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Abstract 

The emerging fields of quantum computation and communication offer many advantages to 

existing technologies. Quantum systems developed to realize these advantages face challenges 

such as decoherence or poor coupling to other systems. These problems can be tackled using spin 

qubits found in crystallographic defects in silicon carbide (SiC). The divacancy defect in the 4H 

polytype of SiC is composed of an electron-spin system with fast electromagnetic and optical 

control housed in a technologically mature semiconductor. This thesis will discuss a pair of results 

that position the divacancy as a strong candidate for inclusion in hybrid quantum systems or for 

long-distance entanglement generation. The first result is an experimental demonstration of 

enhancing the coherence of a qubit composed of a single divacancy’s ground-state spin levels by 

enhancing its natural insensitivity to environmental noise. The application of a continuous 

microwave-frequency drive leads to a measurement of the qubit’s inhomogeneous dephasing time 

in a decoherence protected subspace to be >22 milliseconds with an accompanying Hahn-echo 

coherence of >64 milliseconds. The second result constitutes the design and simulation of a hybrid 

optomechanical resonator to address a single divacancy in a monolithic cavity design that could 

preserve the divacancy’s optical and spin properties. We estimate >150x enhancement of the 

divacancy’s emission rate via coupling to the simulated optical cavity modes. We also estimate 

the optomechanical cavity to have quantum cooperativity >1000 from feasible device parameters, 

well above the threshold for operation at its quantum groundstate. This could enable a proposed 

scheme to store emitted near-infrared divacancy photons as mechanical excitations before reading 

them out at telecom wavelengths for transmission over low-loss optical fiber infrastructure.
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Chapter 1   

INTRODUCTION 

The ability to communicate with nearly anyone across the globe using modern telecommunication 

infrastructure is one of humanity’s greatest achievements. Today, a combination of telephone lines, 

fiber optic networks, short- and long-wave radio, and satellites are employed to send information 

between different parties. Among these networks, the internet, or world wide web, is the bedrock 

of modern technology due to its ability to enable fast, high-volume data packet exchange between 

the powerful computers of today. Back in the 1960s, Thomas Merrill and Lawrence 

Roberts connected a computer in Massachusetts to one in California, which would be the first 

computer link in “ARPANET,” the predecessor to the internet as we know it. Over the 60 years 

since ARPANET, processing speeds and memory sizes used by computers increased dramatically, 

so, in tandem, similar advancements in information transfer needed to occur. By 1991, through 

work by Emmanuel Desurvire and David Payne, signals sent through electrical cables were 

superseded by erbium-doped optical fibers with in-line amplifiers of the telecom photons carrying 

information. Modern optical fiber infrastructure boasts transfer rates of hundreds of gigabits per 

second over many hundreds of telecom wavelength channels to keep up with the information flux 

demands. Today though, computers are entering a potentially new paradigm, one where 

information will be represented by exploiting quantum effects, a departure from several decades 

of purely classical information theory. This shift from classical to quantum computing means the 

ability to transfer delicate quantum information at scale, with high through-put, and at the right 

wavelengths to utilize the fiber optic infrastructure already in place. 
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 Quantum information science is the study of systems whose quantum mechanical 

properties can be manipulated to store and process information [1] in analogous ways to classical 

bits found in conventional computer chips. Developing a computing architecture that exploits the 

full potential of these quantum bits, or “qubits,” could have numerous applications, including 

studying material properties [2], molecular medicine design [3], and new cryptographic safeguards 

[4]. Exponential speedups in computing time for certain algorithms are a key goal of quantum 

computing, such as Shor’s algorithm [5]. Yet, demonstrating a “quantum advantage” over classical 

super computers remains a challenging task experimentally due to the fragile and short-lived nature 

of quantum states. Put simply, the longer a qubit can maintain its “coherence,” or lifetime, during 

an experiment, the more logic operations can be performed on that qubit, and a quantum processor 

built from those qubits can be more powerful. There are thus tradeoffs between shorter coherence 

and more control that must be considered, as more control channels leads to shorter qubit lifetimes. 

Only a few experiments so far have reached the quantum advantage milestone as of 2025, including 

a 53-qubit superconducting processor [6] and a photonic qubit system performing Gaussian boson 

sampling [7]. The current landscape of what systems will make the best quantum processors is still 

very much in the air. The analogous system of silicon transistors for classical computers has not 

been found yet. Many other quantum systems are still being considered as potential qubits each 

with their own unique properties. 

Besides scaling quantum computation, quantum communication channels must be 

developed as well. This process is accomplished by entangling a “stationary qubit” with a pulse 

that can travel over long distances, called a “flying qubit”. Entanglement, a term coined in a paper 

by Schrödinger in 1935 [8], maps the quantum state of one particle onto another, and if they are 

separated, a measurement on either particle can reveal the original quantum state encoded. 
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Transmission of a quantum state was experimentally accomplished for qubits for the first time in 

2013 using electron spin qubits in diamond emitting visible light photons that traveled a distance 

of 3 m [9] using photons of visible wavelengths. The major problem is that to be able to do 

entanglement over the mature, low-loss optical fiber networks utilized by classical communication 

protocols, qubits must be encoded at telecom frequencies. Frequency conversion can introduce 

severe attenuation and many additional loss channels. This severely limits the options of candidate 

systems for quantum computing or computation and has led to a thrust to create hybrid quantum 

systems [10] that find efficient ways to connect existing qubit systems operating at vastly different 

energies such as exploiting non-linear optical properties. The other way is to develop quantum 

“transducers” that bridge the energy gap between two established systems, such as coupling the 

mechanical motion of two systems to enable quantum state transmission. A summary of the criteria 

for a system, or set of interconnected systems, that could provide a platform for quantum 

computation and communication that addresses the concerns we have mentioned was laid out by 

DiVincenzo in 2000 [11]. In this thesis, we will narrow our scope to two of those criteria: extend 

the coherence of qubits and provide an interface between stationary and flying qubits. 

 For enhancing coherence properties, we will be studying solid-state semiconductor qubit 

systems composed of naturally occurring, atom-like spin states in lattice defects. The first such 

defect shown to have properties necessary for qubit applications was the nitrogen vacancy center 

defect [12], and in the more than twenty years since, an abundance of other defect systems have 

also been studied as qubits [13]. From the perspective of pure coherence extension for potential 

scalable quantum memories in the solid-state, these systems seem to lag behind systems that offer 

better protection from noise sources, such as nuclear spins [14], which are more sensitive due to 

lower gyromagnetic ratios. We want to investigate qubits that have inherent protection from 
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environmental fluctuations but retain coupling pathways to interact with other quantum systems. 

In other words, those that do not offer the fastest qubit computation times nor the longest lifetimes, 

but offer a mix of both along with a degree of in-situ flexibility depending on how the systems are 

addressed. This is the regime that solid-state defect spin qubits inhabit. For instance, the large 

electronic band gap these qubits inhabit isolate them from many noise sources inherent to their 

semiconductor hosts. [15–19] Also, the qubits are receptive to lengthening of their coherence by 

sending microwave frequency control pulses that undo the effects of noise, a process called 

dynamical decoupling. [18,20,21]. As for methods of control, metal electrodes can be 

lithographically patterned on the substrate surface to selectively interface the defect with a variety 

of electromagnetic pulses [21–28] to enable longer coherence, sensing protocols, or control with. 

The semiconductor material platforms offer the ability to fabricate structures using mature 

techniques to enable addressing with resonant fields. [29,30] Perhaps the most useful feature is 

that many of these defects offer an optical interface whereby photons can be used to prepare, 

manipulate, and readout the spin state as a basis for entanglement protocols [9,31].  

 The semiconductor of choice for this thesis will be silicon carbide, a material with many 

use cases due to its fantastic electromagnetic, thermal, and mechanical properties. We will discuss 

the wealth of studies on the divacancy defect, an optically addressable defect with a well-protected 

spin system, similar in composition to the nitrogen vacancy center in diamond. In particular, we 

will study one of the species of divacancy having a configuration in its crystal lattice with low 

symmetry. This lends it some unique properties that we will exploit in an experiment extending its 

coherence properties to values on par with nuclear spins without fully sacrificing its high-degree 

of electromagnetic control. This positions the divacancy as a strong candidate for use in hybrid 

quantum systems, the second focus of this thesis. 
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Returning to the DiVincenzo criteria, the second focus of this thesis will be centered around 

the search for an interface between stationary and flying qubits for quantum communication 

applications. In this case, the stationary qubit will be a divacancy defect, which has already 

mentioned has a robust spin-to-optical interface that could be utilized to readout the spin state of 

a divacancy qubit at long distances via entanglement to a telecom photon, as has been demonstrated 

at metropolitan scales between two distant nodes with the nitrogen vacancy center. The method 

pursued here will be using a mechanical oscillator as a quantum transducer to bridge the energy 

gap between the divacancy excitation at near-infrared (NIR) wavelengths and telecom 

wavelengths. In particular, we will utilize the ability of light to induce mechanical motion via the 

optomechanical effect. It was Einstein, who in 1909 first wrote down the first relations between 

the radiation pressure force on a movable mirror [32], and pioneering experimental demonstrations 

followed in the 1930s. Thermal effects still dominated the motion, masking any quantum 

applications, and it was only in the 1980s that the backaction of the membrane on the laser field 

addressing it in a cavity structure was exploited to reach an atoms motional ground state [33]. In 

the past decades, many geometries of mechanical oscillators were cooled to their mechanical 

quantum ground-state [34–36], paving the way for many applications. One of the more recent goals 

utilizing this ground-state operation is to realize microwave to optical conversion of quantum states 

utilizing the strong photon-phonon interactions produced in cavity structures [37,38] to potentially 

connect quantum computers using microwave frequency qubits to flying qubits.   

The application of optomechanics in this thesis will be presenting the design of a proposed 

hybrid quantum device that exposes a divacancy qubit to strong photon and phonon fields 

contained in a silicon carbide membrane, enhancing the interaction strength between the qubit and 

the fields. Mirror coatings on the membrane will realize high amplitude optical and mechanical 
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cavity fields, with the interaction with the optical fields enhancing the emission rate of the 

divacancy’s optical dipole. An optomechanical effect, enabled by estimation of ground-state 

operation at 4 K, will then be utilized to store an emitted divacancy photon as a mechanical 

excitation. The reverse process then can transfer the mechanical excitation, still encoded with the 

information about the divacancy spin qubit, to a telecom frequency photon.  The properties of the 

device will be estimated using finite-element simulations to show the ability of this device to 

possess a high degree of cooperativity between the spin and the optical field, as well as between 

the optical and mechanical field to position it as a strong candidate for a quantum transducer.  

This thesis draws from the following publication for the results presented in Chapter 5:  

1. K.C. Miao, J.P. Blanton, C.P. Anderson, A. Bourassa, A.L. Crook, G. Wolfowicz, H. 

Abe, T. Ohshima, D.D. Awschalom, Universal coherence protection in a solid-state spin 

qubit, Science 369 6510 1493–1497 (2020). 
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Chapter 2   

FUNDAMENTALS OF SPIN QUBITS 

2.1 Classical bits 

The bedrock for quantum platforms that can allow us to access new ways of manipulating, storing, 

and transmitting data is of course the classical “bit”. Thus, we begin by briefly describing how 

information is defined, stored, and manipulated by classical bits. “Bit” here is a shorthand way to 

define any object that can be put into one of a pair of states, usually called the “1” state and the 

“0” state. These two states are distinct and are used to represent information in binary form, either 

by themselves or as a collective.  

Flipping a light switch is a common analogy: the “on” state for a bright room could be 

represented by the “1” state, and, similarly, the “off” state can be called the “0” state. The most 

important features of the bit are its mutability, stability, and transferability—it must be able to flip 

states at a low energy cost, retain its state over a relatively long time against spurious signals 

threatening to flip it, and information about its state should easily communicated to other nodes. 

For mutability, a light switch on your wall is easy to flip, relative to how often you enter or leave 

a room. For stability, save for accidentally bumping it, the switch will rarely turn off on its own. 

But our bit loses utility if we want to, say, tell our neighbor if our light switch is on/off, which 

would require other wire hooked to it circuitry. The transferability of communicating the physical 

latch’s position is cumbersome. Overall, we can say the light switch is a good bit for the job of 

lighting a room. These three qualities encapsulate the fundamental questions for building good 

qubits that this thesis will address. So far, all we have done is enable us to define this classical bit 
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as a binary element. If you observe the bit, it will be found to be in either of its two states, and that 

is good enough for most cases. 

Now, if we want to use bits to represent complex information, we must copy our simple bit 

millions or even billions of times and be able to store information in each one to be retrieved later. 

This is the job of memory devices such as compact discs “CDs” or flash memory drives. The fact 

that the bit we created has only two states is no accident, as binary representation of information 

is a very efficient way to store it using physical systems that can only be in one of two energetic 

states. Computer chips composed of transistor logic then can read individual bits and reassign 

others to perform all the functions of modern computers. It is the job of algorithms to perform the 

sequential Boolean logic operations on one or two bits at a time in rapid succession. This discrete, 

one-by-one reassignment of the values of a vast number of classical bits done by modern computer 

processing units underpins our current classical computing technology. 

2.2 The two-level system qubit 

Having defined the basics of a classical bit in the previous sections, we now can define a quantum 

bit, or qubit. Succinctly, a qubit is any system where the two distinct states are governed by the 

laws of quantum mechanics. In this section, we will first define what it means for the system to be 

“quantum”, and then we go through a rigorous definition of the qubit that is the focus of this thesis: 

a two-level system electron spin qubit.  

2.2.1 Quantum vs. classical states 

The laws of physics seek to define a system’s characteristics using quantities that can be measured. 

Such quantities, like an object’s mass, speed, reflectance, etc., are deem “classical.” Classical 

quantities can be observed and measured in everyday settings. Classical mechanics is the study of 

such properties, and its predictions enable everything from skyscrapers not falling under stress to 
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communications satellites orbiting stably. Yet for objects that are very small, on the scale of atoms, 

another domain of physics begins to give more accurate predictions: quantum mechanics. If the 

states of a system can be described with energy differences on the order of ℎ = 6.626×10-34 J∙s 

known as the Plank’s constant, then it can begin to be considered quantum rather than classical. 

Plank’s constant is fantastically small, so it can be tricky to measure such properties, but it 

underpins the behavior of all atoms. There are many surprising and interesting consequences of 

quantum systems, but we will focus now on those properties that defines a new domain of 

computing that is impossible for classical bits to access. 

2.2.2 The two-level system qubit 

For a quantum state, |𝜓⟩ is the wave function written in Dirac notation and we begin by writing 

the Schrödinger equation, which can be thought of as the equation of motion for the state: 

 

�̂�|𝜓⟩  = 𝐸|𝜓⟩. (2.1) 

�̂� is the matrix Hamiltonian for the quantum state that describes how it evolves, similarly to the 

 Lagrangian in classical mechanics. 𝐸 is the energy of the system. Basically, given the state of the 

system, the Hamiltonian can tell you the possible energies the system is allowed to have when 

driven by some external force(s). These quantities can be time dependent or independent, but for 

now, the important thing to note is a quantum states can represent a bit with their energies being 

the bit’s state. External forces can flip the bit’s state and that is the fundamental interaction of 

performing quantum computation using qubits. 

Just like a classical bit, we will constrain ourselves to a two-level system qubit defined to 

have just two measurable states. These states will be represented by the basis |0⟩, |1⟩, of which 

there is total flexibility choosing their vector representation depending on the dimension of the 
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Hamiltonian. Formulating this in the language of linear algebra, we begin to define the possible 

states of our qubit as a vector: 

 

|𝜓⟩  = (𝑎 + 𝑖𝑏)|0⟩ + (𝑐 + 𝑖𝑑)|1⟩, (2.2) 

where 𝑎, 𝑏, 𝑐, 𝑑 are real-valued constants such that any linear combination of our basis choice 

must span the vector space, or Hilbert space, defined by the Hamiltonian operator. The constraint 

is that the normalized vector satisfies: 

 

1 = (𝑎 + 𝑖𝑏)2 + (𝑐 + 𝑖𝑑)2 = |𝛼|2 + |𝛽|2, (2.3)  

with complex constants 𝛼, 𝛽. It must be true that |𝜓⟩’s state can only give |0⟩ or |1⟩ as quantum 

mechanics must give physical results when measured, but such linear combinations, or 

superpositions of states do exist and can be leveraged as we will see in the following chapters. 

Measurement in quantum mechanics means something a bit different than the usual classical sense, 

but we will not delve too deeply into the definitions right now. In Dirac notation, we write the 

constraint that the quantum state must be normalized to 1 for given any prefactors on our basis: 

   

 1 = ⟨𝜓|𝜓⟩ = (𝛼∗⟨0| + 𝛽∗⟨1|) ∗ (𝛼|0⟩ + 𝛽|1⟩) 
= |𝛼|2 + |𝛽|2, 

(2.4) 

   

where ⟨𝜓| is the conjugate transpose, denoted |𝜓⟩⟊ of the state and due to orthogonality of the 

basis, written as the following relation: 

   

 ⟨0|0⟩ =  ⟨1|1⟩ = 1 
⟨0|1⟩ =  ⟨1|0⟩ = 0. 

(2.5) 
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The above is due to the fact we must have an orthonormal basis for this Hilbert space: 

   

 |0⟩ =  [
1
0
] , |1⟩ = [

0
1
]. (2.6) 

   

This will be the basis we will use throughout this thesis in our treatment of a two level system 

representing an electron spin qubit. The last constraint we will mention for quantum states is that 

adding a global phase factor, 𝑒𝑖𝜑 retains the same physical meaning. This means measuring an 

observable for the quantum state will not depend on such a phase factor.  

2.2.3 Bloch sphere formalism 

We are now ready to add formalism that will be useful to define and visualize the results for the 

TLS of spin-1/2 states of an electron. A spin-1/2 system has two possible states: spin up and spin 

down. We make the choice of basis |1⟩ =  |↑⟩ and |0⟩ =  |↓⟩ as representations of our qubit states 

for spin “up” and spin “down” respectively. 

The arbitrary choice of constants allows a lot of freedom, and there is a particular choice 

of the constants we will use, namely: 

   

 

|𝜓⟩ =   [
cos

𝜃

2

𝑒𝑖𝜑sin
𝜃

2

], (2.7) 

   

where 𝜃 and 𝜑  are the polar and the azimuthal angles in spherical coordinates, respectively. Using 

the spherical coordinate transformation, we can turn a vector in the cartesian plane, 𝑟 =  (𝑥, 𝑦, 𝑧), 

into coordinates on the Bloch sphere, as in. Figure 2.1 Linear combinations of our basis states now 

are mapped to points on the sphere and are physically realizable objects in the laboratory called 
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superposition states. They can be attained by driving our qubit with excitation fields near the 

energy splitting between the up and down states. We can appreciate now that quantum mechanics 

allows this qubit to exist in an innumerable number of states instead of just two. When measured 

directly though, we find this collapses back into just two states, the points on the poles. The kinds 

of interactions possible with superposition states is what differentiates qubits from classical bits. 

In order to describe better the properties of superposition states of this spin-1/2 system, we must 

enter the time domain. 

2.3 Time evolution of quantum states 

We are now ready to return to the Schrödinger equation and write down the most general form for 

when the state is allowed to evolve in time, due to the presence of the time-dependent Hamiltonian, 

Figure 2.1 Visualization of two level qubit on the Bloch sphere. (A): A quantum state (blue arrow) is 

mapped onto the Bloch sphere. The intersections with the z-axis correspond to the basis states of the qubit. 

These two states would be the only physical states of a classical bit, but qubits can access infinite 

superposition states. (B): The energy diagram of the TLS containing an energy difference of 𝐸 between the 

basis states represented by the Bloch sphere. 



13 

 

�̂�(𝑡), under the equation:  

   

 
𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = �̂�(𝑡)|𝜓(𝑡)⟩. (2.8) 

   

Here ℏ is the reduced Plank’s constant, ℎ/2. This full picture, involving a differential matrix 

equation, can be quite complicated to solve generally, so in this section we will focus on a very 

narrow case for a spin-1/2 system. 

Having just written down this general case, we apply the simplification 𝐻(0) =  𝐻(𝑡), so 

the forces can be considered static but the state can still evolve. Here we can use the TLS 

Hamiltonian: 

   

 
�̂� =  

ℏ𝜔𝑜
2
 (|1⟩⟨1| − |0⟩⟨0|). (2.9) 

   

As defined here, the energy difference, or splitting, between our two states is ℏ𝜔𝑜. In other words, 

it takes that much energy, at least, to flip our quantum bit. Here |0⟩ takes on the role of the ground 

state and |1⟩ is the excited state. Using the matrix representation of our states, this simplifies to: 

   

 
�̂� =

ℏ𝜔𝑜
2
�̂�𝑧 , (2.10) 

   

where we utilize the z-axis Pauli spin matrix, and the complete set of matrices is: 

   

 �̂�𝑥  =  [
0 1
1 0

] , �̂�𝑦  =  [
0 −𝑖
𝑖 0

] , �̂�𝑧  =  [
1 0
0 −1

]. (2.11) 

   

It is no accident that our Hamiltonian relates to the energy splitting of a spin oriented along the z-

axis, aligning with the Bloch sphere representation in Eq. (2.7) as the choice of basis for the qubit 
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is arbitrary. Solving the matrix equation for the energies of the states gives us what are called the 

eigenvalues for the system: 

   

 
𝐸 |1⟩  =  

ℏ𝜔𝑜
2
 , 𝐸 |0⟩  =  −

ℏ𝜔𝑜
2
. (2.12) 

   

We write 𝐸𝑛 as the eigenvalue of the state 𝑛. In the language of quantum mechanics, the basis 

states are called the eigenvectors or eigenstates. The eigenstates critically represent the real-value, 

measurable energies of a spin-1/2 system in nature. Another term for this is stationary state. What 

makes these states even more important is that the general time-evolution state can be represented 

by a linear combination of just these states. 

Having defined the time independent Hamiltonian for our spin qubit, we can actually 

substitute it into the time dependent Schrödinger equation, Eq. (2.8), and look at the resulting state 

evolution over time. We substitute the eigenvalues in, and obtain a linear first-order differential 

equation: 

   

 
𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩  =  𝐸 |0⟩, |1⟩|𝜓(𝑡)⟩. (2.13) 

   

This has the solution of an exponential differential equation, where the state of the system at 𝑡 = 0  

is energy 𝐸: 

   

 
|𝜓(𝑡)⟩  =  |𝜓(0)⟩𝑒−𝑖

𝐸𝑡
ℏ . (2.14) 

   

The exponential has a name: the time-evolution operator. This result illustrates that stationary 

states of a system evolve rather simply over time for a static Hamiltonian, only acquiring an extra 

phase factor per unit time. 
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Now we are equipped to answer the question of how to write the general state of our TLS: 

   

 
|𝜓(𝑡)⟩  =  ∑ 𝑐𝑛

𝑁

𝑛=1

|𝜓⟩𝑛𝑒
−𝑖
𝐸𝑡
ℏ . (2.15) 

   

This is the general form for a state’s time evolution composed of only a linear combination of 

energy eigenstates. The power of this representation comes from the fact that phase evolution of 

the stationary states can be tracked and measured. 

2.4 The rotating wave approximation 

The experiments done in this thesis with an electron spin found in a divacancy defect system can 

be described as a time varying electric or magnetic field rotating the spin between its energy levels. 

When several of these experiments are done in succession, it makes sense to consider the problem 

as a transfer of an average population of spins between these energy states. This transfer is called 

“Rabi oscillations” and is how our qubit’s state can be changed during an experiment. Before we 

can define Rabi oscillations, we must first simplify the time dependent Hamiltonian when we add 

a sinusoidal drive to an electron spin system. 

We start by writing the interaction between the dipole moment, of the spin and an electric 

field (or magnetic field, �̂�,  the treatment is the same: 

   

 �̂�𝑑𝑖𝑝𝑜𝑙𝑒 = −�̂� ∙ �̂�. (2.16) 

   

Now, a general time-varying sinusoidal electric field takes the form: 

   

 �̂�(𝑡) = 𝐴1 cos(𝜔𝑡 + 𝜃), (2.17) 
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and the electric dipole, of magnitude d, for a z-axis oriented electron spin, is: 

   

 �̂�  =  − [
0 𝑑
𝑑 0

]. (2.18) 

   

The dot product becomes a product for a drive along the dipole, and so rescaling with ℏ𝜔𝑜 =  𝑑
𝐴1

2
,  

and using the Pauli matrices (Eq. (2.11), we get the new driven Hamiltonian for our electron spin: 

   

 
�̂�(𝑡) =  

ℏ𝜔𝑜
2
𝜎𝑧 + 𝛺 cos(𝜔𝑡 + 𝜃)�̂�𝑥, (2.19) 

   

where the amplitude of the drive is now rescaled to 𝛺. This drive will necessarily cause the state 

of our qubit to precess at frequency 𝜔, but there is a well-known simplification when the drive is 

near-resonant with the energy difference of the TLS known as the rotating wave approximation, 

abbreviated RWA. 

This time dependent drive is necessary because as in Eq. (2.15), the 𝑐𝑛 are constant and 

thus population cannot be transferred between the states in order to produce superpositions that 

will be exploited to make a qubit. To begin with the approximation, we will make a first order 

expansion of the Hamiltonian and only keep the terms of form: 

   

 �̂�(𝑡) =  �̂�0 + �̂�1(𝑡). (2.20) 

   

This approximation is thought of as moving into the interaction picture where we have a bare 

electron spin Hamiltonian �̂�0 and a perturbation �̂�1(𝑡) caused by the drive. This means we can 

work with states that are time independent, retaining the fact that our qubit should not flip on its 

own. This stability for our qubit is one of the core tenants of a strong bit we discussed at the start 

of this chapter. The power of the RWA is that even though the states technically are undergoing 
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Lamor precession at all times in the frame of reference of the laboratory, if there is a static magnetic 

field present in the rotating frame, the states can be considered stationary. 

2.5 The interaction picture 

In quantum mechanics, the interaction picture is a simply a change of basis to a more favorable 

one where the states are time-independent. Applying a unitary operator, �̂�, to our state will 

transform it into a basis that represents the reference frame of the RWA: 

   

 |𝜓⟩𝑅𝑊𝐴 = �̂�|𝜓⟩. (2.21) 

   

Another way to state our goal here is to modify our Hamiltonian, and the result from quantum 

mechanics for a general unitary operator is as follows, starting with the Schrödinger equation in 

the RWA frame: 

   

 
𝑖ℏ
𝜕

𝜕𝑡
|𝜓⟩𝑅𝑊𝐴 = �̂�𝑅𝑊𝐴|𝜓⟩𝑅𝑊𝐴, (2.22) 

   

where the new Hamiltonian can be written in terms of the original one and the unitary operator: 

   

 
�̂�𝑅𝑊𝐴 = −�̂�

†
𝜕�̂�

𝜕𝑡
+ �̂�†�̂��̂�. (2.23) 

   

 

By convention, we will take a specific unitary operator defined as: 

   

 
�̂�(𝑡) = 𝑒−𝑖

ℏ𝜔𝑜
2
�̂�𝑧 , (2.24) 
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and now we can simplify the first term of �̂�𝑅𝑊𝐴: 

   

 
�̂�†
𝜕𝑈

𝜕𝑡
=  −�̂�†�̂�

𝜔𝑜
2
�̂�𝑧 = −

ℏ𝜔𝑜
2
�̂�𝑧 . (2.25) 

   

We now must expand the second term, 𝑈†�̂�𝑈, in order to finish defining the rotating wave 

Hamiltonian: 

   

 �̂�†�̂��̂� = �̂�† (�̂�0 + �̂�1(𝑡)) �̂� 

= �̂�0 + 𝛺 cos(𝜔𝑡 + 𝜃)(cos(𝜔𝑡) �̂�𝑥 +sin(𝜔𝑡) �̂�𝑦). 
(2.26) 

   

Now by defining the raising and lower spin matrices, we can conveniently continue to expand the 

left-most term: 

   

 �̂�+  =  [
1 0
0 0

] , �̂�− = [
0 0
1 0

], 

�̂�†�̂��̂� = �̂�0 +
𝛺

2
(𝑒(𝑖𝜔𝑡+𝜃) + 𝑒(−𝑖𝜔𝑡−𝜃))(𝑒(−𝑖𝜔𝑡)�̂�+ + 𝑒

(𝑖𝜔𝑡)�̂�−). 
(2.27) 

   

Here we can finally invoke the simplification of the RAW. Fast precessions, relative to 𝜔, are 

discarded because the resonant driving terms contributes far more to the evolution of the spin state. 

We simplify and collect terms in the expansion that contain 2𝜔 and write: 

   

 
�̂�†�̂��̂� = �̂�0 +

𝛺

4
((𝑒𝑖𝜃+𝑒−𝑖𝜃)�̂�𝑥 + 𝑖(𝑒

𝑖𝜃−𝑒−𝑖𝜃)𝜎𝑦 + 

+𝑒−𝑖(2𝜔+𝜃)𝑡�̂�+ + 𝑒
𝑖(2𝜔+𝜃)𝑡�̂�−) 

(2.28) 

   

Now neglecting those fast oscillating terms, we see the raising and lowering terms are fully 

canceled under the approximation, and we obtain, in the end, our RWA full Hamiltonian: 

   

 
�̂�𝑅𝑊𝐴 = ℏ(

𝜔𝑜
2
−
𝜔

2
) �̂�𝑧 +

𝛺

2
(cos(𝜃) �̂�𝑥 − sin(𝜃) �̂�𝑦). (2.29) 
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2.6 Rabi oscillations 

Within the rotating frame, we can begin to discuss the mechanisms that will yield a qubit with the 

full functionality of a classical bit. In this section, we will describe how to flip the qubit’s spin 

reliably. We want to write down the eigenvectors and the corresponding eigenvalues of the system 

in the RWA frame. We start by defining the detuning, ∆ =  𝜔𝑜 −  𝜔, between the drive and the 

qubit’s energy splitting frequency. Choosing the lower energy state to be along the axis of the 

magnetic field, we call it |↓⟩, and so |↑⟩ will be the higher-energy, anti-aligned state. Also we set 

ℏ = 1 for compactness. Expanding fully the 2x2 Pauli matrices we can write the time-independent 

Schrödinger equation for the Hamiltonian, (2.29) in the rotating frame: 

   

 

[

∆

2

𝛺

4
((𝑒𝑖𝜃+𝑒−𝑖𝜃) − (𝑒𝑖𝜃−𝑒−𝑖𝜃))

𝛺

4
((𝑒𝑖𝜃+𝑒−𝑖𝜃) + (𝑒𝑖𝜃−𝑒−𝑖𝜃))

∆

2

] |↑, ↓⟩ = 𝐸↑,↓|↑, ↓⟩. (2.30) 

   

After diagonalizing the above matrix, we get the solutions in our basis |1⟩ = (1  0)𝑇 , |0⟩ =

(0  1)𝑇:  

   

 
|↑⟩ = sin (

𝜃

2
) |0⟩ + 𝑒𝑖𝜃 cos (

𝜃

2
) |1⟩, 𝐸↑ =

√𝛺2 + ∆2

2
 

|↓⟩ = sin (
𝜃

2
) |0⟩ − 𝑒𝑖𝜃 cos (

𝜃

2
) |1⟩, 𝐸↓ = −

√𝛺2 + ∆2

2
. 

(2.31) 

   

Now consider we begin an experiment that is made up of a large ensemble of trials where each 

time our electron spin is prepared into the lower energy ground state, |0⟩. If we want to flip our 

qubit, that is equivalent to attempting to flip the spin state. In the ensemble picture, taking a look 

at the collective behavior of the spin all at once, we want to move every state of our ensemble  
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from |0⟩ to |1⟩. We apply a time dependent electromagnetic drive to the spin to accomplish this 

and our solution above now lets us gain some quantitative understanding of it. The quantity in 

question is the population that is in |1⟩ at time 𝑡. In Dirac notation, where the evolving state of 

the qubit is |𝜓⟩, we write: 

   

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 |𝜑⟩ at time t = |⟨𝜑|𝜓(𝑡)⟩|2. (2.32) 

   

Now we utilize Eq. (2.15) where we wrote any state of our TLS as a linear combination of energy 

eigenstates. This is especially useful because it does not matter what frame of reference we are in 

Figure 2.2. Rabi oscillations of qubit population. The curves here show population transfer (Eq. (2.35)) 

of a qubit showing the maximum ratio of the population that can be transferred to the excited state, |1⟩, 
after beginning the experiment with all the population in the ground-state, |0⟩. Detunings on the order of 

the Rabi rate lead to significantly lower maximum population transmission. 
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because the expansion holds even in the interaction picture of the RWA. Multiplying by the 

projection operator for the states |↑, ↓⟩ we write: 

   

 

|⟨1|𝜓(𝑡)⟩|2 = |∑ ⟨1|𝑛⟩⟨𝑛|0⟩𝑒−𝑖𝐸𝑛𝑡
2

𝑛=↑,↓

|

2

. (2.33) 

   

Measuring the population in |1⟩ at time 𝑡 is then given by: 

   

 

|⟨1|𝜓(𝑡)⟩|2 = |∑ ⟨1|𝑛⟩⟨𝑛|0⟩𝑒−𝑖𝐸𝑛𝑡
2

𝑛=↑,↓

|

2

. (2.34) 

   

Performing the matric multiplication using Eq. (2.31), we get: 

   

 
|⟨1|𝜓(𝑡)⟩|2 = (

𝛺2

𝛺2 + ∆2
) sin2 (

√𝛺2 + ∆2

2
𝑡). (2.35) 

   

This is our formula for a Rabi oscillation describing controllable population transfer in our TLS 

electron spin qubit where 𝛺 is called the Rabi frequency. The significance of 𝛺 is that, when on 

resonance, ∆= 0, we immediately see a simplification to bare sinusoidal driving with frequency 

proportional to 𝛺. This feels remarkable at first because these are the basis states of the system in 

the lab frame, not the rotating frame. It is instructive to consider non-zero detuning cases as well, 

plotted in Figure 2.2 because we will see later that knowing the exact resonance of a divacancy spin 

qubit in silicon carbide involves multiple factors. Understanding all the relevant experimental 

control mechanisms that lead to coherent Rabi oscillations in the lab setting is the first step towards 

a robust qubit platform built on creating superposition states of the spin and seeing how they 

interact with their environment. That information is crucial to evaluating what kinds of quantum 
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information storage or transfer protocols are the qubit can efficiently perform. Some environments 

are more hostile and can wholly prevent good qubit operation by inducing unwanted population 

transfer. This usually falls under noise that cannot be easily canceled out, which we will define as 

quasistatic noise in the next section. The bandwidth of the noise can vary greatly in different 

environments, so we need a way to quantify this to determine to what degree our qubits can operate 

in the face of their noisy environment. 

2.7 Decoherence of quantum spin state 

The previous sections focused on the ability to manipulate a qubit coherently in a vacuum, free 

from all environmental concerns. The subject of this thesis though are qubits composed of spin 

systems in a host crystal that is full of many sources of electromagnetic noise that can lead to 

“decoherence” of the qubit. Decoherence relates to any process where phase error is introduced 

into a superposition state of the qubit that cannot be easily accounted for and canceled out. The 

rate at which a qubit accumulates significant decoherence is one of the most important factors. A 

qubit encoded with information will, after some time, decohere and no longer hold useful 

information. Different qubits decohere on timescales ranging from nanoseconds to several minutes 

and beyond. 

 Thinking of the analogy to classical information, a qubit representing a quantum state for 

longer times means more time to perform logic operations on that information. There is a parallel 

effort to perform quantum logic operations faster and shield qubits from decoherence better. This 

is perhaps the most striking difference from classical bits, because many classical memory 

architectures are stable over the course of years, ready to be read out at any time.  
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The basic mechanism of decoherence is that each superposition state will suffer some error 

in the phase and amplitude of the state due to the other fields present. After some threshold, the 

errors will result in the state decaying over some timescale back to the unremarkable ground-state 

of the system. Unremarkable in that no usable quantum information remains to be measured or 

manipulated in the qubit. Characterizing that timescale allows us to learn the limits of our qubits 

and perhaps engineer some part of the system to remove or mitigate decoherence sources. The 

three time-scales most relevant to electron spin qubit decoherence will be defined in the following 

subsections. 

2.7.1 Lifetime 

Consider an electron spin, with two energy eigenstates under the influence of a magnetic field so 

that the states are separated by a non-zero energy. Consider first a closed quantum system where 

no external electromagnetic fields are present. If the qubit is prepared into one of its energy 

eigenstates, then energy conservation says it cannot swap to the other state, as there is no time 

dependent factor in the Schrödinger equation at all. This is of course a thought experiment and 

perfectly closed quantum systems cannot be built in the laboratory. All qubits exist in open 

quantum systems to some degree, and they are subject to energy transfer with their environment. 

The 𝑇1 time describes at what rate will a qubit undergo energy relaxation into equilibrium with its 

environment, at which point all quantum information encoded into it is lost.  

A basic is example is a spin prepared in its excited state |↑⟩, where after a time, 𝑇1, it will 

be found in a classical mixed state of |↑⟩ and its ground-state |↓⟩, i.e., a thermal equilibrium state. 

The same process could be done preparing into a quantum superposition between those two states, 

where eventually if you observe the state population, you will not be able to measure anything 

more than a classical mixed state again. This is why 𝑇1 is usually called the lifetime of the qubit. 
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All the protocols to make the superposition state through coherent population transfer around the 

bloch sphere must be completed on timescales much faster than the qubit lifetime. It should be 

noted that 𝑇1is not a decoherence process explicitly but acts as an upper bound for the two 

decoherence processes discussed next.  

Measuring the lifetime is relatively simple. Consider an ensemble experiment where we 

rotate the spin population into the |↑⟩ state initially. We can define the classical probability, 𝑃 ↑(𝑡), 

that an experiment will find the spin in |↑⟩ at time 𝑡 as a simple exponential decay: 

   

 
𝑃 ↑(𝑡) =

𝑃 ↑(0)

2
(𝑒(−𝑡/𝑇1) + 1). (2.36) 

   

Then we extract the qubit lifetime from the fit.  

The kinds of processes that lead to these random decays in solid-state electron spin defects 

are spin-flips or population being driven by stray fields near resonance. It is a strong property of 

the kinds of qubits studied in this work that most of their 𝑇1
′𝑠 are not the limiting factor for 

experiments and can reach up to and beyond seconds in length, at which point it becomes 

increasingly difficult to measure due to averaging times ballooning to weeks-long time scales to 

see decay due to low collection efficiency. 

2.7.2 Inhomogeneous dephasing time 

A decoherence process must describe the decay-time of a superposition of the qubit. These 

superpositions live on the equator of the Bloch sphere and are defined by the phase relation 

between the eigenstates that compose them. This is where the term “dephasing” comes from to 

describe decoherence because once the qubit state has been rotated off of the poles, it can 
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accumulate phase not only from our drive, but other noise sources as well. In the most general 

form, the superposition state 𝜓 for an electron spin TLS is described by: 

   

 
|𝜓(𝑡)⟩ =

1

√2
(|↓⟩ + |↑⟩𝑒−𝑖𝐸𝑡), (2.37) 

   

with an energy splitting between the spin-up and spin-down states of 𝐸. The complex coefficients 

on the eigenstates determine where on the equator this superposition lies. Thus, we can see that 

the phase relation is directly related to the energy splitting. 

Consider an experiment where we prepare the pure state |↓⟩ and perform coherent Rabi 

oscillation to generate a superposition state in the equator of the Bloch sphere. This movement is 

usually characterized by the angle traversed by the state while in the equator, in this case a 
𝜋

2
 

rotation was performed. Once in the equator, we utilize our understanding of the rotating frame 

and see that the superposition state begins to precess in the lab frame. After a time 
2𝜋

∆
, the state 

returns after sweeping the equator, where ∆ is again the detuning between the sinusoidal drive and 

the energy splitting. This is due to the extra term 
∆

2
𝜎𝑧 in the RWA Hamiltonian, Eq. (2.29), adding 

phase in the Schrödinger picture. 

What leads to dephasing though is when ∆ is not constant between experiments, and there 

are phase errors 𝛿∆ accumulated in a time in the equator, 𝑡. If we tracked the rotation in the equator 

by measuring out the phase relation of the state, we would obtain sinusoidal graphs with different 

frequencies due to the different detunings ∆ + 𝛿∆ present for each individual experiment. It is a 

known result that averaging sines of different frequencies results in an exponential decay of a form 

𝑒−𝑡/ 𝑇2
∗
. A fit to those averaging sines yields  𝑇2

∗, which we call the inhomogeneous dephasing 

time. 
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When we describe an electron spin qubit’s  𝑇2
∗ as being long, it is a statement about the 

qubit’s inability to be influenced by its environment. Most of these environmental effects are 

incoherent and difficult to quantitively track and thus must be considered as averaged effects. 

The effect of nuclear spins of nearby atoms usually needs to be treated as an ensemble bath state 

for example. Yet we want more from our qubit. We are not seeking to only build memory qubits 

that can hold quantum information for several hours or even longer—there are other solid-state 

spin systems better suited. We are also interested in qubits that can selectively couple to other 

quantum systems. If we invert  𝑇2
∗: 

   

 
 𝑇2

∗~ 
1

𝛤
 , (2.38) 

   

we can define 𝛤, which is what we call the resonance linewidth of the qubit. This quantity relates 

to the qubit’s sensitivity to measure external fields or couple to fields from other qubit systems. 

With long enough  𝑇2
∗, more and more quantum gate operations can be done with a prepared 

quantum state, and across larger physical distances between qubits.  

2.7.3 Hahn-echo time 

In the last section we described a kind of phase error that our qubit accumulates when random 

energy shifts affect the energy level of the TLS. If the noise is more “well behaved” on a certain 

timescale so that over a time period the phase error is approximately constant, then the phase error 

can actually be canceled. This type of perturbation is called quasistatic noise and shares many of 

the same sources as those that define a qubit’s 𝑇2
∗; mainly, nuclear spins or other TLS’s in the  
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material can have slow, fluctuating fields that affect the qubit. Being able to differentiate noise 

sources of different frequencies as quasistatic or not is very useful in understanding a qubit’s 

environment. 

To define the timescale of this quasistatic noise, we again prepare the qubit into an 

eigenstate and then rotate it onto the equator along the y-axis. Here, in a time 𝑡, it accumulates 

phase noise of a particular sign. Performing a 𝜋 pulse and then letting the qubit sample the noise 

for time 𝑡 again inverts the sign of the phase accumulation. If the phase accumulation rate is equal, 

this “refocuses” the qubit state as it now will be along the negative y-axis. Inverting the rotation 

to measure the qubit population’s chance to be in the original eigenstate would yield 100% if all 

the phase error was due to quasistatic noise, this is diagramed in Figure 2.3. If the state is not 

readout, the phase-coherent state can undergo further rotations after such a refocusing pulse. 

Quasistatic noise is only a descriptor up to a certain precision though. Nature does not like 

constants. During the phase accumulation after the refocusing pulse, there will inevitably be some 

Figure 2.3: Decoherence phase error in a qubit. At 𝑡 = 0, a pure state of the qubit in the |↑⟩ is created 

along the z-axis (light blue). After a 
𝜋

2
 rotation (gold), a superposition state now is in the equator of the 

Bloch sphere. After 𝑡 = 𝑡𝑤𝑎𝑖𝑡, inhomogeneous phase error 𝛿𝜃 has been incurred. If a 𝜋 rotation around the 

y-axis is done, the phase error can be canceled exactly by waiting until 𝑡 = 2𝑡𝑤𝑎𝑖𝑡 when the rate of error 

accumulation is constant during both wait times. Quasistatic noise describes error sources that can be 

canceled by the 𝜋 pulse. 
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net change in the qubit phase and as seen for the case of measuring  𝑇2
∗, the oscillations measured 

will experience exponential dampening, where the Hahn-echo time,  𝑇2 can be extracted from a fit 

to 𝑒−𝑡/ 𝑇2. The quasistatic noise effects are canceled out up to the ability to calibrate the length of 

the pulses. These 𝜋 rotations are sometimes called refocusing pulses. Even if the noise changes 

over the course of multiple experiments, if it does not change over the course of a single 

experiment, then it will be canceled each time using this Hahn echo sequence. 

We can see how this refocus works if we remember that two quantum states are equivalent 

if they are different by a single global phase 𝑒𝑖𝛿. We start at 𝑡 = 0 with a superposition state of 

our qubit that we prepare in the equator of the Bloch sphere: 

   

 
|𝜓(0)⟩ =

1

√2
(|↓⟩ + |↑⟩𝑒−𝑖𝐸(0)).  (2.39) 

   

After time spent sampling the noise in the equator 𝑡 = 𝑡𝑤𝑎𝑖𝑡  the 𝜋 rotation is simply equivalent to 

swapping the basis |↓⟩ ↔ |↑⟩ and phase accumulation happens on both of the basis states: 

   

 
|𝜓(2𝑡𝑤𝑎𝑖𝑡)⟩ =

1

√2
(|↓⟩𝑒−𝑖𝐸𝑡𝑤𝑎𝑖𝑡 + |↑⟩𝑒−𝑖𝐸𝑡𝑤𝑎𝑖𝑡), (2.40) 

   

Where we recognize the common phase factor and can say |𝜓(0)⟩ = |𝜓(2𝑡𝑤𝑎𝑖𝑡)⟩. While this 

means a superposition state cannot ever be perfectly readout after waiting some time, it does allow 

the environment to be probed by the superposition state, which can give insight into the host crystal 

or nearby field sources. This in turn defines an extended usable time scale for manipulating 

information encoded in quantum superpositions on qubits. 
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Chapter 3   

THE DIVACANCY DEFECT IN SILICON 

CARBIDE 

3.1 Introduction 

This section will introduce the neutral divacancy defect in silicon carbide. The neutral divacancy, 

or VV0, where the superscript refers to its electric charge, is found in the semiconductor silicon 

carbide (SiC) and is composed of adjacent missing carbon and silicon atoms. Throughout this 

thesis, we will use “divacancy” as shorthand for the VV0 and mention when its non-neutral charge 

state is relevant. This localized feature in SiC has a pair of trapped electrons that will serve as the 

spin qubit for the work discussed in the following sections. The interaction between the spin-1 

system and the crystal and external fields will be discussed in this chapter, where we begin in this 

section with the solid-state properties of SiC’s crystal lattice that give rise to the divacancy spin 

qubit platform [17,39–43]. 

As a material platform, SiC combines the some of the coveted properties of diamond with 

the ease of fabrication and low cost of silicon. There has been interest in SiC for industrial 

applications long before qubit research, including in the high-power electronics sector due to 

excellent thermal properties and the ability to easily grow a thermally insulating oxidation layer. 

Heat dissipation in modern electronics continues to be a factor as the number of transistors per 

square micron increases in computer chips. Today, SiC is breaking into the CMOS market as an 

alternative to silicon in certain applications due to the development of wafer scale (4”+), low-
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defect growth of epi-layers of SiC [17,41,44]. SiC continues to find applications in new 

technologies such as smart phones and space-faring vehicles, to name just a few.  

Among the plethora of SiC’s properties that make it an attractive candidate to host an 

electron spin qubit [45] we mention here four that are central to the success of the divacancy spin 

qubit: large bandgap of SiC, sparse magnetic noise from nuclear spins, high optical index of 

refraction and low phonon loss. SiC boasts a wide bandgap reaching up to 3.33 eV, which enables 

many species of localized electronic states to be protected from thermal noise. When cooled to 

cryogenic temperatures, the magnitude of energetic transitions that reside inside the bandgap 

suppresses the electrons from entering from either the valence or conduction band [46]. One of the 

most common sources of magnetic field noise relevant to the divacancy is from nuclear isotopes 

of the host crystal. It turns out that SiC has relatively low concentrations of both species that carry 

non-zero nuclear spin: carbon is 1.1% and silicon is 4.7% chance to be found to have a nuclear 

spin. When a material has a higher index of fraction than air, it can be used to confine photons in 

cavity structures due to higher rates of internal reflection. [47–52] Lastly, SiC’s lattice has an 

ultralow acoustic impedance, a high speed of sound, and non-zero piezoelectricity. This means 

mechanical excitations generated at the nanoscale or macroscale can be efficiently driven for micro 

electro-mechanical systems (MEMS) [53,54]. This last point makes SiC an attractive candidate for 

hybrid quantum systems containing mechanical resonators. 

3.1.1 The SiC lattice 

The SiC crystal structure can be organized into bilayers, or planes, consisting of an equal number 

of silicon and carbon atoms. This bilayer is the most energetically stable configuration but the way 
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two bilayers can stack together actually has three possible orientations. Different bilayer stacking 

order results in different SiC crystal lattice configurations, or “polytypes.” If we define the c-axis  

as the [0001] crystal direction, then Figure 3.1 shows the definition of the three types of bilayer 

stacking configurations using the 4H-SiC polytype. We label them “A”, “B”, and “C”. The “A” 

layer is translated to become a “B” layer, and both “A” and “B” can be rotated by 60 degrees 

around the c-axis to become a “C” layer.  

3.2 The divacancy in 4H-SiC 

If it is energetically favorable, any of the silicon or carbon atoms can be removed from their lattice 

sites, leaving a vacancy behind. This can occur at scale when knocked out by high speed electrons 

or ions. These vacancies can then be coaxed together by making them mobile in the lattice through 

high temperature anneals. The six dangling bonds from the neighboring atoms are confined and 

make a localized electronic state. When a silicon and a carbon atom vacancy are adjacent, we can 

Figure 3.1: Lattice structure of 4H-SiC. The ABCB bilayer stacking structure is shown, relative to the c-

axis pointing down. The four species of divacancy that can exist due to the hexagonal and quasi-cubic lattice 

sites are shown as removed atoms with dangling bonds. The 60° twist in the structure present every other 

bilayer, starting the A-layer containing the (kk) divacancy, breaks the symmetry and leads to the existence 

of two inequivalent lattice sites. 
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label the divacancy complex based on its position in the lattice. These complexes have significant 

energetic barriers preventing them from disassembling, as is the case with other substitutional 

impurities and complexes. Electron irradiation is the preferred choice for divacancy creation 

because it can knock out individual atoms and has low structure damage [55]. At 2 MeV, 

relativistic electron irradiate has a penetration depth on the order of 1 mm [56]. By carefully 

controlling the dose, the formation of desired defect densities, ranging from sparse single defects 

to dense ensembles, can be produced on demand in 4H-SiC chips. 𝐵𝑧 

Figure 3.1 shows the two possible orientations that there can be a divacancy in 4H, with the 

four distinct species labeled. The divacancy can be parallel to the c-axis or exist within the bilayer, 

which we will from now on refer to as the basal plane. The local bilayer stacking leads to four 

distinct orientations. We use “k” to refer to the quasicubic site and “h” to refer to the hexagonal 

site. The hexagonal or quasicubic local symmetry results from the particular sequence of bilayers. 

In this thesis, we use the notation to differentiate the four configurations of divacancies as “xy” 

where x is the site of the carbon vacancy and y is the site of the silicon vacancy. To further 

differentiate the divacancy types, the optical transitions within the bandgap for the hh, kk, hk, and 

kh are labeled PL1, PL2, PL3, and PL4, respectively, where PL = photoluminescence. It will be 

noted here that there are photoluminescence lines called PL5 and PL6 that have been resolved at 

room temperature and have similar near-IR wavelength to the four divacancies. These are most 

likely the result of stacking fault complexes, not vacancies [57]. PL1-4 have been observed to have 

an excited state lifetime on the order of 13-18 ns, corresponding to a lifetime-limited linewidth of 

approximately 10 MHz [40].  

 The main distinction between the c-axis divacancies, hh and kk, and “basal” plane 

divacancies, hk and kh, is that the lower crystal symmetry of the basal divacancies leads to many 
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differences in the shapes of the orbitals that contain the electrons donated from the six neighboring 

atoms. Density functional theory (DFT) is concerned with defining and elucidating these orbitals. 

We borrow language from DFT when defining the divacancy’s level structure, which has been 

explored in great detail due to similar symmetries as the divacancy complex describing the 

nitrogen vacancy center in diamond [58]. The symmetry group that defines the basal divacancies 

is 𝐶1ℎ while the c-axis is described by the higher symmetry 𝐶3𝑣 group. These classifications from 

group theory define the rotation symmetries allowed, e.g. 3𝑣  for three vertical reflection planes 

and 1ℎ for only one horizontal reflection plane. This lower symmetry for the basal divacancies 

leads underpins the results discussed in Chapter 5 We will need to define the language of the 

divacancy Hamiltonian and optical fine structure next. 

3.2.1 Spectral emission features 

Regardless of the configuration of the divacancy that is optically excited, the radiative decay to 

the ground state can unfortunately span a wide range of NIR wavelengths. This leads to two 

main features in the optical spectrum for divacancies of a sharp zero-phonon line (ZPL) 

corresponding to the direct, radiative decays between the ground and excited states and a much 

broader phonon side band (PSB) due to red-shifting of the light occurring by corresponding 

emission of phonons into the bulk 4H-SiC. ZPL wavelengths exist between ~1078-1132 nm with 

the PSBs slightly shifted to ~1100-1400, as measured in [41] 

 The characterization of the percent of ZPL emission one can expect from a divacancy is 

the Debye-Waller factor (DWF), which is a critical factor for utilizing solid-state spins as 

entanglement generation due to the requirement of frequency-indistinguishable photon 

generation from optically active qubits at different times or in from different places to perform 

photon interference. [9]  
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 Divacancy DWF are typically in the range of ~5-10%, which varies for each of the 

configurations [40,59]. Estimating DWF for a given crystal defect is non-trivial. Yet, enhancing 

the percentage of emitted light at the ZPL of a divacancy can be enhanced by coupling the 

divacancy electric dipole to an optical field cavity. When the cavity resonance is matched with 

the ZPL, there can be an increase in the emission rate due to the Purcell effect, a feature that we 

will explore in Section 6.3.4. 

3.2.2 Divacancy electronic structure 

When a divacancy forms, the electrons that were bonded to the now missing atoms form a new 

complex that acts like an artificial atom with new electron orbitals. Four of the electrons pair up 

in orbitals and do not have an intrinsic magnetic moment. These four do not interact with external 

fields so we can neglect them in the following treatment. The two unpaired electrons can occupy 

two energetically equivalent orbitals, so they can exist in four total states, either with spin, 𝑆 = 1 

or 𝑆 = 0. The states that have nonzero spin are called the triplet states and the one state with zero 

spin is the singlet state. 

 We follow the nomenclature for the quantum mechanical spin numbers 𝑆 and 𝑚𝑠 to define 

the spin and spin magnetic numbers respectively. For an electron, 𝑠 is simply its intrinsic value of 

spin angular momentum, being 𝑆 =
1

2
. Then its magnetic quantum numbers associated with the 

electron’s total angular momentum z-axis projection is 𝑚𝑠 = ±
1

2
.  A state for the total spin system 

is written |𝑆,𝑚𝑠⟩ where the state of an electron will be truncated as spin-up or spin-down: 
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|
1

2
,
1

2
. ⟩ →  |↑⟩, |

1

2
, − 

1

2
. ⟩  → |↓⟩. For the two electron system, we have 𝑚𝑠 = ±1,0.  There are four 

allowed states for this configuration, written as: 

   

 |1, 1⟩ =  |↑↓⟩ 

|1, 0⟩ =
1

√2
(|↑↓⟩ + |↓↑⟩) 

|1, −1⟩ =  |↑↑⟩ 

|0, 0⟩ =
1

√2
(|↑↓⟩ − |↓↑⟩). 

(3.1)  

   

The three states with total spin, 𝑆 = 1, represents the antisymmetric triplet states, while there is 

one symmetric singlet state that has 𝑆 = 0. Within the divacancy orbitals, the triplet state is stable 

due to the antisymmetric spin-spin interactions being energetically favorable. This is the manifold 

that qubit control will be done within. The singlet configuration is only metastable but is accessible 

by way of optical excitation of the triplet state and allows “resetting” of the triplet spin state that 

helps enable initialization of the qubit (see Section 3.3.1). 

Having defined the allowed spin states of the divacancy in 4H-SiC in its optical 

groundstate, we now begin defining its interaction with external fields. The interactions we will 

include in the Hamiltonian are interactions with electromagnetic fields and other spins present in 

the crystal. Our total Hamiltonian operator, 𝐻𝑡𝑙𝑡, takes the form: 

   

 𝐻𝑡𝑙𝑡 = 𝐻𝑍𝐹 + 𝐻𝐸𝑙𝑒𝑐 + 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 + 𝐻𝐻𝐹 . (3.2)  

   

𝐻𝑍𝐹 is the zero-field Hamiltonian, defined as the contribution from the two electron spin’s dipolar 

spin-spin interaction. 𝐻𝐸𝑙𝑒𝑐 is from AC or DC electric field drives. 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 is similar and describes 

the effects from magnetic field drives. 𝐻𝐻𝐹 describes the hyper-fine interactions from non-zero 

nuclear spins near the divacancy.  
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3.2.3 Groundstate Hamiltonian 

To begin defining 𝐻𝑍𝐹, we need the Pauli spin matrices for 𝑆 = 1 systems, which makeup the full 

vector, �̂� = [�̂�𝑥, �̂�𝑦, �̂�𝑧]: 

   

 
�̂�𝑥 =

ℏ

√2
(
0 1 0
1 0 1
0 1 0

) , �̂�𝑦 =
ℏ

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

) , �̂�𝑧 =
ℏ

√2
(
1 0 0
0 0 0
0 0 −1

). (3.3)  

   

Now we write the zero-field Hamiltonian explicitly: 

   

 𝐻𝑍𝐹 = �̂� ∙ �̂� ∙ �̂�.. (3.4)  

   

The zero-field splitting tensor �̂� has components 𝐷𝑖𝑗 . We can simplify it to a diagonal matrix 

given the fact that that �̂� is diagonal and traceless in this basis for, so we write: 

   

 

�̂� = (

𝐷𝑥 0 0
0 𝐷𝑦 0

0 0 𝐷𝑧

). (3.5)  

   

Where above we defined the components of the matrix in terms of the diagonal tensor components, 

𝐷𝑖𝑖 = 𝐷𝑖 . And we set ℏ = 1 for compactness. By expanding and collecting like terms we write: 

   

 

𝐻𝑍𝐹 = �̂� ∙ �̂� ∙ �̂� =

(

 
 

𝐷𝑥
2
+
𝐷𝑦

2
+ 𝐷𝑧 0

1

2
(𝐷𝑥 − 𝐷𝑦) 

0 𝐷𝑥 + 𝐷𝑦 0

1

2
(𝐷𝑥 − 𝐷𝑦) 0

𝐷𝑥
2
+
𝐷𝑦

2
+ 𝐷𝑧)

 
 

 

=

(

 
 

1

2
(𝐷𝑥 + 𝐷𝑦 − 𝐷𝑧)  + 𝐷 0 𝐸 

0 𝐷𝑥 + 𝐷𝑦 0

𝐸 0
1

2
(𝐷𝑥 + 𝐷𝑦 − 𝐷𝑧)  + 𝐷)

 
 

 

 

(3.6)  
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Where for the last step, we use the established convention to define a longitudinal and transverse 

zero field splitting (ZFS): 𝐷 =
3

2
𝐷𝑧 and 𝐸 =

1

2
(𝐷𝑥 + 𝐷𝑦), respectively [60]. The magnitude of 

these two parameters has a significant impact on sensitivity of the divacancy’s energy levels to 

perturbing fields, as we will see in the results presented in Chapter 5  Defining these two quantities 

allows us to simplify the Hamiltonian, up to a constant energy shift, as: 

   

 𝐻𝑍𝐹 = 𝐷(𝑆𝑧
2) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2). (3.7)  

   

If we solve for the eigenvectors after solving the time-independent Schrödinger equation, we 

obtain three states for the spin system and their corresponding energies defined by the ZFSs: 

   

 
|0⟩, 𝐸0 = −ℏ

2

3
𝐷   

|+⟩ =
1

√2
(|+1⟩ + |−1⟩), 𝐸+ =  ℏ (

1

3
𝐷 + 𝐸) 

|−⟩ =
1

√2
(|+1⟩ − |−1⟩), 𝐸− = ℏ(

1

3
𝐷 − 𝐸). 

(3.8)  

   

Now we can look at the energies of this Hamiltonian to get intuition about the zero-field tensor. It 

can be explained as the interaction energy of the triplet states where we lift the degeneracy between 

the states with 𝑚𝑠 = ±1 with the state with  𝑚𝑠 = 0. These are separated by the longitudinal ZFS, 

𝐷 because for divacancy systems, 𝐷 ≫ 𝐸.  This will be important as we will normally chose 𝑚𝑠 =

0 and one of the magnetic excited states as our qubit levels. The states 𝑚𝑠 = ±1 are also split by 

the transverse ZFS 𝐸. Importantly, we also see that the triplet states are no longer the spin 

eigenbasis, instead we have mixed states |+⟩ and |−⟩. This will be very important in Chapter 5 

when we investigate how to exploit this level structure to show an enhanced coherence of the kh 
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divacancy by adding an AC microwave drive between |+⟩ and |−⟩.  It is the reduced symmetry of 

the basal divacancy adding strain to the Hamiltonian that results in the off-diagonal 𝐸 terms of Eq. 

(3.6) being large enough compared to 𝐷 for basal divacancies [25] that the zero-field splitting plays 

a large role in its spin dynamics. 

3.2.4 Response to electric fields 

It has been observed that electric field vectors �⃗� modify the zero-field Hamiltonian curves [24], 

which due to our definitions in the previous section, we can write the contributions to the LZFS 

and TZFS due to electric field components parallel, 𝐹∥  and perpendicular, 𝐹⊥ to the magnetic 

dipole: 

   

 𝐻𝐸𝑙𝑒𝑐 = 𝐷𝑒𝑙𝑒𝑐(𝑆𝑧
2) + 𝐸𝑒𝑙𝑒𝑐(𝑆𝑥

2 − 𝑆𝑦
2) 

𝐷𝑒𝑙𝑒𝑐 = 𝑑∥𝐹∥, 𝐸𝑒𝑙𝑒𝑐 = 𝑑⊥𝐹⊥ 
(3.9)  

   

Where the 𝑑’s are the parallel and perpendicular Stark-coupling parameters to the divacancy 

ground-state spin.  

3.2.5 Response to magnetic fields 

The Zeeman interaction term differs in its dependence on the Pauli spin operators, so we will see 

a marked difference in how magnetic fields couple to the divacancy. For electron spin systems, we 

can write: 

   

 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = 𝜇𝐵�̂� ∙ �̂� ∙ �̂�. (3.10)  

   

Here 𝜇𝐵 is the Bohr magneton constant for the electron, �̂� is the ground-state electron g-factor 

tensor (both are ~2 for the divacancy complex), and �̂� are the magnetic field components.  
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Expanding in component form, we write: 

   

 𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = 𝜇𝐵(𝑔∥𝐵∥�̂�𝑧 + 𝑔⊥𝐵⊥(�̂�𝑦 + �̂�𝑧)) (3.11)  

   

Now we can make several comments on the response of the divacancy groundstate spin to 

electromagnetic fields. Starting with magnetic fields, the Zeeman interaction leads to large shifts 

of the spin energy levels, on order of 𝜇𝐵�̂� ~ 30 GHz/T. This has pros and cons, as always is the 

case for quantum systems. On one hand, this allows sinusoidal magnetic fields to perform fast, 

coherent Rabi oscillations of the spin population, but on the other hand, magnetic noise threatens 

to decohere the qubit through energy level fluctuations. The upside is that the when the ZFSs, are 

larger than the magnitudes of the noise, the system is quantized by either 𝑆𝑧
2 due to the presence 

of 𝐷 or  𝑆𝑧
2 + 𝑆𝑥

2 − 𝑆𝑦
2 due to the presence of 𝐸, see Figure 3.2. Non-commuting operators cannot 

affect the Hamiltonian energies to first order, so what results is an insensitivity to the 

magnetic field components in �̂�. This effect is larger the larger 𝐷 and 𝐸 are. For the four species 

of divacancies, 𝐷 does not change by much, but for the basal divacancies, 𝐸 ~ 32 MHz scale while  

On the left, c-axis divacancies have negligible 𝐸. This large 𝐸 adds insensitivity to all components 

of �̂�, making the basal divacancy an attractive qubit due to a well-protected spin state. Electric 

fields enter the picture when operating in a regime with negligible �̂�, and the quantization means 

𝐸 now effects the energy levels to first order. The basal divacancies are well-positioned to show 

this effect given the large susceptibility to transverse electric fields [24]. Where electric fields 

shine is their ability to drive normally forbidden ∆𝑚𝑠 = ±2 transitions when 𝐸 is changed in time 
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by AC electric fields. One last thing to note is that temperature effects on the divacancy ground-

state spin are realized through the electric coupling term also inducing changes in 𝐷 and 𝐸 [41]. 

3.2.6 Response to nuclear spins 

The hyperfine contribution to the Hamiltonian is the most unwieldy due to it not having a closed 

form that can capture the extent of every species coupling to a divacancy. The term can be written 

down as an infinite sum of the magnetic moments, 𝐼𝑛, of the nuclear spins and corresponding 

hyper-fine coefficients, �̂�𝑛: 

   

 𝐻𝐻𝐹 =∑�̂� ∙ �̂�𝑛 ∙ 𝐼𝑛
𝑛

. (3.12)  

   

Figure 3.2. Spin energy dispersion for kh divacancy. On the left, we see the zero field spin states for the 

kh divacancy with their degeneracy broken by the presence of the transverse ZFS in the Hamiltonian. For 

small applied 𝐵𝑧 (center), the energy dispersion is dominated by the 𝐸(𝑆𝑥
2 − 𝑆𝑦

2) term, so we maintain 

the mixed character of the spin basis, |±⟩. This regime has high-protection from magnetic fluctuations due 

to the quadratic dependence, and the avoided crossing is called a clock transition. As 𝐵𝑧 increases in 

magnitude (right), the Zeeman term, 𝜇𝐵𝑔 ∙ �̂� ∙ �̂�, dominates, leading to unmixing of the basis, returning to 

the 𝑚𝑠 = ±1 basis and increased sensitivity to magnetic noise due to linear dispersion. 
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To understand this, we must introduce the concept of the “nuclear spin bath” or just “bath” for 

short. Those nuclei with non-zero spin located both near to and far from the divacancy can couple 

to the Hamiltonian at various degrees of interaction strength. In certain circumstances, this effect 

can be averaged and represented by a classical magnetic field noise term and the basis states of the 

nuclear spins are not used. In other cases, a single nuclear spin is so close, maybe even the 

neighboring atom, to the divacancy that its spin states can be treated coherently. This will not tell 

the whole story though of the remaining collection of nuclear spins and it requires powerful 

theoretical tools to describe the effects of the bath. 

3.3 Optical fine structure 

Having laid the groundwork of how the spin energy levels of the divacancy in its optical 

ground-state can change, we now consider the effects of optical excitations. Due to the presence 

of an optical dipole for the divacancy structure, certain wavelengths of light in the near-infrared 

(NIR) can yield a spectrum of photoluminescence that is different for every configuration of the 

divacancy. The exact wavelength resonant with a particular defect depends on the local 

environment and how it interacts with the occupied spin triplet orbitals in the ground and excited 

state. The energy differences between those states reveals an optical fine structure that will 

influence how we readout our spin qubit using pulses of tunable, narrow-line NIR lasers.  

The c-axis divacancies share their excited state fine structure with that of the nitrogen 

vacancy center complex in diamond, resulting from their shared 𝐶3𝑣 symmetry group. There are 

six spectral lines from the orbital doublet spin triplet levels having their degeneracy lifted by the 

local electric field. These fields are due to the specific crystal strain at the location of the defect 

and the existence of nearby trapped TLSs, or from applied fields from fabricated electric leads for 

deterministic tuning. The most useful character of the divacancy fine structures is the spin-
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conservation of the optical transition between the ground and excited state orbitals. Taking 

advantage of this allows deterministic readout of the spin state of the groundstate. 

We will focus on the kh configuration now as it will be the defect studied in the results of 

Chapter 5 The kh divacancy is also theoretically understood to have an excited state doublet [25,58] 

due to the broken symmetry of its crystal lattice position that leads to internal applied transverse 

strain, shown in Figure 3.3. Experimental evidence for the second, higher energy excited state is 

hard to measure and has not been reported even now. One explanation for this lack of observation 

is that excitations that enter higher orbital undergo rapid internal conversion through non-radiative 

decay that cannot be easily observed by other spectroscopic or electrical means. Thus, for the kh 

divacancy, only three optical lines are seen for all practical experiments. We focus this section on 

the lower energy excited state, which gives us the means to prepare the ground-state spin into an 

arbitrary superposition state as well as deterministically read the state out. Experimental details of 

these processes will be explained in detail in Chapter 4 Another notable fact about the kh defect 

fine structure is that the optical selection rules means the three spin states for kh divacancies are 

excited by linearly polarized light [58,61] which is in contrast to the c-axis class of divacancies 

where circularly polarized light excites the 𝑚𝑠 ≠ 0 character spin states. 

Much of the theory on the ground-state triplet manifold applies to the excited state, which 

we borrow the convention from DTF and label 𝐴′ (the higher energy excited state is labeled 𝐴′′), 

and the equation for the Hamiltonian in the ground-state, Eq. (3.8), holds as well. What this means 

is that the mixed spin basis, [|+⟩, |−⟩, |0⟩], can define the spin states of the electrons in the ground-

state as well as the excited state. This gives the kh divacancy spin state a chance to remain 

unchanged after emitting an optical photon (Figure 3.3B), which is very useful for preparation of 

the spin state before attempting to perform qubit rotations in the groundstate. If there are moderate  
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magnetic fields present, the eigenbasis of the excited state can shift and alter the selection rules 

and spin mixing can be induced upon optical excitation. This degradation of the spin projection 

would be measured as an energy relaxation effect in the spin readout measurement and should be 

avoided by working at low magnetic fields. 

3.3.1 Optical spin-initialization  

Now we will discuss the mechanisms of utilizing the divacancy’s optical structure to 

prepare, or initialize, a specific quantum spin state and then measure, or readout, that spin state 

deterministically. This technique underpins all the qubit manipulations concerning the divacancy 

system in this thesis, including Ramsey and Hahn measurements of the coherence of said qubits. 

Figure 3.3. Optical fine structure of kh divacancy and spin initlization. A) The excited state doublet of 

the optical structure of the divacancy, |𝐸𝑥⟩ and ห𝐸𝑦ൿ splits under strain into |𝐴′⟩ and |𝐴′′⟩. The ground-state, 

|𝑔𝑠⟩ remains unperturbed. B) Expanding to show the spin-triplet of the addressable optical states of the kh 

divacancy, |𝑔𝑠⟩ and |𝐴′⟩. Red arrow shows off-resonant excitation from within the groundstate levels that 

do not conserve spin after non-radiative relaxation (dashed, black arrow) into the optical excited states. 

Light blue arrows denote the spin-conserving resonantly addressable transitions. Other non-radiate 

transitions that couple the excited states with the singlet state through the ISC. Thickness shows the 𝑚𝑠 =
0 state, |𝐴0

′ ⟩ couples less strongly to the ISC.  A spin state can be prepared into |0⟩ by off-resonantly 

addressing the ground-state, which over time loses 𝑚𝑠 ≠ 0 character spin states on average due to them 

non-radiatively relaxing through the ISC. 
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If we want to do an ensemble of experiments, we want to say with some confidence that the spin 

begins in, say, the |0⟩, where this state is for the ground-state. It so happens that upon excitation 

with off-resonant light (905 nm for kh divacancies), there exists a decay pathway through non-

radiative transitions through the singlet states where we see preferential decay into the |0⟩ ground-

state after many cycles. This intersystem crossing (ISC) is a well-studied feature also found in the 

nitrogen vacancy center literature. [62,63] This preferential decay has a contrast of a few percent 

for divacancies [39]. The off-resonant light critically excites from any of the three spin ground-

states, so we do not to have prior knowledge of the spin state to begin an experiment. After a 

certain number of excitation cycles, the spin population is, to some increasing percentage, found 

in |0⟩. (Figure 3.3B) This is what we call high-fidelity spin initialization, where fidelity in this 

context describes the percentage of a population of quantum states prepared in the desired state. 

Fidelities up to 94% have been achieved by using purely off-resonant excitation [40].  Usage of 

resonant excitation with tunable, narrow-line lasers can offer better signal-to-noise ratios overall 

and is generally considered the better choice for addressing the spin-selective optical transitions 

of the basal divacancy. It allows the mapping of the exact energies of the optical fine structure of 

the kh divacancy [25] Choosing to address just one of the transitions to excite at a time means that 

the spin population in that level (or lack thereof) can attempt to be measured without worrying 

about addressing other levels.  
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Chapter 4   

EXPERIMENTAL METHODS FOR SPIN 

MEASUREMENTS 

4.1 Introduction 

This chapter describes the experimental equipment and methods used to measure the properties of 

single divacancies using optical and microwave photon sources while shielding them from 

unwanted electromagnetic noise and thermal gradients. The goal is to describe the various 

apparatuses of this setup in a piece-wise fashion to elucidate the technical details of obtaining 

quantitative data describing the operation of a spin qubit. Several times we will also take a step 

back to consider best practices to decrease the effect of noise sources when combining the different 

subsystems.  

We will begin with a description of the cryostat system used to maintain a 4 K environment 

around the SiC chip. and the factors to consider when coupling in diffraction-limited NIR laser 

light and coherent microwave signals at cryogenic conditions. This will lead into a discussion on 

both of those subsystems to describe how the raw data from the defect’s optical emission can be 

recorded and used to characterize the electron spin qubit.  

4.2 Cryogenics 

At ambient conditions, the chips of SiC that house divacancies at densities that allow addressing 

of single defects will only show broad features dominated by photoluminescence from many other 
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photoactive species when addressed by off-resonant light. Only at cryogenic temperatures below 

5 K does the high-fidelity optical interface of the divacancy become the dominant generator of 

photons at their optical wavelengths. We thus place our SiC chips inside a closed-cycle helium 

cryostat (Cryostation s100, Montana Instruments) which uses the Gifford-McMahon cryocooler 

architecture to extract heat from the sample by pressurizing and expanding helium gas. The heated 

helium transferred into a chiller pump that enables heat exchange with cold water that is then 

pumped away to expel heat elsewhere. Heat is ultimately absorbed inside the cryostat using a “cold 

finger” or copper piece that the sample holder comes into contact with inside the vacuum chamber. 

Copper is chosen for its excellent thermal conductivity. The heat to be exchanged includes the 

latent heat exchange with the environment outside the insulated cryostat as well as any radiation 

we must input into the chamber to address the divacancy. 

The cryostat’s cooling power defines the thermal budget we have for our experiment, 

which can easily be overwhelmed. That budget is defined by the degree of thermal isolation the 

the cryostat can provide from the ambient conditions. There are two main components for our 

cryostat: an outer metal shroud that creates a vacuum chamber and an inner radiation shield. We 

use a two-stage pump system composed of a diaphragm and turbomolecular pump to reach 

pressures < 50 mTorr to minimize the rate of convective heat transfer. A good physical seal is 

necessary to establish vacuum, which is achieved using a rubber O-ring with a thin coating of 

grease. Radiative heat transfer from the sample directly seeing the vacuum shroud is steeply 

reduced by the aluminum inner enclosure that reflects in the infrared spectrum. Typically, this 

shield sits at around 30 K. These enclosures provide ideal operating conditions for the cryostat to 

start removing heat using the gas-exchange loop and undergo cryocooling. Typically, we maintain 
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the turbo pumping until the base operating temperature is reached in around 4 hrs. or even during 

the whole course of the experiment to remove trace contaminants from outgassing in the sample 

chamber. Outgassing is the process of trace gas particles being initially trapped inside materials 

and cannot be pumped out, but later leak out slowly over time. These contaminant gasses then can 

rapidly cool at cryogenic temperatures and land on the sample to become a potential source of 

optical scattering or degradation of performance of the microwave lines. 

To have optical and microwave photon access to the sample, the thermal insulation is 

necessarily compromised in two places. The first is a series of SMA-SMA coaxial wire 

feedthroughs mounted on the side of the cryostat. There is a second stage of SMA connectors 

outside of the vacuum shroud to minimize the risk of unscrewing them compromising the integrity 

of the chamber itself. The second input is an optical port cut in the vacuum shroud with an anti-

reflection coated window to maximize two-way transmission of the wavelengths of interest while 

Figure 4.1. Cryogenic mounting adapter and electromagnet. Shown here (left) is the back view of a 

sample mounted inside the 4K cryostat. The laser light enters the cryostat through the objective (left) and 

through the ultra-thin gold foil, which minimizes as much as possible extraneous radiation from 

impinging on the sample. The PCB is mounted on a gold-plated L-bracket screwed to the piezo stack 

anchored to the cold finger. Microwave photons can be sent to the sample through wire bonds connected 

4 ports that lead to SMP/SMA couplers. The sample mount sits inside the Montana cryostat (right) with 

optical access. This diagram shows how the cryostat chamber (blue) is surrounding by three 

electromagnet coils (grey) that can provide vector-magnetic field sweeps discussed in Section 4.6.7 and 

Chapter 5 The z-axis is defined as the travel direction of the lasers. 
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suppressing other wavelengths entering the cryostat chamber. The few-millimeter thick window is 

necessarily at ambient temperature and pointed directly at the sample through a microscope 

objective (LCPLN100XIR, Olympus). The solid angle of ambient radiation shining through the 

objective is minimized by mounting an ultra-thin gold foil annulus between the objective and the 

sample.  

The last element of the cryogenic system to discuss is the physical mounting of the sample 

to the cold finger. We need to be able to move our sample inside the cryostat, so we mount the 

sample holder to a 3-axis nano positioner piezo system. The design of the piezo stack includes 

thermally conductive ribbons that bypass the stages that act as insulating blocks. The sample holder 

itself is designed for maximum thermal conductivity. The sample is secured by about a toothpick’s 

diameter of adhesive paste applied directly to a copper block screwed to an adapter on the piezos. 

Around the copper block is a custom-printed PCB board with SMP coaxial interfaces that connect 

to the SMA wires mentioned above. The direct thermal link through low-thermal insulation copper 

from the sample to the cold finger helps to minimize the total heat load on the sample. 

4.3 Optical apparatus 

The optical path of the setup contains a number of subsystems that each play a crucial role in 

shuttling the light from laser outputs to the sample under study in the cryostat. Great care must be 

utilized to maximize the signal to noise ratio during each type of experiment used to characterize 

the defect’s differ properties The experiments themselves will be explained in a later section, but 

first we must describe the subsystems, of which there are six.  

The most important function of each subsystem is now mentioned to give an overarching 

idea of the setup. 1) The lasers generate photons that must have the right frequencies and be sent 

at the right times to accomplish qubit population driving. 2) Photons from the different lasers must 
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be overlapped into a single beam and have the right polarization and power to address the 

divacancy’s optical dipole efficiently. 3) This beam must be focused to a diffraction-limited spot 

to resolve single divacancies and be translatable for raster scans of the surface. 4) The photons 

emitted by the defect’s phonon sideband must be collected at high-efficiency while blocking 

photons at the frequency of the lasers and undesired other emitters in SiC. 5) These collected 

photons must be counted at high efficiency to produce accurate count rates. 

All five of these subsystems sit on a pair of adjacent optical tables in our laboratory, save 

the photon counter housed in a thermally controlled closet. The mass of the stainless steel tables 

act as the primary mechanical dampener for our experiment, helping to reduce the fluctuations of 

the optical beam path from foot traffic in the lab. Here it is useful to note our lab is located two 

stories underground to add a degree of passive atmospheric stability to supplement the building’s 

active systems, further mechanical isolation from the university vehicular phonon noise-scape, and 

shielding from communication technology radiation.  

4.3.1 Lasers and laser controls 

This first subsystem, diagramed in Figure 4.2, contains the two different laser excitation 

sources, one 905 nm laser (QFLD-905-200S, QPhotonics) and a tunable laser (DL pro, TOPTICA 

Photonics). Also included are the necessary instruments to calibrate and observe the spectral 

quality of the tunable resonant laser. What outputs from this subsystem are the two beams in 

different single mode fibers sent to the main free-space optical setup that makes up the excitation 

and collection paths. 
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We use the 905 nm laser to accomplish several tasks. This laser can illuminate all species 

of defects for characterizing the density of emitters in new samples. Its main role is to provide off- 

resonant spin initlization and can also stabilize the defect in the neutral charge state. A resonant 

readout pulse is then used to readout the spin state. The off-resonant power was set to 350 mW 

and the controller has active thermal feedback. The power at which we address a single defect can 

vary by a few orders of magnitude when optimizing for signal to noise ratio, but typical off-

resonant powers reaching the sample are in the 1-100 mW range. The 350 mW overhead helps 

recoup losses from other optical components. 

The tunable diode laser system produces photons in the range of 1068 to 1140 nm for the 

optical resonance characterization and spin state readout of kh divacancies. The actual wavelength 

range the PL4 optical signals were normally found in the sample studied is better expressed in 

frequency, being a ~150 GHz wide region beginning at ~277.95 THz. The powers needed to reach 

the sample are much lower given the resonant condition, where powers below 1 mW are typical. 

The number of control elements used for tuning and active stabilization at a particular resonant 

wavelength to within ~10 MHz takes a large power overhead, so power efficiency in all 

components and optical fiber connections is paramount. Our resonant laser has a linewidth of a 

Figure 4.2. Laser control diagram. Shown here are the components that make up laser control subsystem. 

Fiber beams splitters pick off an adequate amount of light to send to the characterization Fabry-Perot cavity 

and wavemeter. Both lasers are fiber coupled to single-mode fibers and sent to the excitation path of the 

confocal microscope (Figure 4.3). 
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few Hz and a widely tunable range, but care has to be taken to produce single mode light from it. 

Below we outline the two main instruments underpinning this process. 

The resonant laser output is coupled into a single mode optical fiber with low loss and a 

percentage of that light is picked off and sent to a commercial wavemeter (Bristol 671) to measure 

its wavelength precisely. The device gives a digital reading calibrated to single Hz precision on a 

repetition cycle of a few milliseconds. The actual measurement is done using Fizeau interferometry 

where the interference fringes of the wavelength under test is compared to those of a fully internal 

HeNe laser. The wavemeter can give false readings if the input light is multimode, which can be 

off by only a few percent and can thus look real.  

The instrument we use to observe the mode quality of our laser is a high-finesse, linear 

Fabry-Perot interferometer. (Optical cavities are discussed in greater detail in Chapter 5 One 

mirror is attached to a linear piezo motor such that it can quickly sweep over several free spectral 

ranges (FSRs) of the cavity. A single mode laser beam, whose linewidth is basically constant 

across all wavelengths, shows up as a set of equally bright peaks separated by the FSR. This 

spectrum can indicate that the resonant laser’s output is multimode if extra, smaller peaks are 

observed and must be adjusted before the experiment can continue.  

The final major part of the laser subsystem is the acousto-optic modulator (AOM), which 

can produce time-gated laser pulses by deflecting the laser beam upon receiving a microwave 

signal. This device gives us a way to “flip the switch” for laser beams when producing pulse 

sequences for initialization and readout of the spin state of the qubit. There are certain crystals 

with indices of refraction that can change upon applying surface acoustic waves at certain 

resonance conditions. We operate in the orientation that applying a pulse to the AOM deflects the 

beam into the main optical path, leaving the non-deflected beam incident on an optical absorber. 
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Recalling the power overhead requirements for the resonant laser, using the AOM in this 

orientation reduces the beam intensity by a few dBm, but removes the chance of accidental laser 

exposure. The tens of nanosecond switch time for the AOMs matches up well with the optical 

dynamics of the divacancy. It should be noted that insufficient extinction of laser light resonant 

with the divacancy can be observed as spurious signal. In this experiment, a single AOM with 

extinction ratio ~45 dBm was sufficient to realize a high enough on/off ratio for the pulse 

sequences. 

The full method of tuning the resonant laser, using the instruments described in this 

subsystem, to a particular wavelength that matches the optical transition of a divacancy is quite 

involved. The goal is to be able to obtain operation at a specific wavelength such that one can take 

small steps of a few MHz at a time and maintain single-mode spectral operation at each point. This 

is needed for the most demanding experiment with the laser, taking photoluminescence excitation 

spectra (PLE, described in 4.6.2). The difficulties arise in finding the optimal values for three 

parameters of the laser: the piezo motor position that define the broad wavelength tuning and the 

diode voltage and current that define the spectral quality at a certain motor position. The exact 

wavelength and spectral mode quality needs to be monitored over time while still minimizing the 

total experiment time. Maintaining accurate laser frequency and mode quality throughout the 

experiment is very important to not introduce large errors due to unrecorded drifts in the optical 

power addressing a specific spin-dependent optical line. 
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4.3.2 Confocal microscope: excitation path 

After laser light from our sources is sent through single mode fibers into two different fiber 

launchers, we send the beams into our home-built confocal microscopy setup. The entire confocal  

setup will be presented as three different subsystems. The excitation path seen in Figure 4.3 uses 

free space optics to make the different wavelength beams colinear and allows polarization control 

of the resonant beam. 

While commercial laser sources like the two described in the previous section usually have 

some degree of polarization stability, it is necessary to “cleanse” the resonant laser light as it enters 

the free-space section. This is also because the AOMs and optical fibers can add polarization drift, 

which is difficult to correct when not using polarization maintaining fibers and instruments. We 

use a film-based linear polarizer which gives an output with a degree of polarization along its linear 

axis over five orders of magnitude better than the incident light.  

The fidelity of the linear polarization of the resonant light is important because the light 

then passes through a set of half- and quarter-wave plates that allow full polarization control when 

linear polarization is entered. The spatial alignment of kh divacancies can have three different 

orientations when looking along the c-axis, which in our experiment corresponds to the travel 

Figure 4.3. Excitation path diagram. Shown here are the components that make up excitation path 

entering from Figure 4.2. After polarization cleaning and assignment of the resonant laser, the resonant and 

off-resonant beams are co-aligned using the excitation dichroic before being sent the 4f-pair and the cryostat 

(Figure 4.3). 
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direction of the optical beams. By sweeping the polarization, we can find the angles of the wave 

plates that give maximum optical readout efficiency. This corresponds with maximizing the 

overlap between the light’s linear polarization angle with the orientation of the single divacancy’s 

optical dipole.  

In order to spatially align the off-resonant and resonant optical beams, we utilize a dichroic 

filter. These are filters that have a wavelength-dependent transmission and reflection spectrum 

such that we can choose a cut-off wavelength where the majority of the light below that cut-off is 

transmitted and light above the cut-off is reflected. We choose a 1000 nm as the cut-off of the 

dichroic. By maneuvering the two beams to be incident on the dichroic, on beam rotated 90-

degrees relative to the other, we can overlap their optical modes as one passes through the dichroic 

and the other reflects off of its surface. The alignment can be adjusted until the transmitted and 

reflected beams are perfectly co-linear as they head towards the next part of the setup. 

4.3.3 4f path 

With the excitation laser beams co-linear, it remains to control where on the sample the laser will 

be incident inside the cryostat. Sending the light through a 4f relay lens pair (Figure 4.4) into a 

microscope objective allows raster scans of the sample that will reveal bright optical signatures of 

defects that are spatially resolved due to the diffraction limited, NIR laser spot incident on the 

sample after exiting the objective. The co-linear beam reflects off a fast steering mirror (FSM) that 

has voltage controlled tilt angles for its mirror. For an input range of ±10 volts, we gain the ability  

of rapid spatial mapping of photoluminescence from our sample in an approximate range of ±45 

microns from where the laser spot is incident with no FSM voltage applied.  

Before we discuss the 4𝑓 lens pair that comes after the FSM, we will discuss the final 

optical element before the sample itself, the microscope objective. We use a microscope objective 
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(LCPLN100XIR, Olympus) with a high numerical aperture (NA = 0.85)) and high transmission 

(70%) at the wavelengths of the resonant excitation light. A beam that enters the back of the 

objective of sufficiently small diameter from the excitation path will produce a diffraction limited 

spot at a distance away from the objective equal to its working distance. Recalling the thermal 

constraints of having optical access to our sample, the ~4 mm working distance leads to a tight 

constraint on the width of the gold reflecting foil that minimizes the unwanted ambient radiation 

incident on the sample. 

The laser beam deflected off the optical axis by the FSM is next sent through a 4𝑓 

configuration. This is the same configuration of lenses used in basic telescopes. In our setup it 

consists of a pair of lenses with the same focal length 𝑓 being separated by 2𝑓, and the point of 

the angular divergence (the FSM) and the convergence (sample surface, after the objective) must 

be located 𝑓 away from either the first or second lens. To first order, it can be shown that the 

angular divergence upon entering the relay gives translations of the beam focused by the objective. 

The above elements allow for observation of the photoluminescence response of the sample 

surface, but simply having a window into that response function at NIR would make finding a 

Figure 4.4. 4f path diagram. Shown here are the components that make up the optical subsystem denoted 

as the 4f path, with beams entering from the excitation path (Figure 4.3). Off-resonant and resonant light 

enter from lower-left and reflect off the FSM before entering the section containing the 4f relay lens pair 

(not to scale), after which the laser excitation continues to the microscope objective. The path flipper can 

swing a 90/10 pellicle beamsplitter in and out of the path when we wish to direct white light into the cryostat 

to illuminate the sample and collect a backscattered image on the visible camera. 
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suitable position on the sample to begin experiments difficult. Especially when utilizing nano-

fabricated structures on its surface with small footprints. Conveniently, the 4𝑓 relay can 

accommodate colinear white light that reflects off the sample surface and returns through the 

objective and ends up incident on a visible camera. Then the in-cryo nano positioners can be used 

to traverse their 5 mm travel range to bring a certain spot on the sample to intersect with the focal 

point of the lasers. 

4.3.4 Confocal microscope: collection path 

The next step is to collect the photoluminescence emitted by the defect after excitation by 

either off-resonant or resonant laser light. The bulk of the work has already been done in our chosen 

configuration because the emitters acting as point sources overlap with roughly the same optical 

mode as the excitation light, just with reverse travel direction. To complete the collection path. 

Figure 4.5, we need a second dichroic that will split off the collected light from the phonon sideband 

of the kh divacancies from the excitation path as well as filters to prevent as much spurious signal 

from other non-divacancy sources as possible. There is necessarily light also emitted at the ZPL 

of the divacancy that matches exactly the resonant excitation laser but for the results of this thesis, 

that light will be filtered out as much as possible as it is a major source of spurious counts. 

We choose a dichroic with a cut-off that reflects the excitation light from the resonant laser 

to the sample but allows the PSB photons to transmit and be fiber coupled into a multimode fiber 

that is sent to our photon counting instrument covered in the last subsystem. 

There remains the choice of filters. The laser light reflected of the SiC surface is still 

extremely bright, so we must employ a 44 nm notch filter centered at 1064 nm (NF1064-44, 

Thorlabs) after the collection dichroic that the collection signal passes straight through while the 



57 

 

bright laser reflects off it and towards the objective. Several long pass filters are employed in 

tandem for most experiments. This includes a 1000 nm and an angle tunable one 

(TLP01-1116-25x36, Semrock). Short pass filters of 1150 nm and 1300 nm short pass is added to 

prevent the collection of photons from axial divacancy ZPLs and PSBs, as well as other longer 

wavelength emitter species. 

4.3.5 Photon counting 

The last subsystem of the optical setup is concerned with counting the individual photons collected 

from the sample in the cryostat. This allows us to make quantitative measurements of the emission 

rate of the divacancy under different experimental configurations. One of the most precise ways 

to count optical photons is to use a superconducting nanowire single photon detector (SNSPD). 

Another way is to use an avalanche photodiode, but the NIR emission of divacancies would require 

the usage of indium-gallium-arsenide detectors that have the necessary bandgap response. These 

have relatively high “dark counts”, or noise counts during no collecting, and lower collection 

efficiency than NIR detecting SNSPDs. Collection efficiency is usually called quantum efficiency 

in the context of photon count and can be, in the case of our SNSPD (SNSPD; Opus One, Quantum 

Opus), over 80%. 

Figure 4.5. Collection path diagram. Light collection from the objective returns through the 4𝑓-pair and 

reflects off the same FSM mirror, before transmitting through the collection objective (the excitation beam 

is not shown, but it would reflect off it to go to the cryostat. Then it goes through a series of spectral filters 

to remove unwanted wavelengths of light that do not carry useful information about the spin population 

optical contrast experiments explained in Section 4.6. 
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The photons being reflected by the collection dichroic and transmitted through the 

multitude of filters enters a multimode fiber at the very end of the free space optical setup. 

Multimode fibers have larger core diameters so they are less stringent about the optical modes they 

can collect. This is ideal because the emission from a point source defect in the solid-state can vary 

much more in the spatial extent of its optical mode, especially over the one meter of free-space 

travel between the sample and the fiber. 

The photon to be counted travels a few tens of meters to the closet where the cryogenic 

system that cools the SNSPD is housed. The nanowire the photons will impinge on is 

superconducting and cooled to a very precise temperature (in our case ~2.5 K) using a separate 

closed-cycle helium cryostat. The temperature is precise because the detection of the single photon 

involves the wire briefly exiting its superconducting state to “go normal”. The full theory of 

superconductivity is complex so we will not go into details, but essentially the photon has the 

required energy to disrupt the quantum state of the superconducting electron pair states, called 

Cooper pairs and reduce the current in the device. A classical detection of that current reduction, 

caused by the energy of a single incident photon, becomes a voltage pulse with an amplitude of 

around 100 mV, very well handled by typical electronic components. A pulse-converter module 

takes that voltage pulse and converts it to a higher amplitude of a typical logic pulse (3.3-5 V) and 

is sent to our data acquisition module discussed that finally can turn the event of detecting a single 

photon into a number increment in our experimental software. 

One point to be aware of when utilizing the SNSPD pulses to count photons is the “dead 

time” of the detector. Consider the case of two photons arriving at almost the exact same time, 

separated by ∆𝑡. If the first photon leads to a normal response from the nano wire, then the second 

photon might arrive before there has been time for the wire to exchange thermal energy with the 
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cryocooler and become superconducting again. A typical pulse length from the SNSPD is on order 

of 10 ns, so that sets the lower bound of what ∆𝑡 can be before we start compressing our measured 

count rate artificially. The count rates from typical divacancy experiments in this thesis are not 

seen to saturate the detection capabilities of our SNSPD.  

The last point about SNSPD operation concerns changing the current in the wire to reduce 

dark counts while maximizing signal-to-noise ratio from measured photons. The closer the wire is 

to going normal, the more sensitive the system will be. Every optical system has a certain level of 

“dark counts” that are incident on the SNSPD path but are not created due to the experiment. 

Photons leaking into the fiber launcher or other positions are a main culprit.  Manually adjusting 

the current to reduce the sensitivity to all photons can allow a sweet spot to be reached that 

minimizes dark counts but does not vastly decrease the signal-to-noise ratio of experimentally 

relevant photons. 

4.4 Microwave electronics 

This section will include a description of the instruments and passive components that 

generate and shape the microwave photon pulses that will be used to control the electron spin states 

of the divacancy for usage as a qubit. In Section 2.6, we derived the equations that described Rabi 

oscillations in a spin TLS from a sinusoidal drive. We will be generating magnetic and electric 

fields that can accomplish coherent rotations of the spin qubit populations through on-chip wires 

lithographically patterned on the surface in close proximity to the divacancies. This is the second 

main source of thermal load in the experiment, the other being laser heating. We want to be able 

to place these wires as close as possible to the divacancy under study because resistive heating 

occurs when we apply a voltage across our device. Using on-chip wires lessens the heat load 

required to reach a certain drive strength. Much of the microwave architecture is concerned with 
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sending well-defined pulses, where the degree of control over their amplitude and duration directly 

corresponds to minimizing the phase errors in the qubit superposition states we create. 

There are three main functions of the microwave circuitry. The first is the pulse generation, 

involving the creation and timing of the microwave pulses and tones at a number of different 

frequencies. The generated pulses must be shaped using components that amplify, combine, and 

filter the tones while minimizing the excess noise signals sent to the on-chip components. The final 

part is in combination with the photon counting apparatus using an SNSPD in Section 4.3.5, we 

use a pair microwave switches that enable counting only during precisely defined windows during 

an experiment and to reject common mode noise. 

4.4.1 Microwave pulse generation 

The central clock that defines the timings of all the electronic pulses in the setup is an arbitrary 

waveform generator (AWG). It has 16 individually programmable channels that can be used as 

either TTL (transistor-transistor logic) input or output or as a low-amplitude arbitrary waveform 

generator. The power of the AWG comes from the very high pulse bandwidth of 2.4 GHz, allowing 

few nanosecond resolution to shape arbitrary pulses. Arbitrary in this case can be thought of as 

defining a certain clock speed, say 10 points per microsecond, and at each of those points, we can 

tell the AWG to produce a TTL output of high or low at each point. This power is multiplied by 

the 16 independent channels that are synchronized so we can produce a pulse train by combining 

outputs from multiple channels. The core of the microwave pulse generation for a certain qubit 

experiment is an AWG sequence. This sequence defines all the electromagnetic drives to be 

produced, and also controls the AOM on/off states to define the timing of the laser pulses. 
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The AWG does not have the power output capabilities we need to drive the requisite spin 

population rotations. For this, we will need dedicated signal generators (SG396, Stanford Research  

Systems) that can produce sinusoidal drives in the range of 1-2 GHz at powers up to 16.5 dBm. 

This power overhead is needed due to compensate for the physical distance between the microwave 

generation equipment and the cryostat (~3 meters). The frequencies needed are set by the 

magnitude of the typical magnetic sub-level splittings and ZFS for the kh divacancy [25,41]. These 

signal generators also enable frequency, amplitude, and phase modulation through quadrature 

modulation (IQ modulation).  

There remains to have a way to time-gate the microwave signals generated. This is 

accomplished by a set of single-pole double-throw switches that can send a microwave pulse to 

one of two channels from a single input when receiving a TTL pulse from the AWG. Two of the 

Figure 4.6. Microwave components. The major microwave components are shown here, which make up 

the gating circuitry to generate electrical and magnetic microwave frequency pulses sent to interact with 

the divacancy spin, as well as the photon counting circuit including the SNSPD. Every signal generator and 

switch is controlled by a TTL pulse from the AWG (not shown) to enable nanosecond switching on-off the 

pulses sent to the drive wires on the sample inside the cryostat. 
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switches are placed directly after the output of the dedicated signal generators. The extinction ratio 

of a switch of ~60 dBm provides the necessary reduction in amplitude when combined with an 

additional ~40 dBm of suppression from the signal generator’s amplitude modulation. This allows 

us to reach “true zero” amplitude for the microwave drive and not drive any measurable spin 

rotations with the drive turned off. The combination of the switches and AWG timing controls 

allows for high temporal precision for microwave gates, giving rise/fall times on order of a few 

nanoseconds in our qubit sequences. 

4.4.2 Microwave pulse shaping 

A typical experiment will have multiple microwave pulses generated using the instruments of the 

previous section that must be amplified and then combined to enter the two feed-through lines 

entering the cryostat. Power amplifiers are utilized to offset the losses in the coax cables when 

driving fast rotations of the qubits. We typically amplify by ~40 dBm for kh divacancy Rabi 

rotations. Care must be taken at all times because the thin wire bond leads used to bridge the gap 

from the PCB to the SiC chip can be destroyed if too much power is input. Power dissipation is 

accomplished by capping the termination lead of our microwave circuit with a 50 Ω termination 

block. This prevents the input pulses from having reflection components combine into a standing 

wave that exists throughout the circuit. The presence of a spurious periodic drive would produce 

an instability in the qubit measurements that would be difficult to troubleshoot during running 

experiments. 

Due to the range of frequencies involved in the experiments, several types of pulse 

combiners are utilized. A resistive power combiner takes two microwave signals of similar 

frequencies and can produce a single output signal using the additive property of electromagnetic 

fields. The cost for using this device and the other types of combiners is a moderate amplitude 
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modulation, typically on the order of 3-6 dBm per microwave component. This type of combiner 

is used to send two Rabi driving signals at the same frequencies but at different phases.  

For combining frequencies that differ by 1 or 2 orders of magnitude, a diplexer must be 

used. This is necessary because the high/low-pass filters utilized to prevent cross-talk between the 

two inputs of a resistive combiner can fail if there is a large frequency difference. A diplexer adds 

the ~MHz tones used to drive transitions on order of the transverse ZFS.  

The two final microwave components employed are a bandpass filter and Schottky diode. 

The filter rejects all noise sources from instruments or from interactions with the wires, connectors, 

or passive components. The Schottky diode takes AC drive as an input and outputs a proportional 

DC signal. We utilize this as a power monitor of the microwave drive for active feedback of our 

Rabi driving frequencies. 

4.4.3 Optical data acquisition 

When the AWG signals to the AOM to allow a pulse of laser light to excite the divacancy, 

we want to be sure to record electronically only the photons created during that a certain readout 

window. With some temporal delay, the AWG also signals a pair of switches to allow our data 

acquisition card (DAQ) (PCI-6259, National Instruments) inside a computer to iterate a counter 

that corresponds to a photon detected by the SNSPD. In all experiments, this is how we obtain the 

optical count rate raw data. We use that data’s correlation with other changing variables such as 

the laser or microwave frequencies to produce graphical representations of the divacancy’s 

behavior in a software environment described in the next section. Readout contrast can be 

maximized by calibrating the optimal time window after exciting the divacancy that a photon 

correlated with the experiment can arrive, before we are simply measuring background counts. We 

also reject common-mode noise by toggling a switch to send photon count signals to alternating 
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counter channels and taking the difference of the counts. One counter sees counts from an 

experiment with microwave excitations and the other sees counts without microwaves sent to the 

sample.  

4.5 Data acquisition software: SPYRE 

We have described up to this point several collections of instruments that must work in tandem to 

perform experiments on our qubit. As there are a handful of similar setups in our lab that operate 

using similar optical and microwave control schemes, a software program that we call SPYRE has 

been developed and built up over the course of several years. SPYRE (Scientific Python Research 

Environment) integrates a number of mature packages native to the Python language such as 

NumPy and SciPy, among others. The core feature is unification of communication with several 

experimental instruments so that raw data can be aquired, graphed, manipulated, and saved for 

analysis from any combination of them in a single program. The central hierarchical design of 

SPYRE revolves around defining subsets of instruments responsible for taking the data for a 

particular experiment. These subsets are contained within a single “spyrelet”, or tab of the 

program. Breaking up the experiment into organized spyrelets allows taking organized data from 

the many subsystems of the setup. 

4.6 Experimental methods 

Having covered the hardware and computer interfaces used in the experiments of the 

divacancy spin qubit system, the remaining sections in this chapter cover the main methods to 

record raw data from experiments measuring the divacancy system. The presented methods detail 

the necessary processes when characterizing a new sample of SiC prepared with single defects and 
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measuring the major optical and spin properties of a single divacancy. This list of procedures 

reflects the experiments that lay the groundwork for the results presented in Chapter 5  

4.6.1 Raster scans 

We begin with a few millimeter square chip (typical: 5x5 mm) of 4H-SiC that we assume has 

undergone electron irradiation and annealing steps that have been calibrated to produce densities 

of divacancies that can be optically resolved at NIR wavelengths. The epitaxially grown layer ten 

to twenty microns deep is where we want to find single divacancies to characterize. There is a 

trade-off though between divacancies that are too shallow or too deep. Optical background from 

the bulk, n-type doped layer can wash out the signal from single divacancies and surface impurities 

or contaminant particles can hinder optical collection efficiency as well.  

The procedure to first find divacancies given these constraints goes as follows. A clean 

region near the lithographically patterned drive wires is chosen by sweeping the field of view of 

the visible wavelength camera using the x- and y-axis stages of our piezo stack. The camera also 

allows us to ascertain if the 905 nm off-resonant laser is focused on the surface or not. We dampen 

the power of the laser significantly to focus its gaussian beam profile on the sample surface. Then 

we turn the off-resonant laser to powers such that the divacancy optical signal will be saturated 

(typical: 5-20 mW) and complete a raster scan by scanning both the x and y-axis tilt axes of the 

FSM while recording the optical counts. We call the resulting 2D maps composed of bright 

spots/regions from various photo-active species “FSM scans.” 

These FSM scans with off-resonant light are utilized as an optically non-selective survey 

of the SiC near-surface environment. Since the constellations of “bright spots” can be created by 

any of the divacancy orientations or other photoluminescent complexes in the sample, there is a 

certain flow chart of further checks that must be done on a bright spot that is suspected to be a 
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divacancy of interest. Initial checks involve observing the time dependence of the photon count 

rate to check for stable emission. Certain samples can have charge noise that can cause the 

divacancies to “blink” out of their neutral, photo-active charge state.  

Spectral filtering is a main tool to determine the identity of a bright spot. It is known that 

the ZPL + PSB of PL2 (optical signature from kk divacancies) starts at around 1150 nm. Below 

1150 nm, is around one third of the PSB of PL4 (kh divacancy spectrum) [41]. Thus, adding an 

1150 nm shortpass filter should greatly dim spots from PL2 and reveal likely candidates for PL4 

bright spots. Similar trial and error using other filters can increase the probability we know the 

species of divacancy that matches a bright spot. Of course, acquiring the full spectral response, 

using a grating spectrometer from a certain spot on the sample can be used to increase this 

confidence.  

4.6.2 Photoluminescence excitation scans 

After off-resonant FSM scans have allowed us to zero-in on a particular divacancy that we might 

want to study, the next step is to characterize its photon emission rate into the PSB under resonant 

laser excitation. We will focus here on considerations of a PL4 divacancy. The difficulty is that a 

PL4 optical resonance line can exist in a broad region relative to the scan time of our resonant 

laser. Considering the divacancies measured in this thesis, a typical PL4 linewidth at 4 K is on the 

order of a couple hundred MHz, while the center wavelength can be found in a ~150 GHz region 

due to inhomogeneous shifts from local strain or electric fields. A typical scan rate of ~5 GHz/min 

means we want to use high resonant laser powers (>100 𝜇W) and sometimes higher temperatures 

(10-15 K) that broaden the optical lines to a few GHz. These procedures can reduce the total time 

spent finding the optical line. 



67 

 

After finding an optical resonance at a reasonable frequency for the divacancy 

configuration sought, we aquire photoluminescence excitation spectra (PLE). We scan the resonant 

laser at low powers (below 1 𝜇W) to avoid power broadening to measure the linewidth of the 

single divacancy’s optical spectrum. In the limit of low inhomogeneous broadening, we can fit the 

optical fine structure curves very well to a Lorentzian profile to determine the frequencies of the 

three spin-conserving optical transitions. We refer to the amplitude of the Lorentzian curves as the 

“PLE signal” that serves as a shorthand for the count rate when addressing one of the optical 

transitions corresponding to one of the divacancy’s spin states. Sometimes, the linewidth of the 

individual lines can be broad enough that two lines can overlap. This is particularly troublesome 

for the lines corresponding to the |0⟩ and |−⟩ states of PL4, which are only separated by ~120 

MHz. This will ultimately limit the spin contrast we can achieve in spin qubit readout. The absolute 

magnitude of the PLE signal does not carry very much useful information. That might sound 

surprising, but it is mostly determined by an array of experimental factors based on the average 

chance a laser photon reaches the divacancy to excite it and then that a photon created by the 

divacancy is not lost and produces a pulse from the SNSPD. Great care in designing and 

maintaining our setup goes into maximizing that collection efficiency for each experiment. 

In order to define how we utilize optical signals to prepare and readout the spin state of our 

kh divacancy qubit, we can think of the PLE signal as a microwave experiment with zero input 

drive power. On average, the electronic state of the kh divacancy will be in one of the groundstate 

sublevels, |0⟩, |−⟩, or |+⟩ depending on its particular thermal state. When a resonant optical photon 

arrives, the photon has some average chance to induce an excitation depending on which transition 

it is closest in frequency to. Then, after the photon exchanges energy with the spin state, the 

electronic state will relax either radiatively into the same spin state or non-radiatively through the 
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ISC singlet pathway. As discussed in Section 3.3.1, this non-radiative relaxation is most commonly 

into |0⟩, but possibly into one of the others. Of course, there is some thermal spin-flip chance as 

well to consider. The integration of all these rates gives the average PLE signal measured for zero 

microwave input while addressing the defect with a particular optical frequency at a certain power. 

The experiments presented in this thesis at their core measure the change in the PLE signal when 

we apply microwave drives, both continuous and pulsed, to measure the outcome of changing the 

state of the qubit made up of two of the divacancy’s spin states. The experiments involve 

population rotation and decoherence measurements, which we will now describe in detail in the 

following subsections. 

Determining the optical resonance frequency of a divacancy using PLE scans enables us to 

measure the energetic properties of its ground-state. This gives perhaps the most tell-tale 

identification for the orientation of divacancy. For the kh divacancy, there should be an increase 

in the PLE signal when driving our microwave lines at frequencies near 1.35-1.40 GHz [41] with 

sufficiently high power. This frequency range corresponds with the energy difference between the 

|0⟩ to |+⟩ state at zero magnetic field. Here we can begin to define operational definitions for our 

qubit. The “bright”, or “on”, state here is defined usually as the |+⟩ state for a kh divacancy, while 

|0⟩ is the “dark”, or “off”, state. Our qubit is considered in the bright state when a PLE readout 

measurement shows an increase in counts when tuned to excite the optical line of the |+⟩ state. 

4.6.3 Continuous optically detected magnet resonance (ODMR) 

We will describe here how the initial rough values for the groundstate transition frequencies are 

determined in the case of an uncharacterized single kh divacancy using continuous optical detected 

magnetic resonance (ODMR). At this stage we assume zero magnetic field. The static background 

magnetic field value will change the ODMR value, as prescribed by the Zeeman affect (Section 
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3.2.5), but we will return to that at the end of this chapter when we have discussed coherence 

measurement of the spin in more detail.  

To perform continuous ODMR, we send a sinusoidal tone from our function generators to 

our sample and sweep the frequency over the range of 1-2 GHz continuously. No other microwave 

gating is necessary. At the same time, we send a continuous pulse to our resonant AOM to allow 

continual resonant laser driving on the |+⟩ optical transition, which we choose as the “bright” state 

in this example. We monitor the count rate for the PLE signal, and when the microwave drive is 

on-resonant with the |0⟩ to |+⟩ transition, there is more chance the electron will be promoted to 

and be in |+⟩ where the optical drive can promote the electron to produce a photon. Seeing an 

increase in counts at a certain microwave frequency that matches literature values for ODMR 

resonance values gives us confidence that the microwave drive is addressing the ground-state 

transitions of the single divacancy we currently are studying. 

4.6.4 Pulsed optically detected magnet resonance (ODMR)  

While continuous ODMR is a powerful initial characterization tool due to its broad searching 

bandwidth owning to the high probability of displaying some spin contrast in the PLE signal 

imparted by the continuous microwave drive, it cannot perform fine control over spin rotations. 

Pulsed ODMR begins to define a method of controlling the state as a spin qubit. Additionally, for 

kh divacancies, continuous ODMR can be complicated by electrically induced resonances in the 

optical absorption spectrum regardless of the spin state, where Landau-Zener-Stuckleberg 

interference fringes will complicate the PLE spectrum [25].  

Here we first utilize the high-fidelity spin initialization technique first discussed in Section 

3.3.1 to ensure our spin starts in the |0⟩ state. The ultimate goal is to find the frequency, ω, and the 

power, 𝑃, to define a microwave 𝜋 pulse that will fully invert the population of the spin state from 
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the dark state to the bright state. (Choice of what spin state to call the bright/dark is arbitrary.) 

Looking at Eq. (2.35), when we are exactly on resonance with the spin transition, ∆ = 0, the 

population rotation is simply the angle: 

   

 𝜃 =  𝛺 ∙ 𝑡 . (5.1) 

   

Where 𝑡 is the time we of the pulse, or the time the microwave switches toggled to allow photons 

to be sent to the cryostat, and 𝛺, the Rabi frequency, in the experiment is proportional to the voltage 

amplitude of the applied drive. Unfortunately, while we can define 𝑡 very precisely, the actual 

amplitude at the divacancy in the SiC chip is hard to analytically define. Thus, our initial guess for 

the power will either under or over rotate the spin. This can lead to a myriad of different changes 

in the PLE signal for an initial guess of 𝛺 that we set our signal generators to. This is where 

common mode noise subtraction mentioned in Section 4.4.3 comes in handy. By removing other 

noise features in the PLE signal, the pulsed ODMR spectrum can reveal the features due to the 

under or over rotated line shapes, giving an indication for the bounds of the microwave transition 

frequency measured using pulsed ODMR. 

5. Rabi oscillations 

Once an initial ODMR spectrum can be identified showing population inversion, varying either 

𝛺 or 𝑡 systematically can produce clean, sinusoidal Rabi driving of the measured PLE signal that 

indicates the population in the bright state. This can be used to produce the first controlled spin 

population rotations. As mentioned in the previous section, the Rabi formula gives two tractable 

degrees of freedom for the population rotation angle, the amplitude of the microwave drive, 𝛺, or 

time that drive is pulsed for, 𝑡. The condition for that ideal behavior is zero detuning from the 

magnetic resonance condition.  
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We consider first the case where nearby hyperfine interactions from nearby nuclear spins 

leads to non-sinusoidal behavior due to the prefactor being a function of the detuning, ∆. The 

higher the amplitude can be made, the less this effect is seen. This might indicate that sweeping 

the time, which does not show up in the prefactor, is better practically, but our AWG has 216 step 

resolution for 𝛺 while the time steps are limited to ~1000 due to the sampling rate of the AWG. 

The 𝛺 ≫ ∆ can indeed be practically achieved for the kh divacancy so we choose to do amplitude 

sweeping Rabi oscillation experiments in the presented results. 

Here we can take a step back to appreciate what this Rabi drive is doing to the electron spin 

state of the divacancy by looking at the full experimental sequence. We start by exploiting the 

preference for the triplet state to decay into the |0⟩ state after a certain time under off-resonant 

illumination to achieve spin initlization. Thus, our initial quantum state is as well-defined as 

possible. If we then apply a strong enough drive on resonance with |0⟩, and |+⟩, we can consider 

the system under the RWA Section (2.4). Here we can return to the Bloch sphere analogy to 

describe precisely what we mean by a population rotation. Here, spin up and down states become  

|+⟩ and |0⟩. The third state, |−⟩  has a large enough energy separation at zero field to not cause 

issues for the TLS approximation. Then we utilize phase modulation for our microwave signal 

generator to choose a rotation basis around the Bloch sphere for the superposition state. We by 

default choose the x-plane for the rotation. The Rabi formula then describes the chance a 

measurement of the superposition state will collapse to yield a situation where the triplet state ends 

in |+⟩ and a photon is produced by the resonant readout laser pulse. If the Rabi experiment indeed 

produces curves that can be fit to a sine function, then while vary the amplitude of the microwave 

pulse, 𝛺, we can say when PLE signal is lowest defines the 𝜋 pulse. Since 𝑡 is constant in amplitude 

Rabi, this defines the 𝜋 pulse completely. Usually, ODMR and Rabi experiments work in tandem 
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at this stage. Doing one and then the other iteratively defines better guesses for the best value of 

the frequency for the magnetic resonance transition, ω, and the best parameters of the 𝜋 pulse. 

4.6.5 Ramsey experiments 

At this stage, we can finally describe the system as a qubit and thus leverage the results of Section 

2.7 to discuss the decoherence properties of our qubit. In the Bloch sphere picture, we now have 

the capabilities to generate arbitrary superpositions of any two levels in the divacancy ground-state 

triplet. This and the next section focus on two important experimental methods for this thesis: 

measuring the inhomogeneous dephasing time, or Ramsey coherence time, 𝑇2
∗ and measuring the 

Hahn-echo coherence time, 𝑇2.  

We begin by defining a Ramsey free precession experiment. From the ODMR + Rabi 

experiments beforehand, we can drive a 𝜋 pulse up to the precision of our experimental process, 

and thus if we halve the amplitude, we can also drive a 
𝜋

2
 pulse to rotate our superposition into the 

equator. Now, we allow the state to evolve a certain time in the equator, 𝑡𝑒𝑞𝑢𝑎𝑡𝑜𝑟. Consider that 

our qubit is in a perfect vacuum under the influence of no external fields. After 𝑡𝑒𝑞𝑢𝑎𝑡𝑜𝑟, a second 

𝜋

2
 pulse, or −

𝜋

2
 pulse, will return the superposition exactly back to either of the poles of the Bloch 

sphere. But the SiC crystal is far from this idealized vacuum, and there will be noisy (i.e. difficult 

to precisely define) fields that will lead to random accumulation of extra phase in the quantum 

state. This process is usually called free evolution because the quantum state, rotated off the basis 

state, is free to precess under the influence of noise fluctuations. It is better to rename 𝑡𝑒𝑞𝑢𝑎𝑡𝑜𝑟 into 

𝑡𝑓 for free evolution. 

The phase accumulated will be random for each instance of the measured ensemble of 

experiments. By doing a differential measurement where alternating readouts of the presence of a 
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photon using a ±
𝜋

2
 pulse for increasing 𝑡𝑓, we obtain maximal distinguishability in the 

measurement of the distribution of spin populations that will make up the exponential decay 

defined in Section 2.7.2. We can fit this curve to find the time-scale for our qubit we call the 

inhomogeneous dephasing time, 𝑇2
∗. After our sweep exceeds a certain 𝑡𝑓, readout will show no 

contrast. Thus, 𝑇2
∗ can be considered the “useful computation time” of our qubit. For if we 

consider the ultimate goal of qubits to represent information in superposition states, then beyond 

the timescale of 𝑇2
∗, measuring those superpositions would yield no distinguishability between the 

two measured basis states, and we would simply be measuring the classical ensemble for our 

divacancy. In order to be able to measure the resulting superposition after rotations of our 

superposition, readouts of a manipulated quantum state must be done within the  𝑇2
∗ timescale. 

An important feature of the exponential decay in a Ramsey experiment is a sinusoidal 

feature that denotes the detuning from the actual energy splitting between the superposition basis 

states. When a drive of 𝜔 + 𝜔𝑑 is used for the Rabi drive, where again 𝜔 defines the splitting, one 

can plot the PLE signal as a function of the detuning, 𝜔𝑑. Choosing a single, non-zero value for 

the free precession time, we sweep the detuning and can observe spin projection information as a 

sinusoidally changing PLE signal where the maxima indicate no precession in the rotating frame, 

indicating zero detuning of the Rabi drive. 

4.6.6 Hahn-echo experiments 

We continue our discussion of measuring the coherence of our divacancy spin qubit by describing 

a Hahn-echo sequence that can cancel the inhomogeneous phase noise accumulated during the free 

precession time under certain conditions. As in Section 4.6.6, we assume that the local noise 

distribution can be considered quasistatic on the timescales of the coherence measurement, or more 

precisely, for the duration of 𝑡𝑓. This quasistatic noise is represented by a constant rotation the 
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constant rotation, 𝜐, of the superposition in the Bloch sphere equator. If we perform a calibrated 
𝜋

2
 

pulse to create a superposition in the equator that is affected by this rotation, after a certain 𝑡𝑓 , we 

accumulate phase, 𝛿, equal to 𝛿 = 𝑡𝑓 ∗ 𝜐. Now if we perform a 𝜋 pulse to rotate the superposition, 

if the noise is purely quasistatic, after a second 𝑡𝑓, we would gain −𝛿 phase to cancel the phase 

error.  Upon doing the differential measurement to refocus the qubit on the pole states and readout 

the resulting PLE signals with different 𝑡𝑓’s, any non-quasistatic noise then becomes the dominant 

source of dephasing, where we measure  𝑇2 as the resulting exponential decay constant.  

Hahn-echo sequences represent the first attempt to modulate the lifetime of a quantum 

superposition under the effects of deleterious phase noise. The concept of an echoing pulse can be 

extended to an arbitrary number of pulses, in segments of 𝑡/(𝑁 + 1) with 𝑁 𝜋  pulses. This 

technique is called “dynamical decoupling,” or a CPMG sequence [59,64]. Adding these additional 

segmentations of the free evolution allows the cancelation of noise sources with faster oscillations, 

on order of 𝑡/(𝑁 + 1).  The addition of more and more pulses to protect the superposition and 

extend its Hahn-echo time does come with the downsides of lower experiment repetition rate, 

impacting averaging times.  

4.6.7 Magnetic field tuning 

A consequence of the large transverse ZFS in the kh divacancy groundstate is that spin qubit 

prepared in its magnetic sublevels will experience better coherence at zero magnetic field [25]. 

This is a consequence of an anti-crossing lifting the degeneracy of the states corresponding to 

𝑚𝑠 = ±1 resulting in lower energy level sensitivity per unit magnetic field change, as discussed 

in Section 3.2.5. This feature of the basal divacancies in 4H-SiC motivates the need to obtain zero 

static magnetic field at a single divacancy and will be a central feature explored in the results in 
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Chapter 5 where this anti-crossing, or clock transition, at zero magnetic field will form the basis 

of investigating a modification to the Hamiltonian that result in even longer coherence times. 

For now, we are just concerned in this Section with obtaining: 

   

 �⃗⃗� = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) = 0 , where �⃗⃗� ≠ �⃗⃗�(t) (5.2) 

   

in the cryogenic sample chamber detailed in Section 4.2. The first step is to simply measure �⃗⃗�. An 

in-situ magnetometer close enough to obtain the requisite precision is not feasible. Commercial 

detectors would have to be directly on top of the SiC chip, but the 4 mm working distance of our 

objective prevents that, and the overall compactness of the chamber is necessary to keep the total 

cooling power high. The solution involves a very good detector of magnetic fields: the spin qubit 

itself. We know that a non-zero, static �⃗⃗� from stray fields will increase the qubit’s sensitivity to 

quasistatic magnetic field noise in the crystal. This in turn will reduce the observed coherence 

during a Hahn-echo measurement of 𝑇2. We use 𝑇2 over 𝑇2
∗ because there were asymmetric zero-

field conditions measured when changing the order of the magnetic field’s cartesian components 

and because 𝑇2 obtains first-order insensitivity to energy detunings due to magnetic fields in the 

kh divacancy. 

We utilize an iterative 3-axis sweep of adding additional magnetic field from stable sources 

to cancel the unknown starting �⃗⃗� until we reach a maximum 𝑇2. In this section, we define the 

vector normal to the SiC surface as �̂� and normal to the optical table as �̂�. First, inch-scale 

neodymium magnets with fields on order of a 100 gauss at their poles are swept over large 

distances near the outside walls of the cryostat. It was found that two such magnets were needed 

to add moderate -�̂� and �̂� components. Fine magnetic field calibration was accomplished with a 

set of a 3-axis solenoid electromagnet with iron cores. After a number of iterations of all three 
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axes, a zero-field condition can be achieved up to the error in the current in the solenoids, about 

0.001 mA. 
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Chapter 5   

UNIVERSAL COHERENCE 

PROTECTION IN A SOLID-STATE SPIN 

QUBIT 

5.1 Introduction  

This result centers on the how the host crystal lattice and Hamiltonian engineering can increase 

the coherence times of electron spins to timescales useful for state-of-the-art quantum information 

applications. This is done by protecting a solid-state qubit from fluctuations that would typically 

reduce its coherence. The divacancy defect in 4H-SiC has the benefit of shielding from thermal 

decoherence due to its position deep within its crystal host’s wide bandgap from which it gains 

long spin coherence [39], positioning it as a strong candidate for engineering quantum control 

using phonons [26,65,66], optical cavities [47], or classical electronic diode structures [21,27]. 

All crystal hosts of spin qubit candidates are home to fields that threaten to decohere the 

quantum state of the qubit during manipulation of a created superposition. The typical coherence 

timescales found in well-studied electron spin complexes, including the divacancy and the 

nitrogen-vacancy, are microseconds for the inhomogeneous dephasing time, 𝑇2
∗ [39,67], and 

milliseconds for the Hahn-echo coherence time, 𝑇2 [27,39,67,68]. Taking the divacancy as an 

example, the bath of non-zero nuclear spins in SiC (silicon-29 and carbon-13) is responsible for 

the bulk of the magnetic noise that limits the spin dephasing times to the aforementioned 
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timescales. Even with the relatively low natural abundance of those nuclear species in SiC, when 

they are proximal to the divacancy, the coupling produces inhomogeneity in the spin and orbital 

energy levels during operation of the qubit.  

Nuclear spins are not the only major source of decoherence. In cases where there are no 

near-neighbor nuclear species, electromagnetic fluctuations from paramagnetic species can limit 

coherence times [25,27,69]. As the growth of silicon carbide improves, the densities of these 

impurities will hopefully raise the floor on natural coherence times.  

It remains to fully remove the decoherance from nuclear spins present in a sample, but 

there are tractable methods being explored. Simply having a lower nuclear spins at the onset by 

using isotopic purification techniques [70] during growth reduces the spin bath noise significantly 

in divacancy qubits in 4H-SiC [21,28]. The availability of high quality isotropically purified 4H-

SiC limits the scope of such endeavors and active field control is the preferred at-scale method.  

Dynamical decoupling is the most common activate method of reducing the accumulation 

of inhomogeneous phase error by canceling out certain dominant components by adding periodic 

control pulses [64,71]. The greatest drawback dynamical decoupling techniques is that any finite 

pulse devoted to reducing incurred error reduces the total available time one can use to do “useful” 

spin rotations. Those rotations used for information manipulation or information transfer to another 

quantum system are the ultimate goal for developing these spin qubits. Seeking solid-state spin 

qubit candidates or improving the environment around previously studied ones can open up new 

possibilities for improved coherence values. 

This chapter presents a method that reduces a kh divacancy’s spin sensitivity to decohering 

fields in 4H-SiC by engineering the energy levels of its spin Hamiltonian directly so that our qubit 

is made up of new, dressed states built out of the existing spin bases. To show the strength of this 
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technique, this will be done with a 4H-SiC crystal that has been acquired with minimal processing 

done to reduce environmental inhomogeneous noise sources. All noise sources will be shown to 

have reduced effects on the spin coherence, including magnetic, electric, and thermal. This is 

primarily shown by a measurement of a four orders of magnitude increase in the inhomogeneous 

dephasing time, 𝑇2
∗, of a spin qubit prepared within the magnetic sublevels of the kh divacancy 

when comparing to typical conditions seen by kh divacancies in the bulk. This value is one of the 

largest values seen for an optically addressable electron spin qubit.  the highest Critically, this 

method offers these enhancements without utilizing long pulse trains normally used to correct 

inhomogeneous noise and could be a replacement for dynamical decoupling in certain systems. 

The coherence times realized as also reaching timescales normally only seen when using nuclear 

spin state basis for qubits, which have inherent shielding from noise sources. This protocol thus 

offers high levels of shielding but retains the kh divacancy’s electron spin’s highly tunable optical, 

microwave, and electrical interfaces [25]. 

5.2 Results 

This result builds upon a consequence of the kh divacancy’s single mirror plane symmetry 

where its energy level sensitivity to stray magnetic fields reduces dramatically near a clock 

transition at zero magnetic field due to its high transverse and longitudinal zero field splittings 

(ZFS)[25]. We show operation of a dressed basis [65,72–77] in the magnetic ground-state after 

applying a continuous microwave drive resonant with the transverse ZFS that produces Autler-

Townes splitting of two of the hybridized triplet spin states of the kh divacancy. We then perform 

spin lifetime measurements within this dressed basis and characterize it as a decoherence protected 

subspace that suppresses inhomogeneous shifts from local field fluctuations. The extent of this 

protection is probed by precisely measuring the magnetic effects on the energy transitions with 3-
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axis field scans. The tradeoff is first-order sensitivity to quasistatic noise content of the added 

continuous microwave drive, which we can track and mitigate to some degree using active 

feedback protocols.  

We list here the advantages of utilizing a continuous drive to yield an extended coherence 

for the spin compared to using active field controls like dynamical decoupling. Arbitrary 

manipulations of a protected electron spin during a dynamical decoupling sequence can be difficult 

to achieve, save for some implementations of complex pulse trains [78,79]. The longer and more 

complex the pulse train for a dynamical decoupling sequence, the higher chance uncorrected 

dephasing can accumulate due to experimental pulse errors. Universal dynamical decoupling [80] 

seeks to mitigate the effects of such errors, and bang-bang dynamical decoupling seeks to shorten 

the necessary length of the pulse trains [81]. These advancements are pushing the cutting edge of 

active coherence enhancement, but they can add significant experimental overhead in their 

execution, and this opens up the need for simpler methods that can be applied. The method 

presented here offers the ability to greatly enhance coherence of a spin using pulses, which 

removes the imperfections inherent to generating clean rising and falling edges in microwave pulse 

trains. Furthermore, we gain these advantageous while retaining the full spectrum of magnetic and 

electrical response to driven microwave fields to perform rapid quantum operations of the long-

lifetime spin qubit in the decoherence protected subspace. 

The main details of the material system, experimental control, and the kh divacancy energy 

levels are first discussed in order to explain how the dressed states are created and manipulated. 

Then the method for measuring the extended coherences is presented. What follows is details of 

the added protection from the noise sources present, including vector magnetic field scans showing 

the magnetic sublevels of the protected basis’s response to applied noise. Finally, a number of 
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conclusions about the usability and benefits of this dressing drive approach are discussed. These 

include the method’s platform agnostic nature, where the most important prerequisite being a large 

magnitude in the transverse ZFS for the spin Hamiltonian, and this system’s advantages as a 

component in hybrid quantum systems due to its electron spin 𝑇2
∗ allowing fast, on-demand, strong 

coupling to other qubit platforms. 

5.2.1 Experimental details 

We study the single kh divacancies in the optical and microwave generation setup described in 

Chapter 4 We use a 5-by-5 mm chip of high-purity semi-insulating 4H-SiC with a 20 µm thick 

layer of insulating-type 4H-SiC epitaxially grown atop it. It was purchased from a commercial 

source, from the supplier Norsel AB. The epitaxial layer c-axis has a 4° tilt off-axis that we account 

for in our magnetic field alignment. Preparation of a density of single divacancies in the chip 

involved electron irradiation with 2-MeV electrons at a dose of 3E12 electrons per square 

centimeter followed by 850 °C annealing in Ar atmosphere for 30 min. Metal leads (Figure 5.1A) 

were patterned on the chip using electron beam lithography to allow generation of electromagnetic 

fields local to the optical laser spot. The function of the metal leads included a magnetic drive wire 

and two wires making up a coplanar capacitor structure. Width of all the leads was 10 µm and the 

materials deposited were sputtered layers of Ti + Au. These wires provide control over the ground-

state spin-1 system of a single kh divacancy that is found in the 4H-SiC epitaxial layer using off-

resonant raster scans (Section 4.6.1). Scanning with a resonant laser reveals the optical interface 

of the groundstate of the isolated divacancy at a frequency of 277.95597 THz and we measure its 

optimized photoluminescence excitation signal (PLE) (Section 4.6.2) to be on average 4.28 kcps. 
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Using a combination of optically detected magnetic resonance (ODMR) and Rabi experiments 

(Section 4.6.4), we can access the magnetic sublevels of the divacancy at non-zero magnetic field  

(�̂� ≠ 0). We can drive spin population between the energy levels at mixed character between the 

bare triplet state (|0⟩, |𝑚𝑠 = −1⟩, |+1⟩) and the hybridized, linear combination of those states 

(|0⟩, |−⟩, |+⟩) that dominate description of the energy diagram due to the high magnitude of the 

transverse ZFS at �̂� = 0 (Section 3.3). Using the magnetic field zeroing process (Section 4.6.7) 

we find and operate the spin in the regime of �̂� = 0 where we find optimal parameters for the 𝜋 

Figure 5.1. Driven kh divacancy spin system in 4H-SiC. (A): Optical microscope image (false color) of 

the 4H-SiC sample showing electrical capacitor (blue) and microwave drive wire (red) for ac electrical and 

ac magnetic driving of the spin in the region between the capacitor wires. Inset shows the single kh 

divacancy’s PLE signal from driving |0⟩ state spin character optical resonance. Lower left: kh divacancy 

lattice showing nearest-neighbor carbon (blue) and silicon (orange) atoms. Cartesian axes of the spin-1 

system are labeled. (B): Energy levels of the ground-state spin of the kh divacancy. Dashed lines to the left 

show the dispersion of the clock transition as 𝐵𝑧 increases from the zero-field conditions. Green (red) arrow 

indicates spin driving of the magnetically allowed transition |0⟩ |+⟩ (|−⟩ |+⟩) in the undressed basis. 

Dashed lines to the right show Autler-Townes splitting resulting from continuous microwave driving of 
|−⟩ |+⟩ at frequency 2𝐸 at amplitude 𝛺. Resulting levels form a hybridized spin-photon dressed basis. 

Purple (orange) arrow indicates spin driving of the magnetically allowed transition |0⟩ |+1⟩ (|0⟩
|−1⟩) in the upper branch of the dressed basis. Blue arrow indicates spin driving of the magnetically 

forbidden transition |−1⟩ |+1⟩ accomplished with ac electric fields. Greyed out copy of |±1⟩ levels in 

lower branch are inaccessible due to inability to strongly drive |0⟩ |−⟩ (See Appendix B.). (C): Pulsed 

optically detected magnetic resonance (ODMR) showing Autler-Townes splitting of |+⟩ while 

continuously driving transition |−⟩ |+⟩. The probe’s detuning,  ∆, is relative to the |0⟩ |+⟩ resonance 

frequency. (D): Purple (orange) curve shows Rabi oscillations of spin population between |0⟩ |+1⟩ 
(|0⟩ |−1⟩) upon pulse of ac magnetic microwave drive. (E): Top (bottom) blue curve shows Rabi 

oscillations of spin population between |−1⟩ |+1⟩ readout from |+1⟩ (|−1⟩) using contrast recovery 

sequence (Appendix B.). 
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pulses between all three basis states, giving us full spin control to create superpositions between 

all three states in their respective rotating frames.  

We measure the precise value of the transverse ZFS to define the frequency of the dressing 

drive which will generate magnetic sublevels of the decoherence protected subspace. Ramsey 

interferometry between the states |−⟩ and |+⟩ is used to accomplish this. (Section 4.6.5) The 

superposition between those states is allowed to undergo free-precession for a time of 100 µs. This 

time was chosen to maximize the signal to noise along with the frequency resolution. We extract 

our value for the transverse ZFS, 𝐸, of our single divacancy as 𝐸/2𝜋 = 18.353164(4). This defines 

the dressing drive’s angular frequency as 𝜔 = 2𝐸, which will enable creation of dressed states 

made from |−⟩ and |+⟩ to make a new qubit basis (Figure 5.1B). 

5.2.2 Generation of dressed states 

With the application of this dressing drive to the single divacancy using the microwave drive wire, 

the Hamiltonian under which we entered the RWA for the electron spin system is no longer valid 

(Section 2.4). We must construct a new Hamiltonian to both define the new energies as well as 

show that the new states act like a new divacancy triplet manifold, where transitions for the 

electron spin outside the 3-level complex are disallowed by selection rules. We will use the tenets 

of Floquet theory to exploit the fact our new drive addition to the kh divacancy Hamiltonian matrix, 

�̂�, is periodic, in that it satisfies: 

   

 �̂�(𝑡)  =  �̂�(𝑡 + 𝑡𝑜). (5.1) 

   

We invoke Floquet’s theorem where the new quantum states will have the form similar to our 

general solution for a TLS. The derivation is located in Appendix B. When applying a strong 

magnetic field drive with Rabi frequency, 𝛺, we see there is a Autler-Townes splitting of the 
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spin states |±⟩ by exactly half the drive amplitude into new dressed states. The 𝑚𝑠 = 0 state 

remains unperturbed. We make a notation choice for compactness where the dressed states of 

|+⟩ will be denoted by their Floquet mode number (see Appendix B.) and label the new spin 

triplet states as |±1⟩ and |0⟩. This is not related to the non-zero magnetic quantum number and 

any reference to the states |𝑚𝑠 = ±1⟩ in this chapter will be explicit. The dressed states 

eigenvectors turn out to simply be linear combinations of the kh divacancy states at zero 

magnetic field: 

   

 
|±1⟩ =  

1

√2
(|−⟩ ± |+⟩). (5.2) 

   

5.2.3 Dressed basis driving 

The new dressed basis (|0⟩, |±1⟩) of the divacancy groundstate can be accessed when the dressing 

drive 𝛺 is turned on. In this section, we will describe how we perform coherent driving between 

the dressed states while staying in a low-noise regime. We wish to show full control of the three-

level system, which includes retaining the ability to initialize and readout the spin-state, as well as 

drive spin population between the levels to create superposition states. Our spin initialization 

procedure (Section 3.3.1) is not fundamentally changed by the introduction of the dressing drive 

because |0⟩ retains its original properties. Off resonant laser driving of the system still leads to 

preferential decay into |0⟩ after several microseconds. We will describe two types of spin rotations 

used in this result. There is ac magnetic driving using the on-chip drive wire to accomplish ∆𝑚𝑠 =

±1 transitions from |0⟩ to |±1⟩. There is also ac electrical driving using the on-chip capacitive 

pads for ∆𝑚𝑠 = ±2 transition between the |±1⟩ states. The Floquet Hamiltonian leads to a non-
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trivial “best” choice for the Rabi frequency used for this system, 
𝛺

2
= 350 khz. This is used in order 

to mitigate the higher order dispersion components present.  

We now describe a protocol for reading out the population of the dressed states, which 

necessarily contains character from all three undressed states. The basic operation can be 

encapsulated by adding an extra rotation about the Bloch sphere to enter a basis that we can 

perform a high contrast readout operation, as described in Section 4.6.2. Thus, we can perform 

what we call the contrast recovery sequence to readout any arbitrary superposition in our three-

level dressed basis. The contrast recovery (see Appendix B.) involves non-adiabatically turning 

off the dressing drive and rotating into the basis of {|0⟩, |+⟩}, where reading out the PLE signal 

from the |0⟩ state accomplishes the spin readout. 

5.2.4 Coherence measurements 

Having established a version of our experimental methods for the dressed states that retains the 

high signal to noise readout of optical signals and coherent spin population control, we now 

perform Ramsey and Hahn-echo measurements as prescribed in Section 4.6.5 and 4.6.6 to quantify 

the energy inhomogeneity within the decoherence protected subspace of the dressed states.  

We find a value of 𝑇2
∗ = 22.40(10) (Figure 5.2A) when we prepare a superposition state, |𝜓⟩, in 

the upper branch states of form: 

   

 
|𝜓⟩ =

1

√2
(|−1⟩ + |+1⟩). (5.3) 
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This represents a remarkable improvement for the coherence from engineering the local 

environment of our qubit using by applying the continuous microwave drive, 𝛺. This value is two  

orders of magnitude longer than 𝑇2
∗ for a similar superposition of the undressed states, |±⟩, of this 

kh divacancy at the clock transition at 𝐵𝑧 = 0. Comparing it to “natural” conditions, the same 

superposition at 𝐵𝑧 = 1.2 mT displayed four orders of magnitude lower than the dressed basis 𝑇2
∗. 

Adding a refocusing pulse, we then measure a Hahn-echo coherence time of 𝑇2 = 64.4 ms (Figure 

5.2C). These values are among the largest values seen for an optically addressable electron spin 

qubit. These results are significant due to the lack of a large number of refocusing pulses used in 

the echo sequence and the coherence was measured in an SiC chip with natural abundance of 

nuclear spin species. There is one caveat though, an active feedback of the dressing drive amplitude 

was responsible to counteract first order coupling of fluctuations of that drive to the energy levels. 

Figure 5.2. Measured coherence values in decoherence-protected subspace. (A): Blue curve shows 

Ramsey free precession of a superposition, |𝜓⟩ =
1

√2
(|−1⟩ + |+1⟩), created in the dressed basis of the 

decoherence protected subspace at �⃗⃗� = 0 mT. A frequency detuning of 166.6 Hz is added for visibility. (B): 

Red (orange) curve shows Ramsey free precession of a superposition, |𝜓⟩ =
1

√2
(|0⟩ + |+⟩) (|𝜓⟩ =

1

√2
(|0⟩ + |𝑚𝑠 = +1⟩), created in the undressed basis at �⃗⃗� = 0 mT (�⃗⃗� = 1.2 mT). Significantly shorter spin 

dephasing times are seen outside of the decoherence protected subspace. (C): Hahn-echo free precession 

of the same superpositions under the same conditions for the blue, red, and orange Ramsey free precession 

experiments in (A) and (B). Error bars are one standard deviation. 
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In order to discuss this, we will present a more complete picture of the energy dispersion in the 

dressed basis before detailing the feedback scheme. 

5.2.5 Energy dispersion curves 

We will use the derived the dispersion curves for magnetic fluctuations in the decoherence 

protected subspace Hamiltonian to understand all the fluctuations—magnetic, electrical, and 

thermal—that contribute to phase noise of our created superpositions through the experimental 

parameters we have introduced. The parameter we have the most control over is the static magnetic 

field, �⃗⃗�. We have the ability to perform fine scans along the cartesian axes of �⃗⃗�, and we use these 

scans to both show the validity of our assumptions about the dressed basis Hamiltonian and to 

elucidate the coherence protection mechanisms further. The dispersion curve for a perturbation of 

the magnetic field in the z-axis, defined as the c-axis of 4H-SiC, and along the x-axis are derived 

in Appendix B.  

We want to evaluate how small changes in our applied static magnetic field shift the energy 

levels of the dressed states to measure the dispersion curves experimentally. We can add a 

perturbation to our setup, 𝐵, along any direction using the same electromagnets that cancel the 

local field. Our cancelation procedure for �⃗⃗� (Section 4.6.7) does not prescribe a certain coordinate 

system to our sample and does not tell us where the z-axis of the 4H-SiC chip is, defined by the 

direction of the crystallographic c-axis. To align cartesian axes inside our cryostat to perform the 

x- and z-axis scans, we first develop a model for the magnetic field of the summation of three 

solenoid loops. Then we can apply positive or negative current on-demand, without spurious zero-

crossing errors, using a single 3-port current source to increase the field along a single, arbitrary 
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cartesian axis. By parameterizing our field sweeps by an angle, 𝜃, we attempt to find a condition 

where scans stepped along two axis where 𝜃 = 90° shows dispersion curves with only 𝐵𝑥 or only 

𝐵𝑧 character. The fundamental difference of 𝐵𝑧 scans showing inverted quadratic curves away 

from the origin (Appendix B.) for small shifts of the magnetic field.  

The resulting scans (Figure 5.3A,B), show we obtained very good agreement between the 

experiment and our theoretical dispersion curves for the |±1⟩ states in the dressed basis. The data 

is taken by sweeping a microwave probe detuning, ∆, and performing ODMR sweepings at 

different magnetic field values. When the probe is on resonance with one of the dressed states, we 

can measure an increase in the PLE signal due to the probe preferentially adding spin population 

to one of the dressed states. This population increase in the dressed bases is then read out in the 

undressed basis using the contrast recovery sequence. 

Figure 5.3. Energy dispersion of decoherence protected 

subspace. (A,B): Spin resonance spectrum of the |0⟩
|+1⟩ energy levels  measured by sweeping ODMR probe 

detuning, ∆, of resonance frequency between |0⟩ |+⟩ 
while changing applied x-axis (A) and z-axis (B) magnetic 

fields offsets from �⃗⃗� = 0 mT. The PLE contrast between the 

upper and lower dressed state branches is a result of the 

contrast recovery procedure and is not indicative of unequal 

transition probabilities in the dressed basis. We see 

inhomogeneous broadening of the energy levels for high z-

axis fields in (B), indicating when the spin levels are no 

longer fully characterized by our description of the 

decoherence protected subspace. (C,D): Simulated spin 

resonance spectrum of the dressed basis Hamiltonian’s 

driven transitions in (A, B) over the same range of applied 

magnetic fields. Dashed white lines indicate analytical 

transition energy spectra derived from Floquet analysis. 

(E,F) Energy difference, ∆𝑓0, between the |+1⟩ and |−1⟩ 
states as a function of applied 𝐵𝑥 (E) and applied 𝐵𝑧 (F). This 

was measured using Ramsey interferometry of |𝜓⟩ =
1

√2
(|−1⟩ + |+1⟩). Solid lines are a fit based on the energy 

differences in the decoherence-protected subspace derived 

from Floquet analysis (see Appendix X and Y). Error bars 

are smaller than the symbol size. Error bars are smaller than 

the points. 
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The energy dispersion relations (Appendix B.) also give insight into the noise perturbations 

that our single kh divacancy experiences in our setup during these scans. In both cases, the 

magnitude of 𝐸 directly increases the suppression of energy inhomogeneity so we can say that the 

large 𝐸 of the kh divacancy helps greatly reduce magnetic noise. For 𝐵𝑥, the ratio includes the sum 

of the ZFS’s, 𝐹 = 𝐷 + 𝐸. 𝐹 being an order of magnitude larger than 𝐸, adds more suppression that 

is reflected in the scan showing steeper slopes for the energy dispersion under z-axis magnetic 

field perturbations. There is a primarily quartic suppression when the dressing drive amplitude is 

larger than the magnetic noise term in the Hamiltonian, 𝛾�̂�. This strong, non-linear noise reduction 

would indicate we want to drive at as high as Rabi frequency as possible, but there is a quadratic 

term that competes with the quartic term. Therefore, 𝛺 must be chosen with care. In our coherence 

experiments, we chose 
𝛺

2
= 350 𝑘𝐻𝑧 which sits in the middle of two effects. It is large enough to 

add noise protection over the whole range of perturbations and avoid linear characteristics at the 

edges. It is also not too large to add extra spin energy inhomogeneity within the region of small 

perturbations. This value is stabilized at the input to the cryostat by a microwave bandpass filter. 

5.2.6 Nuclear spin bath noise 

Next, we perform Ramsey interferometry (Figure 5.3E,F) on the spin population transferred 

between the |±1⟩ dressed states to observe the frequency shift under applied magnetic fields in the 

z- and x-axis. We can use the Floquet dispersion equations here again to find excellent agreement 

with the data. Together, the magnetic vector sweeps utilizing ODMR and Ramsey interferometry 

show that remaining inhomogeneity from magnetic noise sets the new limit for the measured 

coherence in the decoherence protected subspace. Two additional checks on this understanding 

involve numerical simulation of the full Hamiltonian evolution and a phenomenological model of 

quasistatic noise of the spin bath.  
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For the numerical simulation of the Hamiltonian, we add the ODMR probe field, with 

amplitude and frequency 𝜔′, 𝛺′: 

   

 �̂� =  𝐷(𝑆𝑧
2) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝐵𝑖𝑆𝑖 +  𝛺 cos(𝜔𝑡)�̂�𝑧 + 𝛺

′ cos(𝜔′𝑡)�̂�𝑥. (5.4) 

   

The terms here are set to match the experimental conditions: 𝛺′ = 20 𝑘ℎz, 350 𝑘ℎz, 𝜔 = 2𝐸,𝜔′ 

sweeps a range of 1.2 MHz around the magnetic spectrum. The term 𝐵𝑖𝑆𝑖 represents the swept 

magnetic field component. The ensemble of spins begins with 100% population into the |0⟩ basis 

and then the population remaining is measured after 25 𝜇𝑠. This plot (Figure 5.3C,D) matches the 

experimental dispersion curves (Figure 5.3A,B) very well, including the extra bands of magnetic 

resonance along the bright lines. These indicate the higher order terms we neglected in the RWA 

of the Floquet treatment (Appendix B.) are real energy levels being sparsely populated in the 

ensemble experiments. 

The magnetic field scans also allow us to probe the effect of fluctuations from the nuclear 

spin bath. We can describe this primary source of decoherence for the system as an isotropic 

(scalar) distribution of magnetic fluctuations. If we invert the 𝑇2
∗ for an undressed kh divacancy 

at high field in the bulk of our sample, we can define it as a frequency fluctuation, ∆𝑓: 

   

 
∆𝑓 ~ 

1

2𝑇2
∗. (5.5) 

   

We can relate this to the field fluctuation, 𝐵𝑧,𝑛𝑢𝑐𝑙𝑒𝑎𝑟, due to the weakly coupling nuclear spin bath 

from the Zeeman effect along the dress basis z-axis. Using the uncertainty principle, we obtain an 

estimate of 13 μT for the upper bound of these fluctuations. This phenomenological model of the 

nuclear spin bath as a source of quasistatic noise gives values approximately two orders of 



91 

 

magnitude lower for this fluctuation when we operate at zero magnetic field, and an additional two 

orders of magnitude is added when operating in the decoherence-protected subspace. This adds 

another confirmation that our models describe the dynamics of the dressed states as it matches the 

approximately four orders of magnitude increase in the measured 𝑇2
∗. 

5.2.7 Non-magnetic noise 

So far, we have presented a number of results on the magnetic sensitivity of the decoherence-

protected subspace levels aided by fine vector magnetic control. Probing electrical or temperature 

sensitivity is more challenging experimentally due to the lack of precise control in our system. The 

dc electrical landscape of the SiC sample cannot be fully controlled with the present capacitor 

pads, which produce too shallow of fields to fully freeze out the mobility of free charges during 

the course of an experiment. Electric field depletion could add more robustness to using a classical 

electrical device architecture to produce strong electric fields parallel to the c-axis [27]. The 

temperature response timescales of the local environment on the scale of the single divacancy are 

far too small an effect to be measured directly using our cryostat’s thermometry capabilities. The 

ZFS terms are the key here. The local electrical and temperature fluctuations couple into the system 

by changing the ZFS terms. This is very important because this will affect the magnitude of the 

dressing drive, 2𝐸, and thus the validity of our assumptions underpinning the model of the dressed 

states. Tracking 𝐸 during coherence measurements is not practical, but we can estimate the effects 

of the fluctuations. 

We must revisit our derivation of the energy levels produced by Autler-Townes splitting 

(with no magnetic noise terms) from the dressing drive (Appendix B.). The dispersion of the 

magnetic sublevels imply 𝐷 fluctuations will not contribute heavily, but the first-order sensitivity 

to electric field noise that the undressed basis experiences will manifest in 𝐸 fluctuations. Using 
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this, we can estimate the upper bound of this sensitivity from the 𝑇2
∗ = 163 μs of the undressed 

clock transition using Eq. (5.5). This gives an estimate of the spin energy inhomogeneity from the 

electric field perturbations to be on order 3 khz. Even if 𝐷 did have coupling, it is an order of 

magnitude larger than 𝐸 so it will have minimal effect on the energy inhomogeneity we measure. 

Furthermore, the decoherence protected subspace adds first-order protection to the fluctuations in 

the ZFS magnitudes, resulting in two orders of magnitudes better protection from the electric field 

noise present. The first-order protection also applies to the longitudinal ZFS, translating the 

property to temperature fluctuations as well. 

5.2.8 Dressing drive feedback 

So far, we have assumed no noise in the dressing drive amplitude 𝛺 or the frequency 𝜔. 

What remains is to evaluate the effects directly related to 𝛺 noise. The dispersion equations 

(Appendix B.) show linear shifts in the dressed state energy levels occur due to a shift in the 

dressing drive amplitude, 𝛿𝛺. This shift also will cause a change in the Rabi frequency during 

coherence measurements to artificially shorten the Ramsey measurements from what the spin 

system will measure from the noise sources present in the host crystal. The amplitude can be 

tracked during the course of the experiment though. This means that the part of the noise profile 

of 𝛺 that is quasistatic with respect to the timescales of the experiment, set by the speed of the 

Rabi drive, can be mitigated using an active feedback scheme if it contributes to observable error 

in the coherence times.   
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To make a rough estimate of the potential noise content, we observe that the oscillator 

circuit in our AWG that produces the dressing drive is a collection of solid-state components whose 

performance depends on the lab environment conditions to some degree. Besides changing 

pressure (both atmospheric and mechanical vibrations) and humidity, we understand temperature 

fluctuations to be a major source of variability in the oscillator and as well as the internal 

microwave amplifier and mixing components. We take the rated thermal stability of the AWG 

oscillator amplitude from the manufacturer, 100 ppm/°C, as the primary source of this noise after 

discarding the potential of the frequency response of our microwave filters not canceling higher-

order noise. Combining this metric with the temperature stability rating of our laboratory, 

±0.25 °C, we could see up to 50 ppm fluctuations in 
𝛺

2𝜋
= 350 𝑘𝐻𝑧. The fluctuations in the energy 

levels of the dressed basis we measured from magnetic field vector sweeps are on order with this 

Figure 5.4. Active feedback of dressed state spin 

resonance. (A): Illustration of the feedback protocol 

described in detail in Section 5.2.8 that enables 

stabilization of the energy levels of the spin energy levels 

of the dressed states created when driving the kh 

divacancy with a single microwave tone. (B): We show 

the feedback sequence’s correction to the frequency of the 

transition |+1⟩ |−1⟩ during a 10 hr. time period. The 

second 10 hr. time period had no feedback applied. (C): 

Heat map of PLE signal showing Ramsey free precession 

of the superposition |𝜓⟩ =
1

√2
(|−1⟩ + |+1⟩)|0⟩ |+1⟩ 

showing improved stabilization of a frequency detuning of 

166.6 Hz. The period with the feedback turned off shows 

slow drift in the resonance and the detuning fluctuates. 

(D):  Purple curve shows averaged Ramsey free 

precession with active feedback enabled of a 

superposition, |𝜓⟩ =
1

√2
(|−1⟩ + |+1⟩), created in the 

dressed basis of the decoherence protected subspace at �⃗⃗� 

= 0 mT. Blue envelope shows the same experiment 

without the active feedback, showing an increase in the 

measured inhomogeneity also plotted in Figure 5.2. Error 

bars are one standard deviation.  
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estimate. Thus, the classical noise content of 𝛺 in our hardware could be influencing the measured 

coherence values. 

If this noise is present, then we should see an increase in the measured coherence times 

when attempting to correct for drifts in 𝛺. We adopt an active feedback scheme to correct for 

quasistatic, or “slow”, noise such that in-between the sequences used to prepare and readout the 

spin-state during coherence experiments, we measure an “error signal” that can be used to adjust 

the dressing drive amplitude before the next measurement. Below are the steps describing this 

feedback labeled by descriptors. 

1. Initial state preparation. An off-resonant light pulse prepares the spin into the |0⟩ state. The 

pulse is calibrated to be long enough to ensure high fidelity state preparation but not reduce the 

signal to noise. The continuous dressing drive switch is toggled on, mixing non-adiabatically the 

empty |±⟩ into |±1⟩ states. A 𝜋 pulse rotates the spin population into the |+1⟩ state. 

2. Superposition precession. Using the Bloch sphere picture, the state is then rotated into the 

equator along the x-axis with a 
𝜋

2
 pulse. The pulse is done with Rabi frequency, 𝛺, detuned by a 

set amount, 𝛺𝑑, causing a precession of the spin in the equator. We wait for a free-precession time 

𝜏𝑑, where 𝜏𝑑𝛺𝑑 =
𝜋

2
 so that the superposition would rotate just long enough to line up exactly on 

the y-axis of the Bloch sphere. 

3. Error signal measurement. This is where the error in the drive amplitude, 𝛿𝛺, enters the 

picture. The superposition will either make a positive or negative angle with respect to the y-axis 

in the xy-plane depending on the magnitude of 𝛿𝛺. The superposition is then attempted to be 

rotated back onto the z-axis, where the projection onto that axis is measured as a change in the 

measured PLE signal as an error signal proportional to 𝛿𝛺. The 
𝜋

2
 rotation in the equator ensures 
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that the error signal is positive (negative) if 𝛿𝛺 is positive (negative) at the point in the plot of the 

decaying sine curve of the single point in a Ramsey measurement with the steepest slope as it 

crosses the time axis. Due to this choice, 𝜏𝑑 = 15 ms, and 𝛺𝑑 = 16.66 Hz, we obtain sensitivity 

to and can correct for 𝛿𝛺 on order of 30 Hz with drift timescales of a few minutes. 

Averaging 𝑇2
∗ in the |±1⟩ basis over the course of several hours while performing this 

feedback every minute between repeated sequences of the Ramsey measurement gives a modest 

increase in the coherence time. This indicates that our feedback protocol was successful at 

mitigating some of the energy inhomogeneity in the system due to the quasistatic noise present in 

the dressing drive amplitude. It should be noted that the corrections implemented by the feedback 

are incapable of differentiating between drifts in 𝛺 or other quasistatic drifts present in the 

electromagnetic fields coupling to the spin system from the host crystal. Thus, we can label our 

active feedback as a mechanism to track the noise content of other inhomogeneity present to reveal 

the coherence times this system can reach when under the effects of noise with faster fluctuation 

timescales than our active feedback can correct. Further characterization of the spin bath properties 

could give insight into the remaining noise sources. Any remaining noise from electronics and 

microwave circuitry would have to be more carefully checked in future experiments. 

5.2.9 Conclusion 

In this chapter, we described the effects of adding a single continuous microwave drive tone to an 

avoid crossing in the kh divacancy spin-1 ground-state. The result was a dramatic improvement of 

the inhomogeneous dephasing time and the Hahn-echo coherence time of a spin qubit 

superposition prepared in the upper branch of the dressed basis produced by Autler-Townes 

splitting of the undressed levels making up the clock transition.  The extended coherence times are 

due to higher-order protection from magnetic, electric, and temperature fluctuations present in the 
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4H-SiC crystal due to the dressed basis energy dispersion taking on quadratic or quartic protection 

from these fluctuations based on the magnitude of the transverse and longitudinal ZFS of the 

kh divacancy. A powerful feature of this result is that the coherence extension is compatible with 

established noise suppression techniques in 4H-SiC. Charge depletion has shown coherence 

enhancement of the kh divacancy [82] and can also lead to observation of transform limited optical 

linewidths [25,27]. Dynamically decoupling is not necessary to reach the measured coherence 

values, but it could be implemented in this system for longer coherences. Also, spin bath driving 

and spin bath hyperpolarization can reduce the remaining nuclear spin effects on the measured 

inhomogeneity. Of course, simply removing the nuclear spins using isotopic purification will 

reduce the effects of the bath on the spin superposition’s phase coherence [18–20].  

The few key factors necessary for the implementation of this technique make it attractive 

for usage in other quantum spin systems with similar energy levels. Namely, any quantum system 

with three or more levels where an avoided crossing forms between two of them lends itself to 

adding a continuous microwave tone at the frequency of the avoided crossing to form a dressed 

basis with a drivable transition. In order to produce similar initialization and readout scheme, the 

system should possess an auxiliary state accessible with probe tones to transfer qubit population 

to the now-dressed levels. Critically, systems that satisfy this criteria and have a larger magnitude 

of the transverse ZFS can expect potentially better decoherence protection. Even just in 4H-SiC, 

there are two such candidates: hk divacancy (E/2𝜋 = 82.0 MHz [41]) and the basally oriented 

nitrogen-vacancy center (E/2𝜋 = 103 MHz [83]). The always-on aspect of the drive could also be 

the basis of “continuous dynamical decoupling” schemes by modulating the continuous drive. [84] 

Outside of SiC, recently, the hexagonal boron nitride divacancy showed E/2𝜋 = 658 MHz [85]. 
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There are a host of other spin qubit candidates, including: strained nitrogen-vacancy centers [29], 

phosphorus [86] or bismuth [87] donors in silicon and designer molecular spins [88].  

This result also positions the kh divacancy as a candidate for inclusion in cutting-edge 

quantum infrastructure applications, including coupling to various hybrid spin systems and as a 

long-lived quantum memory entangled with a flying qubits traveling in optical fibers. When 

considering coherent coupling of solid-state spins to other systems, recent advancements needed 

to leverage an ensemble of 𝑁 spins to counteract the coupling requirements to the strong dipolar 

coupling strengths of superconducting resonators [29,89]. For the 𝑇2
∗ ~ 10 milliseconds we 

measured in this work, that lifetime appears to enable coupling without the √𝑁 sensitivity 

enhancement from using a spin ensemble. That same 𝑇2
∗ regime makes the kh divacancy a 

potential choice as a memory qubit [9,90,91], which are necessary in quantum internet repeater 

networks to produce long-reaching quantum information state transfer. In this case though, the 

kh divacancy’s NIR emission and potential low optical contrast due to overlapping optical modes 

in its fine structure, are drawbacks for this application. Operation at transform limited optical 

linewidths would solve the photon distinguishability issue, but what remains is the poor optical 

collection rate of photons carrying spin information. Integration with optical cavity structures 

could boost the emission utilizing the Purcell effect (see Section 6.3.4). Potential conversion to 

more favorable wavelengths for established telecom infrastructures is also a possibility with 

integration of an optomechanical cavity to perform state transduction (Chapter 7) using optically 

induced transparency (see Section 6.5.2) to shelve the divacancy photon excitation as a mechanical 

excitation and read it out at telecom wavelengths.  
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Chapter 6   

PROPERTIES OF CAVITY STRUCTURES 

6.1 Introduction 

There are a variety of systems proposed for quantum technology applications due their possessing 

unique advantages of the material platform when it comes to its quantum properties. In order to 

capitalize on that advantage, different systems must build qubits at a wide range of length scales 

and energies to leverage those platform advantages [10]. The application that the work presented 

in Chapter 7 will address concerns frequency conversion of a NIR photon emitted from a divacancy 

to telecom frequencies using a hybrid spin-opto-mechanical device. The transduction would be 

done using energy exchange between the emitted photon mode and phononic modes present near 

the defect to store the photon as a mechanical excitation. The reverse process would be reading 

out that mechanical excitation as a telecom frequency photon. Down converting the divacancy 

photons potentially entangled with its spin qubit to telecom frequencies opens up avenues for city-

scale quantum information distribution utilizing the current telecom C-band infrastructure at 

1550 nm, which has the lowest losses of any wavelength band of ~0.2 dB/km compared to 

divacancy NIR emissions with ~8 dB/km losses. The central problem here is that a single emitted 

photon from the divacancy has a low chance to interact with a specific phonon mode and similarly 

for the readout at telecom frequencies. 

Cavity structures can be used to trap and greatly enhance field excitations inside a specific 

spatial domain to boost interaction between systems. This mechanism is usually described as 

enhancing the coupling between systems, which can have weak- or strong-coupling regimes, 
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depending on the strength of the interaction relative to the decay rates of the modes. The basic 

principle involves having a pair of barriers that reflect energy back towards each other. The 

“cavity” describes the space between the barriers, where there is an increase in the energy intensity 

of the field compared to outside them. The rate of energy input and output across the barriers 

defines the quality of the cavity and will affect how any system placed inside the cavity behaves 

due to the cavity fields present.  

This chapter will first introduce the fundamentals of interactions of optical cavities with 

photon emitters, e.g., atoms, where the presence of the cavity can boost the emission rate of the 

atom by way of the Purcell effect. The second part of this chapter will introduce the core principles 

of optomechanical cavities. The momentum exchange of photons can drive mechanical modes 

strongly under certain conditions, usually denoted by the quantum cooperativity, 𝐶𝑞, which 

describes the coupling strengths relative to the decay rates. Reaching the regime 𝐶𝑞 > 1 is where 

the photon-phonon energy exchange can take place between the quantum mechanical ground states 

of both modes to complete the transduction. [92] These principles will be needed to describe the 

spin-opto-mechanical hybrid transduction device described in Chapter 7 where finite element 

modeling will be used to explain the necessary qualities and features the hybrid transduction device 

must have to realize high Purcell factors and high optomechanical cooperativity.  

6.2 Cavity quantum electrodynamics 

The first cavity interaction we will discuss is an atom strongly interacting with an optical field. In 

our case, the “atom” will be the electronic state of the divacancy. Interactions between quantized 

electromagnetic fields of high intensity and quantized matter is the subject of cavity quantum 

electrodynamics (CQED). CQED attempts to define the complex interactions and changes to the 

base system’s properties when they are considered a composite cavity system [93,94]. We will 
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start by introducing the Jaynes-Cummings Hamiltonian to model the ideal atom-cavity system in 

the strong coupling regime defined in Section 6.3.4. This will enable us to define what the coupling 

strength is when we talk about a CQED system. After which we will define a number of other 

terms that describe the operation and qualities of a Fabry-Perot optical cavity system and the 

benefits that such a system can have in the context of hybrid quantum systems. 

6.2.1 Jaynes-Cummings Hamiltonian 

We first write out the constitute parts of the Hamiltonian for an atom inside an optical cavity: 

   

 �̂�𝐽𝐶 = �̂�𝑎𝑡𝑜𝑚 + �̂�𝑓𝑖𝑒𝑙𝑑 + �̂�𝑖𝑛𝑡. (6.1) 

   

The atom Hamiltonian, �̂�𝑎𝑡𝑜𝑚, in this case is simply the TLS we defined for the divacancy complex 

in Equation (2.9): 

   

 
�̂�𝑎𝑡𝑜𝑚 =

ℏ𝜔𝑐
2
 (|𝑒⟩⟨𝑒| − |𝑔⟩⟨𝑔|). (6.2) 

   

Here we define 𝜔𝑐 as the frequency of the optical transition between a single ground state, |𝑔⟩, 

and excited state, |𝑒⟩. The cavity field can be represented as a quantum harmonic oscillator, which 

is an approximation valid for moderate cavity energies: 

   

 �̂�𝑓𝑖𝑒𝑙𝑑 =  ℏ𝜔𝑐�̂�
†�̂�, (6.3) 

   

where 𝜔𝑐 is the frequency of the cavity. The operators �̂�† and �̂� are the photon number creation 

and annihilation operators, respectively. Their produce, �̂�†�̂� is called the photon number operator 

and understood as adding or removing discrete photons from the cavity. In reality, 𝜔𝑐 will be 

described by some distribution of frequencies that the barriers of the cavity are designed to reflect, 
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usually with a gaussian or Lorentzian distribution. How close in resonance the systems are can 

increase the strength of the cavity coupling. The final term, �̂�𝑖𝑛𝑡, describes the interaction between 

the atom and field and must be treated with care. Starting with the semi-classical dipole interaction 

we wrote in Eq. (2.16) when describing electric field interaction with the divacancy, we add 

knowledge of the electron’s position, 𝑑 = 𝑒𝑐𝑟, to write: 

   

 �̂�𝑖𝑛𝑡 = −𝑒𝑐�̂� ∙ �̂�, (6.4) 

   

where 𝑒𝑐 is the electron charge. This term can be made quantum mechanical by rewriting 𝑒𝑐�̂� in 

terms of dipole moment matrix elements and atom transition operators and using the quantum 

operator term for the electric field, �̂�. [95] We obtain after simplification a compact form for the 

interaction Hamiltonian: 

   

 �̂�𝑖𝑛𝑡 = 𝑖ℏ(𝑔
∗(𝑟)�̂�†�̂�− − 𝑔(𝑟)�̂��̂�+). (6.5) 

   

Here �̂�+ = |𝑒⟩⟨𝑔|) and �̂�− = |𝑔⟩⟨𝑒| are the atomic rasing and lowering operators respectively. We 

will discuss in greater detail in the next section the emitter-field coupling for the atomic state at 

some position in the cavity, 𝑔(𝑟). For now, we will make a few points about the eigenstates of the 

total Jaynes-Cummings Hamiltonian constructed from the three terms in Eq. (6.1). The states of 

the bare atom and field are from different Hilbert spaces that must be reconciled in the interaction 

picture. The atomic states are described again by our TLS qubit picture of a ground and excited 

state, while the field states are called Fock states and describe photon number. The main difference 

is that Fock states can have n-dimensional matrix representation. This means tensor products 

between the basis states will define the new best eigenbasis for the composite cavity system. A 

formal treatment of these states will not be explored by this thesis. At the single excitation level 
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though, the system can be considered to undergo state transfer in the same way as when we 

discussed it for a single TLS when we considered an electron spin qubit. A single photon inside 

the cavity can be described as undergoing Rabi oscillation to excite the atomic state, and vice-

versa. Such a transfer of energy can be understood by a state transformation: 

   

 𝜓(𝑡 = 0) = |𝑔, 𝑛⟩ → 𝜓(𝑡 > 0) = |𝑒, 𝑛 − 1⟩. (6.6) 

   

Here an optical cavity initially containing n photons gives up one of them to excite the atom when 

driven. The quantum state basis here is |𝑚, 𝑛⟩, where 𝑚 = 𝑒/𝑔 describes the ground or excited 

state and 𝑛 describes the photon population of the cavity. 

6.2.2 Emitter-field coupling 

We are interested in defining the interaction strength between the atom and the cavity under the 

Jaynes-Cummings model. The coupling strength, 𝑔, is typically used to describe how well two 

constitute systems couple to each other in a hybrid quantum system. We are interested in 

calculating 𝑔(𝑟) we wrote in the Jaynes-Cummings Hamiltonian. 

Following the treatment of references, [95], we write out the full form of the emitter-field 

coupling: 

   

 
𝑔(𝑟) =

1

ℏ√
ℏ𝜔𝑐

2𝑉𝑚𝑜𝑑𝑒max(𝜀(𝑟)ห�⃗⃗�(𝑟)ห
2
)
�⃗�𝑒𝑔 ∙ �⃗⃗�(𝑟). (6.7) 

   

The frequency of the optical transition is 𝜔𝑜 and �⃗⃗�(𝑟) = �̂�𝐸(𝑟) describes the magnitude of the 

electric field in direction �̂� in all space. The dipole matrix element of our atomic transition is 

�⃗�𝑒𝑔 =  ⟨𝑒|𝑒𝑐�̂�|𝑔⟩, whose magnitude we will discuss below. The product 𝜀(𝑟)ห�⃗⃗�(𝑟)ห
2
 describes the 

energy density of the optical field at any point in space, where we are particularly interested in the 
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maximum value, at 𝑟 = 𝑟𝑚. Lastly, 𝑉𝑚𝑜𝑑𝑒, defined below in Eq. (6.9), is a geometric parameter 

called the cavity mode volume. In order to make this equation tractable, we will make a few 

assumptions about the system. Assuming we can apply a laser source of photons with arbitrary 

polarization into our cavity, we can choose any direction of its electric field at 𝑟, namely, we want 

it parallel to the dipole direction. If we also place our atom at the point of maximum electric field 

energy density, the vectors drop out of the equation, and we obtain the maximum estimation for 

the emitter field coupling: 

   

 

𝑔𝑒,𝑜 = 𝜇𝑒𝑔√
𝜔𝑐

2ℏ𝑉𝑚𝑜𝑑𝑒𝜀𝑚𝑎𝑥
. (6.8) 

   

We add subscripts here to denote this as the emitter-optical coupling we will explicitly calculate 

in Chapter 7 using optical mode simulations of the hybrid cavity system. To complete this 

calculation, we need values for the cavity mode volume and the dipole magnitude. The mode 

volume requires knowledge of the spatial domain of the cavity in order to take a volume integral 

over the electric field energy density[95]: 

   

 

𝑉𝑚𝑜𝑑𝑒 =
∭𝜀(𝑟)ห�⃗⃗�(𝑟)ห

2
𝑑3𝑟

max (𝜀(𝑟)ห�⃗⃗�(𝑟)ห
2
)
. (6.9) 

   

An important thing to note is that  𝑔𝑒,𝑜 is inversely related to 𝑉𝑚𝑜𝑑𝑒. Thus, the dimensions of a 

cavity should be minimized to increase the coupling. This point has driven much miniaturization 

in the fields of optomechanical and photonic cavities when it comes to fabricating micro- and 

nano-scale cavity volumes. On the other hand, maximizing the electric field strength will increase 

the light-matter coupling in the cavity. These two goals are sometimes at odds and new cavity 
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designs are necessary to made headway. Expressing the above equation as ratio of the wavelength 

to the index of refraction of the material is typical for such systems: 

   

 
𝑉𝑚𝑜𝑑𝑒 = 𝑉𝑜𝑙 ∗ (

𝜆0
𝑛
)
3

. (6.10) 

   

Here 𝑉𝑜𝑙 is a unitless parameter that encapsulates the geometry of the system, 𝜆0 is the cavity 

wavelength, and 𝑛 is the material’s index of refraction. This allows an agnostic comparator 

between cavity designs. Mode volumes on the order of (
𝜆0

𝑛
)
3

 have been realized for diamond and 

SiC systems and the state-of-the-art continues to push for lower values to increase coupling 

efficiency. Scaling down a device always comes with some tradeoffs in device performance or 

ease of construction.  

The final parameter we must define in Eq. (6.8) is the dipole magnitude, 𝜇𝑒𝑔, which 

encodes information about the an optical transition’s dynamics under excitation. This value is 

closely related to the spontaneous emission rate of the atom in the cavity (see Section 6.3.1). It can 

be understood as a factor in the matrix element in the Hamiltonian of the field that drives a 

transition between the ground and excited states. The larger the 𝜇𝑒𝑔 the larger the “Rabi rate” of 

the cycling during continuous optical driving of the transition. There is an equation that relates the 

excited state lifetime of an emitter, 𝛤0, to 𝜇𝑒𝑔, as well as a number of other parameters that describe 

the emission properties of the atom [96]: 

   

 
𝛤0 =

1

𝛽
(
3𝑛5/2

2𝑛2 + 1
)

2
𝜇𝑒𝑔

2𝜔𝑐
3

3𝜋𝜖0ℏ𝑐3
. (6.11) 
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The variables 𝑐 and 𝜖0 are the fundamental constants for the speed of light and the vacuum 

permittivity and 𝑛 is the index of refraction of the host crystal for the emitter. The parameter 𝛽 is 

the fraction of the decay rate due to spontaneous emission at the transition matched to the cavity’s 

fundamental frequency. This is just the product of the Debye-Waller factor, DWF, defined in 

Section 3.2.1 and the radiative efficiency for the emitter, RE: 

   

 𝛽 = 𝐷𝑊𝐹 ∗ 𝑅𝐸. (6.12) 

   

The excited state lifetime as well as the Debye-Waller factor and radiative efficiency can all be 

experimentally measured. Thus, we have a method to calculate the emitter-cavity coupling using 

known constants, experimentally measured values, and an estimation of the cavity mode volume 

from knowledge of its geometric domain and electric field distribution.  

6.3 Fabry-Perot cavity parameters 

Having defined the Hamiltonian for a CQED system and discussed some of the important 

parameters and states that the system is described by, we now will discuss several parameters 

central to discussing energy exchange for optical cavities. The goal is to be able to describe the  

properties of high-performance Fabry-Perot cavities in the context of hybrid quantum systems. 

Many of these parameters apply to the description of mechanical cavity interactions as well, as we 

will see in the rest of the sections of this chapter.  

A Fabry-Perot cavity is a specific geometry of optical cavity, and perhaps the simplest 

form, as it is composed of just two planar mirrors separated by a distance, 𝐿. The planar Fabry-
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Perot cavity is actually the limiting case for a cavity composed of two circular arcs of radius, 𝑅, 

where the radius is infinite. The distance 𝐿 sets the frequencies of standing waves that result when  

traveling photonic waves transmit through the backside of one of the mirrors. The optical 

properties of the mirrors are key to determining the cavity behavior. Coatings can change the 

reflectivity/transmissivity of either of the sides of both mirrors, leading to a wide variety of cavity 

responses to the excitation beam. In the following sub-sections, we will define the major 

parameters to describe the behavior of a Fabry-Perot as denoted in Figure 6.1. 

Figure 6.1. Linear Fabry-Perot cavity coupled to emitter (A): Pair of mirrors separated by a length, 𝐿, 

forming a Fabry-Perot cavity. White: laser input at variable frequency through input port mirror. The cavity 

field, �⃗⃗� (yellow), is determined by the combination of the laser input, light field from the emitter with 

spontaneous emission rate 𝛾 (red), and the total leakage of photons from internal (𝜅𝑖 ) and external (𝜅𝑜 ) 
decay rates. (B): The linewidth of the resonances upon scanning a probe laser, 𝜔 and collecting the reflected 

light, 𝑅, shows resonance conditions of zero reflectance at the harmonics of the fundamental standing wave 

resonances of 𝜆𝑐,𝑛= 2𝐿/𝑛, where 𝑛 is an integer and the spacing is the free spectral range FSR = 𝑐/2𝐿. The 

second mirror is assumed to have perfect reflectance, making this a single-sided Fabry-Perot cavity. The 

linewidths are equal to the total cavity decay rate 𝜅 = 𝜅𝑖 + 𝜅𝑜. 
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6.3.1 Spontaneous emission rate 

The spontaneous emission rate, 𝛾, describes the rate of photon emission for an atom or defect 

complex as if the emitter was in a vacuum [95]: 

   

 
𝛾 =

𝜇𝑒𝑔
2𝜔𝑐

3

6𝜋𝜖0ℏ𝑐3
. (6.13) 

   

In fact, Equation (6.11) can be understood as modification of the above equation as the excited 

state lifetime, 𝛤0 is simply 
1

𝛾
. The modification comes from the interactions of the emitted photons 

with the crystal lattice. Any single photon emitted can either not physically enter the cavity due to 

its trajectory not overlapping with the spatial mode of the cavity or by exchanging energy with the 

lattice so as to not be on resonance with the cavity anymore. 

Choosing emitters with higher spontaneous emission rates means more photons are likely 

to be inside the cavity at any one time and increase the probability of light-matter interactions. 

Experimentally, this means choosing emitters with higher count rates, 𝐶𝑡𝑠(𝑡), as measured directly 

from the exponential decay of the excited state population after an optical pulse on resonance: 

   

 𝐶𝑡𝑠(𝑡) = 𝑒−𝛾𝑡. (6.14) 

   

One possible drawback to higher emission rates is a broader spectral linewidth for the optical lines. 

In systems where several spectral lines are close together, potential overlap between them can 

increase the complexity of performing optical control pulses on qubits. When these pulses are 

initializing the states of electron spin qubits, the fidelity of the initial superposition can suffer. 

When the pulses are reading out the information of states, 𝐶𝑡𝑠(𝑡) can contain spurious counts from 
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a transition that does not contain quantum information. The impact of broader emission lines for 

the operation of high-performance cavities will be elucidated in the following sections. 

6.3.2 Quality factor and decay rates 

An important metric for defining the cavity’s ability to confine light around an atom in a CQED 

system is its quality factor, 𝑄. 𝑄 is notorious for having several different interpretations under 

different contexts. Much of this comes from the fact that confining a light field has both a spatial 

and a temporal factor. If we consider a CQED system in a vacuum that perfectly contains a certain 

optical mode for long times, 𝑡 → ∞, then its 𝑄 → ∞ as well. In the laboratory, if we inject light 

into our cavity, then on some timescale, 𝑄 may as well be infinite as the light has not escaped the 

boundary we define as our cavity. But for 𝑡 → ∞, that light will reveal the imperfections of our 

confinement. Unless we continue to expand the geometric bounds of our cavity, at some point we 

must characterize that photon loss rate of the small device designed to tightly confine light instead 

of a wider description that includes light that has diffused on the way to some other optical element 

in the system. In fact, several cavity designs want a specific loss rate as that is the light that can 

carry quantum information from the emitter out of the cavity to another part of the hybrid quantum 

system.   

Following this description, one definition for the quality factor is: 

   

 
𝑄 ≡ 2𝜋

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑐𝑎𝑣𝑖𝑡𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
. (6.15) 

   

Where up to some constants, the quality factor is defined as the energy content of the cavity per 

energy lost to dampening processes due to imperfections of the boundaries keeping the photons 

contained. The factor 2𝜋 enters from 𝑄 being defined as a time constant that describes the 
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timescale for the cavity to reduce to 
1

𝑒
 of its starting energy content. Measuring these energy values 

precisely in a nanostructure would be fantastically difficult, so the above equation is usually 

reserved for understanding of the underlying energy exchange processes that define a cavity’s 

effectiveness. 

To add some numerical context, 𝑄’s on order of a million have been achieved [97] for NIR 

photonic cavities in SiC nano-platforms but values even in the thousands are useful in several 

contexts for emitters in hybrid quantum systems, with 𝑄 = 10,000 usually the lower bound for 

being called excellent quality factors. 

An experimental way to measure the quality factor is to vary the frequency of a laser 

addressing a cavity and measure the amount of light that is transmitted, or in other words, 

measuring the average amount of light that is not confined by the cavity. This transmission 

spectrum will usually reveal a Lorentzian profile centered at the cavity’s resonance condition, 𝜔𝑐,  

that has a certain linewidth characterized by a full-width half-maximum, 𝐹𝑊𝐻𝑀.The quality 

factor is found by: 

   

 𝑄 =
𝜔𝑐

𝐹𝑊𝐻𝑀
. (6.16) 

   

This is called the bandwidth definition of the quality factor and is typically the easiest way to 

measure it.  

A way to merge the energy and bandwidth interpretations of the quality factor is to consider 

the FWHM of the spectral response of the cavity as a decay rate for the total energy exiting the 
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cavity. This gives us a way to experimentally measure the quality factor when we can measure the 

transmission or reflection spectrum of the light exiting or reflected from a cavity using the relation: 

   

 𝑄 = 
𝜔𝑐
𝜅

 (6.17) 

   

In certain contexts, it is sometimes useful to consider both internal and external decay rates 𝜅𝑖 and 

𝜅𝑜 to describe physical processes that remove energy from the cavity in different ways. The 

internal decay rate 𝜅𝑖 describes all the loss mechanisms between the cavity boundaries that 

removes energy from the cavity, i.e., transfers it to another field preventing it from interacting 

coherently with the emitter under the Jaynes-Cummings picture. In a vacuum Fabry-Perot cavity, 

there might be residual atmosphere of gas that the electric field can excite and release photons of 

non-resonant light. The external decay rates usually encompass the reflective properties of the 

boundaries at the optical wavelength of the cavity. The external decay rate, 𝜅𝑜, defines the energy 

lost by fields carrying energy through the cavity boundaries, or for a Fabry-Perot cavity, this 

describes light leaking through the mirrors. The sum of these is the total decay rate: 

   

 𝜅 = 𝜅𝑖 + 𝜅𝑜 (6.18) 

   

A useful descriptor for these decay rates is the overcoupling factor, defined as: 

   

 𝜂𝑐 = 
𝜅𝑜
𝜅

 (6.19) 
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The overcoupling factor denotes the percentage of light lost through one of the Fabry-Perot cavity 

ports, based on the optical properties of that mirror. We can rearrange this equation to remove 𝜅𝑜, 

which can be difficult to measure: 

   

 𝜅 =  
𝜅𝑖

1 − 𝜂𝑐
 (6.20) 

   

This relation will be useful in Chapter 7 when we wish to consider the optomechanical properties 

of the proposed transduction scheme in relation to realistic cavity linewidths based on estimations 

of their scattering losses due to the surface roughness of SiC. 

6.3.3 Finesse and free spectral range 

Another parameter commonly used to describe a cavity’s operation is the finesse, ℱ. It is defined 

as the number round trips a photon takes inside a cavity before the energy content decays to 
1

𝑒
 of 

its starting value. The finesse of a Fabry-Perot cavity is connected to the free spectral range (FSR) 

of the cavity spectrum through the relation: 

   

 
ℱ =

𝐹𝑆𝑅

𝐹𝑊𝐻𝑀
=
𝐹𝑆𝑅

𝜅
. (6.21) 

   

This makes the finesse and the quality factor very closely related. For a vacuum Fabry-Perot cavity, 

there will be an infinite number of resonances spaced by the FSR from the relation: 

   

 𝐹𝑆𝑅 =
𝑐

2𝐿
, (6.22) 

   

Where 𝐿 again is the distance between the mirrors. Since the 𝐹𝑆𝑅 is related to the round trip length, 

increasing the cavity length while keeping the energy losses constant will keep the finesse constant 

but increase the quality factor.  
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We now have all the parameters to estimate the linewidth, 𝜅 (Eq. (6.18)),  of a Fabry-Perot 

cavity, given certain assumptions of the internal and external losses. If we assume the transmission 

losses through one of the mirrors is zero compared to the other mirror, we have a single-sided 

cavity, whose surface roughness can be assumed to be the dominant internal loss channel. The 

roundtrip loss, 𝑅𝑇𝐿 can be assumed to be [98]: 

   

 
𝑅𝑇𝐿 = (

4𝜋𝜎𝑅𝑀𝑆
𝜆𝑐

)
2

 (6.23) 

   

The finesse only for the internal processes under this assumption is: 

   

 
ℱ𝑖 =

2𝜋

2𝑅𝑇𝐿
 (6.24) 

   

Then this can be used to calculate 𝜅𝑖, which, along with choosing an overcoupling by tuning the 

transmissive properties of the mirror of the single-sided cavity to set its overcoupling ratio, the 

linewidth of the cavity can be defined. The optical cavity quality factor can also be calculated from 

the total linewidth. 

6.3.4 Purcell factor and cooperativity 

Now we will introduce one of the main enhancements that a cavity system provides to a solid-state 

emitter used for qubit applications. The emitter in a cavity system experiences an increase in its 

vacuum spontaneous radiative rate, 𝛾, defined in Eq. (6.13), by a ratio defined as the Purcell factor, 

𝐹: 

   

 𝐹 = 
𝛾𝑐
𝛾
, (6.25) 
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Here 𝛾𝑐 is the enhanced emission rate. This higher count rate by implementing a cavity architecture 

around a qubit with an optical interface like the divacancy can greatly improve the efficiency of 

reading out the quantum information of its spin encoded in emitted photons.  

Purcell enhancement is actually seen in a system not quite in the strong-coupling regime 

of the Jaynes-Cummings model, in what is called the Purcell regime coupling regime. These 

different regimes are defined by the relative coupling between the cavity and the emitter and their 

individual decay rates. First, we describe the weak coupling where the emitter and cavity 

linewidths fulfill the condition: 

   

 𝛾, 𝜅 > 𝑔𝑒,𝑜 , (6.26) 

   

Here the system linewidths are larger than the emitter-cavity coupling between them. This regime 

is not very useful from a practical standpoint. Using the decay rate definitions for the linewidths, 

it is clear energy is exiting the cavity too fast to see much energy exchange between the emitter 

and the cavity.  

One can now talk about the Purcell regime, where we have a slightly more favorable 

ordering: 

   

 𝜅 > 𝑔𝑒,𝑜 > 𝛾. (6.27) 

   

For a cavity system in the Purcell regime, consider a single photon emitted by the atom. On 

average, just as in the weak coupling regime, it will interact with the cavity before being reabsorbed 

by the atom. The 𝑔𝑒,𝑜 > 𝛾 condition though ensures there is an increase in the density of photonic 

states in the cavity due to state mixing, and this will increase the emission rate of the atom. 
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Under this condition, we can rewrite the Purcell factor in terms of the emitter cavity 

coupling defined in Eq. (6.8) for a host crystal of index of refraction, 𝑛 [95]: 

   

 
𝐹 = 

2ห𝑔𝑒,𝑜(𝑟)ห
2

𝜅𝑛𝛾
. (6.28) 

   

This indicates that the maximum Purcell factor will be achieved when the maximum coupling rate 

is also achieved (when the emitter dipole is aligned to the field and at the field maximum), so we 

can simplify the equation to: 

   

 
𝐹 =

3

4𝜋
(
𝜆0
𝑛
)
3 𝑄

𝑉𝑚𝑜𝑑𝑒
. (6.29) 

   

This form is useful because it makes it clear that the ratio 
𝑄

𝑉𝑚𝑜𝑑𝑒
 is important for maximizing the 

enhanced emission from the atom inside the cavity. If the confinement of the electric field is 

sacrificed by reducing the size of the cavity, the rate of photons emitted from the system might not 

drastically increase. Though we do not even have to reach the strong coupling regime to see an 

increase in counts due to Eq. (6.28) because the relation 𝑔𝑒,𝑜 > 𝛾 will ensure 𝐹 > 1. 

The last regime of interest is the strong coupling regime: 

   

 𝑔𝑒,𝑜 > 𝛾, 𝜅. (6.30) 

   

Here we see the coupling outperforms both the loss mechanisms of the spontaneous emission rate 

and cavity leakage rate. Here we will introduce the last CQED parameter of this section, the 
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cooperativity, which helps unify the boundaries between the weak and strong coupled regimes. 

The cooperativity, 𝐶𝑒,𝑜, is defined for an optical cavity as: 

   

 
𝐶𝑒,𝑜 =

𝑔𝑒,𝑜
2

2𝜅𝛾
. 

(6.31) 

   

This definition means that 𝐶𝑒,𝑜 ≫ 1 can indicate we have very strong coupling between the emitter 

and cavity, and thus the Jaynes-Cummings picture will make good predictions for the behavior of 

the system. It is this regime that is sought after for hybrid quantum systems due to coherent 

quantum state transfer demanding strong coupling between the states of the system to counteract 

all the loss mechanisms at play. Yet, simply reaching the Purcell regime is very useful as we gain 

an increase in photon collection efficiency per shot. 

6.4 Optomechanical cavities 

The other type of cavity mode we will investigate in Chapter 7 is a mechanical cavity that supports 

a certain resonance frequency of phonon standing waves between “phononic mirrors”, made of 

distributed Bragg reflector stacks to be discussed later in that chapter. Mechanical cavities operate 

under many of the same principles as optical cavities. Resonance frequency, decay rates, quality 

factor, finesse, and cooperativity are all things that can be discussed for mechanical cavities in 

much the same way as in the previous sections. We are interested in mechanical cavities in the 

context of cavity optomechanics, where the radiation pressure forces from light mediates 

interactions between the mechanical and optical modes. One interaction is motional cooling where 

if the optomechanical interaction is strong enough, laser tones can transfer energy out of a 

mechanical mode to reach its quantum ground state. This operating point is a prerequisite for 

considering any quantum state transfer schemes between the optical and mechanical modes, 
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including the one discussed in Chapter 7 based on optical mechanical induced transparency to 

down-convert divacancy photons to a phononic mode and subsequent optical readout at telecom 

frequencies. 

The rest of the sections in this chapter will be devoted to first discussing the quantum 

harmonic oscillator Hamiltonian representation of an optomechanical system. Specifically, the 

calculation of the phonon-photon coupling will be described and how this influences the quantum 

cooperativity of the system. The threshold coupling requirements for that cooperativity for 

operating the system at its quantum ground state will be discussed in the context of the cavity 

parameters for the optical and mechanical modes. 

6.4.1 Optomechanical Hamiltonian 

The basic understanding of the optomechanical interaction can be thought of as the mass of the 

photons in an optical cavity causing the mirrors to translate. If the effect is large enough, such 

translation can produce vibrational waves, i.e. phonon modes, which if confined, can been seen to 

have a resonance condition in the cavity, with separate boundary conditions. At the quantum 

mechanical level, this system is composed of a pair of interacting quantum harmonic oscillators, 

one radiation mode and one vibrational mode (Figure 6.2). As always, we write the system 

Hamiltonian as a sum of the individual parts: 

   

 �̂�𝑂𝑀 = �̂�𝑟𝑎𝑑 + �̂�𝑚𝑒𝑐ℎ + �̂�𝑖𝑛𝑡 = ℏ𝜔𝑐�̂�
†�̂� + ℏ𝛺𝑚�̂�

†�̂� + �̂�𝑖𝑛𝑡. (6.32) 

   

This is the simplest representation of the optomechanical Hamiltonian, �̂�𝑂𝑀, involving only one 

optical and mechanical resonance frequency, 𝜔𝑐 and 𝛺𝑚, respectively, which is valid normally for 

small displacements present in many experimental realizations of this system [99]. The radiation 

term, �̂�𝑟𝑎𝑑, is the same as introduced in Eq. (6.3), and �̂�𝑚𝑒𝑐ℎ is another quantum harmonic 
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oscillator with a phonon number operator, �̂�†�̂�. We neglect the constant contribution of 
1

2
ℏ𝛺𝑚 

added to �̂�𝑚𝑒𝑐ℎ. We assume this Hamiltonian describes an optical cavity with at least one movable 

mirror, translating along the x-axis, so the optical cavity resonance frequency is modulated by the 

amplitude of that mechanical motion. If we write this parametric coupling only considering up to 

the linear term, we have: 

   

 
𝜔𝑐(𝑥) ≈ 𝜔𝑐 + 𝑥

𝜕𝜔𝑐
𝜕𝑥
. (6.33) 

   

Here we define the optical frequency shift per displacement, 𝐺, as: 

   

 
𝐺 = −

𝜕𝜔𝑐
𝜕𝑥
. (6.34) 

   

The sign indicates that the positive x direction increases the cavity length, 𝐿, and would decrease 

the resonance frequency. Plugging into the Hamiltonian we have: 

   

 ℏ𝜔𝑐�̂�
†�̂� ≈ ℏ(𝜔𝑐 − �̂�𝐺)�̂�

†�̂� (6.35) 

   

We introduce the position operator, �̂�, and the momentum operator, �̂�: 

   

 �̂� = 𝑥𝑍𝑃𝐹(�̂� + �̂�
†), �̂� = −𝑖𝑚𝑒𝑓𝑓𝛺𝑚𝑥𝑍𝑃𝐹(�̂� − �̂�

†) (6.36) 
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The zero-point fluctuation amplitude of the mechanical oscillator that describes its average 

position in its ground-state is [99]: 

   

 

𝑥𝑍𝑃𝐹 = √
ℏ

2𝑚𝑒𝑓𝑓𝛺𝑚
 (6.37) 

   

It can also be understood as describing a spring-constant, 𝑘, in analogy to Hooke’s law: 

   

 

𝛺𝑚 = √
𝑘

𝑚𝑒𝑓𝑓
 

(6.38) 

   

Returning to the Hamiltonian, we can now collect terms that make up the interaction part given 

under the approximation of a linear optical frequency shift per displacement: 

   

 �̂�𝑖𝑛𝑡 = −ℏ𝑔𝑜,𝑚�̂�
†�̂�(�̂�† + �̂�), (6.39) 

   

where we have introduced the vacuum optomechanical coupling strength, 𝑔𝑜,𝑚: 

   

 𝑔𝑜,𝑚 = 𝐺𝑥𝑍𝑃𝐹 (6.40) 

   

Figure 6.2. Optomechanical cavity diagram. A laser tone with photon mode �̂�𝐿 and frequency 𝜔𝐿 are 

incident on an optical cavity with photon mode �̂� and frequency 𝜔𝑐 composed of two mirrors. The right 

mirror is allowed to move, with coordinate, 𝑥. This moving boundary is a mechanical oscillator with phonon 

mode �̂� and frequency 𝛺𝑚. 
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 This describes the interaction strength between a single photon with a single phonon in the system 

and can be better to call it the single phonon optical coupling strength.  

6.4.2 Linearized approximation 

 Here we can begin to consider the system being driven by a laser frequency, 𝜔𝐿, and as 

usual, we gain a lot moving to the rotating frame. The unitary transformation follows similar to 

Section 2.5, with �̂� = 𝑒𝑖𝜔𝐿�̂�
†�̂� we can write the Hamiltonian as: 

   

 �̂�𝑂𝑀 = −ℏ∆�̂�
†�̂� + ℏ𝛺𝑚�̂�

†�̂� − ℏ𝑔𝑜,𝑚�̂�
†�̂�(�̂�† + �̂�). (6.41) 

   

We define the detuning between the optical cavity and the laser tone, ∆ =  𝜔𝐿 − 𝜔𝑐𝑎𝑣. In order to 

make this problem tractable, we enter the “linearized” approximation for the optomechanical 

interaction. Where the cavity field is built from an average amplitude, due to the presence of an 

average number of cavity photons, �̅� = √�̅�𝑐𝑎𝑣 to which we add a term allowed to fluctuate, 𝛿�̂�: 

   

 �̂� = �̅� + 𝛿�̂�. (6.42) 

   

Removing a constant shift from the expansion that removes the laser driving term, and only 

keeping powers linear in the cavity amplitude, we have: 

   

 �̂�𝑂𝑀 = −ℏ∆�̂�
†�̂� + ℏ𝛺𝑚�̂�

†�̂� − ℏ𝑔(𝛿�̂�† + 𝛿�̂�)(�̂�† + �̂�). (6.43) 

   

Here we have defined a new parameter, 𝑔 = 𝑔𝑜,𝑚√�̅�𝑐𝑎𝑣, we label the optomechanical coupling 

strength.  

 In the context of wanting to maximize interactions between the optical and mechanical 

systems, which will define the kinds of excitation transfer we can achieve in the system that can 
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be used to perform transduction in the device investigated in Chapter 7, we start by defining in 

analogy to Eq. (6.28), with the corresponding damping rates, the single phonon cooperativity: 

   

 
𝐶0 =

4𝑔𝑜,𝑚
2

𝜅𝛤𝑚
, (6.44) 

   

We define the mechanical decay rate in terms of its frequency and quality factor 𝛤𝑚 =
𝛺𝑚

𝑄𝑚
. 

Maximizing this involves improving the system itself, but we can work in the high laser power 

regime, and we can define the optomechanical cooperativity for the situation where the optical 

cavity contains on average �̅�𝑐𝑎𝑣 photons due to a certain laser drive power: 

   

 
𝐶 =

4𝑔𝑜,𝑚
2

𝜅𝛤𝑚
�̅�𝑐𝑎𝑣, (6.45) 

   

One further consideration is the average number of thermal phonons present in the mechanical 

oscillator due to the thermal bath it is coupled to at a particular frequency mode. We define the 

quantum cooperativity: 

   

 
𝐶𝑞 =

𝐶

�̅�𝑡ℎ
, (6.46) 

   

where the phonon occupancy is given by the Boltzmann distribution for phonons: 

   

 
�̅�𝑡ℎ =

𝑘𝐵𝑇

2𝜋ℏ𝛺𝑚
. (6.47) 

   

Here 𝑘𝐵 is the Boltzmann constant.  
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6.4.3 Bistability regime 

A threshold to keep when defining how large the cavity optical field can be, is that we 

cannot drive our optomechanical system with infinite laser pump powers, as we would like to do 

to compensate for the number of intracavity photons lost through potentially large decay rates from 

external and internal loss channels. Similarly, if the optical decay rate is too large compared to the 

optomechanical coupling, we might not be in a regime where 𝐶𝑞 or even 𝐶 is larger than one.  

To explain this, consider the optomechanical interaction described as a backaction effect, 

where the cavity decay rate adds some delay to the mechanical motion shifting the optical 

resonance, which changes the cavity photon occupancy, which changes the force acting on the 

barrier. One basic effect of this is to shift the equilibrium point of the oscillators motion. There is 

a driving threshold above which the system enters the “bi-stability regime” [100] and the properties 

of Section 6.5 will not be realizable in our system due to there being two equilibrium points leading 

to instability. This would prevent us from enabling a set of properties of the optomechanical system 

that are valid only in the “sideband-resolved regime” where the optical linewidth of the cavity is 

much smaller than the mechanical frequency: 𝛺𝑚 ≫ 𝜅. This includes the process of cooling the 

mechanical resonator to its quantum ground state (see Section 6.5.1) and a process by which optical 

emissions of certain frequencies can be transferred to mechanical excitations called 

optomechanical induced transparency (OMIT) (see Section 6.5.2). Ground-state cooling and high 

quantum optomechanical cooperativity (𝐶 > 1) are prerequisites for OMIT. With all that in mind, 

the bi-stability criteria [99] is given by: 
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�̅�𝑐𝑎𝑣,𝑚𝑎𝑥. (6.48) 
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We will use it to estimate the maximum �̅�𝑐𝑎𝑣 our optomechanical system can contain to calculate 

the highest possible optomechanical cooperativity for our system. Experimentally, this tells us 

there is a critical laser driving power we cannot exceed when addressing our system. 

6.5 Sideband-resolved regime 

In this section we want to describe a set of properties of the optomechanical system that are valid 

only in the “sideband-resolved regime” where the optical linewidth of the cavity is much smaller 

than the mechanical frequency: 𝛺𝑚 ≫ 𝜅. We want to describe the two major consequences of this 

regime that are relevant to our proposed transduction process in Chapter 7. The detuning most 

relevant to us will be ∆ =  −𝛺𝑚, where driving at a red-detuned sideband of the mechanical density 

of states due to the optomechanical interaction will enable the process of cooling the mechanical 

resonator to its quantum ground state and performing OMIT.  

6.5.1 Ground-state cooling 

The backaction from the radiation pressure force can be considered as a linear, mechanical 

response affecting the mechanical oscillator. This effect can be contextualized as an additional 

mechanical dampening term added to the intrinsic dampening that the oscillator experiences due 

to friction and other physical loss channels during its motion. We write: 

   

 𝛤𝑒𝑓𝑓 = 𝛤𝑚 + 𝛤𝑜𝑝𝑡, (6.49) 

   

where the additional dampening due to the optomechanical interaction, 𝛤𝑜𝑝𝑡, can be either positive 

or negative, depending on the photon frequency relative to the center of the optical cavity, 𝜔𝑐. For 

photons of higher frequency (𝜔 > 𝜔𝑐), they have a chance give up energy in the form of phonons 

entering the mechanical cavity. This would mean amplification of the mechanical motion, and we  
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can say 𝛤𝑜𝑝𝑡 is negative for such a process. If this process is encouraged, it could reach 𝛤𝑚 < 𝛤𝑜𝑝𝑡, 

leading to massive population increase in the mechanical mode leading to an unstable cavity. On 

the other side of the optical cavity, (𝜔 < 𝜔𝑐), photons can accept energy from phonons, leading to 

an increase in 𝛤𝑜𝑝𝑡 and less energy in the mechanical cavity. Perturbation theory of the full coupled 

quantum mechanical equations of motions for this system reveals that the net effect of this 

modification of the mechanical decay rate is that the cavity photon field contains sidebands with 

center frequencies located at 𝜔𝑐 ±  𝑛 ∗ 𝛺𝑚 [101]. For the purpose of ground-state cooling, we only 

need to concentrate on the first order sidebands (𝑛 = 1), which can be seen when the optical cavity 

is driven on resonance and the transmission spectrum is measured. Another explanation says that 

the radiation pressure driving force and the mechanical motion become out of phase with each 

other and allows either positive (warming) or negative (cooling) energy transfer to occur between 

the optical and mechanical density of states. 

Figure 6.3. Ground-state cooling of optomechanical system (A): Laser tone (grey) addressing the optical 

cavity at frequency 𝜔𝐿 = 𝜔𝑐 − 𝛺𝑚 achieves cooling of mechanical mode by enhancing anti-Stokes 

scattering (blue) and suppressing Stokes scattering (red). (B): Energy level diagram of the process in (A), 

where the state is ห𝑛𝑐𝑎𝑣, 𝑛𝑝ℎ𝑜𝑛𝑜𝑛,  ൿ. We focus on three of the motional states, with or without a photon 

entering the optical cavity. The anti-Stokes scattering process (blue) is the only transition on resonance 

with 𝜔𝐿, and the other two processes are suppressed. Cooling is accomplished by the photon blue-shifting 

by absorbing the energy of a phonon and subsequently exiting the cavity. 

 



124 

 

 If we now consider driving the optomechanical cavity with a detuned laser, we can choose 

to address either of the sidebands, which we call the Stokes (𝜔𝑐 + 𝛺𝑚) and anti-Stokes sidebands 

(𝜔𝑐 − 𝛺𝑚). If we are in the sideband-resolved regime, 𝛺𝑚 ≫ 𝜅,  then we can be assumed to be 

addressing only one of the sidebands. We must consider the three different scattering processes 

when addressing the anti-Stokes sideband with a pump laser (Figure 6.3). From the energy level 

diagrams of the available states for the incident photon, only the process whereby a phonon is 

absorbed by the photon scattering off the optomechanical cavity is resonantly addressed. The blue-

shifted photon then has a chance to carry that energy out of the optical cavity via reflection. We 

can utilize a relation [102] that provides a threshold for when the average minimum phonon, 

occupation can be made less than one: 

   

 
�̅�𝑚𝑖𝑛 = (

𝜅

4𝛺𝑚
)
2

< 1 (6.50) 

   

This again, plainly shows the requirement of being in the sideband-resolved regime. 

6.5.2 Optomechanical induced transparency (OMIT) 

If the red-detuned sideband of an optomechanical cavity can be addressed by a strong laser drive, 

the cavity resonance spectrum, as measured by another, weaker tone in transmission is seen to be 

completely transparent at the center of the optical cavity. The transmission window depth, 𝑇𝑂𝑀𝐼𝑇 

can be shown for an overcoupled optical cavity with 𝜂𝑐=0.5 (Eq. (6.19)), to be [103]: 

   

 
|𝑇𝑂𝑀𝐼𝑇|
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𝐶

𝐶 + 1
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2

, (6.51) 

   

Where 𝐶, the optomechanical cooperativity, is given by Eq. (6.45). Here is where the requirement 

high optomechanical cooperativity comes in, as 𝐶 > 1 gives asymptotically increasing 
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transmission. The existence of the transmission window can physically be explained as the beating 

of the weak probe and strong resonant laser drive adds a temporally varying radiation pressure 

force. If that time dependence matches the resonant frequency of the mechanical cavity, then it 

will be driven and create sidebands on the strong probe tone. When the upper sideband of that 

strong drive (located at 𝜔𝑐) interacts with the weak probe the photons scattered from the cavity 

experience destructive interference due to them being phase coherent. One requirement of this is 

phase stability of both lasers on the time scales of the cavity decay rates.  

 The width of the Lorentzian line shape of the transparency, 𝛤𝑂𝑀𝐼𝑇 window is given by 

[103]: 

    

 
𝛤𝑂𝑀𝐼𝑇 = 𝛤𝑚 +

4𝑔𝑜,𝑚
2

𝜅
�̅�𝑐𝑎𝑣. (6.52) 

   

This linewidth sets the bandwidth of the pulse that can be transmitted through the cavity 

undistorted. 𝛤𝑂𝑀𝐼𝑇 is also called the effective optomechanical dampening rate, with the term added 

to 𝛤𝑚 arising due to the interactions with the optical cavity at a certain photon occupation, �̅�𝑐𝑎𝑣. 

Thus, dampening strength can be considered as proportional to some laser power input into the 

optical cavity. More power input adds more dampening and widens the bandwidth.  
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Chapter 7   

DESIGN OF A MONOLITHIC HYBRID 

OPTOMECHANICAL RESONATOR 

COUPLED TO A SPIN QUBIT 

7.1 Introduction 

Quantum technologies are showing remarkable progress in many domains, but no one platform is 

currently able to offer simultaneous solutions to the key functionalities needed for a complete 

quantum information platform [11]. The desired functionalities fall under broad categories, such 

as computation involving multi-qubit states, long-term storage of quantum superpositions, and 

transfer of quantum states over city-scale distances. Combining different platforms into hybrid 

quantum systems offers progress towards solutions [92,104] and is the current goal of many 

institutions.   

A major hurdle for hybrid quantum systems is transferring quantum information between 

degrees of freedom housed in platforms that operate at vastly different energy scales. This involves 

development of “flying qubits” that can transfer quantum information between “stationary qubit” 

systems that excel at computation or long-term storage. Having a robust array of communication 

channels to shuttle delicate quantum states is a major goal of quantum information science [105]. 

It is generally considered that photons of wavelengths in the telecom band are the best candidate 

for flying qubits due to the low attenuation in existing optical fiber technologies. High-throughput 
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generation of photons at these wavelengths would allow implementation of robust entanglement 

protocols necessary for long-distance quantum communication. The current challenge is the 

development of quantum transducer platforms that can generate photons at telecom frequencies 

entangled to the quantum states of stationary qubit platforms, which typically are in the microwave 

regime. Superconducting circuits operating at microwave frequencies have shown quantum 

advantage in a quantum processor [6] and early implementation of quantum error correction [106]. 

An efficient microwave-to-optical transducer would enable the connection of these or other 

quantum computation architectures to communicate over long distances 

A plethora of systems realizing connections between microwave and optical excitations 

have been studied in recent years, including optomechanical systems, atomic ensembles, electro-

optical systems, organic molecules, and magnons. [107,108] Mechanical resonators especially 

have been studied as useful for hybrid quantum systems due to their ability to couple mechanical 

motion to degrees of freedom at many energy scales. These interactions enable overcoming the 

off-resonant processes inherent in trying to bridge the five order-of-magnitude wide energy gap 

between microwave and optical excitations. Circuit-QED systems coupled to mechanical 

oscillators can have cooperativities that overcome the myriad of lossy channels involved when 

coupling systems of disparate energies. Both bulk and surface phonon modes with high mechanical 

quality factors are being investigated that exhibit high-degrees of control over quantum states at 

the mechanical ground-state of these hybrid quantum systems [37]. Efficiencies as high as 47% 

for microwave-to-optical up-conversion has been shown using a mechanical membrane coupled 

to microwave resonator realizing a parametric oscillatory response that is described by an effective 

beam-splitter like Hamiltonian [38]. 
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An alternative pathway towards creating telecom frequency flying qubits for various 

applications are the collection of optical point emitters that have demonstrated photon-mediated 

entanglement at short distances [9,109–114] to show the potential of long-distance quantum 

networks in trapped ions, quantum dots, or solid-state color center spins. The most successful of 

these solid-state spins so far is the nitrogen-vacancy (NV) center found in diamond. The spin state 

of an NV center has been reported to be entangled to a telecom-wavelength photon using difference 

frequency generation at an entanglement fidelity of 77% [115]. This conversion process has 

recently allowed heralded entanglement between two independently operated NV spin qubit 

network nodes separated by 10 kilometers at ~50% fidelity [116]. This technique uses periodically 

poled lithium niobate (ppLN) crystal waveguides to mix the 637 nm NV emission with a 1064 nm 

pump laser to create 1588 nm L-band telecom photons. The advantages of the NV center also 

include the utilization of multi-spin quantum registers in the diamond host by coupling to nuclear 

spins. A ten-qubit register composed of the NV center and multiple C 
13  nuclear spins was used to 

create an N-qubit Greenberger-Horne-Zeilinger state [117], which are multi-qubit states necessary 

for doing quantum computation applications over entanglement protocols [118]. The clear 

successes of the NV center as an entanglement generator are remarkable, yet challenges remain. 

Its Debye-Waller factor (DWF) is only 3%, indicating 97% of the photons emitted are not emitted 

into the zero phonon line (ZPL) and these spectrally distinguishable photons are useless for 

entanglement. In order to boost the collection efficiency of ZPL photons to the single-shot regime, 

time and spectral filtering, as well as integration with a solid immersion lens to direct more counts 

to their detectors, have been utilized since the first demonstration of heralded entanglement of NV 

centers 3 m apart [9]. This low collection efficiency is one of the major factors limiting the 

entanglement generation rate in [119].  
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To address the low emission rates, integration of NV centers into open microcavities that 

can boost the emission rate of photons in the ZPL have been explored [120,121]. These devices 

exploit the Purcell effect, whereby the optical mode of an optical cavity is tuned into resonance 

with the wavelength of the NV spin-to-photon interface and the cavity-emitter coupling enhances 

the ZPL emission by the Purcell factor, 𝐹. Unfortunately, mechanical instability is inherent given 

the open-cavity design composed of a stationary mirror upon which is placed a diamond substrate 

containing the NV centers. The top mirror of the cavity is floating and can be positioned with a 

piezo motor to tune the cavity resonance to match the NV emission wavelength. The un-correlated 

mechanical motion inherent to the floating mirror cavity reportedly has limited the observed 

Purcell factors for NV ZPLs to values of 𝐹 ~ 4-30. These metric are stated to have potential for 

better collection efficiencies than the solid immersion lens devices. Further refinement of the open 

microcavity design and integration into isolated NV center qubit nodes will thus be necessary to 

reach faster entanglement generation rates to meet the demands of future quantum communication 

infrastructure. 

Given the need for faster emitters at telecom wavelengths, other cavity geometries could 

be explored with different advantages. The result presented in this chapter will be the investigation 

of the feasibility of using a different solid-state color center, the divacancy in 4H-SiC, in a hybrid 

quantum system architecture to develop a method for generating telecom-frequency photons which 

could be entangled to the divacancy spin qubit. The divacancy shows promise as a spin-qubit in 

the areas that NV center technologies have excelled at so far. These properties, to briefly reiterate, 

are that the divacancy has an optical-interface for initlization and readout of spin qubits with high 

fidelity [40], they could offer potential multi-qubit state storage and preparation due to 

demonstrated coupling with nearby nuclear spin registers [21], and their ultra-long inhomogeneous 



130 

 

dephasing times could enable high coupling when interfacing with other qubit systems, including 

transmon qubits or mechanical excitations, as related in Chapter 5 Unfortunately, the natural near-

infrared (NIR) photon emission wavelengths of these defect complexes are not at telecom 

frequencies, but are closer than the visible emission of NV centers. Divacancies unfortunately also 

suffers from low ZPL emission (DWF ~5-10%) and as of now, single-shot readout has only been 

achieved by electrical readout using spin-state to charge-state conversion [28]. The properties of 

the crystal host of the divacancy described in this thesis, 4H-SiC, will be pivotal in the design of a 

fabricated cavity device that could lead to single-shot readout of the divacancy and potential 

telecom transduction applications. 

7.2 Overview of transduction scheme 

The proposed device discussed in this chapter is a hybrid spin-opto-mechanical quantum 

transducer where the photon down conversion is enabled by a pair of optical cavities coupled to a 

mechanical cavity. The divacancy emitter will be on resonance with one the optical cavities. The 

outline of how the spin qubit will be readout is diagramed in Figure 7.1. A photon from the 

divacancy will be emitted into the first optical cavity that has a resonance matched to the 

divacancy’s ZPL. The efficient capture of a divacancy photon by the optical cavity will be aided 

by the Purcell enhancement (Section 6.3.4) of the divacancy’s ZPL emission rate into the cavity. 

Then, through an interaction known as optomechanical induced transparency (OMIT), discussed 

in Section 6.5.2, the photon excitation can be transferred to the mechanical cavity and then 

subsequently transferred, using OMIT again, to the second optical cavity whose resonance is near 

telecom frequency. That telecom photon can be recorded as it transmits out of that cavity, 

potentially carrying with it entangled quantum information about the divacancy spin state when it 

was originally emitted. This type of three-cavity interaction known as a beamsplitter interaction 
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has been implemented in many hybrid quantum systems for microwave to telecom frequency 

conversion at varying efficiencies [38,122–125]. Here we will mention the most important 

prerequisites for realizing this transduction scheme.  

For the design of this cavity device, we are interested in determining the fundamental 

thresholds necessary to show the technique is feasible. For the optical cavities, we will require 

sufficient spatial containment of the optical mode addressing the divacancy to give high Purcell 

enhancement factors. For the mechanical cavity, a similar requirement will be needed. These 

translate to calculating high emitter-cavity and optomechanical coupling rates. Also,  as mentioned 

in Section 6.5, in order to perform OMIT, we require for the optomechanical system to have 

quantum cooperativity satisfying 𝐶𝑞 > 1, and, furthermore, operate in the side-band resolved 

regime, 𝛺𝑚 ≫     𝜅, where the mechanical oscillator linewidth is resolved against the optical 

linewidths. This enables driving at the anti-Stokes sideband for both optical resonators and ensures 

the exchange rates of the photons and phonons between the resonator energy states is always larger 

than the leakage into the decay channels present, including the thermal bath.  

We now discuss an additional criteria, based on findings from the experiment in [38]. In 

this work, they coupled a superconducting microwave oscillator to a membrane resonator at 

telecom frequencies and achieved microwave-to-optical conversion at efficiencies ~47% using the 

beamsplitter interaction. In our device, the divacancy takes the place of the microwave cavity. The 

criteria is that the optical pumps detuned from the divacancy’s frequency should give a total 

optomechanical dampening rate during OMIT (Eq. (6.52)) equal to the bandwidth of the divacancy 
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optical emission we wish to store in the mechanical mode. This constraint is actually modified for 

the beamsplitter interaction as there is a second addition to the effective optomechanical damping 

rate due to the second cavity [38]: 

   

 
𝛤𝑂𝑀𝐼𝑇 = 𝛤𝑚 +
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where the first cavity is at the divacancy frequency and the second at telecom frequency (1550 nm). 

The maximum conversion efficiency is achieved when the two bandwidths are equal. In our case, 

we have a requirement on our bandwidth that it match a photon emitted from the divacancy after 

spin readout (see Section 3.3) without being too narrow to not distort the pulse, nor too wide, 

which would mean it could accept frequencies from one of the different spin-dependent transitions, 

an outcome that would ruin the spin-contrast measurement.  

Figure 7.1. Divacancy-to-telecom readout scheme level structure. (A): Laser drives and optical cavity 

resonances for transduction readout. (B): Corresponding level structure of the states addressed during the 

readout. Upon driving at 𝜔1 = 𝜔𝑉𝑉 − 𝛺𝑚, ground-state cooling of the mechanical resonator will enable 

operation at the side-band resolved regime in state ห𝑛𝑐𝑎𝑣 = 0, 𝑛𝑝ℎ𝑜𝑛𝑜𝑛 =  0ൿ. The proposed transduction 

scheme begins with a divacancy photon emitted at 𝜔𝑉𝑉 (light-blue arrow (A)) matched to the center of the 

optical cavity’s linewidth and populating |1,  0⟩𝑉𝑉, whereby preferential emission of a photon at 𝜔𝑉𝑉 into 

the mechanical mode as a phonon is accomplished via optomechanical induced transparency (|0,  1⟩) by 

driving at 𝜔1. Upon driving at 𝜔2, the transition to |1,  0⟩𝑇 in the second optical cavity at 𝜔𝑇 will be 

induced. After which, emission of a telecom photon at 𝜔𝑇 from the second optical cavity can be detected, 

and the system returns to |0,  0⟩. 
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In investigations of single divacancies, typical inhomogeneously broadened optical 

linewidths are on order ~200 MHz, with observed narrowing to linewidths on order ~50 MHz after 

charge depletion in p-i-n junction devices over several hours [27], which approaches the lifetime 

limited linewidths of 10 MHz [40]. One last consideration is the closeness of the spin-conserving 

lines corresponding to the spin states |–⟩ and |0⟩ in the kh divacancy, where there is a separation 

of only ~120 MHz. [25] This is all to say, we must be aware of what our predicted divacancy 

linewidth will be when proposing the final design of the hybrid device in order to as closely match 

the OMIT bandwidth with the divacancy emission. A linewidth of 100 MHz is probably sufficient 

to contain a 50 MHz divacancy pulse. In this result, we will focus primarily on the optical cavity 

directly coupling to the divacancy to show storage of divacancy photon excitations in mechanical 

modes is feasible for this proposed device. 

7.3 Overview of transduction device 

The shape considered for the transduction device is a bulk, plano-convex Fabry-Perot 

resonator composed of a 10-20 micron thick SiC slab etched on the top side to produce a 

Figure 7.2. Hybrid spin-opto-mechanical cavity device diagram. Diagram of the proposed hybrid device 

showing 4H-SiC (gold) membrane with etched dome structure that allows resonant modes of optical (red) 

and mechanical (blue) excitations co-localize around a divacancy (black arrow) that is far (~ 2.5 μm) from 

the fabricated edges. The DBR stack is made of different thicknesses of alternating SiO2 (blue) and Ta2O5 

(grey) layers based on their indexes of refraction (Section 7.4.1). 
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hemispherical structure (Error! Reference source not found.). This will allow the formation of 

co-localized optical and mechanical modes in a monolithic structure.  The mirrors of the optical 

cavities are to be made from depositing alternating layers of tantalum oxide and silicon dioxide to 

create distributed Bragg  

reflectors (DBR) that can be applied by a commercial vendor with custom thicknesses and layer 

numbers to produce the desired properties of the high-quality factor cavities. This DBR mirror 

design is typical for such cavity designs, but we will also investigate in Section 7.5.3 the potential 

of utilizing the DBR stacks to act as “phonon mirrors” at certain frequencies relevant to the 

experiment. This would vastly increase the mechanical quality factors achievable by preventing 

the phonon modes from propagating in the mechanically lossy glass layers of the DBR stack. Other 

systems that have seen success using monolithic microcavities with DBR mirrors are quantum dots 

where strong emitter-cavity coupling was achieved [126], and a high-overtone bulk acoustic wave 

resonator using a flip-chip geometry where the mechanical motion of the convex structure enabled 

swapping states between the groundstate of the mechanical oscillator and a superconducting 

transmon qubit [127].  

One of the major benefits of the monolithic cavity design is intrinsically higher mechanical 

stability of the alignment of the mirrors, stated to be one of the limiting factors for quality factors 

for open microcavities [120,121]. This comes at the cost of almost complete loss of tunability of 

the optical cavity length to match its resonance with that of the divacancy. Tuning the optical 

cavity length, using piezo control, to match the frequency of an NV emitter is intrinsic to the 

device’s performance because each single emitter will have some unique optical resonance due to 

the local environment it resides at inside the diamond. The solution to mode-matching the 

monolithic cavity to a divacancy ZPL could involve Stark tuning the divacancy instead of having 
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transverse motional degrees of freedom in an open-microcavity design. Divacancy emitters exhibit 

large Stark tunings if they are measured in the i-layer of a p-i-n diode junction in a doped SiC stack 

and driven in the reverse bias regime [27]. The large electric fields produced when a reverse bias 

is applied to reach a critical voltage threshold can produce stark shifts of magnitude greater than 

850 GHz (hh), 200 GHz (kk), 760 GHz (kh) for the corresponding divacancy configuration’s spin-

optical interface. Given the FSR of our NIR Fabry-Perot optical cavity will be on order of 

2 THz ~ 
𝑐

2∗𝐿
 for 𝐿 ~ 10 𝜇m, such a Stark tuning would allow more than 75% of single divacancies 

could be tuned into resonance if we integrate the p-i-n junction into an eventual device. For the 

first iteration of the proposed hybrid device, it would be possible to fabricate a large array of 

devices with slightly different cavity lengths and perform an exhaustive search to locate 

divacancies on resonance with the optical resonance. This is feasible given the densities of the 

single divacancies created by electron irradiation + annealing could be tuned to contain several 

spectrally non-overlapping optical lines from divacancies addressed by the ~1 μm diffraction-

limited focus of our NIR confocal microscope. 

There are several additional benefits of constructing the optomechanical cavity in SiC. Its 

crystal lattice possesses qualities that lend it very low mechanical losses to enable high quality 

factor mechanical resonators to be constructed. This can be seen by comparing the upper limit for 

the 𝑄-𝑓 (product of quality factor and mechanical resonance frequency) product for SiC, Si, and 

diamond, a set of materials hosting strong candidates for solid-state qubits. Theoretical studies 

involving gives SiC the highest value of 64×1013 Hz, over 30x that of the other two materials 

[128]. Related to this, in the Akhiezer regime for phonon-phonon dissipation where thermal effects 

are negligible compared to the energy of the phonons, SiC has among the lowest dissipation 

[129,130]. SiC also possesses an array of qualities that enables high-precision fabrication at the 
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micro- and nano-scale. A technique has recently been shown to produce photonic cavities with 

high-𝑄 resonators up to 107 in micron-scale SiC slabs bonded to a silicon substrate. This silicon 

carbide on insulator (4H-SiCOI) [131–133] gives us the material platform to produce a suspended 

membrane upon which we can fabricate hemi-spherical domes using a photoresist re-flow etch 

[134]. Completing the bulk microcavities involves etching away the Si substrate on the backside 

and patterning the DBR mirrors on both sides. These microfabrication results and intrinsic 

properties show SiC is a strong candidate to build an optomechanical transduction device. 

The last major consideration is surface proximity in SiC structures. A previous work used 

a nanobeam photonic cavity to observe Purcell enhancement factor from an hh divacancy of 53 

and 16 for the lower and upper branches of the ZPL its spin-optical interface, respectively [30]. 

The coupling to the photonic cavity increased the DWF 75% above that of natural divacancies. 

This study noticed both optical linewidth broadening and reduced magnetic sublevel superposition 

state coherence values compared to hh divacancies in the bulk. The main culprit is thought to be 

proximity to charge traps and crystal damage at the surface (first few nanometers) of the 

photoelectrochemically etched SiC. The bulk microcavity proposed in this thesis would enable the 

placement of the addressed emitters at least a few microns away from any etched or polished 

surfaces, hopefully improving the performance of their spin-optical interface. 

7.3.1 Results utilizing finite-element simulations 

In order to make informed decisions about the design of the monolithic microcavity structure 

proposed, investigations into the geometry and cavity properties of the system were conducted in 

the COMSOL Multiphysics finite-element simulation software program [135]. Using 2D and 3D 

eigenmode solvers and driven frequency spectrum studies, models of resonant electric and 

mechanical fields supported by the plano-convex cavity geometry can be produced and analyzed. 



137 

 

Conclusions can be drawn about the modeled cavity’s properties, and these will inform us about 

the feasibility of this design with respect to the two main goals for improving the divacancy spin-

qubit platform. This result focused on modeling the optical mode that would couple to the 

divacancy ZPL and the mechanical cavity only. The telecom wavelength optical mode was not 

explicitly simulated as its spatial behavior would closely mirror the divacancy wavelength optical 

mode. 

From cavity properties estimated through simulations, we estimate a maximum Purcell 

enhancement achievable in this device to enhance the divacancy’s ZPL emission rate by 𝐹 ≈ 170 

(Eq. (6.29)) with a cavity operating at divacancy wavelength. This increase could allow the 

divacancy to attain optical single-shot readout of its spin state, a major goal for solid-state spin 

qubits [28,42] in a fabricated device that does not deleteriously broaden the optical lines due to 

surface proximity using the monolithic cavity design. The optomechanical properties indicate we 

should be able to cool the mechanical resonator to its ground state for sideband-resolved regime 

operation (see Section 6.5). The maximum optomechanical quantum cooperativity (Section 6.4.2) 

we can operate the cavity at is 𝐶𝑞  ≈ 1000-5000 before the optomechanical cavity becomes 

unstable due to entering the bistability regime (Eq. (6.48)) and taking into account the bandwidth 

matching between the OMIT linewidth and the divacancy optical linewidth. There are several other 

properties of the cavity related to and supporting these conclusions which will be discussed in 

detail after the simulation methods implemented in COMSOL are introduced in the next section. 

7.4 Optical resonance modes 

The first step in simulating the optical mode is to determine the optimal shape for the proposed 

cavity device. For this, we must parameterize the optical resonances for our Faby-Perot cavity in 
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terms of certain geometric parameters. The resonances of a classic planar Fabry-Perot cavity 

composed of a pair of mirrors separated by a distance, 𝐿, occur when the relation: 

   

 𝑓 =
𝑐

2𝐿
𝑞, (7.2) 

   

is satisfied given a longitudinal mode number, 𝑞, of the resonance. In order to enhance the coupling 

to the dipole emission of a divacancy at its ZPL, we want to utilize a plano-convex Fabry-Perot 

cavity geometry where the fundamental mode of our cavity will be the lowest order Hermite-

Gaussian mode called the TEM00 mode. This will also allow high overlap of the excitation lasers 

used to address the divacancy, as our optical setup can send a diffraction-limited beam through our 

microscope objective to be focused on the sample surface in the vicinity of the divacancy.  

The treatment of the TEM00 mode being a resonance condition for the cavity assumes the 

electric field at all points satisfies the paraxial approximation and the longitudinal cavity axis 

(along 𝐿) to be perpendicular to the polarization vector. This also means that we can have an 

assumption of cylindrical symmetry in all our simulations of the optical mode. When the spot size 

of the focused beam is on the order of the wavelength when attempting to focus gaussian beams 

down to diffraction limited spot sizes, the paraxial approximation can no longer be assumed. In 

order to check we are in the paraxial regime; we must calculate the waist diameter of our light 

beam on the flat mirror of the cavity. 

Starting with the equation for the radius of curvature, 𝑅, and the beam waist, 𝑤, of the 

TEM00 wavefront: 

   

 

𝑅(𝑧) = 𝑧 + 
𝑧0
2

𝑧
, 𝑤(𝑧) = 𝑤0√1 +

𝑧2

𝑧02
, (7.3) 
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where the z axis is along the cavity axis, 𝑤0 is the diffraction limited beam waist diameter, and 𝑧0 

is the Rayleigh range: 

   

 
𝑧0 =

𝜋𝑤0
2

𝜆
. (7.4) 

   

The intensity,  𝐼, of the Gaussian beam, averaged over an optical period is: 

   

 
𝐼(𝑟, 𝑧) =

2𝑃

𝜋 𝑤(𝑧)2
𝑒−2𝑟

2/𝑤(𝑧)2 , (7.5) 

   

where 𝑃 is the total power of the beam, and r is the radial coordinate. The assumption for the cavity 

is that 𝑅(0) → ∞ at the flat mirror, which then implies that the spherical mirror is centered at the 

other mirror, so that 𝑅(𝐿) = 𝑅. Rearranging and solving for the new minimum beam waist gives: 

   

 

𝑤0 = √
𝜆

𝜋
(𝐿(𝑅 − 𝐿))

1
4. (7.6) 

   

Figure 7.3. Geometric parameters defining plano-convex cavity. Arrows define the geometric 

dimensions for the hybrid device. 𝐿 is the length of the primary, longitudinal axis of the 4H-SiC cavity. 𝑅 

is the radius of curvature of the dome structure. ℎ is the residual height of the bulk 4H-SiC membrane. 𝐷 

is the diameter of the circular aperture demarcating the dome structure from the bulk membrane. 
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The parameters that determine the shape of the cavity are defined in Figure 7.3. Among them is the 

height of the SiC slab, ℎ, which will be important later when simulating the mechanical modes. 

This equation immediately gives us the first constraint on the geometry for a stable optical 

resonance: 𝑅 > 𝐿.  We can then define our best estimate for the actual resonance conditions for 

the plano-convex geometry. We utilize an expression for the optical resonances in terms of the 

cavity length, radius of curvature, and the longitudinal mode number [136]:  

   

 

𝑓 =
𝑐

2𝐿
(𝑞 + 1 +

1

𝜋
cos−1(√1 −

𝐿

𝑅
)). (7.7) 

   

At this stage, we can choose 𝑅 = 30 μm , 𝐿 = 10 μm to estimate if we are indeed in the paraxial 

regime. The 44th longitudinal mode (𝑞 = 44) at this size has 𝑓 ≈ 266 THz for its resonance, or 

𝜆𝑆𝑖𝐶 =
𝑐

𝑓𝑛
≈ 0.442 μm for the index of refraction of SiC of 𝑛 = 2.55. The beam waist using Eq. (7.6) 

would be 𝑤0 ≈ 1.411 μm. This gives a ratio of 
𝑤0

𝜆𝑆𝑖𝐶
 ≈ 3. Clearly, we close to the assumption of 

non-paraxiality (𝜆 ≈ 𝑤0) when the light is focused on the flat mirror, but for larger 𝑅, this 

geometry trends towards the regime where we can assume the electric field is paraxial. This gives 

us confidence that our optical simulations in COMSOL will be physically relevant according to 

the paraxial approximation. 

7.4.1 Distributed Bragg reflectors 

This section introduces the structures that act as the mirrors for the Fabry-Perot cavity. We propose 

distributed Bragg reflectors (DBR) as the natural choice for adding reflecting layers with tunable 

reflectivities, as we want the flat edge mirror to be overcoupled and the dome mirror to have close 

to maximal reflectance at the two optical frequences relevant for the transduction scheme. The 



141 

 

basic structure of a DBR is alternating layers of two dielectric materials with refractive indices 𝑛1 

and 𝑛2, where the relative magnitude of the indices and number of pair-layers can provide a 

customizable reflection spectrum over a wide range of wavelengths. The interaction between 

reflected and transmitted waves produces destructive interference at certain wavelengths of light, 

designated the stopband, incident on the DBR. The thickness, 𝑡, of each layer must be: 

   

 
𝑡𝑖 =

𝜆𝑐
4𝑛𝑖
. (7.8) 

   

To produce a cavity with resonance at 𝜆𝑐 where 𝑛𝑖 is the index of refraction of each of the dielectric 

materials. Commercial design and fabrication of Bragg mirrors has led to very high reflectivities 

being achievable, as high as 99.98% for NIR wavelengths using oxide material stacks [137]. For 

this cavity design, it is not necessary to have such perfect confinement of the light, as the collection 

of the out-coupling photons is an important feature. DBRs are a good choice for this because the 

number of pairs of layers, 𝑁, can be different on one mirror to adjust the reflectivity and thus the 

average decay rate through that end of the cavity. The total measured optical losses do increase for 

each added pair, so there is an optimal number of layer pairs to use. The DBR structures 

investigated in the simulations will be composed of SiO2 and Ta2O5 to produce band stop ranges 

for the necessary optical wavelengths for the optical cavities needed in the transduction device.  

Introducing the DBR allows us to discuss the first major demarcation between the ideal 

cavities discussed in Section 7.4 and begin tackling the trade-offs necessary to simulate this system 

in a finite-element environment. Increasing the number of layer pairs in a DBR changes the 

effective cavity length, 𝐿, an optical mode interacts with due to the leakage of the mode into the 

first few layers of the DBR. This leakage is characterized by an exponential decay of the light field 

into the DBR.  
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This “penetration depth” can be estimated for a Fabry-Perot cavity with flat mirrors simply 

from the difference in the indexes of refraction [138] when the index difference is small. The 

problem of analytically defining the exact depth is more difficult. This same reference states no 

one penetration length can mimic every reflection property of a hard mirror, and three different 

lengths are needed [138].  For the device geometry at hand though, there are further difficulties 

defining the penetration depth when one of the mirrors is curved. Being able to arbitrarily define 

the effective 𝐿 of the cavity is important because a simulation with an arbitrary 𝐿 and 𝑅 in the mph 

sweep experiment might not find an eigenmode of the TEM00 mode close to the divacancy 

frequency we are interested in analyzing. We apply a zeroth-order correction to 𝐿 we will call 

𝐿𝑐𝑜𝑟𝑟 that will be added to the parameter that COMSOL uses to seed the eigenmode search: 

   

 𝐿𝐶𝑂𝑀𝑆𝑂𝐿 = 𝐿 + 𝐿𝑐𝑜𝑟𝑟 . (7.9) 

   

The rationale of this choice is that over moderate changes in the cavity geometry, the light field 

interacting with the DBR will be mostly similar, and thus will have a constant penetration depth 

associated with it. 

Figure 7.4. Divacancy dipole field simulated in COMSOL. Shown here is a close-up of the normalized 

electric field, E, for the divacancy dipole evaluated at a wavelength of 1100 nm used to calculate the modal 

overlap between the dipole and optical cavity fields. 
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7.4.2 Modeling divacancy dipole 

The optical cavity simulations include information about the emitter that the light field mode 

interacts with. The divacancy defect in SiC will be modeled as an electric dipole positioned near 

the flat DBR stack, where the field is plotted in Figure 7.4. The magnitude of the dipole interaction 

strength with this resonant light field is necessary to calculate the emitter-field coupling strength, 

as discussed in Section 6.2.1. This value can be input into COMSOL to generate an electric field 

plot to simulate the spontaneous-emission of the divacancy at a certain wavelength. This enables 

us to estimate the modal overlap between the TEM00 optical mode of the plano-convex cavity and 

that of the dipole. The overlap magnitude can be thought of as reducing the coupling between the 

dipole and optical field due to photons emitted that are lost into the bulk of the SiC. The equation 

for the overlap, 𝜖, is: 

   

 
𝜖 =

∫(𝐸𝑑𝑖𝑝𝑜𝑙𝑒𝐸𝑐𝑎𝑣𝑖𝑡𝑦)
2
𝑑𝑣

∫(𝐸𝑑𝑖𝑝𝑜𝑙𝑒)
2
𝑑𝑣 ∫(𝐸𝑐𝑎𝑣𝑖𝑡𝑦)

2
𝑑𝑣
. (7.10) 

   

Here we take real components of the electric fields from both the dipole and the TEM00 cavity 

mode in the direction along the cavity axis. The integrals are simply taken over the entire 

cavity + DBR volume. We will use 𝛤0 = 15 ns, DWF = 0.05, RE = 0.3, at 1100 nm to obtain 

2.82×10-30  for the divacancy dipole magnitude in Eq. (6.11). [139,140]   

7.4.3 COMSOL model of optical cavity 

The 2D representation of the transduction device, including the plano-convex SiC cavity, 

surrounding air domains above and below the slab, and SiO2/Ta2O5 DBR mirror on the flat edge 

is shown in Figure 7.5 with the fundamental TEM00 mode simulated. PML domains of both SiC, 

DBR, and air make up the border domains to ensure the edge of the simulation domain does not 
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act as a spurious reflecting boundary. Eigenmode scans will be the primary experiment done to 

investigate the quality of the optical modes that this design will produce over a range of geometric 

dimensions. A sweep over a range of cavity length, 𝐿, and radius of curvature of the dome, 𝑅, is 

done to produce values for the emitter-cavity coupling 𝑔𝑒,𝑜 (Eq. (6.8)) of a dipole placed ~2.5 um 

above the flat cavity mirror. This coupling is found by calculating the mode volume (Eq. (6.9)) of 

the optical cavity along with other calculated constants. The mode shapes simulated will also 

produce values of the estimated modal overlap 𝜖 from Eq. (7.10) between the dipole and cavity 

field.  

The optical and dipole cavity simulations were first fine-tuned for high-quality simulations 

individual cavity geometries on the edge cases of the dimensional ranges for 𝐿 and 𝑅. Then the 

autonomous COMSOL simulation generation workflow described in Section B.1.2 was used to 

generate eigenmode simulations for 54 differently sized cavities to calculate the emitter-cavity 

coupling. This sub-section will describe the optical cavity simulations in detail and the next sub-

section discusses the conclusions from the results. 

Figure 7.5. Optical cavity eigenmode simulated in COMSOL. Shown here is a close-up of the normalized 

electric field, E, (V/m) for the TEM00 Gaussian mode of the hybrid device with 𝐿 = 10 𝜇m, 𝑅 = 50 𝜇m, ℎ 

= 9.25 𝜇m. The wavelength is at 1100 nm. The Bragg layers have 8 layers on each face of the 4H-SiC, 

showing the leakage of the electric field leading to an effective increase in the cavity length we parameterize 

as 𝐿𝑒𝑓𝑓 = 𝐿 + 𝐿𝑐𝑜𝑟𝑟, by adding an additive length correction in the autonomous COMSOL simulation study 

for the emitter-cavity coupling detailed in Section 7.4.4. 
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We describe the method to produce the optical cavity field in COMSOL. The 

Electromagnetic Waves, Frequency Domain interface of the Wave Optics module [135] was 

employed. This interface has an Eigenfrequency study type that solves the time-harmonic wave 

equation for the electric field to find the eigenmodes of resonant cavities. To reduce the overall 

complexity of the dimension scan, there is one major simplification. We represent the DBR layer  

on the curved surface as a perfect electric conductor boundary, as this will mimic the desired 

behavior of the final device having the curved mirror with high reflectance. A DBR of sufficient 

number of layers will approximate such a boundary condition. The PML boundary conditions 

ensure that energy is conserved globally. Given an initial seed frequency, COMSOL will attempt  

to find a prescribed number of eigenmode solutions near the seed frequency given the indexes of 

refraction of all domains and the boundary conditions supplied.  

A critical part of the simulation is deciding the density of mesh elements in each domain. 

Too low of density can lead to non-physical volatility of cavity parameters due to spurious 

elements in the simulated electric field values at certain mesh elements. For these simulations, we 

Figure 7.6. Convergence of simulated optical and dipole field parameters. (A) Plot of 𝜆𝑐, the optical 

cavity TEM00 mode wavelength (Figure 7.5), vs. 𝑁𝑚𝑒𝑠ℎ. As the mesh density of the COMSOL optical 

mode simulation is increased (Eq. (7.11)), we should expect for a physically relevant estimation of the 

parameter a smooth convergence. (B) Plot of 𝜖, the divacancy dipole field overlap (Eq. (7.10)) at 1130 nm 

(PL2 optical line), vs. 𝑁𝑚𝑒𝑠ℎ. For the MPh sweeps of the height and radius of the cavity geometry in Section 

7.4.4, we use 𝑁𝑚𝑒𝑠ℎ = 8. 
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used a free triangular mesh everywhere the TEM00 mode had vanishing amplitude. In order to 

correct for what we designated spurious electric field features when using the free triangular mesh 

where there was non-zero amplitude, we used a square mesh of variable density, where the linear 

density for an edge was given by: 

   

 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

(
𝜆0

𝑛𝑑𝑜𝑚𝑎𝑖𝑛
)

𝑁𝑚𝑒𝑠ℎ
, 

(7.11) 

   

where 𝜆0 = 1100 𝑛𝑚, 𝑛𝑑𝑜𝑚𝑎𝑖𝑛 is the index of refraction of the domain, and 𝑁𝑚𝑒𝑠ℎ was a 

parameter chosen to represent the number of mesh elements per wavelength to be chosen. Upon 

calculating the TEM00 mode frequency and optical mode volume for few cavity dimensions, there 

was > 0.3% change in both values for 𝑁𝑚𝑒𝑠ℎ between 4 and 11, as shown in a convergence graphs 

in Figure 7.6. Thus, we chose 𝑁𝑚𝑒𝑠ℎ = 6 to represent the minimum mesh density that gave 

consistent values while minimizing the simulation times. This is on the rising edge of convergence, 

but due to the small percent errors in the wavelength we make this concession. 

The dipole field in the simulation was made using the same Electromagnetic Waves, 

Frequency Domain interface with a frequency domain study that produced the corresponding 

electric field of a dipole placed at a certain position along the optical axis of the cavity. In order to 

obtain a high estimate of the emitter-cavity coupling, the dipole would be placed at a local 

maximum of the cavity eigenmode closest to 2.5 um above the flat DBR mirror. This position 

would give the greatest electric field density to increase the emitter-cavity coupling but would not 

be too close to the surface of the SiC to avoid disruption of its optical and spin properties [30]. 

Using 𝑁𝑚𝑒𝑠ℎ = 6 for a few values of the cavity dimensions showed a stabilizing value for the 

calculated field overlap (Figure 7.6) between dipole and cavity fields. 
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7.4.4 Simulated emitter-optical cavity coupling 

Using the mph COMSOL interface, the optical cavity eigenmodes of the TEM00 gaussian mode 

as well as corresponding dipole mode were simulated with dimensions 𝐿 = [5.0, 17.5] μm with 

2.5 μm steps and 𝑅 = [20.0, 100.0] μm with 10.0 μm steps. The dipole-cavity mode overlap was  

calculated to be 60-70% over the range of cavity dimensions studied showing high mode matching 

for this cavity design. The emitter-cavity coupling calculated using the divacancy dipole 

magnitude and the calculated optical mode volume, 𝑉𝑚𝑜𝑑𝑒, from the electric field eigenmodes 

(Eq. (6.9)) gave a range of  
𝑔𝑒,𝑜

2𝜋
 that reduced by a factor of three between the smallest and largest 

cavity geometries considered as shown in Figure 7.7. This indicates a modest effect of the cavity 

dimensions on this coupling, giving more flexibility on the cavity design to improving the 

mechanical cavity performance, but minimizing the cavity dimensions will lead to larger emitter- 

cavity couplings and Purcell factor. We now calculate the emitter-cavity coupling (Eq. (6.8)) for 

the hybrid device dimensions deemed best regarding the mechanical cavity simulations (Section 

7.5): 𝐿 = 10 𝜇m, 𝑅  = 50 𝜇m, ℎ = 9.25 𝜇m (mode shown in Figure 7.5). In a single eigenmode 

simulation involving both flat and circular DBR layers and a free-triangular mesh everywhere, we 

estimate  
𝑔𝑒,𝑜

2𝜋
 ≈ 16.1 MHz. The meshing was made extremely dense, with the minimum size 

allowed to be 
𝜆0

(𝑛𝑆𝑖𝐶∗24)
.  

With this coupling, we can estimate the Purcell enhancement for a divacancy defect 

situated inside the cavity at a spatial position to maximize the overlap and coupling. We assume 

dominant optical losses due to scattering from SiC root-mean-square (RMS) surface roughness 
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below 0.3 nm (see Section 6.3.3). The Purcell factor of emission enhancement from the divacancy 

gives us an estimate of 𝐹 = 100 from Eq. (6.29) for this cavity geometry at 1100 nm with an optical  

quality factor, estimated from the surface roughness (Eq. (6.17)), 𝑄𝑜~1×106 and simulated 

𝑉𝑚𝑜𝑑𝑒 of  ~2.41×10-17.  Using estimates from an investigation of the Purcell enhancement of the 

divacancy in nanobeam, it should be possible to achieve single-shot readout from the divacancy’s 

spin-photon interface when collecting light from this optical cavity. In the configuration where 

there is now a mechanical cavity coupled in using OMIT, the ability to perform deterministic 

storage of an optical excitation in the mechanical mode and readout at telecom wavelengths will 

be aided by this increase in the divacancy ZPL emission. We can conclude that from the standpoint  

 

Figure 7.7. Emitter-cavity coupling vs. cavity radius vs. cavity length MPh sweep. Plot of 𝑔𝑒,𝑜 vs. R vs. 

L for the MPh autonomous COMSOL simulation sweep. The divacancy dipole position was adjusted to be 

at the closest electric field maximum to ~2.5 μm above the flat mirror edge of the 4H-SiC to simulate the 

coupling to those divacancies situated far from any fabricated edges that could impact their optical and spin 

linewidths. 
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of realistic optical cavity parameters, the proposed cavity design has an optimistic outlook as a 

transduction device. 

7.5 Mechanical resonance modes 

In this section, we will present the investigation of mechanical modes in the proposed monolithic 

plano-convex hybrid transduction device to determine the optimal geometric dimensions for 

having stable longitudinal mechanical modes with maximized optomechanical properties. We are 

interested in simulating longitudinal “breathing” modes where the cavity length, 𝐿, modulates as 

the top and bottom boundaries undergo displacement of opposite signs. This is in contrast to modes 

where 𝐿 stays constant as the entire SiC slab undergoes motion, and we will not obtain an 

optomechanical backaction effect when driving the device with a laser tone. The nth longitudinal 

breathing mode will be described by the number the number of longitudinal anti-nodes plus one. 

The breathing modes then have odd 𝑛.  

The wavelength of such a mode will be found from COMSOL eigenmode simulations. The 

practical frequency range for the mechanical oscillator resonance, 𝛺𝑚, is above the divacancy 

magnetic sub-level transitions (1-2 GHz) but higher frequencies decrease the optomechanical 

cooperativity, as will be discussed in Section 7.6. It turns out that 𝛺𝑚 ~ 6-10 GHz might be within 

a bandgap for the DBR mirrors (Section 7.5.3). 

In regards to the transverse direction, we are interested in longitudinal breathing modes 

that have maximum displacement in the center of the hemisphere and no transverse anti-nodes. 

We would want the waist of the mechanical mode to match that of the optical mode to ensure we 

have minimum mode volume for both simultaneously. We will thus restrict ourselves to 

longitudinal breathing modes with no transverse anti-nodes. Investigations of high-Q mechanical 
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modes in this plano-convex geometry in x-cut silicon show that mechanical mode waist, 𝑤𝑚, on 

the flat mirror to be [134]: 

   

 

𝑤𝑚
2 =

𝜆𝐿

𝜒𝜋
√

𝑔1𝑔2(1 − 𝑔1𝑔2)

(𝑔1 + 𝑔2 − 2𝑔1𝑔2)2
. (7.12) 

   

Here 𝜆 is the phonon mode wavelength. The 𝑔𝑖 are defined in the convention of plano-convex 

Fabry-Perot cavities as 𝑔1 = 1 and 𝑔2 = 1 −
1

𝜒𝑅
. Here, 𝜒 is an “anisotropy-constant” that encodes 

the effect the anisotropic point group symmetry of the 4H-SiC crystal lattice has on propagating 

acoustic beams with certain velocities. Its value of 𝜒4𝐻−𝑆𝑖𝐶 = 1.96 depends on the values of the 

fourth-rank compliance tensor for SiC expressed in Voigt notation as a 6x6 matrix with 12 non-

zero elements [141] and the 4H-SiC density of 𝜌4𝐻−𝑆𝑖𝐶 = 3.216 kg/m3. This allows us to define the 

range of stable mechanical cavities to be 𝑅 ≥
𝐿

𝜒𝑆𝑖𝐶
 [134]. The stability criteria does not conflict 

with results from the optical cavity simulations, as it was determined 𝑅 ≥ 3 ∗ 𝐿 was the preferred 

dimension relation (Section 7.4). The waist of the two modes will be within 10% for the range of 

cavity dimensions considered in Section 7.4.4.  

7.5.1 COMSOL model of 3D mechanical cavity 

The development of the 3D simulation of the mechanical oscillator in the monolithic hybrid device 

built in COMSOL will be described in this section. The 5th harmonic of the longitudinal breathing 

mode is shown in Figure 7.8. The relation between the cavity length, 𝐿, the radius of curvature of 

the dome, 𝑅, and the height of the 4H-SiC membrane, ℎ, are defined similarly for the optical cavity 

and shown in Figure 7.3. The domains of this simulation are composed entirely of SiC with the 

main demarcations being a portion containing the hemispherical structure, a flat intermediate 
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region, and the remaining outside portion being a PML. Air domains are not needed in this 

simulation due to the vanishing coupling of phonon modes that propagate in the bulk of SiC into 

low density air found in our cryostat. A simplification we introduce is not including any mirror 

structures, allowing the top and bottom boundary conditions to act as them. In Sections 7.5.3-5, 

we will support the claim that we can consider calculating the mechanical cavity parameters 

without including the mechanically lossy DBR stacks by showing we can operate within a bandgap 

that has the DBR stacks act as highly-reflection mirrors for the phonon modes. 

The intermediate flat region is necessary to add a buffer between the mechanical resonance 

mode tails interacting with the PML regions. Without this buffer, the mechanical mode waist will 

“clip” against the lip of the hemi-spherical region. This clipping of the mechanical mode is a main 

focus in understanding the quality factor of this cavity and trying to accurately describe mechanical 

loss sources in Section 7.5.2.  

Figure 7.8. Mechanical cavity eigenmode simulated in COMSOL. Shown here is the normalized 

displacement field for the 5th harmonic of the longitudinal breathing mode with 𝜔𝑐 of 3.38 GHz. The hybrid 

device here has dimensions 𝐿 = 10 𝜇m, 𝑅 = 25 𝜇m, ℎ = 7 𝜇m. The z-axis is aligned with the 4H-SiC c-axis. 

The breathing mode has opposite signed z-displacements at the top and bottom of the cavity. In 7.5.2, the 

simulation dimension 𝑑𝑃𝑀𝐿, representing the width of the PML region for the mechanical mode will be 

relevant when trying to identify mechanical loss mechanisms. Here, the PML domain width is 

𝑑𝑃𝑀𝐿= 4*𝜆𝑐𝜇m. 



152 

 

The anisotropy of the SiC point group symmetry demands we simulate the mechanical 

modes in 3D to capture the elastic response of the cavity in the most physically relevant way. This 

enters in the simulation by denoting the elasticity matrix, written in Voight notation [141] using 

the values of the fourth-rank compliance tensor of 4H-SiC already mentioned. This term represents 

the full behavior of the Young’s modulus for 4H-SiC. Simulations in 3D are much more 

computationally demanding, but we exploit the six-fold hexagonal point group symmetry of 

4H-SiC by simulating only a 
𝜋

6
 slice of the full plano-convex geometry, as shown in Figure 7.8.  

Both the eigenmode and driven frequency studies of the mechanical modes are done using 

the Solid Mechanics interface of the Structural Mechanics module in COMSOL. The top and 

bottom surfaces are given the free boundary condition, as this represents the breathing mode 

motion we want to study. The outside edge of the PML is given a fixed boundary condition. The 

two sides are then given symmetry boundary conditions to impose the hexagonal symmetry 

without costing extra computation time. 

The mesh density in the non-PML region is made free tetrahedral due to the wavelength of 

the phonons being a considerable fraction of the cavity size. The PML region is defined by a 

Figure 7.9. Convergence of simulated mechanical quality factor. Plot of 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 vs. 𝑁𝑚𝑒𝑠ℎ for the 

5th harmonic of the longitudinal breathing mode (Figure 7.8) with cavity dimensions of with 𝐿 = 10 𝜇m, 𝑅 

= 50 𝜇m, ℎ = 9.25 𝜇m showing smooth convergence as the meshing density is increased. For the MPh 

sweeps of the height and radius of the cavity geometry in Section 7.5.2, we use 𝑁𝑚𝑒𝑠ℎ = 9. 
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mapped quadrilateral mesh to try and reduce the noticed spurious mode shapes seen frequently in 

the mechanical simulation PMLs. Section 7.5.2 addresses in more detail the spurious PML modes 

and how we reduced them. The meshing line densities are parameterized by a factor, 𝑁𝑚𝑒𝑠ℎ, in the 

equation:  

   

 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

(
𝜐𝑙

ℎ𝑎𝑟𝑚 ∗ 𝑓0 ∗ 𝑁𝑚𝑒𝑠ℎ
)
. 

(7.13) 

   

Here 𝜐𝑙 is the phonon propagation speed in the direction along the axis of the cavity, defined from 

the elasticity matrix [141]. The variable ℎ𝑎𝑟𝑚 is an integer that denotes which harmonic of the 

longitudinal breathing mode a simulation is investigating and is equal to the number of anti-nodes 

plus one. Assignment of the meshing line densities can become trickier the smaller the boundary. 

It is imperative that for all dimension sweeps to prevent scalene faces of the tetrahedral meshing 

elements. Such perturbations from equilateral triangles are known to give less physically relevant 

results, and this meshing density accomplished that. 

After a certain eigenmode of a harmonic of the fundamental longitudinal breathing mode 

has been identified, as in Figure 7.8, the quality factor, 𝑄, for the mode and effective mass, 𝑚𝑒𝑓𝑓, 

can be calculated from the simulation. The effective mass, 𝑚𝑒𝑓𝑓, can be calculated as the integral 

over all the mass that is oscillating for a given vibrational mode [142]: 

   

 
𝑚𝑒𝑓𝑓 = 𝜌∫(

𝑢𝑧
𝑢𝑧,𝑚𝑎𝑥

)

2

𝑑𝑧, (7.14) 

   

 where 𝑢𝑧 is z-axis displacement.  



154 

 

For the results of Sections 7.5.2, the focus was on the 5th harmonic due to it being the first 

with frequency above 2 GHz. Lower frequencies allowed more rapid iterations of simulation and 

analysis due to less mesh elements being needed. The stabilization of the calculated of these two 

variables with respect to the meshing parameterization, 𝑁𝑚𝑒𝑠ℎ, is the first method used to 

investigate the simulation quality. At this stage, the utilization of a PML allows to define a 

𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 that takes into account the amount of losses the eigenmode sees in the simulation. The 

equation used is: 

   

 
𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

𝑟𝑒𝑎𝑙(𝑓)

𝑖𝑚𝑎𝑔(𝑓)
, 

(7.15) 

   

where 𝑓 = 𝑟𝑒𝑎𝑙(𝑓) + 𝑖 ∗ 𝑖𝑚𝑎𝑔(𝑓) is the eigenfrequency of a harmonic of the fundamental 

longitudinal breathing mode. The trends in Figure 7.9 show 𝑁𝑚𝑒𝑠ℎ smoothly leading to convergence 

for 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛. We present in the next two sections results that attempt to produce improvements 

to this the 3D simulation of the mechanical mode described in this section. These improvements 

will inform us how mechanical dampening is handled in the Structural Mechanics module in 

COMSOL and how we can be more confident the simulations give physically relevant information. 

7.5.2 Mechanical mode density and clipping loss 

The criteria for choosing the size of the transduction device from the standpoint of the estimated 

mechanical cavity mode density will be explored in this sub-section. The quality factor of the 

breathing mode should be made as high as possible to maximize the quantum cooperativity of the 

transduction device. We want to investigate the mechanical mode density near the mechanical 

modes of interest because if the radiation pressure force excites other modes, then the total 
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optomechanical coupling could suffer. This could be measured in the form of reducing 𝑄𝑚 of the 

breathing mode of interest.  

We investigate the effect the residual SiC height, ℎ, has on the mechanical mode density 

sampled by a series of eigenmode studies COMSOL. In order to not preselect the orientation of 

modes, we return to an eigenfrequency study where we will use the MPh autonomous simulation 

workflow (Section B.1.2) to vary both 𝑅 and ℎ and calculate the 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 for all the eigenmodes 

found. 𝑅 was varied between 25 and 55 um with 1 um steps and the ℎ distribution was sampled 

with a small variation, where we choose 8 values between 8.25 and 9.25 um. Also, the size of the  

Figure 7.10. Mechanical eigenmode density for 

various 4H-SiC bulk heights. Plot of 𝑄𝑠𝑖𝑚. vs. 

eigenfrequency vs. 𝑅 for the MPh autonomous 

COMSOL simulation sweep of various bulk heights, ℎ. 

Eigenfrequency range is in the vicinity of the 5th 

harmonic of the longitudinal breathing mode. The 

predominant bands that are seen for all heights are 

composed mostly of those for ℎ=9.23 𝜇m (C). Several 

additional bands seen for (A) and (B) disappear for 

larger ℎ. The dispersion curve for all ℎ with the highest 

𝑄𝑠𝑖𝑚. is the breathing mode shown in Figure 7.8. The 

minimum quality factor plotted on these graphs was 

180. 
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PML domain will be set to four mechanical wavelengths unless otherwise state (). The cavity 

length will be kept constant. The eigenmode dispersion maps indicate that the smaller hemisphere 

supports less modes of moderate 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 in the vicinity of the fundamental mode, as indicated 

by the progression over three of the ℎ values plotted in Figure 7.10. The highest 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 in all 

these sweeps occurs for the 5th harmonic of the longitudinal breathing mode for higher 𝑅 values, 

with some indication of plateauing. All other modes have significantly lower 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛.  Another 

way to visualize this trend is by graphing only the breathing mode for each 𝑅 vs. ℎ (Figure 7.11), 

again keeping the cavity length, 𝐿, constant. Included in these graphs is an analytical estimate of 

the mechanical quality factor we call 𝑄𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔 and now define. 

The trend in Figure 7.11 where the larger radii giving better mechanical quality factors can 

be partially explained by modeling the only energy losses present in the cavity as “clipping losses” 

from considering the mechanical cavity motion as a Gaussian beam passing back and forth through 

a circular aperture of radius 𝐷 (defined in Figure 7.3), which in this case is the base of the 

hemisphere protruding out of the bulk of the 4H-SiC. We consider a Gaussian mode having power 

𝑃0 with an intensity 𝐼 defined in Eq. (7.5). After traveling perpendicularly through a circular 

aperture of radius 𝐷/2, some of the power is “clipped off” and is considered lost to scattering. The 

remaining power in the beam, 𝑃𝑓, is given by [143]: 

   

 
𝑃𝑓 = ∫ ∫ 𝐼(𝑟, 𝑧)𝑟𝑑𝑟𝑑𝜃

𝐷

0

2𝜋

0

= 𝑃0(1 − 𝑒
(−2𝑅2/𝑤2)). 

(7.16) 
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This allows us to define a new estimate for the mechanical quality factor: 

   

 
𝑄𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔 =

𝑃𝑓

𝑃0
. 

(7.17) 

   

With this model for mechanical losses, we can explain the trends shown in Figure 7.11. Clipping 

loss follows the COMSOL quality factor estimates up to a certain 𝑅, before diverging from the 

clipping model. Also, after the divergence from clipping losses for ℎ = 9.23 𝜇m, 𝑄𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

appears to slow its increase per radius. This suggests that another dominant source of mechanical 

loss takes over as the aperture becomes wide enough that clipping losses are a small effect and 

𝑄𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔 begins to rapidly increase. We can look at the trend in Figure 7.10, showing lower ℎ values 

for the cavities showing higher mode densities to try and explain the origin of the dominant source 

of mechanical losses for large 𝑅.  These trends can be summarized as larger 𝑅 and smaller ℎ lead 

to more non-clipping losses. These trends both increase the volume of material enclosed in the 

dome structure, so we posit that the larger the volume of the dome, the more potential loss  

Figure 7.11. Mechanical quality factor estimate comparison. The matching of the mechanical quality 

factor estimated by the COMSOL simulation PML to the estimate from a clipping loss model in  Eq.(7.17) 

for the mechanical mode in Figure 7.8. Red diamonds are points done with significantly more PML and 

incurred significant computation time. 𝑑𝑃𝑀𝐿= 12*𝜆𝑐 𝜇m was used. Only a few points of this larger PML 

were included due to super-cubic simulation time-costs incurred when adding additional meshing elements 

for the 3D simulation. 
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channels exist for mechanical vibrations. Increasing the radius further appears to plateau the 

quality factor, so we can say that larger 𝑅 and larger ℎ lead to larger mechanical quality factors to 

use for estimating the maximum estimated optomechanical cooperativity for the hybrid device. 

7.5.3 DBRs as mechanical mirrors 

The 3D mechanical cavity simulation described in Section 7.5.1 has so far been simulated without 

including the DBR stack that is present in the optical simulations, and in this section, we will 

discuss the potential of utilizing the DBR as a phonon reflector in addition to a photon reflector. 

The number of interfaces and higher mechanical losses in the glass DBR stack threatens to sharply  

Figure 7.12. Driven frequency bandgap response of 1D DBR mirror.  (A) Displacement 𝑢𝑧 vs. driven 

frequency sweep of a 0.1 N force applied at location denoted in (B). The frequency of the applied drive on 

the left-most Ta2O5 edge is swept in COMSOL and reveals a more than 7 dB reduction in the lateral 

movement of the right SiO2 edge showing that this DBR supercell acts to destructively interfere phonon 

modes between 5.5 and 10.5 GHz. (B) The COMSOL domains from right to left are: PML, SiC, and then 

8 bilayers of SiO2 (thicker layer) and Ta2O5. 
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reduce the maximum mechanical quality factors our device could reach, as the mechanical mode 

volume will be much larger if it is not contained to the 4H-SiC cavity. We investigate the 

possibility of using a harmonic of the longitudinal breathing mode that treats the optical DBR as 

high-reflectivity mirrors as well. The identification of a mechanical stopband for the DBR layers 

at frequencies relevant for our mechanical device would compactify the transducer design and 

allow increased optomechanical coupling. Mechanical stopbands have been explored for acoustic 

devices in similar monolithic cavity geometries [144,145]. 

We perform a driven frequency study in a one dimensional supercell of eight alternating 

layers of SiO2 and Ta2O5. When driving the left edge of the simulation with a force of 0.1 N at a 

range of frequencies relevant to the mechanical cavity, 1 to 11 GHz, we plot the displacement, 𝑢, 

of the other edge of the bi-layer cell as a function of the driving frequency. This driven frequency 

sweep reveals a drastic reduction in the boundary movement between 5.5 and 10 GHz (Figure 7.12), 

indicating that this DBR cell might act as a mirror in the 3D simulation, containing the 

displacement field to the 4H-SiC domain. 

Figure 7.13. Eigenmodes of 2D and 3D 9th harmonic of mechanical mode. (A) Eigenmode of normalized 

displacement field, 𝑢𝑧, of 9th harmonic of longitudinal breathing mode at 6.12 GHz with 8 DBR bi-layers 

on top and bottom surface. Completing this eigenmode analysis with 2D axial symmetry allowed 

convergence of simulation compared to attempts to simulate DBR in 3D. See a vanishing penetration of 

the displacement field after ~1 bi-layer of the DBR, indicating deep phonon bandgap seen in a 1D model 

(Figure 7.12) can exist for plano-convex geometry. (B) Co-normalized mode of same mechanical mode at 

5.98 GHz simulated without DBR stack in 3D with full anisotropy of 4H-SiC lattice. The cavity dimensions 

for (A) and (B) are 𝐿 = 10 𝜇m, 𝑅 = 50 𝜇m, ℎ = 9.23 𝜇m, the same as for the optical mode in Figure 7.5. 
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Unfortunately, adding the necessary DBR bi-layers (eight or more) utilized in the 2D axial 

symmetric optical cavity simulations lead to a drastic increase in the simulation convergence time 

for the 3D mechanical simulations. The total meshing elements needed to accurately compute the 

FEM of the phononic modes balloons by an order of magnitude. This is an unfortunate reality for 

high-frequency simulations in three dimensions, as there were similar super-cubic increases in 

simulation time when increasing PML domain size when simulating the mechanical quality factors 

in Figure 7.11. The end result is adding sufficient DBR layers to observe the bandgap in 3D to 

observe with the full anisotropic elasticity matrix causes COMSOL to not converge to a solution 

on the available hardware. We present in Figure 7.13 a realization of the bandgap in a 2D axial 

symmetric model of the mechanical eigenmode. This sacrifices the ability to model the anisotropy 

of SiC’s crystal lattice and it simplifies down to using a single-valued Young’s modulus. 

Nevertheless, the 9th harmonic of the longitudinal mechanical breathing mode shows a similar 

eigenfrequency compared to a full 3D simulation of the same mode. This indicates to us that our 

DBR design can indeed contain the mechanical displacements of interest and we can calculate the 

optomechanical cooperativity using the eigenmode of Figure 7.13B 

7.5.4 Simulated optomechanical cavity coupling 

From the results of the mechanical eigenmode studies completed in Section 7.5, we are now able 

to estimate the maximum optomechanical cooperativity using 𝑔𝑜,𝑚 = 𝐺𝑥𝑍𝑃𝐹 (Eq. (6.40)). The 

final choice for the device dimensions will be 𝐿 = 10 𝜇m, 𝑅 = 50 𝜇m, ℎ = 9.25 𝜇m. The radius was 

made this size to maximize the mechanical quality factor to 𝑄𝑚 ~ 1e6, while not overly reducing 

the emitter-cavity coupling by increasing the optical mode volume. The height was chosen to 

reduce the mechanical mode density as smaller heights were seen to have more non-breathing 

modes of moderate quality factors. The optical mode simulated with these dimensions in Figure 



161 

 

7.5 gave a frequency shift per boundary displacement, 𝐺, of 26.19 GHz/nm (Eq. (6.34)). By 

integrating over the displacement field of the mechanical eigenmode at 𝛺𝑚 = 5.977 GHz (Figure 

7.8) gave an effective mass, 𝑚𝑒𝑓𝑓, of 2.55 ng, which was used to calculate the mechanical ground-

state zero point fluctuations, 𝑥𝑍𝑃𝐹 (Eq. (6.37)), to give a final estimated maximum value of the 

optomechanical coupling, 
𝑔𝑜,𝑚

2𝜋
 ≈ 6 khz for the hybrid device.  

7.6 Conclusion 

In this chapter, we used FEM simulation in COMSOL to estimate various cavity parameters to 

describe two of the three co-localized optical and mechanical modes necessary to induce NIR-to-

telecom transduction in the proposed plano-convex geometry. The geometry proved to be able to 

satisfy the stability criteria and produce stable eigenmodes of photons at 𝜆𝑐 = 1100 nm and phonons 

of frequency 𝛺𝑚 = 5.977 GHz in the cavity with at least eight bi-layers of a DBR composed of 

SiO2 and Ta2O5 containing the modes inside the 4H-SiC where they can address a divacancy spin 

qubit ~2.5 𝜇m off the flat mirror.   

These simulations allow us to determine the feasibility of operating this structure under 

realistic loss conditions in a fabricated device. The main source of loss in the optical cavity comes 

from scattering losses due to non-uniformity of the 4H-SiC surfaces, characterized by their root-

mean-square roughness. From our understanding of the photoresist reflow that could produce the 

minimum roughness for these dome structures [134], we believe 𝜎𝑅𝑀𝑆 ~ 0.35 nm is achievable for 

cavity dimensions studied in this thesis. Details on the material platform we considered best for 

fabricating the structures presented in this result are in Section B.2. The total optical cavity losses, 

characterized by its linewidth, 𝜅, can be calculated using plot the range of realistic roughness, 

𝜎𝑅𝑀𝑆, vs. the overcoupling parameter of the optical cavity, 𝜂𝑐. Overcoupling ratio describes the 
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amount of power leaking out of the cavity vs. the amount reflected off the input-port mirror (see 

Section 6.3.4) and can be fully tuned by tuning the reflectivity of the DBR mirrors. If we make a 

graph of the cavity linewidth vs. roughness and overcoupling (Figure 3.1A), we can identify a 

region of overcoupling operation mode with a linewidth of 𝜅 ~ 0.4 GHz calculated with 

overcoupling of 𝜂𝑐  = 70% and 𝜎𝑅𝑀𝑆 ~ 0.35 nm as a realistic target for the cavity operation (Section 

B.2). 

For the goal of observing higher ZPL count rates from the divacancy defect coupled to the 

optical cavity, the Purcell factor gives us an estimate of 𝐹 ≈ 170 from Eq. (6.29) for this cavity 

geometry at 1100 nm with an optical quality factor, estimated from the surface roughness 

(Eq. (6.17)), 𝑄𝑜~1×106 and simulated 𝑉𝑚𝑜𝑑𝑒 of  ~2.41×10-17.  The represents a large increase in 

the counts from the divacancy that can assist in reaching the single-shot readout rate for photons 

carrying spin information. The deep placement of the divacancy due to the monolithic design, 

could enable obtain this Purcell enhancement without incurring a broadening of the divacancy 

optical linewidth to ~GHz values, above the ~200 MHz in non-fabricated 4H-SiC, in order to retain 

high spin-contrast of Rabi driving of divacancy spin qubits [47]. Implementing this ZPL emission 

enhancement would be a major step forwards for the divacancy as a quantum communication 

platform, and our simulation of the optical mode tells us it is feasible. The count rate will also 

assist the transduction scheme, explained below, to produce more on-demand photons to store as 

a mechanical resonance and possibly convert to telecom wavelengths. 

In the regime 𝜅 ~ 0.4 GHz, estimated single phonon cooperativity (Eq. (6.44)) calculated 

using 𝑄𝑚 =
𝛺𝑚

𝛤𝑚
 ~ 1×106  and 

𝑔𝑜,𝑚

2𝜋
 ≈ 6 khz, is in the range 𝐶0 ≈ 1×10-5 . This value is a respectable 

value compared to similar resonator designs. [99] For this realistic optical cavity linewidth, we 
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also should gain access to ground-state cooling of the mechanical resonator to being in the 

side-band resolved regime with a mechanical frequency of 𝛺𝑚 = 5.977 GHz much larger than the  

optical cavity linewidth. We must also have quantum optomechanical cooperativity satisfying 

𝐶𝑞 > 1. This will depend on how many intracavity photons we can drive the cavity with before 

reaching the bistability regime for the optomechanical system (see Section 6.4.3). To assess this, 

we will plug in the maximum photon number allows by the bistability criteria (Eq. (6.46)) into the 

equation for the quantum optomechanical cooperativity (Eq. (6.45): 

   

 
𝐶𝑞 =

4𝑔𝑜,𝑚
2

𝜅𝛤𝑚𝑛𝑡ℎ
�̅�𝑐𝑎𝑣,𝑚𝑎𝑥 =

4𝑔𝑜,𝑚
2

𝜅𝛤𝑚𝑛𝑡ℎ
(6√3

𝑔𝑜,𝑚
2

𝛺𝑚𝜅
)

−1

. 
(7.18) 

   

Figure 7.14. Estimation of optomechanical performance for hybrid device. (A) Plot of the optical cavity 

linewidth vs. RMS surface roughness on the 4H-SiC cavity vs. the overcoupling ratio. The realistic range 

of 0.35-0.30 nm for fabricated cavities corresponding to an overcoupling of 70%. (B) Plot of the quantum 

optomechanical cooperativity at 4.2 K phonon occupation in the mechanical mode vs. the bandwidth of the 

OMIT window imparted on the optical cavity linewidth, set by choosing a certain laser power addressing 

the optical cavity with a certain number of intracavity photons. For experimentally relevant bandwidths 

matching the optical lines of divacancies, ~100 MHz, 𝐶𝑞 ≈ 1000. This indicates the cavity can achieve 

thresholds for the proposed transduction scheme. 
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After canceling terms, and assuming 4.2 K operation in our cryostat, to obtain the average thermal 

phonon occupation of the cavity, 𝑛𝑡ℎ ~ 15 and using 𝑄𝑚 =
𝛺𝑚

𝛤𝑚
 ~ 1×106 , we obtain: 

   

 
𝐶𝑞~

4𝑄𝑚

6√3 ∗ 15
 ~ 5,000. 

(7.19) 

   

Thus, we can say we have an optomechanical system operating at the sideband-resolved regime 

that can be cooled to its mechanical ground state, and the conditions to perform OMIT driving to 

store a divacancy photon as a mechanical excitation, as laid out in Figure 7.1. There is one more 

caveat, being that this driving at the maximum photon occupancy in the optical mode of 

�̅�𝑐𝑎𝑣 ~ 1×1010  would lead to rather broad OMIT bandwidth due to the effective mechanical 

damping being increased by 
4𝑔𝑜,𝑚

2

𝜅
�̅�𝑐𝑎𝑣 ~ 5 GHz. Also, this is a relatively large cavity photon 

occupation that could lead to signification heat load in a realistic fabricated device with finite heat 

dissipation for the membrane through the employed cooling power of the cryostat. Both of these 

experimental limits mean we should consider a lower laser drive power for the optical cavity.  

The discussion in Section 7.2 said that the OMIT bandwidth might vary depending on the 

exact species of divacancy studied in the cavity, between kh and hh configurations, where ~ GHz 

bandwidth would lead to lower transduction efficiencies or low spin readout contrast. If we set the 

OMIT bandwidth to be a desired value, 𝛤𝑂𝑀𝐼𝑇
∗ , Eq. (6.52), we have: 

   

 
𝛤𝑂𝑀𝐼𝑇
∗ = 𝛤𝑚 +

4𝑔𝑜,𝑚
2

𝜅
�̅�𝑐𝑎𝑣, (7.20) 

   

where 𝛤𝑚 =
𝛺𝑚

𝑄𝑚
  and plugging this into the equation for the quantum cooperativity and canceling 

terms, we get: 
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𝐶𝑞 =

(𝛤𝑂𝑀𝐼𝑇
∗ − 𝛤𝑚)

𝛤𝑚𝑛𝑡ℎ
. (7.21) 

   

The graph in Figure 7.14B shows that the quantum optomechanical cooperativity dips down to 

around ~1000 for an OMIT bandwidth of ~ 100 MHz, which would be sufficient to match 

stabilized divacancy optical linewidths near 50 MHz [27]. Overall, these parameter estimations 

obtained from eigenmode simulations of electric and displacement fields in the plano-convex 

hybrid device show that it is feasible to reach the necessary thresholds to perform Purcell 

enhancement of the divacancy ZPL photons and storage of those photons as mechanical excitations 

via OMIT, paving the way for potential transduction to an optical cavity at telecom wavelengths 

with the proposed transduction readout scheme. 
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Appendix A  

UNIVERSAL COHERENCE 

PROTECTION IN A SOLID-STATE SPIN 

QUBIT: DETAILS 

A.1 Floquet Hamiltonian of dressed state levels 

With the application of a dressing drive, the Hamiltonian under which we entered the RWA for 

the electron spin system of the divacancy is no longer valid. A different Hamiltonian describes the 

new energies for the dressed divacancy triplet manifold, with selection rules that restrict operation 

within a new 3-level system analogous to the manifold described in Section 3.2.3. Floquet theory 

allows us to invoke certain tools given that our divacancy groundstate Hamiltonian satisfies time 

evolution symmetry: 

   

 �̂�(𝑡)  =  �̂�(𝑡 + 𝑡𝑜).  (A.1) 

   

Floquet’s theorem says the new quantum states will take on a form similar to our general solution 

for a TLS, but with a basis state where |𝜓(𝑡)⟩𝑛 = |𝜓(𝑡 + 𝑡𝑜)⟩𝑛 so we write: 

   

 
|𝜓(𝑡)⟩  =  ∑ 𝑐𝑛

𝑁

𝑛=1

|𝜓(𝑡)⟩𝑛𝑒
−𝑖𝐸𝑡. (A.2) 
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Then since we are interested in writing the Hamiltonian in a closed-form representation for all 

times, we utilize the result of reference [146] and substitute 𝜔 = 2𝜋/𝑇 to begin to construct the 

Floquet Hamiltonian, ℋ̂𝐹(𝑡). The matrix decomposition has time-dependent components built 

from the Fourier components, �̂�𝑓(𝑡), of the original Hamiltonian, �̂�(𝑡),  and we write first the first 

nine matrix elements denoted by their Floquet mode index, 𝑓: 

   

 

ℋ̂𝐹(𝑡) = (

�̂�0 + 𝜔𝑓 �̂�1 �̂�2
�̂�−1 �̂�0 �̂�1
�̂�−2 �̂�−1 �̂�0 − 𝜔𝑓

), (A.3) 

   

where the individual matrices are defined by: 

   

 

�̂�(𝑡) = ∑ �̂�𝑓(𝑡)

𝑁→∞

𝑓=1

𝑒−𝑖𝑓𝜔𝑡. (A.4) 

   

The 𝐻𝑛 make up an infinite-dimensional matrix of the Hilbert space as 𝑁 goes to infinity. The new 

Floquet Hamiltonian, ℋ̂𝐹(𝑡) can be written in closed form to find quasienergies of the system. We 

are able to pick diagonalizable elements of this matrix as branches of the dressed states produced 

by the Autler-Townes splitting of both of the kh divacancy states |±⟩ we induced by turning on 

the dressing drive. We then will perform the RWA again (Section 2.4) to return to a closed-form 

expression for our divacancy Hamiltonian. Under a unitary transformation to diagonalize our base 
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divacancy Hamiltonian from Section 3.2.3, we start with the matrix components that allow us to 

construct the Floquet Hamiltonian: 

   

 

𝐻0 = (
𝐷 + 𝐸 0 0
0 0 0
0 0 𝐷 − 𝐸

) ,𝐻±1 =

(

 
 
0 0

𝛺

2
0 0 0
𝛺

2
0 0

)

 
 
. (A.5) 

   

The RWA is implemented by taking the lowest order regions of the infinite matrix space such that 

we get a diagonal matrix representation for the four dressed states. Extending the Floquet mode 

number to higher order would yield terms with higher multiples of the drive frequency, which we 

ignore under the approximation. Writing out the six elements denoted in Eq. (A.5) in the block 

matrix of Eq. (A.3), we identify the first 3x3 sub-matrix along the block matrix diagonal which we 

identify to correspond to the upper branch of states split from |+⟩ by the Autler-Townes process 

at low magnetic field conditions: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢(𝑝𝑝𝑒𝑟)

=

(

 
 
 
𝐷 − 𝐸 +

𝜔

2

𝛺

2
0

𝛺

2
𝐷 + 𝐸 −

𝜔

2
0

0 0 −
𝜔

2)

 
 
 
+
𝜔

2
1̂. (A.6) 
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Similarly, there is another matrix we identify as the lower branch of states split from |–⟩ that we 

write as: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑙(𝑜𝑤𝑒𝑟)

=

(

 
 
 

−
𝜔

2
0 0

0 𝐷 + 𝐸 −
𝜔

2

𝛺

2

0
𝛺

2
𝐷 − 𝐸 +

𝜔

2)

 
 
 
+
𝜔

2
1̂. (A.7) 

   

Here 1̂ is the identity matrix. Here we make a critical assumption that the transverse ZFS will not 

change on the timescales of the experiments so we will always have the continuous microwave 

dressing drive on resonance. This means that 𝜔 = 2𝐸 at all times, and we obtain: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢(𝑝𝑝𝑒𝑟)

=

(

 
 
𝐷 + 𝐸

𝛺

2
0

𝛺

2
𝐷 + 𝐸 0

0 0 0)

 
 

 

�̂�𝐹,𝑅𝑊𝐴
𝑙(𝑜𝑤𝑒𝑟)

=

(

 
 

0 0 0

0 𝐷 − 𝐸
𝛺

2

0
𝛺

2
𝐷 − 𝐸

)

 
 
. 

(A.8) 

   

We note that the lower right of the upper branch and upper left of the lower branch elements (in 

this case simply the matrix element 0) are identically the center element of the entire block matrix 

of Eq. (A.3). That property will be shared in all the Floquet approximations we will make with the 

RWA when choosing sub-matrices. Now we make an assumption based on the primary direction 

of the lithographically patterned magnetic field drive in our experiment. The 𝑆𝑥 dipole proportional 

to the field is responsible for driving spin into the |+⟩ state in the non-dressed basis, and also now 

what is the pair of states whose evolution is controlled by �̂�𝐹,𝑅𝑊𝐴
𝑢  above. The kh divacancy 
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selection rules are governed by linear polarization at zero magnetic field, so we can now say spin 

population prepared in |0⟩ can only be driven into |+⟩ character states at reasonable powers. This 

is due to the crystal alignment of the 𝑆𝑦 dipole, which governs spin population transfer between 

|0⟩ and |–⟩, would take an unreasonable amount of power given the magnetic field alignment 

accessible by a drive wire parallel to the SiC surface would address non-𝑆𝑦 components leading to 

incoherent population transfer of TLS dynamics, where we avoid treatment of the full three-level-

system dynamics that would result. 

There is also a second assumption that further solidifies our treatment of the states |±1⟩ 

and |0⟩, defined below, as a robust three-level quantum system that can be operated within the 

infinite allowable space due to the higher order Floquet modes. We take the weak driving case 

where 𝛺 ≪ 𝐸 and here the states, |𝑓𝑛⟩, with unequal Floquet mode will not couple [147]. The 

expectation values for 𝑆𝑥 between the undriven state and the lower branch vanish, while we retain 

non-zero components for the upper branch that allow us to perform qubit gate rotations in a chosen 

TLS of the basis {|0⟩, |−1⟩ , |+1⟩}. 

 Diagonalizing the upper branch term we can read off the energies for the two states of the 

Autler-Townes complex: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢(𝑝𝑝𝑒𝑟)

=

(

 
 
𝐷 + 𝐸 +

𝛺

2
0 0

0 𝐷 + 𝐸 −
𝛺

2
0

0 0 0)

 
 
. (A.9) 

   

We see there is a Autler-Townes splitting of exactly half the drive amplitude, 𝛺. The top row is 

denoted by Floquet mode 𝑓 = +1, while the middle row is 𝑓 = −1. The bottom row, 𝑓 = 0, is 

simply the undriven state with 𝑚𝑠 = 0. The dressed states eigenvectors turn out to simply be linear 
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combinations of the kh divacancy states at zero magnetic field, and these will be the states 

investigated in Chapter 5  

A.2 Dressed basis readout 

This section describes a protocol for reading out the population of the dressed states, which 

contains a linear combination of the undressed states of the kh divacancy ground-state spin levels, 

so we can readout in a situation where the spin population information is only encoded in the states 

|0⟩ and |+⟩ as typically our 4H-SiC samples, including the one measured in this result, have optical 

linewidths around 200-300 MHz that makes this the only high-contrast readout basis [25].  

We will take an arbitrary superposition in the dressed basis for the spin qubit defined by 

|0⟩ and |+1⟩: 

   

 |𝜓⟩ =  𝛼|0⟩ + 𝛽|+1⟩. (A.10) 

   

If we now shut off the dressing drive on the scale of nanoseconds, we assume the system on 

average undergoes a non-adiabatic transition because the root mean square of the energy of the 

system does not change relative to the applied drive energy. We choose to ignore the probability 

of adiabatic dynamics, which is below 1%. This greatly simplifies the necessary treatment of the 

dynamics as the non-adiabatic conditions dictate a simple substitution of the undressed basis: 

   

 
|𝜓⟩ =  𝛼|0⟩ +

𝛽

√2
(|−⟩ + |+⟩). (A.11) 

   

We want to remove the character of |−⟩ specifically because the optical fine structure of the kh 

divacancy places the transition with |−⟩ character only ~130 MHz away from the |0⟩ character 
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transition while for |+⟩ and |0⟩ there is around 1 GHz of separation. This triples the signal to noise 

ratio for the readout contrast. So, after a 
−𝜋

2
 rotation about the z-axis of the Bloch sphere, we obtain: 

   

  |𝜓⟩ =  𝛼|0⟩ + 𝛽|+⟩, (A.12) 

   

which contains the full information content of the dressed basis superposition but can be readout 

using the highest contrast readout procedure possible for this divacancy configuration with 

broadened optical lines from electrical and strain fields in the sample. 

One additional complication involves superpositions in the |±1⟩ basis. Our procedure 

involves reading out only the PLE signal from one transition, with |0⟩ spin character, but we would 

then have no contrast given we are mapping two states to that single observable. If we take the 

arbitrary state: 

   

  |𝜓⟩ =  𝛼|−1⟩ + 𝛽|+1⟩, (A.13) 

   

and perform a 𝜋 rotation to return to the situation of Eq. (A.10) above, and the coefficients can be 

measured due to optical contrast again. Thus, we can perform what we call the contrast recovery 

sequence to readout any arbitrary superposition in our three-level dressed basis. 

A.3 Z-axis magnetic field fluctuations 

In this section, we will write the dispersion curve that describes the dressed basis energy levels of  

|±1⟩ for z-axis perturbations of the magnetic field we simply write as 𝐵𝑧. We take the zero-field 
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Hamiltonian and add the Zeeman and microwave frequency drive terms from Section 3.2, setting 

𝛾 = 1 for the Zeeman term for simplicity: 

   

 �̂� =  𝐷(𝑆𝑧
2) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝐵𝑧𝑆𝑧 +  𝛺 cos(𝜔𝑡)𝑆𝑧. (A.14) 

   

We apply a periodic, continuous drive with amplitude 𝛺 to enter the dressed state picture, so we 

can proceed with the Floquet analysis procedure already utilized first in Section A.1. We will see 

how the energy levels change with the magnetic field perturbation. The diagonalized Fourier 

components of this Hamiltonian are: 

   

 

𝐻0 = (
𝐷 + 𝐺 0 0
0 0 0
0 0 𝐷 − 𝐺

) ,𝐻±1 =

(

 
 
−
𝛺𝐵𝑧
2𝐺

0 −
𝛺𝐸

2𝐺
0 0 0

−
𝛺𝐸

2𝐺
0 −

𝛺𝐵𝑧
2𝐺 )

 
 
. (A.15) 

   

The term 𝐺 is defined as 𝐺2 = 𝐵𝑧
2 + 𝐸2 for compactness, as well as allowing a form where the 

diagonal elements of 𝐻±1 vanish if we assume the magnetic perturbations are small compared to 

the energy scale of the transverse ZFS. This is an assumption we can make due to the relatively 

large 𝐸 of the kh divacancy system. We also again focus only on the upper Autler-Townes branch 

because it is the only branch we can experimentally access with our magnetic drive wire. We can 

write out and select from the Floquet block-matrix (Eq. (A.3)) a 3x3 diagonal matrix representing 



174 

 

the Hamiltonian of that upper branch due to the RWA constraining us to lowest order in the Floquet 

parameter: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢(𝑝𝑝𝑒𝑟)

=

(

 
 
 
𝐷 − 𝐺 +

𝜔

2
−
𝛺𝐸

2𝐺
0

−
𝛺𝐸

2𝐺
𝐷 + 𝐺 +

𝜔

2
0

0 0 −
𝜔

2)

 
 
 
+
𝜔

2
1̂. (A.16) 

   

Here 1̂ is the identity matrix. The dispersion relation will be the difference in the energy 

eigenvalues of this matrix that correspond to the states of |±1⟩ inside the decoherence protected 

subspace. We assume that the dressing drive is exactly on resonance so 𝜔 = 2𝐸, and, after 

diagonalizing, the dispersion relation for z-axis magnetic field noise, ∆𝑧(𝐵𝑧), is written as: 

   

 

∆𝑧(𝐵𝑧) = 2√(
𝛺𝐸

2𝐺
)
2

+ (𝐺 −
𝜔

2
)
2

. (A.17) 

   

To obtain a tractable equation in the experimental parameters, we invoke the small perturbation 

assumption for 𝐵𝑧 once more and write the Maclaurin series expansion in the ratio 
𝐵𝑧

𝐸
 to write: 

   

 
∆𝑧(𝐵𝑧) ≈ 𝛺 −

𝛺

2
(
𝐵𝑧
𝐸
)
2

+ (
3𝛺

8
+
𝐸2

2𝛺
) (
𝐵𝑧
𝐸
)
4

. (A.18) 

   

The approximation suppresses terms of order of our small parameter raised to the sixth power, 

which are not relevant to the energy scales we have access to given the magnitude of the transverse 

ZFS. 
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A.4 X-axis magnetic fluctuations 

In this section we consider small perturbations of the dispersion relation for the dressed energy 

levels |±1⟩ for x-direction magnetic field perturbations, 𝐵𝑥, and write the Hamiltonian again with 

the modified Zeeman term as in Section A.3: 

   

 �̂� =  𝐷(𝑆𝑧
2) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) + 𝐵𝑥𝑆𝑥 +  𝛺 cos(𝜔𝑡)𝑆𝑧. (A.19) 

   

A critical property of this Hamiltonian is that it is rotationally invariant along the z-axis. Therefore, 

the 𝐵𝑦 fluctuation Hamiltonian would simply become equivalent to 𝐵𝑥 fluctuation, after a change 

of basis equal to a 90 degree rotation where 𝑆𝑥 → 𝑆𝑦 and 𝑆𝑦 → −𝑆𝑥: 

   

 �̂� =  𝐷(𝑆𝑧
2) + 𝐸(𝑆𝑥

2 − 𝑆𝑦
2) − 𝐵𝑦𝑆𝑦 +  𝛺 cos(𝜔𝑡)𝑆𝑧. (A.20) 

   

We can absorb the sign of the perturbation and have the same Hamiltonian. This allows us to use 

the dispersion relation under perturbation 𝐵𝑥 as the dispersion relation for any perturbation applied 

orthogonal to the z-axis. 

We proceed again through the Floquet analysis procedure of the previous section. The 

lowest order diagonalized Fourier components of this Hamiltonian is: 

   

 

𝐻0 =

(

 
 

𝐹 + 𝐽

2
0 0

0
𝐹 − 𝐽

2
0

0 0 𝐹 − 2𝐸)

 
 
, (A.21) 
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and the higher order Floquet term is: 

   

 

𝐻±1 =

(

 
 
 
 
 
 
 

0 0
−𝛺𝐵𝑥

√4𝐵𝑥
2 − (𝐹 − 𝐽)2

0 0
−𝛺𝐵𝑥

√4𝐵𝑥
2 + (𝐹 + 𝐽)2

− 𝛺𝐵𝑥

√4𝐵𝑥
2 − (𝐹 − 𝐽)2

−𝛺𝐵𝑥

√4𝐵𝑥
2 + (𝐹 + 𝐽)2

0

)

 
 
 
 
 
 
 

 (A.22) 

   

This time the simplifying constants are 𝐹 = 𝐷 + 𝐸 and 𝐽2 = 𝐵𝑥
2 + 2𝐹2. Again, we set to zero 

𝐻±1 elements containing 𝐹 + 𝐽 because for small perturbations we have 𝐵𝑥 ≪ 𝐹 + 𝐽. Writing out 

the block matrix and invoking the RWA to consider the first diagonal matrix with Floquet mode 

below 1, we write out the Hamiltonian for the dynamics of the upper branch: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢(𝑝𝑝𝑒𝑟)

=

(

 
 
 
 
 
 

𝐹 −
𝜔

2

− 𝛺𝐵𝑥

√4𝐵𝑥
2 − (𝐹 − 𝐽)2

0

− 𝛺𝐵𝑥

√4𝐵𝑥
2 − (𝐹 − 𝐽)2

𝐹 + 𝐽

2
0

0 0
𝐹 − 𝐽

2
− 𝐸)

 
 
 
 
 
 

+
𝜔

2
1̂ (A.23) 
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The dispersion relation describing the energy difference, ∆𝑥, of the |±1⟩ states when driven on 

resonance (𝜔 = 2𝐸) in the decoherence protected subspace after solving the eigenvalue equation 

is: 

   

 

∆𝑥(𝐵𝑥) = 2√(
𝐹 − 𝐽

16
)
2

+ (
𝛺2𝐵𝑥

2

4𝐵𝑥
2 − (𝐹 − 𝐽)

)

2

 (A.24) 

   

 

We perform a similar Maclaurin series expansion as the previous section in the small ratio 
𝐵𝑥

𝐹
 to 

write, with terms of the small ratio to the sixth power or higher suppressed: 

   

 
∆𝑥(𝐵𝑥) ≈ 𝛺 −

𝛺

2
(
𝐵𝑥
𝐹
)
2

+
1

2
(
11𝛺

4
+
𝐹2

𝛺
)(
𝐵𝑥
𝐹
)
4

 

 

(A.25) 

   

A.5 Electrical and thermal fluctuations 

In this section we will revisit our derivation of the energy levels produced by Autler-Townes 

splitting (with no magnetic noise terms) from the dressing drive, where we cannot simply say 𝜔 =

2𝐸, as we did in Section A.1. This will give us insight into how electrical noise effects the dressed 
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state energy levels, which encodes electrical and temperature fluctuations as they enter into the 

Hamiltonian as the longitudinal and transverse ZFSs. For the upper branch, we write: 

   

 

�̂�𝐹,𝑅𝑊𝐴
𝑢 =

(

 
 
 
𝐷 − 𝐸 +

𝜔

2

𝛺

2
0

𝛺

2
𝐷 + 𝐸 −

𝜔

2
0

0 0 −
𝜔

2)

 
 
 
+
𝜔

2
1̂ (A.26) 

   

Keeping the drive frequency here and introducing the dressing drive detuning, 𝛿𝜔 = 𝐸 −
𝜔

2
, we 

simply diagonalize the matrix to find the energy splitting between |±1⟩ to be: 

   

 

∆𝜔= 2√(
𝛺

2
)
2

+ 𝛿𝜔
2
 

 

(A.27) 

   

This shows that 𝐷 will not couple into this energy difference, ∆𝜔, but the first-order sensitivity to 

electric field noise that the undressed basis experiences will manifest in 𝐸 fluctuations [25].  
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Appendix B  

DESIGN OF A MONOLITHIC HYBRID 

OPTOMECHANICAL RESONATOR 

COUPLED TO A SPIN QUBIT: DETAILS 

B.1 Finite element modeling 

In this section, we will discuss the operation of the modeling software used to simulate the 

proposed cavity device. The analytical solutions of the optical and mechanical modes inside an 

arbitrary cavity structure are unwieldy due to the boundary conditions imposed by the SiC plano-

convex shape and DBR layers that contain the fields. For planar Fabry-Perot cavities, with two flat 

mirrors composing the boundaries, there are techniques for analytical modeling of the behavior of 

the cavity as a 1D system, such as the transfer matrix model. There are a two reasons why we do 

not want to restrict the analysis to one dimension. The first is we want to have a cavity that is well 

mode matched to the gaussian beam of our laser excitation that will address a single divacancy, so 

capturing the behavior of the modes in 2D (when axial symmetry can be assumed) or 3D is 

important. The second reason is that we want to investigate the range of dimensions the cavity can 

be fabricated in given the proposed SICOI platform, which mainly is determined by utilizing 20 

micron thick epitaxial layers of i-type SiC, that must be polished down to thicknesses around 

~15 microns. Observe the mode shapes of optical and mechanical resonances under changing 
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geometric parameters is far more insightful when not restricted to 1D calculations along the 

primary axis of the cavities.   

B.1.1 Overview of simulation components 

We will be using COMSOL Multiphysics that uses the finite element method (FEM) to solve for 

the cavity modes, represented by either electric fields or displacement fields, given a number of 

initial conditions provided by the user. These conditions include primarily assigning domains to 

have sizes and material properties to represent the parts of the real system. The properties assigned 

are those relevant to the physical equations being solved when using the FEM. For example, there 

will be domains of air and SiC that have their respective indexes of refraction during optical mode 

studies. The extent to which the simulations can be assumed to give physically relevant data can 

be difficult to determine during initial attempts at capturing the behavior of a system. Many 

successive simulations with tweaks to the initial conditions are usually needed to build an 

understanding of how the simulation behaves. Successive alteration of the initial conditions and 

analyzing the results allows building inferences towards the behavior of an actual optomechanical 

device. 

The FEM is a method of solving partial differential equations that represent physical 

relations by finding approximations within a chosen discretization. The approximation is one that 

can be solved numerically within a small subset of the total spatial or temporal domain of the 

problem. The power of the method comes from the flexibility of the choice of discretization, where 

the simplest example is to have more approximations done in regions where the variables are 
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changing more rapidly. The discretization over an area is usually called the mesh. For cavities, the 

fields will be fluctuating at the resonance frequency, so we will restrict ourselves to analyzing the  

steady state solution with a chose spatial discretization. A rule of thumb for COMSOL is that five 

cells per wavelength is the minimum density to use. Increasing this density is usually necessary, 

and the parameter vs. mesh density should be checked to observe asymptotic behavior with 

increasing density. Discrete jumps or oscillations in a convergence graph usually indicates non-

physical results due to poorly chosen meshing density. 

The guiding principles when doing any FEM simulations is to be mindful of the tradeoff 

between the complexity of the model and the time a simulation produces a result. A 2D slice of an 

optical dipole’s electric field can take less than a minute, but a full 3D render of an SiC slab’s 

response to mechanical driving can take tens of hours, or even fail to converge. One could say the 

insight gained per unit time must be maximized. Complex simulations give more information but 

in return take longer to complete, so concessions on both the numerator and denominator of this 

ratio must be made.  

Figure B.1. Major components of COMSOL simulation. Representation of hybrid device structure as 

rendered in COMSOL showing SiC domains in the middle, enclosed by DBR domains, and then the 

remaining are air domains. The outside domains are labeled as perfectly matched layer (PML) domains for 

the three listed material domains. The PML simulates the material of their domain stretching to infinity to 

save computational resources when avoiding hard walls in the resonant structure simulations. 
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A typical simulation is built off of designating domains as different materials that make up 

the real geometry of the device. The material domains of the hybrid device are shown in Figure 

B.1. It consists of a silicon carbide membrane with the hemispherical structure atop it, created by 

an etching process. Air boundaries encapsulate it to give the Gaussian optical mode space to travel 

towards the cavity from infinity, which is represented by a pseudo-infinite boundary condition 

defined in the next paragraph. The cavity resonant condition is created by using layers of glassy 

oxides that make up a distributed Bragg reflector mirror at chosen optical frequencies (Section 

7.4.1). For the mechanical simulations, air and DBR domains are not employed because we chose 

to work with a simulation where the vibrational modes do not extend very far outside of the silicon 

carbide due to a proposed usage of the optical DBR mirrors simultaneously as mechanical mirrors 

(Section 7.5.3). 

Perhaps the most important component of a COMSOL simulation is the definition of the 

external boundary conditions that connect the system under study to the rest of the environment. 

This concept is similar to that from introductory thermodynamics, where a system’s thermal 

response is considered when in contact with a large reservoir of constant temperature. The internal 

dynamics of such a system is drastically different when not connected to the reservoir. In our case, 

we want to be simulating cavity excitations where the edges of our simulation in software act as if 

that edge is at infinity in real space, where the field amplitude dissipates to zero. Incorrect 

boundaries can lead to spurious reflections off those edges, leading to erroneous calculations of 

the loss channels and corresponding quality factors of the cavities. In COMSOL, this infinite 

boundary is implemented in what are called perfectly matched layers (PMLs). PMLs are used to 

designate a domain as an open and nonreflecting boundary of infinite extent. To obtain physically 
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relevant results, correct meshing is important when transitioning away from a region near the 

modes of interest to the outskirts of the domain where the PML cells are. There should be no 

eigenmode solutions that show non-dissipating structure inside a correctly implemented PML 

layer.  

The two major methods used to characterize steady-state cavity modes using FEM are 

eigenmode simulations and frequency domain simulations. The goal of an eigenmode simulation, 

or study, in the COMSOL terminology, is to solve a matrix equation representing the given initial 

conditions and boundary conditions for the chosen fields (electric fields for optical modes for 

example). The major user input choice here is given the COMSOL solver an initial guess of the 

frequency of the resonance that is trying to be modeled. For example, an initial guess for the optical 

cavity TEM00 gaussian mode could assume a linear Fabry-Perot cavity of the same length. The 

eigenmode study would then proceed to find steady-state solutions matching that frequency, but 

there is no guarantee that the mode of interest will be found due to the number of other, low-

quality-factor modes that the geometry can support. The density of states can be combed through 

finer by telling the study to find tens or hundreds of eigenmode solutions. Sifting through all these 

can be a tall order, and the next subsection describes a way to autonomously handle some of the 

tedious work. The frequency domain simulation can be considered the inverse of the eigenmode 

simulation in some ways. Here a range of frequencies the user wishes to see steady-state solutions 

for are given, but instead of seeing all possible resonances the geometry can support, the initial 

conditions require some forcing function, and the resonance modes that result from that force are 

evaluated in the given frequency range. This is an important tool to focus on a particular mode 

shape given the force can be defined. For example, the radiation pressure force from a Gaussian 

light-field acting on a mechanical cavity could be investigated at various frequencies. This can 
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allow gaining insight on other modes besides the longitudinal standing waves along the primary 

cavity axis could be excited from the force and have a reasonable quality factor. We will utilize 

both eigenmode or driven frequency studies in our investigation of the hybrid device. 

B.1.2 Autonomous simulation analysis 

Once a cavity simulation has been initialized and defined in the COMSOL software GUI, there are 

many possible ways to analyze the resulting field solutions, either in the GUI or after exporting 

the raw data. This process can become tedious for a study involving tracking the changes of certain 

properties of the mode shapes given changes in the cavity geometry simulated. COMSOL does 

have several functional ways to handle changes in initial conditions and compute the simulations 

for all values considered. These functions were not applicable to all the parameter sweeps we 

wished to complete for the hybrid device, so another solution was found. A workflow was 

developed to autonomize the entire process of building a COMSOL model in an executable 

instance of the program and then exporting the results of a COMSOL study to a python data stream 

for saving the findings of analysis code. A python library called MPh [148] allows interfacing the 

Java source code that COMSOL is built from with the Python language is utilized in a scheme to 

perform autonomous simulation analysis. This technique also allowed parallelized launching of 

several simulations that resulted in much faster overall simulation hours when carefully allocating 

computing resources to not overwhelm the simulation computer. 

 Each instance of a COMSOL simulation launched as a separate instance from a python 

command line consumed a certain average amount of computer RAM and CPU operating 

percentage. Launching a different amount of instances all solving the same simulation until 

convergence was found allowed optimization of our simulation computer’s parallel solving 

bandwidth. This varied depending on the average number of cells an implementation of the 
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autonomous solver used. The mechanical simulations in 3D demanded about two to three orders 

of magnitude more cells than the 2D axial symmetric optical mode simulations, millions vs. several 

thousand cells. Thus, deciding the allocation of computing resources each time an autonomous 

simulation experiment was performed took several iterations fine-tuning using small batches of 

the parameters that ultimately would be swept. Starting a large batch of parameters, which could 

take several days to complete, with unoptimized allocation would result in wasted computation 

time from unconverging COMSOL simulations due to computing resource starvation or under-

resolved simulation parameters in the analysis step from not sweeping the parameters at fine 

enough resolution. 

B.2 Proposed fabrication methods for monolithic 4H-SiC cavity 

The proposed material platform for the hybrid device that informed decisions for the simulations 

of the optical and mechanical modes consists of three major fabrication processes with 4H-SiC. 

Implementation of these fabrication steps to create a real device would take a significant time 

investment, but the goal was to consider processes that have been previously developed and used 

to make other devices already. This section serves as an example of the most straightforward and 

feasible collection of processes that could be utilized but makes no claims that these processes 

solve every potential problem that one could encounter when fabricating a real device. 

B.2.1 4H-SiC-on-insulator polished membranes 

We begin with a 4H-SiC chip that has an epi-layer containing the desired density of divacancies 

after electron irradiation and annealing of thickness at or more than 20 microns. There is a 

technique where the epi-layer can be bonded to a different material as a substrate, which will allow 

undercutting of the 4H-SiC slab to create a free-standing membrane. The final product is called 
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SiC-on-insulator (or SiCOI) [149] where it is bonded to silicon and then ground down to 

approximately 10-17.5 µm using a polishing technique that yields surface roughness much lower 

than will result from creation of the hemispherical structure.  

Presented here is an overview of the SiCOI creation process. The 4H-SiC chip, which is 

composed of the thin epi-layer and few hundred micron high-impurity bulk, is first bonded to a 

silicon chip of larger surface area using Hydrogen silsesquioxane (HSQ), an inorganic compound 

often used in photolithography processes. After coating with 200-300 nm of HSQ, a strong bond 

to a 500 µm thick Si wafer is formed by thermal annealing. The 4H-SiC slab is then ground 

mechanically to remove the high-impurity bulk, revealing the underside of the epi-layer. Chemical 

and mechanical polishing followed by a reactive-ion etching process results in a roughness of the 

flat, exposed 4H-SiC surface to approximately 2-3 Å. 

This process results in three very important features for the hybrid device. 1) Bonding the 

thin epi-layer to a silicon chip will allow undercutting the silicon using etching processes that do 

not remove 4H-SiC, which would increase the error in the cavity length, which is set by the 

membrane thickness. 2) That membrane thickness can be carefully controlled by varying the steps 

in the polishing process. 3) This process yields a roughness on both the top and bottom 4H-SiC 

surfaces on order of 2-3 Å, which gives us the best starting point to yield low surface roughness 

on the hemispherical surface described below. 

B.2.2 Photoresist reflow etched hemispheres 

Now we will outline the steps and advantageous of a fabrication process for creating the 

hemispherical structures that will form the cavities that support optical and mechanical Gaussian 

modes. A photoresist reflow process can be used that exploits surface tensions to coax photoresist 

layers to form structures described by circular arcs on top of the 4H-SiC surface where that shape 
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can be transferred during etching to remove exactly the 4H-SiC material to reveal hemispherical 

structures of precise radius of curvature and remaining bulk height of the 4H-SiC membrane [134].  

Here we outline the reflow procedure. The final roughness of non-flat surfaces can be 

heavily impacted by surface contaminants, so the 4H-SiC sample is cleaned using a three-step 

organic sonication procedure, then ablated in oxygen plasma, and then finally baked at high 

temperatures. Disks of photoresist of precisely calibrated diameters are created on the surface 

using a lithographic photomask. The 4H-SiC surface and disks are primed with an organosilicon 

compound, hexamethyldisilazane (HMDS), to increase the retention of the disc’s height and radius 

as defined by the photomask. Next the sample is inverted, and the disks are exposed to heated 

propylene glycol monomethyl ether acetate (PGMEA) vapor so that the initially solid photoresist 

disks will soften to allow the forces of surface tension to shape them, allowing the edges to slope 

and create hemispheres. The now hemispherical photoresist structures are baked until only trace 

PGMEA concentrations remain to re-solidify the photoresist. The shape of the photoresist 

structures is then transferred to the 4H-SiC membrane using a reactive-ion etching process. 

Through trials utilizing the above techniques performed to create the devices in [134] on our own 

chips of SiCOI containing divacancies, we saw surface roughness on order of 3 Å. 

This process results also results in three very important features for the hybrid device. 

1) This technique is compatible with the silicon substrate the 4H-SiC is chemically bonded to in 

the SiCOI creation step. 2) Through careful optimization of all the reflow parameters, the radius 

of curvature and height of the remaining SiC membrane can be precisely controlled to create 

hemispherical structures that match our best estimation of what cavity dimensions will have the 

best quality factors, as well as other performance factors outlined in Chapter 7. 3) This technique 

produced low surface roughness on the non-flat structures, a very difficult goal in fabrication of 
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semiconductors like 4H-SiC. We identified the surface roughness to be one of the most important 

factors to enable the cavity to reach high Purcell factors and operation of its optomechanical cavity 

at its mechanical groundstate to enable the proposed transduction scheme. After removal of the 

silicon layer at a precise location in the center of the 4H-SiC chip corresponding to the location of 

the hemispherical structures, the optical and mechanical performance of the hybrid spin-opto-

mechanical device can be explored to see if our estimations of the feasible thresholds for these 

applications involving the divacancy in 4H-SiC can be realized.  
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