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Machine learning the operator content of the critical self-dual Ising-Higgs lattice gauge theory
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Understanding critical phenomena is of central importance to condensed-matter and high-energy physics.
Such an understanding is reflected in our ability to sort observables based on their degeneracy, symmetries, and
power-law decays. Here, we study such critical properties of the Ising-Higgs gauge theory in (2 + 1)D along the
self-dual line which have recently been a subject of debate. Using machine learning techniques, we determine
the low-energy operator content of the associated field theory. Our approach enables us to largely refute the
existence of an emergent current operator and with it the standing conjecture that this transition is of the XY ∗

universality class. We contrast these results with the ones obtained for the (2 + 1)D Ashkin-Teller transverse
field Ising model where we find the expected current operator. Our numerical technique extends the recently
proposed real-space mutual information allowing us to extract subleading nonlinear operators. This allows a
controlled and computationally scalable approach to target the conformal field theory spectrum. and discern
universality classes beyond (1 + 1)D from Monte Carlo data.
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I. INTRODUCTION

The hallmark of critical phenomena is the emergence of a
universal behavior governing the long-wavelength theory. In
this limit, dynamics are often controlled by collective degrees
of freedom dictated solely by symmetry and dimensionality. A
case in point is symmetry-breaking transitions, whose critical
fluctuations are governed by an order parameter directed along
the symmetry-breaking axis [1].

A major challenge in modern condensed-matter theory
is addressing critical phenomena beyond the above Landau
paradigm [2,3]. This includes spin liquids [4], fractional Hall
effect [5], and symmetry protected topological transitions
[6,7]. In such cases, identifying the low-energy theory of-
ten becomes a formidable task, due to the absence of clear
symmetry-based candidates for the low-lying degrees of free-
dom [8–11].

Lattice gauge theories provide a paradigm for studying
such criticalities. In this setting, the transition is described by
a condensation of gauge field fluxes, charged matter fields,
or both. The former is known as the confinement transition,
and the latter as the Higgs transition. In their seminal work,
Fradkin and Shankar provided a unified framework describ-
ing both transitions [12]. Nevertheless, the case in which
both transitions occur simultaneously at a multicritical point
(MCP) remained elusive.
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This outstanding problem attracted much recent interest,
particularly the case of the self-dual Ising-Higgs gauge the-
ory in (2 + 1)D (SD-IHG) [13–21]. Here the two transitions
meeting at the MCP are of the 3D Ising and Ising* universality
classes. Monte Carlo simulations done in [17] and later in [20]
both show that critical exponents of the MCP are close to
those of the XY [or O(2)] universality class. Still, Ref. [17]
argued against this interpretation. In later work, Ref. [20]
conjectured that the MCP of two Ising transitions does lead to
an enhanced O(2) symmetry. Moreover, they argued that “... at
the MCP (and only there), because of duality, we can assume
that both order parameters are local” [20]. We interpret this
as claiming that the transition is of the XY ∗ type—an XY
transition exhibiting only gauge-invariant operators. However,
in the absence of a direct identification of low-energy degrees
of freedom in terms of the microscopic ones, the validity
and implications of such a phenomenological description are
unclear.

The ideal way to indisputably verify this conjecture is to
obtain the operator spectrum of the theory, or at least its
leading orders. Indeed, the putative XY ∗ transition should
contain a smoking gun: three degenerate operators with scal-
ing dimension 2, namely the three vector components of the
current operator associated with the emergent U (1) symmetry.
While for 2D critical points, such data are readily accessible
through transfer matrix diagonalization [22], in (2 + 1)D/3D
it is a challenging numerical problem. Despite recent progress
[23–25], we currently lack a generic tool for this task.

More broadly, extracting the operator content beyond the
leading order from microscopic samples, thus constructively
connecting the micro- and macroscopic descriptions, is an
open challenge in many fields. Recently, methods based on

2643-1564/2024/6(4)/043322(10) 043322-1 Published by the American Physical Society

https://orcid.org/0000-0002-3982-2314
https://ror.org/03qxff017
https://ror.org/02crff812
https://ror.org/024mw5h28
https://ror.org/03qxff017
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.043322&domain=pdf&date_stamp=2024-12-26
https://doi.org/10.1103/PhysRevResearch.6.043322
https://creativecommons.org/licenses/by/4.0/


OPPENHEIM, KOCH-JANUSZ, GAZIT, AND RINGEL PHYSICAL REVIEW RESEARCH 6, 043322 (2024)

FIG. 1. Left: Phase diagram for the self-dual Ising-Higgs gauge
model. The two Ising second-order transitions meet at the MCP,
which is conjectured to belong to the XY ∗ universality class. A
first-order transition also takes place along the self-dual line. Right:
Visual representation of the action SSD-IHG [Eq. (1)]. The blue sites
represent the matter field τi and the red bonds represent the gauge
field σi j .

information theory [26–29] and deep learning [30–32] have
shown promise in this task [33–38]. One approach, supported
by analytical guarantees [39], is the real-space mutual infor-
mation neural estimator (RSMI-NE) algorithm, which was
used to identify and extract leading operators in the field the-
ory from microscopic Monte Carlo samples [36,40,41]. The
possibility of using such techniques to methodically extract
subleading parts of the operator spectrum remained, however,
unexplored.

In this work, we address the question of the MCP in the
SD-IHG theory in (2 + 1)D numerically. To this end, we
extend the RSMI-NE algorithm, enabling a systematic ex-
traction of subleading orders of operators in the spectrum.
Applying this technique to the model of interest, we obtain
both leading and subleading operators, namely the energy
operator and its derivatives. Crucially, a current operator
does not appear in the spectrum. This is in contrast to a
model known to exhibit an emergent U (1) symmetry based
on coinciding Ising transitions, where we obtain all expected
operators, up to and including the current operator. We thus
rule out the existence of a local current operator for the SD-
IHG theory and, with it, the classification of the critical theory
as XY ∗.

II. MODELS

We investigate two models: the SD-IHG model—the prin-
cipal subject of interest—and the Ashkin-Teller transverse
field Ising (AT-TFI) theory in (2 + 1)D, which is used to
compare and contrast the numerical results [23].

A. Self-dual Ising-Higgs gauge theory

The classical SD-IHG model describes Z2 gauge fields and
matter fields σi j = ±1 and τi = ±1, residing, respectively, on
the bonds and sites of a cubic (2 + 1)D lattice. The space-time
action is given by (see Fig. 1)

SSD-IHG = K
∑
�

∏
〈i, j〉∈�

σi j + J
∑
〈i, j〉

τiσi jτ j . (1)

The first term describes the interaction of four gauge fields
around a shared plaquette, while the second describes the

interaction of two adjacent matter fields, which is mediated
by the gauge field. The gauge symmetry is manifested in the
local transformations σi j → ηiη jσi j and τi → ηiτi (with ηi =
±1), under which the action remains invariant. The gauge-
invariant quantities are either a closed loop of gauge fields
(Wilson loop) or two matter fields with a string of gauge fields
stretched between them (Wilson string).

The model admits a duality mapping relating the parame-
ters as follows:

x′ = 1 − y

1 + y
, y′ = 1 − x

1 + x
,

where x = tanh(K ) and y = tanh(J ). The system is self-dual
along the line x = 1−y

1+y . In the extreme case of x → 1, the
gauge fields are stiff, and the theory reduces to that of an Ising
model, with an Ising transition at yc ≈ 0.218. In the other
extreme case, y → 0, the theory reduces to that of a pure Z2

gauge model, with an Ising∗ transition at xc ≈ 0.642. These
two transitions are stable even for finite K (x < 1) or a nonzero
J (y > 0) [12]. Their meeting point on the self-dual line forms
an MCP at xMCP ≈ 0.6367 [17] (see Fig. 1).

While the complete nature of the multicriticality for the
SD-IHG model is unknown, the self-duality symmetry allows
us to infer the exact form of two relevant primary operators in
the spectrum which are symmetric and antisymmetric under
its action (S and A operators) [17]:

A = 〈B〉 + 2xMCP

1 − x2
MCP

〈P〉 − 1

1 − xMCP
,

S = 〈B〉 − 2xMCP

1 − x2
MCP

〈P〉 + 1

1 − xMCP
, (2)

where 〈P〉 and 〈B〉 are spatial averages of the six plaquettes
and twelve bonds of a cube.

B. Ashkin-Teller transverse field Ising theory

The second system we consider is the AT-TFI model in
(2 + 1)D, which serves as a benchmark of our approach, as
it contains a fully understood, yet nontrivial, critical point of
the XY ∗ universality class, described by a similar field theory
to the one proposed in [20].

The model is phrased in terms of quantum spins σ̂i, τ̂i

residing on interlaced sublattices of a 2D square lattice. The
Hamiltonian is given by [23] (see Fig. 2)

ĤAT-TFI = − h
∑

i

σ̂ x
i + τ̂ x

i −
∑
〈i, j〉

[
Jσ σ̂ z

i σ̂ z
j + Jτ τ̂

z
i τ̂

z
j

− JAT σ̂ z
i σ̂ z

j τ̂
z
i τ̂

z
j

]
(3)

and comprises two transverse-field Ising models (TFIMs),
which reside on interlacing sublattices, with a quartic bond-
bond interaction. For JAT > 0 and by setting h to criticality,
the model exhibits a quantum XY phase transition at Jσ =
Jτ = 1. At the critical point, the two Ising transitions meet,
and the discrete Z2 × Z2 symmetry is promoted to a contin-
uous U (1) symmetry. At that criticality, the σ and τ fields
merge into a continuous complex field ψ = σ + iτ which
forms a |ψ |4 theory [23].

As such, the relevant part of the conformal field theory
(CFT) spectrum is completely characterized. It consists of
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FIG. 2. Left: Phase diagram of the Ashkin-Teller transverse-field
Ising (AT-TFI) model in (2 + 1)D, as a function of the Ising cou-
plings Jσ and Jτ , with JAT and h tuned to criticality. The four phases
correspond to the separate ordering of the two Ising fields. The
two Ising transitions meet at the MCP when Jσ = Jτ = 1. Due to
similarities between this model and the SD-IHG model, we use
it as a benchmark for our method. Right: Visual representation of
ĤAT −T FI [Eq. (3)] in imaginary time (see Appendix A 2), showcasing
the interlaced sublattices form of the corresponding classical model
and different interaction terms. The blue and red sites are the σ

and τ fields. The J̃σ , J̃τ , J̃AT , h̃ are the coupling constants after the
quantum-to-classical mapping.

three primary operators: charge 0, charge 2 (twice degener-
ate), and a Noether current (thrice degenerate).

III. METHODS

A. The original RSMI-NE algorithm

Recently a correspondence between the solutions to a cer-
tain mutual-information-based variational problem and the
leading operators/eigenvectors in the transfer matrix spec-
trum was shown [39]. This result explains how eigenvectors
and eigenvalues of the transfer matrix can be learned using the
framework of the information-bottleneck (IB) compression
theory [42]. Together with the progress in mutual informa-
tion estimation algorithms [43,44], this allows us to cast
the problem of computing leading and subleading eigenval-
ues and eigenvectors to an unsupervised machine learning
problem [40].

To leverage this theoretical development we use (and
extend) the original real-space mutual-information neural es-
timator (RSMI-NE) algorithm [36,40]. The latter constructs
relevant local degrees of freedom based solely on a corpus of
Monte Carlo samples of the system under investigation. The
input to the algorithm is pairs of random variables (V ,E )
where V is a spatial block of the system and E is a distant
environment of V , spatially separated from it by a buffer B.
The output of the algorithm is an ordered set of encoders
parametrized by neural networks (“neural operators”), which
take a configuration v ∈ V and compute the values, in de-
creasing order of relevancy, of the primary and descendant
operators in the CFT spectrum (including degeneracies) acting
on v.

As its name suggests, the RSMI-NE algorithm is imple-
mented using a neural network, which is composed of two
components: a coarse-grainer and a critic. The role of the
coarse-grainer, in our case a general fully connected network
parametrized by a set of weights �, is to compress V to a

FIG. 3. The extended RSMI-NE neural network used for detec-
tion of leading CFT operators. At the first stage, the block V passes
through multiple copies of coarse grainers, batch normalization lay-
ers, and relaxed Bernoulli layers [45], encoding V into noisy bits
H [P�(H |V )]. The frontmost copy shows the operator that is
being learned at the current iteration. The two copies behind it show
frozen operators from previous training iterations. Correspondingly,
the orange edges denote trainable weights, while gray weights denote
untrainable weights. In the second stage, all the outputs of the sets H
are fed, together with the environment E , to the INFO-NCE critic
f�(H , E ) (parametrized by a set of trainable weights �) [43].

discrete representation P�(H |V ), and the role of the critic
(parametrized by a set of weights �) is to estimate the mutual
information between random variables (which is done via
the INFO-NCE method [43]). The concatenation of the two
components yields a network that gets as inputs batches of
pairs (V ,E ) sampled from the joint distribution P(V ,E ),
usually by using Monte Carlo sampling (see Sec. III C), and
outputs the mutual information I�(H ,E ) (see Fig. 3). The
coarse-grainer and the critic are trained together to increase
the aforementioned mutual information, which in turn opti-
mizes the coarse-grainer to extract the optimal H .

The discretization of H is done via a discretization layer
(“relaxed Bernoulli”), added at the end of the coarse-grainer
network, which is analogous to the softmax technique [45].

The method has already proven successful in 2D systems,
including interacting spin and dimer models, on regular and
aperiodic lattices [33,36,40,41]. Its advantage is twofold: first,
unlike standard computations of the critical exponents, it
provides a complete signature of the underlying universality.
Second, unlike exact diagonalization approaches, e.g., the
critical torus energy spectrum [46], it does not scale exponen-
tially with the system size.

B. Extending the RSMI-NE algorithm

RSMI-NE has been shown to provide insights regarding
relevant operators in the CFT. However, while it has been
shown in Ref. [39], under some favorable geometries, that a
relation between MI and relevant operator exists, this involves
a related but somewhat different optimization target than that
of the original RSMI-NE algorithm [33]. Thus, a theoreti-
cal gap exists between such optimizations and the operator
content. The current state-of-the-art technique uses principal
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component analysis (PCA) on an ensemble of neural opera-
tors, and the leading analytical CFT operators are identified
with the leading principal components [40]. However, this
technique is only relevant for linear operators and therefore
misses out on various scenarios in which the leading relevant
operators are nonlinear functions of the microscopic degrees
of freedom. Moreover, the use of PCA lacks firm theoretical
grounds that will justify this correspondence in a general
setting.

Here we introduce several extensions to the original RSMI-
NE algorithm (“extended RSMI-NE”) to bridge this gap: First,
we augment the original RSMI-NE algorithm, such that its
optimization goal would be more aligned with the theoretical
result presented in [39]. This provides further confidence that
the found neural operators (linear or nonlinear) highly overlap
with the pristine relevant CFT operators. Second, we employ
an updated sequential training scheme, which allows us to sys-
tematically probe subleading operators in order of relevancy.
These two extensions are essential in the pursuit of a current
operator, which is generally both nonlinear and subleading.

1. Detection of pristine nonlinear leading operators

We turn to address the first advancement, augmenting the
optimization goal of the original RSMI-NE algorithm in ac-
cordance with Ref. [39]. There it is shown that a version
of RSMI-NE, which limits information not by discretization
but by keeping the mapping P(H |V ) noisy, corresponds to
extracting the pristine leading operator [39]. By incorporat-
ing such noisy mapping into RSMI-NE, we are thus able to
close the gap between the output of the algorithm, the neural
operator, and the pristine CFT leading operator.

Concretely, such a version of RSMI-NE minimizes the
information-bottleneck (IB) Lagrangian under a fixed cardi-
nality of the representation |H | [42]:

min
P(H |V )

LIB = min
P(H |V )

I (V ; H ) − βI (H ; E ), (4)

where β is a finite parameter that determines the noise level
of the mapping. At β → 0 the functional is minimized when
the mapping retains no information from V . At β → ∞ the
mapping is noiseless, due to the data processing inequality. In
the latter case, minimizing the IB Lagrangian is equivalent to
the original RSMI-NE method as presented in [36,40].

At some critical value βc > 0 (and for |H | � 2) the IB
optimization goes through a bifurcation point, and the solution
becomes nontrivial (i.e., the solution becomes V dependent).
As was shown in [39], the solution infinitesimally above βc

is analytically related to the leading operator in the CFT
spectrum. Thus, by forcing the encoder to learn the leading
infinitesimal amount of information on V , pristine operators
can be extracted.

In this paper, we introduce a method for tuning the noise
just above the critical βc in a computationally efficient way by
including a batch normalization layer in the neural network.
Such a layer, when put before the discretization layer, con-
trols the variance of H (see Fig. 3). A batch normalization
layer takes every minibatch B [samples of P(H |V ) before
the discretization] and normalizes it to have a mean β and a

standard deviation γ , both of which are trainable parameters:

μB = 1

|B|
∑
x∈B

x, σ 2
B = 1

|B|
∑
x∈B

(x − μB)2

BatchNorm(x; β, γ ) = γ
x − μB√
σ 2

B + ε

+ β (5)

with ε being some small untrainable constant added to main-
tain numerical stability. Imposing an upper bound on the value
of γ limits the amount of mutual information I (V ; H ). Such
a procedure adds noise to the output bits of the coarse-grainer
(“noisy bits”) and thus ensures that in accordance with [39],
the coarse-grainer of the extended RSMI-NE neural network
is pressured by the optimization process to learn the pristine
leading operator.

2. Probing subleading operators

The second advancement in the extended RSMI-NE algo-
rithm is the ability to extract not only the pristine leading
relevant CFT operator but also the subleading CFT operators
in order of relative relevancy, thus allowing us to systemati-
cally build the ladder of operators.

In order to probe subleading operators, we devised two
methods: consecutive learning of noisy bits and symmetry
projection. In the first method, the noisy bits in H are learned
in a consecutive manner, where in each step a new noisy bit is
learned based on all of the previous ones (“background noisy
bits”) P(HN |H1H2 . . . HN−1V ), which are held constant
(“frozen”) during the training process of the N th noisy bit (see
Fig. 3). A new critic network is initialized at the beginning
of each step. The extended RSMI-NE neural network is then
forced to learn in each step only the operator that yields the
biggest change in the overall mutual information, given the
background noisy bits.

The second method makes use of symmetries in order
to focus on operators lying in a particular symmetry sector.
Given a symmetry group G, we can partially symmetrize the
dataset by acting on samples of V (but not of E ) with a
random element in G, which is a form of data augmentation.
This symmetrization washes out the information gained from
nonsymmetric operators in the spectrum. By employing this
method, one can directly target the leading operator in the
G-invariant symmetry sector.

Furthermore, it is also possible to employ the symmetry in
order to learn the leading operator which is not invariant under
the symmetry. This is done first by augmenting V and learning
all the invariant operators, without adding noise to the bits,
until we exhaust all the relevant information in them. Then,
we remove the augmentation and learn directly the desired
operator. Essentially, by “projecting out” the desired operator
in the first stage, we allow the extended RSMI-NE algorithm
to learn it in a clear manner in the second stage.

The exact training protocols for the AT-TFI and the
SD-IHG models that employ these two methods appear in
Appendices B 3 and B 4. In both cases, the symmetries of
the models were used via the symmetry projection method.
This allowed us to improve the efficiency of the procedure,
reaching the hypothesized (or known) current operator within
several steps. However, the symmetry projection is not a
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TABLE I. The Ashkin-Teller transverse-field Ising (AT-TFI) and the self-dual Ising-Higgs gauge (SD-IHG) models’ three leading operators
at their MCPs (multicritical points) identified using the RSMI-NE method, including their scaling dimensions and degeneracies. The expected
scaling dimensions of the operators we find are taken from [17,47], respectively. The SD-IHG model is conjectured to belong to the XY
universality class [20]. Assuming the continuum theory is local, it contains a current operator with a scaling dimension of 2.0 in its conformal
spectrum. While we find evidence of such an operator for the AT-TFI model (left bottom) we do not find it for the SD-IHG model. All operators
show high agreement with their analytical counterparts, both in terms of scaling dimensions and in terms of operator-operator correlations (for
more information, see Appendix A 3). 〈σ 〉 and 〈τ 〉 denote averaging the σ and τ degrees of freedom [see Eq. (3)] over the 3D temporal-spatial
block in the AT-TFI case. 〈A〉 and 〈S〉 denote averaging the antisymmetric and symmetric operators A, S [see Eq. (2)] over the 3D spatial block
in the SD-IHG case. The derivative operator ∂ acts as a lattice discrete derivative on the respective degrees of freedom (finite difference).
Local configurations that maximize/minimize the neural operators are shown as 2D projections (where the blue and red colors denote the spin
states). In the AT-TFI projection, the τ sublattice appears as plaquettes for clarity (the black edges appear as a visual aid and carry no physical
meaning). In the SD-IHG case, the projection contains the gauge-invariant plaquettes’ and bonds’ values. More details regarding the neural
operators’ projections appear in Appendix B 5.

GHI-DSIFT-TA

RSMI-NE
Scaling

Dimension
{Expected[47]} Expected[17]}

Analytic
Operator
{Deg.}

Neural Operator Projection RSMI-NE
Scaling

Dimension
{

Analytic
Operator
{Deg.}

Neural Operator Projection

muminiMmumixaMmuminiMmumixaM

1.24(1)
1.22(1)

{1.23629}

〈σ〉2 − 〈τ〉2
〈σ〉〈τ〉
{2}

1.24(1)
{1.222}

〈A〉
{1}

1.49(2)
{1.51136}

〈σ〉2 + 〈τ〉2
{1}

1.54(2)
{1.502}

〈S〉
{1}

2.02(3)
{2.0}

〈σ〉〈∂τ〉 − 〈τ〉〈∂σ〉
{3}

2.20(6)
{2.222}

〈∂A〉
{3}

mandatory part of the protocol, as subleading operators were
also found (though less pristine) via a systematic usage of the
consecutive learning method alone.

A pseudocode for the extended RSMI-NE algorithm is
shown in Appendix B 1 (see also Fig. 3 for a visual aid).

C. Monte Carlo

Data generation for RSMI-NE as well as scaling dimen-
sions analysis were performed using Monte Carlo methods.
For the SD-IHG model, we follow [17] for an efficient single
plaquette and bonds update scheme, without fixing the gauge.
For the AT-TFI model, we performed cluster updates, similar
to [23]. We also employed an additional parallel tempering
method to improve the scanning efficiency of the phase space.
Scaling dimensions were computed by measuring the Widom
scaling of the desired operator’s two-point function at the
critical point for varying system sizes. For more information,
see Appendix A.

IV. RESULTS

We first apply the extended RSMI-NE method to the
well-understood case of the AT-TFI model. We extracted the
first five leading primary operators (and their degeneracies),
including the current operator, i.e., the operator of scaling
dimension 2. Higher operators can also be constructed but
are less relevant in the context of the field-theoretic problem
addressed in this paper.

The left column of Table I presents the computed scaling
dimensions of the primary operators extracted, which are in
agreement with the theoretically expected values of the U (1)
theory [47]. Furthermore, by computing operator-operator
long-range correlations between a neural operator and the an-
alytically known operators, we could unambiguously identify
the neural operator: either as some superposition of known
operators or as a yet unknown one. For the full identification
procedure, see Appendix A 3.

Moreover, the scaling operators, parametrized by neural
networks, can be accessed directly, rather than just through
their exponents. Owing to their nonlinearity the analysis is,
however, more complicated than in, e.g., [36]. To understand
their action on the local degrees of freedom, we calculate
configurations that extremize the values for the numerical
operator. These (2 + 1)D configurations are shown in Table I
as a 2D projection on a spatial plane. As an example, the
〈σ 〉2 + 〈τ 〉2 minimal configuration is that where both 〈σ 〉 and
〈τ 〉 are zero. As such, both the plaquettes and the sites are
almost evenly distributed between blue and red (denoting the
two possible values of the degree of freedom). The maximal
configuration is attained where both 〈σ 〉 and 〈τ 〉 are equal
to ±1. As such, the color of the plaquette and the color
of the sites is constant. Indeed, the representative extremal
configurations thus obtained can also be seen to extremize the
values of the a priori known analytical form of the operator
(see caption of Table I).

Having validated the method and its ability to detect non-
linear relevant operators in the CFT spectrum, particularly the
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emergent currents, we now apply it to the intriguing case of
the SD-IHG model. Here, we can detect the three leading
relevant operators in the CFT spectrum, namely the S and A
primary operators and the descendants (spatial derivatives) of
A, with their respective degeneracies. The operators generally
act nonlinearly on the gauge-invariant constituents, i.e., pla-
quettes and bonds.

As before, the right column of Table I shows a very good
correspondence between the scaling dimensions of the two
leading neural operators, and the values of the theoretically
expected operators, A and S. Strikingly, however, the next
three neural operators are inconsistent with a conjectured
current operator. They are instead the descendants of A and
have a higher scaling dimension, whose value of 2.20(6) is
consistent with that obtained in [17]. No operator with the
characteristics of a current (namely a vector operator with a
scaling dimension of 2) has been found. Its absence in the
RSMI-NE results (in contrast to the AT-TFI case) is a strong
indication that, in fact, no such operator exists, and, therefore,
the self-dual MCP of the SD-IHG theory does not belong to
the XY ∗ universality class.

One might worry that suboptimal choices of certain hy-
perparameters inherent to machine learning methods might
prevent the algorithm from finding solutions (operators) that
are nevertheless part of the conformal spectrum of the SD-
IHG model, particularly the current. However, this is unlikely,
as the algorithm identifies operators not only with a lower
but also with higher scaling dimension than the sought-after
current, which, on theoretical grounds, are harder to find [39].
Further, operators for which the minimal spatial support in
terms of macroscopic lattice exceeds the block size V would
also be absent from the computed spectrum, but this can be
probed by varying the block and buffer size. We took care
to avoid such pitfalls by performing grid optimization of hy-
perparameters as well as stability to block and buffer size.
Furthermore, we carried out a parallel analysis of the AT-TFI
model.

V. CONCLUSIONS AND OUTLOOK

We demonstrated that recently developed numerical renor-
malization group methods based on information theory and
machine learning can be brought to a level where they shed
light on the current open questions in field theory. In partic-
ular, we provide strong evidence against the hypothesis that
the multicritical point of the (2 + 1)D self-dual Ising-Higgs
gauge theory belongs to the XY ∗ universality class, showcas-
ing the ability of our extensions of the RSMI-NE algorithm
to extract conformal data for high-dimensional systems, in-
cluding subleading and descendant operators. We hypothesize
that the MCP’s universality class can either be of an XY ∗∗
type, where the current operator appears only through higher
multiplets, or of a completely novel type.

We expect that the RSMI-NE procedure and its refinements
will be a valuable addition to the arsenal of numerical tools
in statistical physics and field theory, especially for critical
phenomena beyond the Landau paradigm. Apart from extract-
ing the conformal tower including operators that are difficult
to resolve by symmetry, it can guide the construction of

field-theoretical description by providing microscopic inter-
pretations for the most relevant degrees of freedom.

Following the publication of the paper, Bonati et al. argued
that even if the XY universality class conjecture is true, the
MCP should not include a local current operator, as they
assume the transformation of the gauge variables would be
nonlocal [48]. We disagree with this claim; nonlocal dual-
ities typically keep a current operator local, as is the case
of the Abelian-Higgs to XY duality in (2 + 1)D dimensions
[49,50].
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APPENDIX A: DETAILS OF THE MONTE
CARLO SIMULATION

1. Simulation of the SD-IHG model

Generating Monte Carlo snapshots of the SD-IHG model
for the RSMI-NE algorithm was conducted on a system with
linear size L = 18 (overall 4L3 = 2536 degrees of freedom)
at the MCP [tanh(Kc) = 0.6367, tanh(Jc) = 1−tanh(Kc )

1+tanh(Kc
]. Af-

ter every 104 single-spin sweeps, 18 pairs of (V ,E ) were
extracted from the Monte Carlo snapshot with varying V
and buffer sizes. Overall, approximately ∼107 samples were
extracted as a corpus for the RSMI-NE algorithm.

2. Simulation of the AT-TFI model

Simulation of the AT-TFI model was done using a stan-
dard quantum to classical mapping, with effective couplings
h̃ = 1

2 ln coth(h�τ ), J̃ = J�τ, J̃AT = JAT �τ , with a Trotter
decomposition step of �τ = 0.083 and an imaginary-time
axis of length Lz = 3L (effective inverse temperature β =
Lz · �τ ). The value for �τ was chosen such that the ratio
between space correlations and time correlation is 3, which
would allow us to scale the timelike axis of V ,E accordingly
by an integer factor. For such a choice of parameters, with
J = 1, JAT = 0.625, the critical disordering field was calcu-
lated to be hc = 2.6458 ± 0.0001 (see Fig. 4).

Generating Monte Carlo samples for the RSMI-NE algo-
rithm was conducted on a system with linear size L = 32
(overall L3 = 215 degrees of freedom) at the critical point.
After every 104 cluster updates, 32 pairs of (V ,E ) were
extracted with varying V and buffer sizes. Overall, approx-
imately ∼107 samples were extracted as a corpus for the
RSMI-NE algorithm.
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FIG. 4. Finite size scaling of the correlation length for various
linear sizes. By collapsing the curves, the critical disordering field
is found to be hc = 2.6458 ± 0.0001 (denoted by a vertical black
dashed line).

3. Identifying extracted operators

For the estimation of the scaling dimension, we have used
systems of linear sizes L = 4, 6, 8, 12, 16, 24 for the SD-IHG
model, and L = 8, 10, 12, 16, 24, 32 for the AT-TFI model.
At criticality, using the Widom scaling form, we can compute
the scaling dimension �O for a given operator O as a log
ratio between the operator antipodal correlation of different
system sizes. Given two systems S1, S2 with corresponding
linear sizes L, 2L the estimated scaling dimension is given by

�O(L) = 1

2
log2

〈
O(0, 0, 0)O

(
L
2 , L

2 , L
2

)〉
S1〈

O(0, 0, 0)O
(

2L
2 , 2L

2 , 2L
2

)〉
S2

. (A1)

The scaling dimensions for the various system sizes were
fitted (see Fig. 5) by the function

�O

(
1

L

)
= A

(
1

L

)ω

+ �O(L → ∞) (A2)

to get the asymptotic scaling dimension of the operator for an
infinite system [51].

Calculating correlation between operators O1 and O2 was
performed via long-range (Pearson-like) operator-operator
correlation:

ρ(O1,O2 )

=
∣∣〈O1(0, 0, 0)O2

(
L
2 , L

2 , L
2

)〉∣∣√∣∣〈O1(0, 0, 0)O1
(

L
2 , L

2 , L
2

)〉〈
O2(0, 0, 0)O2

(
L
2 , L

2 , L
2

)〉∣∣ ,
(A3)

where 0 � ρ(O1,O2 ) � 1 measures the similarity between O1

and O2. Because of the operator product expansion property
of CFTs, we know that for any operator A,

∑
i

ρ2
(A,Oi ) = 1, (A4)

where Oi is the set of all operators in the spectrum. This
allows for a complete identification of a given neural operator
in terms of the primary and descendant CFT operators.

In general, we find that the procedure produces a highly
pristine leading operator within each symmetry sector, as also
demonstrated in Fig. 5. Nonetheless, we find that the extracted
subleading operators may mix in some small amounts of lead-
ing operators within the same symmetry sector. While for the
AT-TFI we found this mixing to be negligible, for SD-IHG
it had some effect. To circumvent this, we capitalize on the
limited form of this mixing and the pristine form of the leading
neural operator and project out the leading component. We do
so by subtracting the leading neural operator from the sub-
leading neural operator such that the long-range correlation
with the leading neural operator is reduced to zero. We note
in passing that this extra procedure was not required for the
current operator as it is leading in its symmetry sector.

APPENDIX B: DETAILS OF THE RSMI-NE PROCEDURE

1. Pseudocode for the extended RSMI-NE algorithm

A single stochastic gradient descent (SGD) training step of
the extended RSMI-NE algorithm can be summed up in the
following pseudocode block (see also Fig. 3 for a visual aid):

AT-TFI SD-IHG

FIG. 5. Scaling dimensions for the AT-TFI and SD-IHG models as a function of inverse system size 1
L . Error bars denote one standard

deviation. The crossing of the fitted function [Eq. (A2)] with the vertical axis is the extrapolated scaling dimension at L → ∞.
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Arguments:
(V,E) - Samples from the Monte Carlo snapshots.

V is a local patch of the system,
E is a spatially separated environment of V.

(G) - The group under which the trained neural operator will be invariant.
(tau) - The temperature for the current step. Decays exponentially between steps.
(background noisy bits) - A set of previously trained operators,

with their weights frozen (untrainable).

function train_step(V,E,G,tau,background noisy bits)
choose a random element g in G
V act with g on V
H feed V into the coarse grainer
H feed H into the batch normalization layer
H concatenate H and background noisy bits
H discretize H by a relaxed Bernoulli layer with temperature tau

(see [7])
MI feed H,E to a neural mutual information estimator (the critic)

(see [6])

perform gradient descent on the parameters of the coarse grainer,
batch normalization layer
and critic

2. Hyperparameters for the extended RSMI-NE algorithm

The geometry for RSMI-NE was chosen as follows: For
the AT-TFI model, V was a block of spins of size 4 × 4 × 10
(ratio between space correlations and time correlation is 3)
and the buffer size was taken to be 4 × 4 × 12, such that E
consisted of the boundary of a block of spins of size 12 ×
12 × 34. For the SD-IHG model, V was a block containing
the gauge-invariant bonds (τστ ) and the plaquettes (σσσσ )
that are encapsulated by a block of size 2 × 2 × 2 and the
buffer size was taken to be 6 × 6 × 6 such that E consisted
of gauge-invariant bonds and plaquettes that are encapsulated
by the boundary of a block of size 14 × 14 × 14. Generally,
increasing the buffer between V and E improves the result (as
subleading operators are diminished), but takes more training
resources (more training steps and larger batch size), as the
mutual information between the two variables decreases.

The batch normalization scale was set to a maximal stan-
dard deviation of γmax = 1.0. This low value is important
to get pristine operators in a symmetry sector that includes
multiple symmetry-invariant operators. The batch size was set
to 8000.

The coarse-grainer had three fully connected layers and a
width of eight times the input size. The critic, which takes
E ,H and outputs their mutual information, includes three
stages. In the first stage, E (a rectangular prism) is split into
its six faces, where each face is passed through a separate
three-layer fully connected network, with a width of twice the
input size (the corresponding face’s size) and output size that
preserves the input size. All six outputs are then combined into
a single variable Ẽ such that it has the same size as E . This
prepossessing stage, which exploits the geometrical structure
of the environment E , was found to improve the overall mu-
tual information detected by the critic. In the second stage,

both Ẽ and H are passed through a separate three-layer
connected network, with a width of twice the input size for
Ẽ and fixed on 64 for the discretized H , and fixed output size
of 256 (the embedding dimension). In the third stage, the two
outputs are given to the INFO-NCE estimator, which yields
the lower bound on the mutual information.

The (V ,E ) corpus was split between training and testing
datasets to ensure that no overfitting had taken place. The
learning process occurred over five epochs.

3. Application of RSMI-NE to the AT-TFI model

The operator extraction scheme utilizes the different sym-
metry sectors. The σ, τ fields, as well as their derivatives, are
odd under a global Z2 transformation of the spins. Thus, the
〈σ 〉〈τ 〉 operator is odd under a Z2 × Z2 transformation, where
each spin field can be flipped separately. Furthermore, the cur-
rent operator 〈σ 〉〈∂τ 〉 − 〈τ 〉〈∂σ 〉 is odd under both Z2 × Z2

and spatial inversion transformations. These facts allow us
to construct the following four-stage scheme for learning the
AT-TFI leading operators:

(1) Augment V such that only Z2 × Z2 even operators can
be learned. This would first yield the operator 〈σ 〉2 − 〈τ 〉2

(scaling dimension of ∼1.2) and then 〈σ 〉2 + 〈τ 〉2 (scaling
dimension of ∼1.5). Learn until the mutual information is
exhausted.

(2) Augment V such that only Z2 and inversion even
operators can be learned. This would yield the 〈σ 〉〈τ 〉 operator
(scaling dimension of ∼1.2). Learn until the mutual informa-
tion is saturated.

(3) Finally, augment V such that only Z2 even operators
can be learned. This would yield the current operator (scaling
dimension of 2.0).

043322-8



MACHINE LEARNING THE OPERATOR CONTENT OF THE … PHYSICAL REVIEW RESEARCH 6, 043322 (2024)

FIG. 6. Visualization of an extremal projection of the current
configuration for the AT-TFI model. The projection takes a spatial
slice of a spin configuration; the τ sites (which appear as white dots
on the grid) turn into plaquettes, and the σ sites (which appear as
black dots on the grid) turn into circles. The red and blue color
denotes the spins’ values (direction of the arrows).

(4) As an extra step, one can also remove any augmen-
tation. This would yield the 〈σ 〉, 〈τ 〉 operators and their
derivatives.

4. Application of RSMI-NE to the SD-IHG model

The operator extraction scheme employed the spatial ro-
tation and inversion symmetry sector. While the 〈A〉 and 〈S〉
operators are invariant under any spatial rotation and inver-
sion, their derivatives, as well as the hypothesized current

operators, are not. Therefore, we could augment V via spa-
tial rotations and inversions such that only the 〈A〉 and 〈S〉
operators could be learned (scaling dimensions of ∼1.2 and
∼1.5, respectively). Then, after the mutual information is sat-
urated, we remove the augmentation and learn the first leading
operator which is odd under the spatial symmetries.

5. More details on extremal configurations and projections

Searching for extremal configurations for the SD-IHG
and AT-TFI models was performed in a gradient-descent-like
manner. At the start of the search, we set V to some initial ran-
dom value within the corresponding spatial symmetry sector.
Then, in each step a random degree of freedom in V was cho-
sen. If flipping it decreases/increases (depending on whether
we are searching for a minimal/maximal configuration) the
value of the operator acting on V within the sector, we flip it.
We repeat the latter step until an extremum is reached.

The 2D projections of the extremal configuration, as appear
in Table I of the main text, are attained by taking a spatial
slice of the extremal configuration (in the AT-TFI model, the
slices are in the spatial plane). The slices are taken from the
boundary of V . In the case of the SD-IHG model, the slices
were taken in the plane such that the derivative operator akin
to ∂〈A〉 was to be visually noticeable. Extremal configurations
for the SD-IHG model were taken from neural operators of
linear size 3, which are qualitatively similar to the ones used
for computing the scaling dimensions (with linear size 2) but
yielded less accurate results.

The scheme for presenting the extremal projection in the
case of the AT-TFI model appears in Fig. 6.
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