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Abstract

Harmonic balls are domains that satisfy the mean-value
property for harmonic functions. We establish the exis-
tence and uniqueness of harmonic balls on Liouville
quantum gravity (LQG) surfaces using the obstacle prob-
lem formulation of Hele-Shaw flow. We show that LQG
harmonic balls are neither Lipschitz domains nor LQG

metric balls, and that the boundaries of their comple-
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mentary connected components are Jordan curves. We
conjecture that LQG harmonic balls are the scaling limit
of internal diffusion limited aggregation on random pla-
nar maps. In a companion paper, we prove this in the
special case of mated-CRT maps.
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1 | INTRODUCTION
1.1 | Overview

Let u be a locally finite Radon measure on C. A harmonic ball for u centered at z € C is an open
set A(z) C C containing z that satisfies the mean-value property

1
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for all functions f that are harmonic in a neighborhood of the closure of A(z).

© 2024 The Author(s). Proceedings of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Proc. London Math. Soc. (3) 2025;130:¢70018.
https://doi.org/10.1112/plms.70018

wileyonlinelibrary.com/journal/plms 1 of 82


mailto:ahmedmb@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/plms
https://doi.org/10.1112/plms.70018
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fplms.70018&domain=pdf&date_stamp=2024-12-19

20f 82 | BOU-RABEE and GWYNNE

1.1.1 | Liouville quantum gravity

In this article, we will construct and study harmonic balls in the setting of Liouville quantum
gravity (LQG). LQG is a canonical one-parameter family of random fractal surfaces that were intro-
duced by Polyakov in the 1980s in the context of bosonic string theory [71]. One sense in which
these surfaces are canonical is that they are known or conjectured to describe the scaling limits
of various types of random planar maps (see Section 1.3 for more details).

Heuristically, for y € (0,2) and a domain U C C, a y-LQG surface parameterized by U is the
two-dimensional Riemannian manifold with Riemannian metric tensor e’ (dx2 + dy?), where
dx? + dy? is the Euclidean metric tensor and h is a variant of the Gaussian free field (GFF) on
U. This metric tensor does not make literal sense since A is a random generalized function, not
a true function. Nevertheless, it is still possible to define the associated volume form, a.k.a. the
y-Liouville measure. This is a random, locally finite Radon measure on U that is informally given

by
u(dz) = '@ dz, (1.2)

where dz denotes Lebesgue measure.

The expression (1.2) can be made rigorous as part of a general theory of regularized random
measures called Gaussian multiplicative chaos [50, 74, 75]. This theory shows that the Liouville
measure is a well-defined (random) Radon measure that is measurable with respect to h (the
converse is also true [9]). However, the Liouville measure is quite irregular: y, is supported on

the “thick” points of the GFF, a dense fractal set of Hausdorff dimension 2 — }'2—2 and hence is
mutually singular with respect to Lebesgue measure [23, 43].

There is a vast literature on LQG: see [33, 83] for introductory survey articles and [8] for a more
detailed introduction. However, only minimal prior knowledge of this literature is needed to read
this paper. The necessary background will be reviewed in Section 2.

1.1.2 | LQG harmonic balls

We will be interested in harmonic balls, as defined in (1.1), in the case when u is the y-Liouville
measure, 4, for some y € (0,2). We call these domains y-LQG harmonic balls. One of our main
motivations for studying LQG harmonic balls is that we expect them to be the scaling limits of
internal diffusion limited aggregation (IDLA) [56] on random planar maps. See Section 1.3 for
further discussion.

We will construct y-LQG harmonic balls via a certain partial differential equation involving p;,.
In particular, this PDE Hele-Shaw flow’ (defined in Section 3.1 below) describes the movement of a
Newtonian fluid on a y-LQG surface. The irregularity of u,, precludes applying the classical theory
of existence and uniqueness of harmonic balls [14, 24, 26, 79] in the LQG setting. Much of the
existing technology requires u to be bounded from above and below by a multiple of the Lebesgue
measure — a constraint too strict to be satisfied, even approximately, by y,;,. Consequently, even
the existence of y-LQG harmonic balls is far from obvious. Indeed, nontrivial harmonic balls do
not exist in general — take, for instance, u to be a Dirac measure.

T The family of y-LQG harmonic balls we construct are weak solutions to a Hele-Shaw problem, see [30, Section 3.5] and
[76].
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‘We address this difficulty by following a different path, inspired by arguments from discrete
Laplacian growth [21, 47]. Roughly speaking, we show that it is unlikely for Brownian motion to
avoid regions of large 1;,-mass and then use this to show harmonic balls exist. This argument also
leads to geometric requirements harmonic balls satisfy. We later use these requirements to show
that “typical” y-LQG harmonic balls are neither Lipschitz domains nor LQG metric balls.

In contrast to the constructions of other objects associated with LQG, such as the LQG measure,
the LQG metric, and Liouville Brownian motion, our construction of LQG harmonic balls does not
use any approximation or regularization procedure. Rather, LQG harmonic balls are constructed
directly as the solutions of an optimization problem involving the LQG measure (see Section 3.1).

An LQG surface is a certain type of random fractal (albeit not one defined as a subset of R¢ for
some d). Analysis on fractals is a well-studied topic, see, for example, [51, 83, 89]. One program of
research in this area is to construct the Laplacian on a fractal and then use this to develop a theory
of elliptic PDE on the fractal. As discussed further in Section 2, Brownian motion, and hence the
Laplacian, has been constructed on LQG surfaces [6, 25]. The present paper may be thought of as
an initial step in the study of PDE on LQG surfaces.

1.2 | Statement of the main result

Fix the LQG parameter y € (0, 2). Let h be a whole-plane GEF, or more generally a whole-plane
GEF plus the function —a, log| - |, where &y < Q :=2/y + y/2. Let u,;, be the y-LQG area mea-
sure associated with h. The precise definitions of 4 and y;, will be reviewed in Section 2. For now,
the unfamiliar reader can think of u;, as a random, nonatomic, locally finite Borel measure on C
that assigns positive mass to every open subset of C.

Our main result concerns existence and uniqueness of a family of y-LQG harmonic balls. To
prove uniqueness, we enlarge the class of harmonic functions in the definition to include those
of the form,

Hy(D) = {/ Go(-,¥)v(dy) : vis asigned Radon measure with support in O\D }, (1.3)
0

where O, D C C are bounded open sets and G, is the Green’s function for Brownian motion in the
domain O (defined in Section 2.3 below). That is, A(z) is a harmonic ball centered at z € C, if (1.1)
is satisfied for all functions f = f; + f, where f; is harmonic in a neighborhood of the closure
of A(z) and f, € H,(A(2)) for some O with A(z) C O.

We are now ready to state our main existence and uniqueness result.

Theorem 1.1 (Existence and uniqueness of harmonic balls). On an event of probability one,
for each z € C, there exists a unique family of harmonic balls {A,(z)};5 satisfying the following
properties:

(a) Foreacht > 0and z € C, u,(A(2)) = t, up(OA;(x)) = 0, and A,(z) is equal to the interior of
its closure.

(b) The domains A;(z) are bounded, connected, contain {z}, increase continuously in t (in the
Hausdorff topology), and satisfy N5 A;(z) = {z}.

In some literature on harmonic balls, for example, [79] or [41], uniqueness is only proven up to
sets of zero mass. In our setting, we get exact uniqueness thanks to the requirement that A;(z) is
equal to the interior of its closure.
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4 0f 82 BOU-RABEE and GWYNNE

FIGURE 1 Simulations of y-LQG harmonic balls with respect to the same GFF instance for y = 0.5,1.0, 1.8.
The colors distinguish harmonic balls of different mass. From the figures, it appears that the complement of an
LQG harmonic ball is not necessarily connected. We expect that this is the case for a “typical” LQG harmonic ball.

FIGURE 2 Simulations of y-LQG metric balls with respect to the same GFF instance as Figure 1 for
y =0.5,1.0,1.8.

We also show that typical harmonic balls are “novel”; that is, they are neither Euclidean balls
nor LQG metric balls. We also show that the boundaries of their complementary connected com-
ponents are Jordan curves. Compare Figures 1 and 2. The precise definition of the LQG metric
ball will be given in Section 2; for now the reader may think of it as the natural notion of metric
ball on an LQG surface.

Theorem 1.2 (Novelty of harmonic balls). The following is true on an event of probability 1.
For Lebesgue-a.e. t, A;(0), constructed in Theorem 1.1, is neither a Lipschitz domain nor an LQG-
metric ball. Moreover, for each t > 0, the boundaries of the connected components of C \ KI(O) are
Jordan curves.

We remark that the harmonic balls given by Theorem 1.1 are locally determined by u,,, in the
sense of the following statement.

Proposition 1.3. For each fixed t > 0 and x € C, the closed LQG harmonic ball Kt(x) is a local
set for h in the sense of [81, Lemma 3.9], that is, for each deterministic open set U C C, the event
{A;(x) C U} is measurable with respect to o(h|y;).

1.3 | Background

We provide some context and motivation for the study of harmonic balls on LQG surfaces.
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1.3.1 | Harmonic balls

The term “harmonic ball” was coined by Shahgholian-Sjodin in [82] and is a special case of
quadrature domains for harmonic functions. A quadrature domain is a subset of C for which the
integral of a harmonic function can be expressed as a sum of simpler functionals (such as point
evaluations). Quadrature domains have a long history and are closely related to classical balayage
(sweeping) [19], Hele-Shaw flow [30], obstacle problems [79], and Laplacian growth [60, 91]. We
direct the interested reader to [27, 29] and the introductions of the theses of Roos [76] and Sjodin
[87] for excellent expositions.

Of particular relevance to our work are the papers of Hedenmalm-Shimorin [41] and
Gustafsson-Roos [28] that construct and analyze harmonic balls on Riemannian manifolds.
Hedenmalm-Shimorin, building upon the work of Sakai [78], show that harmonic balls on suffi-
ciently smooth hyperbolic surfaces have boundaries that are the unions of a finite number of real
analytic simple curves. Gustafsson-Roos show that harmonic balls and geodesic balls coincide on
Riemannian surfaces if and only if the Gaussian curvature of the manifold is constant. We empha-
size that while some of the basic constructions in these works may be adapted to our setting, an
LQG surface is not a Riemannian manifold in the literal sense, and so, the results do not apply.

1.3.2 | Internal DLA

One of our main motivations for studying LQG harmonic balls stems from a connection with
IDLA on random planar maps. IDLA was introduced as a toy model for chemical corrosion in
[65] and is a special case of a growth model studied by Diaconis-Fulton in [16]. IDLA is a random
aggregation model defined as follows: start with n walkers at the origin in Z2 and let each walker
evolve according to a simple random walk until it reach a site in Z? not occupied by any previous
walker. This rule generates a growing sequence of sets A, C Z? indexed by the number of walkers
neN.

In a foundational work, Lawler-Bramson-Griffeath proved that A, suitably rescaled, con-
verges to a Euclidean ball in R? as n goes to infinity [55, 56]. Later, Asselah-Gaudillére [3, 4]
and independently Jerison-Levine-Sheffield established logarithmic fluctuations of A, around
its limit [46-48].

Implicit in the proof of Lawler-Bramson-Griffeath is that harmonic balls are Euclidean balls
when y is the Lebesgue measure — a simple proof of this was given by Ulkii Kuran in 1972 [54].
Interestingly, the connection between IDLA and quadrature domains generalizes. Levine-Peres
showed in [59] that the scaling limit of IDLA for any initial condition (e.g., multiple-point sources)
is given by a corresponding quadrature domain.

IDLA has also been studied on several other graphs including: Cayley graphs of groups with
polynomial [10] and exponential [11, 44] growth, supercritical percolation clusters [21, 85], Sier-
pinski gasket graphs [15], and cylinders [49, 61, 86]— see [80] for a thorough survey of IDLA.
In each of these cases, the limit shape is either a Euclidean ball or a metric ball. On the other
hand, Asselah—-Rahmani showed that IDLA on the comb lattice has a limit shape that is neither
a Euclidean ball nor a metric ball but rather a domain that satisfies a certain mean-value prop-
erty [5] (see also [45]). In a similar vein, Lucas has shown that IDLA with biased random walkers
on Z% converges under parabolic scaling to a domain that satisfies the mean-value property for
caloric functions [62].
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1.3.3 | Random planar maps

A planar map is a graph embedded in C in such a way that no two edges cross, viewed modulo ori-
entation preserving homeomorphisms C — C. Various types of random planar maps are expected,
and in some cases proven, to converge to y-LQG surfaces. For example, uniform random planar
maps (including uniform triangulations, quadrangulations, etc.) converge to \/%—LQG surfaces
in the Gromov-Hausdorff sense [58, 66, 69, 70] and, at least in the case of triangulations, when
embedded into C via the so-called Cardy embedding [42]. Similar convergence results are expected
to hold for various types of nonuniform random planar maps toward y-LQG with y # 4/8/3. For
example, random planar maps sampled with probability proportional to the number of spanning
trees they admit are expected to converge to \/E-LQG. We refer to [34] for a survey of work relating
random planar maps and LQG.

The aforementioned results on IDLA suggest that the scaling limits of IDLA on random planar
maps are described by harmonic balls on LQG surfaces. Random walks on (reasonably embedded)
random planar maps are also expected to converge to (time changes of) Brownian motions on
LQG surfaces — this has recently been proven for a one-parameter family of random planar maps
called mated-CRT maps in [7, 38]. In a companion work [12], we verify that the scaling limit of
IDLA on mated-CRT maps is given by LQG harmonic balls. It is still an open problem to prove this
for other random planar map models, for example, uniform random planar maps (see Problem 1).

1.4 | Open problems

We collect some questions suggested by this work. The first has been mentioned previously and
is arguably the most important question here.

Problem 1. Show that the scaling limit of IDLA on random planar maps in the appropriate y-
LQG universality class, other than mated-CRT maps, is described by y-LQG harmonic balls.
For example, on a uniform planar map show that the scaling limit of IDLA is a \/8/_3-LQG
harmonic ball.

Possible topologies of convergence in Problem 1 include a version of the Gromov-Hausdorff
distance for metric spaces decorated by compact sets; or convergence of the IDLA clusters w.r.t.
the Hausdorff distance when the random planar map is embedded into C appropriately. There are
also some purely continuum directions one could pursue — the following is an example.

Problem 2. Compute the Hausdorff dimension of the boundary of an LQG harmonic ball, with
respect to the Euclidean metric and with respect to the LQG metric.

We expect that the Euclidean and LQG dimensions of the harmonic ball boundary are each
strictly greater than one. We note that the Hausdorff dimensions of the boundary of an LQG metric
ball with respect to the Euclidean and LQG metrics have been computed in [32, 40].

It is also of interest to determine the analogue of LQG metric geodesics in the setting of har-
monic balls. In particular, we are interested in extending the theory of “Hele-Shaw geodesics,”
in the sense of [41], to our setting. As mentioned previously, Hedenmalm-Shimorin in [41]
investigated harmonic balls on smooth Riemannian surfaces and showed that their boundaries
are piecewise smooth curves. Because of this smoothness, they were able to define Hele-Shaw
geodesics as a family of curves originating from a fixed point that are orthogonal to the boundary
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of a harmonic ball at any point. One may think of these geodesics as describing the trajectory of a
single fluid particle started at a fixed point on a Riemannian surface. As LQG harmonic balls do
not have smooth boundaries, it is unclear how to adapt this to our setting, but a weaker version
of these objects may exist.

Problem 3. Construct and analyze the analogue of “Hele—Shaw geodesics” [41] on LQG surfaces.

A helpful intermediate step would be to show some additional regularity of harmonic balls.
For example, the harmonic balls we construct are monotone in ¢ but we are unable to show strict
monotonicity in ¢.

Problem 4. Prove or disprove that the family of harmonic balls {A,(0)},., given by Theorem 1.1,
is strictly monotone in ¢, that is, A;(0) C A,(0) whenever s < t.

1.5 | Paper and proof outline

We start in Section 2 by reviewing the definition of the GFF, LQG, and some results about Liou-
ville Brownian motion. We then introduce the fundamental obstacle problem which we use to
construct candidate harmonic balls, clusters, in Section 3 and establish some basic properties of
the constructed clusters in Section 4. Roughly, for each t > 0, the cluster A; := A,(0) is defined
as the support of the solution to an obstacle problem, v, : B; — R, specifically,

A, ={x €B, : v, >0} where v, = inf{w € C(B) : Aw < ), — t8,in B; and w > 0in B;}.

Since the obstacle problem is restricted to the unit ball, it is easy to show existence and uniqueness
of solutions. In particular, the results of Sections 3 and 4 are straightforward extensions of those
appearing in the obstacle problem literature — the only property of the LQG measure that is used
there is that it is a Radon measure with certain volume growth bounds, Lemma 2.4 below.

While it is relatively easy to show the existence of clusters, it is not immediate that clusters
are harmonic balls. As we will see in Lemma 4.3 below, A, is a harmonic ball only if A, C B,
and u;,(0A;) = 0.Itisnot clear a priori that these hold for any ¢ > 0. These properties, namely, that
the clusters do not attain a large Euclidean diameter in an arbitrarily small amount of time and
that the boundaries of the clusters have zero LQG mass, do not follow from standard arguments,
and are not true for the obstacle problem with an arbitrary Radon measure. Proving this thus
requires input from the theory of LQG and is thus the main goal of Sections 5-8.

In Section 5, we outline a strategy for showing that the clusters are harmonic balls; that is, they
grow continuously and their boundaries have zero LQG mass. Our approach for verifying these
properties is completely new and relies on a novel Harnack-type estimate, Proposition 6.1, which
clusters must satisfy. In particular, this estimate forces clusters to have “no thin-tentacles,” as in
[47]. Roughly speaking, our Harnack-type estimate says that there is a constant « > 0 such that if
A C Cisan annulus on which the LQG measure y,, is reasonably well behaved, then if the cluster
A, crosses between the inner and outer boundaries of A, we must have u,(ANA;) > au,(A).
Our proof of the Harnack-type estimate in Section 6 combines potential-theoretic techniques with
methods from LQG theory. See the beginning of Section 6 for an outline of the argument.

In Sections 7 and 8, respectively, we use the Harnack-type estimate to prove that the clusters
grow continuously in time, Proposition 7.2, and that boundaries of the clusters have measure
zero, Proposition 8.1. As demonstrated in Theorem 5.5, these properties are enough to ensure that
clusters are LQG harmonic balls.
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Having constructed LQG harmonic balls, we show, by adapting ideas from the obstacle problem
literature [77], their uniqueness, Proposition 5.6, in Section 9.

The Harnack-type estimate imposes strong geometric constraints on LQG harmonic balls. For
instance, it disallows LQG harmonic balls from “crossing” annuli too many times, Lemma 10.1.
We use this in Section 10 to show that the boundaries of complementary connected components
of LQG harmonic balls are Jordan curves, Proposition 10.6.

These geometric constraints may also be translated into a strong relationship between LQG
harmonic balls and the underlying LQG area measure, Lemma 11.6. Since the LQG measure is
quite variable, this imposes an irregularity on LQG harmonic balls. We use this to show that LQG
harmonic balls do not satisfy the cone condition, Lemma 11.5, in Section 11.1. Consequently, LQG
harmonic balls cannot be Lipschitz domains.

Another feature of the Harnack-type estimate is that it precludes LQG harmonic balls from
having “approximate pinch points” that have small Euclidean diameter but that come close to
disconnecting sets of large LQG mass from the origin within the cluster. On the other hand, an
LQG metric ball has such approximate pinch points, as we show in Section 11.3. This shows that
LQG harmonic balls are not LQG metric balls. A key technical input in the proof is Proposi-
tion 11.9, which shows that a region in the plane can have small LQG diameter but large LQG
mass simultaneously with positive probability.

1.6 | Notation and conventions

* Inequalities/equalities between functions/scalars are interpreted pointwise.

+ Differential inequalities/equalities are interpreted in the distributional sense.

* For a set A C C, JA denotes its topological boundary, A = AUJA its closure, and int(A) its
interior.

* For two sets A,B C C,say that A € B if A C B.

* B,(x) denotes the open ball of Euclidean radius r > 0 centered at x € C, when X is omitted, the
ball is centered at 0.

* Foraset A C C, we denote the r-neighborhood of A by B,(4) = A + B,.

* For 0 < r; <r,, denote an open annulus centered at z by

Ay, (2) = B, (2)\B, (2) (14)

and A, . =A, . (0).

* Let{E"},,, be a one-parameter family of events. We say that E" occurs with polynomially high
probability as r — 0 if there exists p > 0 such that P[E"] > 1 — O(rP).

* For two sets A,B C C, dist(A4, B) = inf 4 yp dist(a, b) where dist denotes the Euclidean

distance between two points.

2 | PRELIMINARIES

In this section, we review the definitions and basic properties of the GFF, the Liouville quan-
tum gravity (LQG) area measure, and the LQG metric. We present just enough exposition for the
purposes of this paper; the book [8] and surveys [18, 33, 83] provide more details.
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2.1 | Gaussian free field

The whole-plane GFF h® is the centered Gaussian random generalized function on C with
covariances

max(|z],1) max(|w]|, 1)

, Vz,wecC. 2.1)
|z —w|

Cov(h®(z), h“(w)) :=log

The GFF h® is not well-defined pointwise since the covariance kernel in (2.1) diverges to co as
z — w. Nevertheless, for z € Cand r > 0, one can define the average of hC over the circle of radius
r centered at z, which we denote by h;‘:(z) [23, Section 3.1].
The whole plane GFF is usually defined modulo additive constant. Our choice of covariance
in (2.1) corresponds to fixing this additive constant so that hiC(O) = 0 (see, e.g., [90, Section 2.1.1]).
The law of the whole-plane GFF, viewed modulo additive constant, is invariant under complex
affine transformations of C. This translates into the following invariance property for h®,

KC S hC(a-+b)— hC,(b), VaeC\0}, Vbec. 2.2)
Fixy € (0,2) and &, € (—o0, Q), where
Q:=

4 2.3)

RIN
N

Throughout this paper, we take h to be the whole-plane GFF with an «, log singularity at
the origin.

Specifically, let h© denote the whole-plane GFF normalized so that its circle average over the
unit disk is zero and set

h=h"—aylog]|-|. (2.4)
It is immediate from (2.2) that
R h(a)—hg, VaeC\{oh 25)
2.2 | Liouville quantum gravity

Let u;, denote the y-LQG area (Liouville) measure associated to h. One of the (many) possible ways
of defining u,, is as the a.s. weak limit

= lim 7?2 gz, (2.6)
€
where dz denotes Lebesgue measure and h.(z) is the circle average [23, 84]. In fact, the measure
uj; exists for any random generalized function & of the form h + f where f is a possibly random
continuous function.
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10 of 82 | BOU-RABEE and GWYNNE

Fact 2.1 (LQG measure). The LQG area measure u;, satisfies the following properties.

I. Radon measure. A.s., uy, is a nonatomic Radon measure.
II. Locality. For every deterministic open set U C C, u;,(U) is given by a measurable function of
hly.
I1I. Weyl scaling. Ass., e' - w, = w, +f for every continuous function f : C — R.
IV. Conformal covariance. A.s., the following is true. Let U,U C C be open and let ¢ be a
conformal map from U to U. Then, with Q as in (2.3),

Mhop+Q 10g|¢;|(A) = u,(¢(A)) forall Borel measurable A C U. 2.7

The first three properties in Fact 2.1 are immediate from the definition (2.6). The conformal
covariance property was proven to hold a.s. for a fixed conformal map in [23, Proposition 2.1] and
extended to all conformal maps simultaneously in [84].

It was shown in [17, 37] that one can define also the LQG metric D, which is the limit of reg-
ularized versions of the Riemannian distance function associated with the Riemannian metric
tensor e’"(dx? + dy?). Like the LQG measure, the LQG metric is a fractal-type object. It induces
the same topology on C as the Euclidean metric, but the Hausdorff dimension of the metric space
(C,Dy,) is a.s. given by a deterministic number dy > 2 [39, Corollary 1.7]. The value of d;, is not
known explicitly except that d N 4[57].

In order to state an analog of Fact 2.1 for the LQG metric, we make the following definitions.
For a Euclidean-continuous path P in C, we write len(P; D,) for its length with respect to D,,. For
an open set U C C, the internal metric of D;, on U is defined by

Dy (z,w;U) = inf{len(P;D,) : Pisapathfromztowin U}, Vz,w,eU. (2.8)

As in the case of the measure, the metric Dj; exists whenever i = h + f, where f is a possibly
random continuous function.

Fact 2.2 (LQG metric). The LQG metric Dy, has the following properties.

I. Euclidean topology and length metric. A.s., D), induces the same topology on C as the
Euclidean metric and is a length metric, that is, D, (z,w) is the infimum of the D),-length of
paths from z to w.

II. Locality. For every deterministic open set U C C, the D,-internal metric on U is given by a
measurable function of h|;.
III. Weyl scaling. Let

(2.9)

where d,, is the Hausdorff dimension of the y-LQG metric as above. Almost surely, for every
continuous function f : C - R,

‘u—v

len(P;Dy,) )
Dy, r(u,v) = ,inf / POy, vu,vec.
0
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HARMONIC BALLS IN LIOUVILLE QUANTUM GRAVITY | 11 of 82

IV. Coordinate change for scaling and translation. Letr > 0 and z € C. Almost surely, with Q
asin (2.3),

Dy(ru +z,rv + z) = Dy y )4 010g (W5 0), VU, 0, € C.

The properties listed in Fact 2.2 were verified for the LQG metric in [17, 20, 37]. In fact, it is
shown in [37] that these properties uniquely characterize D;,.
In what follows, for sets A, B C C, we write

Dy(A.B)=_inf_ D;(x.) 210)

For disjoint compact sets K;, K, C C, a D;,-geodesic from K, to K, is a path from K to K, of mini-
mal Dj,-length. It is easily seen from the length metric property and a compactness argument that
D, -geodesics always exist (see, e.g., [13, Corollary 2.5.20]).

2.3 | Green’s function

Let G : 0 X0 — RU{oo} denote the Green’s function for standard Brownian motion killed
upon exiting a bounded open set O C C. We make use of the following standard properties of
the Green’s function of a (sufficiently nice) set.

Proposition 2.3. The Green’s function of a ball, By of radius R > 0, has the following properties for
every x € Bp.

* Fundamental solution: AGBR(x, -)=—-6,(-) on Bg.

* Positive: Gg, (x, ) > 0 on By.

* Zero boundary: G (x,) = 0 on 9B.

* Smooth away from the pole: Gy (x,-) is infinitely differentiable away from x.

2.4 | Liouville potential theory

In this section, we collect well-known potential theoretic estimates on the LQG measure. We first
note bounds on the LQG mass of annuli and balls.

Lemma 2.4. For each B € (0,(2 —y)?/2) and B~ > (2 + y)?/2, it holds with polynomially high
probability as e — 0 that

" < u,(B.(2) < ' vze B. (2.11)
Furthermore, for each 0 < r; < r,, there exists constants C,, C, so that forall z € B
- +
Cre®” < (A, (@) < CrF (212)

with polynomially high probability as € — 0, where here we use the notation for annuli from (1.4).
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12 of 82 | BOU-RABEE and GWYNNE

Proof. Exactly the same argument as in [7, Lemma A.1] shows that (2.11) holds with polynomially
high probability as € — 0. The estimate (2.12) follows from (2.11) and the fact that

7'2€+l"1€

B"z;"l [(z+ e1) CA, ,,(2) CB, (2),

where e; = (1,0). O

Liouville Brownian motion (LBM) is the natural diffusion associated with y-LQG. Roughly
speaking, LBM is obtained from ordinary Brownian motion (sampled independently from k) by
changing time so that the process has “constant y-LQG speed.” LBM was constructed in [6, 25].
It was shown in [7] to describe the scaling limit of random walk on a certain family of random
planar maps.

The volume growth bounds given by Lemma 2.4 lead to control on the expected exit time of
LBM from balls.

Proposition 2.5. Let O denote a smooth bounded open set. The expected exit time of LBM from O
started at x € O is finite and Holder continuous in x. More generally, any q of the form,

g(x) = /O ol Nf W) forsome f € L=(0)

is finite and Holder continuous in 0.

Proof. Finiteness follows immediately from Lemma 2.4. Holder continuity uses the embedding
of Campanato spaces into Holder spaces together with Lemma 2.4. See, for example, Section 16.2
(or the remark after Proposition 13.5) in [73]. O

The bounds also lead to continuity of the LBM heat kernel using the main result of [52]. Con-
tinuity of the LBM heat kernel (for other versions of the GFF) was previously established by [1]
and [63].

Let K be asquare in C and for x € C, let{/3}'},, denote y-LBM with respect to the field h started
from x with Neumann (reflecting) boundary conditions on K. The heat kernel pf{ of reflected LBM
in K is the function pX(x,y) : (0,0) XK X K — [0, o0) such that

P[B’ € dy|h] = pX(x,y)dy. 2.13)

Proposition 2.6. Let K be a square in C. Almost surely, the heat kernel pf (x,y) associated to y-LBM
with Neumann boundary conditions on K exists, is finite, jointly continuous, and strictly positive for
all (t,x,y) € (0,00) X K XK.

Proof. This is [52, Theorem 13.1] with input given by Lemma 2.4. Strictly speaking, [52, Theorem
13.1] concerns the transition density of reflecting y-LBM in the unit square. A scaling argument
shows that [52, Theorem 13.1] applies to the transition density of reflecting y-LBM in any fixed
square. ]
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HARMONIC BALLS IN LIOUVILLE QUANTUM GRAVITY | 13 of 82

3 | CONSTRUCTION OF CANDIDATE HARMONIC BALLS VIA
HELE-SHAW FLOW

In this section, we construct domains which we will later show are y-LQG harmonic balls. Specif-
ically, we construct a family of sets {A,(2)};., via an obstacle problem involving the Green’s
function for the ball. This family of sets models the flow of a Newtonian fluid injected at a con-
stant rate into an LQG surface, restricted to a ball on the surface. The movement of this fluid
is called Hele-Shaw flow. As exposited in [30, Chapter 3], one way of defining Hele-Shaw flow
mathematically is via the obstacle problem construction below. The construction itself is fairly
standard see, for example, [26, 41, 82] and originates from the work of Sakai [79].

‘While the construction is standard, since the obstacle problem is restricted to a ball, it is not
obvious that the construction gives y-LQG harmonic balls. We will later show, using LQG spe-
cific arguments, the existence of T > 0 so that {A,},,.r are a family of harmonic balls satisfying
the conditions in Theorem 1.1. We then use scale invariance and compatibility to extend this
construction to all £ > 0.

3.1 | Definition of the obstacle problem

We construct candidate harmonic balls via a technique similar to the Perron method involving
the measure y;, and the Green’s function for the ball. For each ¢, > 0 and z € B,, the set of
supersolutions is

s ={we C(B,) : Aw <y, in B, and w > —1Gy (z,-) in B}, 3D

where C(B_,) denotes the set of continuous functions on the closed ball. The least supersolution is
defined as the pointwise infimum of all functions in Sf",

wPr? = inf {w c SZB’;Z} (3.2)
and the cluster as
Bz .y BriZ
A ={x€B, 1w, " (x)> —tGBr;Z(z, x)} 3.3)
We also consider the odometer
v = w + Gy (0., (3.4)

Note that StB r“ is nonempty as it contains the zero function — thus w?" “ always exists. This equa-
tion in (3.1) is known as an obstacle problem with obstacle given by the Green’s function. When
B, is the unit ball, we write, for example, S?, and if additionally z = 0, we write, for example, S,

We think of the above obstacle problem as modeling the flow of liquid on a rough surface.
A mass ¢ of fluid is injected at {z} and its growth is dictated by the infinitesimal capacity of the
surface, namely, the measure w;,. The cluster A7 represents the settled fluid and vy captures the
“work” needed to spread the fluid. Specifically, the family of sets {A?},., is a weak solution to
a restricted Hele-Shaw problem involving the measure ;. The Hele-Shaw problem is restricted
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14 of 82 | BOU-RABEE and GWYNNE

because of the fact that (3.1) is only defined in the ball B,. Physically what this means is that
the flow is stopped upon exiting B,. The obstacle problem (3.1) is a variational formulation of
this restricted Hele-Shaw problem. See [30, Section 3.5] and [76] for an explicit description of the
Hele-Shaw equation and how the obstacle problem relates to it.

From the physical picture described in the previous paragraph, one expects that if ¢ is larger
than u,(B,), then A, should fill the entire ball. Moreover, if 1, is regular enough, then for ¢ small
the clusters should be strictly contained in B,. Further, clusters with closures that do not intersect
the boundary of B, should be compatible with clusters restricted to B,, for r’ < r. We provide
rigorous statements of these heuristics below.

3.2 | Basic properties of the obstacle problem
We assert existence and basic regularity of solutions to the obstacle problem. These results are
standard but for completeness are proved in the Appendix.

We first note that the least supersolution is indeed a supersolution.

Lemma 3.1. On an event of probability 1, forallt,r > 0and z € B,, wf’;z is finite, continuous, and

an element ofStB’;Z.
The next lemma is a consequence of being the least supersolution.

Lemma 3.2. On an event of probability 1, for all t,r > 0, and z € B,, the cluster A?r;z is open and
connected and

B,z
Aw, ™" = ,uhlAB,;z +v|aAB,;Z onB,,
t t

where v is a Radon measure that is absolutely continuous with respect to u, on B, and satisfies
0 < v < uy, on B,. In particular,

Bz _ S
Av,"™" = =16, + ,uhlAf,;z + vlaA?,;z on B,.

We will eventually show that on an event of probability one, uh(aAf“Z) =0forall t,r >0
and z € B,, which implies that v = 0. However, for the time being we need to allow for the
possibility that there is some mass on aAf“Z.

We also have monotonicity of the clusters in ¢.

Lemma 3.3. On an event of probability 1, forall t; < t, andr > 0, z € B,, we have Afl’ - Ai’.

Clusters also have a conservation of mass property.

Lemma 3.4. On an event of probability 1, for all r,t > 0 and z € B,, we have /xh(Af’;z) <tand

B,; .o 4B B,; B,;
v, “=0o0n 0B,. Moreover, if A, “c B, and u(0A, “Y = 0, then Mp(A; H=t.

‘We conclude with a compatibility result for clusters across different domains.
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Lemma 3.5. The following holds for each R > 0 on an event of probability 1. Forall s, < Rand z €

By iz ; By, sz
By if, for somes, € [sy,R], we have A, C B , then A?"’Z =A,? foralls € [s},R].

4 | BASIC PROPERTIES OF CLUSTERS
In this section, we note some basic properties of the clusters {A,},., and odometers {v,};.o. As

in Section 3, these results are fairly standard, for example, [26, 41, 79, 82], but (short) proofs are
included for completeness.

4.1 | Lower bound

We first show that each cluster contains a Euclidean ball of sufficiently small radius and eventually
the family coincides with the unit ball.

Proposition 4.1. On an event of probability 1, for each t > 0 and z € By, there exists a random
€ = ¢(t) > 050 that

B.(z) C A7. 4.1)
Moreover, for each § € (|z|, 1), there exists a random t(8) > 0 such that for all t > t(6),
B,_s(z) C A] (4.2)
and there exists a random t* > 0 so that forall t > t*
AZ N OB, # 0. (4.3)

Our proof uses the fact that the logarithm function blows up near the origin together with the
finiteness of the expected exit time of Liouville Brownian motion (LBM) from the unit ball.

Proof of Proposition 4.1. Let q,(y) denote the expected exit time of LBM started at a point y from
the unit ball,

Aq, = —u, inB,
q,=0 on 0B,.

Let ¢t > 0 and z € B, be given. As Aw? < ), (Lemma 3.1), the function w? + q; is superharmonic
in By. Hence, as wy + q; > 0 on dB;, we have w? > —q; in B,. Since

lim sup tlog|x —z| » —o0,
€=0 XEB,(2)

we have that

w7 (x) > —q;(x) > tlog|x —z|, Vx € B./(z), Ve> 0sufficiently small. (4.4)
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Indeed, by Proposition 2.5, g, is finite. By the definition (3.3) of Af and the fact that G (z, x) =
O(—log |z — x|), this shows that B.(z) C A7. Similarly, for each & € (|z|, 1), for all t > t(6), (4.4)
is satisfied for all x € B;_s(z). The last assertion follows by choosing t* = y,(B;) and using
Lemma 3.4. O

4.2 | Holder continuity of the odometer
We observe that w, is Holder for a deterministic exponent depending only on y.

Lemma 4.2. There exists a deterministic exponent o = a(y) so that on an event of probability 1,
there exists a constant C > 0

|w? (x) —wi(¥)| < Clx —y|*
forallt >0,z €B,,and x,y € B,.

Proof. By Lemma 3.2, Aw? = | Azt V05 Az and v is absolutely continuous with respect to y;, in B;.
Thus, the claim follows by Proposition 2.5. O

4.3 | Nondegenerate clusters are subharmonic balls

We prove that clusters that do not intersect the boundary of B; are harmonic balls. In fact, we
observe a stronger property — each AZ strictly contained in B, is a subharmonic ball. That is,
subharmonic functions satisfy the submean-value property on such AZ.

Specifically, for z € C, an open set A(z) is a subharmonic ball centered at z € C with respect to
a Radon measure y if

uA(2))f(2) < /A ( )f (x)u(dx) (4.5)
for all functions f : O — R of the form

FGo) = /O G, V)dv() + a(x) 4.6)

where O is an open set containing a neighborhood of the closure of A(z), v is a signed Radon
measure, v| Az) S0, with compact support in O, and q : O — R is a harmonic function on O.
We note that every subharmonic ball is a harmonic ball in the sense described just above The-
orem 1.1. Indeed, the set of harmonic functions in the definition of a harmonic ball (as described
above Theorem 1.1) is the same as the set of functions f of the form (4.6) with v| ,(,) = 0. Since
this set of functions is closed under replacing f with —f, the inequality (4.5) gives both the
submean-value property and the super-mean-value property for functions in this set.

Lemma 4.3. On an event of probability 1, forallr,t > 0and z € B,, if Af“z C B, and ,uh(aAf*;Z) =
0, then Af“z is a subharmonic ball.
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We do not know a priori that the hypotheses Af’;z C B, and ,uh(aAf’;Z) = 0 are satisfied for
any value of t,7 > 0 with z € B,. We will prove that these hypotheses are satisfied, at least when
t depending on 7, z is small, in Sections 7 and 8, respectively. In fact, we will show some unifor-
mity in z of how small t needs to be. By the Riesz decomposition theorem, see, for example, [2,
Section 4], functions of the form (4.6) include functions that are subharmonic in a neighborhood
of O.

Proof of Lemma 4.3. Letr,t >0, z € B,, an open set O D A?r;z, and f,q,v as in (4.6) be given.

By Lemma 3.4, Lemma 3.2, and Proposition 2.3, and our assumption that /,th(aAf’;z) =0, A?" “is
open and

4.7

|

vf’;z 0 on 0B,
B;;
Avt mY = —t5z + ,ulAfi,.;z on Br,

and ,uh(Afr;Z) =t.As Af*;z C O, we can find a smooth domain A} with A?";Z C A} € Oso that
B,z
0= / Aq(x)v, " (x)dx
AP

= / Aq(Z)v?r;Z(x)dx (Since U?r;z = 0on BV\A?)‘;Z)

t

= / q(x)Avf";Z(x)dx (integration by parts)

t

=@+ [, @)  GyE).
Moreover,

=@ = [, (= D0)0)

= / / (Go(z,x) — Go(y, x)dv(x)du,(») (definition of f)
ABr;z Afr;z

_ /A o /A .. (Go(z, 1) = Go(y, )i (y)dv(x)  (by Fubini)

B /A o (2)dv(x)  (by (47)

. B,z
<0 (since v,"" 20 and v < 0).

We conclude by combining the above two expressions. O
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5 | NONDEGENERACY OF THE FLOW

In this section, we set up the proof of our main result Theorem 1.1 by dividing it into several
intermediate results that will be proven in Sections 6-9. We then show how these intermediate
results imply the claim. In the last subsection, we observe that the clusters which we construct
are locally determined in the sense of Proposition 1.3.

5.1 | Properties of the restricted flow

We first show in Section 7 that clusters do not immediately exit the unit ball.

Proposition 5.1. On an event of probability 1, there exists a (random) T = T(y, h) > 0 so that for
eachz € By, andall0 <t <T

AZ CB,. (5.1)
We show in the second part of Section 7 that the family is continuous.

Proposition 5.2. On an event of probability 1, for all z € B, ,, the cluster centered at z decreases
to {z},

ﬂ /th ={z} (5.2)

t>0

and continuously increase in t: for each t > 0, for all € > 0 sufficiently small, there exists 5(z) > 0 so
that forallt’ € [t,t + 6(2)],

AZ C A? +B.(2). (5.3)
In Section 8, we show that each cluster has zero boundary area measure.
Proposition 5.3. On an event of probability 1, for all z € B, and t > 0 such that /Tf C B,(2).
up(0A7) = 0. (5.4)

In order to ensure exact uniqueness, the family of harmonic balls appearing in our final theorem
differs from the above clusters via a set of u;,-measure zero,

A? :=int(A?), Vt>0,z€ B,. (5.5)
Indeed, by definition, A, C int(/Tt) and as y,,(0A,) = 0, uh(int(/Tt)\At) = 0. This shows that A, is

a subharmonic ball and Propositions 5.1-5.3 hold with A, in place of A,. Thus, we may combine
Proposition 4.1, Lemma 4.3, and Propositions 5.1-5.3 into the following statement.
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Proposition 5.4. On an event of probability 1, for all r > 0 and z € B, ),, there exists a family of
clusters {\7}y ;< strictly contained in B, satisfying the conditions of Theorem 1.1 for 0 < t < T and
A2 NOB; # 0.

In the next two subsections, we use the compatibility property Lemma 3.5 together with a
certain scale invariance of clusters to extend the construction in Proposition 5.4 to the entire plane.

Theorem 5.5. On an event of probability 1, for all z € C, there exists a family of clusters {A,(2)};-
satisfying the conditions of Theorem 1.1. Moreover, each cluster is a subharmonic ball related to the

B,;z)

clusters of (3.3) in the following way: if for some s > 0,z € C, if A,(z) € By, then A, (z) = int(A,

forallr > s.

In Section 9, we prove that the family given by Theorem 5.5 is the unique such family,
completing the proof of Theorem 1.1.

Proposition 5.6. Let {A,(2)};~0 ,cc be given by Theorem 5.5. On an event of probability 1, if for
some z € C, {A;(2)};>( is a family of harmonic balls satisfying the assumptions in Theorem 1.1, then
Ay(2) = A[(2) forallt > 0.

5.2 | Scale invariance

We now give the relevant scale invariance property which we then use to prove Theorem 5.5.
Specifically, we show that the law of a cluster stopped upon exiting a ball of arbitrary radius
coincides with the law of a rescaled cluster that is stopped upon exiting the unit ball.

Lemma 5.7. For each k > 0 and z € By, the laws of {A?},, and {k‘lAi’;tkz}Do coincide, where

A 1= erQlogk+h(0)),

Proof. Lett,k > 0and z € B, be given. Consider the continuous function w, € C(B,) defined by

0, i= AJw () onB; (5.6)
and the fields
- 2.7
h=h(k-)+Qlogk, where Q= J—/ + 5 (5.7)
and

h' = h(k-) — h(0), (5.8)

where h;,(0) is the average of h on the circle of radius k around 0. By (2.5), we have h’ 4 h.
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We claim that
W, = 1, :=inf{we$[1’}, (5.9)
where i, is the pointwise infimum over the family
Sth’ ={weC(B;) : Aw <y inB; and w > —tGg (z,-) in B}, (5.10)
defined in the same manner as S but with 4’ instead of h. Write Sth(Bk) when B, in (5.10) is
replaced by B, and k' by h.
We first show that W, € S[h,. By the fact that Aw, < u;, (Lemma 3.1), the LQG coordinate change
formula, and Weyl scaling (Fact 2.1),
Aw; < A pp(ks) =y on B (5.11)
Also, since w e Sh (Bk) and GBk(kz, kx) = GBI(Z, X),

W (x) > —tA ' AyGy  ((kz,kx) = —tGp (2,X) onB,. (5.12)

Hence, W, € Sth'. Similarly, A, é,(-/k) € S h (Bk) which shows @; = w;. Indeed, A, (-/k) <
wﬁit(-) implies @, (- /k) < A‘lw k ( ) = w,(- /k) by (5.6). Hence, as h' has the same law as A,

By;zk ,

d
Af ={x €B : 1i,(x) > —tGp, (z,x)} = k_lAAk[ ; (5.13)

the last equality uses i, = W;. O

5.3 | Proof of Theorem 5.5 assuming Proposition 5.4

By combining Lemma 5.7 together with Proposition 5.4 and a union bound, on an event of
probability 1, for each k € N, there exists T®) > 0 so that for all x € B, ,, the family of sets

{AB";’”‘ (5.14)

t }0<t<AkT(k)

is compactly embedded in By /,, and int(Af";kx) satisfies the properties of Theorem 1.1 for ¢t <
By;kx

AT®, and A'F 0 N OBy # 6.
LetzeC be given, select k, = 3|z| (so that there exists x € B; /, with k,x = z) and define

By :z
AT fort < A Tk
A2) = { or ko (5.15)

APEif A TED <t < AT for some k € [k +1,00) NN,
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and A, (z) = int(%). By the compatibility property, Lemma 3.5, the times A, T®) are increasing
in k and hence the construction is well defined. Compatibility also implies that the family {A };
satisfies the properties of Theorem 1.1.

It remains to show that for each t > 0, there exists a k € N so that ¢t < AkT(k). That is, we must
show that

A,T® - o with probability 1. (5.16)

Indeed, if this were the case, this would give us a complete family {A(2)},, satisfying the
properties of Theorem 1.1, and we have uniqueness of such a family by Proposition 5.6.

d
First note that by Lemma 5.7, T®)=T® for each k. Since T is strictly positive, for each p €
(0, 1), there exists ¢, >0s0 that

P[T® > c,l>p
for all k € N. In particular,

P[N®_, u®

m=1 “k=m

7™ >¢,]> p. (5.17)

We claim that also

k—o0
Indeed, the process,
t— ]’le[(O)

has a continuous modification that is a standard two-sided Brownian motion [23, Section 3.1].
Thus,

{ = Ay = Qe )

is a geometric Brownian motion with percentage drift yQ + y2/2 and percentage volatility y —
this implies (5.18). Combining (5.18) with (5.17) and using that T® is increasing in k shows that
with probability at least p,

A TR - o,

Since this holds for any p € (0, 1), we have (5.16), completing the proof.

5.4 | Harmonic balls are local

In this subsection, we prove that the harmonic balls given by Theorem 5.5 are local; that is, we
prove Proposition 1.3.
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FIGURE 3 Anexample of the Harnack-type property. The cluster A, is in gray with a solid boundary and an
annulus A, ,(x,) for which Ep (x,) occurs is displayed in light-gray with a dashed-line boundary. Proposition 6.1
asserts that if w, (A, N A, ,(x,)) is small, then A, N B, /,(x,) = 0.

Before doing so, we note that we have constructed clusters and stated Lemma 3.5 for clusters
restricted to domains that are balls. However, the definition of Af’ “ and the proof of Lemma 3.5
extend essentially verbatim to the case when B, is replaced by any bounded open set containing
the origin.

Lemma 5.8. Let U be a deterministic bounded open set. For allt > 0 and z € C, we have A, (z) =

AtU;Z if either A (z) € U or A?;Z eU.

Proof. This is immediate from the proof of Lemma 3.5 together with Theorem 5.5. O

Proof of Proposition 1.3. Let the deterministic open set U, base point z € C, t > 0, and cluster
A,(2) be given. As P[A,(z) C U] = 0if z ¢ U, we suppose z € U. As we may approximate U by
an increasing sequence of bounded open sets, we further suppose that U is bounded.

The cluster AtU;Z depends only on u;, |;; and hence, by locality (Fact 2.1), only on h|;. Therefore,
it suffices to observe from Lemma 5.8 that

A@)CU <= AP cU. (5.19)

This completes the proof. O

6 | HARNACK-TYPE ESTIMATE

Recall the notation for Euclidean annuli from (1.4). The main goal of this section is to prove the
following Harnack-type estimate for clusters: for every z € B, ),

Br(AZ N A1 5(%0)) < apty(A, 15 5(X)) = A7 N B, 5(x0) = @ (6.1)

for all t > 0 where B_p(xo) C B;\{z} and a € (0, 1) is some fixed, small constant. See Figure 3 for
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a visualization of this condition.
Due to the variable nature of the Liouville measure, we cannot show that this holds for every
annulus but rather for “most” annuli. Specifically, we show the following.

Proposition 6.1. There exists a = a(y) > 0 and events Ep(xo) for p €(0,1) and x, € C with the
following properties: for each z € By, ifﬁp(xo) occurs, B_p(xo) C By\{z}, and w,(A7 N A, 5 (X)) <
aup(A, ) 5(X0)), then A7 N B, ;5(x,) = 0.

Moreover, there is a universal constant ¢ > 0 so that with polynomially high probability ase€ — 0
foreach x, € (Bl+€\B1o\/E) n ﬁZZ, there are at least cloge™'/? radii p € [e,€/?] N {8 "} ,en for

which Ep (x) occurs.
In fact, we prove the following stronger statement.

Proposition 6.2. Assume thatwe are in the setting of Proposition 6.1 and let p € (0,1) and x,, € C.If
E p(xo) occurs, B p(xo) C By \{z}, and T\t is a connected component of A7 N B o (x) then the following

occurs. If w,(A, N Ay 2,0(X0)) < apty(A, 15 (X)), then AN B, /5(xp) = 0.

We note that Proposition 6.2 implies the first part of Proposition 6.1. Indeed, if w,(A? N
Ap/2.p(X0)) < app(A, 5 5(X0)), then each connected component A, as in Proposition 6.2 satisfies
wn(Ay N A 0/2,0(%0)) < apy(A, 15 5(X0)). So, if Ep(xo) occurs, then Proposition 6.2 implies that none
of these connected components intersect Ep /2(%p)-

Proposition 6.1 is sufficient for most of our applications, but Proposition 6.2 is needed in
Section 10 to show that the boundaries of the complementary connected components of A,
are curves.

The proof of the Harnack-type estimate is inspired by the “no thin tentacles” argument of
Jerison-Levine-Sheffield [46] and the IDLA bound of [21]. The idea is as follows. If A is an annu-
lus, then with high probability for every set Y C A such that u;,(Y) is much smaller than p;,(A), it
is unlikely for a Brownian motion to cross between the inner and outer boundaries of A without
exiting Y (Lemma 6.4). Hence, if (A, N A)/u,(A) is small, then a Brownian motion is unlikely
to cross between the inner and outer boundaries of A before exiting A,. Since the cluster A, is
“grown according to harmonic measure,” one can show that if A’ is a smaller annulus that is
disconnected from 0 by A, then (A, N A")/u,(A”) is even smaller than up(A, N A)/ pup(A). See
Section 6.4 for precise statements to this effect. Iterating this across several nested annuli (with
decreasing aspect ratios) allows us to prevent A, from intersecting an appropriate Euclidean ball.

We make the above argument precise via a combination of potential theory and LQG argu-
ments. We simultaneously study the odometer and the mass of the cluster. Specifically, we study
the decay of the odometer and mass in disjoint shells of geometrically decreasing radii. We show
that whenever an annulus is “very good” (as defined in Section 6.1) and the mass is small in that
annulus, then the odometer has to decrease by a geometric amount from one shell to the next
(Lemma 6.9). If the odometer is small, then the mass is also small (Lemma 6.8). This together
with the prevalence of “very good” annuli established below forces the odometer (and mass) to
go to zero.

We start by introducing notions of “good” and “very good” annuli in Section 6.1. We show
in Sections 6.2 and 6.3 that there are many “good” and “very good” annuli. We then establish
harmonic comparison lemmas that allow us to compare the size of the odometer and the LQG
mass of the cluster in Section 6.4. In Section 6.5, we use these harmonic comparison lemmas
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to show that very good annuli satisfy the Harnack-type estimate. This result combined with the
prevalence of very good annuli leads to the proof of Proposition 6.2.

6.1 | Good and very good annuli

In this subsection, we define what it means for an annulus to be good and very good. Roughly, for
a good annulus, it is difficult for Brownian motion to stay within a set of relatively small LQG mea-
sure until it exits the annulus. Very good annuli contain lots of good annuli and satisfy additional
regularity properties. We will later see that very good annuli satisfy (6.1).

6.1.1 | Good annuli

We start with defining good annuli. For z € C, r > 0 and parameters a,b € (0, 1), let E,.(z) =
E,(z;a,b) be the event that the following is true. For each Borel set Y C A3, 5,.(z) such that
up(Y) < apy (A, 5.(2)), we have

sup P|[BY exits As, 5,(z) before exiting Y | h] < b, (6.2)
u€0By,.(2) '

where B* denotes standard planar Brownian motion started from u. We note that E,.(z) €
o(hla,, . () The annuli A3, 5,.(z) for which E,(z) holds are good.

6.1.2 | Alternative measures of the LQG size of an annulus
It will be convenient to go back and forth between Liouville measure and two other notions of size

when using (6.2). To that end, let 5~ be the growth lower bound exponent appearing in Lemma 2.4
and define

B,(z
My(xp) = _ inf M (6.3)
ZE€A, 2 5(%0) TE(0,0/4) (r/p)ﬁ
By Lemma 2.4, a.8. 0 < M,(x,) < oo for each p € (0,1) and each x, € C. We also define
SG,(xg) = sup < / GBZP<XO)(x,y>duh<y)>, (6.4)
XEA, /420(Xp) Ap/a20(X0)

where G, : AX A — R is the Green’s function for the set A. By Proposition 2.5, a.s. SGy(xp) is
finite and positive for each p € (0,1) and each x;, € C. For later use, we also define a version of
SG,(x,) with a variable aspect ratio,

SGopnpi= s ([ Gy ) ) 63
XEASIp,Szp(XO) A

slp,szp(xo
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6.1.3 | Very good annuli

For x,€C,p>0, and parameters N, >1,a €(0,1),b €(0,1),C; >0,C5; >0,C3 >0, let
Ep(xo) = Ep(xo; Ny, a,b, Cli, C;*, C;) be the event that the following are true:

. _ M, (xo)
- < P70 +
(VG-i) Cl = un(Agjane(xe) 17
SGp(xO)

s T — +‘
(VG-ii) €5 < un(Ap/azp(xo) = 72

(VG-iii) For eache € {2‘”},1;1\70 and each z € %Zz N A,/ (X), there are at least C;log; €

radii r € [ep,e/?p] N {p7 "}, for which E,(z; a, b) occurs.

-1/2

The annuli for which Ep (x) occur are very good. Our goal in the next two sections is to show that
with high probability, there are many very good annuli surrounding each point in B;.

6.2 | There are many good annuli
We start by showing that good annuli are prevalent, that is, we prove the following.

Lemma 6.3. Fixb € (0,1). Thereexistsa = a(b,y) > 0and a universal constant c > 0 such that the

. . . . oo € 2
Jfollowing holds with polynomially high probability as € — 0. For each z € (B, \B, \/E) N 554>

there are at least clog, ¢~'/? radii r € [¢,e'/?] N {77}, for which E,(z) occurs, where E,(z) =
E.(z;a,b)isasin (6.2).

We note the similarity between Lemma 6.3 and condition 6.1.3 in the definition of very good
annuli. To prove Lemma 6.3, we will first show that for each z € C and r > 0, the event E,.(z)
occurs with high probability, provided that a is chosen to be sufficiently small depending on b
(Lemma 6.4). We will then use the near-independence of the GFF across disjoint concentric annuli
(Lemma 6.5) to show that for each fixed z € C, it holds with very high probability when € is small
that there are many radii r € [¢,e!/2] n {77"},,en for which E,(z) occurs. Finally, we will take a
union bound over all z € By, N 7277
Lemma 6.4. Let b € (0,1) and p € (0,1). There exists a = a(b, p,y) € (0,1) such that the event
E.(z) = E,(z;a,b) of (6.2) satisfies

P[E.(2)] > p, Vr >0, Vzsuch thatdist(A;, s.(z),{0}) > r/100.

Proof. We first show that it suffices to prove the lemma for h°, that is, the GFF without a log-
singularity (&, = 0 in (2.4)). We then prove the lemma for the case &, = 0.

Step 1: Reduction to ey = 0.

Recall that h = h® — oy log| - |, where h® is a whole-plane GFF. We first explain why it is suffi-
cient to prove the lemma with h® in place of h. Suppose the statement of the lemma holds for h©
with a’ € (0,1) in place of a.

Fix r > 0 and then z such that the annulus A3, 5.(z) lies at Euclidean distance at least r/100
from the origin. By Weyl scaling (Fact 2.1), there are constants C;, C, > 0 depending only on y
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such that

up(Y) > Cylz ™7 e (V). VY C Ay, 5,(2) (6.6)
and

up(Y) < Cylz|™" upe(Y), VY C Az, 5.(2). (6.7)

Thus, forall Y C A3, 5,.(2)
U CZ !
pre(Y) < @ ppe(Aszy 5.(2)) = pp(Y) < c xa Hn(Asy 5(2)),
1

and hence P[E,(z)] > pfora := % xa'.

Step 2: Case when «; = 0. 1

For the rest of the proof, we assume that &, = 0. The lawof h = hC is both scale and translation
invariant modulo additive constant. By the Weyl scaling property of the measure u;, (Fact 2.1),
the event E,(z) is a.s. determined by h viewed modulo additive constant. From this and the LQG
coordinate change formula for y,,, we infer that the probability of E,(z) does not depend on r or
z. Hence, it suffices to find a € (0, 1) as in the lemma statement such that P[E,(0)] > p.

To this end, for u € C, let B* denote y-LBM with respect to the field h, started from u with
reflecting boundary conditions in a square K centered at the origin with side length 100.

By [25, Proposition 2.19], the conditional law of 3* stopped when exiting A; 5(0) depends con-
tinuously on u. Although the proof in [25] is for the whole-plane massive GFF, as explained in [25,
Section 9], [25, Proposition 2.19] extends to the massless GFF in a finite domain. Moreover, ordi-
nary LBM and reflected LBM coincide until the first exit from A; 5(0). Hence, by the compactness
of the circle dB,(0), we may therefore find a random T = T'(h) > 0 such that a.s.

sup P|[B" exits Az 5(0) before time T | h| < =. (6.8)

u€AB,(0)

NS

For t > 0, let pX(u, -) be the time ¢ Liouville heat kernel for B*, so that pX(u, -) du, is the law
of Bf. By Proposition 2.6 a.s. pf (u,v) is a continuous function of (¢, u, v) and pf (u,v) > 0 for all
t >0 and all u,v € K. Again using the compactness of dB,(0), we infer that with T as in (6.8),
there exists a random C = C(h) > 0 such that a.s.

sup sup pr(u,v)<C. (6.9)
uedB,(0) veB5(0)

From (6.9), we get that for each Borel set Y C A; 5(0),

sup P[BY €Y |h]<Cu,(Y). (6.10)
u€dB,(0)

Hence, if u,(Y) < [Cp (A3 5(00)]71(b/2) X 1;,(A5 5(0)), then P [BY € Y | h| < b/2 for each u €
0B,4(0). Combining this with (6.8) shows that for every such Borel set Y,

sup P|[B" exits A 5(0) before exiting Y | h| < b. (6.11)
u€aB,(0) ’
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That is, a.s. E;(0) occurs with a replaced by the random variable [C,uh(AS’S(O))]‘l(b /2). This
random variable is a.s. positive, so we can find a deterministic a € (0, 1) such that

P[[Cup(A550D]7 (b/2) > a] > p. (6.12)

Hence, for this choice of a, we have P[E;(0)] > p, as required. O

The following lemma is a consequence of the fact that the restrictions of the GFF to disjoint
concentric annuli, viewed modulo additive constant, are nearly independent. See [36, Lemma
3.1] for a slightly more general statement.

Lemma 6.5 [36]. Fix 0 < s; <, < 1. Let {r;}cn be a decreasing sequence of positive numbers
such that ri, /ri < sy for each k € N and let {E,, };.cy be events such that E, is measurable with
respect to h| Asyrysyr O viewed modulo additive constant, for each k € N. For K € N, let N(K) be
the number of k € [1,K] N Z for which E, occurs. For each a > 0 and each B € (0,1), there exists
p = p(a,B,51,8,) € (0,1) and C = C(a, B, 81, 8,) > 0 (independent of the particular choice of {r;}
and {E,k }) such that if

P[Erk] >p, VkeN,0 (6.13)
then
P[N(K) < BK] < Ce @K, VK e N. (6.14)
We now prove the desired claim.

Proof of Lemma 6.3. The event E,(z) depends only on the measure u;, | Ay 5r(2)" Moreover, multi-
plying this measure by a constant does not change whether E,(z) occurs. Therefore, E,(z) is a.s.
determined by h| Asgy5r(2) viewed modulo additive constant.

We now apply Lemma 6.5 with K = [log, ¢~'/2], the radii ry, ..., g € [¢,€/2] N {7} ,n, the
events E, =E, (z), and appropriate universal constant choices of « and . We find that there
exist universal constants p € (0,1) and ¢ > 0 such that if P[E,(z)] > p for each r > 0 and each
z € C\By,, then forall z € C\Bm\/g,

P|E,(z) occurs for at least c loge™1/2 values of r € [¢,'/2] N{77"},y] 21— 0.(e*)  (6.15)

with a universal implicit constant in the O,(-).

By Lemma 6.4, there exists a = a(b, y) > 0 such that for this choice of a, one has P[E,(z)] > p
for each r > 0 and each z € C\B,,. Therefore, the estimate (6.15) holds for this choice of a. We
now conclude by means of a union bound over all z € (B, \B,, \/E) n ﬁ 72 O

6.3 | There are many very good annuli

In this section, we prove that very good annuli are prevalent, following the same strategy as the
last section.
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Lemma 6.6. Fixb € (0, 1). There exists a = a(b, y) > 0, universal constants c,C5 > 0, CI—L,C;—r >0
dependingona,y,and N; = N(b,y) > 1suchthatforall N, > N, the following holds with polyno-

mially high probability as € — 0. For each x, € (Bl+€\B1o\/E) n fmzz, there are at least c logg €~'/?

radii p € [¢,€'/2] N {87}y, for which E ,(x,) occurs, where E ,(x,) = E ,(x; Ny, a, b, C¥,CF, C3)
is as in (VG-i), (VG-ii), and (VG-iii).

We start by showing the event Ep(xo) occurs with high probability with a,b chosen as in
Lemma 6.3, N, large, and C;, C; chosen appropriately.

Lemma 6.7. Let b € (0,1) and p € (0,1). There exists a = a(b, p,y) € (0,1), C;’,C; depending
ona,y, p and a universal constant C; > 0 such that the event Ep(xo) of (VG-i), (VG-ii), and (VG-iii)
satisfies

P[Ep(xo)] >p, Vp>0, Vx,suchthatdist(A,,,,,(x,),{0}) > p/100
forall Ny = N,(b, p,y) = 1 sufficiently large.

Proof. Recall that h = h® — a; log| - |. The proof is similar to that of Lemma 6.4. We show that
we can reduce to the case &, = 0 and then give a proof in that case.

Step 1: Reduction to ey = 0.

Suppose that the statement of the lemma holds for h® with constants QI—“ in place of CI—“. Write
M g(xo) to indicate the dependence in the definition of M p(xo) on the GFF.

Fix p > 0 and then x, such that the annulus A /, ,,(x,) lies at Euclidean distance at least 0 /100
from the origin. By Weyl scaling (Fact 2.1), there are constants A;, A, > 0 depending only on y
such that

Mg(xo) A Mgc (xo) (6.16)
1n(Apyanp(x0) 7 e (A 14 25(%0)) ‘
and
M (xo) M"" (x,)
i <A, i . (6.17)
,uh(Ap/4,2p(xo)) Mpc (Ap/4,2p(xo))
Thus,
M (x,) M"(x,)
ccx— P o Ch=AC] < P70 A,CT,

=S L@, (o)) S @A)
and hence (VG-i) occurs for Cf := A,Cf and C| := A,C] if it occurs under h°. The argument
for (VG-ii) is nearly identical. Step 1 of the proof of Lemma 6.4 also shows that we can reduce to
the case a, = 0 for (VG-iii).

Step 2: Case when & = 0.

Asin Step 2 of the proof of Lemma 6.4, it suffices to find a € (0,1) and CT, C;—', C; > Osuch that

P[E,(0)] > p.
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Note that by Lemma 2.4, M, (0) is a strictly positive, finite random variable. Since (A, /4,2(0))
and SG, (0) are also strictly positive and finite random variables, there exists CF, C;—' > 0 so that

56,(0) <C | =p, (6.18)

P(CT < — = <
! Mn(A1/42(0)) 2

Ml(o) + —
——————<C|>2p, and P|C; <
Mn(A1/42(0))

Also, by Lemma 6.3, for N, sufficiently large, with probability at least p;, the event in (VG-iii)
occurs with p = 1 and C; an appropriate universal constant.

By adjusting our choices of parameters so that (1 — p;) + (1 — p,) + (1 — p3) < 1 — p, we may
conclude via a union bound. [l

Proof of Lemma 6.6. Given Lemma 6.7, the argument is identical to the proof of Lemma 6.3. []

6.4 | Harmonic comparison

In this section, we prove lemmas which let us compare the size of the odometer to the LQG mass
of the cluster. Our first lemma allows us to show that the LQG mass of the cluster is small in
annuli where the odometer is small.

Lemma 6.8. Fix0 < s, <s, <3 <s;andz € By. Let Ay, ; .(w) C B, be an annulus not contain-
ing z and let A, be a union of connected components of Ay, rs,-(W) N AL There exists a constant C,
depending only on sy, ..., 84, So that for all such annuli

(A (W) N A)<cC sup vF ().
XENA;

Proof. First note that there is a positive constant ¢; so that the annulus A ; can be covered
by ¢ ! balls of radius ¢, := min(s, — 51,83 — $,,5, — 53)/4 centered at points in Ay, s,- There-
fore, by scaling, this implies that the annulus A, . .(w) can be covered by c;’ ! balls of radius
c,r centered at points in /-\SZ,,SSF(w). By the pigeonhole principle, there is at least one such ball

By (x) € Ay, 5, -(w) with
Hn(Be, (X) N A, 2 cipy(Ag (W) N AY). (6.19)

Write v7 | A for vZ()1{- € A,}. As we will explain just below, one can deduce from Lemma 3.2
that

My onA,
AFIA) =90 onAg, (WA, (6.20)
>0 ondA, NAg, (W)

Indeed, A, is a union of connected components of AZ N A 5,r5,-(W), an open set. The odometer, v7

is nonnegative and continuous on B, \ {z}and v? = 0ondA, N Ag,rs,r(w). Therefore, vf|; is con-

1]Uo//SdY) SUOIPUOD PUe SLLB L 3} 89S *[7202/2T/6T] U0 ARelqiauiiuo A8 *(-ou] eAnde) sqnopesy Ad 8TO0L'SWId/ZTTT 0T/10p/ w0’ A3|In AIeiq1pUl[UO"DCSUTRWPUO|//:SdRY Wo1) papeojumoq ‘T ‘5202 Xi209rT

100" 3| 1M A

35USD17 SUOLILLOD A1) 3ol jdde auy Ag peusenob ake sajoilie WO ‘asn Jo sajni 1oy ArigiauljuQ A3|iA\ uo



30 of 82 | BOU-RABEE and GWYNNE

tinuouson A, N Ag,rs,r(w)and vf|; satisfies the submean-value property on A, N Ay psyr(W). As
V7| A, coincides with v? on A,, this shows (6.20) by Lemma 3.2.
Let G4 denote the Green’s function for the domain A with zero boundary conditions and let

u() = / Gy (V@)
BZszr(x)nAt ’

Observe that A(u + vf|; ) > 0 on B, ,(x): indeed, by the definition of u, we have Au = —p;, on
A;n By,-(x) and Au = 0 elsewhere which, together with (6.20), shows u + vf | is subharmonic
on B, .(x).

Hence, by the maximum principle, on B, .(x),

z z _ AT zZ|. z
u+vly < sup (u+v/lz)= sup U/|z < sup [z =supu;
aBZczr(x) aBZCZr(x) Aslr,szlr(u-’) Ny

asu =0on aBzczr(x) and BZCZ,(x) € Aslr,w(w). Thus, as vflAI >0,

0< (sup vt> —u, on BZCzr(x). (6.21)

Ny

We now estimate u at the center of B, .(x). By the definition of u and then the scale invariance
of the Green’s function for a ball,

u(x) = / Gy o ()
B2czr(x)nAt 2

> / ~ Gg (0,2¢,1) 7 (v = )ty (dy)
Bczr(x)nAt

2 C#h(Aszr,sg(w) N At)’ (by (6-19))

where C :=cinf cp 12(0) Gp,(0)(0,y) > 0 is independent of r. We conclude the proof by
combining this lower bound for u(x) with (6.21). O

We next show that if it is difficult for Brownian motion to get through a domain without exiting
A, then the odometer must be small within the domain.

Lemma 6.9. Let z € B, and let A denote an open set in B; not containing z. For all x € A n A%,
U7 (x) < sup_ v7 [P[B* exits A before hitting A\A;|h], (6.22)
ANA,

where B* denotes an independent Brownian motion started at x and A is the connected component
of A N A7 containing x.
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Proof. Write f 4(x) = P[B* exits A before hitting A\A7|h]. Observe that

Afs=0 inAnA?
fa=1 ondAnA? (6.23)
fa=0 onAnJdA?

and by Lemma 3.2,

Avf >0 inAn Af
U, S SUPgana, v ondANA? (6.24)
v =0 on ANJA7.

Now, fixx € AN Af and consider Af, the connected component of A N Af containing x. As AN
A} is a connected component of A N A%, (6.23) and (6.24) show that

v7 ()= sup v7 [fa()
aAan
is subharmonic in A N A;‘, equalto0on AN 6A;‘, and less than or equal to O on 0A N K?. Hence,

by the maximum principle,

vy (¥) < sup_ vf [fa(y), fory € AnAf.
9ANA,
Moreover,
fa(y) = P[B” exits A before hitting A\AF|h] fory € AnAf
since there is no path in A from y to any point of A, \ A}". The previous two sentences imply
v7(y) < sup v? [P[3” exits A before hitting A\AY|h] fory € AnAY
ANA,
completing the proof. O

‘We next provide a weak upper bound on the growth of the odometer around its zeros.

Lemma 6.10. Fix0 < s; < 5, < 53 < ;. There exists a constant ¢ > 0, depending only on s, ..., Sy,
so that, with SG; , ;,(Xo) asin (6.5), forall z € B,

sup v7(x) < ¢SGy o5, »(X0)
XEA)p,53p(%0)

forall Ay ;¢ o(xo) C By\{z}such that A7 N A, . ,(x,) # 0.
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Proof. Fix an annulus A, ; ,(X,) C By \ {z} and let 1 = Av7. Consider the positive function

aw =[Gy @),
A

xlp,S4p(x0)

forw € A, o(xo). Since 4 < py, (Lemma 3.2),

sup  q(w) < SGslp,s4p(x0)- (6.25)

wEASw,Sw
Hence, the statement of the lemma will follow once we bound v by g. We do this via Harnack’s
inequality for positive harmonic functions.
Our choice of q ensures that it is positive and
Ag=-2 on Ay ;¢ o(X0).

This implies that the function g : A (x¢) — R defined by

S1P584P
g:=v;+q
is harmonic and nonnegative in A , ; ;(x). Fix s}, s} so that
0<s5 <8, <8, <83 <8, <S8y

By Harnack’s inequality for positive harmonic functions,

sup g(z)<c inf g(y) (6.26)

zEAy ye szp,53p(x0)
2773

for a constant ¢ (depending only on the ratio of the domains on the left and right of (6.26)). Note
that the assumption A7 N A, p.530(X0) # @ implies the existence of z, € A, . () with v7(z,) =
0. Hence,

sup  vi(2) < sup g(w) (since g > 0)
ZEAs;p,sgp(xo) wEAszp,S;p(xo)
<c inf  g(y)  (by(6.26))

V€A p530(X0)
< cg(zp) (since zy € A . (X))

= cq(z,) (since v7(z,) = 0)

/N

¢ sup  q(w),

WE/'\szp,s3p(x0)

which together with (6.25) completes the proof. O
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Lem. 6.6 €5

|
Eqn. (6.53) b
N\

Lem. 6.6 la Cf [Cy €4 Eqn. (6.44)

a Eqn. (6.45)

FIGURE 4 Illustration of the choice of constants and dependencies in the proof of Proposition 6.2. A line
between two constants indicates that the downward constant is chosen in a way that depends directly on the
upward constant. Where the constant is chosen is written directly next to it. Note that b = b(y). Otherwise,
dependence on y € (0, 2) and some universal constants is not indicated. N, can be any number larger than N;.
This is done so that there is flexibility later (the proof of Proposition 8.1) to choose the initial scale N, to be large.

6.5 | Very good annuli satisfy the Harnack-type estimate

In this section, we prove that there are choices of parameters so that for every z € B;, every annu-
lus A, ), ,(x0) with B,(x,) C By\{z} that is very good also satisfies the Harnack-type property
at z.

Lemma 6.11. There exists a universal constant C; > 0 and b = b(y) € (0, 1) so that the following
is true for every z € B,. For every choice of CT, C;—“ > 0and a € (0, 1), there exists

* N, > 200 depending only on a, y, C1_’ C2+;
* foreach N, > N, a parameter o € (0,1) depending on a, N,,y, and Cl‘;

with the following property. If p € (0,1) and x,, € B; are such that Ep(xo) C By\{z}, the eventfp (xp)
of (VG-i), (VG-ii), and (VG-iii) occurs, and Kt is a connected component of A7 N Bp(xo) for which
:uh(xt n Ap/z,p(xo)) < a:uh(Ap/Z,p(xO)): then Kt N Bp/z(xo) = .

This leads to the Harnack-type inequality.

Proof of Propositions 6.1 and 6.2. Combine Lemma 6.6 and Lemma 6.11. See Figure 4 for an
illustration of how the constants are chosen. I

The proof of Lemma 6.11 is purely deterministic. We now outline the proof (in the case z = 0
for convenience) — also see Figure 5. As mentioned previously, we will use (VG-i) and (VG-ii) to
switch between uj,, SG,(-), and M,,(-) when convenient.

(1) Set up the iteration by decomposing A/, ,(x,) into a disjoint, sparse collection of shells
{S;}js0 contained in {A, /2.4, (x0)}j5o for some infinite geometric sequence d; | d., > p/2
(Lemma 6.12).
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FIGURE 5 Visual explanation of the proof of Lemma 6.11. We display some of the shells in the shell
decomposition, the grid of points in each shell surrounded by good annuli, and some of the good annuli A, 5, (2)
surrounding one of the grid points z;. The shells are displayed in gray, the good annuli are in purple, and the grid
of points are black dots. Aspect ratios of annuli are not shown to scale.

(2) Show thatif (A 0/2.4; (x9) N A,) is very small, then the supremum of the odometer decreases

by a multiplicative factor from A /2.4, (xp) to A, /2,dj+1(x0) (Lemma 6.13).

(a) As ,uh(/-\dj’p(xo) N A,) is small, we may use (VG-iii) to cover S i by a dense grid of points
surrounded by a large number N of concentric good annuli.

(b) For each good annulus, apply harmonic comparison, Lemma 6.9, together with (6.2) to
see that the supremum of the odometer decreases by a factor of b from one concentric
annulus to the next.

(c) Since the concentric annuli cover S i and v, is subharmonic, iterating shows that the
odometer decreases by a factor of b .

(3) Show that if SUps, 411 ) v, is small, then w,(A;,5.(z2) N A,) is small for each annulus

A, 7:(2) CA, /z,dj+1(x0) (using Lemma 6.8).
(4) Start with a weak initial bound on the odometer, Lemma 6.10 and the initial assumption
that (1, (A, /2 ,(x0) N A) < app(A, )/ ,(x0)) and iterate the previous two steps to see that

lim (SupAp/Z,dj(xo) vt) - 0.

‘We start with the shell decomposition.

Lemma 6.12. Fixp € (0,1) and x,, € B;. Define the collection of shells

S; = 6ij (xg) + Blj forj=0 (6.27)
where

j=px27/4x2™0  forj>0 (6.28)
and

3
dy = Z‘O
(6.29)
d} =d]_1_3211_1 fOV]Zl

SUORIPUCD Pue LB | 3L} 38S *[1Z02/2T/6T] U0 Ateiqi] auliuo AB|Im ‘(‘auleAnde 1) 8gnopesy Aq 8T00L SWd/ZTTT OT/I0PAL0D 8| 1M ARe1q 1 puluo-d0syewpuO|//Sdny WOy pepeojumod ‘T ‘S20z ‘X200t T

yy/sd

100" ArIq 1 BU

35USD17 SUOLILLOD A1) 3ol jdde auy Ag peusenob ake sajoilie WO ‘asn Jo sajni 1oy ArigiauljuQ A3|iA\ uo



HARMONIC BALLS IN LIOUVILLE QUANTUM GRAVITY 35 of 82

For each N > 200, the shells satisfy the following properties.

* The union of fattened shells is contained in an annulus:

JGS; + By € Ay p(xo). (6.30)
Jj=0
* Shells are sufficiently far apart:
(Sj +Bg )N (UpziSy) =9 forj=o. (6.31)

* Balls centered at points of a shell are contained in an annulus: for each j > 0, let
¢; =2 Nt gnd df :=d; +8l;. (6.32)
Then, for each z € Sj,

BSEJI./ Zp(z) C A/9/2,01;.“("0) C AL /2,0(X0)- (6.33)

Proof. The first two properties (6.30) and (6.31) are immediate from the definitions of d; and [;.
The second inclusion in (6.33) follows from unpacking the definitions:

df =d;+8l;<dy+8l, = (3/4+8x27%)p < p.
We now check the first inclusion in (6.33). First note
dj—li<lz—xl<dj+l;, VzeS; (6.34)

and

1/2 ’ 1/2 ’
dj—lj—Sej p <z — x| de+lj+8€j o, Vz GBSG}/zp(z),ZESj. (6.35)

We claim that the first inclusion in (6.33) follows from the following inequality which we verify
below:

1/2
i +8¢/°p <4l

; (6.36)

Indeed, if (6.36) holds, then by (6.35) and the definitions of d}.+ and S,
BSE;/zp(z)CSj+B4lj C Ap/z,d}’, VZESJ.
It remains to check (6.36):

L+ Sejl./zp = px 274 %2750 4 8§ x 27 No/27I/2 %
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<pX Z_j/4<2_50 + 8% 2_N0/2> (since 279/% » 27I/2 for j > 0)
<2xpx27//4%27°  (since N, > 200)

We next show that an upper bound for the amount of mass in A/, 4+(x,) implies an upper
“
bound for the odometerin A, /2%, (xp)- This will be a key input in the induction argument in the

proof of Lemma 6.11.

Lemma 6.13. Let z € By, and fix an annulus Ap/z’p(xo) not containing z for which (VG-iii) occurs
with parameters a,b € (0,1), N, > 200, and universal constant C; > 0. Let the shell decomposition
{S;, d;-}j;o be given by Lemma 6.12 and let A, be a connected component of A7 N B,(x,). For j >0,
let

Kj=ax Mp(xo) X eff (¢ from (6.32) and B~ from Lemma 2.4). (6.37)

Then, for each j > 0,

sup MDAy N A3, 5(2)) < K
r>0,z€B; :
AV,7V(Z)CAp/2,d_+ (x0)
J
= sup v, < pC'*C3x(No+) sup v, |, (6.38)
AmAp/z,d}'ﬂ(Xo) AmAp/z,d;F (xg)

where C' > 0 is a universal constant.

Proof. Let j > 0be given and let A, be a connected component of A7 0 B,(x,). We first check that
the assumption

sup uh(T\t N A3 5 (W) < K;
r>0,weB; :

A!',7)‘ (Z)CAp/Z’d; (xo)

allows us to use (6.2) on sufficiently many annuli covering S;.
In particular, there exists a finite set of points Z C S; N %Zz so thatU,,B oc; (z) covers S;. Fix
one such w € Z, define
-1/2
N=1[C; logej 1,
andletry,...,ry € [€;p, ejl./zp] N{p7 "}, be distinct radiir; > r, > --- > r, for which the event

E.(w) occurs, as provided by (VG-iii).
Step 1: Small mass in annuli.
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For each r € {ry, ...,ry},

:uh(xt n AL’»I‘,Sr(z)) < Kj (Ar,7r(z) - A/:)/Z,d;," (X()) by (6~33) and since r < €Jl/zp)

=ax Mp(xo) X eff (definition of Kj)
(B oz +dre))
<ax I X€; (definition of M (x,) and (6.33))
e

J

=ax :uh(Bejp(z + 4re;))
<axpy(hy5@)  (sincer > ry > ¢;0)

Hence, we may use the estimate on the exit probability (6.2) on each such annulus with Y =
A; N A3, 5,(2). In fact, we may use it with Y set to be any connected component of A; N A, 5,(2).
Step 2: Small mass in good annulus implies small odometer.
First note that as A3, 5, (w) € Ap/z,d;r (xg),

sup V7 < sup vy (6.39)
A3y, 5, (WINA, T\Imp o (x0)

For each x € A, N 0By, (w), let B* denote an independent Brownian motion started at x and Ay
the connected component of A, s, (w) N A7 containing x. Note that for each such x, we have
AF C A, (and hence Mp(AF) < py,(A)). We use this to see that for each x € AN 9B, (w),

vr(x)

< sup v; [P[B* exits A3, s, (W) before Af|h] (Lemma 6.9 with A = A;, 5, (w))
A3y, 51, WINA,

VA

b sup vf | ((6.2) withY = AY)

—X
3Asy, 57, WINA,

VA
S

sup v | (AFC A)).
Azp, 5r (w)nA,

As A, is a connected component of AT N AL, o (x0), AN B,, (w) is a union of connected com-
ponents of A7 N B, (w). The same argument in the proof of Lemma 6.8 shows that vf1{- € A}is
subharmonic in B B (x)-

This together with the maximum principle and the most recent indented inequality shows that

z

sup v/ < sup v, <b sup  v7 |

~ ~ t —
A¢NBy,, (w) A¢NdBy,, (w) Azpp sry (WINA;
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Since the next annulus, A, ;. (w) C By, (w) (r, < ry/7 by construction), this implies that

z

z
sup v/ <b sup v/ |-

Ar2,7r2 (w)nAt A3;'1,57'1 (w)nAt

Step 3: Iterate.
We have shown in Step 1 that each annulus A, ;,(w) for r € {ry, ..., ry} satisfies the conditions
required to use (6.2), so we may iterate Step 2 (N — 1) times, then apply (6.39), to get

sup  vF bV sup v <N sup U7 | (6.40)

ADA 77y (W) Azpy ey (WINA, AInAp/z,dj.* (x0)

Since the estimate (6.40) holds for all w € Z, ry > pe;, and UweZBpEj(w) 2 S, the maximum
principle applied in B, (w) for each w € Z gives

sup vy < pN—1 sup v |- (6.41)

A¢NS; T\[nAp/z’d;, (o)

As previously mentioned, v,1{- € A} is subharmonic in B,(x,). Therefore, as S; disconnects
OB+ 1(xo) from B,(x,),
Jj+

sup vy < sup v7.
ANA o (Xg) A0S
t ‘O/Z’dj+1 0 t J

This combined with (6.41) gives

sup v? < BN sup 7| (6.42)
Aln&p/Z,d;.:_l (xo) AtnAp/Z,d;' (xo)

We now recall that N = |C;log ej_l/ 2J and ¢; = 2-(No+J) (6.32). Hence, the lemma statement
follows from (6.42). O

‘We conclude with the proof of the desired claim. See Figure 6.
Proof of Lemma 6.11. Let C; > 0,C5 > 0, corresponding to (VG-i) and (VG-ii), and a € (0,1),

C; > 0, corresponding to (VG-iii), be given. Fix b = b(y) € (0,1), N, > Nl(a,Cl_, C;f) > 200, and
then a = a(a, Ny, y,Cy) € (0,1) which will be specified in (6.53), (6.54), and (6.45), respectively.
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Decompose annulus A3 ,(z9) into
shells, {S;};>0, given by Lemma 6.12

Assume cluster in annulus has small mass relative to the size of the annulus (6.43)
—> DBase case: small mass in shell Sy (6.50)

lLem. 6.13 and Lem. 6.10

Base case: small odometer in shell Sy, (6.56) |

i Inductive hypothesis

Small mass in shell S;, (6.47) for j
Small odometer in shell S;.4, (6.48) for (j + 1)

l Eqn. (6.44)
| Small mass in shell S, (6.47) for (j + 1) ‘
| Lem. 6.13
‘ Small odometer in shell S;1o, (6.48) for (j + 2) ‘

‘ -
, Iterate and send j — oo

‘ Zero odometer on 0B,/,, (6.49) ‘

FIGURE 6 Schematic outline of the proof of Lemma 6.11.

Fix z € B}, p € (0,1) and x; € B; such that Ep(xo) occurs, Ep C By \ {z} and let 1~\t be a

connected component of A7 N A, ,(x,) with AN 9B,(x,) # ¥. We assume that

By O A, 15 (X)) < (A y2.(X0)), (6.43)

and we seek to show that A, N 8B, /,(x,) = §.

Start by decomposing the annulus via the shell decomposition {S;, dj+ }j>0 given by Lemma 6.12.
We will iteratively apply Lemma 6.13 and Lemma 6.8. Suppose r > 0 and w € B; such that
A7 (W) CA g+ (Xp). AS A, is a connected component of Ap ap(Xp) and A, 7. (w) € A, /5 ,(Xo),

. di, . . .

we have that A, ;.(w) N A, is a union of connected components of A7 N A, 7,(w). Hence, we may
use the following consequence of Lemma 6.8:

Mp(Azr s W) NA)<Cy  sup v/
AtnAp/Z,dJJ.r+1 (xo)

Vj>o0andallr > 0andw € By such that A, ;,.(w) C A, 4+ (x0), (6.44)
’ RSt

where C, > 0 is a universal constant.
Step 1: Choose a and set up iteration.
We set up the iteration of Lemma 6.13 and Lemma 6.8. Start by choosing

1

ai=ax2 NP x — (6.45)
Cr vl
so that our assumption (6.43) implies
#h(?{t n Ap/2,,c)('x:0)) <ax 2_N05_ X Cc-v1 X :uh(Ap/Z,p(XO))' (646)
1
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LetK; be as in Lemma 6.13. We will show

sup M (B 0 A, 5 (W) <K, Vjz0 (6.47)
r>0,weBy :
Arﬂr(w)CAp/z,d*_' (xo)
J
and
sup v? < 1 K, Vj=1 (6.43)
K A t < C4V 1 }’ = ’ .
1Mo 2at xo)

where the universal constant C, is from (6.44).

Once we show this, then we may take j — oo in (6.48) and use thatlim;_, K; = 0toget that v?
is zero on A, N c3Bd;ro (xg), where d¥ := lim;_, d;.“ € (p/2, p). Since v71{- € A,} is subharmonic
in B,(x,), this implies that

sup vf =0, (6.49)
Ktnl_?p/z(xo)

implying the desired statement by the definition of A7.
Hence, it remains to prove (6.47) and (6.48). Our strategy is to induct on j > 0 and show the
following chain of implications:

{(6.47) for j and (6.48) for (j + 1)} = {(6.47) for (j + 1) and (6.48) for (j + 2)}.

We start with the base case.
Step 2: Base case j = 0.
By (VG-i) and the inequality (6.46)

Ry N A (X)) < @ X My(xp) X 27N0F™ = K, (6.50)
which is (6.47) for j = 0. Since « € (0, 1), by (6.43),
Ap/Z,p(XO) N K[C ?é ﬂ

Therefore, by Lemma 6.10,

sup v7 <cX SG,(xp) < ¢ X C; X C_; X M(x) (6.51)

Ap/2,0(X0) 1V 1

with the latter inequality following from (VG-i) and (VG-ii). The inequality (6.50) allows us to use
Lemma 6.13 to see that

sup V7 < bC'*C3xNo sup v7 |. (6.52)

T\tnAp /2, d;(xo) K[nAp fad (x0)
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Now, pick

28~
b =2 @i, (6.53)

We emphasize that b depends only on y (through 87) since C; is a universal constant. We also
choose N; sufficiently large so that

1
Cyv1

27PN gax27F x —— ) (6.54)
(exCT X c;v1)v 1
Fix some N, > N;. With these choices of b and N,,, we have
L a2 B (Not+D)
bC'XC3><N0 < Z—Noxzﬁ_ < Cavi T . (655)
+
(exCy % Cl_w)v 1
Hence, by (6.52) followed by (6.51) and (6.55),
sup 7 < bC’XC3XN0< sup vf) < G 1 1az_ﬁ_(l\jo“)Mp(xO) = ﬁKl, (6.56)
RiA 2t e KiNA,/.0(X0) 4V 4V

which is (6.48) for j = 1.
Step 3: Inductive step, j — (j + 1).
If (6.48) holds for (j + 1), then by (6.44), we have (6.47) for (j + 1). It remains to show that

{(6.47) for (j + 1) and (6.48) for (j + 1)} = {(6.48) for (j + 2)}.

This is similar to the argument of the base case; however, we will not need the full strength
of the inductive step (unlike the base case). In particular, we will use the very crude bound
pC'XCsxNo+)) ¢ 2=B~
By (6.47) for (j + 1), we may use Lemma 6.13. Hence,
sup U7 < pC*CxWNo+j+D)  gyp v?  (by (6.38))
/'\p/z,d;:rz(x()) Axﬁ/z,d;r)rl(xo)

< pC XC3x(No+)) c 1\/ 1Kj+1 (by (6.48) for (j + 1))
4

- 1
<2 P x—K; by (6.55
X C4 v1 Jj+1 ( Y( ))

1
4

which is (6.48) for (j + 2), completing the proof. O
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Very good annuli__.

At

FIGURE 7 Covering of 0B, , by very good annuli as in the proof of Proposition 7.1. The cluster A, is
displayed in gray with a solid black border and the good annuli are light gray with a dotted black border.

7 | UPPER BOUND AND CONTINUITY

In this section we prove, using the Harnack-type estimate Proposition 6.1, that clusters do not
immediately exit the unit ball and are in fact Holder-continuous in the parameter ¢. We start with
the upper bound.

Proposition 7.1. Foreachr € (0, 1), on an event which occurs with polynomially high probability
asT — 0O,

AZCB,y(2), VE<T, VzZEB,),.

Proof. Fix r € (0,1) and let fp(xo) and a € (0,1) be the event and parameter from Proposi-
tion 6.1. By Proposition 6.1, it holds with polynomially high probability as € — 0 that for each
x € (B4 \B, \/g) n 1_8022’ there exists p,, € [¢,€!/?] such that E 5, (x) occurs. Henceforth, assume

that this is the case for some ¢ € (0,272¢2).
LetX C (BI+E\B10\/E) n 1%22 be a set such that

U A, 2, () € B\B, 4(2) 7.1)
xeX
and
3B,,(2) € | B, j2(0). (7.2)
xeX

This is possible since for each x, we have € < p, and p)lc/ <r /100 — see Figure 7.
By Lemma 2.4, it holds with polynomially high probability as € — 0 that

“h(/'\Px/Z,px(x)) > piﬁ_, Vx € X, f~ from Lemma 2.4. (7.3)

Henceforth assume that ¢ € (0, 272°r2) is such that (7.3) holds.
Now choose T < ae?®™ . Then, foreachx € X,z € Bl/z, andeacht < T,

Mp(A7 N A, 20, (X)) < up(A7)  (monotonicity, Lemma 3.3)

< ae?” (choice of T and Lemma 3.4)
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<ap? (o 20

<app(Ay 2 (). (by(7.3)).

Thus, we may apply Proposition 6.1 and (7.2) to see that

sup vy =0, Vi<T, VzZ€By),. (7.4)
aBr/Z(Z)

Since supsp, vf = 0 by Lemma 3.4 and vf is subharmonic away from B, /,(z), this implies

sup v =0, Vi<T, Vz€Byy. (7.5)
B1\B,/2(2)

By the definition (3.3) of A, (7.5) implies that A7 C B, /z(z). We conclude by recalling that both the
condition in the first paragraph and (7.3) hold with polynomially high probability ase — 0. []

We next prove continuity of the clusters, using a similar argument as in the proof of
Proposition 7.1.

Proposition 7.2. The following occurs on an event of probability 1. For each t > 0 and z € B, such
that A7 € By, for all € > 0 sufficiently small, depending on t,
AL, € A7+ Bs(z), ford = Cel/@F7),

t+e

where B~ > (2 +y)?/2 is from Lemma 2.4 and C = C(B~) > 0 is a deterministic constant.

Proof. Let Ep(xo) and o € (0,1) be the event and parameter from Proposition 6.1. By Proposi-
tion 6.1, it holds with polynomially high probability as § — 0 that for each x € (B;,s\B 10 \/3) N
%ZZ, there exists o, = p,(8) € [8,5'/2] such that pr(x) occurs. By Lemma 2.4, it also holds
with polynomially high probability as § — 0 that

28~ o)
My ("\px/z,px (X)) >, vxe (B14s\B,y,/5) N mzz, (7.6)

By the Borel-Cantelli lemma, a.s. there exists M, sufficiently large such that the preceding two
conditions hold for each & € {27"},,. .

Let t > 0, and z € B; such that A? € B;. By Proposition 4.1, there exists ¢y(f) > 0 so that
B, (z) C AZ. Hence,since A7 € By, by taking M, possibly larger (depending on ¢,), we can arrange
that

(A7 + B, O\AZ +B ) € B\B (2), V6 €2y, (7.7)

By (7.7) and the fact that p, € [8, 8'/%], we obtain that for each & € {27}, , there exists X =
) .
X(6) C (B1+5\B10\/3) N ﬁzz for which

(A7 +B, \A] +B, j5) € XLEJXB,JX () €B,_ (7.8)
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and

U B, (x) € (A7

xeX

foreach § € {27}, ), -
As A? € By, by Lemma 3.4, we have w,(A?) = t. Thus, by monotonicity, Lemma 3.3,

yh(Af+€\Af) <e, Ve>0.
Therefore, by (7.9), whenever § € {2—"}H>MO, we have

Hr(Ag 2o (XINAT ) <€, Vxe€X, Ve>0.

Now set
c=¢8) := as?®
(where a is as in Proposition 6.1). Then, for each & € {27"},,,); and each x € X, we have

(Mg oo ()N AT, ) <ad® ™ (by (7.10)

t+e

2B~

<apy  (py=9)

<ap(A, o, (1)) (by (7.6)).
Therefore, as the event pr (x) occurs for each x € X, by Proposition 6.1,
B, p(X)NAL =0, Vx€X, V6e{27}, .
This implies by (7.8) that

sup Ui =0, V6ERT .
(AF+B, \AF+B, )

Since supsp, U7, = 0 by Lemma 3.4 and v, . is subharmonic away from z, (7.11) implies

sup  vf, =0, VSE{27"} -
Bl\(A[z+B3\/E)

By the definition (3.3) of A7, , this implies that

Al @AT+B, 5 VO €2y,

Recalling that ¢ = «§%", this concludes the proof.

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

O

For completeness, we indicate how the above two results imply Proposition 5.1 and Proposi-

tion 5.2.
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Proof of Propositions 5.1 and 5.2. Proposition 5.1 follows immediately from Proposition 7.1.

The fact that the clusters continuously increase in ¢, (5.3), is implied by Proposition 7.2. We
show here that Proposition 7.1 implies that the clusters decrease to the center point, (5.2).

By Proposition 4.1, for each ¢ >0 and z € B, ), there exists €(t) > 0 so that B.(z) C A7.
By Proposition 7.1 and the Borel-Cantelli lemma, applied to a sequence of dyadic radii, r,, :=
{27"},5,, a.s. there exists a sequence of positive times {t,,},,, so that

A_f S Brn(z), vn > 2.

The desired claim follows by combining the previous two sentences with monotonicity of the
clusters in t, Lemma 3.3. O

8 | BOUNDARY HAS MEASURE ZERO

We show that the boundary of a cluster compactly embedded in the unit ball has LQG-measure
zZero.

Proposition 8.1. On an event of probability 1,
up(0AZ) =0  forall z € By with A7 € B,.

Our strategy for doing so is to use the Lebesgue density theorem together with some of the
intermediate results from Section 6.

The Lebesgue density theorem for general Radon measures on C [64, Corollary 2.14] shows that
a.s. for every Borel set X, the set of u;,-density points of X has full u;,-mass, that is,

:uh(Br(Z) N X) _

lim =1, foru,-ae zeX. (8.1)

r—0 Mh(Br(Z))

We want to deduce Proposition 8.1 from the density theorem for u; in Euclidean balls (8.1)

together with the Harnack-type estimate from Section 6. However, the results of Section 6 are in

terms of the LQG mass of the intersection of a cluster with an annulus. In order to compare the

u,-masses of balls and annuli, we require a doubling property for the u;,-masses of Euclidean

balls, that is, an up-to-constants comparison of the y;,-masses of B,-»(z) and B,-»-1(z) with the
constant independent of n and z. That is, we require an event of the form,

G,(2) = G,(z:m) 1= {up(Ay-n-1,,-n(2)) = mp,(By-n(2)) } (8.2)
for z € C and m > 0. Due to the randomness of x4, such an event does not hold uniformly over
all choices of n and z. Instead, we will show that for u,-a.e. z € C, one has this estimate and a
Harnack-type property for “most” large values of n. For convenience, write

E,(z) := Eyn(2) (8.3)

for z € C and n € N where Ep(z) is the very good event from Section 6.1.
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Lemma 8.2. Let { > 0 and b € (0,1). There exists m > 0 and parameters corresponding to the
eventEp(z) = Ep(z;NO, a,b, CI—", C;—", C;) (from Section 6.1) such that a.s. for uy-a.e. z € By, it holds
foreach large enough N € N (depending on z) that

#{n €[N+1,2N|nZ: En(z) and G,(z) occur} > (1-{)N. (8.4)

Recall that h* = h + &y log| - | is the whole plane GFF as defined in (2.1). It is a standard fact
from LQG theory thatif U C Cisopen and Z is sampled from u,c |7, normalized to be a probability
measure, then near Z the field 4 locally looks like 2 — y log | - —Z|, where / is a GFF sampled inde-
pendently from Z (see, e.g., [23, Section 3.3]). Hence, Lemma 8.2 will turn out to be a consequence
of the following statement for a GFF with a logarithmic singularity at 0.

Lemma8.3. Let{ > 0andb € (0,1). There exists m > 0 and parameters corresponding to the event
EP(O) =E, (0;Ny,a,b, C;—”, Czi, C;) (from Section 6.1) such that a.s. for each large enough N € N, the
condition (8.4) holds.

Proof. By the scale invariance of the law of h, viewed modulo additive constant (2.5), and the LQG
coordinate change formula for y; (Fact 2.1), the law of

M (Ag-n-1,-n(0))/ 14y, (By-r(0))

does not depend on n. Furthermore, this random variable is a.s. finite and strictly larger than 0.
Hence, P[G,(0; m)] does not depend on n and we can find m = m(a,{,y) > 0 such that

PG, >1-¢/8, VneN, whereG, :=G,(0;m). (8.5)
By Lemma 6.7, there is a choice of parameters so that
P[E,] >1-¢/8, Vn>0, whereE, :=E,(0). (8.6)
Hence, by a union bound,
q:=P[E,nG,]>1-¢/4 (8.7)
By the scale invariance of the law of # modulo additive constant and the fact that the occurrence

of the event G, N E,, does not depend on the choice of additive constant for &, the sequence of
random variables

{lGnnﬁn $nz0

is stationary. Hence, by the Birkhoff ergodic theorem,

1 N
N Z 1GnnEn
n=1

converges a.s. and in L! to a (possibly random) limit. The limiting random variable is measurable
with respect to the o-algebra (.., o(hlp (), which is trivial (see [22, Lemma 7.2] for a proof of
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the analogous tail triviality statement for a free-boundary GFF; the proof for a whole-plane GFF
is similar). Therefore, the limiting random variable is a.s. constant, and hence is a.s. equal to the
number q from (8.7). Consequently, a.s.

Jim 2 lg o5, (8.8)
Hence,
, =
MmN 2 e, = = lim Zlc £~ lim Zlc o, =20-921-¢/2. (89)
By the definition of G, and E,,, this implies the lemma statement. O

Proof of Lemma 8.2. Recall that h = h* — « log| - |, where h® is a whole-plane GFF normalized
so that hf(O) = 0. By Weyl scaling, we have u,c = | - |%"u;,. Conditional on h, let Z be sampled
from | - |*” 1y, | , normalized to be a probability measure. By [22, Lemma A.1~0]: the law of~ the pair
(h, Z) is mutually absolutely continuous with respect to the law of the pair (h, Z), where Z is sam-
pled from Lebesgue measure in B; independently from hand & = h — ylog| - —Z| + y log max{] -
,1}, with h and & viewed as distributions modulo additive constant.

From the definitions of G,,(Z) and En(Z) and the locality property of uj; (Fact 2.1), we have

G2 NE @) € (25, 2))- (8.10)

Almost surely, Z # 0. If r < |Z|, then the restriction of & to B,(Z) is equal to the restriction of
a whole-plane GFF to B,(Z) plus —y log | - —Z| plus the function —eylog| - | + y logmax{| - |,1},
which is smooth on B,(Z). By standard absolute continuity results for the GFF (see, e.g., [68

Proposition 2.9]), the conditional law of | B,(2) given Z is absolutely continuous with respect
to the law of the corresponding restriction of a whole-plane GFF plus —y log | - —Z|. From this,
(8.10), Lemma 8.3 (with &, = y), and the translation invariance of the law of the whole-plane GFF,
viewed modulo additive constant, we get that if the parameters for En(-) and G, (-) are chosen as
in Lemma 8.3, then a.s. for each large enough N € N,

#{n €[N +1,2N|nZ : E,(Z) and G,(Z) occur with & in place ofh} >(1—-¢N. (81D

By absolute continuity, the same is also true with (h, Z) in place of (%, Z). Since Z is sampled from
| - 1%7 wy| g, , we get that a.s. the lemma statement holds for u-a.e. z € B;. O

We conclude with a proof of the desired claim.
Proof of Proposition 8.1. By Lemma 6.11 and Lemma 8.2, we can choose parameters b,

Ny, a,CI—',C;—’,C3,c,m so that for some fixed a € (0,1), it holds for all z € B, x, € B; \ {z}
with Ep(xo) C B; \ {z} that

E,(xp) occurs = {un, (A7 N A, 15 5(x0)) < apin(A, 2 (X)) = AZ N B, 5 (x) = B} (8.12)
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and the implication of Lemma 8.2 holds with ¢ = 1/2.
We will now show that u,,(0A7) = 0 for every ¢ > 0 and z € B, such that A7 € B;. By (8.1), a.s.
for every t > 0, we have

14(B,(w) 1 8A7)
im —— =1, foryu,-ae weiAz (8.13)
=0 pp(By(w) " f

Since A7 is open, we have A7 N dA? = @, so (8.13) implies that

up(Bo(w) N A7) B

lim =0, foru,-ae weiA?. (8.14)

p=0 pp(Bo(w))
In particular, for uj-a.e. w € dA?, it holds for each large enough n € N that
U (Bayen(w) N A7) < &t X X iy (Byn (W), (8.15)
where « is as in Lemma 6.11 and m is as in the definition (8.2) of G, (w; m).
By Lemma 8.2, it is a.s. the case that for u,-a.e w € By, there are arbitrarily large values of n

such that En(w) and G,(w) occur. Hence, a.s. for each ¢ > 0, it holds for u,-a.e. w € dA7 that there
are arbitrarily large values of n such that En(w) N G, (w) occurs and

ﬂh(Az—n—l’Z—n(w) n Af) < [lh(Bz—n(lU) N Atz)
<axmx uBya(w)  (by(815)

< app(Ag-n-1 p-n(W) N A7) (since G, (w) holds).
Since En(w) holds, this implies by (8.12) that
Af N B2—n—1 (w) = ﬂ,

which shows that w ¢ aAf . Hence, we have shown that a.s., it holds for each ¢ > 0 that u,-a.e.
w € A7 does not belong to dA7, which means that u, (6A7) = 0. O

9 | UNIQUENESS OF HARMONIC BALLS

In this section, we show that there is only one family of harmonic balls satisfying the conditions
given by Theorem 1.1.

9.1 | Uniqueness of subharmonic balls

The uniqueness of subharmonic balls (defined in (4.5)) for the Lebesgue measure is well known,

see, for example, [79], and the proof extends verbatim to y-LQG subharmonic balls. The idea is
that every subharmonic ball generates a supersolution to the obstacle problem.
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Lemma 9.1 (Theorem 2.1 in [79, 82]). Let R > 0, z € B and let A be a domain strictly contained
which contains z and let

F() = 1 (A)G, (6,2) /A Gy, (5, )ity (). O

(1) If Ais a subharmonic ball centered at z, then f > 0 on B,
(2) If Ais a harmonic ball centered at z, then f = 0 on Bx\A.

Proof. (1)
For all x € By, the function g(w) := Gg_(w, x) is superharmonic in A, so —g is subharmonic
in A. Then, since A is a subharmonic ball centered at z,

/A (W) (dw) < 1y (A)g(2), 9.2)

and so,
/ Gy, (W, )ty (dw) < py,(A)Gp (x,2), Vx € By 9.3)
A

@)
In this case, the function g(w) = GBR(w, x) is harmonic in A for all x € B\ A. Hence, since A
is a harmonic ball,

[ G w0 (dw) = w (WG, (5,2 ¥x € B\A. 9.4)

L]
The prior lemma implies uniqueness (up to sets of 1;,-measure zero) of subharmonic balls.

Proposition 9.2. The following holds on an event of probability 1. Let A € By be a subharmonic
ball centered at z € By with u,(A) =t for somet,R > 0. Then, AfR’Z C Aand ,uh(A\A?R’Z) =0.

Proof. Let f be given by (9.1) and note that by Lemma 9.1 (and since every subharmonic ball is
a harmonic ball), f > 0 in B; and f = 0 on B\ A. Since f > 0 and Af < —u;,(A)d, + u;, on Bp,
we have that (f(-) — tGg, (z,)) SfR;Z and hence f > va;Z. This implies, together with f = 0 on
B \A, that A?R;Z C A. Since t = u,(A) = /vth(AfR;Z), this completes the proof. ]

‘We do not use Proposition 9.2 in this paper but decided to include it explicitly as it may be useful
for future work.

9.2 | Comparing harmonic and subharmonic balls
We show that any harmonic ball for 1, (in the sense of (1.1)) centered at z must have a boundary

contained in the closure of some AZ. Similar arguments have appeared in [82, Proposition 3.2],
[41, Proposition 2.5], and [26, Section 3].
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Lemma 9.3. Almost surely, every harmonic ball A € By centered at z € B with t = u;,(A) > 0
satisfies 0A C A,(z).

Proof. Let A be a harmonic ball centered at z € By with t = u,(A) > 0 and A € By. Take R pos-
sibly larger so that AfR “ € By and hence by Theorem 5.5, AfR = A,(2) is a subharmonic ball in

By centered at z. We show that 0A C x[(z) by considering the auxiliary function
u) 1= [ Gocon = [ Gy e 9.5)
A A (2)

which satisfies Au = (lAt(z) —1,)uy, on Bp.
Step1: u > 0 in Bp.
By Lemma 9.1, as A is a harmonic ball centered at z

tGBR(x,z)=/AGBR(x,y)/xh(dy) on Bp\A, (9.6)

and as A,(z) is a subharmonic ball centered at z

Gy (x,2) > /  Onlo V(@) onBy ©.7)
A[z

Combining (9.6) and (9.7) shows
u>0 onBR\A. (9.8

As u is superharmonic on A, (9.8) together with the minimum principle shows u > 0 on By.
Step 2:u = 0 on By N A, (2)° N A°.
As A, (z) is also a harmonic ball, by Lemma 9.1,

(G, (5,2) = [ () on BN 9.9)

t

Step 2 follows by combining (9.6) and (9.9) with the definition of u.
Step 3: Conclude.
We use the fact Au = (1 A2~ 1 )My, on Bg. Suppose for sake of contradiction that there is x, €

0A\A,(z). Then, u is superharmonic in a neighborhood of x,, as x, € (A,(2))°. By Step 2, u(x,) =
0, which, together with Step 1 and the strong minimum principle, shows that u is identically 0 in
a neighborhood of x,. This, in turn, implies that u is harmonic in a neighborhood of x,.

C
However, as x, € A,(z) , we have that Au = —1,u;, in a neighborhood of x,. As y; assigns
positive mass to every open set, A is open, and x,, € dA, Au is strictly negative on an open subset
of every neighborhood of x,, which supplies the desired contradiction. O

9.3 | Strong uniqueness

We first show that two regular open sets that coincide uj,-a.e. are in fact equal. This fact is the
reason for our assumption that int(A;) = A, in Theorem 1.1.

/[ SUORIPUOD pue s | U} 89S *[7202/2T/6T] U0 AiqiTauluO A8 ‘(‘oul eAnde 1) agnopesy A 8T00L SWId/ZTTT'OT/I0p/L0D A | 1M AleiqipuI|uO'0cSyeWpUO /SNy Woiy pepeojumoq 'T ‘'SZ02 ‘Xyv209vT

100" 3| 1M A

35USD17 SUOLILLOD A1) 3ol jdde auy Ag peusenob ake sajoilie WO ‘asn Jo sajni 1oy ArigiauljuQ A3|iA\ uo



HARMONIC BALLS IN LIOUVILLE QUANTUM GRAVITY | 51 of 82

Lemma 9.4. Almost surely, the following is true. Let X and Y be two open subsets of C such that
int(X) =X andint(Y) =Y. If u;, X\Y) = 1;,(Y\X) =0, then X =Y.

Proof. We use the fact that a.s. u;, assigns positive mass to every open set to show that X\Y = @.
A symmetric argument shows Y\X = §J.

Suppose for the sake of contradiction that there is x, € X N Y. As X is open, B,(x,) C X for
all r < r(, where r, is some small radius. As u,(X N Y¢) =0, B,(x,) ¢ Y¢ for all r < r\. Thus, x,
is a limit point of Y and so x,, € dY by definition. Since int(Y) = Y, x, cannot be in the interior
of Y, so x, must be an accumulation point of Y. Since Y' is open, this implies that every neigh-
borhood of x,, contains an open subset of Y. Hence, X N Y X NYCcontainsa nonempty open
set. This implies B,(x;) N Y¢ contains a nonempty open set, and hence that 1,(X NnY*) >0, a
contradiction. O

We now use Lemma 9.4 to show uniqueness of the family of harmonic balls satisfying the
conditions of Theorem 1.1. Our proof is inspired by the proof of Theorem 10.13 in [77].

Proof of Proposition 5.6. Let t, > 0 and z € C be given and suppose A; € By for some R > 0.
By Lemma 9.4, it suffices to show that /vth(AtO \Azo) = P‘h(Ato(Z) \ Ato) = 0. As we have assumed
P‘h(AtO) = t;, we only need to show that /,Lh(AtO \Ato(z)) =0.

Suppose for the sake of contradiction that /”‘h(Ato\Azo(Z)) > 0. Since ,uh(aAtO(z)) =0, this

implies Iuh(Alo\AtO(Z)) > 0. In particular, as Ato\AtO(Z) is open, there exists a nonempty ball

BCA, \Azo (z) which lies at positive distance from the origin. We will show that B cannot exist
by monotonicity

A, CA, and A, C A, Vag b (9.10)
and Lemma 9.3,
0A, C At(z), Vvt > 0. (9.11)

As the family {A,},., continuously decreases to {z} as t — 0, there exists some 0 < s, < ¢t for
which

BCAL. (9.12)
Now let, s, < 57 < -+ <5, = t(, be a sequence of points satisfying,
Sy <841 <8, +up(B)/2 Vnedo,..,m—1} (9.13)
We show by induction on » that for each 0 < n < m,
BC A, (9.14)

which contradicts B C Ay, The base case n = 0 is established by (9.12).

/[ SUORIPUOD pue s | U} 89S *[7202/2T/6T] U0 AiqiTauluO A8 ‘(‘oul eAnde 1) agnopesy A 8T00L SWId/ZTTT'OT/I0p/L0D A | 1M AleiqipuI|uO'0cSyeWpUO /SNy Woiy pepeojumoq 'T ‘'SZ02 ‘Xyv209vT

100" 3| 1M A

35USD17 SUOLILLOD A1) 3ol jdde auy Ag peusenob ake sajoilie WO ‘asn Jo sajni 1oy ArigiauljuQ A3|iA\ uo



52 0f 82 | BOU-RABEE and GWYNNE

Now assume (9.14) holds for n € {0, ..., m — 1}. We show that for

Sn+l € [Sn’ min(sn + :uh(B)/z’ tO)L (9-15)
we must have
BcC Aij . (9.16)
n+1

First note that the interval (9.15) is nonempty as B C A; , B C Ay , and u;,(A;) =t forall t > 0.
Moreover, as B C (Ato(z))C and ¢, > s,,,, by monotonicity (9.10), B C (AS (Z))C. This together
n+1
with (9.11) implies B N 0A, = @; equivalently

—
or BCA, . (9.17)

Sn+1 n+1

BCA

The former case in (9.17) is impossible as

pn(Ag, N B) < up(As 1y, 3y2 N B)  (Sng1 <8, + Hp(B)/2)
= /,th(Asn NB) + :uh((Asn+,uh(B)/2\Asn) N B) (additivity of measure)
< ,uh(Asn N B) + u,(B)/2 (monotonicity and u;,(A;) = ¢,Vt)
= up(B)/2  (by (9.14)),

which shows (9.16). O

10 | BOUNDARY CURVES OF HARMONIC BALLS

In this section, we show that harmonic balls have boundaries that are simple loops. We first
consider clusters A, € B; and then rescale to achieve the result for all {A },.,.

Our main result is essentially a consequence of the following lemma, which limits how many
times clusters cross annuli — see Figure 8.

Lemma 10.1. Almost surely, for each small enough € > 0, it holds for each w € B;\B, N that there

isa p € [e,€'/?] (depending on w) such that for every t > 0 and z € C, we have that A,(z) does not
Cross Ap/&zp(w) more than K := [1/a] times for all A (z) € B; where a = a(y) € (0,1) is as in
Proposition 6.2. That is, there are at most K connected components of A,(z) N B, o (w) whose closures
intersect both dBp/3(w) and 5B2p(w).

Proof. Lett > 0 such that A,(z) € B;. By Proposition 6.1 and the Borel-Cantelli lemma, a.s. there
exists a random M, € N and a deterministic o € (0, 1) such that for all € € {2‘”}n2M0, we have
€

that for each x, € (Bl+e\B1o\/E) N 0%
Fix € € {27"},5p, and let w € B;\B,, 7. Let X, be a point of (By4c\B,, )N 152> with

72, thereis a p € [¢,¢!/?] for which Ep(xo) occurs.

|xo — w| < €/50 and let p be a radius in [e, €!/2] such that Ep(xo) occurs, as in the statement of

/[ SUORIPUOD pue s | U} 89S *[7202/2T/6T] U0 AiqiTauluO A8 ‘(‘oul eAnde 1) agnopesy A 8T00L SWId/ZTTT'OT/I0p/L0D A | 1M AleiqipuI|uO'0cSyeWpUO /SNy Woiy pepeojumoq 'T ‘'SZ02 ‘Xyv209vT

100" 3| 1M A

35USD17 SUOLILLOD A1) 3ol jdde auy Ag peusenob ake sajoilie WO ‘asn Jo sajni 1oy ArigiauljuQ A3|iA\ uo



HARMONIC BALLS IN LIOUVILLE QUANTUM GRAVITY 53 of 82

FIGURE 8 Asituation ruled out by Lemma 10.1. The annulus A 5 ,, is in light blue and the connected
components of A, N A5, that cross the annulus are in gray.

Proposition 6.1. Note that since p > € and |x, — w| < €/50,
B,(x) C B,,(w). (10.1)

As A,(z) is open and connected (Lemma 3.2), and contains {z} (Proposition 4.1), (10.1) shows that
any nonempty connected component of A, (z) N sz(w) with closure intersecting aBp /3(w) and
6sz(w) must intersect Bp(xo) and have closure intersecting 6Bp(x0) and aBp /2(x0).

Also note that as Ep (x) occurs, Proposition 6.2 implies that

A, NOB, (%) # B = uy(R, N A, 5, (x0)) > apy(A, 2 5(%)) 02)

VA,, connected component of A(z)n Bp(xo).

By (10.1), every connected component of A,(z) N sz(w) with closure intersecting aBp /3(w)
intersected with Bp(xo) decomposes into a union of connected components of A,(z) an(xO)
each of which has closure intersecting 0B 5 (xy) and 0B 5 /2(x0). Thus, the relations (10.1) and (10.2)
together imply that

pr(A, 0 A,:>/2,p(x0)) 2 “#h(Ap/z,p(Xo))
VA,, connected component of A,(z) N B,,(w) (10.3)
such that A, N 3B,,(w) # @ and A, 1 9B, 5(w) # 0.

By (10.1), this is a lower bound on the mass of each connected component of A,(z) N B, (w).
In particular, (10.3) implies that the number of such connected components with closures that
intersect 0B, /3(w) and 0B,,(w) is at most K := [1/c]. This implies A, (z) can cross A, /3 5, (w)
(as in the statement of Lemma 10.1) at most K times.

We recall the definition of a loop.
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FIGURE 9 Avisual aid to the proof of Lemma 10.5. The annulus A is transparent, U is the gray simply
connected domain, C is the connected violet domain, the components of (C’\C) N A are in yellow, and P is the
path with two boundary points a and b; both a and b are in T', the boundary of U.

Definition 10.2. AsetT C CisaloopifT = {p(¢) : ¢ € T} for a continuous function ¢ from the
unit circle T to C. The set Tis an arcif T' = {p(¢) : a < ¢ < B}. Tis a simple loop [arc] if T is a loop
[arc] and ¢ is also injective.

We recall the definition of a locally connected set.

Definition 10.3. A set X C C is locally connected if every neighborhood of each x € X with
respect to X contains a connected neighborhood of x.

We also recall the definition of cut points.

Definition 10.4. Let A be a compact, connected, and locally connected set. A pointa € A is a
cut point if A\{a} is no longer connected.

We will use Lemma 10.1 together with some basic properties of the cluster to show that the
boundaries of the complementary connected components of the cluster are simple loops. Before
doing so, we prove a topological lemma. Recall from the statement of Lemma 10.1 that a set X
crosses an annulus As, s, (@) ifX N ale (z)#@and X N 5BS2(z) # 0.

Lemma 10.5. Let A € B, be an annulus, t > 0 and z € B, such that A,(z) € By, and U a sim-

—
ply connected component of A,(z) with T = dU & B;. Every connected component of U° N A that
crosses A contains a connected component of A,(z) N A which crosses A.

Proof. See Figure 9.
Let C be a connected component of U¢ N A that crosses A. The “filling” of C, C’, is the union of
C and the regions that are disconnected in A from the inner boundary of the annulus, the outer
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boundary of the annulus, or both by C. Note that C’ is a topological rectangle with two boundary
segments that are part of the inner and outer boundaries of the annulus, respectively, and two
boundary segments contained in I

By, for example, the Poincaré-Miranda theorem [53], there is either a simple arc in A,(z) N C’
between the inner and outer boundaries of the annulus, or there is a simple arc in A[(z)c nc’
between the two boundary segments contained in I'. In the former case, Al(z) crosses A, and
thus, there is a connected component of A,(z) N A in C which crosses A. Hence, it suffices to rule
out the latter case, which we now do.

Suppose for sake of contradiction that there is a simple open arc P in A[(z)c N C’ between the
two boundary segments contained in I'. That is, P is the interior of a simple arc contained in
A2’ nC"and P = PU{a} U {b} with {a,b} C T.

Asint(U®) is simply connected, by [ 72, Proposition 2.12], int(U¢)\ P has exactly two components
G, and G, and these satisfy

int(U°) N dG, = int(U°) N 3G, = P. (10.4)

As G, and 0G, contain points in T, the boundary of a simply connected component of At(z)c, by
definition of component, both G, and G, must contain points in A,(z). However, this contradicts
the fact A,(z) is connected, Lemma 3.2. Indeed,

3G, UdG, CAU UP C A(z),

which implies, as G, N A,(z) and G, N A,(z) are open and disjoint, that they must lie in different
connected components of A (z). O

Proposition 10.6. Almost surely, for all t > 0 and z € B, such that A,(z) € By, each of the
connected components of B;\A,(z) has a boundary that is a simple loop.

Proof. Suppose A,(z) € B; and let U be a component of A,(z) . Note that U and A,(z) are disjoint
and 0U C dA,(z) € B,.

Let = U & B,. By Caratheodory’s theorem [72, Theorem 2.6] to show that I is a Jordan loop,
it suffices to show that I' is locally connected and has no cut points.

Step 1: Locally connected.

As we will show, this follows from Lemma 10.1 and the definition of locally connected:

Suppose for the sake of contradiction that T is not locally connected. By [72, Theorem 2.1],
this implies that U® is not locally connected. By definition, this implies the existence of a point
z € U and s > 0 so that for every subneighborhood V' C By(z) containing z, the set V. n U° is
not connected.

As U¢ is connected, the closure of every component of U¢ N B,(z) has nonempty intersection
with dBy(z). Since U* is closed, every such component not containing z must lie at positive dis-
tance from z. Hence, for each ¢ € (0, 5), the number of such components intersecting B.(z) must
be infinite, as otherwise we could take V' to be B.(z) minus the other components that do not
contain z which intersect B.(z).

This implies that for all p > 0 sufficiently small, there is a ball B, (z) with infinitely many
distinct components of U‘ N B,,(x,) with closures intersecting dB,,(z) and 0B, /3(z). Every
connected component of U N B,,(z) intersected with A, 3 ,,(z) decomposes into a union of
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connected components of U° N A, /3’2p(z). Hence, by Lemma 10.5 applied to each connected
component of U° N A, /3’2p(z), every connected component of U® N B,,(z) that crosses A, /3’2p(z)
contains a connected component of A,(z) N A, /3,2p(z) that crosses A, /3’2p(z).

The previous paragraph implies that there is a ball B,,(z) with infinitely many distinct
components of A,(z) N B,,(x,) with closures intersecting 9B,,(z) and 0B, /3(z), contradicting
Lemma 10.1.

Step 2: No cut points.

Let® : B; — U be a conformal map, which exists since U is connected with connected com-
plement, so is simply connected. Since T is locally connected, [72, Theorem 2.1] implies that ¢
extends to a continuous map B; —» U = U UT.

Now, assume by way of contradiction that T' has a cut point a € I. By [72, Proposition 2.5],
#1~1(a) > 2 (in principle #y~!(a) could be infinite, even uncountable). Furthermore, if 7 is the
set of connected components of dB; \ ¢~'(a), then the set of connected components of "\ {a} is
) : 11}

Fixsome € T and letJ be equal to B, \ I minus its endpoints. Then, I and J are disjoint open
arcs of 3B, and their common endpoints are distinct points of ~!(a). Furthermore, the preceding
paragraph implies that p(I) n p(J) = Fand p(I) N PJ) = @

Since I disconnects 0 from y, the homotopy class of the loop %[5 in (CU o) \ {0, y} is non-
trivial. Since 1 maps the endpoints of I and J to a, each of 9|; and #|; is aloop in C, and 9| 4p, is
the concatenation of these two loops. The concatenation of two homotopically trivial loops is also
homotopically trivial. Therefore, one of 1|; or 9|, is not homotopic to a point in (C U o) \ {0, y}.
This implies that one of {(I) or (J) disconnects 0 from y.

Assume without loss of generality that {(I) disconnects 0 from y. Since A,(z) 2 0is connected
(Lemma 3.2) and U 3 y is connected by definition, A,(z) and U are contained in different con-
nected components of C \ (I). But, every point of ¢(J) C T is an accumulation point of both
A,(z) and U, so (J) C (I). Since J is nonempty by construction, this contradicts the fact that
»(I) Np(J) = @. We conclude that T has no cut points. O

The desired claim follows immediately from a scaling argument.

Proposition 10.7. Almost surely, for all t > 0 and z € C, each of the connected components of
C\A,(2) has a boundary that is a simple loop.

Proof. Combine Lemma 5.7 together with Lemma 10.1, a union bound, and the relation between
A, and {Af’ }r>0 given in Theorem 5.5. O

11 | NOVELTY OF HARMONIC BALLS

In this section, we show that typical harmonic balls are too rough to have Lipschitz boundaries
yet differ in a quantitative way from LQG-metric balls.

11.1 | Notlipschitz

In this section, we show that a “typical” harmonic ball is not a Lipschitz domain. Roughly, a
Lipschitz domain is a domain whose boundary can be locally represented by a graph of a Lipschitz
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function. Note that as every convex function is locally Lipschitz, see, for example, [31, Lemma
1.1.6], every convex domain, for example, a ball or polygon, is a Lipschitz domain.

Definition 11.1. Let A be a nonempty connected open set. A is a Lipschitz domain if for every
point x, € dA, there existsr > 0 and a Lipschitz function f : R — R such that — upon relabeling
and reorienting the coordinate axes if necessary — we have
U N B,(x,) = {z € B,(xo) : Im(2) > f(Re(2))}.
In this section, we prove the following.

Proposition 11.2. Almost surely, A, is not a Lipschitz domain for Lebesgue-a.e. t.

To that end, we show that “typical” points on the boundary of the cluster do not satisfy the
“cone condition.” We define these terms.

Definition 11.3. A cone Q C C is a nonempty open set strictly contained in C that can be written
as Q@ = {cv + dw : c,d > 0} for extremal directions v,w € C \ {0}. We also define complements of
cones to be cones.

Note that any cone Q is scale invariant, that is, for any 8 > 0, 6Q = Q. For acone Q and z € C,
we write Q(z) := Q + z.

Definition 11.4. A domain A C C satisfies the interior (respectively, exterior) cone condition at
z € 0A if there is a radius R > 0 and a cone Q such that Q(z) N Bg(z) C A (respectively, Q(z) N
Br(z) C A°). A satisfies the cone condition at z € dA if it satisfies both the interior and exterior
cone conditions at z. See Figure 10

The main input in the proof of Proposition 11.2 is the following lemma.

Lemma 11.5. Almost surely, for uy-a.e. z € C, if t > 0 such that z € 0\, then A, does not satisfy
the cone condition at z.

FIGURE 10 A domain that satisfies the cone condition of Definition 11.4. The domain is in gray and the
two cones are displayed in red.
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To show that that A, does not satisfy the cone condition, we study an event concerning the
oscillation of the Liouville measure across sectors of annuli. Before doing so, we motivate the
event we consider by reformulating some of the harmonic comparison lemmas from Section 6.4
into the following.

Lemma 11.6. There exists a universal constant C > 0 such that the following holds for each r > 0
and z € C such that Byy,(z) N {0} = 0. If Ay, 5,(2) N A,© # @, we have

luh(Ar,Zr(Z) N A[) <CXx SG3r,6r(Z)’
where SG;, 4,(z) is as in (6.4).

Proof. We use Lemma 6.8 and Lemma 6.10 that were both stated for Afl, vfl but whose proofs

and statements extend verbatim to AfR, vf}R for any R > 0. In the following chain of inequalities,
C refers to a universal constant that may change from line to line,

:uh(At N Ar,2r(z))
= ,uh(A?R NA,,(2) (as for some R > 0, py, (A, yAN AfR) = 0 by Theorem 5.5)

<Cx sup va (by Lemma 6.8 with (s;, $,, 83, 84) = (0.5,1,2,4))

Ag.sr4r(2)
<Cx sup va (va is subharmonic in By,(2))
0By, (2)
< C XSGy, 4.(2) (by Lemma 6.10 with (51, 55, 83, 84) = (3,4, 5,6)). m

Foracone Q,M > 0,z € C,and r > 0, consider the event
G,(2) = G(2:M, Q) 1= { (A, 5,(2) N Q@) > M X 5Gy.,(2)]}, (1.1
and observe that G,(z) € o(h| Ar,m(z))‘ We abbreviate
G,(z2) =G,-n(z), VneN (11.2)
and prove an analog of Lemma 8.2 for rare events.

Lemma11.7. Let Q be a cone and let M > 0. There exists § = (M) € (0, 1) such that a.s. for u;,-a.e.
z € C, it holds for each large enough N € N (depending on z) that

#{n€[N+1,2NInZ : G,(z;M,Q) occurs} > N. (11.3)
In order to prove this lemma, we first prove the following.
Lemma 11.8. Let Q be a cone and let M > 0. There exists a constant p,,; € (0, 1) so that

P[G,(z;M,Q)] > py;,  Vz s.t. dist(Ay-n 551 (2), {0}) > 27" /100, Vi > N(2). (11.4)
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Proof. Recall from (2.4) that h = h® — ay log | - |. We first show (11.4) in the case &, = 0, and then
use Weyl scaling to get the general case.

In the following, we write SG?r,6r(Z) instead of SG;, 4,(2) to indicate the dependence on the
underlying field h. Note that SG;’r,ér(z) depends only on h restricted to As, ¢,.(z).

Step 1: ey = 0.

By definition, if &, = 0, then h is a whole-plane GFF. We have chosen the event G, so that
it is a.s. determined by h viewed modulo additive constant. Hence, by the scale and translation
invariance of the law of the whole-plane GFF (2.2), it suffices to bound P[G,(0)] from below. This
lower bound is achieved via the “adding a bump function” technique.

Since the random variables involved are finite and positive, there are y-dependent constants C;

and C, so that

P|uu(A;,NQ) > C; and SG!, < cz] >1/2. (1L.5)

Let ¢ be a smooth, nonnegative bump function that is identically equal to y ! log Né—c

2 on A, and
) ,

identically equal to 0 on A . , .. On the event in (11.5),

C .
Phnig(A12 N Q) =M X pp(Ag, N Q) X C—2 (by Weyl scaling)
1

>MxC, (up (A1, N Q) > C, by the event)
> M x SG?,6 (C, = SG? ¢ by the event (11.5))

h+

=M xS5G; (¢ =00nA5).

Since the laws of h and h + ¢ are mutually absolutely continuous viewed modulo additive
constant [68, Proposition 2.9], this implies

P[G1(0)] := py >0,
completing the proof of Step 1.

Step 2: ay € (—0, Q).
Write r := 27", In the general case, we fix z and take n > N(z) sufficiently large so that

dist(A, ¢,.(2),{0}) > r/100.
By Weyl scaling, Fact 2.1,

luh(Ar,Zr(Z) N Q) S C:uhc (Ar,Zr(z) N Q)

h ~ he
SG3r,6r(Z) SG3r,6r(z)

, for a universal constant C > 0.

By Step 1, with probability py /¢,

(AN Q)
’uhc+ >M/C,
SG

3r,6r
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completing the proof. O
This leads to a proof of Lemma 11.7.

Proof of Lemma 11.7. The proof is nearly identical to that of Lemma 8.2, the only difference being
the event under consideration only has positive probability meaning we get SN instead of (1 — {)N
“good” scales.

Specifically, we may carry out the proof of Lemma 8.3 and substitute Lemma 11.8 as the bound
in (8.7). This shows that there exists § = §(M) € (0,1) such that it holds for each large enough
NeN

#{ne[N+1,2NInZz: G,(0;M,Q)occurs} > 5N. (11.6)

Then the argument in the proof of Lemma 8.2 together with (11.6) implies a.s. the lemma statement
holds for uj-a.e. z € By and then by scaling for u,-a.e. z € C. O

We use Lemma 11.7 to show that “u;,-typical points” on the boundaries of clusters do not satisfy
the cone condition.

Proof of Lemma 11.5. Take M = 2C where C is the universal constant from Lemma 11.6. Condition
on h and sample z from .

By Lemma 11.7, a.s. for every cone Q with rational extremal directions v, w, there exist arbitrarily
large n € N (depending on z and Q) for which the event G, (z; M, Q) occurs. Since every cone not
equal to all of C is contained within a cone with rational extremal directions, we get that a.s.
for every cone Q, there exist arbitrarily large n € N (depending on z and Q) for which the event
G, (z; M, Q) occurs.

Suppose ¢ > 0 is such that z € dA,. and let Q(z) be a cone with apex at z. Let n be such that
G,(z; M, Q) holds and B ,,-n(2z) N {0} = @. Write r = 27". By the contrapositive of Lemma 11.6,

(A, 2, (2) N A) > C XSGy, 4.(2) > Ay 5, (2)NAS = 0. 11.7)

Since the event G ,(z; M, Q) occurs with M = 2C,
Mn(Asz; 5-(2) N Q(2)) > M X SG3, 6,(2) > C XSGy, ,(2). (11.8)

We, however, also have the following implications of the cone condition:
Br(2)NQ(2) C A, = uy(A, 5. (2) NA,) = (A, ,(2) NQ(2)), VR>2r, (11.9)
and for any cone Q’,

Br(2)NQ'(2) C A = Ay 5 (2) NAS #B, VR>5r. (11.10)
For any R > 0, we can take n sufficiently large so that R > 5 X 27" = 5r. Thus, the interior cone

condition (11.9) together with (11.8) implies by (11.7) that A, 5,(z) N A,¢ = @ that is incompatible
with the exterior cone condition (11.10). O
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We use this to show that for Lebesgue a.e. ¢, A, is not a Lipschitz domain.

Proof of Proposition 11.2. The set A, is parameterized so that u,(A,) =, so if A is a Lebesgue
measurable subset of [0, c0), then

up({z : z € OA, for some ¢ € A}) = Leb(A), (11.11)

where Leb denotes one-dimensional Lebesgue measure. This follows from the standard machine.
Indeed, (11.11) holds for intervals, A = [a, b],

up(z : z € OA, for some ¢ € [a,b]}) = /,th(A_b\Aa) =(b-a),

by Theorem 5.5. By approximation, this implies that (11.11) holds for all Lebesgue measurable
subsets of [0, 00).
By (11.11) applied to the set

A ={t>0: A, satisfies the cone condition at each z € dA }

together with Lemma 11.5, we get that a.s. the Lebesgue measure of the set of £ > 0 for which A,
satisfies the cone condition at each boundary point is zero. One easily gets from Definition 11.1
that every Lipschitz domain satisfies the cone condition at each of its boundary points. Hence,
a.s. A, is not a Lipschitz domain for a.e. t > 0. O

11.2 | Small diameter and large LQG mass

Recall from Section 2.2 that D, denotes the y-LQG metric associated with h. We will eventually
show that A, is not an LQG metric ball for a.e. ¢ > 0 by showing that LQG metric balls do not
satisfy the Harnack-type condition of Section 6. For this purpose, we will need to force an LQG
metric ball to contain certain sets of large u;,-mass. In order to do this, we will need the following
proposition, which we prove in this subsection.

Proposition 11.9. Let U CV C W C C be bounded, connected open sets such that VCcW and
W does not intersect the unit circle dB,(0). For each C > ¢ > 0, it holds with positive probability
(depending on U,V ,W,C,¢) that

sup D,(u,v;W)<e and u,(U)>=C, (11.12)

u,veV

where here we use the notation for the internal metric from (2.8).

It is not obvious how to apply the “adding a bump function” technique used in Section 11.1 to
prove Proposition 11.9 since if the bump function ¢ is positive, then adding ¢ tends to increase
both D, and y,,, and the reverse is true if ¢ is negative. So, some work is needed to simultaneously
make the Dj,-diameter small and the u;-mass large.

We first prove a version of Proposition 11.9 for dyadic squares.
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3.~
Sﬂ \‘

S

FIGURE 11 [Illustration of the proof of Lemma 11.10. The squares S; C S, are shown in pink and gray,
respectively (only part of S, is shown). The smaller dyadic squares S € S? are shown in yellow and the
corresponding larger squares S are shown in light blue. The set G is equal to S, minus the squares S for S € St
for an appropriate deterministic choice of N > n, and i € {1, 2, 3,4}.

Lemma 11.10. Fix two closed dyadic squares S; C S, such that S, does not intersect the Euclidean
unit circle 0B,(0). For each C > € > 0, it holds with positive probability (depending on S,,S,,C,¢€)
that

sup D,(u,v;S,) <e and u,(S;)=C. (11.13)

Uu,vES,

Proof. See Figure 11 for an illustration. Let n, € Z be chosen so that the side length of S; is 27"%.
For n > n, let S,, be the set of closed 27" X 27" squares S that are contained in S;. Since S; is
dyadic, S; is the union of the squares in S,. Furthermore, S, is the disjoint union of the following
four sets of squares:

Sti={l(k— 127" k27" x[(m —1)27",m27"] € S,, : k is even, m is even},
531 ={{k=1)27" k27" x[(m —1)27",m27"] € S, : kis even, m is odd},
SS ={l(k—1)27" k27" x[(m—1)27",m27"] € S, : kisodd, m is even},
Sti={[(k =127 k27" x[(m —1)27",m27"] € S,, : kis odd, m is odd}.
As uy,(S,) is astrictly positive random variable, there exists a constant C; > 0so that P[u,(S;) >

Ci1>1/2. Let¢ : [0,1] » C be a smooth bump function that is identically equal to 1 on S; and
that is identically equal to zero outside a neighborhood of S, and let /i := h + %10g(4C /Cy).

By the Weyl scaling property of u;, Fact 2.1, on the positive-probability event {u;(S;) = C,}, we
have {uj;(S;) > 4C}. Therefore, by absolute continuity, there is p = p(S;,C) > 0 such that with
probability at least p,

up(Sy) > 4C. (11.14)
For S € S, define the larger square

A

S = (square of side length 27" + 272 with same center as S). (11.15)
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By, for example, [20, Lemma 3.19] and a union bound over all S € S,;, the supremum over all S €
S, of the D, (-, ;8 N'S,) diameter of S N'S, tends to zero in probability as n — co. Consequently,
we can find a deterministic N > n, such that with probability at least p/2, (11.14) holds and also

sup sup D,(u,v;8NS,) < =. (11.16)

SESN u,vesSNSs,

SR

Since S; is the union of sesi S for i =1,2,3,4, on the event that (11.14) holds, there exists

i €1{1,2,3,4}such that y, (U sesi S ) > C.Since (11.14) and (11.16) hold simultaneously with prob-

ability at least p/2, we can find a deterministic choice of i € {1, 2, 3,4} such that with probability
at least p/8,

Uy U S[>C and sup sup D,(u,v;8NS,) < £ (11.17)
SES}'\, SeS}V u,vESNS, 2
Any two squares in S}'\] lie at Euclidean distance at least 27" from each other, so the set
G:=5S,\ U S (11.18)
sesk,

is connected. Since G is a finite unicgl of closed Euglidean squares, it follows from, for example,
[20, Lemma 3.9] that a.s. the D, (-, -; G) diameter of G is finite. Hence, we can find a deterministic
A > 0 such that with probability at least p/16, (11.17) holds and also

sup Dy (u, v;G) < A. (11.19)

u,veG

Let¢$ : C — [0,1] be a smooth compactly supported bump function that is identically equal to
1 on G and that is identically equal to zero on 6B,(0) U | g st S. Let

h:=h- §log(2A/e). (11.20)

By the Weyl scaling properties of u;,, and D, if (11.17) and (11.19) hold (which happens with
probability at least p/16), then

Ui U S|>C, sup sup D;(u,v;8nS,) < E, and sup Dﬁ(u,v;a) < < (11.21)
sesi, Sesi uvesns, 2 u,veG 2
The second and third conditions in (11.21) together with the triangle inequality imply that
sup Dj(u,v;S,) < €. (11.22)

u,veSs,

Furthermore, the first condition in (11.21) implies that u;(S;) > C.
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Since ¢ = 0 on 3B, (0), the average of h over 0B;(0) is zero. By standard absolute continuity
results for the GFF (see, e.g., [68, Proposition 2.9]), the laws of h and /& are mutually absolutely
continuous. The previous paragraph tells us that with probability at least p/16, (11.13) holds with
h in place of h. Therefore, (11.13) holds with positive probability for A. O

Proof of Proposition 11.9. Since U is open, we can find deterministic closed dyadic squares S; C
S, € U with the property that S, is contained in the interior of S,. By Lemma 11.10, it holds with
positive probability that

sup Dy, (u,v;S,) <

_€ and M (S )2 C. (11.23)
h\°1
u,veS, 2

Our hypotheses on V, W and S;, S, imply that the closure of V' \ S, is contained in the interior
of W\ S;. Hence, we can find an intermediate open set O such that

V\S,cO and OcCW\S,. (11.24)

Since D,, induces the Euclidean topology and V' \ S, is connected, there exists a deterministic
A > 0 such that with positive probability, (11.23) holds and also

sup D,(u,v;0) < A. (11.25)
u,veV\S,

We now use a “subtracting a bump function” argument similar to the one at the end of the proof
of Lemma 11.10. Let ¢ : [0,1] — C be a smooth bump function that is identically equal to 1 on O
and that is identically equal to zero outside of W'\ S;. Let

h:=h-— §log(2A/e). (11.26)

By the Weyl scaling properties of u;, and D, on the positive-probability event that (11.23)
and (11.25) hold,

sup Dj(u,v;S,) < uip(S;)=C, and sup Dj(u,v;0) <

¢ £ 11.27)
u,vES, 2 u,veV\S, 2

By the triangle inequality, (11.27) implies (11.12) with / in place of h. Since the laws of h and & are
mutually absolutely continuous [68, Proposition 2.9], we conclude the proof. O
11.3 | Not LQG metric balls

In this subsection, we prove the following.

Proposition 11.11. Almost surely, A, is not an LQG-metric ball for Lebesgue-a.e. t > 0.

We follow a strategy similar to that of Section 11.1 although the arguments are slightly more
complicated. To thatend, let U € T and Q" € Q be connected open sets as shown in Figure 12. We
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FIGURE 12 SetsU,V,W,T,Q,Q’ used in the proof of Lemma 11.12 and to define the event (11.28). The
origin is the black dot; the set T is the green key-hole shaped set; Q' € Q are gray ellipses; and U € V € W are
gray concentric balls. The picture is not drawn to scale and only part of the set T is shown. The sets V and W are
only used in the proof of Lemma 11.12.

require that U is a ball contained in A ,, that Q" and Q are contained in A, 5 \ T, and that T is a
keyhole-shaped region contained in A; s with dBs C 9T, as shown in the figure. Foraset A, r > 0,
and z € C, we write

A (z) i=rA+2z.

For z € Cand M > 0, let G,(z) = G,(z; M) denote the event that the following holds:

Dp(Q(2),6Q,(2)) > sup Dj(z,x)
Xx€0Bs,(2)

Dy (z,0B5.(z)) > sup Dy(x,y) (11.28)
x,y€T,(z)

ﬂh(Ur(Z)) > M X SG3r’6r(Z).
Write
G,(2) := Gyn(2).

Showing that this event occurs with positive probability is somewhat technical, and hence, the
proof of the following will be postponed to the end of this subsection.

Lemma 11.12. In the case a, = 0, as in (2.4), P[G,(0)] > 0.

The preceding lemma implies the following.
Lemma 11.13. Let M > 0. There exists § € (0, 1) such that a.s. for ,-a.e. z € C, it holds for each
large enough N € N (depending on z) that
#{n€[N+1,2NInZ : G,(z;M) occurs} > 5N. (11.29)

Proof. Lemma 11.12 implies, by an argument similar to the proof of Lemma 8.3, existence of a
8§ = 8(M) € (0,1) such that (11.29) holds for z = 0 for each large enough N € N. The exact same
argument outlined in the proof of Lemma 11.7 then leads to the lemma statement. O
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origin
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FIGURE 13 Geodesic decomposition used in proof of Lemma 11.14. Geodesics are drawn as dashed lines.
Sets are not drawn to scale and not all of T,(z) is shown. Note that various geodesics in the figure merge into each
other. This property is called confluence of geodesics [35] and is not needed for our proofs.

We now observe a deterministic consequence of the event Gr (z) on the shape of an LQG metric
ball whose boundary contains z. For the statement, we recall that 3,,(0; D;,) denotes the open LQG
metric ball of radius u centered at 0.

Lemma 11.14. The following holds a.s. foreach M > 0, each z € C, and eachr > 0 such that B,,,(z)
does not contain the origin. If u > 0 is such that G,(z) occurs and z € 88,,(0; D)), then Ql(z) C
(B,(0; D)) and T,(z) C B,(0;Dy,).

Proof. The reader is encouraged to refer to Figure 13 as a visual aid during the proof. For nota-
tional convenience, write B, := B,(0; D}). Assume that z € 85, and G,(z) occurs, where r is
sufficiently small so that B, (z) does not contain the origin. Since z € d8,,, we have D;,(0,z) = u.

Step1: Q\.(z) C (B,)°

Recall the definition of LQG geodesics between compact sets from just after (2.10). As By, (2)
does not contain the origin, any geodesic from 0 to Q/(z) can be decomposed into geodesics
from 0 — g, € 0Bs,(2), from q, to g, € 6Q,(2), and from g, to g; € dQ/.(z). From this and the
definition (11.28) of G,(z), we obtain

Dy,(0,Q(2)) = Dy(0,q;) + Dy(q1,92) + Dp(g2, 93)
> Dy(0,q,) + Dy(q3,93) (Dp(q1,92) > 0)
> Dy(0,q,) + Dy(qy,2) (DR(Q1(2),9Q,(2)) > SUP.e3B.,(z) Dr(Z, X))

> D;,(0,2) (triangle inequality).

Since Dy, (0, z) = u, this implies Q/(z) C (3,)°.

Step2:T.(z) C B,

The proof is similar to Step 1. Let y € T,(z). Also, let z; be a point of 0Bs,(z) that is hit by a
geodesic from 0 to z (such a point exists since 0 ¢ By, (z)). Then,

D, (0,2) = Dy(0,2,) + Dy(2,, 2). (11.30)
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We now use the definition (11.28) of G,(z) to get

Dh(O, Z) = Dh(O, Zl) + Dh(zl, Z) (1130)
> Dy,(0,z,) + Dy,(z,0Bs,.(2)) (z, € 8Bs.(2))
> Dy(0,2;) + Dy(z,y)

(Dy(2,0B5,(z)) > sup Dy(x,y)and dT,(z) D dBs.(2))
x,yeT,(2)

> Dy (0,y) (triangle ineq.).
Since Dy (0, z) = u, this implies T,(z) C B,. O

Lemmas 11.13 and 11.14 immediately lead to a proof of Proposition 11.11 via a similar argument
as the proof of Lemma 11.5.

Proof of Proposition 11.11. By the exact same argument as in the beginning of the proof of Proposi-
tion 11.2, it suffices to show that a.s. for u;-a.e. z, no cluster A, coincides with a LQG-metric ball
containing z on its boundary.

Throughout the proof, we take M = C, where C > 0 is the universal constant from Lemma 11.6.
Almost surely, the conclusion of Lemma 11.13 (with this choice of M) holds for y,-a.e. z. So, it
suffices to consider a z such that the conclusion of Lemma 11.13 holds and show that a.s. no cluster
A, coincides with an LQG metric ball that has z on its boundary.

By Lemma 11.13, a.s. there exist arbitrarily large n € N (depending on z) for which the event
G, (z; C) occurs. Consider such an n that is large enough so that 0 & By, (z) and writer := 27",

Since G, (z;C) occurs, Lemma 11.14 implies that Q;(z) cBf and U (2)CcT,(z)CB. In
particular, by the third inequality of the event (11.28),

Un(Ay 2(2) 0 B) > (U, (2)) > C X SGy ,(2). (11.31)

On the other hand, the contrapositive of Lemma 11.6 shows that for each ¢ > 0,
Mn(A, 2 (2) N A) > C XSG 6(2) > Ay 5. (2) NASC = 0. (11.32)
Since Q/(z) € A, 5,(2), (11.32) implies that it cannot be the case that w,(A,,.(z) N A,) > C X
SG3,6,(z) and Q/.(z) C A,°. Since Q/.(z) C B¢ and by (11.31), we get that a.s. /3 is not equal to A,

for any ¢ > 0. ]

It remains to prove Lemma 11.12, which we do in several steps. In the remainder of the sub-
section, let T, U, V,W,Q’,Q be as in Figure 12. In particular, Ue V € W € T and U,V, W are
concentric Euclidean balls contained in A ,.

Fix 6, € (0,1/100) sufficiently small so that:

Bios,(T) € Ay,  Bygs,(U) €V, Byps (V) EW,

Bios,(W) € A5, Big5,(Q) € Q. Bygs,(Q) € Ays\Bigs, (T). (11.33)
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Recall the notation for the internal metric from (2.8). To be succinct, we write, for a set A and
§>0,

diami(A) = supADh(x,y;Ba(A)). (11.34)
X,yE

To prove Lemma 11.12, we will show that several auxiliary events occur with positive probability.
We let £, be the event that

D,y(Q.3Q)> sup Dy(0,x;(Bys,(QUW)))
X€EJB;s
(11.35)

I
Dh(O, 5350) > dlath(T\B350(W)).
We let E, := E,(M) be the event that

D,(3B5,,0B,5,) > diam’(V) (11.36)
pp(U) > M X SGs 4(0).

We let E; be the event that
D;,(3Bys,.0B35,) > diam!*(Bss, (W\V). (11.37)
We will successively prove the following lemmas.
Lemma 11.15. We have P[E,] > 0.
Lemma 11.16. For each M > 0, P[E, n E,(M)] > 0.
Lemma 11.17. Foreach M > 0, P[E; n E,(M) n E;] > 0.
Before we prove these lemmas, we show that Lemma 11.17 implies Lemma 11.12.
Proof of Lemma 11.12. Let M > 0 be given. By Lemma 11.17, it then suffices to show that
{E; nE,(M) N E3} C G1(0; M). (11.38)

Henceforth assume that £, N E,(M) N E; occurs. The first inequality in the definition (11.35) of
E, implies

D,(Q’,0Q) > sup Dy,(0,x;(Bys,(QUW))) > sup Dy(0,x),

X€E0Bs X€E0Bs
which is the first inequality in the definition (11.28) of the event G,(0; M). We have

T = (T\By5, (W) UV U (Bys, (W\V). (11.39)
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Thus, the second inequality in the definition (11.35) of E;, the first inequality in the defini-
tion (11.36) of E,, and the definition (11.37) of E; imply

D,(0,0B5) > Dy,(0, 6B50) + Dh(aB5O, 6B250) + Dh(aBzao, 6B350) (triangle ineq.)
.5 .5 .5
> dlath(T\B350(W)) + dlath(V) + dlath(B350(W))

> sup Dy(x,y) ((11.39) and triangle ineq.),
x,yeT

which is the second inequality in the definition of G,(0; M). The second inequality in the
definition (11.36) of E, is the third and final inequalities of G, (0; M). O

We will now show that P[E; ] > 0 by adding an appropriate bump function to h.

Proof of Lemma 11.15. Since the random variables involved are strictly positive and finite, there
exists positive finite constants C;, C,, C5, C, so that the event

Dy(Q',8Q) > ¢,

sup Dy (0, x;(By5,(QUW))) < C,
XEOB;5

(11.40)
.5
diam,’(T\Bs5 (W)) < Cy
satisfies P[(11.40)] > 0. Henceforth assume that the event in (11.40) occurs.
Take smooth compactly supported bump functions ¢, ¢, : C — [0, 1] so that
1 onQ
¢ = c
0 on (Bs,(Q)
and
1 on B50/2
¢, = 0 ¢
on B 5
With £ = £(y) asin (2.9), let
i ¢ < < 2C, > 2C, ¢, 2C,
h:=h+—=log|{|—=—=V1])X(—=—V]1]+—=log{ —V1). (11.41)
§ G G § G
Suppose (11.40) holds. Then
Dj(0, B50) > Dj(0, Bs, /2) (positivity of length)
2C, .
> C—3Dh(0,350 /2) (Weyl scaling, Fact 2.2)
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> diam?’(T\By,(W))  (the event (11.40))
- diamZO(T\B350(W)) (¢1 + ¢, = 0 on By, (T)). (11.42)

Also note that by Weyl scaling and since the bump function ¢, has support contained in
(Bys,(QUW)Y,

sup Dj(0, x; (By, (QUW)))

XE0Bs
(11.43)
2C,
< <— \% 1) X sup Dy (0, x;(Bys (Q U W))°).
G xEABs 0
Thus,
2C 2C
D;(Q',9Q) > C_Z X <C—4 v 1> x D,(Q’,0Q) (Weyl scaling)
1 3
20,
> — V1) x sup Dy(0,x;(B,s (QUW))) (the event (11.40))
C3 XEOBs 0
> sup Dj(0,x;(Bys, (QUW)))  (by (1143)). (11.44)

XEOB5

By (11.42) and (11.44) and since P[(11.40)] > 0, the event E; occurs with positive probability with
h in place of h. By [68, Proposition 2.9], the laws of h and & are mutually absolutely continuous,
viewed modulo additive constant. By Weyl scaling, the occurrence of E, is unaffected by adding
a constant to h. Thus, the fact that E; occurs with positive probability with / instead of h implies
that P[E,] > 0. O

We next show that P[E;] > 0= P[E, n E,(M)] > 0 using the domain Markov property with a
set selected to be disjoint from the domain of dependence of E;.

Proof of Lemma 11.16. By the domain Markov property of the GFF, [68, Proposition 2.8], we can
decompose

h=hy+o, (11.45)

where hy, is a zero-boundary GFF on W, ¢ is harmonic on W, and h,, and ¢ are independent.
Since the random variables involved are strictly positive and finite and P[E;] > 0, there exists
positive finite constants Cy, C, so that the event

D},(6Bs,.0B,5,) > Cy w6
M x SG34(0) < C,

satisfies P[E, N (11.46)] > 0.
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‘We will also need to consider the event

diamiO (V) < e~ $5uPw ¢C,
0 (11.47)
Pr, (U) 2 e7infuec,,

By the locality properties of y, and D, (Facts 2.1 and 2.2), the events (11.46) and E; are both
measurable with respect to the restriction of & to

Q U B250(Q U W)C U B250 U B250(W)C U A3,6’

which is a compact subset of W*¢. Furthermore, the event (11.47) is measurable with respect to the
restriction of i to B, (V) and the function ¢ (which is measurable with respect to h|y.).

By standard absolute continuity results for the GFF (see, e.g., [67, Proposition 3.4]) together
with (11.45), the conditional law of h|z 5, (V) given h|y. is mutually absolutely continuous with

respect to its marginal law. From this and Lemma 11.10, we obtain
P[(11.47)| (11.46) N E;] > 0.
Since P[E; N (11.46)] > 0, we thus have
P[(11.47) n (11.46) N E;] > 0.

We will now conclude the proof by showing that (11.47) N (11.46) C E,. Assume that (11.47) N
(11.46) occurs. Then,

3 SUPBs, (V) P

diami" V)<e diamiz(V) (Weyl scaling)

< Dh(aBao, 53250) (the events (11.47) and (11.46))

and
up(U) > e? infu ?up,(U)  (Weyl scaling)
> M X SG;4(0) (the events (11.47) and (11.46)),
which is exactly the event E,. O

We finally show that P[E; n E,(M)] > 0= P[E; n E,(M) N E;] > 0. The proof involves adding
a bump function to make E; to occur and then checking that the events E; N E,(M) still occur
after adding the bump function.

Proof of Lemma 11.17. Let ¢ : C — [0,1] be a smooth compactly supported bump function such
that

] {1 on Bys, (W)\Bs, (U)

0 on(Uu B45O(W))C.

Since we know that P[E; N E,(M)] > 0 (Lemma 11.16) and the quantities involved are a.s. finite
and positive, we can find finite positive constants C;, C, (depending on M) such that the event

Dy,(0By5,,0B35.) > Cy
) (11.48)
diam,’(B3s,(W)\V) < C,
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satisfies P[E; N E, N (11.48)] > 0.
Let

.9 )

Recall from (11.33) that B; (U) C V. Hence, on E; N E; N (11.48),

. C, .. .
diam? (B, (W\V) < C—jdlamio(Bﬁo(W)\V) (Weyl scaling)

< Dh(aBz5O, 63350) (the event (11.48))
= Dj;(8B,s,,0B35,) (¢ =00nBys ),

which is the event E; with & in place of h. Hence, this event has positive probability.
As we will see below, by Weyl scaling, the fact log(% A1) <0,andsince ¢ =0on U U Az U
1

Bss,, on the event £y N E,(M) N (11.48) the event E, n E,(M) occurs with £ in place of h. By [68,
Proposition 2.9], the laws of & and h, viewed modulo additive constant, are mutually absolutely
continuous. Since the occurrence of the event E; N E,(M) N E; is unaffected by adding a constant
to h, we conclude that P[E; n E,(M) n E;] > 0, as required.

That adding the bump function did not change the occurrence of the events E; and E,, defined
in (11.35) and (11.36), respectively. The first inequality in E is

Dj(Q',0Q) = D(Q",3Q) (¢ =00nQ)
> sup Dj(0,x;(Bys (QUW))) (event E, for h)

XE€0B;

C
—log(=2 Al
e og(g AL

> sup Dj(0,x; (Bys,(QU W))¥) (Weyl scaling)

X€EOB5

> sup Dj(0,x: (Bys, (QUW)))  (log( A1) <O).

XEOBs

The second inequality in E, and the first inequality in E, are checked in a similar fashion, using
log(% A1) <0,and ¢ =0on B, . Since ¢ = 0on U U Az, the last inequality in E, is preserved.
) .

Hence, on the event £, N E,(M) n (11.48), the event £, N E,(M) occurs with / in place of h. []

APPENDIX: OBSTACLE PROBLEM FOR RADON MEASURES
In this appendix, we provide the proofs that were omitted in Section 3.2. For clarity, we prove these
results for any Radon measure y satisfying, for some R > 0,

r®” < uB,(2)) < ¥ forall z € By, (A1)
for some exponents 8+, 3~ > 0, for all r sufficiently small. This implies the results in Section 3.2

as the Liouville measure is a.s. a Radon measure that satisfies (A.1). Indeed, this follows from
Lemma 2.4 and the scaling properties of h and y;,, namely, (2.5) and (2.7).
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ForR > 0, let
45,0 = [ Gu, 0 uy), (A2)

where Gg_ is the Green’s function for B;. Under the condition (A.1), the function g, satisfies the
following properties:

(1) Continuous: g, is Holder continuous in By, and finite;
(2) Potential: gp, is superharmonic and Aqg = —p in By;
(3) Zero boundary: 9z, (z) = 0for z € 0Byg;

(4) Positive: qBR(x) > 0 for x € Bg.

The first property follows by the same argument outlined in the proof of Proposition 2.5; the sec-
ond, by, for example, [2, Theorem 4.3.8]; the third as GBR (0,-) = 0 on dBy; and the fourth by the
strong maximum principle.

For notational simplicity, we consider R = 1 in all but the last subsection. We will also only
consider the case where z is the origin.

Al | Definition
For t > 0, denote the obstacle 3; : B; > R U {oo} as

B:(x) = —tGg (0,x) + g, (x). (A3)
The set of supersolutions is
S, ={weC@B,): Aw<0inB; andw > B, in B}, (A.4)

where C(B_l) denotes the set of continuous functions on the closed unit ball.
Consider the least supersolution or least superharmonic majorant as the pointwise infimum of
all functions in S,

w, = inf{w € S} (A.5)
and the odometer
v =W, — ;. (A.6)

Note that S't is nonempty as it contains gp — thus w, always exists. Denote the noncoincidence
set by

Ay ={x € By 1 W, > B} (A7)

Note that the least supersolution in (A.5) is related to (3.2) by w, = W, — gp,. In particular,
A, coincides with A, and v, with v, — each of the lemmas in Section 3.2 will follow via this
substitution. We choose to work with S, as this allows us to directly cite results concerning
superharmonic functions.
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A2 | Existence

We first verify that the solution to the obstacle problem is nondegenerate in the following sense,
this implies Lemma 3.1.

Lemma A.1. Forallt > 0, w, is finite, continuous, and an element ofS‘[.

Proof. Let
f, :=inf{g : gis superharmonic in B, and g > §, in B;}, (A8)

where, as before, the infimum is pointwise. Note that this definition differs from w0, in that admis-
sible superharmonic functions need only be lower semicontinuous. It suffices to show that f,
satisfies the desired properties. Indeed, by definition f, < 0, and the reverse inequality follows
from f; € S,.

Step 1: Finiteness.

If g > f3; is superharmonic, then, by the minimum principle, ¢
As this holds for all such g, f; > 0. This together with co > gz,
shows finiteness.

Step 2: Superharmonicity.

We use [2, Theorem 3.7.5] which we recall for the reader’s convenience. Let O be a bounded
open set and let f : O — [—o0, o0]. The lower semicontinuous regularization of f is defined by

V

OonB;asg > p, =00ndB,.
[ (gp, is admissible in (A.8))

WV

J(x) = min{f(x), lim inf f(y)}. (A9)

[2, Theorem 3.7.5] states that if f > —oo is the infimum of a family of superharmonic functions
on O, then f is superharmonic on O and f(x) = lim inf yox SO

Since f, is finite, we may use this to see that its lower semicontinuous regularization, f,, is
superharmonic on B; and satisfies f,(x) = liminf,_,, f;(y) < f;(x). In fact, (A.8) implies f; is
equal to its lower semicontinuous regularization. Indeed, f; is superharmonic and

f.(x) = liminf £,(y) > lim inf ,) = B,(x)

as the obstacle, (3, is continuous, implying that f . = f; by (A.B).

Step 3: Continuity.

By Step 2, f; is lower semicontinuous. It remains to verify upper semicontinuity. Let € > 0 and
X, € B, be given. By continuity of 3;, there exists § > 0 sufficiently small so that

ﬁt(x) + 6/2 > /31()’), VX,y € Bé(-xo)v
and hence, since f,(x) > B,(x),
€+ fi(x) = Bi(xg) +€/2 2 B,(x), Vx € Bs(xg). (A.10)

Let g, be the unique function that is harmonic in Bs(x,) and coincides with € + f, on dBs(x,).
Note that since € + f, — ¢, is superharmonic in Bs(x,) and equal to 0 on 0Bs(x,),

€+ fi =g, onBs(xy). (A.1D)
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Define the function g to be g; on Bs(x,) and € + f, on B;\Bs(x,). One may check, using the super-
mean-value property and (A.11), that g is superharmonic in B;. Hence, by (A.10), g is admissible
in (A.8) and, in turn, g > f;. Therefore,

limsup f,(x) < limsup g(x) (g > f, on By)

X—=Xq X—=Xq
= g(x,) (g isharmonic and hence continuous in a neighborhood of x,)

<e+ fi(xy) (by(A.1l)and definition of g).
We conclude by observing the prior inequality holds for any € > 0. O

We next check that the least supersolution is harmonic on the noncoincidence set, this together
with Lemma A.1 implies Lemma 3.2.

Lemma A.2. The noncoincidence set, A,, is open and connected and
Awt =0 on At.

Proof. Step 1: A, is open.

As w, and §, are continuous and the disk B is open, the set A, is open (this is the topological
definition of a continuous function).

Step 2: W, is harmonic on A,.

If A, is empty, we are done, so suppose not. (This never happens but is proved later in Proposi-
tion 4.1.) Further, suppose for sake of contradiction that w, is not harmonic on A,. Since we know
that 0, is superharmonic (Lemma A.1), this means that 1, is not subharmonic on A,.

The idea of the rest of the proof is the following. Since w, > 5, on A,, there is some extra room to
“lower” w,. If Aw,(z) < 0 at some z € A,, then we can decrease W, around z by bending it up just
enough to not break superharmonicity. This contradicts the minimality of 10,. We cannot carry out
this strategy literally since u, is a priori not differentiable, so we instead use one of the equivalent
definitions of subharmonic.

Here are the details. Since we are assuming that w, is not subharmonic, by, for example, [2,
Theorem 3.2.2], there is some z € A, such that for every R > 0, there is a closed ball B,(z) C A,
of radius r < R and a function H : B_,,(z) — R that is continuous in B_r(z) and harmonic in B,(z)
such that

H>w, ondB,(z) (A12)
but
w,(xg) > H(xp) (A13)

for some x,, € B,(2).
Next, since w, and §3; are continuous and By(z) C A,, for R sufficiently small,

inf w,(x)> sup B,(y), Vr<R. (A14)
Xx€0B,(z) y€B,(2)
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Fix r > 0 small so that (A.12), (A.13), and (A.14) hold. As H is harmonic,

inf H(x)> inf H(y)> inf w/(x)> su ,
(BT > B HOY > ) o) yeﬁ%;)ﬁxy)

in particular,
H>f, inB,(2). (A15)

The above inequalities allow us to “lower” w, using H. Indeed, take the function 3 : B,(z) » R
defined by

¥ 1= min(H, w,) (A.16)

and note that by continuity and (A.12), = W, in a neighborhood of dB,.(z). In particular, we may
continuously extend 1 to all of B, by defining ¢ = w, on B, \B,(2). As H is harmonic in B,(z) and
w, is superharmonic, this extension ¥ is superharmonic. Also, by (A.15), % > §,. This shows that
Y e S't. However, by (A.13), 0,(x,) > ¥(x,), contradicting the minimality of 0, .

Step 3: A, is connected.

Otherwise there is a connected component of A, not containing the origin upon which v, is
nonzero, subharmonic, and 0 on its boundary — this violates the strong maximum principle. []

A.3 | Monotonicity
We now check monotonicity, this proves Lemma 3.3.

Lemma A.3. Ift; < t,, then At1 C Atz.

Proof. Recall that the odometer can be expressed as v, = W, — ;. Showing monotonicity is
equivalent to verifying U, SO, Unpack the difference to see that

U, =0, = wtz - LUtl +ﬁt1 _5t2

lﬁtz - lf)tl + (_tl + tz)GBl (0, ‘).
This motivates considering the superharmonic function
§:= lf)tz + ([2 - tl)GBl(O’ ').

In particular, we have

thus it suffices to show

$>w, . (A.17)
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This inequality follows from the obstacle problem. Indeed, as
wtz 2 6t2 = qu - tZGBl(07 ')7
we have, after plugging in the definition of §,
§2qp —1,Gp (0,-) =, .
Therefore, § € S’tl and by minimality of u”)t1 we have (A.17). O

A.4 | Conservation of mass

In this section, we prove that no mass comes in from the boundary, that is, ,uh(A[) < t. This
establishes Lemma 3.4. To that end, we observe that the odometer is 0 on the boundary of the
domain.

Lemma A.4. Forallt > 0, v, =00n 0B;.

Proof. This is immediate from g5 € S, and qp, = Gp,(0,-) =00ndB, O

We then use this together with the definition of weak normal derivative to prove the desired
claim.

Lemma A.5. Forallt > 0, u(A,) < t. Moreover, U“/T[ C B, and u(0A,) = 0, then w,(A,) = t.

Proof. Fixt > 0and recall that A, is an open set. By Lemma A.4, Lemma A.2, the superharmonicity
of w,, and the definition of v,,

v, =0 on 0B,
(A.18)
Av, = —t5, + M/‘z + vlaAt on B,

where 0 < v < u is a Radon measure that is absolutely continuous with respect to u. Hence, v,
solves a linear Dirichlet problem on B;, and so, by [73, Proposition 7.3], there exists a weak normal

. . Ov
derivative 6_nt so that

dv
—t+u(A) +v(0A) = / a—fda, (A.19)
4B, on

where do denotes integration with respect to surface measure. Since v, > 0 on B; and v, = 0 on
dB;, by [73, Lemma 12.15],

— <0 (A.20)

almost everywhere with respect to the surface measure. Moreover,

_ ov
A, CB > 6_}’1[ =0, (A.21)
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as the weak normal derivative coincides with the classical normal derivative if it exists. In
particular, by (A.19),

—t +u(A,) +v(0A,) <0, (A.22)

and
A, CBy= —t +u(A) +v(0A,) =0, (A.23)
completing the proofas 0 < v < u. O

A.5 | Compatibility

We prove Lemma 3.5 in this section. As previously mentioned, the results proved so far in this
appendix apply to wfR , AfR, va as long as (A.1) is satisfied for y in Bg. That is, if (A.1) is satisfied,
Bg Br

) , * and

then w

B
tR=0 on dBg

B
Av® = —t6, + /,tlABR +v|
t

9]

o onBy (A.24)
t

for a Radon measure 0 < v < u that is absolutely continuous with respect to u.
Lemma A.6. Suppose (A.1) is satisfied for fixed R > 0. For all s, < R, if, for some s, € [s;,R], we

By, By Bs,
have A7 C le, then A=A foralls € [sq,R].

Proof. Fix R > 0. Note that if (A.1) is satisfied for R, then it is satisfied for all s < R. Meaning
wfs S StB ¢ and (A.24) holds for vfs for all s < R. Let s; < R be given and fix s, € [s;, R] for which

BS
we have A, ? C By .
We first claim that

r BV’ .
v, "<y, ? in Brl, Vr, <r, <R (A.25)

To prove (A.25), fix r; < r, < R and write

B B B, B B
v, -t =w " —w, "+ tGBr1 0, — tGB,.2 0,)=w," —uw, (A.26)

where

Br
W, i=w, = t(GBr1 0,)— GBr2 (0, 4)). (A.27)
. B, B, .
Since w, > € S, ? and AGg(0, -) = =4, in B for any ball B,

B, .
AW, = Aw,? — 1(AGy, (0,-) = AGy, (0,)<p inB (A.28)

r
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and

B,
w, = (w,” + tGBrz 0,) — tGB,_l 0,)> —tGBrl (0,-) inB,. (A.29)

B B,
Therefore, 0, € S, ", which shows w, " < 1, and hence (A.25) by (A.26).

BS . . . .
For the other direction, we use the hypothesis A, * C By . This together with (A.25) implies that

BS . . . . . . .
v, ' is identically zero in a neighborhood of 6B, and so can be extended by 0 to be harmonic in

B
BR\By, . Also, observe that (A.25) implies A, 1 c AfR by definition. Therefore, by (A.24) for By

BS‘ . . . .
and Bg, va — v, ! is subharmonic in A?R and 0 on its boundary that shows

UfR < vf’”. (A.30)
Combining (A.25) and (A.30) shows that
va =v, " < v?“ < Uf’ < va, Vs; <s<r<R, (A.31)
completing the proof by the definition of A,. O
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