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Designs from Local Random Quantum Circuits with SU(d) Symmetry
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The generation of k-designs (pseudorandom distributions that emulate the Haar measure up to k
moments) with local quantum circuit ensembles is a problem of fundamental importance in quantum infor-
mation and physics. Despite the extensive understanding of this problem for ordinary random circuits, the
crucial situations in which symmetries or conservation laws are in play are known to pose fundamen-
tal challenges and remain little understood. Here, we construct explicit local unitary ensembles that can
achieve high-order unitary k-designs under transversal continuous symmetry, in the particularly impor-
tant SU(d) case. Specifically, we define the convolutional quantum alternating (CQA) group generated
by 4-local SU(d)-symmetric Hamiltonians as well as associated 4-local SU(d)-symmetric random unitary
circuit ensembles and prove that they form and converge to SU(d)-symmetric k-designs, respectively, for
all k < n(n − 3)/2, with n being the number of qudits. A key technique that we employ to obtain the
results is the Okounkov-Vershik approach to Sn representation theory. To study the convergence time of
the CQA ensemble, we develop a numerical method using the Young orthogonal form and the Sn branch-
ing rule. We provide strong evidence for a subconstant spectral gap and certain convergence time scales
of various important circuit architectures, which contrast with the symmetry-free case. We also provide
comprehensive explanations of the difficulties and limitations in rigorously analyzing the convergence
time using methods that have been effective for cases without symmetries, including Knabe’s local gap
threshold and Nachtergaele’s martingale methods. This suggests that a novel approach is likely necessary
for understanding the convergence time of SU(d)-symmetric local random circuits.
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I. INTRODUCTION

As a ubiquitous principle in nature, symmetry has
played a fundamental role in the development of physics.
As dictated by the celebrated Noether’s theorem, symme-
tries are linked with conservation laws such as energy and
charge conservation. The presence of symmetries and con-
served quantities, especially continuous and non-Abelian
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ones, can drastically alter the physics of quantum infor-
mation. For instance, transversal continuous symmetries
in quantum error-correcting codes can enforce the loss of
logical information, leading to the Eastin-Knill theorem
[1] and its approximate versions [2–9] that have drawn
great interest in quantum computing as well as funda-
mental physics. In addition, continuous symmetries induce
inherent constraints on quantum dynamics and scrambling
effects, which are of extensive interest at the forefront
of many-body physics and quantum gravity (see, e.g.,
Refs. [10–16]). Notably, the effects of non-Abelian sym-
metries in the aforementioned areas of quantum codes and
dynamics have been under active study in recent years
[2–6,8,9,17–23]. Among the wide variety of different sym-
metries, SU(d) holds exceptional importance in quantum
theory, manifesting the group of transformations on a d-
dimensional quantum system. Furthermore, it represents
non-Abelian symmetries (associated with noncommuting
charges) that exhibit more complex structures and richer
physics.
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The locality of interactions is also a fundamental prop-
erty of physics. In mathematical characterizations of the
legitimate dynamics of physical systems, this is captured
by the locality of terms in the Hamiltonian or the locality of
elementary gates in circuit models. A particularly desired
feature of such models driven by local interactions is the
ability to generate intrinsically global dynamics, which is
essential in physics as the foundation for the emergence of
nontrivial global phenomena, as well as for practical rea-
sons such as the universality of quantum circuits composed
of small elementary gates, which underpins the viability
of quantum computing. Specifically, we call an operator
r-local if it acts on at most r sites of a system, which
represents the notion of all-to-all locality, while an oper-
ator is said to be geometrically r-local if these sites are
adjacent on the specific graph corresponding to the circuit
architecture or geometry.

A fundamental form of this emergence of globalness
is the generation of (approximate) unitary k-designs, i.e.,
ensembles of unitaries that match the Haar (invariant)
measure up to the kth homogeneous polynomial moment
[24,25] (one is usually interested in k ≥ 2). (In the rest
of this paper, we may refer to “unitary designs” simply
as “designs” without causing confusion.) Designs have
become a standard concept in quantum information, many-
body physics, and quantum gravity, due to their close
connection to the notions of decoupling, many-body chaos,
thermalization, entanglement generation, circuit complex-
ity, etc., which play key roles in these fields [12,26–34].
Furthermore, there are many more important applications
of designs and their formation in separate contexts—e.g.,
providing general frameworks for understanding the phe-
nomena of anticoncentration [35,36] and barren plateaus
[37], which are of great recent interest in quantum com-
puting. For a diverse range of other applications, see, e.g.,
Refs. [38–41] and references therein.

Given the importance of both symmetry and locality
principles, it is imperative to study the properties of local
models such as quantum circuits that respect symme-
tries, the appeal of which extends from physical scenarios
[14–16,42–44] to areas with practical motivations, includ-
ing covariant quantum error correction [2–6,8,9,17,18] and
quantum machine learning [45–48]. Besides the physical
and practical motivations evident from the above discus-
sion, the problem of k-design generation under continuous
symmetry constraints is highly intriguing from the math-
ematical perspective. Concretely, two central questions
regarding design generation are: (i) whether it is possible
to generate designs of a certain order with local ensembles,
and (ii) if so, how efficiently this can happen. Here, note
that the notion of designs may be either exact or approxi-
mate; in particular, as long as an ensemble can converge to
a k-design, i.e., produce an approximate k-design to arbi-
trary precision under convolution, we consider it capable
of generating a k-design. Without symmetry, the situation

has been extensively studied and well understood. First, as
naturally expected, universal 2-local gate ensembles can
converge to the Haar measure, i.e., generate k-designs of
any order k [24,25,49,50]. Furthermore, it has been rigor-
ously proven in Refs. [34,36,38,51–53] that k-designs of
any k can be generated by local random circuits with var-
ious circuit architectures in time polynomial in both the
system size and k, which provides a foundation for the
practical appeal of designs: while sufficiently powerful for
applications, they can be produced efficiently (in polyno-
mial time) in contrast to the true Haar measure that requires
exponential time.

Interestingly, when continuous symmetries are imposed,
the situation becomes fundamentally different. A remark-
able result of Marvian [54] reveals a crucial insight that
with continuous symmetries in play, global unitaries that
can be generated by local circuits are severely restricted,
in stark contrast to the scenario without symmetry, cast-
ing serious doubts on the capability of local circuits to
generate designs. Non-Abelian symmetries make the prob-
lem more intricate. When d ≥ 3, 2-local SU(d)-symmetric
unitaries are unable to form k-designs even if k = 2
[20,55]. Besides, it has been observed that various exist-
ing results and techniques for designs fail to carry over to
the case with symmetry, indicating fundamental difficul-
ties in understanding design generation in the presence of
symmetries [18]. So far, no results for local constructions
capable of generating nontrivial designs in the presence of
SU(d) symmetry are known and even the basic question of
whether they are possible at all is largely up in the air.

In this work, we solve this open problem of design gen-
eration under symmetry raised in Ref. [18] in the case of
SU(d) symmetry, where operators are demanded to com-
mute with Û⊗n acting transversally on qudits of local
dimension d from an n-qudit system. The SU(d) sym-
metry has garnered significant interest in various related
areas of quantum information processing. In covariant
quantum error correction, it remains an open ques-
tion whether efficient constructions of random SU(d)-
symmetric error-correcting codes exist [18]. In quantum
thermodynamics, random quantum circuits with transver-
sal SU(d) symmetry can be seen as a canonical dynam-
ical model with non-Abelian symmetry, leading to many
intriguing and often counterintuitive physical phenomena
[21–23,56]. All these questions hinge on the efficient
construction of local unitary circuits capable of converg-
ing to SU(d)-symmetric unitary designs. A key con-
clusion of our work is that it is possible to construct
4-local ensembles with SU(d) symmetry that generate
k-designs for k up to at least O(n2). We first provide
a systematic characterization of unitary k-designs using
commutants from invariant theory [57], bridging various
widely used characterizations of random unitaries includ-
ing the tensor product expander [38,58,59] and the frame
potential [27,28,32,60,61]. Together with the utilization
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of group-representation-theoretic techniques—in particu-
lar, the Okounkov-Vershik approach [62]—we are able to
circumvent the no-go theorems in the presence of SU(d)
symmetry [19,20,54] that forbid the generation of arbitrary
global SU(d)-symmetric unitaries via 2-local gates.

Specifically, we prove that the Sn-convolutional quan-
tum alternating (CQA) group introduced in Ref. [46],
which is generated by at most 4-local SU(d)-symmetric
Hamiltonians, is able to form exact k-designs of the group
U× consisting of all SU(d)-symmetric unitaries for all
k < n(n − 3)/2 whenever d < n. For such k, we show that
various ensembles constructed based on the group CQA,
given by SU(d)-symmetric 4-local Hamiltonians or unitary
gates, can converge to SU(d)-symmetric k-designs. More-
over, we rigorously prove that for generators with bounded
locality, it is impossible to achieve SU(d)-symmetric k-
designs for arbitrarily large k. Altogether, our results show
that local circuit models with continuous symmetry that
generate k-designs for fairly large k (sufficient for most
applications) do exist, which, to our best knowledge, has
not been reported before.

To understand another key question of the time scales of
convergence to k-designs, we examine the spectral gaps
of the generating ensembles. In particular, in the basic
qubit (d = 2) case, our numerical analysis suggests that
the CQA local random circuits with, e.g., the standard
one-dimensional (1D) architecture form ε-approximate 2-
designs in�(n4 + n3 log(1/ε)) time (circuit depth), which
is longer than local random circuits without symmetries
[24,36,38,53,54,60,63–66] by a factor that scales as n2.
We then carefully illustrate the mathematical difficul-
ties in analytically determining the convergence time of
CQA ensembles using the previously considered tech-
niques, including the frame potential [27,28,32,60,61], the
local gap threshold [59,67,68], and the martingale method
[38,69,70], supported by numerical analysis. These under-
standings may serve as a guide for future research on
rigorously determining the convergence times to k-designs
under continuous symmetry. From an application perspec-
tive, our results open up the possibility of constructing
random ensembles with SU(d) symmetry, which holds
wide significance in quantum information and physics, as
extensively discussed in a companion paper [71].

This paper is organized as follows. In Sec. II, we
provide formal definitions of various key concepts—in
particular, unitary k-designs and their symmetric vari-
ants—and carefully discuss the connection and difference
between the frame potential [27,28,32,60,61] and spectral
gap [38,59] characterizations of the convergence to uni-
tary k-designs. We also overview the main results of this
work as well as related existing works. In Sec. III, we elu-
cidate that the CQA group forms exact SU(d)-symmetric
unitary k-designs for k < n(n − 3)/2 and demonstrate that
unbounded locality is necessary to form k-designs with
arbitrarily large k. In Sec. IV, we discuss the convergence

of dynamical models based on CQA to SU(d)-symmetric
k-designs. Technical details of the proofs discussed in the
main text and additional mathematical background can be
found in the Appendix.

II. PRELIMINARIES AND SUMMARY OF
RESULTS

In this section, we will formally lay out the key defini-
tions and provide an overview of the main technical results.
For readers’ convenience, we summarize several key nota-
tions and symbols used in this paper in Table I. Further
details will be explained later within specific contexts.

A. Unitary k-designs and commutants

Let E be an ensemble (distribution) consisting of uni-
taries acting on the Hilbert space H. For any operator
M ∈ End(H⊗k), the k-fold (twirling) channel with respect
to E acting on M is defined by the following integral
over E :

TE
k (M ) =

∫
E

dUU⊗kMU†⊗k. (1)

Alternatively, it can be characterized by

TE
k =

∫
E

dUU⊗k ⊗ U
⊗k

, (2)

namely, the kth moment (super)operator acting on
End(H⊗k). Besides, given any compact group G, we use
TG

k to denote the kth moment operator associated with the
Haar measure over G. An ensemble is called an (exact)
unitary k-design of the group G if TE

k = TG
k .

TABLE I. Summary of notations.

Notation Definition

[n] The set of all integers 1, 2, . . . , n
�x� The largest integer less than or equal to a real

number x
λ � n A partition of n
Sλ An Sn irrep as a subspace of the Hilbert space H
p(n, d) The number of inequivalent Sn irreps of n qudits
Xl A Young-Jucys-Murphy (YJM) element
τ A generic transposition or SWAP
τj A nearest-neighbor transposition or SWAP (j , j + 1)
U× The group of SU(d)-symmetric unitaries
SU× The subgroup of U× with trivial relative phases
V4 The group generated by 4-local SU(d)-symmetric

unitaries
CQA The group generated by second-order YJM elements

and τj

CQA(k) The group generated by kth-order YJM elements
and τj

ECQA The CQA random walk ensemble
EV4 The CQA 4-local random unitary ensemble
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More generally, we call E an ε-approximate k-design if
the strong notion of ε-approximation in terms of complete
positivity [36,38] holds, namely,

(1 − ε)TG
k ≤cp TE

k ≤cp (1 + ε)TG
k (3)

where A ≤cp B means that B − A is completely posi-
tive (for various other definitions and their applications,
see also Refs. [24,29,59,60,72,73]). We also denote by
ccp(E , k) the smallest constant ε achieving the above
bound.

A fundamental case is when G is the unitary group
U(H), which has been extensively studied in the quan-
tum information literature. Specifically, the moment oper-
ator of interest is TU(H)

k , where we integrate over
U(H) ≡ U(dn) ≡ U(N ), with N ≡ dimH = dn being the
dimension of the system. Important knowledge includes,
e.g., that 2-local Haar-random ensembles approximate k-
designs [24,25,33,34,36,38,60,74], and, for qubits, that the
Clifford group forms an exact 3-design of U(H) [40,41].

Here, we are interested in the more involved situation
in which transversal continuous symmetries are imposed.
In this paper, we consider transversal SU(d) symmetry on
qudits as a canonical example.

Definition 1. An operator O, including unitaries or Her-
mitian matrices, on the Hilbert space of n qudits, is SU(d)-
symmetric if OÛ⊗n = Û⊗nO for any transversal action of
Û ∈ SU(d) on the qudits.

We say that an ensemble is an exact SU(d)-symmetric
unitary k-design if its kth moment operator matches that
of the Haar measure over the symmetry-restricted group
U×, i.e., TE

k = TU×
k . And again, we consider the strong

notion of approximation of k-designs based on complete
positivity, with its relation to various other natural approx-
imation conditions carefully discussed in Appendix B 2.
The formal definitions go as follows.

Definition 2. An ensemble E is said to be an SU(d)-
symmetric unitary k-design if TE

k = TU×
k , where U× is the

group consisting of all SU(d)-symmetric unitaries act-
ing on the system. Furthermore, we say that E is an
ε-approximate SU(d)-symmetric unitary k-design if

(1 − ε)TU×
k ≤cp TE

k ≤cp (1 + ε)TU×
k , (4)

where A ≤cp B means that B − A is completely positive.

By the left and right invariance, or simply the bi-
invariance property, of the Haar measure defined on any
compact subgroup G, it can be straightforwardly checked
that the operator TG

k is an orthogonal projector, meaning
that TG

k is Hermitian and that (TG
k )

2 = TG
k . Consequently,

TG
k only has zero and unit eigenvalues. The eigenspace of

unit eigenvalues, called the commutant of G under the rep-
resentation, is of central importance. It can be verified by
definition that

Commk(G) = {M ∈ End(H⊗k); U⊗kM = MU⊗k}. (5)

Fact. Given a unitary ensemble E that is also a compact
subgroup of the concerned group G, it forms an exact uni-
tary k-design if Commk(E) = Commk(G). Otherwise, it
never converges to a unitary k-design even approximately.

As a concrete example of the commutant, in the case of
unitary k-designs without concern for symmetry, we con-
sider U(dn). Then, by Schur-Weyl duality and the double
commutant theorem [57,75], Commk(U(dn)) is spanned by
permutations of symmetric group Sk acting on H⊗k. A
typical element from the spanning set can be expressed
as |ψσ ,d〉⊗n, where |ψσ ,d〉 = d−k/2(I ⊗ πSk (σ ))

∑dk

i=1 |i, i〉
[38,59]:

πSk (σ ) |i1, . . . , ik〉 = |iσ−1(1), . . . , iσ−1(k)〉 , σ ∈ Sk. (6)

More straightforwardly, the representation πSk (σ ) of these
permutation operators can be derived using either the Pauli
basis or matrix units. For example, consider the following
transposition on H⊗2, [27,76]:

W12 = 1
d

∑
P

P ⊗ P† =
∑

i,j

Eij ⊗ Eji, (7)

where (Eij )kl = δikδjl. Together with the identity operator,
they span Comm2(U(dn)).

For a general ensemble E , it is straightforward to check
that TU(H)

k commutes with TE
k . If TE

k is furthermore Hermi-
tian, they are simultaneously diagonalizable. To determine
whether E forms unitary k-designs, it suffices to show that
its unit-eigenvalue subspace (it should not be called a com-
mutant here if E is not a group) is equal to the commutant
of the Haar unitaries. As such, the commutant plays a
vital role in understanding the design properties and can
be connected to other mathematical tools such as the frame
potential:

F (k)
E =

∫
E

dUdV| Tr(UV†)|2k = Tr(TE
k TE†

k ). (8)

Since we always have Comm(E) ⊃ Comm(U(dn)), it is
clear that

F (k)
E ≥ F (k)

Haar = dim Commk(U(dn)). (9)

In the case without symmetry, note that dim Commk(U(H))
in Eq. (9) is equal to k! for k ≤ dn and can even be evalu-
ated through the so-called increasing subsequence problem
from combinatorics for larger k [77].
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B. Structures under transversal SU(d) symmetry

To deal with the SU(d) symmetry, we need to employ a
powerful mathematical tool—Schur-Weyl duality [57,75]
from representation theory—not just to study commutants
as before but as the theoretical foundation to understand
SU(d)-symmetric operators. To be precise, Schur-Weyl
duality indicates that the Hilbert space H of an n-qudit
system is decomposed according to the irreducible repre-
sentation (irrep) of the symmetric group Sn as

H =
⊕
λ

1mλ ⊗ Sλ, (10)

where Sλ stands for an irrep with λ � n recording the irrep
as a partition of n into at most d parts [78,79]. The number
mλ denotes the multiplicity of Sλ and dim Sλ ≡ dλ is its
dimension. We also denote by p(n, d) the total number of
inequivalent irreps. A key observation from Schur-Weyl
duality and the double commutant theorem [57,75] is that
any SU(d)-symmetric unitary happens to take the form

U =
⊕
λ

Imλ ⊗ Uλ, (11)

with Uλ ∈ U(Sλ), the unitary group acting on the irrep Sλ,
and Imλ being the identity matrix acting on the multiplic-
ity space. Accordingly, we also have the compact group
U× of SU(d)-symmetric unitaries with a well-defined Haar
measure.

On the other hand, we denote by SU× the group consist-
ing of all such U ∈ U× modulo the relative phase factors
(i.e., det(
λU) = 1, with
λ being the projection operator
onto the specific irrep Sλ as well as its multiple copies).
Intuitively, this is analogous to the relationship between
the unitary and special unitary groups. However, there is
a fundamental difference: the unitary group U(dn) can be
generated by 2-local unitaries [80–82] but it is impossi-
ble to generate U× by local unitaries under symmetries.
Interestingly, we show that SU× can be generated locally
[see Eq. (19)]. A comprehensive description is provided in
Sec. II C.

We also sketch in the following the typical group ele-
ments

⊕
Uj = ⊕

eiφj Vj ,
⊕

Vj from U× and SU×, respec-
tively. Note that U2 and V2 are written twice as an
indication of possible multiplicities:

e
iφ3V3

e
iφ1V1

e
iφ2V2

e
iφ2V2

V3

V1

V2

V2

This subspace decomposition with respect to the
symmetry hinders one from approaching the problem by
commonly used methods developed for k-designs without
symmetry. Indeed, as shown in Appendix B 5, the com-
mutant corresponding to Haar randomness under SU(d)
symmetry has been foliated with respect to tensor prod-
ucts of inequivalent Sn irreps and multiplicities. Consider
the case of 2-design as an enlightening example. Formally,
the matrix representing TU×

2 is expanded by integrating

Uλ1,m1 ⊗ Uλ2,m2 ⊗ Uμ1,m′
1
⊗ Uμ2,m′

2

= e−i(φ1+φ2−ψ1−ψ2)Vλ1,m1 ⊗ Vλ2,m2 ⊗ Vμ1,m′
1
⊗ Vμ2,m′

2
(12)

with various choices of λi, μi, mi, and m′
i according to

Schur-Weyl duality. For inequivalent irreps, we are free to
assign different phase factors such that Uλ,mλ = e−iφλVλ,mλ ,
which implies that the integral is nonvanishing if and
only if λ1 = μ1; λ2 = μ2 or λ1 = μ2; λ2 = μ1. We refer
to these pairings of irrep labels λi and μi as Wick contrac-
tions, which can also be generalized for arbitrary k (see,
e.g., Ref. [83]). More importantly, this shows that the com-
mutant with the presence of SU(d) symmetry is no longer
two-dimensional (cf. the discussion at the end of Sec. II A).
Instead, it is spanned by more distinct elements charac-
terized by projecting W12 from Eq. (7) into each Sn irrep,
like

∑
αλ,αμ

E(αλ,m1),(αλ,m′
1)

⊗ E(αμ,m2),(αμ,m′
2)

,

∑
αλ,αμ

E(αλ,m1),(αμ,m2)
⊗ E(αμ,m′

2),(α
λ,m′

1)
,

(13)

where E(αλ,m1),(αλ,m′
1)

is still a matrix unit as in Eq. (7)
but labeled by basis vector indices αλ and αμ as well as
multiplicities mi for irreps Sλ and Sμ, respectively.

Because of the necessity of counting the number of
irreps denoted by p(n, d), the multiplicities, and a certain
symmetric factor to obtain a trivial phase from Eq. (12),
analytically evaluating dim Commk(U×) becomes infeasi-
ble with the presence of SU(d) symmetry. When d = 2
(qubits), p(n, 2) = �n/2� + 1 and we have

F (2)
U× = (n + 1)4 + 2

∑
1≤r≤�n/2�

(n − 2r + 1)4

+ 2
∑

0≤r �=s≤�n/2�
(n − 2r + 1)2(n − 2s + 1)2

(14)

(for more details, see Appendix B 4). The computation for
larger k is conceivably involved. When d is arbitrary, there
is no closed-form formula for p(n, d) in general and only
some asymptotic approximations are known [84–87].
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As a result, we opt to analyze the commutant directly
and we also assume that TE

k is both Hermitian and posi-
tive semidefinite. This is the case for the CQA ensemble
that will be discussed later, as well as various other pre-
viously studied cases [36,38,58,59,74,88]. Suppose that
we successfully verify that the unit eigenspace of TE

k and
Commk(U×) are identical. To evaluate the convergence
cost of the unitary ensemble, we need to bound its second
largest eigenvalue of TE

k , which we call g(E , k). It satisfies
the inequality (see Appendix B 2 as well as Ref. [38] for
the version without symmetry)

ccp(E , k) ≤ N 2kg(E , k) = N 2k‖TE
k − TU×

k ‖∞. (15)

The spectral gap characterizes the rate at which the ensem-
ble E converges to k-designs and, consequently, the num-
ber of times needed to sample from the ensemble to
ε-approximate a k-design. (By converging to k-designs,
we mean that the ensemble can generate an ε-approximate
k-design for arbitrarily small ε.) To be more precise, sup-
pose that g(E , k) ≤ 1 − δ, with δ being any lower bound
on the spectral gap. Consider a circuit consisting of p steps
of random walks, where in each step we sample a unitary
from the ensemble E . With a careful comparison of sev-
eral superoperator norms [38,89,90], it can be shown by
the inequality in Eq. (15) that when p ≥ 1/δ(2kn log d +
log 1/ε), this random circuit forms an ε-approximate k-
design.

When the quantum system obeys other symmetries or
conservation laws, the Hilbert space H is decomposed
according to various inequivalent charge sectors associ-
ated with a charge number λ (in a general sense) and a
multiplicity mλ, namely,

H ∼=
⊕
λ

1mλ ⊗ Sλ. (16)

A basic example is the transversal U(1) symmetry, where
the Hilbert space decomposes into a direct sum of
invariant subspaces or charge sectors indexed by the Ham-
ming weights Ztot = ∑n

i=1(I + Zi)/2 and each inequiva-
lent charge sector only appears once in the decomposition.
Studies on U(1) or SU(2)-symmetric designs as well as
other groups such as Zp can be found in Refs. [91–95].

C. Main results

We now summarize the main results of this paper. In
later sections, we will delineate the proof strategies with
examples and numerical computations. All proof details
can be found in the Appendix. The main goal of this
work is to formally understand the possibility and rate of
generating (exact and approximate) unitary designs with
O(1)-local circuits in the presence of SU(d) symmetry.

As a warm-up, for the simplest case of qubits, i.e., d =
2, we obtain the following result.

Proposition 3 (Informal). On an n-qubit system, quan-
tum circuits generated by 2-local SU(2)-symmetric uni-
taries converge to unitary k-designs for all k < n(n − 3)/2
when n ≥ 9.

Just like the case without symmetry [80–82] or with
U(1) symmetry [54,91], 2-local SU(2)-symmetric uni-
taries are sufficient for the generation of higher-order
designs. This conclusion is based on the extensive prior
study on SU(2)-symmetric universality in Refs. [19,20,96]
in conjunction with our methods from representation the-
ory, described in Sec. III.

For general qudits with d ≥ 3, 2-local unitaries can-
not achieve either universality or high-order designs
[19,20,54] (for the mathematical accounts of special prop-
erties of SU(d) with d ≥ 3, see also Refs. [96–99]). We
explicitly construct a class of 4-local unitary ensembles
that exactly form or converge to SU(d)-symmetric k-
designs for k up to at least O(n2). To be specific, we
consider the Sn-convolutional quantum alternating group
(CQA) proposed in Ref. [46]. As the name indicates, the
CQA is generated by alternating products of unitary time
evolutions generated by (exponentials of) the following
Hamiltonians:

HS =
n−1∑
j =1

(j , j + 1), HYJM =
∑

k,l

βklXkXl, (17)

where (j , j + 1) are transposition or SWAP operators on
qudits, βkl are real-valued parameters and

Xj = (1, j )+ (2, j )+ · · · + (j − 1, j ) (18)

are the so-called Young-Jucys-Murphy elements, or YJM
elements for short [100–102], a concept that is central
to the Okounkov-Vershik approach [62] to Sn representa-
tion theory and that underpins most results in this work.
Defined with actions of the symmetric group Sn, they obey
SU(d) symmetry according to Schur-Weyl duality. Note
that we will explicitly write out a transposition as (i, j )
when we need to emphasize the sites on which it acts.
For abstract computation such as in Eq. (41), we denote
a generic transposition by the symbol τ .

Definition 4 (CQA group). The group CQA, henceforth
denoted simply as the CQA, is a compact Lie group the
Lie algebra of which is generated by Hamiltonians from
Eq. (17).

Mathematically, simply taking the unitary time evolu-
tions of components from the Hamiltonians in Eq. (17),
which are at most 4-local permutations on qudits, also gen-
erates the group (for more details, see proofs in Ref. [46]
as well as Appendixes C 2 and D 1). More importantly,
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CQA is universal on arbitrary n-qudit systems when ignor-
ing relative phase factors in inequivalent Sn irreps as
demonstrated in Ref. [46]. Letting V4 be the unitary group
generated by SU(d)-symmetric 4-local unitaries, we have
the following inclusion relationship among these groups:

SU× � CQA � V4 � U×. (19)

Note that the generation of SU× relies on the inter-
play of HS and HYJM in CQA. Along with Eq. (19), we
demonstrate that CQA already enables the generation of
high-order SU(d)-symmetric k-designs. Note that the gen-
eration of SU× relies on the interplay of HS and HYJM,
while HS itself is not sufficient: it is already known from
Refs. [54,96] that 2-local gates cannot generate global ones
even with trivial relative phases when d ≥ 3. Since YJM
elements also provide nontrivial phases, CQA can form
high-order designs.

Definition 5 (CQA random walk ensemble). The CQA
ensemble ECQA is defined by a random walk, at each
step of which we uniformly sample an index j ∈
[n] and parameters t,βkl,β ′

kl ∈ [0, 2π ] and implement
exp (−i

∑
k,l βklXkXl) exp (−it(j , j + 1)) exp(−i

∑
k,l β

′
kl

XkXl) on the qudits.

We will see in Sec. IV that this definition ensures that
the induced kth moment operator TE

k for each step of the
random walk is Hermitian and in fact positive semidefi-
nite, which facilitates the approach of comparing its unit
eigenspace with the commutant of the group of SU(d)-
symmetric unitaries, as well as evaluating the spectral gap,
as discussed in Sec. II B.

We also define the following explicit 4-local SU(d)-
symmetric random unitary circuit model.

Definition 6 (CQA local random unitary circuit). In
each step of the random walk, we uniformly sample a
4-local SU(d)-symmetric unitary operator acting on four
random locations i1, i2, i3, i4 ∈ [n]. This is a random circuit
model consisting of 4-local unitary gates, which we denote
as EV4 .

Note that the locality can be defined with respect to dif-
ferent geometries (e.g., 1D or all-to-all adjacency graphs)
and boundary conditions (e.g., open or periodic boundary
conditions). We will make these clear when needed.

Using the properties of YJM elements in Sn repre-
sentation theory, we first prove that Commk(ECQA) =
Commk(U×), under certain conditions specified in
Theorem 7 below, which indicates that the CQA ensem-
ble converges to SU(d)-symmetric unitary k-designs from
the perspective of commutants as discussed earlier. Then,

it is clear by definition that

Commk(U×) ⊂ Commk(EV4) ⊂ Commk(ECQA)

= Commk(U×), (20)

which indicates that the commutant—or, more precisely,
the unit eigenspace of the ensemble EV4—is equal to that
of U×, thus ensuring its convergence to SU(d)-symmetric
k-designs.

Our main results are summarized as follows.

Theorem 7. The following statements for unitary k-
designs with SU(d) symmetry hold:

(1) For an n-qudit system with n ≥ 9 and d < n, the
group CQA, as well as V4, forms exact SU(d)-
symmetric unitary k-designs for all k < n(n − 3)/2.
When d ≥ n, the largest possible k is precisely
2n − 5.

(2) Analogously, the CQA ensemble ECQA given by 4-
local Hamiltonian evolutions and the 4-local unitary
circuit variant EV4 converge to SU(d)-symmetric
unitary k-designs with the same bounds on k.

(3) It is impossible to find an ensemble of (finitely
many or infinite) SU(d)-symmetric unitaries with
bounded (finite) locality that converges to an SU(d)-
symmetric unitary k-design for an arbitrarily large
k. Hence, any ensemble of bounded locality cannot
converge to the SU(d)-symmetric Haar measure.

The conditions on n and d are due to the dimension of
certain Sn irreps arising from the direct sum in Eq. (16) for
SU(d) symmetry. Intuitively, the larger the local dimen-
sion d is, the more inequivalent Sn irreps there are and
it becomes harder to achieve higher-order k-designs. The
bound n(n − 3)/2 takes the worst case into account and
hence works for all d < n. We also refer interested readers
to Appendixes C 1 and C 2 for more details. In Table II, we
showcase the key results for the orders of k-designs that
can be achieved with certain locality under general SU(d)
symmetry and make a comparison with the symmetry-free
case in which designs of arbitrary order can already be
attained by 2-local gates due to their universality, high-
lighting their fundamental difference. For cases of other
groups such as U(1) or SU(2), we refer readers to recent
works [91,93–95].

A key importance of such local circuit ensembles is
that they can be used to model physical dynamics that
have an associated time scale. In this context, a central
problem is to understand the rate (or time) at which the
models converge to certain designs (which indicate pseu-
dorandomness, scrambling effects, etc.). In recent physics
literature [27,28,32,60,61], frame potentials [Eq. (8)] have
been commonly used to establish upper bounds on the
convergence rate of an ensemble to normal k-designs.
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TABLE II. A comparison of the orders of unitary k-designs that can be achieved under different locality conditions and local
dimensions in cases without symmetry and with SU(d) symmetry.

No symmetry With SU(d) symmetry
Local dimension Arbitrary d 3 ≤ d < n n ≤ d

2-locality ∞ < 2 < 2
4-locality ∞ ≥ n(n − 3)/2 − 1 ≤ 2n − 5

Any bounded locality ∞ < ∞ < ∞

However, due to the special decomposition of the Hilbert
space under symmetry [Eq. (16)], computing frame poten-
tials even for the Haar measure of U× becomes highly
infeasible, as discussed in Sec. II B. Therefore, we resort
to using the infinity norm in Eq. (15), which translates the
problem of bounding the convergence rate into estimating
the spectral gap [36,38,52,53,59,63–66,72] as also dis-
cussed above. Interestingly, our numerical computations
provide evidence that for k = 2 on qubits (convergence to
SU(2)-symmetric 2-designs), the spectral gap of the 1D
CQA ensemble scales as �(1/n2), and for the all-to-all
CQA ensemble it is O(1). Here, 1D and all-to-all means
that the SWAPs act on nearest neighbors in 1D and any
two sites, respectively. These results immediately rule out
the possibility of using the local-gap threshold [67,68] and
martingale methods [69] and their adaptations for unitary
k-designs [38,59] to bound the spectral gaps of interest
here, because they only work for systems with a constant
gap. A more comprehensive study on the convergence time
of CQA and other symmetric local circuit ensembles is left
for future work.

III. EXACT SU(d)-SYMMETRIC k-DESIGNS
FROM LOCAL ENSEMBLES

Here, we explain the SU(d)-symmetric design formation
properties of the group CQA. To this end, we intuitively
decompose (the Lie algebra of) CQA into two parts, one
arising from SU× [see Eq. (19)] and the other based on
diagonal phase matrices consisting of scalar submatrices
on each Sλ, with a basis denoted by {cj }4

j =1 (for the reason
why there are four basis elements, see Appendix C 2):

TCQA
k =

∫
SU×

dVV⊗k ⊗ V̄⊗k

·
∫
γj

dγ (e−i
∑

j γj cj )⊗k ⊗ (ei
∑

j γj cj )⊗k, (21)

where γ ∈ [0, 2π ]4 is integrated over uniform distribution.
In the following subsections, we first analyze the first inte-
gral inside Eq. (21), which yields TSU×

k = TU×
k for k <

n − 1. Then, we investigate the second part of Eq. (21),
which integrates phases and helps to further raise k. These
two procedures finally lead to Theorem 7.

A. Integral of SU× and Littlewood-Richardson rule

First, we study the moment operator TSU×
k . To motivate

the problem, when there is no symmetry, the special uni-
tary group SU(N ) trivially forms a unitary k-design with
respect to U(N ), because

∫
SU(N )

dνV⊗k ⊗ V
⊗k =

∫
U(N )

dμU⊗k ⊗ U
⊗k

, (22)

where μ is the Haar measure on U(N ) and ν is the restric-
tion to SU(N ). However, the relative phases, as illustrated
in Eq. (12), can cause problems when generalizing the
aforementioned identity for U× and SU×. It is only under
the mild assumption k < n − 1 that the relative phases do
not matter.

Theorem 8. For n ≥ 5, d < n, and k < n − 1, we have
that TSU×

k = TU×
k , i.e., SU× is an exact SU(d)-symmetric

k-design.

The proof utilizes classic tools from representation the-
ory; in particular, the Littlewood-Richardson rule [57,78],
which has found important physical applications in, e.g.,
particle physics [103–106] and, more recently, quantum
information [2,18]. To illustrate the proof idea, let us con-
sider the case of k = 2. Comparing with the expansion in
Eq. (12) of TU×

k=2 under SU(d) symmetry, the integrands of
TSU×

k=2 are given by

Vλ1,m1 ⊗ Vλ2,m2 ⊗ Vμ1,m′
1
⊗ Vμ2,m′

2
(23)

and are not subject to further constraints, as there are no
nontrivial phase factors. Therefore, one cannot conclude
that the integrals are identical in general. Let us set aside
the multiplicities for a moment and examine the following
integral for different choices of irreps:

∫
SU×

dVVλ1,m1 ⊗ Vλ2,m2 ⊗ Vμ1,m′
1
⊗ Vμ2,m′

2
. (24)

When λ1 �= λ2 �= μ1 �= μ2, the above four unitaries are
integrated independently in their own irreps. Namely,
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Eq. (24) is given by
∫

dVλ1Vλ1

∫
dVλ2Vλ2

∫
dVμ1Vμ1

∫
dVμ2Vμ2 . (25)

If λ1 = λ2 andμ1 = μ2, then Vλ1 ⊗ Vλ2 and Vμ1 ⊗ Vμ2 are
integrated separately:

∫
dVλ1Vλ1 ⊗ Vλ1

∫
dVμ1Vμ1 ⊗ Vμ1 . (26)

Moreover, we have
∫

dVλ1Vλ1 ⊗ Vλ1

∫
dVλ2Vλ2 ⊗ Vλ2 (27)

and there are still other ways to choose λi and μi. Recall
that λ1 = μ1, λ2 = μ2 or λ1 = μ2, λ2 = μ1 are the only
cases that give nonvanishing integrals in Eq. (12). This is
also the case for Eq. (24), even integrating with no rela-
tive phase factors, as claimed in the previous theorem for
k = 2. By Schur orthogonality from group representation
theory, integrals expanded from Eq. (23) always vanish
unless the integrand can be further decomposed into triv-
ial representations. For example, the expansion in Eq. (25)
vanishes because at least one of the four irreps is nontriv-
ial. There are other cases like the expansions in Eqs. (26)
and (27) and more complicated combinations arise for gen-
eral large k. To identify trivial representations among these
cases, we apply the Littlewood-Richardson rule. Let dλ
denote the dimension of an irrep. By basic representation
theory of the special unitary group SU(Sλ) ≡ SU(dλ), its
irreps can be represented by Young tableaux the rows of
which are given by the fundamental weights (a total of
dλ − 1 rows), such that a single box represents the funda-
mental representation and a diagram with dλ − 1 boxes in
one column represents the conjugate representation. The
desired trivial representation is given by dλ boxes in one
column. By counting the total number of boxes along with
other sophisticated treatments, the Littlewood-Richardson
rule unveils the types of irreps that would be obtained from
the decomposition of tensor products [57,78]. We illustrate
some basic decomposition rules as follows:

The expansion in Eq. (26) vanishes in general for large n
because the twofold tensor product of either fundamental

or conjugate representations cannot be trivial, as they can-
not be two-dimensional. The expansion in Eq. (27) does
not vanish because trivial representations can always be
found from the decomposition of the tensor product of
fundamental and conjugate representations, which is con-
sistent with Eq. (12) for the group U× of SU(d)-symmetric
unitaries. Full details can be found in Appendix C 1.

It is worth noting that the above method works for any
symmetry that results in a block diagonalization of the
Hilbert space as in Eq. (16). In fact, the upper bound of n −
1 equals the second smallest dimension of all inequivalent
irreps when the local dimension d < n, which is a well-
known fact in Sn representation theory [79,107,108]. We
can replace the condition k < n − 1 with k < d(n), where
d(n) is the second smallest dimension of the sectors for
general block decompositions. For instance, under U(1)
symmetry, we have polarized up-down states correspond-
ing to two one-dimensional inequivalent charge sectors.
As a result, d(n) = 1 and the group of U(1)-symmetric
unitaries with trivial relative phase can never form any
U(1)-symmetric k-design. Merely applying 2-local U(1)-
symmetric operators with nontrivial phase factors helps to
alleviate the problem and raise k to be at least n, which
is verified by results in Ref. [91] for high-dimensional
lattices.

B. Structure of relative phases and YJM elements

In this work, the use of YJM elements is of central
importance in constructing SU(d)-symmetric k-designs.
Roughly speaking, YJM elements are diagonal under Sn
irreps. It has been proved by Okounkov and Vershik
[109] that linear combinations of products of YJM ele-
ments are able to generate an arbitrary diagonal matrix
including phase factors. To retain the locality of unitaries
acting on qudits, we take up to second-order products of
YJM elements, which are at most 4-local. We conduct a
more intricate treatment of the integral of phase factors
in Eq. (21), using Sn character theory [107,110–114], in
Appendix C 2. In conclusion, TSU×

k = TU×
k for k < n − 1

and these additional YJM elements enable CQA, embrac-
ing SU×, to form an exact k-design for all k < n(n − 3)/2,
which has been stated as the first main result in Theorem
7. Moreover, defining general-order products of YJM ele-
ments as Pl ≡ (

∑n
i=1 Xi)

l, one can explicitly find a basis
spanning the relative phases on qubits.

Theorem 9 (Informal). The set {Pl} with l = 0, . . . ,
�n/2� constitutes a basis that spans the space of all SU(2)-
symmetric relative phase matrices on an n-qubit system.

As a result, {cj } in Eq. (21) can be expanded by
{Pl} in the case of qubits. We note that there are other
bases obtained in Ref. [19] using products of disjoint
transpositions, which lead to a full characterization of
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SU(2)-symmetric Hamiltonians realizable with r-local
SU(2)-symmetric unitaries:

B� = 1
(2/�)!

∑
i1 �=···�=i�

(i1, i2) · · · (i�−1, i�), (28)

C� = 1
(2/�)!

∑
i1 �=···�=i�

[
(i1, i2)− 1

2
I
]

· · ·
[
(i�−1, i�)− 1

2
I
]

,

(29)

where � = 2, 4, . . . , 2�n/2�, B0 = C0 = I , and subtracting
1
2 I in C� is deliberate, to make the operator basis traceless
and thus orthonormal [cf. Eq. (7)]. Since they are able to
span relative phases for Sn irreps corresponding to two-
row Young diagrams, all three bases mentioned above are
equivalent in the sense that one can be linearly represented
by another.

The above theorem uncovers the correspondence
between locality and relative phases in relation to achiev-
ing SU(2)-symmetric k-designs. In particular, we show
that in Appendix C 4, whether Eq. (21) converges to
SU(2)-symmetric k-designs can be reduced to the so-called
moment problem in algebraic geometry. To be precise, we
consider the group CQA(k) in Eq. (C56), incorporating kth-
order YJM elements. Then, we show in Theorem C6 that,
on qubits where the dominance relation (Lemma A1) of Sn
irreps becomes a total ordering, CQA(k) containing {Pl} up
to l = �k/2� admits a unique solution to the moment prob-
lem in Eq. (C59), which corresponds exactly to the desired
Wick contractions, analogous to Eq. (12), of irrep labels.

Moreover, we prove in Theorem C7 that by incorpo-
rating kth-order YJM elements into CQA, it also forms
SU(d)-symmetric unitary k-designs on general qudits (d >
2). For example, let k = 1. Due to the restricted univer-
sality, any M ∈ Comm1(CQA) ⊂ End(H) commutes with
SU×. Moreover, by definition,

MXi = XiM ⇒ M (Xi1 · · · Xir) = (Xi1 · · · Xir)M . (30)

Then, by the Okounkov-Vershik theorem [75,109], M
commutes with arbitrary diagonal matrices including rel-
ative phases. Therefore, M ∈ Comm1(U×) and CQA is an
exact 1-design. For k = 2, the actions of first- and second-
order YJM elements should be reformulated (in the form
of tensor product representations of Lie algebra) as

Xi ⊗ I + I ⊗ Xi, (XkXl)⊗ I + I ⊗ (XkXl). (31)

We prove in Lemma C3 that they are sufficient to
generate tensor product representations (Xi1 · · · Xir)⊗
I + I ⊗ (Xi1 · · · Xir) of arbitrarily higher-order YJM ele-
ments. Again by the Okounkov-Vershik approach, the
tensor product representations now commute with M ∈
Comm2(CQA) ⊂ End(H⊗2), indicating M ∈ Comm2(U×),
as in Eq. (30). For k > 2, we employ YJM elements up

to kth order to generate higher-order tensor product rep-
resentations and follow a similar argument to reach the
conclusion.

Finally, although it is desirable to reduce the locality,
we can show that it is impossible to find an ensemble
E composed of unitaries with bounded locality that con-
verges to a unitary k-design under SU(d) symmetry for
arbitrarily large k. This implies that local circuit models
cannot converge to Haar randomness under SU(d) sym-
metry. From the above discussion, it is clear that in order
to achieve higher-order moments of the Haar distribution
under SU(d) symmetry, it is necessary to incorporate more
relative phase factors into the ensemble. This unavoid-
ably requires higher-order products of YJM elements and
increases the locality. One may consider alternative ways
to craft diagonal phase matrices such as using Sn charac-
ters or center elements. However, we show in Theorem
C4 that regardless of the approach taken, the locality must
scale at least as �(log p(n, d)), where p(n, d) is the num-
ber of all inequivalent Sn irreps from an n-qudit system
related to the famous Hardy-Ramanujan asymptotic parti-
tion formula [84,85]. This lower bound can be tightened to
2�n/2� = �(n) in the most explicit case of qubits (d = 2)
to replenish all necessary relative phases by Theorem 9.

IV. CONVERGENCE OF CQA DYNAMICAL
MODELS TO SU(d)-SYMMETRIC k-DESIGNS

For many physical and practical applications, explicit
local circuit models are desirable, even if they may not
form a group. These local circuit models may produce
distributions that approximate unitary k-designs arbitrar-
ily well after a certain number of applications of the local
gates. Here, two fundamental questions arise: (i) whether
such an ensemble exists for a certain k, and (ii) how
fast (in what circuit depth) the ensemble converges to a
k-design, if possible. For quantum circuits without con-
servation laws where 2-local unitaries are able to achieve
universality, the answer to the first question is straight-
forward: arbitrary k-designs can be achieved by many
different 2-local random circuit models that hold impor-
tance in various contexts, including geometrically local,
brickwork, and all-to-all interaction models, and so forth
[36,38,52,53,59]. However, the situation for the case with
symmetry remains little understood and constitutes an
important but inimical open problem (see the discussions
in, e.g., Refs. [18,55]). In this section, we address this
open problem by introducing explicit local circuit ensem-
bles that can converge to high-order unitary k-designs
under SU(d) symmetry and, further, studying their con-
vergence time. Although we have not been able to fully
prove the convergence time scaling, we thoroughly dis-
cuss the mathematical obstacles in generalizing several
classic approaches [38,52,53,59,67,69,115–117] that have
been successfully used to understand the convergence in
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the case without symmetry and report numerical results
that strongly suggest worse convergence time scalings.

A. Convergence of CQA dynamics and circuits

We now study the convergence of the CQA ensemble
and its variants defined in Sec. II. Recall that in each step of
the random walk on the quantum circuit, the CQA ensem-
ble ECQA is defined by (i) sampling an element from the
time evolution exp(−i

∑
k,l βklXkXl) of second-order YJM

elements, and (ii) sampling an element from the time evo-
lution exp(−itτj ) of the SWAP τj = (j , j + 1), with j being
randomly selected from 1, . . . , n − 1. Pragmatically, using
SU(d)-symmetric random 4-local unitaries also fulfills the
task, while it is worth mentioning that YJM elements
exhibit many nice mathematical properties essential to our
proofs and we shall prove the results for CQA ensemble at
first.

A basic property of YJM elements (as well as τj ) is
that they only admit integer eigenvalues [62,75,101,102].
Therefore, it suffices to take the parameters βkl and t
from [0, 2π ] instead of from the entire R when consid-
ering unitary time evolutions. The kth moment operator
corresponding to one step of the random walk is

T
ECQA
k = TYJM

k

⎛
⎝1/n − 1

∑
1≤j ≤n−1

T
τj
k

⎞
⎠ TYJM

k , (32)

where T
τj
k and TYJM

k are the k-fold moment opera-
tors twirled by the time evolutions of τj = (j , j + 1)
and

∑
k,l βklXkXl, respectively (which form compact sub-

groups, as parameters are taken from [0, 2π ] uniformly).
To show that ECQA approaches an SU(d)-symmetric uni-

tary k-design, we need to verify that the unit eigenspace
Wλ=1

k,ECQA
of the operator T

ECQA
k equals Commk(CQA),

which has previously been shown in Sec. III to be equal to
Commk(U×), i.e., the commutant of SU(d)-symmetric uni-
taries under Haar distribution. We prove this by induction.
Since each term in T

ECQA
k is a Hermitian projection,

T
ECQA
k M = M ⇔ T

τj
k M = TYJM

k M = M , (33)

for any j . For the base case 2-design, this is equivalent to

[M , τj ⊗ I + I ⊗ τj ] = 0,

[M , XkXl ⊗ I + I ⊗ XkXl] = 0,
(34)

for k, l, j < n. Hence, M commutes with the Lie algebra
generators of the twofold tensor product representation of
the group CQA and it follows that

Wλ=1
k=2,ECQA

⊂ Commk=2(CQA) ⊂ Commk=2(U×). (35)

Since the reverse direction Wλ=1
k=2,ECQA

⊃ Commk=2(U×)
trivially holds by definition, we conclude the equivalence

result Wλ=1
k=2,ECQA

= Commk=2(U×) for k = 2. For larger k,
the result is proved similarly by verifying that the Lie
brackets in Eq. (34) also vanish for higher-order tensors;
the proof details are left to Lemma D2. For the CQA
local random circuit EV4 , it is immediate to check that
commuting with these SU(d)-symmetric 4-local unitaries
implies commuting with τj and YJM elements from CQA,
which means that EV4 converges to SU(d)-symmetric uni-
tary k-designs as stated in Eq. (20). We now summarize
the conclusion as follows, with detailed proofs provided in
Appendix D 1.

Theorem 10. (Informal) Repeated applications of ECQA
or the SU(d)-symmetric 4-local random circuit EV4 con-
verge to SU(d)-symmetric unitary k-designs for all k <
n(n − 3)/2.

As a reminder, the bound on k arises from the same rea-
soning discussed in Sec. III B. One may ask if simpler
constructions—in particular, circuit models involving only
2-local unitaries—exist. It is proved in Ref. [20] that, under
SU(d) symmetry, 2-local unitaries cannot even approx-
imate unitary 2-designs for qudits with local dimension
d ≥ 3. This can be explicitly verified by our numerical
methods, developed later. To achieve convergence to a 2-
design, the unit eigenspace of the twofold moment operator
of the 2-local ensemble must be identical to Comm2(U×).
It is not necessary to check the entire eigenspace; e.g., we
identify irreducible sectors Sλ with λ = (3, 2, 1) from the
direct sum of the Hilbert space of six qutrits under SU(3)
symmetry [Eq. (10)] and explicitly observe the inconsis-
tency between the dimension of the unit eigenspace of
any 2-local ensemble and that of Comm2(U×). More coun-
terexamples can be found on irreps with λ = λT, where
λT denotes the conjugate Young diagram of λ (see more
details in Refs. [96,99] as well as Appendixes D 1 and D 2).

By Schur-Weyl duality, up to a global phase, a 2-local
SU(d)-symmetric unitary can be represented by exp(−itτ)
using a certain SWAP τ . Uniformly sampling the parameter
t thus provides a way to sample from the Haar distri-
bution of these 2-local SU(d)-symmetric unitaries. For
the simpler qubit case (d = 2) with SU(2) symmetry, 2-
local unitaries are known to be sufficient for generating
k-designs (see Proposition 3). There are various different 2-
local circuit architectures aiming to capture different types
of locality, including:

(1) 1D local circuits. In each step of the random
walk, we only sample exp(−itτj ) for an arbitrary
j = 1, . . . n − 1, defining an ensemble EeSWAP. If
one allows j = 1 and applies τn = (1, n), the ensem-
ble is said to admit the periodic boundary condition.

(2) Brickwork circuits. We apply exp(−itτ1)⊗
exp(−itτ3)⊗ · · · and then exp(−itτ2)⊗ exp(−itτ4)

⊗ · · · alternately for the random walk. This is what
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is known as the brickwork random circuits under
SU(2) symmetry.

(3) All-to-all interaction circuits. In each step of the
random walk, we sample exp(−it(i, j )) with arbi-
trary 1 ≤ i, j ≤ n. This constitutes the all-to-all
interaction random circuits under SU(2) symmetry.

We subsequently study the convergence time with respect
to these architectures.

B. On convergence time scaling

As discussed earlier, we can determine the convergence
time of the ensembles by bounding the infinity norm
of T

ECQA
k − TU×

k or, equivalently, the spectral gap of the
Hamiltonian H := n(I − T

ECQA
k ). In the quantum many-

body theory literature, various approaches for bounding
the spectral gap of Hamiltonians, including Knabe bounds
[67,68] and Nachtergaele’s martingale method [69,70],
have been extensively studied. In Appendix D 2, we estab-
lish an explicit quadratic bound on the convergence time
to a 1-design, p ≥ (n − 1)(2n log d + log(1/ε)), for ECQA,
using properties of YJM elements from representation
theory. Unfortunately, although both Knabe’s local gap
method and Nachtergaele’s martingale method can be used
to establish the convergence times of local random cir-
cuits to polynomial designs for the symmetry-free case
[38,59], there are fundamental obstacles to applying them
to our case for k ≥ 2, because of the decomposition of the
Hilbert space in Eq. (16) with respect to SU(d) symmetry.
Intuitively speaking, the decomposition obstructs express-
ing a ground state of H simply as a tensor product such
as |ψσ ,d〉⊗n in Eq. (6). Moreover, terms from Eq. (32),
such as TYJM

k Tτrk TYJM
k and TYJM

k Tτsk TYJM
k , do not commute

even when τr and τs act on different qudits due to the
intertwining with YJM elements.

Here, we briefly explain the limitations of these meth-
ods in our symmetric case, with a comprehensive discus-
sion deferred to Appendixes D 2 and D 3. Concurrently,
we introduce our numerical methods. We first analyze
the case of the 1D local random circuit EeSWAP with
periodic boundary conditions defined above. Determining
the second largest eigenvalue of the positive semidefinite
operator

T
EeSWAP
2 = 1

n

∑
1≤j ≤n

T
τj
2 (36)

is equivalent to determining the spectral gap �(H) of

H := n(I − T
EeSWAP
2 ) =

∑
i

(I − T(i,i+1)
2 ) =

∑
i

Pi. (37)

Based on this observation, we can potentially apply the
method introduced by Knabe [67], originally devised to

estimate the spectral gap of 1D quantum spin chains with
periodic boundary conditions. We now briefly introduce
the method. Define the bulk Hamiltonian as comprising
all Pj , . . . , Pm+j −1 terms in Eq. (37): hm,j = ∑m+j −1

i=j Pi.
By definition, for any j and j ′, hm,j and hm,j ′ are simi-
lar because hm,j ′ can be transformed from hm,j simply by
tensor products of permutations σ ∈ Sn. Hence,

�(hm,j ) = �(hm,j ′), ∀j , j ′, (38)

and we say that the system is permutation invariant. An
improvement of Knabe’s local gap theory [68] indicates
that

�(H) ≥ 5(m2 + 3m + 2)
6(m2 + 2m − 3)

(
�(hm,j )− 6

(m + 1)(m + 2)

)
.

(39)

To obtain a valid lower bound on the gap, we need to find a
certain m ≥ 2 such that �(hm,j ) > 6/(m + 1)(m + 2). Let
m = 2. it suffices to compute the gap of

P1 + P2 = 2I − T(1,2)
2 − T(2,3)

2 . (40)

Using the identity τ 2 = I for any SWAP τ , and hence
e−itτ = cos tτ − i sin tτ , we obtain

Tτ2 = 1
2π

∫ 2π

0
(e−itτ )⊗2 ⊗ (eitτ )⊗2dt = 1

8
(3IIII + 3ττττ

+Iτ Iτ + Iττ I + τ IIτ + τ Iτ I − IIττ − ττ II) ,
(41)

where we omit the tensor product symbols for simplic-
ity. It is well known in Sn representation theory that for
any Sn irrep Sλ, the matrix representation of each adjacent
transposition (j , j + 1) can be explicitly read off from the
so-called Young orthogonal form [75,78]. With this, we can
explicitly express Eq. (41) in its matrix form restricted to
irreps and then evaluate the gap numerically. For example,
when n = 3, we can compute by hand to obtain �(P1 +
P2) = 3/8. Perhaps surprising at first glance, this result
holds for arbitrary large n because of the Sn branching rule
[57,79], which states that any Sn irrep is a direct sum of
Sn−1 irreps and so forth. In our case, the Young orthogo-
nal forms of (1, 2), (2, 3) ∈ Sn are just repetitions of those
appearing in S3. Therefore, the gap for P1 + P2 contain-
ing (1, 2) and (2, 3) is the same for arbitrary n (for more
details, refer to Appendix D 2). Following a similar prin-
ciple, we scale up our numerical computation for local
bulk Hamiltonians with larger m. The results are plotted
in Fig. 1(a), according to which the local gap is below
the threshold demanded in Eq. (39) and asymptotically
approaches the threshold. This suggests that the local gap
threshold method is not applicable to SU(d)-symmetric
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(a) (b)

FIG. 1. (a) A direct numerical calculation based on Knabe’s local gap method. Here, m is the number of qubits defined with the
“bulk Hamiltonian” of T

EeSWAP
2 on selected irreps with λ1 = (m, 0), λ2 = (m − 1, 1), λ3 = (m − 2, 2), and λ4 = (m − 1, 1). Our

model exhibits spectral gaps that are strictly upper bounded by the Knabe bounds 6/(m + 1)(m + 2) and that seem to asymptotically
converge to the Knabe bounds. Therefore, unlike for random circuit models without symmetry, the Knabe method is inconclusive in
determining the convergence time in the case with SU(2) symmetry. (b) For all-to-all interaction circuit models with SU(2) symmetry,
the spectral gaps on irreps as earlier discussed with respect to 2-designs remain constant, whereas the gap even increases without
symmetry [52,59,72]. In conclusion, the theory of the many-body spectral gap alone is inadequate for understanding the convergence
time of random circuit models with SU(d) symmetry, indicating the need for novel approaches.

local random circuits with periodic boundary conditions.
Incidentally, the martingale method [38,69], designed for
a 1D system with open boundary conditions, is also ruled
out because its applicability would imply a constant gap
for P1 + · · · + Pm−1 for large m, which contradicts the
asymptotic behavior observed numerically.

The calculation for the all-to-all interaction circuit
model is analogous to the above: we apply Eq. (41) and
evaluate the gap using Young orthogonal forms. To be
precise, let

H :=
∑

1≤i<j ≤n

(I − T(i,j )2 ) =
∑

1≤i<j ≤n

P(i,j )2 . (42)

Given any collection of m qubits, let hi1,...,im = ∑
i<j ∈{i1,...,im}

P(i,j )k with local gap �(hi1,...,im). Analogous to Knabe’s
original derivation of the 1D local gap threshold, we have

�(H) ≥ 1 + n − 2
m − 2

(�(hi1,...,im)− 1). (43)

If �(hi1,...,im) ≥ 1, �(H) ≥ 1 for all n ≥ m. Otherwise,
when γm < 1, which is the case according to our numer-
ical results [see Fig. 1(b)], the bound would decrease to
a nonpositive number and thus become invalid. Based on
these facts, we make the following conjecture and leave
rigorous mathematical verification for future work.

Conjecture. The spectral gap of the Hamiltonian∑n−1
i=1 (I − T(i,i+1)

k ) scales as �(1/n2). As a result, the

1D local random circuit model with open boundary con-
verges in �(n4 + n3 log(1/ε)) steps to an ε-approximate
SU(2)-symmetric 2-design. The all-to-all interaction ran-
dom circuit model converges in �(n3 + n2 log(1/ε)) steps
to an ε-approximate SU(2)-symmetric 2-design.

Our numerical results for SU(2)-symmetric 1D local
random circuits can also be used to estimate the spectral
gap �(νbw, k = 2) of the brickwork model using the so-
called detectability lemma [38,59,118,120], which states
that

�(νbw, 2) ≥ 1 − 1
�(H)/4 + 1

(44)

if the Hamiltonian H = ∑
i Pi is frustration-free and the Pi

are orthogonal projections, which holds for Eq. (37). Our
previous analysis thus indicates that the brickwork model
converges in O(n3 + n2 log(1/ε)) steps.

To summarize, both the Knabe and Nachtergaele meth-
ods are used to establish that the spectral gap of the
underlying random circuit model is at least some constant
without normalization. However, our numerical simula-
tions provide compelling evidence that the spectral gap
of random circuits with SU(2) symmetry is asymptotically
subconstant without normalization. For general qudits with
a larger local dimension d > 2, the utilization of the CQA
ensemble with YJM elements explicitly violates assump-
tions such as the commutativity of certain bulk Hamil-
tonians or their ground state projections, rendering the
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application of these methods [38,59,69] impractical due to
the intricate behavior of the commutant under SU(d) sym-
metry, as mentioned in Sec. II B. The mathematical details
can be found in Appendix D 2.

V. DISCUSSION

In this paper, we have presented an in-depth study of
the convergence of local quantum circuits and evolutions
under SU(d) symmetry. In particular, we have developed a
systematic framework of mathematical approaches based
on the CQA group, using which we have resolved the
open problem of whether local circuit models can exactly
form or converge to high-order k-designs in the pres-
ence of SU(d) symmetry by explicit constructions. Our
results bridge numerous important areas in mathematics
and physics, including Sn representation theory, k-designs,
and many-body spectral gap, and significantly sharpen
the recently understood incompatibility between univer-
sality and locality in the presence of continuous symme-
tries [54,55]. More specifically, we now understand that
although unbounded locality is necessary to reach arbi-
trarily high-order designs, merely 4-local ensembles are
capable of achieving polynomial-order designs, which are
sufficiently high for applications.

Moreover, this study strengthens our understanding
of the fundamental discrepancy between quantum infor-
mation processing with and without symmetries and
conservation laws. In particular, for the key problem of
analytically proving convergence time scales, we have sys-
tematically discussed how several classic methods that
have been successful in cases without symmetry cease to
work. Specifically, our analysis on CQA ensembles sug-
gests that the spectral gaps with respect to the infinity
norm exhibit a power-law-decaying behavior, in contrast
to local circuit models without symmetry, which have con-
stant spectral gaps, leading to polynomially slower conver-
gence. Such forms of behavior preclude the applicability
of classic methods for analytically proving bounds on the
spectral gap and convergence rate, including Knabe’s local
gap method and Nachtergaele’s martingale method, sug-
gesting the need for radically new analytical approaches to
address this challenge. This difficulty also originates from
the decomposition of irreps (and the lack of good branch-
ing rules). We leave a more rigorous study of the gaps and
convergence times as important future work.

Also of interest for future work is to extend the study
to encompass different types of symmetries by incorporat-
ing additional mathematical techniques, especially U(1),
which is of natural physical importance. It is worth noting
that the subconstant spectral gap feature and the afore-
mentioned mathematical difficulties are expected to carry
over to U(1) and continuous symmetries in general, which
indicate that continuous symmetries induce fundamental
discrepancies in the properties of dynamics with locality.

Furthermore, given the extensive interest in random cir-
cuit models and the importance of symmetries, our models,
techniques, and results are anticipated to find broad appli-
cations. As mentioned, we have explored various applica-
tions to areas including quantum information scrambling,
covariant quantum error correction, and quantum machine
learning in a companion paper [71], and more may be
found in quantum information and physics and contexts.

Note added. We note that a recent paper [120] posted
after the release of this work demonstrates that the group
V3 of 3-local SU(d)-symmetric unitaries also satisfies
SU× � V3, which optimizes the necessary locality for the
problems of SU(d)-symmetric universality addressed in
Ref. [46] and k-designs in this work.
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APPENDIX A: MATHEMATICAL
PRELIMINARIES

We introduce some basic notions and facts from Sn
representation theory as well as our CQA model to lay
the foundation for later mathematical proofs. We also
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refer interested readers to Refs. [46,57,75,78,79] for more
systematic presentations on these topics.

1. Miscellaneous facts about Sn representation theory

Irreducible representations (irreps) of the symmetric
group Sn permuting n nodes are in one-to-one correspon-
dence with the so-called Young diagrams. For instance, for
S6, the following two Young diagrams stand for the trivial
and the standard representation, respectively:

, ,

the direct sum of which is more familiar as the six-
dimensional defining representation under which each σ ∈
S6 permutes the components of vectors from R

6.

Definition A1. Formally, let λ = (λ1, . . . , λr) be a col-
lection of positive integers such that λi ≥ λi+1 and

∑
i λi =

n. Then, λ is called a partition of the integer n, denoted

by λ � n. Obviously, λ defines a Young diagram abstractly
and the Sn irrep corresponding to this Young diagram is
always denoted as Sλ. The dimension of this irrep is given
by the hook length formula:

dim Sλ = n!∏
(x,y)∈λ hx,y

, (A1)

where (x, y) specifies a box from λ by its row and column
numbers and the hook length h(x, y) counts the number of
all boxes to the right of or below (x, y) plus itself.

Given an arbitrary Sn irrep Sλ, there is a canonical way
to label a basis, called the Gelfand-Tsetlin (GZ) basis or
the Young-Yamanouchi basis, on the representation space,
using standard Young tableau T, which are defined by fill-
ing into each box of λ a positive integer from 1, 2, . . . , n
in an increasing order from left to right and top to bottom.
For instance, the standard representation of S6 mentioned
above is five-dimensional, with five basis vectors labeled
as

1 2 3 4 5
6

,
1 2 3 4 6
5

,
1 2 3 5 6
4

1 2 4 5 6
3

,
1 3 4 5 6
2

.

When we study the group of SU(d)-symmetric unitaries in
the main text, the Young basis {|αT〉} labeled by standard
tableaux is implicitly used and a detailed treatment can be
found in Appendix B 5.

Definition A2. For 1 < k ≤ n, the Young-Jucys-Murphy
element, or YJM element for short, is defined as a (formal)
sum of transpositions or SWAPs

Xi = (1, i)+ (2, i)+ · · · + (i − 1, i). (A2)

We set X1 = 0 as a convention.

The YJM element is a central concept used in our work,
developed by Young [100], Jucys [101], and Murphy [102]
and later used by Okounkov and Vershik [62]. Under any
Sn representation, it may be more comprehensible to treat
Xi = (1, i)+ (2, i)+ · · · + (i − 1, i) as the sum of matrix
representations of these transpositions or we can say that
the representation is extended to the group algebra

C[Sn] =
{∑

i

ciσi; σi ∈ Sn

}
, (A3)

consisting of formal finite linear combinations of Sn group
elements. By the Wedderburn theorem [57,79], C[Sn] is

isomorphic with the direct sum of all inequivalent Sn irreps⊕
λ 1dim Sλ ⊗ (Sλ), with multiplicities equal to their dimen-

sion. It also provides a perspective for the discussion of
k-designs through the lens of Lie groups and Lie algebras
in Appendix C.

Let us consider coordinate differences x − y of boxes
from a Young diagram λ. Given any standard tableau T
of λ, its content vector is defined by rearranging them with
respect to the order of boxes determined by the tableau.
For instance, the content vectors of the above five standard
tableaux are listed as follows:

(0, 1, 2, 3, 4, −1), (0, 1, 2, 3, −1, 4), (0, 1, 2, −1, 3, 4),

(0, 1, −1, 2, 3, 4), (0, −1, 1, 2, 3, 4).

An important feature of YJM elements is their special
actions under the Young basis as revealed by content
vectors:

(1) They are diagonal matrices under the Young basis
[even each single transposition (i, j ) from Eq. (A2)
may not be diagonal].

(2) The diagonal entry of Xi under the Young basis vec-
tor |αT〉 corresponding to standard tableau T is just
the ith component of the content vector.
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On the irrep S(5,1),

X1 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ , X2 =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎠ , X3 =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ ,

X4 =

⎛
⎜⎜⎜⎝

3 0 0 0 0
0 3 0 0 0
0 0 −1 0 0
0 0 0 2 0
0 0 0 0 2

⎞
⎟⎟⎟⎠ , X5 =

⎛
⎜⎜⎜⎝

4 0 0 0 0
0 −1 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3

⎞
⎟⎟⎟⎠ , X6 =

⎛
⎜⎜⎜⎝

−1 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4

⎞
⎟⎟⎟⎠ .

(A4)

In summary, Young basis vectors |αT〉, standard tableaux
T, and content vectors αT are in one-to-one correspondence
and uniquely determine the matrix representations of YJM
elements. We will introduce and apply other remarkable
properties of YJM elements in Appendixes C 4 and D 2
when deriving our new results.

As mentioned when introducing our numerical method
in Sec. IV, the matrix representation of each adjacent
transposition (i, i + 1) can be explicitly read off in the
Young basis by the Young orthogonal form. Let r = αT(i +
1)− αT(i) be the axial distance and let (i, i + 1) · T denote
the tableau defined by exchanging integers i, i + 1 from T.

It is easy to check that as long as r �= ±1, (i, i + 1) · T is
still a standard Young tableau. Then,

(i, i + 1) |αT〉 = 1
r

|αT〉 +
√

1 − 1
r2 |α(i,i+1)·T〉 ,

(i, i + 1) |α(i,i+1)·T〉 =
√

1 − 1
r2 |αT〉 − 1

r
|α(i,i+1)·T〉 .

(A5)

On the irrep S(5,1),

(1, 2) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

, (2, 3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 −1
2

√
3

2

0 0 0

√
3

2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

0 0 −1
3

2
√

2
3

0

0 0
2
√

2
3

1
3

0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4, 5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 −1
4

√
15
4

0 0

0

√
15
4

1
4

0 0

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5, 6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
5

2
√

6
5

0 0 0

2
√

6
5

1
5

0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A6)

Having access to the matrix representations of all adja-
cent transpositions allows us to numerically calculate the
matrix representing any permutation σ ∈ Sn. There are also
classical or quantum Sn-fast Fourier transform methods
designed for such tasks [121,122]. A detailed illustration

for the usage of Young orthogonal form in our numerical
computation can be found in Appendix D 2.

Definition A3. We say that a permutation σ ∈ Sn is of
cycle type λ = (λ1, . . . , λr), where λ � n corresponds to a
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partition or Young diagram, if it is decomposed into cycles
of lengths λ1, . . . , λr.

For instance, σ = (134)(56) ∈ S6 is of cycle type
λ = (3, 2, 1). The trivial permutation id ∈ Sn is of type
(1, . . . , 1). Transpositions or SWAPs (i, j ) are just 2-cycles,
so products of transpositions such as (i, j )(k, l) · · · (s, t) are
of type (2, 2, . . . , 2, 1, . . . , 1).

Definition A4. Let p(n) denote the number of partitions
of n. It equals the number of all inequivalent Sn irreps, as
well as the number of possible cycle types in Sn. Analo-
gously, we define p(n, d) as the number of partitions of n
with at most d parts, i.e., the number of all Young diagrams
of n boxes with at most d rows.

We encounter p(n) and p(n, d) in the main text when
discussing the difficulty of computing frame potentials
in the presence of SU(d) symmetry. They also appear
when we study the locality required to achieve arbitrary
k-designs (Appendixes B 5 and C 3). Due to the celebrated
work of Ramanujan and Hardy [84] and Uspensky, [85],

p(n) ∼ e
√
π22n/3

4n
√

3
, n → ∞. (A7)

There has been further study on this [123,124] and vari-
ous useful bounds on p(n) have been found later, such as
[86,87]

e2
√

n

an
< p(n) < eb

√
n. (A8)

If d = 2, p(n, 2) = �n/2� + 1. However, there are no
closed-form formulas for these partition functions in
general.

Proposition A1. Let cμ ∈ C[S] be the sum of all σ ∈ Sn
with cycle type μ. Considering all possible Young dia-
grams of size n, the collection {cμ}μ�n forms a basis for the
center Z(C[Sn]) consisting of all elements that commute
with C[Sn].

By definition, cμ commutes with any σ ∈ Sn. By the
Wedderburn theorem [57,79], its matrix representation,
still denoted by cμ for simplicity, under any Sn irrep Sλ

is just a scalar. As a result, the representation of Z(C[Sn])
consists of scalar matrices within any Sn irrep. Being a
basis of Z(C[Sn]) means being a basis capable of span-
ning all scalar matrices, called relative phase factors when
we study k-design with symmetry, respecting the direct
sum

⊕
Sλ of all inequivalent Sn irreps. In Appendixes C 3

and C 4, the diagonal phase matrix e−icμ helps to replenish
relative phase factors for the group of SU(d)-symmetric
unitaries.

Besides the basis {cμ} defined above, we still have the
following two kinds of center bases.

Theorem A1. The following two collections also consti-
tute bases for Z(C[Sn]):

(1) Consider the Sn group character

χλ(σ ) = trλ σ (A9)

defined by taking the trace of σ ∈ Sn restricted to the
irrep Sλ. Then,


μ := dim Sμ

n!

∑
σ∈Sn

χ̄μ(σ )σ (A10)

is a projection exclusively into the irrep Sμ. The
collection {
μ} is an orthonormal basis.

(2) Consider the YJM elements Xi. For any μ =
(μ1, . . . ,μr) � n, we set

Xμ =
∑

2≤i1 �=i2 �=···�=ir≤n

X μ1−1
i1 X μ2−1

i2 · · · X μr−1
ir .

(A11)

The collection {Xμ} is also a basis for Z(C[Sn]) [75,
101,102].

A basis element cμ is defined by summing over all per-
mutations of a given cycle type μ, and 
μ even requires
doing this over the whole symmetric group with n! ele-
ments. By Theorem 9 in the main text, and also the
discussion in Appendixes C 3 and C 4, a more construc-
tive way to build basis elements with a desired locality is
to employ the YJM elements, which turns out to enable
2k-local CQA to form an exact k-design for any constant k
unconditionally in n.

In Appendix C 2, we also need to compute the char-
acter χλ(σ ) explicitly for some σ ∈ Sn, so we briefly
introduce the method here. We first present the following
proposition, which is crucial to the proofs in Appendix C 3.

Proposition A2. For any σ ∈ Sn, χλ(σ ) ∈ Z. That is, Sn
characters are integer valued.

One can prove a variety of similar facts using Galois the-
ory for general finite groups. For our purpose, we simply
note that there is the so-called Young’s natural represen-
tation, which is a nonunitary representation of Sλ under
which each σ is expressed as matrices with integer entries
[79]. As trace is invariant under matrix similarity, χλ(σ ) =
trλ σ ∈ Z in general.

It is also well known that permutations σ and σ ′ with the
same cycle type are conjugate to each other, so χλ(σ ) =
χλ(σ

′) and hence we only care about the value of χλ for a
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given cycle type μ. The so-called Frobenius character for-
mula [57] expresses Sn character values as coefficients of
a power series. The coefficients can be formally computed
by, e.g., contour integrals using the residue theorem. How-
ever, closed-form formulas only exist for very few simple
cases [110,111]. For instance, the characters for 2-cycles
(transpositions or SWAPs) are

χλ(i, j )
dim Sλ

= 2
n(n − 1)

∑
i

((
λi

2

)
−

(
λ′

i

2

))

= 1
n(n − 1)

∑
i

[(λi − 1)(λi − 1 + i)− i(i − 1)] ,

(A12)

where λ′ denotes the conjugate of λ, e.g.,

λ = λ′ =

If λi < 2, the corresponding binomial coefficient is set to
zero.

Let us relate the above character formula to some tech-
niques involving YJM elements. Restricted to any irrep Sλ,
we can associate the following invariants:

Pl =
(∑

i

Xi

)l

, l = 1, 2, . . . , (A13)

where
∑

i Xi is the summation of all YJM elements. Let us
check its matrix form under the Young basis {|αT〉}:

(∑
i

Xi

)
|αT〉 =

∑
i

αT(i) |αT〉 , (A14)

where the αT are the content vectors. Obviously, for any
fixed Young diagram λ, the sum of all components of any
of its content vector αT is simply equal to the sum of all
coordinate differences and we denote it as αλ. Then,

Pl |αT〉 = (αλ)
l |αT〉 (A15)

for all standard tableaux or Young basis vectors of the
Young diagram λ.

Let trλ denote the trace within Sλ (it is just the Sn
character in Eq. (A9)). When l = 1, we note that

αλ = trλ(Pl)

dim Sλ
= trλ

∑
i Xi

dim Sλ
= n(n − 1)

2
trλ(i, j )
dim Sλ

= n(n − 1)
2

χλ(i, j )
dim Sλ

, (A16)

which gives another way to compute the character value of
2-cycles by summing all components from the content vec-
tor. The method using YJM elements and content vectors
to express general Sn characters can be found in Ref. [112].

Definition A5. Given two partitions λ = (λi),μ =
(μi) � n. We say that λ dominates μ, denoted by λ� μ,
if for all j > 0,

∑j
i λi ≥ ∑j

i μi.

For instance, we have

(6)� (5, 1)� (4, 2)� (4, 12), (A17)

where (4, 12) is the abbreviation of (4, 1, 1). The dom-
inance relation is not totally ordered, e.g., we cannot
compare (4, 12) and (3, 3). However, in the case of qubits
(d = 2), only two-row Young diagrams need to be consid-
ered (see Appendix A 2) and partitions λ = (λ1, λ2) with
λ1 ≥ λ2 clearly give rise to a total ordering.

Lemma A1. For any two unequal partitions λ,μ � n, if
λ� μ, then αλ > αμ.

Proof. We prove this lemma by induction. Suppose that
the statement holds for n − 1. Given unequal λ,μ � n with
λ� μ, there should be some i such that λi > μi, where
λi and μi are the lengths of the ith rows of λ and μ,
respectively. If λi > λi+1 and μi > μi+1, then we discard
the right-hand side boxes on the ith rows of λ and μ. The
resultant Young diagrams, denoted by λ′ and μ′, still sat-
isfy the relation λ′ � μ′. Then, by the induction hypothesis,
αλ′ > αμ′ . On the other hand, the content of the discarded
box from λ is larger than that from μ by definition; hence
we conclude that αλ > αμ.

Suppose that λi = λi+1 = · · · = λr or μi = μi+1 =
· · · = μs. Then, we are only allowed to discard the right-
hand side boxes of λr and μs to ensure that λ′ and μ′ are
well-defined Young diagrams. Even when r �= s, the dom-
inance relation still holds because λr > μs. By the same
argument as above, we complete the proof. �

By Eq. (A16), the above lemma says that χλ(1, 2)/
dim Sλ is strictly increasing with respect to the dominance
order of λ. Lots of counterexamples occur when this order
fails to hold: e.g., (3, 3) and (4, 12).

Let us end this subsection with some explicit analysis
on the dimension of Sn irreps of two-row Young diagrams.
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In this circumstance, the hook length formula in Definition
A1 can be further simplified as [79,110]

dim Sλ = dλ =
(

n
r

)
−

(
n

r − 1

)
= n − 2r + 1

n − r + 1

(
n
r

)
.

(A18)

For binomial coefficients, we have another two useful
bounds (assume that n = 2m) [125]:

2n√
π
( n

2 + 1
3

) ≤
(

n
n/2

)
≤ 2n√

π
( n

2 + 1
4

) ,

e−( n
2 −r)2/(n−r+1) ≤

(
n
r

)/(
n
n
2

)
≤ e−( n

2 −r)
2
/(n−r). (A19)

Therefore, the ratio of dim Sλ to the dimension of the entire
Hilbert space is

1√
π
( n

2 + 1
3

) n − 2r + 1
n − r + 1

(
n
r

)/(
n
n
2

)

≤ dim Sλ

2n = 1
2n

n − 2r + 1
n − r + 1

(
n
r

)

≤ 1√
π
( n

2 + 1
4

) n − 2r + 1
n − r + 1

(
n
r

)/(
n
n
2

)
. (A20)

A lower bound for general d-row Young diagrams is also
useful [113,126]. Suppose that the first row λ1 and λ′

1 of λ
and its conjugate is upper bounded by n/α for some α > 1.
Then,

dim Sλ ≥ αn

nd(d+2)/2 . (A21)

We will use these results for specific cases in
Appendix C 2.

2. Schur-Weyl duality and CQA architecture

We now provide a brief review on Sn-convolutional
quantum alternating ansatz and the group CQA proposed
in Ref. [46], which can be shown to form an exact uni-
tary k-design with SU(d) symmetry. It also motivates the
definition of CQA ensembles used in forming approximate
k-designs.

For quantum systems, there is a discrete set of transla-
tions corresponding to permuting the qudits as well as a
continuous notion of translation corresponding to spatial
rotations by elements of SU(d). To be precise, let V be a d-
dimensional complex Hilbert space with orthonormal basis
{e1, . . . , ed}. The tensor product space V⊗n admits two

natural representations: the tensor product representation
πSU(d) of SU(d), acting as

πSU(d)(g)(ei1 ⊗ · · · ⊗ ein) := g · ei1 ⊗ · · · ⊗ g · ein ,
(A22)

where g · eik is the fundamental representation of SU(d),
and the permutation representation πSn of Sn, acting as

πSn(σ )(ei1 ⊗ · · · ⊗ ein) := ei
σ−1(1)

⊗ · · · ⊗ ei
σ−1(n)

.
(A23)

We treat H = V⊗n as the Hilbert space of an n-qudit sys-
tem. Schur-Weyl duality states that the action of SU(d)
and Sn on V⊗n jointly decompose the space into irreducible
representations of both groups in the form

V⊗n =
⊕
λ

Wλ ⊗ Sλ. (A24)

Again, λ denotes a Young diagram. In this setting, it corre-
sponds not only to a unique Sn irrep Sλ but also an SU(d)
irrep Wλ [57,75]. It should be noted that within an n-qudit
system, only irreps corresponding to λ ranging over Young
diagrams of size n with at most d rows can be found in the
decomposition.

We denote by 1mSU(d),μ
∼= Sμ,1mSn ,λ

∼= Wλ the multiplic-
ity spaces of SU(d) and Sn irreps, respectively. Then,

πSU(d) ∼=
⊕
μ

Wμ ⊗ 1mSU(d),μ , πSn
∼=

⊕
λ

1mSn ,λ ⊗ Sλ,

(A25)

where mSU(d),μ = dim Sμ and mSn,λ = dim Wλ.
An operator A acting on the system being SU(d)-

symmetric or invariant means that

πSU(d)(g)A = AπSU(d)(g) or g⊗nA = Ag⊗n. (A26)

One can check by Eqs. (A22) and (A23) that these
permutation actions clearly commute with g⊗n. Further-
more, Schur-Weyl duality and the double commutant
theorem [57,75] confirm that SU(d)-symmetric operators
are exactly built from permutations in the symmetric group
Sn. That is, they can be expressed as linear combinations,
such as

∑
ciσi, of permutations.

Decomposing the entire space into SU(d) irreps is a
conventional practice in physics. Quantum states living
in these subspaces are actually permutation invariant or
Sn-symmetric. Since our focus is on quantum circuits
with SU(d) symmetry, we should decompose the entire
Hilbert space with respect to Sn irreps (for more details,
see Refs. [46,75,127]). As a reminder, although the entire
Hilbert space is decomposed into smaller subspaces, one
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should not expect that related problems including comput-
ing the ground state energy of SU(d)-symmetric Hamilto-
nian or constructing a SU(d)-symmetric random quantum
circuit, would become easier. There are two reasons in
general:

(1) There are various inequivalent Sn irreps from the
decomposition to deal with, and the total number
is p(n, d), which scales at most superpolynomi-
ally [see Eq. (A7)] with n and has no closed-form
formula for evaluation.

(2) Even for qubits with d = 2, using the hook length
formula from Definition A1, we know that [cf.
Eq. (A18)]

dim S(m,m) = (2m)!
(m + 1)! m!

= 2m

m + 1

m∏
k=1

2k − 1
k

>
2m

m + 1
, (A27)

for the Sn irrep of Young diagram λ = (m, m) on a
2m-qubit system. One can find other examples with
exponentially large subspaces respecting the SU(d)
symmetry [113], which still cause difficulties when
approaching the problem.

We now introduce the mathematical definition of the Sn-
CQA ansatz.

Definition A6. The Sn-CQA ansatz is defined as

· · · exp

⎛
⎝−i

∑
k,l

βklXkXl

⎞
⎠ exp(−iγHS)

× exp

⎛
⎝−i

∑
k,l

β ′
klXkXl

⎞
⎠ exp(−iγ ′HS) · · · , (A28)

where XkXl are products of YJM elements that are 4-local
and still diagonal under the Young basis [see the example
given in Eq. (A4)]. The Hamiltonian HS is defined as the
summation of adjacent transpositions

∑n−1
i=1 (i, i + 1).

One can also set k ≤ l in the above definition because
YJM elements are commutative with each other. More-
over, let us define the group generated by alternating
exponentials from Eq. (A28):

CQA =
〈

exp

⎛
⎝−i

∑
k,l

βklXkXl

⎞
⎠ , exp(−iγHS)

〉
.

(A29)

Obviously, CQA is contained in the group of SU(d)-
symmetric unitaries. To define this group, let U(Sλ) denote

the unitary group acting on the representation space Sλ, i.e.,
U(Sλ) ∼= U(dim Sλ). A typical element g from the group of
SU(d)-symmetric unitaries is then a collection of unitaries:

g =
⊕
λ

U
⊕mSn ,λ
λ , (A30)

where Uλ ∈ U(Sλ) and λ range over all Young diagrams
of size n with at most d rows. For simplicity, we omit the
multiplicities and denote this group by

either
⊕
λ

U(Sλ) or U×. (A31)

Equivalent copies of Sn irreps pose no extra difficul-
ties in computing the k-fold channel or kth moment
operator twirled through SU(d)-symmetric unitaries in
Appendix C 1 but it is one of the obstacles when we calcu-
late the frame potential or dimension of the commutant of
U× in Appendix B 4.

On the other hand, by restricting the phase factors to be
1 on each Sλ, we have the special unitary group SU(Sλ) as
well as

⊕
λ SU(Sλ) = SU× consisting of SU(d)-symmetric

unitaries with unit determinant on each Sn irrep block, i.e.,
unitaries with trivial relative phase factors with respect to
each irrep. We also define V4 to be the group generated
by SU(d)-symmetric 4-local unitaries. It is demonstrated
in Ref. [46] that

SU× � CQA � V4 � U×, (A32)

establishing a theoretical guarantee for searching the
ground state energy of the SU(d)-symmetric frustrated 2D
Heisenberg model using the Sn-CQA ansatz, because rel-
ative phase factors can be ignored when we measure the
expectation value in the experiment.

With a focus on locality, 2-local unitaries are sufficient
for universality as well as generating designs. After impos-
ing the SU(d) symmetry, however, it has recently been
shown in Refs. [20,96,99] that when d ≥ 3, 2-local SU(d)-
symmetric unitaries cannot even generate SU×. The group
CQA accomplishes the generation of SU× by incorporat-
ing 4-local SU(d)-symmetric unitaries. In the following
appendixes, we will present mathematical details for using
CQA to generate unitary SU(d)-symmetric k-designs in
both exact and approximate senses.

APPENDIX B: CHARACTERIZING DESIGNS BY
COMMUTANT UNDER GROUP

REPRESENTATION

To study whether an ensemble forms a k-design, major
approaches include computing the frame potential of the
ensemble or analyzing the commutant algebra in the repre-
sentation space. In this appendix, we illustrate these strate-
gies in detail, establish their mathematical relationship, and
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finally move on to determining the commutant of the group
U× of SU(d)-symmetric unitaries (Theorem B2) and dis-
cussing the limitation of considering frame potentials in
the presence of SU(d) symmetry. These perspectives con-
nect various approaches for characterizing unitary designs
such as the tensor product expander [38,58,59,74] and
the frame potential [27,28,32,60,61], based on which we
derive our results on SU(d)-symmetric unitary designs in
Appendixes C and D.

1. Quantum k-fold channel

We first provide the definition of a k-fold channel
[24,38,60] or the kth moment (super)operator associated
with a compact group G.

Definition B1. Given a compact group G with Haar
measure μ and a unitary representation ρ on the concerned
Hilbert space H. For any operator M ∈ End(H⊗k), the k-
fold channel twirled by the Haar measure μ over G acting
on M is given by

TG
k (M ) =

∫
G

dμ(g)ρ⊗k(g)M (ρ⊗k(g))†

=
∫

G
dUU⊗kMU†⊗k, (B1)

where we denote the matrix representations of group ele-
ments simply by U and V on the right-hand side of the
above equation. Despite its integral form, as a superopera-
tor, TG

k (·) is merely a linear map acting on End(H⊗k) and
can be reformulated as the kth moment (super)operator:

TG
k =

∫
G

U⊗k ⊗ Ū⊗kdU. (B2)

Replacing G by an arbitrary ensemble E , TE
k can be anal-

ogously defined, which provides a basis for the study of
(approximate) k-designs.

In later contexts, when we write TG
k for a certain com-

pact group G, the integral is automatically understood to be
carried out over the Haar measure. Since the Haar measure
is left invariant, TG

k (M ) commutes with the k-fold tensor
product representation ρ⊗k of G:

V⊗kTG
k (M )V†⊗k =

∫
G
(VU)⊗kM (UV)†⊗kdU = TG

k (M ).

(B3)

Putting it another way, TG
k projects M into the commutant

algebra

Commk(G) := {M ∈ End(H⊗k); U⊗kM = MU⊗k}, (B4)

i.e., the subspace of all operators that commute with the
tensor product representation ρ⊗k. The operator TG

k is sur-
jective since if M ∈ Comm(M ), by definition we have

TG
k (M ) = M . Hence it is a projector from End(H⊗k) onto

Commk(G). Then, we obtain the following identity either
by the invariance of the Haar measure or by the property
of projection:

TG
k (T

G
k (M )) =

∫
G

dUdV(VU)⊗kM (UV)†⊗k

=
∫

G
d(UV)(VU)⊗kM (UV)†⊗k = TG

k (M ),

(B5)

which further implies that TG
k has eigenvalues either 0 or 1.

For the common case of unitary designs without any
symmetry assumptions, G = U(dn) ≡ U(N ) with ρ⊗k is
given by the k-fold tensor products of fundamental rep-
resentation of U(N ). Therefore, by the Schur-Weyl dual-
ity and the double commutant theorem (cf. Schur-Weyl
duality on an n-qudit system), the commutant algebra is
isomorphic to the representation of the symmetric group
algebra C[Sk] that permutes elements from H⊗k. In the
presence of SU(d) symmetry, the group of interest is
replaced by U× defined in Appendix A 2 and we denote
by TU×

k the corresponding kth moment operator.
To establish the generation of k-designs with Sn-CQA,

we will later analyze TCQA
k and T

ECQA
k twirled by CQA

and the ensemble ECQA and compare them with THaar
k in

Appendixes C 2 and D 2, respectively.

2. Approximate generation of unitary k-designs

The viewpoint that TG
k is a projector onto the commu-

tant of G provides a foundation for the characterization
of approximate unitary k-designs. We adopt the following
strong definition [36,38] (see also, e.g., Refs. [24,29,59,60,
72,73,89,90] for various other definitions and comparison
of operator norms).

Definition B2. Given a compact group G, an ensemble
of unitaries E is called an ε-approximate unitary k-design
with respect to G if the following matrix inequality holds in
the sense of complete positivity (i.e., A ≤cp B means B − A
is completely positive):

(1 − ε)TG
k ≤cp TE

k ≤cp (1 + ε)TG
k . (B6)

We denote by ccp(E , k) the smallest constant ε achieving
the above bound.

Remark. There are various other conditions for the
definition of approximate k-designs in the literature,
including the following:
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(1) The induced 2-norm of the difference of kth moment
operators satisfies

‖TE
k − TG

k ‖2→2 ≤ ε. (B7)

We denote by g(E , k) the smallest constant ε achiev-
ing the above bound. Viewing superoperators TE

k , TG
k

as ordinary operators, the induced 2-norm is exactly
the infinity norm that we have used in the main
text. When the operator is Hermitian and positive
semidefinite, g(E , k) is simply the largest eigenvalue
of TE

k − TG
k .

(2) The diamond norm of the difference of kth moment
operators satisfies

‖TE
k − TG

k ‖� ≤ ε. (B8)

We denote by c�(E , k) the smallest constant ε
achieving the above bound.

Lemma B1. These conditions are related by the follow-
ing inequalities:

ccp(E , k)
N 2k ≤ c�(E , k) ≤ 2ccp(E , k), (B9)

g(E , k)
2N k ≤ ccp(E , k) ≤ N 2kg(E , k), (B10)

g(E , k)
N k ≤ c�(E , k) ≤ N kg(E , k). (B11)

Proof. For the ordinary case G = U(N ) without
symmetry, we refer interested readers to Ref. [36] for
comprehensive proofs. We only prove the second inequal-
ity in Eq. (B10) for the general case; the others can
be simply obtained by properties of the Schatten norms
and induced norms regardless of the kind of superopera-
tors that are being considered (for more details, also see
Refs. [90,128]).

Let us denote the Choi-Jamiolkowski representations of
TU×

k , TE
k by

J (TU×
k ) = TU×

k ⊗ idH⊗2k
(
vec(IH⊗k )⊗ vec(IH⊗k )

)
,
(B12)

J (TE
k ) = TE

k ⊗ idH⊗2k
(
vec(IH⊗k )⊗ vec(IH⊗k )

)
, (B13)

respectively, where idH⊗2k is the identity map acting on the
operator space of H⊗k, while IH⊗k is the ordinary identity
matrix, with vec(IH⊗k ) being its vectorization form. It is

well known that

(1 + ε)TU×
k − TE

k ≥cp 0

⇔ (1 + ε)J (TU×
k )− J (TE

k ) ≥ 0, (B14)

where the second inequality is defined in the sense of
positive semidefiniteness.

Our first step is to explicitly solve the eigenpairs of
J (TU×

k ). Based on this, we study the eigenspaces of J (TE
k )

to bound ccp(E , k). Let

H ∼=
⊕
λ

1mλ ⊗ Sλ (B15)

denote the decomposition of the Hilbert space H with
respect to the representation of G and multiplicities. In our
case, G = U× and Sλ refers to the Sn irreps. We further
decompose the tensor product

Hk ∼=
(⊕

λ

1mλ ⊗ Sλ
)⊗k

∼=
⊕

r≤k,λ1 �=···�=λr
d1+···dr=k

⎛
⎝⊕
μλ1

1mμλ1
⊗ Qμλ1

⎞
⎠

d1

⊗ · · · ⊗
⎛
⎝⊕

μλr

1mμλr
⊗ Qμλr

⎞
⎠

dr

, (B16)

where
(⊕

μλi
1mμλr

⊗ Qμλi

)
di

is obtained by Schur-Weyl

duality when we decompose the dr-fold tensor product of
1mλr

⊗ Sλr . As a caveat, arranging

1mλ1
⊗ Sλ1

︸ ︷︷ ︸
d1 copies

, . . . ,1mλ1
⊗ Sλ1

︸ ︷︷ ︸
dr copies

(B17)

in different orders when taking tensor products yields
isomorphic copies. They are all absorbed into the multi-
plicities 1mμλ1

, . . . ,1mμλr
above.

Taking an orthonormal basis with respect to the decom-
position in Eq. (B16), we consider the following maxi-
mally entangled state:

040349-22



DESIGNS FROM SU(d)-SYMMETRIC LOCAL CIRCUITS PRX QUANTUM 5, 040349 (2024)

1√
N k

vec(IH⊗k ) = 1√
N k

∑
r≤k,λ1 �=···�=λr
d1+···dr=k

⎛
⎝∑
μλ1

√
mμλ1

dim Qμλ1 |�mμλ1
〉 |�Q

μλ1 〉
⎞
⎠⊗

· · · ⊗
⎛
⎝∑
μλ1

√
mμλr

dim Qμλ1 |�mμλr
〉 |�Qμλr 〉

⎞
⎠ , (B18)

where |�mμλi
〉 and |�Q

μλi 〉 are maximally entangled states defined on the corresponding subspaces.

To compute J (TU×
k ), we note that

∫
U×
(U⊗k ⊗ IH⊗k ) |�mμλ1

〉 |�Q
μλ1 〉 ⊗ · · · ⊗ |�mμλr

〉 |�Qμλr 〉

〈�m
μ′
λ′1

| 〈�
Q
μ′
λ′1

| ⊗ · · · ⊗ 〈�m
μ′
λ′r

| 〈�
Q
μ′
λ′r

| U†⊗k ⊗ IH⊗k )dU (B19)

vanishes unless λi = λ′
i and μλi = μ′

λi
, for all i, accord-

ing to the Schur orthogonality, which we will introduce in
Appendix C 1. In that case, the integral is given by

1
N k

∑
r≤k,λ1 �=···�=λr
d1+···dr=k

⎛
⎝∑
μλ1

|�mμλ1
〉 〈�mμλ1

|
mμλ1

dim Qμλ1
I⊗2
Q
μλ1

⎞
⎠

⊗ · · · ⊗
⎛
⎝∑
μλr

|�mμλr
〉 〈�mμλr

| mμλr

dim Qμλr
I⊗2
Qμλr

⎞
⎠ .

(B20)

The identity matrices IQ
μλi arise from integrating over

the Haar measure of U×. The maximally entangled state
|�Q

μλi 〉 〈�Q
μλi | is thus averaged through (the decomposi-

tion of) U⊗k.
This result also yields an eigenbasis for J (TU×

k ) simply
given by

|�mμλ1
〉 |vQ

μλ1 〉 ⊗ · · · ⊗ |�mμλr
〉 |vQμλr 〉 , (B21)

where {|vQ
μλi 〉} is an arbitrary orthonormal basis on the

irrep subspace Qμλi . The eigenvalues are just

1
N k

mμλ1

dim Qμλ1
· · · mμλr

dim Qμλr
≥ 1

N 2k (B22)

because the dimension of any (tensor product) subspace
from the decomposition in Eq. (B16) cannot exceed
dimH⊗k = N k.

We now study J (TE
k ). The integral in Eq. (B19) over a

general ensemble E may not be zero. Nevertheless, J (TE
k )

still acts on the subspace S spanned by Eq. (B21). Suppose

that

εN−2k ≥ ‖J (TU×
k )− J (TE

k )‖∞, (B23)

i.e.,

ελi

(
J (TU×

k )
)

≥ ‖J (TU×
k )− J (TE

k )‖∞

≥ λmax

(
J (TU×

k )− J (TE
k )

)
, (B24)

for any eigenvalue λi

(
J (TU×

k )
)

restricted to the subspace
S. By our previous argument, this implies that

εJ (TU×
k ) ≥ J (TU×

k )− J (TE
k )

⇔ (1 + ε)J (TU×
k )− J (TE

k ) ≥ 0. (B25)

Therefore,

ccp(E , k) ≤ N 2k‖J (TU×
k )− J (TE

k )‖∞

≤ N 2k‖J (TU×
k )− J (TE

k )‖2

≤ N 2k‖TU×
k − TE

k ‖2→2 = N 2kg(E , k), (B26)

concluding the proof. �

Lemma B2. Recall that TE
k is merely a linear map on

End(H⊗k). With further conditions on the measure ν of E
being specified, TE

k satisfies the following properties:

(1) If ν is left invariant, then TE
k is a projector onto

Commk(E).
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(2) If ν is invariant under the inverse, i.e.,

∫
E

dν(g)f (g−1) =
∫
E

dν(g)f (g) (B27)

for any function f defined on E , then TE
k is Hermi-

tian.

In particular, when E is taken as the restricted Haar mea-
sure over some compact subgroup of G, both of the above
properties hold.

We have discussed the first property in Appendix B 1.
The second property is also straightforward by using
U−1 = U† for unitary representation:

TE†
k =

∫
S

V†⊗kV̄†⊗kdV =
∫

S
(V−1)⊗kM (V̄−1)⊗kdV = TE

k .

(B28)

Most ensembles encountered in the literature, such as in
Refs. [36,38,59,72], as well as our CQA ensemble defined
in Appendix D 1, induce Hermitian k-fold channels that
can be diagonalized with an operator norm equal to the
largest absolute value of their eigenvalues. This fact is
consistently used in our study. The notion of the frame
potential applies more generally to the non-Hermitian case,
which we also use in Appendix C 3 to demonstrate that
ensembles with a constant (bounded) locality can never
even approximately generate SU(d)-symmetric k-designs
with arbitrarily large k.

Besides, by applying the bi-invariance of the Haar mea-
sure and the Fubini theorem, which holds for well-behaved
measures including restricted Haar measures on compact
subgroups, we see that TE

k commutes with TG
k :

TE
k TG

k (M ) =
∫
E

∫
G

V⊗kU⊗kMU†⊗kV†⊗kdUdV

=
∫

G
U⊗kMU†⊗kdU = TG

k (M )

=
∫
E

∫
G

U⊗kV⊗kMV†⊗kU†⊗kdUdV

=
∫

G

∫
E

U⊗kV⊗kMV†⊗kU†⊗kdVdU = TG
k TE

k (M ).

(B29)

By Lemma B2, TG
k is always diagonalizable. Assuming

that TE
k is Hermitian and hence diagonalizable, they can

be simultaneously diagonalized. For example,

TG
k =

⎛
⎜⎜⎜⎝

1
1

0
0

0

⎞
⎟⎟⎟⎠ ,

TE
k =

⎛
⎜⎜⎜⎝

1
1

λ

μ

ν

⎞
⎟⎟⎟⎠ . (B30)

Obviously, the eigenspace corresponding to the unit eigen-
value of TG

k is exactly Commk(G), the eigenvectors of
which, by definition, also commute with the restricted
representation on the ensemble E . Therefore,

Commk(G) ⊂ Commk(E). (B31)

as instantiated in Eq. (B30). It is now clear that only when
0 ≤ |λ|, |μ|, |ν| < 1, the convolution of TE

k converges to
TG

k , and thus forms an approximate k-design with respect
to G in the sense of Definition B2. Within this framework,
evaluating the upper bound of the second largest absolute
eigenvalue of λ, μ, and ν helps determine the convergence
speed of E to unitary k-designs. The case in which TE

k is
non-Hermitian can be addressed by calculating the frame
potential as introduced later.

As a basic application of this method, suppose that E is
taken as a compact subgroup of G, e.g., a one-parameter
subgroup, equipped with the Haar measure inherited from
that of G. Then, TE

k is also a projector and the eigenvalues
λ, μ, and ν exemplified above are either 0 or 1. There-
fore, TE

k = TG
k if and only if Commk(E) = Commk(G),

which further indicates the following simple but important
conclusion.

Fact. If the unitary ensemble E is given by a compact
Lie subgroup of G with restricted Haar measure, then E
either forms an exact unitary k-design or it can never gen-
erate a unitary k-design in the approximate sense, meaning
that it cannot generate a unitary k-design with arbitrary pre-
cision in terms of any measure defined in Definition B2 or
converge to a unitary k-design.

As an immediate and insightful example, one-parameter
subgroups generally do not even form an approximate k-
design when the ambient group G is of large dimension.
However, ensembles consisting of various one-parameter
subgroups may fulfill the task. With further conditions
being specified, we verify this in Appendix D 1 for ensem-
bles motivated by CQA.
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3. Random walks on compact groups

We now review the relationship between unitary
k-designs and random walks on compact groups [115,117,
129], which would elaborate on the strategy of comput-
ing the second largest eigenvalue with more deep insights
from probability and representation theory of groups. To
begin with, let us define the convergence of measures over
groups.

Definition B3. Suppose that {μp} is a sequence of prob-
ability densities or measures over a compact group G.
Then, it converges in the weak star topology, or sim-
ply converges weakly, to the Haar measure μ, denoted
by μp

w−→ μ, if for any continuous (and automatically
bounded) function f defined on G,

lim
p→∞

∫
G

f (g)dμp(g) =
∫

G
f (g)dμ(g), or, equivalently,

lim
p→∞ Eμp (f ) = Eμ(f ). (B32)

Note that the limit is considered independently for each
single function f . Requiring uniform convergence for all
f is somewhat too strong for continuous compact groups
[115,117].

In order to check whether μp
w−→ μ, we can use the fol-

lowing Lévy continuity theorem generalized from classical
Euclidean space to compact groups, which translates the
convergence of expectations by Fourier transformation to
the convergence of certain operators acting on irreducible
representations of G.

Theorem B1 (Lévy continuity theorem [129]). Given
any irrep π of a compact group G and any density function
ν, the operator

ν̂(π) :=
∫

G
π(g)dν(g) (B33)

acting on the representation space of π is called the Fourier
transform or characteristic function of ν. The convergence
of μn → μ defined above is equivalent to the convergence
of matrix entries μ̂n(π)ij → μ̂(π) for all inequivalent G
irreps.

Let us check the Fourier transformation of the Haar
measure μ:

μ̂(π) =
∫

G
π(g)dμ(g)

=
{

1, π is the trivial representation,
0, otherwise.

. (B34)

This is due to the so-called Schur orthogonality, which
we formally introduce and use in Appendix C 1. Since

μ̂n(π) ≡ 1 on the trivial representation, the operator norm
∥∥∥∥∥
⊕
λ

μ̂n(π)−
⊕
λ

μ̂(π)

∥∥∥∥∥ (B35)

evaluated over all inequivalent G irreps or the second
largest absolute value of eigenvalues of

⊕
λ μ̂n(π) (if it

has a discrete spectrum) determines whether and how fast
μn converges to μ.

Remark. A random walk on the group G is simply
a sequence {Sn} of random variables Sn = X1 · · · Xn for
which the Xi are independent random variables with values
in the group G distributed according to the same density ν.
This induces a sequence of densities {ν∗n}, with which one
can examine the convergence properties via the previous
theorem.

On the other hand, when studying unitary k-designs, we
define the kth moment operator

TE
k =

∫
E

V⊗k ⊗ V̄⊗kdV (B36)

of an unitary ensemble E and compare it with TG
k . The

ensemble is sampled multiple times, imitating a random
walk on a quantum circuit. We also note that the tensor
product V⊗k ⊗ V̄⊗k from the integral can in principle be
further decomposed with respect to the irreps of G; thus
we can interpret TE

k as a truncated Fourier transform of the
measure ν prescribed in E .

Consequently, the formation of unitary k-designs is
weaker compared to the convergence of measures. For
instance, SU(N ) is an exact k-design to U(N ) for arbi-
trary k, but SU(N ) �= U(N ), so one cannot say that the
Haar measure of SU(N ) converges to that of U(N ). Even
when comparing the integral with respect to these mea-
sures, there are mismatches: let det denote the determinant
function; then

∫
SU(N )

det VdV = 1 �=
∫

U(N )
det UdU = 0. (B37)

The formal reason is that there is no guarantee that V⊗k ⊗
V̄⊗k encompasses all inequivalent irreps even when k →
∞, e.g., the one-dimensional representation det given by
taking the determinant [57,78]. However, unitary k-designs
are more practical and relevant for quantum computation,
where we focus on the conjugate actions of unitaries on
density matrices as U⊗kρU†⊗k.

4. Frame potential, spectral form factors, and
k-invariance

We now demonstrate that, for the characterization of k-
design properties, the perspective of defining k-fold chan-
nels and computing their second largest eigenvalues is
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closely related to the following two concepts: the spec-
tral form factor RE

2k and the frame potential F (k)
E , which

are widely used in recent physics literature [25,27,28,32,
60,61]. The spectral form factor is defined as

RE
2k :=

∫
E

dU| tr(U)|2k. (B38)

Using the facts that traces interchange with integrals and
the identity tr(U ⊗ V) = tr U tr V, we obtain

RE
2k = tr

∫
E

U⊗k ⊗ Ū⊗kdU = tr TE
k . (B39)

In particular, when E = G, RG
2k = tr TG

k measures precisely
the dimension of the commutant Commk(G) explained
previously. For the case without symmetry, let G =
U(dn) ≡ U(N ). It is well known by Schur-Weyl dual-
ity that RG

2k = k! when k < dn = N [57,75]. In the most
general setting of arbitrarily large k, RG

2k is proved to be
equal to the number of permutations having no increasing

subsequence of length greater than dn [77], which relates
to the so-called increasing subsequence problem from
combinatorics [79].

The frame potential measures the 2-norm distance
between a given ensemble and the Haar-random unitary:

F (k)
E =

∫
E

dUdV‖ tr(UV†)‖2k. (B40)

Comparing to the spectral form factor, the frame potential
is defined for more general choices of ensembles.

Proposition B1. Given an arbitrary ensemble E ,

F (k)
E = tr(TE†

k TE
k ), (B41)

which is simply the squared 2-norm of TE
k . If TE

k is
Hermitian, F (k)

E = tr((TE
k )

2). When E is compact subgroup,

F (k)
E = RE

2k. (B42)

In either cases, the frame potential is lower bounded by
F (k)

G = RG
2k.

Proof. Similarly to how we derived RE
2k = tr TE

k above,

F (k)
E =

∫
U,V∈E

| tr(U†V)|2kdVdU =
∫

U,V∈E
tr((U†V)⊗k ⊗ (U†V)⊗k)dVdU

= tr
∫

U,V∈E
(U†V)⊗k ⊗ (U†V)⊗kdVdU = tr

∫
U∈E

∫
V∈E

(
U†⊗k ⊗ Ū†⊗k) (V⊗k ⊗ V̄⊗k) dVdU

= tr
(

TE†
k TE

k

)
. (B43)

When E is taken as a compact subgroup of G with the restricted Haar measure, TE
k = TE†

k becomes a projector by
Lemma B2. Then,

F (k)
E = tr

(
(TE

k )
2) = tr TE

k = RE
2k. (B44)

Finally, regardless of whether or not TE
k is Hermitian, TE†

k TE
k is always diagonalizable with nonnegative eigenvalues. Let

Wλ=1
k,E denote its unit eigenspace, for any M ∈ Commk(G),

U⊗kM = U⊗kM , U†⊗kM = U†⊗kM

=⇒ TE†
k TE

k (M ) = M

=⇒ F (k)
G = RG

2k = tr(TG
k ) = dim Commk(G) ≤ dim Wλ=1

k,E ≤ F (k)
E .

(B45)

This concludes the proof. �

Note that the last statement, F (k)
G ≤ F (k)

E , can be verified directly using the bi-invariance of Haar measure [27,28,32,60,61]
when comparing the real Haar randomness with that assigned by the ensemble E . Our method incorporates insights from
commutant theory. Its usefulness will be further demonstrated in Appendixes C 3 and D 1.
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We now introduce the notion of k-invariance [32],
which characterizes how invariant the ensemble is under
the Haar-random unitary. For a given ensemble E , its
k-invariance I (k)E is defined by

I (k)E = F (k)
E − F (k)

Ẽ , (B46)

where Ẽ is obtained from averaging E over the Haar
measure

Ẽ =
{∫

G
dW

(
WUW†) : U ∈ E

}
. (B47)

By employing methods similar to those used above,

F (k)
Ẽ = tr

(∫
Ẽ

dŨ
∫
Ẽ

dṼ
(

Ũ†⊗k ⊗ ¯̃U†⊗k
) (

V⊗k ⊗ V̄⊗k))

= tr
(∫

E
dU

∫
G

dW
∫
E

dV
∫

G
dX

(
(WU†W†)⊗k ⊗ (WU†W†)⊗k

) (
(XVX †)⊗k ⊗ (XVX †)⊗k

))

= tr
((

TG
k TE†

k TG
k

) (
TG

k TE
k TG

k

)) = tr
(

TG
k TE†

k TE
k TG

k

)
= tr(TG

k ). (B48)

Obviously, the k-invariance I (k)E ≥ 0. If E is an exact k-
design, I (k)E = 0. We call any ensemble for which I (k)E =
0 k-invariant.

Remark. With the introduction of the commutant, the
spectral gap of the k-fold channel, and the frame poten-
tial characterizations of ensembles provided above, we
can now discuss their relationship. We assume that TE

k
is Hermitian with nonnegative eigenvalues, i.e., is pos-
itive semidefinite. This assumption holds for all CQA
ensembles defined in Appendix D 1. In exotic scenarios
in which TE

k is non-Hermitian, we consider the operator
TE†

k TE
k instead.

With this assumption, in the language of commutant the-
ory, we evaluate the second largest eigenvalue λ of TE

k . It
has been shown in Refs. [38,58,74] that, for a random walk
with p steps (or a random circuit of depth p) to achieve an
ε-approximate k-design, i.e., to achieve ‖(TE

k )
p − TG

k ‖� ≤
ε, the smallest p needed is

p̃ = 1
log 1

λ

log
N 2k

ε
. (B49)

Since, for large x, it holds that x ≤ (x + 1) log(x + 1), we
have

1
log 1

λ

= 1
log 1−λ

λ
+ 1

≤
1−λ
λ

+ 1
1−λ
λ

= 1
1 − λ

=⇒ p̃ ≤ 1
1 − λ

log
N 2k

ε
. (B50)

Therefore, a polynomial spectral gap between the first and
second largest eigenvalues of TE

k guarantees an efficient
random circuit scheme (also see Refs. [89,90]).

On the other hand, suppose that we consider the frame
potential F (k)

E (p) for each p . Then, the inequality

‖(TE
k )

p − TG
k ‖2

� ≤ N 2k
(

F (k)
E (p)− F (k)

G

)
(B51)

can be applied to bound the difference under the dia-
mond norm [32,60,61]. By Proposition B1, knowledge
of both the second largest eigenvalue λ and F (k)

G =
dim Commk(G) is sufficient for bounding

F (k)
E (p) = tr((TE

k )
2p) =

∑
i

λ
2p
i , (B52)

where the λi denote eigenvalues of TE
k . Conversely, with

knowledge of F (k)
E (p) for all p ∈ N, one can uniquely

determine these eigenvalues λi through the so-called
moment problem studied in number theory and algebraic
geometry [130]. Even though it is generally impossible to
explicitly solve λi in Eq. (B52), this consideration unifies
the concepts of the frame potential, commutant, operator
traces, and eigenvalues in the context of characterizing
k-design properties.

5. Commutant of the group of SU(d)-symmetric
unitaries

In later sections where we prove our main results on uni-
tary k-design under SU(d) symmetry, we will always adopt
the approach using Sn representation theory and analyzing
the commutant and eigenvalues, instead of computing the
frame potential. At the end of this section, we explain the
potential difficulty of working with the frame potential in
the presence of SU(d) symmetry and describe the commu-
tant of U× with an explicit spanning set, which is core to
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our computation of TCQA
k=2 (M ) for the analysis of several

related applications in Ref. [71].
To lay a basis for the proofs, we first consider the

commutant algebra Commk(U(dn)) for a generic n-qudit
system H = V⊗n with no symmetry. It is well known by
Schur-Weyl duality and the double commutant theorem
[57,75] that

Commk(U(dn)) = span{σ , σ ∈ Sk}, (B53)

where the σ should be understood as permutations on
the k-fold tensor product H⊗k. To express σ explicitly,
note that any M ∈ Commk(U(N )) is just an element from
End(H⊗k), which has a standard basis given by tensor
products of matrix units, i.e., matrices Eij with unit entry
in the position (i, j ) and zero entries elsewhere. Under the
computational basis {|i〉}N

i=1,

Eij = |i〉 〈j | . (B54)

Then, it is straightforward to check by definition that
∑

i,j

Eii ⊗ Ejj ,
∑

i,j

Eij ⊗ Eji, and

∑
i,j ,k,r,s

Eis ⊗ Ejk ⊗ Ekr ⊗ Erj ⊗ Esi (B55)

correspond to the identity matrix, the transposition (1, 2)
on the first two indices, and the permutation (15)(234),
which swaps the first and fifth indices while translating
the second, third, and fourth indices cyclically, respec-
tively. Note that we define these operators on H⊗k for
arbitrary k and that the cumbersome tensor products with
identity matrix I in the above expressions are omitted. A
general permutation σ of cycle type μ = (μ1, . . . ,μr) � k
(Definition A3) can be written out following this pro-
cedure: when there is a basis vector label i appearing
as a covariant (contravariant) index of some matrix unit
from the tensor product, it should be assigned again as a
contravariant (covariant) index. Besides using the com-
putational basis, permutations can also be expanded by
(generalized) Pauli matrices with nice properties, which is
useful for various applications [71]. These expansions are
all important for the study of unitary k-designs [27,38,53,
63,65,66,72,88].

We now discuss the more involved case of Commk(U×).
Recall that, as we study SU(d)-symmetric quantum cir-
cuits, by Schur-Weyl duality, the entire Hilbert space
H = V⊗n of qudits decomposes into irreps Sλ of Sn with
multiplicities mSn,λ (Appendix A 2):

H ∼=
⊕
λ

1mSn ,λ ⊗ Sλ. (B56)

In Appendix A 1, we have introduced the spanning of these
irreps by the Young-Yamanouchi basis. We change from

the computational basis {|i〉} to the Young basis {|αT, m〉},
with αT labeling a basis vector and m recording the irrep
multiplicity by Schur transform [46,75,127], and redefine
the matrix unit as

E(αT ,m),(αT′ ,m′) = |αT, m〉 〈αT′ , m′| . (B57)

It turns out that the commutant Commk(U×) is spanned
by “permutations” generalized from Eq. (B55) using the
Young-Yamanouchi basis. As a simple but enlightening
example, we have

∑
T1,T2

E(αT1 ,m1),(αT1 ,m′
1)

⊗ E(αT2 ,m2),(αT2 ,m′
2)

, (B58)

generalized from
∑

i,j Eii ⊗ Ejj . However, Eq. (B58) no
longer represents the identity matrix, because the summa-
tion is taken within two Sn irreps labeled by the Young
diagrams of T1 and T2, but not over the entire space H⊗k.
Besides, the multiplicity indices can vary arbitrarily as
there is no need to require m1 = m′

1 or m2 = m′
2. We only

write covariant and contravariant basis vector labels in
pairs. Moreover, when k = 2 or k = 5,

∑
T1,T2

E(αT1 ,m1),(αT2 ,m2) ⊗ E(αT2 ,m′
2),(αT1 ,m′

1)
, (B59)

∑
T1,T2,T3,T4,T5

E(αT1 ,m1),(αT5 ,m5) ⊗ E(αT2 ,m2),(αT3 ,m3)

⊗ E(αT3 ,m′
3),(αT4 ,m4) ⊗ E(αT4 ,m′

4),(αT2 ,m′
2)

⊗ E(αT5 ,m′
5),(αT1 ,m′

1)
. (B60)

(B58) and (B59) show how to generalize examples of per-
mutations in Eq. (B55). With all these preparations, we
prove the following theorem.

Theorem B2. The commutant Commk(U×) is spanned
by the collection of all generalized permutations

∑
E(αT1 ,m1),(αT2 ,m2) ⊗ E(αT3 ,m3),(αT4 ,m4)

⊗ · · · ⊗ E(αT2k−1 ,m2k−1),(αT2k ,m2k), (B61)

where the basis vector labels come in pairs and there are
no restrictions on multiplicity indices such as in Eqs. (B58)
and (B59).

Proof. By definition, matrix representations U of group
elements g ∈ U× are just collections of unitary matrices
acting on inequivalent Sn irrep blocks with identical copies
on the multiplicity spaces [Eq. (A30)]. So the conjugation
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action of U× on any simple tensor product of matrix units
is given by

(U1E(αT1 ,m1),(αT2 ,m2)U
†
2)

⊗ (U3E(αT3 ,m3),(αT4 ,m4)U
†
4)⊗ · · ·

⊗ (U2k−1E(αT2k−1 ,m2k−1),(αT2k ,m2k), U†
2k) (B62)

where the Ui are unitaries acting on decomposed Sn irreps
spanned by {|αTi〉}. A generic element M ∈ End(H⊗k) is
a linear combination of simple tensor products of matrix
units:

M =
∑
Ti,Mi

cTi,MiE(αT1 ,m1),(αT2 ,m2)

⊗ E(αT3 ,m3),(αT4 ,m4) ⊗ · · · ⊗ E(αT2k−1 ,m2k−1),(αT2k ,m2k),
(B63)

as they form a standard basis for End(H⊗k). Belonging
to Commk(U×) means being invariant under the conjugate
action of an arbitrary U = ρ(g).

We first take the Ui as arbitrary diagonal phase matrices.
Then, the conjugate action accounts for scalar products
with phase factors on each simple tensor. Since these sim-
ple tensors are linearly independent, being invariant under
phase change implies such invariance for individual simple
tensors from Eq. (B63), which leads to the requirements on
coupling covariant and contravariant basis vector indices.
For instance, when k = 2, phase-change-invariant simple
tensors are of the following forms:

(U1E(αT1 ,m1),(αT1 ,m′
1)

U†
1)⊗ (U2E(αT2 ,m2),(αT2 ,m′

2)
U†

2) (B64)

or

(U1E(αT1 ,m1),(αT2 ,m2)U
†
2)⊗ (U2E(αT2 ,m′

2),(αT1 ,m′
1)

U†
1). (B65)

With this example, let U1 be a matrix that exchanges
arbitrary rows and columns as

U1 =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , (B66)

while U2 is set to be the identity matrix. Conjugated by
these kinds of U× group elements, the basis vector label
αT1 varies arbitrarily inside the Sn irrep acted on by U1.
Therefore, being invariant indicates that we should take

summations over T1, T2, yielding

∑
T1,T2

E(αT1 ,m1),(αT1 ,m′
1)

⊗ E(αT2 ,m2),(αT2 ,m′
2)

(B67)

and
∑
T1,T2

E(αT1 ,m1),(αT2 ,m2) ⊗ E(αT2 ,m′
2),(αT1 ,m′

1)
. (B68)

However, these considerations do not affect the choices
of multiplicity labels mi, which is why they are assigned
arbitrarily.

We still need to prove that the operators M spanned with
the above requirements commute with all other unitaries
from U×. This is done by considering the Lie algebra g =
L(U×) consisting of

E ⊗ I ⊗ · · · ⊗ I + I ⊗ E ⊗ · · · ⊗ I + · · · I ⊗ · · · ⊗ I

⊗ E ∈ End(H⊗k), (B69)

where E is an anti-Hermitian matrix respecting the decom-
position of H⊗k under SU(d) symmetry. We expand E by
matrix units and examine the commutativity. Using the
example

M =
∑
T1,T2

E(αT1 ,m1),(αT2 ,m2) ⊗ E(αT2 ,m′
2),(αT1 ,m′

1)
, (B70)

we have

(E(αT ,m),(αT′ ,m′) ⊗ I)M

=
∑
T2

E(αT ,m),(αT2 ,m2) ⊗ E(αT2 ,m′
2),(αT′ ,m′)

= M (I ⊗ E(αT ,m),(αT′ ,m′)) (B71)

by contracting the same tensor indices. Analogously,
(I ⊗ E(αT ,m),(αT′ ,m′))M = M (E(αT ,m),(αT′ ,m′) ⊗ I) and hence
M commutes with the Lie algebra elements. The general
case for arbitrary k can be similarly deduced. �

Remark. With this theorem, let us try to compute the
frame potential F (k)

U× for G = U×. The simplest case is k =
1, where Commk(U×) is spanned by

∑
T

E(αT ,m),(αT ,m′) (B72)

for each Sn irrep appearing in the decomposition and with
arbitrary copies. For n-qubit systems, Schur-Weyl duality
indicates that there are p(n, 2) = �n/2� + 1 inequivalent
Sn irreps corresponding to two-row Young diagrams in the

040349-29



ZIMU LI et al. PRX QUANTUM 5, 040349 (2024)

decomposition. Moreover, the multiplicity of the irrep Sλ

with λ = (n − r, r) is n − 2r + 1. Therefore, for qubits,

F (1)
U× = dim Commk=1 (U×) =

∑
0≤r �=≤�n/2�

(n − 2r + 1)2.

(B73)

When k = 2,

F (2)
U× = dim Commk=2 (U×)

= (n + 1)4 + 2
∑

1≤r≤�n/2�
(n − 2r + 1)4

+ 2
∑

0≤r �=s≤�n/2�
(n − 2r + 1)2(n − 2s + 1)2, (B74)

where the first two terms on the right-hand side appear
when the four indices of basis vectors αT from Eq. (B58)
are all selected from an equivalent Sn irrep. As the trivial
irrep (r = 1) of Sn is one-dimensional, with no freedom for
exchanging indices, we separate it from the second term.
The third term counts the number of cases in which two
pairs of indices are chosen from two inequivalent Sn irreps.
Then the general case follows.

For qudits, the number of inequivalent Sn irreps is
p(n, d), which denotes the number of Young diagrams with
n boxes and at most d rows (Definition A4). Unfortunately,
there is no closed-form formula for p(n, d), except the
asymptotic formula due to Ramanujan, Hardy, and Uspen-
sky [84,85] and bounds later developed in Refs. [86,87].
Consequently, it may be infeasible to calculate the frame
potential F (k)

U× for the group of SU(d)-symmetric unitaries,
let alone compare it with F (k)

E in Eq. (B51). To circumvent
this obstacle to some extent, we will work exclusively with
the commutant algebra Commk(U×) when presenting our
main results.

APPENDIX C: EXACT k-DESIGNS WITH SU(d)

SYMMETRY FROM CQA

In this appendix, we provide details of our results on
local ensembles forming exact k-designs in the presence
of SU(d) symmetry. We prove that, for a general n-qudit
system, the group CQA generated by unitary time evolu-
tions of SWAPs and second-order YJM elements, which are
local, is an exact SU(d)-symmetric k-design for k up to
at least O(n2) (Theorem C2). We also prove that to extend
this result for arbitrary large k, it is necessary to incorporate
nonlocal gates (Theorem C4), which stands in clear con-
trast to the symmetry-free case in which 2-local unitaries
are always enough to approximate Haar randomness to
arbitrary precision [24,72]. At the price of increasing local-
ity, we also provide an explicit way to construct ensembles
that achieve k-designs of arbitrary order by employing kth-
order YJM elements (Theorem C7). The proofs in this

section are largely based on group representation theory
[57,78] and the Okounkov-Vershik approach [62,75].

1. Comparison between the k-fold channels of SU×
and U×

It is straightforward to see that for arbitrary N and k,
SU(N ) is an exact k-design for U(N ):

TSU(N )
k =

∫
SU(N )

V⊗k ⊗ V̄⊗kdν

=
∫

U(N )
U⊗k ⊗ Ū⊗kdμ = TU(N )

k , (C1)

where ν is the restricted Haar measure on SU(N ) restricted
from μ. Apparently, any global phase from U ∈ U(N )
would get canceled after taking the tensor product U ⊗ Ū
and hence the above integrals are identical. However, this
is in general not true for TSU×

k and TU×
k —the k-fold chan-

nels twirled over the groups SU× and U×, respectively.
Intuitively speaking, with the entire Hilbert space H =
V⊗n of n-qudits being decomposed into various Sn irreps,
the integrands in TSU×

k and TU×
k become intricate with ten-

sor products of various submatrices defined on these irreps
(see Appendix A 2). In this subsection, we rigorously dis-
cuss when SU× fails to form an exact design with respect
to U×, which paves the way for understanding the more
complicated cases involving YJM elements and CQA later.

To motivate our statement, let us consider the simplest
nontrivial case in which there are only two inequivalent
Sn irreps when we decompose the system: Sλ1 and Sλ2

of dimension d1 and d1, respectively. Then, g ∈ SU× is
represented as [cf. Eq. (A30) and Theorem B2]

(
V1

V2

)
= V1 ⊕ V2, (C2)

where Vi ∈ SU(di) and we write Ui = e−iφVi ∈ U(di) if g
is taken from U×. Then, the integrand

g⊗k ⊗ ḡ⊗k = (V1 ⊕ V2)
⊗k ⊗ (V̄1 ⊕ V̄2)

⊗k (C3)

can be expanded as the following direct sums of tensor
products:

(
V⊗r

1 ⊗ V⊗k−r
2 ⊗ V̄⊗s

1 ⊗ V̄⊗k−s
2

) ⊕ · · ·
⊕

(
V⊗r′

2 ⊗ V⊗k−r′
1 ⊗ V̄⊗s′

2 ⊗ V̄⊗k−s′
1

)
. (C4)
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As a result, TSU×
k , as well as TU×

k , is just a direct sum of
integrals with these tensor products:

(∫
SU×

V⊗r
1 ⊗ V⊗k−r

2 ⊗ V̄⊗s
1 ⊗ V̄⊗k−s

2 dν1dν2

)
⊕ · · ·

· · · ⊕
(∫

SU×
V⊗r′

2 ⊗ V⊗k−r′
1 ⊗ V̄⊗s′

2 ⊗ V̄⊗k−s′
1 dν1dν2

)
.

(C5)

Different from Eq. (C1), each integral is evaluated on both
SU(d1) and SU(d2) under our assumption that the space
decomposes as Sλ1 ⊕ Sλ2 . We now show by representation
theory that one can always find certain r and s such that

∫
SU×

V⊗r
1 ⊗ V⊗k−r

2 ⊗ V̄⊗s
1 ⊗ V̄⊗k−s

2 dν1dν2 �= 0

=
∫
U×

U⊗r
1 ⊗ U⊗k−r

2 ⊗ Ū⊗s
1 ⊗ Ū⊗k−s

2 dμ1dμ2. (C6)

There are lots of similar counterexamples from other direct
sum components from Eq. (C4). In conclusion, TSU×

k �=
TU×

k in general.
To handle integrals over various compact groups, we

first rearrange U⊗r
1 ⊗ U⊗k−r

2 ⊗ Ū⊗s
1 ⊗ Ū⊗k−s

2 into (U⊗r
1 ⊗

Ū⊗s
1 )⊗ (U⊗k−r

2 ⊗ Ū⊗k−s
2 ) and then apply the Fubini

theorem to evaluate

(∫
U⊗r

1 ⊗ Ū⊗s
1 dμ1

)
⊗

(∫
U⊗k−r

2 ⊗ Ū⊗k−s
2 dμ2

)
.

(C7)

Such rearrangements are invertible for tensor products and
hence, to obtain the evidence in Eq. (C6), we just need to
check whether the above integral vanishes on SU× or U×.

When we integrate over U×, the answer is immediate:
unless r = s,

∫
U(d1)

(U⊗r
1 ⊗ Ū⊗s

1 )dμ1

=
∫

SU(d1)

1
2π

∫ 2π

0
e−i(r−s)φ(V⊗r

1 ⊗ V̄⊗s
1 )dφdν1 (C8)

equals zero because
∫ 2π

0 e−i(r−s)φ = 0 (cf. Lemma C2).
When we integrate over SU×, setting r = s yields the

same result as for U×. That is, counterexamples occur
when r �= s. The crucial observation for identifying them is
that each integrand, such as V⊗r

1 ⊗ V̄⊗s
1 , is an element from

the tensor product of the fundamental and conjugate repre-
sentations of SU(d1) and it can be further decomposed into

a direct sum of irreps:

V⊗r
1 ⊗ V̄⊗s

1 ∼
⊕
α

Vα . (C9)

Recall that we have applied this observation to interpret TE
k

as a truncated Fourier transform of its associated measure
ν in Appendix B 3. On the other hand, the so-called Schur
orthogonality [57,78] asserts that for any compact group
G with irreps πα and πβ ,

∫
G
πα(g)ijπβ(g)kl =

⎧⎨
⎩

0, πα � πβ ,
1

dimπ1
δij δkl, πα ∼= πβ .

(C10)

To apply these facts, we first expand high-order tensor
products such as V⊗r

1 ⊗ V̄⊗s
1 by Eq. (C9). Then,

∫
SU(d1)

(V⊗r
1 ⊗ V̄⊗s

1 )dν1

=
⊕
α

∫
SU(d1)

Vαdν1 =
⊕
α

∫
SU(d1)

Vα ⊗ 1dν1, (C11)

where 1 is simply the one-dimensional unit scalar given by
the trivial representation of SU(d1). As long as the decom-
position of Eq. (C9) bears the trivial representation, the
integral is nonzero by Schur orthogonality, which leads to
a counterexample.

Example. As a concrete example, suppose that d1 ≤ k
and d2 = 1. Let r = d1 and s = 0. Then,

(V⊗r
1 ⊗ V̄⊗s

1 )⊗ (V⊗k−r
2 ⊗ V̄⊗k−s

2 ) = V⊗d1
1 ⊗ 1⊗2k−d1 .

(C12)

Moreover, it can be shown by the Littlewood-Richardson
rule illustrated in the following lemma that for any d, the
d-fold tensor product representation of SU(d) contains the
trivial representation (e.g., d = 2, 3, familiar in quantum
angular momentum and quark theory). Therefore,

∫
SU(d1)

V⊗d1
1 dν1 ⊗

∫
SU(1)

1⊗2k−d1dν2 �= 0

=
∫

U(d1)
U⊗d1

1 dμ1 ⊗
∫

U(1)
e−i(k−d1)φeikφdμ2. (C13)

Note that the one-dimensional representation of U(1) is
given by e−iφ .

This inconsistency occurs when we consider arbitrary
n-qudit systems. To explain the reason, we recite the fol-
lowing basic fact from Sn representation theory: when n ≥
5, except the one-dimensional trivial representation and
sign representation, there is no irrep with dimension lower
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than n − 1 [79,107,108]. When, e.g., n = 4, the statement
fails, as there is a two-dimensional irrep of Young diagram
λ = (2, 2) (by the hook length formula in Definition A1).

Assume that there are ≥ 5 qudits in the system. Recall
that, by Schur-Weyl duality, only the Sn irreps correspond-
ing to Young diagrams of size n and at most d rows appear
when decomposing the system with SU(d) symmetry:

(a) In common cases in which d < n, the above coun-
terexample cannot happen for k < n − 1 because
there is no Sn irrep, except the trivial one, that has
dimension no larger than k < n − 1. We also prove
in the following lemma that it is impossible to find
any other kinds of counterexamples in this case.

(b) When d ≥ n, the inconsistency always exists
because we can select V1 and V2 from the triv-
ial and sign representations, respectively. Even
though the corresponding representation spaces are
one-dimensional, the phase factors are integrated
independently and the integral vanishes like the
right-hand side of Eq. (C13).

Lemma C1. Let r �= s ≤ k < d, with r, s, k, and d
defined before. The tensor product V⊗r ⊗ V̄⊗s for V ∈
SU(d) cannot be decomposed into the trivial representa-
tion. Therefore, the integration of Eq. (C9) always van-
ishes over SU(d). Trivial representations only appear when
k ≥ d.

Proof. The proof is based on the method of record-
ing U(d) irreps by Young diagrams and results from the
Littlewood-Richardson rule. We refer interested readers to
Refs. [57,78] for more details. For our purpose, it suffices
to assume the following facts:

(1) The fundamental representation of U(d) is denoted
by the one-box Young diagram (1).

(2) The conjugate representation corresponds to the
Young diagram (1d−1) of d − 1 boxes in one col-
umn.

(3) The trivial representation is given by the Young
diagram (1d) of d boxes in one column.

Other U(d) irreps are also expressed by Young diagrams
under certain conditions. In particular, the Littlewood-
Richardson rule indicates that the Young diagram of each
irrep arises from the decomposition of U⊗r

1 ⊗ Ū⊗s
1 contains

r + s(d − 1) boxes (but may be allocated with different
rows or columns). As long as this number can be divided
by d, the trivial representation [restricted back to SU(d)]
appears in the decomposition.

Therefore, for k < d, we consider the following two
cases:

(1) r > s: then r + s(d − 1) = (r − s)+ sd. Since r,
s ≤ k < d, d cannot divide r − s.

(2) r < s: then r + s(d − 1) = rd + (s − r)(d − 1).
Assume that d divides (s − r)(d − 1). Since the
greatest common divisor of d − 1 and d is just 1,
this requires s − r to be divided by d, which is
impossible.

When k ≥ d, there are several ways to produce the trivial
representation from the tensor product, as in the previous
example. �

With the above argumentation, we now analyze the real
situation in which matrix representations of elements from
SU× and U× consist of various submatrix blocks from
inequivalent Sn irreps with possible equivalent copies as

⊕
λ

V
⊕mSn ,λ
λ ,

⊕
λ

U
⊕mSn ,λ
λ . (C14)

Submatrices from equivalent copies of any irreps are
integrated simultaneously. Inequivalent submatrices are
arranged as before and they are integrated independently.
Then, the integrals of paired fundamental and conjugate
representations on one Sn sector (r = s in our previous
illustration) are always the same for both SU× and U×;
inconsistency may appear otherwise for Sn blocks of spe-
cific dimensions violating Lemma C1. Combining with the
Fact below Eq. (B31), we conclude the following.

Theorem C1. Suppose that n ≥ 5 and d < n. If k < n −
1, then the group SU× with restricted Haar measure forms
an exact k-design with respect to U×. For larger k, SU× and
U× have different commutants and thus SU× cannot even
converge to k-designs with respect to U×.

2. Comparison between the k-fold channels of CQA
and U×

In Sec. C 1, we have shown that TSU×
k = TU×

k only when
d < n and k < n − 1. The group CQA, on the other hand,
possesses accessibility to part of the phase factors due to
the employment of YJM elements (Definition A2), which
would alleviate this problem to some extent. We are now
going to make this point clear. As a reminder, results from
Refs. [131,132] point out that the commutant subspace
Comm2(H) of a Lie subgroup H of any compact semisim-
ple group G is strictly larger than Comm2(G) and hence H
can never be a unitary 2-design. However, the ambient Lie
group U× considered here is not semisimple because it has
a nontrivial center or, informally, elements with nontrivial
phase factors (Theorem A1), so the result is not applicable
to our case.

Following the method from Appendix C 1, we first
check the integral defining TCQA

k by representation the-
ory. To begin with, we apply the main theoretical result
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of Ref. [46]:

SU×⊂CQA. (C15)

Therefore, by the Fact below Eqs. (B31) and 30,

Commk (SU×) ⊃ Commk(CQA) ⊃ Commk (U×) (C16)

and CQA constitutes an exact k-design with respect to U×
for all k < n − 1 and d < n. With nontrivial phase factors
given by YJM elements, the statement now holds for larger
k. To be precise, let us consider the Lie algebra of CQA,
which is proved in Ref. [46] to satisfy

L(CQA) = L (SU×)⊕ z, (C17)

where z is a subspace spanned by

icσ =
⊕
λ

i
trλ(σ )
dim Sλ

Iλ =
⊕
λ

i
χλ(σ )

dim Sλ
Iλ (C18)

where σ is any 2-cycle, 3-cycle, and (2, 2)-cycle
(Definition A3) and Iλ is the identity matrix on the Sλ

irrep block. Intuitively, second-order YJM elements pro-
duce these cycles. Let H denote the integral Lie group
formed by taking exponentials of elements from z. Define
the map

f : SU××H → CQA by f (g, h) = gh. (C19)

Obviously, f is a Lie group homomorphism because the
SU× commute with H by definition. Then, it is natural to
evaluate the integral defining TCQA

k using f as a “change
of variables.” However, f is surjective but not an isomor-
phism. A more familiar case is that SU(d)× U(1) � U(d).
Despite this, we still have the following lemma.

Lemma C2. Commk(SU× × H) = Commk(CQA).
Therefore, if we denote by {ci} a basis of z, then

TCQA
k = TSU××H

k =
∫

SU××H
f (g)⊗k ⊗ f (g)

⊗k
dμ(g)

=
∫
γj

∫
SU×

(e−i
∑

j γj cj V)⊗k ⊗ (ei
∑

j γj cj V̄)⊗kdVdγ

=
∫
γj

(e−i
∑

j γj cj )⊗k ⊗ (ei
∑

j γj cj )⊗kdγ

×
∫

SU×
V⊗k ⊗ V̄⊗kdV = TH

k TSU×
k = TSU×

k TH
k .

(C20)

Proof. Since f defined above is a group homomor-
phism, it formally endows the product group SU× a
representation on H = V⊗n. It is thus legal to define

Commk(SU× × H) as the image of the function f that is
exactly equal to Commk(CQA). Since we integrate with
respect to the Haar measure of SU×, TSU××H

k is a Hermitian
projector (Lemma B2) and equals TCQA

k . �

Let us revisit the example of Eq. (C13) after adding YJM
elements.

Example. Suppose that k = n − 1. The expansion of
V⊗k ⊗ V

⊗k
always contains the term V⊗n−1

1 ⊗ 1⊗n−1,
where V1 is an arbitrary unitary (of unit determinant) act-
ing on the (n − 1)-dimensional Sn irrep block with identity
1 taken from the trivial irrep. Then,

∫
SU(n−1)

V⊗n−1
1 dν1 ⊗

∫
SU(1)

1⊗n−1dν2 �= 0

=
∫

U(n−1)
U⊗n−1

1 dν1 ⊗
∫

U(1)
ei(n−1)φdν2 (C21)

by Schur orthogonality and the Littlewood-Richardson
rule. However, it can be seen in Eq. (C20) that the integral
over CQA has one more term of phase factors e−i

∑N
j =1 γj cj

given by the Lie algebra z, which would ultimately elimi-
nate the above inconsistency.

Let us integrate the phase factors provided by first-order
YJM elements consisting of merely 2-cycles. As intro-
duced in Appendix A 1, cτ = cτ ′ for any 2-cycles τ and
τ ′. We also compute by Eq. (A12) that

tr(n)(τ )
dim S(n)

= 1 = − tr1(n) (τ )

dim S(1n)
,

tr(n−1,1)(τ )

dim S(n−1,1) = n − 3
n − 1

= − tr(2,1(n−2))(τ )

dim S(2,1n−2)
, (C22)

where λ = (n), (1n), (n − 1, 1), and (2, 1n−2) denote the
trivial, sign, standard, and conjugate representation of Sn,
respectively (Definition A1). Let Iλ denote the identity
matrix on the Sλ irrep block. The phase integral accom-
panied with V⊗n−1

1 ⊗ I⊗n−1
(n) includes

1
2π

∫ 2π

0

(
(e−i n−3

n−1 γ I(n−1,1) )⊗n−1 ⊗ (eiγ I(n) )⊗n−1
)

dγ

= 1
2π

∫ 2π

0
ei2γ Idγ = 0. (C23)

Theorem C2. The following holds for exact k-designs
with SU(d) symmetry:

(1) For an n-qudit system with n ≥ 9 and d < n, the
group CQA generated by 4-local SU(d)-symmetric
Hamiltonians forms an exact SU(d)-symmetric k-
design with respect to U× for all k < n(n − 3)/2.
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When d ≥ n, the largest possible k is precisely
2n − 4.

(2) For an n-qubit system (d = 2) with n ≥ 10, CQA
is an exact SU(2)-symmetric k-design for all k <
n(n − 1)(n − 5)/6.

Proof. The first claim is demonstrated by checking
phase integrals as in the previous example. Recall from
Eq. (A30) that any g ∈ CQA consists of various uni-
taries on Sn irreps from the decomposition of the entire
Hilbert space H, so we expand g⊗k ⊗ ḡ⊗k as in Eq. (C4)
before calculating the integral. When n ≥ 9, the third low-
est dimension of these irrep blocks is n(n − 3)/2 [107] and
Lemma C1 indicates that

∫
SU(Sλ)

V⊗r ⊗ V̄⊗sdV =
∫

U(Sλ)
U⊗r ⊗ Ū⊗sdU (C24)

when r, s < n(n − 3)/2 but dim Sλ ≥ n(n − 3)/2. Incon-
sistency arises when we integrate over even lower-
dimensional irrep blocks and we need to verify that the
phase integral as in Eq. (C23) would remedy the problem.

Since we assume that d < n, Sn irreps with dimension
lower than n(n − 3)/2 are just the one-dimensional trivial
irrep and the (n − 1)-dimensional standard irrep with its
conjugate. With respect to these three irreps, let us denote
by φi, i = 1, 2, 3 the phase factors of 2-cycle given by YJM
elements in CQA. Similarly, we take ψi, i = 1, 2, 3 as the
phase factors of 3-cycle (or (2,2)-cycle). As a reminder,

φ1 = ψ1 = 1, φ2 = n − 3
n − 1

= −φ3. (C25)

Explicit formula for ψ2 and ψ3 can be found in Refs. [110,
112]. For now, it suffices to know that ψ2 = ψ3. By
definition, they are combined as

φ1(r1 − s1)+ φ2(r2 − s2)+ φ3(r3 − s3),

ψ1(r1 − s1)+ ψ2(r2 − s2)+ ψ3(r3 − s3),
(C26)

in an expansion of g⊗k ⊗ ḡ⊗k, with ri and si being the ten-
sor folds of the aforementioned three irreps. Since

∑
i ri =∑

i si = k, we rewrite them as

(φ1 − φ3)(r1 − s1)+ (φ2 − φ3)(r2 − s2),

(ψ1 − ψ3)(r1 − s1)+ (ψ2 − ψ3)(r2 − s2).
(C27)

Note that (ψ1 − ψ3)(r1 − s1)+ (ψ2 − ψ3)(r2 − s2) =
(ψ1 − ψ3)(r1 − s1) and it is only when ri = si for all i that
they yield trivial phase. Therefore, under the assistance of
phase integrals, TCQA

k = TU×
k for all k = n(n − 3)/2.

As a reminder, the above proof requires d < n. Oth-
erwise, the one-dimensional sign representation always
arises from the decomposition of H under SU(d) symme-
try. Then, the previous argument fails for k = 2(n − 4).

Indeed, one can check by separately considering Lemma
C1 and the phase integral that

∫
CQA

W⊗n−3
(n) ⊗ W⊗n−1

(2,1(n−2))
⊗ W̄⊗n−3

1(n)
⊗ W̄⊗n−1

(n−1,1)dW �= 0

=
∫
U×,U(1)

U⊗n−3
(n) ⊗ U⊗n−1

(2,1(n−2))
⊗ Ū⊗n−3

1(n)
⊗ Ū⊗n−1

(n−1,1)dU,

(C28)

where for the phase integral, we have to use characters
[110]

tr(n−1,1)(i, j )(k, l)
dim S(n−1,1) = n − 4

n − 1
= tr(2,1(n−2))(i, j )(k, l)

dim S(2,1n−2)
,

tr(n−1,1)(i, j , k)
dim S(n−1,1) = n − 5

n − 1
= tr(2,1(n−2))(i, j , k)

dim S(2,1n−2)
,

(C29)

for (2, 2)-cycles and 3-cycles given by YJM elements. The
order is just n − 3 + n − 1 = 2n − 4 and it is easy to check
that TCQA

k = TU×
k for any lower k.

For the case of qubits, we argue by Sn character formula
on two-row Young diagrams (Schur-Weyl duality) that the
bound can be improved to n(n − 1)(n − 5)/6. Our strategy
is to count the number of inequivalent irrep blocks appear-
ing in each specific term from the expansion. For instance,
there are terms bearing two and three inequivalent irreps,
which we rearrange as

(V⊗r
1 ⊗ V

⊗s
1 ⊗ (V⊗k−r

2 ⊗ V
⊗k−s
2 ),

(V⊗r1
1 ⊗ V

⊗s1
1 ⊗ (V⊗r2

2 ⊗ V
⊗s2
2 )⊗ (V⊗k−r1−r2

3 ⊗ V
⊗k−s1−s2
3 ).

(C30)

The first type has been exemplified several times in the
preceding contexts. We still use φ1,φ2 to denote the phase
factor induced by any 2-cycle transposition for V1 and
V2, respectively. Since two-row Young diagrams (d = 2
for qubits) are totally ordered, Lemma A1 implies that
φ1 �= φ2.

As before, we only need to examine the situation in
which r �= s, because when r = s, the integrals over U×
and SU× are identical. For arbitrary k, the phase integral
like Eq. (C23) must vanish, since

φ1(r − s)+ φ2(k − r − (k − s)) = (φ1 − φ2)(r − s) �= 0.
(C31)

Therefore, any possible inconsistency between TCQA
k and

TU×
k should be spotted on expanded terms with at

least three inequivalent irrep blocks. We deal with this
case by making use of the phase factors produced by
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(
2/n(n − 1)

∑n
l=1 Xl

)2. It turns out that they are just pow-
ers of φi given by 2-cycles [see Eq. (A15)]. All these phase
factors are combined as

(φ1 − φ3)(r1 − s1)+ (φ2 − φ3)(r2 − s2),

(φ2
1 − φ2

3)(r1 − s1)+ (φ2
2 − φ2

3)(r2 − s2).
(C32)

Unless ri = si, the above equations have no homogeneous
solutions. Therefore, counterexamples only occur when
at least four inequivalent irreps emerge. Let D be the
fourth lowest dimensions of these irreps. Then, Lemma C1
requires that k ≥ D. To derive this fourth lowest dimension
D, we compute by the hook length formula in Definition
A1 to obtain that

dim S(n) = 1, dim S(n−1,1) = n − 1,

dim S(n−2,2) = n(n − 3)
2

,

dim S(n−3,3) = n(n − 1)(n − 5)
6

.

(C33)

For Sn irreps of two-row Young diagrams, their dimen-
sions also satisfy the following identity (see the end of
Appendix A 1):

dim S(n−r,r) =
(

n
r

)
−

(
n

r − 1

)
(C34)

where 0 ≤ r ≤ �n/2� and
( n
−1

) = 0 by convention.The last
step is to verify D = dim S(n−3,3) when we only consider
two-row Young diagrams and n ≥ 15.

When n ≥ 10, S(n−5,5) and S(n−4,4) arise from the decom-
position of the physical Hilbert space under SU(2) symme-
try. A direct computation indicates that

dim S(n−5,5), dim S(n−4,4) ≥ dim S(n−3,3). (C35)

As a caveat, only when n ≥ 12, S(n−6,6) appears and we
still have

dim S(n−6,6) ≥ dim S(n−3,3). (C36)

Similarly, dim S(n−7,7) ≥ dim S(n−3,3) for n ≥ 14. To deal
with the cases for larger r, we note that for n ≥ 16,

(
n
r

)
−

(
n

r − 1

)
= n − 2r + 1

n − r + 1

(
n
r

)
≥ 1

n + 1

(
n
r

)

≥ 1
n + 1

(
n
8

)
≥ dim S(n−3,3), (C37)

because the binomial coefficients are increasing. This con-
cludes the proof. �

Remark. We introduce a related result proved in
Refs. [19,54,96,99], that the group

eSWAP = 〈e−iθrs(r,s)〉 (C38)

generated by all n(n − 1)/2 transpositions contains SU×
on qubits (d = 2):

(a) This group achieves the restricted universality on
qubits:

SU× � eSWAP � V2 � U×. (C39)

Since eSWAP satisfies the restricted universality
and contains 2-cycles, techniques from the above
theorem can be applied to show that eSWAP forms an
exact k-design for all k < n(n − 3)/2 on an n-qubit
system. However, the inclusion property on the left-
hand side fails to hold for general qudits, for which
we propose the framework of the 4-local CQA to
solve the problem.

(b) As a reminder, eSWAP can be generated by arbitrary
generating sets of SWAPs. We explain the point from
the perspective of Lie algebra. Let τ1 and τ2 denote
two SWAPs taken from the generating set. A simple
calculation of Lie brackets shows that

[[τ1, τ2], τ1] = 2τ1τ2τ1 − 2τ2. (C40)

Therefore, the conjugate actions such as τ1τ2τ1
can be utilized to generate arbitrary SWAPs. As a
result, in Appendix D 1, we define the ensemble
EeSWAP merely using unitary evolutions generated
by nearest-neighbor SWAPs (j , j + 1).

The group eSWAP fails to achieve restricted univer-
sality and k-designs when d ≥ 3, as indicated in
Refs. [19,20,54,96,99]. We also provide numerical evi-
dence in Appendix D 1 by restricting the kth moment
operator of eSWAP to certain Sn irreps.

As a reminder, it is still possible to refine the bound
on k provided above: we use phase factors given by the
square of the sum of all YJM elements (

∑n
l=1 Xl)

2, but
there are still other kinds of second-order YJM elements
XkXl and the lower bound on Sn irreps could be modi-
fied. However, this requires a more sophisticated treatment
in order to compute Sn characters and estimate the hook
length formula, both of which may require heavy combi-
natorics and representation theory [107,110–114] and are
beyond the intended scope of this paper. More importantly,
we prove in Appendix C 3 that any ensemble with bounded
locality would eventually cease to be an exact k-design for
some k. In other words, contrary to the conventional case
without symmetry, it is impossible to achieve k-designs of
arbitrarily large k with any O(1)-local ensembles.
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3. Circuit locality for universality and unitary
k-designs with SU(d) symmetry

Here, we present detailed results on how locality limits
the ability of achieving universality as well as k-designs,
which is of fundamental interest from both physical and
practical perspectives, as motivated in the main text. It is
well known that 2-local unitaries are universal, meaning
that they are able to generate any unitary to arbitrary pre-
cision for any local dimension [80–82]; furthermore, they
are powerful enough for the generation of k-designs for
any k [36,38,59]. Under SU(d) symmetry, we have shown
in this work that the group CQA consisting of 4-local gen-
erators is universal when ignoring relative phase factors
[46] and forms an exact SU(d)-symmetric k-design for
any k < n(n − 3)/2. We now explore the opposite direc-
tion and consider the degree of locality needed to achieve
universality or designs of arbitrary k. We demonstrate that
in order to achieve an arbitrarily large k, we have to replen-
ish more phase factors and, in the end, operators with any
bounded locality can never fulfill this task.

To begin with, we discuss the locality needed to achieve
universality with all phase factors taken into account, i.e.,
generating U× rather than SU×. This question has been
addressed in Refs. [19,54] for qubits as a no-go theorem
which states that ensembles of local gates can never gener-
ate all relative phases. We prove the case for general qudits
by Sn representation theory as a preparation for describ-
ing the key results for k-designs. Recall that the number of
Sn irreps corresponding to Young diagrams with at most d
rows is given by the partition function p(n, d) in Definition
A4.

Definition C1. Any finite or infinite set S of SU(d)-
symmetric unitaries (gates) on an n-qudit system is said
to be exactly universal under SU(d) symmetry if 〈S〉, the
Lie group generated by S, is precisely equal to U×. It is
approximately universal under SU(d) symmetry if 〈S〉 is
dense in U× or the closure 〈S〉 = U×.

Theorem C3. Given a finite or infinite set S of SU(d)-
symmetric unitary gates, in order to achieve either exact
or approximate universality, S must contain unitaries with
locality γ being at least �(log p(n, d)), where p(n, d) is
the number of Sn irreps corresponding to Young diagrams
with at most d rows.

Proof. We first consider exact universality. Let Vγ be
the group generated by all γ ≥ 4 SU(d)-symmetric uni-
taries. It is shown in Refs. [19,20,54] that the Lie algebra
of this group is spanned by arbitrary complex linear com-
binations H = ∑

i ciσi of permutations σi supported on N
qudits as long as the combination is anti-Hermitian. Then,

H = (H − cH )+ cH , where

cH =
⊕
λ

trλ H
dim Sλ

Iλ (C41)

is defined by the trace of H in each irrep block Sλ (Sn
characters) with multiplicities [cf. Eq. (C18)]. Since H is
anti-Hermitian, trλ H must be a real linear combination of
trλ σ times the imaginary unit.

The group Vγ contains CQA by definition and, there-
fore, its Lie algebra can be written as [46]

L(SU×)⊕ zN , (C42)

where zN is spanned by icσ for all γ -local σ . As introduced
in Appendix A 1, cσ = cσ ′ for σ and σ ′ of the same cycle
type (see Definition A3) and they act as a scalar matrix in
any equivalent Sn irrep. Let us record these scalars in the
following matrix:

Cn =

⎛
⎜⎝

c11 · · · c1,p(n)
...

. . .
...

cp(n),1 · · · cp(n),p(n)

⎞
⎟⎠ , (C43)

where the column indices label inequivalent irreps and
the row indices represent different cycle types because the
number of inequivalent irreps equals p(n), the number of
partitions of m, which is also the number of different cycle
types. The key point in proving our statement is to real-
ize that the above matrix is invertible or, equivalently,
the column vectors form a basis for phase factors from
inequivalent Sn irreps. Recall that in Theorem A1, we have
presented three different center bases for phase factors and
the one used here is just a rescale of cλ by the number of all
permutations σ of the given cycle type λ. When we only
have γ -local permutations, zN defined above is spanned by
the first p(N ) column vectors of Cn.

On the other hand, Schur-Weyl duality says that only Sn
irreps corresponding to Young diagrams with no more than
d rows can be found in the qudit system. Therefore, the
Lie algebra of U× is spanned by L(SU×) with column vec-
tors from a certain invertible p(n, d)× p(n, d) submatrix
from Cn. Unfortunately, there is in general no way to locate
this submatrix, as computing the entries cij of Cn requires
evaluating Sn characters and computing p(n, d) precisely is
infeasible. However, by using the exponential lower bound
given below Definition A4, we can establish the following
simple necessary condition for Vγ to be universal:

p(γ ) ≥ p(n, d) =⇒ γ = �(log p(n, d)). (C44)

When d = 2, the required locality is at least log n
(Theorem C5 in Appendix C 4 gives a precise bound
2�n/2� = �(n) for qubits). However, in the extreme case

040349-36



DESIGNS FROM SU(d)-SYMMETRIC LOCAL CIRCUITS PRX QUANTUM 5, 040349 (2024)

in which d ≥ n reconstructing U× demands σ of all cycle
types, including gates permuting all qudits.

To deal with approximate universality, assume that the
locality γ of a (finite or infinite) generating set S does
not satisfy γ = �(log p(n, d)). Since Vγ is a compact
subgroup and since S ⊂ Vγ ,

〈S〉 ⊂ Vγ � U×, (C45)

which leads to a contradiction. �

We now state the result for k-designs.

Theorem C4. Given a finite or infinite ensemble E of
SU(d)-symmetric unitaries (gates), in order to generate a
k-design under SU(d) symmetry for k → ∞ in both exact
and approximate senses, E must contain unitaries with
locality γ being at least �(log p(n, d)), where p(n, d) is
the number of Sn irreps corresponding to Young diagrams
with at most d rows.

Proof. Similar to the proof for universality, we first
assume that E = Vγ with γ ≥ 4 and then decompose its
Lie algebra into L(SU×)⊕ zN . By Lemma C2, we compute
TVγ

k by

∫
γj

∫
SU×

(e−i
∑

j γj cj V)⊗k ⊗ (ei
∑

j γj cj V̄)⊗kdVdγ

=
∫
γj

(e−i
∑

j γj cj )⊗k ⊗ (ei
∑

j γj cj )⊗kdγ

×
∫

SU×
V⊗k ⊗ V̄⊗kdV. (C46)

To analyze the above integral, we first expand V⊗k ⊗
V̄⊗k with respect to Sn irrep blocks and then apply the
Littlewood-Richardson rule and Schur orthogonality as we
did in Appendix C 1. Let

(r1, . . . , rp(n,d), s1, . . . , sp(n,d)) (C47)

denote the orders of tensor product of unitaries Vi and Vi

on the block Sλi expanded from V⊗k ⊗ V
⊗k

, so that
∑

i ri =∑
i si = k and ri and si are non-negative. Then, Lemma C1

demands the following conditions:

di|ri − si for all i, and ri0 �= si0 (C48)

for at least one i0. As discussed in Appendix C 1, the
integral is nonzero over SU× but vanishes over U×.

Then, we move on to show that the phase integral
involving e−i

∑
j γj cj is also nonzero for large k, which

implies that TVγ
k �= TU×

k . By definition, multiplying with

the orders ri and si of tensor products, these phases are
combined as the following matrix product:

(
r1 − s1, r2 − s2, · · · , rp(n,d) − sp(n,d)

)

×

⎛
⎜⎜⎝

c11 · · · c1,p(γ )
c21 · · · c2,p(γ )
...

...
cp(n,d),1 · · · cp(n,d),p(γ )

⎞
⎟⎟⎠ , (C49)

where the ci are written as column vectors (cij ) from
Eq. (C43). If each combination coefficient is zero, tak-
ing the exponential only yields the identity matrix and
the phase integral ends up being nonzero. This situation
happens if we can find a nontrivial integral solution xi =
ri − si such that Eq. (C49) equals 0. As a reminder, the con-
dition

∑
i ri − ∑

i si = 0 is included as the first equation
since c1 = I .

By Proposition A2, the cij are rational numbers and
then, by a Gaussian elimination procedure, such a solution
always exists when p(γ ) < p(n, d). Let

ri =
{

d1 · · · dp(n,d) · xi, xi > 0,
0, xi ≤ 0;

si =
{

0, xi > 0,
−d1 · · · dp(n,d) · xi, xi ≤ 0.

(C50)

This satisfies all the above conditions including Eq. (C48)
with k ≥ d1 · · · dp(n,d) and TVγ

k �= TU×
k .

Given a generic SU(d)-symmetric ensemble E of γ -
local unitaries, it must be contained in Vγ by definition.
Similarly to the proof of Proposition B1, any M ∈
Commk(Vγ ) is a unit eigenvector of TE†

k TE
k , regardless of

whether or not TE
k is Hermitian. Therefore, if E forms an

ε-approximate k-design for arbitrary k in the sense of Eq.
(22), Vγ will also do by the following inclusion relation:

Commk(U×) ⊂ Commk(Vγ ) ⊂ Wλ=1
k,E = Commk(U×).

(C51)

In this case, according to our earlier proof, the locality of
Vγ , and hence of E , is at least �(log p(n, d)). �

As a result, we establish the following result.

Corollary C1. For an n-qudit system, the generation of
unitary k-designs under SU(d) symmetry for arbitrarily
large k requires quantum circuits of unbounded locality
that grows with the total number p(n, d) of Sn irreps. In
other words, it is impossible for circuits with any finite
locality independent of the system size n and the local
dimension d to generate unitary k-designs under SU(d) for
sufficiently large k.
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4. Unitary designs with SU(d) symmetry of arbitrary
order from general-order CQA group

Given the no-go result for generating k-designs of arbi-
trary order with local ensembles under SU(d) symmetry,
the remaining question is whether they can be constructed
with certain ensembles at the inevitable price of losing
locality to some degree. In this subsection, we answer this
by providing detailed descriptions of a recipe for achieving
k-designs for arbitrary k, based on generalizing the idea of
CQA.

As clarified previously, CQA ⊃ SU×. There are still
independent relative phase factors that cannot be manip-
ulated through CQA or SU×, which prevents these two
subgroups from being universal or k-designs for arbitrary
k. To replenish the phase factors, a direct implementation
of 
μ := 1/n!

∑
σ∈Sn

χμ(σ )σ introduced in Theorem A1
demands n! permutations from Sn and is therefore infea-
sible. Based on our previous discussion in Appendix C 2,
adding permutations σ ∈ Sn of different cycle types into
the generating set of CQA produces more phase factors.
However, as explained in Theorems C2 and C3, there
remains a significant obstacle in determining whether cσ
spans the necessary independent phases from the system.
We find that the problem can be solved by considering
general YJM elements.

Let us first consider the case of qubits. When d = 2,
the question of how to bridge the locality and the miss-
ing relative phase factors is comprehensively addressed
in Ref. [19] and we provide an alternative approach here
using YJM elements. After that, we show the formation
of SU(d) symmetric k-designs, for arbitrary large k, using
kth-order YJM elements.

Theorem C5. Consider Pl = (
∑n

i=1 Xi)
l. The set {Pl}

with l = 0, . . . , �n/2� constitutes a basis of the center of
C[Sn] restricted to the permutation representation on an
n-qubit system with two-row Young diagrams.

Proof. Note that we set l = 0, . . . , �n/2� because there
are p(n, 2) = �n/2� + 1 different two-row Young dia-
grams or inequivalent irreps arising from the decompo-
sition of the Hilbert space of an n-qubit system (see
Definition A4). Accordingly, a center basis consists of
p(n, 2) basis elements as mentioned in Theorem C3. The
most natural basis elements for the center are the orthonor-
mal projections


λ = dim Sλ

n!

∑
g∈Sn

χ̄λ(g)ρλ(σ ) (C52)

defined in Theorem A1 by Sn characters. However, sum-
ming over all n! elements from the symmetric group Sn is
undesirable.

By Eqs. (A15) and (A16), we have

Pl =
�n/2�∑
i=0

(αλ)
l
λi , (C53)

where αλ is the sum of all components of the content vec-
tors of λ. Then, we consider the following Vandermonde
matrix:

V(αλi) =

⎛
⎜⎜⎜⎝

1 1 · · · 1
αλ0 αλ1 · · · αλ�n/2�

...
...

. . .
...

α
�n/2�
λ0

α
�n/2�
λ1

· · · α
�n/2�
λ�n/2�

⎞
⎟⎟⎟⎠ . (C54)

It can be easily seen that the row entries of V(αλi) are just
coefficients of the linear expansion in Eq. (C53). In other
words, the matrix V(αλi) transforms {
λi} to {Pl}. Clearly,
{
λi} is a basis. If the transformation V(αλi) is invertible,
{Pl} is also a valid basis. The invertibility of V(αλi) is
revealed by its determinant, which equals

V
(
αλi

) = (−1)((�n/2�+1))((�n/2�))/2
s<t(αλs − αλt). (C55)

Since we are considering two-row Young diagrams
here, Lemma A1 asserts that the dominance relation in
Definition A5 is totally ordered. Hence, αλs − αλt �= 0 as
long as λs �= λt. Therefore, the Vandermonde matrix is
invertible, confirming the statement. �

The trick of using the Vandermonde matrix is also used
as a crucial step in Ref. [46] to identify that the Lie alge-
bra of CQA contains that of SU×. When proving Theorem
C3, we have mentioned that it is generally unclear how
to determine a p(n, d)× p(n, d) invertible submatrix from
Eq. (C43) constituting a center basis on a generic qudit
system. When d = 2, with the above technique involv-
ing properties of YJM elements and content vectors, we
know that all cycles generated by YJM elements up to the
�n/2�th order are indispensable. Consequently, the largest
required locality of generators is 2�n/2�, leading to the
following corollary.

Corollary C2. On an n-qubit system (d = 2), any
SU(2)-symmetric generating set S that achieves universal-
ity needs must contain unitaries acting on all qubits when
n is even, or on n − 1 qubits when n is odd.

As mentioned in Sec. III, there are equivalent bases
of the center leading to the same result as the above
established in Ref. [19].

We now address the main problem of generation of
SU(d)-symmetric unitary k-designs. To this end, let us
consider the following definition.
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Definition C2. The kth-order CQA group CQA(k) is generated by incorporating YJM elements up to kth-order products:

CQA(k) =
〈

exp

⎛
⎝−i

∑
i1,...,ik

βi1···ik Xi1 · · · Xik

⎞
⎠ , exp(−iγHS)

〉
, (C56)

where HS is the summation of all adjacent transpositions (also see Definition A6).

We now consider kth-order YJM elements and prove
that TCQA(k)

k = TU×
k . Recall that, in Appendix C 2, we have

verified that

TCQA
k =

∫
γj

∫
SU×

(e−i
∑

j γj cj V)⊗k ⊗ (ei
∑

j γj cj V)⊗kdVdγ

=
∫
γj

(e−i
∑

j γj cj )⊗k ⊗ (ei
∑

j γj cj )⊗kdγ

×
∫

SU×
V⊗k ⊗ V

⊗k
dV. (C57)

Rewriting the phase integral under basis {Pl}, we obtain

⊕
λ1,...,λk ,μ1,...,μk

∫ 2π

0
dγ0 · · · dγk

⊗
i=1,...,k

e−i
(∑

l γlα
l
λi

)
Iλi

⊗
j =1,...,k

ei
(∑

l γlα
l
μj

)
Iμj . (C58)

We have illustrated in previous subsections that the inte-
grals expanded from TU×

k vanish unless {λ1, . . . , λk} =
{μ1, . . . ,μk}. Note that this encompasses the situations
with equivalent copies of any λi,μj and any reordering
on these irreps when taking tensor products. To show
TCQA(k)

k = TU×
k , we simply check the phase integral as we

did in Appendix C 2. The above expansion on each vari-
able γl reads (αl

μ0
+ · · · + αl

μk
)− (αl

λ0
+ · · · + αl

λk
). The

total integral will vanish if there exists some l > 0 such
that the difference is nonzero (it equals zero for γ0 since l =
0). To inspect the situation, let us consider the following
linear equations for any given integers p1, . . . , pk:

α0 + α1 + · · · + αk = p1,

α2
0 + α2

1 + · · · + α2
k = p2,

...

αk
0 + αk

1 + · · · + αk
k = pk.

(C59)

As encountered in Appendix B 5, this is known as the
moment problem and using basic algebraic geometry
[130], we know that Eq. (C59) admits, up to permutation,

a unique solution {αl}. Since αλ �= αμ for distinct two-row
Young diagrams λ and μ by Lemma A1, this unique solu-
tion must correspond to a particular set of Young diagrams
and we can conclude with the following theorem.

Theorem C6. For any k, the kth-order CQA group
CQA(k) forms an exact SU(2)-symmetric unitary k-design.
Since CQA becomes universal with �n/2�-th-order YJM
elements, CQA(�n/2�) forms an exact SU(2)-symmetric
k-design for arbitrary k.

Note that the above analysis only holds for qubits. Even
in the case of qutrits d = 3, the dominance relation ceases
to be a total ordering and there are lots of examples vio-
lating the central condition αλ �= αμ for λ �= μ used in
the preceding proofs. Even so, we are able to extend the
conclusion to qudits with arbitrary d by making use of
YJM elements and the Okounkov-Vershik approach [62]
to compare Commk(CQA) and Commk(U×), as introduced
in Appendixes A 1 and B. For intuition, we first consider
the following example.

Example. Let us understand that CQA forms a 1-design
in a different way from Theorem C2. By definition, CQA
contains the YJM elements Xi. As the main result in
Ref. [62], Okounkov and Vershik have successfully veri-
fied that YJM elements Xi ∈ C[Sn] generate the Gelfand-
Tsetlin subalgebra GZn ⊂ C[Sn]. To put it more simply,
let us consider the direct sum of all inequivalent Sn irreps.
Then, finite linear combinations and products of the matrix
representations of Xi—e.g., Eq. (A4)—yield arbitrary diag-
onal matrices on the representation space. This claim is
stronger than Theorem A1, where the phase matrices are
constant scalars in each Sn irrep block.

Then, our proof follows. Any M ∈ Comm1(CQA) com-
mutes with all group elements from SU× and, more
importantly, commutes with all YJM elements, which
enforces it to commute with arbitrary diagonal matrices
including the phase matrices. Therefore, Comm1(CQA) =
Comm1(U×).

With the same assumption, let us check the situation for
k = 2. We have

M · (exp(−itXj ))
⊗2 = (exp(−itXj ))

⊗2 · M (C60)
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for arbitrary j = 1, . . . , n and t ∈ R. By taking derivatives,
we obtain

[M , Xj ⊗ I + I ⊗ Xj ] = 0, (C61)

where [· , ·] is the Lie bracket. The necessary condition
presented above for M ∈ Comm1(U×) now converts to

[M , D ⊗ I + I ⊗ D] = 0, (C62)

where D is an arbitrary diagonal matrix. Unfortunately,
there is no guarantee that finite linear combinations and
products of {Xj ⊗ I + I ⊗ Xj } produces D ⊗ I + I ⊗ D.
For instance,

(Xi ⊗ I + I ⊗ Xi) · (Xj ⊗ I + I ⊗ Xj )

= (XiXj )⊗ I + I ⊗ (XiXj )+ Xi ⊗ Xj + Xj ⊗ Xi
(C63)

contains undesirable terms such as Xi ⊗ Xj + Xj ⊗ Xi.
Lemma C3 proved below ensures that adding second-order
YJM elements fixes this problem and that this generalizes
to arbitrary k > 1.

Lemma C3. Consider the tensor product H⊗k of an n-
qudit system H = V⊗n. Taking all matrix representations
of Xi1 · · · Xis for 1 ≤ i1 ≤ · · · ≤ is ≤ n (YJM elements are
commutative with each other) and s ≤ k of the form

(Xi1 · · · Xis)⊗ I ⊗ · · · ⊗ I + I ⊗ (Xi1 · · · Xis)⊗ · · ·
⊗ I + I ⊗ I ⊗ · · · ⊗ (Xi1 · · · Xis) (C64)

is sufficient to generate D ⊗ I ⊗ · · · ⊗ I + I ⊗ D ⊗ · · · ⊗
I + I ⊗ I ⊗ · · · ⊗ D for an arbitrary diagonal matrix D on
the representation space.

Proof. Using notation from representation theory, define

ρ(Xi1 · · · Xir) := (Xi1 · · · Xir)⊗ I ⊗ · · · ⊗ I + I ⊗ (Xi1 · · · Xir)⊗ · · · ⊗ I

+ I ⊗ I ⊗ · · · ⊗ (Xi1 · · · Xir), (C65)

where ρ is actually the k-fold tensor product representation of the Lie algebra gl(H). We also denote by (Xi1 · · · Xir)
α ,α =

1, 2, . . . , k the single term

I ⊗ · · · ⊗ I ⊗ (Xi1 · · · Xir)⊗ I · · · ⊗ I , (C66)

with Xi1 · · · Xir located at the αth tensor product.
When k = 1, obviously,

ρ(Xi1 · · · Xir) = ρ(Xi1 · · · Xir−2Xir−1)ρ(Xir). (C67)

When k = 2, it is straightforward to check that

2ρ(Xi1 · · · Xir) = ρ(Xi1 · · · Xir−2Xir−1)ρ(Xir)+ ρ(Xi1 · · · Xir−2Xir)ρ(Xir−1)

+ ρ(Xi1 · · · Xir−2)ρ(Xir−1Xir)− ρ(Xi1 · · · Xir−2)ρ(Xir−1)ρ(Xir). (C68)

So we can argue by induction that, as long as we employ all first- and second-order YJM elements, ρ(Xi1 · · · Xir) for
arbitrary r > 2 can be generated.
When k = 3, we first rewrite Eq. (C68) on H⊗3 for r − 1:

2ρ(Xi1 · · · Xir−1) = ρ(Xi1 · · · Xir−3Xir−2)ρ(Xir−1)+ ρ(Xi1 · · · Xir−3Xir−1)ρ(Xir−2)

+ ρ(Xi1 · · · Xir−3)ρ(Xir−2Xir−1)− ρ(Xi1 · · · Xir−3)ρ(Xir−2)ρ(Xir−1)

+
∑

α �=β �=γ
(Xi1 · · · Xir−3)

α(Xir−2)
β(Xir−1)

γ . (C69)
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The last term emerges because tensor products with three nontrivial components are allowed in H⊗3. Multiplying both
sides with ρ(Xir) and noting that

∑
α �=β �=γ

(Xi1 · · · Xir−3)
α(Xir−2)

β(Xir−1)
γ ρ(Xir)

=
∑

α �=β �=γ

(
(Xi1 · · · Xir−3Xir)

α(Xir−2)
β(Xir−1)

γ + (Xi1 · · · Xir−3)
α(Xir−2Xir)

β(Xir−1)
γ

+(Xi1 · · · Xir−3)
α(Xir−2)

β(Xir−1Xir)
γ
)

, (C70)

we have

ρ(Xi1 · · · Xir−3)ρ(Xir−2)ρ(Xir−1)ρ(Xir)

=
∑

α �=β �=γ

(
(Xi1 · · · Xir−3Xir)

α(Xir−2)
β(Xir−1)

γ + (Xi1 · · · Xir−3)
α(Xir−2Xir)

β(Xir−1)
γ

+(Xi1 · · · Xir−3)
α(Xir−2)

β(Xir−1Xir)
γ
)

+ ρ(Xi1 · · · Xir−3Xir−2)ρ(Xir−1)ρ(Xir)+ ρ(Xi1 · · · Xir−3Xir−1)ρ(Xir−2)ρ(Xir)

+ ρ(Xi1 · · · Xir−3)ρ(Xir−2Xir−1)ρ(Xir)

− 2ρ(Xi1 · · · Xir−1)ρ(Xir). (C71)

Again, we rewrite Eq. (C68) on H⊗3, but for ρ(Xi1 · · · Xir−3Xir)ρ(Xir−2)ρ(Xir−1),

2ρ(Xi1 · · · Xir) = ρ(Xi1 · · · Xir−3Xir−2Xir)ρ(Xir−1)+ ρ(Xi1 · · · Xir−3Xir−1Xir)ρ(Xir−2)

+ ρ(Xi1 · · · Xir−3Xir)ρ(Xir−2Xir−1)− ρ(Xi1 · · · Xir−3Xir)ρ(Xir−2)ρ(Xir−1)

+
∑

α �=β �=γ
(Xi1 · · · Xir−3Xir)

α(Xir−2)
β(Xir−1)

γ . (C72)

Recall that YJM elements commute with each other, so there is no distinction between the left-hand-side term from the
above equation and that from Eq. (C68). Similarly,

2ρ(Xi1 · · · Xir) = ρ(Xi1 · · · Xir−3Xir−2Xir)ρ(Xir−1)+ ρ(Xi1 · · · Xir−3Xir−1)ρ(Xir−2Xir)

+ ρ(Xi1 · · · Xir−3)ρ(Xir−2Xir−1Xir)− ρ(Xi1 · · · Xir−3)ρ(Xir−2Xir)ρ(Xir−1)

+
∑

α �=β �=γ
(Xi1 · · · Xir−3)

α(Xir−2Xir)
β(Xir−1)

γ ,

2ρ(Xi1 · · · Xir) = ρ(Xi1 · · · Xir−3Xir−1Xir)ρ(Xir−2)+ ρ(Xi1 · · · Xir−3Xir−2)ρ(Xir−1Xir)

+ ρ(Xi1 · · · Xir−3)ρ(Xir−2Xir−1Xir)− ρ(Xi1 · · · Xir−3)ρ(Xir−1Xir)ρ(Xir−2)

+
∑

α �=β �=γ
(Xi1 · · · Xir−3)

α(Xir−1Xir)
β(Xir−2)

γ ,

(C73)

where third-order YJM elements ρ(Xir−2Xir−1Xir) and ρ(Xir−2Xir−1Xir) are used for k = 3. Substituting these identities into
Eq. (C71), we find that it equals ρ(Xi1 · · · Xir)when k = 3. Since we now have access to the tensor product representations
of arbitrarily higher-order products of YJM elements, an immediate application of the Okounkov-Vershik theorem [62]
indicates we can generate tensor product representations of arbitrary diagonal matrices. By induction, this statement holds
for larger k. �

Finally, we arrive at the following conclusion.

Theorem C7. For a general n-qudit system, the kth-order CQA group CQA(k) forms an exact k-design with SU(d)
symmetry, i.e., TCQA(k)

k = TU×
k .
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APPENDIX D: GENERATING UNITARY
k-DESIGNS WITH SU(d) SYMMETRY BY CQA

ENSEMBLES

Having discussed the group k-design properties through
rigorous group representation theory, we now proceed to
study the practical generation of k-designs under SU(d)
symmetry, where we desire circuits generated by local
ensembles to converge to k-designs in an approximate
sense. In the following, we define a series of ensembles E
sampling from one-parameter subgroups or the time evo-
lution of YJM elements (Definition D1) and prove that
they converge to SU(d)-symmetric k-design in the sense
of Theorem D1. In particular, we analyze the efficiency of
convergence, i.e., the scaling behavior of time (the circuit
depth) needed for the convergence with respect to the sys-
tem size. Mathematically, we can do so by bounding the
spectral gap of TE

k or analyzing its frame potential. How-
ever, as introduced in the main text and Appendix B 5,
most previously known theories and methods related to
this problem (see, e.g., Refs. [38,53,59–61,63,65–70,72])
are invalid under SU(d) symmetry. In the following, we
present detailed discussions on this, along with several
new theoretical and numerical approaches built on Sn
representation theory [57,75,79].

1. CQA ensemble and its variants

We first introduce various sampling strategies that
define ensembles, or circuits, of SU(d)-symmetric uni-
taries, based on the CQA model. The most basic method
is to sample from the one-parameter subgroups of trans-
positions, i.e.,

{exp(−it(i, j )); t ∈ R} ⊂ U×≡H×. (D1)

Since the eigenvalues of any transposition (i, j ) are just
±1, the one-parameter subgroup is compact and isomor-
phic with the circle S1 ∼= U(1). Then, it suffices to restrict
t ∈ [0, 2π ]. As a reminder, there is no guarantee that an
arbitrary one-parameter subgroup is compact, e.g.,

{(
e−it 0
0 e−iat

)
, t ∈ R

}
⊂ SU(2), (D2)

where a is an irrational number, is noncompact, and in
order to sample each element from it, t has to be taken
from the whole R. Analogously, we may sample from
the following subgroup defined by second-order YJM
elements:

⎧⎨
⎩exp

⎛
⎝−i

∑
k,l

βklXkXl

⎞
⎠ ;βkl ∈ R

⎫⎬
⎭ ⊂ U×≡H×. (D3)

Again, since YJM elements always have integer eigenval-
ues (as discussed in Appendix A 1) and commute with each

other, the subgroup is compact and isomorphic to a certain
torus as a product of S1 ∼= U(1). Then, βkl ∈ [0, 2π ].

On the other hand, we may sample local SU(d)-
symmetric unitaries supported on arbitrary γ qudits in an
abstract sense. By Schur-Weyl duality, when γ = 2, this
sampling method is identical to that in Eq. (D1). Later, we
illustrate how to sample some 4-local unitaries explicitly,
as the CQA model is generated by 4-local unitaries.

Definition D1. The CQA random walk ensemble is
defined as follows in each step of the random walk on the
quantum circuit (see the Remark in Appendix B 3):

(1) We first sample an element parametrized as
exp(−i

∑
k,l βklXkXl) by second-order YJM ele-

ments with βkl ∈ [0, 1].
(2) Then, we randomly select an integer j ∈ {1, . . . , n −

1} and then sample an element from the one-
parameter subgroup determined by exp(−it(j , j +
1)) with t ∈ [0, 2π ].

(3) We sample again from the subgroup defined by
exp(−i

∑
k,l βklXkXl).

Definition D2. In each step of the random walk, we
arbitrarily select four integers, i1, i2, i3, and i4, from [n]
and then uniformly sample a 4-local SU(d)-symmetric uni-
tary supported on qudits labeled by these integers. This
assembles the CQA local random unitary ensemble EV4 .

Based on discussions from Appendix C, it is natural to
anticipate that these two ensembles converge to unitary
k-designs under SU(d) symmetry for all k < n(n − 3)/2.
We are going to present the proof details. Moreover, in
Sec. IV B, we exemplify our numerical methods on the
convergence time of a 2-local ensemble on qubits (d = 2);
we also provide a comprehensive definition here before
formally elucidating our results.

Definition D3. Forgetting the YJM elements, the SWAP
ensemble EeSWAP in each step of the random walk only
samples exp(−it(j , j + 1)) as a 1D chain in the language
of quantum many-body theory or samples exp(−it(i, j ))
with arbitrary 1 ≤ i, j ≤ n, known as all-to-all interaction
random circuits.

Lemma D1. The k-fold channel T
ECQA
k defined in each

step of the CQA ensemble satisfies

T
ECQA
k = TYJM

k
1

n − 1
(T(1,2)

k + · · · + T(n−1,n)
k )TYJM

k , (D4)

where TYJM
k and T(j ,j +1)

k are the k-fold channels twirled
over tori in Eq. (D3) and circles in Eq. (D1), respectively.
The operator T

ECQA
k is positive semidefinite with eigenval-

ues bounded in the interval [0, 1]. Similar results hold for
T
EV4
k and T

EeSWAP
k .
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Proof. By definition,

T
ECQA
k (M ) =

∫
ECQA

V⊗kMV†⊗kdV

=
n−1∑
j =1

1
n − 1

∫ (
VYJMV(j ,j +1)VYJM

)⊗k M
(
VYJMV(j ,j +1)VYJM

)†⊗k dVYJMdV(j ,j +1)

=
(

TYJM
k

1
n − 1

(T1
k + · · · + Tn−1

k )TYJM
k

)
(M ). (D5)

Since T(i,j )k and TYJM
k are twirled over compact subgroups, they are Hermitian projectors (see Appendix B 1). Then by

basic linear algebra, T
ECQA
k is positive semidefinite and its largest eigenvalue is ≤ 1. �

Lemma D2. Let Commk(YJM) denote the commutant of the torus defined in Eq. (D3), with Commk(i, j ) defined
analogously. The following identity of the commutant holds for any k:

Commk(YJM) ∩
⋂

1≤j ≤n−1

Commk(j , j + 1) = Commk(CQA), (D6)

⋂
1≤j ≤n−1

Commk(j , j + 1) =
⋂

1≤i<j ≤n

Commk(i, j ) = Comm(eSWAP). (D7)

Proof. The statement holds trivially for k = 1 by the definitions of CQA and eSWAP (see the Remark in Appendix C 2).
For k = 2, since any unitary U ∈ CQA is a finite product with the form of

exp

⎛
⎝−i

∑
k,l

βklXkXl

⎞
⎠ exp

⎛
⎝−iγ

∑
j

(j , j + 1)

⎞
⎠ · · · exp

⎛
⎝−i

∑
k,l

β ′
klXkXl

⎞
⎠ exp

⎛
⎝−iγ ′ ∑

j

(j , j + 1)

⎞
⎠ , (D8)

we have

U ⊗ U =
⎛
⎝exp(−i

∑
k,l

βklXkXl)

⎞
⎠

⊗2

(exp(−iγ
∑

j

(j , j + 1)))⊗2 · · ·

· · ·
⎛
⎝exp(−i

∑
k,l

β ′
klXkXl)

⎞
⎠

⊗2

(exp(−iγ ′ ∑
j

(j , j + 1)))⊗2. (D9)

By the identity

(exp A)⊗ (exp B) = exp(A ⊗ I + I ⊗ B), (D10)

for any M ∈ Comm2(1, 2) ∩ · · · ∩ Comm2(n − 1, n) ∩ Comm2(YJM), proving that M commutes with U ⊗ U for any
U ∈ CQA is equivalent to showing that M commutes with A ⊗ I + I ⊗ A with A taken from the Lie algebra of CQA (a
similar trick is also used in Theorem C7).

By assumption,

[M , (j , j + 1)⊗ I + I ⊗ (j , j + 1)] = 0, [M , XkXl ⊗ I + I ⊗ XkXl] = 0. (D11)

On the other hand, due to the definition of the tensor product representation, the following identity holds for any matrices
A, B ∈ End(V):

[A ⊗ I + I ⊗ A, B ⊗ I + I ⊗ B] = [A, B] ⊗ I + I ⊗ [A, B]. (D12)
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Therefore, M commutes with the tensor product representation of transpositions and YJM elements, which span the Lie
algebra of CQA, and hence the proof follows. The converse direction is obvious.

For eSWAP, we have the following argumentation:

[M , (i, i + 1)⊗ I + I ⊗ (i, i + 1)] = 0

=⇒ [M , ((i, i + 1)⊗ I + I ⊗ (i, i + 1))2] = 2[M , (i, i + 1)⊗ (i, i + 1)+ I ⊗ I ] = 0

=⇒ [M , (j , j + 1)⊗ (j , j + 1)] = 0

=⇒ [M , (j , j + 2)⊗ I + I ⊗ (j , j + 2)]

= [M , (j + 1, j + 2)⊗ (j , j + 1) ((j , j + 1)⊗ I

+I ⊗ (j , j + 1)) (j , j + 1)⊗ (j + 1, j + 2)] = 0.

(D13)

Inductively, we derive that M commutes with (i, j )⊗ I +
I ⊗ (i, j ) for any i �= j . The case for general k can be
demonstrated similarly. �

Theorem D1. For all k, the ensemble ECQA forms
approximate k-designs with respect to the group CQA.
Analogously, for all k, EV4 and EeSWAP forms approxi-
mate k-designs with respect to the group V4 and eSWAP,
respectively.

Proof. As we carefully introduce in Sec. II A and
Appendix B 3, it is only when T

ECQA
k and TCQA

k share the
same unit eigenspace that ECQA can converge to unitary
k-designs with respect to CQA under multiple actions
of the ensemble. For compact groups such as CQA, the
unit eigenspace of TCQA

k is just the commutant algebra
Commk(CQA) by the invariance of the Haar measure, but
it has no specific name for a general ensemble such as
ECQA. We simply denote that unit eigenspace by Wλ=1

k,ECQA

and, by definition, Wλ=1
k,ECQA

contains Commk(ECQA). Then,
we need to demonstrate the converse inclusion:

Commk(CQA) ⊃ Wλ=1
k,CQA. (D14)

To this end, let M be any (super)operator such that
T
ECQA
k (M ) = M . That is, M ∈ Wλ=1

k,ECQA
. By Lemma D1,

TYJM
k (M ) = TYJM

k T
ECQA
k (M )

= (TYJM
k )2

1
n − 1

(T(1,2)
k + · · · + T(n−1,n)

k )TYJM
k (M )

= T
ECQA
k (M ) = M , (D15)

which means that M ∈ Commk(YJM). Then,

T
ECQA
k (M )

= TYJM
k

1
n − 1

1
n − 1

(T(1,2)
k + · · · + T(n−1,n)

k )TYJM
k (M )

= TYJM
k

1
n − 1

(T(1,2)
k + · · · + T(n−1,n)

k )(M ). (D16)

Assume that there is a certain i0 ∈ {1, . . . , n − 1} such
that M /∈ Commk(i0, i0 + 1). Since T(i0,i0+1)

k is a Hermitian
projector, its operator norm is exactly 1 and then

1
n − 1

∥∥∥(T(1,2)
k + · · · + T(n−1,n)

k )(M )

∥∥∥

≤ 1
n − 1

n−1∑
j =1

‖Tj ,j +1
k (M )‖ < ‖M‖, (D17)

which contradicts the fact that T
ECQA
k (M ) = M . Therefore,

M ∈ Commk(1, 2) ∩ · · · ∩ Commk(n − 1, 1)

∩ Commk(YJM) = Commk(CQA) (D18)

by Lemma D2. Since T
ECQA
k is positive semidefinite, any

other nonunit eigenvalues are strictly bounded within
[0, 1). As we have instantiated in Eq. (B30), ECQA is able
to converge to unitary k-designs with respect to CQA. �

As a reminder, the above inequality may not hold for
non-Hermitian projectors such as

Pv =
(

1 0
1 0

)(
1
0

)
=

(
1
1

)
. (D19)

The norm of the image can even increase. On the other
hand, the property

M ∈ Wλ=1
k,CQA ⇔ M ∈ Commk(1, 2) ∩ · · ·

∩ Commk(n − 1, 1) ∩ Commk(YJM) (D20)
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can be understood as a counterpart to the notion of frustra-
tion freeness in quantum many-body physics [133], which
has also been widely used in the previous study of random
circuits without symmetry [36,38,52,53,59]. Together with
Theorems C2 and C7, we conclude the following.

Corollary D1. For an n-qudit system with n ≥ 9 and
d < n, the ensemble ECQA, as well as EV4 , can converge to
a k-design with respect to U× on general qudits for all k <
n(n − 3)/2. In the case of qubits (d = 2), the ensemble
EeSWAP can converge to a k-design for k < n(n − 3)/2.

Remark. It is always desirable to use EeSWAP as it
involves 2-local unitaries and most of our numerical com-
putations are based on EeSWAP. However, EeSWAP cannot
generate unitary k-designs for d > 2 and k > 1 [20]. We
now introduce how to identify counterexamples explicitly
by Sn representation theory, which may provide a deep
understanding on this issue.

In Refs. [96,99], it is indicated that eSWAPs cannot gen-
erate SU(Sλ) if λ = (λi) is not a hook, i.e., λ2 > 1 and
equals its conjugate (see Appendix A 1; such cases only
happens when d > 2). For instance, we take

λ0 = = λ′
0,

(D21)

which uniquely corresponds to an S6 irrep (with copies)
from the six-qudit system. Recall that, in Appendix C 2, we
compare TU×

k and TCQA
k by expanding those tensor prod-

ucts V⊗k ⊗ V
⊗k

with respect to Sn irreps and then taking
integrals.

Similarly, we now expand T
EeSWAP
k by different irrep

blocks. In particular, we can count the number of unit
eigenvalues of TEe SWAP

k when restricted to Sλ0 through the
following integral:

1
2π

∫ 2π

0
(e−it(1,2)

∣∣
Sλ0 )

⊗k ⊗ (eit(1,2)
∣∣
Sλ0 )

⊗kdt. (D22)

For instance, when k = 2, we compute by using the Young
orthogonal form that the above matrix has three unit eigen-
values. On the other hand, it is straightforward to see, by

Theorem B8, that the corresponding expanded term from
TU×

k ,

∫
U(Sλ0 )

(USλ0 )
⊗2 ⊗ (USλ0 )

⊗2d(USλ0 ), (D23)

only has two unit eigenvalues [see Eq. (B58)], resembling
the commutant of a 2-design without symmetry. There-
fore, (T

EeSWAP
2 )p can never converge to TU×

k because it has
strictly more unit eigenvalues. Taking TYJM

2 T
EeSWAP
2 TYJM

2
by TYJM

2 resolves this problem and makes the eigenvec-
tors coincide. Other counterexamples can be found in a
similar fashion on Young diagrams such as λ0, and a com-
prehensive explanation for the numerical computation of
the eigensystem of Eq. (D22) is given in Appendix D 2.

2. Several attempts to evaluate the convergence speed
of ECQA

Eventually, we would like to understand how quickly the
aforementioned ensembles converge to an ε-approximate
SU(d)-symmetric k-design. This is closely related to the
phenomenon of scrambling that has been widely studied
in quantum many-body dynamics [27–29,32,52]. We will
now consider the spectral gap method for k = 1 and k =
2 and then discuss the fundamental difficulties associated
with the general case.

Since any transposition or SWAP τ = (i, j ) ∈ Sn satisfies
τ 2 = I , its time evolution can be expanded by the Euler
identity

e−iθτ = cos θ I − i sin θτ . (D24)

Then,

Tτk=1 = 1
2π

∫ 2π

0
e−iθτ ⊗ eiθτdθ

= 1
2π

∫ 2π

0
(cos θ I − i sin θτ)⊗ (cos θ I + i sin θτ)dθ

= 1
2
(I ⊗ I + τ ⊗ τ) (D25)

and

Tτk=2 = 1
2π

∫ 2π

0
(e−iθτ )⊗2 ⊗ (eiθτ )⊗2dθ = 1

2π

∫ 2π

0
(cos θ I + i sin θτ)⊗2 ⊗ (cos θ I − i sin θτ)⊗2dθ

= 1
2π

∫ 2π

0

(
cos4 θ I ⊗ I ⊗ I ⊗ I + sin4 θτ ⊗ τ ⊗ τ ⊗ τ + cos2 θ sin2 θ (I ⊗ τ ⊗ I ⊗ τ + I ⊗ τ ⊗ τ ⊗ I

+ τ ⊗ I ⊗ I ⊗ τ + τ ⊗ I ⊗ τ ⊗ I − I ⊗ I ⊗ τ ⊗ τ − τ ⊗ τ ⊗ I ⊗ I
))

dθ

= 1
8
(3IIII + 3ττττ + Iτ Iτ + Iττ I + τ IIτ + τ Iτ I − IIττ − ττ II), (D26)
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where we have omitted the tensor product notation in the
final line for conciseness. The expansions of Tτk for general
k can be derived using sin2 θ + cos2 θ = 1 and

1
2π

∫ 2π

0
cos2k θdθ = 1

2π

∫ 2π

0
sin2k θdθ = 1

22k

(
2k
k

)
,

(D27)

1
2π

∫ 2π

0
cos2k−1 θ sin θdθ

= 1
2π

∫ 2π

0
cos θ sin2k−1 θdθ = 0. (D28)

We now explain various methods that we have considered.
To begin with, we introduce our numerical computations
for the magnitude of the second largest eigenvalue of T

ECQA
k=1

to understand the convergence to 1-design and then we
elucidate the main mathematical obstacles when tackling
general unitary k-designs under SU(d) symmetry.

a. Methods from quantum many-body theory

As in the proof of Lemma D2, Eq. (D25) indicates that

M ∈ Comm1(EeSWAP) ⊂ End(V⊗n) (D29)

commutes with all adjacent transpositions τ = (j , j + 1)
and hence commutes with the group Sn. Therefore, it is
sufficient to employ

T
EeSWAP
k = 1

n
(T(1,2)

k + · · · + T(n−1,n)
k + T(1,n)

k ) (D30)

to generate 1-designs for either qubits or general qudits.
Obviously, determining the second largest eigenvalue of
the positive semidefinite operator T

EeSWAP
k is equivalent to

determining the spectral gap of

H := n(I − T
EeSWAP
k ) =

∑
i

(I − T(i,i+1)
k ) =

∑
i

Pi,

(D31)

which is further tantamount to finding some γ = �(H) >
0 such that

H 2 ≥ γH . (D32)

As introduced in Sec. IV B, this observation leads us to
apply a classical method due to Knabe [67], which was
originally devised to estimate the spectral gap of 1D quan-
tum spin chains with periodic boundary conditions. As a
recap, let us define the bulk Hamiltonian consisting of all

Pj , . . . , Pm+j −1 terms from Eq. (D31):

hm,j =
m+j −1∑

i=j

Pi. (D33)

The improved Knabe local gap bound [68] indicates that

�(H) ≥ 5(m2 + 3m + 2)
6(m2 + 2m − 3)

(
�(hm,j )− 6

(m + 1)(m + 2)

)
.

(D34)

To obtain a valid lower bound on the gap, we need
to find a certain m = 2, 3, . . . such that �(hm,j ) >

6/(m + 1)(m + 2).
Suppose that m = 2. It then suffices to compute the gap

of

P1 + P2 = 2I − T(1,2)
k=1 − T(2,3)

k=1

= I − 1
2
(
(1, 2)⊗2 + (2, 3)⊗2) , (D35)

by the permutation invariance of h2,j . We present an
observation that is simple but crucial for constructing our
computational method.

Observation. The symmetric group S3 only admits the
one-dimensional trivial and sign irreps and the two-
dimensional standard irrep labeled by (3), (13), and (2, 1),
respectively. The Young orthogonal forms [see Eq. (A5)]
of τ = (1, 2) and (2, 3) on the direct sum of all these irreps
are as follows:

(1, 2) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ ,

(2, 3) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1
2

√
3

2
0

0

√
3

2
1
2

0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

. (D36)

We argue in Sec. IV B that according to the Sn branching
rule [57,75,78,79], for arbitrary n ≥ 3 and j = 1, . . . , n,
�(h2,j ) is equal to the gap of
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I − 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⊗2

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1
2

√
3

2
0

0

√
3

2
1
2

0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗2⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D37)

Exact diagonalization yields �(h2,j ) = 1/2, in which case the Knabe bound Eq. (D34) is not applicable. Therefore, we
proceed to test the case for m = 3 with the following Young orthogonal forms of direct sums of S4 irreps:

(1, 2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2, 3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

0 −1
2

√
3

2
0 0 0 0 0 0 0

0

√
3

2
1
2

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0
1
2

√
3

2
0 0 0 0

0 0 0 0

√
3

2
−1

2
0 0 0 0

0 0 0 0 0 0 −1
2

√
3

2
0 0

0 0 0 0 0 0

√
3

2
1
2

0 0

0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0

0 0 0 −1
3

0
2
√

2
3

0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0
2
√

2
3

0
1
3

0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1
3

2
√

2
3

0

0 0 0 0 0 0 0
2
√

2
3

1
3

0

0 0 0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D38)
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Note that these matrices are made up from submatrices defined on inequivalent Sm irreps. Therefore, we can do the
computation efficiently using tensor products of submatrices.

For larger m, although we can expand the tensor product by Sm irreps, it immediately becomes hard to diagonalize hm,j
because the dimension of a single irrep may scale exponentially [see Eqs. (A20) and (A21)], let alone its 4-fold tensor
product that appears in the 2-design analysis. Instead of finding the complete spectra, we examine Eq. (D26), where the
τ are restricted to part of the Sn irreps with moderate dimensions such as those assigned on S(m) ⊗ S(m−1,1) ⊗ S(m−2,2) ⊗
S(m−1,1). Inevitably, as reported in the numerical results in Sec. IV B, there are eigenvalues smaller than 6/(m + 1)(m + 2),
indicating that�(hm,j ) could not surpass the local gap threshold for larger m. The decay of�(hm,j ) also provides evidence
against the feasibility of using Nachtergaele’s martingale method [69], which detects constant-gapped (an �(n−1) gap
after normalization) 1D quantum spin chains.

Remark. One may still ask whether Knabe’s local gap bound applies to the CQA ensemble on general qudits with

T
ECQA
k = TYJM

k

⎛
⎝ 1

n − 1

∑
1≤j ≤n−1

T
τj
k

⎞
⎠ TYJM

k . (D39)

The answer is in the negative, because we cannot define a bulk Hamiltonian hm,j , such as Eq. (D33), that is exactly
supported on m sites of the system. Given τ1 = (i, i + 1), τ2 = (j, j + 1) with i + 1 < j, due to the intertwining with TYJM

k ,
TYJM

k Tτ1k TYJM
k and TYJM

k Tτ2k TYJM
k no longer commute.

To clarify this, let us restrict ourselves to the case in which k = 2 on a simple tensor product such as Sλ⊗4 with Young
basis element |αT〉 (we temporarily omit the multiplicity index). Let |αTr〉 , r = 1, 2, 3, 4 be basis vectors where τ1 and τ2
act according to the following orthogonal form:

(i, i + 1) |αT1〉 = 1
r1

|αT1〉 +
√

1 − 1
r2

1
|αT2〉 , (i, i + 1) |αT2〉 = 1

r1
|αT2〉 +

√
1 − 1

r2
1

|αT3〉 , (D40)

(j , j + 1) |αT1〉 = 1
r2

|αT1〉 +
√

1 − 1
r2

2
|αT3〉 , (j, j + 1) |αT2〉 = 1

r2
|αT2〉 +

√
1 − 1

r2
2

|αT4〉 . (D41)

For instance, such a basis vector can be found using the following Young tableau:

1 3 5 . . . . . . i + 1 . . . . . . j + 1 . . . . . . n

2 4 . . . . . . i . . . . . . j . . . . . . n − 1 (D42)

Then, one can check by definition that
〈
E|αT1 〉,|αT3 〉 ⊗ E|αT3 〉,|αT1 〉, (TYJM

k Tτ2k TYJM
k )(TYJM

k Tτ1k TYJM
k )E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉

〉

�=
〈
E|αT1 〉,|αT3 〉 ⊗ E|αT3 〉,|αT1 〉, (TYJM

k Tτ1k TYJM
k )(TYJM

k Tτ2k TYJM
k )E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉

〉
, (D43)

which proves the noncommutativity.

Remark. For similar reasons, we find that the martingale method [69] is also invalid for studying the spectral gap of
T
ECQA
k for general qudits. Adjusting notations in Ref. [69] to our case, we set

H�m =
m∑

i=1

I − TYJM
k Tτik TYJM

k , H�m\�m−l =
m∑

i=m−l+1

I − TYJM
k Tτik TYJM

k , (D44)

where l ≤ m ≤ n. Let Gm, G�m\�m−l denote the operators that project vectors into the ground state spaces of Hm, H�m\�m−l ,
respectively. Assume that m1 ≤ m2 − l. Then, Gm1 and G�m2\�m2−l do not commute, which violates the requirement in
Ref. [69]:
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〈
E|αT1 〉,|αT3 〉 ⊗ E|αT3 〉,|αT1 〉, (Gm1G�m2 \�m2−l)E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉

〉

�=
〈
E|αT1 〉,|αT3 〉 ⊗ E|αT3 〉,|αT1 〉, (G�m2 \�m2−lGm1)E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉

〉
, (D45)

where the Young basis vectors are selected as, e.g.,

1 3 5 . . . . . . i + 1 . . . . . . j + 1 j + 2 j + 3 . . . n

2 4 . . . . . . i . . . . . . j

.
(D46)

b. Properties of YJM elements

There is a potential approach based on Sn representa-
tion theory [62,75] that does not rely on the numerical
calculation of local gaps. Let us replace EeSWAP defined
by a one-dimensional adjacent transposition chain by
the ensemble consisting of time evolutions generated by
(1, n), (2, n), . . . , (n − 1, n) (which corresponds to a star
graphically). By Eq. (D25),

TXn
k=1 = 1

n − 1
(T(1,n)

k=1 + T(2,n)
k=1 + · · · + T(n−1,n)

k=1 + T(1,n)
k )

= 1
2

I + 1
2(n − 1)

((1, n)⊗2 + (2, n)⊗2 + · · ·

+ (n − 1, n)⊗2). (D47)

Since each (i, j )⊗2 is just given by the tensor product rep-
resentation of Sn on the n-qudit system, TXn

k=1 is interpreted
as the matrix representation of elements from the group
algebra C[Sn]. Upon careful examination of the definition,
we observe that TXn

k=1 is just the representation of the nth
YJM element Xn (with the normalization factor 1/(n − 1));
hence the notation. As a remarkable property of the YJM
elements mentioned in Appendix A 1, their eigenvalues
can be directly read off as components of content vectors
of standard Young tableaux. For Xn, the largest possible
eigenvalue is n − 1 and the second largest one is n − 2,
corresponding to eigenstates (Young basis vectors) with
the following standard tableaux:

1 2 3 . . . n − 1 n

1 2 3 . . . n − 1

n (D48)

Taking the normalization factor into account, we have

λ2(T
Xn
k=1) ≤ 1 − 1

n − 1
and �(TXn

k=1) ≥ 1
n − 1

. (D49)

Using Eq. (B50) from the Remark of Appendix B 4, we
conclude that when

p ≥ (n − 1)
(

2n log d + log
1
ε

)
, (D50)

the aforementioned ensemble forms an ε-approximate 1-
design. For k > 1, however, Eq. (D26) generally does
not induce a well-defined tensor product representation
of YJM elements, and more sophisticated treatments of
Sn representation theory are expected for addressing this
problem.

Instead, let ESn denote the ensemble consisting of merely
2-local SWAPs. In each step of the random walk, we select
i randomly and apply (i, n), as well as the identity channel,
with probability 1/2. Then, we have

T
ESn
k = 1

n − 1

n−1∑
i=1

1
2
(I⊗k + (i, n)⊗k), (D51)

the spectral gap of which is exactly the same as TXn
k=1

discussed above, which is independent of k due to the
properties of YJM elements. Since SWAPs generate Sn,
using similar arguments from Theorem D1, we see that
the ensemble ESn efficiently converges to unitary k-designs
with respect to Sn � U×. This is not surprising, because
a more general result in probability theory [115–117]
says that the distribution induced via random walks using
SWAPs efficiently converges in measure to the uniform
distribution of Sn.

c. Random circuits with all-to-all interaction

Besides the 1D chain (EeSWAP) or star (EXn) archi-
tectures discussed above, it is also natural to consider
employing all possible transpositions (i, j ) in defining the
ensemble, corresponding to the so-called all-to-all cir-
cuit architecture, the associated interaction or adjacency
graph of which is the complete graph. As mentioned in
Appendix D 1, by Schur-Weyl duality, this is simply the
V2 ensemble (cf. Definition D2) with

T
EV2
k = 2

(n − 1)n

∑
1≤i<j ≤n

T(i,j )k . (D52)

Analogous to Knabe’s original derivation of the 1D local
gap threshold [67], we have the following lemma for the
complete graph case.

Lemma D3. Let

H := 2
n(n − 1)

(I − T
EV2
k )

=
∑

1≤i<j ≤n

(I − T(i,j )k ) =
∑

1≤i<j ≤n

P(i,j )k (D53)
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and let hr = ∑
i,j �=r P(i,j )k be a local bulk Hamiltonian sup-

ported on the n − 1 vertices except for r. Suppose that
�(hr) = γn−1. Then, the gap of H admits the lower bound

�(H) ≥ 1
n − 3

((n − 2)γn−1 − 1). (D54)

More generally, given any collection of m qubits, and
letting hi1,...,im = ∑

i<j ∈{i1,...,im} P(i,j )k , then

γn ≥ 1 + n − 2
m − 2

(γm − 1). (D55)

Proof. It is known that the inequality H 2 ≥ γnH implies
that γn is a lower bound of the gap of H . Expanding H 2

directly, we obtain

H 2 − 1
n − 3

∑
1≤r≤n

h2
r + 1

n − 3
H ≥ 0. (D56)

With the assumption on the local gap of hr,

H 2 ≥ 1
n − 3

∑
1≤r≤n

h2
r − 1

n − 3
H (D57)

≥ 1
n − 3

∑
1≤r≤n

γn−1hr − 1
n − 3

H

= 1
n − 3

(n − 2)γn−1H − H

= 1
n − 3

((n − 2)γn−1 − 1)H . (D58)

As the inequality

γn ≥ 1
n − 3

((n − 2)γn−1 − 1)

⇔ (n − 3)γn ≥ (n − 2)γn−1 − (n − 2)+ (n − 3)

⇔ γn − 1
γn−1 − 1

≥ n − 2
n − 3

(D59)

holds generally for all n, by induction, we conclude that
γn ≥ 1 + (n − 2)γ3 for the lowest possible m = 3. �

Remark. According to this lemma, if γm ≥ 1, then
γn ≥ 1 for all n ≥ m. However, if γm < 1, the bound of
γn would eventually decrease to a nonpositive number and
become invalid. Our numerical computation using Young
orthogonal form shows that for m = 3, . . . , 10, the gap
of the bulk Hamiltonian locally supported on m qubits is
always 1/2, which does not qualify for the above lemma.
This naturally suggests that the gap remains 1/2 for an
arbitrary number of qubits. As a reminder, the martingale
method [69] can be applied to lattices on complete graphs
such as the present case, so we should examine its validity
again. Let

H�m =
∑

1≤i<j ≤m

I − T(i,j )k ,

H�m\�m−l =
⎛
⎝m−l∑

j =1

I − T(j ,m−l+1)
k + · · · +

m−1∑
j =1

I − T(j ,m)
k

⎞
⎠ ,

(D60)

with G�m , G�m\�m−l being projections onto the ground state subspace. One can also see by definition that G�m =
G�m\�m−l .

Let m1 ≤ m2 − l as in our previous remark. We check the commutativity of these projections on Sm2 irrep blocks
such as Sλ⊗2 ⊗ Sμ⊗2 with λ �= μ. Given the Young basis elements |αT1〉 , |αT2〉 of Sλ, Sμ, respectively, according to our
illustration in Appendix B 5, we have

〈
E|αT1 〉,|αT′

2
〉 ⊗ E|αT2 〉,|αT′

1
〉, G�m2\�m2−lG�m1

E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉
〉

=
〈
E|αT1 〉,|αT′

2
〉 ⊗ E|αT2 〉,|αT′

1
〉, G�m2

G�m1
E|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉

〉
= 0

�=
〈
E|αT1 〉,|αT′

2
〉 ⊗ E|αT2 〉,|αT′

1
〉, G�m1

G�m2 \�m2−lE|αT1 〉,|αT1 〉 ⊗ E|αT2 〉,|αT2 〉
〉

, (D61)

where the standard tableaux corresponding to the above Young basis elements can be taken as (for m1 = 3 and m2 = 6)

T1 =
1 3 5 6

2 4
, T2 =

1 2 4 5 6

3
, T ′

2 =
1 2 5 6

3 4
, T ′

1 =
1 3 4 5 6

2
.

(D62)
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There is also a recursion relation developed in Ref. [59] to
bound the second largest eigenvalue of all-to-all random
circuits without symmetry. As mentioned in Sec. IV B,
since it is generally impossible to rewrite a generalized
permutation (see also Appendix B 5) into an n-fold ten-
sor product, this strategy using induction on the number
of qudits is inapplicable in our case. The reason is that
for systems with 1, 2, . . . , n − 1, n qudits, the underlying
permutation actions are given by

S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ⊂ Sn, (D63)

which yields distinct irreps governed by these groups and
makes it difficult to apply any induction hypothesis from
the case of n − 1 directly to the case of n.

3. Numerical methods for qudits

We now describe how to compute the (partial) spectra of
T
ECQA
k or T

EV4
k with higher-order YJM elements or cycles

from Sn, which is indispensable for qudits with d > 2.
For YJM elements, since they are diagonal matrices with

explicit diagonal entries (see Appendix A 1),

TYJM
k =

∫ 2π

0
(e−i

∑
i,j βij XiXj )⊗k ⊗ (ei

∑
i,j βij XiXj )⊗kdβij

=
∏
i,j

∫ 2π

0
(e−iβij XiXj )⊗k ⊗ (eiβij XiXj )⊗kdβij , (D64)

where
∏

i,j denotes a matrix product, can be straightfor-
wardly calculated. This is how we compare the spectra
of

TYJM
2

1
5
(T1,2

2 + · · · T5,6
2 )TYJM

2 and T1,2
2 + · · · T5,6

2 (D65)

restricted on the twofold tensor product of the irrep S(3,2,1)

at the end of Appendix D 1, which demonstrates the neces-
sity of using second-order YJM elements to generate
unitary k-designs on general qudits.

However, conjugating with YJM elements (TYJM
k )

always breaks the permutation invariance of the k-fold
channel of the ensemble concerned. For instance, now
there is no reason to consider

TYJM
k (Ti,i+1

k + Ti+1,i+2
k )TYJM

k and

TYJM
k (Tj ,j +1

k + Tj +1,j +2
k )TYJM

k (D66)

similar matrices, so computing local gaps for the first
few terms from T

ECQA
k is not even sufficient for applying

Kanbe’s theory, as well as any other theory relying on the
permutation invariance.

However, there is still a major problem associated with
EV4 . By Schur-Weyl duality, any 4-local SU(d)-symmetric
unitaries can, in principle, be produced by S4 group ele-
ments, but there is no constructive strategy, contrary to
the 2-local case, where we can simply take exp(−it(i, j )).
One may parametrize a general 4-local unitary by general-
ized Euler angles but it is also not applicable here, taking
SU(d) symmetry into account. To remedy the problem, we
reformulate the definition of EV4 as follows.

Definition D4. Define E4 to be a 4-local unitary cir-
cuit ensemble where in each step of the random walk,
we randomly select four integers, i1, i2, i3, and i4, from
1, 2, . . . , n. Then, we uniformly sample unitaries deter-
mined by 2-cycles, 3-cycles, and (2, 2)-cycles permuting
these integers:

exp (−it(i1, i2)) , exp (−it ((i2i3i4)+ (i4i3i2))) ,

exp (−it(i1, i3)(i2, i4)) . (D67)

Note that a 3-cycle such as (i2, i3, i4) is not Hermitian
in general but that (i2, i3, i4)+ (i4, i3, i2) is a well-defined
3-local SU(d)-symmetric Hamiltonian. More importantly,
since second-order products of YJM elements only pro-
duce cycles defined as above (see Appendix C 2), follow-
ing a similar argumentation from Lemma D2 and Theorem
D1, we confirm that this modified ensemble converges to a
k-design if k < n. To compute

T(i1,i3)(i2,i4)
k =

∫
(e−it(i1,i3)(i2,i4))⊗k ⊗ (eit(i1,i3)(i2,i4))⊗kdt,

(D68)

T(i1,i3,i4)
k =

∫
(e−it((i2,i3,i4)+(i4,i3,i2)))⊗k

⊗ (eit((i2,i3,i4)+(i4,i3,i2)))⊗kdt, (D69)

constituting TE4
k , we note that ((i1, i3)(i2, i4))2 = I and

((i2, i3, i4) + (i4, i3, i2))2 = (i2, i3, i4) + (i4, i3, i2) + 2I .
Therefore, these Hermitian matrices only admit integer
eigenvalues and hence the parameter t is restricted to
[0, 2π ]. Besides, T(i1,i3)(i2,i4)

k is expanded in the same way
as 2-cycle transpositions [see, e.g., Eq. (D26)].
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To compute the second integral, simply note that

(2I − (i2, i3, i4)− (i4, i3, i2))2 = 3 (2I − (i2, i3, i4)− (i4, i3, i2)))

=⇒ (2I − (i2, i3, i4)− (i4, i3, i2))m = 3m−1 (2I − (i2, i3, i4)− (i4, i3, i2))

=⇒ eit(2I−(i2,i3,i4)−(i4,i3,i2)) = 1
3
(e3it − 1) (2I − (i2, i3, i4)− (i4, i3, i2))+ I .

(D70)

Therefore, by substituting

e−it((i2,i3,i4)+(i4,i3,i2)) = e−2ite−it((i2,i3,i4)−(i4,i3,i2)−2I)

= 1
3
(2eit + e−2it)I − 1

3
(eit − e−2it) ((i2, i3, i4)+ (i4, i3, i2)) (D71)

into the integral, we can easily obtain the answer.
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