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ABSTRACT: We investigate theoretically the formation mechanisms of the
unintentional compositional gradient layer occurring at AlGaN/AlN hetero-
interfaces during metal−organic chemical vapor deposition (MOCVD). The study
of heterointerface morphology is crucial for developing AlGaN deep-ultraviolet
light-emitting laser diodes. After studying the stability of the surface
reconstructions with intrinsic point defects in their subsurface layers using an
ab initio-based approach, we inspect the impact of defects on the atomic
interdiffusion at the heterointerfaces by Monte Carlo simulation. The relationship between MOCVD conditions and the type of
dominant intrinsic point defects is clarified. We find that (i) cation and anion vacancy complexes are dominant in the subsurface
layers above 1000 °C and (ii) they accumulate near the AlGaN/AlN heterointerface during growth, causing cation interdiffusion, i.e.,
the formation of compositional gradient layers. Controlling the type of intrinsic point defects incorporated during the surface growth
in MOCVD is a key factor in preserving atomically flat heterointerfaces.

1. INTRODUCTION
The III-nitride semiconductors are attracting great attention as
materials for light-emitting diodes (LEDs) and laser diodes
(LDs) in the deep-ultraviolet, visible, and infrared regions.
Blue LEDs with InGaN active layers and white LEDs
combining them with yellow phosphors are well-known as
materials and device components and were awarded the 2014
Nobel Prize in Physics. Since the InGaN/GaN system is
immiscible,1−4 the heterointerface morphology or flatness has
not been regarded so far as a hot topic in developing these
LEDs and LDs. Inside the material, compositional fluctuations
in the InGaN active layers have been evidenced.5−7

Conversely, AlGaN-based deep-ultraviolet LEDs and LDs,
which incidentally match the absorption wavelengths of
coronaviruses and bacterial RNA and DNA, have recently
attracted special attention. In the AlGaN/AlN system, the
mixing enthalpy, or excess energy, is small and miscible
compared with the InGaN/GaN system.8,9 Hence, the
formation of atomically flat heterointerfaces without composi-
tional gradient layers is a key issue in this system.

Compositional gradient layers have been observed in the
AlGaN/AlN/sapphire and AlGaN/AlN systems. Tsai et al.10

explained that the compositional gradient, termed “composi-
tional pulling” phenomenon, is caused by the compressive
stress from the underlying layer. Liu et al.11 reported that the
surface segregation of Ga also contributes to the compositional
gradient. On the other hand, Dycus et al.12 reported that the
difference in threading dislocation density, rather than

compressive stress, contributes to the compositional gradient
since it was observed in AlGaN/AlN/sapphire but not in
AlGaN/AlN. Recently, Yoshikawa et al.13,14 found that the
formation of the compositional gradient layer can be
controlled by the growth temperature even for the same
sample structure, surface morphology, and threading dis-
location density. These results suggest that factors other than
compressive stress, surface segregation, and threading dis-
location density are responsible for the arising of the
compositional gradient layer. In other words, interdiffusion
during growth seems to be the key mechanism for its
formation rather than thickness-related changes in the Ga
incorporation efficiency at the growth front. For these reasons,
they called the layer an “unintentional diffusion layer” rather
than a “composition-pulling layer.” In this study, we
theoretically analyze the types of intrinsic point defects, i.e.,
vacancies, incorporated from growth surface and cation
interdiffusion via vacancies near the AlGaN/AlN interface.
The study focused primarily on the influence of growth
temperature on the stability of surface reconstruction and the
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underlying intrinsic point defects as well as their impact on the
atomic interdiffusion near the heterointerfaces.

2. COMPUTATIONAL METHODS
The III-nitride semiconductor LEDs and LDs are industrially
fabricated by metal−organic chemical vapor deposition (MOCVD).
The MOCVD is a complex process involving (1) gas phase reactions,
(2) surface reactions, and (3) interdiffusion in the solid phase. Due to
this complexity, it is crucial to analyze each elementary process
sequentially to clarify the whole MOCVD. Kangawa et al.15 are
developing an extensible simulator suite for CVD (eXS2-CVD), which
can analyze the MOCVD process from its upstream (1) to
downstream (3) mentioned above. Since this study aims at analyzing
the incorporation of intrinsic point defects from the growth surface
and their impact on atomic interdiffusion near the heterointerface, the
focus is on the analyses of the elementary processes occurring in steps
(2) and (3) above.

2.1. Surface Phenomenon Analysis: Ab Initio-Based
Approach. Analyzing the gas−solid phase equilibrium is crucial to
unravel the stability of surface reconstruction and the role of intrinsic
point defects in the subsurface layers under MOCVD conditions. The
adsorption−desorption mechanism of an atom or molecule can be
addressed by comparing the relationship between the adsorption
energy of an atom (molecule) and its corresponding chemical
potential in the gas phase.16,17

The adsorption energy of an atom (molecule) can be obtained by
ab initio calculations via structural optimization and electron density
calculations. Our study makes use of the ab initio calculation package
Quantum ESPRESSO (QE)18,19 within the density functional theory
(DFT) framework with the PBE generalized gradient approximation20

for the exchange-correlation functional. A plane wave basis set is used
for the expansion of the valence electrons’ wave functions, and the
cutoff energy is set to 80 Ry for wave functions and charge densities.
Norm-conserving Troullier−Martins pseudopotentials21 are used to
account for the core−valence electron interaction. The surface slab
model used in our study consists of a 20 Å thick vacuum layer with a
five-molecular layer GaN (0001) whose bottom surface is terminated
by a fictitious hydrogen with 0.75 electrons (Figure 1) to saturate

dangling bonds. Here, the surface size is set to (2 × 2), i.e., a surface
with an area of 35 Å2 with four Ga and four N in the first molecular
layer. The number of Monkhorst−Pack k-point sampling22 was 3 × 3
× 1. In geometry optimization, the energy convergence threshold was
set to 0.00136 eV, with a maximum force component of 0.0257 eV/Å.
The obtained atomic model and electron density distribution were
drawn using the visualization software VESTA.23

The chemical potential μ of an atom (molecule) in the gas phase
can be computed according to the following equation based on
statistical thermodynamics:

= ×k T gk T pln( / )B B trans rot vibr (1)

= mk T h(2 / )trans B
2 3/2 (2)

= { }I I k T h(1/ ) 8 ( ...) /A B
n n

rot
3 1/

B
2 /2 (3)

= { }exp h k T1 ( / )vibr
i

N n

i

3 3

B
1

(4)

where ζtrans, ζrot, and ζvibr are the partition functions of the
translational, rotational, and vibrational motion, respectively. Here,
kB is the Boltzmann’s constant, T is the temperature, g is the degree of
degeneracy of the electron energy level, p is the partial pressure of the
molecule, m is the mass of a molecule, h is the Planck’s constant, σ is
the symmetric factor, II is the moment of inertia, n is the degree of
freedom of the rotation, N is the number of atoms in the molecule, i is
the degree of freedom for the vibration, and ν is the frequency. II is
written as

=I m rI I
2 (5)

where mI is the reduced mass and r is the radius of gyration. For
further details, see ref. 17.

When this method is applied to multiple atoms or elements on the
GaN surfaces under MOCVD conditions, the Gibbs free energy G of
the reconstructed surface is given by the following equation:24

= + + +G E E n n n(
1
2
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2
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2
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{
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= +Ei i i
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(7)

where Eslab
recon and Eslab

ideal are the total energies of the reconstructed and
ideal surfaces, respectively; Ei

gas is the total energy of an atom or
molecule i in the gas phase; μi is the chemical potential of an atom or
molecule i; and ni

ad is the number of atoms i on the reconstructed
surface.

2.2. Solid Phase Interdiffusion Analysis: Monte Carlo
Simulation. The formula below gives the average time τ for an
atom to move to a neighboring lattice site by overcoming the diffusion
barrier ΔEa.25

=
P

1

diff (8)

= { }P k T h exp E k T2 / ( / )a
diff B B (9)

where Pdiff is the diffusion probability to move to the neighboring
lattice site. The diffusion barriers ΔEa of Ga vacancy VIII, N vacancy
VN, and their complex VIII-VN in the bulk GaN are reported to be
2.5,26 2.7,26 and 2.2−3.3 eV,27 respectively. The typical MOCVD
growth temperature of GaN is 1050 °C. When these values are
substituted in eqs 8 and 9, τ turns out to be 6 μs ∼ 0.1 s. The general
deposition time for an LED and LD cladding layer ranges from a few
to tens of minutes. During this time, vacancy diffusion across the
underlying quantum well seems to progress appreciably. The
degradation mechanism of the InGaN/GaN heterointerface has
been discussed in a former work,28 suggesting vacancy diffusion at
relatively low temperatures (930−960 °C). Based on this consid-
eration, this study analyzed the contribution of vacancy diffusion to
the heterointerface morphology using metropolis Monte Carlo (MC)
simulation15 rather than the kinetic MC approach.25

Figure 2a−c shows the diffusion models for VIII, VN, and VIII-VN.
Cation (anion) vacancies in these models move toward neighboring
cation (anion) sites. Interstitials and antisite defects are neglected
because they are significantly less stable than cation (anion) vacancies.
Moreover, the total number of vacancies in the simulated system was
kept constant at 2,600 vacancies in the 260,000-atom system,
according to the mass conservation law. This means that vacancies
are incorporated from the growth surface and are not newly generated
within the crystal. The difference in the formation energies of cation
and anion vacancies between GaN and AlN is 2.2 and −1.9 eV,
respectively.29,30 Charged vacancies in n-type semiconductors are

Figure 1. Schematic of slab model. VIII and VN show the cation and
anion vacancy sites, respectively.
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accounted for in our mMC simulations. The abovementioned values
indicate that cation vacancies prefer the AlN-rich region over the
GaN-rich region, while anion vacancies prefer the GaN-rich region
rather than the AlN-rich one. For more recent values, refer to ref. 31.
In the mMC simulation, the transition probability P was calculated
according to the following equation:

=
+

( )
P x x

E x x k T
( )

exp

1 exp( ( )/ )

E x x
k T

( )

B

B

(10)

where ΔE(x → x’) is the difference in formation energy before and
after the vacancy diffusion. If vacancies exist in the AlGaN layers, then
their formation energy was calculated by linear interpolation. This
simulation used a 100 × 100 × 26 atomic-pair system consisting of 9
layers of AlN/8 layers of Al0.5Ga0.5N/9 layers of AlN. The periodic
boundary conditions along the three dimensions are imposed.
Hereafter, 100 × 100 × 26 = 260,000 attempts are identified as 1
Monte Carlo step (MCS).

3. RESULTS AND DISCUSSION
3.1. Surface Phase Diagram Considering Intrinsic

Point Defects in the Subsurface Layers. As already
acknowledged, charged defects become stable when the
Fermi level is higher than the defect level. Thus, when
calculating the formation energy of point defects in a bulk, it is
common wisdom to transfer the charge between the electron
reservoir at the Fermi level and the point defect according to
their respective levels.32 In contrast, this study considers the
formation of intrinsic point defects in the subsurface layer. In
this case, the excess charge on the surface dangling bonds acts
as an electron reservoir. Figure 3 shows the atomic
arrangements and charge transfer near VIII due to its

incorporation. The electron density decreases in the blue
region and increases in the yellow region. When VIII is
introduced, the N atom directly above is displaced along the
[0001] direction, and Ga atoms bonded to it are displaced
along the [000−1] direction (red arrows in Figure 3). This
rearranges the dangling bonds above the N and below the Ga
sites. Furthermore, a charge transfer occurs from the Ga
dangling bonds to the N dangling bonds around VIII since they
prefer the latter to the former. As a result, a spontaneously
charged intrinsic point defect is formed in the subsurface
layers. The stability of the surface systems, which considers the
charge transfer between the surface and underlying intrinsic
point defects, is discussed below.

The surface phase diagram of GaN MOCVD is shown in
Figure 4. In the case of GaN (0001) with no intrinsic point
defects (Figure 4a), the 3Ga−H surface appears at low
temperatures and high H2 partial pressure conditions. Here, 3
of 4 Ga atoms on the topmost layer are terminated by
hydrogen in the 3Ga−H surface reconstruction. This electri-
cally neutral surface reconstruction satisfies the electron
counting (EC) rule.33 Conversely, ideal surfaces with excess
charge arise at high temperatures and low H2 partial pressures.
This is because the energy gain due to H desorption exceeds
the surface energy loss because of deviations from the EC rule.
In the system containing VIII in Figure 4b, the stable region of
the ideal surface is expanded. This might be due to the charge
transfer between the surface and intrinsic point defects (Figure
3), which suppresses deviations from the EC rule. In the
systems containing VN (Figure 4c) and VIII-VN (Figure 4d),
Gaad and Ga-NH2 surface reconstructions appear in the low-
temperature region. The former is a surface on which a Ga
atom is adsorbed on the H3 site (see Figure 1), while the latter
is a surface on which NH2 is adsorbed on the topmost Ga.
Figure 5a−c shows the electron density distribution of the
ideal surface w/o VIII-VN, with VIII-VN, and the Ga-NH2
surface with VIII-VN, respectively. When a VIII-VN is
incorporated into the ideal surface model (Figure 5b), N,
highlighted by the yellow arrow, is displaced along [0001],
whereas the neighboring Ga is displaced along [000−1]. The
adsorption of NH2 on Ga (Figure 5c) displaces the Ga to
[0001], and the local atomic structure becomes closer to the
standard lattice. This seems to have stabilized the NH2-
attached surface more than the hydrogen-attached surface. The
results in Figure 4c can be rationalized in an analogous way.

Figure 6 shows the surface phase diagram of the system
containing intrinsic point defects. A Gaad surface containing VN
appears at low temperatures, with the ideal surface containing
VIII at about 900 °C and the ideal surface containing VIII-VN
above 1000 °C. This means that the dominant intrinsic point
defect type changes from VN to VIII to VIII-VN as the

Figure 2. Schematic of (a) VIII, (b) VN, and (c) VIII-VN diffusion models.

Figure 3. Atomic arrangements near VIII in the ideal surface model
(a) before and (b) after optimization. The topmost Ga and
underlying N are displaced (see red arrows in (b)). VIII formation,
i.e., the comparison between the models with and w/o Ga at the
dotted circle, decreases the electron density in the blue region and
increases in the yellow region in (b).
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temperature increases. The next paragraph will focus on the
impact of each intrinsic point defect diffusion on the formation
of compositional gradient layers in AlGaN/AlN heterointerfa-
ces.

3.2. Interdiffusion via Intrinsic Point Defects Near
Heterointerfaces. Figure 7a shows the Ga composition
distribution in an AlN/AlGaN/AlN system after VN diffusion
at 1000 °C. Anion vacancies in the AlN cladding layer move
toward the AlGaN quantum well (Figure 7d) because the
anion vacancy prefers the GaN-rich region over the AlN-rich
region. As expected, N vacancy diffusion does not contribute
to the cation diffusion. Thus, an atomically flat heterointerface
is preserved. Figure 7b shows the Ga composition distribution
in an AlN/AlGaN/AlN system after VIII diffusion. Cation
vacancies in the AlGaN quantum well move toward the AlN
cladding layer (Figure 7e) because the cation vacancy prefers

the AlN-rich region rather than the GaN-rich one. This implies
that the exchange of cation vacancies in the AlGaN layer and
Al in the AlN layer occurred. In this process, the Ga in the
AlGaN layer rarely diffuses into the AlN layer, so there is little
change in the Ga composition of the AlN side of the
heterointerfaces. The Al (Ga) composition on the AlGaN side
of the heterointerface only increases (decreases) after VIII
diffusion.

The Ga composition distribution in an AlN/AlGaN/AlN
system after VIII-VN diffusion is shown in Figure 7c. In this
case, VIII-VN accumulates near the heterointerfaces because the
cation vacancy prefers the AlN-rich side, while the anion
vacancy prefers the Ga-rich one. Because the cation vacancy
diffusion barrier is smaller than that of the N vacancy,27 the
cation vacancy moves around the N vacancy and promotes Ga
atom diffusion from the AlGaN layer toward the AlN layer. As
a result, the Ga content on the AlGaN layer side of the
heterointerface decreases and the Ga amount on the AlN layer
side increases (Figure 7c). Furthermore, the change in Ga
composition on the lower side (left side in the figure) of the
AlGaN quantum well is more significant than that on the upper
side (right side in the figure). This is because of the
asymmetric nature of the atomic configurations: one cation
is below VN and three above. On the AlGaN side of the
heterointerfaces, specifically, there are three cation sites at the
lower interface and one cation site at the upper interface, so
the probability of Ga diffusion at each interface is different.
Figure 8 shows the influence of temperature on Ga
composition distribution in the system after VIII-VN diffusion.
The figure shows that the decrease in the diffusion frequency
of VIII-VN accompanying the decrease in temperature does not
contribute to preserving the heterointerface flatness. Thus, the
change in the type of intrinsic point defects due to the decrease
in temperature becomes a key factor, not the decrease in
diffusion frequency due to the reduction in temperature.

These results indicate that the types of intrinsic point defects
that contribute significantly to the degradation of heterointer-
face flatness are VIII-VN, followed by VIII, with no contribution
from VN. This means that the heterointerface flatness is
maintained by thin film deposition at temperatures below
900−1000 °C (see Figure 6). In experiments, Yoshikawa et
al.13 reported that the thickness of the layer where
uncontrolled interdiffusion occurs can be considerably
decreased by deposition conditions below 1000 °C. Our
theoretical findings give a rationalization of the physical and
chemical phenomena occurring, thus providing valuable
guidelines for experiments.

Figure 4. Surface phase diagram in GaN MOCVD: (a) w/o vacancy, (b) with VIII, (c) with VN, and (d) with VIII-VN. Ga droplet phase is not
considered. The vertical axis shows the partial pressure of H2 in the dilute gas (H2 + N2). Calculation conditions: The partial pressure of the Ga
source (trimethylgallium) is 1.0 × 10−4 atm, that of ammonia is 0.2 atm, and the total pressure is 1.0 atm.

Figure 5. Cross-sectional view of electron density distribution: (a)
ideal surface w/o VIII-VN, (b) that with VIII-VN, and (c) Ga-NH2
surface with VIII-VN. The dotted circles show VIII-VN.

Figure 6. Surface phase diagram of GaN with intrinsic point defects
under MOCVD conditions. The calculation conditions are the same
as in Figure 4. The defects-free model and Ga droplet phase are not
considered.
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4. CONCLUSIONS
This study clarified the types of intrinsic point defects
incorporated from the growth surface in III-nitrides
MOCVD and their role. We also elucidated the mechanism
by which these defects degrade the flatness of the heterointer-
face due to atomic interdiffusion within the solid. In other
words, we have found that the key to maintaining the flatness
of the heterointerface is not to reduce the atomic interdiffusion
frequency due to a decrease in temperature but to control the
type of intrinsic point defect under MOCVD conditions. This
knowledge cannot be obtained by analyzing only surface
phenomena or solid phase interdiffusion but by combining the
two. The development of AlGaN deep-ultraviolet LEDs and
LDs is underway.34−38 If the flatness of the heterointerface can
be maintained based on the findings of this research, even
higher brightness can be expected.
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