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ABSTRACT
It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised envi-
ronmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived 
perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver 
variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness 
(estimated as each genotype's lineage growth rate, λ) using demographic models. Drought and herbivory interacted to shape 
vital rates, but contrasting defence genotypes had equivalent total fitness in many environments. Defence polymorphism thus 
may persist under a range of conditions; however, ambient field conditions fall close to the boundary of putatively polymorphic 
environment space, and increasing aridity may drive populations to monomorphism. Consequently, elevated intensity and/or 
frequency of drought under climate change may erode genetic variation for defence chemistry in B. stricta.

1   |   Introduction

Genetic variation determines whether populations can adapt to 
changing environments (Lande and Shannon 1996; Barrett and 
Schluter 2008) and has consequences for higher-order ecological 
processes including trophic interactions (Wan et al. 2022), popu-
lation persistence (e.g., Hanski and Saccheri 2006; Agashe 2009; 
Bozzuto et  al.  2019; Carley et  al.  2022), community compo-
sition and stability (Hughes and Stachowicz  2004; Barbour 
et al. 2015) and ecosystem function (Reusch and Hughes 2005; 
Hajjar, Jarvis, and Gemmill-Herren 2008; Raffard et al. 2019). 
Understanding how genetic variation is maintained in wild pop-
ulations is thus a central goal in evolutionary biology. Despite 
this, the ecological conditions that promote polymorphism are 

seldom explicitly characterised, and it is unclear how changing 
environments will affect standing genetic variation.

Plant defences are often particularly variable (Agrawal, Gorski, 
and Tallamy 1999; Iason et al. 2011; Züst et al. 2012) despite hav-
ing consequences for fitness. This apparent paradox has moti-
vated a large body of literature investigating why less effective 
defence strategies might persist. Evidence has thus emerged 
that plant defences can be costly and are often subject to fit-
ness trade-offs—for example, between resistance and tolerance 
(Stinchcombe and Rausher 2002), constitutive and induced de-
fence (Bingham and Agrawal 2010), growth and defence (Züst, 
Rasmann, and Agrawal 2015), reproduction and defence (Strauss 
et  al.  2002) and resistance to generalists versus specialists 
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(Agrawal, Gorski, and Tallamy 1999). Trade-offs help to explain 
how variation in herbivore pressure and resource availabil-
ity may maintain multiple optimal defences across space and/
or time. However, recent work demonstrates that other factors 
such as temperature (Hahn et al. 2019; Bont et al. 2020; Rotter, 
Christie, and Holeski  2022) and drought (Carley et  al.  2021) 
influence selection on plant defences and that defence traits 
such as trichomes (Galdon-Armero et al.  2018) and secondary 
metabolites (Hossain et al. 2013; Abuelsoud, Hirschmann, and 
Papenbrock 2016; Salehin et al. 2019) can mediate responses to 
abiotic stress. Thus, understanding the evolution of plant de-
fence polymorphism may require explicit incorporation of abi-
otic contexts into more typical resource–economic approaches 
(Lin et al. 2023).

Whether defence traits experience selection by biotic inter-
actions, abiotic conditions or both, quantitative relationships 
between selective drivers and fitness must be characterised to 
predict fates of defence polymorphisms in changing environ-
ments. This is rarely achieved empirically. For example, many 
studies of adaptation and evolution in wild populations test 
for local adaptation without identifying its drivers (Anderson 
et  al.  2014). While some recent examples oppose this trend 
(Benning and Moeller 2019; Anderson and Wadgymar 2020), 
identification of selective drivers is usually achieved by ma-
nipulating putative drivers in binary treatments (e.g., ambient 
herbivory vs. herbivore exclusion; cf. Morris et al. 2020). This 
makes it challenging to predict evolutionary responses unless 
the effects of categorical driver manipulations (a) are quan-
tified and (b) exactly match future conditions. Furthermore, 
the shape of organismal responses to environmental variation 
can be difficult to predict without sampling environmental 
space widely (Monroe, Cai, and Des Marais 2021). This chal-
lenge increases when selection is shaped by multiple drivers, 
which may covary and interact (Louthan et al. 2018; Hamann 
et al. 2020).

Although these obstacles limit precision when predicting evo-
lutionary and genetic responses to environmental change, 
ecologists have made progress in quantifying population and 
community responses to identified drivers. For example, recent 
work has elucidated how continuous variation in geographic 
and environmental drivers alters population dynamics (Doak 
and Morris 2010, Sheth and Angert 2018, Campbell 2019, Morris 
et al. 2020), how interacting drivers influence population growth 
(Oldfather et al. 2021) and how life history mediates nonlinear 
responses to interacting drivers (O'Connell et  al.  2024). Some 
of this progress has been stimulated by the development of in-
tegral projection models (IPMs; Ellner and Rees  2006; Merow 
et  al.  2014), which allow straightforward modelling of vital 
rates in response to continuous driver variation. Demographic 
models such as IPMs integrate vital rates into estimates of total 
fitness or lineage growth rates (λ; Caswell  2001). This can be 
particularly useful in understanding net selection under fitness 
trade-offs across vital rates and/or on perennial organisms for 
which it is difficult to quantify lifetime fitness directly (Schluter, 
Price, and Locke 1991). For example, some studies have shown 
the inferred magnitude or direction of selection to change de-
pending on the fitness components considered (Ehrlén  2003; 
Gómez  2008; Ehrlén and Münzbergová  2009; Mojica and 

Kelly 2010). Estimates of total fitness such as λ integrate all vital 
rates (which are equivalent to the average fitness components 
across a lineage or population) and thus avoid such incomplete 
assessments of selection (Metcalf and Pavard 2007; Wadgymar 
et al. 2024).

Here, we combined population ecological and evolutionary 
genetic approaches to elucidate how biotic and abiotic varia-
tion shape selection on a focal polymorphism: defence chem-
ical profiles in Boechera stricta (Brassicaceae). Previous work 
revealed that herbivory and drought both contribute to bal-
ancing selection on B. stricta defence chemistry; in addition 
to modulating herbivore defence, a gene-controlling chemical 
defence influences survival under drought stress and plas-
tic changes in morphology that influence water use (Carley 
et al. 2021). However, prior work focused on individual pheno-
types and fitness components and did not manipulate drivers 
simultaneously; as such, the quantitative and potentially inter-
active effects of drought and herbivory on total fitness remain 
uknown. By extension, it is unclear which environmental 
conditions might protect or erode defence polymorphism. We 
transplanted genotypes conferring contrasting chemical pro-
files into a common garden where we manipulated drought 
and herbivory for 4 years, the full life span of the majority 
(~78%) of transplants. We then built genotype-specific IPMs 
which we used to ask:

	(Q1)	 How does natural selection driven by drought and her-
bivory shape total fitness of B. stricta genotypes differing 
in defensive chemistry?

	(Q2)	 Which environmental conditions may maintain de-
fence chemistry polymorphisms in B. stricta populations?

	(Q3)	 What are the implications of biotic and abiotic en-
vironmental change for the maintenance of defence 
polymorphism?

2   |   Methods

2.1   |   Study System and Focal Trait

Boechera stricta (Brassicaceae) is a highly self-pollinating pe-
rennial wild relative of Arabidopsis common across the west-
ern United States, and is a model system for evolutionary 
ecology and genetics (Rushworth et al. 2011, 2022). Like other 
Brassicaceae, B. stricta produces glucosinolates (GS), second-
ary metabolites that mediate interactions with herbivores and 
pathogens (Hopkins, van Dam, and van Loon 2009). One axis of 
GS variation, the proportion of GS derived from branched-chain 
amino acids versus methionine (‘BC-ratio’; Schranz et al. 2009), 
is controlled by the gene BCMA1/3 (Prasad et  al.  2012). 
Polymorphism in BC ratio and at the BCMA1/3 locus have been 
maintained by balancing selection driven by both herbivory and 
drought (Carley et al. 2021). Near-isogenic lines (NILs) homozy-
gous at BCMA1/3 for alleles conferring either branched-chain or 
methionine-derived GS (‘BB’ and ‘MM’ genotypes, respectively) 
have been generated via crossing and isolate the effects of these 
alleles in an otherwise homogenous genetic background (Prasad 
et al. 2012).
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2.2   |   Manipulative Field Experiment

2.2.1   |   Common Garden

We tested the fitness consequences of contrasting GS profiles by 
transplanting NILs in a common garden in Schofield, CO, USA 
(39.036°, −107.059°, 3145 m elevation). The garden was fenced 
aboveground to prevent trampling and ~0.3 m belowground to 
minimise intrusion by gophers.

We germinated and reared plants for 2 months under greenhouse 
conditions (Appendix S1) at Duke University (Durham, NC, USA) 
before shipping plants to Colorado. We transplanted 2300 juve-
nile plants into local vegetation in randomised, complete blocks 
containing 50 plants (25 MM, 25 BB) spaced at constant density 
over two cohorts: 2015 (N = 1500) and 2016 (N = 800; Table S1).

B. stricta seeds germinate in the springtime following snow-
melt; surviving germinants live one season as vegetative ro-
settes, and after vernalisation may reproduce in the second 
year or later (Anderson and Wadgymar  2020). We trans-
planted rosettes autumn of each cohort, allowing for natural 
vernalisation shortly thereafter. We then monitored vital rates 
annually until 2019.

2.2.2   |   Environmental Drivers

In this subalpine system, water availability during the grow-
ing season is driven primarily by snowmelt in the spring and 
monsoon rains in mid-summer. This experiment spanned a 
range of ambient conditions, including substantial variation in 
both winter and summer precipitation (Table S2). Beyond this 
interannual variation in ambient conditions, we manipulated 
soil moisture and herbivory from 2017 to 2019. Manipulations 
spanned all field growing seasons for the 2016 cohort. The 2015 
cohort experienced 1 year under ambient field conditions before 
manipulations began. The remaining sample size at the start of 
driver manipulations was 1605, ranging from 176 to 227 repli-
cates per genotype per driver manipulation treatment (Table S3).

We manipulated soil moisture using rainout shelters to in-
tercept precipitation (Yahdjian and Sala  2002; Shriver  2015) 
over ~50% of the surface area of each garden block. We in-
cluded below-ground barriers to reduce lateral movement of 
soil moisture (Appendix S1). In 2018, a year of low snowpack, 
early snowmelt and low summer precipitation (Table S2), we 
also supplemented soil moisture in control blocks by adding 
5.7 L of water weekly in June. We monitored efficacy of this 
treatment by using a 12-cm handheld soil moisture probe 
(Hydrosense, Campell Scientific, Logan, UT) to measure 
volumetric water content (VWC) in each block repeatedly 
in 2017–2018. We regressed these block-level measurements 
upon soil moisture data collected on the same dates in a sepa-
rate experiment (Anderson and Wadgymar 2020) to fit models 
from which to estimate daily block-level soil moisture in our 
common garden from 2015 to 2019 (Appendix S1; Figures S1–
S3). We monitored block-level soil temperature and light 
availability repeatedly in 2017–2018 to test for effects of shel-
ters on environmental conditions other than soil moisture 
(Appendix S1).

We manipulated herbivory at the individual plant level. Weekly 
throughout the growing seasons in 2017–2019, we sprayed 
a bacterial endotoxin insecticide (Thuricide BT Caterpillar 
Control, Southern Ag, Rubonia, FL) on each plant assigned to 
the reduced herbivory treatment (Appendix S1) according to the 
manufacturer's instructions, targeting plants with a plastic cone 
to minimise drift. We sprayed an equal volume of water onto 
control plants. BT has a general mechanism of action and is ad-
vertised to deter a variety of insects including larval butterflies, 
moths, beetles and flies. We estimated herbivore damage to abo-
veground tissue to determine the efficacy of herbivory manipu-
lations (Appendix S1).

We tested the effects of rainout shelters on soil moisture, soil 
temperature and light availability (all measured at the block 
level) using linear models with census year, rainfall treat-
ment and their interaction as fixed effects. We tested effects 
of insecticide treatment on herbivore damage (measured at 
the individual plant level) by first modelling the probability of 
receiving herbivory in response to fixed effects of insecticide 
treatment, drought treatment, census year and their interac-
tions using a generalised linear model with a binomial dis-
tribution and logit link function. Second, among plants that 
received herbivory, we modelled per cent leaf area removed in 
response to insecticide treatment, drought treatment, census 
year and their interactions using a linear model. To improve 
model residuals, we log-transformed the amount of herbivore 
damage (adding a small constant to avoid dropping zeros). 
For analyses of treatment efficacy, we used data spanning 
the driver manipulations (2017–2019). We tested significance 
of linear model effects using ANOVA, and of logistic regres-
sion effects using likelihood ratio tests (‘lmtest’ package in R; 
Zeileis and Hothorn 2002) comparing the full model to nested 
reduced models, dropping one effect at a time.

Treatments successfully manipulated the drivers of interest 
(Figures S4 and S5). Rainout shelters reduced soil moisture by 
3.1%, a relative reduction of 27% compared to control blocks 
(Figure S5A) without affecting soil temperature or light avail-
ability (Figure S6). Insecticide treatment reduced the probability 
of herbivory by 6.8%, a relative reduction of 9.6% (Figure S5B); 
and the amount of herbivory by 0.33%, a relative reduction of 
12.6% (Figure S5C).

2.2.3   |   Plant Measurements

We censused plants at the end of each growing season from 
2016 to 2019, scoring individuals for survival, size (height), 
reproduction and herbivore damage (Appendix  S1). We mea-
sured total fruit length directly, and estimated seed set using 
a linear regression of seed number on fruit length using data 
from a separate nearby experiment (Appendix S1; Anderson and 
Wadgymar 2020).

2.3   |   Demographic Analyses

To answer our research questions, we used data from our 
field experiment to parametrise genotype-specific and driver-
dependent demographic models.
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2.3.1   |   Vital Rate Regressions and Model Selection

For each NIL genotype, we estimated 10 vital rates describing 
the life cycle of B. stricta: germination, survival of ungerminated 
seeds in the seed bank, germinant survival in the first year of 
life, size of surviving first-year recruits, adult survival, mean 
adult growth, variance in growth, probability of bolting, proba-
bility of reproducing and seed number. We modelled seven vital 
rates using census data from our manipulative common garden 
experiment and three (seed germination, ungerminated seed 
survival and germinant survival) using previously published 
data (Anderson and Wadgymar  2020). Vital rate models for 
plants older than seedlings included plant size and both drivers 
as potential predictors. We outline our general modelling ap-
proach here, with details provided in Appendix S2.

For size- and driver-dependent vital rates, we began by fitting 
a global model with each vital rate as the dependent variable 
and fixed main effects of size, soil moisture and herbivory and 
all possible two- and three-way interactions as independent 
variables. Although driver manipulations were implemented 
categorically, we used continuous values of herbivory and soil 
moisture (leveraging variation both within and across treat-
ments; cf. Shriver  2015; Figure  S7) and plant height as inde-
pendent variables. We modelled probabilistic transitions using 
generalised linear models with a binomial distribution and logit 
link function, and continuous transitions using linear models.

We modelled vital rates allowing the effects of interacting 
drivers to differ in magnitude and direction across genotypes. 
Specifically, we fit separate vital rate regressions for each NIL 
genotype and then used AICc (‘MuMIn’ package; Barton 2019) 
to select among models containing all possible subsets of the 
global model (Appendix S3). If two or more models had similar 
AICc scores (ΔAICc < 2), we favoured the model with the lowest 
absolute AICc, which was generally the most parsimonious. Size 
was retained as a predictor of most vital rates, but which selec-
tive drivers, driver interactions and Driver × Size interactions 
were retained differed (Table S5).

Adult growth in B. stricta depends strongly on transitions be-
tween discrete reproductive states structured on bolting, a 
prerequisite to flowering and reproduction (Appendix  S2; 
Figure S8). To accommodate this biologically relevant variation, 
we modelled growth and reproduction as dependent on a bolt-
ing/nonbolting state variable (Appendix S2).

2.3.2   |   Integral Projection Modelling

To assess net effects of drivers on fitness, we built IPMs to calcu-
late λ of each NIL. We constructed IPMs using standard methods 
(Ellner and Rees 2006; Merow et al. 2014), with modifications 
to accommodate state-specific vital rates and to incorporate the 
seed bank into the discretised IPM kernel (Carley et al. 2022). 
Full model details are provided in Appendix S2.

We evaluated each IPM across a biologically relevant range of 
herbivory and soil moisture values: 0%–100% aboveground tis-
sue removal by herbivores (just beyond the maximum observed 
value of herbivory of 90%), and 0 through 1.25× the maximum 

observed soil moisture value. We discretised each driver into 25 
bins (equal bin width for soil moisture; log-scale bin width for 
herbivory to better reflect the observed distribution of herbivory 
values; Figure S7), and estimated λ in each of these 25 × 25 = 625 
environmental combinations. Outcomes when modelling λ 
across finer environmental resolutions were qualitatively identi-
cal. While the range of modelled conditions deliberately extends 
slightly beyond observed driver ranges, transplants in the ex-
perimental garden experienced most modelled combinations of 
drought and herbivory (Figure S9).

2.3.3   |   Parameter Uncertainty

We accounted for parameter uncertainty by taking 1000 para-
metric bootstrap samples from the multivariate normal distribu-
tions of the vital rate parameters (Appendix S2). We calculated λ 
for each genotype across environment space using the sampled 
vital rate coefficients and used the distributions of λ to answer 
our research questions.

2.3.4   |   Assessing Outcomes

2.3.4.1   |   Q1: Net Effects of Drought and Herbivory on 
Total Fitness.  We assessed the effects of drought and herbiv-
ory on fitness components by comparing the vital rate regres-
sions of the two NILs. We approximated the contributions 
of each driver to λ as mediated by each vital rate by measuring 
the proportional change in λ when a driver's effects on each vital 
rate were removed one at a time (Appendix S2).

We assessed net effects of both drivers on genotype-specific 
total fitness by evaluating the topography of λ across bivariate 
driver space. We assessed natural selection across environments 
by comparing λ of the two genotypes in each modelled environ-
ment, considering differences in λ to be significant if the 95% CI 
of differences across 1000 bootstrap samples did not overlap 0 
(Appendix S2).

2.3.4.2   |   Q2: Maintenance of Polymorphism.  We 
assessed environmental conditions in which each genotype 
may persist by identifying environments where λ equalled 
or exceeded replacement (i.e., the 95% CI of the bootstrapped 
distribution overlapped or exceeded 1). We identified ‘putatively 
polymorphic environments’ as combinations of drought and her-
bivory levels in which both genotypes can persist at or above 
replacement (Criterion I) and the difference in lifetime fitness 
between NIL genotypes is not significantly different from 0 (Cri-
terion II).

2.3.4.3   |   Q3: Genetic Variation Under Environmental 
Change.  To assess whether current combinations of soil mois-
ture and herbivory may maintain GS polymorphism, we asked 
whether driver combinations observed in our common garden 
fell within putatively polymorphic environments (see Q2). We 
assessed effects of future changes in herbivory and drought on 
polymorphism by asking whether directional shifts in either 
or both drivers away from contemporary levels may move B. 
stricta populations out of putatively polymorphic environ-
ment space.
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3   |   Results

3.1   |   Q1: Net Effects of Drought and Herbivory on 
Total Fitness

Our longitudinal, manipulative field study revealed variable 
effects of herbivory and drought on the vital rates of B. stricta 

GS genotypes (Figure  1; Tables  S5 and S6; Appendix  S3). 
Overall, BB was more sensitive to drought (with eight vital 
rates negatively affected by reduced soil moisture either at 
small or all sizes) and MM was more sensitive to herbivory 
(with seven vital rates responding negatively to herbivore 
damage, vs. two and four vital rates showing positive and 
neutral effects, respectively). The effects of herbivory on BB 

FIGURE 1    |    Drought and herbivory interact to shape size-dependent B. stricta vital rates. Panels show variation in how vital rates respond to 
size (size t) across different soil moisture and herbivory levels for each glucosinolate genotype (BB: branched-chain glucosinolate homozygote; MM: 
methionine glucosinolate homozygote). (A) Survival. (B) Bolting; state-specific probabilities are shown across rows, with the bolting state in time 
t in grey text. (C) Growth. Across rows, state-specific growth patterns are shown, with the bolting state in times t, t + 1 given in grey text. (D) 
Reproduction (probability of reproduction, upper; seed number produced conditional upon reproduction; lower). When retained following model 
selection (Methods), effects of herbivory and soil moisture (VWC: volumetric water content) on each vital rate are shown with separate lines fit onto 
data at different driver percentiles; colours represent soil moisture levels (0th percentile, red; 50th percentile, orange; 100th percentile, blue); and line 
types indicate herbivory levels (0th percentile, long dash; 50th percentile, dashed; 100th percentile, dotted). Black lines represent vital rates in which 
there was no effect of soil moisture following model selection, and solid lines represent vital rates in which there was no effect of herbivory following 
model selection. Note: Regression lines here show the predicted effect of size, herbivory and drought on vital rates as estimated by the mean parame-
ter values in each vital rate regression following model selection. In full demographic models, uncertainty was accounted for by sampling parameter 
values from the variance–covariance matrix of parameters for each vital rate model (Methods; Appendix S2).

FIGURE 2    |    Drought and herbivory interact to shape total fitness. Total fitness (λ) was estimated by integrating longitudinal data on fitness com-
ponents across the life cycle throughout the field experiment, separately for each focal genotype (BB: branched-chain glucosinolate homozygote; 
MM: methionine glucosinolate homozygote). Total fitness of 1 indicates that a lineage's abundance is stable through time. Here, the median λ value 
from 1000 bootstrap samples of vital rate regression coefficients is shown; upper and lower confidence intervals of fitness surfaces, accounting for 
uncertainty in vital rate parameters, are shown in Figure S10. Orange x marks on the x- and y-axes denote the minimum (left or lower x) and maxi-
mum (right or upper x) values of soil moisture and herbivory, respectively, observed during the field experiment.
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and drought on MM were mixed, with positive, negative and 
neutral effects on different vital rates (Table S6). Interactions 
among herbivory, drought and size also played important 
roles in shaping vital rates. After model selection, 22 interac-
tion terms in 14 vital rate regressions were retained, and of 19 
vital rate regressions that retained effects of drought and/or 
herbivory, 14 also retained interactions; 5 of these interactions 
were between drought and herbivory, while the other 9 were 
between plant size and one or both drivers. Thus, contrasting 
GS alleles in B. stricta are not maintained by a simple trade-off 
of drought tolerance and herbivore defence; both drought and 
herbivory influence fitness in complex and interacting ways 
across the life cycle.

Total fitness of both genotypes was shaped by both drivers 
(Figure 2). Both genotypes experienced strong net selection by 
drought, with fitness declining with decreasing soil moisture. 
However, the magnitude of drought-mediated selection was 
greater for BB than for MM, as indicated by steeper changes in 
λ across the soil moisture axis. Accordingly, the proportional 
contributions of soil moisture to λ via vital rates were greater 
on average than the contributions of herbivory to λ (Table 1). 
The effects of drivers on λ were mediated predominantly 
by their effects on survival and bolting for both genotypes 
(Table 1).

In wetter environments, the fitness optima of the two geno-
types occur at different herbivory levels; BB has highest fit-
ness at low to moderate levels of herbivory, while MM has 
highest lifetime fitness at moderate to high levels of herbivory 
(indicating potential compensatory responses to herbivory in 
this genotype; Garcia and Eubanks  2019). Upper and lower 
confidence limits of the fitness surface showed the same basic 
patterns (Figure S10).

3.2   |   Q2: Maintenance of Polymorphism

The MM genotype had relatively higher fitness when soil mois-
ture and herbivory were both low or both high. Conversely, 
the BB genotype had relatively higher fitness when either her-
bivory or soil moisture, but not both, was high (Figure  3A). 
However, bootstrap simulations showed that at higher soil 
moisture levels, most genotypic differences in fitness were not 
significantly different from 0 (Figure 3B). Thus, despite con-
trasting genotypes showing differential and sometimes strong 
effects of drought and herbivory on vital rates, they have 
equivalent total fitness across medium to high soil moisture 
levels. In other words, net selection on GS variants may be 
weak unless soils are dry.

Furthermore, many environmental combinations permit one 
or both genotypes to persist at or above replacement (λ ≥ 1; 
Figure 4). While MM can persist in a greater proportion of en-
vironmental space than BB (82.2% vs. 66.9% of 625 modelled 
environmental combinations, respectively), over half of tested 
environmental conditions (62.2%) can support persistence of 
both defence genotypes. Thus, a range of modelled environ-
ments satisfies both Criterion I (persistence of both genotypes 
is possible) and II (net fitness difference between genotypes is 0) 
for supporting polymorphism.

3.3   |   Q3: Genetic Variation Under 
Environmental Change

Unmanipulated levels of soil moisture and herbivory in the 
field fell within putatively polymorphic environmental space 
(Figure  4). However, natural conditions fell close to the 
boundary of polymorphism and monomorphism on the soil 
moisture axis. In environments drier than our study sites, MM 
alleles were selectively favoured under low-to-moderate her-
bivory, while BB alleles were favoured under high herbivory 
(Figure 3).

4   |   Discussion

4.1   |   Environmental Contexts of Balancing 
Selection on GS Polymorphism

Under anthropogenic change, whether the amount of standing 
genetic variation in populations is sufficient to permit adapta-
tion to future environments has become an increasing concern 
(Etterson and Shaw  2001). Variation in traits underlying eco-
logical interactions such as herbivore defence can also affect 

TABLE 1    |    Approximate proportional contributions of each driver to 
λ as mediated by individual vital rates (c; Appendix S2).

Vital 
rate

Contribution of 
herbivory to λ 
via vital rate

Contribution of 
soil moisture to 
λ via vital rate

BB MM BB MM

s 0 −0.00528 0.66391 0.62828

b0 0 0 0.05936 0

b1 0.00443 0.00940 0.07001 0.13741

g00 −0.00016 −0.00024 −0.00364 −0.00393

g01 −0.00364 0.00096 0.04092 0

g10 0 0 0.01082 0

g11 −0.00489 −0.00323 0.03364 0.01611

v00 0 −0.00010 0 −0.00306

v01 0 0 −0.01474 0

v10 0 0 −0.00190 0

v11 0 0.00181 0 −0.00286

r 0 −0.00119 0 −0.00319

f 0.000397 0.00062 −0.00420 −0.00504

Note: Vital rate regression names and functional forms are defined in Table S5; 
in general, they are as follows: Survival (s), bolting (b), growth (g), variance in 
growth (v), probability of reproduction (r) and fecundity ( f; i.e., seed set). Among 
state-dependent vital rates, single subscripts indicate the past bolting state and 
double subscripts indicate the past and present bolting state (1 = bolting; 0 = not 
bolting). The fill colour of each cell in the table corresponds to the strength of 
the proportional contribution of a driver to λ through that vital rate, with darker 
blue indicating stronger negative effects and darker red indicating stronger 
positive effects. Cells with grey backgrounds and text indicate vital rates in 
which the driver of interest was not retained in the best-fit vital rate regression 
following model selection. The vital rate mediating the strongest contributions 
of each driver to λ for each genotype (largest absolute value of c per column) is 
marked with bold text.
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ecological communities (van Loon et  al.  1992; Poelman, van 
Loon, and Dicke 2008; Sun et al. 2009; Johnson, Velland, and 
Stinchcombe  2009; Reznick  2013), so understanding selection 

of such polymorphisms is important from both ecological and 
evolutionary perspectives (Thompson 1998). To explore the eco-
logical conditions that may protect defence polymorphism in B. 

FIGURE 3    |    The defence alleles favoured by natural selection depend on biotic and abiotic conditions. (A) Median differences between MM and 
BB total fitness across 1000 bootstrap samples of vital rate parameter estimates show that MM has higher fitness in low soil moisture, low-herbivory 
and high soil moisture, high-herbivory environments; conversely, the BB genotype has higher lifetime fitness in high-moisture, low-herbivory and 
low-moisture, high-herbivory environments. In a ‘saddle’ of intermediate values, lifetime fitness is equivalent or nearly equivalent across genotypes. 
(B) Despite this, the bootstrapped distribution of the difference in lifetime fitness between genotypes overlapped 0 (i.e., was not significant; white 
shading) in many high soil moisture environments. In low soil moisture environments, bootstrapped lifetime fitness values were significantly high-
er for the MM genotype in low-herbivory environments and for the BB genotype in high-herbivory environments. Orange marks are as in Figure 2.

FIGURE 4    |    A wide range of environments supports demographic persistence of both defence alleles and thus may support polymorphism. (A) 
Any modelled environmental conditions in which lifetime fitness was equal to or greater than replacement (λ ≥ 1) are shaded (red shading: λ ≥ 1 for 
BB, the branched-chain glucosinolate homozygote; blue shading: λ ≥ 1 for MM, the methionine glucosinolate homozygote). Environments in which 
both genotypes can persist above replacement are shaded purple. ‘Persist above replacement’ indicates that in 1000 bootstrapped simulations, the 
central 95% of the distribution of λ estimates overlapped with or exceeded 1. Overlaid white points and lines represent ambient environmental con-
ditions in the field site across 4 years of study (mean ± 1 SD). Orange marks are as in Figure 2. (B) Across the range of modelled environment space, 
the number of cells in which each of three criteria is met is evaluated. Criterion I asks whether either or both glucosinolate genotypes can persist at 
or above demographic replacement (i.e., λ ≥ 1). Criterion II asks whether the difference in lifetime fitness between glucosinolate genotypes is statisti-
cally equivalent to 0 across bootstrap simulations. Criterion III asks whether both Criterion I and Criterion II are met, that is, whether glucosinolate 
polymorphism is expected to persist within populations.
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stricta, we parameterised an IPM with two continuous environ-
mental drivers: herbivory and drought. Past work showed effects 
of both drivers on individual fitness components (survival and 
reproduction) and traits that underlie them (herbivore defence 
and drought response). We expand upon prior studies to synthe-
sise the long-term effects of drivers on total fitness of two near-
isogenic genotypes differing in defensive chemistry.

Vital rate regressions show that GS genotypes respond differ-
ently to drought and herbivory, particularly for survival, bolting, 
juvenile growth and the probability of reproduction (Figure 1). 
In general, some patterns corroborate past findings; for exam-
ple, the MM genotype, which adjusts morphology to use water 
more conservatively under drought (Carley et al. 2021), is insen-
sitive to drought in many vital rates or, in some cases, is stimu-
lated by drought while BB is not. However, vital rate regressions 
also revealed complex interactions among herbivory, drought 
and plant size that are difficult to intuit when assessing effects 
of these drivers individually. Ultimately, interacting and some-
times opposing effects of drivers on vital rates shape complex to-
pographies when integrated into total fitness (Figure 2). Despite 
this, both GS genotypes maintain sufficiently high fitness to 
persist at or above replacement under most biologically rele-
vant driver combinations that we evaluated (Figure 4). In many 
of these environments (62.7% of all modelled environments or 
88.9% of environments where both genotypes persist above re-
placement), genotypic differences in total fitness, after account-
ing for parameter uncertainty, are zero (Figures 3 and 4). Thus, 
genetic differences expressed at the level of fitness components 
do not preclude the possibility of contrasting defence strategies 
persisting within populations, potentially at similar frequencies. 
In other words, integrated metrics like λ which incorporate or-
ganisms' variable responses to drivers across life history may be 
necessary for understanding net natural selection.

4.2   |   Environmental Change, Driver Covariance 
and Polymorphism

Although we identified a range of drought and herbivory com-
binations that may support B. stricta populations that are poly-
morphic for defence chemistry, natural conditions observed in 
the field during our study fell close to the boundary of putatively 
polymorphic environment space (Figure  4). Climate models 
predict decreased snowfall and earlier snowmelt in the western 
United States (Higgins and Shi 2001) and shifts in the timing of 
monsoon rains (Seth et al. 2011), which may lengthen and inten-
sify early summer drought in our study region (Sloat et al. 2015). 
Increasing drought across years, and/or increasing variation in 
soil moisture across microhabitats within years, may threaten 
the maintenance of GS polymorphism in B. stricta populations.

Our field manipulations also revealed that drought exacerbates 
herbivory; across 3 years of driver manipulations, drought treat-
ment increased the amount of herbivory on damaged plants 
(Figure S5C) and block-level soil moisture and herbivory were 
negatively correlated (Figure S5E). Correlations among climate 
variables and herbivory are frequently documented (Hamann 
et  al.  2020), especially across broad latitudinal (Salazar and 
Marquis 2012) and altitudinal (Rasmann et al. 2014) gradients. 
Our results, reflecting variation at the scale of meters within 

a single garden, demonstrate that abiotic and biotic drivers of 
selection can covary significantly at the microgeographic scale. 
Thus, changes in drought may elicit concomitant shifts in her-
bivory (e.g., via changes in abundance, composition or metabo-
lism of arthropods; Chown and Gaston 1999) and/or herbivory's 
effects on plant fitness (e.g., via effects of drought on the expres-
sion of resistance; Tariq et al. 2013; Nguyen et al. 2016, Pezzola, 
Mancuso, and Karban 2017). This supports the general finding 
that environmental change may alter natural selection and pop-
ulation dynamics both directly through abiotic shifts and indi-
rectly by modifying biotic interactions (Louthan et al. 2018).

In the case of B. stricta, increased drought should reduce GS poly-
morphism (Figure 4), but herbivory should determine which allele 
is favoured in drier environments (Figure 3B). Specifically, cor-
related changes in drought and herbivory may favour branched-
chain GS, since B alleles have higher total fitness in low-moisture, 
high-herbivory environments (Figure  3A). However, almost all 
environments in which B alleles were significantly favoured fell 
outside of the range of observed combinations of drivers used to 
parametrise our models (see axis markings on Figures 3 and 4 and 
Figure  S9). Thus, while our models suggest that low-moisture, 
high-herbivory environments favour branched-chain GS, empir-
ical data sampling broader environment space is needed to cor-
roborate this. Conversely, shifts in soil moisture only may favour 
methionine-derived GS, since M alleles have higher lifetime fit-
ness in lower-moisture, low-herbivory environments.

Without evolution of drought tolerance or avoidance, decreases 
in soil moisture may also compromise viability of B. stricta pop-
ulations; λ of both focal genotypes declined with decreasing soil 
moisture (Figure 2), and the BB genotype had λ < 1 when VWC 
was below ~8% (Figure 4). This corroborates other studies de-
scribing B. stricta population growth rates consistently below re-
placement in lower-elevation environments more arid than our 
focal site (Anderson and Wadgymar 2020) and negative effects 
of declining soil moisture on population growth rates of other 
alpine plant species (Oldfather et al. 2021).

Even if conditions do not become consistently dry enough to 
threaten B. stricta population viability, temporal fluctuations in 
soil moisture may erode genetic variation for defence chemistry. 
In dry years, when selection on GS is stronger, allele frequencies 
may shift towards monomorphism in declining populations. 
In wet years, populations may recover, but with allele frequen-
cies perturbed due to selection in dry years. This may increase 
the likelihood of stochastic fixation of alleles favoured during 
drought even if selection is weak or relaxed entirely in wetter 
years. This possibility is consistent with the population ge-
netic expectation that temporal fluctuations in selection should 
erode rather than promote polymorphism in finite populations 
(Hedrick 1976).

4.3   |   Ecological Approaches to Understanding 
Selection and Variation: Strengths and Limitations

Ultimately, to fully understand the fate of genetic polymor-
phism, population genetic parameters such as (non-)random 
mating, migration and dispersal, rates of mutation and genetic 
drift and allelic dominance must be considered in addition to 
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fitness effects of alleles in different environments (Hedrick 1986, 
1999). We could not explicitly characterise these parameters, but 
we encourage future research on these topics. Nevertheless, 
demographic approaches offer advantages, including straight-
forward integration of fitness in perennial organisms with over-
lapping generations. B. stricta is also highly self-pollinating (FIS: 
0.74–0.97) and rarely heterozygous (Song et al. 2006). Thus, char-
acterising λ for homozygous genotypes is useful both because of 
its ability to integrate sometimes contrasting effects of selection 
across life-history stages and because it is a reasonable biologi-
cal approximation of the persistence of inbred, self-pollinating 
genetic lineages under different environmental conditions.

Leveraging regression-based approaches also facilitates infer-
ence about the effects of continuous environmental drivers on 
fitness, rather than fitness differences across discrete environ-
ments (Merow et al. 2014). Empirical studies characterising ef-
fects of continuously varying ecological drivers on fitness are 
still uncommon, but are increasing because they are particularly 
important for understanding responses to selection under future 
climates.

Finally, while we argue that equating λ with total fitness is use-
ful given both our research questions and the biology of our 
study organism, our demographic approach also has limita-
tions. Particularly, we provide density-independent estimates 
of λ without effects of conspecific or heterospecific competition 
or facilitation. With experimental genotypes planted in ran-
domised, complete-block designs at constant density, this is not 
unreasonable. However, density dependence and neighbour in-
teractions likely contribute to more complex selection and popu-
lation dynamics in natural populations. We also model selection 
on defence alleles as frequency independent, but this is consis-
tent with past findings (Carley et al. 2021).

5   |   Conclusions and Implications

We show that GS profiles experience selection by both herbivory 
and drought, as evidenced by significant driver effects on vital 
rates and variation in the magnitude and direction of those ef-
fects across genotypes. We also show that GS genotypes should 
persist polymorphically under a range of environmental pa-
rameter space. However, increasing aridity may erode defence 
polymorphism and, in more extreme cases, threaten population 
viability. While there are some limitations to the evolutionary 
inferences that can be drawn from demographic models, we 
provide a transferrable framework for assessing effects of con-
tinuous environmental variation on the maintenance of genetic 
and phenotypic diversity within and across populations. In addi-
tion, while ecologically important traits in other species may be 
shaped by selective drivers different from those identified here, 
our results highlight generally that biotic and abiotic effects in-
teract to shape selection in ways that may be difficult to intuit in 
single-driver studies.
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