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Differential impact from individual versus
collective misinformation tagging on the
diversity of Twitter (X) information
engagement and mobility

Junsol Kim 1, Zhao Wang2, Haohan Shi 3, Hsin-Keng Ling4 &
James Evans 1,2,5

Fears about the destabilizing impact of misinformation online have motivated
individuals and platforms to respond. Individuals have increasingly challenged
others’ online claims with fact-checks in pursuit of a healthier information
ecosystem and to break down echo chambers of self-reinforcing opinion.
Using Twitter (now X) data, here we show the consequences of individual
misinformation tagging: tagged posters had explored novel political infor-
mation and expanded topical interests immediately prior, but being tagged
caused posters to retreat into information bubbles. These unintended con-
sequences were softened by a collective verification system for misinforma-
tion moderation. In Twitter’s new feature, Community Notes, misinformation
tagging was peer-reviewed by other fact-checkers before revelation to the
poster. With collective misinformation tagging, posters were less likely to
retreat from diverse information engagement. Detailed comparison demon-
strated differences in toxicity, sentiment, readability, and delay in individual
versus collective misinformation tagging messages. These findings provide
evidence for differential impacts from individual versus collectivemoderation
strategies on the diversity of information engagement andmobility across the
information ecosystem.

The visibility of mis- and disinformation online have attracted sub-
stantial attention around theworldwith demonstrations of their direct
influence on major collective action in the world1–5. These actions
range from buying and selling stocks2 and avoidance of vaccines3 to
the attempted coup and occupation of the U.S. Capitol by rioters4.
Legitimate fears about the destabilizing influence of false online
information have inspired and put pressure on both individuals and
platforms to respond. Individuals proactively correct others’ claims by
deploying links to fact-checking websites, such as PolitiFact and
Snopes6–10. With the potential for amplifying misinformation through

filter bubbles11,12, social media platforms like Twitter and Facebook
have come under public and political pressure to implement mis-
information moderation strategies13–15.

Individuals have become empowered to challenge others’ online
claims withmisinformation tags (or fact-checks) in pursuit of a healthy
information ecosystem and to break down ideological echo
chambers6–8. These misinformation tags tend to target political
outgroups6,7,9, exposing tagged posters to opposing ideological per-
spectives. It is less clear, however, whether their misinformation tag-
ging motivates targeted posters to explore diverse political contents
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afterward. Earlier research on motivated reasoning suggests that
misinformation tags contradicting targeted poster’s beliefs could
backfire and reinforce preexisting beliefs16,17, which could discourage
people from exploring diverse information18. By contrast, a growing
body of research argues that misinformation tagging does not back-
fire, but reduces engagement withmisinformation and expands it with
diverse information13,14,19,20. These mixed findings suggest that the
effects of misinformation tagging could depend on the method of
correcting misinformation. Individual misinformation tagging by
other users often involves toxic and intolerant messages that dehu-
manize targeted posters9,21, potentially hindering their willingness to
explore diverse information22.

Platforms have experimented with institutionalized systems that
verify the accuracy of content through collective inputs from a wider
distribution of users. Notably, on Twitter’s new platform, Community
Notes (formerly Birdwatch), misinformation tags undergo a formal
peer-review process by diverse users before being revealed to the
original posters and broader Twitter user community8,13,14. Other
platforms, including YouTube and Facebook, have recently tes-
ted or announced plans to implement features similar to Community
Notes23,24. Rather than indiscriminately exposing users to mis-
information tags, Community Notes selectively exposes misinforma-
tion tags that receive votes fromheterogeneous user groups, ensuring
that they are verified across a broad spectrum of perspectives13 to
activate the wisdom of crowds25,26. The platform also assesses the
alignment of users’ prior contributions with the crowd’s decisions,
filtering out voters who frequently oppose and backlash against valid
fact-checks onmisinformation. Although individual tags may be noisy
and less effective, aggregating them collectively could lead to high-
quality crowd judgments that align with expert fact-checks across a
range of topics, from COVID-19 to politics14,27–29. Furthermore, the
CommunityNotes platformhas specifically instituted norms thatdeter
toxic and intolerant misinformation tagging messages30, potentially
enhancing the efficacy of misinformation moderations and gently
encouraging posters to leave their echo chambers and explore a
broader world of diverse information.

In this study, we explore the impacts of individual and collective
misinformation tagging on tagged posters’ echo chambers. Echo
chambers refer to “bounded, enclosed media spaces that have the
potential to bothmagnifymessages deliveredwithin themand insulate
them from rebuttal”31,32, which could increase susceptibility to
misinformation11,33,34. One indicator of echo chambers is their lack of
interaction with politically diverse, cross-cutting sources of informa-
tion. Prior research has measured echo chambers by selective
engagement with like-minded news sources, which insulate people
from opposing perspectives that could empower rebuttal35,36. This
measure strongly correlates with other echo chamber indicators, such
as intensive interactions with like-minded users (i.e., homophily)37,38.
Literature suggests that lack of exposure to and cross-verification
through opposing perspectives could erode the ability to find, evalu-
ate, and use information effectively11,39,40. It could provide users with
the illusion that their views are publicly supported41,42, weakening their
overall immunity against misinformation.

The other key indicator of echo chambers is their absence of
content diversity resulting from limited engagement with diverse,
unfamiliar topics. Emerging literature has documented the rise of
socio-political endogamy, noting that both left and right increasingly
develop distinct topical interests, encompassing knowledge bases,
cultural tastes, and lifestyles43–45. For example, left-leaning individuals
are more likely to engage with basic science books about physics,
astronomy, and zoology, while right-leaning individuals prefer those
about applied and commercial sciences like criminology, medicine,
and geophysics45. In this way, political polarization spills over into a
variety of other topics, leading to multi-dimensional segregation
where opposing political groups share progressively less common

ground and inhabit different realities even in topics apparently unre-
lated to politics43,46. Topical echo chambers, which magnify topics
prevalent within one political group and insulate them from others,
can problematize intergroup communication and interaction.

Does exposure to each type of misinformation tagging encou-
rage or discourage posters from exploring diverse information and
breaking out of echo chambers? To answer this question, we use
large-scale digital traces from the platform formerly known as
Twitter (X as of July, 2023) to identify posters exposed to each
approach of misinformation tagging. First, we identify posters tar-
geted by individual misinformation tags. These posters’ tweets
received other individuals’ voluntary replies, citing fact-checking
articles from PolitiFact, one of the largest and most studied pro-
fessional fact-checking organizations in the United States7,10. Sec-
ond, we examine posters targeted by collective misinformation
tags. These posters’ tweets received notes that contain collectively
verified fact-checks through Twitter’s Community Notes platform.
Figure 1a visualizes the mechanism of each type of misinformation
tagging, which represent the most prevalent misinformation mod-
eration strategies on Twitter6–10,13–15. Supplementary Fig. 1 presents
an example of individual and collective tags that correct topically
identical, COVID-19 misinformation.

Using 712,948 tweets that cite news sources—including posts,
retweets, and quotes—posted by 7733 users before and after they were
targeted by misinformation tags, we estimate the effects of these tags
on the posters’ echo chambers. Specifically, we measure echo cham-
bers using political and content diversity in their posting and sharing
behavior (see Fig. 1b). Political diversity measures whether a poster’s
tweet cites a source with opposing political stance (e.g., a right-leaning
poster references left-leaning articles)5,47. Content diversity measures
whether a tweet discusses novel topics unfamiliar in the poster’s his-
torical tweets. We apply a transformer-based sentence embedding
model (SentenceBERT) to extract a high-dimensional, semantic vector
representation for each tweet, and aggregate the vectors of each
author’s historical tweets to produce an average semantic vector for
each poster. We thenmeasure the distance between a particular tweet
and the poster to assess the degree to which this tweet expands the
poster’s content diversity. As our data focus on tweets citing news
sources, we assume that the increase of content diversity indicates the
exploration of novel political news topics. For example, consider a user
who regularly consumes and shares news about COVID-19 but begins
to discuss U.S. tax and labor issues as well. This shift indicates an
increase in the user’s content diversity, as detailed in Supplementary
Table 1. We consider both political and content diversity because they
represent different dimensions that could reinforce one another in
limiting exposure to information and exacerbating echo chambers on
social media17,43,48.

Results
We aim to investigate the effects of individual and collective mis-
information tagging on political and content diversity using large-scale
Twitter data. In our observational data, treatments (i.e., exposure to
misinformation tagging), however, are not randomly assigned to
misinformation posters, which pose challenges for identifying the
causal effects of misinformation tagging. To address these concerns,
we apply interrupted time series (ITS) and delayed feedback (DF)
analysis, which help eliminate non-causal explanations under certain
assumptions.

Interrupted time series (ITS) analysis
InterruptedTime Series (ITS) analysis investigateswhether the trend in
political and content diversity shifts after misinformation tagging. ITS
assumes that without the intervention of misinformation tagging, the
pre-treatment trend (i.e., before misinformation tagging) would per-
sist, and the immediate change in trend aftermisinformation tagging is
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attributed to effects from tagging. We control for user-level fixed
effects to correct for time-invariant user characteristics.

Figure 2a and Table 1 report results fromour ITS analysis (Political
Diversity: R2 = 0.173, Content Diversity: R2 =0.243). Posters manifest an
increasing tendency to explore novel political information before
being fact-checked by misinformation tags. Specifically, before indi-
vidual and collective misinformation tagging, posters increase the

political diversity (β = 0.237, 95% CI = [0.125, 0.349], t(418115) = 4.14,
p <0.001) and content diversity (β = 0.007, 95% CI = [0.004, 0.010],
t(418115) = 4.79, p <0.001) of their information engagement over time.

Having their posts criticized by individual misinformation tags,
however, causes posters to retreat within an information bubble.
Immediately after tagging, posters significantly decrease the political
diversity (β = −1.009, 95% CI = [−1.447, −0.571], t(418115) = −4.52,

Fig. 2 | Political and content diversity change with the intervention of indivi-
dual and collective misinformation tagging. a Results from Interrupted Time
Series (ITS) analysis. The x-axis denotes the timeline of tweets posted before and
after tagging, with negative values representing the number of weeks before
posting tagged tweets and positive values representing the number of weeks after.
The y-axis represents political and content diversity, with dots indicating the
diversity score for each corresponding week as estimated by the ITS analysis, and
error bars showing 95% confidence intervals. Solid lines connect the dots revealing
trends of political and content diversity before and after tagging, with gray dotted

lines tracing the counterfactual trend if fact-checks had not occurred. The sample
size is 424,969 tweets. There is no control group in this analysis; however, a com-
parative interrupted time series analysis with a control group can be found in
SupplementaryMethod 3. b Illustration of political and content diversity dynamics
before and after tagging. Before individual and collective tagging, posters exhibit
increased political and content diversity, which increases the likelihood of
encountering a fact-checker. After individual tagging, posters retreat into infor-
mation bubbles; after collective tagging, they venture further beyond them.

Fig. 1 | Misinformation Tagging and Outcomes Measurement. a Individual mis-
information tagging in which individuals cite PolitiFact fact-checking articles. Col-
lective misinformation tagging through the Community Notes platform, which
selectively exposes verified misinformation tags that receive diverse votes as
helpful. b Operationalization of tweet political and content diversity. Political
diversity captures whether a poster cites a source with opposing political stance

(binary 0/1), assessed from the aggregate stances of referenced sources. Content
diversity captures whether a post discusses topics unfamiliar to the author’s his-
torical tweets (continuous), assessed with the distance between the poster’s aver-
age tweet and a particular tweet within a contextual embedding (sentenceBERT
pre-trained on Twitter)74.
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p <0.001) and content diversity (β = −0.030, 95% CI = [−0.042,
−0.019], t(418115) = −5.10, p <0.001) of their posts. After tagging, the
slope becomes nearly flat, indicating that posters’ future posts con-
tinue to collapse in both political diversity (β =0.087, 95% CI =
[−0.020, 0.194], t(418115) = 1.60, p = 0.110) and content diversity
(β = −0.003, 95% CI = [−0.006, 0.000], t(418115) = −1.95, p = 0.51).

By contrast, there is no statistically significant evidence that col-
lective misinformation tagging causes individuals to retreat within
their prior information bubble. The data even reveals a slight, although
not significant, increase in political diversity (β =0.270, 95% CI =
[−0.824, 1.363], t(418115) = 0.48, p = 0.629) and a significant increase in
content diversity (β = 0.040, 95% CI = [0.012, 0.069], t(418115) = 2.74,
p =0.006) immediately after tagging. Nevertheless, collective mis-
information tagging has only a temporary effect on individual posters.
Especially, the slope for content diversity changes significantly after
tagging (β = −0.014, 95% CI = [−0.024, −0.003], t(418115) = −2.60,
p =0.009), eventually converging to levels experienced before the
initial misinformation tags occur. Despite the steepness of the slope
following collective tagging, our analysis indicates that content
diversity does not significantly drop below the pre-tagged period (see
Supplementary Method 1).

We find that the gap between the effects of individual and col-
lectivemisinformation tagging is significant, particularly regarding the
immediate intercept change in political diversity (βIndividual = −1.009,
βCollective =0.270, βCollective−βIndividual = 1.279, 95% CI = [0.101, 2.457],
t(418115) = 2.13, p =0.033) and in content diversity (βIndividual = −0.030,
βCollective =0.040, βCollective-βIndividual =0.070, 95% CI = [0.039, 0.102],
t(418115) = 4.44, p < 0.001).

Additional analyses reveal the effects of misinformation tagging
on the proximity between posters and misinformation taggers. This
suggests that Twitter navigation likely makes posters more visible to
fact-checkers as they venture into foreign territory (see Fig. 2b).
Exposure to fact-checks causes them to retreat back into their infor-
mation bubbles, distancing them from the foreign stances that fact-
checked them (see Supplementary Method 2).

Because time-variant confounders (e.g., viral news, platform
algorithm changes, or significant external events) can affect ITS out-
comes, we conduct additional analyses to control for these factors.
First, we control for major events during the study period through

sensitivity analyses. Second, we apply comparative interrupted time
series (CITS) analyses. These additional analyses support our initial
findings (see Supplementary Method 3). Additionally, to address
autocorrelated posting behaviors among social media users, we
include autoregressive terms in the ITS models, further enhancing the
robustness of our findings (see Supplementary Method 4).

To better understand what happens when posters retreat to their
information bubbles, we conduct a series of descriptive analyses (see
Supplementary Table 2). When posters reduce their political and
content diversity, the number of tweets (comprising posts, retweets,
and quotes) posted per day significantly increases, indicating that
users are more active within their information bubbles. Specifically,
the number of tweets per day is negatively correlated with political
diversity (r = −0.107, t(712946) = −90.87, 95% CI = [−0.109, −0.105],
p <0.001) and content diversity (r = −0.052, t(712946) = -43.97, 95%
CI = [ −0.054, −0.050], p < 0.001). Similarly, we find that the type of
posting is different; the proportion of retweets (i.e., tweets simply
sharing other users’ tweets) out of the entire tweets per day is nega-
tively correlated with political diversity (r = −0.046,
t(712946) = −38.88, 95% CI = [ −0.048, −0.044], p < 0.001) but posi-
tively correlated with content diversity (r =0.012, t(712946) = 10.13,
95% CI = [0.010, 0.014], p < 0.001). This indicates that users actively
post tweets rather than passively retweet other users’ tweets when
they exhibit low political diversity. To demonstrate the significant
effects of misinformation tagging on political and content diversity,
irrespective of these factors, we have adjusted for the number of
tweets posted per day. We have also controlled for the proportion of
retweets per day, which did not meaningfully change our results (see
Supplementary Table 3).

Delayed feedback (DF) analysis
We employ delayed feedback (DF) analysis to further strengthen our
causal inference49. In our DF analysis, we estimate baseline changes
(i.e., changes in outcomes that occur without tags) to answer the
question: “Are shifts in political and content diversity attributable to
tagging, or do similar changes occur even without tagging?” Pairs of
tweets containing similar misinformation, targeted by misinformation
tagging at different times, are matched to construct a control group,
consisting of posters whose problematic tweets have not yet been

Table 1 | Interrupted Time Series (ITS) Model Results for Political and Content Diversity

Outcome Political diversity (%) Content Diversity (z)

Type of misinformation
tagging

Individual Collective Difference
(Collective - Individual)

Individual Collective Difference
(Collective - Individual)

Slope before posting
the tweet

0.237***
[0.125, 0.349]
t = 4.14, p < 0.001

0.309*
[0.041, 0.578]
t = 2.26, p = 0.024

0.072
[−0.219, 0.363]
t = 0.480, p = 0.628

0.007***
[0.004, 0.010]
t = 4.79, p < 0.001

0.003
[−0.004, 0.010]
t = .74, p = 0.461

−0.005
[−0.012, 0.003]
t = −1.17, p = 0.243

Immediate intercept
change after tagging

−1.009***
[−1.447, −0.571]
t = −4.52, p < 0.001

0.270
[−0.824, 1.363]
t = 0.48, p = 0.629

1.279*
[0.101, 2.457]
t = 2.13, p = 0.033

−0.030***
[−0.042, −0.019]
t = −5.10, p <0.001

0.040**
[0.012, 0.069]
t = 2.74, p = 0.006

0.070***
[0.039, 0.102]
t = 4.44, p < 0.001

Slope after tagging 0.087
[−0.020, 0.194]
t = 1.60, p = 0.110

−0.049
[−0.334, 0.235]
t = −0.34, p = 0.734

−0.136
[−0.440, 0.167]
t = −0.88, p = 0.379

−0.003
[−0.0006, 0.000]
t = −1.95, p = 0.051

−0.011**
[−0.019, −0.004]
t = −2.88, p = 0.004

−0.008*
[−0.016, 0.000]
t = −2.01, p = 0.044

Slope change
(After - Before)

−0.150
[−0.306, 0.006]
t = −1.89, p = 0.059

−0.358
[−0.749, 0.033]
t = −1.80, p = 0.072

−0.208
[−0.629, 0.213]
t = −0.97, p = 0.332

−0.010***
[−0.014, −0.006]
t = −4.79, p < 0.001

−0.014**
[−0.024, −0.003]
t = −2.60, p = 0.009

−0.004
[−0.015, 0.007]
t = −0.64, p = 0.520

R2 0.173 0.243

Adjusted R2 0.159 0.230

Observations 424,969

df 418,115

Notes: ***p <0.001 **p <0.01 *p < 0.05.Wemultiplypolitical diversity by 100 to interpret theestimates as absolutepercentagepoint changes.Wenormalize content diversity to z-scores (thenumber
of standarddeviations from themean). All regressions control for userfixedeffects and the number of tweets per day. The statistical significanceof regressioncoefficients is testedusing two-sided t-
tests. Confidence intervals (95%) are provided in brackets, alongwith the corresponding t-statistics, degrees of freedom, and exactp-values. More details can be found inMethods: Interrupted Time
Series (ITS) Analysis.

Article https://doi.org/10.1038/s41467-025-55868-0

Nature Communications |          (2025) 16:973 4

www.nature.com/naturecommunications


taggeddue todelayed feedback, and a treatment groupof posterswho
have. For instance, Supplementary Fig. 2 presents an illustrative
example involving a pair of matched tweets and tags.

In Fig. 3a, post-treatment (t1) represents the time window when
treatment tweets are tagged but control tweets are not, and pre-
treatment (t0) represents the timewindowwith equal duration t1 when
both treatment and control tweets are untagged. Changes in the out-
comes between t0 and t1 in the control group reflect baseline changes,
which indicate changes without tags. Changes between t0 and t1 in the
treatment group reflect treated changes, which indicate changes with
tags. We compare the difference in pre-post change between control
and treatment groups (i.e., baseline vs. treated changes) to identify the
effects ofmisinformation taggingonpolitical and content diversity. DF
analysis assumes that, in the absence of treatment, both control and
treatment groups would exhibit parallel trends. We control for user-
level fixed effects to control for time-invariant, user-specific
characteristics.

Figure 3b and Table 2 present results from the DF analysis (Poli-
tical Diversity: R2 =0.274, Content Diversity: R2 =0.358). Our DF ana-
lysis demonstrates that changes are indeed due to tagging, showing
that treated changes are significant above and beyond baseline

changes. Consistent with the ITS findings, DF analysis indicates that
individual misinformation tags lead to a significant decrease in poli-
tical diversity (β = −5.886, 95% CI = [−9.633, −2.138], t(8182) = −3.08,
p =0.002). Nevertheless, individual misinformation tagging does not
significantly affect content diversity (β =0.018, 95% CI = [0.145, 0.403],
t(8182) = 4.17, p = 0.652). Although ITS analyses show that content
diversity decreases after tagging, DF analyses indicate no statistically
significant evidence that content diversity decreases beyond baseline
changes observed without tags. Collective misinformation tags, by
contrast, do not produce a significant decrease in political diversity
(β = 1.219, 95% CI = [−4.777, 7.215], t(8182) = 0.40, p =0.690) and even
increase content diversity following tagging (β =0.274, 95%CI = [0.145,
0.403], t(8182) = 4.17, p <0.001). The gap between the effects of indi-
vidual and collective tagging is significant for both political
diversity (β = 7.105, 95% CI = [0.069, 14.140], t(8182) = 1.98, p =0.048)
and content diversity (β =0.256, 95% CI = [0.105, 0.407],
t(8182) = 3.32, p =0.001).

Linguistic characteristics of misinformation tags
Individual and collective misinformation tagging messages manifest
different linguistic characteristics. As shown in Fig. 4 and Supplementary

Fig. 3 | Delayed feedback (DF) analysis. a Pre- and post-treatment periods. Post-
treatment (t1) represents the time window when treated tweets are tagged but
control tweets are not. Pre-treatment (t0) represents the time window with equal
duration t1 when both treatment and control tweets remain untagged.bThe effects
of individual and collective misinformation tagging on political and content
diversity are estimated by the difference in pre-post changes in outcomes between
the treatment and control groups. Dots represent the difference in pre-post
changes for each outcome between the treatment and control groups, with error

bars indicating 95% confidence intervals. Pairs of tweets containing similar mis-
information, targeted bymisinformation tagging at different times, arematched to
construct the control group. The control group consists of users whose proble-
matic tweets hadnot yet been taggeddue to delayed feedback,while the treatment
group consists of users whose problematic tweets had already been tagged (see
“Methods”: Delayed Feedback (DF) Analysis for details). The sample size is 8901
tweets.

Table 2 | Delayed feedback (DF) model results for political and content diversity

Outcome Political diversity Content Diversity

Type of misinformation
tagging

Individual Collective Difference
(Collective - Individual)

Individual Collective Difference
(Collective - Individual)

Difference in Pre-Post Change
(Treatment - Control)

−5.886**
[−9.633, −2.138]
t = −3.08, p = 0.002

1.219
[−4.777, 7.215]
t = 0.40,p = 0.690

7.105*
[0.069, 14.140]
t = 1.98, p = 0.048

0.018
[−0.062, 0.099]
t = 0.45,p = 0.652

0.274***
[0.145, 0.403]
t = 4.17,p < 0.001

0.256**
[0.105, 0.407]
t = 3.32, p = 0.001

R2 0.274 0.358

Adjusted R2 0.211 0.301

Observations 8901

df 8182

Notes: ***p < 0.001 **p < 0.01 *p < 0.05. Each cell presents thedifference in pre-post change (treatment group - control group) in each outcome.Wemultiply political diversity by 100 to interpret the
estimates as absolute percentage point changes.Wenormalize content diversity to z-scores (the number of standard deviations from themean). All regressions control for user fixed effects and the
number of tweets per day. The statistical significance of regression coefficients is testedusing two-sided t-tests. Confidence intervals (95%) are provided in brackets, alongwith the corresponding t-
statistics, degrees of freedom, and exact p-values. More details can be found in Methods: Delayed Feedback (DF) Analysis.
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Table 4, we find that individual misinformation tags exhibit twice the
toxic content (MeanIndividual = 0.139, MeanCollective =0.076, MeanCollective-
MeanIndividual =−0.063, t(7496) =9.86, p<0.001, Cohen’s d= −0.228)
and convey more negative sentiment compared to collective mis-
information tags (MeanIndividual =−0.082, MeanCollective = −0.050,
MeanCollective-MeanIndividual = 0.032, t(7731) = 2.14, p=0.033, Cohen’s d
=0.049). Collective tags express slightly higher positive sentiment and
produce messages with more neutral sentiment than individual tags.
Furthermore, individual tag messages are much shorter
(MeanIndividual=179.31, MeanCollective = 288.87, MeanCollective-
MeanIndividual = 109.56, t(7731) = 26.95, p<0.001, Cohen’s d=0.613) and
more readable (χ2(7) = 155.32, p<0.001, Cramer’s V=0.155) than col-
lective tags. While 53.53% of individual tags necessitate a college-level
reading comprehension or higher, 75.77% of collective tags demand
this level. Moreover, the delay between posting misinformation and re-
ceiving fact-checks is shorter for individual than collective
tagging (MeanIndividual=3.037, MeanCollective = 6.322, MeanCollective-
MeanIndividual = 3.285, t(7731) = 2.13, p=0.033, Cohen’s d=0.048). These
findings demonstrate that individual tags convey their messages quickly
through messages that are succinct, straightforward, emotive, and
sometimes toxic. In contrast, collective tags are more slowly commu-
nicated through lengthy, complex messages, devoid of emotional
undertone or toxicity.

Based on linguistic differences between individual and collective
tags, we question whether gaps in the effects of individual versus
collective tags persist, even when the linguistic characteristics of these
tags are similar. First, we control for toxicity by excluding tags with a
toxicity level higher than 0.4 and retrain only non-toxic tags. Second,
we control for sentiment by removing tags with either positive (>0.2)
or negative (< −0.2) sentiments, keeping only neutral tags. Third, we
control for length by excluding tags longer than 400 characters and
retaining short tags. Fourth, we control for readability by excluding
tags that require college-level or higher readability and selecting tags
that are relatively easy to read. Fifth, we control for delay by omitting
any tags associated with delays longer than 48 hours (log-transformed
delay > 1.10) and focusing on quick tags.

We find that the gap between individual and collective tagging
remains statistically significant, except when controlling for length. As
shown in Supplementary Table 5, the gap in political diversity is not
statistically significant after controlling for length (β = 1.071, 95% CI =
[−0.231, 2.373], t(399236) = 1.61, p =0.107). Nevertheless, controlling

for length only accounts for 16.26% of the gap between individual and
collective tagging in political diversity. This indicates that linguistic
characteristics explain a modest but nontrivial portion of the differ-
ential impacts between individual and collective tagging. Nevertheless,
these measured qualities do not account for the vast majority of the
difference.

Control analyses
In this section, we identify systematic differences in misinformation
that receive individual versus collective tagging, as well as differences
in the posters corrected by each type. Even after controlling for these
differences in additional interrupted time series (ITS) analyses, indi-
vidual and collective tagging have significantly different effects in the
directions identified by our unconstrained analysis.

First, we observe that individual taggers focus more on political
topics, while collective taggers correct a more diverse range of topics
(see Supplementary Table 6). As shown in Supplementary Table 7, the
ninemost frequent topics in our dataset include political topics known
to trigger divisive, polarized reactions in US politics (see “Methods”:
Topic modeling). These topics account for 84.06% of the corrections
made through individual tagging but only 59.49% of the corrections
made through collective tagging.

Therefore, we control for topics of the corrected misinformation,
finding that the gaps between individual and collective tags are sig-
nificant and even slightly larger when they correct identical topics of
misinformation. Specifically, we employ propensity score weighting
(PSW) method (see Supplementary Method 5). The results demon-
strate that even when individual and collective tagging correct topi-
cally identical messages, the gap between individual and collective
tagging is significant, both in the immediate change of political
diversity (β = 2.380, 95% CI = [0.200, 4.560], t(296544) = 2.14,
p =0.032) and content diversity (β =0.048, 95% CI = [0.003, 0.092],
t(296544) = 2.11, p =0.035).Wenote that collective tagging is less likely
to correct political topics than individual tagging but is more effective
in causing original posters to explore diverse content when success-
fully deployed on political topics. Refer to Supplementary Table 8 for
details.

Second, we find that the proportion of right-leaning users cor-
rected by individual tagging is 53.17% while right-leaning users cor-
rected by collective tagging is 44.14%. We also analyze the distribution
of political stance among taggers (i.e., those whowrite individual tags)

Fig. 4 | Linguistic characteristics of fact-checking messages. a univariate kernel
density function for toxicity. b univariate kernel density function for sentiment.
c univariate kernel density function for length (characters).d histogram for reading

ease (e) univariate kernel density function for delay (log-transformed days). The
purple line (or bar) represents the distribution within individual misinformation
tags, while the yellow line (or bar) represents the distributionwithin collective tags.
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and voters (i.e., thosewho vote on the exposure of collective tags) (see
Supplementary Method 6 and Supplementary Table 9). We compare
the effects of individual and collective tagging in the common scenario
where right-leaning posters are corrected by left-leaning ones. Speci-
fically, we focus on cases where right-leaning posters are corrected
either by individual tags from left-leaning taggers or by collective tags
approved by a majority of left-leaning voters (i.e., Community notes
approved by voters, where at least 50% of those with identifiable
political stances are left-leaning). In this analysis, the difference
between the effects of individual and collective tagging is still sig-
nificant, both in the immediate change of political diversity (β = 1.780,
95% CI = [0.118, 3.441], t(238081) = 2.10, p =0.036) and content diver-
sity (β =0.076, 95% CI = [0.033, 0.119], t(238081) = 3.46, p =0.001).
Refer to Supplementary Table 10 for details.

Third, we find that popular users are more likely to receive col-
lective tags than individual tags, which is consistent with prior litera-
ture (see Supplementary Fig. 3)8. To examine the differences between
individual and collective tags when focusing on less popular, everyday
users, we exclude those whose number of followers exceeds 2967, the
averagenumber of followers amongusers correctedby individual tags.
We find the results are consistent overall (see SupplementaryTable 11),
but suggest that collective tagging of low popularity posters is slightly
more effective, relative to individual tagging, thanwith high popularity
users. In particular, the difference between individual and collective
tagging is significant, both in the immediate change of political
diversity (β = 3.612, 95% CI = [0.824, 6.399], t(235632) = 2.54, p =0.011)
and content diversity (β = 0.081, 95% CI = [0.000, 0.162],
t(238081) = 1.97, p =0.049). This may indicate the inoculation of pop-
ular users to critique, an increased sensitivity among unpopular users
to collective nudges50, or both.

Robustness checks
We verify our findings with a battery of robustness checks. First, we
seek to avert concerns over the presence of bots on Twitter by rea-
nalyzing our data excluding identified bot accounts2,5. Second, we
reanalyze the relationship controlling for potentially insincere infor-
mational activities, such as citing sources of low credibility and
intentionally spreading fake news. Third, we attempt to avoid situa-
tions in which posters simply criticize distant information without
honest consideration by filtering out posts with negative sentiment.
Fourth, we identify all tweets within the sample thatmention keywords
related to receiving community notes broadly and remove them, as
they could confound our measure of content diversity. To address
concern regarding the effect of replying directly to individual taggers,
which could confound the measure of political diversity, we also
identify and remove all tweets that reply directly to individual taggers.
Fifth, to strictly identify individual tags (i.e., PolitiFact links) that cor-
rect the original posters, we prompt ChatGPT to annotate whether the
links are used to correct the original poster rather than support them.
Then, we limit the sample to links that correct the original posters.
Sixth, considering the low visibility of individual tags in Twitter’s
message-reply interface6,8, we restrict the sample to original posters
who replied to (and thereby read) the individual tags and remove non-
responders. These alterations do not meaningfully impact our repor-
ted outcomes (see “Method”: Robustness Checks).

Discussion
This study provides empirical evidence regarding the impact of indi-
vidual and collective misinformation tagging on echo chambers.
Before misinformation tagging, posters show an increased curiosity in
diverse political and topical content. This challenges the conception
that misinformation is generated and corrected when people retreat
into echo chambers11,33. On the contrary, posters become fact-checked
when they venture outside those bubbles. Why is exploration followed
by misinformation tagging? First, posters could misinterpret

unfamiliar and diverse information from a lack of information
literacy51, increasing the chance of posting the misinformation being
tagged. Second, news feed algorithms may increase the probability
that posters’ tweets become visible to people frompolitical outgroups,
who are highly motivated to fact-check foreign posters6,7,14. Our ana-
lysis shows that posters increase the closeness to misinformation
taggers before fact-checks, which could increase the chance of
appearing in fact-checkers’ news feeds.

Individual misinformation tagging discourages posters from
exploring diverse information. Posters tagged by individuals manifest
an immediate drop in political diversity, as evidenced by both inter-
rupted time series (ITS) and delayed feedback (DF) analyses. Content
diversity also decreases in ITS analyses, although DF analyses do not
reveal a significant drop. This suggests that while content diversity
decreases after tagging, it does not fall below the baseline change
expected without tags. These unintended consequences aremitigated
by collective misinformation tagging. Unlike individual tagging, there
is no statistically significant evidence that collective tagging dimin-
ishes political and content diversity in both ITS and DF analsyzes;
moreover, it results in a short-term rise in content diversity.

Our analyses show that individual tagging involves short, toxic,
and emotion-driven messages. Collective tagging, on the other hand,
involves longer, less toxic, emotionally neutral, and deliberative mes-
sages revealed to posters longer after their offending posts. These
results suggest the trade-off between the effectiveness of established
systems for promoting openness and mobility across the information
ecosystem, but the efficiency of individuals in cleaning it. Low visibility
of individual misinformation tagging in Twitter’s message-reply
interface6,8 may motivate taggers to use short and potentially toxic
messages. Community Notes responded by implementing a more
visible interface for collaborative tagging, which reduces the tendency
to terseness, facilitating long and deliberate discussion. Also, norms
and values underlying participation in Community Notes could pre-
vent taggers from disseminating succinct yet inflammatory messages
viewed as unhelpful and instead source diverse perspectives13.

What mechanisms drive differences in the effects of individual
and collectivemisinformation tagging onecho chambers?We find that
linguistic characteristics, such as toxicity, sentiments, and length only
partially explain differential impacts between individual and collective
tagging. This implies that differences in quality other than linguistic
characteristics also exert a direct influence. Literature on the wisdom
of crowds suggests that while individual tags are susceptible to biases
and noise, aggregating tags collectively could correct individual bias,
increasing the quality of nonexpert fact-checks28,52,53. For example,
compared to individual tags, collective tags are more closely aligned
with professional fact-checks from experts on a variety of topics,
ranging from COVID-19 to politics14,27–29. Even though we focus on
individual tags that cite professional fact-checks (i.e., PolitiFact), it is
possible that interpretations within individual tags might be less
effective when not cross-validated like collective tags. For example,
individual tags might fail to convey the key points of PolitiFact articles
or clearly articulate the relevance of these articles to the original post.
Additionally, when multiple fact-checkers co-validate collective tags,
these decisions may be perceived as more legitimate and less sus-
ceptible to biases, encouraging the original posters to seek out more
diverse and cross-validating information28.

Overall, our findings suggest that misinformation is posted and
fact-checked when original posters who were accustomed to like-
minded sources associated with low credibility (see Supplementary
Table 2) suddenly increase their political and content diversity. In the
short term, somemight believe that pushing themback into their echo
chambers with individual tags seems like an effective way to curb
misinformation. Nevertheless, over the long term, this approach could
expand the cluster of users immersed in misinformation, depriving
them of opportunities to educate themselves with opposing
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perspectives. The ethical and normative aspects of our research
remain open questions, but we suggest that collective tagging
encouraging exploration might be better for the long-term health of
the information ecosystem.

Our analyses have several notable limitations. First, ourmethod
for assessing posters’ political stances is indirect, through their
posting behavior5. This approach has been successfully applied to
predict political party affiliation and self-described ideology in
previous literature53, but using a direct measure of political ideol-
ogy or affiliation with social media and survey data would
strengthen our assessments. Second, our quasi-experimental
methodologies (ITS and DF) depend on assumptions for causal
inference. We employ topic modeling and matching to enhance
tweet comparability within treatment and control groups, but
acknowledge that unobserved time-variant confounders may influ-
ence posters’ responses. Third, although we have employed a
popular bot detection algorithm, recent studies have suggested
that algorithmic removal of bots is challenging and may introduce
additional bias54. Therefore, we report the full results with and
without the algorithmic removal of bots, demonstrating that our
results are consistent. To thoroughly remove bots, future research
could match social media data with survey or administrative data
(e.g., voter records) to ensure the authenticity of participants55.
Fourth, Twitter (X as of July, 2023) closed access to the Academic
Research API, which had been freely available to eligible researchers
until May 2023. This could limit other researchers’ ability to
reproduce our findings with recent data after May 202356. Collective
tagging systems are increasingly being deployed across social
media platforms, such as Twitter’s Community Notes and similar
features currently being tested on platforms like Facebook and
YouTube23,24. Future research should examine whether our findings
are reproducible across different platforms, time periods, and cul-
tural contexts. Fifth, we employ the topic modeling and propensity
score weighting (PSW) method to control for semantic differences
between tweets tagged by individual and collective tagging (refer to
Supplementary Method 5). Nevertheless, PSW might fail to address
the confounding effects of unobserved semantic differences
beyond topics. Despite these limitations, our study uncovers a sig-
nificant and substantial relationship between fact-checks and
reduced information diversity. We also demonstrate the power of
designed institutions, like collective fact-checking on Twitter, to
moderate the negative, narrowing effects of fact-checking on
information exploration.

Methods
Data
Our study compliedwith the terms of all data sources used in the study
(includingbut not limited toTwitter/X). Using theTwitter API v2.0with
academic research access, we collected Twitter data to explore the
effects of individual and collective misinformation tagging. First, we
identified 9,372 users targeted by individual misinformation tagging
from 2021/10/1 to 2022/3/25.We selected users whose tweets received
fact-checking replies that contain URLs to fact-checking articles from
“politifact.com.” Second, we identified 1,465 users targeted by collec-
tive tagging from 2022/12/19 to 2023/3/31, when Community Notes
were made public to Twitter users globally57. In Community Notes,
users can flag any tweets as misinformation with notes, and other
members vote for the helpfulness of the notes. (Users also have the
option to flag tweets they believe are free from misinformation;
however, these instances have been excluded from our analysis.)
Collectively verified notes that received the above-threshold help-
fulness votes from a diverse set of users are then made public to the
original user (who posted the misinformation) and the broad Twitter
audience13. In our work, we only considered notes with above-
threshold helpfulness votes. Note that the platform also assesses the

alignment of users’ prior contributions with the crowd’s decisions,
filtering out voters who frequently oppose and backlash against valid
fact-checks on misinformation (see Supplementary Method 7).

Due to the rate limit of Twitter API, we only collected data from
regular Twitter users, excluding organizations’ and celebrities’
accounts with 50,000 or more followers. Additionally, to focus on
individual users, rather than organizational accounts (e.g., CNN, Fox
News, etc), we removed 1,659users identified asorganization accounts
by the M3Inference library58,59. We further removed 1445 users who
were fact-checkedmore than oncewithin the period of data collection
to avoid the potential for them to become desensitized for repeated
fact-checks. After filtering the data, our final dataset included 7733
users, where 6760 users were targeted by individual misinformation
tagging and 973 users were targeted by collective misinformation
tagging. We found that individual tagging is more frequent than col-
lective tagging in our dataset due to the cross-validation process
required to expose collective tags. This leads to an imbalance in group
size between users corrected by individual and collective tags.
Nevertheless, our statistical models (interrupted time series and
delayed feedback models) do not assume equal group size for com-
parison between the effects of individual and collective tagging. Also,
we found that 16.33%of tweets that received individual tags and 15.60%
of tweets that received collective tags were removed by Twitter or by
the original poster. The probability of removal is similar between
individual and collective tags (Difference =0.73%, z = 0.629, p =0.529).

Finally, we collected users’ historical tweets—including posts,
retweets, and quotes—which span two months before posting tagged
tweets and two months after exposure to misinformation tagging,
resulting in 1,409,845 tweets in total. Posts typically indicate active
engagementwithdiversepolitical sources and topics, allowingusers to
express their opinions. In contrast, retweets andquotes—which involve
sharing others’ tweets—suggest more passive engagement, not
necessarily reflecting personal views. We utilize these three types of
behaviors for a more comprehensive measurement of users’ informa-
tion engagement60,61. We assume that individual misinformation tag-
gings are exposed to users when they are posted, and collective
misinformation taggings are exposed to users when they are made
public following the above-threshold helpfulness votes. For our sta-
tistical analyses, we included 712,948 tweets with observed political
and content diversity scores. This research study received a determi-
nation from the University of Chicago Social & Behavioral Sciences
Institutional Review Board that the study is not considered human
subjects research and does not require review (Institutional Review
Board Protocol IRB24-0051).

Political diversity
Political diversity measures whether a user posted a tweet that refer-
enced sources having an opposite political stance. Specifically, we
determine the political stance of the referenced source by extracting
the domain (e.g., cnn.com) of the source and check it fromMediaBias/
FactCheck database (MBFC; https://mediabiasfactcheck.com/)5,47.
MBFC provides a continuous score for 4874 websites to indicate each
source’s political stance, ranging from -1 (extreme left) to 1 (extreme
right). Our additional analysis shows that political stance scores from
MBFC show significant inter-rater reliability with another database of
the political stance of news media, AllSides.com (see Supplementary
Method 8).

We then calculate a user’s political stance by averaging the poli-
tical stance scores of sources referenced in their historical tweets
which span twomonths before posting tagged tweets and twomonths
after misinformation tagging (see Supplementary Fig. 4). Users who
predominantly cite left-leaning media are considered left, and those
who cite right-leaning media are considered right. Specifically, users
with negative average political stance scores are categorized as left,
while those with positive scores are categorized as right. Finally, we
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assign a binary value to represent a user’s political diversity: 1 (diverse)
if a user cited a source that has an opposite political stance from the
user’s own political stance, 0 (not-diverse) if a user cited a source with
the same political stance.

The mean political diversity score is 0.166, and the standard
deviation is 0.372 (N = 712,948). Political diversity is negatively corre-
lated with the number of tweets posted per day (r(712946) = −0.107,
95% CI = [−0.109, −0.105], p < 0.001) and the proportion of retweets
(r(712946) = −0.046, 95% CI = [ −0.048, −0.044], p <0.001). This indi-
cates that users are more active within information bubbles, actively
posting tweets rather than passively retweeting other users’ tweets
within these bubbles (see Supplementary Table 2).

Content diversity
Content diversity measures whether a user posted a tweet with a topic
that is rarely discussed in the user’s historical tweets. We apply the
Twitter4SSE model, a transformer-based sentence embedding model
(SentenceBERT) that was initialized fromBERTweet (a RoBERTamodel
trained on 850 million tweets from 2012/1 to 2019/8 and 5 million
tweets related to COVID-19 pandemic), to encode the meaning of a
tweet into a 768-dimensional vector62,63. The model was further opti-
mized based on recent data (75 million tweets from 2020/11 to 2020/
12) usingMultiple Negatives Ranking Loss (MNRL) to identify semantic
similarity based on the principle that tweets quoting or replying to the
same original tweet are likely discussing related ideas62. If a pair of
tweets quoted or replied to the same tweet, the semantic similarity
between them is assumed to be high.

To apply the Twitter4SSE model, we first conduct the identical
data preprocessing steps to clean the tweets,which includes: eliminate
URLs and mentions and transform the text to lowercase to reduce the
presence of generic texts62. Next, we represent each tweet with a 768-
dimensional semantic embedding (Supplementary Fig. 5 shows the
visualization). Finally, we measure the cosine distance between the
user embedding and tweet embedding (see Fig. 1b) to represent the
content diversity of the current tweet. The user embedding is the
average embedding of the user’s historical tweets (see Fig. 1b). Esti-
mating the distance in the embedding space has been frequently used
to quantify the diversity of user activities in the online platform48,64.
The distance ranges from 0 to 0.835, with 0 representing homo-
geneous content and 0.835 representing extremely diverse content.
The mean content diversity score is 0.357, and the standard deviation
is 0.109 (N = 712,948). We find that political and content diversity are
slightly correlated (r(712946) = 0.020, 95% CI = [0.018, 0.022],
p <0.001), assessing conceptually distinct aspects of diversity.

Table 1 shows an example of how content diversity scores are
assigned. In this example, the user primarily shows interests in COVID-
19 related misinformation. However, as the user explores diverse
topics—tax, LGBTQ+ , international issues, and labor—the content
diversity score increases.

Content diversity is negatively correlated with the number of
tweets posted per day (r(712946) = −0.052, 95% CI = [ −0.054, −0.050],
p < .001) but positively correlated with the proportion of retweets
(r(712946) = 0.012, 95% CI = [0.010, 0.014], p < 0.001). In other words,
users tend to retweet others’ tweets rather than posting their own
tweets when increasing content diversity (see Supplementary Table 2).

Interrupted time series (ITS) analysis
We apply Interrupted Time Series (ITS) analysis to examine how indi-
vidual and collective misinformation tagging affect the trend of poli-
tical and content diversity in posting behavior. We fit the ITS model to
the time series around fact-checking events, spanning five weeks
(35 days) before posting the fact-checked tweet and five weeks after
fact-checking. To compare the differential impacts of individual and
collective misinformation tagging, we formulate the following multi-
group ITS model. We control for user fixed effects to eliminate the

user-related unobserved time-invariant heterogeneity that could pos-
sibly affect the outcomes. Additionally, the number of tweets posted
per day is negatively correlated with political diversity
(r(712946) = −0.107, 95% CI = [−0.109, −0.105], p <0.001) and content
diversity (r(712946) = −0.052, 95% CI = [ −0.054, −0.050], p < 0.001),
indicating that users are more active within information bubbles.
Therefore, we control for the number of tweets posted per day to
ensure that our analysis focuses on variations in diversity rather than
engagement volume.

For each tweet, let Y be the outcome variable (i.e., political or
content diversity of a specific tweet),W is theweeks beforeposting the
tweet with misinformation (negative values) or after misinformation
tagging (positive values). Note that wemeasureW by dividing the days
by 7. For example, if a particular tweet is posted 3 days before posting
the tweet, W is −3/7. T is an indicator of the treatment status where 0
represents a tweet posted before misinformation tagging and 1
represents after tagging.C is an indicator of the type ofmisinformation
tagging where 0 represents individual tagging and 1 represents col-
lective tagging. N corresponds to the number of tweets per day (con-
trol variable), α corresponds to the user fixed effect, and and ϵ is the
error term. Then the ITS model is defined:

Y =β0 + β1W +β2T + β3WT +β4WC +β5TC +β6WTC +β7N +α + ϵ ð1Þ

Here, β0 is the intercept, β1 is the slope before individual mis-
information tagging. β2 is the change in the outcome immediately after
the individual misinformation tagging. β3 is the slope change before
and after individual misinformation tagging. β1 + β4 is the slope before
collectivemisinformation tagging. β2 + β5 is the change in the outcome
immediately after the collective misinformation tagging. β3 + β6 is the
slope changebefore and after collectivemisinformation tagging. Thus,
β4, β5, β6 are the terms that estimate the differences between the
effects of individual and collective misinformation tagging. Supple-
mentaryTable 12 shows how these estimates correspond to each cell in
Table 1 for each outcome.

Before estimating the model, political diversity (binary variable)
has beenmultiplied by 100 so that the coefficients are interpretable as
absolute percentage point changes. Content diversity has been nor-
malized to z-scores (i.e., the number of standard deviations from the
mean).When estimating the statistical significance of the estimates, all
p-values are two-sided. The thresholds for statistical significance is set
at p < 0.05, and marginal significance is set at p < 0.1.

Delayed feedback (DF) analysis
In addition to the interrupted time series (ITS) analysis, we conduct a
delayed feedback (DF) analysis to estimate the causal impacts. We
begin by establishing control and treatment groups: each tweet is
paired with another tweet that was subject to misinformation tagging
at an earlier time. Specifically, for every tweet in a control group, we
search for a corresponding treatment tweet using the following cri-
teria: (1) They must have been fact-checked using the same approach,
either individual or collective misinformation tagging. (2) They should
have been fact-checked prior to the control tweet. (3) They should
have the same topic, considering that distinct topicsofmisinformation
could lead to different levels of political and content diversity (see
“Method”: Topic Modeling for a detailed explanation of the topic
modeling process). (4) They should have been posted no more than
seven days apart from the control tweet. In cases where we have
multiple tweets that meet these criteria, we choose the one with the
closest posting time to the control tweet. This results in 476 pairs of
tweets in control and treatment groups.

For each pair of tweets, we identify two time windows: pre-
treatment (t0) and post-treatment (t1). t1 represents the time window
when the treatment tweets are fact-checked but the control tweets are
not. If the duration of t1 exceeds a seven-day window, we use the data
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within the seven-day window after receiving the tags, considering that
the timingof the fact-checkcould affect theoutcome. t0 represents the
time window (with equal duration of t1) when both the treatment and
control tweets are not fact-checked. Then we design the following
difference-in-differences model to assess the impacts of misinforma-
tion tagging.

For each tweet, let Y be the outcome variable (i.e., political or
content diversity of a specific tweet). T is a binary variable indicating
whether the treatment tweet, but not control tweet, receives the
treatment (i.e., misinformation tagging). G is a binary variable indi-
cating whether the tweet is assigned in the treatment (i.e., 1) or control
group (i.e., 0). C is an indicator of the type of misinformation tagging
where 0 represents individual tagging and 1 represents collective
tagging. N corresponds to the number of tweets per day (control
variable), α corresponds to the user fixed effect, and and ϵ is the error
term.

Y =β0 +β1TG+β2TGC +β3T + β4TC +β5N +α + ϵ ð2Þ

β0 is the intercept. β1 is the difference in pre-post change in the
outcome between the control and treatment group for individual
misinformation tagging. β1 + β2 is the difference in pre-post change for
collective misinformation tagging. Thus, β2 is the term that estimates
the difference between the effects of individual and collective mis-
information tagging. β3 and β4 account for the baseline changes in the
outcomes. Supplementary Table 13 shows how these estimates cor-
respond to each cell in Table 2 for each outcome.

Like ITS models, political diversity (binary variable) has been
multiplied by 100 so that the coefficients are interpretable as absolute
percentage point changes. Content diversity has been normalized to
z-scores (i.e., the number of standarddeviations from themean).When
estimating the statistical significance of these coefficients, all p-values
are two-sided. The thresholds for statistical significance is set at
p < .05, and marginal significance is set at p < 0.1.

Supplementary Fig. 6 illustrates day-to-day changes in the out-
come variables (political and content diversity) for the control and
treatment groups over the pre-intervention period, controlling for
time-invariant differences across users (i.e., user fixed effects). Sup-
plementary Fig. 6 suggests that control and treatment groups follow
similar trends in the absence of the tagging intervention. To statisti-
cally test this, we fitt a linear model: Diversity = β0 + β1Day +
β2IsTreatmentGroup + β3Day ⋅ IsTreatmentGroup + ε, where Day is the
number of days in the matched pre-intervention period, and IsTreat-
mentGroup is 1 for the treatment group and 0 for the control group. If
the parallel trends assumption holds, we would find a non-significant
slope difference (β3). Our results show no significant slope difference
for both political diversity (β3 = −0.493, 95% CI = [−1.644, 0.725],
t(3) = −0.864, p = .408) and content diversity (β3 = 0.011, 95% CI =
[−0.036, 0.058], t(3) = 0.511, p =0.620) (see Supplementary Table 14).

Supplementary Fig. 7 illustrates average baseline changes of
political and content diversity obtained from the control group in the
DF analysis. According to the baseline changes, we find that political
diversity significantly increases (β = 1.956, 95% CI = [0.068, 3.843],
t(8182) = 2.03, p = 0.042), but content diversity does not significantly
decrease (β = −0.039, 95% CI = [−0.079, 0.002], t(8182) = −1.88,
p =0.060) if the problematic tweet is not tagged. In other words, we
find that political diversity consistently increases over time without
tagging in the control group. On the other hand, we find that content
diversity does not significantly change. Our results show that the
effects of individual and collective tagging are above andbeyond these
baseline changes (see Results: Delayed Feedback (DF) Analysis).

Topic modeling
We apply BERTopic to extract latent topics from tweets that received
misinformation tags65. Specifically, we first represent each tweet with a

768-dimensional semantic embedding using Twitter4SSE. Then, we
map the embeddings to a 5-dimensional space via UMAP (Uniform
Manifold Approximation and Projection) to mitigate the curse of
dimensionality66,67. Next, we apply HDBSCAN (Hierarchical Density-
Based Spatial ClusteringofApplicationswithNoise) to identify clusters
of topics68. Unlike k-means algorithms, HDBSCAN does not require the
user to pre-specify the number of clusters, and HDBSCAN is adept at
identifying and handling noise, distinguishing between topics and
outliers, which is crucial for maintaining the integrity of the clustered
topics.

Traditional methods such as LDA extract topics based on bag-of-
words and often fall short when applied to short texts like tweets69.
BERTopic emerges as particularly advantageous for analyzing data
from Twitter and it preserves the semantic structure of the text63, thus
enhancing its ability for short-text analysis compared to traditional
models.

We generate 23 topics for 6660 fact-checked tweets, and 1073
tweets are not assigned any topic and thus considered as outliers.
These outliers are excluded from the process of assigning tweets into
control and treatment groups in the delayed feedback (DF) analysis.
Most frequent topics with the keywords are shown in the Supple-
mentary Table 7. As shown in Supplementary Table 7, the nine most
frequent topics in our dataset includepolitical topics that areknown to
trigger divisive, polarized reactions in US politics, such as COVID-19
vaccine-related misinformation (Topic 1), election- and politician-
relatedmisinformation (Topic 4, 5, 7, 8), policy-relatedmisinformation
(Topic 3, 6), and environment and disaster-related misinformation
(Topic 9). These topics account for 84.06% of the corrections made
through individual tagging and 59.49% of the corrections made
through collective tagging. Given the time period of collection, the
most frequent topic is about COVID-19 pandemic and vaccination.

Linguistic characteristics of misinformation tagging messages
For each misinformation tagging, we analyze the message’s toxicity,
sentiment, length, reading ease, and delayed response time to provide
insights into the qualitative differences between individual and col-
lective misinformation tagging. Supplementary Table 4 shows the
descriptive statistics of the following variables.

• Toxicity: We apply Google Jigsaw Perspective API to measure the
probability that a particular message is toxic (range from 0
to 110,70).

• Sentiment: We conduct Vader sentiment analysis to estimate
sentiment scores of messages (on a [−1, 1] scale14,71). The scale
spans from -1, denoting negative sentiment, to 1, denoting posi-
tive sentiment.

• Length: Wemeasure the length ofmessages based on the number
of characters14.

• Reading ease score: We evaluate the readability of messages with
the Flesch-Kincaid Reading Ease score (on a [1,100] scale, where
large value indicates easier readability14,72). The Flesch–Kincaid
reading ease score was transformed into an 8-level categorical
variable: “5th grade” for scores 100–90, “6th grade” for 90–80,
“7th grade” for 80–70, “8th & 9th grade” for 70–60, “10th to 12th
grade” for 60–50, “College” for 50–30, “College graduate” for
30–10, and “Professional” for 10–0.

• Delayed response time: We calculate it as the number of days
between original tweets and misinformation tagging.

Robustness checks
We verify our findings with a battery of robustness checks. First, there
might be concerns that our conclusions about the effects of mis-
information tagging on human usersmay be biased by the presence of
bots onTwitter.Many studies haveutilized bot detection algorithms to
exclude users who are likely to be bots to address this concern2,5, but
others argue these algorithms lead to false negatives (i.e., bots
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misclassified as humans) and positives (i.e., humans misclassified as
bots) that could further bias analyses, even when used cautiously54. To
mitigate concerns of bot prevalence, we reanalyze our data excluding
accounts identified as bots using BotometerLite API. Specifically, using
BotometerLite API, we evaluate the likelihood of users in our dataset
being bot accounts and remove 360 accounts that have a likelihood
higher than 50%73, which do not meaningfully change our results. In
interrupted time series (ITS) models, after individual tagging, both
political diversity (β = −0.882, 95% CI = [−1.326, −0.438],
t(394654) = −3.89, p <0.001) and content diversity (β = −0.026, 95%
CI = [−0.037, −0.014], t(394654) = −4.27, p <0.001) significantly
decrease. After collective tagging, content diversity significantly
increases (β =0.052, 95% CI = [0.020, 0.084], t(394654) = 3.16,
p =0.002) (refer to Supplementary Table 15 and 10). In delayed feed-
back (DF) models, the effects of individual tagging on political diver-
sity (β = −5.348, 95% CI = [−9.154, −1.542], t(7766) = −2.75, p = .006) and
collective tagging on content diversity are significant (β =0.292, 95%
CI = [0.149, 0.435], t(7766) = 4.00, p < 0.001) (refer to Supplementary
Table 17).

In termsof applyingBotometerLite API, some features aremissing
in our dataset collected with Twitter API 2.0: (1) default_profile (whe-
ther the user altered the themeor backgroundof their user profile); (2)
profile_use_background_image (whether the user has a background
image or not); and (3) favourites_count (number of likes posted by the
user, whichwereonly available in Twitter API 1.1). To address this issue,
we conduct missing data imputation with the IterativeImputer in
Sklearn. We train an imputation model with 90,000 tweets randomly
selected in August 2021 from the Twitter StreamGrab (https://archive.
org/details/twitterstream).We then evaluate themodel with a held-out
sample of 10,000 tweets. The model performance for predicting the
missing features is as follows: default_profile at 0.95 F-1 score, profi-
le_use_background_image at 0.90 F-1 score, favourites_count was 0.10
R2 value. Finally, we apply this imputationmodel to recover themissing
features in our dataset.

Second, we control for potentially insincere informational
activities, such as citing sources of low credibility and intentionally
spreading fake news. Some might question whether the increase in
political and content diversity is associated with these insincere
activities. Put simply, users might be engaging with diverse infor-
mation that includes misleading claims and conspiracy theories. For
each tweet posted by each poster, we measure the credibility of the
referenced source. Specifically, we use the binary credibility scores
(1 = low credibility; 0=medium or high credibility) from the Media-
Bias/FactCheck database. Our analysis indicates a strong negative
correlation between the engagement of low-credibility sources and
measures of political diversity (r = −0.227, 95% CI = [ − 0.229,
−0.225], p < 0.001) and content diversity (r = −0.030, 95% CI = [ −
0.032, −0.028], p < 0.001). This implies that the increase of diversity
in information engagement reflects engagement with a healthier
information ecosystem, rather than the reverse. Furthermore, we
reassess our data while controlling for credibility of sources, and
find that our results remain unaffected. In ITS models, after indivi-
dual tagging, both political diversity (β = −0.972, 95% CI = [−1.395,
−0.549], t(418114) = −4.50, p < 0.001) and content diversity
(β = −0.030, 95% CI = [−0.042, −0.018], t(418114) = −5.08, p < 0.001)
significantly decrease. After collective tagging, content diversity
significantly increases (β = .041, 95% CI = [0.012, 0.070],
t(418114) = 2.76, p = 0.006) (refer to Supplementary Table 15 and 10).
In DF models, the effects of individual tagging on political diversity
(β = -4.958, 95% CI = [−8.591, −1.324], t(8181) = −2.67, p = 0.007) and
collective tagging on content diversity are significant (β = 0.279, 95%
CI = [0.150, 0.407], t(8181) = 4.25, p < 0.001) (refer to Supplementary
Table 17). This implies that posters’ exploration prior to being tag-
ged was likely well-intentioned and would have been efficacious had
they not been prompted to retreat.

Third, we attempt to avoid situations in which posters simply
criticize distant information without honest consideration by filtering
out tweets with negative sentiment. For each tweet posted by each
poster, we conduct Vader sentiment analysis to estimate sentiment
scores (on a [−1, 1] scale14,71). Then we exclude tweets that have a sen-
timental score lower than 0, which do not meaningfully change our
results, except for making the immediate change of content diversity
after collective misinformation tagging not significant in ITS models
(β =0.009, 95%CI = [−0.031, 0.048], t(262015) = 0.43,p = 0.666). In ITS
models, after individual tagging, both political diversity (β = −1.470,
95% CI = [-2.032, -.909], t(262015) = -5.13, p < .001) and content diver-
sity (β = −0.027, 95%CI = [−0.042,−0.011], t(262015) = −3.35,p = 0.001)
significantly decrease (refer to Supplementary Table 15 and 10). In DF
models, the effects of individual tagging on political diversity
(β = −8.075, 95% CI = [−12.757, −3.394], t(4973) = −3.38, p = 0.001) and
collective tagging on content diversity are significant (β =0.294, 95%
CI = [0.114, 0.474], t(4973) = 3.20, p =0.001) (refer to Supplementary
Table 17).

Fourth, we address concerns regarding the possibility of mis-
coding mentions of “community note.” Specifically, we identify all
tweets that mention keywords about receiving community notes
broadly (i.e., community note, birdwatch, fact-check, factcheck, poli-
tifact) within the sample and remove those tweets. To address the
concern regarding the effect of replying back to individual taggers, we
identify all tweets that reply directly to the individual taggers and
remove them. We find that the effects on political and content diver-
sity do not meaningfully change in both ITS and DF analyses. In ITS
models, after individual tagging, both political diversity (β = −1.048,
95% CI = [−1.488, −0.608], t(416183) = −4.67, p < 0.001) and content
diversity (β = −0.030, 95% CI = [−0.041, −0.018], t(416183) = −5.00,
p <0.001) significantly decrease. After collective tagging, content
diversity significantly increases (β =0.041, 95% CI = [0.012, .069],
t(416183) = 2.75, p = 0.006) (refer to Supplementary Table 18). In DF
models, the effects of individual tagging on political diversity
(β = −5.329, 95% CI = [−9.139, −1.519], t(8088) = −2.74, p = .006) and
collective tagging on content diversity are significant (β =0.276, 95%
CI = [0.148, 0.405] t(8088) = 4.22, p <0.001) (refer to Supplementary
Table 19).

Fifth, to strictly identify individual tags (i.e., PolitiFact links) that
correct the original posters, we submit original posts, replies con-
taining PolitiFact links, and the cited PolitiFact fact-checking articles to
ChatGPT (gpt-4o-2024-05-13). We prompt the model to annotate
whether the PolitiFact link was used to correct the original poster
rather than support them. Consequently, we identify 5592 PolitiFact
links out of 6760 links (82.72%) as corrective (see Supplementary
Method 9). Subsequently, we limit the sample to the 5592 links iden-
tified by ChatGPT from the individual tagging data, which does not
meaningfully alter the results. In ITS models, after individual tagging,
both political diversity (β = −1.086, 95% CI = [−1.558, −0.614],
t(363273) = −4.51, p <0.001) and content diversity (β = −0.039, 95%
CI = [−0.051, −0.026], t(363273) = −6.11, p <0.001) significantly
decrease. After collective tagging, content diversity significantly
increases (β =0.041, 95% CI = [0.012, 0.069], t(416183) = 2.75, p = .006)
(refer to Supplementary Table 20). In DF models, the effects of indi-
vidual tagging on political diversity (β = −7.135, 95% CI = [−11.068,
−3.203], t(7508) = −3.56, p < 0.001) and collective tagging on content
diversity are significant (β =0.272, 95% CI = [0.143, .401] t(7508) = 4.13,
p <0.001) (refer to Supplementary Table 21).

Sixth, we restrict the sample to original posters who have replied
to (and thereby read) the individual tags (i.e., fact-checking replies)
and remove non-responders. Specifically, out of 6760 original posters
who received individual tags, we remove 4288 posters who did not
reply to the tags, resulting in 2472 posters. After that, we compare
these 2472 posters with 973 posters who received collective tags. Even
after removing the non-responders, we find that results regarding
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tagging’s effects remain consistent. Specifically, as with the complete
sample, we identically find that individual tagging causes immediate
decrease in political and content diversity. After individual tagging,
both political diversity (β = −1.481, 95% CI = [−2.337, −0.626]
t(164724) = −3.39, p =0.001) and content diversity (β = −0.026, 95%
CI = [−0.048, −0.004], t(164724) = −2.30, p =0.021) significantly
decrease. After collective tagging, content diversity significantly
increases (β = .040, 95% CI = [.010, .071], t(164724) = 2.59, p = 0.010)
(refer to Supplementary Table 22)

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Twitter data collected and analyzed in this study have been
deposited in the Open Science Foundation (OSF) database at https://
doi.org/10.17605/OSF.IO/TXGSR. The data required to replicate our
analyses are available in the repository. However, in accordance with
Twitter’s privacy policy, we cannot disclose individual-level user
information or the contents of tweets. Instead, processed and anon-
ymized data are available in the repository.

Code availability
The code required to replicate our results is available at https://doi.
org/10.17605/OSF.IO/TXGSR.
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