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We outline a fundamentally quantum description of bosonic dark matter (DM) from which the
conventional classical-wave picture emerges in the limitm ≪ 10 eV. As appropriate for a quantum system,
we start from the density matrix, which encodes the full information regarding the possible measurements
we could make of DM and their fluctuations. Following fundamental results in quantum optics, we argue
that for DM it is most likely that the density matrix takes the explicitly mixed form of a Gaussian over the
basis of coherent states. Deviations from this would generate non-Gaussian fluctuations in DM
observables, allowing a direct probe of the quantum state of DM. Our quantum optics–inspired approach
allows us to rigorously define and interpret various quantities that are often only described heuristically,
such as the coherence time or length. The formalism further provides a continuous description of DM
through the wave-particle transition, which we exploit to study how density fluctuations over various
physical scales evolve between the two limits and to reveal the unique behavior of DM near the boundary of
the wave and particle descriptions.
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I. INTRODUCTION

The vastness of the allowed dark-matter (DM) mass
range allows for dramatic variations in its behavior as one
moves through the landscape. The most famous of these is
the wave-particle transition, which occurs near the location
of the Earth at a DM mass of m ∼ 10 eV. A heuristic
justification for the transition is as follows. The number
density of DM is determined from n ¼ ρ=m, whereas a
rough measure for the volume occupied by each state is the
de Broglie volume, VdB ≃ ðmvÞ−3. Here ρ ≃ 0.4 GeV=cm3

and v ≃ 10−3 are the local DM energy density and mean
speed, respectively. Accordingly, the DM states overlap
when nVdB ¼ ρ=m4v3 ≳ 1 or, equivalently, form≲ 10 eV.
As states begin to overlap, one argues that a collective
description of DM as a classical wave is more appropriate.

Focusing on the case of a scalar field ϕ, we describe DM as
an oscillating field with a frequency dictated by its mass
and an amplitude fixed to match the local density,

ϕðtÞ ≃
ffiffiffiffiffi
2ρ

p
m

cosðmtÞ: ð1Þ

The above discussion underpins the search for wave DM
candidates such as the axion [1–11]. It also raises many
questions. How accurate is the result in Eq. (1)? What are
the leading-order corrections to this result? How can it be
derived rigorously? Does the field simply oscillate or can it
exhibit large fluctuations around its mean value?Whenm ∼
10 eV and DM is neither deep in the wave or particle
regime, how should it be described? The goal of the present
work is to resolve such questions by providing a funda-
mentally quantum-mechanical description of DM from
which the wave picture emerges.1*Contact author: dhongyeon@yonsei.ac.kr

†Contact author: nrodd@lbl.gov
‡Contact author: liantaow@uchicago.edu
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1Detailed studies of wave DM often employ more sophisti-
cated models than that presented in Eq. (1). For instance,
Ref. [12] introduced a model to accommodate the finite
dispersion of DM by treating the field as a sum of cosines with
frequencies weighted by the underlying energy distribution of
DM. Nevertheless, we emphasize that even such refinement does
not answer the fundamental questions raised.
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The main insight used to achieve this goal is to realize
that similar questions have already been answered in a
different context. In particular, the field of quantum optics
provides a fully quantum-mechanical description of
electromagnetic radiation. Many of the results from that
field can be extended to any bosonic energy density and
therefore apply to ultralight DM. Indeed, there have already
been broad efforts to exploit quantum optics for various
aspects of wave DM; it has been widely used in the work of
Kim [13–18] and a number of other groups (see, e.g.,
Refs. [19–22]). Our focus here is on systematizing the
discussion and outlining both where the foundations for
wave DM can be placed on firm footing and where further
work is required. Given that the discovery of wave DM
could be imminent—as a single example, ADMX is
probing parts of the most well-motivated axion parameter
space right now [23–25]—these are fundamental problems
to resolve.
Before beginning, let us outline how the discussion is

organized. We begin in Sec. II by considering the possible
form for the density matrix of DM. Based on a quantum-
mechanical analog of the central limit theorem introduced
by Glauber [26], we argue that the density matrix most
likely takes the form of a Gaussian weighting of coherent
states. In Sec. III we discuss when a quantum field
description of DM can be replaced by a classical wave
picture. In particular, we emphasize that the field having
large occupation, which occurs locally m ≪ 10 eV, is only
one of two conditions, the second being that the density
matrix is sufficiently classical in a manner we define. This
second condition is satisfied by the Gaussian density
matrix, but not in general. When the classical wave picture
applies, we show that ultralight DM formally behaves as a
stochastic random variable, with statistical fluctuations
inherited from the density matrix that can be passed to
various experimental measurements. For a Gaussian den-
sity matrix, DM becomes a Gaussian random field.
In the two following sections we study the coherence

properties of DM when treated as a classical wave. We
begin in Sec. IV by studying unequal spacetime correlators
of the DM field—in particular, the autocorrelation function
—and its frequency domain analog, the power spectral
density (PSD). In Sec. V we use the autocorrelation
function and PSD to provide exact definitions of the
DM coherence time, length, and volume. Building on this,
in Sec. VI we extend the discussion to higher-order
measures of coherence that can be defined at the level
of the quantum field rather than classical wave.
Removing the classical wave assumption, in Sec. VII we

demonstrate that the formalism allows explicit computa-
tions to be performed through the wave-particle transition.
We focus on a specific calculation of the fluctuations of the
DM energy density in a given volume and show that at the
scale of the coherence volume these fluctuations smoothly
transition as we vary the DM mass from being Poisson

distributed for particlelike DM to exponentially distributed
forwavelikeDM. ForDMwith amass near thewave-particle
boundary, the fluctuations are neither Poisson nor exponen-
tial, but can be computed exactly. Within volumes much
larger than the coherence volume, the fluctuations become
Gaussian; however, the variance of the distribution depends
explicitly on whether DM is in the wave or particle regime.
A key assumption underpinning many of our results is

that the density matrix takes a Gaussian form. We discuss
deviations from this picture in Sec. VIII and explain how
these could be directly measured shortly after wave DM
was discovered, as they would appear in the form of non-
Gaussianities in the statistics of the field. Finally, in Sec. IX
we discuss the various paths open to extend and formalize
the quantum-based approach to wave DM.

II. THE DENSITY MATRIX OF DARK MATTER

The fundamental description of a quantum system is
provided by the density matrix and so we begin our
discussion with a consideration of what form the density
matrix should take for DM. To do so, we draw inspiration
from another field where a classical description was
eventually replaced by a quantum analog: electromagnet-
ism. Indeed, many of the details in this section represent a
translation of Glauber’s foundational paper in quantum
optics [26] to DM.
The experimental search for DM exploits standard model

observables—nuclear recoils in a detector, gamma rays at a
telescope, power in a cavity—that could arise from a DM
interaction. Such observables are associated with Hermitian
operators derived from the ultimate theory of DM–standard
model interactions, within which the DM appears as a field
operator. In the case of scalar or pseudoscalar DM, the
operator takes the form2

ϕ̂ðt;xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffi
2ωk

p ðâke−ik·x þ â†ke
ik·xÞ; ð2Þ

with k · x ¼ ωkt − k · x. Here we are working in the
interaction picture—apparent from the presence of the
time dependence in the operator—and further we have
assumed we are discussing a free field in flat space so that
we can expand the operator in spatial plane waves. (See
Ref. [13] for an example of where the plane-wave expan-
sion can be inappropriate even for direct detection.)
The fact that Eq. (2) is a quantum operator rather than a

classical field is encoded in the creation and annihilation
operators, which indicate that we are describing our field
with an infinite set of harmonic oscillators, each of which
satisfies the conventional commutation relation

2As the existence of quantum optics makes clear, the dis-
cussion can be generalized to DM with higher integer spin, such
as dark photons. Nevertheless, for simplicity we primarily focus
on the (pseudo)scalar case throughout.
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½âk; â†q� ¼ ð2πÞ3δðk − qÞ: ð3Þ

Intuitively, the weighting of the various k modes in ϕ̂
determines how energy is distributed in the field. However,
to fully describe the system we also need to know the state
to ascribe each harmonic oscillator mode.
In general, then, we wish to know the density matrix for

each mode k, which we denote by ρ̂k. Let us focus on a
specific mode of the system, leaving the k dependence
implicit, although we restore it shortly. To determine the
density matrix for this single mode, we follow Glauber [26]
and turn to the coherent state jαi. We recall that coherent
states are eigenstates of the annihilation operator,
âjαi ¼ αjαi, which are described by a single number
α∈C. Coherent states have a number of useful properties.
Here we simply note that, while not orthogonal, coherent
states are complete,

hβjαi ¼ e−
1
2
ðjαj2þjβj2Þþαβ� ;

1

π

Z
dαjαihαj ¼ 1; ð4Þ

where dα ¼ dðReαÞdðImαÞ. In fact, what proves to be a
key property of coherent states is that the set of jαi are not
just complete, but overcomplete, such that any coherent
state can be expanded in terms of all other states; in other
words, the coherent states are not linearly independent.
(Further, the decomposition of any state in terms of the
coherent states is not unique.) This allows the density
matrix to be decomposed into a diagonal weighting of
coherent states, given by

ρ̂ ¼
Z

dαPðαÞjαihαj: ð5Þ

This remarkable result is known as the Glauber-Sudarshan
representation [26,27]. Although the coherent states are
overcomplete, PðαÞ is unique and can be determined for a
given ρ̂ using the inversion formula derived by Mehta [28],

PðαÞ ¼
Z

dβ
π2

h−βjρ̂jβiejαj2þjβj2þ2iIm½αβ��; ð6Þ

where jβi is an additional coherent state.
At this stage, Eq. (5) simply trades an unknown density

matrix for an unknown weighting PðαÞ. Yet PðαÞ satisfies a
number of interesting properties. The Hermiticity and unit
trace of ρ̂ imply that PðαÞ∈R and

R
dαPðαÞ ¼ 1, respec-

tively. This is suggestive that PðαÞ can be interpreted as a
probability distribution, although this cannot be correct as
Eq. (5) would then imply any density matrix can be
decomposed as a classical weighting of jαi, which are
highly classical quantum states. In general, PðαÞ can only
be interpreted as a distribution; it can take negative values
for certain α and be more singular than a δ function. In
detail, PðαÞ only satisfies the unit measure requirement of

Kolmogorov’s three axioms for a probability distribution.
Therefore, PðαÞ is not a classical probability distribution,
although it can be treated as a quasiprobability distribution in
a sense we review below.
Most importantly for our purposes, PðαÞ has enough of

the essential elements of a classical probability distribution
that it obeys a quantum-mechanical analog of the central
limit theorem, as shown in Ref. [26] and reviewed in
Appendix A. The assumptions for this quantum central
limit theorem to hold are as follows. The field of interest
must arise from the superposition of n similar yet inde-
pendent fields, each having an associated Glauber-
Sudarshan representation πiðαÞ, with i labeling the different
fields.3 We further require all systems to satisfy πiðαÞ ¼
πiðjαjÞwhich, as shown in Sec. III, implies that each field is
stationary and homogeneous. Under these conditions, in
the limit n → ∞ the density matrix for the combined field
takes the form of a Gaussian weighting of coherent states,4

ρ̂ ¼
Z

dα
1

πN
e−jαj2=Njαihαj: ð7Þ

We return to the interpretation of N shortly. For now, we
simply note that the coherent states are weighted by a two-
dimensional Gaussian with zero mean and a variance of
N=25 and that the density matrix is explicitly mixed, with
purity Tr½ρ̂2� ¼ ð1þ 2NÞ−1 < 1.
The key question is whether Eq. (7) describes the density

matrix for the modes of DM, as has been assumed else-
where in the literature (see, e.g., Ref. [13]). The result holds
in many situations within electromagnetism. For example,
if a system has thermalized, it has a density matrix in the
Gaussian form, although this is not a necessary condition;
Eq. (7) is more general. Heuristically, we could imagine
that processes such as galaxy mergers and the violent
relaxation associated with virialization [29] are sufficient to
render the local DM density a sum of independent
distributions to which the central limit theorem applies.
Further, if the system ever thermalized during its evolution,
then the Gaussian form must hold. Yet ultralight DM is not
expected to have a thermal origin and, given the weakness
of its interactions, DM’s density matrix may not be
Gaussian. We return to consider this question in detail in
Sec. VIII; in particular, we discuss various alternatives for ρ̂
and demonstrate how the density matrix can imprint itself

3To clarify the sense in which we mean that the systems are
combined, consider the following optical analog. Imagine n
lasers that are each directed towards a common point where they
overlap. If the optical field of each laser is described by πiðαÞ, the
question is to determine the PðαÞ that describes the total field in
the region where they all overlap.

4We emphasize that it is the number of systems, given by n,
that becomes large, not the quantity N that appears in Eq. (7). As
shown in Appendix A, we can have n → ∞ with N ≪ 1.

5Situations where the Gaussian has nonzero mean are dis-
cussed in Sec. VIII.
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in experimental measurements, thereby opening a path to
directly accessing it after the discovery of DM. In particu-
lar, if DM were in a pure coherent state, PðαÞ ¼ δðα − βÞ,
its behavior differs considerably from that of the Gaussian
distribution in a manner experiments could test. Until then,
we generally assume Eq. (7) holds for each mode of the
DM field and explore the consequences. However, we note
that the full Gaussian form is generally only required to
determine the statistical fluctuations of observables, as their
mean value is often fixed with the weaker condition that
PðαÞ ¼ PðjαjÞ (this is true of many of the coherence
properties we study in Secs. IV–VI). We are explicit below
regarding which results require a specific ρ̂ and which are
more general.
Equation (7) alone is insufficient to specify the form of

the density matrix; we also need to provide an interpreta-
tion for N. At this stage it is convenient to restore the fact
that we have a continuum of density matrices, one for each
k, and therefore we need to specify Nk. As the notation
suggests,Nk is the expected occupation number of the state
in that mode, which can be confirmed explicitly,

hN̂ki ¼ Tr½ρ̂kâ†kâk� ¼ Nk: ð8Þ

Themean number of states in a givenmode can be expressed
in a frame-independent manner as the ratio of the density of
particles to the density of states. The density of states for a
free field is given directly byN s ¼ gs=ð2πÞ3, where gs is the
number of degrees of freedom associated with the field: one
for a scalar, two for a massless vector or graviton, and three
for a massive dark photon.6 The density of field quanta is
described by the phase-space density,N ðx;k; tÞ. In scenar-
ios where the spatial distribution is stationary and homo-
geneous, as we often approximate to be the case locally for
DM, we can write N ðx;k; tÞ ¼ n̄pðkÞ, where n̄ is the
number density and pðkÞ is the momentum distribution of
the field; for instance, in the case of DMwe can approximate
it using the standard halo model studied in Sec. IV.7 We then
arrive at

Nk ¼ ð2πÞ3
gs

n̄pðkÞ: ð9Þ

Although this provides us with a form of the variance for the
Gaussian weighting in Eq. (7), the result is more general and
gives the expected occupation number according to Eq. (8)
independent of the form of ρ̂k.
Physically, Nk represents the mean number of states in a

given k mode. It therefore contains information regarding
distinguishability: for Nk > 1, there is no quantum number
or label that distinguishes these states and they therefore
must be regarded as identical. This purely bosonic phe-
nomenon where we can have a large number of identical
states is intimately related to the wave-particle transition,
with Nk ≫ 1 playing a role in diagnosing when the
classical field description becomes appropriate, as we show
in Sec. III. It is also related to the coherence volume Vc,
which is a measure of the physical volume occupied by the
indistinguishable states. We demonstrate this explicitly
in Sec. V.
In order to incorporate the information in Eq. (9), we

need to generalize our description of the density matrix to
multiple modes. While conceptually straightforward, let us
briefly outline our notation for doing so, as we make
regular use of it in what follows. Especially for manipu-
lations involving coherent states, it is convenient to dis-
cretize the modes by placing the scalar field in a box of
volume V, in which case the field operator and commu-
tation relations become

ϕ̂ðt;xÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2Vωk

p ðâke−ik·x þ â†ke
ik·xÞ;

½âk; â†q� ¼ δk;q: ð10Þ

We use the discrete and continuum normalizations inter-
changeably below as convenient. We review the details of
how to move between the two normalizations in
Appendix B, as well as discuss the challenge of working
exclusively with the continuum. A general density matrix in
the Glauber-Sudarshan P representation is written as

ρ̂ ¼
Z

dfαgPðfαgÞjfαgihfαgj: ð11Þ

Here we have adopted the notation of Ref. [32], where fαg
denotes the set of all αk modes. For example, jfαgi ¼Q

k jαki and where the Gaussian weighting is appropriate
we take

PðfαgÞ ¼
Y
k

1

πNk
e−jαkj2=Nk : ð12Þ

Before continuing to determine the implications of
Eq. (12) for the DM field, we briefly collect several
additional properties of PðαÞ. The Glauber-Sudarshan
representation has several advantages beyond the quantum
central limit theorem. If we have an operator that depends

6Although we include a general gs in the present discussion,
we emphasize that our primary focus is scalar fields. To extend
beyond this, we would need to include a sum over polarizations in
Eq. (2).

7In actuality, the DM phase space is neither stationary nor
homogeneous. Effects such as daily and annual modulation or
gravitational focusing induce time- and position-dependent shifts
inN ðx;k; tÞ, as discussed in, e.g., Refs. [12,13,30,31]. However,
as we discuss in the conclusion of Sec. V, the question is the
stability of the phase space (or even the density matrix as a whole)
on scales over which the DM field is correlated: the coherence
length and time. For a wide range of DMmasses, this condition is
satisfied.
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on creation and annihilation operators, we can evaluate its
normally ordered expectation value as8

h∶Âðâ; â†Þ∶i ¼
Z

dαPðαÞAðαÞ; ð13Þ

where on the right we have removed the hat from A as it is
now a classical function of the complex variable α,
equivalent to the operator but with âð†Þ → αð�Þ. This
expression, which is often denoted as the optical equiv-
alence theorem (see, e.g., Ref. [32]), shows that we can
rewrite quantum expectation values of normally ordered
operators as seemingly classical expectation values, albeit
over a quasiprobability distribution PðαÞ. A further unique
property of PðαÞ is that its negativity is the signature of a
quantum state, by which we mean a state whose predictions
cannot be reproduced by any classical field (examples
include a Fock state or squeezed state). The intuition behind
this result is that if PðαÞ ≥ 0, then the density matrix is a
classical distribution over coherent states, which again are
highly classical quantum states. This particular advantage is
unlikely to be relevant for DM: for quantum fields that
couple weakly to experiment, measuring their quantum
nature is a substantially more challenging prospect than
detection (see, e.g., Ref. [33]). By contrast, PðαÞ has its
drawbacks: it can be highly singular—making certain
calculations cumbersome—and it is not well suited for
evaluating expressions that are not normally ordered. For
this reason, we discuss another convenient quasiprobability
distribution, the Wigner distribution, in Appendix C.

III. WAVE DARK MATTER AS A CLASSICAL
RANDOM FIELD

Armed with a density matrix, we return to the original
focus of understanding the behavior of ϕ̂ðt;xÞ as it enters
various experimental observables. Technically, in doing so
we must account for the quantum-mechanical nature of the
detector, which in general mandates the use of quantum
measurement theory (see, e.g., Ref. [34]). We do not
account for this here and instead focus solely on the
quantum mechanics of DM.
Searches for wave DM generically consider couplings

linear in the DM field, suggesting we should focus on the
first moment of the field, hϕ̂ðt;xÞi. Nevertheless, higher
moments are important. One often considers observables
that are sensitive to the field squared—such as the power
deposited by the field—or could even search for quadratic
DM couplings, as done in Refs. [35,36]. Further, higher
moments inform the statistical properties of the observable;
to provide an explicit example, for a Gaussian observable

A, hAi determines the mean, whereas hA2i is needed to infer
the variance.
With this motivation, we consider equal time and

position correlators of the DM field, hϕ̂nðt;xÞi. We start
with n ¼ 1 and draw on the finite-volume mode expansion
in Eq. (10) and the general P representation in Eq. (11).
Explicitly,

hϕ̂ðt;xÞi ¼
X
k

Z
dαkPðαkÞ

ffiffiffiffiffiffiffiffiffi
2

Vωk

s
Re½αke−ik·x�: ð14Þ

For a general PðαkÞ this is nonzero, as the case of a pure
coherent state makes clear. However, it does vanish for a
broad class of weightings. In particular, observe that the
Gaussian expression in Eq. (12) depends only on the
magnitude of αk, PðαkÞ ¼ PðjαkjÞ. For any system de-
pendent solely on the magnitude of αk, the integral over the
phase of the coherent states dictates that hϕ̂ðt;xÞi ¼ 0; in
fact, all odd moments of the field vanish. The even
moments need not and for the explicit case of the
Gaussian PðαkÞ we can compute9

hϕ̂2nðt;xÞi ¼ ð2n − 1Þ!!
�Z

d3k
ð2πÞ3

Nk þ 1
2

ωk

�n

: ð15Þ

Here ð2n − 1Þ!! ¼ ð2nÞ!=2nn! so that we recognize these as
the moments of a Gaussian distribution of mean zero and
variance that can be read off from the expression when
n ¼ 1. We conclude that measurements of ϕ̂ðt;xÞ fluctuate
according to a Gaussian distribution.
Equation (15) needs to be interpreted carefully; the

integral that appears in the expression is UV divergent
and must be regulated. The problem is a zero-point
quadratic divergence,

R Λ d3k=ωk ∼ Λ2, which can be
regulated in a field-theoretic manner, as we briefly discuss
in Appendix D. An identical divergence arises in quantum
optics in correlators of the electric or magnetic field (see,
e.g., Ref. [32]) and, as in the field-theoretic picture, the
problem is resolved with a refined interpretation of what is
being measured. For instance, an experiment is only
sensitive to the field over a smeared spacetime position
or, equivalently, a finite set of frequencies, which is
sufficient to regulate the UV divergence.
These initial calculations illustrate that with the density

matrix we can compute arbitrary observables of the DM
field directly without recourse to a classical wave picture.
We continue in this spirit in Sec. VII and demonstrate that
one can explicitly compute observables for an arbitrary DM
mass and track how they behave as we move between the
wave and particle regimes. For the moment, however, a
heuristic interpretation of Eq. (15) also suggests that a8By normal ordering, denoted by a pair of colons, we imply

that in all expressions the creation operators are placed to the left
of annihilation operators without accounting for the failure of
individual terms to commute.

9This calculation is most easily performed using the Wigner
distribution reviewed in Appendix C; see in particular Eq. (C10).
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simplification occurs for Nk ≫ 1. We explore this below
and show that this is a necessary although not sufficient
requirement for treating DM as a classical field.
To study the N ≫ 1 limit, observe that when computing

expectation values of the DM field using the coherent state
expansion in Eq. (5), in all normally ordered expressions
we simply send âð†Þ → αð�Þ. Not all observables are
normally ordered. For example, the creation and annihila-
tion operators in the moments of the field operator are
symmetrically ordered and involve expressions of the form
â†âþ ââ† ¼ 2N̂ þ 1, as is apparent from Eq. (15). When
N ≫ 1, however, we can approximate ½âk; â†q� ≃ 0, trivially
normal order operators of interest, and compute their
expectation value as follows [cf. Eq. (13)]:

hÂðâ; â†Þi ¼
Z

dαPðαÞAðαÞ þOð1=NÞ: ð16Þ

Applying this logic to the DM field, in the limit where
Nk is large for all relevant modes, expectation values can be
computed by replacing the creation and annihilation
operators within ϕ̂ with the appropriate coherent states.
Accordingly, the field operator is approximately a
c-number,

ϕ̂ðt;xÞ ≃ ϕðt;xÞ ¼
X
k

ffiffiffiffiffiffiffiffiffi
2

Vωk

s
Re½αke−ik·x�: ð17Þ

This is a clear simplification. Nonetheless, we cannot treat
ϕ as a classical background field: the α values that then
appear within ϕ are resolved through integration against
PðαÞ as in Eq. (16), and in general PðαÞ can be highly
singular and is not a probability distribution. If PðαÞ ≥ 0,
however, then Eq. (16) represents the calculation of a
classical expectation value, where PðαÞ the probability
distribution function, which implies that we can treat each
αk, and therefore ϕ, as a stochastic c-number. Under these
conditions, we are justified in treating the DM field
operator ϕ̂ as a classical stochastic background field in
all calculations, i.e., as a classical random wave.10

We can gain intuition as to why N ≫ 1 alone is
insufficient for the classical wave picture to hold by
considering a counterexample: the Fock state. A state of
definite particle number is a manifestation of the quantiza-
tion of the field and cannot be reproduced by any
combination of classical waves. For a pure Fock state with
N particles the density matrix is ρ ¼ jNihNj which, using
Eq. (6), implies

PðαÞ ¼ ejαj2

N!
∂
N
α ∂

N
α�δðαÞ: ð18Þ

Being more singular than a δ function, PðαÞ must be
negative within its domain and so exhibits the hallmark of a
quantum state; a Fock state cannot be reproduced by a
classical distribution of coherent states. More to the point,
there are measurements we can perform on the Fock state
that a classical wave model would not reproduce. As an
explicit albeit contrived example, if one were able to
directly measure the number of quanta in the DM field,
such a measurement would record N with zero variance.
While a classical wave could reproduce a mean number of
N counts, at best it can reduce the variance to the Poisson
limit of

ffiffiffiffi
N

p
(see, e.g., Refs. [32,33]). This would then be an

explicit measurement that the classical wave picture would
fail to reproduce. Even though the Fock state is not classical
in this sense, it can have arbitrarily large occupation and so
is an example of where N ≫ 1 does not imply the
applicability of a classical wave picture. This argument
extends to other quantum states such as squeezed states.
To summarize, for Nk ≫ 1, we can treat ϕ̂ as a c-number

ϕ determined by PðαÞ. When PðαÞ is positive definite, ϕ
behaves as a stochastic classical wave. We can make clearer
that this implies the usual wave picture of ultralight DM by
considering a schematic form for the classical field. Under
these two conditions, we have from Eq. (8) that
hjαkji ≃

ffiffiffiffiffiffiffi
Nk

p
. We then write αk ¼ jαkje−iφk , so that

Eq. (17) can be written schematically as

ϕðt;xÞ ≃
X
k

ffiffiffiffiffiffiffiffiffi
2Nk

Vωk

s
cosðωkt − k · xþ φkÞ: ð19Þ

The result is schematic because hjαkji ≃
ffiffiffiffiffiffiffi
Nk

p
represents

only the average behavior; in general, we must account for
the full statistics of αk as determined from PðαkÞ.
Nevertheless, we note that this form is similar to existing
efforts to determine the statistical properties of wave DM;
in particular, see Refs. [12,31,37–42]. The only difference
is the exact pattern of statistical fluctuations, which we
return to shortly. Pushing further, if we imagine the system
is nonrelativistic and sufficiently dominated by the single
mode of its mass ωk ¼ m, then we can take ωk ≃m,
N=V ¼ ρ=m, so that at x ¼ 0 we have

ϕðtÞ ≃
ffiffiffiffiffi
2ρ

p
m

cosðmtþ φÞ: ð20Þ

Up to a phase, this matches the commonly used wavelike
description in Eq. (1). Through this derivation, we can see
the various approximations that were required to arrive at
the result and the magnitude of the corrections to this
picture, thereby achieving one of the core goals of the
present work.

10Given that demonstrating PðαÞ < 0 for DM is likely to be
extremely challenging experimentally [33], it may be that in
practice the second requirement can be relaxed.
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Having justified the general picture, we next study in
more detail the specific behavior of the classical wave in the
case of a Gaussian PðαÞ. As a first observation, we note that
PðαÞ ¼ PðjαjÞ is sufficient to demonstrate that expectations
values, which we can determine from ϕðt;xÞ, are invariant
under shifts in the origin in both time and space, so that the
field is both stationary and homogeneous. This follows as
the fact the probabilities depend only on the magnitude of
the coherent state implies that we are free to perform a
mode-by-mode shift of αk → αkeik·x0 and thereby arbitrarily
adjust the origin of the field in Eq. (17). Technically, PðαÞ ¼
PðjαjÞ is a sufficient but not necessary condition for the field
to be stationary and homogeneous [32], and as such we refer
to this condition as strong stationarity.Wemake repeated use
of this condition throughout, althoughwe emphasize that it is
not true in general: a pure coherent state does not obey strong
stationarity.When it does hold, we can compute that the field
is uncorrelated with its derivative,

hϕ∂tϕi ¼ hϕ∇ϕi ¼ 0: ð21Þ

Turning to the Gaussian, the freedom to shift the phase
allows us to write the field and its derivatives as follows:

ϕ ¼
X
k

ffiffiffiffiffiffiffiffiffi
2

Vωk

s
Re½αk�; ∂tϕ ¼

X
k

ffiffiffiffiffiffiffiffiffi
2ωk

V

r
Im½αk�;

∇ϕ ¼ −
X
k

k

ffiffiffiffiffiffiffiffiffi
2

Vωk

s
Im½αk�: ð22Þ

From Eq. (12), each αk is an independent Gaussian random
field with uncorrelated real and imaginary parts. As a sum
over many Gaussians, we therefore conclude that the field
and its derivatives are themselves independent Gaussian
random fields. The independence between the field and its
derivative is simply amanifestation of themore general result
in Eq. (21) and we note that it was already observed that the
field should be Gaussian in this case in Ref. [15]. Again, all
three of these fields have zero mean and so the statistics are
determined by the variances. For the field, we have

VarðϕÞ ¼ n̄
Z

d3k
pðkÞ
ωk

¼ n̄

�
1

ω

�
; ð23Þ

whereweusedEq. (9)with gs ¼ 1 and in the final step left the
k dependence of ω implicit. We emphasize that the expect-
ation value appearing in the final expression, denoted h·i,
represents a shorthand for an average over the probability
distribution for k. This should be carefully distinguished
from the other usages of the same expression thatwe employ;
for instance, Eq. (21) refers to an average over the classical
wave fluctuations, whereas Eq. (15) represents a quantum-
mechanical expectation value.
Although Eq. (23) is more general, for axion DM we

have n̄ ≃ ρ=m and h1=ωi ≃ 1=m, so that VarðϕÞ ¼ ρ=m2.

Interpreting averages as over time, this is consistent with
what we would predict from Eq. (1): hϕi ¼ 0 and
hϕ2i ¼ ρ=m2. For the derivatives,

Varð∂tϕÞ ¼ n̄hωi; Varð∇ϕÞ ¼ n̄hk2=ωi: ð24Þ

Again we can confirm the expected behavior for non-
relativistic DM, Varð∂tϕÞ ≃ ρ and Varð∇ϕÞ ≃ 0. However,
we emphasize that the above results are more general and
could be applied to other scalar distributions in the wave-
like regime, such as the relativistic cosmic axion back-
ground studied in Ref. [38].
As the field is a Gaussian, we can trivially recompute the

full set of moments using the classical wave picture. The
field has zero mean and a variance set by Eq. (23) so that
odd moments vanish and even moments are given by

hϕ2nðt;xÞi ¼ ð2n − 1Þ!!
�
n̄

�
1

ω

��
n

¼ ð2n − 1Þ!!
�Z

d3k
ð2πÞ3

Nk

ωk

�
n

: ð25Þ

In the second step, we rewrote the result to allow a direct
comparison with the full quantum result in Eq. (15).
Comparing the two, we see explicitly that moment by
moment the error incurred from using the classical approxi-
mation is Oð1=NkÞ, as claimed, although the exact Oð1Þ
coefficient depends on the specific renormalization scheme
adopted; see Appendix D.
To further explore the implications of the field being

normally distributed, it is convenient to introduce quad-
rature variables,

X̂k ¼ âk þ â†kffiffiffi
2

p ; Ŷk ¼ −i
âk − â†kffiffiffi

2
p ; ð26Þ

which satisfy ½X̂k; Ŷk� ¼ i and X̂2
k þ Ŷ2

k ¼ 2N̂k þ 1. When
the classical wave picture applies, we can take X̂k ≃ffiffiffi
2

p
Re½αk� and Ŷk ≃

ffiffiffi
2

p
Im½αk�. The two quadratures are

therefore independent Gaussian random fields and from
Eq. (22) are directly related to the individual modes of ϕ
and ∂ϕ, respectively. As each quadrature of the DM field is
normally distributed, if one isolates a single quadrature the
statistical properties must differ from a measurement
sensitive to both. A further consequence of the quadratures
being Gaussian distributed is that the number of states in a
given mode, N̂k ≃ 1

2
ðX̂2

k þ Ŷ2
kÞ, is distributed as a χ2

distribution with two degrees of freedom; equivalently, it
is exponentially distributed. This should be compared to the
expectation for particle DM, where Nk is Poisson distrib-
uted, corresponding to simply counting the number of
particles with a given k. The exponential distribution has a
larger variance than Poisson, which can be heuristically
associated with constructive and destructive interference of
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the wave. We establish that these two limits are smoothly
connected in Sec. VII.
To isolate the statistical fluctuations of the fields from the

physical scales involved, we define normalized quadratures
x̂k ¼ X̂k=

ffiffiffiffiffiffiffi
Nk

p
≃

ffiffiffiffiffiffiffiffiffiffiffi
2=Nk

p
Re½αk� and ŷk ¼ Ŷk=

ffiffiffiffiffiffiffi
Nk

p
≃ffiffiffiffiffiffiffiffiffiffiffi

2=Nk

p
Im½αk�. For a Gaussian density matrix, in the

classical limit xk and yk are standard normal distributions
(zero mean and unit variance) that are independent of each
other and for each k mode. Explicitly, hxkxqi ¼ hykyqi ¼
δk;q and hxkyki ¼ 0. Using these variables, we can write

ϕ ≃
X
k

ffiffiffiffiffiffiffiffiffi
Nk

Vωk

s
xk; ∂tϕ ≃

X
k

ffiffiffiffiffiffiffiffiffiffiffiffi
ωkNk

V

r
yk; ð27Þ

with a similar expression holding for ∇ϕ.
The normalized quadrature notation is particularly con-

venient for determining the statistical properties of wave-
like DM observables. We make use of it several times in the
next section; however, we can already provide an example.
Consider the energy density in the DM field, which can be
determined as

ρ ¼ 1

2
½ð∂tϕÞ2 þ ð∇ϕÞ2 þm2ϕ2�

¼
X
k;q

1

2V

ffiffiffiffiffiffiffiffiffiffiffiffi
NkNq

ωkωq

s
½ðωkωq þ k · qÞykyq þm2xkxq�:

ð28Þ
The average value is as expected,

hρi ¼
Z

d3k
ð2πÞ3 ωkNk ¼ hωin̄: ð29Þ

Turning to the statistical fluctuations, Eq. (28) demonstrates
that the density is the sum of two χ2 distributions, each with
a single degree of freedom, but combined with different
weightings. In the nonrelativistic limit, we have

ρ ≃
X
k;q

m
2V

ffiffiffiffiffiffiffiffiffiffiffiffi
NkNq

p ½ykyq þ xkxq�; ð30Þ

so that hρi ≃mn̄. The weighting between the two quad-
ratures is now identical, implying that the nonrelativistic
density is exponentially distributed, as studied in detail in
Refs. [16,17]. Away from the nonrelativistic limit, the
density is not exponentially distributed.

IV. AUTOCORRELATION AND
THE FREQUENCY DOMAIN

Thus far, we have considered the properties of equal time
and position correlation functions of the DM field. In this
section, we turn to unequal spacetime correlators. These
objects provide a natural path to studying the field in the

frequency domain, as is commonly used in the analysis of
wave DM experimental results. They are also interesting
objects in their own right. The picture of wave DM invokes
a sense in which the field can be correlated over potentially
large time and distance scales, an idea that one often looks
to exploit experimentally. As we study in detail in Sec. V,
unequal spacetime correlators allow for this intuition to be
rigorously quantified.
Consider the average autocorrelation function,

hΓðτ;dÞi ¼ hϕðt;xÞϕðtþ τ;xþ dÞi: ð31Þ

Intuitively, this is a measure of how knowledge of the field
at a given spacetime position informs the field value at a
separate position. We emphasize three features of the way
we have written Γðτ;dÞ. First, the fact that it is independent
of the position ðt;xÞ implies that we focus solely on
stationary and homogeneous fields. Second, as we have
written the correlation function in terms of ϕ rather than ϕ̂,
we are assuming that the two classical wave conditions
hold, Nk ≫ 1 and PðαkÞ ≥ 0. A quantum analog is
discussed in Sec. VI. Last, we focus on the average value
of ϕðt;xÞϕðtþ τ;xþ dÞ. The statistical fluctuations can
be computed similarly to how we studied the density
fluctuations in Sec. III and we consider them below.
In order to compute Eq. (31), we assume strong

stationarity, PðαÞ ¼ PðjαjÞ, which again the Gaussian
distribution satisfies. It then follows that

hΓðτ;dÞi ¼
X
k;q

1

2V ffiffiffiffiffiffiffiffiffiffiffiffi
ωkωq

p hðαkþα�kÞðαqe−iq·dþα�qeiq·dÞi

¼
X
k

hjαkj2i
Vωk

cosðk ·dÞ; ð32Þ

where dμ ¼ ðτ;dÞ. From here, hjαkj2i ¼ Nk, which when
combined with Eq. (9) leads to (cf. Ref. [19])

hΓðτ;dÞi ¼ n̄
Z

d3k
pðkÞ
ωk

cosðωkτ − k · dÞ: ð33Þ

Observe that hΓðτ;dÞi is an even function of all of its
arguments, which can also be derived as a consequence of
stationarity and homogeneity. Taking τ ¼ 0 and d ¼ 0, the
result reduces exactly to Eq. (23), as it must; however, if we
only take d ¼ 0, the result simplifies to11

11Although we use the same notation for both, the energy and
3-momentum distributions, pðωÞ and pðkÞ, appearing in these
expressions are not the same. Appending subscripts to make
the distinction manifest, the two are related by pωðωÞ ¼R
d3kpkðkÞδðω − ω0Þ, with ω2

0 ¼ k2þm2. For pkðkÞ ¼
pkðjkjÞ, this simplifies to pωðωÞ ¼ 4πωkpkðkÞ. A similar dis-
tinctionmust be made between the velocity and speed distributions
in Eq. (35).
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hΓðτÞi ¼ n̄
Z

∞

0

dω
pðωÞ
ω

cosðωτÞ: ð34Þ

In order to develop some intuition for these quantities,
we consider several examples. For a single mode,
pðkÞ¼δðk−qÞ, hΓðτ;dÞi¼ ðn̄=ωqÞcosðωqτ−q ·dÞ, which
is an oscillatory function that does not decay for arbitrarily
large τ or d. For a single mode, knowledge of the field value
at a single ðt;xÞ is sufficient to know it at all other positions
and times.
Consider next nonrelativistic DM, so that k ≃mv and

ωk ≃mð1þ v2=2Þ. The temporal and spatial correlation
functions are then, approximately,

hΓðdÞi ≃ n̄
m

Z
d3v fðvÞ cosðmv · dÞ;

hΓðτÞi ≃ n̄
m

Z
dv fðvÞ cosðmð1þ v2=2ÞτÞ; ð35Þ

where fðvÞ and fðvÞ are the DM velocity and speed
distributions, respectively, and we integrate over all values
of v and v ≥ 0. As a simple ansatz for these distributions,
we can adopt the commonly assumed standard halo model
(SHM)

fðvÞ ¼ 1

π3=2v30
exp

�
−ðv þ v⊙Þ2

v20

�
; ð36Þ

which is characterized by a dispersion v0 and velocity of
the Sun in the halo rest frame v⊙, conventionally taken as
v0 ≃ 220 km=s and v⊙ ≃ 232 km=s, both Oð10−3Þ in

natural units.12 The spatial autocorrelation function can
be evaluated from this ansatz as

hΓðdÞi ≃ n̄
m
cosðmv⊙ · dÞe−ðmv0d=2Þ2 ; ð37Þ

up to higher-order corrections in v0; v⊙. The function
oscillates on a scale d ∼ 2π=mv⊙ but, unlike for a single
mode, the correlations are exponentially damped at large
distances. We plot an example of this in Fig. 1 where the
oscillations and decay can be observed. The figure uses
artificially enhanced values of the SHM parameters.
Without these, the time scale for the correlations to decay
becomes much larger than the scale of the natural oscil-
lations, so the inflated values are simply chosen to allow
both scales to be observed.
The analytic form of the temporal correlation function is

more complex, although it can be approximated as

hΓðτÞi ≃ n̄
m

2
ffiffiffi
2

p
cosðmτÞ

½4þ ðmv20τÞ2�3=4
exp

�
−

ðmv0v⊙τÞ2
4þ ðmv20τÞ2

�
: ð38Þ

Beyond neglecting higher-order terms in v0; v⊙, the addi-
tional approximation here is in the phase of the oscillations,

FIG. 1. DM spatial (left) and temporal (right) autocorrelation functions as defined in Eq. (31), assuming the SHM as in Eq. (36) with
the displayed parameters. In addition to being oscillatory, both functions exhibit a decay that characterizes the coherence of the field, as
discussed in Sec. V. On the right we demonstrate that the envelope for the decay of the correlations is accurately represented by Eq. (38)
(dashed red), although a simple exponential provides a rough approximation (dotted black).

12Technically, v⊙ in Eq. (36) should be replaced with the
velocity of the observer, for instance, at the location of an
experiment on the surface of the Earth. Corrections from the Solar
velocity are generally small, however, making the use of v⊙ a
good approximation in most cases, as discussed in Ref. [12].
However, in certain contexts it is critical. For two or more
detectors, the rotation of the Earth induces a large daily
modulation effect that can be observed through DM interferom-
etry, as shown in Ref. [31]. How a time-dependent v⊙ can be
included in our formalism is discussed in Sec. V.
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which differs from mτ (we show how to derive the full
result in Sec. VI). Regardless, the correlation function is
again oscillatory, now on a scale τ ∼ 2π=m, and the
correlations are damped at large times. Both features can
be seen for the normalized autocorrelation function in
Fig. 1 for the exact (rather than approximate) result. As
studied in Sec. V, the time scale for correlations to decay is
related to the coherence time τc and a first approximation
for the decay in the correlations is e−τ=τc . The figure also
shows that Eq. (38) provides an accurate representation of
the envelope of the decay.
The autocorrelation function further encodes the proper-

ties of the field in the frequency domain. From the Wiener-
Khinchin theorem, the PSD can be computed as13

1

2
SðωÞ ¼

Z
∞

−∞
dτΓðτÞeiωτ: ð39Þ

Using this and Eq. (34), we can immediately compute the
average value,

hSðωÞi ¼ 2πn̄pðωÞ
ω

; ð40Þ

which again assumes only strong stationarity. For DM, the
result is well approximated by (taking n̄ ¼ ρ=m)

hSðωÞi ≃ 2πρfðvωÞ
m3vω

; ð41Þ

where vω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðω=m − 1Þp

.
Several comments regarding the PSD are warranted. As

SðωÞ and ΓðτÞ are Fourier transform pairs, the autocorre-
lation function being real and even in τ implies that the PSD
must be real and even in ω. Therefore, the PSD must have
support for negative frequencies. Yet, as these frequencies
carry no unique information (the PSD is an even function)
and it is convenient to work with physical energies, the
factor of 1=2 in Eq. (39) is introduced so that we can work
with a one-sided PSD.14 For example, this implies that we
can use the PSD in Eq. (40) interpreting pðωÞ to only have
support for ω ≥ 0. As an explicit example, we can con-
sistently compute the total power in the field using only
positive frequencies. Integrating the average of Eq. (39), we
obtainZ

dω
2π

hSðωÞi ¼ hΓð0Þi ¼ hϕ2ðtÞi ¼ n̄h1=ωi; ð42Þ

which is consistent with Eq. (40). In the above expression
and all that follow, integrals over frequency are interpreted
as over ω∈ ½0;∞Þ, whereas integrals over time are evalu-
ated for τ∈ ð−∞;∞Þ, unless specified otherwise.
We end this section with a discussion of the statistical

properties of Γðτ;dÞ and SðωÞ. For this purpose, we again
focus on the Gaussian PðαÞ, although the discussion can be
readily generalized to other distributions. Using the nor-
malized quadratures as in Eq. (27), the autocorrelation
function can be written as

Γðτ;dÞ ¼
X
k;q

1

V

ffiffiffiffiffiffiffiffiffiffiffiffi
NkNq

ωkωq

s
xk½xq cosðq · dÞ þ yq sinðq · dÞ�:

ð43Þ

Consistency with Eq. (33) is apparent. As Γðτ;dÞ results
from the product of correlated normal variables, the
statistical properties can be determined using the known
distribution from Ref. [43]. Taking the Fourier transform,
the PSD is given by

SðωÞ ¼
X
k;q

2π

V

ffiffiffiffiffiffiffiffiffiffiffiffi
NkNq

ωkωq

s
xk½xq þ iyq�δðω − ωqÞ; ð44Þ

which again is consistent with Eq. (40). Explicit calculation
and the repeated use of Wick’s theorem demonstrates that

hSnðωÞi ¼ n!hSðωÞin: ð45Þ

Therefore, for a Gaussian PðαÞ the PSD of the field is
exponentially distributed, as argued heuristically for DM in
Ref. [12] and for a more general field in Ref. [38]
[cf. Eq. (30)]. It was further noted in Ref. [12] that the
DC mode should differ from those with ω > 0. We can
confirm this by returning to Eq. (43),

Sð0Þ ¼
Z

dτΓðτÞ ¼
X
k;q

2π

V

ffiffiffiffiffiffiffiffiffiffiffiffi
NkNq

ωkωq

s
xkxqδðωqÞ: ð46Þ

For the DC mode, we have not included a factor of 2 as we
did for the positive frequencies of the one-sided PSD;
instead, here the would-be positive and negative frequen-
cies contribute equally at ω ¼ 0. We see that the mode is
indeed distributed differently, as it behaves as a χ2-
distributed with a single degree of freedom. Accordingly,
if PðαÞ takes a Gaussian form, then the likelihood frame-
works developed for analyzing the data collected by wave
DM experiments in Refs. [12,31] are fully justified.

V. COHERENCE OF THE CLASSICAL FIELD

A fundamental aspect of wave DM that enters into any
experimental consideration of its detection is coherence.

13Although Eq. (39) is often more convenient, the average PSD
can also be computed from the Fourier transform of ϕðtÞ, denoted
ϕ̃ðωÞ, through hϕ̃�ðωÞϕ̃ðω0Þi ¼ πhSðωÞiδðω − ω0Þ.

14Different conventions have been adopted in the axion
literature; for instance, this explains a relative factor of 2 between
Eq. (40) and the equivalent result in Ref. [38]. We discuss the
various choices and their consistency in Appendix E.
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In particular, the coherence time of the field, τc, is a
fundamental quantity in determining the sensitivity of an
experiment that measures the field for a time T. There is a
transition in the sensitivity scaling between T < τc and T >
τc as the field loses coherence; for example, this limits how
long DM can be resonantly excited until the power
extracted saturates. A common reference for this point in
the DM literature is Ref. [44]; see also the discussion in
Ref. [45]. The transition is similar to that which occurs for a
counting experiment between a background-free search and
when there is an irreducible background, a prominent
example of which is the neutrino fog for weakly interacting
massive particle direct detection [46,47]. The spatial coher-
ence of the field, dc, is another important ingredient in DM
searches as it dictates the distance within which independent
detectors receive a correlated signal. This can be exploited to
perform interferometry on the DM wave or simply to
enhance sensitivity by looking for a correlated signal over
uncorrelated noise; see, e.g., Refs. [19,20,31,48].
In spite of their central nature, these quantities are

essentially always defined qualitatively as τc ∼ 2π=mv2

and dc ∼ ðmvÞ−1, with v ∼ 10−3 (see, e.g., Refs. [31,49]).
Precise definitions can be provided, however, as these
quantities are related to the scales over which the autocorre-
lation function decays, measuring the scales over which the
field remains coherent, as shown in Fig. 1. In this section, we
provide the relevant definitions and explore their properties.
We begin with the coherence time. This has an estab-

lished definition in the field of quantum optics (see, e.g.,
Ref. [32]) in terms of the normalized autocorrelation
function,15

τc ¼ 2

Z
dτ

�hΓðτÞi
hΓð0Þi

�
2

: ð47Þ

As defined, τc encodes the temporal scale over which the
autocorrelation function decays. If dominated by a single
mode, hΓðτÞi ∼ cosðωτÞ, and the correlation time diverges.
If instead the autocorrelation function decays as
hΓðτÞi ∼ cosðωτÞe−jτj=τ̄c , then, assuming the field is suffi-
ciently coherent (i.e., ωτ̄c ≫ 1), we have τc ≃ τ̄c,
cf. Fig. 1.16 We can define a dimensionless measure for
the coherence of ϕðtÞ by comparing τc to the mean
oscillation period of the field 2π=ω̄. From these two
quantities, we construct a quality factor for the field (as
in Ref. [38]),

Qϕ ¼ ω̄τc
2π

: ð48Þ

The quality factor is a measure of how many periods the
oscillations remain coherent or, more quantitatively, how
many cycles it takes until hΓðτÞi ≃ hΓð0Þi=e. It is usually
assumed that for DM QDM ∼ 106 so that the field remains
coherent for many cycles and is therefore well approxi-
mated by Eq. (1) for a long period, determined by τc. We
confirm this intuition below.
Unless the average autocorrelation function is known,

however, the definition in Eq. (47) is not particularly
convenient. It is therefore useful to find an alternative
expression for the coherence time. The inverse of Eq. (39)
allows us to reexpress the result in terms of the PSD,

τc ¼
1

hΓð0Þi2
Z

dω
2π

hSðωÞi2: ð49Þ

From here, using Eqs. (40) and (42), we arrive at

τc ¼
2π

h1=ωi2
Z

dω
ω2

pðωÞ2: ð50Þ

Equation (50) lays bare that the coherence time is
determined entirely by the energy distribution. In particular,
it is sensitive to the inverse width of pðωÞ and diverges as
the field becomes dominated by a single frequency.17 To
quantify these statements, consider the particularly simple
scenario of a top-hat distribution, pðωÞ ¼ ð1=δωÞΘ
ðω − ω̄þ δω=2ÞΘðω̄þ δω=2 − ωÞ, with mean frequency
ω̄ and width δω. The coherence time is then

τc ¼
2πδω

ω̄2 − ðδω=2Þ2 ln
−2
�
ω̄þ δω=2
ω̄ − δω=2

�
≃
2π

δω
; ð51Þ

where in the final step we assumed a narrow distribution,
δω ≪ ω̄. As claimed, the coherence time diverges as δω
vanishes.
Turning to DM, the coherence time is determined by the

speed distribution, and to leading order in v ≪ 1 we
obtain18

15The coherence time is commonly defined using the complex
analytic signal of ϕðtÞ and we explain the connection to our
definition in Appendix E (cf. also Ref. [20]).

16The simple exponential decay model is not unique
in identifying the coherence time. Both hΓðτÞi ∼
cosðωτÞ exp½−πτ2=2τ̄2c� and hΓðτÞi ∼ cosðωτÞ=½1þ ðτ=τ̄cÞ2�3=4
[cf. Eqs. (37) and (38)] also generate τc ≃ τ̄c, again assuming
ωτ̄c ≫ 1.

17Of course, in principle pðωÞ could be arbitrarily compli-
cated, such that in the most general case τc may only represent a
crude measure of the evolution of the autocorrelation function.
Nonetheless, if the energy distribution is relatively simple such
that it is well characterized by its mean and standard deviation (as
is the case for DM drawn from the SHM), then the coherence time
represents an accurate measure, as shown in Fig. 1.

18The right side of Eq. (52) appeared repeatedly in Ref. [12] in
the various analytic estimates that work provided for the
sensitivity to axion DM; see, for example, their Eqs. (45) and
(55). Our analysis clarifies that the appearance of that specific
integral is because the coherence time plays a key role in the
detectability of wave DM. Indeed, the results in that work
generically take the form of the sensitivity to axion couplings
scaling as τ−1=4DM , the exact scaling argued for in Ref. [45].
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τDM ≃
2π

m

Z
dv
v
fðvÞ2: ð52Þ

For a simple top-hat model for the speed distribution with
mean v̄ and width δv ≪ v̄, we find that the correlation time
takes the expected form of τDM ≃ 2π=mv̄δv. A more
interesting example is provided by the SHM in Eq. (36).
Starting from Eq. (50), we have

τDM ¼
ffiffiffiffiffiffi
2π

p
Erf½ ffiffiffi

2
p

v⊙=v0�
mv0v⊙

×

�
1þ 3v20

4
−

v0v⊙e−2v
2
⊙=v

2
0ffiffiffiffiffiffi

2π
p

Erf½ ffiffiffi
2

p
v⊙=v0�

þOðv4Þ
�
: ð53Þ

Numerically, the second line is ≃1þ 4 × 10−7 and there-
fore even the Oðv2Þ corrections are completely irrelevant.
We have included the higher-order terms to emphasize that
in the approach we have outlined the coherence time is a
rigorously defined quantity. Numerically,

τDM ≃ 2.80 ms

�
1 μeV
m

�
: ð54Þ

Similarly, QDM ¼ mτDM=2π ≃ 6.78 × 105.
Beyond quantitative numerical results, the explicit

expressions also allow for the study of the coherence
time’s limiting behavior. For instance, based on arguments
similar to those in Ref. [31], one may expect the DM
coherence time to take the form τDM ∼ 1=mv0v⊙, which is
similar to Eq. (53). (We review these arguments at the end
of this section.) Nevertheless, the qualitative expression
diverges as v⊙ → 0, suggesting that an instrument at rest in
the halo frame may have an enhanced sensitivity to wave
DM. Of course, this cannot be correct and our exact
expressions reveal the appropriate behavior. From
Eq. (36), when v⊙ → 0, the speed distribution has a finite
width and therefore should have a finite coherence.
Equation (53) manifests our expectation as we have a
finite coherence time of τDM ≃ 4=mv20 as the observer’s
speed vanishes. For v0 → 0, however, the width of the
distribution vanishes and the coherence time should
diverge, consistent with Eq. (53).
As a final example, we can also confirm that the coherence

time as defined above is a measure of how long the field
remains well approximated by Eq. (1). This intuition is
embodied in the fluctuating phase model, where
ϕðtÞ ¼ ϕ0 cosðmtþ φðtÞÞ, with φðtÞ∈ ½0; 2πÞ being a ran-
dom phase that is resampled after a time that we now show
can be identified as τc. This model is particularly convenient
for time-domain analyses of wave DM; see, e.g., Ref. [45].
Given its natural definition in the time domain, it is more
straightforward to compute the coherence time of this model

from Eq. (47). To begin with, to ensure that hΓðτÞi is
symmetric we take the range of times where the phase is
unchanged around t ¼ 0 as t∈ ½−τ̄c=2; τ̄c=2� and for every
interval of length τ̄c outside of this we sample a new
random phase. Consequently, hΓðτÞi=hΓð0Þi ¼ cosðmτÞΘ
ðτ þ τ̄c=2ÞΘðτ̄c=2 − τÞ. A direct computation then reveals
that τc ¼ τ̄c þ sinðmτ̄cÞ=m ≃ τ̄c, formτ̄c ≫ 1. Accordingly,
the scale over which the fluctuating phase model jumps is
exactly the coherence time of the field.
We next turn to consider the coherence properties of the

field as a function of position. Although the coherence time
appears ubiquitously in considerations of the sensitivity to
wave DM, the coherence length and volume are equally
fundamental concepts. Indeed, as mentioned below Eq. (9),
the coherence volume is intimately related to Nk, which, as
we show in Sec. VII, determines the transition between
wave and particle behavior. Therefore, we first study the
coherence volume and establish the connection to Nk. As
for the coherence time, we can compute the volume in
either of the conjugate variables, momentum or position, as

Vc ¼
ð2πÞ3
h1=ωi2

Z
d3k
ω2
k
pðkÞ2 ≃ 2

Z
d3d

�hΓðdÞi
hΓð0Þi

�
2

: ð55Þ

Unlike for the coherence time, these two definitions are not
equivalent: the first result should be taken as the definition,
and the second an approximation. We discuss the
differences in Appendix E; however, we note that for the
SHM the two agree at Oð10%Þ.
As claimed in Sec. II, the coherence volume can be

thought of as the size of the region within which the
bosonic particles cannot be distinguished. We can see this
as follows (a more detailed discussion can be found in
Ref. [32]). Consider the simple case where pðkÞ is a narrow
top hat of volume ðδkÞ3 centered at k0, with jk0j ≫ δk.
Equation (55) then directly gives Vc ≃ ð2πÞ3pðk0Þ.
Multiplying this by the particle density n̄, we obtain the
number of particles in the coherence volume, ð2πÞ3n̄pðk0Þ,
which when compared with Eq. (9) (taking gs ¼ 1 for a
scalar field with one degree of freedom) shows that Nk can
be thought of as the number of particles within the
coherence volume. Although this argument is heuristic,
it reveals a fact consistent with the more realistic example
considered below, which is that Vc is an inverse measure of
the width of pðkÞ. As the momentum distribution narrows,
Vc grows. Hence, the number of indistinguishable states
Nk also grows as momentum becomes a less informative
label with which to distinguish them.
For DM, the volume in Eq. (55) is well approximated by

VDM ≃
�
2π

m

�
3
Z

d3vfðvÞ2: ð56Þ
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Turning again to the SHM for an explicit example, the
volume takes the form19

VDM ≃
� ffiffiffiffiffiffi

2π
p

mv0

�3

: ð57Þ

As claimed, the coherence volume is sensitive to the width
of the distribution through v0. Unlike the coherence time, it
does not depend on the mean velocity −v⊙. Further, the
explicit form of the volume suggests that we can extract a
coherence length of the form

dDM ≃
ffiffiffiffiffiffi
2π

p

mv0
≃ 674 m

�
1 μeV
m

�
; ð58Þ

and indeed this is what we would arrive at if we defined the
coherence length in analogy to Eq. (47), but as an integral
over a single position rather than time. For the SHM, the
width of pðkÞ is independent of direction and therefore we
obtain an identical dDM regardless of the direction the
spatial correlations are measured.20 However, if the width
of pðkÞ varies considerably between directions, the coher-
ence length will vary equally as a function of direction.
Having defined the coherence length and time, we note

that there is a heuristic connection between the two. If we
interpret dDM as the spatial scale over which the DM wave
is correlated, then the coherence time can be evaluated by
considering how long one must wait for a new coherent
patch to arrive at a given position. For the SHM, this is of
the order τDM ≃ dDM=v⊙, as argued in Ref. [31] and
accurately reflected by Eqs. (53) and (58). Of course, these
approximations can break down, such as when v⊙ → 0. In
that limit, one can continue to interpret the result as above,
but with the mean speed now replaced by v0. We empha-
size, however, that the utility of the exact definitions in the
present section is that we do not need to resort to heuristics;
the coherence time, volume, and distance are instead
exactly defined and interpreted as the scales over which
the DM wave becomes uncorrelated.
Before moving on, let us return to our assumption of

stationarity and homogeneity. The results of this section
and those in Sec. IV all required the strong stationarity
condition of PðαÞ ¼ PðjαjÞ, which again is a sufficient

although not necessary requirement for expectation values
to be independent of position and time. For DM, however,
this assumption must eventually break. Daily and annual
modulation induce a time dependence in fðvÞ as the
velocity of any Earthbound experiment changes in the
halo frame. Further, gravitational focusing can induce a
change in the DM density throughout the year. In both
cases, the phase space and all of the quantities we compute
from it must vary, which seemingly breaks our original
assumption. The key question, however, is how these
quantities vary compared to the scales over which the
DM becomes incoherent. For instance, if the phase space
varies much more slowly than the coherence time, then as
the DM is effectively rendered incoherent after each τc, we
can recompute quantities within each coherence time
interval using the phase space that holds within the
appropriate time period. Explicit calculations for how the
field loses coherence over scales larger than the coherence
time and volume are performed in Sec. VII.
This point is even more general than a spacetime

dependency of the phase space. Even if the Gaussian form
of PðαÞ holds for DM locally, if DM did not have a thermal
origin, the Gaussian form may not have held early on,
implying that at minimum there would be a time depend-
ence to ρ̂ over cosmological times as it evolves towards a
Gaussian form (cf. Appendix G). However, as long as the
variation of the density matrix occurs over scales larger
than τc and dc, we can again generate reliable predictions
for the field’s behavior even for t ≫ τc and d ≫ dc. In
particular, within each coherence time and volume we use
the formalism introduced so far, performing calculations
with the density matrix that holds for that spacetime region,
and then smoothly glue the predictions together.
If we consider the explicit values of the relevant scales,

then over the range of masses being probed for the QCD
axion it is likely an excellent approximation that the field is
stationary; using Eq. (54), even at the end of the QCD axion
band (where fa ≃MPl) we have m ≃ 10−12 eV and hence
τDM ≃ 47 min. This is sufficiently shorter than a day that
accounting for daily modulation should prove no issue.
Similarly, at this mass dDM ≃ 5mAU, a scale over which the
density should be constant even in the presence of
gravitational focusing [13]. However, if we study wave
DM with masses below the QCD window, stationarity and
homogeneity are eventually violated: pushing towards the
fuzzy DM regime [50,51], we have τDM ≃ 10000 yrs and
dDM ≃ 2 pc for m ≃ 10−20 eV. Nevertheless, for fuzzy DM
masses the natural scales associated with DM are signifi-
cantly larger than those of the Solar System that determine
the variation of the local phase space. Accordingly, from an
effective field theory perspective, it seems likely that DM
could not resolve Solar System–level variations and there-
fore should depend only on appropriately averaged quan-
tities. Even if this is the case, there are still intermediate
masses where the phase space varies on scales comparable

19If we instead compute the volume using Eq. (37) and the
rightmost expression in Eq. (55), the result is identical up to an
overall factor of 1þ e−2ðv⊙=v0Þ2 ≃ 1.1, justifying the level of
agreement quoted for the SHM.

20If we measure correlations as in the rightmost expression in
Eq. (55), there is a small asymmetry in directions parallel and
perpendicular to v⊙. However, as seen in Fig. 1, these are simply
due to the oscillations in the parallel direction rather than a
change in the width, and when using the complex analytic signal
to define coherence quantities, as we do in Appendix E and which
gives rise to the left expression in Eq. (55), such oscillations do
not contribute.
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to τDM and dDM, where the results we have presented
should be revisited.

VI. HIGHER-ORDER COHERENCE

In the previous two sections, we extensively discussed
the two-point correlation function of DM and its associated
coherence properties and formalized the connection with
the coherence time and length used throughout the wave
DM literature. In quantum optics, rather than the autocor-
relation function, it is common to study Glauber’s n-point
correlation functions gðnÞ [26], where gð1Þ is associated with
two-point correlations and for n > 1 higher-order correla-
tions are probed. The most commonly studied functions are
gð1Þ and gð2Þ, which we define below, and indeed both have
already been considered in the DM literature. In this
section, we briefly review these higher-order correlations
and demonstrate that for a Gaussian PðαÞ these functions
carry no additional information beyond the autocorrelation
function studied in detail above. Nevertheless, unlike
Γðτ;dÞ, the gðnÞ correlators are defined in terms of quantum
rather than classical fields so we can relax the use of the
classical wave approximation.
To define the correlation functions, we first introduce a

decomposition of the scalar field operator in Eq. (10) into
positive- and negative-frequency modes,

ϕ̂þðxÞ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2Vωk

p âke−ik·x; ϕ̂−ðxÞ¼ ½ϕ̂þðxÞ�†; ð59Þ

such that ϕ̂ðxÞ ¼ ϕ̂þðxÞ þ ϕ̂−ðxÞ. From these, we define
the first- and second-order coherence functions as

gð1Þðx1; x2Þ ¼
hϕ̂−ðx1Þϕ̂þðx2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hϕ̂−ðx1Þϕ̂þðx1Þihϕ̂−ðx2Þϕ̂þðx2Þi
q ;

gð2Þðx1; x2Þ ¼
hϕ̂−ðx1Þϕ̂−ðx2Þϕ̂þðx2Þϕ̂þðx1Þi
hϕ̂−ðx1Þϕ̂þðx1Þihϕ̂−ðx2Þϕ̂þðx2Þi

: ð60Þ

The definition for higher-order coherence functions follows
similarly. Observe that all expectation values are normal
ordered and therefore primed to be evaluated using Eq. (13)
and the PðαÞ quasiprobability distribution. Both functions
can be studied in general, but if we assume that the field is
stationary and homogeneous, then they only depend
on xμ2 − xμ1 ¼ dμ ¼ ðτ;dÞ.
Consider gð1Þðτ;dÞ first. If we assume strong stationarity

as throughout Secs. IVand V, an identical calculation to the
determination of hΓðτ;dÞi in Eq. (33) yields

gð1Þðτ;dÞ ¼ 1

h1=ωi
Z

d3k
pðkÞ
ωk

e−ik·d; ð61Þ

which for d ¼ 0 matches Ref. [22]. It also bears a striking
resemblance to hΓðτ;dÞi, in particular,

Re½gð1Þðτ;dÞ� ¼ hΓðτ;dÞi
hΓð0; 0Þi : ð62Þ

This is not an accident: gð1Þðτ;dÞ is the normalized
autocorrelation function of the complex analytic signal,
whereas hΓðτ;dÞi=hΓð0; 0Þi is the normalized autocorre-
lation function of the field itself. Further details are
provided in Appendix E. Specifics aside, Eq. (62) already
suggests that we can obtain the coherence time and volume
from the first-order coherence function, and indeed we have

τc ¼
Z

dτjgð1Þðτ;0Þj2; Vc ¼
Z

d3djgð1Þð0;dÞj2; ð63Þ

where as noted above we integrate over τ∈ ð−∞;∞Þ.
Taking the nonrelativistic limit appropriate for DM

simplifies Eq. (61) to

gð1Þðτ;dÞ ≃ e−imτ

Z
d3 v fðvÞeimðv·d−v2τ=2Þ: ð64Þ

For the SHM of Eq. (36) we can compute this explicitly,
finding

gð1ÞDMðτ;dÞ ¼
e−imτ

ð1þ ξ2Þ3=4 exp
�
−
ðv0ζþ v⊙ξÞ2
v20ð1þ ξ2Þ

�

× exp

�
−i

ξððv⊙=v0Þ2 − ζ2Þ þmv⊙ · d
1þ ξ2

− i
3

2
arctan ξ

�
; ð65Þ

where ζ ¼ 1
2
mv0d, ξ ¼ 1

2
mv20τ. This result matches that in

Ref. [21] up to a small difference in the exponential
suppression (cf. Ref. [19]). From this expression, hΓðdÞi
and hΓðτÞi for the SHM follow immediately using Eq. (62),
allowing us to confirm Eqs. (37) and (38), including
corrections to the phase of the oscillations for the latter.
We can further confirm the consistency of the result by
computing

jgð1ÞDMðτ; 0Þj2 ¼
8

½4þ ðmv20τÞ2�3=2
exp

�
−
2ðmv0v⊙τÞ2
4þ ðmv20τÞ2

�
;

jgð1ÞDMð0;dÞj2 ¼ e−ðmv0dÞ2=2: ð66Þ

Using Eq. (63), we can directly confirm that these repro-
duce the expressions for the coherence volume in Eq. (57)
and the leading-order expression for the coherence time in
Eq. (53). [The higher-order contributions arise from the
corrections to h1=ωiωk ≃ 1 and therefore to the higher-
order corrections to Eq. (64).]
The second-order coherence function has a venerable

history in quantum optics, given its association with the
Hanbury Brown and Twiss effect [52–54]. gð2Þðτ;dÞ can
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further diagnose the presence of genuine quantum behavior.
From Eq. (60), if we treat ϕ̂ as a c-number rather than a
quantum field, then gð2Þð0; 0Þ ≥ 1. Nevertheless, for certain
systems with PðαÞ < 0 such as a Fock state, the correlation
function can take a value in the classically forbidden range
0 ≤ gð2Þð0; 0Þ < 1. [For a single-mode Fock state with N
quanta, we have gð2Þðτ;dÞ ¼ 1 − 1=N.] For a Gaussian
density matrix, we instead have PðαÞ ≥ 0 and this does not
occur. Indeed, in this case the two correlation functions are
related by [55,56]

gð2Þðτ;dÞ ¼ 1þ jgð1Þðτ;dÞj2: ð67Þ

Accordingly,

gð2Þðτ;dÞ ¼ 1þ
				 1

h1=ωi
Z

d3k
pðkÞ
ωk

e−ik·d
				2

≃ 1þ
				
Z

d3vfðvÞeimðv·d−v2τ=2Þ
				2; ð68Þ

where the final line holds for a nonrelativistic system such
as DM. In either event, we have gð2Þð0; 0Þ ¼ 2 > 1. Taking
d ¼ 0, the first line again matches Ref. [22]. To obtain an
explicit example for the SHM, from Eq. (65) we obtain

gð2ÞDMðτ;dÞ ¼ 1þ 1

ð1þ ξ2Þ3=2 exp
�
−
2ðv0ζþ v⊙ξÞ2
v20ð1þ ξ2Þ

�
: ð69Þ

VII. DESCRIPTION AT THE WAVE-PARTICLE
BOUNDARY

We now explore the consequences of relaxing the
assumption of large occupation to study the behavior of
DM as the wave approximation breaks down. In particular,
we perform a calculation for arbitrary N and demonstrate
that there is a smooth transition between the expected wave
and particle behavior. The calculation also reveals that there
is an intermediate regime around N ∼ 1 where neither the
wave nor particle picture is fully appropriate.
First, though, based on the discussions above, we can

describe more accurately where we expect the wave-particle
transition to occur. In particular, combining the discussion of
the coherencevolume fromSec.Vwith Eq. (9), the transition
is controlled by the number of indistinguishable particles per
coherence volume, N ¼ n̄Vc=gs ¼ ρVc=mgs, where the
final expression holds for DM with a local energy density
ρ. Here gs enters as the internal degrees of freedom provide
additional labels whereby the states can be distinguished.
Further, Vc is determined by the velocity distribution and so
we need to assume a form for this to compute N. Taking the
SHM and Eq. (57), the number of indistinguishable particles
is given by

N ¼ ρð2πÞ3=2
gsm4v30

≃
1.22 × 1029

gs

�
1 μeV
m

�
4

; ð70Þ

or rearranging for m,

m ¼
�
ρð2πÞ3=2
gsNv30

�
1=4

≃
18.7 eV

ðgsNÞ1=4 : ð71Þ

Both numerical values above assume ρ ¼ 0.4 GeV=cm3 and
v0 ¼ 220 km=s. From the second result, we can read off the
location of the wave-particle boundary by taking N ¼ 1; for
an axion the transition occurs at ∼18.7 eV, whereas for a
dark photon (with gs ¼ 3) the equivalent value is ∼14.2 eV.
Both of these are consistent with the heuristic estimate of
10 eV from the outset.21

Although we can compute the mass at which N ¼ 1, we
emphasize that there is no hard boundary between the wave
and particle descriptions. Instead, as the calculations in the
present section demonstrate, there is a continuous descrip-
tion of DM across the boundary; the expected behaviors
emerge for N ≫ 1 and N ≪ 1, with a unique description
appearing when N ∼ 1. Further, as emphasized in Sec. III,
once we have a form for the density matrix, we can always
perform the completely quantum calculation that includes
all of these limits, as exemplified by Eq. (15). Again, the
classical wave limit is simply a convenient approximation
that holds for N ≫ 1 and PðαÞ ≥ 0.
In order to demonstrate these claims, we consider the

following question: how much energy is in the DM field
within a given volume V?22 The obvious answer is simply
ρV. However, as usual it is the fluctuations rather than the
mean that encode the interesting information. In order to
study the fluctuations, we focus on a single mode of the
field, which we take to have energy m. A single mode
proves sufficient to understand the general behavior of DM
across the boundary, although we show the impact of the
full set of modes in a detailed calculation presented in
Appendix F. In the case of a single mode, the amount of
energy in the field is equivalent to asking how many DM
quanta k appear in the region, with the energy then simply
being mk. Accordingly, we would heuristically expect that
in the particle regime (N ≪ 1) the number of quanta and
hence energy should be Poisson distributed, as it is the
result of a counting experiment for the number of particles
in the volume. In the wavelike regime (N ≫ 1), we have
already computed in Eq. (30) that the energy density should

21The result is comparable to other descriptions of the boundary
in the literature. The recent SNOWMASS reports defined the
boundary at 1 eV [57,58]. Other reviews have adopted a larger
value, e.g., 30 eV in Ref. [59].

22This physical volume should not be confused with the
volume introduced to discretize the mode expansion in
Eq. (10). Further, similar to Eq. (15), we imagine that the system
has been regulated so there is no zero-point contribution to the
energy; see Appendix D.
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be exponentially distributed. We now confirm that both of
these expectations emerge continuously from the full
quantum description when we study the system in a volume
comparable to its coherence volume. We further demon-
strate two additional points: (1) for N ≃ 1, the fluctuations
are neither exponential nor Poisson; and (2) for V ≫ Vc,
the fluctuations become Gaussian, however with a variance
that varies dramatically between the wave and particle
limits.
At the outset, we emphasize that we are imagining

performing the measurement of the energy in a thought
experiment rather than considering V as an actual detector
volume; in the wavelike regime, this question has been
considered in searches for DM with interferometers [15],
pulsar timing arrays [17], and astrometry [18,60]. If we
were considering the measurements in an actual detector,
accounting for the weak coupling between DM and the
detector is crucial as it determines how the fluctuations in
the DM field are translated into observable fluctuations in
our detector; see, e.g., Ref. [33].
Returning to the question of interest, we assume that the

density matrix of our single mode takes the Gaussian form
of Eq. (7) (deviations from this are discussed in the next
section). Introducing a pair of complete Fock states, we can
rewrite the Gaussian density matrix in the number basis as23

ρ̂ ¼ 1

1þ N

X∞
k¼0

�
N

1þ N

�
k
jkihkj: ð72Þ

Importantly, the density matrix is diagonal in the Fock
basis. We emphasize this is not generic and it is certainly
not true for a pure coherent state; see Appendix G for

further discussion. Regardless, it implies that we can
immediately read off the probability of observing k quanta,

pk ¼
Nk

ð1þ NÞkþ1
: ð73Þ

From here, we can directly infer the quanta and energy
statistics. However, this pk does not describe the statistics
in an arbitrary volume but rather within the coherence
volume Vc; indeed, as discussed above, N is the number of
states in the coherence volume and the above distribution
obeys hki ¼ N. Accordingly, Eq. (73) can be used to study
fluctuations within Vc, which is sufficient to observe an
interesting transition across N ¼ 1. We extend the dis-
cussion to a more general volume and justify the above
association shortly.
The mean of Eq. (73) is μk ¼ N, exactly as expected

from the mean energy density. The interesting behavior
resides in the fluctuations. With this in mind, we turn to the
variance in the number of quanta, which here is
σ2k ¼ NðN þ 1Þ. For N ≪ 1, σ2k ≃ N ¼ μk, whereas for
N ≫ 1, σ2k ≃ N2 ¼ μ2k. As expected, these are the variances
of the Poisson and exponential distributions, respectively,
as can be confirmed from the appropriate distributions,

pk;P ¼ Nke−N

k!
; pk;E ¼ 1

N
e−k=N; ð74Þ

where k is a continuous real variable for the exponential
distribution. For N ≃ 1, neither distribution is appropriate
and instead the full expression in Eq. (73) is required. This
is highlighted in Fig. 2, where we show the three distri-
butions (analytically continued to arbitrary real k ≥ 0).
The above results suggest that the full distribution

becomes Poisson or exponential in the particle and wavelike
limits, but they do not formally demonstrate that the
distributions match. In particular, the higher moments may
not agree. To study this carefully, it is convenient to introduce
the moment-generating function (MGF) MðtÞ ¼ hetki for

FIG. 2. Probability of observing k quanta within Vc for a Gaussian PðαÞ (black dashed), Poisson (orange), or exponential (blue)
distribution. Distributions are analytically continued to an arbitrary real k ≥ 0. We show results for three different values of the mean: 0.1
(left), 1 (middle), and 10 (right). In the particle regime (N ≪ 1) the Gaussian density matrix is well described by a Poisson distribution,
whereas in the wave regime (N ≫ 1) the statistics become exponentially distributed. For N ≃ 1, all three distributions are distinct.

23When extended to multiple modes, Eq. (72) is the density
matrix that was assumed in Ref. [21]. In that work, it was
speculated that this may be an appropriate density matrix for DM,
which we see from the present work is equivalent to the
assumption that PðαÞ is Gaussian.
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t∈R. From the definition, we can extract the moments
through hkni ¼ ∂

n
t MðtÞjt¼0,withMð0Þ ¼ 1 being equivalent

to the normalization of the probability distribution. For the
MGF to exist we require hetki > 0 to exist in an open region
around t ¼ 0. Turning to our explicit distribution for the
Gaussian density matrix, Eq. (73) implies that the generating
function for the number of quanta in the coherence volume is

Mc
GðtÞ ¼

1

1þ Nð1 − etÞ ; ð75Þ

where t < lnð1þ 1=NÞ to ensure Mc
GðtÞ > 0.

The MGF satisfies a number of important properties.
One that we can exploit immediately is that if the MGF of
two distributions is equal, then the distributions themselves
must be equivalent. With this in mind, note that the MGFs
of the Poisson and exponential distributions of mean N are
given by

MPðtÞ ¼ eNðet−1Þ; MEðtÞ ¼
1

1 − Nt
; ð76Þ

where there is no restriction on t for MPðtÞ, whereas for
MEðtÞ we require t < 1=N. We can use these results to
establish a formal equality between the distributions in the
wave and particle regimes. In the particle limit, we have

lim
N≪1

Mc
GðtÞ ≃ lim

N≪1
MPðtÞ ≃ 1þ Nðet − 1Þ; ð77Þ

establishing that the Gaussian becomes exactly Poisson.
[Note that as N → 0, the restriction on t for Mc

GðtÞ is
removed.] In the wavelike regime, the limit must be taken
more carefully. For instance, naively taking N → ∞ at
fixed t in either Mc

GðtÞ or MEðtÞ leads to a result that fails
even the basic normalization condition of Mð0Þ ¼ 1. The
point that is missed is that in all evaluations of the MGF we
eventually take t → 0, which can compensate for a large N.
Indeed, in both cases we see that as N → ∞, the restriction
on t leaves less and less room for an open neighborhood
around the origin. Therefore, large N forces small t, so that

lim
N≫1

Mc
GðtÞ ≃ lim

N≫1
MEðtÞ ¼

1

1 − Nt
: ð78Þ

This establishes the connections suggested in Fig. 2,
although we emphasize that formal equality holds only
in the limit N → 0 or N → ∞. The general distribution is
neither Poisson nor exponential.
Let us now extend the discussion to a more general

volume. Using the formalism developed so far, a fully
quantum calculation in an arbitrary volume can be per-
formed. The calculation is slightly extended, so we defer it
to Appendix F, although as shown there the mean and
standard deviation for the number quanta are

μk ¼ n̄V; σ2k ¼ n̄V½n̄θðVÞ þ 1�: ð79Þ

Here θðVÞ is a function of V that has units of volume. An
exact definition of θðVÞ is provided in Appendix F; in
general, it depends on the form of gð1Þðτ;dÞ, although for
the SHM we can compute it exactly and find the form
shown in Fig. 3. Broadly, we can summarize the function as

θðVÞ ≃

8>><
>>:

V V ≪ Vc;

0.32Vc V ∼ Vc;

Vc V ≫ Vc:

ð80Þ

The asymptotic behavior of θðVÞ is independent of gð1Þ,
although the exact transition between these limits does
depend on the exact form.
Using this more general result, we can confirm that for

V ¼ Vc we have μk ¼ n̄Vc ¼ N and σ2k ≃ Nð0.32N þ 1Þ,
which agrees with our earlier heuristic discussion up to an
Oð1Þ correction. We can now consider other volumes,
however. First, if we assume V ≪ Vc, then using Eq. (80)
the results in Eq. (79) become

V ≪ Vc∶ μk ¼ n̄V ¼ NNc; σ2k ¼ μkðμk þ 1Þ: ð81Þ

Here we introduced the number of coherence volumes
Nc ¼ V=Vc in order to rewrite the mean in terms of N.
From this, we see that if μk ¼ NNc ≫ 1 the statistics are
exponentially distributed, whereas for NNc ≪ 1 the vari-
ance reduces to the Poisson limit. For the limit under
consideration, Nc ≪ 1, and so we could only have
exponential behavior if N ≫ 1=Nc ≫ 1. Equivalently,

FIG. 3. Form of θðVÞ as introduced in Eq. (79) for the SHM.
This function, defined in Appendix F, controls the behavior of the
system as we study it at volumes across the coherence volume Vc.
The asymptotic behavior of the function, as given in Eq. (80), is
independent of the properties of the scalar field, whereas the exact
transition for V across Vc does depend on the properties of
the field.
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exponential statistics can only occur for DM sufficiently in
the wavelike regime, although even then as V shrinks
eventually the fluctuations become Poisson.
Next, consider the case where V ≫ Vc. As in the small-

volume limit, we expect that there must be a deviation from
the exponential statistics as the volume increases. Roughly,
from Eq. (58) 1 μeV DM should exhibit wavelike phenom-
ena at a characteristic scale of∼500 m; however, if we study
the system at Galactic scales there should be a deviation in
this behavior as it is no longer possible to build up coherent
fluctuations over the full volume. The transition in behavior
as a function of volume is smooth, as Fig. 3 shows, although
asymptotically we can treat the field as being a combination
of Nc statistically independent volumes. More quantita-
tively, from the general results above,

V ≫ Vc∶ μk ¼ NNc; σ2k ¼ μk½N þ 1�: ð82Þ

For particlelike DM, with N ≪ 1, the fluctuations have a
Poisson variance, σ2k ¼ μk. In the wavelike regime, N ≫ 1,
the variance is neither Poisson nor exponential, with
σ2k ¼ NcN2 < μ2k; in fact, as we show below, they are
Erlang or approximately normally distributed.
To formalize the study of the system when V ≫ Vc we

utilize an additional feature of the MGF: the generating
function of the sum of a set of independent random
variables is given by the products of their individuals
MGFs. We can exploit this by treating the system as Nc
individual coherence volumes. In each of these volumes,
the number of quanta is independent and described by
Eq. (73). Accordingly, the MGF for the number of quanta
in a volume V is

MV
GðtÞ ¼ ½Mc

GðtÞ�Nc ¼
�

1

1þ Nð1 − etÞ
�
Nc

; ð83Þ

again with t < lnð1þ 1=NÞ. The associated probability
distribution can be determined as

pk ¼
ðkþ Nc − 1Þ!
k!ðNc − 1Þ!

Nk

ð1þ NÞkþNc
: ð84Þ

From either the MGF or probability distribution we obtain a
mean and variance of μk ¼ NcN and σ2k ¼ NcNðN þ 1Þ, in
exact agreement with Eq. (82), validating our treatment of
each coherence volume as independent. The above analysis
emphasizes why the statistics remain Poisson in the particle
regime, as a sum of Poisson distributions is itself Poisson
distributed.
Consider the limiting behavior of the statistics in a large

volume, V ≫ Vc. For particle DM, we wish to take N small
and Nc large. In order to keep the mean fixed, we take
N → ϵN and Nc → Nc=ϵ, so that taking ϵ → 0 sends
Nc → ∞ while leaving μk ¼ NcN constant. Doing so,
we obtain

lim
ϵ→0

�
1

1þ ϵNð1 − etÞ
�
Nc=ϵ ¼ eNcNðet−1Þ: ð85Þ

Comparing with Eq. (76), we see that the distribution has
become exactly Poisson with mean NcN. In the wavelike
limit, as before, we effectively restrict t to a narrower range,
which implies

lim
N≫1

MV
GðtÞ ≃

�
1

1 − Nt

�
Nc ¼ ½MEðtÞ�Nc: ð86Þ

That this is the product of Nc exponential generating
functions of course had to be the case, but as written we
can also recognize this as theMGFof the Erlang distribution,
which describes a sum of Nc exponential distributions.
Formally, the above resolves what happens as we

combine Nc coherence volumes: in the particle regime
we have a sum of Poisson distributions, which is itself
Poisson, whereas in the wavelike paradigm we have a sum
of exponentials, which is Erlang distributed. What happens
as we take Nc to be larger and larger? As both the Poisson
and exponential distributions obey the central limit theo-
rem, as we add more and more coherence volumes, both
distributions must tend to a normal distribution. The normal
distributions are not identical, however. In fact, we can
apply the central limit theorem to a sum of Nc draws from
the Gaussian PðαÞ prediction given in Eq. (73). Doing so,
we arrive at a normal distribution with mean μk ¼ NcN and
variance σ2k ¼ NcNðN þ 1Þ.
Accordingly, forV ≫ Vc the number of quanta (and hence

energy) in the volume undergoes Gaussian fluctuations
regardless of the value ofN. But the size of those fluctuations
encodes the nature of DM, as would be revealed by a
measurement of the variance over the mean, σ2k=μk ¼
N þ 1. Equivalently, consider the ratio σk=μk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þ=μk
p

. In the particle limit, fluctuations exhibit
the conventional Poisson suppression of σk=μk ∼ 1=

ffiffiffiffiffi
μk

p
,

whereas in thewavelike limit σk=μk ∼ 1=
ffiffiffiffiffiffi
Nc

p
≫ 1=

ffiffiffiffiffi
μk

p
. In

short, in the wavelike limit the fluctuations are much larger
than expected from Poisson-distributed particle DM,
although less than expected from an exponential distribution,
which is recovered when V ¼ Vc. Effectively, for wavelike
DM, the fact that separate coherence volumes are incoherent
prevents even larger fluctuations from being generated,
although the fact that there were significant fluctuations
within each Vc leaves a fingerprint on large scales. For
m ≪ 18.7 eV, the variance is enhanced beyond that in the
particlelike Poisson case by a factor of N þ 1≃
1029ð1 μeV=mÞ4, from Eq. (70). Of course, even if there
is a significantly larger fluctuation than expected, they only
persist for the coherence time given in Eq. (54), which can be
short (τDM ≪ 1 s) even when N ≫ 1.
A related question to that explored above is how many

DM quanta would we expect to measure at a perfectly
efficient detector in a fixed time interval T. This question is
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the direct time analog of the spatial study above: we expect
the system to behave coherently up to T ≃ τc and then act
independently between these intervals. Indeed, as reviewed
in Ref. [32], the behavior in the time domain is exactly the
same as that derived above. The probability of observing k
quanta is given by Eq. (84) with Nc ≃min½1; T=τc� and
there is an equivalent function to θðVÞ which allows a
smooth transition between the regimes. Once corrected for
finite detector efficiency, these results can be used to
determine the exact pattern of fluctuations expected for
detectors counting discrete DM-induced events, even right
at the wave-particle boundary, as studied in Ref. [61].
In summary, in this section we have performed an

explicit calculation across the wave-particle boundary,
demonstrating that much of the intuitive behavior we
would expect holds, and also that near the N ≃ 1 boundary
the behavior of DM is unique. Of course, the calculations
we considered, namely, the energy in a box or the number
of DM quanta counted in a given time, are rather contrived.
Further, such measurements can only be rendered by an
experiment. A more complete discussion would necessitate
coupling the DM to a detector and drawing on techniques
from quantum measurement theory (for a discussion of this
in the context of DM, see, e.g., Ref. [34]). This is an
interesting direction to pursue, but the results of this section
already establish that in principle there is no obstacle to
computing the properties of DM for an arbitrary mass and
hence N without resorting to an assumption that it behaves
as a wave or particle.

VIII. NON-GAUSSIANITIES AND OTHER FORMS
OF THE DENSITY MATRIX

So far, we have primarily focused on the implications of
DM being described by the density matrix with a Gaussian
PðαÞ given in Eq. (7). There are a number of reasons to find
this form attractive. Regardless of the state DMwas born in,
the system has undergone considerable evolution. Most
significantly, the process of virialization is a violent one
[29]. Even if PðαÞ for DM was non-Gaussian before the
galaxy formed, through formation the DM field could have
been fragmented and randomized, in which case the local
DM field at the present epoch could be treated as a large
sum of independent fields, suggesting the quantum central
limit theorem could apply. Further, if the DM ever
thermalized, then (as we review in Appendix G) there
are examples where the evolution to a Gaussian density
matrix can be explicitly computed.
Beyond the above suggestive arguments, we offer no

proof that the DM density matrix takes a Gaussian form.
Resolving this represents an important step in determining
the behavior of wave DM and in confirming—or refuting—
our various claims. A path to doing so would be to study the
cosmological evolution of the density matrix for various
assumptions of its initial form. There is a wide literature on
the topic, delving into the theories of open quantum

systems, master equations, and gravitational decoherence
[62–68].
Although we leave aside a detailed study of the evolution

of the DM density matrix, one brief comment we
would make is that studying the evolution could also
represent an opportunity to understand the emergence of
nontrivial states in wave DM, such as solitons and
large-scale Bose-Einstein condensates (BECs); see, e.g.,
Refs. [69–72]. The only point we have to mention here is
that if the system is ever driven into a condensate where a
single mode dominates, from the discussion in Sec. V we
would expect that the autocorrelation function would tend
to a constant. This implies that if we live within such a
system—for instance, it has been proposed that there could
be a large soliton around the Sun; see, e.g., Refs. [73,74]—
the correlation time and length of DM could be signifi-
cantly larger than what would be inferred from the SHM as
given in Eqs. (54) and (58), which generically leads to a
signal that is more easily detected. If the BEC were further
described by a Gaussian PðαÞ, then following the dis-
cussion from the previous section we would expect large
exponential fluctuations in the density (or, equivalently, the
number of quanta observed in a given time) over the now
enhanced coherence scales.
The more general point we wish to emphasize in this

section is that the assumed form of PðαÞ impacts exper-
imental measurements. Specifically, following the discov-
ery of DM, one could look to constrain PðαÞ and hence ρ̂.
We do not attempt to quantify to what extent one could
constrain the DM density matrix in the present work;
instead, our focus is simply to outline how a variation to
PðαÞ can imprint itself on experimental measurements (see
also Ref. [75]). In particular, a non-Gaussian PðαÞ would
induce non-Gaussianities in various DM observables in the
form of deviations from the Gaussian predictions we have
determined. If the density matrix has not evolved to a
Gaussian form, it may retain information as to the state it
was born in, which could then be accessed experimentally.
As exciting as this would be, we emphasize once more that
our expectation is that PðαÞ is Gaussian. Nevertheless, to
highlight how the deviations from Gaussian behavior could
emerge we consider several examples below.
Consider first the example studied in Sec. VII where we

counted the number of quanta in a given volume. The
results there followed from the number of quanta the
Gaussian PðαÞ predicts within the coherence volume,
which is given by Eq. (73). As an extreme example, if
instead the DM is in a Fock state of N quanta, there would
be no variance observed in the fluctuations in Vc or a larger
volume. Alternatively, if the system is in a pure coherent
state, ρ̂ ¼ jαihαj, the probability to observe k quanta in Vc
is given by a Poisson distribution,

pk ¼
jαj2ke−jαj2

k!
; ð87Þ
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which holds independently of the wave-particle boundary.
As the sum of Poisson distributions is Poisson, the number
of quanta and the energy in the volume are Poisson
distributed over any scale. These represent clear deviations
from the Gaussian predictions for DM in the wavelike
regime discussed in the previous section.
Quadrature rather than number measurements of the DM

field would also differ were DM described by a pure
coherent state. As discussed around Eq. (26), in the
Gaussian case each quadrature is itself a normally distrib-
uted variable with zero mean. For a pure coherent state in
the wavelike limit, we have (for a single mode) X̂ ≃ffiffiffi
2

p
Re½α� and Ŷ ≃

ffiffiffi
2

p
Im½α�, but now α is a fixed rather

than stochastic variable so repeated measurements of the
field quadratures do not fluctuate. Further examples can be
obtained by interfering systems with different distributions.
If the system results from the superposition of two
independent fields described by P1ðαÞ and P2ðαÞ, then
the total density matrix is described by [32]

PðαÞ ¼
Z

dα0 P1ðα0ÞP2ðα − α0Þ: ð88Þ

For example, the superposition of two independent fields
described by coherent states jβ1i and jβ2i is again described
by a coherent state jβ1 þ β2i. If we instead combine a
system described by a coherent state jα0i with one
determined by the Gaussian PðαÞ, the total density matrix
is described by

PðαÞ ¼ 1

πN
e−jα−α0j2=N: ð89Þ

As before, this Gaussian has variance N=2 but, unlike in
Eq. (7), the value of α now has a nonzero mean. If such a
system described DM we would obtain Gaussian fluctua-
tions of the field, but now hϕi ≠ 0 and similarly for its
derivatives.
A remarkable possibility would be if DM had a PðαÞ that

is explicitly quantum and therefore not positive definite. As
shown in Sec. III, this would imply that DM cannot be
described as a classical random field even if it has large
occupation as there are measurement outcomes such a state
can generate that no classical field could reproduce. In
practice, however, experimentally measuring any such
behavior would be extremely challenging. The reason for
this is that the experimentalmeasurements needed to confirm
a negative PðαÞ are generically of the form of measuring a
smaller-than-classical variance in a given observable. An
examplewould be if the system is in a Fock state, the number
of quanta observed does not fluctuate, or measuring
gð2Þð0; 0Þ < 1 as discussed in Sec. VI. However, a consid-
erable complication to any such observation is to include and
carefully account for the quantum mechanics of the meas-
urement device. Generically, the measurement device has its

own series of fluctuations that can swamp the statistics of the
field being measured, especially in the case where that field
only couples weakly to the apparatus. For example, it was
shown in Ref. [33] that such considerations present an
enormous barrier to any attempt to infer a quantum nature
of gravity through graviton number or quadrature measure-
ments. Although we hope DM couples to us far more
strongly than gravity, the general points raised in that work
suggest it would be equally challenging to measure any
signal of a negative PðαÞ for DM. As such, although we do
not attempt to prove it here, we strongly suspect that even if
DMwere described by a quantumPðαÞ theremust remain an
appropriate classical wave description of the field that is
experimentally indistinguishable for all intents and purposes.

IX. DISCUSSION

The discovery of wave DM could be imminent, raising
the importance of understanding its behavior in detail
and going beyond the commonly adopted ansatz of
ϕðtÞ ∼ cosðmtÞ. In this work, we have outlined a procedure
for doing so where DM is described quantum mechanically.
Starting from a density matrix, which we argued likely
takes a Gaussian form, we can perform calculations at
arbitrary values of the DM mass without ever assuming it
behaves as a classical wave. Yet the picture also clarifies
how when m ≪ 10 eV DM can be described as a classical
stochastic field, with its fluctuations inherited from the
underlying density matrix. Further, drawing on the quan-
tum optics literature, we can formalize the various dis-
cussions of the coherence properties of the classical wave
picture of DM, including the coherence time, length, and
volume.
Ultimately, however, these are only early steps towards

formalizing the description of wave DM. We therefore end
with a brief discussion of the open questions suggested by the
present work. The most pressing is to resolve the two clear
shortcomings of our analysis. The first of these is to study
how the various properties of DM that are clarified with a
quantum-mechanical description are actually imprinted onto
a detector. For this, one can use techniques from quantum
measurement theory to simultaneously account for the
quantum mechanics of DM and the detector (see, e.g.,
Refs. [34,22]). For instance, it would be interesting to
determine how the large fluctuations in the observed number
of DMparticles studied in Sec. VII could imprint themselves
on a detector that measures individual quanta in search of
wavelike DM.
Second, it will be important to formally establish what

the density matrix of DM actually is. We have argued that ρ̂
likely takes a Gaussian form and have further noted in
Sec. VIII that deviations from this would imprint them-
selves as non-Gaussian fluctuations in DM measurements.
Nevertheless, formally one could look to evolve the density
matrix of DM from the early Universe until today, which
would resolve whether there remains any hint of the state
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that DM was born in. (In Appendix G we discuss how the
evolution proceeds in a particularly simple example.) Such
an analysis could further prove useful in understanding the
evolution of DM into configurations such as a BEC.
Last, one could imagine extending the techniques dis-

cussed in this work beyond scalar DM. An obvious
extension is to dark-photon DM, where most of what we
have discussed would apply almost immediately. The only
obstacle is in determining the appropriate distribution for the
polarization of the field, a question around which there is
presently considerable uncertainty (see, e.g., Ref. [76]), and
one could hope that quantum optics techniques could prove
useful. The formalism could also be extended to study
relativistic bosonic states, such as axions produced in the
early Universe or gravitational waves radiated from black
holes. With this in mind, where possible we have stated
results in a manner that did not assume that the field is
nonrelativistic, and indeed in certain cases the formofPðαÞ is
clear; for example, axions thermally emitted from the Sun
should have a Gaussian density matrix. More speculatively,
an extension to fermions may be possible, which could open
an alternative path to studying questions such as the
coherence properties of neutrinos. Of course, when turning
to fermions the approach in this paper would be modified at
step one as the coherent state is an inherently bosonic object.
Nevertheless, Cahill and Glauber showed in Ref. [77] that a
similar description applies for a fermionic field, although it
has not been developed as much as the bosonic analog.
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APPENDIX A: THE QUANTUM CENTRAL
LIMIT THEOREM

In this appendix, we review the classic argument of
Glauber [26] that PðαÞ obeys an analog of the central limit
theorem. This argument underpins the Gaussian form of the
density matrix in Eq. (7) that we argue likely holds for DM

and therefore use extensively through the main text. In
particular, we imagine that the local DM field is a super-
position of a large number n of independent and identically
distributed random fields. If DM has a thermal origin, this
condition is satisfied, but beyond this we offer only
heuristic arguments that this is true as discussed in
Sec. VIII. If we assume that the contribution of each field
to the DM is described by a Glauber-Sudarshan distribution
πðαÞ, and further following Ref. [26] assume the strong
stationarity condition of πðαÞ ¼ πðjαjÞ, then in a manner
analogous to the proof of the classical central limit theorem,
we establish that PðαÞ must be a Gaussian as n → ∞.
To begin with, by a direct generalization of Eq. (88), the

quasiprobability distribution that describes a field that is the
superposition of n identical and independent fields is given
by convolving the individual distribution n times. In detail,

PðαÞ ¼
Z

δ

�
α −

Xn
j¼1

αj

�Yn
j¼1

dαjπðαjÞ: ðA1Þ

Taking the Fourier transform of this result, we can replace
the convolution by a product. Before doing so, let us
introduce a convenient, albeit unorthodox Fourier transform
convention for the present discussion. Using subscripts r
and i to refer to the real and imaginary parts of complex
variables, we define the transformation between a quasi-
probability distribution gðαÞ and its transform g̃ðλÞ by24

g̃ðλÞ ¼
Z

dα eiðαrλrþαiλiÞ=
ffiffi
n

p
gðαÞ;

gðαÞ ¼
Z

dλ
nð2πÞ2 e

−iðαrλrþαiλiÞ=
ffiffi
n

p
g̃ðλÞ: ðA2Þ

The factors of n are added for later convenience.
Accordingly, the Fourier transform of Eq. (A1) is

P̃ðλÞ ¼ ½π̃ðλÞ�n: ðA3Þ

From here, we consider π̃ðλÞ. Expanding around λ ¼ 0,
we obtain

π̃ðλÞ ¼ π̃ð0Þ þ λrπ̃
ð1;0Þð0Þ þ λiπ̃

ð0;1Þð0Þ

þ 1

2
λ2r π̃

ð2;0Þð0Þ þ λrλiπ̃
ð1;1Þð0Þ þ 1

2
λ2i π̃

ð0;2Þð0Þ þ…;

ðA4Þ

with π̃ðp;qÞðλÞ ¼ ∂
p
λr
∂
q
λi
π̃ðλÞ. We can relate these expressions

back to πðαÞ using Eq. (A2). First, π̃ð0Þ ¼ R
dαπðαÞ ¼ 1.

Further,

24We caution that a different Fourier transform convention is
used in the main text [cf. Eq. (39)] and Appendix C. The choice
here is made so that g̃ðλÞ is comparable to the characteristic
function of a classical probability distribution.
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π̃ðp;qÞð0Þ ¼
�

iffiffiffi
n

p
�

pþq
Z

dα αpr α
q
i πðαÞ: ðA5Þ

From here, in order to simplify the discussion we invoke
the condition that πðαÞ ¼ πðjαjÞ. In this case, the deriva-
tives in Eq. (A5) vanish unless p or q are even, and in fact
the only terms we need to second order in λ are

π̃ð2;0Þð0Þ ¼ π̃ð0;2Þð0Þ ¼ −
1

2n

Z
dαjαj2πðjαjÞ; ðA6Þ

as all others vanish.
Returning to Eq. (A3), we have

P̃ðλÞ ¼
�
1 −

1

4n
jλj2hjαj2i þOð1=n2Þ

�
n
: ðA7Þ

In the limit n → ∞, the higher-order terms can be neglected
and we arrive at

P̃ðλÞ ≃ exp

�
−
1

4
jλj2hjαj2i

�
; ðA8Þ

which, after applying the inverse Fourier transform,
becomes

PðαÞ ≃ 1

πnhjαj2i exp
�
−

jαj2
nhjαj2i

�
: ðA9Þ

From here, note that hjαj2i ¼ hN̂i is the expected number
of states associated with a single source, so that nhN̂i is the
expected number of quanta for the combined field and
therefore can be identified with N. This completes the
connection to Eq. (7).
Let us end with several comments. First, we can trivially

repeat the argument mode by mode to justify Eq. (12).
Second, notice that the argument did not require N ≫ 1 so
that it need not only apply in the wavelike DM regime.
Instead, we only require n ≫ 1, and in principle we can
send n → ∞ while keeping nhN̂i fixed and small. Last, as
noted by Glauber, if the component fields are not identical
but have comparable variances hN̂ji, the argument pro-
ceeds identically and in the end we find N ¼ P

jhN̂ji,
demonstrating that the assumption that the n fields were
identical can be relaxed.

APPENDIX B: CONTINUOUS
VERSUS DISCRETE MODES

Throughout the main text we use the continuous versus
discrete decomposition of the field operator into modes
interchangeably as convenient. For completeness, in this
appendix we briefly outline the connection between the two
choices of modes.

To discuss the mode discretization, we start from the
continuous definition of the scalar field operator expanded
in terms of plane waves as in Eq. (2) with the commutation
relation given by Eq. (3). From both results, we see that the
mass dimension of the creation and annihilation operators
is given by ½âð†Þ� ¼ −3=2. To discretize the modes, we
place the system within a box of volume V ¼ L3, such that
the continuous k modes now take on values k ¼ ð2π=LÞn,
with n ¼ ðnx; ny; nzÞ and nx;y;z ∈Z. Integration over all k
modes is achieved by summing over all values of n and the
commutation among different modes is implemented with a
Kronecker delta among the integers labeling the modes. In
detail,

Z
d3k
ð2πÞ3 →

1

V

X
k

; δðk − qÞ → V
ð2πÞ3 δk;q: ðB1Þ

The remaining volume factors are absorbed by the creation
and annihilation operators through

âð†Þk →
ffiffiffiffi
V

p
âð†Þk ; ðB2Þ

such that these operators are dimensionless in the discrete
implementation of the problem.
Applying the three replacements above allows us to

move back and forth from the continuous representation of
the field and commutation relations to their discrete analogs
in Eq. (10). The primary utility of the discrete representa-
tion is that it simplifies the treatment of coherent states. In
particular, in the discrete representation, the coherent state
of a given mode is defined by

âqjαki ¼ δk;qαkjαki: ðB3Þ

Importantly, as in the discrete case, âk is dimensionless,
and so too is the coherent state eigenvalue αk ∈C. Clearly,
this cannot persist in the continuous case; just as for the
annihilation operator, the coherent state eigenvalue must
have mass dimension −3=2. In order to achieve this, one
introduces the continuous displacement operator [cf. the
discrete version in Eq. (C2)]

D̂ðâ; αÞ ¼ exp

�Z
d3k
ð2πÞ3 ðαkâ

†
k − α�kâkÞ

�
: ðB4Þ

The continuous displacement operator generates a coherent
state from the vacuum [cf. Eq. (C3)],

jαi ¼ D̂ðâ;αÞj0i

¼ exp

�
−
1

2

Z
d3k
ð2πÞ3 jαkj

2

�
exp

�Z
d3k
ð2πÞ3 αkâ

†
k

�
j0i:

ðB5Þ
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From this definition of the continuous coherent state, we can
confirm that âkjαi ¼ αkjαi. Further discussion of the treat-
ment of continuum fields can be found in, e.g., Ref. [78].
In principle, the above results allow one to perform all

manipulations in the continuous representation. Such an
approach is, however, cumbersome. Far simpler is to dis-
cretize the field, perform all manipulations with the discrete
coherent states, and revert back to the continuum for the final
result. This is the approach we adopt in the main text.

APPENDIX C: THE WIGNER DISTRIBUTION

In the main text, we primarily make use of the Glauber-
Sudarshan quasiprobability distribution PðαÞ. This repre-
sentation has a number of uses, but when it comes to
performing calculations it is most useful when evaluating
normally ordered quantities, as shown in Eq. (13). In this
appendix, we briefly outline how to generalize the notion of
quasiprobability distributions to different operator order-
ings and use this to introduce another convenient repre-
sentation: the Wigner distribution.
Due to the noncommutativity of operators in a quantum

theory, expectation values differ between operator ordering
schemes. As shown in Refs. [79,80], for an s-operator
ordering we can associate the density operator with a
corresponding characteristic function χðsÞðξÞ specified by
ξ∈C. In detail,

ρ̂ ¼
Z

dξ
π
½D̂ð−sÞðâ; ξÞ�†χðsÞðξÞ; ðC1Þ

which is written in terms of the (s)-ordered displacement
operator,

D̂ðsÞðâ; αÞ ¼ esjαj2=2D̂ðâ; αÞ ¼ esjαj2=2eαâ†−α�â: ðC2Þ

In this prescription, s ¼ þ1 corresponds to normal order-
ing, s ¼ 0 to symmetric ordering, and s ¼ −1 to antinormal
ordering. [An example of a symmetrically ordered operator
is provided in Eq. (C11).] The displacement operator itself
creates a coherent state with amplitude α from the vacuum,
in particular,

D̂ðâ; αÞj0i ¼ jαi: ðC3Þ

The characteristic function is related to a quasiprob-
ability distribution FðsÞðαÞ by a Fourier transform,25

FðsÞðαÞ ¼
Z

dξ
π2

χðsÞðξÞDðξ;αÞ; ðC4Þ

where the displacement operator with two c-number argu-
ments is given byDðξ; αÞ ¼ eαξ

�−α�ξ. To help interpret these
results, using subscripts r and i for the real and imaginary
parts of α; ξ∈C, we have αξ� − α�ξ ¼ 2iαiξr − 2iαrξi, so
that we are taking ð−ξi; ξrÞ as the conjugate variables to
ðαr; αiÞ. Further, we can use this notation to represent the
Dirac δ as

δðαÞ ¼
Z

dξ
π2

eαξ
�−ξ�α ¼

Z
dξ
π2

Dðξ; αÞ: ðC5Þ

Inverting Eq. (C4), we can write the density operator in
terms of the quasiprobability distribution as

ρ̂ ¼
Z

dξdα
π

D̂ð−sÞðâ; ξÞDðξ; αÞFðsÞðαÞ: ðC6Þ

From here, three different quasiprobability distributions
can be determined for the different choices of s. If we take
s ¼ þ1, corresponding to normal ordering, the character-
istic function is given by

χðþÞðξÞ ¼ Tr½ρ̂D̂ðþÞðâ; ξÞ�: ðC7Þ

This is the characteristic function corresponding to the
Glauber-Sudarshan representation, i.e., PðαÞ ¼ FðþÞðαÞ.
The other convenient distribution we wish to introduce
is that named after Wigner [81], which arises for symmetric
ordering. The characteristic function is

χð0ÞðξÞ ¼ Tr½ρ̂D̂ð0Þðâ; ξÞ� ðC8Þ

and the associated quasiprobability distribution is
denoted WðαÞ ¼ Fð0ÞðαÞ.
Let us briefly collect several useful properties of WðαÞ.

First, when PðαÞ takes the Gaussian form, the Wigner
distribution also takes the form of a Gaussian, albeit with a
different variance. This follows from substituting Eq. (7)
into first Eq. (C8) and then Eq. (C4), from which we obtain

WðαÞ ¼ 1

π


N þ 1

2

� e−jαj2=ðNþ1
2
Þ: ðC9Þ

Here and in general, we normalize the Wigner distribution
similarly to PðαÞ, in particular, R dαWðαÞ ¼ 1. The expres-
sion can be generalized to multiple modes in analogy
to Eq. (12).
Several differences between PðαÞ and WðαÞ should be

noted. The Wigner distribution is always a continuous
function of α, whereas PðαÞ can be highly singular, as
demonstrated in Eq. (18). This allows us to identify a
closed-form WðαÞ for any state DM could be associated

25We emphasize once more that the Fourier transform con-
vention we use here differs from that in the main text and
Appendix A. Here, following Refs. [79,80], our motivation is to
define a transform that maximizes the similarity with the
displacement operator. Having said that, we slightly deviate
from the conventions of that work by including 1=π2 in Eq. (C4)
(rather than 1=π) to ensure that

R
dαFðsÞðαÞ ¼ 1, as is done for

PðαÞ.
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with. However, the criteria of negativity being in one-to-
one correspondence with quantum states holds only
for PðαÞ.
Just as PðαÞ is convenient for the calculation of normally

ordered expectation values, WðαÞ is optimal for symmet-
rically ordered expressions. In particular [cf. Eq. (13)],

hfÂðâ; â†ÞgSi ¼
Z

dαW ðαÞAðαÞ; ðC10Þ

where fâmðâ†ÞngS represents the average of ðmþ
nÞ!=ðm!n!Þ operator orderings. For example,

fâ2â†gS ¼
1

3
ðâ2â† þ ââ†âþ â†â2Þ: ðC11Þ

This result can be used to simplify many calculations; for
instance, it is used to compute Eq. (15) in the main text.
In the limit where N ≫ 1 and we can approximate

½a; a†� ≃ 0, the operator ordering becomes irrelevant and
we can equally well compute expectation values using PðαÞ
through Eq. (13) or WðαÞ with Eq. (C10). As WðαÞ is
continuous, it can be easier to work with. However, this
does not allow us to circumvent the requirement of
PðαÞ ≥ 0 to treat ϕ̂ as a classical wave in this limit. For
example, the Wigner distribution of the N particle Fock
state is

WðαÞ ¼ 2

π
ð−1ÞNe−2jαj2LNð4jαj2Þ; ðC12Þ

where LN are the Laguerre polynomials. Although far less
singular than the equivalent Glauber-Sudarshan distribution
in Eq. (18), for N > 0 this distribution is both positive and
negative across its domain, excluding any probability-
based interpretation.

APPENDIX D: ZERO-POINT DIVERGENCE

As observed in the main text, the quantum approach to
computing DM observables inevitably leads to the appear-
ance of divergences. The goal of this appendix is to briefly
review how these can be regulated.
The divergence is first observed in Eq. (15) and is present

in the lowest nontrivial mode,

hϕ̂2i ¼
Z

d3k
ð2πÞ3

Nk

ωk
þ
Z

d3k
ð2πÞ3

1

2ωk
: ðD1Þ

As from Eq. (9) Nk ∝ pðkÞ, the first term is regulated in
the UV. The second term is not and is quadratically
divergent,

R
Λ d3k=ωk ∼ Λ2. The divergence is not an

unusual one in field theory and for an extended discussion
of how to treat such divergences carefully, see, e.g.,
Ref. [82]. In particular, this is similar to the usual zero-
point divergence that appears in the Hamiltonian. Note that
the Hamiltonian can be written as

Ĥ ¼ 1

2

Z
d3x½ð∂tϕ̂Þ2 þ ð∇ϕ̂Þ2 þm2ϕ̂2�: ðD2Þ

Substituting in the mode expansion for the fields, we find a
similar divergence to that in Eq. (D1), although now with a
quartic divergence,

R Λ d3kωk ∼ Λ4.
As a first step to regulating the divergence, we couple ϕ̂2

to a classical current J through L ⊃ ϕ̂2J. We can view J as
a proxy for measuring ϕ̂2; it is an external field whose value
depends on the scalar operator. Even if we defined ϕ̂2 to be
normal ordered in order to remove the zero-point diver-
gence, the problem is not avoided. This is because an
identical divergence appears at one loop from the new
coupling ϕ̂2J; closing the scalar loop, we obtain a diagram
that is quadratically divergent in the UV and matches
Eq. (D1). However, this is a standard one-loop divergence
and we can remove it by adding a counterterm Δ · J to our
Lagrangian. As usual, we choose Δ to absorb the UV
divergence, but even then we remain free to move finite
contributions in and out of Δ, which simply represents a
choice of renormalization scheme. A similar procedure can
be used to regulate the Hamiltonian: we add a counterterm
ρΔ to the Lagrangian, and now moving finite contributions
between ρΔ and Ĥ is equivalent to choosing the zero scale
of energy and in nongravitating theories has no physical
impact.
The above procedure is sufficient to resolve all diver-

gences that the calculations in this work generate. Focusing
on ϕ̂2, we define a partition function as

Z½J� ¼
Z

½Dϕ�ei
R

d4x½L0þðϕ2þΔÞJ�: ðD3Þ

From here, we can compute the correlators of the scalar
field through

hϕ̂2ni ¼ ð−iÞn
Z½0�

δnZ½J�
δJn

				
J¼0

¼ 1

Z½0�
Z

½Dϕ�ðϕ2 þ ΔÞnei
R

d4xL0 : ðD4Þ

Importantly, this expression reveals that a choice of Δ that
removes the UV divergence in hϕ2i is sufficient to remove
all of the divergences that appear in Eq. (15), as they all
appear in an identical form to the final line in Eq. (D4). We
thereby justify that this one regulator is sufficient and has
no impact on the general form of the correlators.
Note that when writing hϕ̂2niwe left the specific state the

system is in ambiguous. Formally, the state enters through
the boundary conditions for the scalar field configurations
included as part of the definition of Z½J�. In field theory
scattering calculations, we commonly choose this external
state to be the vacuum. In the present work, however, it is
more interesting to evaluate the state between hαj and jαi,

CHEONG, RODD, and WANG PHYS. REV. D 111, 015028 (2025)

015028-24



as after doing so we can integrate the result over α with
weighting PðαÞ to obtain the result for a general density
matrix, as justified by Eq. (5). Although technically
important for the definition of Z½J�, if our focus is purely
on regulating the divergence, the specific state is irrelevant.
In particular, if we compute hXjϕ̂2jXi for any normalized
state jXi, the divergence appearing in Eq. (D1) remains
identical; this is true even for the divergence appearing at
one loop, as that loop has no external ϕ̂ fields. Accordingly,
we can also fix Δ for one state and be confident that the
system remains regulated even for a different density
matrix.

APPENDIX E: THE COMPLEX ANALYTIC
SIGNAL AND CONVENTIONS FOR THE PSD

There are three common conventions for the PSD: two
sided, one sided, and that of the complex analytic signal. In
this appendix, we denote these as S2, S1, and Sz, respec-
tively. Throughout the main text we use only the one-sided
PSD, and in this appendix we review the differences
between these definitions and the impact on the definitions
of the coherence time and volume.
The PSD captures how the power—in the sense of the

value of ϕ2; see Eq. (42)—is distributed over frequency.
Following the Wiener-Khinchin theorem, the PSD is the
Fourier transform of the autocorrelation function.
Therefore, the most direct definition of the PSD is

S2ðωÞ ¼
Z

∞

−∞
dτΓðτÞeiωτ: ðE1Þ

That ΓðτÞ is even implies that we can replace eiωτ →
cosðωτÞ in the integrand and therefore, as ΓðτÞ∈R, we
have S2ðωÞ∈R. More importantly for the present discus-
sion, the evenness of ΓðτÞ implies that S2ðωÞ is an even
function of frequency, implying that there is no unique
information carried by the negative frequencies.
The presence of both positive and negative frequencies is

a simple consequence of the Fourier transform being a
decomposition in a basis of complex exponentials, eiωτ; the
presence of both ensures that the inverse transform pro-
duces a real function ΓðτÞ. Nevertheless, when associating
frequencies with energies in the quantum theory it is
convenient to define a PSD where we can work without
the negative contributions. The simplest approach is to
define the PSD that appears in Eq. (E1) as two sided and
then define the one-sided PSD through

1

2
S1ðωÞ ¼

Z
∞

−∞
dτ ΓðτÞeiωτ: ðE2Þ

Comparing with Eq. (39), we confirm that the PSD used in
the main text is one sided, whereas from Eq. (E1) we see

that the two definitions are related by S1ðωÞ ¼ 2S2ðωÞ.
Importantly, S1ðωÞ still has support at negative frequencies.
The only difference is that one can obtain correct expres-
sions for the total power when integrating over only the
“physical” frequencies ω∈ ½0;∞Þ [as exploited in
Eq. (42)]. When working with S2ðωÞ, one must integrate
over both positive and negative frequencies to recover the
entire power in the field.
The final PSD we discuss is that associated with the

complex analytic signal, Sz, and is defined such that for
ω > 0, SzðωÞ ¼ S2ðωÞ, whereas for ω < 0, SzðωÞ ¼ 0. Our
discussion partially follows Ref. [32] and we refer there for
further details. To ensure that the PSD has no support at
negative values, the associated autocorrelation function,
denoted ΓzðτÞ, must be complex. More fundamentally, let
us focus on the case where the quantum field of interest is
well approximated by its classical field analog, ϕðtÞ, given
in Eq. (17). (We discard the positional dependence of the
field for most of the discussion to simplify the notation.) If
we denote the Fourier transform of the field as ϕ̃ðωÞ, then
the associated complex analytic signal is defined by

ϕzðtÞ ¼
Z

∞

0

dω
2π

ϕ̃ðωÞe−iωt; ðE3Þ

such that we simply remove the negative frequencies when
performing the inverse Fourier transform. [As a simple
example, if ϕðtÞ ¼ cosðmtÞ, then ϕzðtÞ ¼ 1

2
e−imt.] Note

that the original function can be recovered directly through
ϕðtÞ ¼ 2ReϕzðtÞ. Although we focus on the classical field
approximation, there is a close connection between the
complex analytic signal and the decomposition of the field
operator into positive- and negative-frequency modes as
performed in Eq. (59). In particular, if we apply the
definition in Eq. (E3) to the discrete mode decomposition
of the field in Eq. (10), we find ϕ̂zðtÞ ¼ ϕ̂þðtÞ.
Continuing, we define the associated autocorrelation

function as

hΓzðτÞi ¼ hϕ�
zðtÞϕzðtþ τÞi: ðE4Þ

Assuming strong stationarity, we can compute

hΓzðτÞi ¼
n̄
2

Z
∞

0

dω
pðωÞ
ω

e−iωτ: ðE5Þ

Using hΓðτÞi ¼ 2RehΓzðτÞi, we recover Eq. (34); note also
that hΓð0Þi ¼ 2hΓzð0Þi. These results should be compared
to Eqs. (61) and (62). The above discussion reveals that
gð1ÞðτÞ ¼ hΓzðτÞi=hΓzð0Þi, a result which could also be
seen from the fact that an equivalent definition for ΓzðτÞ in
Eq. (E4) can be obtained from the quantum fields,
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hΓzðτÞi ¼ hϕ̂−ðtÞϕ̂þðtþ τÞi, cf. Eq. (60). Finally, the PSD
can be determined in two ways26:

hSzðωÞi ¼
Z

∞

−∞
dτhΓzðτÞieiωτ;

hϕ̃�
zðωÞϕ̃zðω0Þi ¼ 2πhSzðωÞiδðω − ω0Þ: ðE6Þ

As ϕ̃zðωÞ vanishes for ω < 0, the second expression
demonstrates that Sz only has support for positive frequen-
cies. From Eq. (E5) we can compute

hSzðωÞi ¼
πn̄pðωÞ

ω
; ðE7Þ

where now pðωÞ should only be considered to have positive
support. We can connect with Eq. (40) as S2ðωÞ ¼ SzðωÞ þ
Szð−ωÞ and again S1ðωÞ ¼ 2S2ðωÞ. All three PSDs are
related throughZ

∞

−∞
dω S2ðωÞ ¼

Z
∞

0

dω S1ðωÞ ¼ 2

Z
∞

0

dω SzðωÞ: ðE8Þ

Having introduced the various PSD conventions, we next
turn to a discussion of their relation to the definition of the
coherence time and volume. A common definition of the
coherence time in quantum optics is [32]

τc ¼
Z

∞

−∞
dτ

				 hΓzðτÞi
hΓzð0Þi

				2: ðE9Þ

The advantage of this definition is that it completely
removes the oscillatory behavior of the autocorrelation
function and associates τc with the decay of its amplitude.
Nevertheless, one can show that if the system obeys strong
stationarity, we haveZ

∞

−∞
dτjhΓzðτÞij2 ¼

1

2

Z
∞

−∞
dτhΓðτÞi2; ðE10Þ

which, together with hΓð0Þi ¼ 2hΓzð0Þi, establishes that
Eq. (E9) is equivalent to the definition of the coherence
time using in the main text, Eq. (47). Given the connection
between gð1Þ and Γz discussed above, we further justify the
alternative definition given in Eq. (63).
Restoring the positional dependence to the fields, the

natural definition of the coherence volume is apparent and
indeed has already been stated in Eq. (63). We can further
confirm why the two definitions given in Eq. (55) do not
exactly match. The problem lies with the oscillatory
contributions that remain when working with ΓðdÞ rather
than ΓzðdÞ. In particular, using Eq. (33) we have

2

Z
d3d

�hΓðdÞi
hΓð0Þi

�
2

¼ ð2πÞ3
h1=ωi2

Z
∞

−∞

d3k
ω2
k
½pðkÞ2 þ pðkÞpð−kÞ�: ðE11Þ

In general,pðkÞ is not even, so the terms cannot be combined
and it is clear that the second expression given for Vc in
Eq. (55) slightly differs from that computedwith the complex
analytic signal.Note that the SHMofEq. (36) is explicitly not
even in k, although direct computation reveals that the two
definitions give similar values nonetheless.
As a final note, we point out that the various PSD

conventions have not always been used consistently in the
literature. For example, Ref. [12] neglected negative
frequencies, although they did not include the factor of
2 in Eq. (E2) as appropriate for a one-sided PSD. Therefore,
formally, the PSD as used in that reference is a factor of 2
too small, which would propagate to the definition of the
axion likelihood provided in that work and implemented
for the experimental analyses used by ABRACADABRA
[83–85]. Nonetheless, all experimental sensitivities are
computed using likelihood ratios, in which the neglected
factor exactly cancels, leaving the results unaltered.

APPENDIX F: FULL CALCULATION THROUGH
THE WAVE-PARTICLE TRANSITION

In this appendix, we provide a detailed calculation for the
mean and variance of the energy of a nonrelativistic scalar
field within an arbitrary volume V, assuming a Gaussian
PðαÞ. The results of this calculation are discussed in
Sec. VII and we refer there for additional details and a
discussion of how these results extend to higher moments.
Beyond these specifics, the calculation in this appendix
also provides an explicit example of a full quantum
calculation where results can be extracted independent of
the assumed N. It further demonstrates explicitly how the
coherence properties of the field emerge naturally in the
calculation, rather than being heuristic properties associ-
ated with the field’s evolution.
To begin with, for a nonrelativistic field the density

operator is given by

ρ̂ðt;xÞ ¼ 1

2
½ð∂tϕ̂Þ2 þ ð∇ϕ̂Þ2 þm2ϕ̂2�

¼
X
k;q

m
V
â†kâqe

iðk−qÞ·x; ðF1Þ

where we have removed the zero-point divergence as
discussed in Appendix D (indeed Ĥ ¼ R

d3xρ̂). In order
to avoid confusion with the physical volume we are
studying, V, in this appendix we only denote the volume
that is used to discretize the field as V. In terms of this, the
energy operator is simply the density integrated over the
volume of interest,

26The second relation also holds with Sz → S2 and ϕ̃z → ϕ̃,
although it is often more convenient to compute the PSD as the
Fourier transform of ΓðτÞ.
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M̂ðtÞ ¼
Z
V
d3xρ̂ðt;xÞ: ðF2Þ

Let us make several comments already. First, as we are
dealing with a nonrelativistic field, the energy in the
volume is equivalent to the enclosed mass and so we have
defined the operator with the symbol M̂. Building on this,
we emphasize that while in the nonrelativistic limit all
modes have energy ωk ¼ m up to Oðv2Þ corrections—as
assumed in Sec. VII—we retain the energy differences in
the phase factor that enters Eq. (F1); as we see explicitly
below, the phases are where the coherence volume emerges
from. Further, in general the operators explicitly depend on
time; however, as our focus is on the spatial fluctuations of
the energy, we set t ¼ 0 and remove the dependency
moving forward. How fluctuations in time should be
considered is discussed in Sec. VII. Last, for computational
convenience we take V ¼ L3 to be a cubic region and we
leave the fact that the region being integrated over is V
implicit moving forward.
Having established our conventions, the mean value

follows directly, although being explicit,

hM̂i ¼
Z

d3xhρ̂ðxÞi ¼
Z

d3x
X
k;q

m
V
hâ†kâqieiðq−kÞ·x

¼
Z

d3x
X
k

m
V
Nk ¼ mn̄V: ðF3Þ

Accounting for the energy of all modes being m, this then
matches the mean in Eq. (79).
The variance can be determined from hΔM̂2i ¼ hM̂2i −

hM̂i2 so that what remains is to compute the second
moment. Proceeding as above,

hM̂2i ¼
Z

d3xd3x0 X
k;q;k0;q0

m2

V2
hâ†kâqâ†k0 âq0 i

× ei½ðq−kÞ·xþðq0−k0Þ·x0�: ðF4Þ

Consider the expectation value,

hâ†kâqâ†k0 âq0 i ¼ hâ†kâ†k0 âqâq0 i þ hâ†kâq0 iδk0;q

¼ hα�kα�k0αqαq0 i þ hα�kαq0 iδk0;q: ðF5Þ

To evaluate this, we observe that as the α values are
normally distributed, we can apply Wick’s theorem to the
first expression, giving

hα�kα�k0αqαq0 i ¼ hα�kα�k0 ihαqαq0 i þ hα�kαqihα�k0αq0 i
þ hα�kαq0 ihαqα�k0 i: ðF6Þ

The first term vanishes, leaving

hâ†kâqâ†k0 âq0 i ¼ NkNk0δk;qδk0;q0

þ NkðNk0 þ 1Þδk;q0δk0;q: ðF7Þ

Substituting the first line of this result back into Eq. (F4),
we obtain hM̂i2. Therefore, the second line of Eq. (F7)
specifies the variance, which after moving to the continu-
ous representation for the modes becomes

hΔM̂2i ¼ m2n̄
ð2πÞ3

Z
d3xd3x0

Z
d3kd3q

× pðkÞ½ð2πÞ3n̄pðqÞ þ 1�eiðq−kÞ·ðx−x0Þ: ðF8Þ
There are two distinct integrals over momenta associated
with the two terms in square brackets. Starting with the first
and introducing the shorthand d ¼ x − x0, we have

n̄
Z

d3kd3qpðkÞpðqÞeiðq−kÞ·d

¼ n̄

�Z
d3kpðkÞe−ik·d

��Z
d3qpðqÞeiq·d

�

¼ n̄

				 hΓzðdÞi
hΓzð0Þi

				2 ¼ n̄jgð1Þð0;dÞj2; ðF9Þ

where we observe that the integrals over momentum could
be rewritten in terms of the complex analytic signal
discussed in Appendix E and then exploit its connection
to gð1Þ introduced in Sec. VI. The second integral from
Eq. (F8) is more straightforward,

1

ð2πÞ3
Z

d3k d3qpðkÞeiðq−kÞ·d ¼ δðdÞ; ðF10Þ

Returning to the full expression in Eq. (F8), as the integrand
depends only on the difference of the positions through d,
we can change variables to reduce this to

hΔM̂2i ¼ m2n̄V½n̄θðVÞ þ 1�; ðF11Þ

with

θðVÞ ¼
Z

d3dTðdÞjgð1Þð0;dÞj2;

TðdÞ≡ V−1ðL − jdxjÞðL − jdyjÞðL − jdzjÞ; ðF12Þ

where the integral over d is also performed over the volume
of interest V. Accounting for the energy of the modes, this
justifies the variance stated in Eq. (79). Note that a similar
expression to θðVÞ appears when studying fluctuations of
the field over arbitrary times, as compared to τc, as
considered in Ref. [86] (see also Ref. [32] which adopted
the θ notation we follow).
The asymptotic behavior of θðVÞ is independent of

gð1Þð0;dÞ. For V ≪ Vc, d is restricted to a region where
jgð1Þð0;dÞj ≃ 1 (cf. Fig. 1). Therefore,
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lim
V≪Vc

θðVÞ ≃
Z
V
d3dTðdÞ ¼ V: ðF13Þ

Second, for V ≫ Vc, jgð1Þð0;dÞj2 decays rapidly when d is
outside of the coherence volume, such that TðdÞ ≃ 1 and
we now have

lim
V≫Vc

θðVÞ ≃
Z
V
d3djgð1Þð0;dÞj2 ¼ Vc; ðF14Þ

as this is exactly the definition of the coherence volume in
Eq. (63). This confirms that the asymptotics seen in Fig. 3
are general, whereas the transition between them depends
on the exact form of gð1Þ. Using the SHM as a specific
example, the analytic form for jgð1Þð0;dÞj2 is given in
Eq. (66) and from this we can evaluate

θDMðVÞ
Vc

¼ ½πν1=3Erfð ffiffiffi
π

p
ν1=3Þ − 1þ e−πν

2=3 �3
π3ν

; ðF15Þ

with ν ¼ V=Vc. This is exactly the form that was shown in
Fig. 3 and, in particular, we have θDMðVcÞ ≃ 0.319Vc,
consistent with Eq. (80).

APPENDIX G: AN EXAMPLE OF THE
EVOLUTION OF PðαÞ

As emphasized in the main text, a full justification of the
assumed Gaussian PðαÞ requires understanding how the
density matrix of DM evolved. Here we review an example
of how one can evolve PðαÞ in a highly idealized scenario
where the DM is coupled to a thermal reservoir. We
emphasize that in no sense is this intended to be a model
for how the PðαÞ of DM evolved in our Universe and the
final result is unsurprising: PðαÞ evolves to a Gaussian as
the system is thermalizing and a thermal distribution is
equivalent to a Gaussian PðαÞ. Our review follows closely
Refs. [67,87] and we refer to those works for further details.
(See also Refs. [62–64] for a similar study.)
Formally, the evolution of the system is determined by a

master equation for the density matrix. Restricting our
attention to a single mode of frequencym, when the system
is coupled to a thermal reservoir the master equation takes
on the Lindblad form,

˙̂ρ ≃ −im½â†â; ρ̂� þ γ

2
ðn̄þ 1Þð2â ρ̂ â† − â†â ρ̂−ρ̂â†âÞ

þ γ

2
n̄ð2â†ρ̂â† − ââ†ρ̂ − ρ̂ â â†Þ: ðG1Þ

This result, which is effectively the equation of a damped
harmonic oscillator, is stated in the Schrodinger picture.
The properties of the reservoir are encoded in the average

occupation at the mode of interest, n̄ ¼ ½em=T − 1�−1, and
the dissipation coefficient, γ, is determined by the inter-
action between the DM and the reservoir. It is through these
interactions that the DM field inherits the noise from the
environment that drives its evolution.
The goal is to describe the evolution of Pðα; tÞ as a

function of time. Substituting into Eq. (5), the master
equation of Eq. (G1) becomes a Fokker-Planck equation,

∂tPðα; tÞ ≃
��

γ

2
þ im

�
∂ααþ

�
γ

2
− im

�
∂α�α

�

þ γn̄∂α∂α�
�
Pðα; tÞ: ðG2Þ

As an explicit example, suppose that the DMmode starts in
a pure coherent state, Pðα; t ¼ 0Þ ¼ δðα − α0Þ. The general
solution can then be determined to be

Pðα; tÞ ¼ 1

πn̄ð1 − e−γtÞ exp
�
−
jα − α0e−γt=2e−imtj2

n̄ð1 − e−γtÞ
�
: ðG3Þ

Qualitatively, the interactions between the initial coherent
state and the thermal reservoir are simultaneously damping
the field amplitude and injecting noise into the coherent
state, leading it towards a Gaussian. For t ≫ γ−1, we see
that the state has evolved to a Gaussian as in Eq. (7), with
N ¼ n̄. In other words, the system has thermalized with the
reservoir.
Last, we can use the above example as an opportunity to

expand on the point that the Gaussian PðαÞ corresponds to
a density matrix that is diagonal in the Fock basis, as seen in
Eq. (72). This is far from generic. A pure coherent state
jα0ihα0j has support for arbitrary off-diagonal terms,

ρ̂ ¼ e−jα0j2
X∞
n;k¼0

αn0ðα�0Þkffiffiffiffiffiffiffiffiffi
n!k!

p jnihkj: ðG4Þ

As another way to view this, neglecting interactions, the
number operator commutes with the Hamiltonian and
therefore the Fock basis can also be viewed as the energy
basis: the Gaussian is diagonal in this space while generic
states are not. Using Eq. (G3), we can explicitly compute
the evolution of both the diagonal and off-diagonal con-
tributions to Eq. (G4) as the system thermalizes, which can
be done analytically in terms of sums of Hermite poly-
nomials. Doing so, one finds that once t ∼ γ−1 the off-
diagonal terms begin to be suppressed, leaving only the
Gaussian supported diagonal elements. Although we have
only studied this in a simple model, the diagonalization in
energy will be a generic feature of the evolution of systems
towards a Gaussian PðαÞ.
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