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eLife Assessment
This important paper introduces a theoretical framework and methodology for identifying Cancer 
Driving Nucleotides (CDNs), primarily based on single nucleotide variant (SNV) frequencies. A 
variety of solid approaches indicate that a mutation recurring three or more times is more likely to 
reflect selection rather than being the consequence of a mutation hotspot. The method is rigor-
ously quantitative, though the requirement for larger datasets to fully identify all CDNs remains 
a noted limitation. The work will be of broad interest to cancer geneticists and evolutionary 
biologists.

Abstract Tumorigenesis, like most complex genetic traits, is driven by the joint actions of many 
mutations. At the nucleotide level, such mutations are cancer-driving nucleotides (CDNs). The full 
sets of CDNs are necessary, and perhaps even sufficient, for the understanding and treatment of 
each cancer patient. Currently, only a small fraction of CDNs is known as most mutations accrued 
in tumors are not drivers. We now develop the theory of CDNs on the basis that cancer evolution 
is massively repeated in millions of individuals. Hence, any advantageous mutation should recur 
frequently and, conversely, any mutation that does not is either a passenger or deleterious muta-
tion. In the TCGA cancer database (sample size n=300–1000), point mutations may recur in i out 
of n patients. This study explores a wide range of mutation characteristics to determine the limit 
of recurrences (i*) driven solely by neutral evolution. Since no neutral mutation can reach i*=3, all 
mutations recurring at i≥3 are CDNs. The theory shows the feasibility of identifying almost all CDNs 
if n increases to 100,000 for each cancer type. At present, only <10% of CDNs have been identified. 
When the full sets of CDNs are identified, the evolutionary mechanism of tumorigenesis in each case 
can be known and, importantly, gene targeted therapy will be far more effective in treatment and 
robust against drug resistance.
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Introduction
Cancers are complex genetic traits with multiple mutations that interact to yield the ensemble of 
tumor phenotypes. The ensemble has been characterized as ‘cancer hallmarks’ that include sustaining 
growth signaling, evading growth suppression, resisting apoptosis, achieving immortality, executing 
metastasis and so on Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011; Hanahan, 
2022. It seems likely that each of the 6–10 cancer hallmarks is governed by a set of mutations. Most, 
if not all, of these mutations are jointly needed to drive the tumorigenesis.

In the genetic sense, cancers do not differ fundamentally from other complex traits whereby 
multiple mutations are simultaneously needed to execute the program. A well-known example is the 
genetics of speciation whereby interspecific hybrids are either sterile or infertile even though they do 
not have deleterious genes (Wu and Ting, 2004; Wang et al., 2022; Wu, 2022). A recent example 
is SARS-CoV-2. The early onset of COVID-19 requires all four mutations of the D614G group and the 
later Delta strain has 31 mutations accrued in three batches (Ruan et al., 2022b; Ruan et al., 2022a; 
Cao et al., 2023; Ruan et al., 2023) While cancer research has often proceeded one mutation at a 
time, each of the mutations has been shown to be insufficient for tumorigenesis until many (Ortmann 
et al., 2015; Takeda, 2021; Hodis et al., 2022) are co-introduced.

We now aim for the identification of all (or at least most) of the driver mutations in each patient. 
Both functional tests and treatments demand such identifications. The number of key drivers has 
been variously estimated to be 6–10 (Martincorena et  al., 2017; Anandakrishnan et  al., 2019; 
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). Although cancer driving 
‘point mutations’, referred to as Cancer Driving Nucleotides (or CDNs), are not the only drivers, they 
are indeed abundant (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). 
Furthermore, CDNs, being easily quantifiable, may be the only type of drivers that can be fully iden-
tified (see below). Here, we will focus on the clonal mutations present in all cells of the tumor without 
considering within-tumor heterogeneity for now (Ling et al., 2015; Turajlic et al., 2019; Black and 
McGranahan, 2021; Chen et al., 2022a; Zhai et al., 2022; Bian et al., 2023; Zhu et al., 2023).

Since somatic evolution proceeds in parallel in millions of humans, point mutations can recur 
multiple times as shown in Figure 1. The recurrences should permit the detection of advantageous 
mutations with unprecedented power. The converse should also be true that mutations that do not 
recur frequently are unlikely to be advantageous. Figure 1 depicts organismal evolution and cancer 
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Figure 1. Two modes of DNA sequence evolution. (A) A hypothetical example of DNA sequences in organismal evolution. (B) Cancer evolution that 
experiences the same number of mutations as in (A) but with many short branches. (C) A common pattern of sequence variation in cancer evolution. (D) 
In cancer evolution, the same mutation at the same site may occasionally be seen in multiple sequences. The recurrent sites could be either mutational 
or functional hotspots, their distinction being the main objective of this study.

https://doi.org/10.7554/eLife.99340
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evolution. While both panels A and B show 7 mutations, there can be two patterns for cancer evolu-
tion - the pattern in (C) where all mutations are at different sites is similar to the results of organismal 
evolution whereas the pattern in (D) is unique in cancer evolution. The hotspot of recurrences shown 
in (D) holds the key to finding all CDNs in cancers.

In the literature, hotspots of recurrent mutations have been commonly reported (Gartner et al., 
2013; Chang et al., 2016; Cannataro et al., 2018; Buisson et al., 2019; Hess et al., 2019; Stobbe 
et  al., 2019; Juul et  al., 2021; Nesta et  al., 2021; Zhao et  al., 2021; Bergstrom et  al., 2022; 
Sherman et al., 2022; Wong et al., 2022; Zeng and Bromberg, 2022). A hotspot, however, could 
be either a mutational or functional hotspot. Mutational hotspots are the properties of the mutation 
machinery that would include nucleotide composition, local chromatin structure, timing of replica-
tion, etc. (Stamatoyannopoulos et al., 2009; Pleasance et al., 2010; Makova and Hardison, 2015; 
Polak et  al., 2015; Martincorena et  al., 2017). In contrast, functional hotspots are CDNs under 
positive selection. CDN evolution is akin to ‘convergent evolution’ that repeats itself in different taxa 
(He et al., 2020a; He et al., 2020b; Wu et al., 2020; Pan et al., 2022b; Wu, 2023) and is generally 
considered the most convincing proof of positive selection.

While many studies conclude that sites of mutation recurrence are largely mutational hotspots 
(Buisson et al., 2019; Hess et al., 2019; Stobbe et al., 2019; Nesta et al., 2021; Bergstrom et al., 
2022), others deem them functional hotspots, driven by positive selection (Gartner et  al., 2013; 
Chang et al., 2016; Bailey et al., 2018; Cannataro et al., 2018; Juul et al., 2021; Zhao et al., 2021; 
Zeng and Bromberg, 2022). In the attempt to distinguish between these two hypotheses, studies 
make assumptions, often implicitly, about the relative importance of the two mechanisms in their 
estimation procedures. The conclusions naturally manifest the assumptions made when extracting 
information on mutation and selection from the same data (Elliott and Larsson, 2021).

This study consists of three parts. First, the mutational characteristics of sequences surrounding 
CDNs are analyzed. Second, a rigorous probability model is developed to compute the recurrence 
level at any sample size. Above a threshold of recurrence, all mutations are CDNs. Third, we determine 
the necessary sample sizes that will yield most, if not all, CDNs. In the companion study, the current 
cancer genomic data are analyzed for the characteristics of CDNs that have already been discovered 
(Zhang et al., 2024). Together, these two studies show how full functional tests and precise target 
therapy can be done on each cancer patient.

Table 1. An example of Ai and Si (from lung cancer, n=1035).

All sites CpG sites removed

i Ai Si Ai / Si Ai Si Ai / Si

0 22540623 7804281 2.89 21375384 7014012 3.04

1 195958 69393 2.82 168371 56821 2.96

2 2946 969 3.04 2188 643 3.4

3 99 21 4.71 68 16 4.25

4 23 1 23 17 1 17

5 16 0 16 : 0 9 0 9 : 0

6 10 0 10 : 0 6 0 6 : 0

7 5 0 5 : 0 5 0 5 : 0

8 8 0 8 : 0 6 0 6 : 0

9 4 0 4 : 0 3 0 3 : 0

≥3 178 22 8.09 122 17 7.18

≥4 79 1 79 54 1 54

[10-20] 7 1 7 4 0 4 : 0

≥20 6 0 6 : 0 4 0 4 : 0

Note –The ratio of Ai/ Si is provided as a measure of selection strength.

https://doi.org/10.7554/eLife.99340
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Results
In PART I, we search for the general mutation characteristics at and near high recurrence sites by both 
machine learning and extensive sequence comparisons. In PART II, we develop the mathematical 
theory for the maximal level of recurrences of neutral mutations (designated i*). CDNs are thus defined 
as mutations with ≥i* recurrences in n cancer samples. We then expand in PART III the theory to very 
large sample sizes (n≥105), thus making it possible to identify all CDNs.

To carry out the analyses, we first compile from the TCGA database the statistics of multiple hit 
sites (i hits in n samples) in 12 cancer types. This study focuses on the mutational characteristics 
pertaining to recurrence sites. We often present the three cancer types with the largest sample sizes 
(lung, breast, and CNS cancers), while many analyses are based on pan-cancer data. Analyses of 
every of the 12 cancer types individually will be done in the companion paper. The TCGA database 
is used as it is well established and covers the entire coding region (Cancer Genome Atlas Research 
Network et al., 2013). Other larger databases (Cerami et al., 2012; Tate et al., 2019; de Bruijn 
et al., 2023) are employed when the whole exon analyses are not crucial.

The compilation of multi-hit sites across all genes in the genome
Throughout the study, Si denotes the number of synonymous sites where the same nucleotide muta-
tion occurs in i samples among n patients. Ai is the equivalent of Si for non-synonymous (amino acid 
altering) sites. Table 1 presents the numbers from lung cancer for demonstration. It also shows the Ai 
and Si numbers with CpG sites filtered out. There are 22.5 million nonsynonymous sites, among which 
~0.2 million sites have one hit (A1=195,958) in 1035 patients. The number then decreases sharply as 
i increases. Thus, A2=2946 (number of 2-hit sites), A3=99, and A4 +A5 +...=79. We also note that the 
Ai/Si ratio increases from 2.89, 2.82, 3.04–4.71 and so on.

Figure 2 shows the average of Ai and Si among the 12 cancer types (see Methods). The salient 
features are shown by differences between the solid and dotted lines. As will be detailed in PART II, 
the dotted lines, extending linearly from i=0 to i=1 in logarithmic scale, should be the expected values 
of Ai and Si, if mutation rate is the sole driving force. In the actual data, (A1) and S1 decrease to ~0.002 
of A0 and S0, the step being least affected by selection (see PART II later). For A2 and S2, the decrease 
is only ~0.01 of A1 and S1. The decrease from i to i+1 becomes smaller and smaller as i increases, 
suggesting that the process in not entirely neutral. Furthermore, the lower panel of Figure 2 shows 
that Ai/Si continues to rise as i increases. These patterns again suggest a stronger positive selection 
at higher i values. The extrapolation lines shown in Figure 2 roughly define i=3 as a cutoff where the 
expected (A3) falls below 1 (see PART II for details). The precise model of PART II will define high 
recurrence sites (i≥3) as CDNs.

PART I - The mutational characteristic of high recurrence sites
In this part, the analyses are done in two different ways. The sequence-feature approach is to examine 
the mutation characteristics of sequence features (say, 3 mers, 5 mers, etc.) across patients. The 
patient-feature approach is to examine patients for their mutation signatures and mutation loads.

The sequence-feature approach
The simplest and best-known sequence feature associated with high mutation rate is CpG sites. In 
mammals, methylation and de-amination would enhance the mutation rate from CpG to TpG or 
CpA by five-~tenfold (Hodgkinson and Eyre-Walker, 2011; Ségurel et al., 2014). As the CpG site 
mutagenesis has been extensively reported, we only present the confirmation in the Supplement 
(Figure 2—figure supplement 1). Indeed, CpG sites account for ~6.5% of the coding sequences but 
contributing ~22% among the mutated sites in Figure 2. Hence, the sevenfold increase in the CpG 
mutation rate should contribute more to Ai and Si as i increases. Table 1 has shown the effects of 
filtering out CpG sites in the counts of recurrences. Clearly, CpG sites do contribute disproportion-
ately to the recurrences but, even when they are separately analyzed, the conclusion is unchanged. As 
shown later in PART II, every increment of i should decrease the site number by ~0.002 in the TCGA 
database. Thus, even with a 10-fold increase in mutation rate, the decrease rate would still be 0.02. In 
the theory sections, CpG site mutations are incorporated into the model.

https://doi.org/10.7554/eLife.99340
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In this section, we aim to find out how extreme the mutation mechanisms must be to yield the 
observed recurrences. If these mechanisms seem implausible, we may reject the mutational-hotspot 
hypothesis and proceed to test the functional hotspot hypothesis.

The analyses of mutability variation by Artificial Intelligence (AI)
The variation of mutation rate at site level could be shaped by multiple mutational characteristics. 
Epigenomic features, such as chromatin structure and accessibility, could affect regional mutation 
rate at kilobase or even megabase scale (Stamatoyannopoulos et al., 2009; Makova and Hardison, 
2015), while nucleotide biases by mutational processes typically span only a few base pairs around 
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Figure 2. The average Ai and Si values across different i ranges (X-axis). (Top): The average of Ai and Si in the log scale. Color lines - full data; gray lines 
- CpG sites removed. The dash lines are linear extrapolations. Bottom: The Ai / Si ratio as a function of i. The drop of Ai / Si ratio at i [8, 9] is due to the 
potential synonymous CDNs, see Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mutation and context landscape across 12 cancer types.

https://doi.org/10.7554/eLife.99340
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the mutated site (Roberts et al., 2013; Haradhvala et al., 2018; Herzog et al., 2021). AI-powered 
multi-modal integration offers a new tool to quantify the joint effect of various factors on mutation 
rate variability (Luo et al., 2019; Sherman et al., 2022; Song et al., 2023). Here we explore the asso-
ciation between the mutation recurrence (i) and site-level mutation rate predicted by AI.

Figure 3. Site-level mutation rate variation obtained from Dig Sherman et al., 2022, a published AI tool. (A) Each dot represents the expected SNVs 
(Y-axis) at a site where missense mutations occurred i times in the corresponding cancer population. The boxplot shows the overall distribution of 
mutability at i, with the red dashed line denoting the average. There is no observable trend that sites of higher i are more mutable (The blank areas 
are due to the absence of CDNs with mutation recurrence counts of 8 or 9 in CNS cancer mutation data, see Supplementary file 1). (B) A detailed 
look at the coding region of PAX3 gene in colon cancer. The expected mutability of sites in the 200 bp window is plotted. The three mutated sites in 
this window, marked by green and red (a CDN site) stars, are not particularly mutable. Overall, the mutation rate varies by about tenfold as is generally 
known for CpG sites.

https://doi.org/10.7554/eLife.99340
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Figure 3A shows the mutation rate landscape across all recurrence sites in breast, CNS and lung 
cancer using the deep learning framework Dig (Sherman et al., 2022). In this approach, the muta-
bility of a focus site is calculated based on both local stretch of DNA and broader scale of epigenetic 
features. The X-axis shows all mutated sites with i>0 scanned by Dig. While the mutation rate fluc-
tuates around the average level, we detect no significant difference in mutation rate as a function 
of i (Methods). In CNS, two sites exhibited exceptional mutability at i=6, surpassing the average by 
tenfold. Unsurprisingly, these two are CpG sites and correspond to amino acid change of V774M and 
R222C in EGFR (Supplementary file 1), which are canonical actionable driver mutations in glioma 
target therapy. In other words, the two sites called by AI for possible high mutability appear to be 
selection driven.

In Figure 3B, we take a closer look at how CDN is situated against the background of mutation 
rate variation, using the example of PAX3 (Paired Box Homeotic Gene 3; Wang et al., 2008; Li et al., 
2019). In this typical example, Dig predicts site mutability to vary from site to site. In the lower panel 
is an expanded look at a stretch of 200 bps. In this stretch, about 8% of sites are five- to tenfold more 
mutable than the average. But none of them are mutated in the data (i=0). There are indeed three 
sites with i>0 in this DNA segment including a CDN site C1271T (marked by the red star). This CDN 
site is estimated to have a twofold elevation in mutability, which is less than 1/50 of the necessary 
mutability to reach i≥3. The other two mutated sites, marked by the green star, are also indicated.

Other AI methods have also been used in the mutability analysis (Fang et al., 2022), reaching 
nearly the same conclusion. Overall, while AI often suggests sequence context to influence the local 
variation in mutation rate, the reported variation does not correspond to the distribution of CDNs. In 
the next subsection, we further explore the local contexts for potential biases in mutability.

The conventional analyses of local contexts - from 3-mers to 101-mers
Since the AI analyses suggest the dominant role of local sequence context in mutability, we carry out 
such conventional analyses in depth. Other than the CpG sites, local features such as the TCW (W=A or 
T) motif recognized by APOBEC family of cytidine deaminases (Burns et al., 2013; Roberts et al., 
2013), would have impacts as well. We first calculate the mutation rate for motifs of 3-mer, 5-mer and 
7-mer, respectively, with 64, 1024, 16384 in number (see Methods). The pan-cancer analyses across 

Figure 4. Conventional analyses of local contexts at recurrence sites. (A) From top panel down - For the 64 (43) 3-mer motifs, their mutational rates are 
shown on the X-axis. The most mutable motif over the average mutability (α) is 4.69. For the 1024 (=45) 5-mer and 16,384 (47) 7-mer motifs, the α values 
are, respectively, 8.79 and 11.52. The most mutable motifs, as expected, are dominated by CpG’s. (B) Each dot represents the motif surrounding a high-
recurrence site. The recurrence number is shown on the X-axis and the mutability of the associated motif’s mutability (mutations per 0.1 M) is shown 
on the Y-axis. The average mutation rate across all motifs of given length category is indicated by a red horizontal dashed line. The absence of a trend 
indicates that the high recurrence sites are not associated with the mutability of the motif. (C) The analysis is extended to longer motifs surrounding 
each CDN (21, 41, 61, 81, and 101 bp). For each length group, all pairwise comparisons are enumerated. The observed distributions (black bars and 
points) are compared to the expected Poisson distributions (red bars and curves) and no difference is observed. Thus, local sequences of CDNs do not 
show higher-than-expected similarity.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sliding window to explore the consensus sequences between recurrence sites.

https://doi.org/10.7554/eLife.99340
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the 12 cancer types are shown in Figure 4A. We use α to designate the fold change between the most 
mutable motif and the average. Since the number of motifs increases 16-fold between each length 
class, the α value increases from 4.7 to 8.8 and then to 11.5. Nevertheless, even the most mutable 
7-mer¸ TAACGCG, which has a CpG site at the center, is only 11.52-fold higher than the average. This 
spread is insufficient to account for the high recurrences, which decrease to ~0.002 for each increment 
of i (see PART II below).

A more direct approach is given in Figure 4B explained in the legends. The absence of a trend 
shows that the high recurrence sites are not associated with the mutability of the motif. In Figure 4C, 
the analysis extends to longer motifs of 21 bp, 41 bp, 61 bp, 81 bp, and 101 bp surrounding the 
high-recurrence sites. For example, the motif of 101 bp may be (10, 90), (20, 80) and so on either side 
of a recurrence site (Figure 4—figure supplement 1). We then compute the pairwise differences in 
sequences of the motifs among recurrence sites. The logic is that, if certain motifs dictate high muta-
tion rates, we may observe unusually high sequence similarity in the pairwise comparisons. As can be 
seen in all 5 panels of Figure 4C, there are no outliers in the tail of the distribution. In other words, 
the sequences surrounding the high-recurrence sites appear rather random. Detailed motif analysis 
of CDNs within individual cancer types using deep learning models (ResNet, LSTM and GRU) further 
supports this conclusion.

In conclusion, the analyses by the sequence approach do not find any association between high 
recurrence sites (i≥3) and the mutability of the local sequences.

The patient-feature approach
In this second approach, we examine the mutation characteristics among patients across sequence 
features. The first question is whether high recurrence sites tend to happen in patients with higher 
mutation loads. Figure 5A depicts the distribution of mutation loads among patients harboring a 
CDN of recurrence i. Hence, a patient’s load may appear several times in the plot, each appearance 
corresponding to one CDN in the patient’s data. For the comparison across i values, the mutation 
load is normalized by a z-score within each cancer population to equalize the three cancer types. The 
overall trend shows consistently that patients with recurrence sites do not bias toward high mutation 
loads. The presence of recurrence sites in patients with low mutation loads suggests that overall muta-
tion burden is not a determining factor of recurrence.

With the results of Figure 5A, we then ask a related question: whether these high recurrence muta-
tions are driven by factors that affect mutation characteristics. Such influences have been captured 
by the analyses of ‘mutational signatures’ (Alexandrov et al., 2013; Alexandrov et al., 2020). Each 
signature represents a distinct mutation pattern (e.g. high rate of TCT ->TAT and other tri-nucleotide 
changes) associated with a known factor, such as smoking or an aberrant mutator (aristolochic acid, 
for example). Each patient’s mutation profile can then be summarized by the composite of multiple 
mutational signatures.

The issue is thus whether a patient’s CDNs can be explained by the patient’s composite mutational 
signatures. Figure 5B reveals that in lung cancer, the signature compositions among patients with 
different recurrence cutoffs are statistically indistinguishable (Methods). Smoking (signature SBS4) 
consistently emerges as the predominant mutational process across all levels of recurrences. In breast 
cancer, while SBS2 and SBS13 exhibit some differences in the bins of i*=2 and i*=3, the profiles remain 
rather constant for all bins of i*≥3. The two lowest bins, not unexpectedly, are also different from the 
rest in the total mutation load (see Figure 5A). In Appendix 1—table 1, we provide a comprehensive 
review of supporting literature on genes with recurrence sites of i≥3 for breast cancer. In CNS cancer, 
SBS11 appears significantly different across bins, in particular, i≥20. This is a signature associated with 
Temozolomide treatment and should be considered a secondary effect. In short, while there are occa-
sional differences in mutational signatures across i* bins, none of such differences can account for the 
recurrences (see PART II).

To conclude PART I, the high-recurrence sites do not stand out for their mutation characteristics. 
Therefore, the variation in mutation rate across the whole genome can reasonably be approximated 
mathematically by a continuous distribution, as will be done below.

https://doi.org/10.7554/eLife.99340
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PART II - The theory of CDNs
We now develop the theory for Si and Ai under neutrality where i is the recurrence of the muta-
tion at each site. We investigate the maximal level of neutral mutation recurrences (i*), above which 
the expected values of Si and Ai are both <0. Since no neutral mutations are expected to reach i*, 
every mutation with the recurrence of i* or larger should be non-neutral. Importantly, given that the 
expected Si and Ai is a function of Ui where U=nE(u) is in the order of 10–2 and 10–3, i* is insensitive to 
a wide range of mutation scenarios. For that reason, the conclusion is robust.

Figure 5. Patient level analysis for mutation load and mutational signatures. (A) Boxplot depicting the distribution of mutation load among patients 
with recurrent mutations. The X-axis denotes the count of recurrent mutations, while the Y-axis depicts the normalized z-score of mutation load (see 
Methods). The green dashed line indicates the mean mutation load. In short, the mutation load does not influence the mutation recurrence among 
patients. (B) Signature analysis in patients with mutations of recurrences ≥i* (X-axis). For lung cancer (left), the upper panel presents the number of 
patients for each group, while the lower panel depicts the relative contribution of mutational signatures. For breast cancer, APOBEC-related signatures 
(SBS2 and SBS13) are notably elevated in all groups of patients with i*≥3, while patients with mutations of recurrence ≥ 20 in CNS cancer exhibit an 
increased exposure to SBS11 (Blough et al., 2011; Lin et al., 2021; Noeuveglise et al., 2023). Again, patients with higher mutation recurrences do 
not differ in their mutation signatures.

https://doi.org/10.7554/eLife.99340
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The mutation rate of each nucleotide (u) follows a Gamma distribution with a scale parameter 
θ and a shape parameter k. Gamma distribution is often used for its flexibility and, in this context, 
models the waiting time required to accumulate k mutations. Its mean (=kθ) and variance (=kθ2) are 
determined by both parameters but the shape (skewness and kurtosis) is determined only by k. In 
particular, the Gamma distribution has a long tail suited to modeling a small number of sites with very 
high mutation rate.

We now use synonymous (Si) mutations as the proxy for neutrality. Hence, in n samples,

	﻿‍
Si =

LS∑
l=1

Ci
nu

(
l
)i [1 − u

(
l
)]n−i ∼ Ci

nLSE
(

ui
)

‍�
(1)

where LS is the total number of synonymous sites and u(l) is the mutation rate of site l. In the equa-
tion above, the term ‍

[
1 − u

(
l
)]n−i

‍ is dropped. We note that ‍
[
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(
l
)]n−i e

[
−u

(
l
)(

n−i
)]

∼ 1‍ as u is in 
the order of 10–6 and n is in the order of 102 from the TCGA data. With the gamma distribution of u 
whereby the ith moment is given by
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we obtain:

	﻿‍ Si = LS · g
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) [
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(
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here:

	﻿‍
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In a condensed form,

	﻿‍ Si = G ·
[
nE

(
u
)]i

‍� (2)

where ‍G = LS · g
(
i, k

)
‍. Similarly, if nonsynonymous mutations are assumed neutral, then,

	﻿‍ Ai = LA · g
(
i, k

) [
nE

(
u
)]i ∼ 2.3 · Si‍� (3)

The number of 2.3 is roughly the ratio of the total number of nonsynonymous over that of synony-
mous sites (Hartl and Clark, 1989; Li, 1997; Chen et al., 2019). This number would vary moderately 
among cancers depending on their nucleotide substitution patterns.

E(u) of Equations 2 and 3 is generally (1~5)×10–6 per site in cancer genomic data and n is gener-
ally between 300 and 1000. Hence, nE(u) is the total mutation rate summed over all n patients and 
is generally between 0.001 and 0.005 in the TCGA data. Given nE(u) is in the order of 10–3, Si and Ai 
would both decrease by 2~3 orders of magnitude with each increment of i by 1. We note that the total 
number of synonymous sites, LS, is ~0.9 × 107 and LA is ~2.3 times larger. Therefore, S3 <1 and A3 <1. 
When i reaches 4, Si ≥4 and Ai ≥4 would both be ≪ 1 when averaged over cancer types.

For each cancer type, the conclusion of S3 <1 and A3 <1 is valid with the actual value of S3 and A3 
ranging between 0.01 and 1. In other words, with n<1000,, neutral mutations are unlikely to recur 3 
times or more in the TCGA data (i*=3). While Si ≥3 and Ai ≥3 sites are high-confidence CDNs, the value 
of i* is a function of n. At n≤1,000 for the TCGA data, i* should be 3 but, when n reaches 10,000, i* will 
be 6. The benefits of large n’s will be explored in PART III.

Possible outliers to the distribution of mutation rate
Although we have explored extensively the sequence contexts, other features beyond DNA sequences 
could still lead to outliers to mathematically distributions. These features may include DNA stem loops 
(Buisson et al., 2019) or unusual epigenetic features (Zheng et al., 2014; Makova and Hardison, 
2015; Supek and Lehner, 2015). We therefore expand the model by assuming a small fraction of sites 
(p) to be hyper-mutable that is α fold more mutable than the genomic mean. Most likely, α and p are 
the inverse of each other. For the bulk of sites (1 p) of the genome, we assume that their mutations 

https://doi.org/10.7554/eLife.99340
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follow the Gamma distribution. (Nevertheless, the bulk can be assumed to have a fixed mutation rate 
of E(u) without affecting the conclusion qualitatively.)

We let p range from 10–2 to 10–5 and α up to 1000. As no stretches of DNA show such unusually 
high mutation rate (1000-fold higher than the average), such sites are assumed to be scattered across 
the genome and are rare. With the parameter space of defined above, we choose the (p, α) pairs that 
agree with the observed values of S1 to S3 which are sufficiently large for estimations. Table 2 presents 
the value range and standard deviation for p and α across the six cancer types that have >500 patient 
samples. Among the six cancer types, the lung cancer data do not conform to the constraints and we 
set p=0. With observed values for S1~3 as constraints, S4 rarely exceeds 1. Hence, even with the purely 
conjectured existence of outliers in mutation rate, i*=4 is already too high a cutoff.

Table 2 suggests that p has to be smaller than 10–5 and α>1,000 to yield S4 >1. Since the coding 
region has 3×107 sites, p<10–5 would mean that the outliers are at most in the low hundreds. In other 
words, the number of high recurrence sites projected by the theory is close to the observed numbers. 
Therefore, there are really no unknown outlier sites of high mutation rate. Positive selection would be 
a more straightforward explanation, explained below.

The influence of selection on mutation occurrences
We now show that, although the mutational bias alone cannot account for the high occurrences, selec-
tion can easily do so. We assume a fraction, f, of Ai’s to be under positive selection. The fraction should 
be small, probably ≪ 0.01, and will be labeled ‍A

∗
i ‍. The rest, labeled Ai is considered neutral. Hence, 

Ai is proportional to ‍[nE
(
u
)i]‍ and Ai/Si =LA/LS ~2.3. Like Si ≥4, Ai ≥4 ≪ 1. In contrast,

	﻿‍ A∗
i = G∗[w · nE(u)]i

‍� (4)

	﻿‍

A∗
i

Si
= G∗

G
wi

‍�
(5)

where G* is also a constant but its value depends on f. The crucial parameter, w (=2 Ns), is the selective 
advantage (s) scaled by the population size of progenitor cancer cell (N). Since w can easily be >10, 
even at i=3, ‍A1

∗/S1‍ would be >100 as large as ‍
(
1 − u

)n−i e−u
(

n−i
)
‍. In other words, observed mutation 

recurrences at i≥3 for advantageous mutation should not be uncommon. Equation 4 also shows that 
w and E(u) jointly affect the recurrence; therefore, CpG sites (many of which fall in functional sites) are 
expected to be strongly represented among high recurrence sites.

PART III. The theory of large samples (n > 105) and identification of all 
CDNs
Using the theory of CDN developed above, the companion paper shows that each sequenced cancer 
genome in the current databases, on average, harbors only 1~2 CDNs. The number varies in this range 
depending on the cancer type (Zhang et al., 2024). For comparison, tumorigenesis may require at 

Table 2. Summary for modeling outlier sites in six cancer types.

Cancer Type S3 p α S4 S5

Lung* -- 0.0 -- -- --

Breast 0.12 8.75E-04 (8.21E-04) 88.6 (32.0) 0.102 (0.068) 0.004 (0.004)

CNS 0.02 2.73E-04 (1.09E-04) 295.1 (57.0) 0.448 (0.173) 0.026 (0.015)

Kidney 0.03 3.03E-05 (2.98E-05) 304.1 (108.0) 0.067 (0.056) 0.005 (0.006)

Upper-AD tract 0.47 0.002 (0.001) 48.9 (10.7) 0.174 (0.078) 0.005 (0.003)

Large intestine 1.03 0.009 (0.001) 51.6 (1.4) 0.998 (0.087) 0.026 (0.003)

Note – For each cancer type, p stands for the proportion of highly mutable sites, with mutation rate being α-fold of the average. S3 gives the expected 
number without mutable outliers (P=0). S4 and S5 denote the expected number with the best (p, α) pairs with the standard deviation in parentheses. For 
lung cancer, S2 and S3 do not fit the outlier model (Table 2—source data 1); therefore, we set P=0.

The online version of this article includes the following source data for table 2:

Source data 1. The outlier model parameters and expected Si values for 6 cancer types analyzed.

https://doi.org/10.7554/eLife.99340
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least 5~10 driver mutations as estimated by various criteria (Armitage and Doll, 1954; Hanahan and 
Weinberg, 2011; Belikov, 2017; Martincorena et al., 2017; Anandakrishnan et al., 2019; ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). The results show that there are 
many more CDNs that have not been discovered. This is not unexpected since most CDNs are found 
in <1% of patients. If each CDN is observed in 1% of patients and each patient has 5 CDNs, then there 
should be at least 500 CDNs for each cancer type.

In the companion study that uses the A/S ratios of Figure  1, the estimated number of CDNs 
ranges from 500 to 2000, whereas the current estimates based on Ai ≥3 sites is only 50~100 (Zhang 
et al., 2024). Where, then, are the undiscovered CDNs and how to find them? Since all Ai ≥3 sites are 
concluded to be CDNs, the bulk of CDNs must be among A1 and A2 sites. The best way to identify the 
CDNs hidden in A1 and A2 is to increase the sample size, n, dramatically.

We hence extend Equation 1 for Si and Ai to large n’s. Note that Equation 1 drops the term of 

‍(1 − u)n−i ∼ e−u
(

n−i
)
‍ as it is ~1, when nE(u) ≪ 1. With a large n when ‍e−u(n−i)‍ is not near 1, the recur-

rence of mutations would follow a Poisson distribution with the expected value of nE(u). Assuming 
that u follows a gamma distribution with a shape parameter of k, the probability of observing i muta-
tions would follow the negative binomial distribution as shown below:
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The cumulation density function for Equation 6 is then:
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Then, by definition, Ai ≥i* should be ≪ 1 so that mutations with recurrences i>i* could be defined 
as CDN. Thus:

	﻿‍
F
(
i ≤ i∗

)
= 1 − ε

LA ‍�
(8)

where ε=Ai≥i* denotes the number of sites with mutation recurrence ≥i* under the sole influence of 
mutational force. ‍

ε
LA ‍ could then be regarded as significance of i* since it controls the overall false posi-

tive rate of CDNs.
Specifically, with k=1, the probability function of mutation recurrence of a given site would trans-

form to a geometric distribution with P=1 / (1+nE(u)), the cumulative density function (CDF) is then:

	﻿‍
F
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Combined with Equation 5, the mutation recurrence cutoff i* of being a CDN could be expressed 
as:

	﻿‍
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For very large n, 1/nE(u) is small and i*/n can be approximated as

	﻿‍ i∗/n = log
(
LA

)
· E

(
u
)
∼ 5 × 10−5

‍� (11)

Equation 11 shows that i*/n would approach asymptotically as n increases. This asymptotic value 
is attained when n reaches ~106.

Figure 6 shows the range of i* for n up to 106. As expected, i* increases by small increments while 
n increases in 10-fold jumps. For example, when n increases by 3 orders of magnitude, from 100 to 
100,000,, i* only doubles from 3 to 12. The disproportional increment between i* and n explains why 

https://doi.org/10.7554/eLife.99340
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we use the actual number of i* for the cutoff, instead of the ratio i*/n. As shown in the inset of Figure 2, 
the ratio of i*/n would approach the asymptote at n~106, where an advantageous mutation only needs 
to rise to 0.00006 to be detected. With n reaching this level, we shall be able to separate most CDNs 
apart from the mutation background.

When n approaches 105, the number of CDNs will likely increase more than 10-fold as conjec-
tured in Figure 7A. In that case, every patient would have, say, 5 CDNs that can be subjected to 
gene targeting. (The companion study shows that, at present, an average cancer patient would have 
fewer than one targetable CDN.) Before the project is realized, it is nevertheless possible to test 
some aspects of it using the GENIE data of targeted sequencing. Such screening for mutations in the 
roughly 700 canonical genes serves the purpose of diagnosis with n ranging between 10~17 thou-
sands for the breast, lung and CNS cancers. Clearly, GENIE efforts did not engage in discovering new 
mutations although they would discover additional CDNs in the canonical genes. In the companion 
study, we demonstrate that the analysis of CDNs identifies a potential set of 1.6 times more driver 
genes than those detected by whole gene selection signal calls (Zhang et al., 2024).

Figure 7A assumes that the prevalence, i/n, should not be much affected by n, but the cutoff 
for CDNs, i*/n, would decrease rapidly as n  increases. (Figure 7B) shows that the i/n ratios indeed 
correspond well between TCGA and GENIE, which differ by 10–20-fold in sample size. Importantly, as 
predicted in Figure 6, the number of CDNs increases by three to fivefold (Figure 7C-E). Many of these 
newly discovered CDNs from GENIE are found in the A1 and A2 classes of TCGA while many more are 
found in the A0 class in TCGA. In conclusion, increasing n by one to two orders of magnitude would 
be the simplest means of finding all CDNs.

Discussion
The nature of high-recurrence mutations has been controversial. Many authors have argued for muta-
tional hotspots (Hess et al., 2019; Stobbe et al., 2019; Nesta et al., 2021; Bergstrom et al., 2022; 
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Figure 6. i* values (Y-axis, log scale) against sample sizes (n), X-axis across different shape parameter k’s. The Y axis presents the i* values under different 
sample sizes (n) of the X-axis in log scale. Five shape parameters (k) of the gamma-Poisson model are used. In the literatures on the evolution of 
mutation rate, k is usually greater than 1. The inset figure illustrates how i*/ n (prevalence) would decrease with increasing sample sizes. The prevalence 
would approach the asymptotic line of [‍g
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)
‍] when n reaches 106. In short, more CDNs (those with lower prevalence) will be discovered as n increases. 

Beyond n=106, there will be no gain.

https://doi.org/10.7554/eLife.99340
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Wong et al., 2022) but just as many have contended that they are CDNs driven by selection (Gartner 
et al., 2013; Chang et al., 2016; Bailey et al., 2018; Cannataro et al., 2018; Juul et al., 2021; Zhao 
et al., 2021; Zeng and Bromberg, 2022). While the two views co-exist, they are in fact incompatible. 
If the mutational hotspot hypothesis is correct, the selection hypothesis, and the determination of 
CDNs, would not be needed.

We believe that this study is the first to comprehensively test of the null hypothesis of mutational 
hotspots. In PART I, the mutational characteristics near all putative CDNs are examined and PART II 
presents the probability theory based on the analyses. The conclusion is that it is possible to reject the 
null hypothesis for recurrences as low as 3 in the TCGA data. The main reason for the high sensitivity 
is shown in Equations 2 and 3 where Ai and Si is proportional to ‍nl‍ or, roughly 0.002i. We recognized 
that the conclusion is based on what we currently know about mutation mechanisms. In a sense, the 
theory developed here can help the search for such unknown mutation mechanisms, if they do exist. 
Finally, the theory developed would permit the explorations in several new fronts when the sample 
size, n, expands to 105.

The first front is to identify (nearly) all CDNs. When n reaches 105, any point mutation with a preva-
lence higher than 12/100,000 would be a CDN, which is 25-fold more sensitive than in the TCGA data 
(3/1000). The companion analysis suggests that CDNs with lower prevalence, say 12/100,000 may still 
be highly tumorigenic in patients with the said mutation. If prevalence and potence are indeed poorly 
correlated, the search for lower prevalence CDNs by increasing n to 105 is equivalent to searching for 
less common but still potent cancer driving mutations.

The second one is functional tests in patient-derived cell lines. When we have all CDNs identified, a 
patient can be expected to have multiple (≥5; Zhang et al., 2024) CDNs. These mutations will be the 
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Figure 7. Analysis of CDNs with expanded sample set in GENIE. (A) Schematic illustrating the impact of sample size expansion on the number 
of discovered CDNs. The two vertical lines show the cutoffs of i*/n at (3/1000) vs. (12/100,000). The Y axis shows that the potential number of sites 
would decrease with i*/n, which is a function of selective advantage. The area between the two cutoffs below the line represents the new CDNs to be 
discovered when n reaches 100,000. The power of n=100,000 is even larger if the distribution follows the blue dashed line. (B) The prevalence (i/n) of 
sites is well correlated between datasets of different n (TCGA with n<1000 and GENIE with generally tenfold higher), as it should be. Sites are displayed 
by color. ‘1-hit’: CDNs identified in GENIE but remain in singleton in TCGA, ‘2-hit’: CDNs identified in GENIE but present in doubleton in TCGA. ‘CDN 
both’: CDNs identified in both databases. (C–E) CDNs discovered in GENIE (n>9000) but absent in TCGA (n<1000). The newly discovered CDNs may 
fall in TCGA as 0–2 hit sites. The numbers in the middle column show the percentage of lower recurrence (non-CDN) sites in TCGA that are detected as 
CDNs in the GENIE database, which has much larger n’s.
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basis of in vitro test, as well as in animal model experiments, by gene editing, as shown recently (Hodis 
et al., 2022). Targeting multiple mutations simultaneously is necessary and may even be sufficient.

The third front, and arguably the most important one, is cancer treatment by targeted therapy 
(Dang et al., 2017; Danesi et al., 2021; Waarts et al., 2022; Lin et al., 2023; Zhou et al., 2023). 
When multiple CDN mutations in the same patient can be simultaneously targeted, the efficacy should 
be high. No less crucial, resistance to treatment should be diminished since it would be harder on 
cancer cells to evolve multiple escape routes to evade multiple drugs. Moreover, CDN analysis is 
crucial for stratifying patients for targeted therapy, as only targeting genes that are positively selected 
during cancer evolution can truly achieve therapeutic effects.

There will be other fronts to explore with the full set of CDNs. A large database will facilitate 
the detection of negative selection which has eluded detection (Chen et  al., 2022b). Chen et al. 
have analyzed a curious phenomenon in somatic evolution, which they term ‘quasi-neutral evolution’ 
(Chen et al., 2019). It will also be possible to study the evolution of mutation mechanisms in cancer 
cells based on such large samples (Jackson and Loeb, 1998; Ruan et  al., 2020). This last topic 
is addressed in Appendix 1 Note 5 (Appendix 1—figure 2). Finally, at the center of evolutionary 
genetics is the multi-genic interactions that control complex phenotypes such as human diseases (e.g. 
diabetes; Vujkovic et al., 2020; Lagou et al., 2023; Xue et al., 2023; Suzuki et al., 2024), genetics 
of speciation (Chen et al., 2022b; Pan et al., 2022b) and the emergence of viral strains (Deng et al., 
2022; Pan et al., 2022a). Cancers may be the first such complex genetic systems that can be unrav-
eled thanks to the massively repeated evolution. As cancer genomics is increasingly adopted in cancer 
treatment, these benefits should become apparent when n reaches 105 for most cancer types.

Methods
Data collection
Single nucleotide variation (SNV) data for the TCGA cohort was downloaded from the GDC Data 
Portal (https://portal.gdc.cancer.gov/, data version 2022-02-28). Only mutations identified by at least 
two pipelines were included in this study. Mutations were further filtered based on their population 
frequency recorded in the Genome Aggregation Database (gnomAD, version v2.1.1), with an upper 
threshold of 1‰. We focused on coding region mutations of missense, nonsense, and synonymous 
types on autosomes. The mutation load for each patient was defined as the sum of these three types 
of mutations. Patients with a mutation load exceeding 3000 were identified as having a mutator 
phenotype and were excluded from our analysis. In total, 7369 samples representing 12 cancer types 
were included for mutation analysis.

Additional mutation data was acquired from the AACR Project GENIE Consortium via cBioPortal. 
Due to the prevalence of targeted sequencing within the dataset, filtering was implemented to 
ensure the inclusion of samples with sequencing assays encompassing all exonic regions of target 
genes. Furthermore, sample-level filtering was performed to guarantee a unique sequencing sample 
per patient. Germline filtering was applied to the resulting point mutations, removing mutations 
with SNP frequencies exceeding 0.0005 in any subpopulation annotated by gnomAD. To exclude 
patients exhibiting hypermutator phenotypes, mutation loads were scaled to the whole exon level 
with ‍ñL = nl · L

l ‍, where ‍nl‍ and l represent the mutation load and genomic length of target sequencing 
region, respectively. L denotes the genome-wide whole coding region length. Patients with ‍

∼nL > 3000‍ 
were subsequently excluded, consistent with the threshold employed for the TCGA dataset.

Calculation of missense and synonymous site number (LA and LS)
The idea of missense or synonymous sites originates from the question that how many missense or 
synonymous mutations would be expected if each site of the genome were mutated once given 
background mutation patterns. Here, the background mutation patterns refer to intrinsic biases in 
the mutational process, such as the over-representation of C>T (or G>A) mutations at CpG sites due 
to spontaneous deamination of 5-methylcytosine. In coding regions, fourfold degenerate sites are 
generally considered neutral, as any mutation path would not alter the encoded amino acid sequence. 
This analysis follows established methods at the single-base level to infer the expected number of 
missense and synonymous sites across the genome (Gojobori et al., 1982; Wu and Maeda, 1987; 
Hartl and Clark, 1989; Martincorena et al., 2017).

https://doi.org/10.7554/eLife.99340
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To illustrate the calculation process, we provide an example of synonymous site estimation. At four-
fold degenerate sites throughout the genome, we tally the number of mutations from base m to base v as 

‍nm>v (m, v ∈
{

A, C, G, T
}

, m ̸= v)‍. The likelihood of observing a mutation from reference base m to variant 
base v will be ‍rm>v = nm>v

Nm ‍ , where ‍Nm‍ represents the number of fourfold degenerate site with reference 
base m. We then normalize all likelihoods by 

‍Rm>v = rm>v∑
r‍
, where ‍

∑
r‍ represents the sum of likelihoods 

across 12 possible mutation paths, ‍Rm>v‍ thus describes the relative probability of an occurred mutation to 
be ‍m > v‍ at any site. For a given genomic coding region of length L, the synonymous site number will be:

	﻿‍
LS =

∑
L

δ
syn
m>vRm>v

‍�
(S1)

with ‍δ
syn
m>v‍ being a Kronecker delta function where:

‍δ
syn
m>v = 1‍ if is synonymous

‍δ
syn
m>v = 0‍ otherwise 

Similarly, the expected number of missense sites LA, is calculated as follows:

	﻿‍
LS =

∑
L

δmis
m>vRm>v

‍�
(S2)

Calculation of Ai and Si

For each mutated site, we track its number of recurrent mutations i (i>0) across two mutation cate-
gories: missense and synonymous. Subsequently, we aggregate across entire coding region to count 
the number of sites harboring i missense mutations (Ai) and synonymous mutations (Si). For i=0, we 
define A0 and S0 as the estimated number of potential missense and synonymous sites that remain 
unmutated within the current sample size.  ‍A0 = LA − Σi>0Ai, S0 = Ls − Σi>0Si.‍

AI-based mutation rate analysis
To capture the complex interplay of genomic and epigenomic factors influencing mutation suscep-
tibility, we employed pre-trained artificial intelligence (AI) models from Dig, an aggregated tool 
combining deep learning and probabilistic models (Sherman et al., 2022). Downloaded from the Dig 
data portal (http://cb.csail.mit.edu/cb/DIG/downloads/), these models leverage a rich set of features 
encompassing both kilobase-scale epigenomic context (replicating timing, chromatin accessibility, 
etc.) and fine-grained base-pair level information (such as sequence context biases) to predict the site 
level mutation rate. For each cancer type, we re-fitted the pre-trained models with mutations analyzed 
in our study. The mutation rate for each site, scaled by population size, was obtained via the element-
Driver function within Dig, and was represented by EXP_SNV from the final results. For a closer look at 
mutation rate landscape of PAX3, we re-fitted the AI-model with point mutations from large intestine 
cancer. The mutation rates were generated site-by-site for the coding regions of PAX3.

Given the scarcity of mutated sites with recurrence i≥3 (comprising only 0.15% of all mutated 
sites), a rigorous statistical approach was adopted to assess the significance of mutability differences 
between these high-hit groups and low-hit groups. We implemented the procedure as follows:

(1) Raw significance level: For each recurrence group i (containing Ai sites), a one-sided Kolmogorov-
Smirnov (K-S) test was employed to calculate a raw significance level (denoted as ‍p0‍) against the low-
hit group.

(2) Resampling for Significance Pool: we resample Ai sites from the entire pool of mutated sites 
with missense mutations. The significance ‍pj‍ from one-sided K-S test is calculated against the low hit 
group. The resampling process was repeated 100,000 times, generating a distribution of resampled 
significance levels, denoted as ‍

{
pj, j = 1, 2, ..., 100, 000

}
‍.

(3) Adjusted Significance Level: the raw significance ‍p0‍ was then compared to the resampled signif-
icance pool ‍

{
pj, j = 1, 2, ..., 100, 000

}
‍. The proportion of ‍p0 < pj‍ was then calculated as the adjusted 

significance level that accounted for potential sampling effects.

Motif-based mutability
For a given nucleotide base, we extended the sequence to each side by 1, 2, and 3 base pairs, 
producing sets of 3-mer, 5-mer, and 7-mer motifs, respectively. We then pooled point mutations from 

https://doi.org/10.7554/eLife.99340
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12 cancer types to create a comprehensive dataset. For 3-mer and 5-mer motifs, we utilized synon-
ymous mutations as the reference for mutation rate calculations. For 7-mer motifs, the vast number 
of possible sequence combinations (47=16,384) posed a challenge, as synonymous mutations alone 
might not adequately cover all potential contexts. To address this, we employed all singleton muta-
tions (1-hit mutations) from both missense and synonymous categories for 7-mer motif analysis. This 
decision was based on the assumption that singleton mutations are less affected by selective pres-
sures, supported by the genome-wide observation that the ratio of missense to synonymous single-
tons (A1/S1) approximates the ratio of unmutated missense to synonymous sites (A0/S0).

The site number for 3-mer and 5-mer motifs of a given context c was calculated as follows:

	﻿‍
Lc,S =

∑
L

δ
syn
c,m>v · Rm>v

‍�

Which is an extension of Equation S1, with ‍δ
syn
c,m>v‍ being a Kronecker delta function where:

‍δ
syn
c,m>v = 1‍ if base change of m to v (m > v) is synonymous under sequence context c.

‍δ
syn
c,m>v = 0‍  otherwise.

 

The mutation rate then could be expressed as:

	﻿‍
µc =

nsyn
c,m>v
Lc,s ‍�

(S3)

for 7-mer motifs, the calculation is:

	﻿‍
Lc = Lc,S + Lc,A =

∑
L

δ
syn
c,m>v · Rm>v +

∑
L

δmis
c,m>v · Rm>v

‍�

	﻿‍
µc =

nsyn
c,m>v + nmis

c,m>v
Lc ‍�

(S4)

Where for Equations S3 and S4, ‍n
syn
c,m>v‍ and ‍n

mis
c,m>v‍ represent the mutation numbers with m>v being 

synonymous and missense under sequence context c, respectively. The mutation rate is then scaled 
as the expected mutation number per 105 corresponding sequence motifs for better presentation.

Significance for motif enrichment (Figure 4B) mirrored the AI analysis. For each i≥3 site, we calcu-
lated raw K-S p-values against motif mutabilities (denoted as ‍p0‍). These were then compared to a 
resampled significance pool ‍

{
pj, j = 1, 2, ..., 100, 000

}
‍, with the proportion of ‍p0 ≤ pj‍ employed as the 

final p-value, depicting enrichment significance for highly mutable motifs in recurrence group i against 
low hits.

Consensus length comparison
To explore potential sequence motifs associated with recurrent mutations (i≥3), we employ a sliding 
window of 10 bp stride to extract the local context from reference genome (Figure 4—figure supple-
ment 1). We examined diverse window sizes (21, 41, 61, 81, and 101 bp) to capture potential motifs of 
varying lengths and distances to the mutated site. Consensus length of local contexts was measured 
by Hamming distance in pairwise comparisons of aligned windows (with same stride) between mutated 
sites.

To prioritize sequence similarities likely driven by mutational mechanisms rather than functional 
constraints or gene structure, we restricted consensus comparisons to non-homologous genes. 
This approach effectively mitigated potential biases arising from homologous genes (e.g., KRAS 
and NRAS) or repeated domains within a single gene (e.g., FBXW7). The statistical significance of 
observed consensus lengths was assessed using the K-S test, which compared the empirical distri-
bution of consensus lengths against a Poisson distribution, with mean of λ set to one-quarter of the 
window size, which reflects the expected distribution under random scenarios.

Mutational signature analysis
The mutation load of each patient could be further decomposed to several known mutational 
processes, which is represented by mutational signatures. In general, each mutational signature 

https://doi.org/10.7554/eLife.99340
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embodies the relative mutabilities across distinct mutational contexts. Leveraging single base substi-
tution (SBS) signatures from COSMIC (v3.3), we employed the SignatureAnalyzer tool to quantify 
the contribution of each signature to individual mutational loads (Kim et al., 2016). For composition 
analysis in Figure 5B, we focused on signatures contributing at least 2% to the total mutations within 
a given cancer type, given that there are 79 mutational signatures in use for deconvolution.

To assess signature contribution changes across recurrence cutoffs (i), we grouped patients with 
mutations of recurrence i≥i* and scaled signature contributions to 1 to cancel out the population size 
effect. Pairwise K-S test between different i*s is employed to determine whether signature contribu-
tions are significantly different under each i*.

Outlier model
The purpose of the outlier model is to investigate if high-hit sites could be explained by a fraction (p) 
of highly mutable sites (with mutability α-fold higher). By definition, we have:

	﻿‍ Si =
(
1 − p

)
· LS ·

[
nE

(
u
)]i + p · LS ·

[
α · nE

(
u
)]i

‍� (S5)

With n represents the population size and E(u) denotes the average mutation rate per site per 
patient.

We let p range from 10–5 to 10–2 and α from 1.1 to 1,000. For each (p, α) pair, we solve Equation S5 
based on observed S1 (i=1) to obtain E(u). Then, we calculate expectedSi with i=2, 3. The (p, α) pairs 
are filtered by imposing constraints grounded in observed S2 and S3 values. Specifically, we retained 
only those pairs whose expected S2 and S3 values resided within the 95% quantile range of a Poisson 
distribution with λ set to the observed values. This filtering process yielded biologically plausible (p, α) 
pairs that were then used to derive S4 and S5. Finally, we computed the mean and standard deviation 
for p, α, S4, and S5 across all filtered pairs to capture their central tendencies and variability.

CDN analysis in GENIE
To circumvent potential biases in E(u) estimation stemming from the varying target gene coverage 
across sequencing panels within the GENIE dataset, we leveraged E(u) values derived from the corre-
sponding cancer types in the TCGA dataset. Specifically, we focused on 1-hit synonymous mutations 
within coding regions, as these are generally considered to be the least influenced by selective pres-
sures in coding regions. Based on Equation 1 from the main text, we have:

	﻿‍ S1 = LS · nE
(
u
)

e−
(

n−1
)

E
(

u
)
‍� (S6)

where ‍e(n−1)E(u)‍ comes from approximation of ‍[1 − E(u)](n−1)
‍ from binomial distribution, and n is the 

population size in TCGA. The calculation for the threshold i*, based on Equation 10 from the main 
text, is:

	﻿‍

i∗ =
log

(
ε

LA

)

log

(
neE

(
u
)

1 + neE
(
u
)
)

‍�

(S7)

The only difference in Equation S7 is that we use ne to represent the number of patients sequenced 
for a target gene in GENIE, considering the overlapping between different assays in use. In essence, 
we will have for each gene a CDN threshold i*.

The comparison of CDNs between TCGA and GENIE are restricted to genes sequenced by GENIE 
panels. For CDNs identified in GENIE using Equation S7, we investigated their hit information and 
CDN identity within TCGA dataset. The CDN flow proportion depicted in Figure 7C–E represents 
the ratio of sites identified as CDN in GENIE to ‍A

∗
i ‍ (i=0, 1, 2) of TCGA. ‍A

∗
i ‍ mirrors Ai but specifically 

considers the coding region sequenced by the GENIE panel. For CDNs identified in TCGA, the flow 
ratio is just the proportion of sites being identified as CDNs in GENIE. Notably, for CDNs identified in 
GENIE but lacking mutations in TCGA (i=0), ‍A

∗
0‍ is obtained using Equation S2 with L being the length 

of coding region sequenced in GENIE.

https://doi.org/10.7554/eLife.99340
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Appendix 1
1. Literature support for CDNs identified in breast cancer
Verification of site level positive selection in cancer genome has primarily focused on canonical 
cancer drivers. For non-canonical candidates with experimentally proven tumorigenic activity, CDN 
sites within these genes emerge as potential key drivers due to their statistically stronger selective 
advantage. Under this premise, we search for literature evidence for genes harboring CDN sites in 
breast cancer.

Among the 17 genes with CDN sites in breast cancer, 11 are recognized as canonical drivers by all 
three major driver gene lists (Appendix 1—table 1). 4 genes (CDC42BPA, ERBB3, KIF1B, NUP93), 
despite lacking inclusion in canonical breast cancer driver lists, possess explicit experimental support 
indicating their driving roles in breast tumorigenesis. HIST1H3B has been recognized as a driver 
gene in breast cancer by IntOGen, corroborated by literatures supporting its association with breast 
cancer. The four mutation recurrences with R6C alteration in amino acid sequence in RARS2 have 
been proposed to be linked to defects in mitochondrial transport, the explicit role of RARS2 in 
breast cancer tumorigenesis remains to be explored.

Appendix 1—table 1. literature support for CDN genes in breast cancer.

Gene Id Gene Name Support

AKT1 v-akt murine thymoma viral oncogene homolog 1 ① ② ③

CDC42BPA CDC42 binding protein kinase alpha (DMPK-like)
Unbekandt and Olson, 2014; Collins et al., 2018; Kwa et al., 2021; Jiang 
et al., 2023

CDH1 cadherin 1, type 1, E-cadherin (epithelial) ① ② ③

ERBB2
v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 2 ① ② ③

ERBB3
v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 3

Holbro et al., 2003; Xue et al., 2006; Hamburger, 2008; Sithanandam and 
Anderson, 2008; Stern, 2008; Huang et al., 2010

FGFR2 fibroblast growth factor receptor 2 ① ② ③

FOXA1 forkhead box A1 ① ② ③

GATA3 GATA binding protein 3 ① ② ③

HIST1H3B histone cluster 1, H3b ① ② ③ Xie et al., 2019; Wang et al., 2023*

KIF1B kinesin family member 1B Munirajan et al., 2008; Yu and Feng, 2010; Liu et al., 2022

KRAS Kirsten rat sarcoma viral oncogene homolog ① ② ③

NUP93 nucleoporin 93 kDa Bersini et al., 2020; Nataraj et al., 2022

PIK3CA
phosphatidylinositol-4,5-bisphosphate 3-kinase, 
catalytic subunit alpha ① ② ③

PTEN phosphatase and tensin homolog ① ② ③

RARS2 arginyl-tRNA synthetase 2, mitochondrial Wang et al., 2020*

SF3B1 splicing factor 3b, subunit 1, 155 kDa ① ② ③

TP53 tumor protein p53 ① ② ③

The serial number corresponds to the inclusion of target gene in the following driver gene list: ① CGC Tier-1 list, ② IntOGen, ③ Bailey’s list.
The inclusion necessitates that the target gene is annotated as a cancer driver in breast cancer.
*ambiguous, meaning the literature indicates an association between the candidate gene and breast cancer, but lacks explicit experimental evidence.

2. The impact of k for gamma-binomial model
From Equation 2 in the main text, Si is affected by two terms: G and nE(u), where G is:

	﻿‍
G = Ls · g(i, k) = Ls · Ci

k+i−1 ·
1
ki ‍�

https://doi.org/10.7554/eLife.99340
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LS is a constant value given specific cancer type, here we demonstrate how ‍φ
(
i, k

)
‍ varies with 

respect to i and k, and elucidate why Si of k=1 indicates the upper bound of CDN cutoff.
Considering the fold change of G from i-1 to i.

	﻿‍

φ
(
i, k

)
=

g
(
i, k

)

g
(
i − 1, k

) =
Ci

k+i−1 · 1
ki

Ci
k+i−2 ·

1
ki−1 ‍� (S8)

Appendix 1—figure 1 illustrates how ‍φ
(
i, k

)
‍ changes with i and k. With k range from 0.1 to 10, 

the curve of ‍φ
(
i, k

)
‍ elucidates the extent to which G would impact Si with each increment of i. As 

detailed in Section 4, k will be >1 for biological significance. In such cases, ‍φ
(
i, k

)
‍ will always be < 1, 

meaning G will synergistically collaborate with nE(u) to decrease Si. The diminishing impact of ‍φ
(
i, k

)
‍ 

intensifies as k increases. A higher k value would suggest that, for most sites across the genome, 
mutability falls within a narrow range of >0. In an extreme case, when k=10, ‍Pois

(
i ∨ λ

)
‍ = 0.145 at 

i=20, which is 2 orders weaker than nE(u) for cancer types in TCGA. In practice, k is usually estimated 
to be between 2–5, depending on the cancer types being investigated (Appendix  1—table 2). 
Consequently, the reduction of Si with each increase of i is predominantly governed by nE(u), and 
the Si values with k=1 represent the upper limit driven solely by mutational force.
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Appendix 1—figure 1. The trend of ‍λ‍ with each increase of recurrence (i, the x-axis) under different shape 
parameters of the gamma distribution (k, designated by different colors).

Appendix 1—table 2 Continued on next page

Appendix 1—table 2. k estimated from 12 cancer types.

Cancer type k

Breast 5.05

CNS 2.59

Endometrium 5.49

Kidney 7.70

https://doi.org/10.7554/eLife.99340
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Cancer type k

Large intestine 4.76

Liver 5.23

Lung 2.62

Ovary 4.30

Prostate 3.60

Stomach 4.17

Upper-AD tract 4.14

Urinary tract 6.14

merged set* 3.27

Note:- Estimation of k is derived from negative binomial regression, based on synonymous changes aggregated by the 3 bp local context at mutated 
sites across all coding genes. The estimation method is implemented in package dndscv.
*The merged set contains mutation information from all 12 cancer types.

Appendix 1—table 2 Continued

3. The impact of negative selection on shape parameter k
Across various studies aiming to depict mutability variation across genome under the gamma 
distribution, the shape parameter k is always pivotal. Adopting a dichotomous perspective, we 
inquire into how k compares to 1 under large sample sizes (n≥106). This inquiry is fundamentally 
linked to the prevalence of negative selection across the cancer genome, as the observed mutation 
abundance is an amalgamation of mutational and selection forces. In scenarios where purifying 
selection extensively operates throughout the genome in cancer evolution, even for synonymous 
sites (Sharp and Li, 1987; Plotkin and Kudla, 2011; Gartner et al., 2013; Chu and Wei, 2019), 
most genomic sites would not exhibit mutations, resulting in k being  ≤1. In attempts to detect 
negative selection signals in cancer, researchers typically identify only a limited number of genes (Luo 
et al., 2008; Van den Eynden et al., 2016; Zapata et al., 2018; Bányai et al., 2021). In a CRISPR-
Cas9 loss-of-function screen covering 16,540 genes conducted across 558 cancer cell lines, only 
approximately 6% of genes are under strong negative selection in at least 90% of the cell lines (De 
Kegel and Ryan, 2019). In an in-house mutation accumulation experiment carried out in HCT116 (a 
human colorectal carcinoma cell line, data not published), the proportion of mutations under strong 
negative selection is 0.66% with a selection coefficient (s) of –0.6 (indicating that the survivability of 
the mutant is 40% of the wildtype). These evidences, in concordance with quasi-neutrality of cancer 
evolution, suggest that purifying selection is indeed rare in cancer evolution. The mutability for the 
majority of genomic sites is greater than 0, with shape parameter k>1.

4. Detailed derivation for negative binomial distribution and 
approximation of i*/n
The derivation of Equation 5 from joint distribution of Gamma-Poisson distribution is well presented 
in statistically analysis. Here, we assume that the mutation recurrence (i) observed at site level across 
the genome follows a Poisson distribution of ‍Pois(i|λ)‍, where the expected number of mutation 
recurrence ‍λ‍ follows a Gamma distribution of ‍Gamma (λ|k, θ)‍, with k and ‍θ‍ being the shape and scale 
parameters, respectively. Then, the joint probability density function for i can be expressed as:
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Now, we make use of the probability density function of Gamma distribution,
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Comparing with Equation S10, Equation S9 can be rewrite as:
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(S11)

Note that the mean for Gamma distribution is ‍kθ = nE(u)‍, which leads to ‍θ = nE(u)
k ‍. Then, the 

negative-binomial form of Equation S11 could be further expressed as:
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Which is Equation 6 from the main text.
With k=1, ‍nE(u) = kθ = θ‍, Equation S11 then transforms to:
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Which is a geometric distribution with ‍p = 1
1+nE(u)‍.

For the approximation of i*/n, we let ε=1, then Equation 10 from main text could be rewritten as:
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For the left side of Equation S12, we use the first-order Tayler expansion,

	﻿‍
i∗ · log

(
1 + 1

nE(u)

)
= log(LA)

‍�

Substitute this to Equation S12, we have:

	﻿‍
i∗

n
= log(LA) · E(u)

‍�

Which is Equation 11 from main text.

5. Probing mutation rate variation with large samples
With large sample size sequenced, the data will yield an additional benefit by revealing the evolution 
of the mutation rate itself. Given that the mutation rate per site is extremely small, the evolution 
of mutation rate itself has been a most challenging issue (André and Godelle, 2006; Lynch, 2010; 
Lynch, 2011; Lynch et al., 2016; Ruan et al., 2020; Wei et al., 2022). In particular, without the 
check of selection, the mutation rate is liable to be trapped in the runaway evolution (Ruan et al., 
2020).
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Appendix 1—figure 2. The gamma distribution of recurrences (i) under different shapes. With E(u)=5 × 10–6, we 
set the shape parameter k to 0.2, 1 and 5, represented by three distinct colors. The site number of synonymous 
recurrence i (Si) is indicated on Y-axis. In the context of a large sample size (n=106), the Si distribution clearly 
distinguishes between different k values, mitigating the overdispersion issue encountered in smaller sample sizes. 
The inset depicts the distribution on a log10 scale for i≥10, with a horizontal dashed line indicating Si=1, where i* is 
the CDN cutoff.

The theory of mutation rate of evolution should be based on the distribution of the per-site 
mutation rate across the genome. However, the empirical data so far only yield the mean. In 
particular, the spectrum of Si’s for i’s close to 1 would be most informative about the evolution of the 
mutation mechanism. Appendix 1—figure 2 shows the Si spectrum with k=0.2, 1 or 5 in a Gamma 
distribution. Note the mode of the distribution (i.e. the peak of the curve) among the 3 curves, which 
is at 0 or >0 depending on whether k≤1 or>1. Clearly, the observed Si’s can distinguish among the 
three distributions only when n is very large. The implications of such distributions for the theory of 
mutation rate evolution are addressed in Discussion.
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