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ABSTRACT

Negative probabilities arise primarily in physics, statistical quantum mechanics, and quantum computing. Negative probabilities
arise as mixing distributions of unobserved latent variables in Bayesian modeling. Our goal is to provide a link between these two
viewpoints. Bartlett provides a definition of negative probabilities based on extraordinary random variables and properties of their
characteristic function. A version of the Bayes rule is given with negative mixing weights. The classic half-coin distribution and

Polya-Gamma mixing are discussed. Heisenberg’s principle of uncertainty and the duality of scale mixtures of Normals is also

discussed. A number of examples of dual densities with negative mixing measures are provided including the Linnik and Wigner

distributions. Finally, we conclude with directions for future research.

1 | Introduction

Our paper was motivated by numerous conversations with
Nozer Singpurwalla in 2022. Nozer had a keen interest in
quantum probability and the foundations of statistical infer-
ence. For example [1], writes about Feynman’s view that neg-
ative probabilities and subjective Bayes could explain how
quantum systems violate Bell inequalities, and [2] solves a
problem in particle physics. Nozer had a great sense of inter-
esting problems that spanned many scientific fields and was
fearless in his pursuit of such ideas. He had a lifelong
interest in the foundations of statistics, see [3]. One of his
favorite sayings about research was one fine day we’ll expect
results!

Many authors including [4-6, 7], use negative probabilities as
a tool for explaining physical phenomena in quantum mechan-
ics. As Dirac noted, “negative energies and probabilities should
not be considered as nonsense. They are well-defined concepts

mathematically, like a negative of money.” Quantum Bayesian
Computation [8] uses negative probabilities which can help
explain the collapse of the wave function, entanglement, and
non-locality.

Eddington [9] considers the problem of a very large number of gas
particles N with the same probability p of coordinates. Bernoulli’s
central limit theorem can be applied to find the “fluctuation” dis-
tribution of the number of particles in a given fixed volume. He
shows that the whole fluctuation can be separated into two inde-
pendent terms, one depending on the fluctuation of pN and the
other on the fluctuation of N, which he distinguishes as ordinary
and extraordinary. The extraordinary fluctuation is to be com-
bined negatively and removed from the ordinary one. The ordi-
nary component assumes that the gas extends uniformly without
limit in all directions. But, an infinite extent of uniform gas is
contrary to relativity theory. Hence, Eddington shows that “this
space-curvature is simply a way for taking the extraordinary fluc-
tuation into account”.

In memory of Nozer SingpurwallaNick Polson is Professor of Econometrics and Statistics at Chicago Booth: ngp@chicagobooth.edu. Vadim Sokolov is an Associate Professor at the Volgenau School of
Engineering at George Mason University. vsokolov@gmu.edu. We would like to thank the referee for their very detailed and insightful comments. Including a version of the Bayes rule with negative

probabilities.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). Applied Stochastic Models in Business and Industry published by John Wiley & Sons Ltd.

Applied Stochastic Models in Business and Industry, 2025; 41:€2910
https://doi.org/10.1002/asmb.2910

10f8


https://doi.org/10.1002/asmb.2910
https://orcid.org/0000-0002-6618-2965
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/asmb.2910
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fasmb.2910&domain=pdf&date_stamp=2025-01-29

Bartlett provides a definition based on characteristic functions
and extraordinary random variables. As [10] observes, negative
probabilities must always be combined with positive probabil-
ities to yield a valid probability distribution before any physi-
cal interpretation is admissible. To illustrate such random vari-
ables, we show that the classic negative probability half coin
distribution is related to the Pélya-Gamma mixing distribu-
tion [11, 12]. The Linnik distribution [13] can be expressed
as a Gaussian scale mixture but with negative mixing weights
[14-17].

Mixtures of Exponential [18, 19] and Gaussian distributions have
a long history in MCMC algorithms and hierarchical representa-
tions of distributions [20] and lead to EM algorithms for posterior
mode and maximum likelihood inference. Our results build on
this literature by extending the class of distributions to those with
negative mixing weights.

From another perspective [21], provides a simple proof of the
famous Bell’s inequality with two applications of Hoeffding’s
inequality where Bell’s theorem is related to statistical causality,
see also probability bounds in [22].

The rest of the paper is organized as follows. Section 1.1 dis-
cusses two classic examples of [ 7]. Section 2 revisits the definition
of negative probability and extraordinary random variables due
to [10]. We consider an archetypal example of half-coin dis-
tribution due to [23]. Section 3 provides our results on new
characterizations of scale mixture of Normals using dual den-
sities [24, 25]. Bernstein’s theorem for completely monotone
functions is used to determine when the mixing weights are
non-negative. Our work shows that many results in quantum
mechanics are also related to the notion of dual densities and
scale mixtures of normal. A number of examples, including the
Linnik, the stable and the Wigner distribution are provided.
Finally, Section 4 concludes with some directions for future
research.

1.1 | Motivating Example

Feynman [7] provides the following simple example of negative
probabilities. Feynman discusses the case with a conditional table
for p(state = j|E)for j = (1,2,3)and E = { A, B} withunderlying
base rates given by p(A4) = 0.7, p(B) = 0.3. The conditional proba-
bility table (Table 1) has a negative entry with the usual constraint
of summing to one. Specifically,

Notice that p(state = 2| B) = 1.2 > 1 in order to offset the neg-
ative conditional probability p(state = 1|A) = —0.4. The total of
probabilities is still one, and we have a valid marginal probability
distribution over the states.

TABLE1 | Feynman’s conditional probability table.

Given A Given B
1 0.3 -0.4
State 2 0.6 1.2
0.1 0.2

The observable marginal distributions form an ordinary random
variable and are calculated as

p(state = 1) = p(state = 1|A)p(A) + p(state = 1| B)p(B)
= 0.7 x0.30.3 X 0.4 = 0.09

Although p(state = 2| B) = 1.2, is allowed to be greater than one,
p(state =2) =0.7x 0.6 +0.3x1.2=0.78
which is still a valid probability. Similarly, we have
p(state = 3) =0.7%x 0.1+ 0.3.2 =0.13

‘We can see that we have ordinary probabilities for the states. The
key point is that the law of total probability still holds even though
the mixing weights, which are unobserved (latent) are allowed to
contain negative values.

Wigner [6] shows that in quantum theory the joint density func-
tion P(x, p) of the location and momentum of a particle cannot
be non-negative everywhere as it is always real and yet its inte-
gral over the whole space is zero. Hence, written as a convolution
(a.k.a. Bayesian mixture model) in which mixing weights can be
negative. Feynman provides the following concrete example: con-
sider a particle diffusing in 1-dimension in a rod has probability
P(x,t) of being at x at time ¢ and satisfies

0 0?
—P(x,t) = —— P(x,t
ot (51 ox? i

Suppose that at x =0 and x = z the rod has absorbers so that
P(x,t) = 0and let P(x,0) = f(x). What is P(x, ) thereafter?

The solution is given by P(x,t) = Z‘:’_:I Dn sin(nx)e~"! where

fx)= Zp,, sin(nx) and p, = 2 / f(x)sin(nx)dx
n=1 4

This is a mixture with negative weights, and thus, is an extraor-
dinary random variable. See also [26]

2 | Extraordinary Random Variables

Extraordinary random variables can generate ordinary random
variables in two ways: as convolutions of probability measure,
and through mixtures with negative weights. We consider each
of these in turn.

2.1 | Convolutions

To fix notation. Let e denote an extraordinary random variable or
generating function. Hence, the unobserved component Z* will
havg density f*(z) and generating function G%(s). Let ¢ (1) =
E(e'*) denote the characteristic function of an ordinary random
variable X. The generating function and Fourier transform (a.k.a.
characteristic function) are related by

G,(s)= EGs%) and (1) 1= E(e"?)=G,(e")
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Negative probabilities arise as convolutions of probability mea-
sure. Imagine a random variable represented as a convolution

Y=X+2Z"°

where Z* has an extraordinary probability distribution where X
and Z* are independent in the usual statistical sense. We can
think of Y as observed, Z* as a hidden and X the state of nature.

The generating function of the convolution Y = X + Z* isa prod-
uct, by independence, with

fy»= /fx(y —-2)f;(2)dz

Gy (5) = Gx(5)G 4. (5)

The existence of an ordinary random variable in the convolution
case follows from the fundamental theorem [23] which we now
describe in our notation with upper case symbols for the generat-
ing functions and e symbols marking any extraordinary variable.

Fundamental theorem. For every generating function F*(s) of
an extraordinary probability distribution there exist two proba-
bility generating functions G and H of ordinary non-negative
distributions such that

F5()Gx(s) = Hy(s)

The sum of independent random variables leads to a product of
their generating functions. Let L} denote the space of integrable
densities. Then, f € L;,g € L},3f such that f * g € L} where
the convolution is given by

(f *8)2) = / g(z = x)f*(x)dx

Hence a law of total probability holds for convolutions with neg-
ative probabilities.

One can view the law of total probability as a convolution
theorem for random variables. A natural generalization of Feyn-
man’s examples is convolutions with negative weights. The clas-
sic example is the half coin is connected with Pélya-Gamma mix-
ing [20, 27]. See also [28, 29].

Half Coin. Let Y be a single toss of a coin with Bernoulli distri-
bution, Y ~ Ber(p). Then a full toss can be decomposed as a sum
of two “half” coins [23].

Gy(s) = G ()G (s)

Half-coins are extraordinary r.vs, so this is not an example of the
fundamental theorem.

Specifically, the probability generating function is defined by the
formula f(z) = Zf;lpnz". The pdf of a fair coin is

f(z)==+=z

N | =
N | =

If we assume that > p, =1 and Y, |p,| < co but drop the
requirement fo non-negativity of its probabilities, we can define
the half coin as having a pdf

+-z=

L Lo

- 1
[EENISERR TR

N | —
N | =

According to the Binomial theorem

oo

L5

n=0

where the coefficients are, with C, the n-th Catalan number,

(1£2> = (—1)”"1% and C, = H%(i")

Pélya-Gamma. The probability-generating function of the
half-coin is related to that of the Polya-Gamma distribu-
tion. Let X ~ PG(b,0). By definition, the moment generating
function is

1 1
coshb(\/;) - (e\ﬁ + e*‘ﬂ)b

E{e—ZIX —

Letting s = e™¥, yields p.g.f.

()

Barndorff-Nielsen et al. [11] (Equation 3.6) gives the mixing den-
sity

oo

_ =26\ +K) _Lrkru
fx(”)‘kz::g( k )B((S,(S)e 0>0

Hence, we see the equivalence with the half-coin, where b =
—1/2and 6 = 2!

The negative factorial function can be written in the more usual

wayas 26 26+k—1
<_k )z(_l)k< +k_ )

Bartlett’s definition. Bartlett [10] provides a formal extension
of Kolmogorov’s mathematical probability as follows. He intro-
duces extraordinary random variables through their character-
istic functions. As Bartlett observes, negative probabilities must
always be combined with positive ones to give an ordinary prob-
ability distribution before a physical interpretation is admissible.
The following definitions of extraordinary random variables will
be used throughout.

They are defined via their characteristic functions. In terms of
Fourier transform (a.k.a. characteristic functions) we have

by (1) = Py (% (1)

Given ¢y, ¢y, we would like to identify the mixing measure of
the hidden variable Z. Solving for ¢, (r) we have,

. by () _
$%,(1) = ¢; = by O (1)
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This has the same form as the convolution product above!

Notice that we write the characteristic function of Z in terms of
a random variable, denoted by . as follows

B3,(1) = by (D}, (1), With ¢%,(1) = d31(1)
However, the following identity holds

dxOP}, (1) = px(OPY (1) =1 = E(e"™)
X+wWe z 0

Therefore, W* will have an extraordinary probability distri-
bution. That is it will take negative values in parts of its
domain.

van Dantzig pair. If the functions ¢, (¢) and 1/¢, (it) are both
characteristic functions then we have a van Dantzig pair of ran-
dom variables. This is similar to Bartlett’s definition except we
evaluate the reciprocal at 1/if rather than 1/z. For applications,
see [30] and [31].

Example. Let Y be the sum of tosses leading to a Binomial dis-
tribution Bin(n, p). For p < 0 this is an extraordinary random
variable. The reciprocal distribution takes the form of a nega-

tive Binomial distribution with a generating function given by
(P+aqs)™.

2.2 | Mixtures

In the case of mixtures, we have
fr(y) = / friz02)f(2)dz
Gy(s) = / Gy\z(5|z)f2(z)dz

An interesting class is scale mixtures of Gaussian with negative
mixing weights. So far this class has received little attention in the
literature relative to their ordinary mixture counterparts [27]. By
construction, we have

Y =VZ*X where X ~ N(0,1)

which leads to the class of densities of the form

fr) = / L 3% fo(2dz
0 2nz

with mixed weight mixing measure /.

2.3 | Bayes Rule for Extraordinary Random
Variables

One would like to infer the distribution of the hidden variable Z*
given the observable Y, that is provide a Bayes rule for extraordi-
nary random variables. We now do this.

We argue as follows. We have a likelihood f(y|z,s) with two
parameters (Z, S®) with .S* being extraordinary. The joint prior
to these parameters is

p(z,5) = p(z|5)g°(s)

We can then write the Bayes rule in two ways, with joint depen-
dence on Z and S°, the other for Z conditioned on S°. The joint

version is
_ fOlz 9)p(z|5)g"(s)

[z, sy) o

where
m(Y)=//f(ylz,S)p(ZIS)g'(S)dzdS=/m(y|5)g'(S)dS

and
m(yIS)=/f(yIz,s)p(ZIS)dz
The conditional version is

Sz, 9)p(z|s)

fr(zly,s) = nols)

We can then rewrite the joint version as

_ SOz, 9)p(z5)g"(s)

f(z,sy)
m(y)
_ SOz, 9)p(z]5)g"(s) m(y[s)
m(y) m(yls)

=f(zly,s)g"*(sly)

where

g (s1y) = ") o) = islpgt(s)
m(y)

Thus updating the prior by adding conditioning on Y begin

p(z,5) =p(z|s)g°(s)
f(z,s1y) =f(zly, )" (s]y)

The specific case is p(z|s) = se™%, but the argument applies for
any (ordinary) p(z|s).

The dual nature of this class of densities is discussed in the next
section where a Heisenberg principle of uncertainty for normal
scale mixtures is given, see [24].

3 | Duality of Densities

The concept of dual densities was introduced in 1995 by Jack
Good ([25]) as densities proportional to the moment generat-
ing functions (or characteristic functions when they exist) of a
given density. This was further explored by Tilmann Gneiting,
who established connections between the mixing distributions
for dual densities that are also normal variance mixtures ([24])
and Nadarajah, who provides a list of dual densities for com-
mon continuous distributions [32, 33]. An important result from
Gneiting’s paper is as follows:
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Consider the normal variance mixture p(x) =
[ @av)y"?2e*/?*d F(v) and its characteristic function ¢, see
[34-36]. Then the dual density j is also a normal scale mixture
with mixing density /. The mixing density for the dual and the
original (or, the primal) density are related by a simple formula:

A 1 1

f(U)=Wf(;>,U>O D
This gives a useful tool for constructing polynomially tailed
(or slowly varying) priors that are also normal variance mix-
tures starting from a prior that is exponentially tailed (or
rapidly varying). A classic example is the double-exponential
or Laplace distribution whose dual is the Cauchy distribution.
Since the Laplace can be written as a normal scale mixture
with exponential mixing density, we can derive the mixing den-
sity for Cauchy. Some examples of exponentially-tailed densities
with polynomially-tailed duals compiled from [32] and [24] are
reported in Table 2:

Good and Gneiting [24, 25] introduced the concept of a dual den-
sity. Given a density p(x), its dual density is given by its charac-
teristic function

o]

by (1) = E(e"™) = / "™ p(x)dx
—00
appropriately normalized. The characteristic function is simply
the Fourier transform (with sign reversal) of the probability den-
sity function. Some functions are invariant under this transform.
For example, the characteristic function of normal is again nor-
mal. We call the two densities dual if each is proportional to the
characteristics function of the other. The normal is it is dual.

The class of scale mixture of Normals with bounded density with
mixing measure, F, defined on (0, o) given 'y

R | 2
w@:/-——f”%ﬂw
0 2rv

has characteristic function
«© 2
¢ﬂﬂ=/ e 24 F(v)
0

This follows from the characteristic function of a standard nor-
mal, namely

E(eitZ) — /weitx 1 e—XZ/Zde — e—mZ/Z
— 2rv

When both p and ¢ are bounded and integrable, we have

pX(0)=/O°° L iFw) < o

2wv

The dual density p is proportional to ¢ and is given by p(t) =
p(0)9(1),

Surprisingly, the dual density is also a scale mixture of normal,
with density

pr(x) = / L g
0

2rv
where i 1
dF(v)= ——dF1/v), v>0
270 27p(0)

Then its dual characteristic function is given by

dx (1) =/ exp(itx)/ (er)_% exp(—xz/ZU)dF(U)
- 0

0

= /00 exp (—%uaf)f(u)du
0

Therefore,

mm:/(mwﬁmmﬁmwmmmMu@=m%wh
0

TABLE2 | Somecommon exponentially tailed densities that have polynomially tailed dual densities. The densities marked with asterisks also have

a commonly known normal variance mixture representation.

Densityp(x) Dual density p(x) Comments

Exponential Power* (Special Case: Laplace, =~ Symmetric-stable(«) (Special ~ Symmetric stable distributions are heavy-tailed for
Normal) case: Cauchy, Levy) a<2

Bessel function density* Student’s t These densities are special cases of Generalized

Gamma (shape=a, rate=1)
Laplace

Skew-Laplace I
Skew-Laplace IT P(x) o {
Fretchét

Inverse Gaussian

Linnik or a-Laplace distribution*
a e0,2)

p(x) = x~
Plx) o e (1 + x2)7!
P(x) x e™(c/(b+x)+1/x)
+ =}

cx
x2+a?

PO & y/xK_y(av/x)

B(x) o< xM*K_1(ay/x)
Generalized éauchy
PO o 1+ [x])77

Hyperbolic distribution with parameters
(A= —%,52 =0,x2=v)and
(A=-v/2,6% = v,x = 0) respectively

Heavy-tailed ifa = 0
Heavy-tailed if a = 0
e Heavy-tailed

Fretchét distribution has a lower exponential tail

50f8

85U80|7 SUOWLLOD dAIea.D 8|qedl|dde ays Aq peusencb aJe saoife VO ‘@S JO Sa|nJ oy Aeiqi8UIjUO /8|1 UO (SUORIPUOD-pUe-SWLRI/Woo" A3 1M A1 1 BUI UO//SANY) SUORIPUOD PUe SWie | 8u1 88S *[6202/20/T0] uo AriqiTauljuo Ae|im ‘(-ul eAnde ) aqnopesy Aq 0T62 qUISe/Z00T 0T/10p/W0D A8 |IM Areiq 1 euluo//Sdny Woly papeojumod ‘T ‘SZ0Z ‘SZ0v9zSsT



Hence, the mixing measure can be obtained via inversion of a
Laplace transform.

® 1 >
— - X
py(x) = /0 PP

by (1) = E"X) = / e 2dF(v)
0
Gneiting and Good [24, 25] shows that if p and p are normal scale
mixtures,
0,0; > 1 & p, p are normal

This follows from flopping between Fourier and Laplace
transforms.

Therefore, a pair of dual densities (p, p) follow a Heisenberg
principle, when one learns something about p one has informa-
tion about the other, but they both cannot be observed at the
same time.

Another example of a Heisenberg principle of uncertainty is given
by the Wigner distribution.

Wigner Distribution. [5] uncertainty principle asserts a limit to
the precision with which position x and momentum p of a particle
can be known simultaneously, namely, the standard deviations
satisfy

h

N | =

0,0, >

where & is Planck’s constant [6], exhibited a joint distribution
function f,(x, p) for position and momentum however some of
its values have to be negative and he asserts that “this cannot be
interpreted as the simultaneous probability for coordinates and
momentum” but can be used in calculations as an auxiliary mix-
ture measure. For a unit vector, y, the Wigner distribution is
defined as

fy(x,p) = % / w<x+ %h>v/*<x - %h)e”pds

For a recent discussion on the Wigner distribution see [37],
Wigner’s quasi-probability distribution, which can be used to
make predictions about quantum systems. Hudson [38] shows
that for the Wigner quasi-probability density to be a true density is
that the vssponding Schrodinger state function is the exponential
of a quadratic polynomial (a 2-dim multivariate normal).

Mixture of Exponentials. A function f(x) is completely mono-
tone if and only if it can be represented as a Laplace transform of
some distribution function F(s) as

f(x)= / e *dF(s)
0
The function p( \/E) is completely monotone if

k
(—1)"%;7(\/}) >0Vk=123,...

Bernstein’s theorem states that p(x) is completely monotonic if
and only if there is a unique measure G on [0, c0) such that

p(x) = /0°° e **d F(4). Bernstein functions which include the class
of scale mixtures of Normals. We have the representations

p(x) = exp (—¢(x)) = \/g / Vi
0

X exp (—/lxz)d F(A) & p( \/;) completely monotone

This is essentially the Bernstein-Widder-Schoenberg theorem
applied to p(x) = exp (—¢p(x)).

The Cauchy-Laplace pair of distributions provides another
example.
o)
Lo = el 1 gy
2 o W14+ x?

The exponential power is a Gaussian mixture for a € (0,2]
given by

exp(—|7]*) = / e f(s)ds
0

where f(s) can be identified as a positive a-stable r.v. with index
a/2. When a = 2 we get the Cauchy/Laplace dual density pair
described above.

Negative convolutions arise when p( \/;) is not completely mono-
tone and an example of this is given by

1 m—fu' 1/2 __1 1 1ja _
;[) e "sin(u )du_2n1/2t37€ —(pl/z(t)

where

e—ltll/zz/ e_’”(pl/z(t)dt
0

Linnik Distribution. If we start with the Laplace transform iden-
tity for a Cauchy random variables

1 « 1
— = / e ™t72 sin(t)dt
1 + X 0

Then under the transformation, x — %xz, this becomes a scale
mixture of Normals representation for the Linnik distribution

1 0 12 g
i /0 Vie 3™t sin(t/2)dt
If h(c6) x 62 sin(672), we have

py(x) = /ma_ld)(a_lx)h(a)d()'
0

This result follows from the fact

/w;_z
o 4+x* 8

which can be calculated using identity

1 1

41 (2 2x 122+ 2x+2)
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Applied Stochastic Models in Business and Industry, 2025

85U80|7 SUOWLLOD dAIea.D 8|qedl|dde ays Aq peusencb aJe saoife VO ‘@S JO Sa|nJ oy Aeiqi8UIjUO /8|1 UO (SUORIPUOD-pUe-SWLRI/Woo" A3 1M A1 1 BUI UO//SANY) SUORIPUOD PUe SWie | 8u1 88S *[6202/20/T0] uo AriqiTauljuo Ae|im ‘(-ul eAnde ) aqnopesy Aq 0T62 qUISe/Z00T 0T/10p/W0D A8 |IM Areiq 1 euluo//Sdny Woly papeojumod ‘T ‘SZ0Z ‘SZ0v9zSsT



Similarly, when we have a scale mixtures of Gaussians
(14, 17, 36],

(o]
1
N, 'OWtdt = —————
/0- ( W® 1+ (xTC1x)?
where the weights W (t) = /> sin(%) can be negative, x7 =
(x1, X5, ..., x,,). This provides an example with negative mixing
weights [13, 14, 17].

The Linnik family for 0 < @ < 2 is a scale mixture of Normals
given by

1

HN=E itX =—
o0 = B =

a € (0,2]

The mixing measure is given by

/°° Ly Tl 1
e dv =
0 ra+1/p A+ [t]m)V/P

Hence, we have an ordinary mixing distribution for « € (0, 2]
whereas the case a« =4, =1 above leads to extraordinary
mixing.

4 | Discussion

Negative probabilities correspond to extraordinary random vari-
ables. They arise in many physical systems and quantum com-
puting [8]. A related physical notion is that of dual densities
which represents densities as characteristic functions rather than
Laplace transforms (a.k.a. mixtures of exponential random vari-
ables). We provide many examples, including the Linnik family of
distributions where certain cases lead to negative mixing weights.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated
or analyzed during the current study.
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