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ABSTRACT

Joint modeling of multiple closely related quantitative traits with genetic variants is widely

applied in genetics to increase power for detecting associations. Linear mixed models (LMMs)

are one of the most commonly used approaches. However, when considering a small num-

ber of disease-related traits, it is common for one or more of the traits to be binary, not

quantitative. Previous work has found that using LMM to analyze binary traits suffers from

substantial power loss if covariate effects are important. Generalized linear mixed-model

methods could, in principle provide a solution to this problem, but in practice the penal-

ized quasi-likelihood estimation methods that make them computationally feasible are too

inaccurate to provide reliable type I error control. Furthermore, assessing the significance of

multi-trait associations with single or multiple genetic variants is challenging, particularly

in samples with population structure and related individuals. There is a lack of methods

capable of jointly modeling both binary and quantitative traits in the presence of population

structure or relatedness, while also accommodating multiple genetic variants and remain-

ing robust to ascertainment and model misspecification. To address these limitations, we

developed BCMAP (Binary and Continuous Multi-trait Association test with Population

structure), a novel modeling framework for multi-trait mapping of a combination of binary

and quantitative phenotypes, which is based on a mixed-effects quasi-likelihood framework.

BCMAP accommodates covariates, population structure, and relatedness, capturing the di-

chotomous nature of binary traits, and is suitable for testing with both single and multiple

genetic variants. Our test employs a retrospective approach, ensuring robustness to both

ascertainment and misspecification of the phenotype model. Additionally, we integrate the

recently proposed genetic association test method, JASPER (Joint Association analysis in

Structured samples based on approximating a PERmutation distribution). JASPER is a

fast, powerful, and robust genetic association test that effectively accounts for population

structure, enhancing the accuracy and reliability of our analysis. Parameter estimation for

xi



the binary trait(s) in this setting presents additional challenges beyond those for the quanti-

tative trait case. As part of estimating the correlation matrix, we explore a recently proposed

parametrization which enforces the positive (semi) definiteness and which can be viewed as

a multivariate generalization of Fisher’s Z-transformation of a single correlation. In simula-

tions, BCMAP achieves accurate type I error calibration and demonstrates improved power

over existing methods. We apply BCMAP to analyze the genetic associations of genetic

variants with diabetes and BMI in the Framingham Heart Study.

xii



CHAPTER 1

INTRODUCTION

For identifying genetic variants associated with a trait, the use of a univariate association

test has achieved many interesting results. For studying genetic associations with multiple

(often correlated) traits, univariate testing combined with multiple testing corrections has

been commonly employed due to its computational efficiency. However, this method is not

as powerful or efficient as a joint modeling of multiple traits method to detect association

between the traits and genetic variants [1]. Joint modeling of multiple closely-related quan-

titative traits using linear mixed models (LMMs) has been proposed as one solution. One

major application of these models is to increase power to detect genetic variants associ-

ated with multiple traits or associated with one trait and not others [2]. Furthermore, in

genome-wide association studies (GWASs), analyzing multiple traits simultaneously provides

valuable insights into the genetic architecture of complex traits [3, 4, 5, 6, 7] and enhances

the prediction of comorbidities using genetic data [8, 9, 10]. Joint analysis of multiple traits

and multiple variants also increases the power to identify gene-based associations [5].

In practice, with multiple closely-related traits, it is common for one or more of the

traits to be binary, not quantitative. For example, weight and diabetes are closely related

traits, but weight is a quantitative trait and diabetes is a binary trait. Researchers have

demonstrated that using LMM to analyze binary traits can lead to incorrect type I error due

to the violation of the homoscedasticity assumption in binary trait data [1]. Additionally,

LMMs can suffer from substantial power loss when covariate effects are important [11].

There is a clear need for efficient methods that can perform multi-trait genetic association

testing while accommodating a combination of binary and quantitative traits. To address

this gap, we propose a new model in this thesis for multi-trait mapping of both binary and

quantitative phenotypes. The proposed model is based on a mixed-effects quasi-likelihood

framework and can incorporate covariates and population structure and relatedness. It ef-
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fectively captures the dichotomous nature of binary traits and supports both multi-trait

single-variant and multi-trait multi-variant tests. The test built on our model is based on

a retrospective approach, making it robust to misspecification of the phenotype model and

ascertainment. We name the proposed method BCMAP (Binary and Continuous Multi-trait

Association test with Population structure). In this thesis, we first address the parameter

estimation problem for a model involving multiple binary traits, which presents additional

challenges compared to the quantitative traits case. We then demonstrate, through sim-

ulation results for the multi-trait single-variant association testing scenario, that BCMAP

achieves accurate type I error calibration and exhibits improved power compared to existing

methods. Furthermore, we extend the method to the multi-trait multi-variant association

testing scenario and use simulation results to show that BCMAP maintains accurate type

I error calibration and demonstrates robust power. Finally, we apply BCMAP to analyze

the genetic associations of genetic variants with diabetes and BMI in the Framingham Heart

Study.

1.1 Multi-Trait Single-Variant Association Testing

For single genetic variant testing, there are some past works related to our topic. CARAT

[11] is a univariate binary-trait association approach, which accounts for relevant covariate

information, controls for unknown population structure, employs a logistic mean structure,

and maintains the necessary mean-variance relationship for a binary trait. Because CARAT

uses a retrospective approach, it is more robust to misspecification of the phenotype model

and ascertainment. CERAMIC [12] extends the CARAT method to allow samples with re-

lated individuals and to incorporate partially missing data, which makes it more powerful

than many methods when the sample includes related individuals with some missing data.

GMMAT [13] is a computationally efficient logistic mixed model approach for binary-trait

association testing, which effectively controls for population structure and relatedness. How-

2



ever, GMMAT is based on a prospective testing approach, which makes it result in worse

type I error and lower power than CERAMIC when the phenotype model is misspecified

[12]. Furthermore, GMMAT relies on a penalized quasi-likelihood approach that sacrifices

accuracy for computational speed [14].

These methods focus on univariate association tests for single genetic variant and binary

traits. Zhou and Stephens [15] proposed efficient multivariate linear mixed model (mvLMM)

algorithms for genome-wide association studies, which involves modeling multiple correlated

quantitative traits jointly and accounting for relatedness among samples and the method is

working for single genetic variant testing. However, their method does not accommodate

binary traits. Wang, Meigs, and Dupuis [1] proposed an efficient bivariate robust score test

for one binary trait and one quantitative trait with single genetic variant, which is applicable

for both family-based and unrelated samples, but they do not analyze with more traits. Our

proposed method BCMAP builds on the strengths of these approaches while addressing their

limitations.

1.2 Multi-Trait Multi-Variant Association Testing

Several methods have been proposed for multi-trait multi-variant association testing. Tools

like MTAR [16], MTaSPUsSet [17], metaCCA [18] and MGAS [19] use summary statistics

for association testing between multiple variants and multiple traits. GAMuT [20] employed

a dual-kernel distance-covariance method that compares similarity in multiple phenotypes

to similarity in multiple genetic variants to analyze cross-phenotype associations of rare

variants. MSKAT [21] is a score-based sequence kernel association test that assesses the

joint effects of multiple variants and multiple traits. DKAT [22] builds on GAMuT’s dual-

kernel approach but delivers more robust performance in scenarios where the number of

phenotypes is high relative to the sample size. KMU [23] uses a kernel-based multivariate

U-statistics approach that is applicable to both binary and quantitative traits.

3



However, none of the above methods account for population relatedness and sub-structure.

Failing to adjust for sample structure can result in reduced power and an increased type I

error rate [24]. Multi-SKAT [25] uses multivariate kernel regression to test association of mul-

tiple variants with multiple continuous phenotypes while accounting for related individuals.

However, this method is not applicable when there are binary traits in the analysis.

Our proposed method BCMAP for multi-trait multi-variant association testing addresses

these challenges. It accounts for population structure and relatedness, incorporates covari-

ates, and is applicable to scenarios where some traits are binary and others are quantitative.

This approach offers a robust and flexible solution for complex genetic association studies.

4



CHAPTER 2

QUASI-LIKELIHOOD MODEL FOR MULTIPLE BINARY

TRAITS AND PARAMETER ESTIMATION

In this chapter, we propose a novel quasi-likelihood model for analyzing multiple binary traits

in association with a single genetic variant. The proposed method incorporates covariates

and accounts for related individuals and population structure within the sample. We provide

a detailed illustration of the parameter estimation procedure, highlighting the additional

challenges it presents compared to the case of quantitative traits.

2.1 Quasi-Likelihood Model for Multiple Binary Traits and Single

Genetic Variant

Assume there are n individuals and p traits. Denote phenotype by a p ˆ n matrix Ypˆn,

whose ith row Yi¨ contains the phenotypes of all of the n individuals for trait i, and whose jth

column Y¨j contains the p phenotypes for individual j, so the pi, jqth element of Y , Yij is the

value of the ith phenotype for jth individual. Gnˆ1 “ rG1, G2, ..., GnsT denotes the vector of

genotypes for the n individuals at the variant to be tested, where Gj equals the minor allele

account (0,1 or 2) of individual j at the variant. Suppose we observe k ´ 1 ⩾ 0 covariates,

let Xkˆn be an k ˆ n covariate matrix, whose jth column X¨j contains an intercept term

represented as 1 and the values of k ´ 1 non-constant covariates for individual j, so the first

row of Xkˆn is a row of 1s.

To model the phenotype matrix Y conditional on X and G, we take a quasi-likelihood

approach. We specify only the conditional mean and variance structures of Y . For mean

structure, we assume that, for i “ 1, ..., p and j “ 1, ..., n,

EpYij |X,Gq “ µij , gpµijq “ pβXqij ` pγGT
qij , (2.1)
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where gp¨q is a known function, β is a pˆ k matrix of the unknown fixed effects of covariates

and γ is a vector of length p representing fixed effects of tested variant on the phenotypes.

We take gp¨q to be the logit link function given by:

gpµijq “ log
µij

1 ´ µij
.

We choose the logit link function because in this case, the linear coefficients can be interpreted

as the size of an additive effect on the log odds scale [11]. For the conditional variance

structure, we have:

Ω :“ V arpvecpY q|X,Gq “ Γ1{2ΣΓ1{2. (2.2)

Note for an n ˆ m matrix A, vecpAq is a linear transformation of A to an nm-dimensional

vector by stacking columns of A on top of one another [26]. Γ is an np-dimensional diagonal

matrix, with sth diagonal element, where s “ ppj ´ 1q ` i, given by Γss “ V arpYij |X,Gq,

which is equal to µijp1 ´ µijq. Σ is an np ˆ np correlation matrix (defined as a positive

semi-definite matrix with 1s on the diagonal) that does not involve the mean structure.

Under this specification, the marginal conditional variance is determined by the conditional

mean according to V arpYij |X,Gq “ EpYij |X,Gqp1´EpYij |X,Gqq and is consistent with the

dichotomous nature of the binary traits, because for binary random matrix Y , regardless of

the joint distribution, the marginal distribution of each Yij is always a Bernoulli distribution.

Σ is defined as follows:

Σ “ K b pD1{2CgD
1{2

q ` Inˆn b pD̃1{2CeD̃
1{2

q, (2.3)

where b represents Kronecker product, K is an nˆ n genetic relationship matrix or kinship

matrix, Cg is a p ˆ p correlation matrix (defined as a positive semi-definite matrix with 1s

on the diagonal) for the random effects of a single SNP on each of the p traits, Ce is a

p ˆ p correlation matrix (defined as a positive semi-definite matrix with 1s on the diagonal)
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for the non-genetic individual random effects on each of the p traits for a single person.

D is a p-dimensional diagonal matrix, with ith diagonal element 0 ď di ď 1 representing

the proportion of trait i’s residual variance that is due to additive polygenic effects, and

D̃ “ Ipˆp ´ D. D1{2CgD
1{2 is the genetic variance component, and D̃1{2CeD̃

1{2 is an

environmental variance component.

The unknown parameters are γ, the parameter of interest, and the nuisance parameters: the

entries of β, and the variance components: lower off-diagonal elements of Cg and Ce, and the

diagonal elements of D. The number of unknown nuisance parameters is ppp ` k ` 1q ´ p “

p2 ` pk and is p fewer than in a standard multi-trait LMM for quantitative traits because

of the mean-variance relationship for the binary trait. We denote the variance components

by a vector Θ of length p2.

2.2 Parameter Estimation for Coefficients

To get the estimates of the parameters, we form a system of estimating equations and solve

them. The procedure to obtain the estimating equations is described now. At this section,

we focus on the problem of parameter estimation for coefficients.

We bind the notations for genotype vector and covariate matrix to define X̃ “

»

—

–

X

GT

fi

ffi

fl

and

β̃ “ rβ, γs. To estimate β̃ given the variance components parameters (Θ), we propose to

generalize the method in CARAT [11] paper.

From the quasi-likelihood model we defined before we have:

µ “ EpY |X,Gq “ logit´1
pβ̃X̃q, (2.4)

Ω :“ V arpvecpY q|X,Gq “ Γ1{2ΣΓ1{2, (2.5)

7



where Σ defined by equation (2.3).

Note for matrices A and B of dimensions k ˆ l, l ˆ m, we have:

vecpABq “ pBT
b IkˆkqvecpAq. (2.6)

Therefore, we can get the conditional expectation of vecpY q from equation (2.4):

vecpµq “ EpvecpY q|X,Gq “ logit´1
pvecpβ̃X̃qq “ logit´1

ppX̃T
b Ipˆpqvecpβ̃qqq. (2.7)

Equations (2.5) and (2.7) build the quasi-likelihood model for vecpY q. For known variance

components(Θ), the quasi-likelihood function for vecpβ̃q can be differentiated to obtain the

quasi-score function for vecpβ̃q:

Upvecpβ̃qq “ MTΩ´1
pvecpY q ´ vecpµqq, (2.8)

where M “ Mpvecpβ̃qq “
Bvecpµq

Bvecpβ̃q
“ ΓpX̃T b Ipˆpq. Setting Upβ̃q = 0 gives the generalized

estimating equation for vecpβ̃q:

pX̃ b IpˆpqΓ1{2Σ´1Γ´1{2
pvecpY q ´ vecpµqq “ 0. (2.9)

To solve for vecpβ̃q, a modified Newton-Raphson algorithm with Fisher scoring is used, which

involves iteratively updating vecpβq by:

vecpβ̃qpj`1q “ vecpβ̃qpjq ` tMT
pvecpβ̃qpjqqΩ´1Mpvecpβ̃qpjqqu

´1
¨

tMT
pvecpβ̃qpjqqΩ´1

rvecpY q ´ vecpµpvecpβ̃qpjqqqsu.

(2.10)

Since the ith row of Y represents the phenotype of the n individuals for trait i, and the ith

row of β̃ represents the fixed effects of the covariates and genotype for trait i, we can estimate
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each row of β̃ under the single binary trait model incorporating related individuals proposed

in CARAT [11] independently and stack the estimators together to form the initial value for

vecpβ̃q. Starting at the initial values for vecpβ̃q estimated from CARAT [11], we run this

iterative procedure until convergence to obtain vecpβ̃q, for fixed variance components(Θ).

Plug in the equation for M , equation (2.10) becomes

vecpβ̃qpj`1q “ vecpβ̃qpjq ` tpX̃ b IpˆpqΓ1{2
pvecpβ̃qpjqqΣ´1Γ1{2

pvecpβ̃qpjqqpX̃T
b Ipˆpqu

´1

¨tpX̃ b IpˆpqΓ1{2
pvecpβqpjqqΣ´1Γ´1{2

pvecpβ̃qpjqqrvecpY q ´ vecpµpvecpβ̃qpjqqqsu.

(2.11)

Equation (2.11) involve Σ´1, but Σ is an np ˆ np matrix, when n and p are large, it will be

computationally expensive to invert Σ, so we do not want to invert it directly. We get the

spectral decomposition of K: K “ UV UT , where U is orthogonal and V “ diagpδ1, δ2, ..., δnq,

then we have:

Σ “ pU b IpˆpqrV b pD1{2CgD
1{2

q ` Inˆn b pD̃1{2CeD̃
1{2

qspUT
b Ipˆpq, (2.12)

note both V and Inˆn are diagonal matrices, so rV bpD1{2CgD
1{2q`InˆnbpD̃1{2CeD̃

1{2qs

is in a block diagonal form. From equation (2.12) we have:

Σ´1
“ pU b IpˆpqrV b pD1{2CgD

1{2
q ` Inˆn b pD̃1{2CeD̃

1{2
qs

´1
pUT

b Ipˆpq, (2.13)

and since rV b pD1{2CgD
1{2q ` Inˆn b pD̃1{2CeD̃

1{2qs is in a block diagonal form, we have:

Σ´1
“ pU b Ipˆpq

»

—

—

—

—

–

F´1
1

. . .

F´1
n

fi

ffi

ffi

ffi

ffi

fl

pUT
b Ipˆpq, (2.14)
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where Fl “ δlD
1{2CgD

1{2 ` D̃1{2CeD̃
1{2 for l “ 1, 2, ..., n. So to invert Σ, we only need to

invert n (p ˆ p) symmetric matrices. For one study, the spectral decomposition of K can be

reused, which guaranteed the efficiency of our method.

Now consider

Γ1{2
pU b Ipˆpq “ Γ1{2

»

—

—

—

—

–

U11Ipˆp ¨ ¨ ¨ U1nIpˆp

... . . . ...

Un1Ipˆp ¨ ¨ ¨ UnnIpˆp

fi

ffi

ffi

ffi

ffi

fl

. (2.15)

Set Γ̃pµijq “ µijp1 ´ µijq. This Γ̃ is a function. Then Γ “ diagpvecpΓ̃pµqqq. Equation (2.15)

becomes:
»

—

—

—

—

—

—

—

–

U11Γ
1{2
person 1 ¨ ¨ ¨ U1nΓ

1{2
person 1

U21Γ
1{2
person 2 ¨ ¨ ¨ U2nΓ

1{2
person 2

... . . . ...

Un1Γ
1{2
person n ¨ ¨ ¨ UnnΓ

1{2
person n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

U1¨ b Γ
1{2
person 1

U2¨ b Γ
1{2
person 2
...

Un¨ b Γ
1{2
person n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.16)

where for j “ 1, ..., n, Uj¨ denotes the jth row of matrix U and Γ
1{2
person j “ diagpvecpΓ̃pµperson jqqq

where µperson j “ pµ1j , µ2j , ..., µpjqT . DefinepX̃ b IpˆpqΓ1{2pU b Ipˆpq “ p˚q We have:

p˚q “

»

—

—

—

—

—

—

—

–

řn
l“1X1lUl1Γ

1{2
person l

řn
l“1 X̃1lUl2Γ

1{2
person l ¨ ¨ ¨

řn
l“1 X̃1lUlnΓ

1{2
person l

řn
l“1 X̃2lUl1Γ

1{2
person l

řn
l“1 X̃2lUl2Γ

1{2
person l ¨ ¨ ¨

řn
l“1 X̃2lUlnΓ

1{2
person l

...
... . . . ...

řn
l“1 X̃klUl1Γ

1{2
person l

řn
l“1 X̃klUl2Γ

1{2
person l ¨ ¨ ¨

řn
l“1 X̃klUlnΓ

1{2
person l

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

ν11 ν12 ¨ ¨ ¨ ν1n

ν21 ν22 ¨ ¨ ¨ ν2n
...

... . . . ...

νk1 νk2 ¨ ¨ ¨ νkn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

(2.17)
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The pi, jqth block of p˚q is νij and νij “
řn

l“1 X̃ilUljΓ
1{2
person l is a p ˆ p matrix. Define

r„s “ pX̃ b IpˆpqΓ1{2Σ´1Γ1{2pX̃T b Ipˆpq, Then

r„s “ p˚q

»

—

—

—

—

–

F´1
1

. . .

F´1
n

fi

ffi

ffi

ffi

ffi

fl

p˚q
T . (2.18)

So r„s has pi, jqth block
řn

l“1 νilF
´1
l νjl and r„s is a pk ˆ pk matrix, we need to invert this

matrix. Denote Γ´1{2vecpY q “ Ỹvec and Γ´1{2vecpµq “ µ̃vec, then we have Γ´1{2rvecpY q ´

vecpµpvecpβqqqs “ Ỹvec ´ µ̃vec. Use Ỹvec to form a (pˆn) matrix as follows: first p elements

of Ỹvec form the first column, second p elements of Ỹvec form the second column, so on so

forth, finally, there will be a (p ˆ n) matrix, we denote it as Ỹ . So Ỹ is a (p ˆ n) matrix

whose jth column consists of elements ppj ´ 1q ` 1 through pj of the vector Ỹvec. Form a

pp ˆ n) matrix µ̃ use µ̃vec as the same way. Then by equation (2.6) we have

pUT
b IpˆpqΓ´1{2

pvecpY q ´ vecpµqq “ vecppỸ ´ µ̃q ¨ Uq “ vecpZq, (2.19)

where we denote matrix pỸ ´ µ̃q ¨ U to be Z, then we have:

»

—

—

—

—

–

F´1
1

. . .

F´1
n

fi

ffi

ffi

ffi

ffi

fl

vecppỸ ´ µ̃q ¨ Uq “

»

—

—

—

—

—

—

—

–

F´1
1 Z¨1

F´1
2 Z¨2

...

F´1
n Z¨n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.20)

where Z¨i is the ith column of Z. From equations (2.17) and (2.20) we have:
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pX b IpˆpqΓ1{2
pU b Ipˆpq

»

—

—

—

—

–

F´1
1

. . .

F´1
n

fi

ffi

ffi

ffi

ffi

fl

pUT
b IpˆpqΓ´1{2`

vecpY q ´ vecpµq
˘

“

»

—

—

—

—

–

ν11 ¨ ¨ ¨ ν1n
... . . . ...

νk1 ¨ ¨ ¨ νkn

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

F´1
1 Z¨1

...

F´1
n Z¨n

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

řn
l“1 ν1lF

´1
l Z¨l

...
řn

l“1 νklF
´1
l Z¨l

fi

ffi

ffi

ffi

ffi

fl

.

(2.21)

Equations (2.18) and (2.21) will help solve equation (2.11).

2.3 Parameter Estimation for Variance Components

2.3.1 Estimating Equations for Variance Components

Variance components estimating equations are motivated by maximum likelihood estimators

of variance components in the case when β̃ is known, assuming a multivariate normal distri-

bution for vecpY q with the same mean and covariance as the quasi-likelihood model. Note

EpvecpY q|X,Gq “ vecpµq and V arpvecpY q|X,Gq “ Γ1{2ΣΓ1{2. We denoted the variance

components parameters to be Θ. So we have the "log-likelihood function" lpΘ; vecpY qq for

Θ as follows:

lpΘ; vecpY qq “ ´ 0.5np ¨ logp2πq ´ 0.5 log |Γ1{2ΣΓ1{2
|

´ 0.5pvecpY q ´ vecpµqq
T

pΓ1{2ΣΓ1{2
q
´1

pvecpY q ´ vecpµqq.

(2.22)
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So the system of estimating equations are calculated from:

BlpΘ; vecpY qq

BDii
“ 0, for i “ 1, ..., p (2.23)

BlpΘ; vecpY qq

BCgij
“ 0, for i ă j, i “ 1, ..., p ´ 1 (2.24)

BlpΘ; vecpY qq

BCeij
“ 0, for i ă j, i “ 1, ..., p ´ 1 (2.25)

We obtain the following set of estimating equations for the variance where uj denotes the

vector of length p with the j-th element equal to 1 and all other elements 0:

vecpY ´ µq
TΓ´1{2Σ´1ΨΣ´1Γ´1{2vecpY ´ µq ´ trpΣ´1Ψq “ 0, for 1 ď i ă j ď p, (2.26)

We consider three choices for the matrix Ψ, each corresponding to estimating equations for

specific variance components:

1. Estimating equations for lower-off diagonal elements of Cg:

Ψ “ K b rd
1{2
i d

1{2
j puiu

T
j ` uju

T
i qs

2. Estimating equations for lower-off diagonal elements of Ce:

Ψ “ Inˆn b rp1 ´ diq
1{2

p1 ´ djq
1{2

puiu
T
j ` uju

T
i qs

3. Estimating equations for diagonal elements D:

Ψ “ K b S
g
j ` Inˆn b Se

j
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where S
g
j is the p ˆ p matrix with pi, lqth element:

S
g
j ri, ls “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0, if i ‰ j and l ‰ j,

1
2d

1{2
i d

´1{2
j Cgri, js, if i ‰ j and l “ j,

1
2d

1{2
l d

´1{2
j Cgrl, js, if i “ j and l ‰ j,

1, if i “ j and l “ j,

and Se
j is the p ˆ p matrix with pi, lqth element:

Se
j ri, ls “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

0, if i ‰ j and l ‰ j,

´1
2p1 ´ diq

1{2p1 ´ djq´1{2Ceri, js, if i ‰ j and l “ j,

´1
2p1 ´ dlq

1{2p1 ´ djq´1{2Cerl, js, if i “ j and l ‰ j,

´1, if i “ j and l “ j.

(2.26) together with the estimating equation for vecpβ̃q (equation (2.9)), we have a system

of estimating equations for vecpβ̃q and variance components. We need to solve the system

of estimating equations. To estimate the parameters, we follow an iterative procedure.

For fixed values of the coefficients, we estimate the variance components. Then, using the

estimated variance components, we fix their values and estimate the coefficients. This process

is repeated iteratively, alternating between estimating coefficients and variance components,

until the estimating equations for both are satisfied.

2.3.2 Problem of Log-Likelihood Maximization

For fixed value of coefficients, we use an EM algorithm incorporating the Newton-Raphson

algorithm to solve the problem of log-likelihood maximization for estimating variance com-

ponents. Recall EpΓ´1{2vecpY q | X,Gq “ Γ´1{2vecpµq and VarpΓ´1{2vecpY q | X,Gq “ Σ.
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We denote Γ´1{2vecpY q “ Ỹvec, Γ´1{2vecpµq “ µ̃vec, and let

˜̃Y “ unvecpỸvec ´ µ̃vec, p, nq,

that is, a pˆ n matrix created by reshaping the vector Ỹvec ´ µ̃vec of length pn. The entries

of ˜̃Y are filled column-wise from the vector. If we assume a multivariate normal distribution

of Ỹvec ´ µ̃vec with mean zero and variance Σ (note we do not assume the real data follows

this distribution, we only make this assumption for the purpose of paramter estimations),

and based on the multivariate linear mixed model in [15], we have

˜̃Y “
˜̃G`

˜̃E; ˜̃G „ MNpˆn

´

0, D
1
2CgD

1
2 , K

¯

, ˜̃E „ MNpˆn

´

0, D̃
1
2CeD̃

1
2 , Inˆn

¯

. (2.27)

Where ˜̃Y is a p by n transformation of residuals of the phenotype after accounting for the

effects of covariates. ˜̃G is a p by n random effect matrix, ˜̃E is a p by n residual errors.

MNpˆn p0, V1, V2q is a p by n matrix normal distribution with mean 0, row covariance p by

p matrix V1 and column covariance n by n matrix V2. Note we do not assume the data follow

the distribution in (2.27), we just use it to calculate the estimation equations of the variance

components. Following the calculation in [27, 28, 29], using the spectral decomposition of K

we used before (K “ UV UT ), we obtained new transformation of residuals of the phenotype

after accounting for the effects of covariates
˜̃̃
Y “

˜̃Y U , random effects
˜̃̃
G “

˜̃GU and residual

errors
˜̃̃
E “

˜̃EU and we will have

˜̃̃
Y “

˜̃̃
G `

˜̃̃
E;

˜̃̃
G „ MNpˆn

´

0, D
1
2CgD

1
2 , V

¯

,
˜̃̃
E „ MNpˆn

´

0, D̃
1
2CeD̃

1
2 , Inˆn

¯

(2.28)

and this is equivalent to

y “ g ` e; g „ MVNp0, V b pD
1
2CgD

1
2 qq, e „ MVNp0, Inˆn b D̃

1
2CeD̃

1
2 q (2.29)
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where y “ vecp
˜̃̃
Y q, g “ vecp

˜̃̃
Gq and e “ vecp

˜̃̃
Eq and MVN denotes multivariate normal

distribution. Therefore, for each individual l, the new transformation of residuals of the

phenotype after accounting for the effects of covariates is assumed to follow independent but

not identical multivariate normal distribution to calculate the estimating equations:

yl “ gl ` el; gl „ MVNp0, δlD
1
2CgD

1
2 q, el „ MVNp0, D̃

1
2CeD̃

1
2 q. (2.30)

The variance for lth individual is Vl “ δlD
1
2CgD

1
2 `D̃

1
2CeD̃

1
2 and yl is the lth column vector

of
˜̃̃
Y , gl is the lth column vector of

˜̃̃
G, and el is the lth column vector of

˜̃̃
E, for @l “ 1, ..., n.

Based on (2.29), we have the incomplete data log-likelihood function as follows:

log ℓp
˜̃̃
Y | D,Cg, Ceq “

n
ÿ

ℓ“1

«

´
p

2
logp2πq ´

1

2
log |D̃

1
2CeD̃

1
2 ` δlD

1
2CgD

1
2 |

´
1

2
yTℓ pD̃

1
2CeD̃

1
2 ` δlD

1
2CgD

1
2 q

´1yℓ

ff

. (2.31)

Based on (2.30), we view
˜̃̃
G as missing values, then we can get the complete data log-

likelihood function as follows:

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq “

n
ÿ

ℓ“1

«

´ p logp2πq ´
1

2
log |D̃

1
2CeD̃

1
2 | ´

1

2
log |δlD

1
2CgD

1
2 |

´
1

2
eTℓ pD̃

1
2CeD̃

1
2 q

´1eℓ ´
1

2
gTℓ pδlD

1
2CgD

1
2 q

´1gℓ

ff

. (2.32)

We can rewrite (2.32) as follows:

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq “ log ℓ1p

˜̃̃
Y,

˜̃̃
G | D,Cgq ` log ℓ2p

˜̃̃
Y,

˜̃̃
G | D,Ceq (2.33)
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where the components are defined as:

log ℓ1p
˜̃̃
Y,

˜̃̃
G | D,Cgq “ ´

np

2
logp2πq ´ n log |D

1
2 | ´

p

2

n
ÿ

ℓ“1

log δℓ ´
n

2
log |Cg|

´
1

2
Tr

´

T1pD
1
2CgD

1
2 q

´1
¯

(2.34)

and

log ℓ2p
˜̃̃
Y,

˜̃̃
G | D,Ceq “ ´

np

2
logp2πq ´ n log |D̃

1
2 | ´

n

2
log |Ce|

´
1

2
Tr

´

T2pD̃
1
2CeD̃

1
2 q

´1
¯

. (2.35)

Here T1 “
řn

ℓ“1 δ
´1
ℓ gℓg

T
ℓ , T2 “

řn
ℓ“1 eℓe

T
ℓ are the sufficient statistics.

Maximizing the log-likelihood defined in (2.22) is equivalent to maximizing the log-likelihood

defined in (2.31). This optimization problem can be effectively solved using an EM algorithm

combined with the Newton-Raphson algorithm. Specifically, the E-step involves computing

the expected value of the complete data log-likelihood function defined in (2.33) with respect

to the conditional distribution of
˜̃̃
G given

˜̃̃
Y and current values of variance components, while

the M-step uses the Newton-Raphson algorithm to maximize this expected value. Since the

complete data log-likelihood function can be expressed in terms of sufficient statistics, we

need to compute the expected values of these sufficient statistics to obtain the expected value

of the complete data log-likelihood function. The conditional distribution of
˜̃̃
G given

˜̃̃
Y and

current values of variance components follows

gℓ | yℓ, D,Cg, Ce „ MVNpĝℓ, Σ̂ℓq, (2.36)

ĝℓ “ δℓD
1
2CgD

1
2

´

δℓD
1
2CgD

1
2 ` D̃

1
2CeD̃

1
2

¯´1
yℓ, (2.37)
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Σ̂ℓ “ δℓD
1
2CgD

1
2

´

δℓD
1
2CgD

1
2 ` D̃

1
2CeD̃

1
2

¯´1
D̃

1
2CeD̃

1
2 . (2.38)

Therefore we have:

EpT1 | yℓ, D,Cg, Ceq “

n
ÿ

ℓ“1

δ´1
ℓ Epgℓg

T
ℓ | yℓ, D,Cg, Ceq

“

n
ÿ

ℓ“1

δ´1
ℓ pĝℓĝ

T
ℓ ` Σ̂ℓq.

(2.39)

EpT2 | yℓ, D,Cg, Ceq “

n
ÿ

ℓ“1

Epeℓe
T
ℓ | yℓ, D, Cg, Ceq

“

n
ÿ

ℓ“1

Eppyℓ ´ gℓqpyℓ ´ gℓq
T

| yℓ, D,Cg, Ceq

“

n
ÿ

ℓ“1

yℓy
T
ℓ ´ 2ĝℓy

T
ℓ ` ĝℓĝ

T
ℓ ` Σ̂ℓ.

(2.40)

For simplicity we denote EpT1 | yℓ, D,Cg, Ceq “ S1 and EpT2 | yℓ, D, Cg, Ceq “ S2. Then

we have the expected value of the complete data log-likelihood function defined in (2.33)

with respect to the conditional distribution of
˜̃̃
G given

˜̃̃
Y and current values of variance

components as follows:

E ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

“ E ˜̃̃
G|

˜̃̃
Y,D,Cg

“

log ℓ1p
˜̃̃
Y,

˜̃̃
G | D,Cgq

‰

` E ˜̃̃
G|

˜̃̃
Y,D,Ce

“

log ℓ2p
˜̃̃
Y,

˜̃̃
G | D,Ceq

‰

.

(2.41)

where the components are defined as:

E ˜̃̃
G|

˜̃̃
Y,D,Cg

“

log ℓ1p
˜̃̃
Y,

˜̃̃
G | D,Cgq

‰

“ ´
np

2
logp2πq ´ n log |D

1
2 | ´

p

2

n
ÿ

ℓ“1

log δℓ ´
n

2
log |Cg|

´
1

2
Tr

´

S1pD
1
2CgD

1
2 q

´1
¯

.

(2.42)
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and

E ˜̃̃
G|

˜̃̃
Y,D,Ce

“

log ℓ2p
˜̃̃
Y,

˜̃̃
G | D,Ceq

‰

“ ´
np

2
logp2πq ´ n log |D̃

1
2 | ´

n

2
log |Ce|

´
1

2
Tr

´

S2pD̃
1
2CeD̃

1
2 q

´1
¯

.

(2.43)

We need to maximize (2.41) at each iteration. This is a constraint maximum likelihood

problem, since we need the correlation matrices to be positive (semi) definite and the elements

of the D matrix must be restricted to the range (0, 1). To relieve the constraint problem of

the elements of the D matrix, we take the following parametrization:

aii “ logp´logpDiiqq, for i “ 1, ..., p (2.44)

This parameterization maps values from the interval p0, 1q to the entire real line, R. And

the target function for elements in D matrix will be:

BE ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

Baii
“ 0, for i “ 1, . . . , p. (2.45)

After we get the values of aii, we can transfer them back to Dii using the following equation:

Dii “ expp´exppaiiqq (2.46)

Parametrization for correlation matrix

Under complete data setting, the MLE for covariance matrix has a closed form, which is

automatically positive (semi) definite. However, in the same setting, the MLE of the corre-

lation matrix does not have a closed form (diagonal elements are constraint to be 1), and

can only be obtained numerically. For any kind of search algorithm, one need to find a way

to propose the next step of the search so that the correlation matrix comes out to be posi-
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tive definite. Hence as part of estimating the correlation matrices (Cg and Ce), we explore

one recently proposed parameterization which enforce the positive (semi) definiteness and

the parameters are unrestricted. With the parameterization we can release the constrained

problem to an unconstrained one.

Archakov & Hansen recently proposed a novel parameterization of the correlation matrix

[30]. for a non-singular correlation matrix, C, the new parameterization of correlation matrix

is :

γpCq :“ veclplogCq (2.47)

where vecl(logC) denotes the vectorization operator of the lower off-diagonal elements of

logC (the matrix logarithm of C). They showed mapping from C to γ is one-to-one hence the

set of nˆn non-singular correlation matrices is isomorphic with Rnpn´1q{2 and they propose

a fast algorithm for the computation of the inverse mapping. They showed the finite sample

distribution of the vector γpĈq is well approximated by a Gaussian distribution under stan-

dard regularity conditions with weakly correlated elements. The mapping, γpCq is invariant

to the reordering of variables that define C, in the sense that a permutation of the variables

that define C will merely result in permutation of the element of γ. This parameterization

ensures positive definiteness without imposing additional restrictions and can be viewed as a

multivariate generalization of Fisher’s Z-transformation of a single correlation. One impor-

tant proposition of this parameterization is the derivatives of the correlation matrix C with

respect to the off-diagonal elements of the log-transformed correlation matrix G=logC have

relatively simple expression and are:

dveclrCs

dveclrGs
“ ElpI ´ AET

d pEdAE
T
d q

´1EdqApEl ` Euq
T (2.48)

where A “ dvecC
dvecG and the matrices El, Eu and Ed are elimination matrices such that

veclM “ ElvecM , veclMT “ EuvecM and diagM “ EdvecM for any square matrix M of
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the same size as C and G. This proposition is really useful when we use this parameterization

to estimate correlation matrices. Let Gg “ logpCgq and Ge “ logpCeq. The target functions

for elements in Cg and Ce are as follows:

BE ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

BveclpGgq
“ 0. (2.49)

BE ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

BveclpGeq
“ 0. (2.50)

And after we get the values of veclpGeq and veclpGgq, we can get reconstructed estimations of

Cg and Ce by applying the fast inverse mapping algorithm proposed by Archakov & Hansen

[30]:

Algorithm: Inverse Mapping of a Vector vecl(G) to a Correlation Matrix C

1. Initialize the Matrix G:

1. Create a p ˆ p zero matrix G.

2. Populate the lower triangular part (excluding diagonal) of G using veclG.

3. Add the transpose of G to itself to make it symmetric.

2. Initialize Variables:

1. Set dist Ð
?
p.

2. Extract the diagonal elements of G into diag_vec:

diag_vec Ð diagpGq

where diagpGq extracts the diagonal elements of G.
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3. Iterative Convergence Loop:

While dist ą
?
p ¨ tol_value, perform the following steps:

(a) Compute the matrix exponential of G:

exppGq

(b) Extract the diagonal elements of exppGq:

diag_exp Ð diagpexppGqq

(c) Compute the element-wise logarithm of diag_exp:

diag_delta Ð logpdiag_expq

(d) Update the diagonal adjustment vector:

diag_vec Ð diag_vec ´ diag_delta

(e) Update G by replacing its diagonal elements with the adjusted diagonal values:

diagpGq Ð diag_vec

where diagpGq sets the diagonal of G to diag_vec.

(f) Compute the norm of diag_delta and set it as dist:

dist Ð }diag_delta}
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4. Compute Output Matrix C:

1. Compute the matrix exponential of G:

C Ð exppGq

2. Set all diagonal elements of C to 1:

diagpCq Ð 1

where diagpCq sets the diagonal of C to 1.

5. Return C:

1. Return the resulting matrix C.

It is showed that the resulting C is a correlation matrix in [30].

2.3.3 EM Algorithm with Inner Newton-Raphson Iterations for M-step

We denote the set of parameters aii, i “ 1, . . . , p, veclpGgq, and veclpGeq collectively as ξ.

The EM algorithm alternates between updating ξ and transforming these updates back to

the original parameters (D,Cg, Ce) for likelihood evaluations. The EM algorithm alternates

between the following steps:

E-Step (Outer Iteration t): In the t-th EM iteration, compute the expected log-likelihood

of the complete data, as defined in (2.41):

Qpξ | ξptq
q “ E ˜̃̃

G|
˜̃̃
Y,Dptq,C

ptq
g ,C

ptq
e

“

log ℓp
˜̃̃
Y,

˜̃̃
G | Dptq, C

ptq
g , C

ptq
e q

‰

.

Here, ξptq is the current parameter estimate from the t-th EM iteration.
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M-Step (Inner Iteration k): To maximize Qpξ | ξptqq, we use the Newton-Raphson

algorithm. For the inner iterations indexed by k:

1. Set an independent starting value for Newton-Raphson, denoted as ξpt,0q

2. Perform updates as follows:

ξpt,k`1q
“ ξpt,kq

´ H´1
pξpt,kq

q∇pξpt,kq
q,

where:

• ξpt,kq is the parameter estimate at the k-th NR iteration within the t-th EM

iteration,

• ∇pξpt,kqq “ B
BξQpξ | ξpt,kqq is the gradient of Qpξ | ξpt,kqq,

• Hpξpt,kqq “ B2

Bξ2
Qpξ | ξpt,kqq is the Hessian matrix of Qpξ | ξpt,kqq.

Gradient: The gradient ∇pξq is computed as:

∇pξq “
B

Bξ
E ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

.

Hessian: The Hessian Hpξq is computed as:

Hpξq “
B2

Bξ2
E ˜̃̃
G|

˜̃̃
Y,D,Cg,Ce

“

log ℓp
˜̃̃
Y,

˜̃̃
G | D,Cg, Ceq

‰

.

Convergence of Newton-Raphson (k): The inner Newton-Raphson iterations termi-

nate when the change in Qpξ | ξpt,kqq satisfies:

|Qpξ | ξpt,k`1q
q ´ Qpξ | ξpt,kq

q| ă tolerance.

The result of the inner loop, ξpt`1q “ ξpt,kfinalq, is used for the next EM iteration.
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Choice of Starting Value ξpt,0q: The starting value ξpt,0q for the Newton-Raphson iter-

ations is derived as follows: Recall the sufficient statistics:

S1 “ EpT1 |
˜̃̃
Y,Dptq, C

ptq
g , C

ptq
e q “ E

˜

n
ÿ

ℓ“1

δ´1
ℓ gℓg

T
ℓ |

˜̃̃
Y,Dptq, C

ptq
g , C

ptq
e

¸

,

S2 “ EpT2 |
˜̃̃
Y,Dptq, C

ptq
g , C

ptq
e q “ E

˜

n
ÿ

ℓ“1

eℓe
T
ℓ |

˜̃̃
Y,Dptq, C

ptq
g , C

ptq
e

¸

.

Under the assumption of the distributions of gℓ and eℓ as defined in (2.30), the expected

values of S1 and S2 are:

EpS1q “ nD
1
2CgD

1
2 , EpS2q “ nD̃

1
2CeD̃

1
2 .

Thus, the initial values of the variance components are chosen as follows for 1 ď i, j ď p:

C
pt,0q
g ri, js “

S
ptq
1 ri, js

b

S
ptq
1 ri, isS

ptq
1 rj, js

,

C
pt,0q
e ri, js “

S
ptq
2 ri, js

b

S
ptq
2 ri, isS

ptq
2 rj, js

,

Dpt,0q
ri, is “

S
ptq
1 ri, is

S
ptq
1 ri, is ` S

ptq
2 ri, is

.

Where S
ptq
1 and S

ptq
2 are computed in the E-step. These values are then transformed into

the unconstrained parameter set ξpt,0q using the previously defined parametrization rules.

Convergence of EM Algorithm (t): The EM algorithm stops when the change in the

incomplete log-likelihood defined in (2.31) satisfies:

| log ℓp
˜̃̃
Y | Dpt`1q, C

pt`1q
g , C

pt`1q
e q ´ log ℓp

˜̃̃
Y | Dptq, C

ptq
g , C

ptq
e q| ă tolerance.
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Iterative Procedure:

1. Initialization: Start with initial parameter estimates C
p0q
g , C

p0q
e , Dp0q. These are

transformed to ξp0q using the parametrization defined earlier.

Choice of Cp0q
g and C

p0q
e : The matrices C

p0q
g and C

p0q
e are initialized as the sample

correlation matrix calculated across the rows of
˜̃̃
Y .

Choice of Dp0q: Each diagonal element d
p0q

ii of Dp0q is determined by fitting a linear

mixed model (LMM) for each row of
˜̃̃
Y . The steps are as follows:

(a) Model Definition: For the i-th row of
˜̃̃
Y , denoted

˜̃̃
Yi, fit the LMM:

˜̃̃
Yiℓ “ µ ` giℓ ` eiℓ, ℓ “ 1, . . . , n,

where:

• µ is the overall mean,

• giℓ „ N p0, σ2gq is the genetic effect (random effect),

• eiℓ „ N p0, σ2eq is the residual effect.

(b) Variance Decomposition: Estimate the variance components σ2g and σ2e by

optimizing the profile log-likelihood over the heritability h2, defined as:

h2 “
σ2g

σ2g ` σ2e
.

(c) Heritability Calculation: Use the maximized h2 from the profile log-likelihood

as the estimate for heritability of the i-th trait.

(d) Diagonal Element: Set dp0q

ii “ h2i , where h2i is the estimated heritability for the

i-th trait.
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2. Iterative Updates: For each t “ 0, 1, 2, . . ., perform:

(a) E-Step: Compute Qpξ | ξptqq using the current parameter estimates ξptq.

(b) M-Step: Perform Newton-Raphson (NR) iterations starting from ξpt,0q:

ξpt`1q
“ ξpt,kfinalq,

where kfinal is the last NR iteration that satisfies the M-step convergence criterion.

3. Termination: Stop the EM algorithm when the change in the incomplete log-likelihood

satisfies the EM convergence criterion. We get ξptfinalq and transform them back to

get our estimates of D̂, Ĉg and Ĉe.

2.4 Evaluating the Estimation of Variance Components

2.4.1 Procedures Used to Evaluate the Estimation of Variance Components

Recall that the variance components include the diagonal elements of the diagonal matrix

D and the lower off-diagonal elements of the correlation matrices Cg and Ce, collectively

denoted as Θ. To evaluate the performance of the EM algorithm incorporating the Newton-

Raphson algorithm, as proposed in Section 2.3.3, we compute the Fisher information for

this problem. Specifically, we analyze the scenario where the data are assumed to follow the

distribution defined in (2.30). It is important to emphasize that this assumption is made

solely for the purpose of evaluating the performance of the proposed procedure. We do

not assume that real data necessarily follow this distribution; the assumption is used only

to facilitate estimation and to assess the reliability of the parameter estimates. Recall we

assume y1, . . . , yn are independently distributed as

yℓ „ MVNp0,ΣℓpΘqq,
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where

ΣℓpΘq “ δℓD
1
2CgD

1
2 ` D̃

1
2CeD̃

1
2 .

According to the chain rule of Fisher information and the formula for Fisher information for

the multivariate normal distribution in [31], we have:

IpΘq “

n
ÿ

ℓ“1

IyℓpΘq, (2.51)

where

IyℓpΘqm,n “
1

2
Tr

ˆ

ΣℓpΘq
´1BΣℓpΘq

BΘm
ΣℓpΘq

´1BΣℓpΘq

BΘn

˙

, 1 ď m,n ď p2. (2.52)

The Fisher information IpΘq is a p2ˆp2 matrix and is for the entire sample of n individuals.

Standard theory tells us that the maximum likelihood estimator (MLE), Θ̂MLE, has an

approximate distribution:

Θ̂MLE „ NpΘ, IpΘq
´1

q,

for large n, under regularity conditions sufficient for a central limit theorem.

We perform multiple simulation replicates, denoted by nreps, where the parameter Θ is

kept fixed across all replicates. Consequently, IpΘq also remains fixed. After performing the

simulations, we obtain Θ̂1, . . . , Θ̂nreps . For each parameter, we use the qqconf R package,

developed by Weine, McPeek and Abney [32], to create QQ-plots.

For example, consider the second element of Θ, denoted as Θ2. The corresponding

estimated values across nreps replicates, Θ̂.2 “ pΘ̂12, . . . , Θ̂nreps2qT , form an independent

and identically distributed (iid) sample of size nreps from NpΘ2, rIpΘq´1s2,2q. The QQ-plot

provides a shaded simultaneous acceptance region to test whether the observed values (e.g.,

Θ̂.2) follow the specified distribution (e.g., NpΘ2, rIpΘq´1s2,2q). The test is conducted using

the method of Equal Local Level (ELL) [32]. If all the points lie within the shaded region,
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we conclude that the estimation for this parameter is valid.

For a single simulation setting, we generate p2 such plots. However, with multiple sim-

ulation settings, the number of QQ-plots increases significantly. Instead of generating a

QQ-plot for every parameter, we summarize the results using p-values. The qqconf package

provides functions to calculate p-values for the two-sided ELL test. Specifically, we use the

following R code to calculate the p-values:

library(qqconf)

cal_p_value <- function(variance, estimated_result, mean, p) {

result = rep(0, p^2)

for (i in 1:p^2) {

data = estimated_result[i, ]

theor_mean = mean[i]

theor_sd = sqrt(variance[i])

zscores = (data - theor_mean) / theor_sd

n = length(zscores)

tmp1 = pnorm(zscores)

tmp1 = sort(tmp1)

tmp2 = pbeta(tmp1, c(1:n), c(n:1))

tmp3 = min(min(tmp2), 1 - max(tmp2)) * 2

lb = qbeta(tmp3 / 2, c(1:n), c(n:1))

ub = qbeta(1 - tmp3 / 2, c(1:n), c(n:1))

p = get_level_from_bounds_two_sided(lb, ub)

result[i] = p

}

return(result)

}
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Here:

- variance is a vector of variances computed from the Fisher information matrix, specifically

prIpΘq´1s1,1, . . . , rIpΘq´1sp2,p2qT ,

- mean represents the true values of Θ used to simulate the data,

- estimated_result is a p2 ˆ nreps matrix, where each row contains the estimated values

for a parameter across nreps replicates.

This function computes p-values to assess deviations of the observed data, specifically

represented by the variable estimated_result, from theoretical distribution under the null

hypothesis. The test is based on a QQ-plot approach using two-sided ELL. For each hypoth-

esis, the function determines the largest significance level α such that the observed data lies

within the acceptance region of the QQ-plot, constructed using two-sided ELL bounds. This

acceptance region is defined based on the theoretical mean and variance for each parameter.

2.4.2 Simulation Results

We simulate data based on the model defined in (2.30) for n individuals and apply the EM

algorithm incorporating the Newton-Raphson algorithm, as proposed in Section 2.3.3, to

estimate the variance components. Furthermore, we compute the Fisher information using

equations (2.51) and (2.52) under different simulation settings. Note that we have a genetic

relationship matrix K, and the model in (2.30) requires the eigenvalues derived from the

spectral decomposition of K. We simulate data based on three different structures of K:

1. n
2 independent sibling pairs,

2. n independent individuals,

3. 63 independent identical pedigrees.
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2.4.2.1 Sibling Pairs Case

In this case, we assume there are 500 independent sibling pairs, resulting in a total of 1000

individuals. The K is defined by:

Ksib “ In
2 ˆn

2
b B, where B “

¨

˚

˝

1 1
2

1
2 1

˛

‹

‚

.

We perform the spectral decomposition of Ksib, obtaining the eigenvalues denoted as Vsib.

Each element of Vsib is used as δi in (2.30) to simulate the data.

Simulation setting 1:

We simulate data for 3 traits (p “ 3), using two positive definite correlation matrices, Cg

and Ce, along with a diagonal matrix D whose diagonal elements are constrained within the

interval p0, 1q. And we generate 1000 replicates for this setting.

Cg “

¨

˚

˚

˚

˚

˝

1 0 0.5

0 1 ´0.5

0.5 ´0.5 1

˛

‹

‹

‹

‹

‚

, Ce “

¨

˚

˚

˚

˚

˝

1 ´0.1 0.3

´0.1 1 0

0.3 0 1

˛

‹

‹

‹

‹

‚

, D “

¨

˚

˚

˚

˚

˝

0.3 0 0

0 0.5 0

0 0 0.4

˛

‹

‹

‹

‹

‚

. (2.53)

In this case, we have 9 parameters: the first 3 correspond to the diagonal elements of D, the

4th to 6th are the lower off-diagonal elements of Cg, and the last 3 are the lower off-diagonal

elements of Ce. We plot the QQ-plot for the estimation of the first parameter, as explained

in Section 2.4.1:
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Figure 2.1: QQ-plot for first parameter estimates in sibling-pairs case setting 1.
The plot contains 1000 points, each representing an estimate of the first parameter from
one replicate. The ELL method [32] is used to test whether the estimates deviate from the
expected normal distribution. The shaded region is the 95% confidence region computed
using ELL.

Figure 2.1 shows that all the points lie within the shaded region as expected. Hence, we

conclude that the estimates of the first parameter are valid. Instead of plotting the QQ-plots

like Figure 2.1 for all the parameter, we can get the p-values of the corresponding QQ-plots

as explained in Section 2.4.1:
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Table 2.1: P-values of the QQ-plots for parameter estimation in sibling-pairs case setting 1

Parameters P-values

Parameter 1 0.1764

Parameter 2 0.1985

Parameter 3 0.3291

Parameter 4 0.6937

Parameter 5 0.1054

Parameter 6 0.2360

Parameter 7 0.2683

Parameter 8 0.0532

Parameter 9 0.5380

The p-values assess deviations of the estimated parameters from the theoretical

distribution under the null hypothesis.

From Table 2.1, we observe that there is no clear evidence suggesting that any of the esti-

mated parameters deviate from their theoretical distribution.

Simulation setting 2:

We simulate data for 5 traits (p “ 5), using two positive definite correlation matrices, Cg

and Ce, along with a diagonal matrix D whose diagonal elements are constrained within the

interval p0, 1q. And we generate 1000 replicates for this setting.
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Cg “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0.5 0 ´0.5 0.1

0.5 1 0.2 0.3 ´0.3

0 0.2 1 0.4 ´0.1

´0.5 0.3 0.4 1 0.1

0.1 ´0.3 ´0.1 0.1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Ce “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.1 0 0 0 0

0 0.5 0 0 0

0 0 0.3 0 0

0 0 0 0.5 0

0 0 0 0 0.4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(2.54)

In this case, we have 25 parameters: the first 5 correspond to the diagonal elements of D,

the 6th to 15th are the lower off-diagonal elements of Cg, and the last 10 are the lower

off-diagonal elements of Ce. The p-values of the corresponding QQ-plots:

Table 2.2: P-values of the QQ-plots for parameter estimation in sibling-pairs case setting 2

Parameters P-values

Parameter 1 0.2349

Parameter 2 0.7848

Parameter 3 0.4587

Parameter 4 0.8329
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Table 2.2 (continued)

Parameters P-values

Parameter 5 0.6267

Parameter 6 0.0466

Parameter 7 0.6018

Parameter 8 0.9596

Parameter 9 0.4041

Parameter 10 0.5408

Parameter 11 0.1391

Parameter 12 0.3214

Parameter 13 0.6861

Parameter 14 0.1988

Parameter 15 0.3087

Parameter 16 0.8752

Parameter 17 0.7916

Parameter 18 0.5657

Parameter 19 0.9053

Parameter 20 0.4291

Parameter 21 0.2128

Parameter 22 0.8641

Parameter 23 0.8829

Parameter 24 0.5961

Parameter 25 0.6571

The p-values assess deviations of the estimated parameters from theoretical distribution

under the null hypothesis.
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There is only one p-value less than 0.05. Since we performed 25 tests, after accounting

for multiple testing, we conclude that there is no clear evidence suggesting that any of the

estimated parameters deviate from their theoretical distribution.

2.4.2.2 Independent Individuals Case

In this case, we assume there are 1000 independent individuals. The genetic relationship

matrix K is defined as the identity matrix:

K “ Inˆn,

where n “ 1000. Since K is the identity matrix, its eigenvalues are all equal to 1. Thus,

when simulating data using the model in (2.30), we set each δi to 1:

Simulation setting 1:

We simulate data for 3 traits (p “ 3), using the same Cg, Ce and D (2.53) in sibling pairs

case. And we generate 1000 replicates for this setting.
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Table 2.3: P-values of the QQ-plots for parameter estimation in independent individuals
case setting 1

Parameters P-values

Parameter 1 0.0190

Parameter 2 0.1878

Parameter 3 0.8814

Parameter 4 0.7048

Parameter 5 0.1268

Parameter 6 0.7767

Parameter 7 0.2532

Parameter 8 0.4736

Parameter 9 0.3236

The p-values assess deviations of the estimated parameters from the theoretical

distribution under the null hypothesis.

There is only one p-value less than 0.05. Since we performed 9 tests, after accounting for

multiple testing, we conclude that there is no clear evidence suggesting that any of the

estimated parameters deviate from their theoretical distribution.

Simulation setting 2:

We simulate data for 5 traits (p “ 5), using the same Cg, Ce and D (2.54) in sibling pairs

case. And we generate 1000 replicates for this setting.

Table 2.4: P-values of the QQ-plots for parameter estimation in independent individuals
case setting 2

Parameters P-values

Parameter 1 0.1789
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Table 2.4 (continued)

Parameters P-values

Parameter 2 0.0806

Parameter 3 0.3538

Parameter 4 0.9208

Parameter 5 0.2263

Parameter 6 0.3894

Parameter 7 0.7132

Parameter 8 0.3548

Parameter 9 0.0148

Parameter 10 0.8793

Parameter 11 0.5647

Parameter 12 0.1141

Parameter 13 0.9557

Parameter 14 0.8025

Parameter 15 0.2561

Parameter 16 0.7388

Parameter 17 0.8572

Parameter 18 0.3837

Parameter 19 0.2852

Parameter 20 0.4379

Parameter 21 0.4643

Parameter 22 0.7001

Parameter 23 0.0836

Parameter 24 0.2874
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Table 2.4 (continued)

Parameters P-values

Parameter 25 0.4408

The p-values assess deviations of the estimated parameters from the theoretical

distribution under the null hypothesis.

There is only one p-value less than 0.05. Since we performed 25 tests, after accounting

for multiple testing, we conclude that there is no clear evidence suggesting that any of the

estimated parameters deviate from their theoretical distribution.

2.4.2.3 Independent Identical Pedigrees Case

In this case, we assume there are 63 independent and identical pedigrees, each consisting of

3 generations with 16 individuals per pedigree, resulting in a total of 1008 individuals. The

pedigree structure used for data simulation is as follows:
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1 2

3 6 7 4 8 5

9 10 11 12 13 14 15 16

Figure 2.2: Three-generation pedigree of 16 individuals used in the simulation
studies.

We obtain the kinship matrix for the pedigree shown in Figure 2.2, denoted as Kped. Per-

forming the eigen-decomposition on Kped yields a vector of eigenvalues, denoted as Vped.

Since all 63 pedigrees are independent and identical, they share the same kinship matrix and,

consequently, the same eigen-decomposition. In the simulation process, the eigenvalues Vped

are repeatedly assigned as variance components (δi) in (2.30) for each pedigree. Specifically:

• δ1, δ2, . . . , δ16 is set to Vped,

• δ17, δ18, . . . , δ32 is also set to Vped,

• This pattern continues for all 63 pedigrees.
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Thus, the same set of eigenvalues, Vped, is used for each of the 63 pedigrees, resulting in a

total of 63 ˆ 16 “ 1008 variance components (δ1, δ2, . . . , δ1008).

Simulation setting 1:

We simulate data for 3 traits (p “ 3), using two positive definite correlation matrices, Cg

and Ce, along with a diagonal matrix D whose diagonal elements are constrained within the

interval p0, 1q. And we generate 1000 replicates for this setting.

Cg “

¨

˚

˚

˚

˚

˝

1.0 ´0.3 0.5

´0.3 1.0 0.5

0.5 0.5 1.0

˛

‹

‹

‹

‹

‚

, Ce “

¨

˚

˚

˚

˚

˝

1 0 0.5

0 1 ´0.5

0.5 ´0.5 1

˛

‹

‹

‹

‹

‚

, D “

¨

˚

˚

˚

˚

˝

0.5 0 0

0 0.3 0

0 0 0.2

˛

‹

‹

‹

‹

‚

. (2.55)

Table 2.5: P-values of the QQ-plots for parameter estimation in independent identical pedi-
gree case setting 1

Parameters P-values

Parameter 1 0.7418

Parameter 2 0.0466

Parameter 3 0.4588

Parameter 4 0.6626

Parameter 5 0.3485

Parameter 6 0.1259

Parameter 7 0.7780

Parameter 8 0.1769

Parameter 9 0.5328

The p-values assess deviations of the estimated parameters from the theoretical

distribution under the null hypothesis.
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There is only one p-value less than 0.05. Since we performed 9 tests, after accounting for

multiple testing, we conclude that there is no clear evidence suggesting that any of the

estimated parameters deviate from their theoretical distribution.

Simulation setting 2:

We simulate data for 5 traits (p “ 5), using the same Ce and D (2.54) in sibling pairs case

and the positive definite correlation matrix Cg as follows:

Cg “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0.5 0 ´0.2 0.1

0.5 1 0.2 0.3 ´0.3

0 0.2 1 0.4 ´0.1

´0.2 0.3 0.4 1 0.1

0.1 ´0.3 ´0.1 0.1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.56)

And we generate 1000 replicates for this setting.

Table 2.6: P-values of the QQ-plots for parameter estimation in independent identical pedi-
gree case setting 2

Parameters P-values

Parameter 1 0.1093

Parameter 2 0.6356

Parameter 3 0.1756

Parameter 4 0.5070

Parameter 5 0.1019

Parameter 6 0.2333

Parameter 7 0.5035

Parameter 8 0.8354

Parameter 9 0.3671
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Table 2.6 (continued)

Parameters P-values

Parameter 10 0.0555

Parameter 11 0.0022

Parameter 12 0.1490

Parameter 13 0.5609

Parameter 14 0.5398

Parameter 15 0.4562

Parameter 16 0.2753

Parameter 17 0.5708

Parameter 18 0.5851

Parameter 19 0.3719

Parameter 20 0.5958

Parameter 21 0.5523

Parameter 22 0.2756

Parameter 23 0.5053

Parameter 24 0.5632

Parameter 25 0.8512

The p-values assess deviations of the estimated parameters from the theoretical

distribution under the null hypothesis.

There is only one p-value less than 0.05. Since we performed 25 tests, after accounting

for multiple testing, we conclude that there is no clear evidence suggesting that any of the

estimated parameters deviate from their theoretical distribution.
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2.4.2.4 Summary of Simulation Results

From the simulations conducted, it is evident that the procedure proposed in Section 2.3.3

effectively solves the log-likelihood maximization problem under various circumstances. The

computational approach is feasible for a relatively small number of traits (approximately 5).
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CHAPTER 3

QUASI-LIKELIHOOD MODEL FOR MULTIPLE BINARY

TRAITS AND QUANTITATIVE TRAITS WITH SINGLE

GENETIC VARIANT

We can easily extend the model to include quantitative traits. Assume there are n individuals

and p traits of which b traits are binary and the rest are quantitative. For mean structure:

EpYij |X,Gq “ µij , gpµijq “ pβXqij ` pγGT
qij , for 1 ď i ď b, (3.1)

EpYij |X,Gq “ µij , µij “ pβXqij ` pγGT
qij , for 1 ` b ď i ď p, (3.2)

where

gpµijq “ log
µij

1 ´ µij
.

For the conditional variance structure, we have:

Ω :“ V arpvecpY q|X,Gq “ Γ1{2ΣΓ1{2. (3.3)

Γ is an np-dimensional diagonal matrix, with sth diagonal element, where s “ ppj ´ 1q ` i,

given by Γss “ V arpYij |X,Gq, which is equal to µijp1 ´ µijq if 1 ď i ď b and σ2i if

1 ` b ď i ď p, where σ2i represents the total residual variance of trait i. Σ is defined the

same as the model with only binary traits (2.3):

Σ “ K b pD1{2CgD
1{2

q ` Inˆn b pD̃1{2CeD̃
1{2

q, (3.4)

This model provides a unified framework for binary and quantitative traits, in the sense that

if all traits are quantitative, our model becomes equivalent to a standard multi-trait LMM

in [15] while each binary trait has the same binary-trait-specific model as in CARAT [11].
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3.1 Parameter Estimation

3.1.1 Parameter Estimation for Coefficients

The coefficient estimation follows the same approach as proposed in Section 2.2. Recall that

we bind the notations for the genotype vector and covariate matrix to define:

X̃ “

»

—

–

X

GT

fi

ffi

fl

, β̃ “ rβ, γs.

The quasi-score function for vecpβ̃q is given by:

Upvecpβ̃qq “ MTΩ´1
pvecpY q ´ vecpµqq, (3.5)

where

M “ Mpvecpβ̃qq “
Bvecpµq

Bvecpβ̃q
“ QpX̃T

b Ipˆpq.

Here, Q is an np-dimensional diagonal matrix whose s-th diagonal element, where s “

ppj ´ 1q ` i, is given by:

• Γss if 1 ď i ď b (i.e., for the binary traits),

• 1 if b ` 1 ď i ď p (i.e., for the quantitative traits).

Setting Upβ̃q “ 0 and plug in the definition of Ω gives the generalized estimating equation

for vecpβ̃q:

pX̃ b IpˆpqJ1{2Σ´1Γ´1{2
pvecpY q ´ vecpµqq “ 0. (3.6)

Here, J is an np-dimensional diagonal matrix whose s-th diagonal element, where s “

ppj ´ 1q ` i, is defined as:

• Γss if 1 ď i ď b (i.e., for the binary traits),
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• Γ´1
ss if b ` 1 ď i ď p (i.e., for the quantitative traits).

To solve for vecpβ̃q, a modified Newton-Raphson algorithm with Fisher scoring is used, which

involves iteratively updating vecpβq by:

vecpβ̃qpj`1q “ vecpβ̃qpjq ` tJT pvecpβ̃qpjqqΩ´1Jpvecpβ̃qpjqqu
´1

¨

tJT pvecpβ̃qpjqqΩ´1
rvecpY q ´ vecpµpvecpβ̃qpjqqqsu.

(3.7)

Since the ith row of Y represents the phenotypes of the n individuals for trait i, and the

ith row of β̃ represents the fixed effects of the covariates and genotype for trait i, we can

estimate the first b rows (corresponding to the binary traits) of β̃ under the single binary

trait model incorporating related individuals proposed in CARAT [11] independently. The

remaining rows (corresponding to the quantitative traits) can be estimated independently

under the single quantitative trait linear mixed model accounting for related individuals.

These estimators are then stacked together to form the initial value for vecpβ̃q. Starting

from the initial values for vecpβ̃q, we run this iterative procedure until convergence to obtain

vecpβ̃q, for fixed variance components (Θ). The technique developed in Section 2.2 facilitates

the calculation process.

3.1.2 Parameter Estimation for Variance Components

We conducted simulations using the variance components parameter estimation procedure

outlined in Section 2.3. Additionally, we performed simulations using an alternative estima-

tion approach discussed below. This alternative method is faster while providing comparable

results. Consequently, we opted to proceed with the alternative procedure for our simulation

analysis.

Residual variance

The initial values of the total residual variance for each trait, σ2i for 1 ` b ď i ď p, are
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estimated by the residual variance obtained from fitting the single quantitative trait linear

mixed model accounting for related individuals independently. We plug in the initial values

of the residual variance, correlation matrices, and D matrix to estimate the coefficients.

After obtaining the coefficients estimator vecp
̂̃βq, we estimate the total residual variance as

follows:

σ̂2i “

”

Yi¨ ´

´

ˆ̃βX̃
¯

i¨

ıT
rDiiK ` p1 ´ DiiqInˆns

´1
”

Yi¨ ´

´

ˆ̃βX̃
¯

i¨

ı

n
,

where Yi¨ denotes the i-th row of the Y matrix, and
´

ˆ̃βX̃
¯

i¨
denotes the i-th row of ˆ̃βX̃, for

i “ b ` 1, . . . , p. Here, ˆ̃β is obtained as unvecpvecp
̂̃βq, p, kq.

Correlation matrices

We plug the initial values of vecpβ̃q and σ2i for 1` b ď i ď p into Γ and denote the resulting

value as Γ̂p0q. Similar to what is described in Section 2.3.2, we define:

Γ̂p0q´1{2
vecpY q “ Ỹ

p0q
vec , Γ̂p0q´1{2

vecpµq “ µ̃
p0q
vec.

We then let:
˜̃Y p0q

“ unvecpỸ
p0q
vec ´ µ̃

p0q
vec, p, nq,

which represents a p ˆ n matrix created by reshaping the vector Ỹ
p0q
vec ´ µ̃

p0q
vec of length pn.

The initial values for the correlation matrices Cg and Ce are estimated using the sample

correlation matrix calculated across the rows of ˜̃Y p0q. We assume Cg “ Ce in our analysis

and do not perform further estimation for the correlation matrices.

Diagonal elements of D matrix (heritability for quantitative traits)

For D11, . . . , Dbb, i.e., the diagonal elements of the D matrix corresponding to the binary

traits, we estimate them as the ξ parameter in Equation 5 of [11]. Specifically, we fit the

single binary trait model incorporating related individuals, as proposed in CARAT [11],
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for each trait and obtain ξ. This parameter measures the proportion of trait i’s residual

variance that is due to the additive polygenic effect and is analogous to heritability for

quantitative traits but defined on the logit scale. For the remaining diagonal elements of the

D matrix corresponding to the quantitative traits, we fit a single quantitative trait linear

mixed model accounting for related individuals independently for each trait and use the

estimated heritability of each trait as the respective diagonal elements of D. We do not

perform further estimation for the D matrix.

3.2 Retrospective Association Testing: Asymptotic Method

To detect association between traits and the SNP of interest, we test H0 : γ “ 0 against

H1 : γ ‰ 0. We let µ̂0, Σ̂0, Ĵ0 and Γ̂0 denotes the values of µ, Σ, J and Γ evaluated

at pγ, β,Θq “ p0, β0,Θ0q, where pβ,Θq “ pβ0,Θ0q represents the estimation of vecpβq and

variance components (lower off-diagonal elements of Cg and Ce, diagonal elements of D

matrix and the residual variance σ2i for quantitative trait) under the null. Evaluated at the

null estimates, the coordinate of equation (3.6) corresponding to G becomes:

Uγ “ pGT
b IpˆpqĴ

1{2
0 Σ̂0Γ̂

´1{2
0 rV ecpY q ´ V ecpµ̂0qs. (3.8)

Similar to CARAT [11], and using the improvements from CERAMIC [12], we build a quasi-

likelihood model for G conditional on Y and X under the null hypothesis of no association,

which is specified by the following assumptions:

E0pG|X, Y q “ Xα and V ar0pG|X, Y q “ σ2gK, (3.9)

where α is an unknown k-dimensional vector of coefficients, σ2g ą 0 is an unknown variance

parameter and K is the same as the one in equation (2.3). The test statistic for retrospective
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quasi-likelihood score test of the null hypothesis H0 : γ “ 0 is:

T “ UT
γ ¨ rvarpUγ |X, Y qs

´1
¨ Uγ . (3.10)

Let Ĵ1{2
0 Σ̂0Γ̂

´1{2
0 rV ecpY q ´V ecpµ̂0qs “ L, and we form a pˆn matrix that satisfy vecpHq “

L, H is formed as follows, let first p elements of L to be the first column of H, second p

elements of L to be the second column of H, so on so forth. So H is the matrix whose jth

column consists of elments ppj ´ 1q ` 1 through pj of the vector L. Therefore by equation

(2.6):

Uγ “ pGT
b IpˆpqvecpHq “ vecpHGq “ HG. (3.11)

The last equal sign is because HG is a vector. Therefore

T “ pHGq
T

¨ rvarpHG | X, Y qs
´1

¨ HG

“ GTHT
¨ rHvarpG | X, Y qHT

s
´1

¨ HG

“
GTHT ¨ rHKHT s´1 ¨ HG

σ̂2g
. (3.12)

Under regularity conditions, T has an asymptotic χ2p distribution under null hypothesis.

So significance of association is assessed by comparing the test statistic T to a χ2p random

variable. We take estimator σ̂2g to be the residual mean squared error from linear regression

of genotype on covariate. Our test statistic is calculated based on parameter estimation

under the null hypothesis. Consequently, for a given study, parameter estimation needs to

be performed only once, ensuring the computational efficiency of our method.
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3.3 Retrospective Association Testing: JASPER

3.3.1 Introduction to JASPER

Other than the method for assessment of significance we have showed in previous section, we

also consider another method: JASPER (Joint Association analysis in Structured samples

based on approximating a PERmutation distribution) [24] which can be applied to multi-

traits test with multiple variants. JASPER has a lot appealing properties: (1) insensitive to

misspecification of the phenotype model, (2) does not require knowledge of distribution of the

test statistic under the null hypothesis, (3) allow population structure, related individuals,

covariates, ascertainment, rare variants, and multiple traits (4) can properly control type

I error and can provide substantial power gain over existing methods, (5) computationally

efficient. These properties will help us achieve the goals of our study. JASPER extend

the fast moment-matching approximation method to account for sample structure. It use

a variance component to incorporate sample structure. JASPER relies on two components:

(1) a transformation of the test statistic based on a null model proposed for the genetic

markers, Model (3.9) in our case, where both the mean and variance structures are specified

and incorporate the correlation present due to individuals with similar genetic backgrounds,

represented by the K matrix, and (2) an approximation of the null distribution of the

transformed test statistic based on its first three moments. The approximation used to

estimate the p-value for the test statistic would rely on the rows of either the genotype

matrix or the phenotype matrix being exchangeable, which in general is not true. The null

model that views the genotype as random is considered and use it to transform the genotype

model matrix so as to obtain exchangeable rows. To approximate the null distribution of the

test statistic, we need to assess its values on the possible permutations of the exchangeable

rows, or on a random sample of the permutation, but this is computationally intensive,

so JASPER proposed to use a moment-matching procedure based on approximating this
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distribution with a Pearson type III distribution using exact analytical calculations of the

first three moments of the test statistic. This approach eliminates the need to explicitly

carry out the permutations themselves and dramatically decrease the computation cost.

3.3.2 Details of JASPER

JASPER is utilized for a broad class of genetic association test statistics that can be expressed

in the following form:

T “ trpSGSY q, with SG “ MG∆MT
G , (3.13)

where SY is the phenotype kernel, a symmetric and positive definite n ˆ n matrix that is

a function of the phenotype matrix Y (of dimension n ˆ p, which is the transpose of the

phenotype matrix in our setting) and the covariate matrix X (of dimension n ˆ k, which

is the transpose of the covariate matrix in our setting). G is the n ˆ g genotype matrix,

indicates there are g genetic variants being test simultaneously. MG is an nˆ g matrix, and

∆ is a g ˆ g symmetric, positive definite matrix. Consequently, SG, the genotype kernel, is

also a symmetric and positive definite n ˆ n matrix. Let XG be an n ˆ k̃ sub-matrix of X

consisting of the confounding covariates, and define:

HG “ I ´ XGpXT
GXGq

´1XG, (3.14)

as the projection matrix. JASPER assumes MG “ MG and MXG “ 0, where M is an

n ˆ n matrix that is a function of X, is non-random given X, and is specifically taken to be

M “ HG. Furthermore, under the null hypothesis, JASPER assumes that SG and SY are

conditionally independent given X.

When related individuals or population structure are present, the rows of MG are not ex-

changeable. To address this, JASPER introduces a method to decorrelate the rows and
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columns of SG, along with corresponding adjustments to SY , resulting in transformed ma-

trices S̃G and S̃Y . This ensures that the test statistic remains equivalent, as:

T “ trpSGSY q “ trpS̃GS̃Y q, (3.15)

where S̃G “ M̃G∆M̃G
T . The empirical distribution of T can be obtained by permuting the

rows and columns of S̃G (using the same permutation for both rows and columns). This is

equivalent to permuting the rows of M̃G. To assess the significance of T , one can compute

its null distribution by considering all possible permutations of the rows of M̃G or by taking

a random sample of permutations. However, this approach is computationally intensive. To

overcome this, JASPER proposes a moment-matching procedure that approximates the null

distribution of T using a Pearson Type III distribution. This approximation is achieved

through exact analytical calculations of the first three moments of T .

3.3.2.1 Decorrelation of SG

To decorrelate SG, JASPER suggests the following steps:

1. Define:

Vr “ MKMT ,

where Vr is an n ˆ n matrix.

2. Perform the eigendecomposition of Vr:

Vr “ UΛUT ,

where U is the matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues.
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3. Determine the rank of Vr, denoted by ñ, typically given by:

ñ “ n ´ k̃,

where k̃ is the number of confounding covariates.

4. Construct the following matrices:

• Λ1{2: an n ˆ ñ matrix containing the ñ nonzero columns of Λ1{2.

• Λ´1{2: an n ˆ ñ matrix containing the ñ nonzero columns of pΛ´q1{2, where Λ´

is the Moore-Penrose generalized inverse of Λ.

5. Define the decorrelated matrices:

M̃G “ ΛT
´1{2U

TMG,

S̃Y “ ΛT
1{2U

TSY UΛ1{2,

S̃G “ M̃G∆M̃G
T
.

Here, S̃Y and S̃G represent the decorrelated phenotype and genotype kernels with dimension

ñ ă n, respectively.

3.3.3 Application of JASPER on BCMAP Single Genetic Variant Case

The test statistic we proposed in (3.12) belongs to the JASPER test statistics class. We can

write it as
TJASPER “ GTHT

¨ rHKHT
s
´1

¨ HG

“ trpGTHT
¨ rHKHT

s
´1

¨ HGq

“ trpHT
¨ rHKHT

s
´1

¨ HGGT
q.

(3.16)
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Thus, we naturally have HT ¨ rHKHT s´1 ¨ H “ SY as required for JASPER. We assume

XG “ 1n, that is XG is only a intercept column. Since we have only one genetic variant

being tested, ∆ is a scalar and we set ∆ “ 1
2f̂p1´f̂q

, where f̂ is the estimated allele frequency

of the genetic variant. Therefore, SG “ pI ´ 1
n1n1

T
n qG 1

2f̂p1´f̂q
GT pI ´ 1

n1n1
T
n qT . Once the

necessary test statistics are obtained, we can follow the decorrelation procedures outlined in

Section 3.3.2.1 to get S̃Y and S̃G and then apply JASPER test.

3.4 Computational Complexity

The primary computational challenge in BCMAP is the eigen-decomposition of the n ˆ n

matrix K, which is required to account for related individuals and population structure.

This step has a computational complexity of Opn3q but needs to be performed only once per

study. Notably, most methods that incorporate related individuals and population structure

also require this eigen-decomposition. When the number of traits and covariates is relatively

small, the computational complexity for parameter estimation and test statistic calculation

is approximately Opn2q per SNP.

3.5 Simulation Studies

We conducted a series of simulations to evaluate the performance of our method, BCMAP,

in achieving correct type I error control and demonstrating higher power compared to ex-

isting methods across various scenarios. For the association tests, we utilized both the

asymptotic method introduced in Section 3.2, referred to as BCMAP-Asymptotic, and the

JASPER method introduced in Section 3.3, referred to as BCMAP-JASPER. To ensure a

fair comparison, we selected methods that can incorporate related individuals and covariate

information. Additionally, we aimed to assess whether modeling binary traits separately

would result in improvements.

55



For comparisons, we included GEMMA [15], a method that tests associations between

multiple quantitative traits and a single genetic variant, while accounting for related indi-

viduals and covariate information. GEMMA [15] provides three tests: the Wald test, the

Likelihood Ratio Test (LRT), and the score test. Our simulations found that the LRT from

GEMMA does not perform well under our simulation settings. Specifically, it occasionally

produces extremely small p-values and, at other times, large p-values (equal to 1). As a

result, we decided not to include the LRT in our comparisons. We also compared BCMAP

with a univariate approach, which involves performing a univariate association test for each

trait using Wald test from a linear mixed model that accounts for related individuals and

covariate information. The smallest p-value from all univariate tests is then selected, and

Bonferroni correction is applied by multiplying the smallest p-value by the number of traits,

with the result capped at 1. We refer to this method as Bonf-minP.

3.5.1 Simulation Settings

Simulation Setting for Two Sub-population

One of the advantages of BCMAP is its ability to incorporate related individuals and pop-

ulation structure. To evaluate this, we simulated data for two sub-populations with related

individuals. A total of 62 three-generation pedigrees, each consisting of 16 individuals as

shown in Figure 2.2, were simulated, resulting in a sample size of 992 individuals.

Genotypes for the founders were generated first, and the genotypes for non-founders

within each pedigree were simulated using a gene-dropping approach. For genotypes in the

two sub-populations, we applied the Balding-Nichols model with F “ 0.01, where ancestral

allele frequencies for SNPs were drawn independently and uniformly between 0.2 and 0.8.

Of these pedigrees, 31 were assigned to sub-population 1, and the remaining 31 to sub-

population 2. The founders of each pedigree were assumed to be randomly sampled from

their respective sub-populations.
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Covariate and Trait Models

Two observed covariates are simulated: one is a continuous covariate drawn from a standard

Gaussian distribution, and the other is drawn from a Gaussian distribution with mean 0 and

variance 4. An additional covariate is used to simulate phenotypes but is assumed to be

unobserved. This covariate corresponds to the major causal variant, M , which is a vector of

length n and is simulated as a genetic variant, as described in the previous subsection and

it serves as a source of model misspecification. In all simulation scenarios, covariate values

are assumed to be independent across individuals and are re-simulated for each replicate.

We first simulate a random variable µ and then use this random variable to simulate the

phenotype Y .

We consider two models to simulate phenotypes, given the genotype and covariate infor-

mation:

Logistic Model for Binary Traits

µ “ βpˆkXkˆn ` γpˆgG
T
nˆg ` δpˆ1M

T
nˆ1 ` α ` ϵ, (3.17)

for i “ 1, . . . , p and j “ 1, . . . , n, we have:

for binary traits:

Yij „ Bernoullippijq, (3.18)

and

logitppijq “ µij . (3.19)

For quantitative traits:

Yij “ µij . (3.20)

Here, X is a 3ˆ n covariate matrix, including the intercept and the two observed covariates

described above. Y is the phenotype matrix, G is the genotype matrix with g genetic variants,
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in single genetic variant case g “ 1 and G will be a vector, and M is the unobserved major

causal variant. If we are simulating under the null, we will set γpˆg “ 0. The random effects

are modeled as:

α „ Np0, K b pW
1{2
1 CW

1{2
1 qq, (3.21)

ϵ „ Np0, Inˆn b pW
1{2
2 CW

1{2
2 qq, (3.22)

where K is estimated from 105 SNPs, C is a correlation matrix, and W1 and W2 are diagonal

matrices, with each diagonal element corresponding to the variance of the additive genetic

effect and the environmental effect for each trait, respectively. For each binary trait i,
pW1qii

pW1qii`pW2qii
represents the heritability analogue on the logit scale. For each quantitative

trait i, pW1qii
pW1qii`pW2qii

represents the heritability.

Liability Threshold Model for Binary Traits

µ “ βpˆkXkˆn ` γpˆgG
T
nˆg ` δpˆ1M

T
nˆ1 ` α ` ϵ, (3.23)

for i “ 1, . . . , p and j “ 1, . . . , n, we have:

for binary traits:

Yij “

$

’

’

&

’

’

%

1 if µij ě 0,

0 if µij ă 0,

(3.24)

and for quantitative traits:

Yij “ µij . (3.25)

The definitions of the parameters in the liability threshold model are the same as those in

the logistic model. For each binary trait i, pW1qii
pW1qii`pW2qii

represents the heritability analogue

on the liability threshold model. For each quantitative trait i, pW1qii
pW1qii`pW2qii

represents the

heritability.
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Genetic Relationship Matrix

The genetic relationship matrix estimate K in (3.21) is estimated from 105 SNPs and is

calculated by:

Kij “
1

L

L
ÿ

l“1

pGil ´ 2p̂lqpGjl ´ 2p̂lq

2p̂lp1 ´ p̂lq
, where L “ 105 and p̂l “

1

2n

n
ÿ

i“1

Gil. (3.26)

Type I Error and Power Simulation Setting

Type I error simulations For type I error simulations, we simulated 10 sets of 105 vari-

ants for each setting and calculated the 10 corresponding GRM estimates based on Equation

(3.26). For each set of 105 variants, phenotypes were re-simulated 100 times, and 100 vari-

ants were randomly selected to be tested against the simulated phenotypes. This process

resulted in a total of 105 replicates.

Power simulations For power simulations, 105 variants were simulated only once for

each setting and the corresponding GRM estimate is calculated based on Equation (3.26).

From these variants, one variant was selected as causal at a time and tested for association

with the traits and phenotypes are re-simulated each time. This process was repeated 1000

times, resulting in 1000 replicates for evaluating power.

3.5.2 Simulation Results: Logistic Model for Binary Traits

In this section, we examine the simulation results based on the logistic model for binary

traits defined in Section 3.5.1.
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3.5.2.1 2 Binary Traits, 1 Quantitative Trait Case

We simulated two binary traits and one quantitative trait. The first two traits are binary,

while the last trait is quantitative.

Setting 1

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 40% for the two binary

traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.6 0.3

0.6 1 0.3

0.3 0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the logit scale, as defined earlier, is approximately 90%

for the binary traits, and the heritability for the quantitative trait is approximately

50%.

4. For each binary trait, the Bernoulli variance explains, on average, 30% of the total

variability in the binary case-control status.

5. On the logit scale, considering the variability explained by the covariates, the major
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causal variant, and the additive polygenic effect (αij), the proportion of variability

explained by the covariates is approximately 80%.

Type I error result We test the null hypothesis that there is no genetic association

between a single genetic variant and the three traits we simulated. Since we simulated 105

replicates, we obtained 105 p-values. Under the null hypothesis, the p-values are expected

to follow a uniform distribution. Figure 3.1 depicts the (differenced) QQ-plots of the 105

p-values against the standard uniform distribution: we take the ´ log10-scaled p-values and

plot the difference between the observed quantiles and the theoretical quantiles (quantiles of

Uniformp0, 1q). The QQ-plot is generated using the qqconf R package [32], which provides

a shaded simultaneous acceptance region to assess whether the p-values follow a uniform

distribution using ELL method as described in Section 2.4.1. If all the p-values lie within

the shaded region, we conclude that the type I error is well controlled. We observe that

both our asymptotic method and the JASPER method control the type I error well. The

score test from GEMMA and Bonf-minP provide conservative p-values, whereas the Wald

test from GEMMA produces inflated p-values.
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Figure 3.1: (Differenced) QQ-plots for p-values: single genetic variant, logistic
model for binary traits, two binary traits and one quantitative trait (setting 1):
Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence region by
ELL
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Setting 2

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 ´0.3 0.5

´0.3 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 25% for the two binary

traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.6 0.5

0.6 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the logit scale, as defined earlier, is approximately 50%

for the first binary trait and 40% for the second binary trait, and the heritability for

the quantitative trait is approximately 50%.

4. For each binary trait, the Bernoulli variance explains, on average, 30% of the total

variability in the binary case-control status.

5. On the logit scale, considering the variability explained by the covariates, the major

causal variant, and the additive polygenic effect (αij), the proportion of variability

explained by the covariates is approximately 90%.

Type I error result We simulate the data under the null hypothesis that there is no

association between the 3 traits and the causal SNP. From Figure 3.2 we observe under
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this simulation setting our asymptotic method, the JASPER method and Wald test from

GEMMA control the type I error well. The score test from GEMMA and Bonf-minP still

provide conservative p-values. The improvement of the GEMMA Wald test might be at-

tributed to the decrease in the heritability analogue on the logit scale for binary traits. If

this value is too large, it may become challenging for GEMMA to perform accurate analysis.

Figure 3.2: (Differenced) QQ-plots for p-values: single genetic variant, logistic
model for binary traits, two binary traits and one quantitative trait (setting 2):
Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence region by
ELL
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Power analysis result Since under this simulation setting, GEMMA Wald test has cor-

rect type I error control, we could perform power analysis to compare if our method has

higher power. The parameter γ is chosen such that, on the logit scale, considering the vari-

ability explained by the covariates, the major causal variant, the additive polygenic effect

(αij), and the causal SNP, the proportion of variability explained by the causal SNP is ap-

proximately 1%. For the quantitative trait, the causal SNP explains approximately 1% of

the total variance. Wang, Meigs, and Dupuis [1] simulated two random variables based on a

linear mixed model with a positive correlation between the variables. One of the variables

was then transformed into a binary trait using a threshold model. Their simulation results

suggested that when the two untransformed traits have opposite directions of association

with a causal SNP, their joint modeling approach for one binary trait and one quantitative

trait is more powerful than conducting univariate tests for each trait. This observation mo-

tivates our interest in investigating whether our methods yield similar outcomes.

Notably, we simulate the random variable µ first and use it to simulate the traits. Specifi-

cally:

• µ1¨ corresponds to the first binary trait. We refer to this as the untransformed first

binary trait, following [1].

• µ2¨ corresponds to the second binary trait, referred to as the untransformed second

binary trait.

• µ3¨ represents the quantitative trait.

The correlation used to simulate the data between the untransformed first binary trait and

the quantitative trait is positive, and the correlation between the untransformed second

binary trait and the quantitative trait is also positive.

We simulated data with the following scenarios:

65



1. signpγq “ cp1, 1, 1qT : The causal SNP has the same direction of effect for the untrans-

formed binary traits and the quantitative trait. We denote this scenario as "Same

Direction."

2. signpγq “ cp1, 1,´1qT : The causal SNP has opposite directions of effect for the un-

transformed binary traits and the quantitative trait. We denote this as "Opposite

Direction."

3. signpγq “ cp1, 1, 0qT : The causal SNP affects only the binary traits. We denote this as

"Only Binary Traits."

4. signpγq “ cp0, 0, 1qT : The causal SNP affects only the quantitative trait. We denote

this as "Only Quantitative Trait."

We plot the power with respect to the ´ log10 transformation of different significance levels.

A higher curve in the plot indicates that the method has greater power. Figure 3.3 shows

the power curves for the four scenarios. We observe that the asymptotic method and the

JASPER method from BCMAP produce comparable results. Except for the "Only Quantita-

tive Trait" case, BCMAP demonstrates higher power compared to GEMMA and Bonf-minP.

For the "Opposite Direction" case, the gap between BCMAP and the other methods is more

pronounced than in the "Same Direction" case, which aligns with the findings from [1].

When only the quantitative trait is associated with causal SNP, all the methods produce

comparable results. And when binary trait is associated with causal SNP, BCMAP has

higehr power.
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Figure 3.3: Power curves: single genetic variant, logistic model for binary traits,
two binary traits and one quantitative trait (setting 2):

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). Same Direction. (b). Opposite

Direction. (c). Only Binary Traits. (d). Only Quantitative Trait.

3.5.2.2 1 Binary Trait, 2 Quantitative Traits Case

We simulated one binary trait and two quantitative traits. The first trait is binary, while

the last two traits are quantitative.
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Setting 1

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 50% for the binary trait.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 ´0.4 0.3

´0.4 1 ´0.3

0.3 ´0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the logit scale, as defined earlier, is approximately 70%

for the binary trait. The heritability for the first quantitative trait is approximately

40%, and for the second quantitative trait, it is approximately 50%.

4. For the binary trait, the Bernoulli variance explains, on average, 30% of the total

variability in the binary case-control status.

5. On the logit scale, considering the variability explained by the covariates, the major

causal variant, and the additive polygenic effect (αij), the proportion of variability

explained by the covariates is approximately 80%.

Type I error result We simulate the data under the null hypothesis that there is no

association between the 3 traits and the causal SNP. From Figure 3.4 we observe under this

simulation setting BCMAP control the type I error well. The score test from GEMMA and
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Bonf-minP still provide conservative p-values. The GEMMA Wald test provides slightly

inflated p-values, possibly due to the high heritability analogue (70%) on the logit scale for

the binary trait.

Figure 3.4: (Differenced) QQ-plots for p-values: single genetic variant, logistic
model for binary traits, one binary trait and two quantitative traits (setting 1):
Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence region by
ELL
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Setting 2

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 25% for the binary trait.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.5 0.5

0.5 1 0.4

0.5 0.4 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the logit scale, as defined earlier, is approximately 40%

for the binary trait. The heritability for the 2 quantitative traits is approximately 50%.

4. For the binary trait, the Bernoulli variance explains, on average, 30% of the total

variability in the binary case-control status.

5. On the logit scale, considering the variability explained by the covariates, the major

causal variant, and the additive polygenic effect (αij), the proportion of variability

explained by the covariates is approximately 90%.

Power analysis result Since the heritability analogue on the logit scale for the binary

trait is not very large, the GEMMA Wald test might have correct type I error control. We

directly conducted a power analysis for this setting. The parameter γ is chosen such that,

on the logit scale, considering the variability explained by the covariates, the major causal
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variant, the additive polygenic effect (αij), and the causal SNP, the proportion of variability

explained by the causal SNP is approximately 1%. For the quantitative traits, the causal

SNP explains approximately 0.5% of the total variance. Similar to before,

• µ1¨ corresponds to the binary trait. We refer to this as the untransformed binary trait.

• µ2¨ represents the first quantitative trait.

• µ3¨ represents the second quantitative trait.

The correlations used to simulate the data between the untransformed binary trait and the

quantitative traits are positive.

We simulated data with the following scenarios:

1. signpγq “ cp1, 1, 1qT : The causal SNP has the same direction of effect for the untrans-

formed binary trait and the quantitative traits. We denote this scenario as "Same

Direction."

2. signpγq “ cp1,´1,´1qT : The causal SNP has opposite directions of effect for the

untransformed binary trait and the quantitative traits. We denote this as "Opposite

Direction."

3. signpγq “ cp1, 0, 0qT : The causal SNP affects only the binary trait. We denote this as

"Only Binary Trait."

4. signpγq “ cp0, 1, 1qT : The causal SNP affects only the quantitative traits. We denote

this as "Only Quantitative Traits."

Figure 3.5 shows similar results as what we have in two binary traits and one quantitative

trait case.
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Figure 3.5: Power curves: single genetic variant, logistic model for binary traits,
one binary trait and two quantitative traits (setting 2):

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). Same Direction. (b). Opposite

Direction. (c). Only Binary Trait. (d). Only Quantitative Traits.

3.5.3 Simulation Results: Liability Threshold Model for Binary Traits

In this section, we examine the simulation results based on the liability threshold model for

binary traits defined in Section 3.5.1. Note that our quasi-likelihood model for binary traits

is based on the logistic model, so the model misspecification problem in this setting is more

severe.
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3.5.3.1 2 Binary Traits, 1 Quantitative Trait Case

Setting 1

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 40% for the two binary

traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.7 0.4

0.7 1 0.3

0.4 0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the liability threshold model, is approximately 90% for

the binary traits, and the heritability for the quantitative trait is approximately 50%.

4. On the liability threshold model, considering the variability explained by the covariates,

the major causal variant, the additive polygenic effect (αij) and the environment effect

(ϵij), the proportion of variability explained by the covariates is approximately 75%.

Type I error result We simulate the data under the null hypothesis that there is no

association between the 3 traits and the causal SNP. From Figure 3.6 we observe the result

is similar to Figure 3.1. The GEMMA Wald test provides inflated p-values, possibly due to

the high heritability analogue on the liability threshold model for the binary traits.
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Figure 3.6: (Differenced) QQ-plots for p-values: single genetic variant, liability
threshold model for binary traits, two binary traits and one quantitative trait
(setting 1): Top: original scale; bottom: zoomed in. The shaded region is the 99% confi-
dence region by ELL
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Setting 2

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.3 0.5

0.3 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 25% for the two binary

traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.3 0.6

0.3 1 0.3

0.6 0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the liability threshold model, is approximately 14% for

the binary traits, and the heritability for the quantitative trait is approximately 50%.

4. On the liability threshold model, considering the variability explained by the covariates,

the major causal variant, the additive polygenic effect (αij) and the environment effect

(ϵij), the proportion of variability explained by the covariates is approximately 90%.

Type I error result We simulate the data under the null hypothesis that there is no

association between the 3 traits and the causal SNP. From Figure 3.7 we observe the result

is similar to Figure 3.2. The improvement of the GEMMA Wald test might be attributed to

the decrease in the heritability analogue on the liability threshold model for binary traits.
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Figure 3.7: (Differenced) QQ-plots for p-values: single genetic variant, liability
threshold model for binary traits, two binary traits and one quantitative trait
(setting 2): Top: original scale; bottom: zoomed in. The shaded region is the 99% confi-
dence region by ELL

Power analysis result We conducted a similar power analysis as in the case of the logistic

model for binary traits. Figure 3.8 shows results similar to those in Figure 3.3.
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Figure 3.8: Power curves: single genetic variant, liability threshold model for
binary traits, two binary traits and one quantitative trait (setting 2):

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). Same Direction. (b). Opposite

Direction. (c). Only Binary Traits. (d). Only Quantitative Trait.

3.5.3.2 1 Binary Trait, 2 Quantitative Traits Case

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 0.3 0.5

0.3 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.
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The remaining parameters are chosen such that:

1. The simulated data result in a prevalence of approximately 25% for the two binary

traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.5 0.3

0.5 1 0.3

0.3 0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

3. The heritability analogue on the liability threshold model, is approximately 14% for

the binary trait, and the heritability for the 2 quantitative traits is approximately 50%.

4. On the liability threshold model, considering the variability explained by the covariates,

the major causal variant, the additive polygenic effect (αij) and the environment effect

(ϵij), the proportion of variability explained by the covariates is approximately 90%.

Type I error result We simulate the data under the null hypothesis that there is no

association between the 3 traits and the causal SNP. Figure 3.9 shows that BCMAP and the

GEMMA Wald test provide correct type I error control, while the GEMMA score test and

Bonf-minP produce conservative p-values under the null. The heritability analogue on the

liability threshold model for binary traits is low in this setting, which might explain why the

GEMMA Wald test performs well.
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Figure 3.9: (Differenced) QQ-plots for p-values: single genetic variant, liability
threshold model for binary traits, one binary trait and two quantitative traits:
Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence region by
ELL

Power analysis result Under this setting, we conducted a similar power analysis as in

the case of the logistic model for binary traits. Figure 3.10 shows results similar to those in

previous simulations.
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Figure 3.10: Power curves: single genetic variant, liability threshold model for
binary traits, one binary trait and two quantitative traits:

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). Same Direction. (b). Opposite

Direction. (c). Only Binary Trait. (d). Only Quantitative Traits.

3.5.4 Simulation Results: Problem of Ascertainment

In this section, we examine the simulation results under the scenario of ascertainment. As-

certainment arises when certain individuals in the target population have a higher or lower

likelihood of being included in the sample compared to others. This is particularly relevant

for binary traits, where cases are often oversampled to increase statistical power. Conse-
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quently, ascertainment is a common issue in studies involving binary traits. GEMMA Wald

test occasionally exhibits incorrect type I error control, Bonf-minP and GEMMA score test

end to yield conservative p-values under the null hypothesis. Therefore, these methods are

omitted from the evaluation.

We continue to investigate the scenario involving related individuals and population

structure. Specifically, we simulate a large number of individuals across two subpopulations

using a similar approach as described in 3.5.1. "Simulation Setting for Two Sub-population"

part. The simulation involves two binary traits and one quantitative trait, generated based

on the models discussed in 3.5.1 "Covariate and Trait Models" part. The parameters are

chosen to ensure that the prevalences of the first and second binary traits are approximately

5%. Additionally, the sample correlation between the two binary traits is set to a reasonable

amount. To introduce ascertainment, individuals are selected based on the first binary trait.

From subpopulation 1, we randomly retain 250 cases and 250 controls, and similarly, from

subpopulation 2, we randomly retain 250 cases and 250 controls. This results in a total

of 500 cases and 500 controls for the first binary trait, ensuring a balanced case-control

ratio. The simulation settings are designed to ensure a reasonable mix of cases and controls

for the second binary trait as well. After we get the ascertainment individuals, we simulate

genotypes and calculate the GRM estimate as described in Section 3.5.1. This is a phenotype-

based ascertainment, which not only influences the sample composition but also introduces

model misspecification, as the ascertainment process is not explicitly accounted for in the

simulation models.
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3.5.4.1 Data Simulated Based on Logistic Model for Binary Traits Before As-

certainment

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 ´0.3 0.5

´0.3 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data before ascertainment result in a prevalence of approximately 5%

for the two binary traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.6 0.7

0.6 1 0.5

0.7 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

so the sample correlation between the two binary traits is about 0.6.

Type I error results

We simulate the data under the null hypothesis that there is no association between the

three traits and the causal SNP. Subsequently, we perform ascertainment, followed by the

association test to obtain the p-values. Figure 3.11 shows BCMAP controls type I error

correctly.
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Figure 3.11: (Differenced) QQ-plots for p-values: ascertainment, single genetic
variant, logistic model for binary traits, two binary traits and one quantitative
trait: Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence
region by ELL

Power analysis results

The power simulation under ascertainment is computationally intensive and requires signif-

icant time. Since previous simulations indicate that BCMAP achieves the highest power

under the "Opposite Direction" setting, we conducted the simulation only for this scenario.

The variance explained by the causal SNP is set to be 7% in this case. Figure 3.12 demon-
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strates that BCMAP can detect signals even under ascertainment.

Figure 3.12: Power curves: ascertainment, single genetic variant, logistic model for
binary traits, two binary traits and one quantitative trait, "Opposite Direction"
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3.5.4.2 Data Simulated Based on Liability Threshold Model for Binary Traits

Before Ascertainment

The correlation matrix we used to simulate data is

C “

»

—

—

—

—

–

1 ´0.3 0.5

´0.3 1 0.5

0.5 0.5 1

fi

ffi

ffi

ffi

ffi

fl

.

The remaining parameters are chosen such that:

1. The simulated data before ascertainment result in a prevalence of approximately 5%

for the two binary traits.

2. The sample correlation matrix for the three traits is approximately:

»

—

—

—

—

–

1 0.4 0.7

0.4 1 0.3

0.7 0.3 1

fi

ffi

ffi

ffi

ffi

fl

.

so the sample correlation between the two binary traits is about 0.4.

Type I error results

We simulate the data under the null hypothesis that there is no association between the

three traits and the causal SNP. Subsequently, we perform ascertainment, followed by the

association test to obtain the p-values. Figure 3.13 shows BCMAP controls type I error

correctly.
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Figure 3.13: (Differenced) QQ-plots for p-values: ascertainment, single genetic
variant, liability threshold model for binary traits, two binary traits and one
quantitative trait: Top: original scale; bottom: zoomed in. The shaded region is the 99%
confidence region by ELL

Power analysis results

We simulate data under the "Opposite Direction" setting. Figure 3.14 demonstrates that

BCMAP can detect signals even under ascertainment.
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Figure 3.14: Power curves: ascertainment, single genetic variant, liability thresh-
old model for binary traits, two binary traits and one quantitative trait, "Oppo-
site Direction"

3.5.5 Discussion of Simulation Results

From the simulations we conducted, we observe that BCMAP is robust to model misspecifi-

cation and ascertainment. When binary traits are associated with the causal SNPs, BCMAP

provides higher power compared to GEMMA and Bonf-minP. Conversely, when only quanti-

tative traits are associated with the causal SNPs, BCMAP demonstrates comparable power

to GEMMA and Bonf-minP. Therefore, in scenarios where a binary trait of interest is present,

applying BCMAP may result in greater power.
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CHAPTER 4

QUASI-LIKELIHOOD MODEL FOR MULTIPLE BINARY

TRAITS AND QUANTITATIVE TRAITS WITH MULTIPLE

GENETIC VARIANTS

The model can be easily extended to include multiple genetic variants. This extension

is designed to perform genetic association testing for multiple traits with multiple genetic

variants simultaneously. Assume there are n individuals and p traits of which b traits are

binary and the rest are quantitative. And there are g genetic variants being tested, so G is

a n ˆ g matrix.

For mean structure:

EpYij |X,Gq “ µij , gpµijq “ pβXqij , for 1 ď i ď b, (4.1)

EpYij |X,Gq “ µij , µij “ pβXqij , for 1 ` b ď i ď p, (4.2)

where

gpµijq “ log
µij

1 ´ µij
.

For the conditional variance structure, we have:

Ω :“ V arpvecpY q|X,Gq “ Γ1{2ΣΓ1{2. (4.3)

Γ is an np-dimensional diagonal matrix, with sth diagonal element, where s “ ppj ´ 1q ` i,

given by Γss “ V arpYij |X,Gq, which is equal to µijp1 ´ µijq if 1 ď i ď b and σ2i if

1 ` b ď i ď p, where σ2i represents the total residual variance of trait i. Instead of model

genotypes as fixed effects, we model them as random effects in Σ so that we have more
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degrees of freedom.

Σ “ τ2rpGW 2GT
q b pD1{2CgD

1{2
qs ` K b pD1{2CgD

1{2
q ` Inˆn b pĎ1{2CeĎ

1{2
q (4.4)

τ2 is the parameter of interest that controls the ratio of proportion of residual variance due

to the genetic variant effects vs. proportion of residual variance due to iid noise, W is an

optional g ˆ g weight matrix for the variants and Ď “ I ´ pτ2 ` 1qD, where we impose the

additional constraint 0 ď pτ2 ` 1qdi ď 1 for 1 ď i ď p. We are interested in testing the

null hypothesis that τ2 “ 0. Under the null, the model of multiple genetic variants reduces

to the same null model as the single variant one, so the estimation of nuisance parameters

(coefficient and variance components) under the null proceeds in exactly the same way as

before.

4.1 Retrospective Association Testing: JASPER

When testing multiple traits with multiple genetic variants, asymptotic approximations may

fail in scenarios involving high-dimensional outcomes [33, 34] or limited sample sizes [35, 36].

JASPER [24] is a more robust method so we propose to utilize JASPER for our association

test. Recall JAPSER relies on the transformation of the test statistic based on a null model

proposed for the genetic markers. We build a quasi-likelihood model for G conditional on

Y and X under the null hypothesis of no association, which is specified by the following

assumptions:

E0pG|X, Y q “ XTB and V ar0pG|X, Y q “ F b K, (4.5)

where B is an unknown coefficients matrix, K is the genetic covariance among the individu-

als and F is a positive semi-definite matrix that represents the covariance among the genetic

variants and we do not need to make any assumptions of F when applying JASPER. The ret-

rospective test statistic for testing the null hypothesis H0 : τ2 “ 0 is T “ trppSGqpHTAHqq
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where H is the phenotype information matrix we have in single genetic variant case (3.12), A

is chosen so that in the special case of all quantitative traits, we get what is in the JASPER

[24].

4.1.1 Linear Mixed Models in JASPER

To determine A, we first look at the linear mixed model (LMM) for multiple quantitative

traits in JASPER [24], expressed as:

Y “ Xβ ` Gγ ` α ` ϵ, (4.6)

where Y is the n ˆ p phenotype matrix, X is the n ˆ k covariate matrix, and G is the n ˆ g

genotype matrix. The term α represents additive polygenic random effects, where:

vecpαq „ Np0, Va b Kq, (4.7)

with Va being an unknown p ˆ p positive definite matrix representing the covariance among

traits due to additive polygenic effects, and K being the genetic relationship matrix. The

random effects for the tested variants are represented by γ, an g ˆ p matrix. Although the

full distribution of γ is not specified, it is assumed that:

Ervecpγqs “ 0, and Varrvecpγqs “ τ2Vg b W, (4.8)

where Vg is a pˆ p covariance matrix that is either pre-specified or set equal to Va or Ve. W

is a pre-specified g ˆ g positive definite "weight matrix", and τ2 is an unknown scalar. For

this model, the conditional expectation and variance of Y given X and G are:

ErY |X,Gs “ µ, and VarrvecpY q|X,Gs “ Ω, (4.9)
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where µ “ Xβ and:

Ω “ τ2Vg b pGWGT
q ` Va b K ` Ve b Inˆn. (4.10)

To test the null hypothesis H0 : τ2 “ 0, which corresponds to a joint test of association

between the p traits and the g SNPs, they propose to use

SY “ Ỹ V̂gỸ
T , (4.11)

where Ỹ is an n ˆ p matrix given by:

vecpỸ q “ Ω̂´1
0 vecpY ´ µ̂q, (4.12)

with:

vecpµ̂q “ X̃pX̃T Ω̂´1
0 X̃q

´1X̃T Ω̂´1
0 vecpY q, (4.13)

and:

X̃ “ Ipˆp b X, Ω̂0 “ V̂a b K ` V̂e b Inˆn. (4.14)

Here, V̂a and V̂e are the estimates of Va and Ve under the null hypothesis. If Vg is pre-

specified, then V̂g “ Vg. Otherwise, if Vg is set equal to Va or Ve, then:

V̂g “ V̂a, or V̂g “ V̂e. (4.15)

Therefore, one can use SY “ Ỹ V̂aỸ
T or SY “ Ỹ V̂eỸ

T to form the test statistic.

4.1.2 Application of JASPER on BCMAP Multiple Genetic Variants Case

Genotype Kernel

We still assume that XG, as defined in Section 3.3.2, represents the intercept. Additionally,
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we assume that ∆ is a diagonal matrix, where each diagonal element is defined as: ∆ii “

1
2f̂ip1´f̂iq

, where f̂i denotes the estimated allele frequency for genetic variant i. Therefore,

SG “ pI ´ 1
n1n1

T
n qG∆GT pI ´ 1

n1n1
T
n qT .

Phenotype Kernel

Recall for phenotype kernel we have SY “ HTAH, A is chosen so that in the special case

of all quantitative traits, we get what is in the JASPER [24]. We have two choices, setting

A to be V̂a, the estimated additive polygenic traits covariance or setting A to be V̂e, the

estimated environment traits covariance. For simplicity we assume Cg “ Ce.

Let D̂0 and Ĉ0 be the estimations of D and C under the null model. Ĵ0 is the matrix defined

in (3.6), evaluated under the null. Σ̂0, Γ̂0, and µ̂0 are the parameters evaluated under the

null. Define:

vecpỸ q “ Ĵ0
1{2

Σ̂0Γ̂0
´1{2

rvecpY q ´ vecpµ̂0qs, (4.16)

vecp
˜̃
Y q “ Σ̂0Γ̂0

´1{2
rvecpY q ´ vecpµ̂0qs. (4.17)

A “ R1{2D̂0
1{2

Ĉ0D̂0
1{2

R1{2, (4.18)

where R is a p ˆ p diagonal matrix with the ith diagonal element given by:

Rii “
p
˜̃
Y
T
K

˜̃
Y qii

pỸ TKỸ qii

. (4.19)

If all the traits are quantitative, then:

Γ̂0 “ Γ̃0 b I, Ĵ0 “ Γ̂0 (4.20)

and:

vecp
˜̃
Y q “ Γ̂0

1{2
vecpỸ q “ pΓ̃0

1{2
b IqvecpỸ q “ vecpIỸ Γ̃0

1{2
q. (4.21)
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Thus: ˜̃
Y “ Ỹ Γ̃0

1{2
. (4.22)

For the diagonal elements:

p
˜̃
Y
T
K

˜̃
Y qii “ σ2i pỸ TKỸ qii. (4.23)

This implies:

Rii “ σ2i , R “ Γ̃0, (4.24)

so:

A “ Va in JASPER. Which is the trait covariance due to additive polygenetic effect.

(4.25)

Likewise, if we define

A “ R1{2 ̂̃D0

1{2
Ĉ0

̂̃D0

1{2
R1{2, (4.26)

We have when all the traits are quantitative

A “ Ve in JASPER. Which is the trait covariance due to environmental effect. (4.27)

4.2 Computational Complexity

Similar to the single genetic variant case, the primary computational challenge in BCMAP

for multiple genetic variants is the eigen-decomposition of the n ˆ n matrix K, which is

necessary to account for related individuals and population structure. This step has a com-

putational complexity of Opn3q, but it only needs to be performed once per study. Notably,

most methods that incorporate related individuals and population structure also require

this eigen-decomposition. When the number of traits and covariates is relatively small, the

computational complexity for parameter estimation and test statistic calculation is approx-
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imately Opgn2q for a set of g SNPs tested simultaneously.

4.3 Simulation Study

We conducted a series of simulations to evaluate the performance of our method, BCMAP

for multiple genetic variants, to verify that it achieves correct type I error control and

demonstrates strong power. MultiSKAT [25] is a method capable of incorporating related

individuals, population structure, and covariate information to test multi-trait multi-variant

associations for quantitative traits. However, based on our simulation results, when covari-

ates are included in the model, the MultiSKAT R program produces unreliable p-values under

the null hypothesis. Consequently, we do not compare this method with our approach. In-

stead, we compare our method to an alternative approach where all binary traits are modeled

as quantitative traits under our model setting. We denote this approach as BCMAP-quan.

Both method using JASPER for association tests. We have two choices for the A matrix in

the phenotype kernel. We denote it as Va when, for all traits being quantitative, A “ Va.

Similarly, we denote it as Ve when, for all traits being quantitative, A “ Ve. In the appendix

of [22], the authors suggested that when multiple candidate phenotype kernels are available,

one can consider a linear combination of these kernels with predefined weights. Following

this approach, we also consider taking the average of the phenotype kernels with Va and

Ve plugged in, which we refer to as the avg method. Finally, we also consider taking the

smaller p-value obtained with Va and Ve plugged in, and applying Bonferroni correction to

that p-value by multiplying it by 2 (capped at 1). We denote this approach as Bonf.

4.3.1 Simulation Settings

The simulation model is the same as what we have in single genetic variant case 3.5.1,

except we have g “ 50, that is, we test associations with 50 genetic variants simultaneously

now. We still simulate data based on the two sub-populatoin setting described in 3.5.1.

94



Type I Error and Power Simulation Setting

Type I error simulations For type I error simulations, we simulated 10 sets of 105 vari-

ants for each setting and calculated the 10 corresponding GRM estimates based on Equation

(3.26). For each set of 105 variants, they are randomly split into 2000 non-overlapping marker

panels, each contains 50 marks. Phenotypes were re-simulated 100 times, and 100 marker

panels were randomly selected to be tested against the simulated phenotypes. This process

resulted in a total of 105 replicates.

Power simulations For power simulations, 105 variants were simulated only once for

each setting, and the corresponding GRM estimate was calculated based on Equation (3.26).

These variants were randomly divided into 2000 non-overlapping marker panels, each con-

taining 50 markers. From these panels, one panel was selected at a time to test for association

with the traits. Since it is unlikely that all markers in a panel are causal, half of the markers

in the selected panel were randomly designated as causal. Among the causal markers, half

were assigned positive effects, while the other half were assigned negative effects. Phenotypes

were re-simulated for each iteration. This process was repeated 1000 times, resulting in 1000

replicates for evaluating power.

4.3.2 Simulation Results

We conducted simulations using both the logistic model for binary traits and the liability

threshold model for binary traits. Both simulation settings produced qualitatively similar

results. Therefore, in this thesis, we present only the results from simulations based on the

logistic model for binary traits.
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4.3.2.1 2 Binary Traits, 1 Quantitative Trait Case

We simulated 2 binary traits and 1 quantitative trait based on the logistic model for binary

traits. Under the null hypothesis, we use the same set of parameters as in Setting 2 of the

single genetic variant case for two binary traits and one quantitative trait, with the logistic

model applied for the binary traits, as described in 3.5.2.1.

Type I error results

We simulate the data under the null hypothesis that there is no association between the three

traits and the causal SNPs. Figure 4.1 demonstrates that both BCMAP and BCMAP-quan,

with different phenotype kernels (excluding the Bonf method), correctly control the type I

error. This result highlights the robustness of JASPER. However, the Bonf method provides

conservative p-values under the null hypothesis.
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Figure 4.1: (Differenced) QQ-plots for p-values: multiple genetic variants, logistic
model for binary traits, two binary traits and one quantitative trait: Top: original
scale; bottom: zoomed in. The shaded region is the 99% confidence region by ELL

Power analysis results

The parameter γ is chosen such that, on the logit scale, considering the variability explained

by the covariates, the major causal variant, the additive polygenic effect (αij), and the

causal SNPs, the proportion of variability explained by all the causal SNPs is approximately

3%. For the quantitative trait, all the causal SNPs explain approximately 3% of the total
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variance.

We are interested in three scenarios:

1. All Traits: All traits are associated with the causal SNPs.

2. Only Binary Traits: Only the binary traits are associated with the causal SNPs.

3. Random Two Traits: At each trial, two traits are randomly selected to be associated

with the causal SNPs.

For the case where only the binary traits are associated with the causal SNP, BCMAP

with Va plugged in (BCMAP_Va) and BCMAP-quan with Va ( BCMAP-quan_Va) plugged

in provide lower power than others. Therefore, we also plot the power curves without these

two methods to make a better comparison.

Figure 4.2 shows that under different settings, BCMAP with the Bonf method consis-

tently provides either the largest or second-largest power compared to all other candidates.

Therefore, when no prior information about the phenotype kernel is available, and binary

traits are of interest, we recommend applying BCMAP with Va and Ve plugged in, selecting

the smaller p-value, and applying Bonferroni correction by multiplying it by 2 (capped at 1).
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Figure 4.2: Power curves: multiple genetic variants, logistic model for binary
traits, two binary traits and one quantitative trait:

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). All Traits. (b). Only Binary Traits.

(c). Only Binary Traits (exclude BCMAP_Va and BCMAP-quan_Va). (d). Random Two

Traits.

4.3.2.2 1 Binary Trait, 2 Quantitative Traits Case

We simulated 1 binary trait and 2 quantitative traits based on the logistic model for binary

traits. Under the null hypothesis, we use the same set of parameters as in Setting 2 of the

single genetic variant case for one binary trait and two quantitative trait, with the logistic

model applied for the binary trait, as described in 3.5.2.2.
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Type I error results

We simulate the data under the null hypothesis that there is no association between the

three traits and the causal SNPs. Figure 4.3 demonstrates similar results as Figure 4.1

Figure 4.3: (Differenced) QQ-plots for p-values: multiple genetic variants, logistic
model for binary traits, one binary trait and two quantitative traits: Top: original
scale; bottom: zoomed in. The shaded region is the 99% confidence region by ELL

Power analysis results

We are interested in four scenarios:
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1. All Traits: All traits are associated with the causal SNPs.

2. Only Binary Trait: Only the binary trait is associated with the causal SNPs.

3. Only Quantitative Traits: Only the quantitative traits are associated with the

causal SNPs.

4. Random Two Traits: At each trial, two traits are randomly selected to be associated

with the causal SNPs.

For the case where only the binary traits are associated with the causal SNPs, BCMAP

with Va plugged in (BCMAP_Va) and BCMAP-quan with Va ( BCMAP-quan_Va) plugged

in provide extremely small power so we exclude these two in the plot. Figure 4.4 also

demonstrates that, under different settings, BCMAP with the Bonf method consistently

provides either the largest or second-largest power compared to all other candidates. This

further supports our recommendation to use BCMAP with the Bonf method.
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Figure 4.4: Power curves: multiple genetic variants, logistic model for binary
traits, one binary trait and two quantitative traits:

(a) (b)

(c) (d)

Power curves for different simulation scenarios: (a). All Traits. (b). Only Binary Trait

(exclude BCMAP_Va and BCMAP-quan_Va). (c). Only Quantitative Traits. (d).

Random Two Traits.

4.3.2.3 Ascertainment with 2 Binary Traits and 1 Quantitative Trait

We simulate the data with ascertainment as discussed in Section 3.5.4. Under the null

hypothesis, we use the same set of parameters specified in that section.
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Type I error results

We simulate the data under the null hypothesis that there is no association between the

three traits and the causal SNPs. Since avg method is not optimal in previous simulations,

we do not include that in our analysis. Figure 4.5 demonstrates similar results as Figure 4.1.

Figure 4.5: (Differenced) QQ-plots for p-values: ascertainment, multiple genetic
variants, logistic model for binary traits, two binary traits and one quantitative
trait: Top: original scale; bottom: zoomed in. The shaded region is the 99% confidence
region by ELL
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Power analysis results

The parameter γ is chosen such that, on the logit scale, considering the variability explained

by the covariates, the major causal variant, the additive polygenic effect (αij), and the

causal SNPs, the proportion of variability explained by all the causal SNPs is approximately

7%. For the quantitative trait, all the causal SNPs explain approximately 7% of the total

variance.

We are interested in two scenarios:

1. Only Binary Traits: Only the binary traits are associated with the causal SNPs.

2. Random Two Traits: At each trial, two traits are randomly selected to be associated

with the causal SNPs.

For the case where only the binary traits are associated with the causal SNP, BCMAP

with Va plugged in (BCMAP_Va) and BCMAP-quan with Va ( BCMAP-quan_Va) plugged

in provide lower power than others. Therefore, we also plot the power curves without these

two methods to make a better comparison.

Figure 4.6 further highlights the consistent performance of BCMAP with the Bonf method,

as it provides either the largest or second-largest power across different settings. This re-

inforces its utility as a robust approach in scenarios where phenotype kernel information is

limited.
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Figure 4.6: Power curves: ascertainment, multiple genetic variants, logistic model
for binary traits, two binary traits and one quantitative trait:

(a) (b)

(c)

Power curves for different simulation scenarios: (a). Only Binary Traits. (b). Only Binary

Traits (exclude BCMAP_Va and BCMAP-quan_Va). (c). Random Two Traits.

4.3.3 Discussion of Simulation Results

From the simulation results, we observe that the BCMAP multiple genetic variants ver-

sion is robust to model misspecification and ascertainment. There are multiple choices for

phenotype kernels when conducting the test. In cases where no prior information about

the phenotype kernel is available and binary traits are of interest, we recommend applying

BCMAP with Va and Ve plugged in, selecting the smaller p-value, and applying Bonferroni
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correction by multiplying it by 2 (capped at 1) to achieve greater power.
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CHAPTER 5

DATA ANALYSIS

We apply BCMAP to analyze diabetes and body mass index (BMI) from the Framingham

Heart Study (FHS) [37]. FHS is a a long-term observational study that spans multiple

generations and includes both unrelated and related individuals. Our use of the FHS data

was approved by the institutional review board of the Biological Sciences Division of the

University of Chicago. Our analysis focuses on the Offspring Cohort. Participants in this

cohort underwent measurements up to nine times, roughly every four years. Diabetes and

BMI are the phenotypes of interest, while age and sex are the covariates included in the

analysis. The phenotypes and covariates are determined as follows: For each exam, if an

individual has a blood glucose (BG) level ě 200mg/dl, a fasting plasma glucose (FPG)

level ě 126mg/dl, or is under treatment for diabetes, the individual is considered to have

diabetes at that exam. We identify the earliest exam at which diabetes is detected and use

the corresponding age and BMI as covariates. If age or BMI are unavailable for that exam,

we select the nearest available values. However, if the nearest values are more than 10 years

apart from the exam, the individual is excluded from the analysis. For individuals who

never have diabetes across all exams (including those with some but not all missing exams),

we use the age and BMI recorded at the individual’s last attended exam as covariates. If

this information is unavailable, we choose the nearest available values. Again, if the nearest

values are more than 10 years apart from the last attended exam, the individual is excluded

from the analysis.

Among the study participants with available Affymetrix 500K genotype data, we exclude

individuals who meet either of the following criteria: (1) completeness (the proportion of

markers with successful genotype calls) ď 96%, or (2) empirical self-kinship coefficient Φ̂ii ą

1.05. Additionally, we exclude from our analysis SNPs that meet any of the following criteria:

(1) call rate ď 96%, (2) Mendelian error rate ą 2%, or (3) minor allele frequency (MAF)
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ă 1%. We impute any missing genotypes using IMPUTE2 [38]. We also restrict our analysis

to SNPs located on autosomes. These quality control steps result in a final dataset of

380,364 SNPs and 3,372 individuals with genotype, phenotype and covariate data. The

GRM estimate K is calculated using all the SNPs with an MAF greater than 5% by the

equation (3.26) (L is no longer 105 in this case). The sample correlaton between BMI and

diabetes is around 0.3.

5.1 Single Genetic Variant

We conducted a genome-wide association analysis between the SNPs and the combination

of diabetes (binary) and BMI (quantitative) by applying the BCMAP single genetic variant

version discussed in Section 3, including age and sex as covariates. We use both asymptotic

and JASPER methods to conduct the association tests. We select all the SNPs with p-values

less than 10´4 for both the asymptotic method and the JASPER method.

On chromosome 1, we identified a SNP near the gene KCNJ10, which resides in a region

on chromosome 1q previously linked to type 2 diabetes in Pima Indians and six other pop-

ulations [39]. Additionally, we found SNPs near the genes LOC105378617, TMCO1, and

TMCO1-AS1, which have not been previously proposed to be related to diabetes or BMI.

Notably, SNPs near LOC105378617 have p-values smaller than the GWAS significance

threshold (5 ˆ 10´8), suggesting an opportunity to study this gene further in the context of

diabetes and BMI.

On chromosome 2, we identified SNPs near the gene FMNL2. Genome-wide association

studies (GWAS) have reported SNPs in FMNL2 associated with body height, bone density,

and traits linked to diabetes, such as IgG glycosylation [40].

On chromosome 3, we identified a SNP near the gene SEC22A, where GWAS have

reported associations between SNPs in this gene and body height [41]. We also found SNPs

near the gene ADCY5, which has been linked to type 2 diabetes, body height, birth weight,
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fasting glucose, waist circumference adjusted for BMI, and BMI itself in previous GWAS

studies [42].

On chromosome 5, we identified SNPs near the gene ANXA6. Currently, no studies

associate ANXA6 with diabetes or BMI, but further investigation may reveal potential

links.

On chromosome 6, SNPs near the gene RIPOR2 were identified. GWAS have associated

SNPs in this gene with hip circumference adjusted for BMI, bone density, and body height

[43].

On chromosome 7, we identified SNPs near the gene STEAP2-AS1. GWAS have re-

ported associations between SNPs in STEAP2-AS1 and type 2 diabetes, fasting glucose,

and bone density [44].

On chromosome 8, we found SNPs near LOC107986933, but there is limited research

on this gene.

On chromosome 10, we identified many SNPs near the gene TCF7L2. Studies have

shown that this gene is associated with BMI and diabetes [45, 46].

On chromosome 20, we identified a SNP near the gene ANGPT4. No findings have

associated ANGPT4 with diabetes or BMI, warranting further investigation.

Finally, we also found SNPs that are not close to any known gene, and no findings have

associated these SNPs with diabetes or BMI, indicating a need for additional studies.

Table 5.1: GWAS of BMI and Diabetes for FHS Offspring Cohort

SNP Chr Position

(GRCh37)

Nearest Gene Asymptotic JASPER

rs6425866 1 30641646 LOC105378617 8.7 ˆ 10´9 3.0 ˆ 10´8

rs6704040 1 30644674 LOC105378617 8.7 ˆ 10´9 3.0 ˆ 10´8

rs17503555 1 182537599 NA 2.9 ˆ 10´6 3.3 ˆ 10´6
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Table 5.1 (continued)

SNP Chr Position

(GRCh37)

Nearest Gene Asymptotic JASPER

rs17568993 1 182537494 NA 4.6 ˆ 10´6 5.3 ˆ 10´6

rs7518099 1 165736880 TMCO1,

TMCO1-AS1

3.0 ˆ 10´5 5.3 ˆ 10´5

rs4657476 1 165732661 TMCO1 3.0 ˆ 10´5 5.2 ˆ 10´5

rs17375748 1 160010151 KCNJ10 4.3 ˆ 10´5 5.9 ˆ 10´5

rs6733002 2 153200867 FMNL2 8.7 ˆ 10´7 2.6 ˆ 10´6

rs6741728 2 153268746 FMNL2 6.5 ˆ 10´6 1.8 ˆ 10´5

rs9823302 3 178140217 NA 2.0 ˆ 10´6 6.4 ˆ 10´6

rs7643790 3 122926556 SEC22A 2.2 ˆ 10´5 2.7 ˆ 10´5

rs9850375 3 123023615 ADCY5 7.0 ˆ 10´5 7.8 ˆ 10´5

rs4958895 5 150487195 ANXA6 2.1 ˆ 10´5 2.6 ˆ 10´5

rs4958893 5 150486991 ANXA6 3.0 ˆ 10´5 3.5 ˆ 10´5

rs673782 6 24964002 RIPOR2 1.8 ˆ 10´5 1.1 ˆ 10´5

rs365630 6 24967115 RIPOR2 1.8 ˆ 10´5 1.1 ˆ 10´5

rs11970548 6 14823968 NA 2.7 ˆ 10´5 4.0 ˆ 10´5

rs4711791 6 44598555 NA 2.8 ˆ 10´5 3.5 ˆ 10´5

rs432006 6 24972903 RIPOR2 4.3 ˆ 10´5 2.7 ˆ 10´5

rs10952976 7 89544391 STEAP2-AS1 9.2 ˆ 10´6 5.7 ˆ 10´6

rs6972809 7 89544278 STEAP2-AS1 1.3 ˆ 10´5 8.3 ˆ 10´6

rs11489497 7 89533047 STEAP2-AS1 4.3 ˆ 10´5 3.4 ˆ 10´5

rs17161595 7 9388999 NA 5.9 ˆ 10´5 7.5 ˆ 10´5

rs7832518 8 25649116 LOC107986933 9.0 ˆ 10´6 1.9 ˆ 10´5
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Table 5.1 (continued)

SNP Chr Position

(GRCh37)

Nearest Gene Asymptotic JASPER

rs1593403 8 25646700 LOC107986933 2.1 ˆ 10´5 4.0 ˆ 10´5

rs12243326 10 114788815 TCF7L2 1.7 ˆ 10´7 1.2 ˆ 10´7

rs4506565 10 114756041 TCF7L2 7.5 ˆ 10´7 6.4 ˆ 10´7

rs4132670 10 114767771 TCF7L2 9.9 ˆ 10´7 7.8 ˆ 10´7

rs10823687 10 72890441 NA 1.3 ˆ 10´6 1.5 ˆ 10´6

rs7901695 10 114754088 TCF7L2 1.4 ˆ 10´6 1.2 ˆ 10´6

rs7090550 10 72913623 NA 7.4 ˆ 10´6 8.3 ˆ 10´6

rs10885409 10 114808072 TCF7L2 8.1 ˆ 10´5 7.2 ˆ 10´5

rs11196205 10 114807047 TCF7L2 8.3 ˆ 10´5 7.3 ˆ 10´5

rs11196208 10 114811316 TCF7L2 8.6 ˆ 10´5 7.7 ˆ 10´5

rs6589086 11 109638891 NA 9.9 ˆ 10´6 1.6 ˆ 10´5

rs6486090 11 13128303 NA 8.9 ˆ 10´5 7.3 ˆ 10´5

rs4638447 13 64533688 NA 1.9 ˆ 10´5 1.7 ˆ 10´5

rs12461941 19 37984650 NA 3.1 ˆ 10´5 2.2 ˆ 10´5

rs910389 20 894722 ANGPT4,

LOC105372492

7.5 ˆ 10´6 2.1 ˆ 10´5

5.2 Multiple Genetic Variants

To apply the BCMAP multiple genetic variants version, we utilize the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database [47]. We identify the genes in Type II diabetes

mellitus (KEGG ID: H00409), Type I diabetes mellitus (KEGG ID: H00408), and Genetic

obesity (KEGG ID: H02106), as well as the genes in the pathways related to these diseases
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in KEGG. We only focus on the genes that are on autosome and total of 2507 genes are

studied. We aim to test whether the cis-SNPs of these genes are associated with diabetes

and BMI simultaneously. We find the GRCh37 positions of these genes. Then, we determine

the starting and ending positions by extending 500 kb upstream and downstream of each

gene (subtracting 500 kb from the starting position and adding 500 kb to the ending position

of the gene), and the SNPs available within this region are designated as the cis-SNPs for

each gene. We map the positions of SNPs in the Framingham Heart Study (FHS) using rs

numbers to GRCh37 positions. Among the genes analyzed, the number of cis-SNPs per gene

ranges from 14 to 433, with a median of 130 cis-SNPs.

We use Va and Ve as the A matrix in the phenotype kernel as we did in simulations

(Section 4.3). We did not detect any set of cis-SNPs that is significant. The smallest p-

value with Va plugged in is 2.7 ˆ 10´4 for the gene TLR4, and the smallest p-value with

Ve plugged in is 3.0 ˆ 10´4 for the gene CPA2. The previously detected TCF7L2 in single

genetic analysis is included in the analysis, and its p-value is 0.38 with Va plugged in and

0.06 with Ve plugged in. Using cis-SNPs is more common when studying gene expressions

and may not be suitable for the type of analysis we conducted. Further study may be needed

for this analysis.
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Table 5.2: Number of Genes for each Pathway/Disease

Pathway/Disease ID Number of Genes
H02106 23
H00408 22
H00409 13
hsa04930 45
hsa04110 149
hsa04115 72
hsa04350 105
hsa04911 83
hsa04972 99
hsa04330 61
hsa03320 72
hsa04310 166
hsa04141 156
hsa04714 196
hsa04923 54
hsa04935 119
hsa04940 42
hsa04659 104
hsa04658 89
hsa04672 45
hsa04060 285
hsa04630 159
hsa04151 348
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CHAPTER 6

CONCLUSIONS

We developed BCMAP (Binary and Continuous Multi-trait Association test with Population

structure), a novel modeling framework for multi-trait mapping of a combination of binary

and quantitative phenotypes, based on a mixed-effects quasi-likelihood framework. BCMAP

accommodates covariates, population structure, and relatedness, capturing the dichotomous

nature of binary traits, and is suitable for testing both single and multiple genetic variants.

Our test employs a retrospective approach and incorporates the recently proposed fast,

powerful, and robust genetic association test method, JASPER.

We solve the challenging parameter estimation problem by employing useful parameter-

izations and utilizing the EM algorithm with Newton-Raphson updates. Additionally, we

developed a method to evaluate this estimation procedure. Simulations for the single genetic

variant version have shown that BCMAP is robust to model misspecification and ascertain-

ment. When binary traits are associated with the causal SNP, BCMAP gains more power

compared to existing methods. For multiple genetic variants tested with multiple traits si-

multaneously, the choice of phenotype kernel influences the results. We proposed several

phenotype kernels to address this. Simulations demonstrated that the BCMAP multiple

genetic variants version is robust to model misspecification and ascertainment. Additionally,

when binary traits are associated with causal SNPs, modeling binary traits separately pro-

vides more power. We applied BCMAP to the Framingham Heart Study to analyze diabetes

and BMI. For single genetic variant association tests, we identified several SNPs near genes

known to be associated with diabetes, height, weight, or BMI. We also identified SNPs with-

out prior knowledge, which could lead to further interest in studying these SNPs and nearby

genes for BMI or diabetes. For multiple genetic variants association tests, we analyzed the

cis-SNPs of genes known to be associated with Type I diabetes, Type II diabetes, and genetic

obesity, as well as genes within pathways known to be associated with these diseases. We
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did not detect any set of cis-SNPs significantly associated with diabetes and BMI. Further

study may be needed for this analysis.
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