€l < 21iCpy — €L
it)\iﬁo
where \; is the i-th eigenvalue of C. Thus, é;‘fN 1s positive semi-definite and attains the
same estimation error as the original thresholded estimator CApN. In light of this fact, we will

henceforth assume that é\PN is positive semi-definite wherever needed.

4.2.2  Small Lengthscale Regime

Our second main result, Theorem 4.2.8, shows that in the small lengthscale regime thresh-
olded estimators enjoy an exponential improvement in sample complexity relative to the
sample covariance estimator. To formalize this regime, we introduce the following additional

assumption:
Assumption 4.2.7. The following holds:

(i) k depends on a correlation lengthscale parameter X > 0, so that k(z,2') = K(|Jz —2'|/\)

for an isotropic base kernel k : R? x RT — R with k(x, ') = K(|z — 2/|).

(ii) The base kernel k is positive, so that k(z,2") = K(|lz — 2'|) > 0. Further, K(r) is

differentiable, strictly decreasing on [0,00), and satisfies limy o0 K(7) = 0.

Assumption 4.2.7 makes explicit the dependence of the kernel on the correlation length-

scale parameter A. While restrictive, the requirement of isotropy is often invoked in appli-
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cations Williams and Rasmussen [2006], Stein [2012]. As discussed later, the nonparametric
Assumption 4.2.7 is satisfied by important parametric covariance functions, such as squared
exponential and Matérn models. The small lengthscale regime holds whenever Assump-
tion 4.2.7 is satisfied and A is sufficiently small. In the scientific applications that motivate
our work, the dimension of the physical space is small (d = 1,2,3). Hence, we will treat d
as a constant in our analysis of the small lenghtscale regime. Theorem 4.2.8 compares the

errors of sample and thresholded covariance estimators. The proof can be found in Section

4.4.

Theorem 4.2.8. Suppose that Assumptions 4.2.1 and 4.2.7 hold. Let co 2 1 be an absolute

constant and set
N

- co /1
v = <L (L 3" sup un(o).
N T;IGD

There is a universal constant \g > 0 such that for A < A\g and N 2 log(/\_d), the sample

covariance estimator and the thresholded covariance estimator satisfy

EjC—c|| _ [ad xd
e SNV YV 44)

ElIC;,, —Cl log(A~%)\ "z
e S C@( )

where ¢(q) is a constant that depends only on q.

Remark 4.2.9. The term c(q) in (4.5) admits a form

_ fooo K(r)qrd_ldr
- fooo K(T’)Td_ldT '

c(q)

As an explicit example, for the squared exponential kernel defined in (4.7), we have KSE(’/’) =

e 12 and a straightforward calculation shows that c(q) =< q_d/Q.
Theorem 4.2.8 shows that, for sufficiently small A\, we need N 2 A samples to control
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the relative error of the sample covariance estimator, while N = log()\_d) samples suffice to
control the relative error of the thresholded estimator. The error bound in (4.5) is reminiscent

(lo%vdu)(l—q)/Q

of the convergence rate s of thresholded estimators for £4-sparse matrices ¥ €

R%uXdu vith sparsity level sq Bickel and Levina [2008a], Cai and Zhou [2012b]. Therefore,
Theorem 4.2.8 indicates that, in our infinite-dimensional setting, the parameter A—d plays
an analogous role to dy, and c(q) plays an analogous role to sg. However, we remark that
the estimation error in Theorem 4.2.8 is relative error, whereas in the finite-dimensional
covariance matrix estimation literature Bickel and Levina [2008a], Cai and Zhou [2012b], Cai
and Liu [2011], the estimation error is often absolute error. While in the finite-dimensional
setting the sparsity parameter sy may increase with d,,, the constant ¢(q) in our bound (4.5)
is independent of the lengthscale parameter A\. Moreover, inspired by the minimax optimality
of thresholded estimators for {4-sparse covariance matrix estimation Cai and Zhou [2012b],
we conjecture that the convergence rate (4.5) is also minimax optimal, and we intend to
investigate this question in future work.

The bound (4.4) for the sample covariance estimator relies on the seminal work Koltchin-

skii and Lounici [2017], which shows that, for any sample size N,

ElIC—c| _ [r©) r©) . _ THC)
er Vv YN TOE e (46)

Consequently, (4.4) follows by a sharp characterization of the operator norm and the trace of

C in terms of A. In contrast, the bound (4.5) for the thresholded estimator relies on our new
Theorem 4.2.2, and requires an analogous characterization of the thresholding parameter ppr
and approximate sparsity level g in terms of A.

In the remainder of this subsection, we illustrate Theorem 4.2.8 with a simple numerical
experiment where we consider the estimation of covariance operators for squared exponential
(SE) and Matérn (Ma) models in dimensions d = 1 and d = 2 at small lengthscales. We

emphasize that our theory is developed under mild nonparametric assumptions on the co-
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variance kernel as outlined in Assumption 4.2.7; however, for simplicity here we focus on two

important parametric models. For z,2’ € D, define the corresponding covariance functions

Tz — 1|2
kEE(x,x/) ‘= exp <—%) , (4.7)
I=v [\ /ov Y V2
KMz, o) = ?(V) <T2 T — 1:'|> K, <T2|x — a:'|> : (4.8)

where I' denotes the Gamma function and K, denotes the modified Bessel function of the
second kind. In both cases, the parameter X is interpreted as the correlation lengthscale
of the field and Assumption 4.2.7 is satisfied. Moreover, Assumption 4.2.1 is satisfied by
the squared exponential model, and it is satisfied by the Matérn model provided that the
smoothness parameter v satisfies v > (% \% %) We refer to [Sanz-Alonso and Yang, 2022b,
Lemma 4.2| for the almost sure continuity of random samples and to [Nobile and Tesei, 2015,
Appendix 3, Lemma 11] for the Holder continuity of the Matérn covariance function KMa<7”).
For the Matérn model, we take the smoothness parameter to be v = 3/2 in our experiments.

We will report results in physical dimension d = 1 and d = 2. To respectively resolve small
lengthscales up to order A < 1073 and A = 1072, we discretize the domain D = [0, 1] with
a mesh of L = 1250 uniformly spaced points and the domain D = [0,1]? with L = 10,000
points. In the d = 1 case we consider a total of 30 lengthscales arranged uniformly in log-
space and ranging from 1073 to 10791, and in the d = 2 case we consider a total of 10
lengthscales arranged in log-space and ranging from 10723 to 10791, For each lengthscale
A, with corresponding covariance operator C, the discretized covariance operators are given

by the L x L covariance matrices
Cl = k(xi, zj), 1<i,j <L,

and we sample N = 5log()\_1) realizations of a Gaussian process on the mesh, denoted

ug,...,uny ~ N(0,C). We then compute the empirical and thresholded sample covariance
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matrices

1 N
—~ . ] i o
C”::—E Up () un (x; = CY1, 5~ 1<4,j<L
N ( Z) ( ])’ PN {|CU|ZPN}7 >%)] > L
n=1
scaling the thresholding level py as described in Theorem 4.2.2.
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Figure 4.1: Plots of the average relative errors and 95% confidence intervals achieved by
the sample (£, dashed blue) and thresholded (¢, , solid red) covariance estimators based on
sample size (N, dotted green) for the squared exponential kernel (left) and Matérn kernel
(right) in d = 1 over 100 trials.

To quantify the performance of each of the estimators, we compute their relative errors

_lE-c|

_ _1IGs, —cll
el

e el

The experiment is repeated a total of 100 times for each lengthscale in the case d = 1
and 30 times for each lengthscale in the case d = 2. In Figure 4.1, we plot average relative
errors as well as 95% confidence intervals over the 100 trials for both squared exponential and
Matérn models in d = 1, along with the sample size for each lengthscale setting. In Figure 4.2,
we present the d = 2 analog of Figure 4.1. Our theoretical results are clearly illustrated:
taking only N =5 log()\_d) samples, the relative error in the thresholded estimator remains
constant as the lengthscale decreases, whereas the relative error in the sample covariance
operator diverges. Notice that Figures 4.1 and 4.2 also show that thresholding can increase

the relative error for fields with large correlation lengthscale.
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Figure 4.2: Plots of the average relative errors and 95% confidence intervals achieved by
the sample (e, dashed blue) and thresholded (55N, solid red) covariance estimators based on
sample size (N, dotted green) for the squared exponential kernel (left) and Matérn kernel
(right) in d = 2 over 30 trials.

4.2.8  Application in Ensemble Kalman Filters

Nonlinear filtering is concerned with online estimation of the state of a dynamical system from
partial and noisy observations. Filtering algorithms blend the dynamics and observations by

sequentially solving inverse problems of the form

y=Au+n, (4.9)

where y € R% denotes the observation, u € L2(D) denotes the state, A : L%(D) — R% is a
linear observation operator, and n ~ N(0,T") is the observation error with positive definite
covariance matrix I'. In Bayesian filtering Sanz-Alonso et al. [2023a], the model dynamics
define a prior or forecast distribution on the state, which is combined with the data likelihood
implied by the observation model (4.9) to obtain a posterior or analysis distribution. In
most applications, the update from forecast to analysis distribution must be implemented
through an approximate filtering algorithm. For instance, in operational numerical weather
forecasting where the state may represent a temperature field along the surface of the Earth,
discretizations of size 109 are routinely used to capture small lengthscales on the order of

kilometers. In this setting, computing exactly the Kalman formulas that define the forecast-
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to-analysis update would be unfeasible.

Ensemble Kalman filters (EnKFs) are a rich family of algorithms scalable to highly com-
plex data assimilation tasks Evensen [2009], including operational numerical weather fore-
casting Houtekamer and Zhang [2016]. The key idea behind these methods is to represent
forecast and analysis distributions using an ensemble of N particles, so that the computa-
tional cost is controlled by the number of particles, which is typically small, rather than by
the level of discretization. For instance, in operational weather forecasting N ~ 102 < 10;
we refer to Tippett et al. [2003] for a summary of the computational and memory costs of
different EnKFs in terms of the discretization level and the number of particles. Taking as

iid.
~Y

input a forecast ensemble {un}flvzl (0,C) and observed data y generated according to
(4.9), EnKFs produce an analysis ensemble {Un}flv:y Each analysis particle v, is obtained
by nudging a forecast particle u,, towards the observed data y. The amount of nudging is
controlled by a Kalman gain operator to be estimated using the first two moments of the
forecast ensemble. Vanilla implementations of EnKFs rely on the sample covariance, see e.g.
[Sanz-Alonso et al., 2023a, Algorithm 10.2]. However, some form of covariance localization
is required for EnKFs to scale to operational settings Houtekamer and Mitchell [2001|. While
the use of localization within EnKFs is standard, few works have demonstrated its statistical
benefit Tong [2018], Al-Ghattas and Sanz-Alonso [2024b]|, and none in the functional setting
that is most relevant in applications. In this subsection we show that thresholded covariance
operator estimators within the EnKF analysis step can dramatically reduce the ensemble
size required to approximate an idealized, non-implementable, mean-field EnKF that uses
the population moments of the forecast distribution. Consequently, we identify an ensemble
size which suffices for each EnKF particle to be updated similarly as in the limit of infinite

number of particles. We refer to Herty and Visconti [2019], Calvello et al. [2022] for recent

works that study the behavior of EnKFs in the mean-field limit.
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Define the mean-field EnKF analysis update by
v = up + H(C)(y — Aup — mn), 1<n<N\, (4.10)
where {nn}nNzl L N(0,T) and
H(C) == CA*(ACA* +T)~! (4.11)

denotes the Kalman gain. Practical algorithms do not have access to the forecast distribution,
and rely instead on the forecast ensemble to estimate both C and #". We will investigate

two popular analysis steps, given by

on 1= up + H(C) (y — Aun — 1), 1<n<N, (4.12)

v = un + H(Coy) (y — Aun — 1),  1<n<N. (4.13)

The analysis step in (4.12) is known as the perturbed observation or stochastic EnKF Burgers
et al. [1998]. For simplicity of exposition, we will assume here that when updating uy,, this
particle is not included in the sample covariance C used to define the Kalman gain. This
slight modification of the sample covariance will facilitate a cleaner statement and proof of
our main result, Theorem 4.2.10, without altering the qualitative behavior of the algorithm.
The analysis step in (4.13) is based on a thresholded covariance operator estimator. Again,
we assume that the thresholded estimator CAp y is defined without using the particle ;. The
following result is a direct consequence of our theory on covariance operator estimation in

the small lengthscale regime. The proof can be found in Section 4.5.

Theorem 4.2.10 (Approximation of Mean-Field EnKF). Suppose that Assumptions 4.2.1
and 4.2.7 hold. Let y be generated according to (4.9) with bounded observation operator
A: L?(D) — R%. Let v} be the mean-field EnKF update in (4.10), and let vy, and vl be the
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EnKF and localized EnKF updates in (4.12) and (4.13). Let ¢y 2 1 be an absolute constant

and set
e 1 N
0
PN = (— > sup u (x))
VNAN & cp "

Then, there is a universal constant Ay > 0 such that for X < A\g and N 2 log()\_d),

. A—d )\
Ellvn —vpl| | un,mn] S e T\/T ;

E [|U7€ _Um ‘ unﬂ?ﬂ] Sec

where ¢ = AT H[Cllly — Aun — nnl.

4.3 Thresholded Estimation of Covariance Operators

This section studies thresholded estimation of covariance operators in the general setting
of Assumption 4.2.1. In Subsection 4.3.1 we show uniform error bounds on the sample
covariance function estimator /k?(x,x/ ). These results are used in Subsection 4.3.2 to prove

our first main result, Theorem 4.2.2.

4.3.1 Covariance Function Estimation

In this subsection we establish uniform error bounds on the sample covariance function
estimator. These bounds will play a central role in our analysis of thresholded estimation of
covariance operators developed in the next subsection. We first establish a high-probability

bound, which is uniform over both arguments of the covariance function.

Proposition 4.3.1. Under Assumption 4.2.1, there exist positive absolute constants cy,co

173



such that, for all t > 1, it holds with probability at least 1 — cje~ 2t that

VL (E[supyep u(z)])’

Proof. We will apply the product empirical process bound in [Mendelson, 2016, Theorem

sup /k\(m, 2"y — k(x, 2
xx'eD

1.13|. To that end, define the evaluation functional at z € D by

Uy u— Ly (u) = u(z)

and write

—~ 1 N 1 N
B!y = (e,a)] = | 5 3 un(e)un(e’) — E fu@)ule] | = |5 S Calim)l(n) — E [Lolu)lr(w)]
n=1 n=1

so that

N
~ 1
sup |k(w,2') = k(w, )| = sup_| < > flun)g(un) —E[f(u)g(u)]|,
x,x'eD f.9eF n—1
where F := {{;},cp denotes the family of evaluation functionals. Note that {{;},.cp are
continuous linear functionals on C'(D), the space of continuous functions on D endowed with

its usual topology. We can then apply [Mendelson, 2016, Theorem 1.13] (see also [Al-Ghattas

and Sanz-Alonso, 2024b, Theorem B.11]) which implies that, with probability 1 — cje=¢2¢,

2
N [(%\/ \/%) (;élngHzpﬂz (falbz))] VW,

(4.14)

sup %(m,x/) — k(x,2")
x,x'eD

where here and henceforth 79 denotes Talagrand’s generic complexity [Talagrand, 2022,

Definition 2.7.3] and 19 denotes the Orlicz norm with Orlicz function ¢(z) = . 1, see
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e.g. [Vershynin, 2018, Definition 2.5.6]. Since u is Gaussian, the ¥9-norm of linear functionals

is equivalent to the L2-norm. Hence,

sup \/E [u(z)] = sup \/k(z,z) =1,

xreD zeD

sup || fllys < sup || fll 72 = sup A/E [f2(u)] =
fefll [ fefH 2 fef\/ [ (w)]

(4.15)

where we used Assumption 4.2.1 (i) in the last step. Next, to control the complexity

Y2 (F,12) , let

d(w. ) == \/E [(ula) = u(@))?] = [ta() = Ol 2p): @5 € D,

where P is the distribution of the random function w. Then,

(i) ii
o(Foth9) S 4o, L2) = 1o(Dyd) 2 [su% u(xﬂ , (4.16)
xre

where (i) follows by the equivalence of 19 and L? norms for linear functionals and (ii) follows
by Talagrand’s majorizing-measure theorem |Talagrand, 2022, Theorem 2.10.1]. Combining

the inequalities (4.14), (4.15), and (4.16) gives the desired result. O

Corollary 4.3.2. Under Assumption 4.2.1, it holds that, for any p > 1,

(E

Proof. The result follows by integrating the tail bound in Proposition 4.3.1. m

sup ’E(a:, t') — k(x, 2"
x,x'eD

Zl? su u\xr su u\xr 2
p]) < El boc? @) Ebuecp )’

In contrast to Proposition 4.3.1, the following result provides uniform control over the
error when holding fixed one of the two covariance function inputs. For this easier estimation

task, we obtain an improved exponential tail bound that we will use in the proof of Theorem
4.2.2.
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Proposition 4.3.3. Suppose that Assumption 4.2.1 holds. Let 1 < ¢y < N and set

PN = C {% V \/LNE[;:pDu(x)] \Y %(E[;ggu(w)])? :

Then, for every 2’ € D, it holds with probability at least 1 — 4e=N(ONAPR) that

sup [k(z, ')~ k(z2')| S o
xeD

Proof. We will apply the multiplier empirical process bound in [Mendelson, 2016, Theorem

4.4]. To that end, we write

~

k(x,2') — k(z,2)

1 N
= |5 D alutn) b (n) — E (£ () (w)]|
n=1

so that for the class F := {{;},.cp of evaluation functionals and for a fixed g € F, we have

N
T N k(. 2" = su l U Up) — uw)glu
;gg k(z,2") — k(z,2") feg-' an::lf( n)g(un) — E[f(u)g(u)]

1 N
-y (f(un)én —E[f(w)€])|,

n=1
where &, := g(uy). Note that &1, ...,&y are i.i.d. copies of £ ~ N(O, k(' x’)), where 2’ € D
is the point indexed by g. By [Mendelson, 2016, Theorem 4.4] we have that for any s,¢ > 1,

it holds with probability at least 1 — 9e—C15° (Elsupzep u(@))? _ ge—a1lN# yq¢

sup [k(z,2") — k(z,2')| < 5t€ Iy, Elsupae p ulw) < st Elsuprep u()]

s VN <—w
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where the last inequality follows by the fact that ||£]|,, < \/k(2/,2") < supgep VE(z,7) = 1.
We consider three cases:

1
Case 1: If E[sup,cp u(x)] < NIk then py = 54 < 1. We take

_ c
VN Efsupyep ulo)]

> 1, t=1,

()
and then (4.17) implies that it holds with probability at least 1 — 2¢=C1G0/N _ ge—alN >

1— 46_010(2)/N =1- 46_01Np%\7 that

~ tE
sup [B(e, /) - k(w, /)|  2EReep D] _ 0 _

zeD ~ \/N N

where (i) follows since ¢y < N by assumption.
Case 2: If = <E sup u(z)] < V/N, then pN = L E[sup u(x)|. In this case, if
VN zeD VN x€D

PN = %E[supxeD u(x)] > 1, we take

= VN = - E[sup u(x
5‘\/E[supxenu<x>1 21 t‘V U b ulr)] > 1

and then (4.17) implies that it holds with probability at least 1 — de—c100VNE[supgep u()] —

1 — 4e~C1NPN that

> st E[supyep u(@)] <o
sup |k(z,2") — k(z,2")| < L = E[sup u(z)] = pn-
b ST TNl

If py = \;—ONE[suprD u(z)] < 1, then we take s = cg > 1 and ¢t = 1, and (4.17) implies that,

with probability at least

1— 2€—clcg(E[supmeD u(z)])? 9p—C1V >1— 46—clcg(E[supxeD u(z)])? _ 1— 46—0le?\,7

177



it holds that

> st E[supyep u(@)] <o
sup |k(z,2") — k(z,2")| < = E[sup u(x)] = pn-.
xeD | ( ) VN VN zeD

Case 3: If E[supyep u(z)] > V/N, then py = N(E[sup,ep u(x)])? > 1. We take

E
s=Va 1, t=yQ [S“pﬁ“(m)] >1,

and (4.17) implies that it holds with probability at least 1 — 4e~¢1¢0(Elsupzep u@)? =1 —

4e~1NPN that

- stEfsup,ep u(@)] e )
sup [k(z, 2') — k(z,2")| S = ~(E[sup u(z)])” = py.
zeD \/N N xeD
Combining the three cases above gives the desired result. O

4.3.2  Proof of Theorem 4.2.2

Before proving Theorem 4.2.2, the next result establishes moment and concentration bounds

for the estimator py of the thresholding parameter py.
Lemma 4.3.4. Under the setting of Theorem 4.2.2, it holds that
(A) For anyp > 1, E[ﬁ%] <p pZ;V

(B) For anyt € (0,1),

Ppy < tpn] < 9 ¢—3(1=VD?N(E[supsep u(:ﬂ)})zl{E[Sup u(r)) > 1/VN}  (4.18)
zeD

< 90— 31—V N(pnApk) (4.19)

The proof of Lemma 4.3.4 can be found in Appendix A in the Supplementary Material
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Al-Ghattas et al. [2024c].

Proof of Theorem 4.2.2. As shown in Lemma B.1 in the Supplementary Material Al-Ghattas

et al. [2024c¢|, the operator norm can be upper bounded as

H%N—Cﬂﬁjl

p/ ks (z,2") — k(z,2")| da’.
w [ 1, |

Let Qy := {2/ € D : |k(z,2')| > pn} and let QS be its complement. Then, we have

xre

~ b
< 2r-1E {( sup / ‘kﬁN(x,x/) — k(z,2)| dx/> }
zeD JQ,

~ p
+ 2P~ [( sup / }k’ﬁN(w,x/) — k(z,2")] dazl) ]
€D JQ

C
T

~ p
<pE [( sup / |kﬁN(a:,x/) — k:($,:p/)‘ dx/) }
xeD JQy

(52%/9 k(. 2 )| 1{|k(z,2")] <ﬁN}dff’)p]

+E <sup/
xzeD JQ

~ —~ p
EllC;, —CIIPF <E {( Sul%/D ‘kﬁN(x,x/) — k(z,2")| da:') ]

+E

C
x

C
xT

+E (sup/
zeD JQ

C
xT

=11+ Ip + I3 + Iy,
(4.20)

where in the second inequality we used that |a+b[P < 2P~1(|a[P 4 |b|P), which follows directly

from the convexity of f(z) = |z|P for p > 1. We next bound the four terms {Ii}?zl. To ease

notation, we define

Ik = Ellmax == sup [k(z,2’) — k(z,2")].
z,2'eD
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~ ~ ~ p
k(z,2") — k(z,2")|1{|k(z,2")| > pn }1{|k(z,2") — k(z,2")| < 4|k(z,2")|} dx/>

~ ~ ~ p
k(z,2") — k(z,2")|1{|k(z,2")| > pn }1{|k(z,2) — k(z,2")| > 4]k(z,2")|} dx/)




For I, using that

~

|]€"0\N(l',l'/) - k?(.I‘,{L'/)‘ < ‘kﬁN([E,ﬁL‘/) - k/’({L‘7l’/)| + ‘k’([L‘,fL’/) - /{J(JZ,ZE/)‘ < ﬁN + ||k: - kl|maX7

we have

n=e|(sup [ [Faylos!) ~ ke ) | < [(sup o) (o + = )]

zeD zeD

where Vol(€2;) denotes the Lebesgue measure of €2;.. Notice that

R > sup/ |k(x,2")|%d’ > sup/ \k(z,2")|%d2’ > sup/ parda’ = pt sup Vol(€y).
xeDJD zeD JQg €D JQ, xeD

Combining this bound with the trivial bound sup, Vol(£2;) < Vol(D) = 1 gives

sup Vol(£2;) < Rgﬁ];,q Al
xeD

Therefore, by Cauchy-Schwarz, we have that

I < E[(RIpNT A1) Py + [F — Kl

< \/E[(RgﬁNq A 1)2p} E[(ﬁzv + k- k:Hmax)Zp] (4.21)

Using Lemma 4.3.4 and Corollary 4.3.2 yields that

E| (o + IF — Klluax) | Sp E[(5w) ™) +E[IF - klldhs] Sp o7 (4:22)
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On the other hand,

E[(R1p9 A )% = RZ9E [5 A Ry %) = B2 [ P[5 A Ry %) > ] di
9PN q PN q A PN q

R;2pq 00
= R / P [ﬁ]\‘qu > t] dt = 2pg R / Plpy <t] t 2P 1qt.
0 R

q

If Ry > py, then

E|(Ripy! A1) < 2pg B3P / ¢ g = Ry 2P, (4.23)
PN

If Ry < py, then

e [(Rip A 1)) = 2par ( [ / ) o < 1) -2
N

< 2pqRy" / t200 L at 4 2pg Ry P[ﬂN < t] Pt
PN Ry
1
_ R2pq 217(]_'_2qu pq pQ/ B P oy < tpn] +20=1 4
Repy
(1) 2 /1
Rypy

1
< Rgpq 204 2pq Ry pq , 2exp ( - 5(1 —V)2N(py A p%))t*%q*ldt

e ] P

2
/V (o PRI A=y Rari) (N(piy A p3)) P exp(—312) dt]

( N(pn A p) —t) Pt

iii —2pq 2pq V2 o4
(<) R p PP 4 ROV 2P gpq(QR—q4 PN ~sN(oxnApA) (1-y quNl) ipq)
Pq Pq

_ AN (oA p2) (1=1[Ropt)” ) _ _ 2
<p R 20 4 3N o ) VEary') < RPp P+ e eNoNAeN) - (4.24)

~ ~p

where (i) follows from Lemma 4.3.4, (ii) follows by a change of variable, and (iii) follows

by applying Lemma C.1 in the Supplementary Material Al-Ghattas et al. [2024c|] with o =

\/N(pn A p?\,) and 8 = \/N(pN A p?v)\/qu]_Vl. To prove (iv), notice that if Ry < %pN,
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then |1 — \/qu]_vl| > % and (iv) holds; if %pN < Ry < pp, then
1 2 —1)2
o8N (oA 3) 1=/ Repy') <1< 16pR(21pp&2p < 16pRgpqp&2pq.

Combining the inequalities (4.21), (4.22), (4.23), and (4.24) gives that

I < J [ (R2p5" A 1)) €[y + 1% — kllmax) ] Sp R 4 e eN NN PR,

For I5 and I3,

Io+13=E <Sup/
€D JQ

~~ A~ A~ p
’k(l‘7$/) - k:(x,x’)| 1{|k(x7xl)’ > ﬁN} 1{“{?(1’7%',) - k?([[‘,l‘/ﬂ < 4|]€((L’7[L’/)|} d.I/) ]
p / p
<E [( sup/ }k(x,x')! dx’) ] -E [(ﬁN sup/ (M) dx’) ]
x€D JQS z€D JQS PN
~ k()N P pg~p(1—q) W pg p(1—q)
(oo, (5507) o) =l ™) 5, mpgy ™

where (i) follows since ¢ € (0,1) and |k(z,2")| < py for 2’ € Q5. To prove (ii), we notice

C
x

~ p
‘k(m,x/)| 1{|k(x,x/)| < ﬁN}dx/> ]

that if p(1—¢q) < 1, then using Jensen’s inequality and Lemma 4.3.4 yields that E| ﬁﬁ,(l_q)] <

(E[pp)P1-9) <, p%l_q). If p(1—¢q) > 1, Lemma 4.3.4 implies that E[ﬁﬁf(l_q)] <p pﬁf(l_q).
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For 14,

~ ~ ~ p
Iy=E [( sup /C k(z,2") — k(z,2")|1{|k(z,2")| > pn }1{|k(2,2") — k(z,2")| > 4|k(z,2")|} dgy) ]

xzeD

(i)
<E
zeD

~ —~ ~ p
sup | Fla.a") = ko, L{ R, )| 2 o {[RGw ) = ') 2 “p) dw’) ]

zeD JD zeD zeD

~ 2 p
sup |k; z,2') — k(z,2")| 1{ sup |k(z,2") — k(z,2")| > Zpn} dx’) }
D zeD z€D 3

(o

<E (sup sup [k(z, ') - k(z,2)| 1{ suplﬂww’)—’“(%x')'ZgﬁN}dxl)p}
(J
[C

- 2 p
|k — k”max 1{ sup ‘k<x>$/) - k(m,x/)| > _ﬁN} dx/) }
zeD 3

(e (g - 7]

xzeD
(li)( E[||k - k||max])1/2 (E[/D 1{;3@) k(z,2') — k(z,2)| zgﬁN}dl«’])l/Q
= (B = k1) /) P |sup ') = k(o)1 > 3] dm)1/2,

where (i) follows since |E(a:,:c’) — k(z,2")| > 4]k(x,2")| implies that |7<;\(x,x')| > 3lk(x, 2",

and therefore if |/k?($, 2') — k(x,2")| > 4]k(x,2)| and \E(a:,a:’ﬂ > PN, then it holds that
) / / ~ / / 2 ~ , 2 .
R, ') — ko) 2 (R, o) — b, 2] > 2[j(a, o)) > 2o

To prove (ii), note that p > 1 and [, 1 {SUPxeD ]75(3:, ') — k(x,2")| > %f)N} dz’ < 1. Next,

notice that

~ 2 . 2 N ~ 2
P |sup Rz, 2') — k(z,2')| > gpN] _p [gw — p) + sup Bz, ) — k(z,2")] > gpN}
zeD zeD

N 1 R
<P {sup [k (z, ') — k(z,2")| > —PN} + P[PN = —PN]-
xeD 3
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Lemma 4.3.4 then implies that

P[PN — PN = %pN} = P[ﬁN < %pN:| < 6—01N(,0NAP?V)7

and Proposition 4.3.3 gives that

T 1
] {S“p [, 2" = h(w, 2')| > —pN} < N lowAod),
reD 3

1/2

Moreover, Corollary 4.3.2 yields that (E [||/15 — k||121713ax}> <p p]]j\, Therefore,

1/2
Iy < (E[Hk - k”rrlfax}) (/ P {sup |]€($,l‘,) — k(x,x/)’ > gpN:| dx/) S;D p]])\fe CN(PN/\PN)'
D x€D
Combining (4.20) with the estimates of I, I, I3, and I gives that

~ _ 2
EICs, —CIP Sp i+ Lo+ I3+ 14 Sp qup]]j\gl 9 p]jve*CN(pNApN),

and hence

D=

EN(pNAPY) =

_ . -
[ElCs, —CIP]? <p Ripy * + pve™ P :

4.4 Small Lengthscale Regime

This section studies thresholded estimation of covariance operators under the small length-
scale regime formalized in Assumption 4.2.7. We first present three lemmas which establish
the sharp scaling of the L9-sparsity level, the operator norm of the covariance operator, and
the suprema of Gaussian fields in the small lengthscale regime. Combining these lemmas and
Theorem 4.2.2, we then prove Theorem 4.2.8. Throughout this section, we use the notation
“(B), A = 0” to indicate that there is a universal constant Ay > 0 such that if A < Ag, the

conclusion (B) holds.
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The following result establishes the scaling of the L9-sparsity level in the small lengthscale

regime.

Lemma 4.4.1. Under Assumption 4.2.7, it holds that

o0
sup/ |k(ac,x/)\qu'x)\dA(d)/ K(r)4r?ldr, X —0,
xzeDJD 0

where A(d) denotes the surface area of the unit sphere in R4,

Proof. We have that

Sup/\k(x,x'ﬂqu/Z/ k(x,x’)qudx/:/ K(lz — 2’| /N9 dada’
DxD [0,1]9x[0,1]¢

rxeDJD
:)\Qd/ K qdd/())\Qd/
‘ (i)
_\d B i) g .
_A/[)\lA K(Jwl)? 1;[1 Alw;]) de)\/RdK(|w|) dw
(111) ,\dA(d) /OO K(r)qrd—l dr, \—0, (4.25)
0

where (i) follows by a change of variables w = x — 2, z = 2 +2’ and integrating z, (ii) follows
by dominated convergence as A — 0, and (iii) follows from the polar coordinate transform

in R%. On the other hand,

sup/ k(z,2")|%d2’ < sup/ K(|z — 2'|/\)%da’
xeD JD reD JRA
(0]
:/ K(]:c’]/)\)qu’:)\d/ K(]q:’])qd:c’:)\dA(d)/ K(r)ortL dr,
Rd Rd 0
which concludes the proof. ]

Next, we establish the scaling of the operator norm of the covariance operator.
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Lemma 4.4.2. Under Assumption 4.2.7, it holds that
0.9}
Ic|l = )\dA(d)/ K(ryrd=tdr, X =0,
0

where A(d) denotes the surface area of the unit sphere in R4,

Proof. First, the operator norm can be upper bounded by

(0.¢]
Ic|| < Sup/ k(z, 2| da = )\dA(d)/ K(r)yr®tdr, x—o0,
0

where the last step follows by Lemma 4.4.1.

For the lower bound, taking the test function ¢ (z) = 1 yields that, as A — 0,

, , 1/2 / , 2 1/2
IC|| = ||¢iu§:1 </D (/Dk(a:,x)w(x )dx) dx) > </D (/Dk(x,x)d:v> dx)

@ /(i) / , () g / > d—1
> d da' = k dedzr’ =< N*A(d K d
> \/W D><D rdx /D><D (x,2")dxdx (d) ; (r)r r,

where (i) follows by Cauchy-Schwarz inequality, (i) follows since Vol(D) = 1 for D = [0, 1]¢,

and (iii) follows from (4.25) with ¢ = 1. This completes the proof. O

Finally, we establish the scaling of the suprema of Gaussian fields in the small lengthscale

regime.

Lemma 4.4.3. Under Assumption 4.2.7, it holds that

E [ sup u(x)} = \/K(O)dlog <;/§l> A — 0,

xeD
where s > 0 is the unique solution of K(s) = %K(O), which is independent of A.

Proof. By Fernique’s theorem Fernique et al. [1975] and the discussion in [Van Handel, 2014,
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Theorem 6.19], for the stationary Gaussian random field w, it holds that

E {sup u(x)] = /OOO Vieg M(D,d, ¢) de, (4.26)

zeD

where M(D, d, ) denotes the smallest cardinality of an e-net of D in the canonical metric

d given by

d(z,2') == \/El(ulz) — u(@")?] = \/2K(0) — 2K~z — 2']) < /2K(0), .2’ € D.

Since under Assumption 4.2.7 the field is isotropic, it is necessarily stationary. Consequently,
Fernique’s bound implies that M(D,d,e) = 1 for ¢ > 1/2K(0), and hence we can assume

without loss of generality that ¢ < 1/2K(0) in the rest of the proof. Next, notice that

d(z,a') = \/2K(0) - 2K e — ) <= = |o—a'| < AKTL(K(0) - £2/2),

where K1 is the inverse function of K. By the standard volume argument [Vershynin, 2018,

Proposition 4.2.12],
M(D,d, ) = M(D, |- |, \K"L(K(0) — £2/2))
1 4 vol(D) _ 1 1 d /g \4?
- (AK‘l(K(O) —62/2)> Vol(BY) = a (AK‘l(K(O) —52/2)) (%) ’

where we used that Vol(D) = 1 and that, for the Euclidean unit ball Bg, it holds that

Vol(Bg) < ¢1(2me/d)?? for some absolute constant ¢; > 1. On the other hand, using the

fact that D = [0,1]¢ C \/EB&Z, as well as M(Bg, |- ],) < (3/e)% for e < 1 [Vershynin, 2018,
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Corollary 4.2.13],

M(D,d,e) = M(D,] - |, \K"L(K(0) — £%/2))

d
< M(BY, |- |,d"Y2AK"L(K(0) - £2/2)) < [(AK_l(K(S’)_€2/2)) dd/2] V1, &< +/2K(0).

Therefore, (4.26) and the bounds we just established on the covering number M(D,d,¢)

imply that

[ oio] = [ o (& (eraa—rm) () ) vou

5K(0) o/
X\/C_Z/O \Ilog (AK‘l(K(O)—52/2)>VO de.

By a change of variable ¢t := \/log (AK—l(ézé?—EQ/Z))’ then e = \/2 (K(O) — K(ex™! de_t2)>

and

Ebngu } / —t—( )—K(c)\_l\/ge_ﬂ)> dt
—\/_( t\/K K(cA—1 de—t2 / \/K K(cA—1Vde ) dt)
_f/ VK(0) = K(ea—! de—t2) dt
] ity o) O

where in the second to last equality we used that K(0) — K(cA™! de_tQ) = A" det as

K(eA=Wde=t) dt =: Iy + Iy,

t — oo since K(r) is assumed to be differentiable at r = 0. Further, we let s > 0 be the

unique solution of K(s) = %K(O), which is independent of A. For the first term I, we have

() < 2 i)



Therefore, for any A\ < ¢vd/s, I} = \/K(O)dlog <\f> To bound the second term Iy, we
notice that there is some constant M > 0 such that K(0) — K(r) < M r for r € [0, s|, where

M is independent of . Therefore,

Iy = K(cA=Wde ) dt < Vd / \/MC)\_l de—t* dt

f/ K(0
\/log \/ \/log
_ 1 eVvd
< d3/4) UQ/DWG 2 gt <Vd <10g<j>> 50, A0,
1

. . ., . 00 _lt2 1 1.2
where we used the tail bound of the Gaussian distribution f 20 dt < e 2% for x> 0.

Since Iy > 0, we therefore have that Iy < v/d (10g ( f)) 12 — 0 as A — 0. Consequently,

E{supu(x)} x]1+IQX\/K( )dlog<\/E> A — 0. O

zeD SA

Remark 4.4.4. Lemma 4.4.3 admits a clear heuristic interpretation. Consider a uniform
mesh P of the unit cube D = [0,1]% comprising (1/\)% points that are distance X apart. For a
random field u(x) with lengthscale \, the values u(x;) and u(x;) at mesh points x; # v; € P
are roughly uncorrelated. Thus, {u(xz)}f‘;{l are roughly i.1.d. uniwariate Gaussian random

variables, and, for small X\, we may approximate

E {Sup u(x)} ~E [ sup u(aji)] ~ y/log(A—9).

xeD x;€P

This heuristic derivation matches the scaling of the expected supremum with A in Lemma

4.4.3.

Proof of Theorem 4.2.8. In this proof we treat d as a constant. Notice that under Assump-
tion 4.2.1 and Assumption 4.2.7, it holds that Tr(C) = [pk(z,z)dz = K(0)Vol(D) = 1.

For the thresholded estimator, we apply Theorem 4.2.2 with an appropriate choice of the
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constant cy € [1,v/N]. By Lemma 4.4.3, E[sup,ep u(z)] < 1/log(A~9) as A — 0. We assume
that N > C% (E[supgep u(z)])? = log(A~%), so that the thresholding parameter satisfies

C—OE sup u(a:)] <1.

px = —=E|
\/N zeD

It follows that

pneNONNPR) — ) e=eNPly — 5 o=ec(Elsupac p u(@)])?

(4.27)

_ pNe—cc/c%dlog(l/)\) _ pN/\cc’c%d < p}\[—(]Acc’ng7
where ¢ is an absolute constant. On the other hand, using Lemma 4.4.1 we have that
q 1=q _ 1-q\d > q,.d—1
Rypy " < py  AA(d) K(r)dr® dr. (4.28)
0

Comparing (4.27) with (4.28), we see that if ¢y is chosen so that cc/ 0(2) > 1, then the upper
bound th]p}v_q+pNe_CN(pN/\p?V) in Theorem 4.2.2 is dominated by Rgp}\,_q as A — 0. Thus,

for sufficiently small A\,

1—

q
~ 1- log(A~4)\ 2
E1Gs, — €Il S Fipk < el (25 ) 7

where ¢(q) is a constant that only depends on q. ]

4.5 Application in Ensemble Kalman Filters

Proof of Theorem 4.2.10. First, we write

[on = vl = [(A(C) = H(C))(y = Aun — )| < ||#(C) = A (C)|ly — Aup = ma|. (4.29)
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For the first term in (4.29), it follows by the continuity of the Kalman gain operator

[Kwiatkowski and Mandel, 2015, Lemma 4.1] that
1#°(C) — 2 ()] < IC - ClIIA[IIT (1 + HCHH«4H2HF*1||) : (4.30)

Combining the inequalities (4.29) and (4.30) with Theorem 4.2.8 gives that

B ~ A—d  \—d
Ellon —vpl | un,nn] S JAJIT 1H\y—AUn—77n\EHC—CH§c< TVT)’

where ¢ = ||A|[|IT7|IC||ly — Aun — 1n|. Applying the same argument to the perturbed

observation EnKF update with localization, v)f, Theorem 4.2.8 gives that

€ 1o~ il ] S et (#)]

where ¢ = ||A|||ITY|IC|lly — Aun — nn| and ¢(q) is a constant that depends only on ¢. [

4.6 Conclusions, Discussion, and Future Directions

This chapter has studied thresholded estimation of sparse covariance operators, lifting the
theory of sparse covariance matrix estimation from finite to infinite dimension. We have
established non-asymptotic bounds on the estimation error in terms of the sparsity level of
the covariance and the expected supremum of the field. In the challenging regime where
the correlation lengthscale is small, we have shown that estimation via thresholding achieves
an exponential improvement in sample complexity over the standard sample covariance es-
timator. As an application of the theory, we have demonstrated the advantage of using
thresholded covariance estimators within ensemble Kalman filters. While our focus has been
on studying the statistical benefit of estimation via thresholding, sparsifying the covariance

estimator can also lead to significant computational speed-up in downstream tasks Furrer
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et al. [2006], Chen and Stein [2023], Chen and Anitescu [2023].

As mentioned in the discussion of Theorem 4.2.8, a natural question is whether the
convergence rate of our thresholded estimator is minimax optimal. For {4-sparse covariance
matrix estimation, Cai and Zhou [2012b] established the minimax optimality of thresholded
estimators. Inspired by the correspondence between our error bound (4.5) and their optimal
rate, we conjecture that our thresholded estimator is also minimax optimal in the infinite-
dimensional setting.

Another interesting future direction is to relax the assumption of stationarity in our
analysis of the small lengthscale regime. In finite dimension, Cai and Liu [2011] proposed
adaptive thresholding estimators for sparse covariance matrix estimation that account for
variability across individual entries and designed a data-driven choice of the prefactor cq
through cross-validation. Other interesting extensions include covariance operator estima-
tion for heavy-tailed distributions Abdalla and Zhivotovskiy [2024] and robust covariance
operator estimation Goes et al. [2020], Diakonikolas and Kane [2023|. Finally, connections
with the thriving topics of infinite-dimensional regression Mollenhauer et al. [2022] and op-

erator learning de Hoop et al. [2023], Jin et al. [2022]| will be explored in future work.

4.7 Proof of Lemma 3.4

This section contains the proof of Lemma 3.4. We will use the following auxiliary result,

which can be found in [Talagrand, 2022, Lemma 2.10.6].

Lemma 4.7.1. Under Assumption 2.1 (i), it holds with probability at least 1 — 2e~" that

1
N Z sup up(z) — E |:x81€1% u(x)} < N
Proof. By Gaussian concentration, sup,cp u(x) is sup,cp Var [u(x)]-sub-Gaussian. Since

under Assumption 2.1 (i), sup,ep Var[u(z)] = 1, a Chernoff bound argument gives the
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result. O

Proof of Lemma 8.4. We first prove (A). Without loss of generality, we assume ¢y = 1 in the
definition of pyy and pp in Theorem 2.2. Let ¢ > 0 and define & to be the event on which

% Zfzvzl supgep Un(z) — E[supgep u(x)]| < t. It holds on & that

1 Epwepu(@)]+t ) (Elsugep u(e)) + )’

< — vV
<1, 2Ebuwpsepul@)],, 2t | 4(Esupsep u(@)))’ Vv ar
=N VN VN N N
capey 2t 4t2
PN JN N’

and P [ﬁN <4dpnyV \?—% \ %} > P& >1- 9e—Nt?/2 by Lemma 4.7.1. It follows then
that

» © 1 4pN . o
E[pN]—p/O P P[pzvzt}dt—p/o tP P[pNZt}dt—l—p[lp P LP [y > t]dt
N
o0 N _ . (N2 N 1
< (4pn)P + 2p/ =l 3 min{ ST g <) R 7 S P
4pN

We next show (B). To prove (3.5), we can assume ¢y = 1 without loss of generality.

Notice that

Plon < tpn]
1 11 & 1,1 & 2
=P | (5 <ox) (5 (5 2 sup un@)) < o) V(57 (5 2 sup un(@))” < tox)
| (L i ) U (e (L3 s ) 2 o) U (s (L 3 st o) 2 1)
N~ N \/N anlxel% " = PN N anlxel% " =N

We consider three cases.
Case 1: If E[supgep u(x)] < \/LN’ then py = % and Plpy <tpn| <1— P[% > tpN] =
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Case 2: If \/LN < E[supgep u(r)] < VN, then py = \/LNE[supxeD u(z)] and

1 1
5 <1-P|— >
Plony <tpn] <1-P \/N< )~ sup un@)) > tpN

<P S sup up(z) — E[sup u(:v)]‘ > (1 —t)E[sup u(z)]

where the last step follows by Lemma 4.7.1.

Case 3: If E[supyep u(z)] > V/N, then py = %(E[supxeD u(z)])? and

i N
1,1 2
Pon <tpn] <1—=P|=(= D> supup(z)) >tpy
N(anlxeD " >
N
=1-P||= Z sup un(x)’ > VtE[sup u(z)]
N “— weD z€D
N
1
<P || D sup un(e) — Elsup u(@)]| = (1 - VHE[sup u(x)]
anleD xzeD xzeD

<2exp (— 501 VAR Elsup u(w)])?).

Combining the three cases above and noticing that (1 — v#)? < (1 —t)2 for t € (0,1)
yields the first inequality in (3.5). To prove (3.6), recall that 1 < ¢y < v/N in the definition

of pn. If E[supyepu(x)] < 1/v/N, then (3.6) is trivial. If \/L]V < E[supgep u(r)] < VN,
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2 2
then py = \;—ONE[supxeD u(z)] and N (E[sup,ep u(z)])? = N IN > Np%v, so that

i)

9 = 5(1=VE)>N(E[supgep “(x)])21{E[Sup u(z)] > 1/VN} < 9o~ 3 (1=VD?Npy
D

xre

If E[supsepu(@)] > VN, then py = §(Elsup,cpu(x)]))? and N(E[supsepu(@)])? =

N2
% > N3/2pN > Npp, so that

9 = 5(1=V1)>N(E[supyep U(a?)])Ql{E[Sup u(z)] > 1/V/N} < 9e—3(1-VE)2Npy n
xzeD

4.8 Additional Results

4.8.1 Bound on Operator Norm

Lemma 4.8.1. Let D C R, For an integral operator K on L?(D),

() (z) = /D ke, oY), o € LA(D),

it holds that

112 < (suw [ rteaiae’) (sup [ itz ).

Further, if k(z,2') = k(2. ), then

K] < sup [ bt a)jds'.
x JD
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Proof. For any ¢ € L?(D) with M)HL?(D) =1

K03 = |

/(/ \k(z, ") |d:v)¢ "2dz'
sgp/le(m,x/ )|da’ -<Sup/ |k(x, 2 \dx) (/ U(x dx)
_ (sgp/D|k(x,1:)]da:) . (sup/ h(z, 2/ \d:c),

where (i) follows by Cauchy-Schwarz inequality. Therefore,

||K||2 — sup HKQ/;H%Q(D) < <sup/ \k(x,x’)|dx’) . (Sup/ |/€(x,gg’)|dx> .
[l =1 z JD z JD

L%(D)

) (),

su /D|k |dx') //|k’xm (") da’ da
)
)

Further, if k(x,2") = k(2/, x), then

| K| < \/(sup/ \k:(a:,.r’)|da:’) . (sup/ |k(.ﬁ£,x’)|daz) = sup/ |k (z, 2")|da’,
r JD z JD r JD

which completes the proof.
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4.8.2  Auziliary Technical Result

Lemma 4.8.2. For any a > 8 > 0 and q > 0, it holds that

a=f 1. 279 _(@=p? 1/a\—4
/ e 2 (a—t)" 1 tat < P e 8 4+ _(a) .
0 q
Proof. Integrating by parts gives that

a=f 4, —q  (a—p)? -4 o 1,2 — )4
/ e 2 (a—t)" T dt = e R +/ e 2t t—(a ) dt
0 0

First,

Thus,

g q q qg\2
25 q 0—852 1(&)_61
q q\2
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CHAPTER 5
COVARIANCE OPERATOR ESTIMATION VIA ADAPTIVE
THRESHOLDING

This chapter is adapted from the manuscript, which received a minor revision at Stochastic
Processes and their Applications, listed below.
O. Al-Ghattas and D. Sanz-Alonso, Covariance Operator Estimation via Adaptive Thresh-
olding, arXiv preprint arXiw:2405.18562, 2024.

5.1 Introduction

This paper investigates sparse covariance operator estimation in an infinite-dimensional func-
tion space setting. Covariance estimation is a fundamental task that arises in numerous sci-
entific applications and data-driven algorithms Anderson [1958|, Fan et al. [2008|, Hardoon
et al. [2004], Tharwat et al. [2017|, Al-Ghattas and Sanz-Alonso [2024c|, Al-Ghattas et al.
[2024a]. The sample covariance is arguably the most natural estimator, and its error in
both finite and infinite dimension can be controlled by a notion of effective dimension that
accounts for spectrum decay Koltchinskii and Lounici [2017], Lounici [2014]. However, a rich
literature has identified sparsity assumptions under which other estimators drastically out-
perform the sample covariance in finite high-dimensional settings Bickel and Levina [2008a,b],
El Karoui [2008], Cai and Zhou [2012b]|, Cai et al. [2016], Wainwright [2019]. This work
contributes to the largely unexplored subject of sparse covariance operator estimation in
infinite dimension. Through rigorous theory and complementary numerical simulations, we
demonstrate the benefit of adaptively thresholding the sample covariance. In doing so, this
paper contributes to the emerging literature on operator estimation and learning Kovachki
et al. [2024], de Hoop et al. [2023], Mollenhauer et al. [2022|, emphasizing the importance of

exploiting structural assumptions in the design and analysis of estimators.
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In this work, we investigate approximate sparsity structure that arises in the nonsta-
tionary regime where the marginal variance varies widely in the domain and the correlation
lengthscale is small relative to the size of the domain. Covariance estimation for such non-
stationary processes is crucial, for instance, in numerical weather forecasting, where local
and highly nonstationary phenomena such as cloud formation can significantly impact mid
and long-range global forecasts. To study the sparse highly nonstationary regime where the
marginal variance varies widely in the domain and the correlation lengthscale is small, we
consider a novel class of covariance operators that satisfy a weighted Lg-sparsity condition.
For covariance operators in this class, we establish a bound on the operator norm error of
the adaptive threshold estimator in terms of two dimension-free quantities: the sparsity level
and the expected supremum of a normalized field. Unlike existing theory that considered
unweighted Lg-sparsity (see Section 5.1.1 for a review) our theory allows for covariance mod-
els with unbounded marginal variance functions. We then compare our adaptive threshold
estimator with other estimators of interest, namely the universal threshold and sample co-
variance estimators. For universal thresholding, we prove a lower bound that is larger than
our upper bound for adaptive thresholding. In addition, we numerically investigate adaptive
thresholding for highly nonstationary covariance models defined through a scalar parame-
ter that controls both the correlation lengthscale and the range of the marginal variance
function. In the challenging case where the lengthscale is small and the range of marginal
variances is large, we show an exponential improvement in sample complexity of the adaptive
threshold estimator compared to the sample covariance. Our numerical simulations clearly
demonstrate that universal threshold and sample covariance estimators fail in this regime.

By focusing on the infinite-dimensional setting, our theory reveals the key dimension-
free quantities that control the estimation error, and further explains how the correlation
lengthscale and the marginal variance function affect the estimation problem. While our

infinite-dimensional analysis helps uncover such a connection between interpretable model
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assumptions and complexity of the estimation task, it poses new challenges that require
novel technical tools. In this work, we leverage recent results from empirical process theory
Mendelson [2016] to control the error in the estimation of the variance component used to
adaptively choose the thresholding radius. Our infinite-dimensional perspective agrees with
recent work in operator learning that advocates for the development of theory in infinite
dimension, as opposed to the traditional approach in functional data analysis, where it is
common to study estimators constructed by first discretizing the data Ramsay and Ramsey
[2002|, Zhang and Wang [2016]. We will discuss the differences between the two approaches
and compare our theory with the existing infinite-dimensional covariance estimation litera-
ture Al-Ghattas et al. [2023], Fang et al. [2023]. More broadly, infinite-dimensional analyses
that delay introducing discretization have led to numerous theoretical insights and computa-
tional advances in mathematical statistics Giné and Nickl [2021], Bayesian inverse problems
Stuart [2010], Markov chain Monte Carlo Cotter et al. [2013], importance sampling and par-
ticle filters Agapiou et al. [2017], ensemble Kalman algorithms Sanz-Alonso and Waniorek
[2024], graph-based learning Garcia Trillos and Sanz-Alonso [2018a], stochastic gradient de-

scent Latz [2021], and numerical analysis and control Zuazua [2005], among many others.

5.1.1 Related Work

For later reference and discussion, here we summarize unweighted and weighted approximate
sparsity assumptions in the finite-dimensional thresholded covariance estimation literature,
as well as the main sparsity assumptions that have been considered in the infinite-dimensional

setting.

Finite Dimension

Thresholding estimators in the finite high-dimensional setting were introduced in the sem-

inal work Bickel and Levina [2008a] and further studied in Rothman et al. [2009], Cai and
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Zhou [2012b], Cai et al. [2016], Cai and Liu [2011|. Given dx-dimensional i.i.d. sam-
ples X1,..., X from a centered sub-Gaussian distribution with covariance ¥, the authors
demonstrated that thresholding the sample covariance matrix, i.e. igN = (iwlﬂilﬂ >
pN}) — where the superscript U denotes universal — performed well over the class of co-
variance matrices with bounded marginal variances and satisfying an {4-sparsity condition
whenever the thresholding parameter pp is chosen appropriately. Specifically, whenever 3
belongs to the class Uy(Ry, M) for g € [0,1), Ry > 0 and M > 0 where
dx

Uy == Uy(Rg, M) = { ¥ € RIXXx . 35 0, maXEM<M max§ i
<
=1

ISR G)
then the operator norm error of universal thresholding estimators is bounded above (up to
universal constants) by R¢(M logdx /N )1=9)/2 The bounded marginal variance assumption
is crucial to this theory as it was shown that ppr must scale with M in order for the high
probability guarantees on EA]ﬁL,JN to hold. In Cai and Liu [2011], the authors argued that such
a bounded variance assumption effectively converted a heteroscedastic problem of covariance
estimation into a worst-case homoscedastic one in which ¥;; = M for all ¢ for the purposes
of choosing a universal thresholding radius. This is problematic whenever (i) no natural
upper bound on the marginal variances is known and (ii) the marginal variances vary over a
large range. They instead considered the adaptively thresholded covariance estimator iA =
(Zwl{|2”| > NV, }) where sz is the sample version of the variance component V;; :=

var(X;X;). This was shown to be optimal over the larger weighted (g-sparsity covariance

matrix class

U =Us(Ry) = { ¥ e RX™Ix 3 g, max Z 2 %) qyzmq <RIS, (52
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with operator norm error bounded above (up to universal constants) by Rf(log dx /N y1-9)/2,
It was further shown that universal thresholding was sub-optimal over the same class. Min-
imax lower bounds proving the optimality of universal thresholding were studied in Cai and
Zhou [2012b|. Distributional assumptions were significantly relaxed by allowing for depen-
dence in Chen et al. [2013], which analyzed thresholding in the high-dimensional time series

setting.

Infinite Dimension

In the infinite-dimensional setting, the covariance (operator) estimation problem under
sparsity-type constraints has received far less attention. In Al-Ghattas et al. [2023], the
authors consider i.i.d. draws of an infinite-dimensional Gaussian process defined over D =
[0, 1]d with covariance operator C' and corresponding covariance function k£ : D x D — R,
denoted wuy,...,upy Lid GP(0,C). They generalize Bickel and Levina [2008b| to infinite

dimensions by considering Gaussian processes that are almost surely continuous with covari-

ance operators C' € K4, where

Kq:=Ky(Rg, M) = {C’ = 0: sup k(z,z) < M, sup / |k(x,y)|1dy < Rg} : (5.3)
xeD xeDJD

This class naturally captures approximate sparsity of the covariance, which may arise, for ex-
ample, from decay of correlations of the Gaussian process at different locations in the domain.
It was then shown that for a universally thresholded covariance operator estimator, i.e. with
covariance function k(z,y)1{|k(z, )| > pn}, the operator norm error was bounded above by
RL((E[supep u(z)])2/N)I=0/2 which is a dimension-free quantity. Further, the authors
demonstrate that if the covariance function is stationary and depends on a lengthscale pa-
rameter A\, then universally thresholded estimators enjoy an exponential improvement over

the standard sample covariance estimator in the small A\ asymptotic. Notice that here and
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throughout this paper, d represents the dimension of the physical domain D = |0, 1]d and

N

n—1, Which here represent

should not be confused with the dimension of the data points {uy, }
infinite-dimensional functions.
Motivated by applications in functional data analysis, Fang et al. [2023] considers covari-

ance estimation for a multi-valued process u : D — RP given independent data
T
u, () = (unl(-), Upa(+), ... ,unp()) , n=1,...,N.
The covariance function now takes the form
K:DxD—RPP K(z,y) = Cov(un(z), un(y)) = [kij(z y)I} ;=

where k;; : D x D — R is a component covariance function. Then, Fang et al. [2023] studies
the setting in which the number of component is much larger than the sample size, i.e.

p > N, and under the assumption that the true covariance function belongs to the class

p
1—q -1 1
Gq(Ry,€) = {K =0 I?B;CZ(Hkiiuoonjj’Hoo) 2 ||kijllhg < Rq,rgggﬂkii ool kiilloo < g}-
j=1 =

(5.4)

Here, we denote by HkH%IS = [f k2(x,y) dedy the Hilbert-Schmidt norm, and we denote
|kllc = supy yep |k(z,y)|. This class generalizes the class Uy and the authors obtain anal-
ogous upper bounds to those of Cai and Liu [2011] for the error of estimation under a
functional version of the matrix /1-norm. We provide further comparisons to this line of
work in Remark 5.2.2. Another popular approach in the functional data analysis literature
is the partial observations framework, see Yao et al. [2005a], Zhang and Wang [2016] and
[Fang et al., 2023, Section 4]. In this setting, observations are comprised of noisy evalua-

tions of the infinite dimensional response function at a set of grid-points located randomly
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in the domain D. At a high level, much of this literature involves the study of nonpara-
metric estimators (e.g. local polynomials) to recover estimates of the functions underlying
the partial observations. These estimates are then used as inputs to the sample covariance
estimator. Under general smoothness assumptions, which are necessary to control the bias
of the nonparametric estimator, it can be shown that covariance estimators that use these
estimated functions are asymptotically equivalent to covariance estimators that use fully

observed functional data. We discuss this approach further in Remark 5.2.5.

5.1.2 Outline

Section 5.2 contains the main results of this paper: Theorem 5.2.3 shows an operator norm
bound for adaptive threshold estimators, Theorem 5.2.6 states a lower bound for universal
thresholding, and Theorem 5.2.10 compares the sample covariance and adaptive threshold
estimators. In addition, Section 5.2 also includes numerical simulations in physical dimension
d = 1; similar results in dimension d = 2 are deferred to an appendix. The proof of Theorem
5.2.3 can be found in Section 5.3, and uses a recent result on empirical process theory
discussed in Section 5.4. Sections 5.5 and 5.6 contain the proofs of Theorems 5.2.6 and
5.2.10, respectively. The paper closes in Section 5.7 with concluding remarks and suggestions

for future work.

Notation Given two positive sequences {an} and {by}, the relation a, < b, denotes that
ap < cby, for some constant ¢ > 0. If both a,, < b, and b, < ay hold simultaneously, we
write ap < by. For an operator £, we denote its operator norm by |[£]|| and its trace by
Tr(L). For a matrix ¥ € RP*P (resp. operator C' : Lo(D) — Lo(D)) we write X = 0 (resp.

C > 0) to denote that ¥ (resp. C) is positive definite.
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5.2 Main Results

This section introduces our framework, assumptions, and main results. In Section 5.2.1, we
discuss the data generating mechanism under consideration, and we define the various esti-
mators that will be studied. In Section 5.2.2, we establish our main result, a high probability
operator norm error bound for the adaptive threshold estimator. In Section 5.2.3, we provide
both theoretical and empirical comparisons of adaptive threshold, universal threshold, and

sample covariance estimators.

5.2.1 Setting and Estimators

Let D c R% and let ui,...,uy be iid. copies of a centered square-integrable random
field u : D — R. We are interested in estimating the covariance operator C' from the data
{un}flvzl. Recall that the covariance function (kernel) k£ : Dx D — R and covariance operator

C : Lo(D) — Lo(D) are defined by the requirement that, for any x,y € D and ¥ € Lo(D),

K(r,y) = Eu(@uly)l,  (CY)() = / k(. y)y) dy.

D

That is, C' is the integral operator with kernel k. We will focus on (sub-)Gaussian data.
Recall that a square-integrable process u is called (sub-)Gaussian if, for any fixed w € Lo(D),
the random variable (u,w)r, py is (sub-)Gaussian. We further recall that the process u is
called pre-Gaussian if there exists a centered Gaussian process, v, with the same covariance
operator as that of u. Following |[Ledoux and Talagrand, 2013, page 261|, we refer to v as
the Gaussian process assoctated to u.

For simplicity, we take D := |0, 1]d to be the d-dimensional unit hypercube. In the ap-
plications that motivate this work, the ambient dimension d is typically 1,2, or 3, and so
we treat d as a constant throughout. We are interested in applications where the covari-

ance function k exhibits approximate sparsity (which may arise, for instance, due to spatial
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decay of correlations), and where the marginal variance function o2(z) := k(z, ) has mul-
tiple scales in the domain D. In this setting, the sample covariance function k and sample

covariance operator C defined by

perform poorly. To improve performance in regard to exploiting approximate sparsity, one

can instead consider the universal threshold estimator defined by

(o) = b (i@ = v} (@00 = [ G

where pp; is a tunable thresholding parameter. However, this approach is not well suited if
the marginal variance function takes a wide range of values on D, where it becomes essential
to consider a spatially varying thresholding parameter. To that end, we define the variance

component ¢ : D x D — R>q by

0(x,y) := var (u(x)u(y)) ,

To estimate the variance component, we consider the standard sample-based estimator given

by

N
; 1 2, 3 2 72
Os(v.y) == D un(@)un(y) — F(z,y).
n=1
In the Gaussian setting, we additionally consider the Wick’s-based estimator given by

~

Ow (@, y) = k(z,2)k(y,y) + & (z,y),

which is motivated by the following derivation invoking Wick’s theorem (also commonly
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referred to as Isserlis’ theorem)

0(z,y) = E[u®(2)u’(y)] — (E[u(z)u(y)])’
E[u2(x)]E[u2(y)} + 2(E[u(:17)u(y)})2 — (E[u(x)u(y)])2
k(z,2)k(y,y) + k*(z,y).

Given an estimator 6 of §, we then define the adaptive threshold estimator

2 ° ]% T,y ~ ~
ko = k(z,y)1 # = T (CARTDIE ;:/ ko Coy)(y) dy,
bz, y) P
where we set A = S when § = fg and A = W when 0 = Oy. We refer to this as adaptive
thresholding (of the sample covariance) since the event in the indicator can be equivalently
written as {|k(z, )| = pn0Y/%(z,y)}, and so the level of thresholding varies with the location
(x,y) € D x D. The goal of this paper is to demonstrate through rigorous theory and

numerical examples the improved performance of the adaptive threshold estimator relative

to the universal threshold and sample covariance estimators.

5.2.2  Error Bound for Adaptive-threshold Estimator

Our theory is developed under the following assumption:

Assumption 5.2.1. Letu,uq,...,uyn bei.i.d. centered sub-Gaussian and pre-Gaussian ran-
dom functions on D = |0, 1}d that are Lebesgue almost-everywhere continuous with probability

one. It holds that:

(i) C € K where

1—q
IC; = ICZ(RQ) = {C = 0, sup/ (k’(m,x)k(y,y)) 2 |k(z,y)|9dy < Rg}
xeD JD
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(ii) There exists a universal constant v > 0 such that, for any x,y € D,
0(x,y) = vk(z,2)k(y,y).

(i1i) For a sufficiently small constant c, the sample size satisfies

\/NZEE supﬂ].

xzeD k’(ﬂf,l‘)

In contrast to the setting considered in Al-Ghattas et al. [2023], Assumption 5.2.1 allows
for sub-Gaussian data and admits covariance functions for which sup,cp k(z,z) — co. Fur-
thermore, here we only require Lebesgue almost-everywhere continuity of the data, whereas
Al-Ghattas et al. [2023] requires continuous data. Assumption 5.2.1 (i) specifies that the
covariance function % satisfies a weighted Lg-sparsity condition that generalizes the class of
row-sparse matrices Uy (Rg) studied in Cai and Liu [2011] to our infinite-dimensional setting.

Assumption 5.2.1 (ii) ensures that consistent estimation of the variance component is
possible, and is analogous to requirements in finite dimension [Cai and Liu, 2011, Condition
C1]. Assumption 5.2.1 (iii) is imposed for purely cosmetic reasons and can be removed at
the expense of a more cumbersome statement of the results and proofs that would need to
account for the case in which the sample size is chosen to be insufficiently large. The sample
size requirement can also be compared to [Fang et al., 2023, Condition 4|, which requires that
the pair (N, p) satisfies logp/]\fl/4 — 0 as N,p — 0o, where p is the number of component
random functions as described in Section 5.1.1. In contrast, our assumption is nonasymptotic
and stated only in terms of the dimension-free quantity E[sup,¢ p u(z)//k(z, )] as our proof

techniques differ from theirs.

Remark 5.2.2 (Comparison to Global-type Sparse Class of Fang et al. [2023]). As noted

in Section 5.1.1, Fang et al. [2023] recently studied a notion of sparse covariance functions
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Gq(Ry,€) different to the one considered here. In particular, the class Gq(Rq,€) specifies a
global notion of sparsity, in the sense that it imposes conditions on the relationship between
the various coordinate covariance functions that make-up K. In contrast, the class IC; 18 local,
in that it imposes a sparse structure on the covariance function of a real-valued process. For
example, in the single component case p = 1, covariance functions ki1 belonging to G¢(Ry, €)
must satisfy ||k11||},gq||k11||‘}{5 < RI and ||]f1_11||oo||]€11||oo < 1/e. This is equivalent to
requiring that the covariance function ki1 is bounded in Hilbert-Schmidt norm, and that k11
and its inverse are bounded in supremum norm. Importantly, in contrast to the class ICZ

studied here, their assumption does not capture any decay of correlations of the process at

two different points in the domain, nor does it permit sup,ep k11(x,x) — 0.

We are now ready to state our main result, which establishes operator norm bounds for

adaptive threshold estimators.

Theorem 5.2.3. Under Assumption 5.2.1, let v be the Gaussian process associated to u,

and for a universal constant cg > 0, let

_ g {Su &]
PNZ=UN Leep 2, 2)]

2
Then, there exists a universal constant ¢y > 0 such that, with probability at least 1—cle*NpN,
ICo = Cll S Rapy ™.

Moreover, if u is a Gaussian process, then for

. o 1 un ()
IN=—"= D, s —m—"—],
N\ N
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2
there exists a universal constant ¢; > 0 such that, with probability at least 1 — cle_N PN,

ICA —C|l < Ry ",

where A € {S,W}.

Remark 5.2.4. For adaptive covariance matriz estimation under weighted {q-sparsity de-
scribed in Section 5.1.1, [Cai and Liu, 2011, Theorem 1] showed that if the (normalized)
sample covariance matriz satisfies maxi<; j<dy ’ilj - Eij|/‘7i}/2 < PN, then the opera-
tor norm error of the adaptive thresholding covariance matriz estimator can be bounded by
Rgﬁ}v_q, where ]?g controls the row-wise weighted {g-sparsity of X2. The choice of thresholding
parameter can be understood by appealing to the analogy that covariance matriz estimation
may be interpreted as a heteroscedastic Gaussian sequence model (see [Cai and Liu, 2011,

Section 2/), so that roughly speaking, for large N,

N

1 Vis o
N > XpiXnj & S+ ﬁzij, 1<4,j <dy,
n=1

with {Z;;} i.i.d. standard normal. This explains the choice of the thresholding parameter in

the finite-dimensional setting (after normalizing the data by f/,'j), since

PRSI E [max; j<q, Zij]
N — N — \/N 9

provides element-wise control on the sample covariance. In the infinite-dimensional setting

considered here, we require instead high probability sup-norm concentration bounds for the
sample covariance function l%(x,y) and the estimated variance component function é(x,y).
These bounds are obtained in Section 5.3 utilizing tools adapted from recent advances in
the study of multi-product empirical processes Al-Ghattas et al. [2025] via generic chaining.

These techniques are discussed in Section 5.4.2. Our results show that the correct thresholding
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radius py must scale with the expected supremum of the nmormalized associated Gaussian
process, as this is precisely the dimension-free quantity needed to control the sample quantities
uniformly over the domain D. Since py is a population level quantity, we establish in
Lemma 5.3.6 that it may be replaced by its empirical counterpart py in the Gaussian setting,
yielding a computable estimator épiA‘N. This is possible since the associated Gaussian process
agrees with the observed process, i.e. u = v (see also Remark 5.4.6 for a technical discussion
of this point). In the sub-Gaussian setting, Theorem 5.2.3 shows that an adaptive threshold
estimator with an appropriate choice of thresholding radius pn achieves the same estimation
error as in the Gaussian case. In practice, we advocate choosing the thresholding radius py
by cross-validation in non-Gaussian settings.

Our theory for Gaussian data holds for both the sample-based and the Wick’s-based esti-
mators of the variance component. The Wick’s-based estimator might be preferred in practice
as it only requires estimating the second moment of the process, whereas the sample-based
estimator requires estimating both the second and fourth moments, which is more computa-
tionally intensive. From a theoretical perspective, the Wick’s-based estimator is also easier
to analyze using results for quadratic empirical processes (see e.g. Mendelson [2016, 2010]),
whereas the sample estimator relies on bounds for higher order multi-product empirical pro-
cesses as described in Section 5.4.2. We further remark that in contrast to finite-dimensional
results in which the high probability guarantee improves as dx increases, the probability in
Theorem 5.2.3 approaches 1 as the expected supremum of the normalized process grows. It is
straightforward but tedious to derive high probability bounds that are more general in that they
depend additionally on a confidence parameter t > 1. We provide such bounds for the pre-
requisite Lemmas 5.3.2 and 5.3.3. In Section 5.2.3, we study an explicit family of processes
for which the expected supremum can be expressed in terms of parameters of the covariance

kernel. Finally, we note that the pre-factor cq is unspecified. In the existing literature (e.g.

Cai and Liu [2011], Bickel and Levina [2008b], Al-Ghattas et al. [2023]) it is common to
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choose co manually or in a data-driven way, such as via cross-validation. For our purposes,

we fix cg = 5 in our simulated experiments in Section 5.2.3.

Remark 5.2.5 (Comparison to the Partially Observed Framework). In this work, we assume
access to the (infinite dimensional) Gaussian random functions uy, ..., un. While in practice
we cannot work with such infinite-dimensional functional data, the theory is nonetheless
lluminating for finite dimensional discretizations, as demonstrated by our empirical study in
Section 5.2.3. An alternative approach, described in Section 5.1.1, is the partial observations
framework. While this approach is often considered more practical as real-world data is
always discrete, we arque that the partial observations approach inadvertently masks the
underlying structure of the problem, as the bounds in that literature necessarily rely on the
smoothness exponents (e.g. the exponent of the Holder condition when the underlying true
functions are assumed to be Holder smooth), and not on the expected supremum of the process,
as in our theory. This dependence is an artifact of the smoothness assumption, as opposed to
being a quantity that fundamentally characterizes the behavior of the underlying process. In
effect, the discretization step is taken far too early in the partial observations framework to
uncover the dependence on the expected supremum. We comment that our approach is more
in line with the operator learning literature Kovachki et al. [2024], de Hoop et al. [2023],
Mueller and Siltanen [2012] and adheres to the philosophy put forward in Dashti and Stuart
[2017b], which states “...it is advantageous to design algorithms which, in principle, make
sense in infinite dimensions; it is these methods which will perform well under refinement of

finite dimensional approximations.”

5.2.3 Comparison to Other Estimators

In this section, we extend our analysis of the adaptive covariance operator estimator by
comparing to other candidate estimators, namely the universal thresholding and sample

covariance estimators. In Section 5.2.3, we first demonstrate that universal thresholding is
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inferior to adaptive thresholding over the class Kj(Ry). Next, in Section 5.2.3 we restrict
attention to a class of highly nonstationary processes and show that adaptive thresholding
significantly improves over the sample covariance estimator. Finally, in Section 5.2.3 we

compare all three estimators on simulated experiments.

Inferiority of Universal Thresholding

In this section, we show rigorously that universal thresholding over the class IC; can perform
arbitrarily poorly relative to adaptive thresholding. The result extends [Cai and Liu, 2011,
Theorem 4], which demonstrates in the finite-dimensional setting that universal thresholding
behaves poorly over the class u; . The result relies on a reduction of the infinite-dimensional
problem to a finite-dimensional one, to which the existing aforementioned theory can be

applied.
Theorem 5.2.6. Suppose that Rg > 8 and pp is defined as in Theorem 5.2.3. Then, there
exists a covariance operator Cqy € ICZ(RQ) such that, for sufficiently large N,

inf E y OV, — Coll Z (R~ 1pN
w20 e apo.co| S ~ Ol 2 ()™ Ren

where G#JN 1s the universal thresholding estimator with threshold .

Remark 5.2.7. Since g € (0, 1), the lower bound for universal thresholding in Theorem 5.2.6
is larger than the upper bound for adaptive thresholding in Theorem 5.2.3, and this discrep-
ancy grows as Ry increases. Therefore, Theorem 5.2.6 implies that over the class KCj;, univer-
sal thresholding estimators can perform significantly worse than their adaptive counterparts,
regardless of how the universal threshold parameter v is chosen. This agrees with intuition,
since if the scale of the marginal variance of the process varies significantly over the domain
D, universal thresholding will intuitively need to scale with the largest of these scales, and

as a result the thresholding radius will be too large for all but a small portion of the domain.
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See also Remark 5.2.12.

Nonstationary Weighted Covariance Models

In this section, we further demonstrate the utility of adaptive thresholding by applying
Theorem 5.2.3 to an explicit class of highly nonstationary covariance models. To that end,

we restrict attention to a subset of ICZ of operators with covariance functions of the form

k(z,y) = o(2)a(y)k(z, y), (5.5)

where k is chosen to be an isotropic base covariance function and o will represent a marginal
variance function. It follows by standard facts on the construction of covariance functions
(see e.g. Genton [2001]) that (5.5) defines a valid covariance function. This class is partic-
ularly interesting as it can be thought of as a weighted version of many standard isotropic
covariance functions used in practice, such as the squared exponential kSE and Matérn kMa
classes, defined respectively in (5.8). Further, it permits us to express the theoretical quan-
tities of Theorem 5.2.3 in terms of interpretable parameters of the covariance function, as
we now describe rigorously.

Throughout this section, we assume that the data uq, ..., uy are Gaussian and that the

base function k satisfies the following:
Assumption 5.2.8. k in (5.5) is a covariance function satisfying:
(i) k is isotropic and positive, so that for r = ||z — yl|, k(z,y) = k(r) > 0. Further, k(r)
is differentiable, strictly decreasing on [0,00), and satisfies limy—y l%(r) =0.
(ii) k = ky depends on a correlation lengthscale parameter X > 0 such that ky(¢r) =
l;:)\@q(r) for any ¢ > 0, and ky(0) = k(0) is independent of \.

The class described in Assumption 5.2.8 contains many popular examples of covariance

functions, such as the squared exponential (Gaussian) and the Matérn models Williams and
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Rasmussen [2006]. Importantly though, functions of the form (5.5) are significantly more
general since they are nonstationary (and therefore non-isotropic). This nonstationarity is
introduced by the marginal variance functions o, which are termed as such since k(z,x) =
02(x). The theoretical study of the small lengthscale regime was initiated in Al-Ghattas et al.
[2023| in which the authors considered kernels satisfying Assumption 5.2.8, or equivalently
o(x) = 1. Our analysis here extends their results to the challenging non-isotropic and
nonstationary setting. For concreteness, we focus on a specific class of marginal variance
functions detailed in the following assumption, where we let ¢ depend on the parameter A

in Assumption 5.2.8.

Assumption 5.2.9. The marginal variance function in (5.5) is taken to be either oy(x; ) =

1 or oy(z;a) = exp (/\_aHxHQ) for a € (0,1/2).

Functions of the form (5.5) and which additionally satisfy Assumptions 5.2.8 and 5.2.9 are
denoted by k) (z,y). For small A, the case oy (x; ) = exp ()\_O‘Hx|]2) results in a particularly
challenging estimation problem due to the extreme nonstationarity induced by the wide range
of the exponential function across the domain. The case oy (x; ) = 1 allows us to include
unweighted covariance functions, thus strictly generalizing the theory in [Al-Ghattas et al.,
2023, Section 2.2]. Our main interest in the exponential marginal variance function is further
motivated by the following fact regarding the exponential dot-product covariance function,
ky(z,y) = eXp(a:Ty /A?), which is interesting as it may be viewed as the simplest example of

a nonstationary covariance function. Note that we can write

exp (22 — exp (122 e (W12 o (Nl =02
A2 2\2 222 IN2
2 2
T Yy ~
= exp (%) exp (%) k§E(x,y).

Figure 5.1 shows random draws when % is chosen to be the squared exponential (SE) covari-

ance function, with varying choices of A\ and a. It is immediately clear that for smaller A,
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Squared Exponential (SE)
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Figure 5.1: Draws from a centered Gaussian process on D = [0, 1] with weighted SE covari-
ance function of the form (5.5) with SE base kernel defined in (5.8). In the first plot, o = 1
(unweighted), and in the second and third plots, o is chosen according to Assumption 5.2.9
and with o = 0.1,0.2 respectively. The scale parameter A is varied over 0.001 (blue), 0.01
(red) and 0.1 (black)

the processes become more local, whereas the role of « is to change the scale of the process
across the domain, with this change being more pronounced for larger o«. Analogous plots in

the d = 2 case are presented in Figure 5.6 in the appendix.

Theorem 5.2.10 (Sample Covariance vs. Adaptive Thresholding). Let C' and ég‘N denote
the sample covariance and adaptively thresholded estimator respectively. Then, there exists

a unwversal constant \g > 0 such that, for all A\ < Ag, it holds with probability at least 1 — Al

216



that

IC—c| _ [xd r=d
e SV YR (5:6)

”aﬁ}v -l log(A~4) =)/
vl oe\A ) , 5.7

where A € {S, W} and c(q) is a constant depending only on q.

Remark 5.2.11. An explicit expression for the constant c(q) appearing in Theorem 5.2.10
1s provided in the proof of the result. We remark that when k= %SE, stratghtforward calcula-

¢—34/2

tions yield that c¢(q) < . We note once more that throughout this work, the dimension

d of the physical domain D = [0,1]? is treated as a constant.

Theorem 5.2.10 — motivated by Al-Ghattas et al. [2023], Koltchinskii and Lounici [2017]
— considers the relative as opposed to the absolute errors commonly used in the sparse esti-
mation literature Bickel and Levina [2008b]|, Cai and Liu [2011], Fang et al. [2023]. The bound
demonstrates that when A is sufficiently small, the adaptive thresholding estimator exhibits
an exponential improvement in sample complexity over the sample covariance estimator. We
remark that the bound is identical to [Al-Ghattas et al., 2023, Theorem 2.8] which considers
the less general class of unweighted covariance functions, i.e. with oy := 1 in (5.5). The
sample covariance bound (5.6) follows by an application of [Koltchinskii and Lounici, 2017,
Theorem 9|, which shows that with high probability ||5 —C £ IC[(y/r(C)/N Vv r(C)/N),
where r(C) = Tr(C)/||C]| is the effective (intrinsic) dimension of C. To apply this result,
it is therefore necessary to derive sharp characterizations for both Tr(C') and ||C|| in terms
of the covariance function parameters a, A\, which we provide in Lemmas 5.6.1 and 5.6.4.
The adaptive covariance bound (5.7) follows by an application of our main result, Theo-
rem 5.2.3, and therefore requires a sharp characterization of R4 and pp in terms of the same

parameters, provided in Lemma 5.6.3.
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Remark 5.2.12 (Universal Thresholding). Theorem 5.2.10 shows that for sufficiently small
A, adaptive thresholding with an appropriately chosen thresholding parameter will significantly
outperform the sample covariance estimator. It is also instructive to consider the universal
thresholding estimator in which the same threshold radius p]lif is used at all points (z,y) when
estimating k(x,y). This estimator was studied in Al-Ghattas et al. [2023] under the assump-
tion that the covariance operator belonged to the class Ky, with M = sup,ep k(z,x) = 1.
Remowving the bounded marginal variance assumption, a careful analysis of their theory sug-
gests that the universal threshold radius should be chosen to scale with sup,cp k(x,x). This is
analogous to the finite dx -dimensional covariance matriz estimation theory (see e.g. Bickel
and Levina [2008b], Cai and Liu [2011]) in which the (universal) thresholding parameter
must be chosen to scale with max;<q, |%;;|. For processes with marginal variances that
dramatically differ across the domain however, and as noted in Remark 5.2.7, such a scal-
ing causes the estimator to fail as it will necessarily set the estimator to zero for a large
proportion of the domain. Specifically in the setting of Assumption 5.2.9, we have that
supgep ki (z,x) = e24/2" and inf e p ky(z,2) = 1. Therefore, as A decreases, the ratio of
largest to smallest marginal variances of the process diverges, and the universal threshold-
ing estimator is zero for larger portions of the domain. This behavior is also borne out in

our simulation results (see Figure 5.3) in which a grid of universal threshold parameters is

considered and all fail dramatically relative to the adaptive estimator.

Simulation Results

In this section, we study the behavior of the sample covariance, universal thresholding, and
adaptive thresholding estimators. The results provide numerical evidence for our Theo-
rem 5.2.10, and also for the discussion around universal estimators in Remark 5.2.12. Our
experiments are carried out in physical dimension d = 1 (we also provide results for the case

d =2in5.9.1). Although our theory works for any base kernel k satisfying Assumption 5.2.8,
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we focus here on the squared exponential (SE) and Matérn (Ma) classes for simplicity, defined

respectively by

2
~ I —
k§E('x7y) = exXp (_ H yH ) )

2)\2
(5.8)
- ol=v [\ /o Y NG d—1 1
kg/la(x»?/): () (THIB—QD K,,( \ lz—yll| . V>TV§,

where I' denotes the Gamma function and K, is the modified Bessel function of the second
kind. Both covariance functions can be shown to satisfy the assumptions in this work,
see [Al-Ghattas et al., 2023, Section 2.2|. Our samples are generated by discretizing the
domain D = [0,1] with a uniform mesh of L = 1000 points. We consider a total of 30
choices of A arranged uniformly in log-space and ranging from 1072° to 10701, For each
A, with corresponding covariance operator C', the discretized operators are given by the
L x L covariance matrix C'J = (k(z, xj))lgi,ng' We sample N = 5log(A~%) realizations
of a Gaussian process on the mesh, denoted uy,...,uy ~ N(0,C). We then compute the

empirical and (adaptively) thresholded sample covariance matrices
~ 1 ~NAij ~ ~ R £ 1/9 o
O = 5 2 unleunlay), O = CVUICY| 2 on(0V)7), 1<ig<L

where pp is defined as in Theorem 5.2.3, and éij are the estimated variance components

defined by either

A”:li(uxux) 6”)2 1<4,57<L
N n ’L TL i ) =40HJ =4

n=1

or
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To quantify performance, we consider the relative error of each of the estimators, i.e.
€= H@ — C||I/IIC|| for the sample covariance, with analogous definitions for the other esti-
mators considered. We repeat the experiment a total of 100 times for each lengthscale, and
provide plots of the average relative errors as well as a 95% confidence intervals over the
trials. In Figure 5.2, we consider in the first row the (unweighted) squared exponential and
Matérn functions (with oy := 1), in the second and third rows we choose o) according to
Assumption 5.2.9 with a = 0.1 and a = 0.2 respectively. In the unweighted case, we also
consider the universally thresholded estimator where the threshold is taken to be ppr, which
is the correct choice by [Al-Ghattas et al., 2023, Theorem 2.2|. Note that in this case, since
k(x,z) =1 for all z € D, all marginal variances are of the same scale, and so the universal
and adaptive estimators have the same rate of convergence. While all thresholding estima-
tors exhibit good performance as their relative errors are below 1, it is clear that adaptive
thresholding out-performs universal thresholding for the choice of pre-factor 5.

Note that all thresholding estimators significantly outperform the sample covariance es-
timator for small X\. For the second and third rows, the adaptive estimator continues to
significantly outperform the sample covariance and is unaffected by the differences in scale
introduced by o). We observe that the sample-based and Wick’s-based adaptive estimators
perform similarly, with the Wick’s-based estimator exhibiting slightly better performance
in all experiments. The results clearly demonstrate our Theorem 5.2.10, since taking only
N = 5log()\_1) samples, the relative error of the adaptive estimator remains constant as A
decreases.

Next, in Figure 5.3 we study further the behavior of universal thresholding in the weighted
setting with o = 0.1. As discussed in Remark 5.2.12, the existing theory suggests to take
the threshold radius to scale with sup,cp \/m = ¢¥/A" | which becomes extremely

large for small A\, and causes the universal threshold estimator to behave effectively like the

U

zero estimator. This choice is reflected by the error Epn which has relative error equal to
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Figure 5.2: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (¢, dashed blue), universal thresholding (6}6JN, red), sample-based adaptive thresh-
n
based on a sample size (N, dotted green) for the (weighted) squared exponential (left) and
(weighted) Matérn (right) covariance functions in d = 1 over 30 Monte-Carlo trials and
30 scale parameters A ranging from 10725 to 10791, The first row corresponds to the
unweighted covariance functions and is the only case in which the universal thresholding
estimator is considered; the second and third rows correspond to the weighted variants with
a = 0.1,0.2 respectively.

olding (2 , black) and Wick’s adaptive thresholding (5\5\]/\7, purple) covariance estimators
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Figure 5.3: Plots of the average relative errors and 95% confidence intervals achieved by the
sample (e, dashed blue), universal thresholding (5gN, red), universal thresholding with data-

5}OJN grid’ pink) and sample-based adaptive thresholding (sgN, black) covariance
estimators based on a sample size (NN, dotted green) for the (weighted) squared exponential
(left) and (weighted) Matérn (right) covariance functions with @ = 0.1 in d = 1 over 30

Monte-Carlo trials and 30 scale parameters A ranging from 10~25 to 10701,

driven radius (

1 for small lengthscales. To further test the universal estimator, for each lengthscale we
consider a grid of 10 thresholding radii ranging from 0 (corresponding to just using the

sample covariance, with relative error €) to the one suggested by the theory (corresponding

to the theoretically suggested universal estimator, with relative error 5}5JN). The performance
of these 10 estimators is represented in pink. It is clear from these results that regardless of
the choice of thresholding radius, the universal estimator performs significantly worse than
the adaptive estimator.

The examples considered thus far possess a form of ordered sparsity in that the decay
of the covariance function depends monotonically on the physical distance between its two
arguments. Although this structure arises in many applications, it is not necessary for the

success of thresholding-based estimators. In Figure 5.4, we consider the performance of all

estimators when the base kernel exhibits an unordered sparsity pattern. First, we study the
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Figure 5.4: Plots of the average relative errors and 95% confidence intervals achieved by the

sample (e, dashed blue), universal thresholding (5gN, red), sample-based adaptive thresh-
olding (sgN, black) and Wick’s adaptive thresholding (e\é\]/v, purple) covariance estimators

based on a sample size (N, dotted green) for the periodic kernel (left) and shuffled kernel
(right) in d = 1 over 30 Monte-Carlo trials and 30 scale parameters A ranging from 10—22
to 10701,

periodic covariance function kP¢rd given by

i) = xp (2252 =0,
where n > 0 is the periodicity parameter. Intuitively, the periodic covariance function is
composed of |1/n] bumps spaced uniformly over the domain, each behaving locally like
/~€§E Consequently, this kernel is not monotonically decreasing, but it becomes sparser with
smaller A. As another example, we consider the squared-exponential kernel applied to a
random permutation of the underlying discretized grid. Shuffling the data breaks the spatial
ordering while maintaining the same level of sparsity. For both periodic kernel and shuffied
data examples, we choose o) according to Assumption 5.2.9 with v = 0.1 and consider 30

scale parameters A ranging from 10722 to 10791, The results demonstrate that adaptive

thresholding is superior to both universal thresholding and sample covariance estimators.
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Although Theorem 5.2.10 holds for Gaussian data, we investigate numerically here the be-
havior of all estimators on sub-Gaussian data in the small lengthscale regime. Given two inde-
pendent centered Gaussian processes v(l), U(Q), with covariance functions k! = k2 both satis-
fying Assumption 5.2.8, we define u(1) := [v(W|—E[vM)| and v := (JoW|—E[vM)|) sin(v?)).
These transformations ensure the resulting processes are sub-Gaussian (technical details are

deferred to 5.9.2). The true covariance matrices are given respectively by

.9 , . = N .
cii — 2zi)olr)) ( |~ By + wi,xj)sm—%(mi,xj))) ,

™

C’;j = C’ij x e~ 203 @) +03())) sinh(a)\(xi)a)\(xj)]%)\(xi,xj)), 1<i,j<L.

As in Figure 5.3, we consider a grid of 10 threshold radii for each estimator, and for each
lengthscale we choose the threshold that gives the smallest average relative error to generate
the series in the figure. Throughout we choose o) according to Assumption 5.2.9 with
a = 0.1, and k = kM2 Similar results hold in the case k = kSE. The results are presented
in Figure 5.5, with both adaptive estimators significantly beating out the sample covariance
and universal threshold estimators. The empirical results suggest that the theoretical bound
in Theorem 5.2.10 potentially continues to hold beyond the Gaussian setting. We leave a

theoretical investigation of this extension to future work.

Remark 5.2.13. In all of our numerical experiments, the Wick’s-based estimator exhibits
strong performance at the level of and even superior to that of the sample-based estimator.
While our theory suggests that the two estimators have the same rate of convergence, it
does not preclude differences owing to the choice of pre-factor co in the choice of sample
size. The results therefore indicate that the Wick’s-based estimator is more robust to smaller
choices of this pre-factor. In the Gaussian setting, this is expected. Recall that Wick’s
theorem states that for a centered multivariate Gaussian vector X = (Xq,...,Xyr), then

E[X1Xo--- X)) = Zwelﬁw H{i,j}@r Cou(X;, X;), where H?\/‘, is the set of all partitions of
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{1,..., M} of length 2. Therefore, in contrast to the sample-based estimator, the Wick’s-
based estimator avoids having to compute empirical higher order moments which plausibly
leads to a more stable estimator for any given sample size. The situation in the sub-Gaussian
setting depicted in Figure 5.5 is somewhat more surprising, given that the Wick’s-based
estimator is only theoretically justified for Gaussian data. While a rigorous explanation of
this phenomena is well beyond the scope of this work, we offer here some intuition as to why
the Wick’s-based estimator might be competitive even for sub-Gaussian data. A generalization
of Wick’s theorem to non-Gaussian data given in Leonov and Shiryaev [1959] states that,
whenever the joint moment exists, E[X1Xo -+~ Xpf| = > remy, [laer £((Xm)mea), where
Iys is the set of all partitions of {1,..., M}, and k((Xm)mea) is the joint cumulant of
the subset (X )mea- Therefore, one must estimate all higher-order cumulants as opposed
to the Gaussian case in which second-order cumulants suffice. Recall that the cumulants
are the coefficients in the Taylor series expansion of the cumulant (log-moment) generating
function of X, ¥ (7y) = log EcX) | which for sub-Gaussian X is bounded above by c||7||% for
a positive universal constant c. In order for this to be true, terms of cubic and higher-order
cannot be too large. Consequently, higher-order cumulants (third-order and above) cannot
be too large. With this in mind, the Wick-based estimator can be interpreted as a type of
penalized estimator that effectively treats these small higher-order cumulants as negligible by

approximating them with zero.

Notice that in Figures 5.2, 5.3, 5.4 and 5.5 thresholding seems to increase the relative
error for large \. We note, however, that our theory holds only in the small A regime, and
consequently the behavior for large A is not captured. We also note that the increase in error

may be solely due to the very small sample size used for large values of .
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Figure 5.5: Plots of the average relative errors and 95% confidence intervals achieved by

the sample (e, dashed blue), universal thresholding with data-driven radius (5}0JN orid’ pink),

sample-based adaptive thresholding with data-driven radius (5/5,]\[’gri 4 black) and Wick’s-
W

PN grid’ purple) covariance estimators

based on a sample size (N, dotted green) for the sub-Gaussian processes ne (left) and u?
(right). For each data-driven estimator and for each A, pp is chosen as the error minimizing
radius from a set of radii ranging from zero to the choice suggested by the theory in the
Gaussian setting. The results are carried out in d = 1 over 30 Monte-Carlo trials and 30
scale parameters \ ranging from 10722 to 10791,

based adaptive thresholding with data-driven radius (e
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5.3 Error Analysis for Adaptive-threshold Estimator

In this section, we prove our first main result, Theorem 5.2.3. The proof structure is similar
to that for the study of adaptive covariance matrix estimation in Cai and Yuan [2012],
but our proof techniques differ in a number of important ways. Chiefly, our results are
nonasymptotic and dimension free, owing to our use of recent theory on suprema of product
empirical processes put forward in Mendelson [2016] and described in detail in Section 5.4.
This new approach allows us to prove Lemmas 5.3.2 and 5.3.3, which provide dimension-
free control of the sample covariance and sample variance component. Building on these
dimension-free bounds, we show five technical results, Lemmas 5.3.1, 5.3.4, 5.3.5, 5.3.6, and
5.3.7 that are the key building blocks of the proof of the main result. Throughout, we denote

the normalized versions of u,uy,...,uN by

We further denote the Gaussian processes associated to u, @ by v, ¥ respectively.

Lemma 5.3.1. Under Assumption 5.2.1, it holds with probability at least 1—2¢— (Elsupzep 0(2)))?

that

é(l’, y) B ‘9(1’, y)
0(x,y)

_ Elsupyep i)

wWN

sup
z,yeD

where 6 € {0s, Oy} in the Gaussian setting, and 0 = O otherwise.
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Proof. We consider first éS‘ Assumption 5.2.1 (ii) implies that, for any x,y € D,

~

95('% y) — 9($7 y)
0(x,y)

K2 (w,y) — k2 (2,9) + % S0l wd(2)ud (y) — Eu?(z)u?(y))
0(x,y)

_Pen Ry [ - el @)

T vk(x,2)k(y,y) * vk(z,z)k(y,y)

— 415,

Controlling I 15 . Note that for constants a, b, we have

a?—t>=(a—b)a+b)=(a—b)(a—b+2b) = (a—b)%+2b(a—b).

Therefore,
Bey) =@ 1 i@y - ke b, ) — k(z,y)
s 1 T,y T,y . z,y T,y
T = vk(z,x)k(y,y) = v k(x,z)k(y,y) T2k, y)l vk(z, z)k(y,y)
ke k)| | 2 ke —key)|
v | Vk(z, 2)k(y,y) V| Vk(z,x)k(y,y)

where we have used that |k(z,y)| < \/k(z,z)k(y,y) by Cauchy-Schwarz. On the event le)

defined in Lemma 5.3.2 it holds that, for all x,y € D,

Bsl ( \/% y % y E[SUP%D@@)] y <E[supx%;@<x>1>4) |

Controlling 125 : On the event Q§2) defined in Lemma 5.3.3 it holds that, for all x,y € D,

5sl ( \/% vty E[suprﬁD 0] Ebipecn @(xm?) |
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Therefore, by Assumption 5.2.1 (iii) and choosing t = (E[sup,ep #(z)])?, we have

Brisl ( \/% y % y E[sup%p )], (Ebmprep @(m)})‘*) < %E[supﬁ o))

The proof is completed by noting that the event A; := le) N Q]EQ) has probability at least
1 — 2e~t by Lemmas 5.3.2 and 5.3.3.

Next, for éW, Assumption 5.2.1 (ii) implies that, for any x,y € D,

~

9W(£7 y) B 6(1‘, y)
0(z,y)

“%2<£L', y) B k2(l‘, y)|
vk(z, z)k(y,y)

k(z,2)k(y,y) — k(z,2)k(y, y)
0(z,y)

=V + 1y

Controlling T}V : Since I}V = Ils , it follows that I}V < E[SHILL\/%?}(I)] with probability at

least 1 — e~ (Elsupsep 8(2)])*

Controlling I¥V © Writing

~

k(z,2)k(y, y) — k(z,2)k(y,y) = (k(z,2) — k(z,2))(k(y,y) — k(y,y))

+ (k(x,2) — k(z,2)k(y,y) + (k(y.y) — k(y, y))k(z,2),

and by Assumption 5.2.1, we have that, for any =,y € D,

w o |k, 2) — k(,2) (k(y,y) — k. y))
2= vk(x, 2)k(y,y)
| Fwy (k(z,7) — k(z,)) N k(z,2)(k(y, y) — k(y,y))
vk(x, x)k(y, y) vk(z,2)k(y,y)
~ 2 ~
1 k(x,z) — k(z, ) 2 k(x,z) —k(z,z)| 1 2
S | T R I e I

229



_ | W < Elsup,ep 9(2)]
Define the event A := {_721 < %ﬁ} , and note that on A,

Elsupyep 0(z)]

vWN

A

el (E[supaﬁ @<x>])2 L2 (E[supxjﬁl) ﬁ(m)})

v

By Lemma 5.3.2 and Assumption 5.2.1 (iii), we have that P(A) > 1— ¢~ (ESuPzepn ¥(@)])?,

Lemma 5.3.2. For anyt > 1, define le) to be the event on which

~

k’(ﬂf, y) - k‘(ﬂf, y)
k(z, 2)k(y,y)

sup
x,yeD

< \/% y % y E[supwjﬁpa(x)] y (E[supxgjé,ﬁ(x)])é

Then, it holds that P(Q{Y) > 1 — ¢,

Proof. The result follows by invoking Lemma 5.4.4 after noting that, for any x,y € D,

bay) —kay)| |15~ wle)  wly) [ u@)  uly) ”
Ke.ok(yy) | [N = VER@IVERE )] | VERP@)] VER ()
N
- %nﬂan(x)an(y) - Ela(x)i(y)

wp | FZne v ) — E(@)(y)
zyeD k(z,z)k(y, y)
< i v ﬁ v E[sup,cp 9(7)] , (E[supzep 17@)])4
~VN N VN N

Then, it holds that P(Q{Y) > 1 — ¢,
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Proof. The result follows by invoking Lemma 5.4.5 after noting that, for any =,y € D,

LN W2 ()l (y) — E[u?(2)u?(y)]
k(x, z)k(y,y)

1 N
= |5 2 (@)an () — Ela(@)i )]
n=1

O

Lemma 5.3.4. Under Assumption 5.2.1, it holds with probability at least 1—2¢~ (Elsupsep 0(2)))?

that

él/Z(xv y) B 91/2($a y)
01/2(x,y)

_ Elsupyep 9(x)]

vwWN

sup
z,yeD

where 6 € {0s, 0w} in the Gaussian setting, and 0 = O otherwise.

Proof. Define the event

< E[sup,cp 0(7)]

Sempre ),

It holds that P(A) > 1 — 2 (Elupzen ¥(a)])? by Lemma 5.3.1. Further note that the

universal constant in Assumption 5.2.1 (iii) can be taken sufficiently small to ensure that
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Efsupzep 0(2)] 1
SN < 5. Then on A, for any =,y € D,

01 /2(x,y) — 01 2(x,y) | |0V 2(x,y) — 0V 2(x,y) 612 (2, y) + 6Y/2(x,y)
01/2(x,y) 01/2(x,y) 01/2(z,y) + 01/2(x, y)

A~

+012(, )02 (z,y)

z,y) 0(z,y)
+01/2(2,y)0Y/2(x, y)

A

9(937 y) — 9([)3, y)
0(z,y)

?(%y)
0(z,y)

IN

where the second to last inequality follows since on A we have
. . 1 . .

]

Lemma 5.3.5. Under Assumption 5.2.1, it holds with probability at least 1—3¢—(Elsupzep 0(x)))?

that

]%(I7y) — ]C(I,y)

- Eubyep 3(2)]
012(x,y) |7

wWN

sup
z,yeD

where 6 € {fs, Oy} in the Gaussian setting, and 6 = O otherwise.

232



Proof. Note that

kx,y) = k(e,y)| _ | ka,y) = k(z.y) |6 (@,y)
él/Q(m,y) - 01/2(:1:,y) él/Q(x,y)
k(z,y) = k(y)| (612 (,y) — 0"2(2,y)
=7 0y ( 01/2(z,y) " 1)
. H%w—k@w)<9”%§w—ﬁ”%%w<+g
| Vvk(z, 2)k(y,y) 01/2(z,y)
= ]1 X IQ.

Controlling I7 : It holds on the event Q(l) . o defined in Lemma 5.3.2 that, for
(Elsupgep o(z)])

all z,y € D,
1 < L Elsupscp(r)
Vv vN
and P(QV) ) > 1 — e~ (Ebsup,ep o(@))?,

(Elsupzep 0(2)])
Controlling Io: Let B be the event on which the bound in Lemma 5.3.4 holds. Then,

P(B)>1- 2¢— (Elsupzep 17(5”)])2, and on B

_ Elsupyep 9(2)]

Ir < /N + 1.
Then, on the event £ = lelz)[suszDﬁ(x)W N B, we have
oty g L EBpecp @) L Elpiepite)l _ 1 Elnpuepitr)]
v Z VN Vv VN
O
Lemma 5.3.6. Let v,vq,...,v denote the Gaussian processes associated to w,uy, ..., Uy,
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which satisfy Assumption 5.2.1. Define

1 v(z) ] . 1 1 vp(x)
= ——=E|sup —5+—"—|, = ~ Sup ——— 5
PN vV N Lg% kY2 (x, x) Z x P k

Then, it holds with probability at least 1 — de~(ESuPzep 9@)D? that IonN — N | S N

Proof.
1 vp () v(z)
N |pn — pN| = | = —Z E
V\/_‘PN PN N;;gg 1/2(:15 ) {sg% 1/2(1: :c)]
|1 g: v () v () vp () E{su v(z) }
a Nn_ z€D k1/2(:v x) k:l/Q(:c,x) k1/2(x x) xe% 1/2(a:,x)
N N
1 v () v () v () { v(z) }
< |—= E
v (kl/%c ) k1/2<x,x>> PN 2 ke L K72(, )
=1+ I
Controlling I1: We write
vn(z) B vp () B vp () 1%1/2(x, x) — kl/Q(x,x)
2z, 2) K2z, 2) kY2(2, 1) k2(z, ) '
Define the event
B k(z,z) — k(z, x) E[supgep 9(z)]
A {52% Kor)  |S wN }

By Lemma 5.3.2 and Assumption 5.2.1 (iii), we have that P(A) > 1—2¢~ (Elswac p 9(@))?  Fyr

ther note that the universal constant in Assumption 5.2.1 (iii) can be taken sufficiently small

[supzep 8(2)]

E 1 N .
to ensure that i < 3. By a similar argument to the one used in Lemma 5.3.4,
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conditional on A and for any = € D,

1%1/2(.75, T) — kl/Q(x, x) Elsupgep 0(z)] 1
d < <.
k1/2(x, x) vV N 2
Therefore, on A it holds that
N
I = 1 sup Un(z) _ Un(z)
N\ P B )
N
1)1 vn ()
== su
=3 |N T;%% K2(z, 7)
1 n(z) o(z) v(z)
< = su n——E[su —1 +E[su —}
SN vt e Arureremd | It b Aarerens
=Ir+ V\/N,ON.

Controlling I: By |Talagrand, 2022, Lemma 2.4.7|, sup,e p On(2) is sup,¢ p var (op(z))-
sub-Gaussian. Since var(t,(z)) = 1, it follows by sub-Gaussian concentration that with
probability at least 1 — 2™, Iy < /2t/N. Choosing t = (E[sup,ep 9(x)])?/2, we have

Iy < E[sup,ep 9(2)]/v/N. Putting the bounds together, we have shown that

R 1 1 Elsup v(x
|pN_pN|SW(h+IZ)§y\/N [ f/GND ()]+PN§/)N-

]

Lemma 5.3.7. Under the setting of Lemma 5.5.6, it holds with probability at least 1 —

76—(E[SUPxGD 17(35)])2 that

]%(%,y) B k?(CL’,y)
01/2(x,y)

sup
z,yeD

where 0 € {és, éW} in the Gaussian setting, and 6 = éS otherwise.
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Proof. Let E be the event on which the bound in the statement of the theorem holds. Then

N | —

zyeD él/Q(az, Y) -2

<Pl su ; > —py | +P > -

P(E®) =P ( sup (AW M) Ly > 1pN>

< 7o~ (Elsup,ep 9(x)])?

— Y

where the last line follows by Lemmas 5.3.5 and 5.3.6. [

Proof of Theorem 5.2.3. We consider first the Gaussian case. Let 6 € {fs, 6y }. Define the

<LV
r'\J2 )
1
~ 2

and £ = E1 N Ey N E3. The final result holds on E as will be shown below, and so

three events:

El — sup l%(l’,y) —k<I,y)
z,yeD @1/2($7 y)

By { wp |0y) = 0(.y)

x,y€D 0(z,y)

Es:={|pn — pN| S oN}

the proof is completed by noting that from Lemmas 5.3.5, 5.3.6 and 5.3.7, P(E) > 1 —
cle_(E[SupwED @(@))? Further note that on the event Ey, for any x,y we have the following

relation:

1 .
5l0(@ )l < 10(z, y)| < 26(z, y)l. (5.10)
Now, defining the set
k(z,y) ON
Qp = €ED:|\—F——|> =7,
’ {‘” 012,y = 2

236



we have

Iy = €I < sup / ey (2,) — k(z, 4)|dy

~

7,9)| 5172 / Koy (T,y) — k(z,y)
0 d _
6% %(z, y)|dy +xsgg . )

,y) 51/2 k(x,y) — k(z,y)
0 (x,y)lderngg 0 YCT

162, y)|dy

L) i
= su
xe% Oy 91/2(.’E,

~

= sup/ kﬁ ( )
xeD JQ, 91/2(:6,

ffﬁ( y) — k(z,y)
o [ |

91/2($’y
Controlling I;: For any z,y € D,

162 (2, y) | dy

— K
)
(
)

< w>©

16Y2(, y)|dy =: I + Iy + I3.

kpy (,y) — k(z,y) k(z,y) ) k(z,y) k(ry) | .
. —0x1d|—2d | > I AT D BV B I
01/2(2,y) : {91/2(5E,y) =N T2 (2, y) 02 ()| N

< PN-

Therefore,

I < py Sup/ 1012 (2, y)|dy.
€D JQy

By Assumption 5.2.1, we have that

RI > sup / (ks )y, ) =072 [k (2, ) Oy
xeD JD

> sup / (k) k() D72 [k (2, ) 9dly
xzeD JQ

> sup / (k2 () 3072 5169/ (2, )| dy
xzeD JQ

> sup / (k) (y, 1)) 170/2 5169/ (2 )y,
xeD JQ

where the third inequality follows by definition of €2,, and the final inequality holds by (5.10).
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Further, we have

6(z,y) = var(u(@)u(y)) < \/Elut@)|E[ut(4)] S Elu®(@)E[3()] = k(z, 2)k(y.y).

where the first inequality follows by Cauchy-Schwarz, and the second inequality follows by

the L4-Lo equivalence property of sub-Gaussian random variables. Therefore, it follows that

Iy
Riz s [ 102G 0)ldy 2 5L

1 NCCED Qy NpN
We have therefore shown that 17 < Rgﬁ}\fq, and by definition of Fs3, it follows immediately
that [1 < Rgp]lv_q.

Controlling Is: On E, we have

A 1—
BSon s [ 102w 0)ldy S Rk
xzeD Qx

which can be bounded with an identical argument to the one used to bound Ij.

Controlling I3: On E N QY. we have

~

k(x,y)
01/2(z,y)

]%(:B7y) B k’(l’,y)
02 (x, y)

k(x,y)
01/2(z,y)

<

- 2 2
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k(z,y)

Therefore, k[)N (x,y) = k(z,y)1 { 0172 (z.y)

> ﬁN} = 0. Now, for any ¢ € [0, 1),

x€D él/Q(I,y) él/Q(x,y) 2

< Sup/ k(zy) |é1/2(%y)|1{ K(zy) SpN}dy
D

I3 < Sup/ k(zy) |é1/2($’y)’1{ k(zy) gﬁ—N}dy
D

2D JD |0Y/2(x, y) 01/2(x,y)

q
< pN Sup/ ( /mv) !91/2(3:,y)|1{
xeD JD

]__ ~ _
< ph % sup / (e, )| (i, )= 2y,
xeD JD

k(z,y)

k(x,y)
01/%(z,y)

01/2(z,y)

SpN}dy

The second inequality holds since on E3, py < 2ppn. The third inequality holds since the

quantity being taken to the g-th power is smaller than 1 and g € [0,1). Combining (5.10) with
Assumption 5.2.1 (ii) gives that 8(z, y)1=9/2 < g(z,y)1-0/2 < (k(x,x)k(y,y))(liq)/z and
so I3 < p}v_ng. This completes the proof of the result in the Gaussian case. The proof in
the sub-Gaussian setting follows identically except that the events Fq, Fo are defined with

respect to éS only, and pp is used in place of py. O

5.4 Product Empirical Processes

This section contains the proofs of Lemmas 5.4.4 and 5.4.5, which were used to establish
Lemmas 5.3.2 and 5.3.3. The proofs rely on the recent work Al-Ghattas et al. [2025], which
provides sharp bounds for suprema of multi-product empirical processes. We begin in Section
5.4.1 by introducing technical definitions as well as the main result regarding multi-product
empirical processes from Al-Ghattas et al. [2023]. We then prove in Section 5.4.2 our main
results of this section, Lemmas 5.4.4 and 5.4.5. Our proofs have been inspired by the tech-
niques introduced in Koltchinskii and Lounici [2017] as well as Al-Ghattas and Sanz-Alonso
[2024¢| and Al-Ghattas et al. [2023]. These works deal with product empirical processes in
which the product is taken over two sub-Gaussian classes. In contrast, the results here per-
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tain to product empirical processes over a special category of sub-Exponential classes that

arise in the nonasymptotic analysis of the variance component 6(z,y).

5.4.1 Background

Let X, Xq,..., Xy - p e a sequence of random variables on a probability space (2, P).

The empirical process indexed by a class F of functions on (2, P) is given by

For s > 2, the order-s multi-product empirical process indexed by F is given by

N
1 S S
fH—NT;f (Xp) —Ef5(X), feF.

For any function f on (£2,P) and a > 1, the Orlicz 1)o-norm of f is defined as

11 z,(P)
— inf  Ex. X)/e|®)] <2} = sup ——2)
1o gp) = {0 Excop[expll(0)/ef*)] < 2} = sup = T2
The base measure will be clear from the context, and so we write || f{|y, ey = [l flly, and

similarly for the Lg-norms. The corresponding Orlicz space Ly, —contains functions with

finite Orlicz 1hg-norm. A class of functions G is L-sub-Gaussian if, for every f,h € G U {0},

Hf - hHwQ < LHf - h”LQ'

For a sub-Gaussian class G it holds that, for every f,h € GU {0} and ¢ > 1,

If = Rllz, <cevallf = hlly, < cLvallf = hliz,.
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A class of functions £ is L-sub-Exponential if, for every f,h € £ U {0},

1f = Plly, < LIS =Pz,

For a sub-Exponential class £ it holds that, for every f,h € EU {0} and ¢ > 1,

If = hllz, <cqllf = hlly, < cLgllf =Rz,

Our results depend on Talagrand’s vy-functional, whose definition we now recall.

Definition 5.4.1 (Talagrand’s y functional, Talagrand [2022]). Let (F,d) be a metric space.
An admissible sequence of F is a collection of subsets Fs C F whose cardinality satisfies

| Fs| < 2% fors>1, and |Fy| = 1. Set

v2(F,d) = inf sup 225/2d(f, Fs),
fe]:szo

where the infimum is taken over all admissible sequences, and d(f, Fs) = inf e, d(f,g). We

write yo(F,19) when the distance on F is induced by the 1po-norm.
We now introduce a technical result that will be used in the subsequent proofs.

Lemma 5.4.2. Let G, H be arbitrary subsets of a normed space endowed with the norm || -||.

Define F = G + H, which inherits this norm. Then

vo(F.d) < 2(sup ||g|| + sup [|1]]) + V2(72(G, d) + 72(H, d)),
geg heH

where d(a,b) = ||a — b||. Moreover, if G and H both either contain 0 or are symmetric,

Y2(F,d) S 2(G.d) + 72 (H,d).
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Proof. Let (Gs)s, (Hs)s be admissible sequences for G and ‘H respectively. We can construct
an admissible sequence for F as follows. Let Fy be an arbitrary element of F, and for s > 1,
set Fs =Gs1+Hs—1={9+h:g¢€Gs_1,h € Hs_1}. This ensures admissibility since

| Fs| < 1Gs—1]|Hs—1] < 228_1225_1 — 22° Note then that

Y2(F,d) < sup d(f, Fo) + sup Y _ 29/%d(f, Fy)

fer fe}‘521

= supd(f, 7o)+ sup > 2%%d(g+h. Gy 1+ Heo1)
fer geG.heH s>1

< sup d(f, Fo) +sup Y _2%/%d(g, Gs_1) + sup > _ 2°/2d(h, Hy_1)
feFr geg s>1 het s>1

= sup d(f, Fo) + vV2sup ¥ 2%/%d(g,Gs) + V2 sup > 2°/%d(h, H,).
fer 9€9 530 heH s>0

Noting that

sup d(f, Fo) < diam(F) < diam(G) + diam(#) < 2(sup [lg]| + sup [|A]]),
feF e eH

and taking the infimum with respect to (Gs)s and (Hs)s on both sides yields the first result.
In the case that G and H both either contain 0 or are symmetric, we have that sup,eg (|9 S

72(G,d) by [Al-Ghattas et al., 2025, Lemma 4.6], and similarly for H. ]

The next result provides optimal high probability bounds on order-s multi-product em-

pirical processes.

Theorem 5.4.3 (|Al-Ghattas et al., 2025, Theorem 2.2|). Assume that 0 € F or that F is
symmetric (i.e., f € F = —f € F). For any s > 2 and t > 1, it holds with probability at

least 1 — et that, for any f € F,

1 &, . VA F 2)d HF)  ag(Fog) T2
~ 2 [ (Xn) —Ef1(X)| <s sz v 2V, (F) \/;v ~ |-

n=1
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where <g indicates that the inequality holds up to a universal positive constant depending

only on s, and dy, (F) = suprer || flly,-

5.4.2  Product Sub-Gaussian and Sub-Ezxponential Classes

The goal of this section is to apply Theorem 5.4.3 to the problem of bounding product

empirical processes indexed by a function class F, given by

N
fgm %T;fm)g(xn) ~Ef(X)9(X),  fgeF

Bounding the suprema of such processes arises in two important ways in this work. First,
in establishing uniform bounds on the deviation of the sample covariance function k from
its expectation, in which case the indexing class F is sub-Gaussian and we refer to it as a
product sub-Gaussian process. Second, in establishing uniform bounds on the deviation of
the sample variance component 6 from its expectation, in which case F is sub-Exponential
and we refer to it as a sub-Exponential product process.

We now present our two main results of this section. The first bounds the suprema of the
product process indexed by two sub-Gaussian classes, and the second bounds the suprema
of the product process indexed by two sub-Exponential classes.

We recall here that w,uq,...,u) are i.i.d. centered sub-Gaussian and pre-Gaussian
random functions on D = [0, 1]¢ taking values on the real line and with covariance function k.
We assume that these functions are Lebesgue almost-everywhere continuous with probability
one. Denote by @, 1, ..., uy their normalized versions as defined in (5.9). Further, recall
that a pre-Gaussian process u is one for which there exists a centered Gaussian process, v,
that has the same covariance structure as u. Following [Ledoux and Talagrand, 2013, page

261], we refer to v as the Gaussian process associated to u.
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Lemma 5.4.4. It holds with probability at least 1 — et that, for any z,y € D,

N su U(x su o(z)])?
LY o)) ~ Bl 5 v & v EEeen Pl (Ebnpeep U

where v is the Gaussian process associated with 1.

Proof. For x € D, let £y : v +— £;(v) = v(x) be the evaluation functional at x € D. We then

have

1 1 &
sup | Y dn(@)in(y) - Ela(@)a)]| = sup_ |5 3 lolin)ly(in) — Ella(@)¢y(@)
n=1

r,yeD x,yeD n—1
1 N
<sup |— Y () — E[2(0)]
xeD an::l S v

where the first inequality follows by the fact that for two constants a,b, ab = %(a2 + b2 —
(a —b)?), and the second inequality follows for F := {¢1£; — coly tx,y € D,c1,co € {0,1}}.

Note that 0 € F since we can take ¢ = co = 0. We then have

dyo (F) = sup || f < sup ||lx(u vV osup ||[(lx — Cy) (@ <1
o (F) fefll 45 xeDII 2 (Un) [y, weDll(m y) (Un )|,

Define G := {cl, : x € D,c € {0,1}}, and note that F C G — G, from which we have

Y2 (F,v2) <72(G — G,12) S 72(G,¥2) S 72(G, L),

where the second inequality holds by Lemma 5.4.2 and the third inequality holds by the
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equivalence of Lo and 19 norms for linear functionals. Next, let © be the Gaussian process

associated to @ and define

dote.1) = [E[(02) 20)] = 1o~ 4Oy D

Then,

Y2(G, La) S v2({ly : x € D}, L) = y2(D,d;) < E [SU%TJ(I)} ,
xre

where the first inequality holds by the fact that for any constant ¢ € R, function class F and
metric d, yo(cF,d) < |c¢|y2(F,d), and the second inequality holds by the definition of dj,
(see also [Koltchinskii and Lounici, 2017, Theorem 4|, [Al-Ghattas et al., 2023, Proposition

3.1]). The final result therefore follows by invoking Theorem 5.4.3 with s = 2.

Lemma 5.4.5. [t holds with probability at least 1 — et that, for any x,y € D,

1L, P {2 Elsup,ep ()] (Elsupyep o(x)])?
N;um)u%(y)—E[u2<x>u2<y>] s\/; A ey S ,

where v 1s the Gaussian process associated with .

Proof. For x € D, let £y : v+ £y(v) = v(x) be the evaluation functional at x € D. We then
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have

1 & 9 9, (-9 1N2~ 2/~ 2 2
sup |+ > iy (2)iy,(y) — E[@"(2)a"(y)]| = sup _Z£:v< )y (n) — E[((a) 0y ()]
x,yeD n—1 x,yeD n—1

<L | LS i — 1o

1 1 N 4~ 4~
+ — sup NZ(@My) (i) — E[(€x + )" (@)

where the first inequality follows by the fact that for two constants a,b, a2b? = %((a +

b)* + (a — b)* — 2a* — 2b%), and the second inequality follows for F := {c1ly —coly 1,y €

D,cy,c9 € {—1,0,1}}. Note that 0 € F since we can take ¢; = cog = 0. We then have

dy (F) = sup || f < sup ||lx(u VvV osup ||[(ly — Cy) (0 < 1.
o (F) fefll [ xeDH 2 (@n)ly, x,yeDH(x y) (tn) |y,

Note that for G = {cl; : x € D,c € {—1,0,1}}, we have F C G — G. Using once more the
fact that for any constant ¢ € R, function class F and metric d, v2(cF,d) < |c|y2(F,d), we
have that 72(G) < v2({fsz : * € D}). By an identical argument to the one used in the proof
of Lemma 5.4.4, we have vo(F,12) < E[sup,ep @(z)]. The final result therefore follows by

invoking Theorem 5.4.3 with s = 4. O

Remark 5.4.6. Our results are expressed in terms of the supremum of the Gaussian process
v associated with the observed process u rather than directly in terms of the supremum of u.
A key step in proving Lemmas 5.4.4 and 5.4.5 is bounding Talagrand’s ~y-functional, which

arises from Theorem 5.4.3. In general, the task of controlling the ~v-functional efficiently is
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extremely difficult. One remarkable exception is Talagrand’s majorizing measures theorem,
which relates yo(F,d) to the expected supremum of a Gaussian process. We leverage the pre-
Gaussianity of u to establish equivalence between o functionals defined with respect to Lo(P)
(where P is the law of u) and the natural metric dg of v. Applying Talagrand’s theorem, we
obtain an upper bound in terms of E[sup,ep 0(x)]. Extending this approach to instead bound
Elsup,cp @(x)] from below in terms of vo or finding an alternative approach that allows a

bound in terms of u requires further investigation which we leave to future work.

5.5 Lower Bound for Universal Thresholding

This section contains the proof of Theorem 5.2.6. The idea is to first reduce the covariance
operator estimation problem to a finite-dimensional covariance matrix estimation problem,
then apply Theorem 4 in Cai and Liu [2011] which proves a lower bound for universal
thresholding in the finite-dimensional covariance matrix estimation problem. The reduction

is based on the recent technique developed in [Al-Ghattas et al., 2024b, Proposition 2.6].

Proof of Theorem 5.2.6. For m € N to be chosen later, let {/;}"; be a uniform partition
of D with vol(I;) = m~!. For any positive definite matrix H = (hjj) € R™X™ define the

covariance operator C'yy with corresponding covariance function
m
)= Y hijli(x)1;(y),
ij=1

where 1;(z) := 1{z € I;}. Then, Cp is a positive definite operator since, for any ¢ € Lo(D),

/ ko, () (y)dady = (HD, 5 > 0,
DxD

where ¢ = (¢1,...,¢m) " and ¢; = fI x)dzx. Note further that for u, ~ GP(0,Cp), uy, is
m (4)

almost surely a piecewise constant function that can be written as up(z) = > ;" 2z’ 1;(2),
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for (o1, m)

zn sy 2n ) ~ N(0, H). Consider next the sparse covariance matrix class Uy (m, Rg)
studied in Cai and Liu [2011] and defined in (5.2). For any H € Uy (m,ml/qRq) it holds

sup / (kg (o, ) g () D 2 g (e, ) 9y
xeD JD

m
= sup [ 37 (i) 10 2y 1, 0) 1 )
veD D =1

<m

= max/ Z(hiihjj)(liqvahij’q1j<y)dy
D“
7=1

= max (hiihjj)(lq)/Q\h¢j|q/ 1,(y)dy

zgmjzl D
1 m

E— hoihs ) A=D/2 1. 10 < RY.
m%%j—l( iihjj) |his" < Rg

Further, for H € Ugj(m, Rq), we have that mH € L{;(m,ml/qRq). Now, we will choose
Hy = (Eg’ij) € Uy (m, Ry) to be the covariance matrix constructed in the proof of [Cai and

Liu, 2011, Theorem 4]. Namely, let s; = [(R§ — 1)1 79(log m/N)~92] + 1, and set

1 if 1<i=75<sq,
= Re if  s14+1<i=j<m,
" A7IRIlogm/N it  1<i#j<sy,

kO otherwise.

Then, Hy := mHy € U&"(m,ml/qRq) and Cp = Cp, € Kj(Ry). Next, let GSN have covari-

ance function iy (z,y) = k(z, ) 1{|k(z,y)| > N}, Le. a%JN is the (universal) thresholding
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covariance estimator with threshold ;. By definition of the operator norm,

6% ~Cull = s [ ) ([t - ke e ) da

1l Ly (py=Nl9ll Loy p)=1

> sw [ gl ([t )~ bagle )iy ) do

a,be€S—1

m
= sp m Y aby // 15(2) 1 (9) (o (2, 9) — gy (0, 9) )y
a,b€S—1 DxD

1,5=1
m
= sup m Z a;b; // tyy (@, y)dxdy —m*2h07ij
a,bESm_l ijl IZXI]

=m sup <a, <Tmmv — m_2H0> b>

a,bES_1
= |mTimy —m ™ Holl = [mTimyy — Holl,

where fq(z) = /m> 2 a;1;(x) and the lower bound holds since @ is a unit vector and
therefore || fallr,(p) = 1. fp is defined analogously. Note further that we have defined the

m X m matrix Tmm\, with (4, 7)-th element

N

N 1 N
J[ sty = [[ %3 w1 0) = oy
IZ'XI]' lefj n=1
where uy, ..., un iLd. GP(0,Cp,). Define vy, = m =12y, forn=1,...,N,andsovq,...,vn i4d

GP(0, Cﬁ.o). Then, we have

inf E iid cY —Cqg |l > inf E iid mT, —FI()
AN >0 {Un}nNzlL}'.‘“ 'GP(07CHO)|| YN OH ) {un}gzll'l'\'/'GP(o,CHo)H m, YN ||
= inf E . T, — H
V=0 {vn}an%ch(ocﬁo)H maw ~ Holl
where T, myy = MTm - Since the samples uy, are piecewise constant functions, we have
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for any block I; x I; for which the indicator is equal to 1 that

N
~ 1 .
Tnenlis = [[ 5 3" w01, )| = ) dody
Il‘XI' n=1
1 N
2
= — dxd
w? [[ L D ey
1S () () 1S ) ()
= /Iixfj N 2 v o dedy = 7 ) wiwi

for wy,...,wy LLd. N(0, HO) with wy, = (wy(ll), e ,wém)) for 1 <n < N. Therefore, Tp, ~y
is a universally thresholded sample covariance matrix estimator. (Note that the scaling inside
the indicator is not an issue, as the infimum is over all positive yp.) It follows immediately

by [Cai and Liu, 2011, Theorem 4] that if m is chosen to satisfy N°¢ < m < o) and

8§ < Rg < min{ 1/4 4 log }, then, for sufficiently large N,

inf E 11d
Nn=0 {vn}

1Ogm) (1-q)/2

T~ — Holl = (R1)2~4
o, [T — Foll 2 (- (22
Hy

Note then that for u ~ GP(0, Cg ), we have that u(z) = > 7%, 2(01,(x), for z = (z(l), . z(m)) ~
N(0, Hyp). Further, the normalized process () is of the form u(x) = u(x)/y/kp,(z,r) =

19( )1 1;(z), for g = (g(l) .,g( )) ~ N(0, Dgy) where Dy has elements

do,ij = = mbhy Zj/\/var ). By [Van Handel, 2017, Lemma 2.3],

E [sup ﬁ(x)} E lmax gl )} < max \/do,z‘i log(z + 1).

xeD i<m

Moreover, for 1 < i < m, using that E[(2())¢] = (¢ — 1)!(var(z(1))$/2 for any non-negative

even integer (, we have

var((z(i))z) =E [(z(i))ﬂ — (E [(z(i))ﬂ )2 = 3m2h0 i — m2h0 i = m2h(2),z-z-.
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Therefore,

mﬁo,ii 1

var((2(1))2) B V2

doii =

Plugging this in yields E[sup,cp u(x)] < /logm and so the bound becomes

(1—q)/2 ~ (1-q)/2
(RZ)Q—(] (10%) I 2 (R(q])2_q ((E[Supxej\?u(m)])2> ! ’

as desired. O

5.6 Error Analysis for Nonstationary Weighted Covariance Models

Throughout this section, u denotes a centered Gaussian process on D = |0, 1]d with covari-
ance function k) (z,y) satisfying Assumptions 5.2.8 and 5.2.9. We make repeated use of the

following easily verifiable facts:

1 ky(r) =k ().
2. o)Az ) = o1 (A1 27; ).
3. Forany A > 0, a € (0,1/2), 1 < o)(x;a) < exp(d/\Y).

In this section, we use the notation “(E), A — 07" to mean that there is a universal constant
Ag > 0 such that if A < A, then (£) holds. We interchangeably use the term “for sufficiently

small \.”

Lemma 5.6.1. It holds that

d
N V2
TH(C) = 2~ % 2] (0)\24/2 ( / et2dt) .
0
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Therefore, for sufficiently small X, it holds that
TH(C) = k(0)A\2d2d/ A",

Proof. By definition,

Then, note that

d
loAllZ o) = /DGXP(ZAO‘HQJHQ)dx: /D exp(2A* Y a?)dx
j=1

d 1 /2//\0‘ d
= H/ eXp(Q)\_ax?)d:v = 9~ d/2)\0d/2 (/ etht> :
. 0 0
j=1

In the last line of the above working, we have used the fact that fol ey = \% foﬁ et dt.

Then, we have

/\/W

0

Mt = 62/)\QD(\/2/)\Q),

where D(+) is the Dawson function. By [Abramowitz and Stegun, 1968, Section 7.1], it holds

for A sufficiently small

1 1 3
D /2 /\04 :_/\a/2+_/\3a/2+_>\5a/2+'”x)\a/Q‘
(V2/3%) 2v/2 8v/2 322

Therefore, for A sufficiently small,

||U)\||%2(D) = 2_d/2,\ad/262d/)\a/\ad/2 _ /\adegd/)\a.
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Lemma 5.6.2. It holds that

m ~
sup / [kx (2, )| Udy = g~ rdlatL)2da/ / r=E () dr, A— o0t
xeDJD 0

Proof. Starting with the upper bound, we have

2 o 2 o, ~
sup / ka2, 9)|9dy = sup / 7P Xl 7, (L — 1) 9dy
xeD JD xeD JD

2 « 2 o~
< sup 7122 g / I8P/ (= yl)|dy
xeD xeD JD

e R

D

—etan® [ AW 1y
D

a 2—a 2 ~
_ ydeda/> / eIy 1y 9dy,
[07/\—1](1

where the last line follows by substituting y — A1y, and noting that the transformation

has Jacobian A?. Therefore, treating y = (y1,---,¥yq) as a random vector with y1, ..., y4 iLd.

unif([0, A\71])

(e 2—« 2 ~
sup [ ha(ep)ltdy < 0 (A0 [ oIy gy ray
zeD JD [0,A—1)d

— /X [t IRy (g )9

< edq/)\aEy[quQ_aHyHQ]Ey[|l~€1(HyH)’q]

_ g/ [ \d / NNl gy, | [ ad /
[0,A-1]d 0.\

_\2d,dg/X° / S [ /
[0,A—1])d [0,

| 1]d|f’%1<||y||>|qdy>

. |/’%1<||y||>|qdy>

—: €\2deda/ N gy
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where we have used the covariance inequality [Berger and Casella, 2001, Theorem 4.7.9],
which states that for non-decreasing g and non-increasing h, Ey[g(y)h(y)] < (Eylg(y)])(Ey[R(y)]).

For the first integral, using the substitution vjz- = q)\2’o‘y]2~ yields

d -1 d —1, /32—
J — J
j=1 o1 VaNTe Jo

d d
exp(A"2gA27®) 1 9 exp()\_Qq)\Q_o‘) 1
= DA "y/gr\-—© =
( /q)\Z—a ( q ) /q)\2—a P! /q)\2—a
_ (GXP(A‘QqV_O‘)y _ (exp(qk‘o‘)y _ et

A lgh2—a g\l—a - qud(l—a)’

where D(z) is the Dawson function, and we have used the fact that D(z) =< 21 for z — oo
(see the proof of Lemma 5.6.1). For the second integral, by switching to polar coordinates,

we have

~ w ~
< [ iy = [0t [ ) sy dr
R 0 Sy1
_ > d—17, q _ > d—17, q
= ke (r) dsg_1(u)dr = A(d) & ki (r)ddr,
0 Sa-1

0

where we have used the fact that ||u|| = 1 for any u € S;_1, and A(d) denotes the surface

area of the unit sphere in R?. Therefore, we have that

sup [ k(o p)ltdy < N1 x 1y
D

zeD
dq/A* 00 -
2d_dg/ )\ _© d—1 q
< A% —qd)\d(l—a)A(d)/O r* ki (r)ddr
_ g dnd(1+a) 2002 4 () /OO =1 ()4
0
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For the lower bound, note that

;gg/p kx(z,y)|Tdy > /DxD |k (z,y)|9dady = /[O,l]dx[o,l]d 03\(m)0§(y)|l~f/\(||m —y|)|9dxdy
) /[0,1]d><[0,1]d o @) ks 0z = ) dady
- /[O,A—l]dx[O,A—l]d of (Ao )k (I|2" — o/ |1)]da’dy’,

where the last line is due to the substitution 2/ = A1z and v/ = A~ 1y. Now, let w = 2/ — ¢/

and z = 2/ + 3 and note that the Jacobian of this transformation is 274 and also that

7 =(z+w)/2 and y = (2 —w)/2. Continuing from the last line of the above display, the

substitution and the fact that oy(Ar/) = o (A7%22') = exp(A2~%||2’||?) give that

)\Qd q)\Q—Oz g\
=57 g (/R exp( 1 ||z+w||2) exp(
- ) 1

)\Zd q)\Q—a q)\Z—a 5
A / exp Iz + wl|? ) exp Iz —wl®) dz ) iy () o,
(0,014 \J Ry 4 4

2—a

. w||2) dz) (]9

od

where we have defined

Rlz{z:—wjgzj§2)\_l+wj, 1<j<d},

Ry={z:w; <z <2\'—wj;, 1<j<d}.
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For the integral over Ry,

where the inequality holds by the fact that w € [=A~!,0]%, and the second line holds by

making the substitution u = z+w and defining R3 = {u: 0 < wu; < 2()\_1+w]~), 1 <j<d}.

_ g\ 9
1+w q)\2 «@
duj q)\2 a/ e Jdv]

Now, letting v = Ty—uj gives
2Q>\2_0‘ -1 gA\*—
exp 4\ +wj) 5 )D 20077 +wj) 5

ﬁ/?)\ 1+w]) < /\
2~ 1

o
2 ) _ [g)\2—a

I
:]&

)2(])‘

exp 4N~ +w

::]&

<.
I
—_

.
I
i
< Q
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[N} [\}
§3
Q Q ta

d
1
«
}Ilexp <2q L+ Awj) )2/\ ) O T+ wy)Ea
1) T 1
__—dyd(a—1 N2 /ya
=q %\ Hexp <2q(1+/\w]) /A ) 0T 7w))

J=1

where we have used the same properties of the Dawson function as in the upper bound.
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Therefore, we have so far shown that

)\2—04 )\2—@
/ exp (q ||z+w||2) exp (q ||z—w||2) dz
Ry 1 1

d

) i 1

> g~ drdla=1) H exp (2(1(1 + )‘wj>2/>\a> (14 Mwy)’
i=1

For the integral over Ro a similar argument shows that

)\2704 )\2704
/ exp(q ||z+w||2) exp(q ||z—w||2) az
&, 1 1

d
1
2 XD TT exp (2a(1 — duy)2/x%) 1w
j=1 !

Putting the two bounds together, we have that

sup / |kx () |1dy

xeDJD
d

—d\2d d(a—1) _ N2 /ya 1 = q
> ¢4\ /_A_l e e (2401 = Mg/ )—(1_)\‘w.’)|k1(HwH)\ dw

< g 0D [ 2y o

0% o0 ~
= q_d)\d(lJrO‘)ezqd/)‘ A(d)/ r=LE (r)dr,
0

where the second line holds by the Dominated Convergence Theorem as A — 07. The final

line follows as in the proof of the upper bound. O

Lemma 5.6.3. The kernel k) satisfies Assumption 5.2.1 with

R = q_d)\d(a+1)62d/\ /0 Td_lkl(r)qdr, A— 0.
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Proof. The result follows by noting that

sup / (ks 2k (3, 1) =972 ey (2, ) [9dy = (0) sup / o\ (@) (1) o () |y,
xeD JD xzeD JD

and using an identical approach to the one in Lemma 5.6.2. O

Lemma 5.6.4. It holds that

O] = AdatD)g2dA / r4= ey (r)dr, A— 0T
0

Proof. The proof follows in an identical way to that of [Al-Ghattas et al., 2023, Lemma 4.2],
but invokes our novel characterization in Lemma 5.6.2 instead of [Al-Ghattas et al., 2023,

Lemma 4.1]. O

Proof of Theorem 5.2.10. For the sample covariance, note that by [Koltchinskii and Lounici,

2017, Theorem 9], for any ¢ > 1 it holds with probability at least 1 — e~* that

IC-c| _ 7"2 _ Tr(0)
Ter SV \F =T

By Lemmas 5.6.1 and 5.6.4, we have that for sufficiently small \,

_ ];,1 (O))\O‘deQd//\a

_\—d
r2(C) = \d(at1) 2d/ 3 <A

Therefore, with probability at least 1 — e~ log(A™%) _ 1 _ )d

IC - A=d A d flog(A=d)  log(A~%) A—d \d
= V V V = V .
1C N ' N N N N N

For the adaptive estimator, note first that the normalized process @(z) = u(z)/kY%(z, z) is

isotropic with covariance function ky(||# — y||). Then by [Al-Ghattas et al., 2023, Lemma
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4.3, we have that E[sup,cp @(z)] < 1/log(A\~9) for sufficiently small A. By Theorem 5.2.3,

Lemma 5.6.4, and Lemma 5.6.3, we then have with probability at least 1—e™ log(\™) _ 1 _ \d

1—q
= log(A\~%)
q

1—q
00 —d

_ —dyd(a+1) 24\ / d=17 ngq. [ 10g(AT9)

=q “\ e r ki(r)4dr | ——=—

0 (r) ( VN

o0 d—17. —d 1—q

ki(r)4d

— q—d”C”fOOOT ~1(7“) T log(A ) ’ \ 0+'
Jo© =k (r)dr VN

_dfooo rd_llzrl(r)qdr
fooo rd=1ky (r)dr

Rearranging yields the result with ¢(q) 1= ¢

5.7 Conclusions and Future Work

In this paper, we have studied covariance operator estimation under a novel sparsity as-
sumption, developing a new nonasymptotic and dimension-free theory. Our model assump-
tions capture a particularly challenging class of nonstationary covariance models, where the
marginal variance may vary significantly over the spatial domain. Adaptive threshold estima-
tors are then shown to perform well over this class from both a theoretical and experimental
perspective. The theory developed in this work as well as the connections made to both the
(finite) high-dimensional literature and the functional data analysis literature open the door

to many interesting avenues for future work, which we outline in the following:

e Inference for covariance operators: The techniques developed in this work, in particular
the dimension-free bounds for the sample covariance and variance component functions
open the door to lifting the finite high-dimensional inference theory to the infinite
dimensional setting. The review paper Cai [2017] provides a detailed overview of the
covariance inference literature in finite dimensions. Our analysis can likely be used to

extend this theory to the covariance operator setting. To the best of our knowledge,
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the existing literature on inference for covariance operators (see for example Panaretos
et al. [2010], Kashlak et al. [2019]) does not account for potential sparse structure in
the underlying operators, though such structure can naturally be assumed in many

cases of interest.

Estimating the covariance operator of a multi-valued Gaussian process: As described
in Section 5.1.1, the paper Fang et al. [2023] considers covariance estimation for multi-
valued Gaussian processes under a sparsity assumption on the dependence between
the individual component of the process. In contrast to our approach (see also Re-
mark 5.2.2) their assumption does not impose any sparsity on each component covari-
ance function. It would be interesting therefore to extend our analysis to the multi-
valued functional data analysis setting where each component satisfies a local-type

sparsity constraint, such as belonging to ICZ.
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5.9 Additional Results

5.9.1 Additional Numerical Simulations

This appendix shows random draws and results of operator estimation in d = 2. The

experimental set-up is identical to the d = 1 setting described in Section 5.4.2, however

due to computational constraints in the higher dimensional setting, we use different settings

for the experimental parameters. Specifically, our samples are generated by discretizing the

domain D = |0, 1]2 with a uniform mesh of L = 10,000 points. We consider a total of 10
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choices of A\ arranged uniformly in log-space and ranging from 10722 to 10701, As in the
d = 1 case, the plots indicate that adaptive thresholding is a significant improvement over
both the sample covariance and universal thresholding estimators in both the unweighted

and weighted settings.

5.9.2  Sub-Gaussian Process Calculations

Let v(l), v(2) denote independent centered Gaussian processes both with covariance function
kv of the form (5.5), such that k(z,y) = oy(z)oy\(y)ky(z,y). Consider the process u ob-
tained by transforming v(l),v@) and let m", k¥ denote the mean and covariance functions
of u, respectively. In the following sections, we provide explicit expressions for m“, k% for
various choices of transformation. These results are utilized in the sub-Gaussian portion of

Section 5.2.3.

Sine Function

Let u := sin(v). As v(}) is centered, and sin(-) is an odd function, E[sin(v(l)(a:))] = 0 for
any x € D, implying m" = 0. Further, since sin(-) is bounded, u is a sub-Gaussian process.

Note then that

k% (x,y) = Efsin(v) (2)) sin(v) (y))]

= %E[cos(v(l)(:c) - U(l)(y))] - %E[COS(U(D(@ + 'U(l)(y))],

where we have made use of the identity sin(a) sin(b) = %(cos(a —b) —cos(a+0b)). Recall that

oW ()=o) (y) ~ N(0, k¥ (2, 2)+ k" (y, y) — 2k (2, y)) and vD (2) oD (y) ~ N (0, k¥ (z, z)+
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Figure 5.6: Draws from a centered Gaussian process on D = [0, 1
SE in the first row, WSE(a = 0.1) in the second and WSE(a = 0.2) in the third, with

varying \ parameter.
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Figure 5.7: Plots of the average relative errors and 95% confidence intervals achieved by the
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based on a sample size (N, dotted green) for the (weighted) squared exponential (left) and
(weighted) Matérn (right) covariance functions in d = 2 over 10 Monte-Carlo trials and 10
scale parameters A ranging from 1072 to 10791, The first row corresponds to the unweighted
covariance functions and is the only case in which the universal thresholding estimator is
considered; the second and third rows correspond to the weighted variants with o = 0.1, 0.2
respectively.

olding (2 , black) and Wick’s adaptive thresholding (5\5\]/\7, purple) covariance estimators
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kU(y,y) + 2kY(x,y)). Further note that for Z ~ N(0,72), E[cos(Z)] = e T2, Therefore,

Kz, y) = %e—5<kv<x,x>+kv<y,y>—2kv<x,y>>> L )+ () 2 ()

_ o 3@ W) ginh (kY (2, y))

o~ 3(03(2)+03(y)) sinh(o/\(x)a)\(y)]%g\(xa Y))-

D=

Absolute Value Function

Let u := |v(1)|. Since | - | is Lipschitz, u — m" is a sub-Gaussian process. Direct calculation
yields m¥(z) = Elo(M)(z)] = %k”(x,x) = a)\(x)\/g for any x € D. Recall that for any
z,y € D, (vW(z), v (y)) is a centered bi-variate Gaussian vector with E[v™!)(z)oM) (y)] =

oy (z)o\(y)ky(z,y), by [Li and Wei, 2009, Corollary 3.1]
el @l ) = 220D (= )+ B sin o))

Therefore

) = 2D (LR ) + o) s (o)~ 1).

Absolute Value x Sine Function

Let w:= ([oM] — EloM])sin(v?). By 5.9.2 and the fact that sin(v(?)) is bounded, u is the
product of a sub-Gaussian process and a bounded process, and so is itself sub-Gaussian.
Next, by independence of v1) and 0(2), m" = 0. Recall that the product of two independent

stochastic processes with covariance functions k1, k2 has covariance function k1k2. Therefore,
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by the derivations in 5.9.2 and 5.9.2, for any =,y € D,

) = 2D (V2R o)+ o) sin (o))

« e*Q(U?\(z)*Ui(y)) sinh(a)\(x)a)\(y)]%\(% Y)).
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