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ABSTRACT
Vector AutoRegressive Moving Average (VARMA) models form a powerful and general model class for analyzing dynamics 
among multiple time series. While VARMA models encompass the Vector AutoRegressive (VAR) models, their popularity in em-
pirical applications is dominated by the latter. Can this phenomenon be explained fully by the simplicity of VAR models? Perhaps 
many users of VAR models have not fully appreciated what VARMA models can provide. The goal of this review is to provide a 
comprehensive resource for researchers and practitioners seeking insights into the advantages and capabilities of VARMA mod-
els. We start by reviewing the identification challenges inherent to VARMA models thereby encompassing classical and modern 
identification schemes and we continue along the same lines regarding estimation, specification, and diagnosis of VARMA mod-
els. We then highlight the practical utility of VARMA models in terms of Granger Causality analysis, forecasting and structural 
analysis as well as recent advances and extensions of VARMA models to further facilitate their adoption in practice. Finally, we 
discuss some interesting future research directions where VARMA models can fulfill their potentials in applications as com-
pared to their subclass of VAR models.

1   |   Introduction

Vector AutoRegressive Moving Averages (VARMAs) have long 
been considered a fundamental model class for multivariate time 
series. VARMA models extend the popular ARMA framework 
(Box and Jenkins 1976) to vector time series thereby permitting 
practitioners to learn dynamic interrelationships between the 
component series and to explore the cross-dependence to add 
prediction of each individual series.

Several strong reasons exist for modeling multivariate time se-
ries in a VARMA framework: (i) VARMA models typically per-
mit more parsimonious representations of the data generating 

process than pure Vector Autoregressive (VAR) models; which 
may lead, in turn, to estimation and forecast accuracy gains; see, 
for instance, Tiao and Box (1981). (ii) The class of VARMA models 
is closed under many basic linear transformations, marginaliza-
tion and temporal aggregation, whereas the class of VAR models 
is not; see Lütkepohl (2005, Chapter 11), and Amendola, Niglio, 
and Vitale (2010) for textbook introductions. (iii) VARMA mod-
els are closely linked to other widely used econometric models 
such as linear simultaneous equation models (e.g., Wallis 1977; 
Zellner and Palm 1974 for the link with VARMA in final equa-
tion form) or dynamic models such as Dynamic Stochastic 
General Equilibrium (DSGE) models or rational expectation 
(RE) models in economics: linearized DSGEs imply that the 
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variables of interest are generated by a VARMA process, not a 
VAR one (e.g., Fernández-Villaverde et al. 2007; Komunjer and 
Ng 2011) and also RE models have VARMAs as their reduced 
form (e.g., Vinod 1996). Already more than 25 years ago, Cooley 
and Dwyer (1998) highlighted “While VARMA models involve 
additional estimation and identification issues, these complica-
tions do not justify systematically ignoring these moving aver-
age components, as in the SVAR approach.”

In theory, VARMA models ought to be preferable over VAR 
models. Nonetheless, VARMA models are scarcely used in 
practice as their adoption is complicated by identification, es-
timation, and specification difficulties, which arise primar-
ily due to the flexibility of the model structure leading easily 
to over-parametrization if care is not exercised. In contrast, 
VARs dominate empirical work in multivariate time series 
analysis since they are direct generalizations of multivariate 
linear regression. Over the years, various proposals have been 
made to make VARMA more accessible to applied research-
ers. In this paper, we review the literature on VARMA mod-
els to further ease their adoption by practitioners and applied 
researchers.

The remainder of this article is structured as follows. Section 2 
starts by briefly reviewing the VARMA model. Section 3 high-
lights the identification problem in VARMA models and reviews 
some commonly used identification schemes available in the 
literature. Section  4 addresses estimation, order specification 
and diagnosis of VARMA models. Section 5 reviews the main 
usage of VARMA while Section 6 presents the most commonly 
adopted extensions. Section 7 concludes with a perspective on 
the need for future research directions.

2   |   The VARMA Model

In this section, we present a compact review of the VARMA 
model and refer the reader to Hannan and Deistler  (1988), 
Reinsel (1993), Brockwell and Davis (1991), Lütkepohl (2005), or 
Tsay (2013), among many others, for more extensive introduc-
tions to VARMA models.

Let yt be a stationary d-dimensional mean-zero vector time se-
ries. It follows a VARMAd(p, q) model if

where 
{
Φ� ∈ℝ

d×d
}p
�=1

 are the autoregressive (AR) parameter 
matrices, 

{
Θm∈ℝ

d×d
}q
m=1

 the moving-average (MA) parameter 
matrices, and 

{
at
}
 denotes a d-dimensional mean-zero white 

noise vector time series with d × d nonsingular contemporane-
ous covariance matrix Σa. The VARMA model states that yt is a 
function of its own p past values and q lagged error terms. Model 
(1) can be re-written as

using the compact AR and MA matrix polynomials in lag oper-
ator given by

where the lag operator L� is defined as L�yt = yt−� and I denotes 
the d × d identity matrix.

The VARMA model is stable if det{Φ(z)} ≠ 0 for all ∣ z ∣ ≤ 1 
(z ∈ ℂ) and is invertible if det{Θ(z)} ≠ 0 for all ∣ z ∣ ≤ 1 (z ∈ ℂ). 
It is unit-root nonstationary if det{Φ(z)} = 0 for some ∣ z ∣ = 1. 
If the VARMA model is invertible, it has a pure VAR represen-
tation given by

where Π(L) = Θ−1(L)Φ(L) = I − Π1L − Π2L
2 − ⋯. The 

Π-matrices in the infinite-order VAR representation can be ob-
tained recursively from the AR matrices 

{
Φ�

}
 and MA matri-

ces 
{
Θm

}
:

with Θ0 = I, Θi = 0, for i > q and Φi = 0, for i > p. The VARMA 
model is uniquely defined in terms of the operator Π(L), but not 
in terms of the AR and MA operators Φ(L) and Θ(L), in general. 
See some specific examples in Tsay (2013), among others. In fact, 
this identification problem for VARMA models is well known 
in the literature, early discussions on this date back to, among 
others, Hannan (1969, 1971); Akaike (1974, 1976). Some identifi-
cation conditions of VARMA models are also available in the lit-
erature. See, for instance, the block identifiability conditions in 
Dunsmuir and Hannan (1976). Next, we discuss this identifica-
tion problem in further detail and review two approaches avail-
able in the literature to overcome this identifiability problem.

3   |   Identification

Consider the VARMAd(p, q) of equation (1) with fixed AR order 
p and MA order q. For a given Π(L), p, and q, one can define an 
equivalence class of AR and MA matrix polynomial pairs,

where Φ =
[
Φ1 ⋯ Φp

]
 and Θ =

[
Θ1 ⋯ Θq

]
. This class can easily 

consist of multiple (or even infinitely many) pairs, implying that 
further identification restrictions on the AR and MA matrices 
are needed for meaningful model specification and estimation.

Simply put, for a given d-dimensional time series yt with d > 1, 
the identifiability problem arises because the two integers p and 
q are not sufficient to describe its dynamic structure. To illus-
trate, suppose that d = 2 and p = q = 1. In this case, we have 
yt = 

(
y1,t, y2,t

)⊤ and Φ(L) = I − Φ1L and Θ(L) = I + Θ1L. Here p 
and q do not provide any information on the structures of Φ1 and 
Θ1, yet these structures provide the dynamic dependence of yt. 
Suppose further that y1,t is in fact a white noise series while y2,t 
depends on {y1,t−1, y2,t−1 and a2,t−1 }. In this particular instance, 
the VARMA2(1, 1) model for yt should assume the form

(1)yt =

p∑
�=1

Φ�yt−� +

q∑
m=1

Θmat−m + at,

Φ(L)yt = Θ(L)at,

Φ(L)= I−Φ1L−Φ2L
2− … −ΦpL

p

and Θ(L)= I+Θ1L+Θ2L
2+ … +ΘqL

q,

Π(L)yt = at,

Πi = Φi + Θi −

i−1∑
j=1

Θi−jΠj, i = 1, 2, …

(2)ℰp,q(Π(L)) = {(Φ,Θ):Φ(L) = Θ(L)Π(L)},
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for the model to be estimable. One would encounter problems in 
estimation if an unrestricted VARMA2(1, 1) model were used in 
estimation, because the likelihood function is not well defined 
then. Of particular interest in the specification of the model in 
equation  (3) is that we set Θ21,1 = 0. This is so because, being 
white noise, y1,t−1 = a1,t−1 so that only one of the two parameters {
Φ21,1,Θ21,1

}
 can be used in the model. The identifiability prob-

lem becomes more complicated for higher values of d, p and q.

We review here the most commonly used identification schemes. 
They are the Echelon methodology (Section 3.1) and the scalar 
component methodology (Section  3.2). We conclude this sec-
tion with some more recent approaches on model identification 
(Section 3.3).

3.1   |   Echelon-Form

Arguably the most popular identification procedure is the 
Echelon form identification. The Echelon form methodology 
was developed in the engineering literature under the linear 
dynamic system; see Hannan and Deistler (1988), Hannan and 
Kavalieris  (1984), Poskitt  (1992), and the references therein. 
The basic idea amounts to the use of a set of d Kronecker in-
dices, which are integers and invariant with respect to the or-
dering of the components of yt, to determine the lag structure 
and the number of free parameters in the model. These indices 
effectively capture the depth of each variable's influence in the 
system, allowing for a more efficient representation by exclud-
ing unnecessary parameters. The end result of using Echelon 
form is to obtain an identifiable VARMAd(k, k) model for yt, 
with k =max{p, q}.

We discuss the basic concept here. A simple way to understand 
the Echelon form of the time series yt is from the prediction 
point of view. For simplicity, we assume that yt is stationary with 
mean-zero and let Γk = Cov

(
yt, yt−k

)
 be the lag-k autocovariance 

matrix of yt. If yt is unit-root nonstationary, then one can replace 
Γk by the Πk matrix of the VAR representation of yt in the follow-
ing discussion.

3.1.1   |   Kronecker Index

Consider a time index t . Let Ft =
(
y⊤t , y

⊤
t+1
, y⊤

t+2
, …

)⊤ and 
Pt−1 =

(
y⊤
t−1
, y⊤

t−2
, …

)⊤ be, respectively, the future and past vec-
tors of yt. Define an infinite-dimensional Hankel matrix of yt as

Clearly, H∞ is a Toeplitz matrix in which the 2nd d-block row is a 
subset of the first d-block row, and so on.

Let m = rank
(
H∞

)
. It is easy to show, via the moment equations, 

that yt follows a VARMA(p, q) model if and only if the rank m 
is finite; see Lemma 4.1 of Tsay  (2013). Let h(i, j) denote the [
(i − 1)d + j

]
th row of H∞, where j = 1, … , d and i = 1, 2, …. From 

the definition in equation (4), we see that h(i, j) = E
(
yj,t+i−1P

⊤
t−1

)
, 

which represents the linear dependence of yj,t+i−1 on the past vec-
tor Pt−1 of yt. Next, we say that h(i, j) is a predecessor of h(u, v) if 
(i − 1)d + j < (u − 1)d + v. Using the Toeplitz property of H∞, one 
can easily see that if h(i, j) is a linear combination of its prede-
cessors 

{
h
(
i1, j1

)
, h
(
i2, j2

)
, ⋯ , h

(
is, js

)}
, then h(i + 1, j) is a linear 

combination of its predecessors 
{
h
(
i1+1, j1

)
, h
(
i2+1, j2

)
, ⋯ ,

h
(
is+1, js

)}
; see Lemma 4.2 of Tsay (2013).

Definition: For the jth component yj,t of yt, the Kronecker index 
kj is the smallest non-negative integer i such that h(i + 1, j) of H∞ 
is linearly dependent of its predecessors.

To illustrate, consider the bi-variate VARMA(1,1) model in equa-
tion (3). Since y1,t is white noise, which does not depend on Pt−1, 
we have h(1, 1) = 0 and the Kronecker index k1 = 0. Next, for the 
VARMA(1,1) model, the moment equations are Γk − Φ1ΓK−1 = 0, 
for k > 1, implying that the 2nd d-block row of H∞ is a linear com-
bination of the 1st d-block row. Consequently, we have k2 = 1 
for y2,t.

The collection of Kronecker indices 
{
k1, … , kd

}
 of yt forms the 

Kronecker index set of the series, and they provide a clear de-
scription of the dynamic dependence of yt. For the particular 
VARMA2(1, 1) process yt in equation (3), the Kronecker index set 
is {0, 1}. Note that the Kronecker index kj is for the component 
yj,t so that the index depends on the ordering of the components 
of yt, but the Kronecker index set is invariant with respect to the 
ordering of the components of yt. Furthermore, it is also easy to 
see that, for a VARMA model, 

∑d
j=1 kj = m, which is the rank of 

H∞. Again, for the model in equation  (3), it is easily seen that ∑2
j=1 kj = 1 = m, which is the rank of H∞ of yt.

3.1.2   |   Model Specification via Kronecker Indices

In this section, we show that the Kronecker index set 
{
k1, … , kd

}
 

provides a concrete structural specification of the VARMAd(p, q) 
model for yt. The notation used in this section is a bit compli-
cated as we try to give a detailed description of the dynamic 
dependence of each component of yt. We refer the reader to 
Tsay (2013) for further details.

To facilitate a better understanding of the dynamic structure im-
plied by Kronecker indices, it is helpful to think of the Hankel 
matrix of yt as follows:

Block Future component P⊤t−1 =
(
y⊤
t−1
, y⊤

t−2
, …

)

1 y1,t h(1, 1)

y2,t h(1, 2)

⋮ ⋮

yd,t h(1, d)

(3)yt −

[
0 0

Φ21,1 Φ22,1

]
yt−1 = at −

[
0 0

0 Θ22,1

]
at−1,

(4)H∞ = Cov
�
Ft,Pt−1

�
= E

�
FtP

⊤
t−1

�
=

⎡⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 ⋯

Γ2 Γ3 Γ4 ⋯

Γ3 Γ4 Γ5 ⋯

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎦

.
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Block Future component P⊤t−1 =
(
y⊤
t−1
, y⊤

t−2
, …

)

2 y1,t+1 h(2, 1)

y2,t+1 h(2, 2)

⋮ ⋮

yd,t+1 h(2, d)

⋮ ⋮ ⋮

kj y1,t+kj−1 h
(
kj, 1

)

y2,t+kj−1 h
(
kj, 2

)

⋮ ⋮

yd,t+kj−1 h
(
kj, d

)

kj + 1 y1,t+kj h
(
kj + 1, 1

)

y2,t+kj h
(
kj + 1, 2

)

⋮ ⋮

yd,t+kj h
(
kj + 1, d

)

Let 
{
k1, ⋯ , kd

}
 be the set of Kronecker indices of yt. Consider 

the first component y1,t. By the definition, h(i, 1) is not a linear 
combination of its predecessors, for i = 1, … , k1, but h

(
k1 + 1, 1

)
 

is a linear combination of its predecessors. Therefore, from the 
aforementioned H∞ structure, we have

where �u,i,1 is a real number and the summation is zero if its 
upper limit is smaller than its lower limit. In general, for the jth 
component yj,t with Kronecker index kj, we have

where, again, �u,i,j denotes a real number and the first subscript 
kj + 1 of �kj+1,i,j signifies a concurrent time index. By rearranging 
the summation according to the second argument of h(u, i), we 
can rewrite equation (5) as

Next, consider jointly all Kronecker indices. That is, consider 
equation  (6) simultaneously for j = 1, … , d. For each i, h(u, i) 
is a linear combination of its predecessors if u > ki. Therefore, 
equation (6) can be simplified as

where u ∧ v =min(u, v) and coefficients �u,i,j are linear combi-
nations of the coefficients �u,i,j in equation (6). The d equation in 
(7) jointly specify a detailed structure of VARMA model for yt. In 
particular, the number of coefficients of the jth equation in (7) is

which turns out to be the number of AR parameters needed for 
yj,t in the specified VARMA model for yt.

To make it more precisely, we define an infinite dimensional 
vector � j based on the jth equation of (7) below. Denote the [
(u − 1)d + i

]
th element of � j by �u,i,j. Then,

1.	 let �kj+1,j,j
= 1, that is, the 

[
kj × d + j

]
th element of � j is 1;

2.	 for each �u,i,j coefficient on the right hand side of equa-
tion (7), let �u,i,j = − �u,i,j;

3.	 let all other elements of � j be zero.

By equation (7), we have

Let wj,t+kj
= 𝜓⊤

j
Ft, where Ft is the future vector of yt at time index 

t  and the last non-zero element of wj,t+kj
 is yj,t+kj. Then, equa-

tion (9) implies, from the definition of H∞, that wj,t+kj
 is uncor-

related with the past vector Pt−1 of yt. Consequently, wj,t+kj
 must 

be a linear combination of 
{
at+kj , at+kj−1, … , at

}
. As a matter of 

fact, we have

where ui,js are d-dimensional row vectors such that

with 1 being in the jth position and it is understood that 
�k+j+1,i,j = 0 if ki < kj + 1 and i < j. Equation (10) says that wj,t+kj

 
is an MA

(
kj
)
 time series.

Finally, from the definition of � j and equation (7), we also have

Combining equations (10) and (11) and noting that �kj+1,i,j
= 0 if 

ki < kj + 1 and i < j, we have specified an equation for yj,t as

h
(
k1 + 1, 1

)
=

k1∑
u=1

d∑
i=1

�u,i,1h(u, i),

(5)h
(
kj + 1, j

)
=

j−1∑
i=1

�kj+1,i,jh
(
kj + 1, i

)
+

kj∑
u=1

d∑
i=1

�u,i,jh(u, i),

(6)h
(
kj + 1, j

)
=

j−1∑
i=1

kj+1∑
u=1

�u,i,jh(u, i) +

d∑
i=j

kj∑
u=1

�u,i,jh(u, i).

(7)

h
(
kj + 1, j

)
=

j−1∑
i=1

kj+1∧ki∑
u=1

�u,i,jh(u, i) +

d∑
i=j

ki∧kj∑
u=1

�u,i,jh(u, i), j = 1, … , d,

(8)�j =

j−1∑
i=1

min
(
kj + 1, ki

)
+ kj +

d∑
i=j+1

min
(
kj, ki

)
,

(9)𝜓⊤
j H∞ = 0.

(10)wj,t+kj
=

kj∑
i=0

u⊤i,jat+kj−i,

u0,j =
(
�kj+1,1,j

, … ,�kj+1,j−1,j
, 1, 0, … , 0

)
,

(11)

wj,t+kj
= yj,t+kj +

j−1∑
i=1

kj+1∧ki∑
u=1

�u,i,jyi,t+u−1 +

d∑
i=j

kj∧ki∑
u=1

�u,i,jyi,t+u−1.

(12)

yj,t+kj +

j−1∑
i=1

kj+1∧ki∑
u=1

𝜓u,i,jyi,t+u−1+

d∑
i=j

kj∧ki∑
u=1

𝜓u,i,jyi,t+u−1

=aj,t+kj +
∑

i<j,ki<kj+1

𝜓kj+1,i,j
ai,t+k+

kj∑
i=1

u⊤i,jat+kj−i.

 19390068, 2025, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.70009 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [16/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 21

By stationarity of yt, we can change the time index from t + kj 
to t  throughout the above equation and it continues to hold. 
Putting equation  (12) together, for j = 1, … , d, we see that 
the Kronecker index set 

{
k1, … , kd

}
 specifies a well-defined 

VARMAd(p
∗, p∗) model for yt, where p∗ =max

{
k1, … , kd

}
. 

Also, from equation (12), the number of parameters for yj,t is 
�j + kj × d, where �j is defined in equation (8) and kj × d is the 
number of parameters in the MA part. Consequently, the num-
ber of coefficient parameters of the specified VARMAd(p

∗, p∗) 
model via the Kronecker indices is N =

∑d
j=1 �j + d

∑d
j=1 kj. 

The resulting VARMAd(p
∗, p∗) model for yt is said to be in the 

Echelon Form.

Based on the specification in equation  (12), we see that the 
Echelon form puts coefficients in the MA part when AR and MA 
parameters are exchangeable. For the particular VARMA2(1, 1) 
example in equation (3), Echelon form would estimate Θ21,1 in-
stead of Φ21,1. Theoretically speaking, this is not a problem as 
only one of 

{
Φ21,1,Θ21,1

}
 is allowed in the VARMA model.

3.1.3   |   Echelon VARMA Models

Given the set of Kronecker indices 
{
k1, … , kd

}
 of a d-dimensional 

time series yt, we can obtain the structural specification of a 
VARMAd(p

∗, p∗) model for yt by considering jointly the d equa-
tion in (12), where p∗ =max

{
k1, … , kd

}
. The specified Echelon 

form contains further information of the dynamic dependence 
of yt than an overall model. To see this, we summarize the speci-
fied VARMA model below: The model assumes the form

where Φ0 = Θ0 is a lower triangular matrix with diagonal el-
ements being 1. Denote further the (r, s)th elements of the ith 
matrices Φi and Θi by Φrs,i and Θrs,i, respectively, and write 
Φ(L) =

[
Φrs(L)

]
 and Θ(L) =

[
Θrs(L)

]
, for r, s = 1, … , d. Let nrs be 

the number of coefficients in the polynomial Φrs(L) and mrs be 
the number of coefficients in the polynomial Θrs(L). Here both 
nrs and mrs include the unknown coefficients in Φ0, if any. From 
the equation in (12), we have

The equation in (12) also imply that

for r, s = 1, … , d and

for r, s = 1, … , d.

3.1.4   |   Discussion

The Echelon form offers multiple benefits in identifying VARMA 
representations. Firstly, its definition is solely reliant on the 
Kronecker indices, eliminating the need for additional con-
straints on the coefficients to distinctly determine the VARMA 
structure. As a matter of fact, it specifies an equation for each 
component yi,t in a matrix framework. Secondly, it gives posi-
tions of estimable coefficients of the VARMA models. Thirdly, 
its inherent simplicity alleviates computational challenges as-
sociated with likelihood maximization. Lastly, there are estab-
lished methods for accurately estimating the Kronecker indices 
in finite-dimensional vector processes.

While offering a reliable and well-studied identification pro-
cedure, the Echelon form has also some drawbacks. In partic-
ular, in the high-dimensional setting, when the dimension d 
and orders p, q might be large, the Echelon form suffers from 
selecting Kronecker orders from a O

(
(p+q)d

)
-dimensional set, 

by comparing an equally large number of models. Data-driven 
strategies, involving a series of canonical correlation tests, or 
regressions based on model selection criteria (e.g., AIC, BIC, 
information theoretic criterion) were proposed (Akaike 1976; 
Tsay  1989; Poskitt  1992). However, all of these methods are 
computationally intensive and require a large sample size 
to work well. Assuming d is fixed, Poskitt  (1992) proves as-
ymptotic theory for the specification step. Then, assuming 
Kronecker orders are known, consistency of parameter estima-
tion follows via maximum likelihood methods under the mul-
tivariate Gaussian assumption. This procedure has been tested 
only on very small d, and finite sample performances deserve a 
further investigation; see Section 3.4 in Lütkepohl (2006) and 
Chapter 4 of Tsay (2013).

3.1.5   |   Finding Kronecker Indices

The Echelon form is the most commonly used identification 
scheme and has ever since its development been an active re-
search area by either benefiting from its advantages or attempt-
ing to make the identification scheme more tractable. We review 
some of those efforts here.

To identify the Echelon form, Tsay  (1989) and Nsiri and 
Roy (1992, 1996) present procedures based on the examination 
of the linear dependence among rows of the Hankel matrix 
that either summarizes autocorrelation or employ the smallest 
canonical correlation between the past and future vectors of 
yt. To be more precise, they define test statistics for the null hy-
pothesis of linear dependence between correlation vectors; see 
Section 4.4 of Tsay (2013) for details and examples.

Φ(L)yt = Θ(L)at with Φ(L) = Φ0 −

p∗∑
i=1

ΦiL
i and Θ(L) = Θ0 +

p∗∑
j=1

ΘjL
j,

nrs =

{
min

{
kr, ks

}
if r≤ s,

min
{
kr+1, ks

}
if r> s,

mrs=

{
kr if r≤ s or

(
r> s and kr≥ks

)
,

kr+1 if r> s and kr<ks.

Φrs(L) =

⎧
⎪⎪⎨⎪⎪⎩

1−

kr�
i=1

Φrr,iL
i if r= s,

−

kr�
i=kr+1−nrs

Φrs,iL
i if r≠ s,

Θrs(L) =

⎧
⎪⎪⎨⎪⎪⎩

1+

kr�
i=1

Θrr,iL
i if r= s,

kr�
i=kr+1−mrs

Θrs,iL
i if r≠ s,
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Note that it is not necessary to estimate the AR or MA parameters 
to specify the Kronecker indices in data analysis. We briefly out-
line the procedure in Section 4.4 of Tsay (2013). For a given data 

set 
{
yt
}T
t=1

, where T is the sample size. Let Pot =
(
y⊤
t−1
, … , y⊤t−po

)⊤

 

be a proxy of the past vector of yt at the time index t. In practice, 
the order po can be selected either using the AIC or examining the 
sequential chi-square test of zero partial autoregressive matrices 
of Tiao and Box (1981). Then, one can test the linear dependence 
of elements of the future vector Ft on Pot  one by one starting with 
the first row y1t. Specifically, we divide the future vector Ft into 
two disjoint vectors F∗t  and Fct, where F∗t  denote the future vector to 
be tested and Fct consists of the remaining candidates. One starts 
with F∗t =

{
y1t

}
 and Fct = Ft − F∗t  and tests the null hypothesis that 

the smallest canonical correlation between F∗t  and Pot  is zero. To 
this end, Tsay (2013) uses a chi-square test. If the null hypothesis 
is rejected, then move the first element of Fct into F∗t  and repeat 
the testing procedure. If the null hypothesis cannot be rejected, 
the last row of F∗t  is linearly dependent on Pot . In this case, the 
Kronecker index for the last element of F∗t  is found. One then de-
letes the last element of F∗t  and removes all of its future elements 
from Fct for any further consideration. If Fct becomes an empty set, 
all Kronecker indices have been found and the search is stopped. 
If Fct is not empty, one moves its first element into F∗t  and repeats 
the testing procedure. Obviously, Fct will be empty when d kro-
necker indices are found for a d-dimensional series yt.

Ratsimalahelo  (2001) proposed an algorithm which selects a 
maximal set of linearly independent rows of the Hankel ma-
trix of the estimated covariances. This set is obtained by se-
quentially testing the smallest singular value of the Hankel 
matrix and yields estimates of Kronecker indices which char-
acterize the Echelon form. Using the matrix perturbation the-
ory, the asymptotic distribution of the test statistic is seen to 
be chi-squared.

Poskitt (2016) develops a new methodology for identifying the 
structure of VARMA time series models. The analysis pro-
ceeds by examining the Echelon canonical form and presents 
a fully automatic data driven approach to model specification 
using a new technique to determine the Kronecker invari-
ants. In a more recent work, Bhansali (2020) identifies three 
major difficulties with an established Echelon form approach 
in identifying a model from observed data: A lack of choice, 
overparameterization and structural rigidity. Their approach 
to address those issues is to specify a range of different multi-
step Echelon forms.

3.2   |   Scalar Component Methodology

Another popular identification and specification method is the 
Scalar Component Model (SCM) which was first introduced in 
Tiao and Tsay (1989) and further developed in Athanasopoulos 
and Vahid  (2008); Athanasopoulos, Poskitt, and Vahid  (2012). 
We refer to Tsay (1991) for a comparison of the Echelon and the 
SC methodologies.

The SCM approach decomposes a multivariate series into sca-
lar components, which are linear combinations of yi,ts. This 
decomposition simplifies the model identification process by 

allowing the researcher (1) to seek linear transformations of 
yt to reveal its dynamic structure and (2) to focus on specifica-
tion of each SCM within a VARMA framework. Consequently, 
the SCM approach is considerably easier to handle than the 
full VARMA structure. For a d-dimensional series yt, once 
d linearly independent SCMs are given, one can specify a 
VARMAd(p, q) model for yt in which all estimable coefficients 
are identified. In contrast to the Kronecker index approach, 
the SCM approach specifies a VARMAd(p, q) model for yt with-
out any constraints on p and q so long as they are finite. This 
refinement over the Kronecker index approach comes with the 
price of requiring more intensive computation in searching for 
the SCMs.

3.2.1   |   Scalar Components

One of the motivations for developing SCM is that in many 
empirical applications some linear combinations of yt become 
a white noise series, even when some components yi,t are unit-
root nonstationary; see, for instance, Box and Tiao (1977). The 
jth component yj,t can be written as yj,t = e⊤

0,j
yt, where e0,j is the 

jth unit vector. That is, e0,j = (0, … , 0,1,0, … , 0)⊤ with 1 being at 
the jth position. SCM is simply to employ a general non-zero d
-dimensional vector v0.

Definition: wt = v⊤
0
yt is a scalar component of order (r, s) of yt, 

where v0 is a non-zero d-dimensional vector, if there exist r vec-
tors v1, ⋯ , vr, with vr ≠ 0, such that zt = wt +

∑r
i=1 v

⊤
i
yt−i satis-

fies (a) E
(
at−hzt

)
= 0, for h > s, and (b) E

(
at−szt

)
≠ 0.

We denote the wt of the above definition as a SCM(r, s) compo-
nent. Recall that Pt−h =

(
y⊤
t−h
, y⊤

t−h−1
, …

)⊤, for h > 0. From the 
definition, we see that E

(
ztPt−h

)
= 0, for h > s, but E

(
ztPt−s

)
≠ 0. 

Thus, if wt is a SCM(r, s) of yt, then wt depends on yt−r and at−s. 
It may or may not depend on yt−1, … , yt−r+1 or at−1, … , at−s+1. 
In fact, if wt = v⊤

0
yt is a SCM(r, s) of yt, then there exist vectors 

v1, ⋯ , vr and u1, ⋯ ,us such that

where vr and us are non-zero. The MA part of the above equa-
tion follows from that the left hand side of equation  (13) 
zt =

∑r
i=0 v

⊤
i
yt−i is uncorrelated with at−h for h > s. The SCM ap-

proach to VARMA model specification is to make use of equa-
tion (13) jointly for d linearly independent SCMs. Details are in 
the next subsection.

Three properties of SCM are relevant to our discussion below. 
First, if wt is a SCM(r, s) of yt, then cwt is also a SCM(r, s) of yt if 
c ≠ 0. This implies that SCMs are scale invariant. Second, if w1,t is 
a SCM

(
r1, s1

)
 and w2,t is a SCM

(
r2, s2

)
 of yt, then �1w1,t + �2w2,t is a 

SCM(r∗, s∗) of yt, provided that 
(
�1, �2

)
≠ 0, where r∗ =max

{
r1, r2

}
 

and s∗ =max
{
s1, s2

}
. This property is easily seen from the defini-

tion of SCM. Third, suppose w1,t and w2,t are SCMs of yt with or-
ders 

(
r1, s1

)
 and 

(
r2, s2

)
, respectively. If r1 < r2 and s1 < s2, then one 

can embed w1,t in w2,t so that min
{
r2 − r1, s2 − s1

}
 coefficients in 

w2,t can be set to zero. Tiao and Tsay (1989) refer to those parame-
ters as redundant parameters. The simple example in equation (3) 

(13)v⊤0 yt +

r∑
i=1

v⊤i yt−i = v⊤0 at +

s∑
i=1

u⊤i at−i,
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serves as an illustration, for which y1,t is a SCM(0,0) and y2,t is 
a SCM(1,1) of yt. Therefore, there is a redundant parameter in 
the equation of y2,t. As another example, suppose that wi,t is a 
SCM

(
ri, si

)
 of yt, for i = 1 and 2, with r1 = s1 = 1 and r2 = s2 = 2. 

In this case, by the definition, we have

where all three vectors v0,1, v1,1 and u1,1 are non-zero and it is 
understood that w1,t = v⊤

0,1
yt. Similarly, we have

where v0,2, v2,2 and u2,2 are non-zero vectors and w2,t = v⊤
0,2
yt. Let 

v1,1,2 and u1,1,2 be the first elements of v1,2 and u1,2, respectively. 
Then, we can see that only one of 

{
v1,1,2,u1,1,2

}
 is needed in equa-

tion (15). This is so because, from equation (14), we have

where vj,0,1 is the jth element of v0,1, for j = 1, … , d, and we 
assume v0,0,1 = 1 for simplicity as SCM is scale invariant. 
Multiplying (16) by − v1,1,2 and adding the resulting equa-
tion to equation  (15), we see that the coefficient of y1,t−1 
becomes zero while we maintain w2,t as a SCM(2, 2) of yt. 
Consequently, we can set either v1,1,2 or u1,1,2 to zero. In gen-
eral, for any two SCMs wi,t of order 

(
ri, si

)
 , for i = 1 and 2, the 

total number of redundant parameters in the first equation is 
�1 =max

{
0,min

(
r1 − r2, s1 − s2

)}
 and that of the second equa-

tion is �2 =max
{
0,min

(
r2 − r1, s2 − s1

)}
.

3.2.2   |   Model Specification by SCM

For a d-dimensional time series yt, suppose that we have d sca-
lar components of orders 

(
ri, si

)
, for i = 1, … , d. That is, we have 

wj,t = v⊤
0,j
yt is SCM

(
rj, sj

)
. We say that the d SCMs are linearly in-

dependent if the matrix T is non-singular, where T is a d × d ma-
trix with jth row being v⊤

0,j
. In practice, we want the orders 

(
rj, sj

)
 

to be as small as possible in the sense that rj + sj is minimized. 
This requirement is achieved in the searching procedure in find-
ing SCM, which we discussed in the next subsection.

Let p∗ =max
{
r1, … , rd

}
 and q∗ =max

{
s1, … , sd

}
. Then, the 

d SCMs specify a VARMAd(p
∗, q∗) for yt. This specification is 

achieved by putting together the equation (13) for each wj,t. More 
precisely, we have

where T, as before, is the matrix consisting of v0,j and Ξi and Ωi 
are coefficient matrices whose rows are given as follows. Let the 
jth row of Ξi and Ωi be Ξj.,i and Ωj.,i, respectively. Then,

where vi,js are the vectors associated with the SCM wj,t and ui,j is 
a d-dimensional vector.

The VARMA model in equation  (17) is not complete because 
there may exist some redundant parameters. The positions 
of those redundant parameters can be identified by using the 
method discussed in Section 3.2.1. For the joint VARMAd(p

∗, q∗) 
model in equation (17), the total number of redundant param-
eters is

where IND( ⋅ ) denotes the indicator function.

Note that if we define wt = Tyt, then we can rewrite equation (17) 
in terms of the transformed series wt. The model structure re-
mains unchanged because Ξiyt−i = ΞiT

−1Tyt−i ≡ Ξ∗
i wt−i, where Ξi 

and Ξ∗
i  have the same zero row structure, as a zero row vector 

multiplied by a matrix remains a zero row vector.

3.2.3   |   Finding SCM

Tiao and Tsay  (1989) propose a procedure to find SCMs. The 
procedure performs sequentially eigen-analysis of certain ex-
panded covariance matrices of yt and applies a chi-square test to 
detect the number of SCMs. Similarly to the search of Kronecker 
indices, it is unnecessary to estimate AR or MA parameters in 
specifying SCMs in data analysis. What is needed is the sample 
covariance matrices of some expanded vectors of yt. We briefly 
review the procedure in this section.

For a d-dimensional time series yt, define an expanded 
vector Ym,t =

(
y⊤t , y

⊤
t−1
, … , y⊤t−m

)⊤, which is of dimension 
d(m + 1), where m ≥ 0. For m ≥ 0 and j ≥ 0, consider the cova-
riance matrix

Tiao and Tsay  (1989) consider a two-way table of Γ(m, j), for 
m, j = 0, 1, …. From the moment equations of yt, the existence of 
a SCM(r, s) implies that there is a zero eigenvalue in Γ(r, s). In fact, 
if wt is a SCM(r, s) of yt, then there exist d-dimensional vectors {
v0, v1, … , vr

}
, with v0 ≠ 0 and vr ≠ 0, such that zt =

∑r
i=0 v

⊤
i
yt−i 

satisfies E
(
ztat−h

)
= 0, for h > s. Thus, by counting the number of 

zero eigenvalues in the two-way table formed by Γ(m, j), one can 
gain ideas on the SCMs. A complication arises, however. For the 
above SCM(r, s) component wt, there exist two zero eigenvalues 
in Γ(r + 1, s + 1). This is so because both 

{
0, v0, v1, … , vr

}
 and {

v0, v1, … , vr, 0
}
 would give rise to the same SCM, where 0 de-

notes a d-dimensional zero vector. More precisely, the two SCMs 
are wt and wt−1. They are identical under stationarity. This issue is 
referred to as a double counting problem in Tiao and Tsay (1989). 
To overcome this issue, the authors consider a diagonal differ-
ence of the number of zero eigenvalues. Specifically, let n(m, j) 

(14)v⊤0,1yt + v⊤1,1yt−1 = v⊤0,1at + u⊤1,1at−1,

(15)v⊤0,2yt + v⊤1,2yt−1 + v⊤2,2yt−2 = v⊤0,2at + u⊤1,2at−1 + u⊤2,2at−2,

(16)

y1,t−1 +

d∑
j=2

vj,0,1yj,t−1 + v⊤1,1yt−2 = a1,t−1 +

d∑
j=2

vj,0,1at−1 + u⊤1,1at−2,

(17)Tyt +

p∗∑
i=1

Ξiyt−i = Tat +

q∗∑
i=1

Ωiat−i,

Ξj.,i =

{
v⊤i,j if i ≤ rj

0 if i > rj
and Ωj.,i =

{
u⊤i,j if i ≤ sj

0 if i > sj,

𝜏 =

d−1∑
i=1

d∑
j=i+1

IND
[
min

(
rj − ri, sj − si

)
> 0

]
,

Γ(m, j) = Cov
�
Ym,t,Ym,t−j−1

�
=

⎡⎢⎢⎢⎢⎢⎣

Γj+1 Γj+2 Γj+3 ⋯ Γj+1+m

Γj Γj+1 Γj+2 ⋯ Γj+m

⋮ ⋮ ⋮ ⋱ ⋮

Γj+1−m Γj+2−m Γj+3−m ⋯ Γj+1

⎤⎥⎥⎥⎥⎥⎦

.
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denote the number of zero eigenvalues of Γ(m, j). The diagonal 
difference is defined as d(m, j) = n(m + 1, j + 1) − n(m, j). Then, 
the overall VARMA order for yt is the position of the upper-
left corner of a two-way table of d(m, j) formed by a lower-right 
square consisting of entries d.

Finally, Tiao and Tsay  (1989) propose to search for SCM se-
quentially starting with Γ(0, 0), then along the sequence given 
by m + j = 1, 2, … until d linearly independent SCMs are found. 
In this way, the procedure ensures that the selected orders (
ri, si

)
 are as small as possible. For m + j = c, one can start with 

Γ(c, 0),Γ(c − 1, 1), and so forth. We refer the reader to Tiao and 
Tsay (1989) and Chapter 4 of Tsay (2013) for more details.

3.2.4   |   Discussion

One of the main advantages of the SCM is its ability to 
simplify  the otherwise daunting task of parameter estima-
tion  in VARMA models. By breaking down the model into 
more manageable parts, SCM reduces the computational 
burden and potential estimation errors associated with high-
dimensional parameter spaces. Additionally, this method 
enhances the interpretability of the model by revealing the 
hidden structures of the observed time series as its seeks lin-
ear transformations to simplify the dynamic structure of the 
observed series yt.

Critically, the effectiveness of SCM hinges on the initial decom-
position of the time series, which must preserve the essential 
dynamics among the variables. Incorrect or suboptimal decom-
position can lead to misleading conclusions and poor model per-
formance. Therefore, careful consideration and robust testing of 
the decomposition strategy are imperative.

In practice, the application of SCM has been demonstrated 
in various studies, showing improved accuracy and efficiency 
in model estimation compared to traditional methods. This is 
particularly evident in cases where the time series data exhibit 
complex interdependencies and when the dimensionality of the 
dataset is high.

Based on the currently available methods for finding SCMs and 
Kronecker indices of yt, both methods can be carried out by ca-
nonical correlation analysis of certain expanded vectors of yt and 
by asymptotic chi-square tests for checking the number of zero 
correlations. The method for finding Kronecker indices is faster 
to compute and requires fewer numbers of hypothesis testings. 
The method for finding SCMs is more computational intensive 
and requires more hypothesis testing, especially in sorting out 
the double counting problem. On the other hand, Kronecker indi-
ces specify a VARMAd(p, p) model for yt whereas SCMs identify 
a general VARMAd(p, q) model for yt. Part of the intensive com-
putation of the approach is devoted to the separation of the AR 
and MA orders.

We remark that the methods for finding Kronecker indi-
ces and SCMs are available in the R package MTS of Tsay and 
Wood  (2022). In addition, the structural specification of the 
VARMA model given a set of Kronecker indices or a set of SCMs 
is also available there.

3.3   |   Recent Advances

Due to the limitations of the Echelon- and SCM-form, in par-
ticular in high-dimensional VARMA modeling, recent advances 
suggest new approaches for model identification.

Dufour and Pelletier (2022) propose new identified VARMA rep-
resentations, the diagonal MA equation form and the final MA 
equation form, where the MA operators are respectively diagonal 
and scalar elements. These two formulations simply extend the 
traditional VAR model class by incorporating a basic MA operator, 
which may be either diagonal or scalar. Adding an MA component 
can lead to more parsimonious representations while maintaining 
simplicity and avoiding unnecessary complexity.

Wilms et  al.  (2023) address the identifiability issue for high-
dimensional VARMA models by proposing an automatic iden-
tification of parsimonious VARMA models. The idea is to find a 
“simple” element in the equivalence set ℰp,q in (2) of all AR-MA 
matrices by identifying such a parsimonious element in an in-
tuitive yet objective fashion—using a suitable convex penalty—
that results in an optimization-based identification procedure. 
Earlier work on parameter reduction in VARMA models (i.e., 
identification of non-zero elements in the AR and MA parameter 
matrices) dates back to Koreisha and Pukkila (1987).

4   |   Estimation, Specification, and Diagnosis

In Section 4.1 we review popular estimation methods for an identi-
fied VARMA model with fixed AR and MA order. We thus assume 
the identifiability conditions associated to the VARMA to hold. 
In particular, the identification procedure (e.g., Kronecker index 
approach or SCM) results in a specified maximum order of the AR 
and MA polynomials together with an identified set of parame-
ters that are constrained to zero and parameters that are non-zero, 
hence estimable. One can then proceed with standard estimation 
procedures, discussed below, that apply these zero constraints 
during estimation to ensure a well-defined likelihood function 
and to avoid overparametrization. Section 4.2 subsequently con-
siders integral approaches towards estimation and specification of 
VARMA models, thereby focusing on the problem of determining 
the AR and MA orders. Section 4.3 reviews diagnosis tests to in-
vestigate the adequacy of estimated VARMAs.

4.1   |   Estimation

4.1.1   |   Maximum Likelihood-Based Estimation

In early works, the most commonly used estimation method 
for identifiable VARMA models (with fixed AR and MA orders) 
is maximum likelihood. The Gaussian log-likelihood of the 
VARMA (1) takes on the form

where �p = �
(
y1, y2, … , yp, ap−q+1, ap−q+2, … , ap

)
 captures the 

contribution to the log-likelihood of the starting values of the 

�
(
Φ,Θ,Σa

)
= �p −

(T − p)

2
ln ∣ Σa ∣ −

1

2
trace

T∑
t=p+1

((
Σa

)−1
ata

⊤
t

)
,
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response and the error term; see, for instance, Reinsel (1993) for 
a textbook discussion. Over the years, different proposals have 
been made regarding exact, approximate, and conditional maxi-
mum likelihood estimation.

For a general class of linear multivariate models including 
VARMA, Dunsmuir and Hannan  (1976) consider approximate 
likelihood procedures and establishes the strong law of large num-
bers and the central limit theorem for estimators of the parameters 
in such models; see Deistler, Dunsmuir, and Hannan (1978) for a 
generalization and corrections. Kohn  (1979) consider Gaussian 
likelihood procedures for general linear multivariate time series 
models and establish the strong consistency and asymptotic nor-
mality of the parameter estimates.

For (stable) VARMA models specifically, early work on max-
imum likelihood estimation dates back to Akaike  (1973). 
Tunnicliffe Wilson  (1973) starts from the Gaussian likelihood 
of the VARMA and consecutively alternates between estimating 
the AR and MA parameters on the one hand and the error cova-
riance matrix on the other hand.

Nicholls  (1976) proposes spectral techniques to estimate 
VARMA models with exogenous variables, and Nicholls (1977) 
subsequently shows that the obtained estimates are identical to 
those obtained by applying Newton–Raphson to the approxi-
mate likelihood function; thereby establishing the consistency, 
asymptotic normality and efficiency of the estimator. Nicholls 
and Hall (1979) derive the exact likelihood function of a station-
ary vector process generated by a VARMA by writing it as a func-
tion of the observed data and backcasted values of pre-sample 
innovations. Hall and Nicholls  (1980) then propose an algo-
rithm for the evaluation of the derived exact likelihood whereas 
Gallego (2009) offers an improved version of it oriented towards 
nonlinear least squares estimation.

Rissanen and Caines  (1979) consider multivariate Gaussian 
stationary vector time series following a VARMA and establish 
the strong consistency of the parameter estimates obtained with 
maximum likelihood. Reinsel (1979) considers full information 
maximum likelihood estimation for dynamic simultaneous 
equation models with VARMA errors. Hillmer and Tiao (1979) 
propose Gaussian approximate likelihood procedures for 
VARMA without relying on the invertibility condition (as com-
monly maintained in earlier work). Hannan, Dunsmuir, and 
Deistler  (1980) derive the asymptotic properties of maximum 
likelihood estimates in VARMA models with exogenous vari-
ables under general conditions.

Ansley  (1980); Kohn and Ansley  (1982) provide expressions 
for the theoretical autocovariances of VARMA processes. 
Mittnik  (1990) proposes an efficient procedure for computing 
autocovariance sequences of VARMA models in order to reduce 
the computational burden of exact maximum likelihood estima-
tion; see Mittnik  (1993) for an computational extension partic-
ularly suited for models with high order AR components and/
or a large number of variables and McElroy (2017) for a detailed 
discussion on the algorithmic implementation.

Mauricio  (1995) focuses on computational techniques for 
maximizing the exact likelihood of VARMA models, as 

opposed to earlier studies that focus on evaluating the like-
lihood but oftentimes resort to standard optimization al-
gorithms to maximize it. Mauricio  (1997, 2002) provides 
details on the corresponding algorithmic implementation and 
Jonasson and Ferrando  (2008); Jonasson  (2008) handles the 
extension to VARMA models with missing data based on a 
Cholesky decomposition method and Gallego (2009) provides 
a simplified version of the Mauricio (1995) algorithm oriented 
towards maximum likelihood estimation. Kharrati-Kopaei, 
Nematollahi, and Shishebor  (2009) consider a likelihood-
based approach to find an approximate sufficient statistics 
for the VARMA model in terms of the periodogram. Finally, 
heavy-tailed VARMA models are studied in She, Mi, and 
Ling (2022) who offer Whittle estimation for VARMA models 
with heavy-tailed noises.

Note that many of the proposals above consider the exact likeli-
hood of VARMA models, but maximizing it is computationally 
burdensome. Tiao and Box (1981) stress that the maximization 
of a conditional likelihood is much easier, other alternatives are 
discussed in detail below.

4.1.2   |   State-Space Representations and Kalman Filter

Consider the VARMA model (1) in state-space form, thereby fol-
lowing the notation in Metaxoglou and Smith (2007),

where x⊤t =

[
y⊤
t−1
, y⊤

t−2
, … , y⊤t−p

]⊤
, w⊤

t =

[
v⊤t , … , v⊤t−q

]⊤
, 𝜂⊤t =

[
v⊤t , 0, … , 0

]⊤ for Θ(L)at = Γ(L)vt + ϵt with vt and ϵt white noise 
processes such that vt and its lags can be treated as observable in 
the complete-data log-likelihood. Furthermore, Φ =

[
I Φ1 ⋯ Φp

]
 

and Z =
[
I Γ1 ⋯ Γq

]
, and

Early work on VARMA models in state space form dates back 
to Ansley and Kohn  (1983), Solo  (1984), Deistler  (1985) where 
the usage of the Kalman filter is proposed to compute its 
exact Gaussian likelihood thereby allowing for missing data. 
Shea  (1989) offers details on the algorithmic implementation 
of the former and Shea  (1987, 1988) provides a detailed assess-
ment on the choice of initial estimates. Zadrozny  (1989, 1992) 
presents algorithms to compute the exact Gaussian likelihood 
of discrete time, linear dynamic models in state space form that 
also encompass VARMA. Metaxoglou and Smith (2007) focuses 
on likelihood maximization and proposes maximum likelihood 
estimation of VARMA models in state space representation (18) 
using the EM algorithm; the Kalman filter also facilitates back-
casting to account for the pre-sample values of the AR compo-
nent which are treated as missing data.

Klein and Mélard (2014) derive the exact Fisher Information 
Matrix (FIM)—crucial for describing the covariance struc-
ture of the maximum likelihood estimator—of multivariate 

(18)
yt=Φxt+Zwt+ϵt, ϵt∼N

(
0,Σϵ

)

wt=Swt−1+�t, �t∼N
(
0,Σ�

)
,

S =

[
0 0

Idq 0

]
and Σ� =

[
Σv 0

0 0

]
.
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Gaussian time series models in state space form, thereby giv-
ing a detailed treatment for VARMA models; the properties of 
the FIM are further investigated in Klein and Spreij  (2006); 
Klein, Mélard, and Saidi (2008); Mélard (2022), an algorithm 
for Mathematica is discussed in Klein and Mélard (2023). Bao 
and Hua  (2014) propose a compact representation of the as-
ymptotic Fisher information matrix that does not involve any 
integral.

4.1.3   |   Least Squares-Based Estimation

Recursive linear regression methods have also been extensively 
considered for VARMA processes as they form an appealing al-
ternative to maximum likelihood estimation from a computa-
tional point of view, especially since the latter is expensive to 
apply for large time series models. The general idea is to esti-
mate, by least squares, the errors of the VARMA process from a 
high-order (i.e., p̃ large) VAR given by

and to subsequently use these residuals �̂t as regressors when 
estimating the (approximated) VARMA model

Spliid (1983) offers an early proposal of such a two-stage least 
squares based procedure, a similar proposal was made by 
Koreisha and Pukkila (1989). Poskitt (1992) considers VARMA 
models in Echelon canonical form and proposes a method 
for identification and estimation based on a sequence of least 
squares regressions. Poskitt and Salau  (1994, 1995) subse-
quently discuss the relationship between the least squares and 
Gaussian estimation schemes and the asymptotic (in)efficiency 
of using least squares relative to Gaussian maximum likelihood 
to estimate the parameters of Echelon-form VARMA models, 
numerical methods for computing the asymptotic covariance 
matrix of the conditional maximum likelihood estimator and 
the least squares estimator are discussed in Salau (1997, 1999). 
Kascha  (2012) provides a Monte Carlo comparison of maxi-
mum likelihood and least squares based estimation methods for 
VARMA models.

Reinsel, Basu, and Yap  (1992) discusses a Gauss-Newton iter-
ative procedure to obtain the maximum likelihood estimate of 
the VARMA parameters, which has a computational form in 
terms of generalized least squares estimation. De Frutos and 
Serrano  (2002) also propose a generalized least squares esti-
mation procedure for VARMA models that explicitly accounts 
for the stochastic nature of the approximation errors when the 
lagged errors are replaced by the lagged residuals of the high-
order VAR model.

Dufour and Jouini (2005) consider a two-step least squares based 
estimator for the VARMA, in their follow-up work (Dufour and 
Jouini 2014), a generalized least squares version of the former and 

a three-step linear estimator that is asymptotically equivalent, 
yet computationally more efficient, to the Gaussian maximum 
likelihood are introduced. Jouini  (2015) develops practical and 
asymptotically valid methods for bootstrapping VARMA models 
using the simple linear estimation methods developed in Dufour 
and Jouini  (2014). Dufour and Pelletier  (2022) then consider a 
three-stage procedure where in addition to the commonly used 
two steps in the linear regression based approach, a third step is 
added where the data from the VARMA with approximated er-
rors is filtered to obtain estimates with the same asymptotic cova-
riance matrix as their nonlinear counterparts (i.e., the Gaussian 
maximum likelihood estimator).

Dias and Kapetanios  (2018) propose an iterative, instead 
of two-step, least squares estimator for VARMA models in 
the spirit of Kapetanios  (2003) and establish its consistency 
and asymptotic distribution. Finally, Wilms et  al.  (2023); 
Zheng (2024) consider high-dimensional time series and offer 
penalized regression based approaches to sparsely estimate 
high-dimensional VARMA and infinite-order VAR models 
respectively.

4.1.4   |   Bayesian Estimation

Bayesian estimation contributions to VARMA modeling re-
main rather scarce. Shaarawy  (1989) initiated the proposal of 
Bayesian solutions to the problems of estimation of and forecast-
ing with VARMA models. Albassam, Soliman, and Ali  (2023) 
conduct a wide simulation study to investigate the effectiveness 
of this proposal.

Ravishanker and Ray  (1997) consider Bayesian estima-
tion of  VARMA models using Metropolis Hastings to ob-
tain samples from the joint posterior density of the VARMA 
parameters based on the exact Gaussian likelihood, the 
VARMA model is identified using Bayesian variable selection 
techniques.

Li and Tsay (1998) offer a Bayesian procedure for simultaneous 
identification (via Kronecker indices) and estimation of VARMA 
models; their proposal uses stochastic search variable selection 
priors and can handle cointegrated as well as noninvertible 
systems. Chan, Eisenstat, and Koop (2016) also offer a unified 
approach to identification and estimation of Echelon form 
VARMA models through the usage of a hierarchical prior that 
permits joint selection of identification restrictions and shrink-
age in the resulting model to accommodate high-dimensional 
settings; they offer an efficient Markov chain Monte Carlo algo-
rithm to this end.

Roy, McElroy, and Linton  (2019) consider a reparametrized 
VARMA model to permit parameter estimation under the 
constraints of causality and invertibility which facilitates the 
computation of Bayesian estimates via a prior specification on 
the constrained space (as well as maximum likelihood estima-
tion). Lastly, Shaarawy (2023) provide a Bayesian methodology 
based on the conditional likelihood to unify the four stages 
of model identification, estimation, diagnostic checking, and 
forecasting.

yt =

p̃∑
�=1

Π�yt−� + �t,

yt =

p∑
�=1

Φ�yt−� +

q∑
m=1

Θm�̂t−m + ut.
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4.2   |   Specification

While the approaches discussed in the previous section 
mainly consider parameter estimation for a given VARMA, 
we now review the problem of specifying the VARMA model 
with respect to its AR and MA order. Related problems of such 
model building steps for VARMA models date back to the 
early work of Akaike (1976); Chan and Wallis (1978); Jenkins 
and Alavi (1981).

In the seminal paper by Hannan and Kavalieris  (1984) on 
VARMA models, a regression-based approach is used for 
estimating the VARMA parameters in the context of deter-
mining the AR and MA orders. The first three steps of the 
procedure focus on specifying the VARMA model by choos-
ing  the AR  and MA orders through an information crite-
rion  and  providing initial estimates. The final stage uses 
generalized least squares regression to obtain asymptotically 
efficient estimates.

Tiao and Box (1981), on the other hand, offer an iterative pro-
cedure for building VARMA models which consists of three 
stages (i) specification, (ii) estimation, and (iii) diagnostic 
checking where the use of cross correlations and partial au-
toregressions is advocated to tentatively specify the VARMA 
orders in the first stage. Tiao and Tsay (1983) provide a subse-
quent discussion on the first model specification stage where 
an extended sample cross-correlation procedure, that extends 
the proposal of Tsay and Tiao  (1984) for univariate ARMA 
models, is advocated. Tiao and Tsay (1989) then turn to model 
specification for VARMA using SCM where canonical correla-
tion analysis is used to determine the orders of the AR and 
MA polynomials. The value of canonical correlation analysis 
for time series analysis in general and VARMA model spec-
ification in particular has been discussed by, among others, 
Akaike (1976); Box and Tiao (1977); Cooper and Wood (1982); 
Tsay and Tiao  (1985); Peña and Box  (1987); Tsay  (1989); 
Toscano and Reisen (2000).

To make VARMA models more accessible for practitioners and 
to promote their use over VARs, Lütkepohl and Poskitt (1996) 
offer a general strategy for specifying VARMA models in 
Echelon form which consists of choosing a set of Kronecker 
indices. Koreisha and Pukkila  (2004) propose to select the 
VARMA orders based on the residual white noise autore-
gressive criterion of Pukkila, Koreisha, and Kallinen  (1990). 
Boubacar Maïnassara (2012) consider model specification based 
on a modified Akaike information criterion for weak VARMA 
models where the errors are uncorrelated but not necessarily 
independent. Dufour and Pelletier  (2022) also consider weak 
VARMA processes and develop practical methods for identify-
ing, specifying, and estimating such processes in diagonal MA 
equation form. To specify the VARMA orders, an information 
criterion is used that yields consistent estimates of the AR and 
MA orders. Kathari and Tangirala (2020) use a pre-estimation 
approach based on scalar (inverse) autocorrelation functions to 
specify the orders across a variety of multivariate time series 
models including VARMA. Wilms et al.  (2023) use penalized 
regression methods to simultaneously identify, specify and es-
timate the VARMA model.

4.3   |   Diagnosis

After specifying and estimating the VARMA model, it is good 
practice to continue with various diagnostic checks to evaluate 
the adequacy of the fitted VARMA. In practice, the specification 
and estimation can be carried out via the methods discussed in 
the previous sections resulting in different representations. The 
choice of methods often depends on the goal of data analysis. 
The suitability of the chosen representation can always be eval-
uated by the diagnostic procedures discussed below. In this sec-
tion, we review some of the adequacy tests that are specifically 
proposed for VARMA models.

Hosking  (1980) proposes a Portmanteau goodness-of-fit 
for the VARMA and subsequently shows that it can be ob-
tained as a Lagrange-multiplier test (Hosking  1981). Li and 
McLeod  (1981) obtain the large-sample distribution of the 
multivariate residual autocorrelations in VARMA mod-
els and offer a Portmanteau test based on it. Hallin and 
Liu  (2023) recently revisited the tests of Hosking  (1980) and 
Li and McLeod (1981) and propose a class of rank- and sign-
based Portmanteau tests for a broad family of error distribu-
tions. Mahdi and Ian McLeod  (2012) extend the univariate 
Portmanteau test of Peña and Rodriguez  (2002) to VARMA 
models.

Arbués  (2008) considers a Portmanteau test for constrained 
VARMA models where the whole system (including the error cova-
riance matrix) is constrained to a certain class of models, whereas 
Boubacar Maïnassara and Francq (2011); Katayama (2012) offer 
Portmanteau tests for structural VARMA models (see Section 5.3), 
Boubacar Maïnassara and Saussereau (2018) for VARMA models 
with uncorrelated but nonindependent errors and Ilmi Amir and 
Boubacar Maïnassara  (2020) for seasonal VARMA models (see 
Section 6.2).

Hallin and Paindaveine (2004) derive an optimal rank-based 
test for verifying the adequacy of elliptical VARMA models, 
Hallin and Paindaveine  (2005) consider optimal rank-based 
procedures for affine-invariant linear hypothesis testing in 
multivariate general linear models with elliptical VARMA 
errors.

Paparoditis (2005) offers a goodness-of-fit-test for VARMA mod-
els that can be applied when no a priori information exists on 
expected departures from the null that the observed process fol-
lows a VARMA with fixed AR and MA orders, this in contrast 
to earlier work by Kohn (1979), Hosking (1981) and Poskitt and 
Tremayne (1982) who consider testing a VARMA model against a 
higher order VARMA alternative. Velilla and Thu (2018); Velilla 
and Nguyen (2019) offer techniques for testing the adequacy of 
VARMA models where the goodness-of-fit process is shown to 
converge to the Brownian bridge.

5   |   Usage of VARMA Models

We review the main usage of VARMA models to test Granger 
causality relations (Section  5.1), to conduct forecasting tasks 
(Section 5.2) and to perform structural analysis (Section 5.3).
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5.1   |   Granger Causality

Granger causality captures, intuitively speaking, the incremen-
tal predictability of one variable for another given a particular 
information set Granger (1969, 1980). While for pure VAR and 
VMA models, sufficient and necessary conditions for the hy-
pothesis that “x does not cause z” can be directly related to the 
nullity of the corresponding (respectively) AR and MA parame-
ters in the model, the same is not true for VARMA models.

To this end, consider two multivariate stationary stochastic pro-
cesses zt and xt and let their joint VARMA representation be 
given by

While the joint nullity of Φ12(L) and Θ12(L) is a sufficient condi-
tion for Granger non-causality from x to z it is not a necessary 
condition. Indeed, to this end, consider the pure VMA represen-
tation of the VARMA as given by

Then x is not Granger causal for z if and only if Ψ12(L) = 0; see 
Lütkepohl (2005) for a textbook introduction. Typically a set of 
non-linear restrictions—as opposed to linear restrictions for 
VAR and VMA representations—is required to characterize 
Granger causality in VARMA models.

Granger causality in the context of bivariate VARMA models 
dates back to Kang (1981); Eberts and Steece (1984); Newbold 
and Hotopp  (1986); Taylor  (1989), whereas Osborn  (1984); 
Boudjellaba, Dufour, and Roy  (1991, 1994) consider Granger 
causality in VARMA models beyond the bivariate case; 
see also James, Koreisha, and Partch  (1985), Hundley and 
Koreisha  (1987) and Das  (2003) for economic applications on 
Granger causal relations using VARMA models. Dufour and 
Renault  (1998); Dufour and Taamouti  (2010) consider a wide 
class of dynamic models including VARMA and derive gen-
eral parametric and nonparametric characterizations of non-
causality at various horizons. Himdi and Roy  (1997); Hallin 
and Saidi (2005) generalize the procedure by Haugh (1976) for 
univariate time series to test the hypothesis of non-correlation 
between two multivariate stationary ARMA processes and dis-
cuss how their test can be adapted to determine the direction 
of Granger causality.

5.2   |   Forecasting

VARMA models are powerful tools for jointly forecasting a set 
of time series variables. We review both theoretical and practical 
work that focuses on forecasting with VARMA models.

Theoretical work on forecasting dates back to Yamamoto (1980, 
1981) who derive the optimal prediction scheme for multiperiod 
predictions with VARMA models, while Hung and Alt  (1994) 

offer an approximation of the one-step ahead forecast error co-
variance of VARMA models.

Aksu and Narayan (1991); Grillenzoni (1991) offer a theoretical 
and practical perspective on forecasting with VARMA models, 
the former thereby adopt the MTS software package, nowadays 
available via the package MTS (Tsay and Wood 2022) for the soft-
ware environment R (R Core Team 2024). Reinsel  (1995) con-
siders the traditional estimation procedure based on the exact 
likelihood function and establishes general results on exact fi-
nite sample forecasts and their mean squared errors.

Oke and Öller  (1999) offer a short-memory test for VARMA 
models, to help distinguish whether a series cannot be predicted 
from the past (i.e., “no” memory), is partially predictable in the 
future (i.e., “short” memory) or can be predicted far or indefi-
nitely into the future (i.e., “long” memory).

Lütkepohl  (2006) provides a general exposition on forecasting 
with VARMA models in Echelon form in the presence of station-
ary and cointegrated variables, thereby paying special attention 
to forecasting issues related to VARMA processes under con-
temporaneous and temporal aggregation.

Peña and Sánchez  (2007) provide insight into the advantages 
of using a dynamic multivariate forecast models, such as a 
VARMA, over univariate ones, thereby offering an a priori mea-
sure for the increase in precision to be attained by the multi-
variate approach over the univariate one. Anthanasopoulos and 
Vahid  (2008) compare VARMA to VAR models for macroeco-
nomic forecasting and conclude that there is no compelling 
reason for restricting the model class to VARs since VARMAs 
forecast more accurately on the various macroeconomic data 
sets they considered.

More recently in the field of statistics and computer science, 
forecasting with VARMA models attracted attention: Guo, Liu, 
and Sun (2016) propose a hybrid combination of VARMA mod-
els and Bayesian networks to improve the forecasting perfor-
mance of multivariate time series, Yang et al. (2018) present an 
online time series prediction framework for VARMA models 
and Isufi et al. (2019) offer VAR and VARMA models for fore-
casting the temporal evolution of time series on graphs, Shi and 
Sheng (2024) propose uncertain vector autoregressive smoothly 
moving average models to consider forecasting under imprecise 
observations.

5.3   |   Structural Analysis

Structural VARMA, in short SVARMA, models extend the 
VARMA framework by incorporating structural information, 
which allows for the identification of causal relationships 
among variables. The “structural” aspect refers to the imposi-
tion of theoretically informed restrictions on the model, which 
are often based on economic theory or prior empirical findings. 
These restrictions enable the disentanglement of shock trans-
mission mechanisms within the system, offering insights into 
how exogenous shocks to one variable can propagate through 
and impact other variables in the model.

[
Φ11(L) Φ12(L)

Φ21(L) Φ22(L)

][
zt

xt

]
=

[
Θ11(L) Θ12(L)

Θ21(L) Θ22(L)

][
a1t

a2t

]
.

[
zt

xt

]
=

[
Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)

][
a1t

a2t

]
.
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To be more precise, consider the representation

where the error terms �t represent structural shocks, which 
are unobservable innovations that have a direct interpretation 
within the context of, for instance, economic theory being stud-
ied. These shocks are assumed to be uncorrelated with each 
other and often have a direct economic meaning, such as supply 
shocks, demand shocks, policy shocks.

The concept of SVARMA was first introduced in Angulo (1999) to 
better understand money supply processes. Ever since it has been 
a popular tool in the macroeconomic literature. Focusing here 
on the theoretical aspects of SVARMA, Boubacar Maïnassara 
and Francq (2011) study the consistency and the asymptotic nor-
mality of the quasi MLE for a structural model.

Boubacar Maïnassara  (2011); Katayama  (2012) subsequently 
introduce hypothesis tests for SVARMA models to discover 
their adequacy. In Gouriéroux, Monfort, and Renne  (2020), 
non-Gaussian strong SVARMA models are identified. Strong 
SVARMA refers to cross-sectional correlation in the �t. 
Gouriéroux, Monfort, and Renne  (2020) further propose para-
metric and semi-parametric estimation methods to consistently 
estimate possibly non-fundamental representation in the mov-
ing average dynamics.

For SVARMA models driven by independent and non-Gaussian 
shocks, Funovits  (2024) discusses parameterization, identifi-
ability, and maximum likelihood (ML) estimation. More re-
cently, Velasco (2023) suggests a frequency domain criterion for 
identification based on a new representation of the higher order 
spectral density arrays of vector linear processes.

6   |   Extensions of VARMA Models

VARs nowadays still dominate VARMAs especially so in the de-
velopment of flexible extensions of the basic VAR. Nonetheless, 
also for VARMA, a wide variety of useful extensions have been 
proposed over the years. We review a collection of most widely 
adopted extensions in this section.

6.1   |   Cointegrated VARMA

Cointegrated VARMA models extend traditional VARMA 
models by incorporating cointegration, a statistical property 
indicating that a linear combination of nonstationary variables 
is stationary. This integration allows the models to capture 
both short-term dynamics and long-term relationships among 
variables, making them particularly suitable for analyzing 
economic and financial time series that exhibit long-run equi-
librium relationships.

The first work that extended the basic ideas of cointegra-
tion from VAR (see Sections  8.1–8.2. in Lütkepohl  2005) to 
VARMA models goes back to Yap and Reinsel (1995). Yap and 
Reinsel (1995) introduce a vector error correction form (VEC) 
for VARMA models, given by

where C has reduced rank. The VEC concentrates the nonsta-
tionarity of the AR operator in the behavior of the coefficient 
matrix C. Yap and Reinsel (1995) derive the asymptotic prop-
erties of the full-rank and reduced-rank Gaussian estimators. 
These results are utilized to derive the asymptotic distribution 
of the likelihood ratio statistic and for testing the number of 
unit roots.

Estimating cointegrated VARMA models involves several steps, 
including determining the rank of cointegration, identifying 
the cointegration space, and estimating the parameters of the 
model. The Echelon form and other identification constraints 
play a crucial role in simplifying these processes, ensuring the 
model is both identifiable and estimable.

One of the main challenges in cointegrated VARMA modeling is 
the computational complexity and the difficulty in model speci-
fication and selection. Recent advances involve developing more 
efficient estimation techniques and software implementations, 
as well as extending the models to handle issues like structural 
breaks and nonlinearities.

Later Lütkepohl and Claessen (1997) combine the general VEC 
model for VARMA models with the Echolon form. In a subse-
quent work, Bartel and Lütkepohl (1998) discuss the estimation 
of the corresponding Kronecker indices to derive the Echelon 
form for VEC. Other extensions of the Echelon methodology 
for cointegrated VARMA can be found in Poskitt (2003, 2006); 
see also Lütkepohl  (2005, Chapter  14). More recently, Mélard, 
Roy, and Saidi  (2006) evaluate the exact likelihood function 
of Gaussian, nonstationary VARMA models in VEC form. 
Cubadda, Hecq, and Palm  (2009) study some implications of 
cointegration on the univariate time series. Finally, Guo and 
Ling  (2024) propose full and reduced rank least squares esti-
mators of heavy-tailed and partially nonstationary VARMA 
models.

While the Echelon methodology has been extended to cointe-
grated VARMA models, similar extensions of the scalar-
components methodology are not currently available.

6.2   |   Seasonal VARMA

Many time series contain a seasonal component that repeats 
itself after a regular period of time. To capture the seasonal 
component, one can resort to seasonal VARMA models. The 
seasonal VARMA model is given by

where s and the seasonal matrix polynomials are given by

The seasonal period s is typically known a priori, for instance 
4 for quarterly data or 12 for monthly data. Note that unlike 

Φ(L)yt = Θ(L)�t,

Φ∗
(
Id − L

)
yt = Cyt−1 + Θ(L)at,

Φ(L)Φ̃(Ls)yt = Θ(L)Θ̃(Ls)at,

(19)
Φ̃(Ls)= I−Φ̃1L

s−Φ̃2L
2s− … −Φ̃PL

Ps

and Θ̃(Ls)= I+Θ̃1L
s+Θ̃2L

2s+ … +Θ̃QL
Qs.
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for seasonal ARMA representations, seasonal VARMA repre-
sentations are not unique. Indeed, a different representation is 
obtained when swapping the standard and seasonal lag polyno-
mials in equation (19) due to the non-uniqueness of the matrix 
polynomials; see Yozgatligil and Wei  (2009) for such different 
representations of seasonal VARMA models.

McElroy  (2022) offers a frequency domain-based approach 
to compute the autocovariances from the parameters in the 
SVARMA which may then be used to estimate the SVARMA via 
maximum likelihood or to forecast from a VARMA model.

6.3   |   FAVARMA

Dufour and Stevanović  (2013) study the relationship between 
VARMA and factor representations of a vector stochastic process 
and find that multivariate times series and their factors cannot—
in general—both follow finite order VAR processes. In fact, VAR 
factor dynamics induce a VARMA process, while a VAR process 
entails VARMA factors. The authors therefore propose to com-
bine factor and VARMA modeling using a parsimonious Factor 
Augmented VARMA (FAVARMA) representation to represent dy-
namic interactions between a large collection of time series.

The FAVARMA for the d-dimensional stationary stochastic pro-
cess yt and r factors is given by

where �i(L) is an r-dimensional vector of lag polynomials 
�i(L) =

(
�i1(L), … , �ir(L)

)
 with �ij(L) =

∑pi,j
k=0

�i,j,kL
k, �i(L) is a py,i

-degree lag polynomial, Φ(L) and Θ(L) are the usual AR and MA 
polynomials in a VARMA representation and �it is d-dimensional 
white noise that is uncorrelated with the r-dimensional white 
noise process �t. Dufour and Stevanović  (2013) and Zadrozny 
and Chen  (2019) illustrate the good forecast performance of 
FAVARMA for macroeconomic forecasting.

6.4   |   VARMA-GARCH

The VARMA-GARCH model is designed to capture the dynam-
ics of multivariate time series data, specifically addressing both 
mean and volatility fluctuations. This model integrates VARMA 
approach with the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) process, which effectively models 
time-varying volatility. The model was introduced in Ling and 
McAleer (2003) and has been employed extensively in financial 
econometrics.

Following the representation in Ling and McAleer  (2003), the 
model can be written as

where Ht =
(
h1,t, … , hd,t

)
, D2

t = diag
(
h1,t, … , hd,t

)
, 

𝜁 t =
(
𝜀2
1,t
, … , 𝜀2

d,t

)⊤

. Ling and McAleer  (2003) establish the 
structural and statistical properties, including the sufficient 
conditions for the existence of moments and the sufficient con-
ditions for consistency and asymptotic normality of the QMLE 
for model (20).

McAleer et al. (2008) generalize model (20) towards letting the 
standardized residuals follow a random coefficient VAR pro-
cess to allow for dynamic conditional correlations. McAleer, 
Hoti, and Chan (2009) develop structural and statistical prop-
erties of the model. Wang and Tsay  (2013) consider diagnos-
tic checking of VARMA-GARCH models with Gaussian and 
Student-t  innovations.

The VARMA-GARCH model has found its way into numer-
ous fields and has been used in financial econometrics to 
study velocity and variability of money growth (Serletis and 
Shahmoradi  2006), to analyze the oil market (Rahman and 
Serletis  2012; Serletis and Xu  2018), water quality (Wu, Kuo, 
and Liu  2012), dynamic spillovers between stock and money 
markets (Salisu, Isah, and Assandri 2019), examine investment 
opportunities (Do, Bhatti, and Shahbaz  2020), relationships 
among air pollutants and how their concentration changed (Wu 
and Kuo 2020).

6.5   |   Nonstationary VARMA

Throughout the literature, one can find several attempts to 
lift the assumption of stationarity in VARMA models. For in-
stance by introducing a thresholded VARMA model, allowing 
for change-points, time varying coefficient matrices or Markov 
Switching models.

6.5.1   |   Threshold VARMA

Introduced in Niglio and Vitale (2015), the threshold VARMA 
(TVARMA) model is a type of time series model that incorpo-
rates regime-switching based on the value of an observable 
variable, typically a lagged value of the time series itself. The 
regimes switch when this variable crosses certain thresholds, 
that is,

6.5.2   |   Change-Point Detection

Galeano and Peña (2007) studies step changes in the variance 
and in the correlation structure modeled through

where S(h)t = 1{t≥h} is a step function creating a change at t = h 
from et having covariance Σ pre break and Ω = (I +W)Σ(I+W)⊤ 
post break under suitable assumptions on W . Galeano and 
Peña (2007) introduce two approaches using a likelihood ratio 
approach and a CUSUM type approach.

yit=�i(L)ft+uit

uit= �i(L)ui,t−1+�it

Φ(L)ft=Θ(L)�t

i=1, … , d t=1, … ,T,

(20)

Φ(L)yt=Θ(L)at, with at=Dt�t,

Ht=W+

r∑
l=1

Al� t−l+

s∑
l=1

BlHt−l,

yt = Φ(j)(L)yt + Θ(j)(L)at + 𝜀
(j)
t , if 𝜏 j−1 < zt ≤ 𝜏 j.

Φ(L)yt = Θ(L)et with et = at +WS(h)t at,
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Later, Steland (2020) attempts to address similar questions in a 
high-dimensional regime, letting the dimension grow with the 
sample size. Their approach uses bilinear forms of the centered 
or non-centered sample variance–covariance matrices. Change-
point testing and estimation are based on maximally selected 
weighted CUSUM statistics. Large sample approximations 
under a change-point regime are provided including a multivar-
iate CUSUM transform of increasing dimension.

Golosnoy and Seifert  (2021) introduce a framework for se-
quentially (online) monitoring changes in the mean vector of 
high-dimensional persistent VARMA time series by using mul-
tivariate control charts.

6.5.3   |   Time Varying VARMA

One of the first works to consider time varying VARMA models, 
meaning that the coefficient matrices are allowed to vary over 
time, is Hallin (1978). Hallin (1978) derives conditions for time 
varying VARMA models to be purely nondeterministic and in-
vertible. Shelton Peiris and Thavaneswaran (2001) generalize the 
results in Hallin (1978) by allowing the innovations to a general 
class of stable distributions instead of imposing Gaussianity. In 
another early work, Zadrozny and Mittnik (1994) consider a re-
cursive Kalman-filtering method for computing exact sample 
and asymptotic information matrices for time-invariant, peri-
odic, or time-varying Gaussian VARMA models.

In an empirical work, Chan and Eisenstat (2017) study different 
types of time varying VARMA models and address computa-
tional challenges associated with VARMA estimation through a 
Bayesian approach developing a Gibbs sampler. Their considered 
extensions of the classical VARMA model, allow for time-varying 
vector moving average coefficients and stochastic volatility.

More recently, maximum likelihood estimation for time varying 
VARMA models has been studied, see Mélard (2024) for a recent 
discussion. Alj, Jónasson, and Mélard  (2016) proposes an algo-
rithm for the evaluation of the exact Gaussian likelihood includ-
ing a time dependent innovation covariance matrix. Subsequently, 
the author study quasi-maximum likelihood estimators in Alj 
et al. (2017); Alj, Azrak, and Mélard (2025). Mélard (2022) prove 
strong consistency and asymptotic normality of a Gaussian quasi-
maximum likelihood estimator for the parameters of a causal, 
invertible, and identifiable vector autoregressive moving average.

6.5.4   |   Markovian VARMA

Multivariate Markov-switching autoregressive moving-average 
(MS-ARMA) models incorporate regime-switching elements 
into multivariate ARMA models, allowing the model parame-
ters to change depending on the state of a Markov process. These 
models are especially useful in capturing the behavior of time 
series that exhibit changes in regime or state, such as shifts in 
economic conditions.

To be more precise, one typically writes

such that the model parameters depend on the state of an unob-
served Markov chain 

(
St
)
 with finite state-space.

A natural idea when estimating these models is to impose local 
stationarity conditions, that is, stationarity within each re-
gime. Francq and Zakoıan  (2001) show that local stationarity 
of the observed process is neither sufficient nor necessary to 
obtain global stationarity. Another observation, first made in 
Francq and Zakoıan  (2001) is that the autocovariance struc-
ture coincides with that of a standard ARMA. Later, Zhang and 
Stine (2001) show that the autocovariance structure of a model 
belonging to a general class of second order stationary Markov 
regime switching processes coincides with that of a VARMA 
whose orders are bounded above by functions of the number of 
Markov regimes. Cavicchioli (2016) improve their bound on the 
VARMA orders. Stelzer (2009) introduce stationarity and ergo-
dicity conditions as well as an easy-to-check sufficient stationar-
ity condition based on a tailor-made norm. Cavicchioli (2017b) 
propose conditions for higher-order stationarity.

In another line of research that also aims to find stationarity 
conditions, several authors use a spectral domain perspective. 
Pataracchia (2011) propose a method to derive the spectral den-
sity function of Markov switching ARMA model by applying 
the Riesz–Fischer theorem which defines the spectral repre-
sentation as the Fourier transform of the autocovariance func-
tions. Cavicchioli (2013) derive a formula in closed form for the 
spectral density of MS-VARMA models and describe some of its 
properties.

In economics and finance, in particular, shocks are often re-
garded as being heavily tailed and a straightforward way to in-
clude this feature into MS-ARMA models is to use a regularly 
varying and thus heavy-tailed noise sequence. Stelzer  (2008) 
show that heavy tailed noise implies that under appropriate 
summability conditions, the MS-ARMA process is again heavy 
tailed as a sequence.

Cavicchioli studied how to determine the number of regimes in 
a MS-VARMA model. Cavicchioli (2014) propose a stable finite-
order VARMA representations for M-state Markov switching 
second-order stationary time series under suitable conditions on 
the autocovariances.

In a different line of research, Cavicchioli contributed to under-
standing the asymptotic and exact Fisher information matrices 
of MS-VARMA models; see Cavicchioli (2017a, 2020). In partic-
ular, the explicit representation to derive the asymptotic covari-
ance matrix of the Gaussian maximum likelihood estimator of 
the parameters in the MS-VARMA model.

7   |   Conclusion and Outlook

We explored various aspects of VARMA models, highlighting 
their key role in multivariate time series analysis. The appli-
cation of VARMA models spans numerous fields, such as eco-
nomics, finance, environmental studies, and more, offering a 
robust framework for understanding system dynamics through 
the interdependencies among multiple time series. Throughout 
the review, we have dissected the methodological advancements yt = �St + ΦSt

(L)yt + ΘSt
(L)at
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that have enhanced the accuracy and efficiency of these models. 
Despite these advancements, the literature still presents a num-
ber of unresolved issues and challenges.

One of the notable gaps in the current VARMA literature is 
the complexity involved in model specification, particularly 
in selecting appropriate order parameters (p, q). The model se-
lection process is crucial as it significantly affects the model's 
performance, but it remains largely heuristic and computa-
tionally intensive. Future research could focus on developing 
more automated and data-driven techniques for determining 
the model parameters, potentially leveraging advancements in 
machine learning. Additionally, there is a need for more robust 
methods to handle model estimation in the presence of miss-
ing data, outliers, and high-dimensional data. Furthermore, 
the integration of VARMA models with other data types and 
sources remains an underexplored area. As data becomes in-
creasingly multidimensional and heterogeneous, integrating 
diverse data types such as high-frequency time series, spatial 
data, network data, or tensor-valued data into the VARMA 
framework could open new avenues for multidisciplinary re-
search and application.

In terms of software implementations, VARMA models are no-
tably less represented compared to VAR models, particularly 
in widely used statistical programming environments such as 
R. While R offers comprehensive packages for VAR modeling, 
such as the “vars” package (Pfaff 2008) which provides exten-
sive functionalities for estimation, diagnostics, forecasting, 
and causality analysis, the resources for VARMA are com-
paratively limited. The MTS package (Tsay and Wood  2022) 
is one of the few that supports VARMA and related models, 
yet it does not provide as rich a feature set as those available 
for VAR, especially in areas like model diagnostics and inter-
active model selection tools. The bigtime package (Wilms 
et al. 2021) is a more recent attempt to make VARMA mod-
els more accessible addressing questions of model selection 
for high-dimensional time series. This disparity in software 
tools reflects the broader challenges associated with the com-
putational complexity and parameter estimation difficulties 
inherent in VARMA models. Enhancing the software support 
for VARMA in R and other software languages, could signifi-
cantly increase their accessibility and usability, encouraging 
more widespread adoption and innovation in the analysis of 
multivariate time series data.
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