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Wave or fuzzy dark matter that is produced with relativistic wave numbers exhibits free-streaming effects
analogous to warm or hot particle dark matter with relativistic momenta. Axions produced after inflation
provide such a warm or mildly relativistic candidate, where the enhanced suppression and observational
bounds are only moderately stronger than that from wave propagation of initially cold axions. More
generally, the free-streaming damping also impacts isocurvature fluctuations from generation in causally
disconnected patches. As coherent spatial fluctuations free stream away they leave incoherent and transient
superpositions in their wakes. These multiple wave momentum streams are the wave analog of particle
phase space fluctuations or directional collisionless damping of massive neutrinos or hot dark matter. The
observable impact on both adiabatic and isocurvature fluctuations of fuzzy dark matter can differ from their
cold dark matter counterparts due to free streaming depending on how warm or hot is their momentum
distribution.

DOI: 10.1103/PhysRevD.111.023535

I. INTRODUCTION

Wave dark matter refers to bosonic dark matter with
massesm≲ 30 eV such that the occupation number is much
greater than 1, and can arise in a variety of theoretical
contexts (see, e.g., [1] for a review). One of the leading
candidates is axiondarkmatter, where darkmatter behaves as
a classical wave below the de Broglie scale. The axion,
originally proposed to explain upper limits on the neutron
electric dipole moment and solve the strong CP problem
[2–6], is also a viable dark matter candidate [7–9] and has
stimulated much interest in dark matter physics and numeri-
cal experiment searches [10–38]. The mass spectrum of
axions extends beyond the original QCD axion for the strong
CP problem [39], and we will use the term “axion” for any
light (pseudo)scalar dark matter that has similar interactions
to the QCD axion. Another interesting candidate is the dark
photon dark matter that can be produced from a variety of
mechanisms [40–46]. While we focus on ultralight axions in
this work, similar physical phenomena often apply to the
dark photon and axion dark matter in general.
Forwave darkmatter on thehighermass end, its deBroglie

wavelength is much shorter than astrophysical scales, and
laboratory experiments are necessary. Once the wave dark

matter is ultralight (often called fuzzy dark matter [47]),
cosmological measurements on the linear power spectrum or
stellar kinematics of ultrafaint dwarfs can constrain lower
mass ranges [47–53]. The wave nature of fuzzy dark matter
can lead to rich phenomenology such as the formation of
soliton cores at halo centers and interference effects [54–60].
Therefore, fuzzy dark matter can also be probed by compact
objects through its wave dynamics [61–67], and the nature of
its couplings with visible matter can be constrained by
various observables [64–104].
Though usually not thermally produced, fuzzy dark

matter can still have a significant relativistic component,
for instance postinflation axions produced from relaxation
of string networks. Reference [105] pointed out that in such
a relativistic regime, wave dark matter exhibits free-stream-
ing behavior much like the collisionless damping of warm
or hot particle dark matter [106]. Such dark matter is thus
warm and fuzzy simultaneously.
Reference [105] highlights the apparent differences

between free-streaming behavior associated with the wave
number distribution for wave dark matter and that with the
particle momenta distribution for particle dark matter, and
thus their respective effects on cosmological perturbations.
These apparent differences are important to understandwhen
applying free-streaming considerations to boundson the dark
matter mass and the evolution of isocurvature fluctuations
from postinflation causal production as compared to cold
dark matter (CDM) isocurvature perturbations.
In this work, we further explore the relationship between

the free streaming of wave and particle dark matter and
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resolve their apparent differences. We begin in Sec. II by
relating the particle and wave pictures of free streaming and
the impact of wave number versus particle momentum
distribution on the transfer function of density perturba-
tions. We show that axion wave dark matter produced after
inflation is warm in this sense and only moderately
enhances the Jeans or free-streaming damping already
present for initially cold axions. In Sec. III, we study with
simulations the effect of free streaming on the causally
produced isocurvature fluctuations of an even hotter, i.e.,
more relativistic, wave dark matter than axions, and resolve
the paradox that the effective number density fluctuations do
not damp even though thewaves that compose them do—for
particles, the initial number density fluctuations are averaged
out over the free-streaming volume; for waves, free-stream-
ing damping causes the momentum or wave number dis-
tribution to become incoherent, effectively transferring
power from spatial inhomogeneities to anisotropies in the
momentum distribution. In Sec. IV, we show that the impact
of the incoherence of these fluctuations prevents their
appearance in time-averaged or spatially averaged quantities,
and should be thought of as the wave analog of multiple
streams in the phase space density. We discuss the implica-
tion of these results in Sec. Vand provide Appendixes on the
computation of free streaming (Appendix A) for general
wave number ormomentumdistributions and their impact on
mass bounds (Appendix B). Throughout we employ units
where ℏ ¼ c ¼ 1.

II. FREE-STREAMING DUALITY

The free streaming of wave and particle dark matter
shares the same underlying principles and can impact
cosmological structure formation on scales smaller than
the maximal free-streaming scale. Given a particle mass m
and comoving momentum q, a noninteracting particle will
stream with a velocity

v ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

p ; ð1Þ

where a is the scale factor. Similarly, a free wave packet of
a field ϕ that obeys a relativistic wave equation such as the
Klein-Gordon equation, with a dispersion relation
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

p
, will propagate at the group velocity

v ¼ ∂ω

∂q
¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ a2m2
p ð2Þ

around a comoving wave number q. We use the terms
momentum and wave number interchangeably throughout.
In both cases the free-streaming length becomes

λfsðq; aÞ ¼
Z

dτvðq; τÞ ¼
Z

d ln a
aHðaÞ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ a2m2

p ; ð3Þ

where τ ¼ R dt=a is the conformal time. Where no con-
fusion should arise, we suppress the evaluation scale factor
(“a”) in the argument of functions, e.g., λfsðqÞ≡ λfsðq; aÞ.
For ultrarelativistic momenta q ≫ am, v ≈ 1, and

λfsðqÞ ≈ τ. For nonrelativistic momenta q≪am, v ≈ q=am,
and the free-streaming length grows logarithmically from
its value of τja¼q=m during radiation domination and ceases
to grow during matter domination. It is therefore conven-
ient to scale λfsðqÞ to the comoving Hubble length at
equality a ¼ aeq,

λfsðq; aÞ ≈
ffiffiffi
2

p

aeqHeq
F

�
q

aeqm
;
a
aeq

�
≡

ffiffiffi
2

p

aeqHeq
Fðq̂; yÞ; ð4Þ

where

ffiffiffi
2

p

aeqHeq
¼ 1

H0

ffiffiffiffiffiffiffi
aeq
Ωm

r
; ð5Þ

and carry the scaling behaviors in the various regimes with
the dimensionless function F. The exact analytic form of
this function and its scaling behaviors are given in
Appendix A.
Of particular interest for viable dark matter models that

mimic CDM on large scales are candidates that become
nonrelativistic well before equality. The maximal scale for
the impact of free streaming is the value that λfs achieves
well after equality. Combining these two limits, we find the
asymptotic approximation,

Fðq̂;yÞ≈ q̂ lnð8=q̂Þ

¼ q
aeqm

ln

�
8aeqm

q

�
; q≪ aeqm;a≫ aeq: ð6Þ

The log term represents the logarithmic growth from the
epoch that the momenta become nonrelativistic anr ∼ q=m
through aeq, and the q̂ ¼ q=aeqm prefactor likewise
scales the comoving horizon at equality to anr givenffiffiffi
2

p
aHðaÞ=aeqHeq ¼ aeq=a in radiation domination.
The distinction between various types of dark matter

therefore mainly comes from their momentum or wave
number distributions. For thermally produced dark matter,
this comes from the distribution at the relevant temperature
for production and kinetic decoupling. For noninteracting
scalar wave dark matter ϕ, the number density scales as
mϕ2 in the nonrelativistic regime, and thus the momentum
spectrum is provided by the power spectrum of ϕ itself.
Below we will use the terms power spectrum of field
fluctuations and momentum distribution of the number
density interchangeably where no confusion should arise.
For the axion, if the Peccei-Quinn symmetry breaking

occurs after inflation, the axion field is uncorrelated across
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different horizon patches, resulting in white-noise field
fluctuations above the horizon. At the critical time when
axions acquire masses their potential becomes

VðϕÞ ¼ m2f2ax½1 − cosðϕ=faxÞ� ð7Þ

and once Hða�Þ ¼ m, the potential energy stored in the
random initial field ϕ=fax ∈ ½−π; πÞ will convert to locally
coherent oscillations of the axion field, which produces
mostly cold axions whose spatial number density varies
from horizon patch to patch. This mechanism is known as
vacuum misalignment production.
Furthermore, the postinflationary axion also predicts the

existence of topological defects such as axion strings due to
the Kibble mechanism [107]. The string network evolves in
such a pattern that the number of strings per horizon is
nearly constant, and the energy stored in string cores is lost
through the radiation of relativistic axion waves [108,109].
This emission may contribute significantly to the axion
relic density [110–112] and extend the axion momentum
distribution to q > a�m, providing a “warm” component.
In the postinflationary case, the power spectrum of field

fluctuations then gives the momentum spectrum of the
average number density of axions after the relevant
momenta become nonrelativistic:

hϕ2i ¼
Z

d3q
ð2πÞ3 PϕðqÞ ¼

Z
d ln q

q3

2π2
PϕðqÞ ð8Þ

with

hϕðqÞϕðq0Þi ¼ ð2πÞ3δðqþ q0ÞPϕðqÞ: ð9Þ

This spectrum is white Pϕ ¼ const for q ≪ q� ≡ a�m. For
q ≫ q�, the axions produced by misalignment and by
decay of the scaling string network at higher redshifts a <
a� dilute their number density as n ∝ a−3 (e.g., [113])
leading to the scaling expectation dn=d ln q ∝ q−1

[108]. Following [105], we combine these behaviors for
a ≫ a� as

q3PϕðqÞ ∝
�
q
q�

�
3

θðq� − qÞ þ
�
q�
q

�
α

θðq − q�Þ: ð10Þ

Simulations differ on whether the q > q� power law q−α is
strictly the scaling value of α ¼ 1 and therefore how much
of the string network energy is radiated at a given
momentum, which can make a large change in the overall
relic number abundance [110–112]. Notice however that as
long as α > 0, the number density spectrum is still
dominated by momenta around q� as is the energy density
ρ ≈mn after all momenta are nonrelativistic [cf. Eq. (31)].
On the other hand around q�, we have simply joined the

twoasymptotic behaviors as a brokenpower lawspectrum. In
simulations of string dynamics, the spectrum around q� is

smoother and can have transient plateaulike features before
the asymptotic q ≫ q� break [109,110,114]. In the main
paper we will simply assume this broken power law form
with α ¼ 1 and in Appendix B we explore variations and
their consequences (see also [105] v2, their Appendix B).
Since this number density spectrum of axions is peaked

around q�, we can expect that the net effect of averaging the
free streaming of the momenta components in the spectra is
dominated by these ∼q� modes, which are only quasir-
elativistic or warm at birth. Correspondingly, we would
expect the impact of free streaming on density perturbations
to occur at (see Appendix B and Fig. 10)

kfs ≡ λ−1fs ðq� ¼ a�mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2eqmHeq

q
21=4 lnð8aeq=a�Þ

: ð11Þ

Throughout, when we compute numerical values for such
quantities we take a cosmology with matter density
Ωmh2 ¼ 0.142 and 3 massless neutrinos.
This scale should be compared to the similar suppression

of the transfer function at the Jeans scale in the case of
Pecci-Quinn symmetry breaking before the end of inflation.
Here the initial misalignment is coherent across the whole
horizon volume today by the end of inflation and there is
only an initially cold component to the axions. Curvature
fluctuations of wave number k then imprint field fluctua-
tions ϕðqÞ at wave number q ¼ k and the density fluctua-
tions are carried by ϕ2ðkÞ ≈ 2ϕðkÞhϕi. Throughout, “k”
identifies the wave number of quadratic quantities such as
ϕ2, number, and energy density, whereas “q” when differ-
ent from k distinguishes the wave number of field fluctua-
tions that compose them.
The relevant free-streaming scale for the preinflationary

case is the comoving wave number whose associated free-
streaming length overtakes its wavelength,

λfsðkJÞ ≈ λJ ≈
ffiffiffi
6

p
=kJ; ð12Þ

and by employing Eq. (6), we have

kJ ≈ 31=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2eqmHeq

lnð8aeq=a�Þ

s
; ð13Þ

where we have ignored self-interactions [115]. Note that
the

ffiffiffi
6

p
in Eq. (12) is added so that Eq. (13) matches the

definition in the literature [47] [their Eq. (9)], modulo the
log factor which we have here approximated at kJ ∼ a�m ¼
2−1=4aeq

ffiffiffiffiffiffiffiffiffiffiffi
mHeq

p
but is usually incorporated more precisely

as a mass-dependent fitting factor to numerical calculations
of the transfer function [[116] their Eq. (44)].
We therefore expect that the free streaming of the

quasirelativistic or warm axions in the postinflationary
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scenario to scale in the same way as the Jeans scale of cold
axions in the preinflationary scenario and differ only by the
ratio

kJ
kfs

¼ 61=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8aeq=a�Þ

q
: ð14Þ

We can improve on this estimate by averaging over the
momentum spectrum q3Pϕ instead of evaluating at the peak
to define an effective transfer function for density perturba-
tions due to the free-streaming effect following Ref. [105],

TrelðkÞ≡ Tax

TCDM
ðkÞ ≈

R
d lnq q3

2π2
PϕðqÞ sin½kλfsðqÞ�kλfsðqÞR

d lnq q3

2π2
PϕðqÞ

; ð15Þ

who derive this form from the WKB approximation for the
amplitude of the free-streaming waves and linearizing
adiabatic perturbations as a means of estimating where free
streaming has anOð1Þ effect. HereTCDM is the CDMdensity
transfer function (with no axions) and Tax is the axion
transfer function (with no CDM), with the same cosmologi-
cal parameters otherwise. This ratio serves to isolate the free-
streaming effect by removing other cosmological effects
from matter radiation equality and baryon acoustic oscil-
lations. The amplitude reduction term can also be motivated
from the treatment of wave propagation in Sec. III where free
streaming modifies the initial wave amplitude for each
momentum q according to the solution to the wave equation
[see Eq. (20)]. We will discuss the impact of the slowly
varying phases of the momentum components in Sec. IV. In
Fig. 1, we compare the relative transfer function (15)with the
usual Jeans suppression for cold axions from a numerical
calculationusing amodified versionof CAMB

1 [117] [see also
Eq. (44) of [116], which closely matches these results]. We
illustrate this with a mass of m ¼ 2.0 × 10−20 eV which is
motivated by the bound on cold axions from the Lyman-α
forest [118]. Correspondingly, we take a redshift of z ¼ 4 or
a ¼ 0.2 as the evaluation epoch. As expected, the free-
streaming transfer function for the warm axions gives a
stronger suppression than the cold, preinflationary case but
only by a log factor. In fact, Eq. (14) predicts kJ=kfs ≈ 5.3,
which captures most of the difference. This ratio can
then be used to approximately scale up any given Lyman-
α bound on cold axions since kJ ∝ m1=2, here nominally
m≳ 5.6 × 10−19 eV. Figure 2 demonstrates that warm
axions of this mass give a transfer function comparable to
the cold axions of m ¼ 2.0 × 10−20 eV.
For heavier masses, where free streaming is negligible on

observationally relevant scales, the random number of cold

axions in each horizon patch at a� leads to so-called
isocurvature fluctuations on large scales, which is also
constrained by the Lyman-α forest observations. At large
scales, the isocurvature perturbation is well described by
the white-noise power spectrum and is not sensitive to the
behavior of the power spectrum at k ∼ q� which determines
the free-streaming effect. Therefore, the ratio of the
amplitude of the isocurvature fluctuations to that of the
adiabatic is f2iso ∝ 1=q3�. A lower q�, corresponding to a
lighter axion in this range, gives a larger isocurvature to
adiabatic ratio on large scales, imposing a lower bound on

FIG. 1. Relative transfer function (15) due to the effect of free
streaming on the warm axions of the postinflationary mechanism
compared with that of the cold axions of the preinflationary case.
Here m ¼ 2.0 × 10−20 eV and the warm spectrum peaks at
q� ¼ a�m, the horizon wave number at the start of axion
oscillations, and the evaluation epoch a ¼ 0.2 is chosen to reflect
that of the Lyman-α forest.

FIG. 2. Mass scaling of the relative transfer function of warm
axions relative to the cold axions in Fig. 1. As predicted from
Eq. (14), a warm axion mass of 5.6 × 10−19 eV produces a
comparable scale of suppression to cold axions of 2.0 × 10−20 eV.

1AxiECAMB: https://github.com/Ra-yne/AxiECAMB, CAMB:
http://camb.info.
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the axion mass in the postinflationary scenario, m > 3 ×
10−18 eV from Lyman-α forest constraints [119], which is
stronger than the nominal free-streaming bound above. For
this mass, the free-streaming length λfsðq�Þ ¼ 0.014 Mpc,
which implies that the free-streaming effect can be
neglected when applying this isocurvature bound.

III. CAUSALLY COHERENT PATCHES

We have seen in the previous section that, for axion dark
matter produced around the beginning of the oscillation
epoch Hða�Þ ¼ m with only a mildly relativistic or warm
component, the free-streaming scale for the postinflation-
ary production mechanism remains close to that of cold
axions from the preinflationary production mechanism.
Thus, the main new large scale effect in the postinflationary
case is that the causally random patches on the horizon
scale at a� produce a white noise spectrum of axion number
or mass density fluctuations.
For a hypothetical wave dark matter candidate produced

causally after inflation with more relativistic momenta, the
free-streaming scale can be larger; simultaneously, the
white noise fluctuations can be smaller in amplitude on
a fixed observational scale given the smaller horizon scale
at production, and therefore weaken the isocurvature
bounds on the mass until the free-streaming limit comes
to dominate [105].
More concretely as shown in Appendix B, if the number

density spectrum peaks at qpeak ¼ Rq� ¼ Ra�m, then the
effective free-streaming length increases as λfsðqpeakÞ ∝ R up
to a log correction using Eq. (6). For moderate increases
where R ∼Oð1Þ, this can make free streaming more impor-
tant and place more competitive or stronger constraints than
the isocurvature bound. The combination of the two is
therefore more robust for changes in the axion spectrum
for masses in the m ∼ 10−18–10−19 eV range [105].
For R ≫ 1, most of the scalar wave dark matter is

ultrarelativistic at a�. In this case, the dark matter is “hot” at
birth. Note that this does not occur with axions, since at any
given epoch after Peccei-Quinn symmetry breaking but
before H ∼m, the Kibble mechanism establishes a coher-
ent field with a random value of ϕ=fax ∈ ½−π; πÞ across the
Hubble patch 1=aH with a self-similar network of strings
and their decay products.
In the more general case, it is also important to under-

stand the evolution of the isocurvature density fluctuations
from the causally random initial field fluctuations, since
free-streaming suppression and isocurvature enhancement
work in opposite directions. In Ref. [105], it was shown that
a certain characterization of these field fluctuations, namely
fractional fluctuations in ϕ2, remains constant and white in
power despite the free streaming of the waves that compose
them. In this section, we seek to clarify the nature of these
fluctuations from the standpoint of the free streaming of the
causally coherent initial horizon scale patches.

To understand the impact of free streaming on causally
coherent patches, let us begin with an initial field profile
that is a spherical tophat2 of radius τi and set the field
normalization to unity at r < R. The Fourier transform of
the tophat gives the momentum distribution of the patch,

ϕpðq; 0Þ ¼
3Vp

ðqτiÞ3
½sinðqτiÞ − qτi cosðqτiÞ�; ð16Þ

where Vp ¼ 4πτ3i =3 is the volume of the tophat patch. The
spectrum is a constant ϕpðq; 0Þ ¼ Vp for qτi ≪ 1 and a
random distribution of these causal patches would produce
white noise on large scales as desired.
The Klein-Gordon equation in q space for a free field,

ϕ̈þ 2aHϕ̇þ ðq2 þ a2m2Þϕ ¼ 0; ð17Þ

evolves the initial modes, where overdots denote conformal
time derivatives. More specifically, each mode evolves via
the growth function

ϕðq; τÞ ¼ ϕðq; 0ÞDðq; τÞ; ð18Þ

where D solves the Klein-Gordon equation (17) with
an initially frozen field due to the Hubble drag,
ϕ̇ðq; 0Þ ¼ 0. During radiation domination, τ ¼ 1=aH and
a2m2 ¼ τ2=τ4�, and the growth function of the field is
given by

Dðq; τÞ ¼ e−iðτ=τ�Þ2=21F1

�
3

4
þ i

ðqτ�Þ2
4

;
3

2
; i

�
τ

τ�

�
2
�
; ð19Þ

where pFq is the generalized hypergeometric function. For
τ ≪ τ�, Dðq; τÞ takes the simple form

lim
τ=τ�≪1

Dðq; τÞ ¼ sinðqτÞ
qτ

ð20Þ

[cf. Eq. (15)]. Here the field is frozen above the horizon
qτ ≪ 1 and oscillates with amplitude D ∝ 1=τ ∝ 1=a
below the horizon. This amplitude decay reflects the
redshifting of relativistic waves inside the horizon.
Furthermore, the number density associated with q goes
as n ∝ ðω=aÞϕ2 ∝ a−3, and particle number in each mode
is conserved in comoving coordinates.
With the initial tophat wave packet, Fourier transforming

the product of Eqs. (16) and (20) gives in real space

2We have also tested Gaussian profiles and found similar
results. We choose tophat here for clarity of wave front visual-
izations.

WARM AND FUZZY DARK MATTER: FREE STREAMING OF … PHYS. REV. D 111, 023535 (2025)

023535-5



ϕpðr; τÞ ¼

8>>>>><
>>>>>:

1; r < τi − τ; τ < τi

0; r < τ − τi; τ ≥ τi
ðτiþτ−rÞðτi−τþrÞ

4rτ ; jτi − τj ≤ r < τi þ τ

0; r > τi þ τ

ð21Þ

which represents a spherically symmetric shell expanding
radially where r ¼ jxj with a front at τi þ τ, reflecting
causal propagation at the speed of light. As expected, the
field amplitude damps as it spreads outwards and transfers
its coherent fluctuations to the larger physical scales
associated with the free-streaming scale λfs ¼ τ.
For ϕ2

p, its Fourier components are composed by a
convolution of the field momenta,

ϕ2
pðk; τÞ ¼

Z
d3q
ð2πÞ3 ϕpðq; τÞϕpðk − q; τÞ

¼
Z

d3q
ð2πÞ3

sinðqτÞ
qτ

sinðjk − qjτÞ
jk − qjτ

× ϕpðq; 0Þϕpðk − q; 0Þ: ð22Þ

Since the initial profile is coherent at r < τi, different field
momenta q are correlated in their phase and coherently
superimpose in this quadratic combination to produce the
spatially coherent fluctuation ϕ2

pðx; τÞ. As with ϕp, the
power spectrum of ϕ2

p is strongly damped by free streaming
and represents the dilution or averaging out of the coherent
fluctuation in a given patch. Interpreted in the particle
picture, the initial axion number fluctuation in a given
coherent patch is averaged out over the free-stream-
ing scale.
On the other hand, the total ϕ is a sum over all horizon

patches, each with a random amplitude, and ϕ2 receives
contributions not just from the coherent propagation of
modes of a single patch but also all of the phase-incoherent
cross terms between patches. In this case, there is a sum
over N patches:

ϕðq; τÞ ¼
XN
α¼1

ϕαðq; τÞ;

ϕαðq; τÞ≡ Aαϕpðq; τÞeiq·dα ; ð23Þ

where Aα is the field value at the center of patch α at spatial
coordinate dα. Correspondingly,

ϕ2ðk; τÞ ¼
X
αβ

ϕ2
αβðk; τÞ;

ϕ2
αβðk; τÞ≡

Z
d3q
ð2πÞ3

sinðqτÞ
qτ

sinðjk − qjτÞ
jk − qj

× ϕαðq; τÞϕβðk − q; τÞ ð24Þ

now has autocorrelation terms between modes from the
same patch α ¼ β and cross terms between patches α ≠ β.
Both the evolution and the physical interpretation of the
auto and cross terms differ. In particular, for the autocor-
relation terms, the power spectrum of ϕ2

αα ¼ ϕ2
p contains

phase correlations between differing momenta and damps
with free streaming, whereas the cross terms carry inco-
herent phase shifts due to the displacements dα, though
these vanish when pairing the same momenta in the ϕ2

power spectrum, i.e., ϕðqÞϕð−qÞ.
To visualize the difference, consider explicitly a simple

superposition of such patches. In Fig. 3 we set up four
patches in a periodic box of length 64τi on each side, with
displacements dα of�4τi from the center of the box in the x
and y directions, and positive and negative amplitudes,
respectively, such that the total field has zero mean. The
box is represented by 5123 discrete pixels, with eight pixels
per unit τi. We evolve this configuration until τ ¼ 8τi, again
by employing Eq. (20) in Fourier space. We have tested the
simulation procedure by verifying that the time evolution of
one such patch is consistent with the analytic radial
solution (21).
In Fig. 3 (top panels) we show the field profile itself in a

z ¼ 0 slice of the box. Notice that the free streaming of the
individual patches brings the wave fronts to intersect at the
center of the box at around τ ¼ 4τi. Therefore the momen-
tum distribution of the field fluctuations at the center is
anisotropic, specifically quadrupolar. More generally, at
any given time after the free-streaming intersection of
fronts, the total field represents a transient superposition
of waves composed of multiple field momentum streams at
any given physical position. This is the same behavior as
the particle free streaming of CMB photons after recombi-
nation or cosmic neutrinos after their decoupling: the initial
particle number inhomogeneity becomes a phase space
anisotropy after free streaming. In those cases, the total
power in fluctuations of a given k mode is conserved [e.g.,
[120], their Eq. (10)], but its nature and effect on gravi-
tational structure formation differ qualitatively. In the free-
streaming damping context, this is known as the directional
damping of collisionless components [106].
These free-streaming considerations apply to ϕ2 as well.

In Fig. 3 (bottom panels), we show ϕ2 normalized to its
average in the box hϕ2i. This normalization removes the
redshifting effect of the subhorizon modes and we can see
the remaining strong effect of free-streaming damping of
the amplitude of ϕ2=hϕ2i of each patch, from the change in
scale of the panels with τ. Moreover, even though ϕ2ðxÞ
itself is not a directional quantity, its local value reflects the
directionally dependent propagation of the fronts of each of
the four patches.
The corresponding power spectra for ϕ and ϕ2=hϕ2i are

shown in Fig. 4. Note that Pϕ2=hϕ2i ¼ Pϕ2=hϕ2i2. In this
four-patch case, the power spectra themselves are still
dominated by the autocorrelation terms of each patch, and

RAYNE LIU, WAYNE HU, and HUANGYU XIAO PHYS. REV. D 111, 023535 (2025)

023535-6



the total ϕ2 still strongly damps with free streaming. We
can see that the turnover into the free-streaming oscillation
behavior scales with the free-streaming length λfs ¼ τ,
k ∝ 1=τ, as expected.
On the other hand, as the number of patchesN grows, the

number of cross terms grows as N2. In fact, since the
number of patches that fill a volume V will be N ¼ V=Vp,
it is the cross terms that become the dominant source of
fluctuations in ϕ2. At τ ¼ 0 the autocorrelation and cross
correlation contributions to the power spectrum of ϕ2 are
comparable, but the autocorrelation terms free stream away
at later times. These remaining contributions represent the
incoherent superposition of fluctuations of different
momenta q.
From Eq. (24), we can see that cross terms have no time

averaged effect on ϕ2 since q and jk − qj modes oscillate
incoherently, but provide a source of instantaneous power,

Pϕ2ðk; τÞ ≈ 2

Z
d3q
ð2πÞ3

�
sinðqτÞ
qτ

sinðjk − qjτÞ
jk − qj

�
2

× Pϕðq; 0ÞPϕðk − q; 0Þ; ð25Þ

since the square of the oscillating growth function is positive
definite. Herewe have dropped the autocorrelation terms that
contain the phase coherence between the momentummodes,
i.e., the connected pieces of the trispectrum of ϕ.
This behavior can be seen directly in Fig. 5 where we

take τi to be the grid spacing such that each pixel represents
a horizon patch. The box size is 256τi in this simulation and

the field value at each pixel is a uniform random deviate
with ϕ∈ ½−π; πÞ.3 Beyond the axion context, we have also
separately checked that a Gaussian random deviate pro-
duces qualitatively the same free-streaming effects we
describe below but with a larger number of rare high
density peaks at the pixel scale. Again the top panels in
Fig. 5 show the time evolution of ϕ and the bottom panels
that of ϕ2=hϕ2i. Instead of the coherent propagation of
discrete horizon scale patches, we are now dominated at
late times by the cross terms between the 2563 initial pixel
scale patches.
Notice also that the statistical properties of the

ϕ2ðxÞ=hϕ2i field become nearly time invariant. This is
in contrast to the four-patch case even though both cases
show the field ϕðxÞ continuing to evolve, especially in
amplitude, as their respective patches free stream.
We quantify this in Fig. 6 for the respective power

spectra. The initially white q3PϕðqÞ ∝ q3 turns over to
oscillate with a ∝ q1 scaling and decreasing amplitude
which reflects the redshifting behavior of the growth
function D in Eq. (20) as with the four-patch case. On
the other hand, the power spectrum of ϕ2 gains a non-
oscillating and nearly constant in time k3Pϕ2=hϕ2i ∝ k2

spectrum on scales below the free-streaming scale. This
reflects the scaling of Eq. (25) after normalization by hϕ2i
which removes the redshifting effect.

FIG. 3. Free streaming of four coherent tophat field patches (see text) for the field ϕ (top panel) and the proxy for number density
fluctuations ϕ2=hϕ2i (bottom panel) for a series of snapshots in conformal time τ. As the waves from different patches free stream, they
individually damp in amplitude and spread in scale. When multiple wave fronts intersect and superimpose, fluctuations appear that are
transient and reflect multiple momentum streams from different patches.

3The [M] scale of ϕ, e.g., fax for axions, drops out of the
normalized quantities we consider here.
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In particular, ϕ2 retains fluctuations across a range of
scales below the free-streaming scale but above the initial
horizon scale τi. To better see this, we low pass filter ϕ2 to
retain only kτi < 0.3 and show two late time snapshots
τ ¼ 16τi and 24τi in Fig. 7. Notice that, even though the
power in fluctuations on these scales is nearly constant,
the ϕ2 field evolves on a timescale much shorter than the
Hubble time reflecting the chance superposition of the
underlying free-streaming modes. Again, in the particle
picture, this reflects a phase space anisotropy in the
distribution rather than a physical space inhomogeneity.
Also, it is important to note that a low pass filter in k for ϕ2

is not in general the same as a low pass filter in q in ϕ since
high momenta modes can still contribute to low wave
numbers k ¼ q1 þ q2 if q1 ≈ −q2, which as we shall see
below is the physically relevant case after all populated
modes have become nonrelativistic.
In fact, during the simulated epochs where the q modes

are still ultrarelativistic, this free-streaming behavior fully
parallels that of relativistic particles and the remaining
phase space fluctuations would not contribute to the
gravitational formation of structure.
The distinction between wave dark matter and the

relativistic particle case is that ϕ is a massive field and,
even for initially relativistic q modes, the redshifting due to
cosmic expansion will eventually make the modes non-
relativistic, much like the massive neutrino component of
dark matter in ΛCDM. For viable dark matter models, this
occurs well before matter radiation equality and we must
consider the impact of their further evolution until non-
relativistic. Since these modes are ultrarelativistic at τ�

FIG. 4. Power spectra of ϕ and ϕ2=hϕ2i for the four patch case
of Fig. 3. Free-streaming damping in both cases scales as k ∝
λ−1fs ¼ τ−1 and here the phase-coherent autocorrelation of mo-
mentum modes from individual patches dominates.

FIG. 5. Free-streaming evolution as in Fig. 3 but with pixel scale horizon patches and field values drawn from a uniform distribution.
While the field ϕ free streams and becomes smoother and lower in amplitude with time, ϕ2=hϕ2i becomes statistically time invariant
with transient fluctuations at a given position.
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where H ¼ m by construction, this means that we must
consider their evolution at τ > τ� and account for the
change in the spectrum as progressively larger q modes
become nonrelativistic.

For τ > τ�, even the superhorizon modes that are non-
relativistic at τ� evolve with Dðq; τÞ reflecting the coherent
oscillations of the axion field due to the mass term. For
modes that are above the horizon at τ�, qτ� ≪ 1, the growth
function becomes

lim
qτ�≪1

Dðq; τÞ ¼
ffiffiffiffiffiffiffi
2τ�
τ

r
Γ
�
5

4

�
J1=4ðτ2=2τ2�Þ: ð26Þ

Note that ðτ=τ�Þ2=2 ¼ mt where t is coordinate time so that
the Bessel function carries the mass scale oscillations for
mt ¼ m=2H ≫ 1. The amplitude of these oscillations scales
as D ∝ τ−3=2 ∝ a−3=2. This behavior again reflects the red-
shifting of nonrelativistic matter n ∝ ðω=aÞϕ2 ∝ mϕ2 ∝
a−3. Notice that for modes that remain relativistic until after
τ > τ�, even though their number density n ∝ a−3, the extra
redshifting of the frequency means that the field fluctuations
decay less quickly as a−1 instead of a−3=2.
In general, the k modes of ϕ2 are then constructed out of

the q modes of ϕ as

ϕ2ðk; τÞ ¼
Z

d3q
ð2πÞ3Dðq; τÞDðjk − qj; τÞ

× ϕðq; 0Þϕðk − q; 0Þ; ð27Þ

and the different behavior of D as a function of momentum
q changes the weights of the field fluctuations that factor
into a given k. On the other hand, since these subhorizon
modes simply redshift, the number density simply dilutes
with the expansion for all modes after a ≫ a�. We can
therefore infer the later behavior of all relevant momenta
modes directly from the relativistic simulations using
number conservation instead of explicitly extending them
to late times using computationally expensive evaluations
of Eq. (19) for the general growth function D.
More specifically, during an epoch where the relevant q

modes are still relativistic and ωϕ2=a ≈ qϕ2=a ∝ qϕ2=τ,
we can define an effective number density,

neffðk; τÞ ∝
Z

d3q
ð2πÞ3Dðq; τÞDðjk − qj; τÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qjk − qjp
τ

× ϕðq; 0Þϕðk − q; 0Þ;

≈
Z

d3q
ð2πÞ3

sinðqτÞffiffiffiffiffi
qτ

p sinðjk − qjτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk − qjτp 1

τ2

× ϕðq; 0Þϕðk − q; 0Þ; ð28Þ

which then reflects the spectrum of ϕ2ðkÞ and their weights
in ϕðqÞ after the waves have become nonrelativistic. Notice
that given an initial white noise spectrum for q ≲ 1=τi, the
field modes are no longer white after free streaming, but the
integral in Eq. (28) is still dominated by q ∼ 1=τi and these
modes produce a white noise spectrum in neff=hneffi for

FIG. 6. Power spectra of the pixel scale horizon patches of
Fig. 5 as in Fig. 4. While the field power (top panel) continues to
evolve and oscillate with free streaming, the power in ϕ2=hϕ2i
(bottom panel) approaches a constant power law behavior below
the free-streaming scale.

FIG. 7. Long wavelength fluctuations in ϕ2 at late times as in
Fig. 5 but low pass filtered to kτi < 0.3. Although statistically
the same, the two snapshots at τ ¼ 16τi and 24τi show strong
time evolution that reflects the transient nature of incoherent
superposition.
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k≲ 1=τi that is constant in time. Therefore, the white noise
power at k ≪ 1=τi still comes mainly from momentum
modes q ∼ 1=τi (see discussion of Fig. 7), which as we will
see in the next section is analogous to the beat frequency
from the superposition of closely spaced high fre-
quency modes.
We illustrate this behavior and construction using the

random pixel simulations of Fig. 6 in Fig. 8. Notice that
the power spectrum now remains constant and white for the
effective number density and now reflects ϕ2 after all of the
relevant momenta are nonrelativistic.
On the other hand, this constancy of the power spectrum

of neff=hneffi should not be equated with a particle number
density in real space since its spectrum is still composed of
field modes with different q, both in magnitude around 1=τi
and in direction, due to the incoherent superposition of
contribution from individual horizon scale patches, i.e., the
wave analog of a phase space distribution.

IV. INCOHERENT SUPERPOSITION

We have seen in the previous section that the effective
number density fluctuations in a free scalar field ϕ, with an
initial white noise spectrum from causal production, do not
damp by free streaming. On the other hand, the initial field
fluctuations themselves strongly evolve due to free stream-
ing on scales smaller than the free-streaming length λfs
in Eq. (3).
As alluded to through visualizations of simulations in the

previous section, the resolution of this apparent paradox is
that the effective number density fluctuations constructed
from ϕ2ðxÞ with different field momenta should instead be

considered as a phase space number density fluctuation,
just as it would be for particle dark matter.
For the case considered in the previous section where the

field fluctuations at some q ≫ am are relativistic, the
correspondence to relativistic particles or classical waves
is direct. In the classical limit of high photon occupancy, the
radiation associated with the photons would be character-
ized by its electric field EðxÞ and the power in radiation by
jEj2ðxÞ, analogously to ϕ2ðxÞ. Despite the fact that the
electric field contributed by electromagnetic waves of
different momenta q always superimpose, observational
quantities like the specific intensity do not carry the cross
terms of different q. The reason is that the cross terms
average away over many cycles of their respective oscil-
lations. Moreover, the two-point correlation of the specific
intensity hjEj2ðxÞihjEj2ðx0Þi does not carry either the
time averaged power of the individual q modes that
hjEj2ðxÞjEj2ðx0Þi would: the power spectrum of the time
average is not the time average of the instantaneous power.
Phrased in terms of the highly occupied particle states, the
rapidly varying fluctuations in the field that are charac-
terized by the q spectrum represent fluctuation in the fine
grained phase space or photon occupancy of momentum
states.
While the analogy to photons is direct when the q

modes of ϕ are relativistic, this absence of a time averaged
effect on ϕ2 is also manifest after the q modes of ϕ have
become nonrelativistic but before equality. Consider the
temporal frequency of two nonrelativistic modes with
q1 ≠ q2 ¼ jk − q1j:

ω1;2 ≈maþ 1

2

q21;2
am

: ð29Þ

The cross term contribution to ϕ2 between the two modes
evolves as

ei
R

dτðω1−ω2Þ ≈ ei
R

dτ
k·q1
am ; ð30Þ

where the approximation assumes k ≪ q1; q2. As with λfs,
this integral grows logarithmically until equality. In fact,
unless the wavelength exceeds the free-streaming length
kλfsðq1; τÞ ≪ 1, the contribution to ϕ2 of the interference
between this pair oscillates in time and would prevent the
interference from enabling the growth of dark matter
density perturbations below the free-streaming scale.
To see this explicitly, in Fig. 9 we plot the time evolution

of the total density as constructed from just two q modes,
ϕ ¼ ϕ1 þ ϕ2 with q1=a�m ¼ 22 and q2=a�m ¼ 25 using
the full growth function (19) for their time evolution from
initially equal amplitudes. The total density,

ρ ¼ 1

2

�
dϕ
dt

�
2

þ 1

2a2
ð∇ϕÞ2 þm2

2
ϕ2; ð31Þ

FIG. 8. Effective number density power spectrum [see Eq. (28)]
for the simulation case of Fig. 5. Since number density is
conserved during the transition of each momentum mode from
relativistic to nonrelativistic, the effective number density weights
the momentum modes according to the final dark matter density,
and its fractional power spectrum remains constant and white at
late times despite the free streaming of the underlying modes
themselves.
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contains both quadratic combinations from the same q and
the cross combination or impact of the superposition of the
two. Here ∇ϕ is the spatial field gradient in comoving
coordinates, though its impact on ρ is subdominant for
these nonrelativistic modes where hðdϕ=dtÞ2i ∼m2hϕ2i on
time average. We compare this to the quadrature sum of the
individual modes ρ1 þ ρ2 that omits the superposition term.
Even though each individual field mode oscillates with
time according to Eq. (29), with phase evolution given by
ωτ ∼maτ ¼ ðτ=τ�Þ2 ∼ 104, ρ1 þ ρ2 only evolves on the
Hubble timescale since energy is covariantly conserved
between the kinetic and potential terms of each term. On
the other hand, the superposition causes a beat contribution
that oscillates faster than the Hubble timescale and much
slower than the mass scale, but time averages to
hρiτ ¼ ρ1 þ ρ2. Moreover, fluctuations for a given beat
frequency k are composed of all possible pairs of high
frequency momenta that satisfy k ¼ q1 þ q2 and each pair
contributes with a random temporal phase.
After equality a ≫ aeq and for a ≫ a�, we can remove the

fast but q independent mass scale oscillations in Eq. (29)
by recasting the scalar field with the Schrödinger wave
function ψ :

ϕ ¼ 1ffiffiffi
2

p ðψe−imt þ ψ�eimtÞ ð32Þ

as done with simulations of ultralight dark matter [121]. In
this case, the temporal oscillations between q1 ≠ q2 com-
ponents of ψ are slow but the spatial phases embedded in ψ
are still incoherent.
Well above the de-Broglie scale where k ≪ q, the field

ψðxÞ encodes the full phase space of the collisionless dark

matter through the Husimi representation. This effectively
assigns the spatial variation induced by q on scales that are
smaller than some spatial smoothing scale η to the
momentum distribution at p ¼ q:

Ψðx;pÞ ¼
�
1

2π

�
3=2
�

1

πη2

�
3=4
Z

d3rψðrÞ

× exp

�
−
ðx − rÞ2
2η2

− i½p · ðr − x=2Þ�
�
: ð33Þ

The analog of the phase space distribution function

fðx;pÞ≡ jΨðx;pÞj2 ð34Þ

obeys the collisionless Boltzmann equation. Notice that
spatial fluctuations in the wave ψ encode both the spatial
and the momentum variations of the phase space distribu-
tion. Moreover, the spatial variations due to oscillations of a
spectrum of q modes produce a multistream phase space
distribution where multiple momenta p exist at the same
position x.
The relevance of the Husimi representation for our case

of effective number density fluctuations from wave inter-
ference between different q modes can be more directly
seen by reversing the construction. Starting with a target
particle phase space distribution fp, we can construct the
corresponding wave ψ in the same way as the random field
simulations on a pixelized grid of the previous section. In
general, given the discrete Fourier transform momenta
indexed by i, one assigns ψ at grid points indexed by ι
as [121]

ψðxιÞ ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fpðxι;piÞ

q
eixι·pieiαi ; ð35Þ

where αi is a random spatial phase for each momentum. By
explicit substitution, Ref. [121] showed that the Husimi
construction (33) returns the phase space distribution f ≈
fp since the cross terms between momenta i ≠ j average
away due to spatial phase incoherence. Notice that the
effective averaging in Eq. (33) occurs before the squaring in
Eq. (34) and is analogous to the temporal averaging
considered in Fig. 9 for incoherent temporal phases.
These cross terms are negligible so long as the spatial
scale of interest is much longer than the smoothing scale η
and fp is smooth or averaged over momenta scales 1=η.
In our case of interest, the effective number density

fluctuation is on a scale k ≪ q and thus comes solely from
the interference of different qmodes. Here ψ takes the form
of Eq. (35) where fp is a function of p alone, i.e., the
incoherent sum of many plane wave fluctuations. It is then
immediately clear that in the Husimi representation the
directional variation of contributions from incoherent
sources visualized in the previous section becomes an

FIG. 9. Density evolution and interference of two field mo-
mentum modes q1=a�m ¼ 22, 25 that were relativistic at τ� but
nonrelativistic at τ ∼ 100τ�. The beating of these high frequency
modes produces density fluctuations on longer scales and larger
wavelengths, but the Hubble time averaged density reflects the
incoherent sum of the density contributions of the individual
modes ρ1 þ ρ2. Normalization is arbitrary.
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anisotropy in the phase space distribution fðx;pÞ ¼ fðpÞ
rather than an inhomogeneity in the spatial distribu-
tion fðx;pÞ ¼ fðxÞ.
As with particle dark matter, the free streaming of waves

produces a random distribution of momentum streams at
each spatial point rather than just spatial fluctuations of a
cold distribution. The white noise effective density fluctu-
ations from interference are indeed preserved by free
streaming but are represented by fine grain phase space
fluctuations, and in the coarse grain phase space are
represented by the particle velocity dispersion. This map-
ping of wave interference fluctuations to particle velocity
dispersion has been explicitly studied for the case where an
initially cold, single stream distribution becomes multi-
stream [122] and eventually virializes.4

Since CDM isocurvature fluctuations grow in the matter
dominated epoch, this would cause the relative transfer
function to evolve even if the phase space density fluctua-
tions are conserved and not gravitationally unstable. For
Schrödinger-Poisson simulation based tests of this con-
struction, see Ref. [123], and for techniques to remove
interference density fluctuations from the consideration of
gravitationally bound systems, see Ref. [60].

V. DISCUSSION

We have elucidated the relationship between the free
streaming of particle dark matter and wave dark matter and
shown how to map the properties of the former onto the
latter.
For axion wave dark matter where Peccei-Quinn sym-

metry breaking occurs after inflation, axion field fluctua-
tions behave like a warm component of particle dark matter
in the sense of possessing a mildly relativistic wave
spectrum originated from misalignment and axion string
emission. Correspondingly, the free-streaming length and
its impact on curvature fluctuations is only larger than that
of cold axions from the preinflationary scenario by a
logarithmic factor.
We quantify this scaling in terms of the free-streaming

scale as a function of the characteristic momentum,
λfsðq� ¼ a�mÞ, which corresponds to the horizon wave
number when axions begin their oscillations Hða�Þ ¼ m,
and compare this to the cold axion Jeans scale where the
free streaming of wave fluctuations from curvature pertur-
bations overtakes their own wavelength. For axions, free-
streaming bounds on cold axions or fuzzy dark matter can
be roughly translated to the warm case with these scaling
relations. However, for warm axions from the postinfla-
tionary scenario, isocurvature fluctuations from the random

misalignment on the Hubble scale at a� provide the
stronger bound.
If wave dark matter is born ultrarelativistic, then free

streaming can have a larger effect as with hot dark matter.
We provide closed form expressions for the free-streaming
length λfsðqÞ for an arbitrary momentum in Appendix A
that can be used to assess its impact in any given model
with its specific momentum distribution. Generally in such
scenarios, the isocurvature fluctuations from causal gen-
eration in horizon scale patches at birth can also be affected
by free streaming. We illustrate the effect on phase coherent
patches and show that they also rapidly damp via free
streaming, leaving only phase incoherent transient fluctua-
tions from the superposition of waves of different patches
in the effective number density. Despite the free-streaming
damping of these waves, these incoherent effective number
density fluctuations are constant and white at late times
when all modes are nonrelativistic.
However, these effective number density fluctuations are

not spatial number density fluctuations in the wave dark
matter, but rather the wave analog of phase space density
fluctuations. At a given spatial position, these fluctuations
are composed of multiple field momentum streams from
the incoherent sources and the impact of free streaming is
similar to the directional damping of collisionless particles.
While relativistic, the process is the same as the creation of
CMB anisotropy out of plasma inhomogeneities before
recombination. As the wave momenta become nonrelativ-
istic, the process is analogous to the free-streaming damp-
ing of fluctuations in massive neutrinos.
More specifically, we show that these free-streamed

effective number density fluctuations do not behave like
real space number density fluctuations over a Hubble or
dynamical time in the background or spatially averaged on
scales much larger than the de Broglie wavelength of the
momentum components.5 Observables that evolve over a
dynamical time respond to the time average of these
fluctuations. During radiation domination, these fluctua-
tions oscillate at the beat frequency of the combination of
field momenta that compose them; during matter domina-
tion, the effective or Husimi phase space representation of
the wave dark matter explicitly maps them into multiple
momentum streams of the phase space, much like warm or
hot dark matter.
Therefore, the astrophysical effects of warm or hot fuzzy

dark matter isocurvature fluctuations may also differ from
those of CDM isocurvature fluctuations below their free-
streaming length in a manner that depends on the initial
momentum distribution and observable in question.
Beyond the axion case, where the free-streaming scale is

4Our effective density fluctuations are their “hidden” density
fluctuations [their Sec. IV.2.3 and Eq. (42) for the velocity
dispersion or equivalently the quantum pressure of fuzzy dark
matter].

5This should be contrasted with structure closer to the de
Broglie scale, where wave effects and interactions can lead to the
formation of solitons in axion miniclusters [124–126].
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relatively small, we leave the evaluation of specific models
and observables to future simulation work.
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APPENDIX A: FREE-STREAMING SCALINGS

In Eq. (4), we defined the free-streaming length λfs in
units of the comoving Hubble length at matter radiation
equality Fðq=aeqm; a=aeqÞ ¼ aeqHeqλfs=

ffiffiffi
2

p
of a momen-

tum component q through the free-streaming integral in
Eq. (3). In ΛCDM before dark energy domination, we can
explicitly evaluate this integral to obtain

Fðq̂; yÞ ¼ q̂½F ðφðq̂; yÞ; μðq̂ÞÞ − F ðφðq̂; 0Þ; μðq̂ÞÞ�
ð1þ q̂2Þ14 ; ðA1Þ

where F ðφ; mÞ is the incomplete elliptical integral of the
first kind with arguments

φðq̂; yÞ ¼ arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q̂2

p
− 1 − yffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q̂2
p

þ 1þ y

!
;

μðq̂Þ ¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ q̂2

s !
: ðA2Þ

Although the exact free-streaming integral is used in all
numerical computations in this work, it is useful to examine
the approximate scaling behavior of this solution in various
regimes of interest and provide a global approximation that
is simple to evaluate.
For y ¼ a=aeq ≪ 1 the integral is manifestly simple to

evaluate and becomes

Fðq̂; yÞ ≈ q̂ sinh−1ðy=q̂Þ; y ≪ 1: ðA3Þ

Notice that for q̂ ≫ y, the wave is ultrarelativistic
q=am ≫ 1, F → y, and the free-streaming length is the
horizon length λfs ¼ τ as expected. This growth continues
until a ∼ q=m and thereafter λfs grows logarithmically from
its value at τja¼q=m,

Fðq̂; yÞ ≈ q̂ ln ð2y=q̂Þ; q̂ ≪ y ≪ 1: ðA4Þ

This logarithmic growth halts at matter-radiation equality
and brings the free-streaming scale for modes that are
nonrelativistic at equality to

Fðq̂; yÞ ≈ q̂

�
ln
8

q̂
−

2ffiffiffi
y

p
�
; q̂ ≪ 1 ≪ y; ðA5Þ

which we provided in Eq. (6) in its leading order (y ≫ 1)
form. For axions this limit (A5) applies to essentially the
entirety of the number density spectrum as we have
explicitly verified by comparing its use to the full expres-
sion (A1) to calculate the transfer function as in Fig. 1.
For evaluating the small contribution from axion

momenta that are still relativistic at equality q̂ > 1 or in
more general models, it is useful to examine late time
contributions to the free-streaming integral. Here the free-
streaming length continues to grow as λfs ≈ τ ∝ a1=2 during
matter domination until a ¼ q=m. Taking the matter only
scaling forHðaÞ ¼ H0Ω

1=2
m a−3=2 in the integral (3), we find

λfs ¼
2a1=2

H0Ω
1=2
m

Gðq=amÞ; q̂ ≫ 1; ðA6Þ

where

GðfÞ ¼ 2F1½1=4; 1=2; 5=4;−f−2�

≈
K1=2f1=2

½1þ 10f1=2=3þ K4
1=2f

2�1=4 ; ðA7Þ

where 2F1 is the hypergeometric function, with K1=2 ≈
1.854 for the complete elliptic integral of the first kind Km
and the approximation is good to a few percent for all f.
Notice that the q ≫ am limit again returns λfs ¼
2a1=2=H0Ω

1=2
m ¼ τ as expected. On the other hand for

modes that have become nonrelativistic between aeq and a,
the free-streaming length approaches a constant value,

λfs ≈ 2K1=2

ffiffiffiffiffiffiffiffiffi
q=m

p
H0Ω

1=2
m

; aeq ≪ q=m ≪ a; ðA8Þ

associated with the horizon length at the epoch the
momentum becomes nonrelativistic.
In summary, to a few percent accuracy we can approxi-

mate the whole solution Eq. (A1) in the y ≫ 1 regime by
joining these approximations,

Fðq̂; yÞ ¼
8<
:

q̂ lnð8q̂Þ; q̂ < 1

2y1=2
h
G
�
q̂
y

�
−G

�
1
y

�i
þ ln8; q̂ ≥ 1;

ðA9Þ

and using the simple approximation for G in Eq. (A7) such
that all of the various scaling regimes are manifest.
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APPENDIX B: AVERAGING OVER MOMENTA

In the main text Eq. (15), we averaged the effect of free
streaming over the momentum distribution of the axions
q3PϕðqÞ to approximate the net impact on the transfer
function. For the spectrum of Eq. (10) which has a sharp
peak at q�, the impact is similar to evaluating an effective
kfs ¼ λ−1fs ðq�Þ and taking

Tkfs
relðkÞ ¼

sinðk=kfsÞ
k=kfs

ðB1Þ

in the region k ∼ kfs where the damping starts to have its
effect. In Fig. 10, we compare this approximation to
Eq. (15). Notice that this approximation does provide
the correct scaling for the wave numbers where free
streaming starts to become important but underestimates
the effect at higher k. Mathematically, this comes about
because Eq. (15) is an integration over an oscillating
quantity. Even in this case where the spectrum is peaked
near q�, the phase kλfsðqÞ varies over an increasingly large
range as k increases. Note, however, that the derivation of
Eq. (15) itself in Ref. [105] is not ensured to be physically
valid for kλfs ≫ 1 and should be considered as an estimate
for the half power point.
In Ref. [105] v2, this effective kfs approach was adopted

but instead of weighting the impact of free streaming by the
number density spectrum, they equated the Taylor expan-
sion of Eq. (15):

lim
k→0

TrelðkÞ ≈ 1 −
1

6

k2

k2AM
; ðB2Þ

where

1

k2AM
¼
R
am
0 d ln q q3

2π2
PϕðqÞλ2fsðqÞR

d ln q q3

2π2
PϕðqÞ

; ðB3Þ

to that of Eq. (B1),

lim
k→0

Tkfs
relðkÞ ≈ 1 −

1

6

k2

k2fs
; ðB4Þ

to imply that kfs → kAM in Eq. (B1) and Tkfs
rel → TkAM

rel [their
Eq. (5) v2]. In Fig. 10, we compare this transfer function
to Eqs. (15) and (B1). Notice that this weighting
scheme overestimates the effect of free streaming by
3 orders of magnitude, with kfs ≈ 3.2 × 103 Mpc−1 while
kAM ≈ 3.1 Mpc−1. The overestimate is so large that thism ¼
10−14 eV example would be inappropriately ruled out. In
Ref. [105] v2, this approximation was used to place a bound

FIG. 10. Approximations for the relative transfer function (15)
[Trel warm], using kfs ¼ λ−1fs ðq�Þ in Eq. (B1) [Tkfs

rel], and an
approximation from Ref. [105] v2 using kAM [TkAM

rel ] of Eq. (B3)
instead. The former captures the scale at which free streaming
occurs whereas the latter changes this scale to be orders of
magnitude smaller in k and would cause this mass m ¼ 10−14 eV
to be inappropriately ruled out.

FIG. 11. Relative transfer function for the warm axions at the
same m ¼ 10−14 eV mass as Fig. 10 but with variations to the
power spectrum which respectively increase the peak momentum
by R ¼ 1, 2, 4 and alter the high momentum slope α ¼
3=4; 1; 5=4 using Eq. (B5). We see that the variation of R shifts
the scale of the free-streaming damping for the same α ¼ 1,
whereas altering α for the same R ¼ 1 only makes small changes
in the shape of the damping.
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of m > 2 × 10−12 eV for the spectrum considered here and
m > 10−12 eV for their axion parametrization with mildly
relativistic modes from string decay.
This overestimate is tied to the behavior of the high

momentum tail with the spectrum in Eq. (10). In Eq. (A8)
we show that for waves that become nonrelativistic in the
matter dominated regime, λfs ∝ q1=2. Thus, for the spec-
trum q3Pϕ ∝ q−1, the integral in Eq. (B3) receives nearly
constant contributions per d ln q up to the q ≈ am limit
where the waves are still relativistic at the evaluation epoch
despite the highly suppressed number of axions with such
momenta. The result is that the estimate of the effective
free-streaming wave number kAM produces a suppression
of the transfer function to much smaller wave numbers or
much larger scales than calculated from Eq. (15) or
estimated by Eq. (B1). Mathematically, the Taylor expan-
sion (B2) is not a good approximation at k ∼ kAM since the
dominant momenta near q� have a vanishingly small free-
streaming effect as k → 0, causing the second derivative of
Trel to run strongly with scale.
The source of this discrepancy is the difference in the

weighting scheme. Since λfs grows as τ for relativistic
momenta, the weighting in Eq. (B3) allows a very small
number density in high momentum waves to dominate the
effective free-streaming length kAM of the whole popula-
tion, whereas physically free streaming implies that instead
this small component is smooth across scales where the
dominant component remains clustered, similar to the small

admixture of massive neutrinos and CDM in ΛCDM. That
both momenta can be represented by the single field ϕðxÞ is
also related to the Husimi phase space construction dis-
cussed in Sec. IV. The spatially smooth and clustered
components are embedded in the inferred momentum
distribution.
Since the key quantity that controls the free-streaming

effect is the shape of the momentum distribution, we also
explore variations from Eq. (10) that adjust the position of
the peak in the spectrum and the power law decline from
the peak, parametrized by R and α as follows:

q3PϕðqÞ ∝
�

q
Rq�

�
3

θðRq� − qÞ þ
�
Rq�
q

�
α

θðq − Rq�Þ:

ðB5Þ

Figure 11 shows the corresponding change in the transfer
function. In the top panel, we fix α ¼ 1 and increase R from
1 to 2 and 4. The damping wavelength increases nearly
linearly with R in accordance with the expectation that the
free-streaming length scales as λfsðRq�Þ discussed in
Sec. III. Varying α in the range where most of the particles
still have momenta ∼q� has a much smaller effect since
only the small tail of high momenta waves are affected.
These variations in α encompass the full range found in the
current state of the art axion simulations [110–112].
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