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SUMMARY
Identifying themolecular effects of human genetic variation across cellular contexts is crucial for understand-
ing the mechanisms underlying disease-associated loci, yet many cell types and developmental stages
remain underexplored. Here, we harnessed the potential of heterogeneous differentiating cultures (HDCs),
an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell types.
We generated HDCs for 53 human donors and collected single-cell RNA sequencing data from over 900,000
cells. We identified expression quantitative trait loci in 29 cell types and characterized regulatory dynamics
across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key
developmental and disease-related processes while replicating known effects from primary tissues and dy-
namic regulatory effects associated with a range of complex traits.
INTRODUCTION

Decoding the molecular consequences of genetic variation is a

central goal in human genetics. With the advent of genome-

wide association studies (GWASs), a vast array of genetic vari-

ants associated with diseases have been uncovered. These pre-

dominantly lie in non-coding regions of the genome, suggesting

primarily regulatory mechanisms.1 This insight has spurred a

surge in mapping expression quantitative trait loci (eQTLs) to un-

derstand how the disease-associated genetic variants influence

gene expression levels. Despite significant strides made by

several large-scale projects, such as the GTEx Consortium, to

map eQTLs,2–7 a comprehensive understanding of themolecular

impacts of disease-associated loci remains elusive, in part due

to the context-dependent and dynamic nature of gene

regulation.8–11

Gene regulation varies by contexts including cell type, tempo-

ral stage, and environment. This poses a formidable challenge

for human studies that seek to characterize the gene regulatory

basis for complex traits.12–14 Studies using postmortem human

tissues, while delivering important insight, often fall short of

capturing the full spectrum of dynamic regulatory effects

because they reflect predefined adult tissue contexts and
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because most studies have utilized bulk sequencing. Recent ad-

vances in single-cell technologies have started to shift this para-

digm by enabling researchers to collect a heterogeneous biolog-

ical sample and disentangle context-specific regulatory variation

through downstream analysis of single-cell molecular pheno-

types.15–20 Still, many contexts are difficult to sample from

healthy human donors, particularly dynamic contexts where we

would like to capture multiple time points from the same individ-

ual. This would be nearly impossible for an inaccessible tissue.

This has motivated the use of differentiation protocols for

in vitro cell cultures, which have offered access to dynamic reg-

ulatory effects, including fleeting effects present only at interme-

diate stages of differentiation.21 These in vitro systems are each

imperfect reflections of human cell biology, but the activation of a

range of relevant cis-regulatory elements can reveal the effects

of variants within them even without completely recapitulating

the in vivo cellular state. Indeed, studies in these systems have

captured regulatory effects of numerous disease-associated

loci and variants near genes involved in developmental pro-

cesses.15,16,21 However, most protocols would require separate

experimental setups for each cell type or perturbation of interest,

making it difficult to efficiently explore the space of disease-rele-

vant contexts.
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In this study, we explored gene regulation across diverse

cellular contexts using heterogeneous differentiating cultures

(HDCs), terminology we introduce as a broad descriptor encom-

passing a class of related in vitro models that can be used to

explore diverse cellular contexts efficiently. Here, we focus on

unguided HDCs, which are based on embryoid body systems

using an extended culturing time to consistently generate

dozens of cell types derived from all three developmental germ

layers.22,23 We have also developed guided HDCs, which push

induced pluripotent stem cells (iPSCs) toward certain lineages

to enrich for multiple cell types within a particular tissue and offer

the ability to pursue more targeted questions. While both un-

guided and guidedHDCs differ from in vivo cellular biology as ex-

pected, we have demonstrated in previous studies and here that

the expression profiles and genetics effects found in HDCs over-

lap those found using primary cell types and tissues.24,25

Here, we generated unguided HDCs from a panel of 53 human

iPSC lines and measured gene expression at single-cell resolu-

tion in over 900,000 cells. We mapped eQTLs in 29 cell types,

including many that have never before been characterized at

the population level in humans, and identified dynamic genetic

effects on gene regulation that vary with respect to diverse differ-

entiation trajectories and gene programs.

RESULTS

HDCs generate diverse cell types
We established unguided HDCs from the iPSCs of 53 unrelated

Yoruba individuals from Ibadan, Nigeria (YRI) (Figure 1A; STAR

Methods). Briefly, we formed HDCs in batches of 4–8 individuals

and maintained them in culture for 21 days (Table S1). Within

each batch, we formed, maintained, and dissociated HDCs in

parallel. After dissociation, we multiplexed samples from each

individual in equal proportions in preparation for single-cell

RNA sequencing (RNA-seq), targeting a depth of 100,000 reads

per cell. After quality control, filtering, and de-multiplexing, we

retained data from 909,536 high-quality cells (median: 1,241

cells per individual per replicate; median: 21,990 unique molec-

ular identifier [UMI] counts per cell).

To initially assess cellular diversity in HDCs, we developed a

cell type classifier based on data and annotations from the fetal

cell atlas.26 We used a curated set of 33 high-confidence cell

type labels (STAR Methods; Figure S1) that span the three

main germ layers (Figure 1B). We assigned 651,129 cells

(72% of all cells) to one of these cell types based on gene

expression signatures (Table S2). Using this approach, 28%

of the cells remained unclassified. Of the 33 cell types, 29 are

represented with a minimum of 5 cells in at least 25 individuals.

While the proportion of cells of each type varied between indi-

viduals (Figure 1C), 52 of 53 individuals have data from at least

5 cells from most cell types (median: 29 of 33 cell types per

donor; Figure 1D). Some of the unannotated cells express

markers of pluripotency, suggesting that asynchronous differ-

entiation within HDCs enabled us to collect pluripotent cells

alongside partially and fully differentiated cell types. Indeed,

manually adding a marker gene set for iPSCs27 to the list of

cell type signatures enabled us to classify 21,370 previously

unannotated cells as iPSCs (Figure 1B). Since this iPSC signa-
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ture was obtained from a separate reference, and since eQTLs

in iPSCs have previously been thoroughly characterized,28,29

we focused on the 29 common fetal cell atlas cell types in

the subsequent cell-type-stratified eQTL analysis, filtering to

the 52 donors that successfully differentiated into diverse cell

types (Table S3). We re-incorporate these pluripotent and un-

annotated cells in later analyses that focused on evaluating

regulatory dynamics across the HDC system.

eQTLs across cell types
We mapped genetic effects on gene regulation in each of the 29

discretely defined fetal cell atlas cell types. To mitigate the ef-

fects of noise inherent to single-cell data, we aggregated sin-

gle-cell expression into pseudobulk such that each observation

represents all individual cells from a single donor/cell type com-

bination30,31 (STAR Methods). This aggregation step also al-

lowed us to take advantage of well-established methods for

eQTL mapping using bulk RNA sequencing data.

We initially performed cis eQTL mapping specifically in each

cell type, limiting our analysis to the 29 annotated cell types

with at least 5 cells from at least 25 donors (Figure 2A). We

included expression principal components for data from each

cell type as covariates to control for hidden factors driving global

expression variability, including batch effects.32 Across all cell

types, we identified a total of 31,179 eQTLs (associated with

2,114 eGenes) at a global q value cutoff of 0.05.33 79% of these

HDC eQTLs were previously identified by GTEx (Figure 2B); that

is, 6,572 of our eQTLs have not been identified in healthy adult

tissues. The HDCs include many developing cell types not found

in GTEx adult tissues. Indeed, the subset of eGenes regulated by

eQTLs identified in HDCs, but not in GTEx, were enriched for

several developmental processes, including tissue development

(odds ratio [OR] = 2.08, two-sided Fisher’s exact test p =

4.5e�5), central nervous system development (OR = 2.31, p =

1.2e�4), and circulatory system development (OR = 2.32,

p = 1.3e�4) (Table S4). The clustering of non-GTEx HDC eQTLs

upstream of transcription start sites (Figure S2) indicates that

these enrichments are not an artifact due to false positive asso-

ciations near developmental genes that are relatively depleted

for eQTLs in GTEx.11 A subset of these non-GTEx HDC eQTLs

(2,705 of 6,572) have been previously characterized in iPSCs.6

The HDC system offers access to eQTLs that replicate in diverse

primary adult tissues in an in vitro setting amenable to environ-

mental and genomic perturbation, at a breadth that has not

been feasible in existing studies of eQTLs in iPSCs6 or iPSC-

derived cell types.15–17,28,34

Within each cell type, we identified a median of 2,099 eQTLs

(maximum of 15,064 eQTLs in peripheral nervous system

[PNS] glial cells) in a median of 126 eGenes (maximum of 919

eGenes in PNS glial cells) (Table S5). The number of eQTLs de-

tected in each cell type is correlated with the median number

of individual cells from which we have data per cell type across

individuals (Figure S3), suggesting that the power to detect

eQTLs is limited by both sample size and the number of captured

individual cells. To account for incomplete power to detect

eQTLs in any given cell type and to assess the extent of eQTL

sharing between cell types, we analyzed the data using multivar-

iate adaptive shrinkage (mash).35 By borrowing information



Figure 1. HDC panel from 53 human iPSC lines

(A) Schematic illustration of the data generation process.

(B) Uniform manifold approximation and projection (UMAP) embedding of over 900,000 heterogeneous differentiating culture (HDC) cells annotated using the

fetal cell atlas. Inset shows annotation of a primarily unassigned group of cells with an augmented classifier trained with pluripotent cells.

(C) Most cell lines generate most cell types with sufficient coverage for inclusion in QTL analyses.

(D) Cell type proportions vary between lines.
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Figure 2. eQTL calling across 29 cell types

(A) To perform eQTL calling, UMI counts from cells from the same donor and cell type were aggregated into a pseudobulk sample, and eQTL calling was

performed separately in each cell type.

(B) Comparison of HDC eQTLs to GTEx eQTLs. Bar plot shows odds ratio of 11 Gene Ontology (GO) biological processes significantly enriched for HDC eGenes

with no eQTLs overlapping GTEx hits (FDR % 0.05, background gene set all HDC eGenes). Developmental processes are highlighted in red.

(C) Patterns of regulatory effects learned through matrix decomposition of eQTL effect sizes in each cell type. Beyond the densely loaded factor 1, remaining

factors partition cell types of similar developmental origins.

(D) Metaplot of eQTL for the gene SH3PXD2B at rs10042482. Boxes are centered at the estimated posterior mean effect in the given cell type. Error bars

show ±posterior standard deviation, and box size indicates precision (1/squared posterior standard deviation). This eQTL was not detected in GTEx or the

univariate (cell type-by-cell type) analysis. * indicates significance at a local false sign rate of 0.05.
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across cell types and genes, mash allows us to detect weak sig-

nals that emerge repeatedly in different cell types with greater

confidence, thereby improving power. More generally, mash

can be used to identify major patterns of heterogeneity and

sharing between cell types.

The four strongest regulatory patterns revealed when we used

this approach depict broadly shared regulation among all cell

types and then among subsets of developmentally related cells.

Of these more specific patterns, the first corresponds to endo-

derm- and mesoderm-derived cell types, the second to ecto-

derm-derived cell types, and the third to the cluster of epithelial

cell types, which may correspond to the neuroepithelium, which

would not be expected to appear in our fetal cell atlas reference

(Figure 2C). We incorporated these candidate regulatory pat-

terns alongside several ‘‘canonical’’ patterns such as single

cell type effects into a prior distribution that guides hypothesis

testing (STAR Methods).
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Using mash, we detected an additional 56,614 eQTLs corre-

sponding to 4,973 eGenes (Table S6). The example of

SH3PXD2B (Figure 2D), a gene thought to be important for car-

diac and skeletal development,36 highlights the utility of consid-

ering structured regulatory patterns in the analysis of heteroge-

neous single-cell data. Indeed, no significant eQTLs for

SH3PXDB2 were found in GTEx, nor the univariate analysis

considering one HDC cell type at a time (Figure S4). Specifically,

when we leveraged regulatory patterns shared by cell types of

similar developmental origin, we found a significant cis eQTL

for SH3PXDB2 (local false sign rate [lfsr] < 0.05) in nearly all

endoderm- and mesoderm-derived cell types.

Dynamic genetic regulation along diverse
differentiation trajectories
Next, we took a different approach to characterize how interac-

tions between genetic variants and the cellular environment
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impact gene expression levels. To do so, we abandon discretely

defined cell type labels in favor of more continuous and nuanced

representations of cellular variation.

We were particularly interested in characterizing temporally

dynamic genetic effects, including effects that fluctuate during

cellular development. As cells within HDCs differentiate asyn-

chronously, our current dataset captures continuous gene regu-

latory variation along multiple developmental trajectories. To

validate our approach for defining differentiation trajectories in

HDCs, we began by focusing on the cardiomyocyte lineage

because we had previously collected single-cell data from

directly differentiated cardiomyocytes using a time course study

design, which can be used as the ground truth for both gene

expression and regulatory dynamics. First, we compiled manu-

ally curated gene lists containing marker genes from each stage

of cardiomyocyte differentiation (STAR Methods; Table S7).17

We used a cell scoring tool (single-cell disease relevance scoring

[scDRS])37 to identify subpopulations of cells with enriched

expression for gene sets specific to the cardiomyocyte trajectory

and applied principal-component analysis to infer the pseudo-

time (STAR Methods; Figure 3A).16,38 The first expression prin-

cipal component using data from these cardiomyocyte trajectory

cells offers a reasonable pseudotime metric (Figure 3B), as it

captures sequential expression of marker genes for each stage

of cardiomyocyte differentiation (NANOG, an iPSC marker

gene; MIXL1, mesendoderm; MESP1, mesoderm; GATA4, car-

diac progenitor; and TNNT2, cardiomyocyte).39 Following our

previous approach,21 we identified 709 linear dynamic eQTLs

(in 47 eGenes) along the cardiomyocyte trajectory with a less

stringent genome-wide false discovery rate (FDR) cutoff of 0.1,

using EigenMT to control for multiple testing burden within

each gene (STAR Methods). The majority of these effects were

replicated in the directly differentiated cardiomyocytes, where

the sample size was far smaller (n = 19; p1 replication rate =

0.58).17

After validating our approach in the cardiomyocyte trajectory,

which is derived frommesoderm, we examined neuronal and he-

patic differentiation trajectories, which, respectively, represent

the ectodermal and endodermal germ layers (Tables S8 and

S9). At a genome-wide FDR of 0.1, we found 1,965 dynamic

eQTLs (166 eGenes) along the neuronal differentiation trajectory

and 472 dynamic eQTLs (44 eGenes) along the hepatocyte dif-

ferentiation trajectory (Table S10).

We further categorized the dynamic eQTLs we identified in

these three developmental trajectories into early (40%), late

(57%), and switch (3%) effects, excluding three genes where

eQTL classification diverged between trajectories (see STAR

Methods). For example, RILPL1, which is thought to regulate

cell shape and polarity,40 is associated with an early dynamic

eQTL in all three trajectories (Figure 3C), while ACAA2, which en-

codes a protein involved in fatty acid metabolism in the liver, is

associated with a late eQTL only in hepatocytes (Figure 3D).

While 77% of late and switch dynamic eQTLs overlap previously

discovered effects listed in the GTEx catalog, similar to the pro-

portion of overlapping cell type eQTLs, the overlap with GTEx

drops to 60% for early dynamic eQTLs. That is, eQTLs identified

only in the early-developing cell types of each trajectory are

markedly less likely to be observed in GTEx adult tissue eQTLs.
Resolving complex regulatory interactions using topic
analysis
Cell type and differentiation stage represent the most salient as-

pects of cellular identity in our dataset. Regulatory changes

along differentiation and between cell types lead to strong

gene expression differences, such that the straightforward appli-

cation of unsupervised machine learning methods (such as clus-

tering and principal-component analysis) to gene expression will

first stratify cells based on these features. However, as they

differentiate, cells are simultaneously engaging in a wide array

of dynamic processes, including growth, division, and signaling.

Many of these processes have the potential to alter gene regula-

tion across different trajectories and perhaps also orthogonally

to the effects of cell type or differentiation stage.

To obtain a richer description of cellular identity and potentially

resolve contrasts in cellular context beyond the discrete defini-

tion of cell type and differentiation stage, we performed topic

modeling of HDC expression data. In this framework, transcrip-

tional variation is decomposed into a fixed number of ‘‘cellular

topics’’ represented by functional gene modules. We used

FastTopics to identify 10 topics in the HDC dataset, aggregating

cells into pseudocells (small clusters of transcriptionally similar

cells) to mitigate noise and improve computational efficiency

(STAR Methods).41 Topic discovery was consistent across mul-

tiple resolutions of pseudocell aggregation (STAR Methods;

Figure S5).

Several topics appeared to overlap with cell type and/or germ

layer labels (Figure 4A), essentially recapitulating the results of

cell type annotation: topic 1 was heavily loaded across endo-

derm-derived cell types, topic 2 across mesoderm-derived cell

types, topic 5 on glial cells, and topic 6 on ectoderm-derived

cell types. Two more topics encode developmental stage-spe-

cific information: topic 4 is most highly loaded on pluripotent

cells and topic 7 is most heavily loaded on cells at intermediate

stages of neuronal differentiation (Figure S6). This reinforces that

cell type identity and developmental stage are the primary

drivers of transcriptional variation, as mentioned above. Other

topics, however, appeared to stratify cells based on gene pro-

grams that are less dependent on cell type or trajectory. For

example, gene set enrichment analysis suggests that topic 8 ap-

pears to track the signature of the cell cycle in our data

(Table S11). We confirmed this by directly estimating the cell cy-

cle phase for all pseudocells (Figure 4B).42 Topic 10 corresponds

to a ciliary gene program that is shared across many cell types

represented in this dataset.

We next sought to identify genetic variants with regulatory ef-

fects that are specific to the expanded set of cellular processes

that were captured as topics (i.e., topic eQTLs). We limited this

analysis to the 8 topics described above, as these were the

most interpretable (STAR Methods).43 We used CellRegMap to

map topic eQTLs.44 Instead of assessing each topic in isolation,

CellRegMap jointly considers all linear combinations of topics,

enabling us to simultaneously test for a wide range of genetic in-

teractions with the cellular environment. We note that while vary-

ing the number of topics in the model involves trade-offs be-

tween expressivity and interpretability, the topic eQTLs

detected in this analysis were consistently replicated when vary-

ing this hyperparameter (STAR Methods; Figure S7).
Cell Genomics 4, 100701, December 11, 2024 5



Figure 3. Dynamic eQTL calling along all three germ layers

(A) Trajectory isolation extracts cells mapped to three differentiation trajectories from the full dataset (left). The first expression principal component in each

trajectory is used as a measure of pseudotime (right).

(B) Relative (min-max normalized) expression of 5 key marker genes displaying sequential expression with respect to pseudotime.

(C) Early dynamic eQTLs for the gene RILPL1 shared across all three differentiation trajectories (center line, median normalized expression; box limits, upper and

lower quartiles; whiskers, 1.53 interquartile range; points, outliers).

(D) Late dynamic eQTLs for the gene ACAA2 specific to the hepatocyte differentiation trajectory (top).

Article
ll

OPEN ACCESS
Since this powerful testing scheme is computationally expen-

sive, we limited the topic interaction testing to the 77,550 eQTLs

identified in the mash analysis. We identified a total of 157 genes

with a topic eQTL (Table S12). For example, DNA2 has a topic

eQTL whose effect is correlated with the apparent cell cycle

topic (topic 8; Figures 4C–4E). DNA2 encodes a helicase protein

involved in maintaining mitochondrial and nuclear DNA stability
6 Cell Genomics 4, 100701, December 11, 2024
during DNA replication and repair. Visualizing this eQTL with

the more clearly defined cell cycle phase inferred by tricycle42

shows that this regulatory effect is largest during S phase,

when DNA replication occurs. Another compelling example is

the topic eQTL associated with AXDND1, with an effect that is

correlated with the ciliary topic (topic 10; Figure S8). AXDND1

is thought to encode a component of axonemal dyneins, which



Figure 4. Topic eQTL calling

(A) Heatmap of median topic loadings in each cell type: while some topics are specific to one or a few cell types, others are associated with processes broadly

shared across cell types.

(B) Topic 8 is associatedwith cell cycle phase, with the highest loadings on pseudocells in G2/M stage (phase). Solid curve is LOESS (locally estimated scatterplot

smoothing) curve fit to all pseudocells.

(C) Structure plot of topic loadings. Each vertical bar shows topic loadings for a single pseudocell, sorted on the x axis by the aggregate signal of the cellular

environment (aggregate interacting environment) for the topic interaction effect at rs10998212.

(D) Scatter plot of DNA2 expression level versus the aggregate interacting environment for the topic interaction effect at rs10998212. Solid lines are linear

regression lines for each genotype group.

(E) Visualizing the effect with respect to directly estimated cell cycle phase offers a more interpretable view of the regulatory dynamics, with maximal effect

occurring in S phase. Solid curves are periodic LOESS curves fit for each genotype group.
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drive ciliary beating to enable cell motility and extracellular fluid

flow.40,45 This analysis provides granular functional insight that

is obscured by the standard catalog-based eQTL mapping

approach.

HDC eQTLs help reveal the functional context of GWAS
loci
Building on the successful application of our system to study

gene regulation across a range of underexplored contexts,

we next analyzed its utility in elucidating the molecular basis

of complex traits. We began by focusing on the expression

data, using scDRS to evaluate the relevance of the HDC cellular

contexts to 40 traits with distinct biological underpinnings.37

This analysis revealed significant associations between multiple

trait-cell type pairs, including psychiatric traits such as schizo-

phrenia and major depressive disorder linked to HDC neurons,
metabolic traits such as low-density lipoprotein (LDL) choles-

terol levels associated with HDC hepatoblasts, and cardiovas-

cular traits like coronary artery disease and diastolic blood

pressure (DBP) related to HDC endothelial and stromal cells

(Figure 5A).

To investigate whether genetic effects specific to HDC con-

texts could illuminate disease-associated loci that have not

shown regulatory potential in adult tissue datasets, we shifted

our focus from expression-based scDRS to HDC eQTLs. Us-

ing schizophrenia,46 DBP,47 and LDL cholesterol48 as example

traits, we confirmed that HDC eQTLs showed a higher disease

risk than random variants, consistent with patterns observed

in eQTLs from primary tissue samples (Figure S9). Notably,

several of these eQTLs were previously uncharacterized: 7

of 18 genes (39%) with a schizophrenia-associated HDC

eQTL, 25 of 93 (27%) with a DBP-associated HDC eQTL,
Cell Genomics 4, 100701, December 11, 2024 7



Figure 5. Exploring regulatory impacts of GWAS loci with HDCs
(A) Cell type-level disease relevance scores across 40 traits. Color depicts proportion of significantly associated cells for a trait belonging to a cell type, and box

indicates significance at FDR 0.1 across all cell type-trait pairs.

(B–D) Trait-associated eQTLs not overlapping a significant variant-gene pair in GTEx: (B) a schizophrenia-associated eQTL for the geneCOA8 discovered in HDC

PNS glial cells (center line, median normalized expression; box limits, upper and lower quartiles; whiskers, 1.53 interquartile range; points, individual obser-

vations); (C) a diastolic blood pressure-associated eQTL for APOLD1 discovered in HDC stromal cells; and (D) an LDL-cholesterol-associated eQTL forMTMR3

discovered in HDC ciliated epithelial cells.

(E) A topic-interaction eQTL at schizophrenia-associated locus rs7096169, a topic eQTL for AS3MT, draws the greatest contrast between the two endpoints of

neuronal differentiation (topic 4, green, highest in pluripotent cells, and topic 6, purple, highest in neuronal cells), and the intermediate stages (topic 7, yellow).

(F) CellRegMap detects a significant interaction between genotype and this aggregate interacting environment on expression levels of the gene AS3MT.

(G) Visualizing this effect with respect to the more intuitive pseudotime measurement of neuronal differentiation state clarifies the nonlinear dynamic effect of cell

state on the eQTL.

(H) Dynamic eQTL over the course of cardiomyocyte differentiation at an appendicular lean mass (ALM)-associated genetic variant.

(I) Locus plot displaying significance of association with ALM; points are colored by LD with the lead variant, shown with black diamond. As this variant has low

frequency in the YRI panel used in the present study and was not tested for QTL effects, the assayed variant in strongest LD with the lead is additionally

highlighted in the black square.

(J) Locus plot displaying significance of the interaction between genotype and pseudotime along the cardiomyocyte trajectory on COL1A2 expression.
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and 27 of 89 (30%) with an LDL-associated eQTL did not

overlap with or tag (at linkage disequilibrium [LD] R2 R 0.5)

any significant eQTLs identified by GTEx. Examples include

a schizophrenia-associated variant with an eQTL for COA8,

a gene implicated in childhood neurodegenerative disease; a

DBP-associated variant with an eQTL for APOLD1, which is

involved in vascular function; and an LDL-associated variant

with an eQTL for MTMR3, a gene involved in lipid metabolism

(Figures 5B–5D).

Beyond mapping of individual genetic variants to candidate

target genes, a more thorough characterization of regulatory dy-

namics offers insight into when and where the effects of a ge-

netic variant may be most important. For example, rs7096169

is a known eQTL for AS3MT in several tissues, as well as a

genome-wide significant schizophrenia risk locus. In HDCs, we

found that this eQTL displayed a topic interaction effect, with

the largest effect found in a topic associated with intermediate

stages of neuronal development (topic 7) rather than either of

the topics associated with an endpoint of neuronal development

(topics 4 and 6; Figures 5E and 5F). We can clearly observe this

variant’s nonlinear dynamic regulatory effect when viewed with

respect to pseudotime along the neuronal trajectory (Figure 5G).
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While this triangulation of variant, gene, and context has previ-

ously been reported,49,50 such efforts have historically required

scanning large-scale databases of regulatory effects in adult or

immune contexts and then establishing an in vitro platform to

evaluate expression during differentiation into a single cell type

selected a priori. The unification of an expansive set of cellular

contexts at various stages of differentiation has the potential to

accelerate this process, particularly when it is feasible to explore

population-level genetic differences.

With this in mind, we next focused on novel interaction

eQTLs (i.e., temporally dynamic eQTLs and topic eQTLs that

are not found in GTEx, and did not tag a GTEx eQTL in any

tissue at R2 R0.5). We used the Open Targets Genetics data-

base to search for intersections between these novel regula-

tory effects and GWAS loci.51 We found 62 genes with novel

interaction eQTLs (ieGenes) displaying genome-wide signifi-

cant association (p % 5e�8) with at least one disease-associ-

ated locus: 26 neuronal dynamic ieGenes, 8 hepatocyte dy-

namic ieGenes, 10 cardiomyocyte dynamic ieGenes, and 24

topic ieGenes (Table S13). We highlight an example of a pre-

viously unknown dynamic eQTL for the collagen gene

COL1A2, where the effect switches direction over the course
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of cardiomyocyte differentiation, suggesting a regulatory

element with contrasting effects over time, or the conver-

gence of multiple dynamic effects in LD with the variant shown

(Figures 5H–5J). This eQTL tags a variant that is associated

with appendicular lean mass, a measure of the musculature

in arms and legs.

DISCUSSION

The exploration of unguided HDCs in this study reveals an array

of context-specific eQTLs that remained undetected in datasets

such as GTEx, despite its comprehensive analysis of dozens of

postmortem tissue types from hundreds of adult individuals.

Our observations underscore the nuanced complexity of genetic

regulation, which operates within highly specific cell types,

states, and temporal contexts. By exploring cell types, trajec-

tories, and programs that are difficult to sample in vivo and

have never been studied from a population-level sample in hu-

mans, our work provides further support for the critical impor-

tance of context in understanding the regulatory mechanisms

influencing disease.

We have demonstrated here that the HDC system offers valu-

able insights into gene regulation despite a lack of spatial orga-

nization mirroring in vivo tissues. Most of the cell type eQTLs

discovered here overlap loci with regulatory function previously

reported in primary tissue samples from the GTEx project. The

HDC eQTLs that do not display this overlap demonstrate the ex-

pected clustering around the transcription start sites of genes

but are enriched at known ‘‘blind spots’’ in existing resources:

namely, the genes involved in a wide variety of developmental

processes. Prioritizing flexibility enables us to activate a broader

range of cis-regulatory elements that may be dormant in more

accessible contexts.

Among the noteworthy findings from our HDC exploration is

the identification of regulatory roles for dozens of disease-asso-

ciated mutations that had not been linked to gene regulation in

existing human eQTL studies. This highlights an important

advantage of utilizing HDCs, which is the capacity to investigate

a wide range of cellular contexts, some of which are rare or

otherwise inaccessible in typical human samples. Enhanced by

the detailed resolution of single-cell data and refined through tra-

jectory inference and topic modeling, our approach enables the

examination of not only distinct cell types and states but also

subtler functional contexts that drive changes in gene regulation

and the corresponding context-specific eQTLs.

The application of topic modeling to single-cell RNA-seq from

HDCs has allowed us to traverse beyond traditional analyses

confined by cell type or overall gene expression correlations.

Topic modeling has revealed hidden layers of regulatory varia-

tion driven by dynamic processes such as cell division and ciliary

activity that occur across multiple cell types and trajectories. By

uncovering these additional dimensions of cellular identity, topic

modeling has proven essential in identifying specific functional

contexts that remained cryptic within the more conventional

frameworks of single-cell classification.

To bridge the gaps in our understanding of the genetics of

gene regulation, it is imperative to move beyond the static snap-

shots provided by adult tissues that have dominated eQTL
studies in humans. HDCs facilitate this expansion by offering in-

sights into the dynamic regulatory landscape of cellular differen-

tiation. Looking forward, this system additionally presents the

opportunity to further explore these diverse contexts under a

wide range of chemical and genomic perturbations in order to

better understand the role of gene-environment and gene-gene

interactions. This expanded view of gene regulation offers a

foundation to more deeply understand the genetics of complex

traits, with the ultimate goal of accelerating the discovery of

fundamental disease mechanisms and identifying potential ther-

apeutic targets.

Limitations of the study
This study has certain limitations. First, while we have demon-

strated the relevance of HDC cell types to various complex traits

and shown concordance between HDC eQTLs and those identi-

fied in primary adult tissue samples, we recognize that the HDC

system does not fully replicate in vivo development. Some

contexts and context-specific regulatory effects identified in

this study may not be present in vivo, and we do not expect to

capture all developmental eQTLs within this model. Second,

our current sample sizes constrain our ability to discover all

eQTLs, fine-map causal variants underlying observed associa-

tions, and systematically analyze the contributions of specific

cell types and states to disease heritability. Lastly, eQTL ana-

lyses tend to prioritize certain classes of functional variants,11

which may differ systematically from trait-associated variants.

Although these systematic differences are less likely to affect

interaction eQTLs, association testing remains just one of

several approaches for characterizing variant effects. As an

in vitro system, HDCs can be employed with alternative assays,

such as single-cell massively parallel reporter assays and

CRISPR-based perturbation screens, which could offer comple-

mentary insights into the gene regulatory landscape across the

diverse contexts explored in this study.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We use induced pluripotent stem cell lines of unrelated Yoruba individuals from Ibadan, Nigeria (YRI). 51 iPSC lines were differenti-

ated and collected for this study. These were analyzed along with data from 3 cell lines from Rhodes et al. 2022. One line (NA18858)

was collected in both studies, bringing the total number of cell lines analyzed in this study to 53. Metadata (including sex of cells) for

each cell line is available in the cell metadata available on GEO (see data and code availability).

We maintained feeder-free iPSC cultures on Matrigel Growth Factor Reduced Matrix (CB-40230, Thermo Fisher Scientific) with

StemFlex Medium (A3349401, Thermo Fisher Scientific) and Penicillin/Streptomycin (30,002 Cl, Corning). We grew cells in an incu-

bator at 37�C, 5%CO2, and atmospheric O2. Every 3–5 days thereafter, we passaged cells to a new dish using a dissociation reagent

(0.5 mM EDTA, 300 mM NaCl in PBS) and seeded cells with ROCK inhibitor Y-27632 (ab120129, Abcam).

METHOD DETAILS

Unguided HDC differentiation
HDCs were formed using a modified version of the STEMCELL Agrewell400 protocol which was previously described in Rhodes

et al.24 We coated wells of an Aggrewell 400 24-well plate (34414, STEMCELL) with anti-adherence rinsing solution (07010,

STEMCELL). iPSCs were seeded into the Aggrewell 400 24-well plate at a density of 1,000 cells per microwell in Aggrewell EB For-

mation Medium (05893, STEMCELL) with ROCK inhibitor Y-27632 and Penicillin/Streptomycin. After 24 h, we replaced half of the

spentmedia with fresh Aggrewell EB FormationMediumwithout ROCK inhibitor. 48 h after seeding the Aggrewell plate, we harvested

EBs and moved them to an ultra-low attachment 6-well plate (CLS3471-24EA, Sigma) in E6 media (A1516401, ThermoFisher Scien-

tific) with Penicillin/Streptomycin. We maintained HDCs in culture for an additional 19 days, replacing media with fresh E6 media

every 48 h.

HDCs were dissociated for collection 21 days after formation. HDCs were dissociated by washing them with phosphate-buffered

saline (Corning 21-040-CV), treating them with AccuMax (STEMCELL 7921) and incubating them at 37C for 15-40 min total. After the

first 10 min in Accumax, we pipetted HDCs up and down with a wide-bore p1000 pipette tip for 30 s. Subsequently, we repeated

pipetting with a standard p1000 pipette tip for 30 s every 5min until HDCswere completely dissociated. We then quenched the disso-

ciation by adding E6 media to cells and strained them through a 40 mm strainer (Fisherbrand 22-363-547). We resuspended cells in

PBS with 0.04% bovine serum albumin and counted them. Early collection batches were counted using a TC20 Automated Cell

Counter (450102, BioRad), and later batches were counted using a Countess II (AMQAF1000, invitrogen). We then mixed lines

together in equal proportions prior to collection.

We differentiated two replicates of 51 iPSC lines across 17 batches consisting of 4–8 lines per batch. Each batch contained at least

one line of each sex. In each batch, lines were formed and maintained in parallel. Each replicate represents a separate instance of

HDC differentiation and will capture technical effects introduced during formation, maintenance, dissociation, and collection. We

refer to these batches as ‘‘collection batches’’.
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Single-cell sequencing
We generated scRNA-seq libraries using the 10X Genomics 30 scRNA-seq v3.1 kit. Using the evenly pooled mix of lines from each

collection batch, we loaded a 10x chip targeting 10,000 cells per lane of the 10x chip and loaded the same pool of cells across mul-

tiple lanes to recover 10,000 per individual. After cDNA amplification and cleanup, samples from each collection batch were stored at

�20�C. Library preparation proceeded in larger batches composed of two or more collection batches (see Table S1). For example, in

library preparation batch 1, all samples from collection batches 1 and 3 were performed in parallel. cDNA libraries for biological rep-

licates were always processed in different library preparation batches. Libraries were sequenced on the NovaSeq in the University of

Chicago Functional Genomics Core. We pooled samples for sequencing in 7 batches. These batches are distinct from library prep-

aration batch and are composed of two or more samples from the same collection batch. Some samples from a single collection day

were split across different ‘‘sequencing batches’’ (Table S1). We targeted a final sequencing depth of 100,000 reads per cell.

Alignment, demultiplexing, and preliminary quality control
We used Cellranger53 to align samples to the human genome (GRCh3852) and to aggregate samples from all collections from this

study as well as additional libraries collected previously that included 2 additional Yoruba individuals (NA19160, NA18511) and

one individual represented in both collections (NA18858).24,25,64 We used Vireo to demultiplex samples and assign droplets to indi-

viduals. We used previously collected and imputed genotypes for the included Yoruba individuals from the HapMap and 1000 Ge-

nomes Project.54,65,66 We then filtered cells to remove droplets that Vireo identified as doublets and droplets that could not be confi-

dently assigned to an individual. For the samples collected prior to this study, we kept only droplets representing Yoruba individuals

(these samples originally included chimpanzee cells and cells from non-YRI humans). We further filtered cells to keep only those with

less than 15%mitochondrial reads and with at least 2500 genes expressed. We also removed cells with very high total counts, keep-

ing only those with less than 150,000 total counts. Finally, we filtered to genes expressed in at least 10 cells. This left a total of 909,536

cells and 35,324 genes for downstream analysis.

Cell type annotation
The fetal cell atlas contains a total of 77 cell type labels. To obtain marker gene sets for these 77 cell types, we subsampled over-

abundant cell types to a maximum of 5,000 cells per cell type (regardless of the tissue of origin), and filtered genes to protein-coding

genes. To assess classifier performance, we treated cell type labels assigned by the original fetal cell atlas paper as ground truth. We

split the uniformly sampled data into training and testing subsets with equal numbers of cells. We preprocessed the training data

using scater55: we first normalized cells by size factors, then log transformed the data, and selected highly variable features at an

FDR threshold of 0.1. We then performed multiple correspondence analysis (MCA) to extract signature gene sets for each cell

type using Cell-ID.56 Annotation of the HDC data with these gene sets suggested that 64 of 77 cell types were represented with

at least 5 cells present from at least 25 donors. However, this classifier displayed poor accuracy on held-out test data (Figure S1).

Examination of the reference gene sets suggested that high similarity among related cell types (e.g., neuronal subtypes) likely

compromised the classifier’s performance.

In order to obtain a more limited set of maximally interpretable cell type labels, we first removed 12 cell types which were poorly

characterized in the reference dataset, or attributed to potential contamination: AFP_ALB positive cells, CCL19_CCL21 positive

cells, CLC_IL5RA positive cells, CSH1_CSH2 positive cells, ELF3_AGBL2 positive cells, MUC13_DMBT1 positive cells,

PDE11A_FAM19A2 positive cells, PDE1C_ACSM3 positive cells, SATB2_LRRC7 positive cells, SKOR2_NPSR1 positive cells,

SLC24A4_PEX5L positive cells, and SLC26A4_PAEP positive cells. We additionally removed placental cells from the reference

which are unlikely to arise in the in vitro HDC system, as well as rare cell types represented by fewer than 500 cells for which

it may be difficult to define a meaningful expression signature. We combined limbic system neurons, inhibitory interneurons, inhib-

itory neurons, excitatory neurons, unipolar brush cells, granule neurons, and Purkinje neurons under the label of central nervous

system (CNS) neurons; microglia, astrocytes, and oligodendrocytes under CNS glia; visceral neurons and enteric nervous system

(ENS) neurons under peripheral nervous system (PNS) neurons; ENS glia, satellite cells, and Schwann cells under PNS glia; retinal

progenitors and Muller glia, amacrine cells, bipolar cells, ganglion cells, retinal pigment cells, horizontal cells, and photoreceptor

cells under retinal cells; and chromaffin cells, Islet endocrine cells, neuroendocrine cells, and sympathoblasts under neuroendo-

crine cells. Immune cell types were also quite granularly defined in this reference, posing a challenge to a global cell type classifier.

We therefore removed myeloid cells and hematopoietic stem cells from the reference, which are common ancestors of more spe-

cific cell types present in the reference, and merged thymocytes with lymphoid cells due to their shared lymphoid progenitor. Alto-

gether, this left us with a refined set of 33 cell types. After once again subsampling overrepresented cell type labels to at most

5000 cells, and re-defining our set of highly variable genes using the same criteria as above, classification accuracy increased

to nearly 90% (Figure S1).

Our final set of cell type signatures was obtained by applying the sampling, normalization, and embedding procedures described

above to the merged training and test datasets. The gene set signatures used for this final classifier are available in Table S2.

To classify HDC cells using these gene sets, we first normalized our HDC cells as described in the previous section, subsetting to

the same set of highly variable genes used for the fetal cell atlas embedding. We applied MCA, and usedCell-ID to generate cell type

labels.
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Dimensionality reduction, clustering, and visualization
To generate the UMAP embedding, we first identified 5000 highly variable genes using proportional fitting67 and scanpy’s default

method for extracting highly variable genes proposed in.68We subset to these 5,000 genes to generate a 50-dimensional embedding

of the data using a variational autoencoder applied to raw UMI counts with scVI.62 To generate a 2-dimensional embedding of the

data we computed a neighborhood graph based on this encoding and applied UMAP using scanpy’s default settings.57 This

UMAP embedding was used purely for the convenience of visualizing the full dataset in two dimensions, and did not influence

cell type annotation, trajectory inference, topic modeling, or any QTL calling.

To group cel -types according to expression similarity, we aggregated all cells with the same cell type label into a pseudobulk sam-

ple by taking the sum of all UMI counts. We then filtered to the intersection of protein-coding genes and the fetal cell atlas highly

variable gene set (see Classifier Development section), and applied TMM and log CPM normalization using the edgeR package.58

We applied hierarchical clustering to these normalized pseudobulk samples for each cell type using Ward’s method.69

Cell type eQTL calling
To perform eQTL calling, we aggregated cells from the same donor and cell type by taking the sum of all UMI counts per gene. We

removed pseudobulk samples with fewer than 5 cells. Within each cell type, we filtered to genes with nonzero variance, and with a

median expression level of at least 10 UMI counts per sample. We applied log CPM normalization to each sample, using TMM

normalization factors computed separately in each cell type with the edgeR package.58,70 We then applied an inverse normal

transformation to each gene. We computed expression principal components to include as latent covariates for eQTL calling,

as well as for quality control: principal component biplots were manually inspected to identify and remove outlier samples which

may disrupt eQTL calling. Results of these filtering criteria are available in Table S3. Donor sex was additionally included as a

covariate.

We tested all variants within 50kb of the corresponding gene’s TSS, that had minor allele frequency of at least 0.1 among specif-

ically the samples included in each cell-type-specific analysis (note that this set of donors varies between cell types as demonstrated

in Figure 1D). Genotypes were centered and scaled separately in each cell type to maximize comparability of effect size estimates

across cell types. (This does not influence significance tests for the cell type-by-cell type analysis but becomes relevant for the mash

analysis described below). QTL calling was conducted with TensorQTL, using beta-approximated p values based on permutations to

control for multiple testing burden at each gene.59

To generate a list of all significant variant-gene pairs, we followed the procedure described by the GTEx Consortium4: a

genome-wide p value threshold was defined as the beta-approximated p value of the gene closest to the global q value cutoff

of 0.05. This genome-wide threshold was used to define a nominal threshold for each gene based on the per-gene beta distribu-

tion estimated with TensorQTL, and all variants with a nominal p value below this gene-level threshold were considered significant

(Table S5).

We used bedtools60 and awk to identify variant-gene pairs intersecting the full set of significant eQTL variant-gene pairs in each

GTEx tissue, using data from GTEx v8. We first intersected variants between the two sets of eQTLs, then further filtered to gene-

variant pairs with matching Ensembl gene IDs.

Multivariate adaptive shrinkage (MASH) eQTL calling
To perform the mash analysis, we first estimated residual correlation structure (V) with mash’s expectation maximization proced-

ure, subsetting to a random subset of 25,000 gene-variant pairs that were tested in all cell types for efficiency.71 Next, to estimate

data-driven covariance matrices (U), we subset first to gene-variant pairs which were tested in all cell types, then to the strongest

(largest absolute Z score) effect per gene, and finally to the top 2,000 strongest effects across all genes. We decomposed this set

of 2,000 eQTL effects across cell types into non-negative latent factors through Empirical Bayes Matrix Factorization using

flashier61 as implemented in the mash package. We removed singleton components which only assigned weight to a single

cell type. We included the four rank-1 covariance matrices generated from these latent factors, as well as their normalized

sum, to fit the mash model. We additionally included a singleton component for each cell type as well as a component corre-

sponding to shared effects across all cell types. We fit the mash model on a random subset of 50,000 gene-variant pairs that

were tested in at least 10 contexts. After model fitting, we performed inference across all variant-gene pairs tested in at least

5 contexts.

Trajectory isolation and pseudotime inference
For each trajectory, we curated marker gene lists frommultiple published directed differentiation protocols defining marker genes for

each stage of differentiation.17,72–108We used scDRS to test for enrichment of themarker gene set compared to 50 background gene

setsmatched for mean and variance of library-size normalized, log-transformed single-cell expression,37 filtering to cells with FDR%

0.1 for inclusion in the isolated trajectory. Marker gene sets are available in Tables S7, S8, and S9.

We applied principal component analysis to library-size, log normalized single-cell gene expression data from each trajectory in

isolation, and used this first principal component as a measure of pseudotime. To visualize trends in marker gene expression with

respect to pseudotime, we adopted a sliding window approach used by Cuomo et al. (taking the average expression of 10% of cells

in each window, sliding along pseudotime by 2.5% of cells),15 followed by min-max normalization for each gene.
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Dynamic eQTL calling
To mitigate the noise of single-cell data and leverage efficient and established tools for interaction eQTL calling, we aggregated cells

into pseudobulk samples. We grouped cells into 15 pseudotime bins of equal range. In each trajectory, cells from bins 1 and 2 were

combined as were cells from bins 14 and 15 to account for fewer cells and donors being represented at the extremes of the pseu-

dotime distribution. Each pseudobulk sample contains the sum of UMI counts from all cells from a single donor in a single pseudo-

time bin.

In each trajectory, we dropped pseudobulk samples that consisted of less than 5 cells, omitted any donors represented in 10 or

fewer pseudotime bins, and filtered to genes with non-zero pseudobulk expression in at least 10 samples and non-zero variance in

expression across samples. This resulted in a total of 428 pseudobulk samples from a total of 35 cell lines for the cardiomyocyte

trajectory, 383 samples from 31 cell lines in the hepatocyte trajectory, and 549 samples from 44 cell lines in the neuronal trajectory.

We normalized pseudobulk expression and filtered tests as described for the cell type analysis.

As in previous work,17,21 we used cell line PCA to infer latent covariates introducing broad differences in expression between cell

lines over the course of a differentiation trajectory. We used the NIPALS algorithm109 to perform cell line PCA with missing values, as

not all donors contain 5 cells in each pseudotime bin. We included sex and the first 10 cell line PCs as covariates, as well as their

interaction with pseudotime.

We use TensorQTL59 to conduct dynamic eQTL calling, using the following model:

Ect � N
�
m + b1Gc + b2t + b3PC

1
c + ::: + b12PC

10
c + b13Sc + b14PC

1
ct + ::: + b23PC

10
c t + b24Sct + b25Gct;s

�

Where c indexes donors and t indexes pseudotime bins. Ect represents the normalized expression of the sample, G represents ge-

notype, PCk represents the kth cell line PC, Sc represents the sex of donor c, and t represents median pseudotime value of all cells in

the sample.

We perform inference on the interaction effect between genotype and pseudotime (b25). We used eigenMT to adjust for multiple

QTL tests conducted per gene.110 We then apply the Benjamini-Hochberg procedure to the smallest adjusted p value per gene to

control the genome-wide false discovery rate at a level of 0.1.

We generated a list of all significant dynamic eQTLs analogously to the procedure described for cell type eQTLs: a genome-

wide adjusted p value threshold was defined as the EigenMT-adjusted p value of the gene closest to the global FDR threshold,

and all variants with an adjusted p value below this threshold were included in the final set of significant dynamic eQTLs

(Table S10).

To test for replication of these eQTLs in a separate dataset, we reprocessed the single-cell expression data collected in Elorbany

et al. as described above, and used the qvalue package to estimate the p1 replication rate for the strongest cardiomyocyte dynamic

eQTL per gene detected in our study.33

We classified significant dynamic eQTLs as early, late, or switch categories as in previous work.17,21 An eQTL is classified as early if

the effect size decreased over time, late if it increased over time, and switch if the sign of the effect changed over time. We used the

fitted linear model generated by TensorQTL to estimate predicted effect sizes at the endpoints of the trajectory’s pseudotime range,

and compare these predictions to classify each eQTL. If the effect size remains the same, the variant is classified as early if themagni-

tude decreases or late if the magnitude increases. If the effect size flips and the predicted effect at both ends has a magnitude

exceeding a threshold of 1, it is called a switch effect.

Topic modeling
To improve computational efficiency and once again mitigate the noise of single-cell data, we aggregated cells into pseudocells

before applying topic modeling in an approach similar to that used by Strober et al.111 To avoid over-representation from donors

with outlier cell counts, for donors with cell counts over 1.5 standard deviations above the median we randomly subsampled without

replacement to the median number (16,839) of cells. We also removed cells collected in a previous study24 due to differences in cell

depth that disrupted topic modeling, leaving 51 of 53 donors (see ‘Unguided HDC Differentiation’). For each combination of donor

and collection batch, we generated a separate neighborhood graph based on the scVI embedding space (see dimensionality reduc-

tion, clustering, and visualization) and applied Leiden clustering, as implemented in the scanpy package, at resolution 15. We

summed raw UMI counts for all cells within a cluster to generate pseudocell expression. This left 17,913 pseudocells after aggrega-

tion, with a median of 37 cells per pseudocells and a median of 342 pseudocells per donor. We removed 609 genes with nonzero

expression in fewer than 10 pseudocells, leaving 34,715 genes for pseudocell analysis.

To fit the topic model, we first filtered out genes expressed in less than 10 pseudocells. We then applied Poisson negative matrix

factorization to the filtered pseudocell expression data: we used k = 10 topics, and fit the model first using 400 expectation maximi-

zation (EM) updates followed by 200 stochastic coordinate descent (SCD) updates.43 We then use the parameter estimates from this

Poisson non-negative matrix factorization to recover parameter estimates for the multinomial topic model using FastTopics’s pois-

son2multinom command.

We conducted grade of membership differential expression (DE) analysis using FastTopics’s de_analysis function, using all ex-

pressed genes as the background set. Genes with posterior log fold change values over 2 were considered for gene set enrichment
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using the GeneOntology.112We performed a hypergeometric test for topic driver gene enrichment in all GO biological processes. We

controlled the false discovery rate using the Benjamini-Hochberg procedure with a stringent level of 0.01, which still led to enrichment

among dozens of gene sets for most topics. We focused on overrepresentation of topic DE genes in a gene set for the purposes of

interpretation (ORR 1, Table S11). Topics 3 and 9 displayed no enrichment for any GO biological processes nor clear enrichment in

any of the previously characterized cell types, leading us to omit these two topics from downstream QTL calling analysis to instead

focus on the 8 more clearly interpretable latent topics.

Topic eQTL calling
CellRegMap takes as inputs a kinship matrix to account for genetic similarity between cells, an environmental covariance matrix

to account for similarity due to cellular context, and covariates. We used Plink63 to construct the kinship matrix from all 53 donors.

To construct the environmental covariance matrix, we applied an inverse normal transformation to each column (topic) of the topic

loadings matrix (C, pseudocells x topics), then did the same transformation for each row (pseudocell), before generating the environ-

mental covariance matrix (CCT). We included sex and collection date as covariates. After QTL calling, we applied Bonferroni correc-

tion and generated a list of significant topic eQTLs as in both previous QTL analyses: a genome-wide adjusted p value threshold was

defined as the Bonferroni-adjusted p value of the gene closest to a global q value threshold of 0.1, and all variants with an adjusted p

value below this threshold were included in the final list (Table S12).

We evaluated the sensitivity of topic discovery and topic eQTL calling to several hyperparameters used in this study. First, we

assessed the impact of the pseudocell clustering resolution. We aggregated cells into pseudocells for a range of clustering res-

olutions (Leiden resolution parameter = 5, 10, 15 [original resolution], 20; corresponding to 6444, 12258, 17913 [original count], and

23288 pseudocells, respectively). Then, we applied FastTopics to each pseudocell expression matrix as described, followed once

again by grade of membership differential expression analysis. For each topic, this gives us a vector of log fold-changes for each

gene compared to all other topics. We found a one-to-one mapping between topics across clustering resolutions by measuring

the cosine similarities of these topic-specific LFC vectors (Figure S5). Topic interaction QTL calling across this range of pseudocell

resolutions consistently replicated the originally reported interaction effects, as measured by the bp1 replication rate (R 0:92

across resolutions).

In choosing the number of topics, we aimed to balance interpretability with expressivity. We found that decreasing the number of

topics from 10 to 5 reduced expressivity bymerging topics corresponding to clearly distinct gene programs, such as those involved in

endoderm and mesoderm differentiation, as indicated by the similar loadings of endoderm- and mesoderm-derived cell types on

topic 2 in the 5-topic model (Figure S7). Increasing the number of topics to 20, however, led to more topics lacking clearly interpret-

able loading patterns across cell types and without significant gene set enrichment analysis results. The topic interaction eQTLs

discovered with 10 topics were consistently replicated when using 5 or 20 topics, as measured by the bp1 replication rate (0:87 for

the 5 topic model, 0:9 for the 20 topic model).

Single-cell disease relevance scoring
We performed single-cell disease relevance scoring across the full single-cell HDC eQTL datasets for 40 traits (see Figure 5A),

using MAGMA gene sets (top 1,000 genes) previously compiled by Zhang et al..37 We used 500 control gene sets to compute

single-cell scores. To conduct the cell type disease relevance analysis, we used Cell-ID cell type labels and the neighborhood

graph based on the scVI embedding (see cell type annotation, dimensionality reduction, clustering, and visualization sections

for more details).

Trait-associated cell type eQTLs
To identify schizophrenia risk variants with novel regulatory interactions identified in HDCs, we filtered the aggregate list of significant

variant-gene pairs from all cell types to eQTLs that did not overlap an eQTL in any tissue according to the GTEx v8 Catalog. We then

intersected these variants with genome-wide associated risk variants (p % 5e�8) from Trubetskoy et al.46 For this set of genome-

wide significant HDC eQTLs without GTEx overlap, we compiled a list of all variants within 1Mb of the SNP that was in LD at

R2 R 0.5 (using the 53-donor cohort in this study to compute LD). We then additionally checked these tag variants for overlap

with any GTEx eQTLs in any tissue, and removed any such GTEx-overlapping tag variants to obtain our final set of schizophrenia-

associated HDC eQTLs with no GTEx overlap. We used the same procedure to identify diastolic blood pressure47 and LDL choles-

terol-associated48 HDC eQTLs with no GTEx overlap.

Phenome-wide effects of interaction eQTLs
To identify phenotypic effects of interaction eQTLs, we used an approach similar to that described for schizophrenia overlap. Instead

of cell type eQTLs, we used the aggregate set of significant variant-gene pairs from all three trajectory dynamic eQTL analyses, as

well as the significant variant-gene pairs from the CellRegMap analysis. We subset to interaction eQTLs that did not overlap a GTEx

eQTL in any tissue, and queried the OpenTargets database for any GWAS studies in which these interaction eQTLs displayed

genome-wide significant effects. We similarly removed any tagged variants with known regulatory effects in the GTEx Catalog to

obtain a final set of GWAS-overlapping HDC eQTLs with no GTEx overlap.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and visualization were performed using software listed in the key resources table. Description of statistical tests

performed, with sample size and significance threshold descriptions, can be found in corresponding sections of the main text, with

details described in the method details.
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