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Microbiota does not influence tumor development in two 
models of heritable cancer
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ABSTRACT Microbial impact on tumorigenesis of heritable cancers proximal to the 
gut is well-documented. Whether the microbiota influences cancers arising from inborn 
mutations at sites distal to the gut is undetermined. Using two models of heritable 
cancer, Trp53-deficient mice and Wnt1-transgenic mice, and a gnotobiotic approach, we 
found the microbiota to be inconsequential for tumor development. This work furthers 
our understanding of the degree of the microbial impact on tumor development.

IMPORTANCE The influence of the microbiome on the development of cancer is 
well-documented with many if not all published studies reporting either a positive or 
a negative impact. None of the published studies, however, presented data on the 
influence of the microbiome on the development of heritable cancer. We find that the 
microbiota has no influence on cancer development in two models of spontaneous 
cancers driven by germline Trp53 deficiency and constitutive Wnt1 signaling.

KEYWORDS microbiota, cancer, gut commensal bacteria, heritable cancer, genetic 
predisposition to cancer

C ancer arises from sporadic or inborn mutations within oncogenes, tumor suppres
sor genes, or the regulatory regions that control their expression (1). Sporadic 

mutations occur randomly during normal cell division or emanate from radiation, 
chemical carcinogens, or viral infections (2, 3). On the other hand, inborn mutations 
are inherited and can cause familial cancers (4, 5). The influence of the microbiota 
on carcinogenesis stemming from spontaneous mutations has been well-documented 
by us and other researchers (6–8). The influence of commensal bacteria on the progres
sion of transplantable tumors has also been well-documented (9, 10). Furthermore, the 
development and progression of hereditary colorectal cancer, often caused by muta
tions in tumor suppressor genes such as adenomatous polyposis coli (APC), have also 
been found to be influenced by the microbiota (6, 11). However, the potential role the 
microbiota plays in carcinogenesis of heritable cancers emerging distal to the gut and 
other non-sterile organs remains understudied.

To determine the influence of the microbiota on hereditary cancer, it is essential 
to re-derive mice with cancer-predisposed mutations as germ-free (GF) and monitor 
the incidence and latency of tumor development in these GF mice and their specific 
pathogen-free (SPF) counterparts.

Using this approach, we demonstrate that the microbiota does not impact tumor 
development in Trp53-deficient and Wnt1-transgenic mice, two well-known mouse 
models of heritable cancer.
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MATERIALS AND METHODS

Mice

The following mice used in this study were bred and maintained at the animal facility of 
the University of Chicago. B6.129S2-Trp53tm1Tyj/J (B6.Trp53−/−) and FVB.Cg-Tg(Wnt1)1Hev/J 
(FBV.wnt1Tg) were purchased from the Jackson Laboratory. Specific pathogen-free (SPF) 
and germ-free (GF) mice were housed in the animal resource center under the supervi
sion of the University of Chicago veterinarians. Males and females used in the studies 
were littermates produced by the same mothers (Trp53−/− or Wnt1 transgenic, respec
tively) and, thus, had similar microbiome derived from their mothers. Both Trp53−/− 

males and females (at approximately 50:50 ratio) and virgin Wnt1 hemizygous transgenic 
females were used for tumor monitoring. Males and females were housed based on 
genders, with 2–5 mice per cage.

The animal facility at the University of Chicago is an AAALAC-accredited facility. 
Animals were provided food and water ad libitum. SPF mice were fed on irradiated 
standard 6% fat NIH-31 mouse chow. Germ-free mice were fed on 6% fat 5K67 mouse 
chow, which is similar in ingredients and nutrient composition to NIH-31 chow but is 
fortified with vitamins to compensate for loss during autoclaving required for sterili
zation. Each cage has nestlets as environmental enrichment. Both SPF and GF mice 
were checked for tumors daily, and animals bearing detectable tumors (<5 mm) were 
euthanized. Mice were also checked for hunched posture and pale look (these are two 
phenotypes that segregate with leukemia development). Mice looking pale and having 
hunched posture were euthanized. Mice were euthanized by forced CO2 inhalation 
delivered in a sealed chamber from a cylinder with compressed CO2 gas. Cervical 
dislocation was performed as a second method for euthanasia. These methods are 
consistent with the recommendations of the Panel on Euthanasia of the American 
Veterinary Medical Association.

Monitoring sterility of germ-free and mouse pathogens in specific pathogen-
free mice

B6.Trp53−/− and FBV.wnt1Tg mice were re-derived as GF at Taconic Biosciences and 
housed in isolators in the gnotobiotic facility at the University of Chicago. Assessment 
of GF isolator sterility was conducted as previously described (12). Briefly, fecal pel
lets collected weekly from isolators were subjected to DNA extraction using a bead 
beating/phenol–chloroform extraction protocol. A single fecal pellet was placed in an 
autoclaved 2 mL screw-cap tube containing 0.1 mm zirconium beads, along with 500 µL 
of 2× buffer (filter sterilized 200 mM NaCl, 200 mM Tris, 20 mM EDTA), 210 µL of 20% 
SDS, and 500 µL phenol:chloroform. The tube was bead beat for 2 minutes and then 
centrifuged at 8,000 rpm at 4°C for 3 minutes. The aqueous phase was placed in a new 
Eppendorf tube, and 500 µL of phenol:chloroform was added. The tube was centrifuged 
at 13,000 rpm at 4°C for 3 minutes. The aqueous 400 µL phase was supplied with 
40 µL of 3 M sodium acetate (pH 7) and 400 µL of −20°C isopropanol and then spun at 
13,000 rpm at 4°C for 10 minutes. The supernatant was discarded, and 500 µL of 80% 
ethanol at −20°C was added. The sample was spun at 13,000 rpm at 4°C for 5 minutes. 
The supernatant was again dumped, and the sample was vacuum dried for 10 minutes. 
The pellet was resuspended in 1 mL of sterile water and left overnight at 4°C. Primers 
that broadly hybridize to bacterial 16S rRNA gene sequences (5′GACGGGCGGTGWGTRC
A3′ and 5′AGAGTTTGATCCTGGCTCAG3′) were used to amplify isolated DNA. In addition, 
brain heart infusion, nutrient, and Sabouraud broth containing tubes were inoculated 
with fecal pellets collected from the same GF cages, from SPF cages (positive control) 
and with sterile saline (negative control), and incubated at either 37°C or 42°C in both 
aerobic and anaerobic conditions to test for bacterial and fungal contamination. Cultures 
were monitored for 5 days until deemed negative. All mice were tested once a week and 
at closing. All animals remained sterile throughout the duration of the studies and at 
closing.
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SPF mice were routinely tested for mouse-excluded pathogens, such as mouse 
hepatitis virus, Sendai virus, pneumonia virus of mice, Theiler’s mouse encephalomyelitis 
virus, reovirus-3, mouse rotavirus, Ectromelia virus, lymphocytic choriomeningitis virus, 
polyoma virus, mouse cytomegalovirus, mouse adenovirus, K virus, mouse thymic virus 
(MTV), hantavirus, lactate dehydrogenase elevating virus (LDEV), parvoviruses, minute 
virus of mice, mouse parvovirus, Mycoplasma pulmonis, Salmonella spp., Citrobacter 
rodentium, Clostridium piliforme, Streptobacillus moniliformis, Filobacterium rodentium, 
Corynebacterium kutscheri, pinworms (Syphacia spp., Aspiculuris tetraptera), fur mites 
(Myobia musculi, Myocoptes musculinus, Radfordia affinis, Psoregates simplex), and Giardia 
spp.

Histology

Visible tumors were excised from SPF and GF Trp53-deficient and Wnt1-transgenic 
mice and fixed in Telly’s fixative. Tumor type was determined based on morphologic 
assessment of hematoxylin and eosin stained 4 µm sections. Classification of the 
malignancies was based on well-recognized morphological patterns. A diagnosis of 
lymphoma was rendered when the tumor presented as a discrete mass with discohesive 
intermediate-sized tumor cells. Sarcomas were more cohesive, and cytomorphology 
was notable for presence of spindle-shaped cells mixed with larger pleomorphic cells 
with variable nuclear lobation. Carcinomas showed lumen formation, a characteristic of 
adenocarcinomas.

RESULTS

The first model tested was tumor suppressor p53 (encoded by TRP53 in humans and 
Trp53 in mice) deficiency. TRP53 is crucial for enabling response to cell stress, such 
as DNA damage, by arresting cell cycle or inducing apoptosis (13). Mutations within 
TRP53 are the most frequently observed mutations in human cancers (14). In addi
tion, germline mutations in TRP53 are associated with Li-Fraumeni syndrome, a cancer 
with familial predisposition (15). The vast majority of tumors developing in Trp53−/− 

mice are lymphomas/leukemia and soft tissue sarcomas, with approximately 50% of 
mice developing cancer by 3–4 months (16). Therefore, the survival rate and tumor 
development were compared in male and female Trp53−/− mice housed under SPF 
and GF conditions for 1 year. Moribund mice or mice displaying overt tumors were 
euthanized and examined by necropsy; their tumors were analyzed by histopathology. 
The frequency of tumor development in GF Trp53-deficient mice was not significantly 
different to that observed in SPF Trp53-deficient mice (Fig. 1A). Furthermore, all SPF mice 
and the majority of GF Trp53-deficient mice developed lymphomas or sarcomas (Fig. 1B) 
in agreement with the previously published data (17). One GF Trp53-deficient mouse 
developed carcinoma, a cancer type less frequently associated with this mouse model 
(16).

To further understand the influence of the microbiota on tumor development 
stemming from genetic predisposition, we also tested Wnt1-transgenic mice, a model for 
mammary carcinoma development. Wnt1 canonically controls cell proliferation by 
increasing and stabilizing cytosolic β-catenin, which then translocates to the nucleus and 
facilitates the expression of genes, including cell cycle regulators c-myc and cyclin D1 
(18). Atypical Wnt1 expression under the mammary tumor virus promoter (MMTV-Wnt1) 
within Wnt1-transgenic mice induces mammary adenocarcinomas (18, 19). Mammary 
glands from virgin Wnt1 hemizygous females resemble hormonally stimulated glands 
from pregnant mice. Adenocarcinomas developed in virgin females between 3 and 7 
months, and more rarely in males. Tumors arose stochastically, indicating additional 
events are required for neoplasia development (18, 19). GF MMTV-Wnt1 transgenic virgin 
females developed tumors with similar latency and incidence compared to SPF MMTV-
Wnt1 transgenic virgin females (Fig. 2A). Wnt1-transgenic females in both housing 
conditions primarily developed adenocarcinomas, the archetypal tumor type 
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characteristic of this model (Fig. 2B). One mouse developed squamous cell carcinomas 
(Fig. 2B), which had never been seen before in SPF Wnt1-transgenic mice (19).

DISCUSSION

Prior studies, including our study investigating tumors resulting from spontaneous 
mutations, have defined a significant role for the microbiota in the development of 
colorectal cancer (6, 8) and virally induced leukemia (7). In contrast to these studies, the 
latency and incidence of hereditary lymphoma/sarcoma in Trp53−/− mice and mammary 
gland adenocarcinomas in Wnt1-transgenic mice were unaffected by the microbiota (Fig. 
1A and 2A). These data suggest that unlike spontaneous malignancies, the development 
of cancer arising from specific genetic predispositions in Trp53−/− and Wnt1-transgenic 
mice is not influenced by the microbiota.

The discordance in these observations may be explained by the inherent differences 
between tumors that develop spontaneously and the tumors that develop as a result of 
genetic predispositions, such as in Trp53−/− and Wnt1-transgenic mice. Spontaneous 
tumors, induced by viruses or carcinogens, or due to random mutations, derive from a 

FIG 1 Microbiota does not impact the latency and incidence of tumor development in Trp53−/− mice. (A) Trp53−/− SPF and GF mice were monitored for tumor 

development. (B) Proportion of SPF Trp53−/− mice that develop various forms of tumors in SPF (left) and GF (right) mice. n, number of mice used. Of 26 SPF 

Trp53−/− mice, 15 were males and 11 were females, whereas of 41 GF Trp53−/− mice, 30 were males and 21 were females. Twenty of 26 SPF tumors were 

histologically analyzed. Of those, 14 were identified as lymphomas and six as sarcomas. Of 41 GF tumors, 27 were histologically analyzed. Of those, 21 were 

identified as lymphomas, five as sarcomas, and one as carcinoma. P values calculated using Mantel-Cox test (A).
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limited number of cells in which oncogenes are upregulated, tumor suppressor genes 
are nullified, or their regulatory regions are mutated. These rare tumor cells must escape 
the immune response targeting tumor-specific antigens, such as viral antigens or 
neoantigens. Previously, we showed that some commensal bacteria promote the 
development of murine leukemia virus (MuLV)-induced leukemia, a type of spontaneous 
tumors induced by the insertional activation of cellular proto-oncogenes (20), by 
suppressing the adaptive immune response through induction of several negative 
immune regulators (7). The negative immune regulators, such as Serpinb9b and Rnf128, 
were upregulated in MuLV-infected leukemia-susceptible SPF mice, but not in MuLV-
infected leukemia-resistant GF mice (7) (Fig. 3A). Serpinb9b is a serine protease inhibitor 
that acts on and suppresses granzyme M produced by cytotoxic cells (21). Rnf128 is a 
ubiquitin ligase that has been shown to ubiquitinate CD3 and CD40L expressed on T 
cells, leading to these molecules degradation and, thus, T cell unresponsiveness (22, 23). 
Therefore, tumor-specific T cell-mediated responses were highly effective in GF mice but 
were suppressed by the microbiota in SPF mice, thus promoting virally induced leukemia 
development (7). In other models of sporadic tumors, such as hepatocellular and 
colorectal cancer, gut bacteria and their byproducts affected the progression of cancer 
through a variety of means including damaging DNA and promoting inflammation (6, 
24–26).

FIG 2 The microbiota does not influence the latency and incidence of tumor development in Wnt1-transgenic mice. (A) Virgin Wnt1-transgenic SPF and GF 

females were monitored for tumor development. (B) Proportion of Wnt1-transgenic mice that develop various types of tumors in SPF (left) and GF (right) mice. n, 

number of mice used. Seventeen of 27 SPF tumors were histologically analyzed and identified as adenocarcinomas. Fifteen of 22 GF tumors were histologically 

analyzed, 14 were identified as adenocarcinomas, and one as carcinoma. P values calculated using Mantel-Cox test (A).
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In contrast to spontaneous tumors, inborn mutations predisposing to cancer are 
ubiquitous. Self-antigens expressed in excess by tumor cells may cause either immuno
logical ignorance or immune suppression leading to tumor development (27–29). These 
processes alone drive tumorigenesis regardless of the presence or absence of the 
microbiota (Fig. 3B).

Although the peripheral immune organs, such as Peyer’s patches, are underdevel
oped in GF mice compared to SPF mice (30), their immune system is not compromised 
and responds to immune challenges, such as immunization similar to SPF mice (12, 31). 
As mentioned above, GF mice are also capable of mounting T cell-mediated responses 
preventing development of virally induced tumors (7). Since there was no difference in 
the latency and incidence of tumors developed between GF and SPF mice (Fig. 1A and 
2A), we saw no reason to evoke the question of incompetence of the immune system of 
GF mice as a factor contributing to tumor development.

Our results deviate from the results reported by Yamamoto et al. (32), which 
suggested that the microbiota can influence lymphoma development in a model of 
heritable cancer. Yamamoto et al. utilized mice deficient in ataxia telangiectasia mutated 
(ATM) gene that are genetically predisposed to lymphoid cancers. In humans, muta
tions in this gene cause ataxia telangiectasia, an autosomal recessive disease that is 
also associated with a higher incidence of lymphoid cancers (33). ATM is activated 
by double-stranded DNA breaks and functions upstream of Trp53 by phosphorylat
ing Trp53, thus inducing either cell cycle arrest or apoptosis (34). Yamamoto et al. 
found that ATM-deficient mice exhibited increased lymphoma latency when housed 
in SPF conditions and supplied with sterile food, water, and bedding in comparison 

FIG 3 Intrinsic dissimilarities between spontaneous (virally induced) and heritable tumors which could explain differential dependence on the microbiota. 

(A) Virally induced tumors, such as MuLV-induced leukemia are initiated from rare cells with proviral integration next to the cellular proto-oncogene (“first 

hit” mutation, shown as red X). In MuLV-infected germ-free (GF) mice, viral antigens expressed by precancerous cells stimulate a strong immune response 

suppressing leukemia development (acquisition of additional mutations required for tumor progression). In MuLV-infected specific pathogen-free (SPF) mice, 

commensal bacteria suppress the immune response against viral antigens enabling acquisition of additional mutations (shown as green and blue XX) and 

progression to leukemia. Data shown in the figure are from reference 7. (B) The “first hit” mutation in heritable cancer is present since birth. Self-antigens 

expressed in excess by tumor cells may cause either immunological ignorance or immune suppression leading to tumor development regardless of the presence 

of the microbiota. DC, dendritic cell; Treg, T regulatory cell.
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to ATM-deficient mice housed in SPF conditions with non-autoclaved supplies (32). 
They also found that ATM-deficient mice gavaged with a restricted microbiota follow
ing antibiotic treatment had an increased lifespan compared to mice gavaged with 
a conventional microbiota after antibiotic treatment (32). The authors of the studies 
suggested that the microbiota, specifically bacteria, affected lymphomagenesis in ATM−/− 

mice. The enrichment of Lactobacillus johnsonii (L. johnsonii) (32) and some metabolites 
in mice with the restricted microbiota (35) were proposed to have an anti-tumor effect. 
However, the direct impact of L. johnsonii and the metabolites on lymphoma develop
ment was never scored. It is possible that the shift in unidentified factor(s) different from 
the commensal bacteria altered lymphomagenesis in ATM−/− mice in these experimental 
settings. The current standards in the microbiota field require the usage of GF (36), which 
we used in our studies. Although we have not used ATM−/− mice, we exploited better 
breeders, specifically Trp53−/− mice. As ATM functions upstream of Trp53 (34), Trp53−/− 

mice can be viewed as a proxy for ATM−/− mice.
It is well appreciated that the microbiota is dependent on factors such as husbandry 

(37), genetic background (38), and diet (39), and thus, is highly likely to be different 
between different facilities and among mice from different genetic backgrounds. Over 
the past two decades, many research groups have collected survival data using SPF 
Trp53−/− (40–42) and Wnt1-transgenic mice (19, 43) at different facilities and often 
using mice of different genetic backgrounds. In all published cases, the incidence and 
latency of the tumor development in mice from these two models were identical to 
the incidence and latency we observed in our studies. Specifically, the incidence of 
observable tumors was reported in 41/49 (40), 19/23 (41), and 125/125 (42) of Trp53−/− 

B6J mice during 9 months of monitoring, which is highly congruent with our findings 
(Fig. 1A). These mice predominantly developed lymphomas, followed by sarcomas, 
parallel to our study (Fig. 1B). Investigations into the latency and incidence of mammary 
adenocarcinomas in Wnt1-transgenic mice determined that roughly 80% of mice had 
developed tumors by 7 months of age (19, 43), similar to our findings (Fig. 2A). These 
studies indicate that variations in microbiomes in different SPF colonies are unlikely to 
influence the tumor development in Trp53−/− and Wnt1-transgenic mice.

In conclusion, utilizing Trp53−/− and Wnt1-transgenic mice as well as accepted 
standards for microbiome studies, we found no contribution of microbiota to tumor 
development in these two models.

Limitation

This study demonstrates the microbiota does not impact tumor development in two 
models of heritable cancer, such as Trp53−/− and Wnt1-transgenic mice. However, these 
results may not be generalizable to tumors arising from other genetic predispositions.
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