Local conjugacy and primary-type decompositions in nonabelian cohomology

Algebra Seminar University of Warwick 2025 March 6

Aim

- We will develop & connect three related notions from finite group theory
 - 1. Local conjugacy for complements & supplements over normal nilpotent subgroups, from Losey & Stonehewer (Warwick)
 - 2. **Primary-type decompositions** in group cohomology
 - 3. **Fixed point theorems** for noncoprime actions, from Glauberman (Chicago)

Two subgroups H and H' are locally conjugate if for each prime p, a Sylow p-subgroup of H is conjugate to a Sylow p-subgroup of H'

Motivation

• In 1964, Glauberman proved:

Suppose J acts on N via automorphisms and the induced semidirect product $N \rtimes J$ acts on a non-empty set Ω where the action of N is transitive. If

- (Z) each complement of N in G is conjugate to J, and
- (S) each supplement S of N in G splits over $S \cap N$, then J fixes some element of Ω .
- By the Schur-Zassenhaus theorem (1937), if |J| and |N| are coprime (and J or N is soluble, until Feit-Thompson in 1962) then (Z) & (S) hold

Motivation II

- Conditions (Z) and (S) are sufficient, but not necessary
- Consider the proof:
 - Let G_{α} denote the stabiliser subgroup of G fixing some $\alpha \in \Omega$
 - As N acts transitively, G_{α} supplements N in G
 - By (S), there exists a complement J' to $G_{\alpha} \cap N$ in G_{α}
 - J' also complements N in G
 - By (Z), $J' = J^g (= g^{-1}Jg)$ for some $g \in G$
 - $J^g \leq G_\alpha$ so that J fixes $g \cdot \alpha$
- All we really need is $J^g \leq G_\alpha$ for some $g \in G$ (an inclusion result)
 - So G_{α} must split over $G_{\alpha} \cap N$ & a complement of $G_{\alpha} \cap N$ in G_{α} must be G-conjugate to J

Previous results (non-coprime)

- 1952 (Gaschütz): when N is abelian and each Sylow p-subgroup of H splits over $N \cap H$, then H splits over $N \cap H$
- 1954 (D. G. Higman): If in $N \rtimes J$ (N abelian), for each prime p there is a Sylow p-subgroup S of G such that any two complements of $N \cap S$ are conjugate within S, then any two complements of N in G are conjugate
- 1979 (Losey & Stonehewer): if J and J' are locally conjugate supplements to nilpotent N in soluble G and one of the following holds: (A) G/N is nilpotent, (B) N is abelian, or (C) the Sylow p-subgroups of G have class at most two, then J and J' are conjugate
- 1988 (Evans & Shin): two locally conjugate supplements to a normal abelian subgroup N are conjugate (G need not be soluble)

Main theorem

We will show:

Suppose J acts on nilpotent N via automorphisms and the induced semi-direct product $N \rtimes J$ acts on a non-empty set Ω , where the action of N is transitive. If for each prime p, a Sylow p-subgroup of J fixes an element of Ω , and one of the following holds:

- N is abelian,
- N ⋈ J is supersoluble, or
- J is nilpotent,

then J fixes some element of Ω .

Agenda

- Notation & background
- Lemma 1: a primary-type decomposition of the first cohomology set under some conditions on J and N
- Corollaries on when locally conjugate complements are conjugate
- Lemma 2: an analogue of Loosey and Stonehewer's results for subgroup inclusion
- Proof of theorem

Notation

- Suppose a group J acts on a group N via automorphisms (N is a J-group)
 - We write $n^j = j^{-1}nj$ and have an induced semidirect product $N \times J$
- A (1-)cocycle is map $\phi: J \to N$ such that, for all j, j':

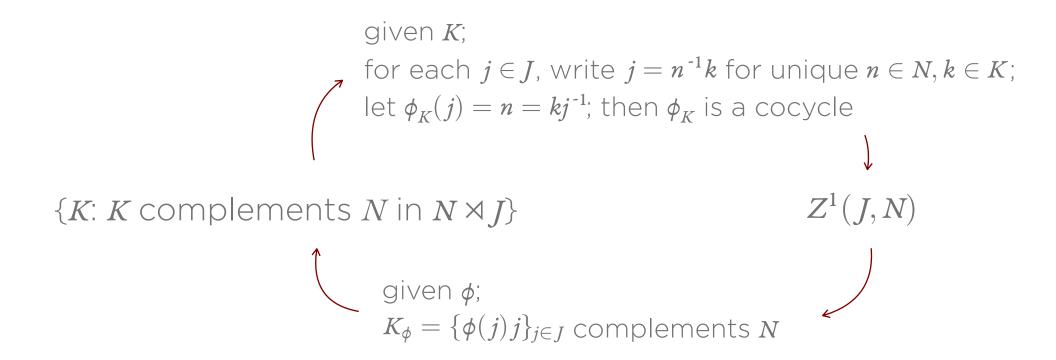
$$\phi(jj') = \phi(j)\phi(j')^{j^{-1}}$$

- Let $Z^1(J,N)$ denote the set of all such maps
 - ullet For nonabelian N, this is a 'pointed set' with distinguished point $\phi\equiv 1_N$
- Two cocycles ϕ and ϕ' are cohomologous if:

$$\phi'(j) = n^{-1}\phi(j)n^{j^{-1}}$$

- ullet This gives an equivalence relation; we write $\phi \sim \phi'$
- ullet The first cohomology set is then $H^1(J,N)=Z^1(J,N)/\sim$

Correspondence | complements & cocycles



Correspondence | conj. classes & cohomology

given
$$K, K^{\nu}$$
 for some $\nu \in N$; for each $j \in J$, we have $j = n^{-1}k = (\nu^{-1}n\nu^{j^{-1}})^{-1}k^{\nu}$ for unique $n \in N, k \in K$; then $\phi_{K^{\nu}}(j) = \nu^{-1}\phi_{K}(j)\nu^{j^{-1}}$ so that $\phi_{K^{\nu}} \sim \phi_{K}$
$$\{[K]: K \text{ complements } N \text{ in } N \rtimes J\} \qquad \qquad H^{1}(J, N)$$
 given $\phi \sim \phi'$ so that $\phi'(j) = \nu^{-1}\phi(j)\nu^{j^{-1}}$ for some $\nu \in N$; then $K_{\phi'} = \{\phi'(j)j\}_{j \in J} = \{\nu^{-1}\phi(j)\nu^{j^{-1}}j\}_{j \in J} = \{\nu^{-1}\phi(j)j\nu\}_{j \in J} = K_{\phi}^{\nu}$

Notation II

- ullet For a subgroup $K \leq J$ and $\phi \in Z^1(J,N)$, we can consider the restriction $\phi|_K$
 - This induces a map in cohomology $\operatorname{res}_K^J: H^1(J,N) \to H^1(K,N)$
- For $\phi \in Z^1(K,N)$ and $j \in J$, define $\phi^j(x) = \phi(x^{j^{-1}})^j$. Call ϕ J-invariant if for all $j \in J$: $\phi|_{K \cap K^j} \sim \phi^j|_{K \cap K^j}$
 - For normal K, this simplifies to $\phi \sim \phi^j$
- Let $inv_J H^1(K, N)$ denote the set of *J*-invariant elements of $H^1(K, N)$
 - Note that restrictions are always invariant, i.e. $\operatorname{res}_{K}^{J}H^{1}(J,N)\subseteq\operatorname{inv}_{J}H^{1}(K,N)$, as $\phi^{j}(x)=\phi(x^{j^{-1}})^{j}=\phi(jxj^{-1})^{j}=\phi(j)^{j}\phi(xj^{-1})=\phi(j)^{j}\phi(x)\phi(j^{-1})^{x^{-1}}=n^{-1}\phi(x)n^{x^{-1}}$ where $n=\phi(j^{-1})$ as $1_{N}=\phi(1_{J})=\phi(j^{-1}j)=\phi(j^{-1})\phi(j)^{j}$

Primary decomposition: abelian case

For abelian N we have the standard decomposition

Let J act on abelian N via automorphisms. Then:

$$H^1(J,N)\cong \bigoplus_{p\in\mathcal{D}}\operatorname{inv}_J H^1(J_p,N)$$

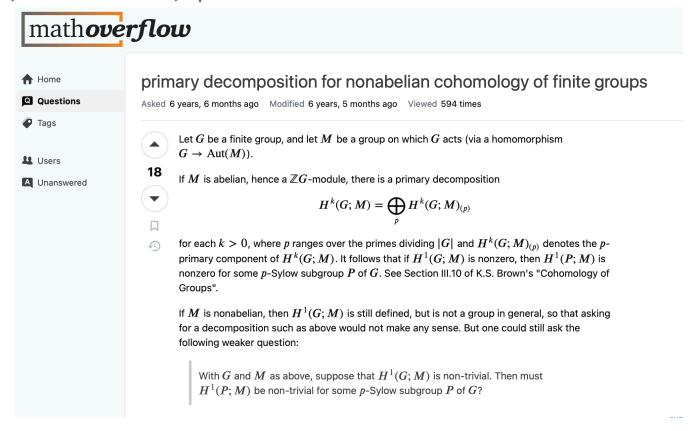
where \mathcal{D} denotes the prime divisors of |J| and $J_p \in \operatorname{Syl}_p(J)$ for each $p \in \mathcal{D}$. Explicitly, $H^1(J,N) \cong \bigoplus_{p \in \mathcal{D}} H^1(J,N)_{(p)}$ where $H^1(J,N)_{(p)}$ denotes the p-primary component and for each p, we have the isomorphism:

$$\operatorname{res}_{J_p}^J: H^1(J,N)_{(p)} \stackrel{\cong}{\longrightarrow} \operatorname{inv}_J H^1(J_p,N)$$

Brown's text, ch. 3, §10

Does N need to be abelian?

Mark Grant (Aberdeen) posed:



https://mathoverflow.net/questions/304554

Neat, if true

- the most popular response argues that things still work
- this would imply that if all complements to N in $N \rtimes J$ were locally conjugate to J, then all such complements would be conjugate, with no further restrictions on J or N

Yes, this is true.

Let F be the free product of all the Sylow subgroups of G:

 $F = \underset{P \text{ Sylow}}{*} F$

The inclusions $P \to G$ together give a group homomorphism $F \to G$. On cohomology, this induces the map

$$H^{1}(G; M) \to H^{1}(F; M) = \prod_{P} H^{1}(P; M)$$

and we are done if we can verify that this map is injective.

However, the map $F \to G$ is surjective: given any element $g \in G$ of order n, generating a copy of \mathbb{Z}/n , we can use the Chinese remainder theorem to write \mathbb{Z}/n as a product $\prod \mathbb{Z}/p^r$ of primary groups. This allows us to conclude that $g = g^{e_1} g^{e_2} \dots g^{e_k}$ where each g^{e_i} has order a prime power, hence is in a Sylow subgroup, and hence is in the image of P. Thus g is in the image of the amalgamated product F.

This now reduces us to showing: If $F \to G$ is a surjective map of groups and M is a nonabelian group with G-action, then the map $H^1(G;M) \to H^1(F;M)$ is injective. This is straightforward from the cocycle definition: if we have two cocycles $f,h:G \to M$ which become equal in $H^1(F;M)$, then by definition there is an element $m \in M$ such that $h(x) = m^{-1} \cdot f(x) \cdot {}^xm$ for all $x \in F$, but both sides of this identity only depend on the image of x in G.

Not true in general

- Losey and Stonehewer provide a counter-example
 - Let $J=S_3$ act on $N=Q_8$ as in GL(2,3)
 - Then there is a second complement I' to N that is locally conjugate but not conjugate to I
 - Thus $H^1(J,N)$ has order 2, but $H^1(P,N)$ is trivial for each Sylow p-subgroup $P ext{ of } I$

Also, this is right out:

Corollary 3.5. Suppose that G is a soluble group and Q is a nilpotent normal subgroup of G. If U and V are supplements to Q in G such that U and V are locally *G-conjugate, then U and V are G-conjugate.*

```
qap> G := SmallGroup(48,29);; # GL(2,3)
gap> N := First(NormalSubgroups(G), s -> Order(s) = 8);; # Q8
gap> Js := ComplementClassesRepresentatives(G,N); # there are 2
[ <pc group with 2 generators>, <pc group with 2 generators> ]
gap> # check local conjugacy
gap> SJ1 := SylowSystem(Js[1]);;
gap> SJ2 := SylowSystem(Js[2]);;
gap> ForAll([1..Length(SJ1)], i -> IsConjugate(G,SJ1[i],SJ2[i]));
true
```

Lemma 1

• With some restrictions on J and N, we do have a decomposition:

Suppose J acts on nilpotent N via automorphisms. If

- N ⋈ J is supersoluble, or
- J is nilpotent,

then $\phi\mapsto imes_p\phi|_{J_p}$ induces an isomorphism of pointed sets: $H^1(J,N)\cong imes_{p\in\mathcal{D}}\operatorname{inv}_JH^1(J_p,N)$

What remains true in the nonabelian case

'The extent of knowledge required is nothing like so great as is sometimes supposed'. —Littlewood (1944)

- Serre's *Galois Cohomology* (ch. I, §5) dedicates 15 pages to this topic. We have 2 exact sequences:
 - Inflation-restriction, for $Q \subseteq J$:

$$1 o H^1(J/\mathcal{Q},N^\mathcal{Q}) o H^1(J,N) \xrightarrow{\operatorname{res}_\mathcal{Q}^J} H^1(\mathcal{Q},N)^{J/\mathcal{Q}}$$

• By inclusion, for $M \subseteq N$:

$$1 o H^1(J,M) \xrightarrow{\operatorname{inc}_M^N} H^1(J,N) o H^1(J,N/M)$$

• The projection maps $N \to N_p$ induce the decomposition:

$$imes_p \pi_p : H^1(J,N) \stackrel{\cong}{\longrightarrow} imes_p H^1(J,N_p)$$

• For each prime p, we have the restriction map:

$$\operatorname{res}_{J_p}^J: H^1(J,N_p) o \operatorname{inv}_J H^1(J_p,N_p)$$

and the inclusion map:

$$\operatorname{inc}_{N_p}^N:\operatorname{inv}_JH^1(J_p,N_p)\to\operatorname{inv}_JH^1(J_p,N)$$

• The composition of these maps gives us $\phi \mapsto \times_p \phi|_{J_p}$ so it suffices to show that each is an isomorphism, i.e.:

$$H^1(J,N)\cong imes_p H^1(J,N_p)\cong imes_p\operatorname{inv}_J H^1(J_p,N_p)\cong imes_p\operatorname{inv}_J H^1(J_p,N)$$

Proof of Lemma 1 $| N \times J |$ is supersoluble

- ullet Claim: $\mathrm{res}_{J_p}^J:H^1(J,N_p) o \mathrm{inv}_JH^1(J_p,N_p)$ is an isomorphism
- Inducting on |J|
- Let $Q \triangleleft J$ be a Sylow q-subgroup where q is the largest prime divisor of |J|; then $J \cong Q \rtimes M$ for some Hall q'-subgroup M
- Consider the inflation-restriction exact sequence:

$$1 o H^1(J/\mathcal{Q}, N_p^\mathcal{Q}) o H^1(J, N_p) \stackrel{\mathrm{res}_\mathcal{Q}^J}{\longrightarrow} H^1(\mathcal{Q}, N_p)^{J/\mathcal{Q}}$$

- Two sub-cases:
 - q≠p
 - *q*=*p*

Proof of Lemma 1 | $N \times J$ is supersoluble | $q \neq p$

- In this case, $H^1(Q,N_p)$ is trivial so that $1 \to H^1(J/Q,N_p^Q) \to H^1(J,N_p) \xrightarrow{\operatorname{res}_Q^J} H^1(Q,N_p)^{J/Q}$ implies $H^1(J,N_p) \cong H^1(M,N_p^Q)$
- Now $Q \lhd N_p Q$ so that $N_p Q \cong N_p \times Q$ and $N_p^Q = N_p$
- Thus, $H^1(J,N_p)\cong H^1(M,N_p)$ and we claim that res_M^J affords this isomorphism
- ullet Suffices to show that res_M^J is surjective

Proof of Lemma 1 | $N \times J$ is supersoluble | $q \neq p$

- ullet Claim $\operatorname{res}_M^J: H^1(J,N_p) o H^1(M,N_p)$ is surjective
- ullet Let $\phi \in Z^1(M,N_p)$
- ullet Define $\widetilde{\phi}:J o N_p$ by $\widetilde{\phi}(qm)=\phi(m)$ for $q\in\mathcal{Q}, m\in M$
 - well-defined as $J \cong Q \rtimes M$
- Then $\widetilde{\phi} \in Z^1(J,N_p)$ and $\widetilde{\phi}|_M \sim \phi$; thus res_M^J is an isomorphism
- As $\operatorname{res}_{J_p}^M$ is injective by induction it follows that $\operatorname{res}_{J_p}^J = \operatorname{res}_{J_p}^M \circ \operatorname{res}_M^J$ is also injective
- Also, $\operatorname{inv}_J H^1(J_p, N) \subseteq \operatorname{inv}_M H^1(J_p, N) = \operatorname{res}_{J_p}^M H^1(M, N) \subseteq \operatorname{res}_{J_p}^J H^1(J, N)$ so that $\operatorname{res}_{J_p}^J : H^1(J, N_p) \to \operatorname{inv}_J H^1(J_p, N_p)$ is surjective and thus an isomorphism

Proof of Lemma 1 $| N \times J$ is supersoluble | q=p

- In this case, $Q = J_p$ so $H^1(J/Q, N_p^Q)$ is trivial
- Then $1 o H^1(J,N_p) \xrightarrow{\operatorname{res}_{J_p}^J} H^1(J_p,N_p)^{J/J_p}$ is exact, where $H^1(J_p,N_p)^{J/J_p} = \operatorname{inv}_J H^1(J_p,N_p)$, so is $\operatorname{res}_{J_p}^J$ injective
- ullet To show $\operatorname{res}_{J_p}^J$ is surjective, suppose $\phi\in Z^1(J_p,N_p)$ is M-invariant
- ullet In this case, define $\widetilde{\phi}:J o N_p$ by $\widetilde{\phi}(qm)=\phi(q)$ for $q\in J_p, m\in M$
 - ullet again, well-defined as $J\cong J_p
 times M$
- We find that $\tilde{\phi} \in Z^1(J,N_p)$ and clearly $\tilde{\phi}|_{J_p} \sim \phi$ so that again $\mathrm{res}_{J_p}^J: H^1(J,N_p) \to \mathrm{inv}_J H^1(J_p,N_p)$ is surjective and thus an isomorphism

Proof of Lemma 1 | J is nilpotent

- We're (still) inducting on |J|
- ullet We have $J\cong J_p imes J_p'$ where $J_p\in \mathrm{Syl}_p(J)$ and J_p' is the Hall p'-subgroup
 - ullet In this case, $H^1(J_p,N_p)^{J_p'}=\mathrm{inv}_JH^1(J_p,N_p)$
- Consider the inflation-restriction exact sequence:

$$1 o H^1(J_p',N_p^{J_p}) o H^1(J,N_p)\stackrel{\mathrm{res}_{J_p}^J}{\longrightarrow} H^1(J_p,N_p)^{J_p'}$$

- ullet As $H^1(J_p',N_p^{J_p})$ is trivial, $\operatorname{res}_{J_p}^J$ is injective
- For J-invariant $\phi \in Z^1(J_p,N_p)$, define $\tilde{\phi}:J \to N_p$ by $\tilde{\phi}(j_pj_p')=\phi(j_p)$ for $j_p \in J_p, j_p' \in J_p'$. Then $\tilde{\phi} \in Z^1(J,N_p)$ and $\tilde{\phi}|_{J_p} \sim \phi$ so $\mathrm{res}_{J_p}^J$ is surjective

- ullet Recap: we now have $H^1(J,N)\cong imes_p H^1(J,N_p)\cong imes_p \operatorname{inv}_J H^1(J_p,N_p)$
- Claim: $\operatorname{inc}_{N_p}^N:\operatorname{inv}_JH^1(J_p,N_p)\to\operatorname{inv}_JH^1(J_p,N)$ is an isomorphism
- We have the exact sequence:

$$1 o H^1(J_p,N_p) \stackrel{\mathrm{inc}_{N_p}^N}{\longrightarrow} H^1(J_p,N) o H^1(J_p,N/N_p)$$

where $H^1(J_p, N/N_p)$ is trivial

- As $\operatorname{inv}_J H^1(J_p, N_p) \subseteq \operatorname{inv}_J H^1(J_p, N)$, we can conclude
- In particular,

$$H^1(J,N)\cong imes_p H^1(J,N_p)\cong imes_p\operatorname{inv}_J H^1(J_p,N_p)\cong imes_p\operatorname{inv}_J H^1(J_p,N)$$

Corollaries

• It follows that:

In a finite supersoluble group, two complements of a normal nilpotent subgroup are conjugate if and only if they are locally conjugate.

and:

[Losey & Stonehewer] Two nilpotent complements of a normal nilpotent subgroup in a finite group are conjugate if and only if they are locally conjugate.

Proof of corollaries

- \bullet Suppose J and J' are locally conjugate complements as described
- Let $\phi \in Z^1(J, N)$ correspond to J'
- ullet By hypothesis, $\phi|_{J_p}\sim 1|_{J_p}$ for each prime p and some $J_p\in \mathrm{Syl}_p(J)$
- As $\phi\mapsto imes_p\phi|_{J_p}$ induces an isomorphism of pointed sets, $\phi\sim 1$

Remark

 \bullet For abelian N, we get a similar decomposition:

$$H^1(J,N)\cong \oplus_p H^1(J,N_p)\cong \oplus_p \operatorname{inv}_J H^1(J_p,N_p)$$

where N_p denotes the p-primary component of N and $J_p \in \operatorname{Syl}_p(J)$

- ullet Gaschütz showed that $H^1(J_p,N_p)=1$ implies $H^1(K,N_p)=1$ for all $K\leq J_p$
- In particular, under D. G. Higman's hypotheses—when N is abelian and for each prime p there is a Sylow p-subgroup S of G such that any two complements of $N \cap S$ are conjugate within S—then N is cohomologically trivial
 - see Brown's text, ch. VI, prop 8.8

Lemma 2

• We will now use Lemma 1 to give an inclusion-based result:

Given a subgroup H of $N \times J$ where N is nilpotent, suppose H contains a conjugate of some Sylow p-subgroup of J for each prime p. If

- N is abelian,
- *N* ⋊ *J is supersoluble, or*
- J is nilpotent,

then H contains a conjugate of J.

• Remark: H will supplement N in $N \times J$

- We're inducting on |G|
- Claim: without loss, N is a p-group
- Suppose multiple primes divide N
 - Then $N\cong N_p imes N_p'$ nontrivially for $N_p\in \mathrm{Syl}_p(N)$ and N_p' the Hall p'-subgroup
- ullet Induction in G/N_p implies $J^{n_0} \leq N_p H$ for some $n_0 \in N_p'$
 - Induction in G/N_p' implies $J^{n_1} \leq N_p'H$ for some $n_1 \in N_p$
- ullet Then $J^{n_0n_1} \leq N_pH \cap N_p'H = H$
 - If $g \in N_pH \cap N_p'H$, then $g = n_1h_1 = n_0h_0$ for some $n_1 \in N_p, h_0, h_1 \in H, n_0 \in N_p'$. So $h_1h_0^{-1} = n_1^{-1}n_0 \in H$, where n_0, n_1 commute and have co-prime orders so that $n_0, n_1 \in H$ and in particular $g \in H$

- Now, we have $N=N_p$ for some prime p
- Claim: $N_p \cap H$ cannot contain a nontrivial normal subgroup $A \triangleleft G$
- Otherwise, in $G/(N_p \cap H)$, induction would allow us to conclude
- If N_p were abelian, then $N_p \cap H$ would itself be normal, as $N_p \cap H \lhd N_p$
 - This concludes the abelian case

- Now, we have $N=N_p$ for some prime p
- ullet Switching to a conjugate of H if necessary, $J_p \leq H$ for some $J_p \in \operatorname{Syl}_p(J)$
- We want a proper subgroup $1 \leq Z \leq N_p$ with $Z \triangleleft G$
 - If G is supersoluble, then N_p contains $Z \triangleleft G$ of order p
 - If J is nilpotent, then N_p contains a nontrivial centre $Z=Z(N_p)$
 - In both cases, $Z \cap H$ is trivial, and Z must be proper for N to be non-abelian
- In G/Z, induction implies $J^gZ/Z \leq ZH/Z$ for some $g \in G$
 - Let $\psi: H \xrightarrow{\cong} ZH/Z$ denote the isomorphism
 - Then $K = \psi^{-1}(ZJ^g/Z) \leq H$ complements $N_p \cap H$ in H (and N_p in G)

- Let $\phi \in Z^1(K, N_p)$ correspond to J
 - ullet As $J_p \leq H$, $J_p \leq (N_p \cap H)K_p \in \mathrm{Syl}_p(H)$ for some $K_p \in \mathrm{Syl}_p(K)$
 - ullet Then $\phi|_{K_{\!p}}\in\operatorname{inv}_K Z^1(K_{\!p},N_{\!p})$ corresponds to J_p
- Under the correspondence, $\mathrm{im}(\phi|_{K_p}) \leq \langle K_p, J_p \rangle \leq H$, so that: $\phi|_{K_p} \in \mathrm{inv}_K Z^1(K_p, N_p \cap H)$
- As $\operatorname{res}_{K_p}^K: H^1(K,N_p\cap H)\to H^1(K_p,N_p\cap H)$ is an isomorphism, there exists some $\tilde{\phi}\in H^1(K,N_p\cap H)$ such that $\tilde{\phi}|_{K_p}\sim \phi|_{K_p}$
- Thus there exists some complement $L \leq H$ to $N_p \cap H$ with $J_p \leq L$
- Then L and J are locally conjugate as Sylow q-subgroups of $L \otimes J$ are Sylow q-subgroups of G for $q \neq p$, and so are conjugate by Lemma 1

Remark

• For abelian N, the extension over N need not split in order for this to work. I.e.:

Suppose H and J each supplement an abelian group N. If H contains a conjugate of some Sylow p-subgroup of J for each prime p, then H contains a conjugate of J.

- Proof:
 - Let G = NH and induct on |G|. Clearly, $|H| \ge |J|$.
 - If $N \cap H \triangleleft G$ were trivial, then J and H would be locally conjugate complements
 - Otherwise, induction in $G/(N \cap H)$ allows us to conclude

Proof of Theorem

Hypotheses:

- (1) J acts on nilpotent N via automorphisms and the induced semi-direct product $N \rtimes J$ acts on a non-empty set Ω , where the action of N is transitive
- (2) For each prime p, a Sylow p-subgroup of J fixes an element of Ω
- (3) One of the following: N is abelian, $N \times J$ is supersoluble, or J is nilpotent
- For arbitrary α , let $G_{\alpha} \leq G$ denote the stabliser subgroup.
- By (2) and the transitivity assumption from (1), G_{α} contains a conjugate of some Sylow p-subgroup of J for each prime p.
- By (3) and Lemma 2, we have $J^g \leq G_\alpha$ for some $g \in G$.
- Conclusion: *J* fixes $g \cdot \alpha \in \Omega$

Remark

 Losey and Stonehewer's original paper includes a sequence of arguments (some of which we've now seen) to improve our corollary from Lemma 1:

In a supersoluble group, two locally conjugate supplements of a normal nilpotent subgroup are conjugate.

- Proof: suppose H & J supplement N
 - H & J must be core-free; i.e. there cannot exist $A \lhd G$ with $A \leq H$ or $A \leq J$
 - without loss, N is p-group and we may let $P \in \mathrm{Syl}_p(H) \cap \mathrm{Syl}_p(J)$
 - without loss, $G = \langle H, J \rangle$, otherwise we could induct in $\langle H, J \rangle$
 - $N \cap H \leq P$ so $N \cap P = N \cap H \lhd H$; analogously, $N \cap P = N \cap J \lhd J$ so that $N \cap P \lhd G$; but H & J are core free so we must have $N \cap P = N \cap H = N \cap J = 1$

Potential extensions

• In 1995, Shin extended Losey and Stonehewer's results to profinite groups

In a profinite group G, suppose U and V are closed, locally conjugate supplements of a normal nilpotent closed subgroup N. If:

- N is abelian,
- G/N, or is nilpotent, or
- *J* is the Sylow *p*-subgroups of *G* have class at most 2 for every prime *p*,

then U and V are conjugate.

Thanks for joining today!

References & further reading

- K. Brown, Cohomology of Groups (Springer, New York, 1982)
- M. B., Actions of nilpotent groups on nilpotent groups, *Glasg. Math. J.* (in press)
- M. B., Fixed point conditions for non-coprime actions, *Proc. Roy. Soc. Edinb. Sect. A* (in press)
- M. B., Conjugacy conditions for supersoluble complements of an abelian base and a fixed point result for non-coprime actions, *Proc. Edinb. Math. Soc.* (2) 65 (2022)
- M. Evans & H. Shin, Local conjugacy in finite groups, *Arch. Math.* 50 (1988)
- G. Glauberman, Fixed points in groups with operator groups, *Math. Zeitschr.* 84 (1964)
- D. G. Higman, Remarks on splitting extensions, Pacific J. Math. 4 (1954)

- G. Losey & S. Stonehewer, Local conjugacy in finite soluble groups, *Quart. J. Math Oxf.* (2) 30 (1979)
- C. Parker & P. Rowley, A note on conjugacy of supplements in finite soluble groups, *Bull. London Math. Soc.* 42 (2010)
- D. Robinson, On the cohomology of finite soluble groups, *Arch. Math.* 105 (2015)
- J.-P. Serre, *Galois Cohomology* (Springer, Berlin, 2002)
- H. Shin, A conjugacy theorem in profinite groups, *Bull. Korean Math. Soc.* 32 (1995)