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We present a hydrodynamic framework derived from the action of a perfect fluid, modified by the
hydrodynamic analog of Novikov’s multivalued functional. This modification introduces spin degrees of
freedom into the fluid. The structure closely resembles the Abelian version of the Wess-Zumino functional,
commonly applied in field theories with chiral anomalies. The deformation incorporates transport
properties of Weyl fermions and, in the case of a charged fluid, exhibits the chiral anomaly. It is also
consistent with Onsager’s semiclassical quantization of circulation. Additionally, we discuss the hydro-
dynamic analog of instantons and related topological invariants.
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I. INTRODUCTION AND THE BACKGROUND

The equations of motion for a perfect fluid can be
regarded as conservation laws associated with the group of
spacetime diffeomorphisms. If no external forces act on the
fluid the momentum and energy are conserved resulting in
four dynamical equations expressed as a divergence-free
condition of the canonical momentum-stress-energy tensor

∂μTμ
ν ¼ 0: ð1Þ

These equations alone are sufficient for describing flows,
when the only dynamical variables are components of the
particle number 4-current nμ ¼ ðn0; n0vÞ, where n0 is the
particle number density and v is the fluid velocity. In this
case the continuity equation

∂μnμ ¼ 0 ð2Þ

is not an independent condition. It follows from the
conservation of momentum and energy described by (1).
Barotropic flows and more general homentropic flows
represent this situation.
A more general, baroclinic flow involves additional

dynamical variables. In this case, more equations are
necessary. They stem from symmetries other than space-
time diffeomorphisms, such as gauge symmetry. Then the

continuity equation (2) normally arises as the Noether
conservation law for a particle number.
The phenomenon known as the chiral current anomaly

presents an obstacle to the conservation of particle number.
The issue arises when the conserved Noether current
generated by the gauge symmetry, denoted as Iμ, is not
gauge invariant; however, its divergence is. In this case, the
particle number is not identical to the Noether charge, and
is not conserved ∂μnμ ≠ 0. Such system is not isolated and
in contact with a reservoir capable to supply or remove
particles. At the same time the equations of motion

∂μIμ ¼ 0 ð3Þ

remains local and gauge invariant. The chiral anomaly
signifies that the flow entrains a reservoir capable of
supplying and swapping particles.
The chiral anomaly was initially identified as a kin-

ematic property of quantum field theories involving chiral
(or Weyl) fermions [1]. A defining feature of the chiral
anomaly is that the particle production rate, ∂μnμ, is locally
defined by the flow itself and is unaffected by changes in
the spacetime metric. Therefore, the anomaly is largely
insensitive to interaction and, when carried over to a liquid
state it does not introduce additional spacetime scales
beyond already accounted gradients of hydrodynamic
fields. Being insensitive to a variation of metric, the chiral
anomaly only impacts the continuity equation while
leaving the form of the stress tensor and its conservation
(1) unaffected.
In recent years, there has been growing confidence that

the current anomalies are compatible with classical fluid
dynamics. An incomplete list of references is [2–17]. More
references could be found in the review [18]. A physical
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argument supporting this perspective is the existence of
liquids composed of Weyl fermions. Such liquids are
expected to retain kinematic features of Weyl fermions,
including their anomalies. Notable examples are the
superfluid 3HeA, semiconductors with high spin-orbit
interaction, and quark-gluon plasma occurring in
heavy-ion collisions (see e.g., [2,11,18,19] for review of
each topic).
The gauge symmetry generated Noether current is

expected to be equal to a particle number current nμ

modified by a pseudovector field hμ

Iμ ¼ nμ þ k
2
hμ: ð4Þ

Here k, referred as the level, is a pseudoscalar parameter
representing the strength of the deformation. Then the
Noether conservation law (3) becomes the equation for the
particle production

∂μnμ ¼ −
k
2
∂μhμ: ð5Þ

The imposed properties on hμ are as follows: it is (i) locally
expressed through Eulerian fields, (ii) does not possess any
scale, and therefore has no reference to the spacetime
metric, (iii) its divergent ∂μhμ is gauge invariant.
In fluid mechanics there is only one object of this kind,

the 4- fluid helicity current. The fluid helicity is the dual to
the 3-differential form h ¼ p ∧ dp constructed from of
fluid 4-momentum 1-form p ¼ pμdxμ. In tensor notations

hμ ¼ εμνλσpν∂λpσ; ð6Þ

where εμνλσ is the Levi-Civita symbol. The timelike
component of the helicity current h0 ¼ p · ∇ × p is the
usual helicity density (in Sec. IV we give a formal
definition of the kinematic momentum and its relation
to the particle number current). Variants of such deforma-
tion, albeit in various different settings had been intro-
duced in Refs. [3–5,16]. An incomplete list of early related
works is [6–9].
We remark that a room for deformations of fluid

dynamics is limited, as the fluid equations of motion must
be covariant under the action of the gauge group and the
group of spacetime diffeomorphisms

G ¼ Uð1Þ⋊ DiffðM4Þ: ð7Þ

Why would the deformation (5) be consistent with fluid
dynamics? A concise criterion is the Hamilton principle of
fluid mechanics. The Hamilton principle asserts the exist-
ence of a Hamilton functional or an action, whose invari-
ance under the action of the symmetry group G yields the
desired equations of motion. This is the central part of our
approach. We construct the Hamiltonian functional which

yields Eqs. (1) and (5) keeping the stress tensor of the
perfect fluid intact. The latter is given by

Tμ
ν ¼ nμpν þ δμνP: ð8Þ

Here P is the fluid pressure. Being complemented by the
equation of state which expresses the fluid momentum in
terms of the particle current (discussed below) Eqs. (1),
(5), (8) give the complete set of the fluid equations of
motions.
We will show that the action or the Hamiltonian func-

tional of the perfect fluid could be uniquely extended by the
multivalued Wess-Zumino-Novikov (WZN) functional and
that this extension yields Eqs. (1), (5), (8). The multivalued-
ness of the WZN action provides global obstructions which
restricts the parameter k to be an integer in units of the
Planck constant. This result is consistent with the Onsager
quantization and the known kinematic properties of Weyl
fermions developed in the early works of Vilenkin [20]. Our
results are summarized by (46), (47), (49) in Sec. X.
Our construct holds for any even spacetime dimension d.

In this case, the modification of the Noether current (4) is
given by the (d − 1)-form

k
ðd=2Þ!p ∧ ðdpÞd=2−1: ð9Þ

In particular, this formula agrees with the known expres-
sion for the Noether current of (1þ 1)-chiral bosons

Iμ ¼ nμ þ kεμνpν: ð10Þ

The concept of the multivalued functionals in a general
setting was introduced by Novikov in 1981 [21]. Soon
after Novikov’s paper, it was recognized that a class of
these functionals appeared in the early work of Wess and
Zumino [22]. Wess and Zumino constructed the functional
whose variation replicates effects of the anomaly. In this
paper we introduce the hydrodynamic version of the
multivalued functional.
The anomaly is a topological phenomenon in the sense

that it is metric independent and therefore could be
expressed solely in terms of differential forms. The efficient
framework that helps incorporate anomalies into fluid
mechanics is the spacetime covariant formulation of hydro-
dynamics of Lichnerowicz [23] and Carter [24]. For recent
reviews, see [25,26], and [12–14] for its adaptations to
anomalies. In this approach, the hydrodynamics is
expressed in terms of the particle number 4-current nμ,
and its conjugate, a covector, the fluid 4-momentum pμ,
without reference to the spacetime metric. Consequently, the
form of the fluid equations of motion appear identical for
both relativistic and nonrelativistic fluids.
We begin with a discussion of the relation between

Eq. (5) and the traditional form of the anomaly as a linear
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response to an external electromagnetic field (Sec. II),
followed by a semiclassical quantization of the level k
(Sec. III), assuming that Eq. (5) is given. Next, we outline
the hydrodynamic setup (Secs. IV–VI) and provide a brief
account of the Carter covariant Hamilton principle in
hydrodynamics (Sec. VII).
After these preliminaries, we will be ready to address

the central part of the paper: the multivalued action
(Secs. VII–IX). Various forms of the full set of equations
of motion are collected in Sec. X. The effect of spin
introduced by the multivalued action is briefly outlined in
Sec. XI and Appendix C. The entropy production, the
relation to homentropic flow and comparison with Weyl
fermions, is briefly discussed in the Appendixes A, B,
and D.

II. CHIRAL ANOMALY AND THE CHIRAL PHASE

Traditionally the chiral anomaly is understood as a linear
response of a charged system to the external electromag-
netic field. In the canonical formulation where the particle
current and the momentum are treated as independent fields
the effect of electromagnetic field is accounted by replacing
the kinematic momentum by the canonical momentum

πμ ¼ pμ þ Aμ; ð11Þ

where Aμ is the gauge potential. Then the helicity in the
expression for the Noether current (4) reads

hμ ¼ ϵμνλσπν∂λπσ . ð12Þ

Helicity, and therefore the Noether current, is not gauge-
invariant. Under the gauge transformation

πμ → πμ þ ∂μΘ ð13Þ

it changes as

Iμ → Iμ þ k∂νΘ ⋆Ωμν; ð14Þ

where

Ωμν ¼ ∂μπν − ∂νπμ ¼ ∂μpν − ∂νpμ þ Fμν ð15Þ

is the 4-vorticity tensor and ⋆Ωμν ¼ 1
2
ϵμνλσΩλσ is the dual

tensor. Using the relation ∂μhμ ¼ 1
4
Ωμν

⋆Ωμν we write the
particle production as

∂μnμ ¼ −
k
4
Ωμν

⋆Ωμν ð16Þ

and transform it in the form of the linear response. Denote
the gauge-invariant part of the Noether current as

jμ ¼ nμ þ k
2
Σμ; ð17Þ

where Σμ is the kinetic helicity [16]

Σμ ¼ ϵμνλσpνð∂λpσ þ FλσÞ: ð18Þ

Then the conservation law (3) or equivalently the particle
production equation (16) reproduces the commonly known
expression for the chiral anomaly

∂μjμ ¼ −
k
4
Fμν

⋆Fμν; ð19Þ

where ⋆Fμν ¼ 1
2
ϵμνλσFλσ is the dual field tensor. This

follows from the identity 2∂μΣμ ¼ Ωμν
⋆Ωμν − Fμν

⋆Fμν.
Two terms in Σμ are intrinsically related as they both

followed from (12). In recent literature, they have been
referred to as the chiral vortical effect and the chiral
magnetic effect, respectively (see, e.g., [11] and references
therein). The coefficients in (4), (17), (18), (19) are
quantized topological invariants, as discussed in Sec. III.
They are aligned with the result of the direct computation
for Weyl fermions of Ref. [20] as discussed in Appendix D.
See, also [27].
We will omit the external gauge field in intermediate

formulas of Secs. IV and V. The external gauge field could
be added upon the use of (11) for the canonical momentum.
Even at no electromagnetic field the canonical momentum
and the kinematic momentum momenta are related by a
gradient of a phase

πμ ¼ pμ þ ∂μΘ: ð20Þ

In a usual fluid, the chiral phase Θ has no physical
significance. However, with the chiral anomaly, the scalar
Θ takes on a physical meaning. It does not factor into the
equation of motion but enters the Hamilton functional (44),
and the fluid action, similarly to the axion in the theory of
CP violation [28]. The chiral phase is an important part of
our construct (see, also [17]).

III. SEMICLASSICAL QUANTIZATION
OF FLUID HELICITY, VORTEX INSTANTONS,

AND PARTICLE PRODUCTION

While our discussion primarily focuses on classical fluid
dynamics, a natural normalization of the fluid helicity
arises from Onsager-like semiclassical consideration.
We recall that in semiclassical fluids vorticity is localized

in vortex lines (loops in the absence of spatial boundaries),
with the vortex circulation C ¼ H

πdx being quantized [29].
Choosing the Planck constant 2πℏ as a unit for the
momentum Onsager’s quantization states
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C ¼
I

dΘ ¼ integer: ð21Þ

The quantization of circulation renders the gauge group
(and thereby the entire fluid phase space) compact. The
gauge group becomesUð1Þmaking the field Θ into a phase
that winds over a circle.
At the same time, the total helicity

H ≔
Z

h0d3x ¼
Z

ðπ · ∇ × πÞd3x ð22Þ

is twice the linking number of vortex loops in units of
vortex circulation H ¼ 2Lk½vortex loops� [30,31]. In the
chosen units it is quantized as an even number [16].
Integrating the particle production equation (5) over a

time interval and over the entire space we find that the left-
hand side of (5) is a change in the total particle number ΔN
over the time interval. On the right-hand side we obtain the
change of the fluid helicityΔH, i.e. twice the vortex linking
number times k=2

ΔN ¼ k
2
ΔH ¼ kΔLk½vortex loops�: ð23Þ

Hence, a change of the linking of vortex loops by 1 alters
the particle number by k. Given that the particle number is
an integer, k is also an integer

k∈Z: ð24Þ

Also, when momentum is measured in units of the Planck
constant, the particle number current nμ and the helicity
current hμ, the terms in the current (4) and (16), should be
treated of comparable order in gradients.
It follows from (16) that the change of the particle

number is assisted by “vorticity instantons,” a flow which
gives a nonzero value to the integral 1

4

R
Ω ∧ Ω, where Ω ≔

dπ ¼ 1
2
Ωμνdxμ ∧ dxν is the vorticity 2-form. This integral

is the Pontryagin class, a topological invariant, of the fluid
cotangent bundle. Vorticity instantons, therefore, are the
flow which at an instance changes the vortex linking
number.

IV. CURRENTS AND MOMENTUM

As the particle number is not conserved (16), the fluid
exchanges particles with a reservoir and, therefore, are
nonhomentropic as we now discuss.
In relation to chiral fermions, the fluid could be seen as

being composed of particles with right-handed chirality
(k > 0), and the reservoir represents particles with the
opposite (left-handed) chirality treated as a spectator
medium (that is a fluid of massless particles devoid of
spacelike momentum).

We denote the particle density number by n and the
density number of the reservoir by n̄ and introduce
dimensionless density ratio S ¼ n̄=n. Subsequently, the
fluid energy density εðn; SÞ, being a function of n, is also a
function of S [32]. Furthermore, we assume that the fluid
and the reservoir are oppositely electrically charged.
We will consider that flows with the density ratio S vary

across streamlines. Such flow is called nonhomentropic. It
is also baroclinic. Nonhomentropic flows are endowed with
a nondegenerate vorticity 2-form Ω, and therefore the top
form Ω ∧ Ω, which appears in the particle production
equation (16), is nowhere zero (see Appendix B). This is
the essential part of the construction of the multivalued
action outlined in Secs. VII and VIII.
In the covariant formulation of hydrodynamics [23–26]

that we employ here, the equations of motion of the
relativistic or nonrelativistic fluid have the same form,
although the derivations are technically simpler in a
relativistic setting, which we assume.
Taking advantage of the Lorentz metric we express the

particle number density n through the particle current as

nμnμ ¼ −n2 ð25Þ

and treat the energy density ε as a function of nμ and S. We
introduce the fluid momentum pμ through a differential of
energy taken at a fixed S

ðdεÞS ¼ pμdnμ: ð26Þ

For isotropic fluid, where the energy density depends on
n we express the momentum in terms of “enthalpy” per
particle w ¼ ∂nε and the 4-velocity uμ ≔ nμ=n, a 4-unit
vector collinear to the particle current. Then

pμ ¼ wuμ; nμ ¼ nuμ; uμuμ ¼ −1: ð27Þ

[In the nonrelativistic case, (27) identifies −p0 with the
energy per particle −p0 ¼ p2=ð2wÞ þ w.]
Contrary to particles, the constituencies of the reservoir

have no momentum and the relation (25) does not hold
for the reservoir as their density and their current are
independent.

V. TRANSFORMATIONS OF NATURAL
VARIABLES

Let us examine how the natural variables π, Θ, S
transform under the action of the symmetry group G.
The action of the gauge group is just a variation

Θ → Θþ δΘ: ð28Þ

The action of the spacetime diffeomorphisms
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xμ → xμ þ ϵμðxÞ ð29Þ

is carried out by the Lie derivative Lϵ, the directional
derivative along a vector field ϵ. The density ratio S ¼ n̄=n
being a scalar transforms as

δϵS ≔ LϵS ¼ ϵμ∂μS: ð30Þ

The momenta πμ transform as the covector defined via a
form-valued variation

δϵπ ≔ Lϵπ ¼ δϵðπνdxνÞ ¼ ðδϵπνÞdxν: ð31Þ

Explicit form of the transformed momentum is given by the
Cartan formula followed from (31)

δϵπν ¼ ϵμ∂μπν þ πμ∂νϵ
μ: ð32Þ

VI. HAMILTON PRINCIPLE
OF HYDRODYNAMICS

The Hamiltonian principle asserts that on the equation of
motions, the Hamilton functional, which we denote by Λ, is
invariant under the action of the group G. In this form, the
Hamiltonian principle incorporates the fluid kinematics
into the conservation laws associated with the symmetry
group G [33].
The Hamilton functional depends of natural variables,

which we choose by following Carter [24] as the canonical
momentum π, the chiral phase Θ and the density ratio S.
Then the variation of the Hamilton functional

δϵΛ ¼
Z

½J μδϵπμ þ πSδϵS − Iμ∂μδΘ� ð33Þ

defines the conjugate fields: the flow field J μ ≔ δΛ=δπμ, a
conjugate to the canonical momentum, the Noether current
Iμ ≔ −δΛ=δð∂μΘÞ, and the conjugate to the density
ratio πS ≔ δΛ=δS. Using explicit forms of the variations
(30), (32) a simple algebra leads to what Carter referred to
as the canonical fluid equation [34]

J μΩμν þ πνð∂μJ μÞ ¼ πS∂νS; ∂μIμ ¼ 0: ð34Þ

The first term of the left-hand side is the force acting on a
rotating fluid parcel. It is balanced by the force due to the
fluid source and the reservoir source. They are the second
term sometimes called the “rocket term” and the “heat”
source on the right-hand side of (34). A notable feature of
the canonical equation is the absence of a reference to a
spacetime metric.
The combined result must be gauge invariant. The gauge

phase Θ introduced through the canonical momentum (20)
by the rocket term should not enter the equations. If the
flow field J is gauge invariant, this is achieved by setting

J divergence free and killing the rocket term. This is the
case of the perfect fluid. However, if J is not gauge
invariant, i.e., depends on ∂μΘ, the Θ in the first term must
cancel the Θ in the second term. This requirement imposes
a nearly prohibiting condition on J .
The perfect fluid could be defined by the condition that

the flow field, the Noether current, and the particle number
are all equal J μ ¼ Iμ ¼ nμ. This condition determines the
Hamilton functional equal to (minus) spacetime integral of
the fluid pressure [35,36]

Λ0 ¼ −
Z
M4

P: ð35Þ

It is instructive to check it. For this purpose we need the
differential of the fluid pressure with respect to the natural
variables. The fluid pressure is defined as P ¼ n∂nε − ε. In
view of the relations (25)–(27) we write the pressure in
terms of momentum and particle current as −P ¼ pμnμ þ ε
and compute its differential as

−dP − ∂SεdS ¼ nμdpμ ¼ nμdπμ − nμ∂μdΘ: ð36Þ

It follows that the flow field and the Noether are equal
to the particle number and πS ¼ ∂Sε. We obtain the
canonical form of the Euler equation (also referred as
the Lichnerowicz equation) for the perfect charged fluid

nμΩμν þ πνð∂νnνÞ ¼ ð∂νεÞn; ð37Þ

where ð∂νεÞn ¼ ð∂SεÞ∂νS is the gradient of energy at a
fixed n plus the continuity equation (2). The canonical
equation is equivalent to the momentum-stress-energy
conservation laws (1), (8). This is simplified by taking
into account the continuity equation which kills the rocket
term in the left-hand side of (37).
The deformation of the Hamilton functional disrupts the

accidental relation between the currents and alters the
mechanism that brings (33) to its gauge-invariant form.

VII. FLUID PHASE SPACE AND A GENERALIZED
HOPF FIBRATION

The last general point we need to discuss before
introducing the multivalued action is the geometry of the
fluid phase space.
In addition to the four-dimensional space of momentum,

the phase space includes the scalar S. That makes the phase
space five-dimensional, matching the dimension of the
manifold of the symmetry group G. We illustrate this
important feature by invoking the Clebsch realization of
the momentum.
The vorticity 2-form Ω ¼ 1

2
Ωμνðdxμ ∧ dxνÞ of the non-

homentropic flow, where dS ≠ 0, is nondegenerate
detΩμν ≠ 0. It endows a symplectic structure. Under this
condition we may invoke the Daurboux theorem. It asserts
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that there are four local coordinates α, β, η, S among which
one could be chosen to be the density ratio S, in which the
symplectic structure takes on a canonical form:

Ω ¼ dα ∧ dβ þ dη ∧ dS: ð38Þ

As a result, the canonical momentum is locally represented
by five coordinates

π ¼ dΘþ αdβ þ ηdS: ð39Þ

We are endowed with a map of the five-dimensional
phase space, denoted by N5 to the four-dimensional
spacetime M4: N5 → M4, where a point of a spacetime x
is mapped out from a distinct circle S1, represented by the
chiral phase Θ. The local coordinates of N5 are associated
with five Clebsch potentials Θ, α, β, η, S [35–37]. Then the
canonical momentum π ¼ ð∂μΘþ α∂μβ þ η∂μSÞdxμ, being
the 1-form in M4 could be seen as a push-forward of the
1-form (39) in N5. The map describes a fibration of
the phase space S1 ↪ N5 → M4, where the spacetime is
the base of the bundle. The total space N5 consists of fibers,
with each fiber being a circle S1 spanned by the chiral phase
one for each point of the spacetime. This setup is analogous
to the classical Hopf fibration (albeit not for spheres),
given by the Hopf map S1 ↪ S3 → S2. It was introduced
in [38]. The map is characterized by the invariant, which
was referred to in [39] as the Hopf-Novikov invariant.
Analogous to the realization of the Hopf invariant in terms
of differential forms [40], the Hopf-Novikov invariant
is also represented by the integral of the top-form in N5,
which is constructed from the pullback of the canonical
momentum [41]

H ¼
Z
N5

π ∧ ðdπÞ2; ðdπÞ2 ¼ dπ ∧ dπ: ð40Þ

In the context of semiclassical hydrodynamics the invariant
is the volume of the compact phase space.

VIII. MULTIVALUED FUNCTIONAL

The five-dimensional phase space allows the following
interpretation. Consider a closed five-dimensional space
M5 and treat it as a spacetime of an auxiliary five-
dimensional fluid. Then the map M5 → N5 defines the
momentum of the auxiliary fluid via (39) and the invariant
(40) is the linking number of singular 3-surfaces

H ¼
Z
M5

εμνλσρπμ∂νπλ∂σπρd5x: ð41Þ

Consider now a bounded five-dimensional space M5þ, a
half-space of M5, and identify the boundary of M5þ with the

physical spacetime M4 ¼ ∂M5þ. Then the boundary layer of
the five-dimensional fluid could be identified with the
physical fluid. The integrand in (41) is a Jacobian of map
M5 → N5. It is a closed form π ∧ ðdπÞ2 ¼ dΦ. Therefore,
the integral (41) over M5þ is a surface term spanned over
physical spacetime, which is the integral over pullback of
the 4-form Φ

Hþ ¼
Z
M5

þ
εμνλσρπμ∂νπλ∂σπρd5x

¼
Z
M4

Φ ðmod HÞ: ð42Þ

This is Novikov’s functional. It is defined modulo the
invariant H reflecting different choice of M5þ. In this sense
the functional is multivalued. Consequently, the 4-form Φ
cannot be expressed in a coordinate-free manner, but it
could be elementary computed in chosen coordinates.
Choosing the chiral phase as a fifth coordinate, the density
Φ, modulo an exact 4-form, is

Φ ¼ 1

2
ΘðΩ ∧ ΩÞ: ð43Þ

IX. MULTIVALUED FUNCTIONAL
IN FLUID DYNAMICS

Now we deform the Hamilton functional of the perfect
fluid by the multivalued functional as

Λ ≔ Λ0 þ
k
4
Hþ ¼

Z
M4

�
−Pþ k

8
ΘðΩ ∧ ΩÞ

�
: ð44Þ

While the added functional is not uniquely defined, it
nonetheless generates a local equation of motion [43]. The
ambiguity of the functional does not extend to its variation
as the invariant H does not vary.
Unlike Λ0, the functional Hþ is not gauge invariant. It

opens a channel of inflow of the five-dimensional auxiliary
fluid into the physical fluid. Nevertheless, the equations of
motion maintain the gauge invariance.
We remark that the multivalued term in (44) is a

hydrodynamic version of an axion, a Θ angle promoted
to a dynamical field (see [28] for a review).
In the semiclassical fluid, the multivaluedness of Hþ

leads to the quantization of the level k, as we already
discussed in Sec. III. It follows from the requirement for
exp ½ði=ℏÞΛ� to be single valued under a global gauge
transformation which changes the circulation by a unit
C → C þ 1. Then the change of the Hamilton functional is
k=2 times the total helicity Λ → Λþ k

2
H. Since the latter is

an even integer, k is quantized (cf. [44]).
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X. EQUATIONS OF MOTION

Now we turn to equations of motion. We calculate the
currents defined by (33), and subsequently, substitute them
into canonical equation (34).
First, we vary (44) over Θ, while keeping π fixed. This

gives the divergence of the Noether current ∂μIμ ¼ ∂μnμ þ
k
4
Ωμν

⋆Ωμν and yields the particle production equation (16).
The next step is to vary (44) with respect to π,

which results in a deformation of the flow field J μ ¼
nμ þ k⋆Ωμν

∂νΘ by a not gauge-invariant, albeit
divergence-free term. The relation ∂μJ μ ¼ ∂μnμ remains
unchanged.
Now we have all of the terms in the canonical equa-

tion (34) to verify that the chiral phase Θ cancels out. We
see it with the help of the identity

ϵμνλσXρ þ � � � ¼ 0; ð45Þ

which holds for an arbitrary Xμ (the ellipsis denotes the
cyclic permutation of five indices) and its consequence
4ð⋆ΩλμΩμνÞ ¼ δλνð⋆ΩλμΩμλÞ. The net result is the familiar
canonical form of the Euler equation for a perfect fluid,
Eq. (31). The only difference is that the rocket term no
longer vanishes

nμΩμν þ pνð∂μnμÞ ¼ ð∂νεÞn: ð46Þ

In the form of energy-stress-momentum this equation reads

∂μTμ
ν ¼ Fνλnλ; Tμ

ν ¼ nμpν þ δμνP: ð47Þ

As expected, the Euler equation is unaffected by the WZN
term and remains identical to that of a perfect fluid [45].
Since the WZN term is independent of the metric, it does
not alter the form of the stress tensor, but only modifies the
continuity equation as

∂μnμ ¼ −
k
4
Ωμν

⋆Ωμν: ð48Þ

These equations are complemented by the equation of
state (27) which connects the particle number current and
the momentum. This is the full set.

XI. SPIN AND SPIN-ORBIT COUPLING

We conclude by emphasizing a property that the WZN
term imparts to the perfect fluid. It gives the fluid a spin
equal to k=2.
A hint to it provides the Newtonian form of the Euler

equation. In this form the rocket term in (46) expressed in
terms of the fluid momentum by virtue of the particle
production equation is treated as a force exerted on the
fluid. Using (46) and the identity 1

2
pνð∂μΣμÞ ¼ ΣμΩμν

followed from (45) we bring the Euler equation into
the form

nμ∂μpν þ ∂νP ¼ kΣμΩμν: ð49Þ

The term on the right-hand side of (49) indicates that
our fluid is spinning, with the spin density 1

2
Σμ (see

Appendix C). The spin exerts a force on fluid vorticity
given by the right-hand side of (49) (more about the spin
density and the spin current is given in Appendix D).
In summary, we presented what we believe to be the only

deformation of a single-component perfect fluid that does
not introduce additional scales into the system. This
deformation captures the chiral anomaly. While it modifies
the continuity equation, it does not alter the form of the
stress-energy tensor. It requires the system to have an open
channel for particle production and breaks inversion sym-
metry in the same manner as the chiral anomaly. The
kinematic and geometric properties of our hydrodynamics
are consistent with those of systems composed of Weyl (or
chiral) fermions.
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APPENDIX A: VORTICITY INSTANTONS
AND “ENTROPY” PRODUCTION

Here we remark on the role of the anomaly in particle
exchange with the reservoir.
We recall that the reservoir density n̄ ¼ nS could be

interpreted as an “entropy” [32]. Consequently, the “entropy
current” is sμ ≔ n̄uμ ¼ Snμ. By contracting (46) with nμ we
obtain the relation between particles and entropy produc-
tions ∂μsμ ¼ −ð∂n̄=∂nÞεð∂μnμÞ, with n̄ being treated as a
function of ε and n. This is a general relation for an open
system. It means that the entropy propagates along iso-
energy hypersurfaces dε ¼ 0. Specifically to our fluid we
may express the entropy production in terms of vorticity as

∂μsμ ¼
k
4

�
∂n̄
∂n

�
ε

Ωμν
⋆Ωμν: ðA1Þ

We conclude that the entropy production goes along with
particle production assisted by vorticity instantons. A
change of linking number of vortex loops changes the
entropy [48].

APPENDIX B: HOMENTROPIC FLOWS

A homentropic flow occurs when the density ratio S is
uniform and constant. It is also called uniformly canonical
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[24]. In this situation, the flow is barotropic and the
vorticity tensor is degenerate detΩμν ¼ 0, having rank 2.
Consequently, the rate of particle production ⋆ΩμνΩμν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΩμν

p
vanishes. This prevents the construction of the

WZN term since the phase space of a homentropic flow is
not symplectic. In this case canonical helicity and particle
currents are conserved independently ∂μnμ ¼ ∂μhμ ¼ 0. In
this case, the equations of motion are no different from that
of the perfect fluid but the kinematic helicity Σμ obeys the
anomaly equation ∂μΣμ ¼ − 1

2
Fμν

⋆Fμν [12–17].

APPENDIX C: TOTALLY ANISYMMETRIC
SPIN CURRENT

A spinning fluid possesses a spin current, which we
denote by σμαβ. Given a spin current one finds a spin tensor
σαβ ¼ −uνσναβ by projecting the spin current onto the
4-velocity. It is customary to use the dual spin tensor
⋆σμν ¼ 1

2
ϵμναβσαβ. Then the spin density reads σν ¼ uμ⋆σμν.

We identify the spin density as a neutral part of the
current (17). It is given by half of helicity as Eq. (18)
suggests,

σμ ¼ 1

2
Σμ; σμαβ ¼ −

1

6
p½μð∂αpβ� þ Fαβ�Þ; ðC1Þ

Here ½μ; α; β� denotes the antisymmetrization over all three
indices. We observe that the spin current is totally anti-
symmetric. This is a distinguished property of spinning
fermions.

APPENDIX D: COMPARISON
WITH THE KINEMATICS OF WEYL FERMIONS

Our results are consistent with the kinematics of chiral
fermions. Here we briefly outline the major points.
Chiral fermions carry an electric charge and also 1

2
spin.

The current, therefore, is composed of a charge (the
particle number) current, and a neutral part representing
the spin current. The formula (17) represents this compo-
sition. Therefore, we identify the neutral part of the current

σν ¼ 1
2
Σν withe the spin. The neutral part can be also

obtained as a difference between the particle current and
the current of antiparticles Σν ¼ jνjμ − jνj−μ, where μ is the
chemical potential. The (twice of the) spin current of free
chiral fermions had been computed by Vilenkin in a series
of papers [20]. Despite that Vilenkin computations are
valid for free fermions, some of the results are transferred
to a liquid state and could be compared with formu-
las (17), (18).
Vilenkin computed the equilibrium value of the space-

like component of Σ for free rotating chiral fermions in a
magnetic field and at a low temperature. His result (in units
of Planck constant 2πℏ) is

Σ ¼ 2

��
μ2 þ π2T2

3

�
ωþ μB

�
: ðD1Þ

Now we specify our formula (18) Σμ ¼ ϵμνλσpνð∂λpσ þ
FλσÞ for a stationary rotating fluid and check it against
Vilenkin’s direct computation.
The spacelike component of Σ evaluated for a stationary

flow in the leading order of velocity u is

Σ ¼ w2∇ × u − 2p0B: ðD2Þ

We can extend this formula to a rotating fluid, by adding
twice the angular velocity of rotation 2ω to vorticity
Σ ¼ w2ð∇ × uþ 2ωÞ − 2p0B. At equilibrium we drop
vorticity. Then

Σ ¼ 2ðw2ω − p0BÞ: ðD3Þ

This is a general result. To specify it for fermions we need
the value of enthalpy for a degenerate Fermi gas. It could be
extracted from the textbook [46] (paragraph 61, problem 2).
At low temperature the enthalpy of free fermions is
w ≈ μð1þ π2

6
T2

μ2
Þ. For the Fermi gas we have to set −p0

to be the Fermi level equal the chemical potential −p0 ¼ μ.
Combining, we get Vilenkin’s result [47].
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