
DOI: 10.1111/cgf.15276 COMPUTER GRAPHICS forum
Volume 0 (2025), number 0, e15276

GeoCode: Interpretable Shape Programs

Ofek Pearl,1,2 Itai Lang,2 Yuhua Hu,2 Raymond A. Yeh3 and Rana Hanocka2

1School of Electrical Engineering, Tel Aviv University, Tel Aviv-Yafo, Israel
ofekpearl@mail.tau.ac.il

2Department of Computer Science, University of Chicago, Chicago, USA
{itailang, katehu, ranahanocka}@uchicago.edu

3Department of Computer Science, Purdue University, West Lafayette, USA
rayyeh@purdue.edu

Abstract
The task of crafting procedural programs capable of generating structurally valid 3D shapes easily and intuitively remains an
elusive goal in computer vision and graphics. Within the graphics community, generating procedural 3D models has shifted to
using node graph systems. They allow the artist to create complex shapes and animations through visual programming. Being a
high-level design tool, they made procedural 3D modelling more accessible. However, crafting those node graphs demands ex-
pertise and training. We present GeoCode, a novel framework designed to extend an existing node graph system and significantly
lower the bar for the creation of new procedural 3D shape programs. Our approach meticulously balances expressiveness and
generalization for part-based shapes. We propose a curated set of new geometric building blocks that are expressive and reusable
across domains. We showcase three innovative and expressive programs developed through our technique and geometric building
blocks. Our programs enforce intricate rules, empowering users to execute intuitive high-level parameter edits that seamlessly
propagate throughout the entire shape at a lower level while maintaining its validity. To evaluate the user-friendliness of our
geometric building blocks among non-experts, we conduct a user study that demonstrates their ease of use and highlights their
applicability across diverse domains. Empirical evidence shows the superior accuracy of GeoCode in inferring and recovering
3D shapes compared to an existing competitor. Furthermore, our method demonstrates superior expressiveness compared to
alternatives that utilize coarse primitives. Notably, we illustrate the ability to execute controllable local and global shape ma-
nipulations. Our code, programs, datasets and Blender add-on are available at https://github.com/ threedle/GeoCode.

Keywords: curves and surfaces, image-based modelling, modelling, modelling interfaces

CCS Concepts: • Computing methodologies → Machine learning; Mesh models; Parametric curve and surface models; •
Human-centred computing → Interactive systems and tools

1. Introduction

Devising an expressive and intuitive parametrized program that gen-
erates structurally valid 3D shapes demands a high level of expertise
and is a long-standing goal in computer graphics. A key challenge
involves translating the user’s edit intent to low-level geometric in-
structions that will adhere to the desired attributes while maintain-
ing the structural validity of the shape. A promising approach for
achieving control over manipulations of 3D shapes is through pro-
cedural methods that leverage a set of instructions to create a shape.

In this work, we present GeoCode, a new paradigm for edit-
ing complex, high-quality shapes with programs that are expres-

sive (produce detailed shapes) and executable (enforce structural
validity). Notably, GeoCode breaks away from a coarse bound-
ing cuboid representation of shape parts. Instead, we develop rich
programs that build shapes from the ground up, using sets of
Béizer curves. GeoCode programs are capable of producing diverse,
human-interpretable and structurally plausible shape programs that
employ various rules such as curves, attachment points, bevelling,
separation of structure from appearance, symmetries and more. We
conducted a user study demonstrating that people without any 3D
modelling experience were able to understand GeoCode’s design
methodology and build procedural shape programs that generate
high-quality geometries using GeoCode.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

1 of 15

https://orcid.org/0009-0001-7266-0441
https://orcid.org/0000-0003-4066-4293
https://orcid.org/0009-0006-5329-696X
https://orcid.org/0000-0003-4375-0680
https://orcid.org/0000-0003-3214-3703
https://github.com/threedle/GeoCode
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.15276&domain=pdf&date_stamp=2025-02-12

2 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Figure 1: Interpretable shape control. GeoCode is a new paradigm that aims to ease the process of creating complex, high-quality procedural
shape programs while balancing expressiveness and ease of use. We showcase one of our shape programs, that produces detailed chair shapes
while maintaining structural validity through various human-interpretable edits.

To demonstrate the effectiveness of our procedural modelling
methodology, we built three domain-specific programs. Each pro-
gram is built for a particular shape domain and exposes a large
human-interpretable parameter space, which keeps the shape struc-
turally valid for every combination while capturing geometric fea-
tures that are represented by the human-interpretable parameter
space. Each parameter space models a wide range of geometric
properties and produces a variety of detailed shapes. Shapes can
be edited further in an intuitive way and without interacting with
the geometry, as shown in Figure 1. Additionally, the shapes can
be easily mixed and interpolated using their interpretable parameter
representation and our programs propagate the changes while main-
taining a valid shape (see Figure 3).

Each program is coupled with a shape recovery network, which
learns to infer the program parameters from input point clouds or
sketches. We leverage the effectiveness of our procedural programs
to generate a large dataset for each of the domains by sweeping
over their corresponding parameter space. We train on our automat-
ically generated datasets, to learn a mapping from the input modal-
ity (sketch or point cloud) to the interpretable program parameter
space, which in turn yields a structured and easily editable shape.We
show that our system generalizes to inputs from different distribu-
tions than the training set, such as free-form user-created sketches,
sketches generated from images in the wild, noisy point cloud data,
real-world point cloud scans and more.

In summary, we propose a framework to simplify the process of
building general part-based procedural programs. Our contributions
are summarized in three main points:

• Blender Add-On: Our main contribution is allowing non-experts
to create expressive procedural 3D programs of part-based
shapes. To allow that, we supply a Blender-based [Com18] add-
on providing users with custom nodes that follow our design
methodology. We prove its effectiveness in a user study in which
non-expert users built 3D programs for a predefined class (vases)
but were also able to build a program for a completely novel class
(ceiling lamps) using an illustration that defines the requirements
and basic guidance in a timed exercise. This demonstrates that
the building blocks in GeoCode are modular enough to extend to
novel shape domains even by non-experts.

• Procedural Programs:We build three domain-specific programs
(chairs, vases and tables) using our procedural modellingmethod-

ology, all of which have a large parameter space and offer great
variability in the shapes they produce. Another expert program
(cabinets) was developed for further discussion and the testing of
GeoCode’s modularity.

• Parametric Prediction Network: We present a system that
learns to infer the parameters of the shape program from an in-
put point cloud or sketch. Given a shape program, all the network
components are automatically adjusted, from dataset generation
to inference.We compare our network with a competing paramet-
ric network and present measurable improvements.

As far as we can ascertain, we are the first to develop a bottom-
up curve-based framework aimed at editing shapes in a structurally
validmanner. Given that there are no direct methods for comparison,
we compare and evaluate our method to what alternative methods
can achieve with their baselines, and demonstrate quantitative and
qualitative improvements.

2. Related Work

Procedural modelling. Procedural modelling is the process of gen-
erating shapes based on given rules. The benefit of using rules to
generate shapes is that the input is muchmore limited than the shape
that is produced, and additionally, making modifications or gener-
ating variations of the shape is a much less involved process that
does not require the artist to remodel the shape. Contrary to the use
of neural implicit representations of geometry [CZ19, MON*19,
PFS*19, HAESB20, ZLWT22, HPG*22] the resulting procedurally
generated shapes can be integrated into any existing 3D pipeline and
the artist can freely modify the shape using existing visual graphical
user interfaces.

Various methods were used to generate the procedural model, an
early form of procedural modelling is a grammar used to describe
plants known as L-Systems [Lin68]. It was also successfully ap-
plied for buildings [MWH*06] and for cities [PM01]. Another type
of grammar is set grammar where shapes are considered as sym-
bols [Sti82,WWSR03]. An extension of set grammar is shape gram-
mar which was first introduced in [SG71], where the basic prim-
itives are geometries that may change by the rules (for example,
when one geometry is attached to another). This method saw a lot of
success in urban design as evident from works such as [MWH*06,
SM15, AAAD23, LWW08, WGV*21].

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 3 of 15

Another class of procedural modelling is model synthesis where
a 3D model is given as an input example and a larger more complex
model is generated [Mer07, MM08, MM10]. Many works also pro-
vided the users with an interactive way to edit the shapes through
the use of a visual system [LWW08, LD99, NPA*22, DAB16,
VGDA*12, VABW09, MS09]. In this work, we explore procedu-
ral modelling through the use of visual programming and more
specifically with the use of node graph systems. There have been a
few works that explored such visual programming frameworks, the
work [BP12] created such a framework in an attempt to simplify
the development process of procedural buildings. Another attempt
to create a more generalized framework through the use of a novel
node graph system is the work [GK07] and notably, it also allowed
some interactive editing in the viewport. Through our user study, we
show that ourmethod is intuitive even for non-experts, andwith only
a little guidance, our participants were able to successfully generate
intricate shape programs.

Inverse procedural modelling. The second part of our work
resembles inverse procedural modelling in the sense that we pre-
dict the input parameters to our procedural models given a point
cloud or a sketch of the shape. Similar works include [SPK*14,
RMGH15], and another work that based the prediction on a neural
network [HKYM17]. The approach taken by [HKYM17] was to
split the continuous and discrete parameters into two separate
networks. We later use it as a baseline for our work for sketch
inputs. However, the work [HKYM17] used existing procedural
models [MM12] and accepted only sketches as input. In contrast,
in our work, the main goal is to lower the bar for procedural model
creation for non-experts. A recent work [HSIvK23] used inverse
procedural modelling to aid expert programmers in iteratively
crafting programs based on a given collection of reference shapes.
We acknowledge another effort related to the parameter space,
where auto-encoders were used to map complex parameter spaces
to lower-dimensional ones to ease the process of generating shapes
from procedural programs [YAMK15].

Considering our shape recovery network and programs, a sin-
gle structure-aware program built using our method and visual pro-
gramming can encode various structures of the shape and rela-
tions between parts from its construction. However, other works
tried to solve a more difficult problem, where the relations be-
tween parts are also inferred, either as grammar or code [JBX*20,
JCG*21, WYD*14, VAB10, JWR22, Mer23, JCR24, KJR24] or as
graphs, often also inferring relations between the parts [LXC*17,
MGY*19, WGK*22, PvGG20]. We compare our work to [JBX*20,
MGY*19] solely in terms of the expressibility that our programs
can achieve compared to methods that use cuboids as primitive
geometry to build the shapes. There is also limited work on in-
ferring the visual graph node for procedural materials [GHS*22,
HGH*22, HGH*23]. Some works first retrieve a pre-built proce-
dural material from a database and then optimize its parameters
to match a given material [HDR19, SLH*20, TRT*22]. We also
recognize other works that operate with another procedural mod-
elling technique called constructive solid geometry such as Inver-
seCSG [DIP*18] or PLAD [JWR22].

Shape reconstruction and editing. Several works used deep
learning methods to reconstruct a 3D object from a sketch. DE-
LANOY et al. [DAI*18] and LI et al. [LPL*18] predict voxel grids

and depth with normal maps, respectively, which are then con-
verted to meshes. Other approaches use Poisson Surface Recon-
struction [KBH06, KH13] to convert a predicted point cloud to a
mesh [LGK*17, YYHYZ20, ZQG*21], deform a template mesh
[ZGG21], learn an implicit representation [CCR*22], or differen-
tiable mesh representation [RLR*20, GRYF21]. In contrast, our ap-
proach directly outputs a high-quality and editable mesh.

Another approach produces a CAD shape to improve the struc-
tural integrity and editing capabilities of the reconstructed mesh.
Sketch2CAD [LPBM20] and Free2CAD [LPBM22] trained neural
networks to parse 2D sketches into sequences of CAD commands
and ComplexGen [GLP*22] created CAD shapes from input point
clouds. However, editing one CAD operation changes only a part of
the shape, making the preservation of its structural integrity chal-
lenging. In our method, changing one parameter results in local
changes that propagate to the rest of the shape, maintaining physical
validity while keeping other geometric features intact.

We note that there is a large body of research on recovering the un-
derlying surface mesh from a point cloud input [HDD*92, KBH06,
KH13, HMGCO20, MHZ*21]. Our goal in this paper is different.
We aim to produce an intuitively editable mesh version of the point
cloud, while surface reconstruction works focus mainly on recover-
ing a holistic 3D shape.

3. Method

Our main goal is to simplify the process of building procedural
programs, even for complex shapes. We do this, first, by defining
a procedural modelling methodology, and secondly, by providing
the user with an extension to Blender’s Geometry Node graph sys-
tem [Fou21b] in the form of an easy-to-install add-on. Upon installa-
tion, the user will be provided with custom nodes that adhere to our
procedural modelling methodology. Our second goal in this work is
to evaluate the expressiveness and effectiveness of programs built
using our method. Given an input object, represented as a 3D point
cloud or a 2D sketch image, we want to recover the parameter set
that will form a 3D shape that best matches the given input. We de-
velop three domain-specific procedural programs parameterized by
a very large human-interpretable parameter set. The 3D shape is re-
covered by training a neural network to infer the set of parameters
that will yield the best matching 3D shape once fed to the procedural
program; See Figure 2 for an overview.

3.1. Procedural modelling methodology

With the main goal of simplifying the creation of new procedu-
ral models through visual programming, we needed to balance two
opposing forces. On the one hand, we want to supply non-expert
users with nodes that can easily generate complex meshes with mul-
tiple input parameters. On the other hand, we want the nodes to
be reusable across many shape domains. In other words, we want
the nodes we provide to have a lot of expressiveness but we also
want them to generalize. Our procedural modelling methodology
achieves this by the use of several notions which we explain below:
triplets, curve sampling, and symmetries.

Triplets. Guided by that notion, we modelled shape elements us-
ing triplets. A triplet is a subgraph comprised of three nodes. Firstly,

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Figure 2: System overview. GeoCode learns to map a point cloud or a sketch input to an intuitively editable parameter space. The input
passes through the corresponding encoder to obtain an embedding vector which is then fed to a set of decoders that predict the interpretable
parameters. The program enforces a set of rules that, given a parameter representation, produces a high-quality shape by construction.

Figure 3: Structural integrity. GeoCode ensures that an edited
shape remains structurally plausible. Changing the parameters of
the shape (left) to modify the seat in isolation will lead to an un-
desirable result (middle). Our program (right) properly propagates
the edit to the remainder of the shape.

two curves: an open curve C1, which describes a path in the 3D
space, and a planar, closed curve C2, which describes the profile of
the shape. Secondly, a style node receives the curve and the profile
curve as inputs. In the simplest form of the style node, the profile
curveC2 is extruded along the curveC1, and creates the 3D mesh.

Within the style node, additional control on the appearance of the
final 3Dmesh is achieved by setting the scale of the profileC2 at each
point along the curveC1. A triplet and its links are demonstrated in
Figure 7 where a leg of a chair is generated using only three nodes.
Such a leg design may be controlled by 4 continuous parameters:
(1) the length of the leg; (2) leg bottom thickness; (3) leg serrations;
(4) the shape of the profile curveC2 (e.g. interpolate it from a square
to a circle). In our add-on design, we make use of curve editor nodes
to make the process of adding more styles more intuitive. How a leg
triplet might be used within a program is demonstrated in step 2 in
Figure 4.

We note that on some occasions it makes sense to use mesh prim-
itives such as a sphere or a plane. We use this, for example for the
vase’s lid handle (see top middle vase in Figure 6). We can also de-

form primitives using parameterized mathematical expressions that
are applied per vertex.

Curve sampling. An artist may approach building shape pro-
grams with primitives or pre-modelled parts that are parameterized
with blend shapes, a method based on shape interpolation. However,
a notable benefit of cultivating curves to build shape elements is the
ease of defining attachment points on a curve, by setting points with
relative distances along the curve. This means, given a shape ele-
ment A, which is built from a curve C1 and a profile curve C2, an
attachment point p1 on the shape element is defined by a single float
number p1 ∈ [0, 1]. A value of 0.0 is the start point of the curveC1,
while a value of 1.0 is the endpoint of the curve. We attach a shape
element B to shape element A by defining an attachment point on
each one. We optionally set the orientation of B to match the nor-
mal ofC1 at the attachment point p1. Steps 5 and 6 in Figure 4 show
how the top rail and cross-rails are attached to the frame of the chair
in this manner. Scaling shape elements is achieved by calculating
distances between attachment points.

Symmetries. Other structural relations do not require attachment
points and rely simply on symmetry. This is shown in steps 2 and
3 in Figure 4, where we use reflective symmetry to replicate the
chair’s legs and frame. We also employ rotational symmetry, for ex-
ample, chairs with swivel legs and vases that have multiple handles
as shown in Figure 6.

Structural integrity discussion. To invoke a discussion about
how structural integrity is maintained using GeoCode, let us con-
sider Figure 4. In step 3, consider the Bézier curve C′′

1 and assume
we now want to make the chair narrower at the top. With the current
program as described in Figure 4, we assume a constant backrest
width, so our cross rails (in step 6) will not fit between a narrowing
backrest. However, with a more robust design, and using GeoCode’s
sampling node and a repeat-zone system (loop), the correct length
between the two frames at each point can be calculated and assigned
to the individual cross rails. We exemplify this in Figure 5 where we
take a step further and ensure that the sides of each drawer follow
exactly the cabinet’s profile, even if there is an error in the index-
ing (see the two bottom examples). This is done inside Blender’s
repeat zone, by using GeoCode’s curve array-sampling node, Loft

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 5 of 15

Figure 4: Procedural shape construction. GeoCode generates a set of low-level instructions that adhere to high-level rules to produce a
structurally valid shape. We show an example of using GeoCode. In step 1, curve C1, profile curve C2 and the node StyleSeat form a triplet
that generates the seat. C2 is sampled 4 times which gives us the attachment points p1..p4. The profile curve C2 can parametrically deform
into a circle, while the sampled points follow along with those changes. In step 2, curve C′

1 and profile curve C
′
2 generate the leg’s mesh when

combined with StyleLeg. A parameterized function determines the scale of the profile along C′
1, e.g. to make the leg thicker at the bottom. The

leg is then attached to point p1. Next, we mirror the leg using a symmetry node Symm along the x axis. Lastly, we Join the mesh of both legs
and pass them further as one unit. In step 3, the frame of the backrest is generated by the triplet of Bézier curve C′′

1 profile curve C
′′
2 and a

StyleFrame node. The frame mesh is attached to point p2. We Join the new frame and the legs from the previous step and use a Symm node to
replicate them to the other side of the chair. Step 4 shows how attachment points for the top-rail and cross-rails are created dynamically on
C′′
1 by sampling it 5× using SamplePoints node. The sampling node outputs the points and the normal at each point. In step 5, a top-rail shape
is attached to the top of the frame at point s1 and is oriented to match the normal n̄1. We scale its width to connect seamlessly to both sides of
the frame. In step 6, the cross rails are attached at points s2..s5 with orientations matching n̄2..n̄5 respectively, and scaled to fit between both
sides of the frame. We obtain the final shape (step 7) after joining the parts together.

Figure 5: Structural integrity discussion. We show that GeoCode
can be used in cases where the shape elements depend on two points.
The drawers in this example stay between the cabinet frames nomat-
ter the width. The handles of the drawers are also nodes in GeoCode
add-on and they remain attached even when the drawers are at an
angle due to a simulated indexing error.

node and a solidify node (all are supplied in the GeoCode add-
on). GeoCode also provides curves that attach at two ends such as
the handle in Figure 4, which stays connected correctly even when
introduced with indexing errors that cause the drawers to be mis-
aligned. At times when structural integrity is hard to maintain by

rules within the program, GeoCode offers a simple way to detect
intersections between parts and rule out samples for training based
on the detection.

3.2. GeoCode shape programs

We build three procedural programs based on our procedu-
ral modelling methodology. The programs are implemented in
Blender’s [Com18] Geometry Nodes [Fou21b] as a directed acyclic
graph (DAG) comprised of nodes and links. Nodes can hold any-
thing from a single value, all the way to complex geometry. Links
can pass along anything from a single value to complex geometry
that may include other attributes at the fundamental geometry level
(per vertex, per edge, per face, etc.). Examples of operation nodes
include math operations or vector operations; mesh primitives, such
as cubes or spheres; line primitives such as a Bézier curve; and rigid
transformation (translation, rotation and scale). Selected nodes are
parameterized by the input parameters, allowing the user to interact
with the program and control the resulting shape. The DAG culmi-
nates into a single output node which holds the final 3D shape.

Our programs support three types of human-intuitive input pa-
rameters: discrete, binary and continuous. The programs offer dis-
entangled control over the shape, which enables modification of a
specific part while keeping all others intact. It also models com-
plex structural interactions, such that one part influences another,
and the latter is adapted automatically to preserve part contact and
retain the structural integrity of the shape. For example, replacing
the square seat with a round one in Figure 3makes the seat narrower,
which also changes the leg’s position and decreases the width of the

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Figure 6: Shape gallery. Showing reconstructed shapes on our test set. Our procedural program produces high-quality geometry given a 3D
point cloud or a 2D sketch and contains consistent part segmentation information across the resulting shapes.

backrest accordingly. The programs also hold the part segmentation
information as shown in Figure 6.

The input to our programs is a set of human-interpretable param-
eters. These can set the structure of the shape (e.g. the height of a
chair’s seat or the points where the handles will be attached to a
vase) or modify shape elements’ appearance (e.g. the width of a leg
or the roundness of the seat of a chair). Structural edits affect the
open curves (i.e., C1) and propagate to other shape elements using
the attachment points and symmetries enforced by our program.

Edits to the appearance of shape elements affect the profile curves
(i.e., C2) and can cause structural edits as well. An example of this
case is increasing the seat’s roundness, which causes the chair to
get narrower by imposing structural edits on the shape that bring
the legs and the frame of the chair closer together. Considering the
opposite direction, edits to the structure of the shape cannot affect
the appearance of any of the shape elements. For example, changing
the height of the seat of the chair will not affect the seat’s roundness
or the appearance of the legs.

3.3. Mapping to the program space

To map a point cloud or sketch input to the human-interpretable pa-
rameter representation, we employ an encoder-decoder network ar-
chitecture. The encoder embeds the input into a global feature vec-
tor. Then, we use a set of decoders where each one translates the
embedding vector to a single parameter. Together, the final inter-
pretable representation is obtained. Finally, we run the program and
recover the 3D shape. Figure 2 illustrates our system design.

Problem formulation. We formulate the shape recovery problem
as predicting the human-interpretable parameters from a given point
cloud or sketch. Let us denote the program parameters as {pi}, where
each parameter can take Ni discrete values. Continuous program pa-
rameters, such as thickness or height, are discretized uniformly over
their range. The ground-truth value of the parameter is encoded by
a one-hot vector yi ∈ {0, 1}Ni . The ground-truth representation for
all the parameters is the concatenation of all {yi}, which we denote
as y ∈ {0, 1}∑

iNi .

The network prediction of the program parameters is as follows:

ŷpc = D(Epc(c)), ŷsketch = D(Esketch(s)) (1)

where ŷpc and ŷsketch are the predicted parameters in one-hot rep-
resentation from the point cloud c or sketch s, respectively, Epc is
the point cloud encoder and Esketch is the sketch encoder, and D
denotes the shared decoders.

To train the network, we use our program and construct a dataset
of the point cloud, sketch and ground-truth triplets, i.e., D =
{(c, s, y)}. This process is automated given a program. Then, we
train the network with the loss function:

L = 1

|D|
∑

(c,s,y)∈D
CE(ŷpc, y) + CE(ŷsketch, y) (2)

where CE denotes the cross-entropy loss. We employ the part exis-
tence label to address parameters that are not represented in the final
shape (e.g. a chair with no handles). Please refer to Appendix C in
the supplementary for more information.

4. Experiments

We present our user study on GeoCode, as well as qualitative and
quantitative evaluations of our method’s performance on shape re-
covery and editing. We demonstrate GeoCode’s ability to recover
3D shapes from point clouds and sketches from a held-out test
set from our dataset and from shapes in the wild. Furthermore,
we demonstrate the editing capabilities of our system on the re-
constructed shapes, such as modifying part geometry, mixing two
shapes and interpolating between shapes. Finally, we present an ab-
lation study. Please refer to the supplementary material for an addi-
tional ablation study, additional experiments and a discussion about
failure cases.

Dataset and implementation details. Each of our three pro-
grams handles a different shape domain of chairs, vases and tables,
and has 59, 39 and 36 human-interpretable parameters, respectively.

To train and evaluate our system, we automatically generated the
train, validation and test datasets using our shape programs. Our
datasets are lean compared to the vast number of parameter combi-
nations in each shape program. For each possible choice of a sin-
gle parameter, we only take 30 random shapes for the training set
and three shapes for the validation and test sets. We also ensure the
parameter choice is taking effect in each random shape. For each
generated 3D shape, we sample 1500 points using Farthest Point

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 7 of 15

Figure 7: Triplets. Triplets are built using three nodes. The style
node accepts a curve node and a profile curve node. It sets the scale
at each point along the curve based on given parameters and gen-
erates a complex mesh. Here a GeoCode triplet is used to generate
a parametric leg with serrations and variable thickness.

Sampling [ELPZ97] and an additional 800 randomly sampled
points. We render the 2D sketch images using Blender’s [Com18]
rendering engineFreestyle [Fou21a] from three camera angles while
training only on two of them. Sketches are randomly augmented us-
ing horizontal flip, stroke dilation and stroke erosion.

In total, the training set for each domain contains 9570 chairs,
9330 vases and 6270 tables. The validation and test sets each contain
957 chairs, 933 vases and 627 tables. For each domain, we ensure
that no two shapes in the dataset are the same.

For the point cloud encoder, we use DGCNN [WSL*19] and
employ a VGG architecture [SZ15] for the sketch encoder. The
decoder utilizes a multi-layer perceptron with three layers for
each program parameter. Since each human-interpretable parame-
ter may have a different number of values, the output layer size of
each decoder varies according to the number of possible classes
of the parameter the decoder is responsible for. Our system en-
sures that, given a program, the network adjusts those attributes
automatically.

Blender add-on. Blender [Com18] offers a node graph system
for procedural modelling called Geometry Nodes [Fou21b]. We
built an add-on that extends it by providing a multitude of cus-
tom nodes that adhere to the procedural modelling methodology
(see Section 3.1). For a list of the nodes we provide, please refer
to Appendix A in the supplementary material. We rewrote our
chair program using the GeoCode add-on and found it to massively
improve the manageability of crafting large programs compared
to using only Blender’s vanilla nodes. Quantitatively, the program
written without the add-on had 819 nodes and 1K links while the
program written with the add-on had 339 nodes and 462 links.
Both variants are available in the supplementary material. Our
add-on includes nodes that are grouped into categories: curves -
open curves of various types; profile curves - planar closed curves
that are extruded along an open curve; styles - nodes that determine
the scale of the profile curve on each point along the open curve;
meshes - usually a pre-prepared triplet (see Figure 7); sampling -
nodes that sample a given curve at single or multiple intervals; sym-
metries - such as mirror or radial duplication; visualization - debug
nodes, for example to visualize vectors or points. Combined into a
single framework, we show that these nodes allowed non-experts
to craft complex procedural programs with only little guidance and
in two different shape domains.

Figure 8: User study shape programs. Examples from the programs
that our participants generated. The vase program has 20 input pa-
rameters and was generated as a step-by-step tutorial which also
teaches the concepts of GeoCode. The ceiling lamp program has 15
input parameters and was given as an exercise to craft the program
without knowing the connections between the nodes. Both programs
encode high variability and output high-quality meshes.

4.1. GeoCode user study

We conducted a user study to evaluate the benefits of using our pro-
cedural modelling methodology as captured by our GeoCode. The
user study is comprised of two parts. In the first part, users learn
about GeoCode’s procedural modelling methodology and then fol-
low a detailed guide to build a procedural program for vases (exam-
ples of shapes generated by the vase program are shown in the top
row of Figure 8). The vase program has over 20 input parameters,
yet it is comprised of only 10 GeoCode custom nodes and 5 built-
in nodes. In the second part of our user study, the participants are
asked to create a program that generates ceiling lamps. During the
ceiling lamp exercise, we supplied the participants with a high-level
design of the ceiling lamp program that explains its requirements.
The required nodes are hinted but with no direct context and no node
links provided, the participant never saw the node graph in advance.
The participants are asked to implement what they learned during
the guided vase program and put together a ceiling lamp procedural
program based on the requirements. The final ceiling lamp program
has 15 input parameters and is comprised of 9 GeoCode custom
nodes and 5 built-in nodes. Questions were asked in four phases:
before starting the user study (general knowledge), after completing
the guided vase program, after completing the ceiling lamp exercise
and finally, after completing the user study.

User study results. We had a total of 12 participants. Based on
Likert-scale general knowledge questions, about half of our partic-
ipants were familiar with Blender. However, none of them were fa-
miliar with Geometry Nodes. Eight of our participants predicted that
building a vase program would take them more than a week. How-
ever, all our participants completed the guided vase program suc-
cessfully and did so in an average time of 45 min. Similarly, eight
participants predicted a week of work on a ceiling lamp program.
However, our study shows that nine of our participants completed
the exercise with no errors in an average of 32 min. Two other par-
ticipants made a single mistake in the graph. The participants were
able to implement GeoCode methodology and nodes to create an
entirely new domain. This emphasizes the reusability of GeoCode
custom nodes across different shape domains.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Table 1: Increased user confidence in building procedural programs.

Shape domain Before After t-statistic p-value

Vase 2.0 4.7 6.74 3.2e-5
Ceiling lamp 1.9 4.5 5.95 9.7e-5
Novel domain 1.6 3.75 5.82 1.2e-4

Note: We show the confidence of participants in our user study in building
procedural models for a given shape domain before and after learning about
GeoCode through our user study. Confidence scores are given on a Likert
scale (1–5, where 5 is the most confident) averaged over 12 participants.
Users were more confident in their abilities to build novel procedural pro-
grams even outside of the predefined domains.

To evaluate the effect of GeoCode on non-expert users, we asked
our participants about their confidence in building such programs
before and after they completed the guide.We summarize the results
in Table 1. We observe a significant increase in the confidence of
non-experts to craft new procedural programs.

4.2. Shape recovery

We evaluate our method’s ability to recover 3D shapes from sam-
ples in our test set. We also consider out-of-distribution exam-
ples, including shapes from COSEG [WAvK*12], real-world scan-
based datasets such as ScanNet [DCS*17], hand-drawn sketches
and sketches generated by CLIPasso [VPB*22] from images in the
wild. Our supplementary contains additional experiments where we
compare our work to HUANG et al. [HKYM17], show the impor-
tance of expressive shape parts, and compare the reconstruction ac-
curacy between point cloud and sketch inputs.

For quantitative evaluations, we use the bi-directional Cham-
fer Distance [BTBW77]. The squared distance from each point in
one point cloud to the closest point in the other point cloud. We
use 10k randomly sampled points on the ground truth and recon-
structed shapes.

Results on our test set. We first verify qualitatively that our sys-
tem can correctly reconstruct shapes given an input point cloud or
sketch. In Figure 6, we show examples of reconstructed shapes and
their corresponding inputs. We do the same for the ceiling lamp pro-
gram that was created by our user study participants in Figure 9.
In both, the reconstructions are visually similar to the input point
clouds and sketches, confirming that our system can faithfully re-
cover shapes for inputs within our data distribution, even for pro-
grams that were made by non-experts.

Comparison to HUANG et al. [HKYM17]. We test our sug-
gested network against [HKYM17], which takes a different ap-
proach to predicting parameters that are the input to a procedu-
ral program. In their work, they train two different networks, one
for predicting continuous parameters and another dedicated to pre-
dicting discrete parameters. We trained [HKYM17] on our train-
ing dataset until convergence. We implemented the loss function as
depicted in their paper, and verified our actions with the authors.
Then, we evaluated both methods on sketches from our test set.
Table 2 shows the average Chamfer Distances on all our domains
separated by whether the sketches’ camera angles were trained on
or not. Please refer to a qualitative comparison in Appendix B.

Figure 9: Ceiling lamp test set. Showing reconstructed ceiling
lamps on the test set. We trained our model using the program cre-
ated by our non-expert participants during the user study, and we
showcase reconstruction results from 3D point clouds and sketches.

Table 2: Comparison to HUANG et al. [HKYM17].

Dataset Method Trained angles ↓ Novel angle ↓

Chair
HUANG et al. 2.142e-3 8.030e-3
GeoCode 1.057e-3 8.075e-3

Vase
HUANG et al. 4.328e-3 9.271e-3
GeoCode 4.875e-3 9.788e-3

Table
HUANG et al. 4.051e-3 9.667e-3
GeoCode 2.497e-3 8.533e-3

Ceiling
lamp

HUANG et al. 1.361e-2 2.236e-2
GeoCode 1.403e-2 2.272e-2

Note: Comparing the average Chamfer distance on our test set to HUANG
et al.[HKYM17]. We explain the result by the fact that our method is more
resilient to shapes that are not rotationally symmetric, thus, the Chamfer Dis-
tance for both the chair and table domains is improved by GeoCode. In both
cases, we observe a highly statistically significant result (with a p-value of
2.2e-10 and 1.8e-6 respectively). Additionally, both methods perform simi-
larly when the sketches are drawn from a novel angle.

In Appendix Bwe discuss a phenomenonwhere the shapes recov-
ered from the novel camera angle are typically more rounded and in
this experiment, we found that the work [HKYM17] is susceptible
to the same issue. However, while GeoCode only suffers from that
issue for the novel angle, themethod described in [HKYM17] seems
to show the same issue even for trained camera angles. This explains
the results shown in Table 2.

Reconstruction from out-of-distribution sketches. We con-
duct a qualitative evaluation of sketch inputs from AmateurSketch-
3DChair and ProSketch-3DChair datasets, both datasets contain
sketches of shapes in ShapeNet [CFG*15] drawn by artists from
various angles as part of the work Sketch-Based 3D Shape Genera-
tion [ZQG*21]. AmateurSketch-3DChair is a dataset created by am-
ateur artists and the ProSketch-3DChair is created by professionals.
Figure 10 shows that while some discrepancies between the sketches
and their reconstructions exist, overall GeoCode is able to capture
key attributes from both sketch types even for shapes that are con-
sidered out-of-distribution. We report an average Chamfer Distance

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 9 of 15

Figure 10: Reconstruction from amateur and professional sketch
datasets. We use sketches from AmateurSketch and ProSketch chairs
datasets [ZQG*21] and show qualitative results for 3D shape re-
covery using GeoCode. On the left, we show reconstruction for sam-
ples that are within the distribution of shapes the chair program can
generate; on the right, we show recovery for shapes that are out of
distribution. GeoCode does incur errors such as the dimensions of
the second professional sketch or the handles in the third amateur
sketch. However, even when the samples are particularly challeng-
ing, GeoCode is able to capture the main geometrical attributes in
the recovered shape.

of 0.042 for the AmateurSketch dataset (1005 shapes) and 0.049 for
the ProSketch dataset (500 shapes).

Qualitative comparison to HUANG et al. [HKYM17] on
out-of-distribution sketches. We go on to compare GeoCode
to HUANG et al. [HKYM17] on reconstruction from out-of-
distribution sketches. Figure 11 shows a qualitative comparison of
the same sketches used in Figure 10 while comparing both methods.
Both methods experience difficulties, however, the reconstruction
results of GeoCode far exceed those of HUANG et al. [HKYM17].
We direct the readers’ attention to the bottom two rows where the
samples are considered out-of-distribution since the programs can-
not generate a shape that closely matches those samples. In these
two rows, the advantage of GeoCode is even more evident.

Reconstruction from hand-drawn sketches. Figure 12 shows
reconstruction examples from sketches that we drew by hand (free-
form sketches), pictures from the web that we converted into
sketches by outlining the shapes (sketch outlining), and sketches
from the web (sketches in the wild). Our system is able to generalize
and capture the main features from the sketches and produce shapes
that are visually similar to the input sketches. These sketches exhibit
different styles and are drawn from different angles compared to the
sketches we trained on.

Reconstruction from CLIPasso sketches. Figure 13 shows
reconstruction examples from sketches generated by CLI-
Passo [VPB*22]. We use CLIPasso to convert images of chairs,
vases and tables found in the wild to sketches with various numbers
of strokes. The sketches produced by CLIPasso are noisy and
often contain artefacts, these make them visually different from
sketches found in our datasets. We observe that, overall, the shapes
reconstructed from our system are sensible and correctly recover
features from the shapes in the original images. This suggests that
our network is able to express shapes with human-interpretable
parameters given an out-of-distribution input.

Figure 11: Qualitative comparison to HUANG et al. [HKYM17]
on out-of-distribution sketches. We use AmateurSketch and ProS-
ketch sketches to show a qualitative analysis of 3D shape recovery
between the twomethods. The top two rows are samples that we con-
sider in-distribution, while the bottom two rows are samples that are
out-of-distribution. We find that GeoCode is more capable of cap-
turing important geometric details.

Reconstruction from out-of-distribution point clouds. To fur-
ther demonstrate the generalization capability of GeoCode, we
choose three known 3D shape datasets and reconstruct shapes from
these datasets for point cloud inputs. First, we consider two real-
world scan-based datasets, ScanObjectNN [UPH*19] and Scan-
Net [DCS*17], which include LiDAR scans of objects and scenes,
respectively. For ScanObjectNN, we use the point clouds from the
main dataset. For ScanNet, we extract objects from the scene using
the provided segmentationmasks and randomly sample point clouds
from them.We also consider ShapeNet [CFG*15] and produce point
clouds by randomly sampling its shapes. For all the datasets, we end
up with point clouds of 2048 points.

In Figure 14 we show the reconstruction for two domains, chairs
and tables. Our method is able to recover shapes that capture the
main geometric features of the out-of-distribution samples. More-
over, point clouds produced from scanned objects are contaminated
by noise and partiality. Still, GeoCode is able to produce compelling
results in these cases as well.

4.3. Shape editing

Beyond shape recovery, we show that our interpretable parameter
space allows for easy shape editing. This property is exemplified by
shape mixing and shape interpolation.

Shape mixing. We show that our system can mix shapes by se-
lecting a set of parameters from the human-interpretable parameter
space representation of a source shape and copying them to a target

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Figure 12: Hand-drawn sketches. We show the ability of GeoCode
to recover an editable 3D shape from free-form sketches, sketch
outlining and sketches in the wild. Our system produces a 3D shape
that captures the main attributes of the input sketches.

Figure 13: Sketches from images. Starting with an input image,
we automatically create a sketch using CLIPasso [VPB*22]. Our
method generates editable shapes that closely match the original
images and the corresponding sketches that have a variety of styles.

shape. Figure 15 shows mixing examples between pairs of shapes
reconstructed from point clouds and sketches. The resulting shapes
are based on the first shape with the addition of selected parts from a
second shape. The final mixed shape is structurally valid and phys-
ically plausible.

Shape interpolation. GeoCode is effective in interpolating be-
tween shapes. Figure 16 shows interpolation between pairs of
shapes reconstructed from point clouds and sketches where we in-
terpolate across all the parameters for α ∈ [0, 1] in 0.2 increments.

Figure 14: Generalization to out-of-distribution point clouds.
We show reconstruction results of GeoCode for point clouds
from various datasets. We use scanned objects from ScanOb-
jectNN [UPH*19] and ScanNet [DCS*17] and also test on point
clouds from ShapeNet [CFG*15]. Our method outputs plausible re-
constructions, despite hindered point cloud quality that is charac-
terized by noise and missing parts.

Figure 15: Shape mixing. We demonstrate shape mixing by taking
geometric features from a source shape and copying them to a tar-
get shape. GeoCode will either add the selected geometric features
to the target shape (e.g. handles are added to the second vase), or it
will override them in the target shape (e.g. cross rails in the backrest
of the first chair are replaced with vertical rails). In both cases, the
structural integrity of the shape is maintained.

In our supplementary, we demonstrate interpolation over selected
set geometric features.

4.4. Ablation study

We perform an ablation study to support our choice of using classi-
fication for float values. Please refer to Appendix B for an additional
ablation study.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 11 of 15

Figure 16: Shape interpolation. We uniformly interpolate between
two (left and right) GeoCode shapes. Interpolations contain grad-
ual changes (continuous parameters) as well as sharp structural
changes (discrete or binary parameters).

Table 3: Classification vs. regression.

Method Point cloud ↓ Sketch ↓
Classification 0.00040 0.00106
Regression 0.00198 0.00364

Note: We train the chair network in two different ways. Classification: con-
tinuous parameters are discretized and the loss function is cross-entropy, as
described in Section 3. Regression: we employ cross-entropy loss for dis-
crete and binary parameters, but we use regression to predict continuous
ones. We can see that the Chamfer Distance is better overall when using
classification loss for all the parameters. The results are highly statistically
significant, with p-values of 1.9e-24 and 7.2e-50 for point cloud and sketch
reconstruction respectively.

Classification vs. regression. In our work, we supported discrete,
Boolean and continuous parameters. We explained in Section 3 that
continuous parameters are discretized and that the loss function is
cross-entropy. In this ablation experiment, we test the reconstruction
in terms of average Chamfer Distance while comparing the use of
classification vs. regression for the continuous parameters.

In Table 3 we can see that using classification for all the param-
eters yields better average Chamfer Distance results. In Figure 17
we show two examples from the chair domain that show the dif-
ference between the two methods. Another important part of this
experiment is explained in Appendix C where we discuss the part
existence label and its role in this experiment.

4.5. Case study with an expert

We discussed our work with a computer graphics artist with over 10
years of experience in the industry and approximately one year of
experience with Blender Geometry Nodes. Firstly, the expert con-
firmed that, to their knowledge, they are ‘not aware of any other
framework that resembles what GeoCode add-on does’.

Figure 17: Classification vs. regression. Qualitative comparison
between reconstruction when continuous parameters are predicted
using regression vs. discretizing them and predicting them using
classification. We show the improved reconstruction on selected
chair samples favouring prediction using classification.

The expert correctly noted that ‘Non-experts will need at the very
least a short introduction to Blender and Geometry Nodes before
jumping into using GeoCode add-on’. This is the very reason that
our user study (refer to Section 4.1) required an introduction to
Blender and our add-on to provide basic tools to our participants.
They proceeded to say, ‘Experts would probably find it extremely
logical and intuitive. GeoCode itself is quite easy to use for a person
who knows their way around the Geometry Nodes system’.

When asked about part-based shapes, and taking the Cabinet ex-
ample (see Figure 5), the expert said ‘Given the task of creating such
a complex program, I would probably find it unmanageable without
using a framework such as GeoCode’.

We also asked about what improvements they thought could be
made to GeoCode within the confines of Blender. The answers re-
volved around pain points that many CG artists deal with on a daily
basis - optimizing the topology for game assets, UV unwrapping
and selectable preset materials. All of which can form future im-
provements to our work.

Finally, the expert stated that ‘Experts can even useGeoCode add-
on and programs as a resource for learning Geometry Nodes’.

5. Limitations

Building the chair, vase and table programs which have 59, 39 and
36 parameters took roughly 2 weeks, a single week and 5 days, re-
spectively.While this is a significant amount of time, these programs
were crafted with the concepts of GeoCodein mind, but before we
created the Blender add-on. With our Blender add-on, we were able
to re-program the chair program in a mere 4 days. The ceiling lamps
program (19 parameters) from our user study was built by non-
expert participants in an average time of 32 min after approximately
40 min of a guided tutorial. In addition, to further strengthen the
trust in GeoCode’s ability to extend to new domains we created the
cabinet program (25 parameters) in a record time of just 2 days.

GeoCode does not guarantee the structural integrity of the shapes
simply by using the add-on and the methodology that we presented
in this work. However, a good design will lead to valid shapes even
when introduced with mistakes, we examine this using our cabi-
net program when discussing the structural integrity in 3.1. In ad-
dition to providing useful nodes in their own right, we also handle
many pitfalls that programmers may encounter when using vanilla

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

Geometry Nodes, such as unexpected curve direction flips, align-
ment with axes, attachment to rotated elements and much more.

We also recognize that GeoCode will not be useful for every con-
ceivable shape, for example, we would not recommend it for gen-
erating organic shapes such as faces or some animals. It is intended
to be used for part-based shapes.

Finally, while our network’s predictions from point clouds are
impressive, our predictions from sketches are only improving upon
the existingmethods in certain conditions, and interestingly, the pre-
dictions from the novel angle suffer from the tendency for rotational
symmetry as we explained in Appendix B.

6. Conclusion

In this paper, we presented GeoCode, a novel method that aims to
lower the barrier for crafting shape programs that can generate 3D
shapes using a human-interpretable parameter space. We show the
effectiveness of shape programs by building three domain-specific
procedural programs controlled by intuitive parameter spaces and
training a neural network to predict the parameter representation for
an input point cloud or sketch. We showed that our system produces
structurally valid 3D geometry and enables editing of the resulting
shape easily and intuitively. Our user study demonstrated that our
framework enables users with no prior 3D modelling experience to
produce shape programs. Specifically, users can take the core com-
ponents from these programs and build a completely novel class
(ceiling lamps), which we did not create a program for.

In the future, we are interested in incorporating additional inter-
active features, such as viewport manipulations and edits to shapes.
Incorporation of additional edit modalities (such as drawing a part
on a screen) combined with our visual programs may provide addi-
tional opportunities for program exploration and design.

Acknowledgements

We thank the University of Chicago for providing the AI cluster re-
sources, services, and the professional support of the technical staff.
This work was also supported in part by gifts from Adobe Research.
Finally, we would like to thank R. Kenny Jones, Chen Dudai, Noam
Sahar, and the members of 3DL for their thorough and insightful
feedback on our work.

Open access funding was provided by the University of Chicago.

References

[AAAD23] Alfadalat M. A., Al-Azhari W., Dabbour L.: Pro-
cedural modeling based shape grammar as a key to generating
digital architectural heritage. ACM Journal on Computing and
Cultural Heritage 16, 4 (2023), 1–17.

[BP12] Barroso S., Patow G.: Visual language generalization for
procedural modeling of buildings. In CEIG (2012), pp. 57–66.

[BTBW77] Barrow H. G., Tenenbaum J. M., Bolles R. C.,
Wolf H. C.: Parametric correspondence and Chamfer matching:
Two new techniques for image matching. In IJCAI (1977).

[CCR*22] Cheng Z., Chai M., Ren J., Lee H.-Y., Olszewski K.,
Huang Z., Maji S., Tulyakov S.: Cross-modal 3D shape gen-
eration and manipulation. In European Conference on Computer
Vision (ECCV) (2022), pp. 303–321.

[CFG*15] Chang A. X., Funkhouser T., Guibas L., Hanrahan
P., Huang Q., Li Z., Savarese S., Savva M., Song S., Su H.,
Xiao J., Yi L., Yu F.: ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint arXiv:1512.03012 (2015).

[Com18] Blender Foundation.: Blender - A 3D Modelling and Ren-
dering Package. Blender Foundation. 2018. http://www.blender.
org. (Accessed 24 July 2022).

[CZ19] Chen Z., ZhangH.: Learning implicit fields for generative
shape modeling. In IEEE Conference on Computer Vision and
Pattern Recognition (2019), pp. 5939–5948.

[DAB16] Demir I., Aliaga D. G., Benes B.: Proceduralization
for editing 3D architectural models. In 2016 Fourth International
Conference on 3D Vision (3DV) (2016), pp. 194–202.

[DAI*18] Delanoy J., Aubry M., Isola P., Efros A. A.,
Bousseau A.: 3D sketching using multi-view deep volumetric
prediction. Proceedings of the ACM on Computer Graphics and
Interactive Techniques 1, 1 (2018), 1–22.

[DCS*17] Dai A., Chang A. X., Savva M., Halber M.,
Funkhouser T., NießnerM.: ScanNet: Richly-annotated 3D re-
constructions of indoor scenes. In IEEEConference on Computer
Vision and Pattern Recognition (2017), pp. 5828–5839.

[DIP*18] Du T., Inala J. P., Pu Y., Spielberg A., Schulz A.,
Rus D., Solar-Lezama A., Matusik W.: InverseCSG: Auto-
matic conversion of 3D models to CSG trees. ACM Transactions
on Graphics 37 (2018), 1–16.

[ELPZ97] Eldar Y., Lindenbaum M., Porat M., Zeevi Y. Y.:
The farthest point strategy for progressive image sampling. IEEE
Transactions on Image Processing 6, 9 (1997): 1305–1315.

[Fou21a] Blender Foundation.: Freestyle Introduction. Blender
Foundation. 2021. https://docs.blender.org/manual/en/latest/
render/freestyle/introduction.html. (Accessed 24 July 2022).

[Fou21b] Blender Foundation.: Geometry nodes Introduction.
Blender Foundation. 2021. https://docs.blender.org/manual/en/
latest/modeling/geometry_nodes/introduction.html. (Accessed
06 November 2022).

[GHS*22] Guerrero P., Hašan M., Sunkavalli K., Měch R.,
Boubekeur T., Mitra N. J.: MatFormer: A generative model
for procedural materials. ACM Transactions on Graphics 41, 4
(2022), 1–12.

[GK07] Ganster B., Klein R.: An integrated framework for pro-
cedural modeling. In Proceedings of the 23rd Spring Conference
on Computer Graphics (2007), pp. 123–130.

[GLP*22] GuoH., Liu S., PanH., Liu Y., TongX., Guo B.: Com-
plexGen: CAD reconstruction by B-Rep chain complex genera-
tion. ACM Transactions on Graphics 41, 4 (2022), 1–18.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.blender.org
http://www.blender.org
https://docs.blender.org/manual/en/latest/render/freestyle/introduction.html
https://docs.blender.org/manual/en/latest/render/freestyle/introduction.html
https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/introduction.html
https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/introduction.html

O. Pearl et al. / GeoCode: Interpretable Shape Programs 13 of 15

[GRYF21] Guillard B., Remelli E., Yvernay P., Fua P.:
Sketch2Mesh: Reconstructing and editing 3D shapes from
sketches. In International Conference on Computer Vision
(2021), pp. 13023–13032.

[HAESB20] Hao Z., Averbuch-Elor H., Snavely N., Belongie
S.: DualSDF: Semantic shape manipulation using a two-level
representation. In IEEE Conference on Computer Vision and Pat-
tern Recognition (2020), pp. 7631–7641.

[HDD*92] Hoppe H., DeRose T., Duchamp T., McDonald J.,
Stuetzle W.: Surface reconstruction from unorganized points.
ACM SIGGRAPH Computer Graphics 26, 2 (1992), 71–78.

[HDR19] Hu Y., Dorsey J., Rushmeier H.: A novel framework
for inverse procedural texture modeling. ACM Transactions on
Graphics 38, 6 (2019), 1–14.

[HGH*22] Hu Y., Guerrero P., Hasan M., Rushmeier H., De-
schaintre V.: Node graph optimization using differentiable
proxies. In ACM SIGGRAPH Conference Proceedings (2022),
pp. 1–9.

[HGH*23] Hu Y., Guerrero P., Hasan M., Rushmeier H., De-
schaintre V.: Generating procedural materials from text or im-
age prompts. In ACM SIGGRAPH 2023 Conference Proceedings
(2023), pp. 1–11.

[HKYM17] Huang H., Kalogerakis E., Yumer E., Mech R.:
Shape synthesis from sketches via procedural models and convo-
lutional networks. IEEE Transactions on Visualization and Com-
puter Graphics 23, 8 (2017), 2003–2013.

[HMGCO20] HanockaR.,MetzerG., Giryes R., Cohen-OrD.:
Point2Mesh: a self-prior for deformable meshes. ACM Transac-
tions on Graphics 39, 4 (2020), 126-1.

[HPG*22] Hertz A., Perel O., Giryes R., Sorkine-Hornung
O., Cohen-OrD.: SPAGHETTI: Editing implicit shapes through
part aware generation. ACM Transactions on Graphics 41, 4
(2022), 1–20.

[HSIvK23] Hossain I., Shen I.-C., Igarashi T., van Kaick O.:
Data-guided authoring of procedural models of shapes. Com-
puter Graphics Forum 42, 7 (2023), e14935.

[JBX*20] Jones R. K., Barton T., Xu X., Wang K., Jiang E.,
Guerrero P., Mitra N. J., Ritchie D.: ShapeAssembly: Learn-
ing to generate programs for 3D shape structure synthesis. ACM
Transactions on Graphics 39, 6 (2020), 1–20.

[JCG*21] Jones R. K., Charatan D., Guerrero P., Mitra N.
J., Ritchie D.: ShapeMOD: Macro operation discovery for 3D
shape programs. ACM Transactions on Graphics 40, 4 (2021),
1–16.

[JCR24] Jones R. K., Chaudhuri S., Ritchie D.: Learning to in-
fer generative template programs for visual concepts. In Forty-
first International Conference on Machine Learning (2024).

[JWR22] Jones R. K., Walke H., Ritchie D.: PLAD: Learning
to infer shape programs with pseudo-labels and approximate dis-
tributions. In IEEE Conference on Computer Vision and Pattern
Recognition (2022).

[KBH06] Kazhdan M., Bolitho M., Hoppe H.: Poisson surface
reconstruction. In Eurographics Symposium on Geometry Pro-
cessing 7, 4 (2006).

[KH13] KazhdanM., Hoppe H.: Screened Poisson surface recon-
struction. ACM Transactions on Graphics 32, 3 (2013), 1–13.

[KJR24] Kapur S., Jenner E., Russell S.: Diffusion on syntax
trees for program synthesis. arXiv preprint arXiv:2405.20519
(2024).

[LD99] Lintermann B., Deussen O.: Interactive modeling of
plants. IEEE Computer Graphics and Applications 19, 1 (1999),
56–65.

[LGK*17] Lun Z., Gadelha M., Kalogerakis E., Maji S.,
Wang R.: 3D shape reconstruction from sketches via multi-view
convolutional networks. In International Conference on 3D Vi-
sion (2017), pp. 67–77.

[Lin68] Lindenmayer A.: Mathematical models for cellular inter-
actions in development I. Filaments with one-sided inputs. Jour-
nal of Theoretical Biology 18, 3 (1968), 280–299.

[LPBM20] Li C., Pan H., Bousseau A., Mitra N. J.:
Sketch2CAD: Sequential CAD modeling by sketching in con-
text. ACM Transactions on Graphics 39, 6 (2020), 1–14.

[LPBM22] Li C., Pan H., Bousseau A., Mitra N. J.: Free2CAD:
parsing freehand drawings into CAD commands. ACM Transac-
tions on Graphics 41, 4 (2022), 1–16.

[LPL*18] Li C., Pan H., Liu Y., Tong X., Sheffer A., Wang W.:
Robust flow-guided neural prediction for sketch-based freeform
surface modeling. ACM Transactions on Graphics 37, 6 (2018),
1–12.

[LWW08] LippM., Wonka P., WimmerM.: Interactive visual edit-
ing of grammars for procedural architecture. InACMSIGGRAPH
2008 papers. (2008), pp. 1–10.

[LXC*17] Li J., Xu K., Chaudhuri S., Yumer E., Zhang H.,
Guibas L.: GRASS: Generative recursive autoencoders for shape
structures. ACM Transactions on Graphics 36, 4 (2017), 1–14.

[Mer07] Merrell P.: Example-basedmodel synthesis. InProceed-
ings of the 2007 Symposium on Interactive 3D Graphics and
Games (2007), pp. 105–112.

[Mer23] Merrell P.: Example-based procedural modeling using
graph grammars. ACM Transactions on Graphics (TOG) 42, 4
(2023), 1–16.

[MGY*19] Mo K., Guerrero P., Yi L., Su H., Wonka P., Mitra
N., Guibas L.: StructureNet: Hierarchical graph networks for 3D

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 15 O. Pearl et al. / GeoCode: Interpretable Shape Programs

shape generation. ACM Transactions on Graphics 38, 6 (2019),
1–19.

[MHZ*21] Metzer G., Hanocka R., Zorin D., Giryes R.,
Panozzo D., Cohen-Or D.: Orienting point clouds with dipole
propagation. ACM Transactions on Graphics 40, 4 (2021), 1–14.

[MM08] Merrell P., Manocha D.: Continuous model synthesis.
In ACM SIGGRAPH Asia 2008 Papers. (2008), pp. 1–7.

[MM10] Merrell P., Manocha D.: Model synthesis: A general
procedural modeling algorithm. IEEE Transactions on Visualiza-
tion and Computer Graphics 17, 6 (2010), 715–728.

[MM12] Mech R., Miller G.: The deco framework for interactive
procedural modeling. Journal of Computer Graphics Techniques
(JCGT) 1, 1 (2012), 43–99.

[MON*19] Mescheder L., OechsleM., NiemeyerM., Nowozin
S., Geiger A.: Occupancy networks: Learning 3D reconstruction
in function space. In IEEE Conference on Computer Vision and
Pattern Recognition (2019), pp. 4460–4470.

[MS08] McCrae J. P., Singh K.: Sketch-Based Path Design. In
Proceedings of Graphics Interface (2009), pp. 95–102.

[MWH*06] Müller P., Wonka P., Haegler S., Ulmer A., Van
Gool L.: Procedural modeling of buildings. ACM Transactions
on Graphics 25, 3 (2006), pp. 614–623.

[NPA*22] Niese T., Pirk S., Albrecht M., Benes B., Deussen
O.: Procedural urban forestry. ACM Transactions on Graphics
(TOG) 41, 2 (2022), 1–18.

[PFS*19] Park J. J., Florence P., Straub J., Newcombe R.,
Lovegrove S.: DeepSDF: Learning continuous signed distance
functions for shape representation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 165–174.

[PM01] Parish Y. I., Müller P.: Procedural modeling of cities. In
Proceedings of the 28th Annual Conference on Computer Graph-
ics and Interactive Techniques (2001), pp. 301–308.

[PvGG20] Paschalidou D., van Gool L., Geiger A.: Learning
unsupervised hierarchical part decomposition of 3D objects from
a single RGB image. In IEEE Conference on Computer Vision
and Pattern Recognition (2020), pp. 1060–1070.

[RLR*20] Remelli E., Lukoianov A., Richter S., Guillard B.,
Bagautdinov T., Baque P., Fua P.: MeshSDF: Differentiable
iso-surface extraction. In Advances in Neural Information Pro-
cessing Systems 33 (2020), 22468–22478.

[RMGH15] Ritchie D., Mildenhall B., Goodman N. D.,
Hanrahan P.: Controlling procedural modeling programs with
stochastically-ordered sequential monte carlo. ACM Transac-
tions on Graphics (TOG) 34, 4 (2015), 1–11.

[SG71] Stiny G., Gips J.: Shape grammars and the generative
specification of painting and sculpture. In IFIP congress (2) 2,
3 (1971), pp. 125–135.

[SLH*20] Shi L., Li B., Hašan M., Sunkavalli K., Boubekeur
T., Mech R., Matusik W.: MATch: Differentiable material
graphs for procedural material capture. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–15.

[SM15] Schwarz M., Müller P.: Advanced procedural model-
ing of architecture. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–12.

[SPK*14] Stava O., Pirk S., Kratt J., Chen B., Měch R.,
Deussen O., Benes B.: Inverse procedural modelling of trees.
Computer Graphics Forum 33, 6 (2014), 118-131.

[Sti82] StinyG.: Spatial relations and grammars. Environment and
Planning B: Planning and Design 9, 1 (1982), 113–114.

[SZ15] SimonyanK., ZissermanA.: Very deep convolutional net-
works for large-scale image recognition. In International Confer-
ence on Learning Representations (2015).

[TRT*22] Tchapmi L. P., Ray T., Tchapmi M., Shen B., Martin-
Martin R., Savarese S.: Generating procedural 3D materials
from images using neural networks. In Proceedings of the 2022
4th International Conference on Image, Video and Signal Pro-
cessing (2022), pp. 32–40.

[UPH*19] Uy M. A., Pham Q.-H., Hua B.-S., Nguyen D. T., Ye-
ung S.-K.: Revisiting point cloud classification: A new bench-
mark dataset and classification model on real-world data. In In-
ternational Conference on Computer Vision (2019), pp. 1588–
1597.

[VAB10] VanegasC.A., AliagaD.G., Benes B.: Building recon-
struction using manhattan-world grammars. In 2010 IEEE Com-
puter Society Conference onComputer Vision and Pattern Recog-
nition (2010), pp. 358–365.

[VABW09] Vanegas C. A., Aliaga D. G., Benes B., Waddell
P. A.: Interactive design of urban spaces using geometrical and
behavioral modeling. ACM Transactions on Graphics (TOG) 28,
5 (2009), 1–10.

[VGDA*12] Vanegas C. A., Garcia-Dorado I., Aliaga D. G.,
Benes B., Waddell P.: Inverse design of urban procedural mod-
els. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–11.

[VPB*22] Vinker Y., Pajouheshgar E., Bo J. Y., Bachmann R.
C., Bermano A. H., Cohen-Or D., Zamir A., Shamir A.: CLI-
Passo: Semantically-aware object sketching. ACM Transactions
on Graphics 41, 4 (2022), 1–11.

[WAvK*12] Wang Y., Asafi S., van Kaick O., Zhang H.,
Cohen-Or D., Chen B.: Active co-analysis of a set of shapes.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–10.

[WGK*22] Wang K., Guerrero P., Kim V. G., Chaudhuri S.,
Sung M., Ritchie D.: The shape part slot machine: Contact-
based reasoning for generating 3D shapes from parts. In Euro-
pean Conference on Computer Vision (ECCV) (2022), pp. 610–
626.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

O. Pearl et al. / GeoCode: Interpretable Shape Programs 15 of 15

[WGV*21] Willis A. R., Ganesh P., Volle K., Zhang
J., Brink K.: Volumetric procedural models for shape
representation. Graphics and Visual Computing 4 (2021),
200018.

[WSL*19] Wang Y., Sun Y., Liu Z., Sarma S. E., Bronstein
M. M., Solomon J. M.: Dynamic graph CNN for learning
on point clouds. ACM Transactions on Graphics 38 (2019),
1–12.

[WWSR03] Wonka P., Wimmer M., Sillion F., Ribarsky W.:
Instant architecture. ACM Transactions on Graphics (TOG) 22
(2003), 669–677.

[WYD*14] Wu F., Yan D.-M., Dong W., Zhang X., Wonka P.:
Inverse procedural modeling of facade layouts. ACM Transac-
tions on Graphics 33, 4 (2014), 121.

[YAMK15] Yumer M. E., Asente P., Mech R., Kara L. B.: Pro-
cedural modeling using autoencoder networks. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software &
Technology (2015), pp. 109–118.

[YYHYZ20] Yue Z., Yulia G., Honggang Z., Yi-Zhe S.: Deep
sketch-based modeling: Tips and tricks. In International Confer-
ence on 3D Vision (2020), pp. 543–552.

[ZGG21] Zhang S.-H., GuoY.-C., GuQ.-W.: In IEEEConference
on Computer Vision and Pattern Recognition (2021), pp. 6012–
6021.

[ZLWT22] ZhengX., Liu Y., Wang P., Tong X.: SDF-StyleGAN:
Implicit SDF-based StyleGAN for 3D shape generation. Com-
puter Graphics Forum 41, 5 (2022), 52–63.

[ZQG*21] Zhong Y., Qi Y., Gryaditskaya Y., Zhang H., Song
Y.-Z.: Towards practical sketch-based 3D shape generation: The
role of professional sketches. IEEE Transactions on Circuits and
Systems for Video Technology 31, 9 (2021), 3518–3528.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supplementary material

Videos

User study

Anonymous code and data

Blender add-on

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15276 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [12/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	GeoCode: Interpretable Shape Programs
	1. Introduction
	2. Related Work
	3. Method
	3.1. Procedural modelling methodology
	3.2. GeoCode shape programs
	3.3. Mapping to the program space

	4. Experiments
	4.1. GeoCode user study
	4.2. Shape recovery
	4.3. Shape editing
	4.4. Ablation study
	4.5. Case study with an expert

	5. Limitations
	6. Conclusion
	Acknowledgements
	References
	Supporting Information

