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C O N D E N S E D  M AT T E R  P H Y S I C S

Generalizing multiple memories from a single drive: 
The hysteron latch
Chloe W. Lindeman1, Travis R. Jalowiec2, Nathan C. Keim2*

Far-from-equilibrium systems can form memories of previous deformations or driving. In systems from sheared 
glassy materials to buckling beams to crumpled sheets, this behavior is dominated by return-point memory, in 
which revisiting a past extremum of driving restores the system to a previous state. Cyclic driving with both posi-
tive and negative strains forms multiple nested memories, as in a single-dial combination lock, while asymmetric 
driving (only positive strain) cannot. We study this case in a general model of hysteresis that considers discrete 
elements called hysterons. We show how two hysterons with a frustrated interaction can violate return-point 
memory, realizing multiple memories of asymmetric driving. This reveals a general principle for designing sys-
tems that store sequences of cyclic driving, whether symmetric or asymmetric. In disordered systems, asymmetric 
driving is a sensitive tool for the direct measurement of frustration.

INTRODUCTION
The single-dial combination lock is a mechanism for storing multi-
ple values from a single input. By alternating between clockwise and 
counterclockwise rotation, the operator encodes the combination 
values as a series of turning points. Each new turning point must be 
nested within the previous two, so that the lock verifies not only the 
values but also their exact sequence. Information about the stored 
values can be recovered by observing the resistance to further rota-
tion (1). Last, erasure can be achieved with a large twist of the dial. 
Every operation is accomplished with a single control.

This elegant idea was known by 1909 (2), but it was rediscovered 
decades later as return-point memory, a generic behavior of many 
materials and systems that contain hysteretic elements, even those 
that appear quite different from the series of wheels in a combina-
tion lock (1, 3–5). For example, an amorphous solid that is repeatedly 
sheared back and forth contains many localized groups of rearranging 
particles (6–8). In experiments, forward and reverse shear drive 
each of these groups to switch its configuration reversibly between a 
“forward” (“+”) and “reverse” (“−”) state, but only when a sufficiently 
large deformation is applied in each direction, meaning that the 
rearrangements have hysteresis. Collectively, the states of these 
rearrangements uniquely encode the nested turning points of shear 
strain (illustrated in Fig. 1A), and a suitable readout protocol can 
recover some or all of that history (6, 9). Unlike in the combination 
lock, the memory is explained by the observation that rearranging 
groups act as “hysterons,” bistable elements that are the building 
blocks of many models of hysteresis (10). The way return-point 
memory arises in ensembles of independent hysterons is rigorously 
understood (4, 11), and the same picture emerges from observations 
of creases in crumpled sheets (12) and buckling units in mechanical 
metamaterials (13, 14); from models of rocks (15) and ferromag-
netic, ferroelectric, and martensitic materials (1); and from many 
more systems (5, 16, 17).

In some of these systems, interactions between hysterons are also 
apparent. In the case of the amorphous solid, the minimum imposed 
strain needed to drive a group of rearranging particles into the + state 

might be raised or lowered according to the state of another nearby 
group, due to their coupling via the material between them. Of par-
ticular interest are “frustrated” or antiferromagnetic interactions that 
make it harder to drive a pair of hysterons into the same state. When 
present among large numbers of hysterons or other elements that re-
lax, frustrated interactions are associated with the extraordinarily rug-
ged energy landscapes of glassy materials like amorphous solids and 
crumpled sheets (12, 18). Recent simulations of hysterons with frus-
trated interactions have explored intriguing behaviors that are incon-
sistent with return-point memory, such as counting cycles of driving 
(19–22), and interacting mechanical hysterons have now been dem-
onstrated in experiments (5, 13, 14, 23, 24).

Theoretically, the behaviors of interacting hysterons can be arbi-
trarily complex computations, given enough hysterons and the precise 
control of their parameters (23, 25). Yet the example of return-point 
memory shows that a useful and capacious memory behavior, the 
ability to store sequences of turning points, can instead arise from an 
ensemble of simple units (hysterons), making it ubiquitous in both 
designed and disordered systems. Encoding longer sequences merely 
involves expanding the ensemble size, much as one would add more 
wheels to the mechanism of a combination lock. This example leads us 
to ask whether, among the plethora of behaviors enabled by hysterons’ 
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Fig. 1. Driving protocols can store multiple memories. The state of a generic sys-
tem with return-point memory depends on the sequence of nested turning points 
from driving. (A) Driving protocols that store the amplitude(s) of symmetric (positive 
and negative) shear; dots mark turning points. Final memory-encoding state corre-
sponds to red stars. “2,” “4,” and “4, 2” each lead the system to a different state. 
“2, 4” does not nest turning points within preceding ones, and so yields the same state 
as “4.” (B) Asymmetric equivalents of (A). Because every cycle has the same turn-
ing point at 0, it is impossible to store multiple values via return-point memory.
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interactions, there is an analogous form of memory based on repeat-
ing a minimal unit.

Here, we show that return-point memory has a direct analog in 
hysterons with frustrated interactions. While return-point memory 
stores the turning points of symmetric driving (Fig. 1A), frustrated 
interactions let hysterons store the turning points of asymmetric or 
rectified driving (Fig. 1B), such as when a bridge is crossed by a 
series of vehicles with different weights. In contrast, any system with 
pure return-point memory, including the combination lock, can 
store only the largest turning point of asymmetric driving.

Just as the hysteron is the repeated unit that gives rise to return-point 
memories, we find that the unit for nested memories of asymmetric 
driving is nearly as elemental: just two hysterons with a frustrated inter-
action. This pairwise mechanism was recently confirmed experimen-
tally by Paulsen (24), with hysterons realized as two bistable rotors 
coupled via springs to each other and to a driving rod. From this basic 
unit of memory, we formulate a general principle of “latching”: condi-
tions for preventing the system from returning to its previous state, 
which allow multiple memories to be stored with either symmetric 
or asymmetric driving. Our results point the way to targeted studies of 
interacting relaxations in disordered matter and to the rational design of 
information-processing capabilities in mechanical systems.

Model
We are motivated by models of disordered solid materials and meta-
materials, wherein a system contains mesoscopic hysterons that can 
reversibly switch between two states under an imposed strain γ, for 
example, by rearrangements of particles in an amorphous solid 
(7, 26, 27) or snap-through of a buckled beam (13, 28). These mod-
els capture many mesoscopic details of experiments and simulations 
(6, 7, 13, 14, 22, 23, 29), especially when hysterons can interact. The 
ith hysteron switches its state Si at thresholds γ±

i
: When γ > γ+

i
, 

Si =+1; when γ < γ−
i
, Si = −1; and when γ−

i
< γ < γ+

i
, Si remains in 

its previous state. For convenience, we write states as + and −. In our 
simulations, the “system” is an ensemble of many groups of N hys-
terons with random parameters, modeling interactions via per-
turbed thresholds

where Sj≠i represents the states of all hysterons excluding hysteron 
i, and Jij is the N × N interaction matrix. This is equivalent to the 
model in (19). Jij < 0 represents a frustrated interaction in the sense 
that one hysteron flip inhibits another hysteron from flipping in the 
same direction. Large, disordered systems with these interactions 
tend to be “glassy,” in that they have rugged energy landscapes with 
many metastable states that are far from a global energy minimum 
(18). We initially omit positive (cooperative) interactions that cause 
one hysteron’s flip to encourage like flips and that can lead to avalanch-
es, because the memory behavior with those interactions is known to 
be qualitatively the same as with noninteracting hysterons (4). Ac-
cordingly, we choose Jij with uniform probability from 

[

− J0, 0
]

, with 
J0 = 0.01 unless otherwise specified. Each hysteron’s γ±

i
 are chosen 

by drawing two values from a uniform distribution on [−0.1, 0.1] 
and then ordering them so that γ−

i
 < γ+

i
, corresponding to rearrange-

ments that dissipate energy.
To simulate this model as γ is varied, we use the open-source “hys-

teron” software package (19). Like molecular dynamics simulations of 

amorphous solids, we work in the athermal and quasistatic limit: The 
algorithm identifies the hysteron that will flip soonest as γ changes and 
then holds γ fixed while it updates any other hysterons that were destabi-
lized via interactions (e.g., an avalanche), starting with the hysteron far-
thest past its threshold. When N > 2, the random parameters would 
occasionally prevent the algorithm from finding a stable state; these 
cases were discarded (19). Unless specifically noted, we avoid the case 
where Jij and Jji have opposite signs, for which this issue is common.

RESULTS
Memories in noninteracting and interacting systems
Protocols for writing memories are shown in Fig. 1; example proto-
cols for readout are in Fig. 2 (A and C). We begin each simulation 
with all hysterons in the − state, as though γ→ −∞, and then we 
drive the hysterons to γ = 0 before encoding memories. (Starting at 
γ→ ∞ similarly supports our conclusions; it is considered in fig. S1.)

Without loss of generality, in single-memory tests, we take the 
stored strain amplitude to be 4%; in two-memory tests, we use 4 
and 2%; and in tests with asymmetric driving, we take the bottom 
turning point to be 0. The amplitudes correspond to commonly 
used strains in studies of memory in amorphous solids (6, 9, 30, 31), 
but they can be rescaled arbitrarily to match other physical systems 
(Supplementary Text). After the writing cycle(s), the state is saved as 
Smem. To read out the memories encoded in Smem, we apply a series 

γ±
i

(

Sj≠i
)

= γ±
i
−

∑

j≠ i

JijSj (1)
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Fig. 2. Readout confirms the turning-point analysis of Fig. 1. (A) Symmetric strain 
protocol for reading out memories. State Smem after writing, marked with red stars, is 
compared with state after each cycle (gray diamonds), as amplitude γread increases. 
(B) Results of readout, measured as fraction of hysterons that differ. Each curve is labeled 
with the write protocol(s) from Fig. 1A that produced it. The most recent amplitude is 
always present, and multiple memories are possible if written in descending order. 
(C) Equivalent asymmetric protocol. Ends of readout cycles are marked with gray 
triangles. (D) Readout results for each protocol in Fig. 1B. The system cannot store 
a sequence of asymmetric driving, and the most recent amplitude may be missing.
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of cycles with increasing amplitude γread = 0, 0.005, 0.01…. This is a 
“serial” protocol that is suited to experiments, as opposed to a “par-
allel” protocol in which a separate copy of the system is made for 
each readout cycle (31). After each cycle with amplitude γread, we 
record the fraction of hysterons that are different from Smem. We av-
erage this fraction over the entire ensemble and plot it against γread.

Figure 3A shows readouts after the symmetric two-amplitude pro-
tocol labeled “4, 2” in Fig. 1A. The curve from an ensemble of nonin-
teracting hysterons (Jij = 0) is reproduced from the “4, 2” curve of 
Fig. 2B; it features a local minimum that indicates the most recent 
memory (2%) and a cusp that indicates the larger memory (4%), just 
as in the corresponding amorphous solid experiments and molecular 
dynamics simulations (6, 9, 30, 31). However, in Fig. 3B, driving the 
same ensemble asymmetrically changes its behavior markedly: The 
curve shows no signature of the smaller driving amplitude, rising 
rapidly only after 4%.

These notable different behaviors are both expected from return-
point memory, wherein the system remembers the turning points of 
driving. As long as γ is bounded between any pair of turning points, 
visiting either turning point will return the system to the state it had 
when it was at that turning point before (3, 4). This property is 
recursive, meaning that one may encode more than one memory 
with a symmetric driving protocol by decreasing the strain ampli-
tude, such that each new pair of turning points is nested within the 
last as in the “4, 2” protocol of Fig. 2A.

However, return-point memory also means that two asymmetric 
cycles can write only one memory: The first cycle of the “4, 2” pro-
tocol in Fig. 1B establishes a bounding turning point at γ = 0, and 
visiting γ = 0 again after writing the second, smaller amplitude im-
mediately restores the state with just one memory. Repeating the 
results of Fig. 2D, the readout of noninteracting hysterons in Fig. 3B 
fails to change their states until γ = 4% is exceeded: Writing a sec-
ond, smaller memory has no effect.

We now consider frustrated interactions, Jij < 0, as found in 
models of glassy matter such as crumpled sheets, disordered or 

amorphous solids, or spin ice and spin glass. Frustration means that 
one relaxation inhibits others, leading to these materials’ characteristi-
cally rugged landscapes of metastable states with broad distributions 
of energy barriers (18). In hysteron models, the sequences in which 
hysterons switch during forward or reverse shear become mutable, 
so that return-point memory is no longer assured (4, 21, 22, 32). The 
red curves of Fig. 3A show that, nonetheless, replacing the ensemble 
of single hysterons with an ensemble of frustrated pairs merely 
perturbs the return-point memory of symmetric driving. However, 
in Fig. 3B, where the readout curve for asymmetric driving had 
been zero, there is now a clear signature of both memories. This sig-
nal resembles the much larger one from symmetric driving, suggest-
ing a connection.

Memory mechanisms
To understand this connection mechanistically, we first return to 
noninteracting hysterons and examine their memory of a single 
amplitude, encoded with the symmetric protocol labeled “4” in 
Fig. 1A. Just as in the two-memory case, the corresponding readout 
curve in Fig. 4A is consistent with return-point memory: Each read-
out cycle with γread < 4% establishes new turning points nested with-
in the original pair at ±4%, placing the system in a new and distinct 
state and yielding a nonzero difference signal; when γread = 4%, the 
original turning points are revisited and the state at the cycle’s end 
matches Smem, making the signal zero. This leads to the distinctive rise 
and fall of the readout curve below the training strain.

In this case, we can understand the behavior of the ensemble by 
studying how a single hysteron contributes to memory. Figure 4B 
shows the response of a particular hysteron to an abridged writing and 
readout protocol. Only hysterons such as this one, with −γ− > γ+ > 0, 
contribute to readout for γread ≤ 4% because only they will be in the − 
state after writing, will then become trapped in the + state when ampli-
tude is reduced, and will lastly return to − when the original amplitude 
is resumed. In this sense, the hysteron “latches” into the + state during 
intermediate strain cycles. From the broad distributions of γ±, this 
mechanism yields the smooth rising and falling curve for γread ≤ 4% in 
Fig. 4A. The hysterons with other arrangements of γ± end each readout 
cycle in the same state for 0 ≤ γread ≤ 4% and, hence, do not contribute 
to the signal below the training strain.

Just as with two memories, in Fig. 4C, frustration enables a single 
memory of asymmetric driving that resembles its symmetric counter-
part. We show in Fig. 4D that this happens by an analogous mechanism 
involving a frustrated pair of hysterons. Frustration allows a two-
hysteron latching behavior in which revisiting the turning point at γ = 0 
can fail to restore the previous state. The mechanisms of Fig. 4 (B and C) 
are thus equivalent when one treats each whole cycle as one transition, 
either to the same state or to a new state (33).

Scaling the two-hysteron latch
What features are needed for latching? The values γ+

1
 and γ+

2
 set the 

hysterons’ sensitivity to amplitude; as long as they exceed most lower 
thresholds, they can vary widely, creating the smooth, slightly asym-
metric curve in Fig. 4C. By contrast, the lower thresholds must satisfy

as in Fig. 4D. These inequalities were verified in simulations by test-
ing 109 random pairs. In addition to the explicit flipping thresholds 
shown, it can be useful to visualize the order in which states are 
visited via a “transition graph.” The graphs that can lead to latching 
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Fig. 3. Frustrated hysteron pairs store multiple amplitudes of both symmetric 
and asymmetric driving. (A) Curves from symmetric driving have cusps at 2 and 
4%. (B) Asymmetric driving. Without interactions, only the memory at 4% is pres-
ent. Curve from 108 frustrated pairs shows both memories.
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in our frustrated simulations and, hence, to nonzero readout are 
shown in Fig. 5A. If we let Jij and Jji have opposite signs, then a third 
transition graph can contribute (see fig. S3 for details).

The interaction strength sets the threshold “window” size 
γ−
1
(+) − γ−

1
(−) = −2J12, into which both 0 and the interval 

[

γ−
2
(−), γ−

2
(+)

]

 must fall. For ensembles with uniformly distributed 
parameters like those reported here, these two requirements make the 
probability P for Eq. 2 second order in the interaction strength, i.e., 
P ∼ J2

0
. The signals in Fig. 4C are, thus, small compared to the result 

from return-point memory under symmetric driving, which is zeroth 
order in the sense that it may be obtained with J0 = 0. The J2

0
 scaling is 

confirmed for small interaction strength (J0 ≪ 4%) in Fig. 5B, where we 
measure the maximum height of the readout signal for γread < 4% (see 
Supplementary Text for details). In a design context, our analysis means 
that greatest tolerance for manufacturing errors and for variation in the 
bottom turning point of driving corresponds to large J12 and small J21 
while keeping γ−

1
(+) below the smallest amplitude to be remembered. 

Crucially, hysteron pairs that fail to satisfy Eq. 2 do not corrupt an 
ensemble’s memory; they are simply absent from readout.

The scaling estimate presented above is a departure from analy-
ses of P based solely on the ordering of thresholds, as considered by 
van Hecke (21): Here, we included the turning point of asymmetric 
driving, which additionally isolates the J2

0
 behavior by cutting out 

the zeroth-order response.
The two-hysteron latch is also how memories of asymmetric driving 

arise in larger groups of interacting hysterons, so that this motif may be 
observed in a bulk disordered material or metamaterial (28, 34). Figure 
5B shows nearly identical results for larger, mutually interacting groups 
after dividing out the multiplicity of frustrated pairs. These results hold 
even when we randomly make half of the interactions cooperative 
(drawn from [0, J0]), strongly suggesting that Fig. 4D is the dominant 
mechanism despite many more possible behaviors (19–22). In table S1, 
we further show that the memory-forming portions of these larger 
groups tend to have the same kinematics and interaction strengths as in 
N = 2. This remarkable conservation is possible because hysterons 
that do not contribute to asymmetric readout are largely following 

return-point memory, and so their states and transitions vary little from 
cycle to cycle.

Nesting memories of asymmetric driving
Last, we return to our original question: how a system with hysteresis 
may store multiple memories of asymmetric driving. We focus on 

A

C

B

D

Fig. 4. Mechanisms for memory. (A) Readouts of single memory of symmetric driving. Local minima indicate the memory. (B) Schematic of how a single hysteron con-
tributes to memory, showing hysteron thresholds on the left and an abridged driving protocol on the right. Changes in state during readout are marked with circled + and −. 
State at the end of each cycle is shown below; only the + state contributes to readout. (C) Readouts of single memory with asymmetric driving. The curve without interac-
tions is zero for γread ≤ 4% and then increases, while the curve with frustration is non-monotonic. (D) Schematic for a frustrated pair with asymmetric driving. For clarity, 
we show only how the interaction splits the hysteron bottoms γ−

1
 and γ−

2
 as a function of the other hysteron’s state, because the ordering of these four values is crucial for 

nonzero readout. The hysteron tops γ+
1

 and γ+
2

 can vary widely (Supplementary Text).

A

B

Fig. 5. Latching pair transition graphs and scaling. (A) Transition graphs that can 
give rise to nonzero readout below the remembered strain in simulations of frus-
trated hysterons. Transitions while increasing strain are in red, and while decreas-
ing strain are in blue. Left graph corresponds to Fig. 4D. Thick arrow represents an 
avalanche in which +− transitions to −+ upon increasing strain, by way of the 
unstable intermediate state ++. (B) Peak signal in Fig. 4C for γread < 4%, varying 
interaction scale J0 and number of mutually interacting hysterons N, scaled by the 
number of pair interactions per hysteron (N−1). In “9±,” half of the Jij , Jji pairs are 
positive (cooperative), so data are scaled by (N−1) ∕2. Each point is the average of 
109N hysterons. Dashed line shows J2

0
 scaling for reference.
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the upper thresholds of the two-hysteron latch, γ+
1
(−) and γ+

2
(+), 

which we relabel γA and γB for convenience, with γB > γA. In Fig. 4D, 
and in general, these thresholds determine which state a latching 
pair lands in at the end of a shear cycle of amplitude γ0. There are 
three possibilities: The latch may be left totally undisturbed in the 
−− state (γA > γ0), it may be stuck in the +− state (γB > γ0 > γA), or 
it may be pushed all the way to ++ so that it returns to the −− state 
by the end of the cycle (γ0 > γB).
Disordered systems
An ensemble of many latches can be represented as a set of points on 
a γB-γA plane, where γB > γA > 0, depicted in Fig. 6A with all latch-
es initialized to −−. Figure 6B illustrates the result of a cycle with 
amplitude γ0: Latches with γA > γ0 are undisturbed, those with 
γB < γ0 leave but return to the −− state, and all others go to the +− 
state. By applying the template of Fig. 6B repeatedly with different 
γ0, we can graphically find the state of the ensemble after an arbi-
trary sequence of amplitudes. For example, in Fig. 6 (C and D), cycles of 
amplitude at 4% and then 2% write two memories, as in the “4, 2” pro-
tocol of Fig. 1B; the memories form a “stair-step” pattern on the plane.

To generate a readout signal like Fig. 4C, we apply cycles of increas-
ing amplitude. The horizontal edge of the template, positioned at γ0 in 
Fig. 6B, becomes a front that starts at zero and moves upward, 

changing pairs to +− as it passes; the vertical edge starts at zero and 
moves rightward, changing pairs to −−. In Fig. 6E, we show how each 
region marked in Fig. 6D contributes to a distinctive signal. Pairs in 
the closed regions “i” and “iii” begin readout as −−, are changed to 
+− by the horizontal front and add to the readout signal, and then are 
changed back to −− by the vertical front, forming non-monotonic 
contributions to the readout. For the pairs in regions “ii” and “iv” that 
were placed in the +− state by writing memories, the horizontal front 
has no effect, but the vertical front changes them to −−, so that their 
contribution to readout instead rises monotonically for all subsequent 
γread. Last, when readout surpasses the largest stored memory (4%), it 
reaches the triangular region “v,” which extends to the largest γA and γB 
allowed in our simulation, beyond the limits of the plots. This region’s 
contribution rises steeply as the horizontal front begins to sweep over 
it, falling only at much greater γread (not plotted) when our finite 
ensemble becomes saturated. Together, the two stored memories 
create exactly two cusps in the combined readout signal, where its 
slope increases discontinuously.

The equivalence in Fig. 4 between a single hysteron under sym-
metric driving and a frustrated pair under asymmetric driving sug-
gests that their multiple-memory capacities may be understood in the 
same way. Our method can describe the return-point memory of 
symmetric cycles that begin with positive strain, via the change of 
variables γA → − γ−, γB → γ+. However, our scheme is distinct from 
earlier graphical analyses of return-point memory for arbitrary driv-
ing (neither symmetric nor asymmetric) (3, 6, 9, 10).

Unlike this idealized picture, in a disordered ensemble of physi-
cal hysterons such as an amorphous solid, the distributions of γA and 
γB obtained will be nonuniform and their range will be finite, ac-
cording to the particular physics of the system. However, if these 
distributions are held constant, then the ability to encode more 
memories within a fixed strain interval, i.e., to form much finer stair 
steps than in Fig. 6D, is limited by the number of hysterons in the 
ensemble. In fig. S5, we extend our analysis to arbitrarily many 
memories, and we consider the lengths and areas of the stair steps of 
Fig. 6D to show that, as with return-point memory (9, 29), the max-
imum number of nested memories scales with the square root of the 
ensemble size.
Designed systems and sequence recognition
The two-dimensional analysis in Fig. 6 can be made nearly one-
dimensional if the hysterons’ parameters can be specified: Only 
some latches near the γA = γB line are needed to encode the stair-
step signature of nested memories, and the rest are redundant. We 
demonstrate this idea by constructing an ensemble. First, we divide 
the entire range of expected amplitude values into M nonoverlap-
ping intervals: 

[

γ̃
0
, γ̃

1

)

,
[

γ̃
1
, γ̃

2

)

, … ,
[

γ̃M−1, γ̃M
)

. The two endpoints 
of each interval then become γA and γB for each of M latches. As in 
the preceding discussions, finding the mth latch in the +− state is an 
evidence that a cycle with an amplitude between γA = γ̃m−1 and 
γB = γ̃m was applied and that no cycle exceeding γ̃m has been applied 
since then. Thus M latches digitize and store M distinct amplitudes, a 
linear scaling, instead of the square-root scaling in a disordered ensem-
ble. Together, the latches’ states are bits that distinguish one sequence of 
nested amplitudes from among 2M possibilities. While a conventional 
single-dial combination lock does not rely on hysterons (instead using a 
series of wheels to store different values) (1, 2), our analysis shows that 
it is possible to design interacting hysterons so that the functionality of 
a combination lock is obtained regardless of driving type.

A B

C

E

D

Fig. 6. Graphical analysis of multiple memories. Each latching pair like Fig. 4D 
corresponds to a point on a plane, according to its upper thresholds. (A) An infinite 
ensemble of two-hysteron latches with continuously distributed thresholds, all ini-
tialized to the −− state. The thresholds are labeled γA, γB for convenience. In ac-
cordance with Fig. 4D, γB > γA > 0. (B) “Template” for how an asymmetric cycle with 
amplitude γ0 changes the states of latches in the ensemble. (C) The ensemble in (A), 
after one cycle with amplitude 4% forms a memory. (D) The ensemble encodes two 
memories after cycles with 4 and 2% amplitude. (E) Readout of the ensemble in (D), 
reporting the fraction of hysterons in different states, in latches that conform to Fig. 
4D and/or Fig. 5A. Curves show readout of all latches (“all”) and of ensembles gen-
erated separately to match each labeled region in (D).
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DISCUSSION
Return-point memory is a recipe for retaining arbitrarily many val-
ues from the history of a single variable, by coupling that driving to 
an ensemble of hysteretic elements. It has numerous examples in the 
natural world and in engineering, and, in many cases (when no frus-
trated interactions are present), it is the only possible behavior. 
Nonetheless, it fails whenever driving is asymmetric or rectified, 
as in a pedal depressed multiple times, or electrical signals from 
flashes of light.

Our results show that it is possible to store details of asymmetric 
driving if a system’s hysteretic elements interact. The behavior clear-
ly violates return-point memory because the driving is bounded be-
tween two turning points, yet revisiting one of those points yields a 
new state. Nonetheless, the similarities with return-point memory 
are notable. Both mechanisms always store the most recent input 
but preserve past memories when amplitude is reduced, so that a 
system encodes the history of nested cycles of decreasing amplitude. 
Each kind of memory allows previous states to be recalled as ampli-
tude is increased, yielding similar readout curves. Each arises from 
the smallest and simplest characteristic unit of its system: a “latch” 
formed by a single hysteron or an interacting pair. Last, each mem-
ory behavior is dominant for its respective driving type, even if these 
units interact with their environments, permitting the mechanisms 
to be highly scalable and defect-tolerant.

Together, these two behaviors point to a principle even more ge-
neric than return-point memory: robust, nested memories arising 
from units that latch at some input value and reset at a larger value, 
as in the parallel diagrams of Fig. 4 (B and D). For a single hysteron, 
this pattern is realized by the asymmetric placement of the flipping 
strains around 0, while, for the latching pair, one hysteron cannot 
return to a “down” state until a large deformation drives another 
hysteron “up,” the essence of a frustrated interaction.

Recent progress in creating and describing interacting mechanical 
hysterons (13, 14, 23, 34, 35) has now led to experiments with highly 
tunable interactions (23, 24). Although the interactions in these experi-
mental realizations may be more complex than in Eq. 1, the asymmetric 
latching behavior comes from a simple relationship among transi-
tion thresholds in an interacting pair (Eq. 2) and so lends itself to a vari-
ety of experimental systems, as was recently demonstrated with bistable 
rotors (24). We have shown that achieving nested memories and 
sequence recognition in these systems does not require one to fine-tune 
the competing interactions among multiple hysterons but instead comes 
from connecting independent latching pairs to a common drive.

Our work also suggests additional opportunities for the study of 
glassy matter. Even though frustrated interactions are essential to 
the physics of amorphous solids (26, 36), crumpled sheets (12), and 
some magnetic systems (18, 32, 37) and mechanical metamaterials 
(28, 34), in existing memory studies, frustration has largely been 
relegated to perturbing return-point memory. Our results show that 
a simple change to the driving protocol can suppress return-point 
memory and reveal a rich, intelligible, and distinctly glassy form of 
memory. Because this memory arises from a single dominant mech-
anism, even in larger systems, experiments and molecular dynamics 
simulations can characterize interaction strengths by tracking indi-
vidual relaxations while varying the amplitude and origin of asym-
metric driving. More generally, the readout method is based on 
differences, and so we look forward to results like those in Fig. 3B 
that quantify frustration in macroscopic samples via measurements 
of magnetization, light scattering, or even image subtraction (9).

Our study adds to the evidence that frustrated matter can remember 
what return-point memory must forget: that weakly breaking return-
point memory tends to expand memory capacity. This hypothesis is also 
supported by studies of glassy systems’ ability to divide the frequency of 
driving (19–22) or retain vestiges of erased memories (20), although, in 
those examples, the mechanisms are unclear or lack a common motif, 
and they require N ≥ 3 hysterons. By contrast, the two-hysteron latch is 
a singular mechanism that is as small as possible yet scales linearly to 
store arbitrarily long sequences. The elementary principles and designs 
emerging from our work and from other recent studies hold promise for 
building mechanical information-processing systems as useful, robust, 
and ubiquitous as the venerable combination lock.
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