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ABSTRACT

Five chapters are included in this thesis. The first chapter gives an overview of the remaining

chapters, and abstracts for Chapters 2 – 5 are given in the following four paragraphs.

In Chapter 2, we consider a limited-memory multiple shooting method for weakly con-

strained variational data assimilation. Maximum-likelihood-based state estimation for dy-

namical systems with model error raises computational challenges in memory usage due to

the much larger number of free variables when compared to the perfect model case. To

address this challenge, we present a limited-memory method for maximum-likelihood-based

estimation of state space models. We reduce the memory storage requirements by express-

ing the optimal states as a function of checkpoints bounding a shooting interval. All states

can then be recomputed as needed from a recursion stemming from the optimality condi-

tions. The matching of states at checkpoints are imposed, in a multiple shooting fashion,

as constraints on the optimization problem, which is solved with an augmented Lagrangian

method. We prove that for nonlinear systems under certain assumptions the condition num-

ber of the Hessian matrix of the augmented Lagrangian function is bounded above with

respect to the number of shooting intervals. Hence the method is stable for increasing time

horizon. The assumptions include satisfying the observability conditions of the linearized

system on a shooting interval. We also propose a recursion-based gradient evaluation algo-

rithm for computing the gradient, which in turn allows the algorithm to proceed by storing

at any time only the checkpoints and the states on a shooting interval. We demonstrate our

findings with simulations in different regimes for Burgers’ equation.

In Chapter 3, we investigate a temporal decomposition approach to long-horizon dynamic

optimization problems. The problems are discrete-time, linear, time-dependent and with box

constraints on the control variables. We prove that an overlapping domains temporal decom-

position, while inexact, approaches the solution of the long-horizon dynamic optimization

problem exponentially fast in the size of the overlap. The resulting subproblems share no

solution information and thus can be computed independently in parallel. Our findings are
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demonstrated with a small, synthetic production cost model with real demand data.

In Chapter 4, we investigate the behavior of maximum likelihood estimators (MLE) of

parameters of the squared exponential covariance commonly used in modeling the outputs

of deterministic computer experiments. We consider the behavior of maximum likelihood

estimators (MLE) of parameters of a Gaussian process with squared exponential covariance

function when the computer model has some simple deterministic form. We prove that for

regularly spaced observations on the line, the MLE of the scale parameter converges to zero if

the computer model is a constant function and diverges to infinity for linear functions. When

observing successive derivatives of a pth order monomial at zero, we find the asymptotic

orders of the MLE of the scale parameter for all p ≥ 0. For some commonly used test

functions, we compare MLE with cross validation in a prediction problem and explore the

joint estimation of range and scale parameters. The correlation matrix is nearly numerically

singular even when the sample size is moderate. To overcome numerical difficulties, we

perform exact computation by making use of exact results for the correlation matrix and

restricting to parameter values and test functions that yield rational correlations and function

values at the observation locations. We also consider the common approach of including a

nugget effect to deal with the numerical difficulties, and explore its consequences on model

fitting and prediction.

In Chapter 5, we consider modeling and predicting observations generated from a nonlin-

ear circuit. Analyzing chaotic observations generated from some unknown nonlinear dynam-

ics presents significant challenges for modeling the process and predicting future evolutions.

We consider time series data which is measured from an electrical circuit and exhibits chaotic

behavior. We investigate the performances of Gaussian process and neural network models

in short-term prediction and capturing the long-term dynamics. One of the major diffi-

culties in modeling observations generated by some physical process is the characterization

of the model and observational errors. We explore the effects of different types of model

and observational errors on the likelihood function of the initial state using simulated data

xvii



qualitatively similar to our observations.
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CHAPTER 1

INTRODUCTION

This thesis includes four projects generally on computational and statistical methods for

optimal estimation, control, and modeling of dynamical systems. Optimal estimation and

control are two fundamental problems for dynamical systems and have a wide range of

applications [20, 33, 55]. Given a system, there often exists a mathematical model describing

some aspects of the behavior of the system. The model may be developed from physical

insights, fundamental laws or empirical testing, and establishes an interaction between the

inputs and outputs of the system [89]. In addition, measurement devices are constructed

to make observations from the system. However, uncertainty exists both in the dynamical

model and the observations. For example, model developed based on Newtonian physics

are only approximations to the macro structure of the system, but various parameters with

micro resolutions are not determined absolutely [89]. Moreover, measurement devices do

not provide perfect or even complete data due to device limitations and measurement noise.

Consequently, optimal estimation aims to reconstruct, in the presence of noise both in the

dynamical model describing the physical system and in the measurements, the underlying

states of the system. The optimal state estimate is the basis on which the predictions of

future observations can be made. A large number of methods are developed for optimal

estimation, including Kalman filter, extended Kalman filter and particle methods [39, 69].

In Chapter 2, we consider one such state estimation problem. Our problem is motivated

by applications in atmospheric sciences, where we have non-negligible model errors and huge

dimensions of the state space. Both factors result in a large number of free variables, and lead

to computational challenges in memory storage. The use of existing methods in this situation

is limited by their reliance on linearity, memory usage, or slow convergence [68, 64, 17]. To

address this challenge, we developed a maximum-likelihood based state estimation approach

that reduces memory requirement and is shown, both theoretically and numerically, to be

stable under increasing estimation horizon.
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In addition to the states and observations, another important component of a dynamical

system is the control. The objective of controlling a dynamical system is to modify its

behavior by feedbacks so that its outputs approach a desired reference trajectory. The task

is often carried out by a negative feedback control system where the difference between the

output and reference is minimized to dynamically change the output. As a result, optimal

control seeks the control laws for some system so that a given cost objective can be minimized.

We consider optimal control in the context of dynamic programming (DP), which finds the

decisions/controls minimizing, subject to some dynamical evolution of the decisions and the

system’s states, a cost function that is additive in time. A key aspect of the DP technique

is to find decisions/controls that balance between a low present cost and a high future cost

[20].

In Chapter 3, we consider a dynamic programming/optimal control problem that features

long horizons and constrained controls. Our problem arises from production cost modeling

(PCM) in the electrical power industry, which simulates the least-cost solution to generate

sufficient energy to meet demand over a long time period. The problem can be mathemati-

cally formulated as a DP with additional constraints on the states and controls other than

the dynamical evolution. The long horizon feature of such problems poses significant compu-

tational challenges. Sequential solutions, such as receding horizon control [72, 88], exist, but

are too time-consuming in this situation. To tackle the problem, we considered a temporal

decomposition approach, which decomposes the full horizon and solves the problems on a

slightly larger embedding region for each decomposition interval, and proved that it approx-

imates the solutions with an approximation error decaying exponentially in the length of

the embedding regions. Consequently, when implemented in parallel for each decomposition

interval, the method can significantly reduce computation time with little loss of accuracy.

The first two chapters consider the case where the formulation of the involved dynam-

ical system is known. However, sometimes in practice, only the outputs of the system are

observed, and hence the task is to model the observations and infer the underlying dynam-
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ics. Therefore, the last two chapters concern some statistical aspects in modeling computer

experiments and chaotic dynamical systems. Computer experiments have been used exten-

sively in studying complex scientific phenomena. It is a powerful tool, when the full scale

physical experiments are impossible, to investigate the relationship between the response

and the inputs [107]. Often, such computer experiments are computationally expensive, so

a common alternative to running the computer code at all input values of interest is to run

the code at a few input values and make cheap predictions at the others. It was proposed

in [104, 105] to use Gaussian processes (GPs) to model the responses of the determinis-

tic computer experiments, and the use of stochastic models provides a statistical basis for

experimental design, parameter estimation, interpolation and uncertainty calibration.

In practice, smooth test functions comprised of elementary functions are usually used as

test cases for studying how well GPs model the experiments. In Chapter 4, we investigate the

asymptotic properties of the maximum likelihood estimator (MLE) of the squared exponen-

tial covariance when the computer experiment is some smooth, simple deterministic function.

Our work points to some possible issues and consequences when using simple smooth test

functions to study the effectiveness of GPs in modeling the computer experiments.

The study of nonlinear dynamics and chaos has been traditionally focused on charac-

terizing and classifying the asymptotic behavior of the iterates [35, 56, 110, 111]. While

such studies lead to important mathematical invariants that reveal properties of the system

once its mathematical descriptions are known, challenges still remain for the inverse problem

[27], i.e., to construct models and make predictions for observations generated from some

unknown chaotic dynamics. The difficulty of the inverse problem partly stems from the char-

acterization of and distinguishing between the model and observational errors. Both types

of errors can be stochastic and correlated with complex structures, posing great challenges

for the modeling task.

In an effort to investigate some aspects of this inverse problem, in Chapter 5, we analyzed

voltage measurement data generated from a laboratory-built electrical circuit that exhibits
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chaotic behavior. We investigated the tradeoff between short-term prediction and long-term

tracking for fitted Gaussian process and neural network models, and studied the effects of

observational and model error structures on the likelihood function of the initial state with

simulations.

This thesis contains material from two published papers by the author [120, 121]. In

particular, Chapter 2 is based on [120], coauthored with Mihai Anitescu; and Chapter 4

uses contents from [121], coauthored with Michael L. Stein. Some material from each of

these papers has also been incorporated into this introductory chapter. In the following, we

provide more detailed overviews for each chapter.

1.1 Overview of Chapter 2

Chapter 2 considers weakly constrained variational data assimilation. Data assimilation is

the process of estimating the underlying states of a physical system based on reconcilia-

tion of observations and physical laws governing its evolution [36, 38, 69]. The setup is

most commonly described by a state space model with stochastic normal model error and

measurement noise [69], for j = 0, . . . , N .

x0 = xB + ηB , xj+1 = Mj(xj) + ηj , yj = Hj(xj) + εj ,

ηB ∼ N (0J , QB), ηj ∼ N (0J , Qj) εj ∼ N (0L, Rj).

We are interested in the state estimation problem: given the observations yj , the distributions

of the background term ηB , model error ηj and observation error εj , determine the state

xj trajectory that best explains the observations. The problem is named data assimilation

or 4DVar [36, 38, 69, 93] in atmospheric sciences applications. In this work we focus on

variational methods: methods that aim to express the minus loglikelihood of the state space

model and then minimize it with deterministic methods.

In the limiting case of zero model error, the system is called strongly constrained in the
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sense that every state is determined by the previous one and all states are functions of only

the initial state. However, many sources (e.g., missing physics, discretization errors and

semi-empirical/parametrized process descriptions) can contribute to model errors that have

non-negligible effects [37, 114, 115]. The explicit inclusion of model error leads to the so-

called weakly constrained [126] model. In the presence of model error, it is no longer possible

to constrain every state using the model propagation Mj(·) as in the strongly constrained

case, and hence the storage is N + 1 fold larger since all states x0, x1, . . . , xN are free

variables. In the case of a large J or N , which we are increasingly approaching in atmospheric

sciences as more refined physics models are coming online, the sheer amount of storage makes

applications to real systems with higher resolution out of practical reach.

To this end, it is recently [7] proposed to reduce memory by using the constraints of

the optimality conditions themselves. Enforcing the optimality conditions gives a recursion

for computing each state based on the preceding two states, and hence reduces each state

to a function of just the initial state. This method results in significant memory savings

when N is large. However, the recursive nature of the method opens the door for instability

when the estimation horizon increases or under certain model parameters, as discussed in

[7]. That is, the recursion may exhibit rapid exponential increase of the solution, resulting

in numerical overflow. To control the instability while maintaining the limited-memory

property, we propose a multiple shooting approach which improves stability at the cost of

modestly increased storage. We prove that for nonlinear systems within a certain regime,

the condition number of the multiple shooting method is bounded above with respect to the

number of shooting intervals, and hence the method is stable for increasing time horizon.

We demonstrate our method using Burgers’ equation under different parameter settings

including large model error and sparse observations.
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1.2 Overview of Chapter 3

In Chapter 3, we consider a temporal decomposition approach for long-horizon dynamic

optimization. Long-horizon dynamic optimization problems appear in several application

areas [11, 13, 24, 28, 40, 54, 63] and pose significant computational challenges because of the

increase in the number of variables in proportion to the number of time periods considered.

One such problem is in optimal planning of generation and transmission of electrical power.

Such planning task involves a production cost model (PCM) which simulates the operation of

generation and transmission systems by finding the least-cost solution to generating sufficient

energy to meet demand over hundreds of thousands of periods. The large number of time

period and constraints on the states and controls make the problem difficult to solve.

Researchers have therefore sought to identify approaches for long-horizon dynamic opti-

mization that result in efficient temporal parallelism to address this complexity by bringing

to bear more computing power. A recent approach for PCMs is to partition the simulation

horizon and embed the annual problem into multiple overlapping weekly/monthly problems

[11] that compute the contribution of an inner time interval only to the overall objective and

then add up all these contributions. It is shown empirically that the approximation error

decreases rapidly with the increase of the buffer region (the overlapping area) surrounding

the inner time interval.

While used to great effect in [11], such temporal decomposition approaches were, up to

our work, a heuristic with no theoretical basis. The main aim of this project is to investigate

the theoretical properties of this temporal decomposition approach. We consider a long-

horizon dynamic optimization problem with quadratic objective, linear dynamics and box

constraints on the controls. We prove that, under certain assumptions, the approximation

error of the decomposition approach decays exponentially in the size of the buffer region.

The exponential decay rate enables one to choose embedding regions much shorter than

the length of the full horizon; and since problems on each embedding region can be solved
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independently, the time to solution is significantly reduced when the approach is implemented

in parallel. We demonstrate the theoretical results using a synthetic production cost model

with real demand data.

1.3 Overview of Chapter 4

Chapter 4 considers the asymptotic properties of MLE of parameters of the squared exponen-

tial covariance function commonly used in modeling the output of the computer experiments.

Computer experiments have been used extensively in investigating complex scientific phe-

nomena. Each run of the computer experiments is deterministic in the sense that re-running

the same code gives the same outputs. Often, each run of the code is computationally ex-

pensive, so a common alternative to running the code at all input values of interest is to run

the code at some inputs and make cheaper predictions at others. [104] and [105] propose to

model the deterministic computer experiment outputs as a realization of a Gaussian random

field with covariance

Cov (f(x), f(y)) = θ0

d∏
u=1

e−
|xu−yu|γ

θu ,

where xu, yu ∈ [0, 1], u = 1, . . . , d, θ0 > 0 is the scale parameter and θu > 0 are range

parameters. When γ = 2, the Gaussian process with covariance function is infinitely mean

square differentiable and thus is an attractive choice when the output surface is known to

be smooth [48, 95, 96, 109, 113]. The use of stochastic models provides a statistical basis for

experimental design, parameter estimation, interpolation and uncertainty calibration.

Smooth test functions composed of elementary functions (e.g. polynomials, trigonometric

functions and exponential functions) are often used as test cases for studying the effectiveness

of Gaussian processes in modeling computer experiments. However, little is known about

properties of the MLEs when observations are generated by these test functions.

In this project, we consider the asymptotic properties of the MLE when more and more
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observations are taken on a fixed domain, and the test function takes some simple determin-

istic form. We prove the asymptotic order of MLE of the scale parameter when the range

parameter is fixed, and the test function is a pth order monomial f(x) = xp. We explore

the joint estimation of scale and range parameters through exact computation with three

commonly used two-dimensional test functions in the computer experiments literature. We

compare the MLE with the cross validation estimates in a prediction problem, and investi-

gate the effect of the common approach of including a small nugget to overcome numerical

difficulties in computing with the squared exponential covariance. The implications of mod-

eling smooth deterministic outputs using the squared exponential covariance function are

discussed based on the theoretical and numerical results.

1.4 Overview of Chapter 5

In Chapter 5, we analyze chaotic observations generated from some unknown dynamical sys-

tem. The problems considered in the study of observed chaotic data from physical processes

include, but are not limited to, calculating geometric and dynamical invariants of an under-

lying strange attractor [25, 106, 118], modeling the deterministic portion of the dynamical

evolution from the observations [34, 66], and constructing a predictive model directly from

the observations [27, 43]. In this work, we focus on the aspects of modeling the observed

dynamical system and predicting its future evolution. We aim to provide some insights

into possible issues in modeling the underlying dynamics and charactering the effects of the

stochastic model and observational errors.

We consider analyzing and modeling voltage measurement data generated by a laboratory-

built electrical circuit [84]. The observations are relatively smooth, concentrate on a low-

dimensional attractor, and exhibit sensitive dependence on initial conditions. The nominal

model describing the dynamics of the measurements produces systematic deficiencies when

fitted to the data. We hence investigate modeling and prediction using Gaussian process and

neural network models, both trained for predicting one-step ahead based on the preceding
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observations. To investigate the capacities of the predictors in capturing the dynamics, we

investigate the tradeoff between one-step prediction and long-term tracking.

One of our goals for analyzing observations generated from some unknown dynamics is

to investigate the effects and characterizations of the model and observational errors. We

consider this aspect by performing simulations with data generated by our fitted models.

The fitted models capture the chaotic feature of the observations, and the simulated data is

qualitatively similar to the observations. We explore the effects of different types of model

and observational errors on the likelihood function and the identifiability of the initial state.
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CHAPTER 2

A LIMITED-MEMORY MULTIPLE SHOOTING METHOD

FOR WEAKLY CONSTRAINED VARIATIONAL DATA

ASSIMILATION

2.1 Introduction

Data assimilation is the process of estimating the underlying states of a physical system

based on reconciliation of observations and physical laws governing its evolution [36, 38, 69].

The setup is most commonly described by a state space model with stochastic normal model

error and measurement noise [69],

x0 = xB + ηB , xj+1 = Mj(xj) + ηj , yj = Hj(xj) + εj , (2.1.1)

ηB ∼ N (0J , QB), ηj ∼ N (0J , Qj) εj ∼ N (0L, Rj). (2.1.2)

where xj ∈ RJ , yj ∈ RL. The mapping Mj(·) : RJ → RJ models the physical law gov-

erning the evolution of the system dynamics, typically discretizations of partial differential

equations. We assume Mj(·) is at least twice continuously differentiable. The random vari-

able ηj models the stochastic model error and has a normal distribution with mean 0J and

covariance Qj ∈ RJ×J . The random variable ηB models the initial state as a normal dis-

tribution with mean xB and covariance QB ∈ RJ×J . The function Hj(·) : RJ → RL maps

the states into observed quantities, whereas εj models measurement error that has mean 0L

and covariance Rj ∈ RL×L. We also assume all covariance matrices to be positive definite.

With these definitions, we are interested in the state estimation problem [108]: We are

given the background mean state xB ; evolution function Mj(·); measurement operator Hj(·);

measured quantities yj ; and covariance matrices for background error, QB , model error, Qj

for j = 0, 1, . . . , N − 1, and measurement error, Rj for j = 0, 1, . . . , N at N + 1 equally

spaced time points. We want to determine the state trajectory x0, x1, . . . , xN that best
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explains the data yj under these assumptions. The problem is also named data assimilation

or 4DVar [36, 38, 69, 93] in atmospheric sciences applications, when Mj(·) is obtained from

the discretization of 3D dynamics. In particular, we will focus on the circumstance where

we are memory-limited, and thus we may be unwilling to simultaneously store the entire

trajectory vector because of the O(JN) memory requirements.

In the limiting case of Qj = 0J×J , and thus ηj = 0J , the system is called strongly

constrained in the sense that every state is determined by the previous one and all states

are functions of only the initial state x0. However, many sources (e.g., missing physics,

discretization errors and semi-empirical/parametrized process descriptions) can contribute

to model errors that have non-negligible effects [37, 114, 115]. The explicit inclusion of

the model error term in the physical evolution [47, 97, 98] leads precisely to (2.1.1)–(2.1.2).

In atmospheric sciences, such models are called weakly constrained [126]. We note that,

although the mean-zero, Gaussian, temporally uncorrelated model error, as described in

(2.1.2), is commonly used in a typical operational setting [73, 114], the actual model error

can exhibit non-zero mean, non-Gaussianity and temporal correlation. The mean term can

be added to the dynamics to reduce the problem back to the form in (2.1.1)–(2.1.2). If the

model error exhibits temporal correlation, then this can be accommodated by means of a

shaping filter whereby the dynamics of the noise itself is modeled with an autoregressive-

type approach and adjoined to the system dynamics [33, 126]. This situation can be again

represented with our formulation (2.1.1)–(2.1.2) by using a larger system. The matrix Qj

can be any positive definite matrix. It thus can model a rich set of spatial correlations.

On the other hand, to not affect the storage considerations of this project, we need to be

able to apply it and its inverse using no more than the storage of a few state vectors. This

is certainly the case if Qj is sparse in a natural basis, such as the canonical or spectral

(Fourier) basis. The latter case is one of the most frequently posited proposals for model

error in atmospheric sciences [31, 85, 126]. When it comes to non-Gaussian noise, however,

the extension of our formulation is not trivial. In our estimation it is likely that, if the
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distribution of the noise can be written explicitly and depends only on the state xk, our

recursive multiple shooting approach could apply as well. The specific form of the recursions

and the numerical properties, however, would be quite different, so that direction would at

least require a new analysis. Nevertheless, we note that the vast majority of current proposals

for model error are done in terms of Gaussian distributions [31, 80, 85, 87, 115, 116, 126, 127].

We thus conclude that the formulation (2.1.1)–(2.1.2) can accommodate several cases and

extensions of interest.

The paradigm (2.1.1)–(2.1.2) is called a state space model, and it is one of the most

studied state estimation paradigms [69]. It has generated a large number of methods to

solve it, including Kalman filters, extended Kalman filters, and particle methods [39, 69].

However, such methods may not be suitable to the kind of problems described here because

of reliance on linearity of Mj(·) (Kalman filters) [68]; memory that increases superlinearly

with the dimension of x (extended Kalman filters) [64]; and slow convergence, particularly

when interested primarily in best estimates (particle methods) [17].

In this work we focus on variational methods: methods that aim to express the minus

loglikelihood of the state space model (2.1.1)–(2.1.2) and then minimize it with deterministic

methods, such as limited-memory BFGS [94]. The objective function of that minimization

is the following weakly constrained function [80, 87, 115, 116, 127]:

Γ(x0:N ) =
1

N

N−1∑
j=0

(γj(xj) + φj
(
xj , xj+1)

)
+ γN (xN )

 , (2.1.3)

where φj(xj , xj+1) =
(
xj+1 −Mj(xj)

)T
Q−1
j

(
xj+1 −Mj(xj)

)
/2, 0 ≤ j ≤ N − 1

γj(xj) =
(
yj −Hj(xj)

)T
R−1
j

(
yj −Hj(xj)

)
/2, 1 ≤ j ≤ N

γ0(x0) = (x0 − xB)TQ−1
B (x0 − xB)/2

+ (y0 −H0(x0))T R−1
0 (y0 −H0(x0)) /2.

The best estimation of the states x0, x1, . . . , xN then amounts to minimizing (2.1.3),
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which is equivalent to maximizing the likelihood of the state space model. In the strongly

constrained case, only x0 is a free variable. Using adjoint approaches for the minimization

of (2.1.3) in that limiting case with a checkpointing strategy results in storage requirements

of about O(J log(N)) with a recomputation effort that is relatively bounded with J and

N [51]. In the presence of model error, however, it is no longer possible to constrain the

states by using model propagation, and hence the storage is N + 1 fold larger since all states

x0, x1, . . . , xN are free variables. In the case of a large J or N , which we are increasingly

approaching in atmospheric sciences as more refined physics models are coming online, the

sheer amount of storage makes applications to real systems with higher resolution out of

practical reach.

To this end, we recently [7] proposed to reduce memory by using the constraints of the

optimality conditions themselves.

0 = ∇x0φ0(x0, x1) +∇x0γ0(x0) (2.1.4)

0 = ∇xjφj(xj , xj+1) +∇xjφj−1(xj−1, xj) +∇xjγj(xj), 1 ≤ j ≤ N (2.1.5)

0 = ∇xNφN−1(xN−1, xN ) +∇xN γN (xN ) (2.1.6)

Enforcing optimality conditions (2.1.4) and (2.1.5) gives a recursion for computing x1 in

terms of x0 and xi+1 in terms of xi and xi−1 for 1 ≤ i ≤ N − 1. Hence each state

effectively is reduced to a function of just the initial state by using the optimality conditions

as constraints; we call this recursively computable function λi(x0), i = 1, 2, . . . , N . The

objective function then becomes

Γ̂(x0) =
1

N

N−1∑
i=0

γi (λi(x0)) + φi (λi(x0), λi+1(x0)) + γN (λN (x0))

 . (2.1.7)

When minimizing (2.1.7) only x0 is a free variable. The evaluation of the components of Γ̂

can be carried out by recursion. This results in significant memory savings when N is large.
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Quasi-Newton methods such as L-BFGS can be used to minimize (2.1.7).

The recursive nature of the method opens the door for instability when the time horizon

increases or under certain model parameters, as also discussed in [7]. That is, the recursion

may exhibit rapid exponential increase of the solution, resulting in numerical overflow. Nu-

merical experiments show that in the presence of large model error, large observation gap,

large time step, or increased time horizon, the method may encounter such stability issues and

fail to progress. The method that minimizes (2.1.7) in [7] uses essentially a single shooting

idea. Each initial state x0 determines the whole trajectory through λi(x0), and the opti-

mality is found by satisfying the optimality condition at the end ∇xNφN−1 +∇xN γN = 0.

To control the instability that is induced by this recursion, we propose a multiple shoot-

ing approach for which multiple restart points across the whole horizon are used. We call

such restart points checkpoints, given their identical functionality in adjoint calculations [51].

Each checkpoint sequence determines a “shooting” segment of the trajectory, and optimality

is achieved by both minimizing the resulting function and matching at each checkpoint. To

compute the function and its gradients on a shooting interval, we use a recursion like (2.1.5)

restarted at the last checkpoint: a “shooting” approach. Employing checkpoints increases

memory usage and introduces constraints to the optimization problem. However, at the cost

of modestly increased storage, we expect the method to improve stability by reducing the

length of recursion on each segment.

The rest of this chapter is organized as follows. Section 2 describes the low-memory

multiple shooting method and proves the consistency of the solution with the full-memory

data assimilation method. In Section 3, we show that for nonlinear systems within a cer-

tain regime, the condition number of the multiple shooting method is bounded above with

respect to the number of shooting intervals. Section 4 describes a recursive limited-memory

algorithm to evaluate the descent direction of the resulting optimization problem in prepa-

ration for numerical experiments. Section 5 presents numerical experiments that implement

the multiple shooting method for Burgers’ equation under different parameter settings. Im-
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provements and limitations are discussed in the conclusion.

2.2 Multiple shooting approach

We note that the recursion defining xj+1 through (2.1.5) is a two-term recursion; therefore a

checkpointing approach here would need two consecutive states. In the following, d pairs of

checkpoints {xP1−1, xP1 , . . . , xPd−1, xPd} ∈ R2dJ are equally spaced across the entire state.

To simplify the discussion, we assume that the number of states on each shooting interval is

constant; we let k = N/(d+ 1) be that number. We also denote P0 = 0 and Pd+1 = N . For

each shooting interval [xPi , xPi+1
] we define by Γ̂i the component of the objective function

(2.1.3) attached to that interval:

Γ̂0(x0) =
1

N

P1−1∑
j=0

γj(x̃j(x0)) + φj(x̃j(x0), x̃j+1(x0))

 , (2.2.1a)

Γ̂i(xPi−1, xPi) =
1

N

( Pi+1−1∑
j=Pi

γj(x̃j(xPi−1, xPi)) (2.2.1b)

+φj(x̃j(xPi−1, xPi), x̃j+1(xPi−1, xPi))

)
, 1 ≤ i ≤ d− 1

Γ̂d(xPd−1, xPd) =
1

N

(
N−1∑
j=Pd

γk(x̃j(xPi−1, xPi)) (2.2.1c)

+φj(x̃j(xPi−1, xPi), x̃j+1(xPi−1, xPi)) + γN (x̃N (xPd))

)
.

The mappings x̃j(xPi−1, xPi) are defined implicitly from the optimality conditions (2.1.4) and

(2.1.5). This step is possible as soon as ∇xjφ(xj , xj+1) = ∇xjMj(xj)Q
−1
j (xj+1 −Mj(xj))

is invertible in xj+1. This is equivalent to requiring that ∇xjMj(xj)Q
−1
j be an invertible

matrix. Since Mj(·) are propagating operators, they can be assumed to be invertible from

properties of dynamical systems (see also the discussion at the beginning of [7, §3]). Since

the covariance matrix Qj is assumed to be positive definite, it immediately follows that the
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recursion (2.1.5) is uniquely solvable in xj+1.

At points immediately following the checkpoints, the mappings x̃Pi+1(xPi−1, xPi) are the

solution of the optimality conditions (2.1.4) and (2.1.5) at checkpoint Pi:

0 = ∇x0γx0(x0) +∇x0φP0(x0, x̃1) (2.2.2)

0 = ∇xPiφPi−1(xPi−1, xPi) +∇xPiγPi(xPi) +∇xPiφPi(xPi , x̃Pi+1), (2.2.3)

for i = 1, . . . , d. At all other points, x̃j(xPi−1, xPi) is defined recursively from x̃j−1(xPi−1, xPi)

and x̃j−2(xPi−1, xPi) by using the optimality conditions (2.1.5) as follows:

0 = ∇xjφj−1(x̃j−1, x̃j) +∇xjγj(x̃j) +∇xjφj(x̃j , x̃j+1), (2.2.4)

for Pi < j ≤ Pi+1 − 1, i = 0, . . . , d. Under model (2.1.1), the recursions (2.2.2)–(2.2.4) can

be written at points immediately following checkpoints as

x̃1(x0) = M0(x0) +Q0∇−TM0(x0)Q−1
B (x0 − xB) (2.2.5)

−Q0∇−TM0(x0)∇TH0(x0)R−1
0 (y0 −H0(x0)),

x̃Pi+1(xPi , xPi−1) = MPi(xPi) (2.2.6)

+QPi∇
−TMPi(xPi)Q

−1
Pi−1(xPi −MPi−1(xPi−1))

−QPi∇
−TMPi(xPi)∇

THPi(xPi)R
−1
Pi

(yPi −HPi(xPi)),

for i = 1, 2, . . . , d. At all other points between checkpoints we obtain

x̃j+1(x̃j , x̃j−1) = Mj(x̃j) +Qj∇−TMj(x̃j)Q
−1
j−1(x̃j −Mj−1(x̃j−1)) (2.2.7)

− Qj∇−TMj(x̃j)∇THj(x̃j)R−1
j (yj −Hj(x̃j)).

Repeated use of (2.2.7) together with (2.2.5) and (2.2.6) results in computing all mappings

x̃j(xPi−1, xPi)
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Then, by gathering the objective function components (2.2.1) and by imposing matching

constraints at the checkpoint pairs, we obtain the following multiple shooting optimization

problem.

min Γ̃(x0, xP1−1, xP1 , . . . , xPd−1, xPd)
∆
= Γ̂0(x0) +

d∑
i=1

Γ̂i(xPi−1, xPi) (2.2.8a)

s.t. c1(x) = xP1 − x̃P1(x0) = 0 (2.2.8b)

g1(x) = xP1−1 − x̃P1−1(x0) = 0 (2.2.8c)

ci+1(x) = xPi+1
− x̃Pi+1

(xPi−1, xPi) = 0, 1 ≤ i ≤ d− 1 (2.2.8d)

gi+1(x) = xPi+1−1 − x̃Pi+1−1(xPi−1, xPi) = 0, 1 ≤ i ≤ d− 1 (2.2.8e)

The Lagrangian associated with the constraint problem (2.2.8) is

L(x, λ, ψ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x), (2.2.9)

where x = (x0, xP1−1, xP1 , . . . , xPd−1, xPd) and λi ∈ RJ , ψi ∈ RJ are Lagrange multipliers

for the equality constraints ci(x) = 0 and gi(x) = 0, i = 1, 2, . . . , d.

We also define the full memory form of the objective functions for each shooting interval

as follows:

Γi(xPi:Pi+1
) =

1

N

Pi+1−1∑
j=Pi

γj(xk) + φj(xj , xj+1)

 , 0 ≤ i ≤ d,

Γd(xPd:N ) =
1

N

N−1∑
j=Pd

γj(xj) + φj(xj , xj+1) + γN (xN )

 .

(2.2.10)

We now define a list of symbols frequently used in the rest of the article.

Definition 2.2.1. For 1 ≤ i ≤ d and 0 ≤ j ≤ N , define
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(a)

βj(xj , xj+1) = ∇xjγj(xj) +∇xjφj(xj , xj+1), 0 ≤ j ≤ N − 1

αj(xj−1, xj) = ∇xjφj−1(xj−1, xj), 1 ≤ j ≤ N

θj(xj−1, xj , xj+1) = αj(xj−1, xj) + βj(xj , xj+1), 1 ≤ j ≤ N − 1

θ0(x0, x1) = β0(x0, x1); θN (xN−1, xN ) = αN (xN−1, xN ) +∇xN γN (xN )

Note that for Γi defined in (2.2.10), we have

(
∂Γi

∂(xPi:Pi+1
)

)T
=

[
βTPi

, θTPi+1, . . . , θ
T
Pi+1−1, α

T
Pi+1

]
, 0 ≤ i ≤ d− 1

(
∂Γd

∂(xPd:N )

)T
=

[
βTPd

, θTPd+1, . . . , θ
T
N−1, θ

T
N

]
.

(b)

L
(0)
j (x0) = ∇x0x̃j(x0), 0 ≤ j

L
(Pi−1)
j (xPi−1, xPi) = ∇xPi−1x̃j(xPi−1, xPi), Pi − 1 ≤ j

L
(Pi)
j (xPi−1, xPi) = ∇xPi x̃j(xPi−1, xPi), Pi − 1 ≤ j

(c) Let Λi(xPi−1, xPi) be (k + 1)J × 2J dimensional, and let Λ0(x0) be (k + 1)J × J

dimensional matrices so that

Λi(xPi−1, xPi) =
∂(x̃Pi:Pi+1

)

∂(xPi−1, xPi)
=



L
(Pi−1)
Pi

(xPi−1, xPi) L
(Pi)
Pi

(xPi−1, xPi)

L
(Pi−1)
Pi+1 (xPi−1, xPi) L

(Pi)
Pi+1(xPi−1, xPi)

...
...

L
(Pi−1)
Pi+1

(xPi−1, xPi) L
(Pi)
Pi+1

(xPi−1, xPi)


,

Λ0(x0) =
∂(x̃0:P1)

∂(x0)
=
[
L

(0)
0 (x0)T , L

(0)
1 (x0)T , . . . , L

(0)
P1

(x0)T
]T

.
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Note that the first block row of Λi is [0, IJ ] and the first block row of Λ0 is IJ . Let L0(x0)

and Li(xPi−1, xPi) be the last two block rows respectively of Λ0(x0) and Λi(xPi−1, xPi)

so that

L0(x0) =

L(0)
P1−1(x0)

L
(0)
P1

(x0)


Li(xPi−1, xPi) =

L(Pi−1)
Pi+1−1(xPi−1, xPi) L

(Pi)
Pi+1−1(xPi−1, xPi)

L
(Pi−1)
Pi+1

(xPi−1, xPi) L
(Pi)
Pi+1

(xPi−1, xPi)

 .

(d) Let Ji(xPi−1, xPi) and J0(x0) be J(k+1)×J(k+1) dimensional symmetric block tridi-

agonal matrices defined as follows (with the arguments of β·,θ·,α· dropped for brevity).

Ji =



∇xPiβPi ∇xPi+1θPi 0

∇xPiθPi+1 ∇xPi+1θPi+1
. . .

. . . . . .

. . . ∇xPi+1−1
θPi+1−1 ∇xPi+1

θPi+1−1

0 ∇xPi+1−1
θPi+1

∇xPi+1
αPi+1


.

Note that Ji = ∇2Γi for 0 ≤ i ≤ d − 1, and ∇2Γd differs from Jd by only the last

diagonal block element so that (Jd)(k,k) +∇2
xN γN = (∇2Γd)(k,k).

We now illustrate the relationship between the solution of the multiple shooting con-

strained optimization problem (2.2.8) and the solution of the full-memory data assimilation

problem (2.1.3)

Theorem 2.2.2. Let x∗0:N be a local minimizer of Γ(x0:N ) (2.1.3) that satisfies the first-

and second-order sufficient conditions. Let x∗ = (x∗0, x
∗
P1−1, x

∗
P1
, . . . , x∗Pd−1, x

∗
Pd

). Then

(a) x∗ satisfies the KKT conditions of (2.2.8) with Lagrangian multipliers λ∗i =

−∇xPiφPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d.
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(b) The Hessian matrix of the Lagrangian at optimality satisfies

wT∇2
xL(x∗, λ∗, ψ∗)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
,

for w = (w1, . . . , w2d+1) ∈ R(2d+1)J , ŵi = (w2i, w2i+1), 1 ≤ i ≤ d, and ŵ0 = w1.

(c) x∗ satisfies the second-order sufficient conditions of (2.2.8).

Proof. The optimality conditions (2.2.2)–(2.2.4) uniquely determine the recursion of x̃j , 0 ≤

j ≤ N (Theorem 1 of [7]). Therefore the solution x∗0:N of (2.1.3) coincides with the state

propagated starting from the checkpoints by using the recursions (2.2.2)–(2.2.4), namely,

x̃j = x∗j for 0 ≤ j ≤ N . In the rest of the proof, the dependence of the symbols defined in

Definition 2.2.1 on the checkpoints is suppressed for brevity.

First, we aim to verify part (a), that is, check the KKT conditions with Lagrangian

multipliers λ∗i = −∇xPiφPi−1(x∗Pi−1, x
∗
Pi

), ψ∗i = 0 for 1 ≤ i ≤ d. Note that from the

definitions of αPi , βPi (Definition 2.2.1(a)) and optimality conditions (2.1.4) and (2.1.5), we

have that for 1 ≤ i ≤ d,

αPi(x
∗
Pi−1, x

∗
Pi

) + λ∗i = 0, (2.2.11a)

βPi(x
∗
Pi
, x∗Pi+1)− λ∗i = 0. (2.2.11b)

By the chain rule and from the definition of the constraints (2.2.8b) and (2.2.8c) and

Definitions 2.2.1(a) and (c), the first-order derivatives are

∇x0L(x∗, λ∗, ψ∗) = ∇x0Γ̂0(x∗0)−∇x0c1(x∗)λ∗1 −∇x0g1(x∗)ψ∗1 (2.2.12)

=

(
∂(x̃0:P1)

∂(x0)

)T
∂Γ0

∂(x0:P1)
+ L

(0)
P1

T
λ∗1 + L

(0)
P1−1

T
ψ∗1

= ΛT0 V0 + L
(0)
P1−1

T
ψ∗1, where
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V0 :=



θ0(x∗0, x̃1)

θ1(x̃0, x̃1, x̃2)

...

θP1−1(x̃P1−2, x̃P1−1, x̃P1)

αP1(x̃P1−1, x̃P1) + λ∗i


. (2.2.13)

Optimality conditions (2.1.4), (2.1.5) and (2.2.11a) imply V0 = 0, and hence we have

∇x0L(x∗, λ∗, ψ∗) = 0.

For 1 ≤ i ≤ d − 1, from the definition of the constraints (2.2.8d) and (2.2.8e) and

Definitions 2.2.1(a) and (c), we obtain that

∇(xPi−1,xPi)
L(x∗, λ∗, ψ∗) = ∇(xPi−1,xPi)

Γ̂i(x
∗
Pi−1, x

∗
Pi

) (2.2.14)

−

∇xPi−1gi(x∗)ψ∗i +∇xPi−1ci+1(x∗)λ∗i+1 +∇xPi−1gi+1(x∗)ψ∗i+1

∇xPici(x
∗)λ∗i +∇xPici+1(x∗)λ∗i+1 +∇xPigi+1(x∗)ψ∗i+1


=

(
∂(x̃Pi:Pi+1

)

∂(xPi−1, xPi)

)T
∂Γi

∂(xPi:Pi+1
)
−

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1 − L

(Pi−1)
Pi+1

T
λ∗i+1

λ∗i − L
(Pi)
Pi+1−1

T
ψ∗i+1 − L

(Pi)
Pi+1

T
λ∗i+1


= ΛTi Vi −

ψ∗i − L(Pi−1)
Pi+1−1

T
ψ∗i+1

−L(Pi)
Pi+1−1

T
ψ∗i+1

 , where

Vi :=



βPi(x
∗
Pi
, x̃Pi+1)− λ∗i

θPi+1(x̃Pi , x̃Pi+1, x̃Pi+2)

...

θPi+1−1(x̃Pi+1−2, x̃Pi+1−1, x̃Pi+1
)

αPi+1
(x̃Pi+1−1, x̃Pi+1

) + λ∗i+1


. (2.2.15)

Optimality conditions (2.1.4) and (2.1.5) and (2.2.11a) and (2.2.11b) imply that Vi = 0, and

hence we have ∇(xPi−1,xPi)
L(x∗, λ∗, ψ∗) = 0.

For the last shooting interval, from the definition of the constraints (2.2.8d) and (2.2.8e)
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and Definitions 2.2.1(a) and (c), we obtain that

∇(xPd−1,xPd)L(x∗, λ∗, ψ∗) = ∇(xPd−1,xPd)Γ̂d(x
∗
Pd−1, x

∗
Pd

) (2.2.16)

−

∇xPd−1gd(x∗)ψ∗d
∇xPdcd(x

∗)λ∗d

 = ΛTd Vd −

ψ∗d
0

 , where

Vd :=



βPd(x
∗
Pd
, x̃Pd+1)− λ∗d

θPd+1(x̃Pd , x̃Pd+1, x̃Pd+2)

...

θN−1(x̃N−2, x̃N−1, x̃N )

θN (x̃N−1, x̃N )


. (2.2.17)

Optimality conditions (2.1.5) and (2.1.6) and (2.2.11b) imply that Vd = 0, and hence we

have ∇(xPd−1,xPd)L(x∗, λ∗, ψ∗) = 0. This completes the proof of part (a).

We now derive the Hessian matrix. For 1 ≤ i ≤ d, directly applying the chain rule to

(2.2.12) and (2.2.14), we note that Vi = 0 for 0 ≤ i ≤ d − 1 give that ∇2
x0L(x∗, λ∗, ψ∗) =

ΛT0 J0Λ0 and that ∇2
(xPi−1,xPi

)
L(x∗, λ∗, ψ∗) = ΛTi JiΛi for 1 ≤ i ≤ d− 1.

For the last shooting interval, applying the chain rule to (2.2.16) and from Definitions

2.2.1(a) and (d) and the fact that Vd = 0, we obtain that

∇2
(xPd−1,xPd)L(x∗, λ∗, ψ∗) = ΛTd JdΛd +

L(Pd−1)
N

T

L
(Pd)
N

T

∇2
xN γN

[
L

(Pd−1)
N L

(Pd)
N

]
.

Since the constraints are separable, there are no cross terms in the Hessian matrix.

For w = (w1, . . . , w2d+1) ∈ R(2d+1)J , we define ŵi = (w2i, w2i+1) for 1 ≤ i ≤ d and
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ŵ0 = w1. Then we have that

wT∇2
xL(x∗, λ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
∇2
xN γN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
.

(2.2.18)

This completes the proof of part (b).

The critical cone at optimality, from Definition 2.2.1(d) and (2.2.8d) and (2.2.8e), is

C(x∗, λ∗, ψ∗) = {w ∈ R(2d+1)J : ∇ci(x∗)w = 0,∇gi(x∗)w = 0, 1 ≤ i ≤ d} (2.2.19)

= {ŵ ∈ R(2d+1)J : ŵi = Li−1ŵi−1, 1 ≤ i ≤ d}.

We define the vector u ∈ R(N+1)J by

uj =


L

(0)
j w1, 0 ≤ j ≤ P1

L
(Pi−1)
j w2i + L

(Pi)
j w2i+1, Pi + 1 ≤ j ≤ Pi+1, 1 ≤ i ≤ d

so that for 0 ≤ i ≤ d,

Λiŵi =
[
wT2i+1, u

T
Pi+1, . . . u

T
Pi+1

]T
. (2.2.20)

From Definition 2.2.1(c) the first block row of Λi is [0, IJ ] for 1 ≤ i ≤ d, and IJ for i = 0. Now

we consider w ∈ C(x∗, λ∗, ψ∗) and w 6= 0. This implies that w1 6= 0; and since u0 = w1 6= 0,

we have that u 6= 0. Note that since w ∈ C(x∗, λ∗, ψ∗), L(Pi−1)
Pi

= 0, and L
(Pi)
Pi

= IJ , we

have from (2.2.19) that uPi = w2i+1, for 1 ≤ i ≤ d. Substituting this equation in (2.2.18),

using (2.2.20), using the expression of Ji from Definition 2.2.1(d), and using the fact that

from Definition 2.2.1(a) we have that ∇xPiβPi +∇xPiαPi = ∇xPiθPi for 1 ≤ i ≤ d, we obtain

that

wT∇2
xL(x∗, λ∗, ψ∗)w = uT0∇x0θ0u0 + uT0∇x1θ0u1
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+
N−1∑
j=1

(uTj ∇xj−1θjuj−1 + uTj ∇xjθjuj + uTj ∇xj+1θjuj+1)

+ uTN∇xN−1θNuN−1 + uTN∇xN θNuN = uT
(
∇2
x0:NΓ(x∗0:N )

)
u > 0.

This completes the proof of part (c).

2.3 Stability analysis

The constrained optimization problem (2.2.8) is now solved with an augmented Lagrangian

method. From the Lagrangian function (2.2.9) and using the notations of (2.2.8), we define

the augmented Lagrangian function.

LA(x, λ, ψ, µ) = Γ̃(x)−
d∑
i=1

λTi ci(x)−
d∑
i=1

ψTi gi(x) +
µ

2

d∑
i=1

(
ci(x)T ci(x) + gi(x)T gi(x)

)
(2.3.1)

Here µ > 0 is the penalty parameter that helps enforce feasibility. Augmented Lagrangian

theory [94, Theorem 17.5] implies that, under the conditions stated in Theorem 2.2.2, there

exists µ̄ so that for all µ ≥ µ̄, when λ∗ and ψ∗ are the Lagrange multipliers of (2.2.8),

the solution x∗ of (2.2.8) is a local minimizer of (2.3.1). Hence the convergence is assured

without increasing µ indefinitely. The initial choice of µ is in practice a matter of some

experimentation (as for example a starting value of µ = 0 may result in divergence for non-

convex problems), but it is a standard issue in nonlinear programming theory and practice

[94]. Simple algorithms exist to update the value of µ on the way to convergence by increasing

it when too-large infeasiblity is detected [94]. In the rest of this section, we assume µ is fixed

at some value µ ≥ µ̄.

In this section we investigate the condition number of the Hessian matrix for LA with

respect to the number of shooting intervals. In ideal circumstances, the condition number

would be bounded above by a constant and thus would prevent exponential growth of the

solution in time, which is the signature of instability discussed in §2.1. Our aim is thus to

24



identify under what circumstances this favorable situation can occur.

For this analysis we use several simplifications to our approach. While our investiga-

tions have indicated that similar results can be obtained without making the simplifications,

leaving them out would significantly complicate and extend the analysis. We thus keep the

number of time points in each shooting interval fixed at k, and we use for all d shooting

intervals a fixed time step ∆t. Since k is fixed, d grows linearly with N . We consider a

constant covariance matrix for model error Q and observation error R for all time steps.

The observation mapping is time-dependent linear; that is, Hi(xi) = Bixi for all 0 ≤ i ≤ N

and some Bi ∈ RL×J . Note that we allow observation gaps in time, which can be modeled

by setting some Bi and the respective observations to 0. Theorem 2.2.2(b), definitions of the

constraints (2.2.8b)–(2.2.8e) and of the critical cone (2.2.19), and Definition 2.2.1(c) imply

that the Hessian for LA at optimality satisfies

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ
d∑
i=1

‖ŵi − Li−1ŵi−1‖2 (2.3.2)

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)

for any w = (w1, . . . , w2d+1) ∈ R(2d+1)J , where we denote ŵ0 = w1, ŵi = (w2i, w2i+1) for

1 ≤ i ≤ d.

We now introduce the definition of the observability matrix for each shooting interval,

which is based on the standard one for the linearized system on a given system trajectory

[67].

Definition 2.3.1. For each 0 ≤ i ≤ d, Pi ≤ j, denote

j∏
l=Pi

∇Ml(xl) = ∇Mj(xj)∇Mj−1(xj−1) . . .∇MPi(xPi).
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Define

CTi (x) =

BTPi ,(BPi+1∇MxPi
(xPi)

)T
, . . . ,

BPi+k−2

Pi+k−3∏
l=Pi

∇Ml(xl)

T


as the observability matrix for the (i+1)th shooting interval.

For our work, the importance of the observability condition is that it will ensure that the

objective function of (2.1.3) when applied to the linearized system is positive definite on one

shooting interval.

Lemma 2.3.2. Ci(x) being full rank is equivalent to for any 0 6= w ∈ RkJ and 0 ≤ i ≤ d,

Q(w) :=

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(xj)wj

)T
Q−1 (wj+1 −∇Mj(xj)wj

)
+ wTj B

T
j R
−1Bjwj

)
> 0.

Proof. Suppose there exists 0 6= s0 ∈ RJ such that Cis0 = 0. Then we define s =

(sPi , . . . , sPi+k−1) ∈ RkJ such that sPi = s0, sPi+j =
∏Pi+j−1
l=Pi

∇Ml(xl)s0 for 1 ≤ j ≤ k−1.

Note that the assumption Cis0 = 0 and the definition of s imply that

0 = BPis0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)s0 = BPi+jsPi+j , ∀1 ≤ j ≤ k−2. (2.3.3)

Then, (2.3.3) and the definition of s give that Q(s) = 0. Note that s 6= 0 since s0 6= 0.

On the other hand, suppose Q(s) = 0 for some 0 6= s = (sPi , . . . , sPi+k−1) ∈ RkJ . Then

Bjsj = 0 and sj+1 = ∇Mj(xj)sj for Pi ≤ j ≤ Pi + k − 2. Then we have

0 = BPisPi , 0 = BPi+j

Pi+j−1∏
l=Pi

∇Ml(xl)sPi , ∀1 ≤ j ≤ k − 2. (2.3.4)

Then, (2.3.4) implies that CisPi = 0. Note that sPi 6= 0 because otherwise s = 0.
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A full-rank result holds for the Jacobian matrix of the recursion.

Lemma 2.3.3. Λi(xPi−1, xPi) is full rank for 1 ≤ i ≤ d,

Proof. Adapting optimality recursion (2.2.6) to our simplified model gives

x̃Pi+1 = MPi(xPi) +Q∇−TMPi(xPi)B
T
Pi
R−1 (BPixPi − yPi)

+ Q∇−TMPi(xPi)Q
−1 (xPi −MPi−1(xPi−1)

)
.

and it implies L
(Pi−1)
Pi+1 =

∂x̃Pi+1

∂xPi−1
= −Q∇−TMPi(xPi)Q

−1∇MPi−1(xPi−1), which is invert-

ible. Since the first block row of Λi(xPi−1, xPi) is (0, I) and L
(Pi−1)
Pi+1 is the (2,1)th block,

Λi(xPi−1, xPi) is full rank.

In addition to observability on one shooting interval, we will make slightly stronger

assumptions than the ones implied by Lemmas 2.3.2 and 2.3.3. That is, we will assume that

those bounds hold uniformly with the shooting interval index i.

Assumption 2.3.4. There exist γk > 0 and ρk > 0 dependent on k but not on i, or d, such

that for any N > 0, we have the following.

(a) The observability matrices Ci(x
∗) are full rank for 0 ≤ i ≤ d.

(b) Under (a), for all 0 ≤ i ≤ d, w = (wPi , . . . , wPi+k−1) ∈ RkJ ,

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk‖w‖2,

(c) λmin(Λi(x
∗
Pi−1, x

∗
Pi

)TΛi(x
∗
Pi−1, x

∗
Pi

)) ≥ ρk for all 1 ≤ i ≤ d.

The second set of assumptions characterizes the system, states, and observations as

follows.
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Assumption 2.3.5. For any N > 0,

(a) max0≤j≤N
(
‖x∗j‖, ‖xB‖

)
≤ C1 and max0≤j≤N ‖yj‖ ≤ C2 for some constant C1 > 0

and C2 > 0;

(b) max0≤j≤N ‖Bj‖F ≤ b0 for some constant b0 > 0;

(c) max0≤j≤N
(
‖∇Mj(x

∗
j )‖F , ‖∇

−1Mj(x
∗
j )‖F

)
≤ A for some constant A > 0;

(d) max0≤j≤N
(
‖Mj(x

∗
j )‖F

)
≤ m0 for some constant m0 > 0;

(e) max0≤j≤N ‖∇xjvec
(
∇TMj(x

∗
j )
)
‖F ≤ A1 for some constant A1 > 0.

In fact, Assumptions 2.3.5(d) and (e) are consequences of (a) and the fact that Mj is at

least twice continuously differentiable. We nonetheless state them as assumptions so that

the bounds we will use in the proof will have convenient references.

We now make a small nonlinearity assumption. It is shown in [7] that for s× s matrix S

and s× 1 vector u and x, we have

∇x(Su) = (uT ⊗ Is)∇xvec(S) + S∇xu. (2.3.5)

Here we define M
(2)
j (u) := (uT ⊗ IJ )∇xjvec

(
∇TMj(x

∗
j )
)

. If u is not a function of xj ,

then M
(2)
j (u) = ∇xj

(
∇TMj(x

∗
j )u
)

. Moreover, if the system is linear, then M
(2)
j (u) = 0;

therefore bounds on M
(2)
j (u) are bounds limiting nonlinearity. Note that under Assumption

2.3.5(e), denoting C0 = A1
√
J , we have for any N > 0 that

max
0≤j≤N

‖M (2)
j (u)‖F ≤ A1‖uT ⊗ IJ‖F ≤ C0‖u‖. (2.3.6)

For our proof, however, we need an even sharper restriction for the nonlinearity described

below.
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Assumption 2.3.6. There exists 0 ≤ bk < γk such that for any N > 0,

max
0≤j≤N

‖M (2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))
‖F ≤ bk,

where γk is as defined in Assumption 2.3.4.

Other than the observability assumption on each shooting interval, Assumptions 2.3.4

and 2.3.5 are primarily stating uniformity, and thus are only marginally stronger than the

existing assumptions. Assumption 2.3.6 on the other hand, puts a relatively hard bound on

how much nonlinearity we can tolerate in our analysis. At the end of this section we will

discuss the effect of this assumption and its significance.

With these definitions and assumptions, we now proceed to the main results of our work.

That is, we now prove that for the nonlinear system satisfying Assumptions 2.3.4, 2.3.5, and

2.3.6, the condition number of the Hessian matrix for the augmented Lagrangian is bounded

above. First, we derive a lower bound.

Proposition 2.3.7. Under Assumptions 2.3.4 and 2.3.6, for any w ∈ RkJ and ‖w‖ = 1,

we have that wTJi(x
∗
Pi

)w ≥ γk − bk for 0 ≤ i ≤ d.

Proof. Referring back to Definition 2.2.1(a), we have that

∇x0β0 = ∇TM0(x∗0)Q−1∇M0(x∗0) +BT0 R
−1B0 −M

(2)
0

(
Q−1(x∗1 −M0(x∗0))

)
+Q−1

B ,

∇xjβj = ∇TMj(x
∗
j )Q
−1∇Mj(x

∗
j ) +BTj R

−1Bj −M
(2)
j

(
Q−1(x∗j+1 −Mj(x

∗
j ))
)
,

0 < j ≤ N − 1

∇xjαj = Q−1, 1 ≤ j ≤ N, ∇xj−1θj = −Q−1∇TMj−1(x∗j−1), 1 ≤ j ≤ N

∇xjθj = ∇xjαj +∇xjβj , 0 < j < N ∇xj+1θj = −∇TMj(x
∗
j )Q
−1, 0 ≤ j ≤ N − 1.

(2.3.7)
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So for ‖w‖ = 1, referring to Definition 2.2.1 (d), we have

wTJi(x
∗
Pi

)w ≥
Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)

+wTj B
T
j R
−1Bjwj

)
−
Pi+k−2∑
j=Pi

wTj M
(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))

wj ,

for which equality holds for 1 ≤ i ≤ d. For i = 0, the difference between the two sides is

wT0 Q
−1
B w0, which is non-negative. By Assumption 2.3.4(b) we have that

Pi+k−2∑
j=Pi

((
wj+1 −∇Mj(x

∗
j )wj

)T
Q−1

(
wj+1 −∇Mj(x

∗
j )wj

)
+ wTj B

T
j R
−1Bjwj

)
≥ γk,

and by Assumption 2.3.6 we have that
∣∣∣∑Pi+k−2

j=Pi
wTj M

(2)
j

(
Q−1

(
x∗j+1 −Mj(x

∗
j )
))

wj

∣∣∣ ≤
bk. Thus Proposition 2.3.7 follows.

We now derive upper bounds in a series of lemmas.

Lemma 2.3.8. Under Assumption 2.3.5, for each 1 ≤ i ≤ d, Pi + 1 ≤ j ≤ Pi + k, and

p = Pi−1, Pi, we have that ‖L(p)
j (x∗Pi−1, x

∗
Pi

)‖F ≤ C
(j−Pi+1)
p and ‖L(0)

j (x∗0)‖F ≤ C
j
p, where

Cp > 1 is a constant independent of d.

Proof. For 0 ≤ i ≤ d and Pi ≤ j ≤ Pi+1 − 1, define

Fij = ∇Mj(x
∗
j )−Q∇xj

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
,

and for 0 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi+1 − 1, define

Gij = Q∇xj
(
∇−TMj(x

∗
j )Q
−1
(
x∗j −Mj−1(x∗j−1)

))
Kij = −Q∇−TMj(x

∗
j )Q
−1∇Mj−1(x∗j−1).
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Also define

G10 = Q∇x0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
.

Then for any 1 ≤ i ≤ d and Pi + 1 ≤ j ≤ Pi + k, from optimality recursions (2.2.7) and the

chain rule, the recursion of L
(Pi)
j and L

(Pi−1)
j can be written as

L(p)
j

L
(p)
j−1

 =

Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0


L(p)

j−1

L
(p)
j−2

 , (2.3.8)

where p = Pi, Pi−1. For the initial shooting interval, the recursion runs through 2 ≤ j ≤ P1

and p = 0. From (2.2.5), the initialization of the recursion for the initial shooting interval is

L(0)
1

L
(0)
0

 =

F10 +G10

IJ .

 . (2.3.9)

For the other shooting intervals 1 ≤ i ≤ d, from (2.2.6), the recursion is initialized by

L(Pi−1)
Pi

L
(Pi−1)
Pi−1

 =

 0

IJ

 ,
 L(Pi)

Pi

L
(Pi)
Pi−1

 =

IJ
0

 . (2.3.10)

Now we give upper bounds for the propagation matrices. For some J × 1 vector v(x∗j ), by

differentiating both sides of v(x∗j ) = ∇TMj(x
∗
j )∇

−TMj(x
∗
j )v(x∗j ) and using equation (2.3.5),

we have that

∇xj
(
∇−TMj(x

∗
j )v(x∗j )

)
= −∇−TMj(x

∗
j )M

(2)
j

(
∇−TMj(x

∗
j )v(x∗j )

)
+∇−TMj(x

∗
j )∇v(x∗j ).

(2.3.11)

Now we can give bounds to each part involved in the propagation. By equation (2.3.11),
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Assumption 2.3.5, and equation (2.3.6), we have that

‖∇xj
(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F (2.3.12a)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )B

T
j R
−1(yj −Bjx∗j )

)
‖F

+ ‖∇−TMj(x
∗
j )B

T
j R
−1Bj‖F (2.3.12b)

≤ C0A
2b0‖R−1‖F (C2 + b0C1) + Ab20‖R

−1‖F ,

‖∇x0
(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F (2.3.12c)

≤ ‖∇−TM0(x∗0)M
(2)
0

(
∇−TM0(x∗0)Q−1

B (x∗0 − xB)
)
‖F

+ ‖∇−TM0(x∗0)Q−1
B ‖F ≤ 2C0A

2‖Q−1
B ‖FC1 + A‖Q−1

B ‖F ,

‖∇xj
(
∇−TMj(x

∗
j )Q
−1
(
x∗j −Mj−1(x∗j−1)

))
‖F (2.3.12d)

≤ ‖∇−TMj(x
∗
j )M

(2)
j

(
∇−TMj(x

∗
j )Q
−1
(
x∗j −Mj−1(x∗j−1)

))
‖F

+ ‖∇−TMj(x
∗
j )Q
−1‖F ≤ C0A

2‖Q−1‖F (C1 +m0) + A‖Q−1‖F .

We then have that

‖Fij‖F
(2.3.12a)
≤ A+ ‖Q‖F

(
C0A

2b0‖R−1‖F (C2 + b0C1) + Ab20‖R
−1‖F

)
:= F

‖Gij‖F
(2.3.12d)
≤ ‖Q‖F

(
C0A

2‖Q−1‖F (C1 +m0) + A‖Q−1‖F
)

:= G1

‖Kij‖F ≤ A2‖Q‖F ‖Q−1‖F := K

‖G10‖F
(2.3.12c)
≤ ‖Q‖F

(
2C0A

2‖Q−1
B ‖FC1 + A‖Q−1

B ‖F
)

:= G0.

Let G = max (G1, G0). Then, bounding each term in the propagation relations (2.3.8),

(2.3.9), and (2.3.10) by its Forbenius norm, we have for 1 ≤ i ≤ d, Pi + 1 ≤ j ≤ Pi + k, and

p = Pi − 1, Pi that

‖L(p)
j ‖F ≤

∥∥∥∥∥∥∥
L(p)

j

L
(p)
j−1


∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥
Fi,j−1 +Gi,j−1 Ki,j−1

IJ 0


∥∥∥∥∥∥∥
F

∥∥∥∥∥∥∥
L(p)

j−1

L
(p)
j−2


∥∥∥∥∥∥∥
F
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≤
(√

J +K2 + (F +G)2

)j−Pi √
J

≤
(√

J +K2 + (F +G)2

)j−Pi+1

:= C
j−Pi+1
p ,

and for the initial shooting interval, similarly we have for 1 ≤ j ≤ P1 that

‖L(0)
j ‖F ≤

(√
J +K2 + (F +G)2

)j−1√
J + (F +G)2

≤
(√

J +K2 + (F +G)2

)j
= C

j
p .

Lemma 2.3.9. Under Assumptions 2.3.5 and 2.3.6 and using notations in Definition 2.2.1(d),

for each 1 ≤ i ≤ d we have that ‖J0(x∗0)‖F , ‖Ji(x∗Pi−1, x
∗
Pi

)‖F ≤ CJ for some CJ > 0 inde-

pendent of d.

Proof. Because of the block tridiagonal structure of Ji for 0 ≤ i ≤ d, we have that

‖Ji‖F ≤
Pi+1−1∑
j=Pi+1

(
‖∇xj−1θj‖F + ‖∇xjθj‖F + ‖∇xj+1θj‖F

)
+‖∇xPiβPi‖F + ‖∇xPi+1θPi‖F + ‖∇xPi+1−1

θPi+1
‖F + ‖∇xPi+1

αPi+1
‖F

(2.3.7)
≤

Pi+1−1∑
j=Pi+1

(
2A‖Q−1‖F + ‖Q−1‖F + A2‖Q−1‖F + b20‖R

−1‖F + bk

)
+2A‖Q−1‖F + ‖Q−1‖F + A2‖Q−1‖F + b20‖R

−1‖F + bk

≤ k
(

2A‖Q−1‖F + ‖Q−1‖F + A2‖Q−1‖F + b20‖R
−1‖F + bk

)
:= CJ .

Proposition 2.3.10. For any w ∈ R(2d+1)J and ‖w‖ = 1, we have that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w ≤ Uk for some Uk > 0 independent of d.
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Proof. For 0 ≤ i ≤ d, using Lemmas 2.3.8 and 2.3.9 and referring to Definition 2.2.1, we

have that ‖Ji‖F ‖Λi‖2F ≤ 2(k + 1)CJC
2k
p . Then, from (2.3.2), it follows that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ
d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≤ 2(k + 1)CJC

2k
p + b20‖R

−1‖FC2k
p + µ(1 + 2Ckp )2.

Defining Uk to be the last quantity above completes the proof.

We are now in a position to state and prove our main result.

Theorem 2.3.11. Under Assumptions 2.3.4, 2.3.5, and 2.3.6, the condition number of the

Hessian matrix for the augmented Lagrangian is bounded above independent of the number

of shooting intervals, d. That is,

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≤ Uk

(γk − bk) min (ρk, 1)
.

Proof. For any w ∈ R(2d+1)J and ‖w‖ = 1, using Proposition 2.3.7 and Assumption 2.3.4(c),

we have that

wT∇2
xLA(x∗, λ∗, ψ∗, µ)w =

d∑
i=0

ŵTi ΛTi JiΛiŵi + µ
d∑
i=1

‖ŵi − Li−1ŵi−1‖2

+
(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)T
BTNR

−1BN

(
L

(Pd−1)
N w2d + L

(Pd)
N w2d+1

)
≥

d∑
i=0

ŵTi ΛTi JiΛiŵi ≥ (γk − bk)
d∑
i=0

‖Λiŵi‖2

Assumption 2.3.4
≥ (γk − bk)

ρk d∑
i=1

‖ŵi‖2 + ‖ŵ0‖2
 ≥ (γk − bk) min (ρk, 1).

34



Combining with Proposition 2.3.10, we obtain

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
=
λmax

(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
λmin

(
∇2
xLA(x∗, λ∗, ψ∗, µ)

) ≤ Uk
(γk − bk) min (ρk, 1)

,

which completes the proof.

Discussion. An interpretation of Theorem 2.3.11 is that, under observability Assump-

tion 2.3.4 and small nonlinearity Assumption 2.3.6, the condition number of the multiple

shooting problem is bounded above with the number of multiple shooting intervals d. This

prevents the exponential increase of the solution, which we define as instability, and thus

makes the multiple shooting problem computable. We note that the upper bounds of the

lemmas preceding Theorem 2.3.11 allow for exponential increase within the shooting interval;

but as long as observability holds, this increase stops at the end of a shooting interval. As

for Assumptions 2.3.6, we note that the amount of nonlinearity needs to be upper bounded

by the lower bound γk that is related to observability by Lemma 2.3.2. This points out that

the bound on nonlinearity in Assumption 2.3.6 is not absolute; it only needs to be small

compared with how much information can be found in the observations. That is, increasing

the measurement space would increase the lower eigenvalue of
∑
BTi R

−1Bi and thus γk,

which in turn would increase the prospects for Assumption 2.3.6 to hold.

Another important question is whether these assumptions are necessary. While an if and

only if statement between observability and the bounded condition number of the multiple

shooting Lagrangian probably does not hold, some of the assumptions are necessary in the

following way. As we can see from Appendix A.1, multiple shooting without observations still

results in exponential increase of the condition number and thus of the solution. Therefore

some amount of observability, or, otherwise said, state space coverage by data, is necessary.

As we can see from Appendix A.2, without multiple shooting the condition number of the

Hessian matrix for the single shooting function (2.1.7) also increases exponentially and thus

is unstable. We conclude that some form of observability and multiple shooting are necessary
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to obtain a stability result as Theorem 2.3.11.

2.4 Recursive gradient evaluation

When implementing minimization of the augmented Lagrangian function (2.3.1), gradient

evaluation is required. In this section, we describe a recursive method for computing the

gradient of (2.3.1) that fits into our memory-saving framework.

First we derive the gradients of the augmented Lagrangian function. Note that

θj(x̃j−1, x̃j , x̃j+1) = 0 for all Pi + 1 ≤ j ≤ Pi+1 − 1, 0 ≤ i ≤ d, and θ0(x0, x̃1) = 0.

For the first interval we obtain that

∇x0LA(x, λ, ψ, µ) = L
(0)
P1

T (
∇xP1φP1−1(x̃P1−1, x̃P1) + λ1 − µc1(x)

)
+L

(0)
P1−1

T
(ψ1 − µg1(x)) + L

(0)
P1

T

���������������
P1−1∑

j=1

θj(x̃j−1, x̃j , x̃j+1)

 + ������
θ0(x0, x̃1) .

(2.4.1)

For 1 ≤ i ≤ d− 1, we obtain that

∇xPi−1LA(x, λ, ψ, µ)

= L
(Pi−1)
Pi+1

T


��������������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1


+ L

(Pi−1)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi−1)
Pi+1−1

T
(ψi+1 − µgi+1(x)) + µgi(x)− ψi.

∇xPiLA(x, λ, ψ, µ)

= L
(Pi)
Pi+1

T


��������������Pi+1−1∑
j=Pi+1

θj(x̃j−1, x̃j , x̃j+1) +∇xPi+1
φPi+1−1(x̃Pi+1−1, x̃Pi+1

)


+ L

(Pi)
Pi+1

T
(λi+1 − µci+1(x)) + L

(Pi)
Pi+1−1

T
(ψi+1 − µgi+1(x))

+ µci(x)− λi + βPi(xPi , x̃Pi+1).
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For the last shooting interval, we obtain that

∇xPd−1LA(x, λ, ψ, µ) = L
(Pd−1)
N

T


��������������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


− ψd + µgd(x),

∇xPdLA(x, λ, ψ, µ) = L
(Pd)
N

T


��������������N−1∑
j=Pd+1

θj(x̃j−1, x̃j , x̃j+1) + θN (x̃N−1, x̃N )


+ βPd(xPd , x̃Pd+1)− λd.

Note that the derivatives are composed of a matrix-vector product for which the vector

can be computed through one forward recursion similar to the one for the states. The

Jacobian matrix L
(Pi)
Pi+1

, however, needs to also be computed by forward recursion, and it

turns out to be dense. The computation thus would require O(J2) storage and inhibit the

low-memory advantage of our approach. Instead, we compute the matrix-vector product

using a backward recursion separately on each multiple shooting interval, as follows. Since

the evaluation procedure is the same for each interval, we illustrate our method with the

first interval (assuming it has length N ′).

The target of our algorithm is to compute vTL
(0)
N ′ for some constant vector v. This

algorithm can then be used to compute the gradient components defined in the beginning of

this section. For example, for computing the first component (2.4.1) we note that we have

two such matrix-vector products, where N ′ is, succesively P1 and P1− 1 and v is succesively(
∇xP1φP1−1(x̃P1−1, x̃P1) + λ1 − µc1(x)

)
and (ψ1 − µg1(x)). Similar embeddings hold for

all other gradient components.

The computation of vTL
(0)
N ′ proceeds as follows. The optimality recursion states that

θj(x̃j−1(x0), x̃j(x0), x̃j+1(x0)) = 0 for 1 ≤ j ≤ N ′ − 1. Differentiating with respect to x0

gives

L
(0)
j+1 = −(∇xj+1θj)

−1
(

(∇xj−1θj)L
(0)
j−1 + (∇xjθj)L

(0)
j

)
. (2.4.2)
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Now we write the recursion ansatz and substitute (2.4.2) to obtain

vTL
(0)
N ′−l+1

= cTl L
(0)
N ′−l + bTl L

(0)
N ′−l−1

= −cTl (∇xN ′−lθN ′−l−1)−1(∇xN ′−l−2θN ′−l−1)L
(0)
N ′−l−2

+
(
bTl − c

T
l (∇xN ′−lθN ′−l−1)−1(∇xN ′−l−1θN ′−l−1)

)
L

(0)
N ′−l−1

:= cTl+1L
(0)
N ′−l−1

+ bTl+1L
(0)
N ′−l−2

for 1 ≤ l ≤ N ′ − 2, where cl+1 and bl+1 for l = 2, . . . , N ′ − 2 are defined by sought-after

recursions

cTl+1 = bTl − c
T
l (∇xN ′−lθN ′−l−1)−1(∇xN ′−l−1θN ′−l−1), (2.4.3)

bTl+1 = −cTl (∇xN ′−lθN ′−l−1)−1(∇xN ′−l−2θN ′−l−1). (2.4.4)

Then the matrix-vector product of interest can be expressed as vTL
(0)
N ′ = cTN ′−1L

(0)
1 +

bTN ′−1L
(0)
0 , where cN ′−1 and bN ′−1 are obtained through recursions (2.4.3) and (2.4.4). It is

a backward recursion with respect to the usage of state information xj . The initial values

for the recursion are

cT1 = −vT (∇x′N θN ′−1)−1(∇xN ′−1θN ′−1), bT1 = −vT (∇x′N θN ′−1)−1(∇xN ′−2θN ′−1),

obtained by total differentiation of θN ′−1(x̃N ′−2(x0), x̃N ′−1(x0), x̃N ′(x0)) = 0.

Since the recursion can be computed separately on each shooting interval, the total

storage does not exceed the number of multiple shooting checkpoints plus the length of an

interval, which adds up to 2d+ 1 +N/(d+ 1). We can use checkpointing within the shooting

interval to reduce the storage even further, but we do not pursue that avenue here.
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2.5 Numerical results

In this section, we apply our multiple shooting method to Burgers’ equation in order to verify

some of our theoretical findings. This is a one-spatial-dimension, time-dependent, partial

differential equation that exhibits both diffusion and nonlinear advection. Since implementa-

tion of new ideas in an operational environment is a development-intensive process, in many

research references discussing new state estimation methods Burgers’ equation is considered

an important first test of a method [8, 69, 78, 116].

The partial differential equation describing it is the following:

∂x

∂t
+

1

2

∂(x2)

∂χ
= ν

∂2x

∂χ2
; x(0, t) = x(1, t) = 0; x(χ, 0) = x0(χ), (2.5.1)

where ν = 0.01 is viscosity coefficient and (χ, t) ∈ (0, 1)× (0, T ).

We denote by xmj the unknown value at grid coordinates (j∆χ,m∆t) and ∆χ = 1/J .

We use a centered finite-difference discretization [8]:

xm+1
j − xmj

∆t
+

(xmj+1)2 − (xmj−1)2

4∆χ
− ν

(∆χ)2
(xm+1
j+1 − 2xm+1

j + xm+1
j−1 ) = 0. (2.5.2)

To demonstrate the benefits of multiple shooting, we choose parameters for which the

single shooting method in [7] exhibits instability. To make the problem closer to intended

application target, we also experiment with larger model error and sparser observations,

which are known to be more difficult [7]. We compare the solution of the multiple shooting

method with that obtained from directly minimizing the full-memory function (2.1.3) in our

examples. Note that the full-memory problem itself is not without difficulties: it cannot be

solved to high accuracy by LBFGS in any of our examples within 2,000 iterations. The norm

of gradient of (2.1.3) decreases slowly approaching the end and never gets below 10−6. In

this section, we refer to the approach of minimizing the full-memory function as 4D-Var for

brevity, although our example is (1+1)D.
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2.5.1 Results for Burgers’ equation

We choose ∆χ = 1/500, ∆t = ∆χ/500, background state xB = sin (πχ), and background

covariance QB = 0.01I. We generate the initial state x0 by sampling from the background

distribution, namely, x0 ∼ N (xB , QB). The rest of the states are generated by model

propagation plus a model error term, namely, xj+1 = Mj(xj) + ηj for 0 ≤ j < N , where

ηj ∼ N (0, Q) and Q = (∆t)2diag(2, 1, . . . , 1, 2) is the covariance of model error. This scaling

results in a standard deviation of about 10−3 for the model error for x. We note that, in our

examples, the largest absolute value of x is around 1, so this makes the smallest relative error

to be around 0.1%. In a subsequent example in §2.5.3, we take this standard deviation to be

10−4. These are small values, but they were chosen to be comparable to the corresponding

examples in [7] so that we can compare the performance of the method in this work to the

one in [7]. In that initial work, instability was a significant issue which led to choosing such

small values, and indeed, that algorithm blows up even for these examples. In §2.5.2 we will

present simulations for much larger model errors with standard deviations of 3.2 × 10−2,

that is, at least a few percents of the solution. The observations are generated by applying

the observation operator H(xj) = sin (xj) to the underlying states U = {x0, . . . , xN} plus a

mean zero normal observation error term to mimic the action of a noisy nonlinear operator.

The operator H(·) = sin (·) reflects linear response around zero and saturation away from

zero (assuming a range for xj of no more than π, which is true of the solution to the target

problem under our assumptions), which are characteristics of many sensors. The shape

of H(·) is not connected to the one of the initial condition, which is chosen to also be of

the sin(·) type in order to be simple and consistent with the boundary conditions. At the

end of this subsection, we give one example of a different choice of nonlinear observation

operator but with similar linearity/saturation features, and show that the results obtained

are similar. We note that for analytic simplicity our theoretical results consider only the

linear observation operator case; but we expect the nonlinear one to be even harder, so
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we could use the results to validate the outcome of multiple shooting. The covariance of

observation error is chosen as R = 0.01I. The observations are made with a gap of 10 steps

in time and space.

Our aim is to minimize the augmented Lagrangian function (2.3.1). For achieving our

limited-memory purpose, we use LBFGS [94] with p = 6 stored vectors. To obtain an initial

point for minimization, we first perturb the underlying state U by the error of the background

distribution. This mimics the situation where the estimation does not start cold; in other

words, initial estimates of the states do exist from previous runs of the algorithm. On each

shooting interval, we run the 4D-Var minimization of (2.2.10) with LBFGS for 200 iterations

to get a “warm start” state {w0, . . . , wN}. Note that 4DVar is run only in the beginning on

each interval separately on which p trajectories are stored. The largest amount of memory

required is then max{2d + 1 + N
d+1 , (p + 1) N

d+1} state vectors. We also note that applying

LBFGS to the 4DVar problem on the entire horizon requires (p+ 1)N state vectors, which is

most times d times larger. We add that in this and in the other numerical sections, it proved

difficult to find another starting strategy that will reliably produce a point from which the

multiple shooting algorithm will converge. On the other hand, this strategy does work and

does not alter the storage reduction benefits of our approach.

The checkpoints of the warm start state {w0, wP1−1, wP1 , . . . , wPd−1, wPd} are then used

as the initial point for minimizing (2.3.1). The Lagrangian multiplier and penalty parameters

are initially chosen as λ
(0)
i = 0, ψ

(0)
i = 0, µ(0) = 10 and are subject to the usual Lagrange

multiplier and penalty parameter updates [94, Framework 17.3].

N 800 1000 1200 1400 1600 2400

d 12 14 15 17 19 36
storage 434 469 525 546 560 455
storage
(p+1)N

7.8% 6.7% 6.3% 5.6% 5.0% 2.7%

Table 2.1: Number of checkpoint pairs d and maximal storage for ∆t = ∆χ/500.

In Table 2.1 we tabulate the number of checkpoint pairs d, number of stored vectors, and
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percentage of storage over full-memory storage for each of the examples in this section. For

N = 800, d = 12 is the smallest number of checkpoint pairs to make the computation stable.

For each 800 ≤ N ≤ 1600, the corresponding d is chosen so that d/
√
N = 12/

√
800. For

N = 2400, d is chosen to satisfy d/N = 12/800. We choose d ∝ N for N = 800 and 2400 to

demonstrate that the method is stable for increasing N and hence to verify Theorem 2.3.11.

For 1000 ≤ N ≤ 1600, we choose another relation d ∝
√
N to demonstrate empirically the

consequences of a more aggressive checkpointing schedule.

Figure 2.1 compares the function value reduction of (2.3.1) at each iteration of LBFGS for

increasing time horizon. For 800 ≤ N ≤ 1600, the rate of the initial descent (before iteration

50) becomes smaller as N increases, which indicates slower convergence for increasing N .

This means that a more aggressive checkpoint schedule (e.g., d ∝
√
N) can lead to slower

convergence. In contrast, the rate of descent for N = 2400 is closer to that of N = 800 and

much larger than those of 1000 ≤ N ≤ 1600. It indicates that the method not only is stable

but converges with similar speed for increasing N if d is allowed to increase linearly in N .

Figure 2.2 shows the norm of gradient at each iteration. Figure 2.3 shows the Frobenius norm

of constraints ci, gi, 1 ≤ i ≤ d at each iteration. Figure 2.4 plots the Euclidean distance

scaled by ∆χ of each iteration to the checkpoints of the full-memory 4D-Var solution. Note

that the distance is not scaled by the number of states and is expected to increase with d.

In this experiment, we see significant reduction (by 8–9 orders of magnitude) for both

the function value and the norm of gradient, even if the gradient did not decrease to a

point that triggered the Lagrange multiplier update. Figure 2.5 plots the solution surface

of multiple shooting and 4D-Var when N = 2400. Both of them approach a perturbed

version of the noise-free solution. The inviscid form (ν = 0) of Burgers’ equation exhibits

development of shocks. In our example, we employ a larger viscosity coefficient ν = 0.01

which smooths out the waves and acts against the steepening effect of nonlinearity. Hence

the solution surface of Burgers’ equation in our setup (top left of Figure 2.5) does not exhibit

such nonlinear effects. Figure 2.6 compares multiple shooting and 4D-Var solutions at fixed
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Figure 2.1: Function value of (2.3.1) at each
iteration of LBFGS for ∆t = ∆χ/500 and
N = 800, 1000, 1200, 1400, 1600, 2400.

Figure 2.2: Gradient norm of (2.3.1) at each
iteration of LBFGS for ∆t = ∆χ/500 and
N = 800, 1000, 1200, 1400, 1600, 2400.

Figure 2.3: Norm of constraint at
each iteration of LBFGS in minimizing
(2.3.1) for ∆t = ∆χ/500 and N =
800, 1000, 1200, 1400, 1600, 2400.

Figure 2.4: Distance to 4D-Var solution
at each iteration of LBFGS in minimiz-
ing (2.3.1) for ∆t = ∆χ/500 and N =
800, 1000, 1200, 1400, 1600, 2400.
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Figure 2.5: Exact solution of Burgers equation (top left), underlying state (top right) and
states estimated with multiple shooting and 4D-Var for ∆t = ∆χ/500 and N = 2400.

time and space nodes. Note that the two solutions are both close to the underlying state

so that the trajectories overlap for most of the part. Although the problem is not solved

to high accuracy as suggested by the norm of the gradient and norm of the constraint, we

conclude that it does approach the 4D-Var solution.

From the simulations we see that keeping N/d fixed (at its lowest value) results in faster

convergence compared with the alternatives. We thus conclude that the statement of Theo-

rem 2.3.11 is satisfied, although its conditions are stronger than the case tested here (we did

not enforce small nonlinearity and linearity of the observation operator). However, for the

case of smaller N (e.g., 800 to 1600), even increasing d slower than linear in N (e.g.,
√
N)

would give stable results and thus even more memory savings at a cost of somewhat slower

convergence.

To illustrate the effect of the observation mapping, we apply a different nonlinear operator

H̃j(xj) = 1/
(
1 + e−xj

)
−1/2 which also exhibits linear response around zero and saturation

away from zero. For N = 800, d = 12 and all the other parameters staying the same,
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Figure 2.6: Underlying state, multiple shooting solution and 4D-Var solution at fixed time
and space node for ∆t = ∆χ/500 and N = 2400.

Figures 2.7 and 2.8 show the function value reduction and the norm of gradient of (2.3.1) at

each iteration of LBFGS. The performance is similar to applying Hj(xj) = sin (xj) which is

shown in Figures 2.1 and 2.2. Hence we conclude that the effect of the choice of observation

mapping appears to be small.

2.5.2 Larger model error

In this section, we experiment with increased model error. We choose ∆χ = 1/500, ∆t =

∆χ/1000, and a background covariance matrix QB = 0.01I. The covariance for the model

error and observation error are chosen to be 10−3I. Observations are reduced to every 10

steps in time and every 100 steps in space. To initialize the minimization of (2.3.1), we run

the 4D-Var minimization on one interval, and for the next interval we run 4D-Var constrained

at the checkpoint by the solution from the previous interval.

Figure 2.9 shows the augmented Lagrangian function value decrease for N = 500 and

number of checkpoint pairs d = 38. Figure 2.10 shows the norm of the gradient. Figure 2.11
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Figure 2.7: Function value of (2.3.1) at each
iteration of LBFGS for ∆t = ∆χ/500 and

N = 800 under observation mapping H̃(·).

Figure 2.8: Gradient norm of (2.3.1) at each
iteration of LBFGS for ∆t = ∆χ/500 and

N = 800 under observation mapping H̃(·).

Figure 2.9: Function value of (2.3.1) at each
iteration of LBFGS for ∆t = ∆χ/1000, Q =
10−3I, N = 500 and d = 38.

Figure 2.10: Gradient norm of (2.3.1)
at each iteration of LBFGS for ∆t =
∆χ/1000, Q = 10−3I, N = 500 and d = 38.

compares the full-memory 4D-Var solution with that of multiple shooting. Increased model

error results in the rough surface of the underlying states plot in Figure 2.11. Figure 2.12

compares the 4DVar and multiple shooting solutions at fixed time and space nodes. Note

that the two solutions are close to each other so that their trajectories overlap.

Both the function value and the norm of the gradient converge slower after some sig-

nificant initial progress. Since the norm of the gradient stalls and fails to progress below

0.1, we do not observe either Lagrangian multiplier or penalty parameter update during the

experiments. However, both the function value and the norm of the gradient achieve 4 to 6
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Figure 2.11: Underlying states, solution surface of multiples shooting and 4D-Var for ∆t =
∆χ/1000, Q = 10−3I, N = 500 and d = 38.

Figure 2.12: Underlying state, multiple shooting solution and 4D-Var solution at fixed time
and space nodes for ∆t = ∆χ/1000, Q = 10−3I, N = 500 and d = 38.
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Figure 2.13: Function value of (2.3.1) at
each iteration of LBFGS for ∆t = ∆χ/34,
N = 300 and d = 30. Observation gaps are
30 steps temporally and 200 steps spatially.

Figure 2.14: Gradient norm of (2.3.1) at
each iteration of LBFGS for ∆t = ∆χ/34,
N = 300 and d = 30. Observation gaps
are 30 steps temporally and 200 steps spa-
tially. Reference line indicates Lagrangian
multiplier updates.

orders of magnitude decrease, and the multiple shooting solution approaches reasonably well

the full-memory 4D-Var solution. Clearly the problem has too much noise for the estimates

to be close to the underlying state. However, the approach does show that multiple shooting

has a performance comparable to that of 4DVar, with much less memory, and that is the

goal of this project.

With the same parameters as those in [7, §5.2.5] but with a much longer horizon, N = 500

as opposed to N = 110, our method is able to produce iterations of moderate size, make

nontrivial progress through minimization, and result in solutions comparable to that of full-

memory method for a longer time horizon. Counting the storage during warm start, gradient

evaluation, and stored vectors of LBFGS, the maximal number of states stored at any time

of the algorithm is 91 and is about 18.2% of the total number of states N . The storage used

by multiple shooting is 2.6% of the memory used by full-memory minimization using LBFGS

with 6 vectors.
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Figure 2.15: Norm of constraint at each it-
eration of LBFGS in minimizing (2.3.1) for
∆t = ∆χ/34, N = 300 and d = 30. Ob-
servation gaps are 30 steps temporally and
200 steps spatially.

Figure 2.16: Distance to 4D-Var solution
at each iteration of LBFGS in minimizing
(2.3.1) for ∆t = ∆χ/34, N = 300 and
d = 30. Observation gaps are 30 steps tem-
porally and 200 steps spatially.

2.5.3 Sparser observations

In this section, we consider the case where observations are sparser in both time and space.

As in [7, §5.2.5], we choose ∆χ = 1/700, ∆t = ∆χ/34, and background covariance as

QB = 10−3I. In particular, the much larger time step tests the ability of the approach to

cope with increased instability. The covariance matrix for the model error and observation

error are Q = 10−8I and 0.01I, respectively. Observations are made every 30 steps in time

and every 200 steps in space. The initial point for multiple shooting is the same warm-

start point described in the precedent section. The parameters are the same as those in

[7, §5.2.5] but with a longer horizon. We take N = 300 as opposed to N = 32 in [7], and

we take number of checkpoint pairs d = 30. We note that this setup is significantly far

from satisfying the observability condition. Indeed, the rank of the observability matrix in

Definition 2.3.1 cannot be larger than 8, whereas Theorem 2.3.11 required a full rank, that

is, 701.

For this experiment, Figure 2.13 shows the decrease of function value (2.3.1). Only

the first 30 iterations are plotted since the function value stalls afterward. Lagrangian
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multipliers are updated at iteration 80 and 230, as shown by the vertical reference line in

Figure 2.14. Figure 2.15 shows the norm of constraints ci and gi at each iteration. The

horizontal reference line plotted is the norm of constraint for the 4D-Var solution. Figure

2.16 shows the Euclidean distance of each iteration to the 4D-Var solution scaled by ∆χ.

The decrease in the norm of the gradient is significant (3–4 orders of magnitude), and the

norm of the constraint is reduced by about 1 order of magnitude. The distance to the 4D-Var

solution shows little progress compared with the initial guess obtained by running 4D-Var

on each shooting interval, but Figures 2.15 and 2.16 suggest the reason is primarily that our

warm-starting using 4D-Var on each shooting interval produces an initial point for multiple

shooting close to the 4D-Var solution itself. On the other hand, even if in the distance

to the 4D-Var solution there is not much progress beyond the warm start, the gradient is

significantly reduced, and we can evaluate the convergence properties of the method, running

LBGFS to detect whether we see an improvement, while needing less memory than 4D-Var

with LBFGS (only 3.4% of the latter’s). Therefore the multiple shooting method provides

an improvement over 4D-Var with LBFGS in terms of memory and over single shooting in

terms of stability even in this case, which is significantly outside the applicability of Theorem

2.3.11.

2.6 Conclusions

Determining the best state estimation for dynamical systems with model error raises new

challenges in developing algorithms that reduce storage while maintaining stability. The

reason is that, as opposed to the strongly constrained setups where only the initial state is

free, all the states of a trajectory contribute to the number of degrees of freedom.

We present an approach where the number of degrees of freedom is reduced by the

optimality conditions, as we previously introduced in [7], but now coupled with a multiple

shooting approach in an augmented Lagrangian framework to improve stability. The multiple

shooting approach can use a reverse recursion scheme on each shooting interval to ensure
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that the memory requirements for computing one gradient of the augmented Lagrangian

never exceed 2d + 1 + N
d+1 state vectors, where d + 1 is the number of shooting intervals

and N is the length of the horizon. The full-memory data assimilation method, on the

other hand, needs to store N + 1 state vectors when evaluating its gradient. We prove

in Theorem 2.3.11 that under an observability assumption and when the nonlinearity is

small relative to the parameter characterizing the observability, the condition number of

the augmented Lagrangian matrix is bounded above, irrespective of the number of shooting

intervals. This ensures that the multiple shooting approach is stable: the method does

not exhibit exponentially increasing error for an increasing size of the assimilation interval.

This is a feature not shared by the single shooting approach derived from [7]. Moreover, as

pointed out in the Discussion following Theorem 2.3.11 and Appendix A.1, multiple shooting

without observations still results in exponential increase of the condition number and thus

of the solution. Therefore both multiple shooting and sufficiently informative observations

appear to be necessary for stability to occur.

Our numerical simulations on cases described in [7] validate these points. First, for all of

them the single shooting method showed an exponential increase of the solution and ran into

overflow. For both small model error and larger model error setups, the multiple shooting

approach converges to a solution close to that of the full-memory method while using only a

fraction of the memory needed by the latter, never more than 8%. To achieve convergence, we

needed to use the full-memory approach but only on the smaller, shooting intervals to create

a good initial point for our multiple shooting approach. In the case of sparse observations,

this initialization strategy was responsible for much of the improvement of the method in

terms of distance to the full-memory 4D-Var solution, while using only 3.4% of the memory of

the latter. But with that initialization strategy, which does not alter our maximum memory

count, we reliably obtained reductions in the augmented Lagrangian gradients and solutions

close to the ones of the full-memory approach. We are not aware of another optimization-

based approach to reduce the memory requirements of weakly constrained data assimilation
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approaches. From the numerical experiments and the theory, we conclude that, particularly

in the data-rich case, the multiple shooting method appears promising at reducing memory

and producing a point of a quality comparable to that of the full-memory case without the

instability of the previous single shooting approach.

We plan to explore new initialization strategies that empirically appear to be important

for the robustness of the overall method. The method also has good potential for paralellism,

although in that case the memory saving is less of a benefit. An interesting question would

be to tie the stability of multiple shooting to a condition requiring enough information in the

observations but weaker than observability on one shooting interval. We have observed the

good behavior of the multiple shooting aproach in several such instances, but it is unclear

how such a condition might be expressive enough and practical.
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CHAPTER 3

EXPONENTIALLY ACCURATE TEMPORAL

DECOMPOSITION FOR LONG-HORIZON

LINEAR-QUADRATIC DYNAMIC OPTIMIZATION

3.1 Introduction

Long-horizon dynamic optimization problems appear in several application areas [11, 13,

24, 28, 40, 54, 63] and pose significant computational challenges because of the increase in

the number of variables in proportion to the number of time periods considered. One very

long horizon instance is optimal planning in the electrical power industry for transmission

or generation expansion [11], which we now describe in some detail.

Such a planning analysis involves a production cost model (PCM). A PCM simulates the

operation of generation and transmission systems by finding, during each time interval, the

least-cost solution to generating sufficient energy to meet demand. As an abstraction, it is an

optimal control problem, which can have nonlinear dynamics, control and state constraints.

Most studies require running a PCM on an hourly scale for 1–20 years under different sce-

narios in order to address the operation and reliability aspects of the proposed transmission

or expansion plan [101]. Doing so can result in a very large number of periods. For example,

if a PCM is run for 12 years with an hourly scale, the number of time periods would exceed

100,000. Added to this are the tens of thousands of degrees of freedom at one time point,

which are characteristic for planning at the interconnect level, making the problem a daunt-

ing one to solve. As a result, many planning studies, which involve investments of billions

of dollars, are done with multiple approximations to make them fit the computing resources

[91].

Researchers have therefore sought to identify approaches for long-horizon dynamic opti-

mization that result in efficient temporal parallelism to address this complexity by bringing
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to bear more computing power. Approaches have included temporal decomposition strate-

gies using Lagrangian decomposition [13, 54, 63] and a two-level optimization formulation

with the lower level derived from a decomposition approach [28]. These ideas create the

opportunity for faster computation using parallelism. For instance, a heuristic decompo-

sition algorithm is presented in [40] for scheduling a batch chemical plant. The problem

is decomposed into more tractable subproblems that are solved to optimality. Empirical

evidence suggests largely reduced computational efforts and reasonable accuracy. Strengths

and weaknesses of a number of temporal decomposition methods are investigated in [13].

A multiperiod nonlinear programming model is developed in [63] for production planning

and distribution. Temporal decomposition is used for the solution and is shown to generate

faster computation and good accuracy of the optimal solutions.

A recent approach for PCMs is to partition the simulation horizon and turn the annual

problem into multiple overlapping weekly/monthly problems [11] that compute the contri-

bution of an inner time interval only to the overall objective and then add up all these

contributions. While such an approach cannot be an exact decomposition, it can be com-

puted in parallel without information exchange between the problems on each decomposition

interval, and therefore the computation can be sped up. Moreover, researchers have shown

empirically in [11] that the error in the approach drops rapidly with the increase of the buffer

region (the overlapping area) surrounding the inner time interval.

Our aim here is to provide theoretical support for approximate temporal decomposition

of dynamic optimization problems with long horizons using overlapping intervals such as

the work in [11]. A particular focus is on characterizing the error made by using such

approximations.

For this initial foray, we will use a considerably simpler model than the PCMs in [11] or

other planning models [63]. That is, our formulation is the following optimization problem:

minxk,uk

n2−1∑
k=n1

(
uTkRkuk + (xk − dk)TQk(xk − dk)

)
(3.1.1a)
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+(xn2 − dn2)TQn2(xn2 − dn2) (3.1.1b)

s.t. xk+1 = Akxk +Bkuk, xn1 = x0
n1 , (3.1.1c)

lk ≤ uk ≤ bk, n1 ≤ k ≤ n2 − 1, (3.1.1d)

for some initial value x0
n1 given. We call such a problem linear-quadratic dynamic optimiza-

tion problem. Such problems are known under various other names such as linear-quadratic

(model predictive) control [46], or dynamic programming [20]. We choose the name dynamic

optimization for problem (3.1.1) [26, 42] as we are interested in finding the solution of the

optimization problem rather than computing the control rule or policy functions themselves.

We will, however, use the terms control and dynamic programming as well when referring

to the existing results and their interpretations. In (3.1.1) [n1, n2] is the entire time horizon

under consideration, and xn1 is known. We refer to xk, uk, and dk respectively as the supply

or generation, control, and reference trajectory (also known as demand in PCM contexts).

Problem (3.1.1) has a few simplifications and changes compared with [11, 63]: our objective

is quadratic and not linear, and we do not allow for integer variables. We note that these dif-

ferent features are used in the target areas. Quadratic objectives are sometimes used instead

of linear for the one-period cost function [71]. Economic dispatch, that is, a version of PCM

where the scheduling decisions are all known in advance and thus no integer variables are

present, is used in planning studies [19]. A more important approximation is that we do not

allow for hard path constraints. For example, supply and demand mismatch is penalized in

the objective but not enforced to be zero. Approaches exist to accommodate supply equaling

demand, at least in some circumstances, as will be done in our numerical example in Section

3.4; we do not claim, however, that this can be done in general. Given the complexity of the

analysis with even this simplified formulation, extensions that obtain results like ours under

circumstances closer to [11, 63] will be investigated in future research.

Our approach, however, retains two important features from planning models that allow

us to investigate approximate temporal decomposition: intertemporal constraints (3.1.1c)
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Figure 3.1: Illustration of the temporal decomposition scheme with three decomposition in-
tervals. The entire horizon [n1, n2] is decomposed into subintervals S1:3, which are embedded
in regions F1:3 correspondingly. The red areas are buffer regions, each of length Ω.

and box constraints on the control (3.1.1d). In particular, it allows us to substantiate a key

insight that makes the temporal decomposition approach work efficiently. That is, when the

system (3.1.1c) is controllable, the closed loop control law attached to the optimal active

set results in an asymptotically stable policy [20]. In turn, the effect of perturbations of the

parameters dk and initial state xn1 on the solution decreases exponentially with the distance

in time between the perturbation moment and the index of the state. Hence, the system can

forget its past and ignore its future exponentially fast with the distance from both.

This observation suggests the following temporal decomposition approach. Given a fixed

time period Si ⊂ [n1, n2], we are interested in finding a shorter embedding interval Fi with

Si ⊂ Fi ⊂ [n1, n2], so that the solution on Si obtained by solving problem (3.1.1) on Fi

is close to the one obtained by solving problem (3.1.1) on [n1, n2]. As a result, the entire

horizon can be decomposed approximately, but with little error, into pieces like Si, and the

optimal solutions on each piece can be computed in parallel by solving problem (3.1.1) on

Fi. Figure 3.1 illustrates this decomposition scheme. The temporal decomposition approach

then consists of approximating the optimal value of problem (3.1.1) on [n1, n2] by the sum of

the optimal values on Si obtained from solving (3.1.1) on Fi, over all i. A formal definition

of this decomposition approach is presented in Section 3.3.

Our work is to estimate the error of this decomposition approach. In our proofs we will

use several results from optimal control theory, which were done in the case of dk = 0 and in

the absence of the bound constraints (3.1.1d), with respect to the notations in (3.1.1). In that
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case, the solution of (3.1.1) is provided by the linear-quadratic regulator (LQR), a feedback

control law to achieve minimal cost. A derivation of the finite-horizon, discrete-time LQR

based on the dynamic programming principle can be found in [20], which also shows that

the resulting optimal trajectory tracks zero exponentially fast for time-independent linear

systems. In this work, one particular control feature we will characterize and use is the

rate of stabilization of the optimal trajectory for discrete time, time-varying linear-quadratic

dynamic optimization problems. To this end, Zhang et al. [124] derive some important

properties for the finite-horizon and infinite-horizon value function of the switched system

discrete-time linear-quadratic dynamic optimization. The authors show that under some

mild assumptions, the optimal trajectory stabilizes exponentially, and they give a workable

estimate of that rate that we will use here. Some algorithms based on those theoretical

results are also shown in [123] and [125]. A similar result to our Theorem 3.3.11 that upper

bounds the approximation error of the optimal cost for the temporal decomposition approach

is given in [70]. The authors show that, for a class of constrained discrete-time systems,

the infinite-horizon cost associated with the moving-horizon feedback law converges to the

optimal infinite-horizon cost as the moving horizon is extended. Our work inherits similar

temporal decomposition features as that in [70]. However, in this chapter we additionally

prove that, with a long but finite horizon, the solutions on the decomposition intervals

converge as the embedding regions increase. Moreover, we characterize the convergence rate

for the solutions and optimal cost as exponentially fast, which is crucial for the approach to

be practical.

The rest of the chapter is organized as follows. Section 3.2 proves results about the box

constrained control linear-quadratic problem. Section 3.3 describes the temporal decompo-

sition approach and proves that, based on the results derived in Section 3.2, the error of the

temporal decomposition method decays exponentially in the size of the embedding interval.

In Section 3.4, we illustrate the theoretical findings by applying the temporal decomposition

approach to a production cost model using real demand data. Proofs of results that are not
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central to the development of the main ideas are presented in Appendix B.1.

3.2 Box constrained control linear-quadratic problem

In this Section, we derive results for a sub-problem of the following box constrained control

linear-quadratic problem:

min Γn1:n2(un1:n2−1, xn1+1:n2) (3.2.1a)

∆
=

n2−1∑
k=n1

(
uTkRkuk + (xk − dk)TQk(xk − dk)

)
(3.2.1b)

+ (xn2 − dn2)TQn2(xn2 − dn2) (3.2.1c)

s.t. xk+1 = Akxk +Bkuk, xn1 = x0
n1 , (3.2.1d)

lk ≤ uk ≤ bk, n1 ≤ k ≤ n2 − 1, (3.2.1e)

where the initial state x0
n1 is given. Throughout the article, we have that Ak ∈ Rn×n,

Bk ∈ Rn×m, and Rk, Qk are positive definite matrices. We make the following uniform

boundedness assumption about the system.

Assumption 3.2.1. For any n1, n2, n1 ≤ q ≤ n2, we have the following:

(a) ‖Aq‖2 ≤ CA, ‖Bq‖2 ≤ CB, ‖Qq‖2 ≤ CQ, ‖Rq‖2 ≤ CR for some CA, CB, CQ,

CR > 0.

(b) λmin(Qq) ≥ λQ > 0, λmin(Rq) ≥ λR > 0.

(c) ‖bq‖, ‖lq‖ ≤ U for some U > 0.

The sub-problem of (3.2.1) we consider is an equality constrained problem obtained by

considering some active subset of the box control constraints (3.2.1e).

3.2.1 An equality constrained sub-problem
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To define the equality constrained sub-problem, we let Ik ⊂ {1, . . . ,m} be some index set

for the elements of uk attaining either the upper or lower bound of (3.2.1e), and denote

Nk = Ick. Let ei be the ith standard basis vector. We associate Ik with a selection matrix

Ck and a vector b̄k defined as follows:

Ck(i, :) =


eTji
, uk(ji) = lk(ji)

−eTji , uk(ji) = bk(ji)

, b̄k(i) =


lk(ji), uk(ji) = lk(ji)

−bk(ji), uk(ji) = bk(ji)

, (3.2.2)

where i = 1, . . . , |Ik|, and ji is the ith element in Ik. With these definitions, the equality

constraints corresponding to Ik can be expressed as Ckuk = b̄k, and the equality constrained

sub-problem is defined as

minxk,uk

n2−1∑
k=n1

(
uTkRkuk + (xk − dk)TQk(xk − dk)

)
+ (xn2 − dn2)TQn2(xn2 − dn2)

s.t. xk+1 = Akxk +Bkuk, xn1 = x0
n1 ,

Ckuk = b̄k, n1 ≤ k ≤ n2 − 1.

(3.2.3)

Note that when Ik is the active set of problem (3.2.1) at optimality, problems (3.2.3) and

(3.2.1) have the same solutions.

Problem (3.2.3) is the primary topic we consider in this Section, and will appear later in

Section 3.3 in a sensitivity analysis needed to prove temporal decomposition. In the rest of

this Subsection, we focus on deriving properties for the solution of problem (3.2.3) for some

index set Ik. In particular, we will show the exponential decay property of the dependence

of the solutions of problem (3.2.3) on the initial state and terminal reference under certain

conditions. This is crucial to establish the main temporal decomposition results in Section

3.3. To start with, we note that a reduced problem can be obtained by eliminating the

equality constraints of (3.2.3). We partition uk, Bk and Rk into blocks corresponding to Ik
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and Nk. Denote

ũk = [uk(i)]i∈Ik , B̃k = [Bk(:, i)]i∈Ik

to be the elements (or columns) of uk (or Bk) corresponding to the equality index set Ik.

Similarly, for Nk, denote correspondingly

ûk = [uk(i)]i∈Nk , B̂k = [Bk(:, i)]i∈Nk .

Also, Rk can be partitioned into blocks corresponding to the index sets as follows:

R̂k = [Rk(i, j)]i∈Nk,j∈Nk , R̃k = [Rk(i, j)]i∈Ik,j∈Ik , R̄k = [Rk(i, j)]i∈Ik,j∈Nk .

Then we have that

Bkuk = B̂kûk + B̃kũk,

uTkRkuk = ûTk R̂kûk + 2ũTk R̄kûk + ũTk R̃kũk,

and that the equality constraint Ckuk = b̄k is equivalent to ũk = b̃k, where the ith element

of b̃k is lk(ji) (or bk(ji)) if uk(ji) attains the lower bound lk(ji) (or the upper bound bk(ji))

for i ∈ {1, . . . , |Ik|}, ji ∈ Ik. Define a change of variable as follows:

vk = ûk + R̂−1
k R̄k b̃k,

fk = B̃k b̃k − B̂kR̂−1
k R̄k b̃k.

(3.2.4)

Note that R̂k is invertible since Rk is positive definite. Then (u∗k, x
∗
k) is the solution of

problem (3.2.3) if and only if (v∗k, x
∗
k), defined by (3.2.4), is the solution of the following
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problem:

minxk,vk

n2−1∑
k=n1

(
vTk R̂kvk + (xk − dk)TQk(xk − dk)

)
(3.2.5a)

+(xn2 − dn2)TQn2(xn2 − dn2) (3.2.5b)

s.t. xk+1 = Akxk + B̂kvk + fk, n1 ≤ k ≤ n2 − 1, xn1 = x0
n1 . (3.2.5c)

One can easily verify that (3.2.4) defines a one-to-one correspondence between the feasible

sets of problems (3.2.3) and (3.2.5) and that the objective functions differ by a constant for

the corresponding elements in the feasible sets. Note that the optimal values of problems

(3.2.3) and (3.2.5) differ by a constant. However, since we are only interested in the solutions

of problem (3.2.3) with which the solutions of problem (3.2.5) have a one-to-one relationship

(3.2.4), we thus solve problem (3.2.5) in order to investigate properties for the solutions of

(3.2.3).

Problem (3.2.5) is a linear-quadratic optimal control problem for which we need a notion

of controllability for the sequence pair {Ak, B̂k}k=n1:n2 . Note that B̂k is uniquely determined

by the index set Ik under consideration, and hence the choice of the index sets I ∆
= {Ik}

will affect the controllability of the resulting {Ak, B̂k}. We make the following definition of

controllability.

Definition 3.2.2. For some index sets I = {Ik}k=n1:n2, let B̂k = [Bk(:, i)]i∈Ick . With some

0 < t < n2 − n1, λC > 0,

(a) define the controllability matrix associated with time steps [q, q + t− 1] as

Cq,t(I) =

[
B̂q+t−1 Aq+t−1B̂q+t−2 . . . ,

(∏t−1
l=1 Aq+l

)
B̂q

]
;

(b) the index set I is uniformly completely controllable with parameter λC , denoted as

UCC(λC), if the sequence pair {Ak, B̂k} is uniformly completely controllable with pa-
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rameter λC [70, Definition 3.1], i.e., for any n1 ≤ q ≤ n2,

λmin

(
Cq,t(I)CTq,t(I)

)
≥ λC > 0.

Now we derive the optimal control law and optimal states for problem (3.2.5) using a

dynamic programming approach. When dk ≡ 0, ∀k ∈ n1 : n2 and fk ≡ 0, ∀k ∈ n1 : (n2−1),

the solution to problem (3.2.5) is well known from classical dynamic programming references.

For our temporal decomposition, however, the dependence on dk is crucial, whereas fk 6= 0

is needed as an artifact of the box constraints. To simplify our notations, we use a reverse

product notation as follows.

Definition 3.2.3. We define

n∏
i=m

Ai =


An . . . Am, n ≥ m

I, n < m.

Proposition 3.2.4. For n1 ≤ k ≤ n2 − 1, the optimal control laws for problem (3.2.5) are

v∗k(xk) = Lkxk +W−1
k

n2∑
i=k+1

B̂Tk

(
Mk+1
i

)T
di

+W−1
k

n2−1∑
i=k+1

B̂Tk

(
Sk+1
i

)T
fi −W−1

k B̂kKk+1fk,

(3.2.6)

where

Kn2 = Qn2 , (3.2.7a)

Kk = ATk (Kk+1 −Kk+1B̂kW
−1
k B̂Tk Kk+1)Ak +Qk, n1 ≤ k ≤ n2 − 1, (3.2.7b)

Wk = R̂k + B̂Tk Kk+1B̂k, n1 ≤ k ≤ n2 − 1, (3.2.7c)

Lk = −W−1
k B̂Tk Kk+1Ak, n1 ≤ k ≤ n2 − 1, (3.2.7d)
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Dk = Ak + B̂kLk, n1 ≤ k ≤ n2 − 1, (3.2.7e)

Mk
i = Qi

i−1∏
l=k

Dl, i ≥ k, n1 ≤ k ≤ n2, (3.2.7f)

Ski = −Ki+1

i∏
l=k

Dl, i ≥ k, n1 ≤ k ≤ n2 − 1. (3.2.7g)

Proof. See Appendix B.1.1.

We note that (3.2.7b)–(3.2.7e), and the expression of v∗k when dk ≡ 0, fk ≡ 0 are the

results of classical LQ control.

Definition 3.2.5. For n1 ≤ k ≤ n2 − 1, define

Ek = B̂TkW
−1
k B̂k,

where Wk is defined in (3.2.7c).

Proposition 3.2.6. Let x∗n1+1:n2
be the optimal states of (3.2.5). Then we have that

x∗k =

 k−1∏
i=n1

Di

xn1 +

n2∑
i=n1+1

Cki di +

n2−1∑
i=n1

F ki fi, (3.2.8)

where

Cki =

min (i,k)−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ms+1
i

)T
,

F ki =

min (i,k)−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+

 k−1∏
l=i+1

Dl

 (I − EiKi+1) 1(k≥i+1).

(3.2.9)

Proof. See Appendix B.1.2

Next we investigate the properties of Kk defined by the Riccati recursion (3.2.7b) and

the closed-loop matrices Dk defined in (3.2.7e). In the following, we only consider the index

sets that are UCC(λC) according to Definition 3.2.2.
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Proposition 3.2.7. Under Assumption 3.2.1, if the index set I is UCC(λC), then for any

n1 ≤ q ≤ n2, we have that ‖Kq‖2 ≤ β for some β > 0 independent of n1, n2, and the

particular choice of I.

Proof. We note from the definition (3.2.7b) of matrix Kq that, while it is a function of the

quantities in Definition 3.2.2, it does not depend on the reference dk, or the shift fk. We

will thus reason about it on the system for which dk and fk are 0. That is, for any xq ∈ Rn,

consider the problem

minuq:n2−1

n2−1∑
k=q

uTk R̂kuk + xTkQkxk + xTn2Qn2xn2 (3.2.10a)

s.t. xk+1 = Akxk + B̂kuk, q ≤ k ≤ n2 − 1. (3.2.10b)

For k ≥ q, successively applying xk+1 = Akxk + B̂kuk gives that for j ≥ 0

xq+j −

j−1∏
l=0

Aq+l

xq =

[
B̂q+j−1 Aq+j−1B̂q+j−2 . . .

(∏j−1
l=1 Aq+l

)
B̂q

]
uq+j−1

...

uq

 ,
(3.2.11)

and for j = t, (3.2.11) reduces to

xq+t −

(
t−1∏
l=0

Aq+l

)
xq = Cq,t


uq+t−1

...

uq

 .

I being UCC(λC) implies Cq,t is uniformly completely controllable, and in particular that
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Cq,t is full rank. Then there exists û = (ûTq , . . . , û
T
q+t−1)T so that

−

(
t−1∏
l=0

Al

)
xq = Cq,t


ûq+t−1

...

ûq

 . (3.2.12)

Several û satisfy this relationship; we consider the one defined by

û = −CTq,t(Cq,tCTq,t)−1

(
t−1∏
l=0

Aq+l

)
xq.

Denote the corresponding states generated with ûq:q+t−1 as x̂q:q+t, then x̂q+t = 0 by

(3.2.12).

Assumption 3.2.1 implies that

max
1≤j≤t

∥∥∥∥[B̂q+j−1 Aq+j−1B̂q+j−2 . . .
(∏j−1

l=1 Aq+l

)
B̂q

]∥∥∥∥
2

≤ max
1≤j≤t

(
CB + CACB + · · ·+ C

j−1
A CB

)
≤
CB
(
1− CtA

)
1− CA

∆
= M.

Then from Assumption 3.2.1 and Definition 3.2.2, we have that

‖û‖ ≤ M

λC
CtA‖xq‖. (3.2.13)

From (3.2.11), we have, for 1 ≤ j ≤ t− 1, that

‖x̂q+j‖ ≤ C
j
A‖xq‖+M‖û‖ ≤

(
C
j
A +

M2

λC
CtA

)
‖xq‖. (3.2.14)

Now we let ûk = 0 for k ≥ q+ t. Then it follows that x̂k = 0 for k ≥ q+ t. Also note that

(3.2.10) is a standard linear-quadratic regulator problem, and the optimal value is given by
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xTq Kqxq [20]. As a result, we have that

xTq Kqxq = min
uk

n2−1∑
k=q

xTkQkxk + uTk R̂kuk + xTn2Qn2xn2

≤
n2−1∑
k=q

x̂TkQkx̂k + ûTk R̂kûk + x̂Tn2Qn2x̂n2

≤
q+t−1∑
k=q

x̂TkQkx̂k + ûTk R̂kûk

≤ CQ

q+t−1∑
k=q

‖x̂k‖2 + CR

q+t−1∑
k=q

‖ûk‖2

(3.2.13),(3.2.14)
≤ CQ

(
1 +

t−1∑
i=1

(
CiA +

M2

λC
CtA

)2
)
‖xq‖2 + CR

M2C2t
A

λ2
C

‖xq‖2.

Letting

β = CQ

(
1 +

t−1∑
i=1

(
CiA +

M2

λC
CtA

)2
)

+ CR
M2C2t

A

λ2
C

completes the proof. Note that β only depends on the quantities in Definition 3.2.2 and

Assumption 3.2.1, which are independent of n1, n2, and the particular choice of I given it

is UCC(λC).

In the following, we prove that the closed-loop system is asymptotically stable with an

exponential decay rate. While the asymptotic result is well known, we need bounds on the

decay rate at any time index; this is what we prove below. The proof is motivated by [124].

Proposition 3.2.8. Under Assumption 3.2.1, if the index set I is UCC(λC), then for any

q ≤ j ≤ n2 − 1, we have that

∥∥∥∥∥∥
j∏
l=q

Dl

∥∥∥∥∥∥
2

≤ C1ρ
j−q+1,

where C1 =
√
β/λQ, ρ = 1/

√
1 + (λQ/β) and C1, ρ are independent of n1, n2, and the
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particular choice of I.

Proof. It is shown in [20] that the recursion (3.2.7b) is equivalent to

Kk = Dk
TKk+1Dk +Qk + Lk

T R̂kLk. (3.2.15)

For q ≤ j ≤ n2− 1, define xj+1 = Djxj . Note that in this proof, xj is a synthetic sequence,

and not the solution of the problems (3.2.1) or (3.2.3). Therefore the properties of xj defined

here do not necessarily reflect those of the solution sequence. Then (3.2.15) and Proposition

3.2.7 imply that

xTj Kjxj ≥ xTj+1Kj+1xj+1 + xTj Qjxj

≥ xTj+1Kj+1xj+1 +
λQ
β
xTj Kjxj

≥
(

1 +
λQ
β

)
xTj+1Kj+1xj+1.

(3.2.16)

Here we used the bounds from Assumption 3.2.1 and the fact that xTj Kjxj ≥ xTj+1Kj+1xj+1,

as implied by (3.2.15) and the positive definiteness of Qk, R̂k. Also we have that

xTj Kjxj ≥ xTj Qjxj ≥ λQ‖xj‖2. (3.2.17)

As a result, for n2 − 1 ≥ j ≥ q, we have the following:

∥∥∥∥∥∥
j∏
l=q

Dlxq

∥∥∥∥∥∥
2

= ‖xj+1‖2
(3.2.17)
≤ 1

λQ
xTj+1Kj+1xj+1

(3.2.16)
≤ 1

λQ(1 + λQ/β)
xTj Kjxj

(3.2.16)
≤ 1

λQ

(
1

1 + λQ/β

)j−q+1

xTq Kqxq

Prop 3.2.7
≤ β

λQ

(
1

1 + λQ/β

)j−q+1

‖xq‖2,
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where the third inequality is obtained by repeatedly applying (3.2.16).

We have the following uniform boundedness result of matrices frequently used in the rest

of this Section.

Lemma 3.2.9. Under Assumption 3.2.1, if the index set I is UCC(λC), then for any n1 ≤

k ≤ n2 − 1, we have that

‖Ek‖2 ≤ CE , ‖Lk‖2 ≤ CL, ‖fk‖2 ≤ l0,

for some CE, CL and l0 independent of n1, n2, and the particular choice of I. Here Ek is

defined in Definition 3.2.5, Lk in (3.2.7d), and fk in (3.2.4).

Proof. See Appendix B.1.3.

Next, we investigate properties of the optimal states x∗k and controls u∗k for problem

(3.2.3). Due to the one-to-one correspondence between solutions of problems (3.2.3) and

(3.2.5), we first consider the optimal states of (3.2.5) obtained in Proposition 3.2.6. We have

the following lemma characterizing the dependence of x∗k on di and fi.

Lemma 3.2.10. Let Cki and F ki be defined as in Proposition 3.2.6. Under Assumption

3.2.1, if the index set I is UCC(λC), we have that

‖F ki ‖2, ‖C
k
i ‖2 ≤ C2ρ

|i−k|,

for some C2 > 0 independent of n1, n2, and the particular choice of I. Here ρ =

1/
√

1 + (λQ/β) as in Proposition 3.2.8.

Proof. See Appendix B.1.4.

Proposition 3.2.8 and Lemma 3.2.10 establish the exponential decay properties with re-

spect to |k − n1| and |i− k| for matrices
∏k−1
i=n1

Di and Cki , which encode the dependencies
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of the optimal states x∗k of problem (3.2.5) on the initial value and the reference di, respec-

tively, by Proposition 3.2.6. This property is the key to prove the following main result of

this Section. Proposition 3.2.11 bounds the dependence of solutions x∗k, u∗k on the initial

value xn1 and terminal reference dn2 with an exponential term. The importance of this

result is shown in Section 3.3 when we investigate the sensitivity of problem (3.2.1) to the

initial value and terminal reference.

Proposition 3.2.11. Let x∗k and u∗k be the optimal states and controls of problem (3.2.3).

Under Assumption 3.2.1, if the index set I is UCC(λC), then we have that

‖∇xn1x
∗
k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2x
∗
k‖2 ≤ Z2ρ

n2−k, n1 + 1 ≤ k ≤ n2,

‖∇xn1u
∗
k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2u
∗
k‖2 ≤ Z2ρ

n2−k, n1 ≤ k ≤ n2 − 1,

for some Z1, Z2 > 0 independent of n1, n2, and the particular choice of I.

Proof. Due to the change of variable (3.2.4), the optimal states of problems (3.2.3) and

(3.2.5) are the same, and the unconstrained parts of the optimal controls differ by a constant

sequence. As a result, Proposition 3.2.6 and the optimal control law (3.2.6) give the following:

∥∥∥∇xn1x∗k∥∥∥2
=

∥∥∥∥∥∥
k−1∏
i=n1

Di

∥∥∥∥∥∥
2

Prop 3.2.8
≤ C1ρ

k−n1 ,

∥∥∥∇dn2x∗k∥∥∥2
=
∥∥∥Ckn2∥∥∥2

Lemma 3.2.10
≤ C2ρ

n2−k,∥∥∥∇xn1u∗k∥∥∥2
=
∥∥∥∇xn1v∗k∥∥∥2

(3.2.6)
= ‖Lk∇xn1x

∗
k‖2

Lemma 3.2.9
≤ CL

∥∥∥∇xn1x∗k∥∥∥2
≤ CLC1ρ

k−n1 ,

∥∥∥∇dn2u∗k∥∥∥2
=
∥∥∥∇dn2v∗k∥∥∥2

(3.2.6)
≤ CL

∥∥∥∇dn2x∗k∥∥∥2
+

∥∥∥∥∥∥∥W−1
k B̂Tk

 n2−1∏
l=k+1

Dl

T Qn2
∥∥∥∥∥∥∥

2
Prop 3.2.8
≤ CL

∥∥∥∇dn2x∗k∥∥∥2
+
CQCB
λR

C1ρ
n2−k−1

≤ CLC2ρ
n2−k +

CQCB
λR

C1ρ
n2−k−1.
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Denoting Z1 = max (C1, C1CL), and Z2 = max
(
C2, CLC2 + CQCBC1/λRρ

)
completes the

proof.

The next result gives an uniform upper bound for the solutions of problem (3.2.3) whose

index set is UCC(λC). First, we make the following assumptions about the size of the initial

value x0
n1 and the reference trajectory.

Assumption 3.2.12. For any n1, n2 and n1 ≤ q ≤ n2, we have that

(a) ‖x0
n1‖2 ≤ u0 for some u0 > 0,

(b) ‖dq‖2 ≤ m0 for some m0 > 0.

Since the initial state is part of input to the system, we can reasonably assume that the

values are taken in some compact set. Note that the reference trajectory models the demand

in a PCM which is our target application area. If we were to analyze asymptotics of our

problem as n2 → ∞, uniformly bounded demand would be a tenuous assumption (though,

with peak population scenarios currently considered, not impossible). The results here can

be extended to polynomial increase of demand (as it will be compensated by exponential

decays with rate ρ). To simplify the algebra, at this time we use Assumption 3.2.12(b),

where the demand/reference trajectory is uniformly bounded over time.

Lemma 3.2.13. Let x∗k and u∗k be the optimal states and controls of problem (3.2.3). Under

Assumptions 3.2.1 and 3.2.12, if the index set I is UCC(λC), we have that,

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖u∗k‖2 ≤ Cu, n1 ≤ k ≤ n2 − 1

for some Cg, Cu > 0 independent of n1, n2, and the particular choice of I.

Proof. Note again that, for problems (3.2.3) and (3.2.5), the optimal states are identical, and

the unconstrained parts of the optimal controls satisfy the relation v∗k = û∗k + R̂−1
k R̄k b̃k by
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(3.2.4). Consequently, Proposition 3.2.6, Lemma 3.2.9, and Lemma 3.2.10 give the following.

‖x∗k‖2 ≤ C1ρ
k−n1u0 +

n2∑
i=n1+1

C2ρ
|k−i|m0 +

n2−1∑
i=n1

C2ρ
|k−i|l0

≤ C1u0 + 2m0C2

∞∑
s=0

ρs + 2l0C2

∞∑
s=0

ρs

= C1u0 +
2(m0 + l0)C2

1− ρ
∆
= Cg,

where m0 and u0 are the bounds on the reference trajectory and initial state defined in

Assumption 3.2.12. Note that (3.2.7c) gives that ‖W−1
k ‖2 ≤ 1/λR. The optimal control law

(3.2.6) and Proposition 3.2.8 give the following.

‖u∗k‖2 ≤ ‖ũk‖2 + ‖û∗k‖2 = ‖b̃k‖2 + ‖v∗k − R̂
−1
k R̄k b̃k‖2 ≤ ‖v∗k‖2 + ‖b̃k‖2 +

CR
λR
‖bk‖2

≤ CLCg +
CQCB
λR

n2∑
i=k+1

ρi−k−1m0 +
βCB
λR

n2−1∑
i=k+1

ρi−kl0 +
βCB
λR

l0 +

(
2 +

CR
λR

)
U

≤ CLCg +
m0CQCB
λR(1− ρ)

+
l0βCB

λR(1− ρ)
+

(
2 +

CR
λR

)
U

∆
= Cu.

This completes the proof.

3.2.2 Box constrained control inequality problem

For the rest of this Section, we return to the inequality constrained problem (3.2.1), and

investigate properties of its solutions and Lagrange multipliers using the results derived for

problem (3.2.3). We make the following assumption about the active set A of problem

(3.2.1).

Assumption 3.2.14. The active set A of problem (3.2.1) is UCC(λC) as defined in Defi-

nition 3.2.2 (b).

Corollary 3.2.15. Let x∗k and u∗k be the optimal states and controls of problem (3.2.1).
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Under Assumptions 3.2.1, 3.2.12, and 3.2.14, we have that,

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖u∗k‖2 ≤ Cu, n1 ≤ k ≤ n2 − 1

for Cg, Cu > 0 as those in Lemma 3.2.13.

Proof. Note that when the index set defining the equality constrained problem (3.2.3) is the

active set A of problem (3.2.1), problems (3.2.1) and (3.2.3) have the same solution. Since

A is UCC(λC), Lemma 3.2.13 gives the conclusion.

In the following, for problem (3.2.1), we investigate the adjoint variables which are the

Lagrange multipliers associated with the constraints xk+1 = Akxk +Bkuk.

Proposition 3.2.16. Let x∗k, u∗k be the solutions, and φ∗k be the optimal adjoint variables

for problem (3.2.1). For n1 ≤ k ≤ n2 − 1, we have that

φ∗k = 2Kk+1x
∗
k+1 − 2

n2∑
i=k+1

(
Mk+1
i

)T
di − 2

n2−1∑
i=k+1

(
Sk+1
i

)T
fi, (3.2.18)

where Kk, Mk
i , Ski and fi are defined with respect to the active constraints Cku

∗
k = b̄k of

problem (3.2.1) at optimality.

Proof. See Appendix B.1.5.

Lemma 3.2.17. Let φ∗k be the optimal adjoint variables for problem (3.2.1). Then under

Assumptions 3.2.1, 3.2.12, and 3.2.14, for n1 ≤ k ≤ n2 − 1, we have that

‖φ∗k‖ ≤ Cφ

for some Cφ > 0 independent of n1 and n2.

Proof. See Appendix B.1.6.
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3.3 A temporal decomposition approach

In this Section, we define a temporal decomposition approach to approximate the solutions

and optimal values of problem (3.2.1). To partition the entire horizon, we decompose [n1, n2]

into n0 subintervals of the same length p = (n2 − n1)/n0. Denote the subintervals as

Si = [n1 + (i− 1)p, n1 + ip] , i = 1, . . . , n0. (3.3.1)

For some buffer size 0 < Ω < p, define an embedding region Fi for each Si as Fi =[
n′1(i), n′2(i)

]
, where

n′1(i) =


n1, i = 1,

n1 + (i− 1)p− Ω, i = 2, . . . , n0,

n′2(i) =


n1 + ip+ Ω, i = 1, . . . , n0 − 1,

n2, i = n0.

(3.3.2)

Note that Si ⊂ Fi for i = 1, . . . , n0. Figure 3.1 shows an illustration of such a decomposition

scheme when n0 = 3. We define the following parametrized problem.

Definition 3.3.1. For i = 1, . . . , n0, let θ = (θ(h), θ(d)). We define the parametrized problem

P iθ as follows:

minwk,hk

n′2(i)−1∑
k=n′1(i)

(
wTk Rkwk + (hk − dk)TQk(hk − dk)

)
(3.3.3a)

+ (hn′2(i) − dn′2(i))
TQn′2(i)(hn′2(i) − dn′2(i)) (3.3.3b)

s.t. hk+1 = Akhk +Bkwk, n′1(i) ≤ k ≤ n′2(i)− 1 (3.3.3c)

lk ≤ wk ≤ bk, n′1(i) ≤ k ≤ n′2(i)− 1 (3.3.3d)

hn′1(i) = θ(h), dn′2(i) = θ(d), (3.3.3e)

where dn′1(i):n′2(i)−1 are the same as those in problem (3.2.1).
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Note that problem P iθ is problem (3.2.1) defined on a shorter interval Fi, but with a

possibly different terminal reference vector θ(d) and initial state θ(h) = h0
n′1(i)

. For the

latter, we invoke an assumption similar to Assumption 3.2.12.

Assumption 3.3.2. For i = 1, . . . , n0, let h0
n′1(i)

be the initial value of problem P iθ, then

‖h0
n′1(i)
‖2 ≤ u0, where u0 is the same as that in Assumption 3.2.12.

Let θ0(i) = (h0
n′1(i)

, dn′2(i)), where h0
n′1(i)

is any initial value satisfying Assumption 3.3.2

and h0
n′1(1)

= x0
n1 , and where dn′2(i) is the reference in problem (3.2.1). Let x∗n1+1:n2

, u∗n1:n2−1

be the optimal states and controls of problem (3.2.1) respectively, and let h∗Fi and w∗Fi be

the optimal states and controls of problem P i
θ0(i)

. Denote

J
(

[m1,m2], [n1, n2], x0
n1

)
∆
=

m2−1∑
k=m1

u∗k
TRku

∗
k + (x∗k − dk)TQk(x∗k − dk)

+ (x∗n2 − dn2)TQn2(x∗n2 − dn2)1(m2=n2)

(3.3.4)

where x∗m1:m2−1 and u∗m1:m2−1 are respectively the optimal states and controls of problem

(3.2.1) on [n1, n2] with initial value x0
n1 restricted to [m1,m2] ⊂ [n1, n2]. Then the temporal

decomposition approach consists of the approximation

J
(

[n1, n2], [n1, n2], x0
n1

)
= Γn1:n2

(
u∗n1:n2−1, x

∗
n1+1:n2

)

by
∑n0
i=1 J

(
Si, Fi, h

0
n′1(i)

)
.

In other words, the optimal value of problem (3.2.1) is approximated by solving prob-

lem P i
θ0(i)

on each embedding region Fi and summing over the solutions restricted on the

subintervals Si ⊂ Fi. On the target intervals Si, solving P i
θ0(i)

results in the states h∗Si and

controls w∗Si . To bound the error of this approximation, we need to relate the solution of

P i
θ0(i)

to the solution of (3.2.1) when solved on the full horizon.

To this end we define a modified problem on the embedding horizon Fi, whose solution

vector is the same as the restriction to Fi of the solution of (3.2.1) for the full horizon [n1, n2].
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The modified problem is also an instance of (3.3.3), but its solution vector will be precisely

the solution of (3.2.1) restricted to Fi. We have the following result.

Proposition 3.3.3. Let (u∗n1:n2−1, x
∗
n1+1:n2

) be the solutions and φ∗k be the adjoint variables

of problem (3.2.1). For i = 1, . . . , n0, define

ĥn′1(i) =


x0
n1 , i = 1

x∗
n′1(i)

, i = 2, . . . , n0,

d̂n′2(i) =


−Q−1

n′2(i)
φ∗
n′2(i)−1

/2 + x∗
n′2(i)

, i = 1, . . . , n0 − 1

dn2 , i = n0.

(3.3.5)

Then (u∗
n′1(i):n′2(i)−1

, x∗
n′1(i)+1:n′2(i)

) satisfies the KKT conditions and the second-order suffi-

cient conditions of problem P i
θ1(i)

with θ1(i) = (ĥn′1(i), d̂n′2(i)).

Proof. For k = n1, . . . , n2 − 1, let Cku
∗
k = b̄k be the active box constraints for problem

(3.2.1) at optimality, and let λ∗k be the associated optimal Lagrange multipliers. The KKT

conditions for problem (3.2.1) are

2Rku
∗
k − C

T
k λ
∗
k +BTk φ

∗
k = 0, n1 ≤ k ≤ n2 − 1 (3.3.6a)

2Qk(x∗k − dk) + ATk φ
∗
k − φ

∗
k−1 = 0, n1 + 1 ≤ k ≤ n2 − 1 (3.3.6b)

2Qn2(x∗n2 − dn2)− φ∗n2−1 = 0, (3.3.6c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n1 ≤ k ≤ n2 − 1, xn1 = x0

n1 , (3.3.6d)

lk ≤ u∗k ≤ bk, n1 ≤ k ≤ n2 − 1 (3.3.6e)

λ∗k ≥ 0, n1 ≤ k ≤ n2 − 1. (3.3.6f)

Then for problem P i
θ1(i)

with parameters ĥn′1(i) and d̂n′2(i) defined in (3.3.5), the KKT

conditions are satisfied by the same solutions (u∗
n′1(i):n′2(i)−1

, x∗
n′1(i)+1:n′2(i)

) with the same
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Lagrange multipliers λ∗k, φ∗k as follows:

2Rku
∗
k − C

T
k λ
∗
k +BTk φ

∗
k = 0, n′1(i) ≤ k ≤ n′2(i)− 1 (3.3.7a)

2Qk(x∗k − dk) + ATk φ
∗
k − φ

∗
k−1 = 0, n′1(i) + 1 ≤ k ≤ n′2(i)− 1 (3.3.7b)

2Qn′2(i)(x
∗
n′2(i) − d̂n′2(i))− φ

∗
n′2(i)−1 = 0, (3.3.7c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n′1(i) ≤ k ≤ n′2(i)− 1, xn′1(i) = ĥn′1(i), (3.3.7d)

lk ≤ u∗k ≤ bk, n′1(i) ≤ k ≤ n′2(i)− 1 (3.3.7e)

λ∗k ≥ 0, n′1(i) ≤ k ≤ n′2(i)− 1, (3.3.7f)

where (3.3.7a)–(3.3.7b) and (3.3.7e)–(3.3.7f) directly follow from (3.3.6a)–(3.3.6b) and

(3.3.6e)–(3.3.6f), respectively. Equations (3.3.7c) and (3.3.7d) follow from definitions of

ĥn′1(i) and d̂n′2(i), respectively. The second-order condition is satisfied by virtue of the strong

convexity of the problem.

Proposition 3.3.3 indicates that, in order for problem P iθ to have the same solutions as

problem (3.2.1) on Fi, the modified parameters (3.3.5) need to incorporate information from

(3.2.1) about the adjoint variables φ∗
n′2(i)−1

, and about the states x∗
n′1(i)

, x∗
n′2(i)

. We note that

problem P i
θ1(i)

defined in Proposition 3.3.3 is notional. It cannot be set up without having

solved the full horizon [n1, n2] problem, but its solution vector is identical to that of the full

horizon problem restricted to Fi. In the following, we will prove that the solution of problem

P i
θ1(i)

, on the subinterval Si, is sufficiently close to that of P i
θ0(i)

. The latter problem is

computable by using the reference trajectory corresponding only to the short interval Fi.

Note that problem P i
θ1(i)

can be viewed as the result of perturbing the parameter of problem

P i
θ0(i)

. Therefore, to prove the relationship between the solutions of P i
θ0(i)

and P iθ1(i)
, we use

the parametric sensitivity results derived from [22]. We note that our base problem (3.2.1)

is a quadratic program, for which several results concerning the Lipschitz continuity with

respect to parameters exist [22, 58]. Our aim, however, concerns more specific elements of

the solution and seeks stronger results than directly using [22, 58] would allow. We aim to
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show that the entries corresponding to a subset of the solution vector components (the ones

corresponding to the subintervals Si in Figure 3.1) is Lipschitz continuous with respect to the

initial state and terminal reference on the embedding regions Fi, but with a Lipschitz constant

L that decays exponentially in the buffer size Ω. To achieve such an objective, we compute

the directional derivative of the target components with respect to the perturbations, using

results from [22], and then show that its value can be upper bounded using results such as

Proposition 3.2.11. In turn, this gives the sought-after exponential decay result.

Definition 3.3.4. For θ ∈ Rq, define the one-sided directional derivative of y(θ) along a

direction p ∈ Rq at θ0 as

Dpy(θ0) = lim
t↓0

y(θ0 + tp)− y(θ0)

t
,

given that the limit exists.

Lemma 3.3.5. Consider the following parametrized quadratic programming problem

min f(y, θ)
∆
= yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. Ay − r ≤ 0

By − d(θ) = 0,

(3.3.8)

where G, F are positive definite, θ ∈ Rq and AT =

[
a1, . . . , am

]
∈ Rn×m. Denote the

solution of problem (3.3.8) as y(θ). When θ = θ0, let y0 = y(θ0) and the Lagrange multiplier

corresponding to y0 be λ̄. Denote I(y0, θ0) = {i : aTi y0 = ri, i = 1, . . . ,m} be the set of

active inequality constraints, I+(y0, θ0, λ̄) = {i ∈ I(y0, θ0) : λ̄i > 0} and I0(y0, θ0, λ̄) = {i ∈

I(y0, θ0) : λ̄i = 0}. If the linear independence constraint qualification (LICQ) holds at y(θ0),

then for any p ∈ Rq, we have that

Dpy(θ0) =

dy∗I ′(θ0)
(θ)

dθ

∣∣∣∣∣
θ=θ0

 p,
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where y∗
I ′(θ0)

(θ) is the solution of the problem

min f(y, θ) = yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. AI ′(θ0)y − r
′ = 0

By − d(θ) = 0,

(3.3.9)

and where I ′(θ0) = I+(y0, θ0, λ̄) ∪ I1 for some I1 ⊂ I0(y0, θ0, λ̄), and AI ′(θ0) = [aTi ]i∈I ′(θ0),

r′ = [ri]i∈I ′(θ0).

Proof. See Appendix B.1.7.

With Lemma 3.3.5, we are now ready to investigate the effect on solutions of perturbing

the parameters of problem P iθ. Since the proof for each subinterval is the same, for notational

simplicity we suppress the dependence of n′1(i), n′2(i) and P iθ on i whenever the index of the

subinterval under consideration is clear.

Proposition 3.3.6. Denote θ0 = (h0
n′1
, dn′2

) and θ1 = (ĥn′1
, d̂n′2

) as defined in (3.3.5). For

θ = (θ(h), θ(d)), let y(θ) be the solution of problem Pθ. We then have, for s ∈ [0, 1]

Dθ1−θ0y (θ0 + s(θ1 − θ0)) =

(
dy∗s(θ)

dθ

∣∣∣
θ=θ0+s(θ1−θ0)

)
(θ1 − θ0),

and y∗s(θ) is the solution of the following equality constrained problem,

min

n′2−1∑
k=n′1

wTk Rkwk + (hk − dk)TQk(hk − dk) + (hn′2
− θ(d)

s )TQn′2
(hn′2

− θ(d)
s )

s.t. hk+1 = Akhk +Bkwk, n′1 ≤ k ≤ n′2 − 1, hn′1
= θ

(h)
s ,

Ck(s)wk = b̄k(s), n′1 ≤ k ≤ n′2 − 1,

(3.3.10)

where rows of Ck(s) and b̄k(s) are, respectively, subsets of rows of C ′k(s) and b̄′k(s) which are

the selection matrix and bound vector defined by (3.2.2) corresponding to the active set of
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Pθs at optimality, and θs = θ0 + s(θ1 − θ0). In other words, the equations Ck(s)wk = b̄k(s)

represent a subset of the active constraints of Pθs at optimality.

Proof. For any θ ∈ R2n, problem Pθ is an instance of problem (3.3.8) with the following

parameters:

G =



2Rn′1
. . .

2Rn′2−1

2Qn′1+1

. . .

2Qn′2


, F =

Qn′1
Qn′2

 , r =



bn′1
...

bn′2−1

−ln′1
...

−ln′2−1


,

A =



I(n′2−n′1)m

02(n′2−n′1)m×(n′2−n′1)n

−I(n′2−n′1)m


, c(θ) =

0(n′2−n′1)m+(n′2−n′1−1)n

−2Qn′2
θ(d)

 ,

B =



−Bn′1 I

. . . −An′1+1 I

. . .

−Bn′2−1 −An′2−1 I


, d(θ) =

 An′1
θ(h)

0(n′2−n′1−1)n

 .

Here Ax ≤ r and Bx = d(θ) correspond respectively to the box constraints (3.3.3d) and

the system dynamics (3.3.3c). Note that A and B have the same number of columns. G
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and F are positive definite from Assumption 3.2.1. Let Ā be the matrix whose rows are

subsets of rows of A corresponding to the active constraints of problem Pθ. Since an active

constraint can achieve either lower or upper bound, but not both, the rows of Ā are linearly

independent. Also, B has full row rank, and the rows of Ā are linearly independent of rows

of B. As a result, LICQ holds for any θ ∈ R2n at optimality. For s ∈ [0, 1], directly applying

Lemma 3.3.5 to problem Pθs gives the conclusion.

Proposition 3.3.6 relates the directional derivative of the solution of problem Pθs with

respect to the parameters θ to the solution of an equality constrained problem (3.3.10).

Note that problem (3.3.10) has the same form as problem (3.2.3) for which we derive the

exponential decay result Proposition 3.2.11 under some controllability conditions. Now we

make similar controllability assumptions for the problems Pθs .

Assumption 3.3.7. For i = 1, . . . , n0 and s ∈ [0, 1], let θ0(i) = (h0
n′1(i)

, dn′2(i)), θ1(i) =

(ĥn′1(i), d̂n′2(i)) as defined in (3.3.5), and θs(i) = θ0(i) + s(θ1(i)− θ0(i)), then the active sets

of problems P i
θs(i)

at optimality are UCC(λC).

Note that Assumption 3.3.7 assumes UCC(λC) for the active sets of the continuously

indexed family of problems P i
θs(i)

on each embedding region Fi, which is stronger than

Assumption 3.2.14 for problem (3.2.1). We note, however, that Assumption 3.3.7 is only

made for the active sets at optimality.

Lemma 3.3.8. Under Assumption 3.3.7, the index set for problem (3.3.10) is UCC(λC) for

any s ∈ [0, 1] and i = 1, . . . , n0.

Proof. Since the proof for each i = 1, . . . , n0 is the same, we suppress the dependence on i in

the proof. By definition of problem (3.3.10), the index set Is for (3.3.10), the problem that

we use to compute the directional derivative of the solution with respect to the parameter θ,

is a subset of the active set As for problem Pθs . As a result, the columns of the controllability

matrix Cq,t(As) are contained in those of Cq,t(Is). Since λmin(Cq,t(As)CTq,t(As)) ≥ λC by
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Assumption 3.3.7, we have that

λmin(Cq,t(Is)CTq,t(Is)) ≥ λmin(Cq,t(As)CTq,t(As)) ≥ λC ,

and hence Is is also UCC(λC).

Together with Assumption 3.2.1, Lemma 3.3.8 justifies the application of the exponential

decay result Proposition 3.2.11 to problem (3.3.10), and hence combined with Proposition

3.3.6, it bounds the distance between solutions of Pθ0 and Pθ1 as follows.

Proposition 3.3.9. Let y(θ0) = (w∗
n′1:n′2−1

, h∗
n′1+1:n′2

) be the solution of problem Pθ0, and

let y(θ1) = (u∗
n′1:n′2−1

, x∗
n′1+1:n′2

) be the solution of problem Pθ1. From Proposition 3.3.3,

y(θ1) is also the solution of problem (3.2.1) restricted to the embedding region Fi. Under

Assumptions 3.2.1, 3.2.12, 3.2.14, 3.3.2 and 3.3.7, for i = 1, . . . , n0 and k ∈ Si, we have

that

‖x∗k − h
∗
k‖2, ‖u

∗
k − w

∗
k‖2 ≤ Y ρΩ,

for some Y > 0 independent of n1 and n2, where ρ is defined in Proposition 3.2.8 and Ω is

the buffer size as in (3.3.2).

Proof. From Leibniz-Newton, we have that

y(θ1)− y(θ0) =

∫ 1

0
Dθ1−θ0y (θ0 + s(θ1 − θ0)) ds,

which gives that

x∗k − h
∗
k =

∫ 1

0
Dθ1−θ0 p̃

∗
k(θs) ds, u∗k − w

∗
k =

∫ 1

0
Dθ1−θ0 s̃

∗
k(θs) ds, (3.3.11)

where (s̃∗
n′1:n′2−1

(θs), p̃
∗
n′1+1:n′2

(θs)) is the solution of problem Pθs . Proposition 3.3.6 implies
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that

Dθ1−θ0 p̃
∗
k(θs) =

[
∇hn′1

p∗k(θs) ∇dn′2
p∗k(θs)

]ĥn′1 − h0
n′1

d̂n′2
− dn′2

 ,
Dθ1−θ0 s̃

∗
k(θs) =

[
∇hn′1

s∗k(θs) ∇dn′2
s∗k(θs)

]ĥn′1 − h0
n′1

d̂n′2
− dn′2

 ,
where (s∗

n′1:n′2−1
(θs), p

∗
n′1+1:n′2

(θs)) is the solution of the equality constrained problem

(3.3.10). Note that each Pθs may have a different active set, which may also be differ-

ent from that of problem (3.2.1). However, under Assumption 3.3.7, the active set of every

Pθs is UCC(λC), and Lemma 3.3.8 implies that the index set for the corresponding problem

(3.3.10) is UCC(λC) as well. In addition, the system parameters (e.g., Rk, Qk, Ak, Bk)

of problem (3.3.10) are bounded above by the corresponding quantities under Assumption

3.2.1. As a result, problem (3.3.10) satisfies all the conditions of Proposition 3.2.11, which

can be applied to give that

‖∇hn′1
p∗k(θs)‖2, ‖∇hn′1

s∗k(θs)‖2 ≤ Z1ρ
k−n′1 ,

‖∇dn′2
p∗k(θs)‖2, ‖∇dn′2

s∗k(θs)‖2 ≤ Z2ρ
n′2−k.

(3.3.12)

Note that as given in Proposition 3.2.11, Z1, Z2 and ρ are independent of the problem

interval, and the particular choice of the index set.

Assumptions 3.2.12, 3.3.2 and Propositions 3.2.13, 3.2.17 give that

‖ĥn′1 − h
0
n′1
‖2 ≤ Cg + u0, ‖d̂n′2 − dn′2‖2 ≤

Cφ
2λQ

+ Cg +m0, (3.3.13)

where u0 and m0 are defined in Assumptions 3.2.12 and 3.3.2. Combining (3.3.12) and
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(3.3.13), we have, for k ∈ Si,

∥∥Dθ1−θ0 p̃∗k(θs)
∥∥

2
,
∥∥Dθ1−θ0 s̃∗k(θs)

∥∥
2

≤ Z1
(
Cg + u0

)
ρk−n

′
1 + Z2

(
Cφ
2λQ

+ Cg +m0

)
ρn
′
2−k

≤
(
Z1
(
Cg + u0

)
+ Z2

(
Cφ
2λQ

+ Cg +m0

))
ρΩ.

Letting Y = Z1
(
Cg + u0

)
+Z2

(
Cφ
2λQ

+ Cg +m0

)
and combining with (3.3.11) complete the

proof.

Proposition 3.3.9 is our key result. It proves the main hypothesis of this work that

solutions restricted to the subinterval Si of (3.2.1) formulated over the long horizon [n1, n2]

are exponentially close to the solutions restricted to the interval Si of the problem P i
θ0(i)

,

which is set up and solved only on the embedding region Fi. The exponent is proportional

to Ω, the buffer size. Now we derive the following error bound of the optimal values on each

decomposition subinterval.

Proposition 3.3.10. Under Assumptions 3.2.1, 3.2.12, 3.2.14, 3.3.2 and 3.3.7, we have

∣∣∣J(Si, [n1, n2], x0
n1)− J(Si, Fi, h

0
n′1(i))

∣∣∣ ≤ n2 − n1

n0
XρΩ

for some X > 0 independent of n1 and n2.

Proof. Let (w∗
n′1:n′2−1

, h∗
n′1+1:n′2

) be the solution of problem P i
θ0(i)

, and let

(u∗
n′1:n′2−1

, x∗
n′1+1:n′2

) be the solution of P i
θ1(i)

which, by Proposition 3.3.3, is also the

solution of problem (3.2.1) on Fi. Since the active set of problem P i
θ0(i)

at optimality is

UCC(λC) by Assumption 3.3.7, and the initial state is bounded by u0 from Assumption
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3.3.2, Lemma 3.2.13 gives that for j ∈ Si, ‖h∗j‖2 ≤ Cg, ‖w∗j‖2 ≤ Cu. Then we have

∣∣∣(x∗j − dj)TQj(x∗j − dj)− (h∗j − dj)
TQj(h

∗
j − dj)

∣∣∣
≤
∣∣∣(x∗j − dj)TQj(x∗j − h∗j )∣∣∣+

∣∣∣(x∗j − h∗j )TQj(h∗j − dj)∣∣∣
≤ 2CQ(Cg +m0)‖x∗j − h

∗
j‖2

(3.3.14)

and

∣∣∣u∗jTRju∗j − w∗j TRjw∗j ∣∣∣
≤
∣∣∣(u∗j − w∗j )TRju

∗
j

∣∣∣+
∣∣∣w∗j TRj(u∗j − w∗j )

∣∣∣
≤ 2CRCu‖u∗j − w

∗
j‖2.

(3.3.15)

Combining with Proposition 3.3.9, we have that

∣∣∣J(Si, [n1, n2], x0
n1)− J(Si, Fi, h

0
n′1(i))

∣∣∣
≤
∑
j∈Si

(∣∣∣(x∗j − dj)TQj(x∗j − dj)− (h∗j − dj)
TQj(h

∗
j − dj)

∣∣∣+
∣∣∣u∗jTRju∗j − w∗j TRjw∗j ∣∣∣

)

≤ 2
n2 − n1

n0

(
CQ(Cg +m0) + CRCu

)
Y ρΩ.

Denoting X = 2
(
CQ(Cg +m0) + CRCu

)
Y completes the proof.

Now we bound the total error of optimal values generated by the decomposition approach.

Theorem 3.3.11. Under Assumptions 3.2.1, 3.2.12, 3.2.14, 3.3.2 and 3.3.7, we have that

∣∣∣∣∣J([n1, n2], [n1, n2], x0
n1)−

n0∑
i=1

J(Si, Fi, h
0
n′1(i))

∣∣∣∣∣ ≤ (n2 − n1)XρΩ,

where X > 0 is the same as in Proposition 3.3.10.
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Proof. Using Proposition 3.3.10, we have that

∣∣∣∣∣J([n1, n2], [n1, n2], x0
n1)−

n0∑
i=1

J(Si, Fi, h
0
n′1(i))

∣∣∣∣∣
≤

n0∑
i=1

∣∣∣J(Si, [n1, n2], x0
n1)− J(Si, Fi, h

0
n′1(i))

∣∣∣
≤ n0

n2 − n1

n0
XρΩ

= (n2 − n1)XρΩ.

Theorem 3.3.11 upper bounds the total error induced by the decomposition approach by

the product of an exponential term ρΩ and the length of the horizon n2 − n1. The rate

of decay is eventually dominated by the exponential term. The exponential decay rate in

the buffer size Ω enables the buffer regions to be chosen significantly shorter than the entire

horizon while producing reasonable approximations under increasing horizon. Hence, when

this approach is implemented in parallel, the computation time can be significantly reduced

with little compromise of accuracy.

We also note that the techniques developed in Section 3.2, particularly Proposition 3.2.11,

and in the first part of Section 3.3 can be used beyond proving our main result, Theorem

3.3.11. We believe they can be useful in other contexts, and in particular, in model predictive

control. For example, it appears that one can show with similar techniques that the trajectory

obtained from a receding horizon control approach converges exponentially to the solution

of the full horizon problem (3.1.1). For instance, Proposition 3.3.9 can be applied to show

that, if the short horizon problem has length Ω, then the first optimal control vector un′1
and

the second state vector xn′1+1 are exponentially close in Ω to the corresponding elements of

the solution of the full horizon problem (3.1.1). Due to the space limit, we aim to develop

this observation in future research.
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3.4 Numerical results

In this section, we apply the temporal decomposition approach to a simplified production

cost model in order to verify some of our theoretical findings. We employ the estimated

hourly demand data in the northern Illinois region from year 2011 to 2015 provided by PJM

Interconnection [62]. The model we are considering is the following:

min
∑N
k=1 c1(xk − dk)2 + c2x

2
k + u2

k (3.4.1a)

s.t. xk+1 = xk + uk (3.4.1b)

−U ≤ uk ≤ U. (3.4.1c)

Here dk is the electricity demand to be satisfied on hour k, described by the data from [62].

We assume this can be done by two fictitious generators: one with high quadratic cost, with

parameter c1 = 10, and one with low quadratic cost c2 = 5. The cheaper generator has

limited ability to change its output xk, which is modeled by the box constraints (3.4.1c)

(also called the ramp rate constraints [11]) combined with the dynamics (3.4.1b). The more

expensive generator is fast and can thus serve all remaining load dk − xk. This situation

models, for example, the situation where one has a cheap but slow coal plant and a fast but

expensive gas plant. Here the control is uk, the amount of change at hour k of the generation

level of the cheaper generator. We note that the formulation has the form from (3.1.1).

To define the temporal decomposition approach described in Section 3.3, we partition

the hourly scale five-year horizon into weeks, resulting in n0 = 261 subintervals S1, . . . , Sn0 .

With buffer size Ω, we define the embedding regions F1, . . . , Fn0 as in (3.3.2). In order to

apply our decomposition approach, we need to specify the initial state for the short horizon

problems other than the earliest one, which uses the initial value of the full horizon problem.

In general, finding a good initial state is difficult. In the case of production cost models

that motivated this research, however, the demand, while random, is fairly stable [11] for
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the same time of the day in the week. Moreover, optimal generation levels tend to be stable

too with a similar pattern [11]. Therefore for production cost models, a good initial guess is

readily available. For the general dynamic optimization problem, such a good guess may not

be available. On the other hand, for a given policy of choosing it – for example, choosing

the analytical center of the feasible set – Proposition 3.3.9 can be used on test problems to

determine a good choice of the buffer size Ω that allows for the effect of the initial condition

policy to be small enough for the tolerance sought. The fact that Proposition 3.3.9 establishes

exponential decay of the error with respect to the buffer size Ω allows such trade-offs to be

carried out. For our production cost model example, as the demand pattern is relatively

predictable as also indicated in [11], a good guess does exist at a given time of the day and

week. As a consequence, we use as initial state the average demand at each hour of a day

for all of 2011. At the initial time point n′1(i) of Fi, we thus set the initial value x0
n′1(i)

to

the average demand for that hour. Denote the optimal objective function value of problem

(3.4.1) as J∗, namely,

J∗ ∆
= J([1, N ], [1, N ], x0

1)

as defined in (3.3.4), and denote

J∗i
∆
= J(Si, Fi, x

0
n′1(i))

for i = 1, . . . , n0. We solve both long and short horizon versions of (3.4.1) using the Ipopt

software [21]. The model was defined by using the Julia/JuMP interface [83].

We now analyze how well the sum of the computation on the short intervals, J∗i , ap-

proximates the long horizon problem, J∗. Figure 3.2 shows the relative approximation error∣∣J∗ −∑n0
i=1 J

∗
i

∣∣ /J∗ as the function of the buffer size (measured in hours) for an increasing

value of the ramping constraint bound U in (3.4.1c). For each U , the largest buffer size we

experiment with is the smallest value that results in a relative approximation error less than
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10−5. The cost of such large-scale planning projects is usually on the order of billions of

dollars. A relative error on the order of 10−5 corresponds to a discrepancy of less than a

hundred thousand dollars, which is already well within the tolerance level of planning. We

observe from Figure 3.2 that, for all values of U the relative error decreases exponentially

with Ω, which is the conclusion of our main result, Theorem 3.3.11. We conclude that Figure

3.2 validates the exponential decay of the approximation error of temporal decomposition

with respect to the buffer size as proved in Theorem 3.3.11. We note that the target accuracy

is achieved by buffer regions of less than 24 hours for all bounds U , although for different

and larger PCM the results could be different. The order of magnitude of the buffer for

which such accuracy is achieved is, however, of the same order – days – as in [11].

U 100 200 300 400 500 600 700 800 900 1000

t 91 62 48 34 14 12 10 8 7 5

Table 3.1: Longest period t (hour) for which the optimal controls of problem (3.4.1) achieve
the bound.

Figure 3.2 also shows that the decay rate of the approximation error increases with

increasing bound U of controls. Note that the error bound in Theorem 3.3.11 depends on the

controllability of problem (3.4.1) at optimality. We thus investigate numerically the longest

period t for which the problem (3.4.1) is not controllable; t as used here carries the same

meaning as in Definition 3.2.2. Since problem (3.4.1) is one dimensional, from Definition

3.2.2, it follows that t is simply the longest contiguous period for which the optimal controls

are on the bound. Table 3.1 shows t in hours for different choices of the bound U . The

longest period of uncontrollability decreases as the bound becomes larger. Figure 3.3 shows

the proportions of optimal controls of problem (3.4.1) that are on the bound for increasing U .

When U = 100, more than 85 % of the optimal controls attain the bound, which approaches

the controllability limit of the problem. Even for this tightest bound U = 100, however the

value of t is 91, which is about three to four days. This bound is certainly covered by our

weekly partitioned subintervals and thus ensures that the controllability Assumption 3.2.14
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Figure 3.2: Relative error in approxima-
tion

∣∣J∗ −∑n0
i=1 J

∗
i

∣∣ /J∗ at each buffer size
(hour) for U = 200, 400, 600, 800, 1000.

Figure 3.3: Proportions of optimal controls
of problem (3.4.1) that are on the bound for
U = 100, . . . , 1000.

holds on each embedding region Fi. Therefore the conditions of our main result Theorem

3.3.11 are satisfied.

3.5 Conclusions

Temporal decompositions are useful techniques for exposing parallelism in dynamic opti-

mization problems. Such approaches are particularly useful for production cost simulations

in electricity planning problems, where the calculations can have hundreds of thousands of

time periods. The version of temporal decomposition discussed in this work approximates

the solution over the entire horizon by the one obtained by patching the solution from mul-

tiple dynamic optimization problems with much shorter, overlapping, horizons initialized

at some guess of the state. In turn, this transforms a sequential problem into one that is

immediately amenable to parallel computing, thus massively reducing the time to solution.

While used to great effect in [11], such temporal decomposition approaches were, up to our

work, a heuristic with no theoretical basis for its good approximating behavior.

In this work we prove that for the class of linear-quadratic dynamic optimization problems

the temporal decomposition with overlap approaches the solution of the original problem

exponentially fast in the size of the overlap. This approach partitions the entire horizon
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into subintervals and embeds each subinterval into the interval of interest plus a buffer

region. The objective cost and, respectively, the solution on the entire horizon are then

approximated by the the sum of the costs on each subinterval and, respectively, the solutions

obtained from solving the corresponding problem on its embedding region. We prove that

under some boundedness and controllability assumptions, the approximation error in both

the solution and objective function decreases exponentially as a function of the buffer size.

The exponential decay rate enables one to choose embedding regions much shorter than the

length of the horizon; and since problems on each buffer region can be solved independently

the time to solution is significantly reduced when the approach is implemented in parallel.

We validate our theoretical findings by using a numerical experiment that mimics a pro-

duction cost evaluation over a five-year interval with hourly time periods and real data but

with a simple, two-generator model. For all the cases, the relative error in the approxima-

tion of the objective function decreases exponentially with the buffer size. The decay rate

decreases as more optimal controls attain the bound. In other words, the decay is slower

when the system stays uncontrollable for longer periods. For this small experiment, even

with the tightest bound on the controls and more than 85% of the optimal controls attaining

the bounds, the buffer size needed for the relative error to be less than 10−5 is less than

24 periods – one day. Since the decomposed horizons have length only slightly more than

one week, little extra effort has been added to solving problems when compared with the

problem for the useful interval only, the one-week inner temporal region.

The class of dynamic optimization problems considered here is simplified when compared

with [11] in that it is a linear-quadratic dynamic optimization problem with box control

constraints. While our problem class does not include the complicating features such as

combinations of linear objective, integer variables, and path constraints, it includes the in-

tertemporal constraints that make the analysis of error difficult. Consequently, our approach

gives analytical support for the rapid convergence of the temporal decomposition with over-

lapping intervals. Future work will address extending the results for these complicating
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features as well as applying the techniques of this work to model predictive control.
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CHAPTER 4

MAXIMUM LIKELIHOOD ESTIMATION FOR A SMOOTH

GAUSSIAN RANDOM FIELD MODEL

4.1 Introduction

Computer experiments have been used extensively in investigating complex scientific phe-

nomena. The responses of many computer experiments are deterministic, in the sense that

rerunning the same code with the same inputs will give identical outputs. Often, each run

of the code is computationally expensive, so a common alternative to running the code at

all input values of interest is to run the code at some inputs and make cheaper predictions

at others. [104] and [105] propose to model the deterministic computer experiment outputs

as a realization of a Gaussian random field with covariance

Cov (f(x), f(y)) = θ0

d∏
u=1

e−
|xu−yu|γ

θu , (4.1.1)

where xu, yu ∈ [0, 1], u = 1, . . . , d, θ0 > 0 is the scale parameter and θu > 0 are range

parameters. The use of stochastic models provides a statistical basis for experimental design,

parameter estimation, interpolation and uncertainty calibration.

When γ = 2, the Gaussian process with covariance function (4.1.1) is infinitely mean

square differentiable and thus is an attractive choice when the output surface is known to be

smooth [48, 95, 96, 109, 113]. This covariance function is sometimes called “Gaussian” be-

cause of its functional form, but we prefer the name “squared exponential” to avoid confusion

with a Gaussian process. In fact, smooth test functions composed of elementary functions

(e.g. polynomials, trigonometric functions and exponential functions) are often used as test

cases for studying the effectiveness of Gaussian processes in modeling computer experiments.

However, little is known about properties of maximum likelihood estimators (MLEs) when

observations are generated by these test functions. In this article, we are interested in the
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asymptotic properties of the MLE when more and more observations are taken on a fixed

domain (fixed domain asymptotics, see [112]) for the Gaussian process when the computer

model is some simple deterministic function. We aim to understand the implications of

modeling smooth deterministic functions using the squared exponential covariance function.

We consider a mean zero Gaussian random field with covariance function (4.1.1) and

γ = 2. For d = 1, we prove some asymptotic properties of the MLE for the scale parameter

θ0 when the range parameter θ1 is fixed and the computer experiment response is a pth

order monomial f(x) = xp. We consider two situations for the observations. In the first

case, observations z are taken on a regular grid on [0, 1] so that z = (f( 1
n), f( 2

n), . . . , f(1))T .

In the second case, the observations are successive derivatives of the response function at

zero, namely, z = (f(0), f (1)(0), . . . , f (n−1)(0))T . Automatic differentiation (AD) techniques

[53] can be used to obtain derivatives of computer model output and there are certain

problems for which higher order derivatives are needed [29, 52, 117]. Therefore considering

what happens when one observes successive derivatives at a single location may be of some

practical interest.

The rest of the chapter is organized as follows. Section 2 deals with regularly spaced

observations on [0, 1]. The key finding is that the asymptotic order of the MLE θ̂0 is n−1/2

when p = 0 and at least n1/2 when p = 1. In particular, θ̂0 → 0 when p = 0 and θ̂0 → ∞

when p = 1. Section 3 deals with the case where observations are derivatives at zero. An

exact expression for the inverse Cholesky factor for the correlation matrix is obtained. For

all p ≥ 0, we prove that limn→∞ n1/2−pθ̂0 exists and is positive so that θ̂0 → 0 for p = 0 and

θ̂0 →∞ for all p ≥ 1. Section 4 demonstrates the theoretical findings in Section 2 and 3, and

explores numerically three commonly used two-dimensional test functions in the computer

experiments literature. For estimating the scale parameter θ0 and the two range parameters

θ1 and θ2, we compare maximum likelihood method with leave-one-out cross validation in

a prediction problem. We find that the likelihood method and cross validation perform

differently for different test functions in terms of magnitude and calibration of prediction
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errors. We also explore MLE of the range parameter for pth order monomials when treating

both scale and range parameters as unknown, and investigate its implications for practical

test functions. In the numerical experiments, to deal with numerical singularity of the

correlation matrix, we choose parameters such that the correlation matrix and observations

are both rational, and do symbolic computation with Mathematica [119] to obtain exact

results. Since a common approach to overcome the near singularity is to include a nugget

effect, we investigate the effect of adding a nugget on the likelihood and prediction. We

found that the likelihood generally decreases substantially with even a very small nugget,

but prediction error can sometimes decrease a bit at first as the nugget size increases. All

proofs of the theoretical results are presented in the Appendix.

4.2 Regularly spaced observations

In this section, we consider the observations are outputs of the model function f(x) = xp

regularly spaced on [0, 1]. Fixing the range parameter θ1, we prove that θ̂0 → 0 when the

model function is constant and θ̂0 →∞ when it is linear. Though some intermediate steps

apply to all p ≥ 0, we are only able to derive the asymptotic order and a lower bound on

the asymptotic order for p = 0 and p = 1 respectively.

The observations are outputs of the model function f(x) = xp taken on a regular grid on

[0, 1] so that z = (
(

1
n

)p
,
(

2
n

)p
, . . . , 1)T . The covariance matrix can be written as

Σ(θ0, θ1, n) = θ0R(θ1, n), (4.2.1)

where the (i, j)th element of R(θ1, n) is

R(θ1, n)ij = w(i−j)2 , w = e−1/(θ1n
2). (4.2.2)
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[81] gives the exact form of the inverse of the Cholesky factor for R(θ1, n). Letting

R(θ1, n) = LLT , where L is the lower triangular Cholesky factor with positive diagonal

elements, then

(L−1)ij =


(−w)i−j[i−1j−1]w2∏i−1
k=1(1−w2k)1/2

, i ≥ j

0, i < j

(4.2.3)

where
[ k
m

]
q is the q-binomial coefficient defined by

[
k

m

]
q

=
(1− qk−m+1)(1− qk−m+2) . . . (1− qk)

(1− q)(1− q2) . . . (1− qm)

if 0 ≤ m ≤ k and 0 otherwise.

The log-likelihood function of θ0 is

2l(θ0) = −n log 2π − n log θ0 − log |R(θ1, n)| − 1

θ0
zTR(θ1, n)−1z

and the MLE of θ0 is

θ̂0 =
1

n
zTR(θ1, n)−1z.

With the form of L−1 in (4.2.3), the exact form of θ̂0 can be written as

θ̂0 =
1

n

n∑
i=1

(∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p
)2

n2p
∏i−1
k=1(1− w2k)

.

For convenience we make the following notation for the rest of this article:

aip(w) :=

(∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p
)2

n2p
∏i−1
k=1(1− w2k)

(4.2.4)

where p ≥ 0 and i ≥ 1. Note that θ̂0 = 1
n

∑n
i=1 aip(w) for w = e−1/(θ1n

2).
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By considering the limit of the summand of θ̂0, we obtain the following proposition.

Proposition 4.2.1. Denote

lip := lim
n→∞

aip(w) = lim
n→∞

(∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p
)2

n2p
∏i−1
k=1(1− w2k)

then

lip =


(i−1)!θp1

2i−1
(
i−p−1

2 !
)2 , i− p odd

0, i− p even

(4.2.5)

where w = e−1/(θ1n
2), p ≥ 0 and i > p.

Proof. See Section C.1.1.

Lemma 4.2.2. 1
n

∑n
i=p+1 lip ∼

np−
1
2 θp1√

2π2p(p+1
2 )

as n→∞.

Proof. See Section C.1.2.

The previous results deal with the general case where p ≥ 0. The following results

concentrate on p = 0 and p = 1. We now derive the asymptotic order for θ̂0 when p = 0 and

a lower bound on the asymptotic order for θ̂0 when p = 1.

Theorem 4.2.3. If p = 0, θ̂0 ∼
√

2
π

1√
n

as n→∞.

Proof. See Section C.1.3.

Theorem 4.2.4. If p = 1,

lim inf
n→∞

θ̂0√
n
≥ θ1

3
√

2π
.

Proof. See Section C.1.4.

The difficulty of the proof lies in the fact that the dimension and elements of the correla-

tion matrix R(θ1, n) change with n. In particular, we can not simply apply an elementwise
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limit theorem to θ̂0 = zTR(θ1, n)−1z/n. Proposition 4.2.1 proves the limits of aip(w) for

fixed i as n → ∞ and Lemma 4.2.2 proves the asymptotic order of the average of those

limits. However, to derive the asymptotic order of θ̂0 = 1
n

∑n
i=1 aip(w) we would need to

have some results on the uniform convergence of aip(w) for 1 ≤ i ≤ n, which we have been

unable to obtain.

We now state a conjecture about the asymptotic order of θ̂0 for general p ≥ 0. The case

for p = 0 is proved in Theorem 4.2.3 with C(0) =
√

2/π, and Theorem 4.2.4 is a weaker

version of the conjecture when p = 1.

Conjecture For all p ≥ 0, limn→∞ n1/2−pθ̂0 = C(p) where C(p) = θ
p
1/
√

2π2p(p+ 1/2).

It might also be of interest to consider functions that are continuous but have some form

of singularities. These functions are not smooth and hence not the main focus of our work.

However, we present one example here to illustrate what can happen.

Proposition 4.2.5. If

f(x) =


0, x ≤ 1/2

g(x− 1/2), x > 1/2

for some continuous function g(x) satisfying g(0) = 0 and c := limx→0
g(x)
xp > 0 for some

p ≥ 1, then

lim inf
n→∞

θ̂0

n
> 0

as n→∞. In particular, θ̂0 →∞ as n→∞.

Proof. See Section C.1.5.

We recognize that fixing the range parameter as we have done here is rather artificial, but

the mathematical difficulties of analyzing even this problem are formidable and we believe

that the resulting asymptotic theory is interesting and informative despite its limitations.
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As shown in [112, pp. 120-121], two non-identical squared exponential covariance functions

for a Gaussian process on a finite interval correspond to orthogonal measures, suggesting

that, unlike the case for Matérn covariance functions [122], it might be possible to estimate

both the scale and range parameters consistently based on fixed domain asymptotics if in

fact the Gaussian process model is correct (see for example [3]). In the present setting when

the process is just a simple deterministic function, it is not at all clear what should happen,

so we investigate the properties of joint estimates of scale and range parameters through

numerical experiments in Section 4.

We do not have an intuitive explanation for the quantitative aspects of our asymptotic

results, even for p = 0. Comparing to two settings for which asymptotic calculations can

be easily done provides us with a clue to the qualitative behavior of θ̂0 as p increases. If

Σ = θ0In, where In is the n × n identity matrix, and f is a continuous function on [0, 1],

then θ̂0 ∼
∫ 1

0 f(x)2 dx as n → ∞, so θ̂0 tends to a nonzero constant for any nontrivial f .

For the exponential covariance function (γ = 1 and d = 1 in (4.1.1)), if f has a bounded

second derivative on [0, 1] then

θ̂0 ∼
1

n
f(0)2 +

1

2θ1n

∫ 1

0

{
f(x) + θ1f

′(x)
}2
dx (4.2.6)

as n → ∞ (see Section C.1.6), so that nθ̂0 tends to a positive finite constant as n → ∞

when f(x) = xp for any nonnegative integer p. These results are in stark contrast to what

we have proven and conjectured here for the squared exponential covariance function, that

n1/2−pθ̂0 tends to a positive, finite constant. Thus, there must be something about the

squared exponential model that makes us think θ0, the variance of the process, is large when

p is large. A possible intuitive explanation for this result is that if we think the underlying

function is very smooth (which is the case when we use the squared exponential model) and

we observe that the function just happens to to equal xp at n densely spaced points, then we

will conclude that this function must at least very nearly equal xp over some broad interval,
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so that the larger p is, the more we think the function varies over this broad interval and

the larger we think θ0 is.

4.3 Derivatives at zero

We obtain the asymptotic order of θ̂0 when the observations are the first n − 1 derivatives

at 0 for the response function f(x) = xp, p ≥ 0. Denote z = (f(0), f ′(0), . . . , f (n−1)(0))T ,

and the covariance matrix of the observations z as Σ1(θ0, θ1, n).

Now we introduce a notation that is frequently used in the rest of this section.

Definition 4.3.1. For a positive integer m, define the double factorial of m as

m!! =


∏m/2
k=1(2k) = m(m− 2) . . . 2, m even∏(m+1)/2
k=1 (2k − 1) = m(m− 2) . . . 1, m odd

and set 0!! = 1. This double factorial notation is commonly used in combinatorics [50].

Note that m!! is the product of all positive integers no larger than and having the same

parity as m, which is different from the successive factorial (m!)!.

As before, f is modeled as a stationary Gaussian random field with covariance function

K(u) = θ0e
−u2/θ1 . Then the (i, j)th element of Σ1(θ0, θ1, n) can be computed as

Σ1(θ0, θ1, n)ij =
∂i+j−2

∂xi−1∂yj−1
K(x− y)

∣∣∣
x=y=0

= (−1)j−1θ0
di+j−2

dui+j−2
e−u

2/θ1
∣∣∣
u=0

= θ0θ
− i+j−22
1 (−1)i−1Hi+j−2

where

Hm =


0, m odd

(−2)
m
2 (m− 1)!!, m even
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is mth order Hermite polynomial at 0. The mth order Hermite polynomial is defined as

Hm(x) = (−1)mex
2 dm

dxm
e−x

2
.

Defining R1(θ1, n) so that Σ1(θ0, θ1, n) = θ0R1(θ1, n), the MLE of θ0 is θ̂0 =

1
nz

TR1(θ1, n)−1z.

The following proposition gives an exact form of the reverse Cholesky factorization [77]

of R1(θ1, n)−1.

Proposition 4.3.2. Let D(θ1, n) be the lower triangular matrix with positive diagonal el-

ements such that R1(θ1, n)−1 = D(θ1, n)TD(θ1, n). Then for all 1 ≤ i, j ≤ n, the (i, j)th

element D(θ1, n)ij = dij, where

dij =


θ
j−1
2

1

√
(i−1)!

2
j−1
2 (j−1)!(i−j)!!

, if i ≥ j, and i+ j is even

0, otherwise.

(4.3.1)

Proof. See Section C.1.7.

Note that dij depends only on i and j but not n. So the matrices D(θ1, n) are nested

as n increases. In fact in this case R1(θ1, n) is nested and in general, the reverse Cholesky

factors of inverses of a sequence of nested matrices are nested (see Section C.1.8). This

feature simplifies the proof of the asymptotic order of θ̂0 for all p ≥ 0 and is not shared by

the setting considered in Section 2.

Theorem 4.3.3. Suppose f(x) = xp, p ≥ 0, then

θ̂0 ∼
np−

1
2 θ
p
1√

2π2p(p+ 1
2)

as n→∞.

Proof. See Section C.1.9.
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Automatic differentiation (AD) can be used to obtain derivatives of functions coded as

computer programs. AD exploits the fact that function evaluation can be broken down into

elementary operations (e.g., addition, multiplication, exp(·)) and applies the chain rule. A

comprehensive reference for AD can be found in [53]. Although in practice, only lower order

derivatives are usually found, there are efforts to obtain higher order Taylor coefficients in

one direction for certain problems [29, 52, 117].

For smooth functions, estimates based on multiple derivatives at zero should be closely

related to estimates based on observing more frequently on a fixed domain, since more

observations enable the calculation of higher order finite differences that approximate

derivatives as the spacing gets small. More specifically, consider observing at k inputs

zk = (
(

1
n

)p
, . . . ,

(
k
n

)p
)T for some k ≤ n. For this case, MLE θ̂0(k) = 1

k

∑k
i=1 aip(w)

where aip(w) is defined in (4.2.4) and w = e−1/(θ1n
2), is the same as the MLE θ̂′0(k) when

observing the first k finite differences z′k at zero, since these first k finite differences at zero

are a linear transformation of the first k observations, namely, z′k = Czk for some C ∈ Rk×k.

It follows that θ̂′0(k) = 1
nz
′T
k

(
CRCT

)−1
z′k = 1

nzkR
−1zk = θ̂0(k). Fixing k and letting

n → ∞ gives that finite differences converge to derivatives and θ̂0(k) → 1
k

∑k
i=1 lip. The

asymptotic order of the limit 1
k

∑k
i=1 lip as k → ∞ is given by Lemma 4.2.2 and is exactly

the same as what is obtained in Theorem 4.3.3, which is the asymptotic order of MLE when

observations are derivatives at zero. However, this heuristic argument does not directly im-

ply θ̂0 has the same asymptotics for the two situations of observations. In particular, taking

k →∞ at the same time as n→∞ is a different and harder problem.

4.4 Numerical results

In this section, first we illustrate our theoretical findings in Sections 2 and 3 numerically.

Then we compare maximum likelihood estimators (MLE) with leave-one-out cross validation

(CV) in a prediction problem for two commonly used test functions. We also show that for the

Branin function, the MLE for the range parameter along one coordinate does not appear to
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exist. The parameters in the numerical experiments are chosen to make both the correlation

matrix and the observations rational so that the matrix calculations can be done exactly

with symbolic computations. A common approach to overcome the near singularity of the

correlation matrix is to include a small nugget effect in the hope of improving conditioning

at the same time introducing minimal modification to the matrix. We also investigate the

effect of this approach on the likelihood and prediction.

4.4.1 Asymptotic behavior of MLE for scale parameter

As in Sections 2 and 3, we consider the test function as a pth order monomial f(x) =

xp and two situations for the observations. In the first case, the observations z =

(f( 1
n), f( 2

n), . . . , f(1))T are taken on a regular grid on [0, 1], and in the second case,the

observations z′ = (f(0), f (1)(0), . . . , f (n−1)(0))T are the first n − 1 derivatives of the test

function at zero. Denote the MLE of the scale parameter for the two situations of observa-

tions as θ̂0 and θ̂′0 respectively. We consider n = 2k, k = 3, . . . , 9, and the range parameter

θ1 ≈ 0.95 is chosen to make the correlation matrix rational for all choices of n so that exact

computations can be done. Note that exact computation is needed here to prevent numerical

overflow even if the exact form of the Cholesky factor (4.2.3) is used.

Theorems 4.2.3 and 4.2.4 state that

lim
n→∞

θ̂0n
1/2−p =

√
2/π, p = 0; lim inf

n→∞
θ̂0n

1/2−p ≥ θ1/3
√

2π, p = 1.

The Conjecture in Section 2 states that θ̂0n
1/2−p converges to some limit C(p) as n → ∞

for all p ≥ 0. Figure 4.1 shows θ̂0 for increasing n when p = 0, 1, 2, 3 on log scale. Theorem

4.2.3 and the Conjecture imply that (log n, log θ̂0) will be close to the reference line y =

(p − 1/2)x + logC(p) for n large. The numerical results show clear agreement with the

theoretical results in Theorem 4.2.3 and the Conjecture. When observations are the first
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Figure 4.1: θ̂0 when n = 2k, k = 3, . . . , 9 for
z = (f( 1

n), f( 2
n), . . . , f(1))T . The slopes of

the reference lines are the asymptotic orders
p − 1/2 when p = 0, 1, 2, 3. Both axes are
on log scale.

Figure 4.2: θ̂′0 when n = 2k, k = 3, . . . , 9 for

z′ = (f(0), f (1)(0), . . . , f (n−1)(0))T . The
slopes of the reference lines are the asymp-
totic orders p−1/2 when p = 0, 1, 2, 3. Both
axes are on log scale.

n− 1 derivatives at zero, Theorem 4.3.3 states that

lim
n→∞

θ̂′0n
1/2−p = θ

p
1/
√

2π2p(p+ 1/2) = C(p), p ≥ 0.

Figure 4.2 shows θ̂′0 for increasing n when p = 0, 1, 2, 3 on log scale with the same reference

lines as those in Figure 4.1. For all four cases shown here, the agreement between the

numerical and asymptotic results is good, even for n = 8.

4.4.2 Comparing MLE and CV in a prediction problem

We consider the first two functions on a 23×23 regular grid on [0, 1]× [0, 1] and let δ = 1/23

be the spacing between neighboring points. The observations are taken on a 12× 12 regular

sub-grid, and the remaining 385 points are predictands. An illustration of the setup is

shown in Figure 4.4. Observations are taken at every other location along each dimension

to facilitate the use of the inverse Cholesky factor (4.2.3), so that exact computations can

be done with rational correlations. The first test function we experiment with is a mixture
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of Gaussians [45, 57],

f(x1, x2) = c1e
−s1((x1/δ−µ1)2+(x2/δ−µ2)2) + c2e

−s2((x1/δ−µ̃1)2+(x2/δ−µ̃2)2). (4.4.1)

We choose e−s1 = 399/400 and e−s2 = 99/100 to be rationals and µ1 = µ2 = 8, µ̃1 = µ̃2 = 17

to be integers so that all the observations are rational. We set c1 = 1 and c2 = −1/2 so

that the function consists of a peak and a small dip. The second function we consider is a

product of trigonometric and exponential functions [30],

f(x1, x2) = cos (c1x1 + c2x2)ec0x1x2 . (4.4.2)

We choose c1 = c2 such that cos (c1δ) = cos (c2δ) = 24/25. With this choice, sin (c1δ) =

sin (c2δ) = 7/25 and cos (c1x1 + c2x2) is rational for all grid points (x1, x2) by trigonometric

identities. c0 is chosen to satisfy ec0δ
2

= 500/499 and with this choice c0 ≈ 1.06, which

approximates c0 = 1 used in [30]. Both the mixture of Gaussians (4.4.1) and trig-exponential

function (4.4.2) are symmetric about the diagonal. The third test function we consider is

the Branin function [23, 99] on a 27× 27 regular grid on [−5, 10]× [0, 15],

f(x1, x2) = e(x2 − fx2
1 + gx1 − r)2 + s(1− t) cos (c0x1) + s. (4.4.3)

The spacing between neighboring points is δb = 5/9. We choose parameters as e = 1,

f = 5/36, g = 5/3, r = 6, s = 10, t = 1/24 and cos (c0δb) = 4/5. The observations

are taken on the 14 × 14 regular sub-grid. The different setting of the grid for the Branin

function is to make the observations rational at all grid points. The three test functions with

the aforementioned parameters are shown in Figure 4.3. The parameters for the three test

functions are rounded from the commonly used values to ensure rationality. For example, the

recommended parameter values for the Branin function that are different from our choices

are f = 5.1/4π2, g = 5/π, t = 1/8π [44, 99].
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Figure 4.3: Surface for test functions (4.4.1), (4.4.2) and (4.4.3).

Figure 4.4: Locations of observations and predictands.
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4.4.2.1 Exact computation results

We compare MLE and CV for mixture of Gaussians (4.4.1) and the trig-exponential function

(4.4.2) in predicting at the 385 points not used to fit the model. Denote the observations

as z and the log-likelihood function as L(θ0, θ1, θ2). The profile log-likelihood function of

(θ1, θ2) is defined as

ln(θ1, θ2) = L
(
θ̂0(θ1, θ2), θ1, θ2

)
,

where θ̂0(θ1, θ2) = argmaxθ0L(θ0, θ1, θ2). The profile log-likelihood function satisfies

2ln(θ1, θ2) = −n log 2π − n log θ̂0 − log |R(θ1,m)⊗R(θ2,m)|

− 1

θ̂0
zT (R(θ1,m)⊗R(θ2,m))−1 z

(4.4.4)

where n = m2, m = 12, R is as defined in (4.2.2), and the MLE for the scale parameter is

θ̂0(θ1, θ2) =
1

n
zT (R(θ1,m)⊗R(θ2,m))−1 z. (4.4.5)

Leave-one-out cross validation error is

pn(θ1, θ2) =
n∑
i=1

(zi − ẑ−i(θ1, θ2))2 (4.4.6)

where ẑ−i(θ1, θ2) is the best linear predictor (BLP) of zi given zj , 1 ≤ j ≤ m and j 6= i

under the Gaussian process model. The functions ln and pn are respectively maximized and

minimized to obtain estimates of (θ1, θ2). Though both ln and pn are continuous functions,

only certain values of (θ1, θ2) corresponds to rational correlations. We search over grids

consisting of values that allow exact computation to optimize the corresponding functions.

We perform symbolic computations because the correlation matrix is very nearly singular.

For example, if we take the set of observations as in Figure 4.4 with θ1 = θ2 chosen so that the
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correlation between neighboring points is 0.99, when doing double precision computations,

the resulting correlation matrix is found to be not positive definite, nor is its inverse even

when using the exact formula for the inverse [81].

Since the correlations between neighboring grid points w1 = e−δ
2/θ1 and w2 = e−δ

2/θ2

are uniquely identifiable with θ1 and θ2, we carry out the optimization in terms of (w1, w2).

Denote by C(w1, w2) the function to be optimized, either exp (ln) or pn. Throughout the

optimization algorithm, we only consider rational w1 and w2 to allow exact computations.

Successive grids with shrinking sizes are defined on [0, 1] × [0, 1] over which C(w1, w2) is

optimized. Once an optimizer (w∗1, w
∗
2) is found in the interior of a grid, we compare the log

ratio of function values of the current iterate and the previous iterate with a convergence

tolerance. Moreover, we define the 3× 3 sub-grid with (w∗1, w
∗
2) at the center as S(w∗1, w

∗
2),

and compare the log ratio of maximal and minimal function values over S(w∗1, w
∗
2) with the

convergence tolerance. This comparison is done to help ensure the grid points are taken

densely enough in a neighborhood of (w∗1, w
∗
2) so that a local optimum is obtained. We

iterate until convergence. Details are provided in Algorithm 1.

We take ε = 10−7 in all experiments. The initial grid search in Step 1 of Algorithm 1 led

to (0.99, 0.99) as the optimizer in Step 3 for both functions considered here. To check for

multiple optima, we also started the algorithm with different initial grids. In addition, we

search over smaller and denser grids inside (0.01, 0.99)× (0.01, 0.99) and see if an optimum

could be obtained in the interior. For neither method did we find evidence for multiple local

optima up to symmetry, in the sense that (w∗1, w
∗
2) generates the same cross validation error

as (w∗2, w
∗
1) because of the symmetry in the observations and functions. When choosing the

minimizer of the cross validation error for a grid in Step 3 of Algorithm 1, we select (w∗1, w
∗
2)

with the convention that w∗1 ≤ w∗2.

Denote the true predictand value as p ∈ Rn1 with n1 = 385, and covariance matrices

as Σzz = Cov(z, zT ), Σpp = Cov(p,pT ) and Σzp = Cov(z,pT ). The predictions p̂ are

obtained using the empirical best linear predictor (EBLP) and calibrated with empirical
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Algorithm 1 Grid Search

Require: Convergence tolerance ε.
1: Initialize grid l1 = l2 = 0.01, r1 = r2 = 0.99.
2: Define m1 ×m2 regular grid G = {w1

1, . . . , w
1
m1
} × {w2

1, . . . , w
2
m2
} ⊂ [l1, r1]× [l2, r2].

3: Obtain optimizer (w∗1, w
∗
2) ∈ G and corresponding function value C(i)(w∗1, w

∗
2) of ith

iteration.
4: (Test for convergence)

5: if
∣∣∣ log

(
C(i)

C(i−1)

)∣∣∣ ≤ ε,
∣∣∣ log

(
max {c(i)(w1,w2),(w1,w2)∈S(w∗1,w

∗
2)}

min {c(i)(w1,w2),(w1,w2)∈S(w∗1,w
∗
2)}

)∣∣∣ ≤ ε and (w∗1, w
∗
2) ∈

int(G) then
6: Return with (w∗1, w

∗
2)

7: else
8: (Update searching grid)
9: for k = 1, 2 do

10: if w∗k = wkmk
then (optimized at right boundary)

11: drk ← 1− wkmk

12: dlk ←
wkmk

−wk1
mk−1

13: else if w∗k = wk1 then (optimized at left boundary)

14: drk ←
wkmk

−wk1
mk−1

15: dlk ← wk1
16: else (optimized in interior)

17: drk ←
wkmk

−wk1
mk−1

18: dlk ←
wkmk

−wk1
mk−1

19: end if
20: lk ← w∗k − dlk
21: rk ← w∗k + drk
22: end for
23: i← i+ 1
24: Repeat steps 2 - 5.
25: end if
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MLE CV

(θ̂0, θ̂1, θ̂2) (0.024, 0.39, 0.39) (3.29, 0.19, 0.66)

sd
(

p̂i−pi√
EMSE(p̂i)

)
1.56 9.42√

1
n1

∑n1
i=1(p̂i − pi)2 3.90× 10−8 3.99× 10−7

Table 4.1: Estimates of parameters (first row), standard deviations of standardized predic-
tion errors (second row), and root mean squared prediction errors (last row) for mixture of
Gaussians (4.4.1).

MLE CV

(θ̂0, θ̂1, θ̂2) (1611.13, 0.42, 0.42) (1.09× 1013, 1.87, 1.87)

sd
(

p̂i−pi√
EMSE(p̂i)

)
0.17 7.12× 10−3√

1
n1

∑n1
i=1(p̂i − pi)2 7.94× 10−7 4.75× 10−7

Table 4.2: Estimates of parameters (first row), standard deviations of standardized prediction
errors (second row), and root mean squared prediction errors (last row) for trig-exponential
function (4.4.2).

mean squared error (EMSE). EBLP is BLP with θ replaced by its estimate θ̂ and is given by

p̂ = ΣTzp(θ̂)Σ
−1
zz (θ̂)z, (4.4.7)

and EMSE is the mean squared error (MSE) with θ replaced by its estimate θ̂ and is given

by

EMSE(p̂) = Σpp(θ̂)− ΣTzp(θ̂)Σ
−1
zz (θ̂)Σzp(θ̂).

For CV, we estimate the scale parameter θ̃0 by θ̂0(θ̃1, θ̃2) using (4.4.5) as suggested by [86],

where (θ̃1, θ̃2) are CV estimates for the range parameters. For the two functions, Tables 4.1

and 4.2 show the estimates, the standard deviations of standardized prediction errors, and

the root mean squared errors.

Note that the CV estimates of the two range parameters for the mixture of Gaussians are

109



not equal. Switching the two range parameter estimates (namely, (0.66, 0.19)) generates the

same cross validation error, and if we were to employ the convention that w∗1 ≥ w∗2 in Step

3 of Algorithm 1, we would end up with the CV estimates for this case being (0.66, 0.19).

We find the unequal estimated range parameters somewhat surprising, so we did a further

careful search along the diagonal w1 = w2 and could not find any points on this diagonal

with smaller cross validation error than that produced by (0.19, 0.66). We also experimented

with estimating the mean of the Gaussian process. For mixture of Gaussians, the MLEs are

(θ̂0, θ̂1, θ̂2, µ̂) = (0.018, 0.38, 0.38, 0.20) when treating the mean as unknown and is estimated.

The standard deviation of the standardized prediction errors and the root mean square error

of predictions are 0.94 and 2.15× 10−8 respectively, which are roughly similar to the results

in Table 4.1 when fixing the mean at 0.

We now consider how MLE and CV estimates of the parameters perform when used

for prediction. One of the important features of Gaussian processes is that they provide

uncertainty estimates for the predictions, so we will look at both the quality of the point

predictions and whether the standardized prediction errors (i.e., the errors divided by their

estimated standard deviations) have standard deviation close to 1. If the Gaussian process

model under consideration were correct, we should expect ML to do better than CV, but since

the deterministic functions we consider are obviously not realizations of a Gaussian process,

it is unclear which method will perform better. In terms of root mean square error, MLE

is much better (by an order of magnitude, see Table 4.1) than CV for mixture of Gaussians

and is moderately worse (67% larger, see Table 4.2) for trig-exponential. For mixture of

Gaussians, the standardized prediction errors under MLE are reasonably well calibrated

with a standard deviation of 1.56, whereas for CV, their standard deviation is 9.42, so that

CV badly underestimates the variability of the prediction errors. For trig-exponential, both

MLE and CV seriously overestimate the variability of the prediction errors, but CV much

more so (Table 4.2).

Figure 4.5 show histograms of the standardized prediction errors for both functions and
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both estimates. Ideally, we might hope these histograms will approximate a standard normal

distribution, but even if the truth were a Gaussian process, we should not be surprised to see

something that does not look approximately normal because of possible strong dependencies

between prediction errors at different locations. We see that in all four cases, the standardized

prediction errors follow a vaguely symmetric distribution about 0. The most noteworthy

feature in these plots occurs for the mixture of Gaussians based on CV, which was the case

where the estimated range parameters were not equal. In this plot, we see that the standard

deviation (sd) of the standardized prediction errors is much larger than 1 for predictands in

odd columns (sd=16.10) and much smaller than 1 for predictands in even columns (sd=0.15).

The tensor product form of the squared exponential covariance function implies that the

EBLP of a predictand in an odd column only depends on observations in that column (see

Section C.1.10), so that the form of the EBLP is entirely determined by the range parameter

along columns. Similarly, EBLP in an odd row is only a function of observations in that row,

whereas EBLPs in an even row and even column depend on all of the observations. Note

that the estimated range parameter is large along the columns, so the fitted model thinks

observations are much more strongly correlated in this direction. Since the EBLPs within

odd columns only depend on within column correlations, it is then perhaps not surprising

that the model is overoptimistic about the quality of interpolations in the direction with

strong estimated correlations.

Figure 4.6 shows the (unstandardized) prediction root mean squared error averaged over

each row and column of the large grid. For each function, we focus on the method yielding

smaller prediction error. Since the estimates of the two range parameters are equal for

both of these cases and the observations and function are symmetric about the diagonal,

the prediction errors are also symmetric. Hence, averaging over rows and columns gives

identical results, so we only present the root mean squared error averaged over the rows.

Figures 4.7 and 4.9 show the prediction errors p̂i − pi at the corresponding locations for the

two functions. Note that the magnitudes of the errors are only comparable for each function;
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Figure 4.5: From left to right: histograms of standardized prediction errors generated by
MLE for mixture of Gaussians, CV for mixture of Gaussians, MLE for trig-exponential
function, and CV for trig-exponential function. The standardized prediction errors generated
by CV for mixture of Gaussians are grouped into those in odd and even numbered columns.
The histograms for the two groups are stacked.

they are not normalized across functions.

Figures 4.6–4.9 show that, for both test functions, the prediction errors are largest for

the predictions on the second and second to last rows and columns (i.e., rows and columns

2 and 22 out of 23). We should generally expect prediction errors to be larger near a border

of an observation domain than in the interior, but it is interesting to note that, at least for

these functions, the errors tend to be larger, for example, in row 2 than row 1, even when

comparing a predictand in row 2 and an odd column to one in row 1 and an even column,

so that the distance from the predictand to the nearest observation equals 1
23 in both cases.

Next, we show numerically that the MLE for Branin function (4.4.3) does not appear to

exist. First of all, let us consider the estimation of the range parameter when f(x) = xp
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Figure 4.10: Profile log-likelihood l14 (4.4.4) and estimated scale parameter θ̂0 for Branin
function (4.4.3).

with p ≥ 1. The profile log-likelihood Ln(θ1) satisfying

2Ln(θ1) = −n log(θ̂0(θ1))− log |R(θ1, n)| − n log 2π − n

is maximized to obtain MLE θ̂1.

Our empirical evidence suggests that for each p and n∗(p) = 2p + 1, when n ≥ n∗(p),

Ln(θ1) monotonically increases for θ1 ∈ (0,∞) so that the MLE for θ1 does not exist.

Moreover, Ln(θ1) is bounded when n = n∗(p) and increases to∞ when n > n∗(p). As noted

in [79], this finding also appears to be documented in an unpublished thesis [61]. Figure

4.8 shows that at the critical value n∗(p), 2Ln∗(p)(θ1) monotonically increases with a finite

asymptote for some choices of p. Since the Branin function is a quadratic polynomial along its

second dimension, we expect that the MLE for the second range parameter θ̂2 does not exist.

In fact, Figure 4.10 shows that for different choices of θ1, the profile log-likelihood (4.4.4)

increases for increasing θ2. Also, the estimated scale parameter appears to be unbounded

above as θ2 increases.
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4.4.2.2 Experiments with nugget effect

A common approach to overcome the numerical difficulties in computing with the covari-

ance function (4.1.1) is to include a small nugget effect to stabilize the computation of the

covariance matrix inversion [6, 103]. In the following, we add a small nugget effect δ0 so that

the covariance matrix of the observations has the form

θ0
{
R(θ1,m)⊗R(θ2,m) + δ0Im2

}
, (4.4.8)

where m = 12 is the number of observations along each dimension. In the above formulation,

we treat the nugget size δ0 fixed when fitting the model. For the two test functions (4.4.1)

and (4.4.2), we investigate the effect of including a nugget on model fitting and prediction.

With the alternative model (4.4.8), we evaluate the log-likelihood and prediction errors

of the MLE (θ̂1, θ̂2) obtained with exact computations in Section 4.4.2.1 for 11 values of δ0

equally spaced on log scale between 10−14 and 10−12. The value 14 is the largest integer k for

which a nugget of 10−k generally yields a covariance matrix that is found to be numerically

nonsingular by Mathematica’s CholeskyDecomposition routine. For each δ0, the scale

parameter θ0 is refitted with the model (4.4.8) but the range parameters are not changed.

Figure 4.11 shows the log-likelihood and root mean squared errors of (θ̂1, θ̂2) for the model

(4.4.8).

For both test functions, the likelihood is substantially reduced when including even a

nugget of 10−14 and decreases for increasing nugget size. To help see why the log-likelihood

changes so much, note that log-likelihood can also be obtained with the conditional distri-

butions of successive ordered observations so that

l(θ|z) = −n
2

log (2π)−
n∑
i=1

log (sd(zi|z1, . . . , zi−1))− 1

2

n∑
i=1

(
zi − E(zi|z1, . . . , zi−1)

sd(zi|z1, . . . , zi−1)

)2

,

where sd(zi|z1, . . . , zi−1) denotes conditional standard deviation and E(zi|z1, . . . , zi−1) de-
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Figure 4.11: Log-likelihoods (top) and root mean squared prediction errors (bottom) of
(θ̂1, θ̂2) obtained with exact computations for model (4.4.8). Horizontal axes indicate nugget
effect δ0. Reference line indicates nugget-free case.

notes conditional mean. The log-likelihood can hence be expressed by conditional standard-

ized errors and conditional standard deviations. We order the observations lexicographically

so that f( i1m ,
i2
m) precedes f(j1m ,

j2
m) if and only if i1 < j1 or whenever i1 = j1, i2 < j2. The

top panels of Figure 4.12 show, for each observation, the standardized errors and standard

deviations conditional on previous observations. For each test function, we compare the case

with δ0 = 0 and the case with the nugget size δ∗0 > 0 yielding the smallest prediction error

among the 11 positive values for δ0 we considered, which for the mixture of Gaussians, is

δ∗0 = 10−66/5 ≈ 6.3 × 10−14 and for the trig-exponential function, is δ∗0 = 10−14. For both

test functions, the conditional standardized errors are similarly calibrated for δ0 = 0 and

δ0 = δ∗0. However, some of the conditional standard deviations are much smaller when there

is no nugget. Successive predictions of the ordered observations are more accurate at some

locations when the model does not have a nugget.

For the trig-exponential function, Figure 4.11 shows root mean squared prediction error

increases for increasing nugget size. However, better successive predictions at the test obser-
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vations does not necessarily imply better predictions at other locations: we do see that for

the mixture of Gaussians, the prediction error is slightly smaller for δ0 = 10−14 compared

with the nugget-free case and further decreases as δ0 increases before eventually increasing.

The bottom panels of Figure 4.12 show the absolute prediction errors for each predictand

when δ0 = 0 and δ0 = δ∗0. For the mixture of Gaussians, there is no obvious dominance for

either δ0 = 0 and δ0 = δ∗0. In contrast, for the trig-exponential function, it is evident that

the nugget-free model predicts better at most locations, perhaps especially for locations with

the largest error, which tend to be near the boundaries of the observation region.

4.5 Conclusions

Since the approach was proposed by [104, 105], it has become quite common practice to

model the deterministic output of a computer experiment as a realization of a Gaussian

process. The Gaussian process with squared exponential covariance function is infinitely

differentiable and thus is attractive if the computer model output is known to be smooth. In

this article, we investigated the asymptotics for the maximum likelihood estimator of the scale

parameter for this covariance when the computer response is a pth order monomial. Using

exact computation, we investigated and compared MLE and CV estimates in a prediction

problem.

Using the exact expression for the Cholesky factor and its inverse of the correlation matrix

derived in [81], we proved that for regularly spaced observations, when the test function is

a pth order monomial and the range parameter is fixed, the MLE of the scale parameter

θ̂0 → 0 when p = 0 and θ̂0 → ∞ when p = 1 as the number of observations n → ∞.

When the observations are derivatives of the model function at zero, we derived the exact

expression of the inverse Cholesky factor of the correlation matrix and proved asymptotic

orders of θ̂0 for all p ≥ 0. We are unable to prove an asymptotic order for general p > 1

for regularly spaced observations. However, we conjecture that the asymptotic order is the

same as that of the derivative case with a possibly different constant.
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Though both MLE and CV are used in the computer experiment literature, it is not

clear under what circumstances each method will yield smaller prediction errors with more

calibrated standardized errors. When a model is misspecified, CV can sometimes be a

good way of choosing parameters for prediction, since the cross validation criterion is based

on prediction. For deterministic computer experiments, we know that in fact the outputs

are not realizations of some Gaussian process model. Nevertheless, our experiments show

that CV does not always improve upon the likelihood method. For example, CV estimates

produce much larger prediction errors and poorer calibration for the mixture of Gaussians

and modestly better predictions but far worse calibration for the trig-exponential function.

This finding is consistent with the findings in [9] which shows CV appears to be less robust

than MLE to model misspecification under regular grid design.

These numerical experiments used exact arithmetic, which will not generally be possible.

Adding a small nugget is a common approach to alleviate the numerical instabilities in

decomposing nearly singular covariance matrices. Our experiments suggest model fitting (as

measured by the likelihood) deteriorates substantially by adding even a nugget that barely

makes the covariance matrix numerically positive definite, whereas prediction can sometimes

be slightly improved by adding a small nugget. Another interesting finding of our work is

that, for the Branin test function, the MLEs do not appear to exist. This result can be

viewed as an implication of the numerical finding that when the model function is a pth order

monomial, the MLE of the range parameter does not exist when the number of observations

exceeds a critical value (see also [61, 79]). For test functions that are a polynomial in one of its

dimensions, the use of the likelihood method is not expected to produce meaningful estimates

and inference. Though our results regarding the estimation of range parameters is empirical

and based on limited numerical experiments, we believe that the examples shown give an

indication of possible issues and consequences when using simple smooth test functions to

study how well Gaussian process models work for deterministic computer models. Whether

similar results might hold for, say, the numerical solution of a complex system of differential
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equations deserves further study.
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CHAPTER 5

MODELING AND PREDICTING CHAOTIC CIRCUIT DATA

5.1 Introduction

The study of nonlinear dynamics and chaos has been traditionally focused on developing and

investigating mathematical invariants that describe and classify the asymptotic behavior of

the iterates [e.g., 56, 59]. This leads to important invariants such as Lyapunov exponent and

fractal dimension with which knowledge about the future evolution of the dynamical system

can be learned, once its mathematical description is known. However, challenges still remain

to analyze observations generated by a dynamical system whose mathematical formulation

is at least partially unknown. These challenges include, but are not limited to, calculating

geometric and dynamical invariants of an underlying strange attractor [e.g., 25, 106, 118],

modeling the deterministic portion of the dynamical evolution from the observations [e.g.,

34, 66], and constructing a predictive model directly from the observations [e.g., 27, 43]. A

comprehensive discussion of the problems arising from analyzing the observed chaotic data

can be found in [2] and [1]. In this work, we focus on the aspects of modeling the observed

dynamical system and predicting its future evolution. The modeling and prediction task

is made difficult in particular by the characterization of possible stochastic model error of

the underlying dynamics, observational error during measurement, and the separation of the

two. The goal of this work is to provide some insights into modeling and estimation issues

through a combination of real data analysis and simulation studies.

The modeling and prediction of observations generated from a system with nonlinear and

chaotic dynamics has revolved around local techniques, global techniques and the combina-

tion of the two [2]. A common local prediction technique discussed in various instances [e.g.,

27, 34, 43] is to construct the k-step ahead predictor at a time point in the form of a poly-

nomial whose inputs are past observations and output is the prediction of the observation

k steps ahead. The parameters of the polynomial are fitted using the near neighbors of the
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input and their corresponding k-step ahead observations. For example, the simplest non-

linear method of local forecasting proposed by [82] is to find the nearest neighbor st to the

current observation sn, and use the value st+1 as the prediction for sn+1. This prediction-

by-analogue method is essentially fitting a constant – a zeroth order polynomial. Fitting

with more than one near neighbor leads to prediction by averaging their outputs [100] in

this case. Fitting a first order polynomial is considered in [27] and [84]; [43] investigates

higher order polynomials. The use of higher order polynomials increases the model complex-

ity and is expected to produce better predictions. However, since the number of parameters

increases exponentially in the order of the polynomial, more computational efforts are also

encountered. In addition, the local models are discontinuous, which is undesirable if the goal

is to obtain a description of the underlying continuous dynamics.

Global models, on the other hand, describe the whole set of observations by representing

the model mapping as an expansion in some basis functions, e.g., as a polynomial or ratio of

polynomials, and fitting the parameters using the entire data set [e.g., 2, 14, 27]. The method

is also subject to computational difficulties when the model is of high complexity. Modeling

using radial basis functions [102] is an example of combining features from both the local

and global techniques. The model is constructed and interpreted globally but also maintains

good local properties through the locally centered radial basis functions [27]. In our work, we

construct global models trained for one-step ahead prediction using Gaussian process (GP)

and neural network (NN) models. GP provides a statistical basis for interpolation, model

diagnostic and uncertainty calibration, while NN has proven effective in modeling a range of

nonlinear problems [e.g., 49, 76].

We consider analyzing and modeling voltage measurement data generated by a

laboratory-built electrical circuit [84]. The observations are relatively smooth, concentrate

on a low-dimensional attractor, and exhibit sensitive dependence on the initial condition. A

nominal differential equations model, based on a simplistic description of the circuit compo-

nents, has systematic deficiencies when fitted to the data. We hence investigate modeling
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and prediction using GP and NN models. For both methods, we train a one-step ahead pre-

dictor based on the input-output pairs of m preceding observations and the current one for

some embedding length m > 0. To investigate the capacities of the predictors in capturing

the dynamics, we investigate the tradeoff between one-step prediction and long-term track-

ing. We find that both models perform similarly in one-step prediction, and the prediction

error decreases as m increases. In contrast, the ability of the model propagations to track

the observations improves at first but then degrades as m becomes larger for both models,

which suggests a moderate value of m produces better balance between one-step prediction

and long-term tracking.

One of our goals for analyzing observations generated from some unknown dynamics is

to investigate the effects and characterizations of the model and observational errors. We

consider this aspect by performing simulations with data generated by our fitted models.

The fitted models capture the chaotic character of the observations, and the simulated data

is qualitatively similar to the observations. We explore the effects of model and observa-

tional errors on the likelihood function and the identifiability of the initial state. We find

that with independent and identically distributed (i.i.d.) observational error and no model

error, the likelihood ratio between the true initial state and neighboring points increases ex-

ponentially in the number of observations. However, with even a tiny stochastic model error

but otherwise correct dynamics, the true initial state no longer maximizes the likelihood

function, and there does not seem to be an initial state able to track the observations for an

indefinitely long time. A temporally correlated observational error with no model error, on

the other hand, preserves the identifiability of the true initial state as the maximizer of the

likelihood function. The information provided by the likelihood about the true initial state

also grows exponentially with more observations but at a lower rate than that for the i.i.d.

observational error.

The rest of the chapter is organized as follows. In Section 5.2, we introduce the data

set and discuss the deficiencies of the nominal model in capturing the dynamics present in

123



the data. In Section 5.3, we compare the prediction performances of GP and NN models

and investigate their capacities in describing the long-term dynamics. Section 5.4 considers

the effects of model and observational errors using simulation data qualitatively similar

to the observations, and compares the fitted models in Section 5.3 with simulations under

model errors estimated from a reconstructed physical circuit. Section 5.5 discusses ultimately

unsuccessful efforts to model the system using the circuit simulator SPICE [41, 92].

5.2 The circuit data

In this work, we consider a time series consisting of voltage measurements of a laboratory-

built electrical circuit [84]. The circuit was built on a breadboard using capacitors, resistors,

operational amplifiers and multipliers. A diagram of the circuit is shown in Figure 5.1, where

V1, V2 and V3 are the nodes at which voltages are measured. In the rest of the section, we

refer to the three voltages measurements V1, V2 and V3 as coordinates x, y and z, so that

the observation at time step n is sn = (xn, yn, zn). The circuit was allowed to run for

several minutes before data collection, and the measurements were taken at a frequency of

10kHz for about 1.5 minutes, resulting in three time series each with length 1 million. There

were nine sets of measurements taken under different conditions in [84, Chapter 2], and the

data we consider here belong to “set7”. Figure 5.2 shows the observations at the initial

100,000 time points, and Figure 5.3 shows the trajectories of the initial 1000 observations.

The data points loop around and fall densely on a two-dimensional manifold as shown in

Figure 5.2. Moreover, Figure 5.3 shows the observed trajectory is fairly smooth, indicating

relatively low observational noise. Figure 5.4 shows the difference in Euclidean norm at

each subsequent time point between two trajectories that start close by. Specifically, we

select from all time points t, other than the initial one, the t∗ that minimizes ‖s0 − st‖,

and consider the differences ‖sn − st∗+n‖ for n = 0, 1, . . . , 500. The exponentially growing

divergence of the two trajectories suggests the observations exhibit sensitive dependence on

the initial conditions.
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Figure 5.1: Circuit diagram [84, Figure 2.5]. V1, V2 and V3 indicate the nodes at which
voltages are measured.

Figure 5.2: The initial 100,000 observations. x, y and z correspond to the voltage measure-
ments V1, V2 and V3 accordingly. The observations in the 3D space fall on a two-dimensional
attractor.
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Figure 5.3: Trajectories of the initial 1000
observations.

Figure 5.4: The trajectory differences ‖sn−
st∗+n‖ for n = 0, 1, . . . , 500. st∗ is the closest
observation to the initial observation s0.

Because of the simple structure of the circuit, applying Kirchhoff’s law to the idealized

behavior of the circuit components yields the following nominal model:

dx

dt
= θ1y

dy

dt
= −θ2y + θ3x− θ4(x+ z)− θ5xz

2

dz

dt
= θ6x.

(5.2.1)

This set of ODEs (5.2.1) is isomorphic to the Moore-Spiegel system [90], which is a nonlinear

thermodynamical oscillator that has its physical origin in fluid dynamics. It models the

displacement z(t) of a small mass element attached at a fixed point to an elastic spring

oscillating in a temperature stratified fluid. The element exchanges heat with the ambient

fluid and its buoyancy depends on the temperature. The Moore-Spiegel system, like the

Lorenz attractor, is one of the classical low-order dynamical systems that exhibit chaotic

behavior for certain choices of the parameter values [10, 90]. [84] points out that significant

discrepancies exist between the observations and the nominal model (5.2.1). For example,

with the parameter values used in the circuit, (5.2.1) settles down to a periodic orbit whereas

the observations manifest chaotic behavior. In the following, we investigate the deficiency of
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the nominal model with parameters selected optimally by some criteria.

We estimate the parameters of (5.2.1) by minimizing the one-step ahead prediction error

as follows:

min
1

2

N−1∑
n=1

∥∥∥sn+1 − F (k) (sn, θ, h/k)
∥∥∥2

(5.2.2a)

s.t. θ > 0, (5.2.2b)

where θ = (θ1, . . . , θ6), h = 10−4 is the time distance between observations, and F (s, θ, h)

is obtained by integrating (5.2.1) with the Runge-Kutta 4th order method. To reduce the

numerical error in the model propagation, we iterate k times the mapping F from one time

point to the next, and k = 6 is chosen from k = 1, . . . , 10 by minimizing the resulting

prediction error. We solve (5.2.2) with N = 2000. Figure 5.5 shows the prediction errors

of the fitted model (5.2.1) for the initial 100 time points. The trajectories for the predic-

tion errors are fairly smooth and systematic, suggesting possible dynamics not captured by

model (5.2.1). Figure 5.6 shows the observations and predictions projected to the x-z plane.

Systematic departures of predictions from observations are also noticeable. For example, on

the lower left portion of the plane where x < 0 and z < 0, the predictions tend to be ahead

of the observations; while on the lower right portion where x > 0 and z < 0, the predictions

tend to lag behind the observations. The systematic patterns in the prediction errors suggest

the inadequacy of model (5.2.1) in describing the dynamics present in the observations.

In reality, the circuit components do not behave as simply as the nominal model (5.2.1)

suggests. For example, the nominal model does not take into consideration any parasitic

elements of the circuit, which are unavoidable and include stray inductance, capacitance and

resistance [e.g., 4, 60]. These parasitics can alter the behavior of the circuit depending on the

frequency of the signal, which in turn depends on the circuit components through (5.2.1).

This intricate interaction is not captured by the nominal model, which assumes constant

values for the circuit components at all frequencies. In addition, (5.2.1) models the behavior
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Figure 5.5: The difference between obser-
vations and one-step ahead predictions at
the initial 100 time points with parameters
estimated by solving (5.2.2). N = 2000,
h = 10−4, k = 6.

Figure 5.6: The observations (dot) and
the predictions (asterisk) for the initial 100
time points projected to the x-z plane, with
parameters estimated by solving (5.2.2).
N = 2000, h = 10−4, k = 6.

of the circuit on a macro level, but does not take into account effects with micro resolutions

such as thermal noise, which is stochastic in nature. In the next section, we will explore

alternative models for the same one-step ahead prediction problem, and investigate their

capacities in capturing the long-term dynamics.

5.3 Gaussian process and neural network models

In this section, we consider a Gaussian process (GP) and a neural network (NN) model for

prediction based on m previous observations with m ≥ 1. Specifically, denote the observation

at time step k as sk = (sk(1), sk(2), sk(3)), k = 1, . . . , N . For each component ν ∈ {1, 2, 3},

we model the outputs sk(ν) as a GP (or NN) with inputs (sk−m, . . . , sk−1) for k = m +

1, . . . , N . Note that each input is 3m-dimensional.

For the GP model, we consider the following squared-exponential covariance function:

Cov (f(q), f(r)) = σ2e
−
∑β
i=1

∣∣∣ qi−riθi

∣∣∣2
(5.3.1)

for some q, r ∈ Rβ and β = 3m. Furthermore, we include a nugget effect γ > 0 so the covari-

128



ance matrix is Σ = σ2(R+γI) where the (i, j)th element of R is the correlation between the

ith and jth outputs. Note that the GP with the inputs and outputs specified above is not

an internally consistent model for the observations, in the sense that the observations can

not follow a joint normal distribution since they appear both as the outputs and inputs of

the GP. A similar situation appears in [32] which considers emulation of dynamic computer

codes using GP. We nonetheless use GP as a tool to fit a predictor by estimating parame-

ters through maximizing the ostensible Gaussian likelihood and making predictions through

interpolation. Denote the outputs as s = (sm+1(ν), . . . , sN (ν)) and the range parameters as

θ = (θ1, . . . , θ3m), then the log-likelihood function by profiling over the scale parameter σ2

satisfies

2l(θ, γ) = − log |R(θ) + γI| − n log sT (R(θ) + γI)−1s

− n log (2π) + n log n− n,
(5.3.2)

and

σ̂2 =
sT (R(θ) + γI)−1s

n
,

where n = N − m. Then (5.3.2) is maximized to obtain maximum likelihood estimates

(MLEs) θ̂ and γ̂. At time step t with input (st−m, . . . , st−1), the prediction of st(ν) is made

by the empirical best linear predictor (EBLP):

ŝt(ν) = ΣTsst(ν)(θ̂, γ̂)Σ−1
ss (θ̂, γ̂)s.

A second model we experiment with is a feed-forward neural network, a detailed account of

which can be found in [49]. We fit a NN model consisting of 1 hidden layer with 20 neurons

using the same set of inputs and outputs as those for fitting the GP model. The estimation

and prediction are carried out using MATLAB Neural Network Toolbox 9.1 [15]. Note that

for both GP and NN, three separate models are fitted for predicting the three components
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Figure 5.7: RMSEs at each embedding
length m for predicting the initial N ob-
servations (in-sample), the next N observa-
tions (out-of-sample) and the tail N obser-
vations (out-of-sample: tail) using the GP
model. N = 2000, m = 1, . . . , 7.

Figure 5.8: QQ-plot and autocorrelations
of the out-of-sample successive standard-
ized errors for predicting the 3rd component
when m = 7.

of the observation.

For each component ν, we fit GP and NN models as discussed above based on the

initial N observations, and evaluate the root mean squared errors (RMSEs) for predicting

in-sample and out-of-sample. We consider two sets of observations when evaluating out-

of-sample: one is the next N observations after the initial N observations used to fit the

model, and the other is the N observations at the tail end of the data set. Since the data are

collected in a chronicled order and the properties of the electrical components may change

with environmental conditions such as temperature as the circuit operates, we expect the

tail part of the data set to be the most disparate to the in-sample data, and hence may

provide information about possibly time-varying parameters.

Figure 5.7 shows the in-sample and the two types of out-of-sample RMSEs for the GP

model fitted with the initial N = 2000 observations. Prediction errors decrease and gradually

stabilize as the embedding length increases. The out-of-sample error evaluated with the tail

part of the data set is only slightly larger than that evaluated with the second N observations,

suggesting little variation of the parameters across time. The results for the NN model are
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only slightly worse; the differences of RMSEs between the two models are on the order of

10−5, which is two orders of magnitude smaller than the prediction error itself. Figures D.1

and D.2 in Supplement D.1 show the RMSEs for the NN model and the comparison between

the two models.

The use of GP provides a statistical basis for a model diagnostic. Under the Gaussian

process model assumption for {sk(ν)|k = m+ 1, . . . , N}, for ν ∈ {1, 2, 3}, we have that the

successive standardized errors are independent and normally distributed. In other words, we

expect that

sk(ν)− E(sk(ν)|s1:k−1(ν))√
Var(sk(ν)|s1:k−1(ν))

i.i.d.∼ N (0, 1)

under the GP model. Figure 5.8 shows the QQ-plot and the autocorrelations of the out-

of-sample successive standardized errors for predicting the third component (ν = 3) when

m = 7. The successive standardized errors are well approximated by a normal distribution

except for a few outliers, and the independence condition is not obviously violated.

Note that both the GP and NN models are constructed and fitted for one-step prediction

based on m previous observations, while our aim is to understand the underlying long-term

dynamics based on the observations. As a result, we investigate the capacities of the previ-

ously developed models in long-term prediction. Specifically, we propagate the fitted models

out-of-sample from multiple starting points, and compare the trajectories of the model prop-

agation and observations. One quantitative measure of the long-term predictability is hence

the area enclosed by the two trajectories. For ν ∈ {1, 2, 3}, denote the model propagation

and observations from the ith starting point as {p(i)
k (ν)}k=1:T and {s(i)

k (ν)}k=1:T , respec-

tively, for a tracking length of T . We define the area A(i)(ν) between the two trajectories as

the sum of the areas of the trapezoids whose vertices are consecutive observation and model
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propagation points, i.e.,

A(i)(ν) =
T−1∑
k=1

[
1

2

(
max(s

(i)
k+1(ν), p

(i)
k+1(ν)) + max(s

(i)
k (ν), p

(i)
k (ν))

)
− 1

2

(
min(s

(i)
k+1(ν), p

(i)
k+1(ν)) + min(s

(i)
k (ν), p

(i)
k (ν))

)]
.

(5.3.3)

An illustration of this definition of area is shown in Figure D.3 in Supplement D.1. We

calculate the average area over all components and all starting points defined by

A =
1

3L

L∑
i=1

3∑
ν=1

A(i)(ν), (5.3.4)

and use that as a measure of the long-term predictability of a model.

Figure 5.9 shows the average area between the model propagation and observations over

L = 500 out-of-sample starting points each tracking out a length of T = 2000. We choose

the starting points every 200 steps to make the starting points fairly evenly distributed

over the attractor. For both models, when increasing the embedding length, the long-term

predictability improves for small m, then deteriorates. This pattern suggests an embedding

length being too large (m > 2 for GP and m > 3 for NN) may produce a model well suited

for one-step prediction while performing worse for long-term tracking with our parameter

estimates. So in the following, we focus on the GP and NN models with m = 2 and m = 3,

respectively.

Another interesting feature of the long-term prediction is the region on the state space

where model propagations tend to lose track of the observations. To measure such a diver-

gence of the model propagation from the observations, we use a moving window of length

50 and calculate the average area over three components between the two trajectories inside

the window. An average window area exceeding 65, by empirical experiments, seems to be

a good indicator of a divergence between the model propagations and observations. Figure

5.10 shows one example of such a divergence pattern. Note that following the divergence,
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Figure 5.9: Average area A, defined in
(5.3.4), between observations and model
propagations in 2000 steps for 500 out-of-
sample starting points when m = 1, . . . , 7.

Figure 5.10: Trajectories for observations
and NN model propagations when m = 3.
Starting time point is 3801. The interval
[4057, 4106] surrounded by vertical lines is
the first window whose average area over
the three components exceeds 65.

Figure 5.11: Blue is a subset of the obser-
vations displayed to represent the attrac-
tor; red are points where the average area
in a window of length 50 between the ob-
servations and GP model propagations with
m = 2 first exceeds 65 for the 500 pairs of
trajectories.

Figure 5.12: Same as Figure 5.11 but using
NN model propagations with m = 3.
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although the model propagations sometimes get back on track with the observations briefly,

the tracking becomes noticeably worse. Figures 5.11 and 5.12 show, for GP and NN models,

the regions on the state space where a divergence first occurs for the 500 pairs of trajectories.

Note that both models suggest the divergence largely concentrates in the region with the

most significant nonlinearity, which is approximately {(x, y, z)||z| < 0.5, 0 < x < 1}.

5.4 Simulation results

[18] shows that the likelihood function for the initial state of a chaotic logistic map exhibits

complex and irregular behaviors. In this section, we explore, through simulations, the extent

to which similar behaviors of the likelihood functions arise for systems whose realizations

are qualitatively similar to our observations. In addition, we compare the long-term pre-

dictability of the fitted GP and NN models in Section 5.3 with simulations generated with

an electronic noise term based on measurements from a reconstructed physical circuit.

We consider the following state space formulation:

ut+1 = M(ut) + εt, εt
i.i.d.∼ N (0, Q) (5.4.1a)

wt = Hut + ηt, (5.4.1b)

where (5.4.1a) models the evolution of the underlying states ut with a stochastic model

error εt, and (5.4.1b) models the noisy observations wt with an observational error ηt. In

this section, we investigate the effects of both i.i.d. and temporally correlated observational

errors. We simulate observations according to (5.4.1) with two choices of the model mapping

M . One is obtained from augmenting the nominal model (5.2.1) by including in all three

equations of the right-hand-side all monomials up to the third order and two fourth order

terms z4, xz3. The coefficient for each monomial is estimated via fitting the resulting ODE

model to the initial 10,000 observations by minimizing one-step ahead prediction errors.

This augmented ODE model leads to smaller and less structured prediction errors than the
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nominal model. For example, the RMSE of the augmented ODE model for predicting the

tail 2000 observations is 2.4 × 10−3 while that of the nominal model is 9 × 10−2. In this

case, the model mapping MP is obtained by integrating the fitted ODE model using the

Runge-Kutta 4th order method, the covariance for the model error is QP = σ2
εI3, and the

observation mapping is HP = I3.

For the second choice, we train a feed-forward NN model (2 hidden layers and 10 neurons

each layer) with embedding length m = 3 using the initial 400,000 observations. The two-

layer NN configuration was chosen from multiple configurations since it gave the smallest

prediction errors in this case. We use a large training set here because we are interested

in obtaining the best approximation we can to the circuit’s behavior as a basis for further

simulations. In contrast, in Section 5.3, where we used a training set of only 2000 obser-

vations, our goal was to show that it is possible to fit an accurate model with a modest

sample size. Furthermore, we wanted to make a fair comparison to the GP approach for

which maximizing (5.3.2) for larger sample sizes is computationally difficult. The results in

Section 5.3 indicate that m = 3 appears to perform well in long-term predictions for NN

models fitted by minimizing the one-step prediction errors, and by using a large training set,

we expect this model to be able to capture most of the dynamics in the data. Note that

with this larger training set, we indeed obtain a better fit to the data. For example, the

RMSE evaluated using the tail 2000 observations decreases by 8% compared to that of the

NN model fitted with only the initial 2000 observations considered in Section 5.3.

Since the NN model predicts based on three previous observations, in this case, we have an

augmented state vector uTt = (ũTt−2, ũ
T
t−1, ũ

T
t ), a model mapping MN , and an observational
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mapping HN defined as


ũt−1

ũt

ũt+1

 = MN



ũt−2

ũt−1

ũt


+


0

0

ε̃t

 , ε̃t
i.i.d.∼ N (0, σ2

εI3)

ũt+1 = fNN (ũt−2, ũt−1, ũt), HN =

[
0 0 I3

]
,

(5.4.2)

where fNN (·) is the fitted NN predictor.

5.4.1 Independent and identically distributed observational error

In this subsection, we consider the observational error ηt
i.i.d.∼ N (0, σ2

ηI3), and investigate

the effects of model error on the likelihood functions. When there is no model error, the

log-likelihood function of the initial state u0 satisfies

2ln(u0) = −
n−1∑
k=0

∥∥∥wk −HMk(u0)
∥∥∥2
/σ2
η − 3n log(σ2

η)− 3n log(2π), (5.4.3)

and the profile log-likelihood function obtained by profiling over σ2
η satisfies

2l̃n(u0) = −3n log(σ̂2
η)− 3n log(2π)− 3n,

σ̂2
η =

1

3n

n−1∑
k=0

∥∥∥wk −HMk(u0)
∥∥∥2
.

(5.4.4)

In our experiments, the standard deviation for the observational error is ση = 10−3, and

that for the model error is chosen as small as σε = 10−12. We are interested in comparing

the likelihoods (5.4.3) and (5.4.4) for observations generated with and without model errors.

Specifically, we investigate the likelihood functions of the last element of the initial state

while fixing the other elements at their true values. Note that although the dimension of

the state vector is three for the ODE model and nine for the NN model, the last element of
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Figure 5.13: Profile log-likelihoods (top row and bottom left panel) and log-likelihood (bot-
tom right panel) of the 3rd element of the initial state for the simulated ODE model MP

with no model error and with observational error ηt
i.i.d.∼ N (0, σ2

ηI3), ση = 10−3. Labels
on the horizontal axes are differences of the simulation points minus the true initial state.
Asterisk indicates true initial state.

a state for both models corresponds to the z coordinate of the most recent observation. For

both the ODE and NN models, the simulated observations manifest a qualitatively similar

attractor as the real data. Figures D.4–D.7 in Supplement D.1 show realizations of the

simulation models.

For the ODE model, Figure 5.13 shows, with no model error, the likelihoods of the third

element of the initial state with the other two elements fixed at their true values. We observe

the same general pattern as in [18]: the likelihood functions on a fixed interval of initial states

become more jagged and irregular as we increase the number of observations, and only show

some smoothness when focusing on a narrower interval (see, for example, the top right and

bottom left panels of Figure 5.13). In addition, much more information about the true

initial state can be learned with more observations, since the relative difference of the profile

log-likelihoods between the true initial state and the neighboring simulation points becomes

more pronounced. Note that for a fixed number of observations, the profile log-likelihood is
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Figure 5.14: Profile log-likelihoods of the 3rd element of the initial state for the simulated

ODE model MP with model error εt
i.i.d.∼ N (0, σ2

εI3), σε = 10−12 and with observational

error ηt
i.i.d.∼ N (0, σ2

ηI3), ση = 10−3. Labels on the horizontal axes are differences of the
simulation points minus the true initial state. Asterisk indicates true initial state.

dramatically sharper than the log-likelihood at the true initial state with σ2
η fixed at its true

value, and hence contains more information about the truth.

The top right panel of Figure 5.13 seems to indicate the true initial state maximizes the

profile log-likelihood. Admittedly, the simulation is based on finitely many discrete points

in some neighborhood of the true initial state, and hence does not fully represent the entire

likelihood function. However, to add evidence to the remark that the true initial state can

be identified as the maximizer of the likelihood function under no model error, in the bottom

left panel of Figure 5.13, we evaluate the profile log-likelihood of the third element of the

initial state for 1000 points in the interval (u0(3) − 10−12, u0(3) + 10−12) when n = 6000.

In this case, the distance between the true initial state and the closest simulation point

is on the order of 10−15, and the true initial state still has the largest likelihood in the

simulation interval. Note that due to the finite precision of computers, the model being

simulated essentially has a discrete state space, and a difference of 10−15 is fairly close to
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the machine precision. As a result, the true initial state may maximize the likelihood for

a large enough number of observations given the effectively discrete state space. In Section

5.4.2, we will look more closely into the comparison of the likelihoods of the true initial state

and its neighbors for an increasing number of observations.

Figure 5.14 shows the log-likelihoods of the third element of the initial state under a small

model error with standard deviation σε = 10−12. Similar to the case without model error,

we observe wilder behavior of the likelihood functions with more observations. However,

increasing the number of observations from 4000 to 6000 no longer helps much in identifying

the true initial state. In the top row of Figure 5.14, although more observations make the

profile log-likelihood more concentrated around the true initial state, the difference in log-

likelihoods between the true initial state and the neighboring points only increases slightly,

compared with the sharp increase under no model error (top row of Figure 5.13). The pattern

is more obvious on a smaller scale: see the bottom row of Figure 5.14 where the true initial

state clearly no longer maximizes the likelihood. When the number of observations increases,

we do not gain more information about the true initial state.

Figures 5.15 and 5.16 show, with no model error and a small model error as defined

in (5.4.2) respectively, the likelihoods of the 9th element of the initial state with the other

elements fixed at their true values for the simulated NN model. Similarly to the ODE model,

for a fixed range of the initial states, the likelihoods become more jagged for a larger number

of observations, which indicates the NN model captures the chaotic character in the data.

Moreover, more observations provide more information for the true initial state under no

model error, and when there is even a small model error, the true initial state is no longer

the MLE and more observations do not give more information. An interesting feature to

note in this case is that on the bottom row of Figure 5.16, the profile log-likelihood attains

local maxima at different points when n = 4000 and n = 6000. It shows that, even with

the correct dynamics for the deterministic part of the model, there does not exist a starting

point that can track this simulated NN system with even a tiny stochastic model error for
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Figure 5.15: Profile log-likelihoods (top row and bottom left panel) and log-likelihood (bot-
tom right panel) of the 9th element of the initial state for the simulated NN model MN with

no model error and with observational error ηt
i.i.d.∼ N (0, σ2

ηI3), ση = 10−3. Labels on the
horizontal axes are differences of the simulation points minus the true initial state. Asterisk
indicates true initial state.
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Figure 5.16: Profile log-likelihoods of the 9th element of the initial state for the simulated

NN model MN with model error ε̃t
i.i.d.∼ N (0, σ2

εI3) as defined in (5.4.2), σε = 10−12 and

with observational error ηt
i.i.d.∼ N (0, σ2

ηI3), ση = 10−3. Labels on the horizontal axes are
differences of the simulation points minus the true initial state. Asterisk indicates true initial
state.
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an indefinitely long time.

5.4.2 Temporally correlated observational error

In this subsection, we consider observational errors that are temporally correlated with an

AR(1) structure. That is, we have ηt = φηt−1 + vt for some φ ∈ R and vt
i.i.d.∼ N (0, σ2

vI). A

temporally correlated observational error can be used to model dependences in the measure-

ment process resulted from, for example, a limited instantaneous rate of response to changes

in signal for the measurement device. When there is no model error, the profile log-likelihood

function of the initial state obtained by profiling over σ2
η satisfies

2l̃n(u0) = −3n log (σ̂2
η)− log (|R|)− 3n log (2π)− 3n, (5.4.5)

where

σ̂2
η =

eTR−1e

3n
, R = toeplitz(1, φ, . . . , φn−1)⊗ I3, e =

[
wk −HMk(u0)

]n−1

k=0
.

We take φ = 0.9 and σv = 10−3 as the standard deviation for the innovation. Realizations

of the simulated models under this temporally correlated observational error again form an

attractor similar to that of the real data and are shown in Figures D.8 and D.9 in Supplement

D.1.

Figures 5.13 and 5.15 showed that more information about the true initial state can be

learned with more observations under i.i.d. observational error. We now investigate this

finding in more detail and compare the effects of different observational error structures. We

use the difference in the profile log-likelihood function between the true initial state and the

neighboring simulation points as a measure of identifiability of the true initial state. The

neighboring simulation points are taken on a regular grid centered at the true initial state

for the ODE model, and at the last three elements of the true initial state for the NN model.

With this specification, we have a total of 26 simulation points excluding the true initial
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state. Denote the shortest distance from the simulation points to the true initial state as d.

An illustration of this setup of the simulation points is shown in Figure D.10 in Supplement

D.1.

Figure 5.17 shows, for the ODE model, the differences in the profile log-likelihood func-

tions (5.4.4) and (5.4.5) under i.i.d. and AR(1) observational errors, respectively. For each

observational error type, we experiment with simulation points closer to the true initial state

with d = 2 × 10−15 and those further away with d = 10−5. In accordance with the feature

shown in the top row of Figure 5.13 that, as the number of observations increases, the dif-

ference of the profile log-likelihood between the true initial state and the neighboring points

increases under both types of observational errors. Note that the linear rate of the increase

in Figure 5.17 implies an exponential rate of increase in the likelihood ratio. In addition, as

indicated by the larger slope of the dashed lines, the information about the true initial state

grows faster in the number of observations for the i.i.d. observations than for the AR(1)

observational errors measured with the same set of simulation points.

For both types of observational errors, the difference in the profile log-likelihood is larger

between the true initial state and the simulation points further away than those closer.

However, this discrepancy between points at different distances to the true initial state

diminishes as number of observations increases. This pattern shows that the neighboring

points, regardless of their distance to the true initial state, become similarly worse in tracking

the observations relative to the true initial state. This is due to the chaotic feature of the

system so that even a tiny departure from the true initial state can lead to significant

divergence in the propagation with a long enough horizon. In other words, an initial state

with a tiny but non-zero departure from the truth, in the long run, does not have much

advantage in tracking the observations over an initial state with a large departure. Figure

5.18 shows the differences of the profile log-likelihood functions for the NN model. We observe

similar patterns as for the ODE model that, as the number of observations increases, i.i.d.

observations provide more information to the true initial state with a higher rate. In addition,
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Figure 5.17: Difference in the profile log-
likelihood function between the true initial
state and the neighboring simulation points
for the ODE model with no model error for
various n. Numbers in the legend are the
distances d between the simulation points
and the true initial state.

Figure 5.18: Same as Figure 5.17 but for
the NN model.

the simulation points with different distances to the true initial state become more similar

relative to the truth in terms of their abilities to track the observations.

We note a theoretical result [74, Theorem 3] regarding signal extraction that is relevant

to what Figures 5.17 and 5.18 show. That result proves, for an invertible chaotic system Ψ

under no model error and Gaussian observational noise, it is impossible to consistently infer

any single state from the infinite two-sided observation time series. The result is established

based on the existence of homoclinic points. Two points x0 6= x′0 constitute a homoclinic pair

[e.g., 59, 74, 75] if lim|n|→∞(1 + α)|n||Ψn(x0)− Ψn(x′0)| = 0 for some α > 0. In words, the

trajectories of the two distinct points approach each other exponentially fast both forward

and backward in time. Consequently, if the observational noise is unbounded, for example

Gaussian, there is a positive probability that no matter how many observations one has,

the true state x0 that generates the observations has a lower likelihood than its homoclinic

point x′0, and hence can not be inferred from the data. However, for all realizations of the

ODE and NN models we have experimented with, we find that the true initial state has

the highest likelihood among the simulation points and we appear to gain exponentially
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growing information about the truth with more observations. One possible resolution for

this apparent discrepancy between the theory and our empirical results lies in the relatively

small observational noise used in the simulations, which leads to a perhaps tiny, though

positive, probability that the homoclinic point gives a higher likelihood than the true initial

state. As a result, we do not observe the effects of homoclinic points in our limited number

of simulations.

5.4.3 Simulations with electronic noise

In this section, we consider the simulated NN model MN with no observational error and a

model error estimated from a reconstructed physical circuit. The circuit was built using the

same components as those in [84], and was fully covered to be thermally controlled at 20 ◦C.

We expect this reconstructed circuit to mimic the circuit system in [84], and thus provide an

estimate of the model error encountered in reality. The model error in this case is taken to

be the electronic noise in the circuit, which consists mostly of the Johnson (thermal) noise

[65]. The Johnson noise is approximately white and has very nearly a Normal distribution

[12]. The standard deviation for the Johnson noise was measured for one component in the

circuit expected to contribute the most to the entire noise level, and was estimated to be

100µV with a 3dB bandwidth of 1kHz set by the integrator of the circuit. Thus, we maintain

that the noise level for the entire circuit in [84] should fall in the range 100µV to 400µV by

taking into account the noise contributed from other components and that the experiment in

[84] was conducted with a higher room temperature. The simulated NN model with a model

error implied by the physical circuit can be regarded as at least a fair approximation to the

underlying dynamics of the circuit system. As a result, the performance of two realizations

generated from this simulation model in tracking each other sets a benchmark on how well

any fitted model can possibly track the observations. In the following, we revisit the fitted

GP and NN models in Section 5.3, and evaluate their tracking abilities by comparing with

the simulation model under the estimated range of the model error.
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Figure 5.19: Histograms (gray) of average areas between real observations and GP model
propagations (embedding length m = 2) in 2000 steps for the 500 starting points considered
in Section 5.3; histograms (white with solid bar outlines) of average areas between two
realizations in 2000 steps from (5.4.2) under model error with standard deviation σε and
no observational error for the same 500 starting points. From left to right: σε = 10−4, 2 ×
10−4, 3 × 10−4, 4 × 10−4. Histograms are normalized so that the areas of bars in each
histogram sum to one.

Figure 5.19 shows the histograms of the average areas between the fitted GP model

propagations and the real observations, and those between two realizations of the simulated

model (5.4.2) for the same 500 starting points considered in Section 5.3. The results for

the fitted NN model in Section 5.3 are very similar, and a comparison of both models with

the simulations is shown in Figure D.11 in Supplement D.1. For a smaller estimate of the

model error σε = 10−4, the tracking performance of the GP model is clearly inferior to

the simulation model. It indicates that the fitted models do not seem to fully capture the

dynamics if the model error is indeed this small. However, as the model error increases,

we see much better agreement between the fitted models and the simulations. As discussed

previously, the smaller end of the model error estimate σε = 10−4 is measured with one

component of the reconstructed circuit, while the noise level of the entire circuit in [84] is

expected to be larger due to contributions from other components and a higher temperature.

Consequently, the fitted GP model may approach the limit of how well one can track the

system in the presence of a stochastic model error in the circuit. Table 5.1 additionally

supports this point by showing the proportions of starting points from which the simulation
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model produces a smaller tracking area than the fitted models tracking the observations.

When the model error σε = 10−4 is small, the tracking performance of the fitted models is

worse than that of the simulations for around 65% of the starting points. However, for larger

model errors, for example when σε = 3×10−4, the fitted models track better compared with

the simulations for about half of the starting points. Thus, if the true model error has this

plausible standard deviation of 3× 10−4, then the GP and NN models track the system as

well as possible.

σε 10−4 2× 10−4 3× 10−4 4× 10−4

GP 68.8% 56.2% 49.4% 43.2%
NN 65.4% 54.8% 46.8% 46.2%

Table 5.1: Proportions of starting points for which the average area between two trajectories
is smaller for the simulations than for the GP and NN model propagations tracking the real
observations. The simulation trajectories for each starting point are two realizations from
(5.4.2) under model error with standard deviation σε and no observational error.

5.5 SPICE simulation

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose electri-

cal circuit simulator used in circuit design to verify the circuit operation at transistor level

and predict the behavior of the designed circuit [92]. It enables designers to simulate the

circuit even before prototyping. We use LTspice [41], a version of the SPICE simulator de-

veloped by Linear Technology, to simulate the circuit in [84] in an attempt to obtain a good

representation of the underlying dynamics. However, we were not able to obtain simulation

results close to the observations. In particular, for all SPICE simulations with various initial

values and component values the same as or slightly perturbed from their nominal values in

[84], the resulting attractors in some cases do not qualitatively resemble that in Figure 5.2

and the simulations always have systematically much larger, typically twice larger, output

ranges for the three voltages than the observations.
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There are three major difficulties in carrying out the SPICE simulation to mimic the

behavior of the observations. First, the circuit contains potentiometers used to tune the

circuit into a parameter space with chaotic behavior, which introduces extra free variables

to be adjusted. However, neither the given nominal values of the potentiometers nor the

other values tested generate simulations matching the observations. Secondly, the particular

multiplier AD534J1 used in the circuit does not have an associated SPICE model that can be

used in the simulation. As a substitute, we used a drop-in replacement multiplier AD7342 for

which an associated SPICE model exists. The SPICE model is configured to have the same

transfer function as that of AD534J used in the experiment. However, the model AD734

does differ from the AD534J and has a higher slew rate and a lower noise figure. Finally,

the SPICE models for the operational amplifier and multiplier set unrealistically low values

for the lead inductance and capacitance, which can give rise to numerical instability in the

simulation. Although we were unable to construct a matching model of the circuit using

SPICE, the fact that both GP and NN models provide an excellent fit to the data shows

that the circuit’s behavior is well-described by a dynamical system.

5.6 Discussion

The analysis of observations generated from unknown nonlinear and chaotic dynamical sys-

tems poses significant challenges to modeling the underlying dynamics and characterizing the

stochastic model and observational errors. We looked into some aspects of these problems

with voltage measurement data generated by a laboratory-built electrical circuit. The nom-

inal model of the measurements shows notable deficiencies in capturing the dynamics in the

observations, so we turned to GP and NN models that are trained for one-step prediction.

With the squared exponential covariance for GP and the feed-forward NN configurations

1. Product description and details can be found in http://www.analog.com/en/products/

linear-products/analog-multipliers-dividers/ad534.

2. Product description and details can be found in http://www.analog.com/en/products/

linear-products/analog-multipliers-dividers/ad734.
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we considered, both models perform similarly in one-step prediction. The prediction error

decreases as the embedding length increases. However, good short-term prediction does not

necessarily lead to a good representation of the underlying dynamics. As we show for both

GP and NN models, the best performance in tracking the observations long-term occurs at a

moderately valued embedding length, while a larger embedding length results in quick dete-

rioration in the tracking abilities. The GP and NN models we fitted are both deterministic

predictors, while an alternative is to fit a state space model. We experimented with fitting

one assuming no model error and a Normal observational error using likelihood method.

However, we were not able to obtain results better than the fitted GP and NN predictors.

The inclusion of a model error in the state space formulation introduces more parameters

to be estimated, and we did not experience success with this approach under a nonlinear

dynamics.

The fact that the embedding length leading to the best performance in both one-step

prediction and long-term tracking is larger than one for both GP and NN models is an

indication that the state of the circuit system may not solely consist of the three voltage

measurements at one time point. In fact, the circuit components have different bandwidths,

and hence they respond to signal with different rates. For example, the operational amplifiers

respond faster than the multipliers. As a result, a single measurement frequency is not able

to capture all possible behaviors of every component, especially those occurring at higher

frequency. In this case, using an embedding length larger than one, i.e., incorporating

previous observations, in the prediction can be seen roughly as a way to at least partially

recover the frequency information, which presumably is also part of the state.

We investigated the effects of model and observational errors on the likelihood function of

the initial state through simulations. The simulated data were generated by our fitted ODE

and NN models, which manifest a low-dimensional attractor and chaotic features similar to

the observations. We found that the effects of model and observational errors on inferring the

initial state are quite different. In the absence of model error, the true initial state appears
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to maximize the likelihood function, and the likelihood ratio between the true initial state

and the neighboring points grows exponentially in the number of observations. In other

words, we have exponentially increasing information about the true initial state with more

observations. Temporally correlated observational errors result in a slower rate of increase

for the likelihood ratio but preserve the exponential growth. However, in the presence of a

model error, even one with a standard deviation as small as 10−12, an increasing number of

observations no longer provides unboundedly increasing information about the true initial

state through the likelihood function. Moreover, in this case, there does not seem to exist

an initial state capable of tracking the observations indefinitely long even with the correct

dynamics.

Note that the standard deviation of the model error considered in Section 5.4.1 is sig-

nificantly smaller than the measured electronic noise in the circuit, yet it is still impossible,

through the likelihood function, to identify the initial state and hence track the observations

in the long term even with the correct deterministic part of the dynamics. This points out

that chaotic systems in reality, which almost always contain stochastic model errors, do not

behave as ideally as the deterministic chaos in terms of the identifiability of the initial state

under increasing observations. However, our comparisons in Section 5.4.3 show that it may

be possible, at least in some cases like ours, to construct deterministic predictors that gen-

erate long-term predictions approaching the tracking limit of the system given the existence

of a stochastic model error in the dynamics.
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APPENDIX A

SUPPLEMENT TO CHAPTER 2

A.1 Multiple shooting with zero observability

In this section, we prove that for a class of linear systems, under zero observability, the

condition number of the Hessian matrix of augmented Lagrangian has an exponential lower

bound. Hence the multiple shooting method is not stable if there are no observations. We

consider the model propagation mapping to be time independent, that is, M(xj) = Axj , and

Bj = 0 for 0 ≤ j ≤ N . We assume A has at least one real eigenvalue with modulus strictly

larger than 1. With this model specification, Ji are identical for all 1 ≤ i ≤ d and so are

Λi. For simplicity, we denote them respectively as J1 and Λ1 for 1 ≤ i ≤ d. The expanded

forms of J1 and Λ1 are

J1 =



ATQ−1A −ATQ−1 0

−Q−1A ATQ−1A+Q−1 . . .

. . . . . .

. . . ATQ−1A+Q−1 −ATQ−1

0 −Q−1A Q−1


,

Λ1 =



0 I

−QA−TQ−1A A+QA−TQ−1

...
...

L
(Pi−1)
Pi+1

(xPi−1, xPi) L
(Pi)
Pi+1

(xPi−1, xPi)


.

For p = Pi, Pi − 1, adapting the optimality recursions (2.2.7) to the linear system under

consideration and applying the chain rule, we have that the recursion of L
(p)
Pi+j

for 0 ≤ j ≤

k − 1 is

L
(p)
Pi+j+1 = (A+QA−TQ−1)L

(p)
Pi+j

−QA−TQ−1AL
(p)
Pi+j−1. (A.1.1)
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Denote L1 to be the last two block rows of Λ1.

Lemma A.1.1. Denote Λ̂ = Λ1

I
A

. Then, J1Λ̂ = 0.

Proof. We first prove that for 1 ≤ j ≤ k, the jth block of Λ̂ is (Λ̂)j = Aj by induction. It

is evident for j = 1, 2. Suppose it is true for all j ≤ j0, 2 ≤ j0 ≤ k − 1. Then by recursion

(A.1.1),

(Λ̂)j0+1 = L
(Pi−1)
Pi+j0

+ L
(Pi)
Pi+j0

A

= (A+QA−TQ−1)(L
(Pi−1)
Pi+j0−1 + L

(Pi)
Pi+j0−1A)

− (QA−TQ−1A)(L
(Pi−1)
Pi+j0−2 + L

(Pi)
Pi+j0−2A)

= (A+QA−TQ−1)(Λ̂)j0 − (QA−TQ−1A)(Λ̂)j0−1

= Aj0+1.

A direct multiplication completes the proof.

Proposition A.1.2. Let |λ| > 1, λ ∈ R be an eigenvalue of A. Denote λk = λk−1. Then,

for the linear system under consideration, we have that

κ
(
∇2
xLA(x∗, λ∗, ψ∗, µ)

)
≥
λmin(Q−1

B )

µ
|λk|2(d−1).

Proof. For any s = (s1, . . . , s2d+1) ∈ R(2d+1)J , denote ŝ0 = s1, ŝi = (s2i, s2i+1) for 1 ≤ i ≤

d. Then from Theorem 2.2.2 (b) we have that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = sT1 ΛT0 J0Λ0s1 +

d∑
i=1

ŝTi ΛT1 J1Λ1ŝi (A.1.2)

+ µ‖ŝ1 − L0s1‖2 + µ
d∑
i=2

‖ŝi − L1ŝi−1‖2.

Consider s = (s1, . . . , s2d+1) ∈ R(2d+1)J such that s1 = 0, s2i = λi−1
k s2, s2i+1 = λs2i for
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1 ≤ i ≤ d, and let ‖s2‖ = 1 be the eigenvector of A corresponding to λ, that is, As2 = λs2.

Then ŝi =

I
A

 s2i for 1 ≤ i ≤ d, which gives that

ŝTi ΛT1 J1Λ1ŝi = sT2iΛ̂
TJ1Λ̂s2i = 0, (A.1.3)

where the last equality follows from Lemma A.1.1.

Since L1 consists of the last two block rows of Λ1, we have that L1

I
A

 =

Ak−1

Ak

.

Hence by the definition of s for 2 ≤ i ≤ d, we obtain that

ŝi − L1ŝi−1 =

I
A

 s2i −

Ak−1

Ak

 s2(i−1) = 0. (A.1.4)

Using (A.1.3) and (A.1.4) in (A.1.2), we obtain that

sT∇2
xLA(x∗, λ∗, ψ∗, µ)s = µ‖ŝ1‖2 ≤ µ(‖s2‖2 + |λ|2‖s2‖2) = µ(1 + |λ|2).

From the definition of s, we have that

‖s‖2 =
d∑
i=1

‖s2i‖2 + ‖s2i+1‖2 = (1 + |λ|2)
d∑
i=1

|λk|2(i−1) ≥ (1 + |λ|2)|λk|2(d−1).

Hence we have that

λmin(∇2
xLA(x∗, λ∗, ψ∗, µ)) ≤ sT∇2

xLA(x∗, λ∗, ψ∗, µ)s

‖s‖2

≤ µ|λk|−2(d−1).

(A.1.5)

On the other hand, let t = (t1, . . . , t2d+1) ∈ R(2d+1)J be such that ‖t1‖ = 1 and ti = 0

for all 2 ≤ i ≤ 2d + 1. J0 differs from J1 by only the (1,1)th block element so that
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(J0)(1,1) = (J1)(1,1) +Q−1
B . Then

tT∇2
xLA(x∗, λ∗, ψ∗, µ)t = tT1 ΛT0 J0Λ0t1 + µtT1 L

T
0 L0t1

≥ tT1 ΛT0 J0Λ0t1 ≥ λmin(Q−1
B ).

Hence we have that

λmax(∇2
xLA(x∗, λ∗, ψ∗, µ)) ≥ tT∇2

xLA(x∗, λ∗, ψ∗, µ)t

‖t‖2

≥ λmin(Q−1
B ).

(A.1.6)

Combining equation (A.1.5) and (A.1.6) completes the proof.

A.2 Single shooting condition number

In this section, we prove that for a certain class of linear systems that satisfy the observability

condition, the condition number of the Hessian matrix for the single shooting function (2.1.7)

has an exponential lower bound in N . Hence the single shooting method is not stable for

this class of systems.

We consider linear time-independent systems such that M(xi) = Axi and H(xi) = Bxi.

Denote C1 = QA−TQ−1 +A+QA−TBTR−1B and C2 = QA−TQ−1
B +A+QA−TBTR−1B.

We have the following.

Proposition A.2.1. For linear systems satisfying

(a) C1C2 − I = C2
2 ,

(b) there exist eigenvalues λ1 and λ2 of C2 such that |λ1| > 1 and |λ1| > |λ2| 6= 0,

(c) QA−TQ−1A = IJ .
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We have

κ
(
∇2
x0Γ̂(x∗0)

)
≥


C
N

∣∣∣λ1λ2 ∣∣∣2(N−1)
, |λ2| ≥ 1

C
N |λ1|2(N−1), |λ2| < 1

for some constant C > 0, where x∗0 is the first component of a local minimizer of Γ(x0:N )

(2.1.3).

Note: At the end of this section, we give an example of a linear system satisfying

conditions (a)–(c) with observation matrix B being full rank, namely, with full observability.

Proof. It is shown in [7, Theorem 3] that x∗0 is a local minimizer of Γ̂(x0) and that

∇x0Γ̂(x∗0) = θ0(x∗0, λ1) +
N−1∑
j=1

L
(0)
j

T
θj(λj−1, λj , λj+1) + L

(0)
N

T
θN (λN−1, λN ), (A.2.1)

where L
(0)
j , 0 ≤ j ≤ N are as defined in Definition 2.2.1(b).

Applying the chain rule and the optimality conditions (2.1.4), (2.1.5), and (2.1.6) to

(A.2.1), we obtain that the Hessian matrix for the single shooting function (2.1.7) is

∇2
x0Γ̂(x∗0) = ΛTs JsΛs, (A.2.2)

where Λs is (N + 1)J × J dimensional and Js is (N + 1)J × (N + 1)J dimensional. They

are defined as

ΛTs =

[
L

(0)
0

T
L

(0)
1

T
. . . L

(0)
N

T
]

Js =



Q−1
B +BTR−1B + ATQ−1A −ATQ−1 0

−Q−1A C3 + ATQ−1A
. . .

. . . . . .

. . . C3 + ATQ−1A −ATQ−1

0 −Q−1A C3


,
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where C3 := Q−1 + BTR−1B. Denote dj(x) =

L(0)
j x

L
(0)
j−1x

 , for 1 ≤ j ≤ N . Then, for

1 ≤ j ≤ N − 1, from the recursion for the derivatives (2.3.8) and (2.3.9), we have that

dj+1(x) =

QA−TQ−1 + A+QA−TBTR−1B −QA−TQ−1A

IJ 0

 dj(x)

=

QA−TQ−1 + A+QA−TBTR−1B −IJ

IJ 0

 dj(x)

=

C1 −IJ

IJ 0

 dj(x) := Ddj(x),

and

d1(x) =

QA−TBTR−1B + A+QA−TQ−1
B

IJ

x
=

C2

IJ

x := Ĉ2x.

For any eigenvector v of C2 with corresponding eigenvalue λ, we have from condition (a)

that Dd1(v) = λd1(v). Hence for 1 ≤ j ≤ N , we have that dj(v) = λj−1d1(v). Denoting

Q̃ = (I,−A)TQ−1(I,−A) and using (A.2.2), we have that

v∗∇2
x0Γ̂(x∗0)v = v∗ΛTs JsΛsv

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v)

+
N−1∑
j=0

(L
(0)
j+1v − AL

(0)
j v)∗Q−1(L

(0)
j+1v − AL

(0)
j v)
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= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) +

N∑
j=1

dj(v)∗Q̃dj(v)

= v∗Q−1
B v +

N∑
j=0

(L
(0)
j v)∗BTR−1B(L

(0)
j v) + v∗ĈT2 Q̃Ĉ2v

N∑
j=1

|λ|2(j−1),

where ĈT2 Q̃Ĉ2 = (Q−1
B +BTR−1B)TA−1QA−T (Q−1

B +BTR−1B) is positive definite.

Let v1 and v2 be eigenvectors of C2 corresponding respectively to λ1 and λ2 as defined

in condition (b), and ‖v1‖ = 1, ‖v2‖ = 1. Then we have

λmax(∇2
x0Γ̂(x∗0)) ≥

v∗1∇
2
x0Γ̂(x∗0)v1

‖v1‖2

≥ v∗1Ĉ
T
2 Q̃Ĉ2v1

N∑
j=1

|λ1|2(j−1)

≥ λmin(ĈT2 Q̃Ĉ2)|λ1|2(N−1)

(A.2.3)

and

λmin(∇2
x0Γ̂(x∗0)) ≤

v∗2∇
2
x0Γ̂(x∗0)v2

‖v2‖2

≤ λmax(Q−1
B ) + λmax(BTR−1B)‖d1(v2)‖2

N∑
j=1

|λ2|2(j−1)

+ λmax(BTR−1B) + v∗2Ĉ
T
2 Q̃Ĉ2v2

N∑
j=1

|λ2|2(j−1)

≤ 2U + 2U
N∑
j=1

|λ2|2(j−1)

≤


4UN |λ2|2(N−1), |λ2| ≥ 1

4UN, |λ2| < 1

,

(A.2.4)
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where

U = max
(
λmax(Q−1

B ), λmax(BTR−1B)λmax(ĈT2 Ĉ2), λmax(BTR−1B), λmax(ĈT2 Q̃Ĉ2)
)
.

Equations (A.2.3) and (A.2.4) give that

κ
(
∇2
x0Γ̂(x∗0)

)
≥


λmin(ĈT2 Q̃Ĉ2)

4UN

∣∣∣λ1λ2 ∣∣∣2(N−1)
, |λ2| ≥ 1

λmin(ĈT2 Q̃Ĉ2)
4UN |λ1|2(N−1), |λ2| < 1

.

Letting C =
λmin(ĈT2 Q̃Ĉ2)

4U completes the proof.

Consider an example for which Q = A = diag(2, 1, . . . , 1) for all 0 ≤ j ≤ N − 1, QB =

diag(4, 3
2 , . . . ,

3
2), and BTR−1B = diag(7

4 ,
4
3 , . . . ,

4
3) such that B is full rank. Then, C1 =

diag(17
4 ,

10
3 , . . . ,

10
3 ) and C2 = diag(4, 3, . . . , 3) so that all three conditions in Proposition

A.2.1 are satisfied. For this example, even with full observability, single shooting is not

stable.
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APPENDIX B

SUPPLEMENT TO CHAPTER 3

B.1 Proofs of results in Sections 3.2 and 3.3

B.1.1 Proof of Proposition 3.2.4

With dynamic programming, the “cost-to-go” value functions for a problem started at k

with state xk, Jk(xk), satisfy

Jn2(xn2) = (xn2 − dn2)TQn2(xn2 − dn2)

Jk(xk) = min
vk

(xk − dk)TQk(xk − dk) + vTk R̂kvk + Jk+1(Akxk + B̂kvk + fk)

for n1 ≤ k ≤ n2 − 1. We claim that

Jk(xk) = xTkKkxk − 2

n2∑
i=k

dTi M
k
i xk − 2

n2−1∑
i=k

fTi S
k
i xk + Tk, n1 ≤ k ≤ n2, (B.1.1)

where Tk is some constant matrix.

Now we prove (B.1.1) by reverse induction and show that (3.2.6) holds whenever (B.1.1)

holds at k + 1. When k = n2, (B.1.1) holds with Kn2 = Qn2 by definition. Suppose (B.1.1)

holds for Jk+1(xk+1) for some n1 ≤ k ≤ n2 − 1. Then, replacing the induction hypothesis

formula in the cost-to-go function, we obtain

Jk(xk) = min
vk

{
vTkWkvk + 2rTk vk

}
+ xTk

(
ATkKk+1Ak +Qk

)
xk

−2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk

−2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk,
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where

Wk = R̂k + B̂Tk Kk+1B̂k, (B.1.2)

rTk = xTkA
T
kKk+1B̂k −

n2∑
i=k+1

dTi M
k+1
i B̂k −

n2−1∑
i=k+1

fTi S
k+1
i B̂k + fTk Kk+1B̂k.(B.1.3)

The optimal control law, which is the solution of the preceding optimization problem, is

hence

v∗k(xk) = −W−1
k rk

= Lkxk +W−1
k

n2∑
i=k+1

B̂Tk

(
Mk+1
i

)T
di

+W−1
k

n2−1∑
i=k+1

B̂Tk

(
Sk+1
i

)T
fi −W−1

k B̂kKk+1fk.

Therefore (3.2.6) holds true at k.

Substituting v∗k = −W−1
k rk, we obtain that v∗k

TWkv
∗
k + 2rTk v

∗
k = −rTkW

−1
k rk. As a

result,

Jk(xk) = −rTkW
−1
k rk + xTk

(
ATkKk+1Ak +Qk

)
xk

− 2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk.

(B.1.4)
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Substituting the expression of rk defined in (B.1.3), we have that, up to a constant term,

− rTkW
−1
k rk + xTk

(
ATkKk+1Ak +Qk

)
xk

= xTk

(
ATk (Kk+1 −Kk+1B̂kW

−1
k B̂Tk Kk+1)Ak +Qk

)
xk

+ 2

 n2∑
i=k+1

dTi M
k+1
i B̂k +

n2−1∑
i=k+1

fTi S
k+1
i B̂k − fTk Kk+1B̂k

W−1
k B̂kKk+1Akxk

= xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i B̂kLkxk − 2

n2−1∑
i=k+1

fTi S
k+1
i B̂kLkxk + 2fTk Kk+1B̂kLkxk,

(B.1.5)

by (3.2.7b) and (3.2.7d). Now we substitute (B.1.5) back into (B.1.4) and have that

Jk(xk) = xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i B̂kLkxk − 2

n2−1∑
i=k+1

fTi S
k+1
i B̂kLkxk + 2fTk Kk+1B̂kLkxk

− 2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk − 2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk

(3.2.7e)
= xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i Dkxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Dkxk + 2fTk Kk+1Dkxk + Tk

= xTkKkxk − 2

n2∑
i=k

dTi M
k
i xk − 2

n2−1∑
i=k

fTi S
k
i xk + Tk,

by (3.2.7f) and (3.2.7g). This proves the induction hypothesis at (B.1.1) at step k. Since we

proved above that (3.2.6) holds true at k, this completes the induction step and proves that

both (B.1.1) and (3.2.6) hold for all k.
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B.1.2 Proof of Proposition 3.2.6

The recursion (3.2.5c) and optimal control law (3.2.6) imply that x∗k has the form of (3.2.8)

for some Cki and F ki . When k = n1 + 1, we have that

x∗n1+1 = An1xn1 + B̂n1v
∗
n1 + fn1

= Dn1xn1 + En1

n2∑
i=n1+1

(
Mn1+1
i

)T
di + En1

n2−1∑
i=n1

(
Sn1+1
i

)T
fi − En1Kn1+1fn1 + fn1 .

(B.1.6)

Applying recursion (3.2.5c) and the optimal control law (3.2.6) gives

x∗k+1 =

 k∏
i=n1

Di

xn1 +

n2∑
i=n1+1

DkC
k
i di +

n2−1∑
i=n1

DkF
k
i fi

+Ek

n2∑
i=k+1

(
Mk+1
i

)T
di + Ek

n2−1∑
i=k+1

(
Sk+1
i

)T
fi − EkKk+1fk + fk.

Combining with (B.1.6), we obtain the recursions

Ck+1
i =


DkC

k
i , n1 + 1 ≤ i ≤ k

DkC
k
i + Ek

(
Mk+1
i

)T
, k + 1 ≤ i ≤ n2

Cn1+1
i = En1

(
Mn1+1
i

)T
, n1 + 1 ≤ i ≤ n2,

(B.1.7)
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and

F k+1
i =


DkF

k
i , n1 ≤ i ≤ k − 1

DkF
k
i − EkKk+1 + I, i = k

DkF
k
i + Ek

(
Sk+1
i

)T
, k + 1 ≤ i ≤ n2 − 1

Fn1+1
i =


En1

(
Sn1+1
i

)T
, n1 + 1 ≤ i ≤ n2 − 1

−En1Kn1+1 + I, i = n1.

(B.1.8)

Now we prove that Cki and F ki defined in (3.2.9) satisfy the recursions (B.1.7) and (B.1.8),

respectively.

(a) Proof that Cki defined in (3.2.9) satisfies (B.1.7).

When k = n1 + 1, since i ≥ n1 + 1, we have that

Cn1+1
i =

n1∑
s=n1

 n1∏
l=s+1

Dl

Es

(
Ms+1
i

)T
= En1

(
Mn1+1
i

)T
,

which satisfies (B.1.7).

When k > n1 + 1, if i ≤ k, then i ≤ k + 1, then we have that

Ck+1
i =

i−1∑
s=n1

 k∏
l=s+1

Dl

Es

(
Ms+1
i

)T

= Dk

i−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ms+1
i

)T
= DkC

k
i ,
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and if i ≥ k + 1, then i ≥ k, so there follows that

Ck+1
i =

k∑
s=n1

 k∏
l=s+1

Dl

Es

(
Ms+1
i

)T

= Dk

k−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ms+1
i

)T
+ Ek

(
Mk+1
i

)T
= DkC

k
i + Ek

(
Mk+1
i

)T
,

which both satisfy (B.1.7).

(b) Proof that F ki defined in (3.2.9) satisfies (B.1.8).

When k = n1 + 1, if i = n1, we have from (3.2.9) that

Fn1+1
n1 = I − En1Kn1+1,

and if i ≥ n1 + 1 = k, there follows that

Fn1+1
i =

n1∑
s=n1

 n1∏
l=s+1

Dl

Es

(
Ss+1
i

)T
= En1

(
Sn1+1
i

)T
,

which satisfies (B.1.8).

When k > n1 + 1, if i ≤ k − 1, then i ≤ k ≤ k + 1, and then we have that

F k+1
i =

i−1∑
s=n1

 k∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+

 k∏
l=i+1

Dl

 (I − EiKi+1)

= Dk

 i−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+

 k−1∏
l=i+1

Dl

 (I − EiKi+1)


= DkF

k
i .
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If i = k, then k + 1 ≥ i+ 1, and hence

F k+1
i =

i−1∑
s=n1

 k∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+ (I − EiKi+1)

= Dk

i−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+ (I − EkKk+1)

= DkF
k
i + (I − EkKk+1) ,

and if i ≥ k + 1, then i ≥ k, and we have that

F k+1
i =

k∑
s=n1

 k∏
l=s+1

Dl

Es

(
Ss+1
i

)T

= Dk

k−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

(
Ss+1
i

)T
+ Ek

(
Sk+1
i

)T
= DkF

k
i + Ek

(
Sk+1
i

)T
,

which all satisfy (B.1.8).

B.1.3 Proof of Lemma 3.2.9

For n1 ≤ k ≤ n2 − 1, Definition 3.2.5, Assumption 3.2.1, and the definition of Wk (3.2.7c)

imply that ‖W−1
k ‖2 ≤

1
λmin(Rk)

≤ 1
λR

and thus ‖Ek‖2 ≤
C2
B
λR

∆
= CE . Proposition 3.2.7 and

(3.2.7d) imply that ‖Lk‖2 ≤ βCACB/λR
∆
= CL. Lastly, Assumption 3.2.1 and (3.2.4) give

that

‖fk‖2 ≤
(
CB +

CBCR
λR

)
‖b̃i‖2 ≤ 2

(
CB +

CBCR
λR

)
U

∆
= l0.
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B.1.4 Proof of Lemma 3.2.10

Proposition 3.2.6 gives the following:

Cki =

min (i,k)−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

 i−1∏
l=s+1

Dl

T Qi,
F ki = −

min (i,k)−1∑
s=n1

 k−1∏
l=s+1

Dl

Es

 i∏
l=s+1

Dl

T Ki+1

+

 k−1∏
l=i+1

Dl

 (I − EiKi+1) 1(k≥i+1),

where Es = B̂Ts W
−1
s B̂s (Definition 3.2.5). Lemma 3.2.9 gives that ‖Es‖2 ≤ CE . Using

Proposition 3.2.8, the triangle inequality and properties of norms, we have that

‖Cki ‖2 ≤
min (i,k)−1∑

s=n1

CECQC
2
1ρ
k−s−1ρi−s−1

≤ CECQC
2
1


ρk−i

∑i−1
s=n1

ρ2i−2s−2, i ≤ k

ρi−k
∑k−1
s=n1

ρ2k−2s−2, k < i

= CECQC
2
1


ρk−i

∑i−n1−1
t=0 ρ2t, i ≤ k

ρi−k
∑k−n1−1
t=0 ρ2t, k < i

≤
CECQC

2
1

1− ρ2
ρ|k−i|.

Similarly for F ki , we have that

‖F ki ‖2 ≤
min (i,k)−1∑

s=n1

CEC1βC
2
1ρ
k−s−1ρi−s−1 + (1 + CEβ)C1ρ

k−i−11(k≥i+1)

≤
CEC1βC

2
1

1− ρ2
ρ|k−i| +

C1(1 + CEβ)

ρ
ρ|k−i|.
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Letting

C2 = max

(
CECQC

2
1

1− ρ2
,
CEC1βC

2
1

1− ρ2
+
C1(1 + CEβ)

ρ

)
completes the proof.

B.1.5 Proof of Proposition 3.2.16

The Karush-Kuhn-Tucker (KKT) conditions for problem (3.2.1) are

2Rku
∗
k − C

T
k λ
∗
k +BTk φ

∗
k = 0, n1 ≤ k ≤ n2 − 1 (B.1.9a)

2Qk(x∗k − dk) + ATk φ
∗
k − φ

∗
k−1 = 0, n1 + 1 ≤ k ≤ n2 − 1 (B.1.9b)

2Qn2(x∗n2 − dn2)− φ∗n2−1 = 0, (B.1.9c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n1 ≤ k ≤ n2 − 1 (B.1.9d)

lk ≤ u∗k ≤ bk, n1 ≤ k ≤ n2 − 1 (B.1.9e)

λ∗k ≥ 0, n1 ≤ k ≤ n2 − 1, (B.1.9f)

where λ∗k is the optimal Lagrange multipliers associated with the active constraints Cku
∗
k =

b̄k.

We prove the result by induction starting from the rightmost endpoint. When k = n2−1,

KKT condition (B.1.9c) gives

φ∗n2−1 = 2Qn2x
∗
n2 − 2Qn2dn2 ,

which satisfies (3.2.18) because Mn2
n2 = Qn2 as defined in (3.2.7f). Suppose (3.2.18) is true

for k. Then for k − 1, (B.1.9b) gives

φ∗k−1 = ATk φ
∗
k + 2Qk(x∗k − dk).
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Then by substituting the induction hypothesis and (B.1.9d), we have that

φ∗k−1 = 2ATkKk+1(Akx
∗
k +Bku

∗
k) + 2Qk(x∗k − dk)

− 2ATk

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi


= 2ATkKk+1(Akx

∗
k + B̂kv

∗
k + fk) + 2Qk(x∗k − dk)

− 2ATk

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

 ,

since (3.2.4) implies that B̂kv
∗
k + fk = B̂kû

∗
k + B̃k b̃k = Bku

∗
k. Substituting v∗k from the

optimal control law (3.2.6) then gives the following:

φ∗k−1 = 2
(
ATkKk+1Ak +Qk + ATkKk+1B̂kLk

)
x∗k

− 2ATk

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

− 2Qkdk + 2ATkKk+1fk

+ 2ATkKk+1B̂kW
−1
k B̂Tk

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk



(3.2.7b),(3.2.7d)
= 2Kkx

∗
k − 2ATk

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

− 2Qkdk

+ 2ATkKk+1fk − 2
(
B̂kLk

)T  n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk


(3.2.7e)

= 2Kkx
∗
k − 2Qkdk − 2DT

k

 n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk


= 2Kkx

∗
k − 2

n2∑
i=k

(
Mk
i

)T
di − 2

n2−1∑
i=k

(
Ski

)T
fi,

where the last equality follows from (3.2.7f) and (3.2.7g). This completes the proof.
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B.1.6 Proof of Lemma 3.2.17

Propositions 3.2.8, 3.2.16, and Corollary 3.2.15 give the following:

‖φ∗k‖2 ≤ 2βCg + 2m0

n2∑
i=k+1

‖Mk+1
i ‖2 + 2l0

n2−1∑
i=k+1

‖Sk+1
i ‖2

≤ 2βCg + 2m0CQ

n2∑
i=k+1

C1ρ
i−k−1 + 2l0β

n2−1∑
i=k+1

C1ρ
i−k

≤ 2βCg +
2C1(m0CQ + βl0)

1− ρ
∆
= Cφ,

where m0 is the bound on the reference trajectory in Assumption 3.2.12 and l0 is the bound

on ‖fi‖ derived in Lemma 3.2.9.

B.1.7 Proof of Lemma 3.3.5

Let

L(y, θ) = yTGy/2 + yT c(θ) + λT (Ay − r) + φT (By − d(θ))

+ θTFθ + yT c1 + θT c2 + C

(B.1.10)

be the Lagrangian of problem (3.3.8). Then we have that

∇2
(y,θ)L =

 G ∇θc

∇Tθ c ∗

 .
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Since G and F are positive definite and LICQ holds at y0, then from [22, Theorem 5.53] and

[22, Remark 5.55] we have that

Dpy(θ0) = argminh∈S

[
hT pT

](
∇2

(y,θ)L(y0, θ0)
)h

p


= argminh∈S h

TGh/2 + pT
(
∇Tθ c(θ0)

)
h,

(B.1.11)

where S is the solution of the following linearized problem,

minh (Gy0 + c(θ0) + c1)T h+
(
∇Tθ c(θ0)y0 + 2Fθ0 + c2

)T
p

s.t. Bh− (∇θd(θ0)) p = 0

AI(y0,θ0)h ≤ 0,

(B.1.12)

and S is given by

S =

h :

[
B −∇θd(θ0)

]h
p

 = 0,

[
AI+(y0,θ0,λ̄) 0

]h
p

 = 0,

[
AI0(y0,θ0,λ̄) 0

]h
p

 ≤ 0

 .

Thus the directional derivative Dpy(θ0) of y(θ) along direction p at θ0 is the solution of the

problem

minh hTGh/2 + pT
(
∇Tθ c(θ0)

)
h

s.t. Bh− (∇θd(θ0)) p = 0

AI+(y0,θ0,λ̄)h = 0

AI0(y0,θ0,λ̄)h ≤ 0.

(B.1.13)
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Let I1 be the set of active inequality constraints of problem (B.1.13). Then I1 ⊂ I0(y0, θ0, λ̄)

and let I ′(θ0) = I1 ∪ I+(y0, θ0, λ̄). The KKT condition of problem (B.1.13) is hence

G̃
∆
=


G AT

I ′(θ0)
BT

AI ′(θ0) 0 0

B 0 0

 , G̃


h∗

φ∗1

φ∗2

 =


∇θc(θ0)p

0

∇θd(θ0)p


for some Lagrange multipliers φ∗1 and φ∗2. Since LICQ holds at y0, rows of AI ′(θ0) and B are

linearly independent. Together with the fact that G is positive definite, we have that G̃ is

invertible. Denote the first row of G̃−1 to be

[
p11 p12 p13

]
. Then we have that

Dpy(θ0) = h∗ = (−p11∇θc(θ0) + p13∇θd(θ0)) p.

On the other hand, for problem (3.3.9) with I ′(θ0) constructed above, the KKT condition

is

G̃


y∗
I ′(θ0)

(θ)

ψ∗1

ψ∗2

 =


−c(θ)

r′

d(θ)

 ,

for some Lagrange multipliers ψ∗1 and ψ∗2. Since G̃ is invertible, we have that y∗
I ′(θ0)

(θ) =

−p11c(θ) + p12r
′ + p13d(θ). It follows that

dy∗
I ′(θ0)

(θ)

dθ

∣∣∣∣∣
θ=θ0

= −p11∇θc(θ0) + p13∇θd(θ0).

As a result, we have that

Dpy(θ0) =

dy∗I ′(θ0)
(θ)

dθ

∣∣∣∣∣
θ=θ0

 p,
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which proves the claim.
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APPENDIX C

SUPPLEMENT TO CHAPTER 4

C.1 Proofs of statements in Sections 2 – 4

In order to prove Proposition 4.2.1, Lemma 4.2.2, Theorems 4.2.3 and 4.2.4, we need the

following lemmas.

Lemma C.1.1. For 0 ≤ r ≤ m and i ≥ 1,

(a)
[m
r

]
q =

[ m
m−r

]
q

(b)
[m
r

]
q = qr

[m−1
r

]
q +

[m−1
r−1

]
q

=
[m−1

r

]
q + q(m−r)[m−1

r−1

]
q

(c) limq→1
[m
r

]
q =

(m
r

)
(d)

∑i
j=1(−w)i−j

[i−1
j−1

]
w2 =

∏i−1
k=1

(
1 + (−w)k

)
We refer the readers to [5] for the proof of Lemma C.1.1.

Lemma C.1.2. If an ∼ bn, an > 0 and
∑∞
n=1 an = ∞, then

∑N
n=1 an ∼

∑N
n=1 bn as

N →∞.

Proof. We carry out a standard ε−N proof.

Since an ∼ bn, for any ε > 0, there exists N0(ε) > 0 such that for any n ≥ N0(ε),

|an − bn| < εan/2,

then for any N ≥ N0(ε),

N∑
n=N0(ε)

|an − bn| <
ε

2

N∑
n=N0(ε)

an. (C.1.1)
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Since
∑∞
n=1 an =∞, there exists N1(ε) ≥ N0(ε) such that for any N ≥ N1(ε),

N0(ε)∑
n=1

|an − bn| <
ε

2

N∑
n=N0(ε)

an. (C.1.2)

As a result, for any N ≥ N1(ε) ≥ N0(ε),

∣∣∣∑N
n=1(an − bn)

∣∣∣∑N
n=1 an

≤
∑N0(ε)−1
n=1 |an − bn|+

∑N
n=N0(ε) |an − bn|∑N

n=N0(ε) an
≤ ε

2
+
ε

2
= ε,

where the second inequality follows from (C.1.2) and (C.1.1).

Lemma C.1.3.
∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p −
∑i−1
j=1(−w)i−j−1

[i−2
j−1

]
w2j

p = Aip(w) +Bip(w),

where

Aip(w) = (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p

Bip(w) =
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

for p ≥ 0 and i− 1 > p.

Proof.

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2
jp −

i−1∑
j=1

(−w)i−j−1
[
i− 2

j − 1

]
w2
jp

= (−w)i−1 + (ip − (i− 1)p) +
i−2∑
k=1

(−w)i−k−1
([
i− 1

k

]
w2

(k + 1)p −
[
i− 2

k − 1

]
kp
)

= (−w)i−1 + (ip − (i− 1)p)

+
i−2∑
k=1

(−w)i−k−1
(
w2k

[
i− 2

k

]
w2
kp +

[
i− 1

k

]
w2

((k + 1)p − kp)
)

= (−w)i−1
i−2∑
k=1

(−w)k
[
i− 2

k

]
w2
kp +

i−1∑
k=0

(−w)i−k−1
[
i− 1

k

]
w2

((k + 1)p − kp)
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= (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p +
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

= Aip(w) +Bip(w)

where the second equality is obtained using Lemma C.1.1 (b), and the fourth equality is

obtained by a change of variable j = i− 1− k for Aip(w) and j = k + 1 for Bip(w).

The following lemma gives a factorization of
∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p that enables sim-

plification of θ̂0.

Lemma C.1.4.

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2
jp =


(1− w)

i−p−1
2 fip(w), i− p odd

(1− w)
i−p
2 gip(w), i− p even

for any w ∈ (0, 1), where, for p ≥ 0 and i > p, fip(w) is a polynomial, fip(1) =
(i−1)!

( i−p−12 )!
,

gip(w) is a polynomial, and gip(1) =
i!(p+1)

2( i−p2 )!
.

Proof. We denote for simplicity mip(w) :=
∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p. Here we make induc-

tion on (i, p) where p ≥ 0 and i > p. Specifically, we prove the following three steps of which

the first two serve as induction basis:

(a) The statement holds for any p = 0 and i > 0.

With Lemma C.1.1 (d), we have

mi0(w) =
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

=
i−1∏
k=1

(
1 + (−w)k

)

=


(1− w)

i−1
2 fi0(w), i odd

(1− w)
i
2 gi0(w), i even
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where fi0(w) and gi0(w) are polynomials and

fi0(1) = 2
i−1
2 (i− 2)!! =

(i− 1)!

( i−1
2 )!

,

gi0(1) = 2
i−2
2 (i− 1)!! =

i!

2( i2)!
.

(b) The statement holds for any i = p+ 1 and p ≥ 1.

When i = p + 1, i − p is odd and mp+1,p(w) is a polynomial by definition. Then by

Lemma C.1.1 (c),

mp+1,p(1) =

p+1∑
j=1

(−1)p+1−j
(

p

j − 1

)
jp

= (−1)p
p∑

k=0

(−1)k
(
p

k

)
(k + 1)p

= (−1)p(−1)pp!

= p!.

(c) Suppose the statement holds for any (i′, p′) such that (0 ≤ p′ < p and i′ > p′) or

(p′ = p and p′ < i′ < i), then the statement also holds for (i, p).

Define the following polynomials in w:

hip(w) = (−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)(
(1− w)

k−3
2 gi−1,p−k(w)1(k odd)

+(1− w)
k−4
2 fi−1,p−k(w)1(k even)

)
,

rip(w) =

p−2∑
k=0

(−1)p−k+1
(
p

k

)(
(1− w)

p−k−3
2 fik(w)1(i−k odd)

+(1− w)
p−k−2

2 gik(w)1(i−k even)

)
,
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uip(w) = (−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)(
(1− w)

k−3
2 fi−1,p−k(w)1(k odd)

+(1− w)
k−2
2 gi−1,p−k1(k even)

)
,

vip(w) =

p−1∑
k=0

(−1)p−k+1
(
p

k

)(
(1− w)p−k−2fik(w)1(i−k odd)

+(1− w)p−k−1gik(w)1(i−k even)

)
.

When i − p is even, letting Aip(w) and Bip(w) be defined in Lemma C.1.3 and from

binomial expansion, we have

Aip(w) = (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p

= (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

×

(
(−1)pjp + (−1)p−1p(i− 1)jp−1 + (−1)p−2(i− 1)2

(
p

2

)
jp−2

+

p∑
k=3

(−1)p−k(i− 1)k
(
p

k

)
jp−k

)

= (−w)i−1

(
(−1)pmi−1,p(w) + (−1)p−1p(i− 1)mi−1,p−1(w)

+(−1)p−2(i− 1)2
(
p

2

)
mi−1,p−2(w)

)

+(−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)
mi−1,p−k(w)

= (−w)i−1

(
(−1)p(1− w)

i−p−2
2 fi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

)

+(−w)i−1
(

(−1)p−2(i− 1)2
(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
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+(−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)

×

(
(1− w)

i−1−p+k
2 gi−1,p−k(w)1(i−p+k−1 even)

+(1− w)
i−p+k−2

2 fi−1,p−k(w)1(i−p+k−1 odd)

)

= (−w)i−1

(
(−1)p(1− w)

i−p−2
2 fi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

)

+(−w)i−1
(

(−1)p−2(i− 1)2
(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
+(−w)i−1

p∑
k=3

(−1)p−k(i− 1)k
(
p

k

)
(1− w)

i−p
2 +1

×
(

(1− w)
k−3
2 gi−1,p−k(w)1(k odd) + (1− w)

k−4
2 fi−1,p−k(w)1(k even)

)
= (−w)i−1

(
(−1)p(1− w)

i−p−2
2 fi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

)

+(−w)i−1
(

(−1)p−2(i− 1)2
(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
+(1− w)

i−p
2 +1hip(w),

and

Bip(w) =
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

=
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

p−1∑
k=0

(
p

k

)
jk(−1)(p−k+1)


=

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

pjp−1 +

p−2∑
k=0

(
p

k

)
jk(−1)(p−k+1)


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= pmi,p−1(w) +

p−2∑
k=0

(−1)(p−k+1)
(
p

k

)
mik(w)

= p(1− w)
i−p
2 fi,p−1(w)

+

p−2∑
k=0

(−1)p−k+1
(
p

k

)(
(1− w)

i−k−1
2 fik(w)1(i−k odd)

+(1− w)
i−k
2 gik(w)1(i−k even)

)
= p(1− w)

i−p
2 fi,p−1(w)

+

p−2∑
k=0

(−1)p−k+1
(
p

k

)
(1− w)

i−p
2 +1

(
(1− w)

p−k−3
2 fik(w)1(i−k odd)

+(1− w)
p−k−2

2 gik(w)1(i−k even)

)
= p(1− w)

i−p
2 fi,p−1(w) + (1− w)

i−p
2 +1rip(w).

Then by Lemma C.1.3, we have

mip(w) = mi−1,p(w) + Aip(w) +Bip(w)

= (1− w)
i−p−2

2 fi−1,p(w)− wi−1(1− w)
i−p−2

2 fi−1,p(w)

+wi−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

−wi−1(i− 1)2
(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w) + p(1− w)

i−p
2 fi,p−1(w)

+(1− w)
i−p
2 +1hip(w) + (1− w)

i−p
2 +1rip(w)

= (1− w)
i−p
2

(
fi−1,p(w)

(
1− wi−1

1− w

)
+ p(i− 1)wi−1gi−1,p−1(w)

−
(
p

2

)
(i− 1)2wi−1fi−1,p−2(w) + pfi,p−1(w)

+(1− w)hip(w) + (1− w)rip(w)

)
.
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Let

gip(w) = fi−1,p(w)

(
1− wi−1

1− w

)
+ p(i− 1)wigi−1,p−1(w)

−
(
p

2

)
(i− 1)2wi−1fi−1,p−2(w) + pfi,p−1(w)

+(1− w)hip(w) + (1− w)rip(w)

which is a polynomial by induction hypothesis, and

gip(1) = (i− 1)
(i− 2)!

( i−p−2
2 )!

+ p(i− 1)
(i− 1)!p

2( i−p2 )!
−
(
p

2

)
(i− 1)2 (i− 2)!

( i−p2 )!
+ p

(i− 1)!

( i−p2 )!

=
(i− 1)!

( i−p2 )!

(
i− p

2
+ p+

p2(i− 1)

2
− p(p− 1)(i− 1)

2

)
=

i!(p+ 1)

2( i−p2 )!
.

When i− p is odd, similarly by binomial expansion and induction hypothesis, we have

Aip(w) = (−w)i−1

(
(−1)p(1− w)

i−p−1
2 gi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p−1

2 fi−1,p−1(w)

)

+(−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)
mi−1,p−k(w)

= (−w)i−1

(
(−1)p(1− w)

i−p−1
2 gi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p−1

2 fi−1,p−1(w)

)

+(−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)
(1− w)

i−p+1
2

×
(

(1− w)
k−3
2 fi−1,p−k(w)1(k odd) + (1− w)

k−2
2 gi−1,p−k1(k even)

)
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= (−w)i−1

(
(−1)p(1− w)

i−p−1
2 gi−1,p(w)

+(−1)p−1p(i− 1)(1− w)
i−p−1

2 fi−1,p−1(w)

)
+ (1− w)

i−p+1
2 uip(w),

and

Bip(w) =

p−1∑
k=0

(−1)p−k+1
(
p

k

)
mik(w)

=

p−1∑
k=0

(−1)p−k+1
(
p

k

)
(1− w)

i−p+1
2

×
(

(1− w)p−k−2fik(w)1(i−k odd) + (1− w)p−k−1gik(w)1(i−k even)

)
= (1− w)

i−p+1
2 vip(w).

Then similarly by Lemma C.1.3, we have

mip(w) = mi−1,p(w) + Aip(w) +Bip(w)

= (1− w)
i−p−1

2

(
gi−1,p(w) + wi−1gi−1,p(w)− p(i− 1)wi−1fi−1,p−1(w)

)
+(1− w)

i−p−1
2
(
(1− w)uip(w) + (1− w)vip(w)

)
.

Let

fip(w) = gi−1,p(w) + wi−1gi−1,p(w)− p(i− 1)wi−1fi−1,p−1(w)

+(1− w)uip(w) + (1− w)vip(w)

which is a polynomial, and

fip(1) = 2
(i− 1)!(p+ 1)

2( i−p−1
2 )!

− p(i− 1)
(i− 2)!

( i−p−1
2 )!

=
(i− 1)!

( i−p−1
2 )!

.
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Lemma C.1.5. ai0(w) monotonically decreases for w ∈ (0, 1) and any i ≥ 1.

Proof. With Lemma C.1.1 (d), we have

ai0(w) =

∏i−1
k=1

(
1 + (−w)k

)2

∏i−1
k=1(1− w2k)

=
i−1∏
k=1

1 + (−w)k

1− (−w)k
.

For k ≥ 1, let

fk(w) =
(1− wk)(1 + wk+1)

(1 + wk)(1− wk+1)
, (C.1.8)

then fk(w) =
(

2
1+wk

− 1
)(

2
1−wk+1 − 1

)
and

f ′k(w) =
−2kwk−1

(1 + wk)2

(
2

1− wk+1
− 1

)
+

2(k + 1)wk

(1− wk+1)2

(
2

1 + wk
− 1

)
=

1

(1 + wk)2(1− wk+1)2
2wk−1

(
kw2k+2 − (k + 1)w2k+1 + (k + 1)w − k

)

For gk(w) = kw2k+2 − (k + 1)w2k+1 + (k + 1)w − k, we know gk(1) = 0 and

g′k(w) = (k + 1)(1− w)(1 + w + · · ·+ w2k−1 − 2kw2k) > 0

for w ∈ (0, 1). As a result, gk(w) < 0 for w ∈ (0, 1) and hence fk(w) monotonically decreases

on (0, 1). Because

ai0(w) =


∏ i−1

2
k=1 f2k−1(w), i odd∏ i−2
2
k=1 f2k−1(w)1−wi−1

1+wi−1
, i even

ai0(w) is monotonically decreasing over (0, 1).
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Lemma C.1.6. Denote w∗i := e
− 1

2(i−2) , then ai1(w) monotonically decreases for w ∈ (w∗i , 1)

and any i ≥ 2 and i even.

Proof. We prove by induction. Note that by the definition of w, we have n2 =
(
θ1 log 1

w

)−1
.

When i = 2,

a21(w) =
(2− w)2θ1 log 1

w

(1− w2)
,

a′21(w) =
(2− w)θ1

(1− w2)2

(
−2(1− w2) log

1

w
+ (2− w)

(
2w log

1

w
+ w − 1

w

))
.

Consider z(w) = 2w log 1
w + w − 1

w , then z(1) = 0 and z′(w) = 1
w2 + 2 log 1

w − 1 > 0 for

w ∈ (0, 1). So z(w) < 0 for w ∈ (0, 1). As a result, a′21(w) < 0 for w ∈ (0, 1). Note

that w∗2 = 0. We denote for simplicity mip(w) :=
∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p. Suppose the

statement holds for some even i, then for i + 2, by repeatedly applying Lemma C.1.3, we

obtain

mi+2,1(w) = (1 + wi+1)(1− wi)mi1(w) +
(
iwi(1− w) + (1 + wi)(2− wi+1)

)
mi0(w).

We consider, by using Lemma C.1.1 (d),

√
ai+2,1(w) =

mi+2,1(w)

n
√∏i+1

k=1(1− w2k)

=
(1 + wi+1)(1− wi)mi1(w)

n
√

(1− w2i)(1− w2(i+1))
∏i−1
k=1(1− w2k)

+
mi0(w)

(
iwi(1− w) + (1 + wi)(2− wi+1)

)
n
√∏i+1

k=1(1− w2k)

=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
√
ai0(w)

iwi(1− w) + (1 + wi)(2− wi+1)

n

√
(1− w2i)(1− w2(i+1))
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=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
√
ai+2,0(w)

iwi(1− w) + (1 + wi)(1− wi+1) + (1 + wi)

n(1 + wi)(1− wi+1)

=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
wi

n

i
√
ai+2,0

(1 + wi)(1 + w + · · ·+ wi)
+

√
ai+2,0

n
+

√
ai+2,0

n(1− wi+1)

:= I1(w) + I2(w) + I3(w) + I4(w).

Now we show the monotonicity for each Ii(w), i = 1, . . . , 4. Firstly,

I1(w) =
√
ai1(w)fi(w)

where fi(w) is defined in (C.1.8). I1(w) monotonically decreases for w > w∗i by the induction

hypothesis and the fact that fi(w) decreases (proved in Lemma C.1.5). Secondly, I2(w)

monotonically decreases for w > w∗i+2 by Lemma C.1.5 and the fact that w2i

n2
monotonically

decreases for w > w∗i+2 = e−
1
2i , which follows from

w2i

n2
= θ1w

2i log
1

w
,

d

dw

(
w2i log

1

w

)
= w2i−1(2i log

1

w
− 1) < 0

⇔ w > e−
1
2i .

Thirdly, I3(w) monotonically decreases for w ∈ (0, 1) by Lemma C.1.5. Finally,

I4(w) =

√
ai+1,0(1− wi+1)

n(1− wi+1)
√

1 + wi+1
=

√
ai+1,0

n
√

1− w2(i+1)
,

where ai+1,0 monotonically decreases for w ∈ (0, 1) by Lemma C.1.5. Then we show that
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n2(1− w2(i+1)) monotonically increases over (0, 1) as follows:

n2(1− w2(i+1)) =
1− w2(i+1)

θ1 log 1
w

,

d

dw

(
1− w2(i+1)

log 1
w

)
=

1

w log2 1
w

(
1− w2(i+1) − 2(i+ 1)w2(i+1) log

1

w

)
,

letting t(w) = 1 − w2(i+1) − 2(i + 1)w2(i+1) log 1
w , then t(1) = 0 and t′(w) = −(2i +

2)2w2i+1 log 1
w < 0 for w ∈ (0, 1), so we have t(w) > 0 for w ∈ (0, 1). So I4(w) monotonically

decreases for w ∈ (0, 1). As a result, we conclude that ai+2,1(w) monotonically decreases for

w > w∗i+2.

C.1.1 Proof of Proposition 4.2.1

With Lemma C.1.4, we can cancel some factors to obtain

(∑i
j=1(−w)i−j

[i−1
j−1

]
w2j

p
)2

n2p
∏i−1
k=1(1− w2k)

=


f2ip(w)

(1−w)pn2p
∏i−1
k=1 zk(w)

, i− p odd

g2ip(w)(1−w)

(1−w)pn2p
∏i−1
k=1 zk(w)

, i− p even

where zk(w) = (1 + wk)(1 + w + · · ·+ wk−1).

Note that

(1− w)n2 → 1/θ1

as n→∞. Then we have

lip =


f2ip(1)θp1∏i−1
k=1 zk(1)

, i− p odd

0, i− p even

which equals the right hand side of (4.2.5) by using Lemma C.1.4.
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C.1.2 Proof of Lemma 4.2.2

When i− p is odd, by Stirling’s Approximation, as i→∞, we have

lip ∼
√

2π(i− 1)( i−1
e )i−1θ

p
1

2i−1π(i− p− 1)( i−p−1
2e )i−p−1

∼
√

2

π

ip−
1
2 θ
p
1

2p
.

Since
∑∞
i=1 i

p−1/2 =∞ for all p ≥ 0, by Lemma C.1.2, as n→∞, we have

n∑
i=p+1

lip =

dn−p2 e∑
k=1

lp+2k−1,p

∼
dn−p2 e∑
k=1

√
2

π

(2k)p−
1
2 θ
p
1

2p

∼
√

2

π

2p−
1
2 θ
p
1

2p

dn−p2 e∑
k=1

kp−
1
2

∼
√

2

π

2p−
1
2 θ
p
1

2p
1

(p+ 1
2)

(
n− p

2
)p+

1
2

∼
np+

1
2 θ
p
1√

2π2p(p+ 1
2)

and Lemma 4.2.2 follows.

C.1.3 Proof of Theorem 4.2.3

Let s(x) = 1−wx
x for some w ∈ (0, 1). Note that s(x) monotonically decreases for x > 0.

The series expansion is s(x) =
∑∞
l=1

(−x)l−1

l! ( 1
θ1n2

)l for w = e−1/θ1n
2
. Then

s(2k − 1)− s(2k) =
∞∑
l=1

(−1)l

θl1l!

(2k)l−1 − (2k − 1)l−1

n2l
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≤
∞∑
l=1

1

θ2l
1 (2l)!

(2k)2l−1 − (2k − 1)2l−1

n4l

≤
∞∑
l=1

1

θ2l
1 (2l)!

2l
(2l−1

l

)
(2k)2l−2

n4l

≤
∞∑
l=1

1

θ2l
1 l!

(2k)2l−2

n4l

≤ e1/θ21

∞∑
l=1

(2k)2l−2

n4l
,

where the second inequality comes from the binomial expansion.

Referring back to Definition 4.3.1, since, when n is odd, (n − 1)!! = 2
n−1
2

(
n−1

2

)
! and

(n− 1)! = (n− 1)!!(n− 2)!!, we have

ln0 =
(n− 1)!

2n−1
(
n−1

2 !
)2

=
(n− 2)!!

(n− 1)!!
,

so

an0(w)

ln0
=

n−1
2∏

k=1

1 + w2k

1 + w2k−1

s(2k − 1)

s(2k)
≤

n−1
2∏

k=1

s(2k − 1)

s(2k)
,
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and

log
an0(w)

ln0
=

n−1
2∑

k=1

log

(
1 +

s(2k − 1)− s(2k)

s(2k)

)

≤

n−1
2∑

k=1

s(2k − 1)− s(2k)

s(n− 1)

≤ e1/θ21

s(n− 1)

n−1
2∑

k=1

∞∑
l=1

(2k)2l−2

n4l

=
e1/θ21

s(n− 1)

∞∑
l=1

n−1
2∑

k=1

(2k)2l−2

n4l

≤ e1/θ21

s(n− 1)

∞∑
l=1

n2l−1

n4l

=
e1/θ21

s(n− 1)

n2

n3(n2 − 1)

=
1

(n+ 1)

e1/θ21

(1− wn−1)n
→ 0

(C.1.9)

as n→∞, since (1− wn−1)n→ 1/θ1 as n→∞.

By Lemma C.1.5,
an0(w)
ln0

≥ 1 for n ≥ 1, and combined with (C.1.9), we obtain that for

n odd,

an0(w)

ln0
→ 1

as n→∞. For n even,

an0(w) = an−1,0(w)
1− wn−1

1 + wn−1
∼ 1

2θ1n
ln−1,0

as n→∞.

As a result, denoting wi = e−1/θ1i
2
, we have, as n→∞,

n∑
i=1

ai0(wi) ∼
n∑
i=1

li0 +
n∑
i=1

1

2θ1i
li0 ∼

n∑
i=1

li0. (C.1.10)
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Lemma C.1.5 implies

n∑
i=1

li0 ≤
n∑
i=1

ai0(w) ≤
n∑
i=1

ai0(wi). (C.1.11)

Combining (C.1.10) and (C.1.11), we have

θ̂0 =
1

n

n∑
i=1

ai0(w) ∼ 1

n

n∑
i=1

li0 ∼
√

2

π

1√
n
,

where the last asymptotic equivalence is obtained by taking p = 0 in Lemma 4.2.2.

C.1.4 Proof of Theorem 4.2.4

Since there exists N(θ1) such that for any n > N(θ1),

e
− 1

2(n−2) < e
− 1
θ1n

2 = w,

with Lemma C.1.6, for any n > N(θ1),

w > w∗n ≥ w∗i

for any 2 ≤ i ≤ n and i even.

As a result,
n∑
i=2

ai1(w) ≥
n∑
i=2

li1,

then

θ̂0√
n

=

∑n
i=1 ai1

n3/2
≥
∑n
i=2 li1

n3/2
.

Theorem 4.2.4 follows by taking limit infimum on both sides of the above inequality and

setting p = 1 in Lemma 4.2.2.
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C.1.5 Proof of Proposition 4.2.5

For convenience, consider n to be even in the subsequent proof. The arguments only need

to be slightly modified for n odd. Denote k as the index of the first non-zero element

in the observations, then k = n/2 + 1 and f(k/n) = g(1/n). The observations are z =

(0, . . . , 0, g(1/n), . . . , g(1/2))T . Denote the (k, k)th element of the inverse Cholesky factor

by C−1
(k,k)

. Referring back to (4.2.3) gives

θ̂0 =
1

n

n∑
i=1

‖C−1z‖2

≥ 1

n

(
C−1

(k,k)
g(1/n)

)2

=
g2(1/n)

n
∏k−1
l=1 (1− w2l)

.

(C.1.12)

Let L = p+ 1, then for all n sufficiently large,

k−1∏
l=1

(1− w2l) <
L∏
l=1

(1− w2l). (C.1.13)

Since w = e1/(θ1n
2),
∏L
l=1(1 − w2l) ∼ 2LL!

θL1 n
2L as n → ∞. Combining (C.1.12) and (C.1.13)

gives

lim inf
n→∞

θ̂0

n
≥ lim inf

n→∞
g2(1/n)n2p

n2p+2
∏L
l=1(1− w2l)

=
θL1 c

2LL!
> 0.

C.1.6 Proof of a statement in Section 2

We state and prove the following proposition.

Proposition C.1.7. With the exponential covariance function Cov(f(x), f(y)) =

θ0e
−|x−y|/θ1, if the observations are z = (f( 1

n), f( 2
n), . . . , f(1))T for some f having a
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bounded second derivative on [0, 1], then as n→∞,

θ̂0 ∼
1

n
f(0)2 +

1

2θ1n

∫ 1

0

(
f(x) + θ1f

′(x)
)2
dx.

Proof. Denote the correlation matrix as R and its Cholesky decomposition as R = CCT for

some C lower triangular, then Rij = ρ|i−j| where ρ = e−1/nθ1 . The Cholesky and inverse

Cholesky factors are

C =



1

ρ
√

1− ρ2 0

ρ2 ρ
√

1− ρ2
√

1− ρ2

...
...

...
. . .

ρn−1 ρn−2
√

1− ρ2 ρn−3
√

1− ρ2 . . .
√

1− ρ2


,

C−1 =
1√

1− ρ2



√
1− ρ2 0

−ρ 1

. . . . . .

0 −ρ 1


,

so

θ̂0 =
1

n
zTR−1z =

1

n
‖C−1z‖2

=
1

n
f(0)2 +

1

n

n∑
j=2

(
f( jn)− ρf(j−1

n )
)2

1− ρ2
.
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A Taylor expansion gives that for some xj ∈ (j−1
n , jn), 2 ≤ j ≤ n,

f(
j

n
)− ρf(

j − 1

n
) = f(

j − 1

n
) +

1

n
f ′(

j − 1

n
) +

1

n2
f ′′(xj)− f(

j − 1

n
)

(
1− 1

θ1n
+
αn
n2

)
=

1

θ1n
f(
j − 1

n
) +

1

n
f ′(

j − 1

n
) +

rjn

n2
,

(C.1.14)

where |αn| ≤ α = 1/(2θ2
1) and

rjn = f ′′(xj)− αnf(
j − 1

n
).

Since f ′′(x) is bounded on [0, 1], f(x) and f ′(x) are continuous and bounded on [0, 1]. Denote

A := supx∈[0,1]

{
|f(x)|, |f ′(x)|, |f ′′(x)|

}
, then

|rjn| ≤ A+ Aα.

(C.1.14) gives that

n∑
j=2

(
f(
j

n
)− ρf(

j − 1

n
)

)2

=
n∑
j=2

(
1

θ1n
f(
j − 1

n
) +

1

n
f ′(

j − 1

n
)

)2

+

∑n
j=2 r

2
jn

n4

+
n∑
j=2

2rjn

n2

(
1

θ1n
f(
j − 1

n
) +

1

n
f ′(

j − 1

n
)

)
,

where as n→∞,

n∑
j=2

(
1

θ1n
f(
j − 1

n
) +

1

n
f ′(

j − 1

n
)

)2

=
1

n

n∑
j=2

1

n

(
1

θ1
f(
j − 1

n
) + f ′(

j − 1

n
)

)2

∼ 1

n

∫ 1

0

(
1

θ1
f(
j − 1

n
) + f ′(

j − 1

n
)

)2

dx,

since the integrand is continuous so the sum converges to the corresponding Riemann integral,
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and

∑n
j=2 r

2
jn

n4
≤ A2(1 + α)2

n3
,

∣∣∣∣∣∣
n∑
j=2

2rjn

n2

(
1

θ1n
f(
j − 1

n
) +

1

n
f ′(

j − 1

n
)

)∣∣∣∣∣∣ ≤
n∑
j=2

2|rjn|
n2

(
A

θ1n
+
A

n

)

≤ 2A2(1 + α)

n2

(
1 +

1

θ1

)
.

As a result, as n→∞,

n∑
j=2

(
f(
j

n
)− ρf(

j − 1

n
)

)2

∼ 1

n

∫ 1

0

(
1

θ1
f(
j − 1

n
) + f ′(

j − 1

n
)

)2

dx,

together with ρ = e−1/θ1n, 1− ρ2 ∼ 2
θ1n

complete the proof.

C.1.7 Proof of Proposition 4.3.2

First of all, we prove the following lemma that is used frequently in the subsequent proofs.

Lemma C.1.8. For 0 ≤ p ≤ m− 1 and m ≥ 1,

(a)
∑m
l=0(−1)l

(m
l

)
lp = 0

(b)
∑m
l=0(−1)l

(m
l

)
lm = (−1)mm!

Proof. The Stirling numbers of the second kind can be expressed as the sum [16]:

S(m, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)m.

Lemma C.1.8 follows from S(m,m) = 1 and S(p,m) = 0 for 0 ≤ p < m.
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For convenience we write R1(θ1, n) = Rn and D(θ1, n) = Dn. Since both Rn and Dn

are nested, we use induction to prove. First of all, when n = 1, R1 = D1 = 1. Suppose

Proposition 4.3.2 is true for n, i.e. DT
nDnRn = In, then for n+ 1, partition Rn+1 and Dn+1

as

Rn+1 :=

 Rn rn+1

rTn+1 Rn+1,n+1



Dn+1 :=

 Dn 0

dTn+1 Dn+1,n+1

 ,
then

DT
n+1Dn+1Rn+1 =

 DT
nDnRn + dn+1An Cn

Dn+1,n+1An Bn

 ,
where

An = dTn+1Rn +Dn+1,n+1r
T
n+1,

Bn = Dn+1,n+1(dTn+1rn+1 +Dn+1,n+1Rn+1,n+1),

Cn = DT
nDnrn+1 + dn+1d

T
n+1rn+1 + dn+1Dn+1,n+1Rn+1,n+1.

Here we claim that An = 0T , Bn = 1 and Cn = 0 so that along with the induction

hypothesis, we have

DT
n+1Dn+1Rn+1 = In+1.

(a) Proof of An = 0T : Note that if n and j are of the same parity, then (dTn+1Rn)j =

(rn+1)j = 0, so we have that the jth element of An is 0. If n and j are of different

parity,

(dTn+1Rn)j =
n∑

i=1,(i+j)even

√
n!2

j−1
2 (i+ j − 3)!!(−1)i+

i+j
2

θ
j−1
2

1 (i− 1)!(n+ 1− i)!!
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−(Dn+1,n+1rn+1)j = −2
j−1
2 (−1)n+1+n+1+j

2 (n+ j − 2)!!

θ
j−1
2

1

√
n!

(i) If n odd, j even and j < n, applying Lemma C.1.8 and making change of variable

l = i
2 − 1 gives,

(dTn+1Rn)j = (2/θ1)
j−1
2 (−1)

j
2
√
n!

×

n−1
2 −1∑
l=0

(−1)l+1 (2l + 1)!!

(2l + 1)!(n− 1− 2l)!!

j−2
2∏

m=1

(2l + 2m+ 1)

= −(2/θ1)
j−1
2 (−1)

j
2
√
n!

2
n−1
2 (n−1

2 )!

n−1
2 −1∑
l=0

(−1)l
(n−1

2
l

) j−2
2∏

m=1

(2l + 2m+ 1)

= −(2/θ1)
j−1
2 (−1)

j
2
√
n!

2
n−1
2 (n−1

2 )!

×


n−1
2∑
l=0

(−1)l
(n−1

2
l

) j−2
2∏

m=1

(2l + 2m+ 1)− (−1)
n−1
2

j−2
2∏

m=1

(n+ 2m)


= −(2/θ1)

j−1
2 (−1)

j
2
√
n!

2
n−1
2 (n−1

2 )!

0 + (−1)
n+1
2

j−2
2∏

m=1

(n+ 2m)


= (2/θ1)

j−1
2 (−1)

n+j−1
2

√
n!

(n− 1)!!

j−2
2∏

m=1

(n+ 2m)

= (2/θ1)
j−1
2 (−1)

n+j−1
2

(n+ j − 2)!!√
n!

= −(Dn+1,n+1rn+1)j .

(ii) If n even, j odd and j < n, similarly, applying change of variable l = i−1
2 gives

(dTn+1Rn)j = −
√
−1

(2/θ1)
j−1
2 (−1)

j
2
√
n!

2
n
2 (n2 )!

n
2−1∑
l=0

(−1)l
(n

2
l

) j−1
2∏

m=1

(2l + 2m− 1)
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=
√
−1

(2/θ1)
j−1
2 (−1)

j
2
√
n!

2
n
2 (n2 )!

(−1)
n
2

j−1
2∏

m=1

(n+ 2m− 1)

=
(−1)

n+j+1
2 (2/θ1)

j−1
2 (n+ j − 2)!!√

n!

= −(Dn+1,n+1rn+1)j .

(b) Proof of Bn = 1: Equation (4.3.1) gives

rTn+1dn+1 =
n∑

i=1,(n+i)odd

(2/θ1)
n
2
√
n!

(−1)n+1+n+1+i
2 (n+ i− 2)!!

(i− 1)!(n+ 1− i)!!
.

(i) If n odd, applying change of variable l = i
2 − 1 and using Lemma C.1.8,

rTn+1dn+1

= (2/θ1)
n
2
√
n!

n∑
i=1,(i)even

(−1)
n+1+i

2 (i− 1)!!
∏n−1

2
m=1(i+ 2m− 1)

(i− 1)!(n+ 1− i)!!

= (2/θ1)
n
2
√
n!(−1)

n−1
2

n−1
2 −1∑
l=0

(−1)l(2l + 1)!!

(2l + 1)!(n− 1− 2l)!!

n−1
2∏

m=1

(2l + 2m+ 1)

=
(2/θ1)

n
2
√
n!(−1)

n−1
2

2
n−1
2 (n−1

2 )!

n−1
2 −1∑
l=0

(−1)l
(n−1

2
l

) n−1
2∏

m=1

(2l + 2m+ 1)

=
(2/θ1)

n
2
√
n!(−1)

n−1
2

2
n−1
2 (n−1

2 )!

×


n−1
2∑
l=0

(−1)l
(n−1

2
l

) n−1
2∏

m=1

(2l + 2m+ 1)− (−1)
n−1
2

n−1
2∏

m=1

(n+ 2m)


=

(2/θ1)
n
2
√
n!(−1)

n−1
2

2
n−1
2 (n−1

2 )!


n−1
2∑
l=0

(−1)l
(n−1

2
l

)
(2l)

n−1
2 − (−1)

n−1
2

n−1
2∏

m=1

(n+ 2m)


=

(2/θ1)
n
2
√
n!(−1)

n−1
2

2
n−1
2 (n−1

2 )!

(−2)
n−1
2

(
n− 1

2

)
!− (−1)

n−1
2

n−1
2∏

m=1

(n+ 2m)


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= (2/θ1)
n
2
√
n!− (2θ2)

n
2

√
n!

(2n− 1)!!

=
1

Dn+1,n+1
−Dn+1,n+1Rn+1,n+1.

(ii) If n even, similarly, applying change of variable l = i−1
2 gives

rTn+1dn+1 =
(2/θ1)

n
2
√
n!(−1)

n
2

2
n
2 (n2 )!

n
2−1∑
l=0

(−1)l
(n

2
l

) n
2∏

m=1

(2l + 2m− 1)

=
(2/θ1)

n
2
√
n!(−1)

n
2

2
n
2 (n2 )!

(−2)
n
2 (
n

2
)!− (−1)

n
2

n
2∏

m=1

(n+ 2m− 1)


= (2/θ1)

n
2
√
n!− (2/θ1)

n
2

√
n!

(2n− 1)!!

=
1

Dn+1,n+1
−Dn+1,n+1Rn+1,n+1.

(c) Proof of Cn = 0:

RTnCn = rn+1 +RTndn+1(dTn+1rn+1 +Dn+1,n+1Rn+1,n+1)

= rn+1 +RTndn+1
Bn

Dn+1,n+1

=
1

Dn+1,n+1
(Dn+1,n+1rn+1 +RTndn+1)

=
1

Dn+1,n+1
ATn

= 0.

Since Rn is nonsingular, Cn = 0.

C.1.8 Proof of a statement in Section 3

We state and prove the following proposition.

Proposition C.1.9. If {Rn} is a sequence of nested positive definite matrices and let R−1
n =

DT
nDn be the reverse Cholesky decomposition of R−1

n , then {Dn} is nested.
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Proof. Letting Rn = CnC
T
n be the Cholesky decomposition of Rn, then Dn = C−1

n since

R−1
n = DT

nDn and Dn is lower triangular as required. Since {Rn} is nested, by construction

of the Cholesky decompostion, Cn is a nested sequence of lower triangular matrices. By

inspection of the relationship DnCn = In when both Dn and Cn are lower triangular, it is

apparent that {Dn} is a nested sequence of matrices.

C.1.9 Proof of Theorem 4.3.3

Consider k ≥ i and k + i is even (so that k − i is also even and dki 6= 0). By Stirling’s

Approximation, as k →∞,

d2
ki =

(k − 1)!

(2/θ1)i−1 ((i− 1)!)2 ((k − i)!!)2

=
(k − 1)!

(2/θ1)i−1 ((i− 1)!)2 2k−i
(
k−i

2 !
)2

∼
θi−1
1

((i− 1)!)2 2k−1

√
2π(k − 1)(k−1

e )k−1

π(k − i)(k−i2e )k−i

∼
θi−1
1

((i− 1)!)2 2k−1

√
2

π

1√
k

2k−ie1−i(k − 1)i−1(1 +
i− 1

k − i
)k−i

∼
√

2

π

ki−
3
2 θi−1

1

2i−1 ((i− 1)!)2
.

Since f(x) = xp, the nth order derivatives when x = 0 are all 0 except for n = p, when it is

p!. As n→∞,

θ̂0 =
1

n
‖D(θ1, n)z‖2

=
(p!)2

n

n∑
k=1

d2
k,p+1

=
(p!)2

n

⌊
n−p
2

⌋∑
k=0

d2
p+1+2k,p+1

199



∼ (p!)2

n

⌊
n−p
2

⌋∑
k=0

√
2

π

(p+ 1 + 2k)p−
1
2 θ
p
1

2p(p!)2

∼
√

2

π

2p−
1
2 θ
p
1

2p
(bn−p2 c)

p+1
2

n(p+ 1
2)

∼
np−

1
2 θ
p
1√

2π2p(p+ 1
2)

where the first asymptotic equivalence follows from Lemma C.1.2.

C.1.10 Proof of a statement in Section 4

We state and prove the following proposition.

Proposition C.1.10. For some m > 1, consider a (2m − 1) × (2m − 1) regular grid on

[0, 1] × [0, 1]. Observations z are taken on the m ×m regular sub-grid. When m = 12, the

setup is shown in Figure 4.4. Denote pi,j as the predictand at location (i, j) for some j odd,

and p̂i,j as the EBLP defined in (4.4.7), then

p̂i,j = vTj (θ̂2)z(j−1)m+1:jm,

where vTj (θ̂2) = rj(θ̂2)R−1(θ̂2,m) for some rj(θ̂2) ∈ R1×m depending only on θ̂2. That is,

p̂i,j only depends on observations on the jth column of the grid, and the range parameter

estimate along columns.

Proof. Note that the covariance of pi,j and the observations z is

Cov
(
pi,j , z

T
)

= θ̂0R(θ̂1,m)j,. ⊗ rj(θ̂2),

where R(θ̂1,m)j,. is the jth row of R(θ̂1,m) and rj(θ̂2) is the correlation of pi,j and obser-
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vations on the jth column. Then we have

p̂i,j = Cov
(
pi,j , z

T
)

Cov
(
z, zT

)−1
z

=
(
R(θ̂1,m)j,. ⊗ rj(θ̂2)

)(
R−1(θ̂1,m)⊗R−1(θ̂2,m)

)
z

=
(
R(θ̂1,m)j,.R

−1(θ̂1,m)
)
⊗
(
rj(θ̂2)R−1(θ̂2,m)

)
z

=
(
eTj ⊗ rj(θ̂2)R−1(θ̂2,m)

)
z

= vTj (θ̂2)z(j−1)m+1:jm,

where ej is the jth standard base and vTj (θ̂2) = rj(θ̂2)R−1(θ̂2,m).
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APPENDIX D

SUPPLEMENT TO CHAPTER 5

D.1 Supplementary figures

Figure D.1: RMSEs at each embedding
length m for predicting the initial N ob-
servations (in-sample), the next N observa-
tions (out-of-sample) and the tail N obser-
vations (out-of-sample: tail) using the NN
model. N = 2000, m = 1, . . . , 7.

Figure D.2: Differences of RMSEs of the
NN model minus those of the GP model at
each embedding length m for predicting the
initial N observations (in-sample), the next
N observations (out-of-sample) and the tail
N observations (out-of-sample: tail). N =
2000, m = 1, . . . , 7.

Figure D.3: Illustration of the area (shaded
region) between model propagations in
three steps and observations as defined by
(5.3.3).

Figure D.4: Simulated observations from
the ODE model MP with no model er-

ror and with observational error ηt
i.i.d.∼

N (0, σ2
ηI3), ση = 10−3.
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Figure D.5: Simulated observations from
the ODE model MP with model error

εt
i.i.d.∼ N (0, σ2

εI3), σε = 10−12 and

with observational error ηt
i.i.d.∼ N (0, σ2

ηI3),

ση = 10−3.

Figure D.6: Simulated observations from
the NN model MN with no model error and

with observational error ηt
i.i.d.∼ N (0, σ2

ηI3),

ση = 10−3.

Figure D.7: Simulated observations from

the NN model MN with model error ε̃t
i.i.d.∼

N (0, σ2
εI3) as defined in (5.4.2), σε =

10−12 and with observational error ηt
i.i.d.∼

N (0, σ2
ηI3), ση = 10−3.

Figure D.8: Simulated observations from
the ODE model MP with no model error
and with observational error ηt = φηt−1 +

vt, φ = 0.9, vt
i.i.d.∼ N (0, σ2

vI3), σv = 10−3.
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Figure D.9: Simulated observations from
the NN model MN with no model error and
with observational error ηt = φηt−1 + vt,

φ = 0.9, vt
i.i.d.∼ N (0, σ2

vI3), σv = 10−3.

Figure D.10: The simulation points (dot)
are taken on a regular grid centered at the
true initial state for the ODE model, and
at the last three elements of the true ini-
tial state for the NN model. The shortest
distance from the simulation points to the
true initial state (asterisk) is d.

Figure D.11: Histograms of average areas between real observations and model propagations
(red: NN with embedding length m = 3, blue: GP with m = 2) in 2000 steps for the
500 starting points considered in Section 5.3; histograms (white with solid bar outlines) of
average areas between two realizations in 2000 steps from (5.4.2) under model error with
standard deviation σε and no observational error for the same 500 starting points. From left
to right: σε = 10−4, 2 × 10−4, 3 × 10−4, 4 × 10−4. Histograms are normalized so that the
areas of bars in each histogram sum to one.
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